modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
sequence
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF
mradermacher
2025-01-26T09:45:24Z
162
0
transformers
[ "transformers", "gguf", "en", "base_model:juewang/Meta-Llama-3-4B-mlp-pruned", "base_model:quantized:juewang/Meta-Llama-3-4B-mlp-pruned", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-27T09:47:00Z
--- base_model: juewang/Meta-Llama-3-4B-mlp-pruned language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/juewang/Meta-Llama-3-4B-mlp-pruned <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ1_S.gguf) | i1-IQ1_S | 1.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ1_M.gguf) | i1-IQ1_M | 1.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ2_S.gguf) | i1-IQ2_S | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ2_M.gguf) | i1-IQ2_M | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q2_K.gguf) | i1-Q2_K | 1.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ3_S.gguf) | i1-IQ3_S | 2.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ3_M.gguf) | i1-IQ3_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q3_K_M.gguf) | i1-Q3_K_M | 2.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q3_K_L.gguf) | i1-Q3_K_L | 2.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ4_XS.gguf) | i1-IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q4_0.gguf) | i1-Q4_0 | 2.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q4_1.gguf) | i1-Q4_1 | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q5_K_M.gguf) | i1-Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Meta-Llama-3-4B-mlp-pruned-i1-GGUF/resolve/main/Meta-Llama-3-4B-mlp-pruned.i1-Q6_K.gguf) | i1-Q6_K | 3.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF
mradermacher
2025-01-26T09:45:16Z
57
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "jeiku/Synthetic_Soul_1k_Mistral_128", "jeiku/Theory_of_Mind_Roleplay_Mistral", "jeiku/Alpaca_NSFW_Shuffled_Mistral", "jeiku/Luna_LoRA_Mistral", "jsfs11/WONMSeverusDevilv2-TIES", "en", "base_model:jsfs11/WONMSeverusDevilv3-LORAMERGED", "base_model:quantized:jsfs11/WONMSeverusDevilv3-LORAMERGED", "endpoints_compatible", "region:us" ]
null
2024-12-27T09:53:04Z
--- base_model: jsfs11/WONMSeverusDevilv3-LORAMERGED language: - en library_name: transformers quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - jeiku/Synthetic_Soul_1k_Mistral_128 - jeiku/Theory_of_Mind_Roleplay_Mistral - jeiku/Alpaca_NSFW_Shuffled_Mistral - jeiku/Luna_LoRA_Mistral - jsfs11/WONMSeverusDevilv2-TIES --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jsfs11/WONMSeverusDevilv3-LORAMERGED <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/WONMSeverusDevilv3-LORAMERGED-GGUF/resolve/main/WONMSeverusDevilv3-LORAMERGED.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Kosmos-Elusive-VENN-8B-GGUF
mradermacher
2025-01-26T09:44:02Z
61
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-Elusive-VENN-8B", "base_model:quantized:jaspionjader/Kosmos-Elusive-VENN-8B", "endpoints_compatible", "region:us" ]
null
2024-12-27T12:17:08Z
--- base_model: jaspionjader/Kosmos-Elusive-VENN-8B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jaspionjader/Kosmos-Elusive-VENN-8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
duyphu/6d65b9b0-95e9-4290-b9d2-441d4803fa27
duyphu
2025-01-26T09:43:56Z
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "base_model:adapter:tokyotech-llm/Llama-3-Swallow-8B-v0.1", "license:llama3", "region:us" ]
null
2025-01-26T09:30:56Z
--- library_name: peft license: llama3 base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 tags: - axolotl - generated_from_trainer model-index: - name: 6d65b9b0-95e9-4290-b9d2-441d4803fa27 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 323546a4310179cb_train_data.json ds_type: json format: custom path: /workspace/input_data/323546a4310179cb_train_data.json type: field_instruction: text field_output: caption format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/6d65b9b0-95e9-4290-b9d2-441d4803fa27 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/323546a4310179cb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b99d6895-46b0-40d9-83fd-c1c9c26d613d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b99d6895-46b0-40d9-83fd-c1c9c26d613d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6d65b9b0-95e9-4290-b9d2-441d4803fa27 This model is a fine-tuned version of [tokyotech-llm/Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 2.4728 | | 2.1751 | 0.0086 | 10 | 2.1014 | | 1.6291 | 0.0172 | 20 | 1.8043 | | 1.6754 | 0.0258 | 30 | 1.7723 | | 1.762 | 0.0344 | 40 | 1.7616 | | 1.8069 | 0.0430 | 50 | 1.7592 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF
mradermacher
2025-01-26T09:43:42Z
175
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-Elusive-VENN-Asymmetric-8B", "base_model:quantized:jaspionjader/Kosmos-Elusive-VENN-Asymmetric-8B", "endpoints_compatible", "region:us" ]
null
2024-12-27T13:10:32Z
--- base_model: jaspionjader/Kosmos-Elusive-VENN-Asymmetric-8B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jaspionjader/Kosmos-Elusive-VENN-Asymmetric-8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Asymmetric-8B-GGUF/resolve/main/Kosmos-Elusive-VENN-Asymmetric-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
kostiantynk1205/82cc7582-9548-4299-b19d-67e80414436c
kostiantynk1205
2025-01-26T09:43:35Z
5
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "region:us" ]
null
2025-01-26T09:39:56Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 82cc7582-9548-4299-b19d-67e80414436c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1643630c3c18b7c_train_data.json ds_type: json format: custom path: /workspace/input_data/b1643630c3c18b7c_train_data.json type: field_input: selected_word field_instruction: original field_output: perturbed format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/82cc7582-9548-4299-b19d-67e80414436c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1643630c3c18b7c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a918c65d-c22f-44cf-830d-7a641192ea86 wandb_project: Birthday-SN56-23-Gradients-On-Demand wandb_run: your_name wandb_runid: a918c65d-c22f-44cf-830d-7a641192ea86 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 82cc7582-9548-4299-b19d-67e80414436c This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9552 | 0.0001 | 1 | 0.6996 | | 1.8039 | 0.0002 | 3 | 0.6996 | | 3.0025 | 0.0005 | 6 | 0.6981 | | 5.0241 | 0.0007 | 9 | 0.6922 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Xinging/llama2-7b_sft_0.3_ratio_alpaca_gpt4_proj_by_bbh_ntrain_256
Xinging
2025-01-26T09:43:24Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-26T09:16:05Z
--- library_name: transformers license: other base_model: meta-llama/Llama-2-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: llama2-7b_sft_0.3_ratio_alpaca_gpt4_proj_by_bbh_ntrain_256 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-7b_sft_0.3_ratio_alpaca_gpt4_proj_by_bbh_ntrain_256 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the 0.3_ratio_alpaca_gpt4_proj_by_bbh_ntrain_256 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3
mradermacher/Kosmos-VENN-8B-GGUF
mradermacher
2025-01-26T09:42:53Z
139
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-VENN-8B", "base_model:quantized:jaspionjader/Kosmos-VENN-8B", "endpoints_compatible", "region:us" ]
null
2024-12-27T15:28:55Z
--- base_model: jaspionjader/Kosmos-VENN-8B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jaspionjader/Kosmos-VENN-8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF/resolve/main/Kosmos-VENN-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
0x1202/2944c79d-1080-4f84-a6c5-dfad7ffb45b5
0x1202
2025-01-26T09:42:34Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-26T07:46:29Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 2944c79d-1080-4f84-a6c5-dfad7ffb45b5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Math-7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - e0c41a65c97fb0ab_train_data.json ds_type: json format: custom path: /workspace/input_data/e0c41a65c97fb0ab_train_data.json type: field_instruction: prompt field_output: org_response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: 0x1202/2944c79d-1080-4f84-a6c5-dfad7ffb45b5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/e0c41a65c97fb0ab_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bc469934-f65d-4554-a373-c57006d470f3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bc469934-f65d-4554-a373-c57006d470f3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2944c79d-1080-4f84-a6c5-dfad7ffb45b5 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6431 | 0.0001 | 1 | 2.8517 | | 3.3182 | 0.0056 | 50 | 2.0713 | | 3.4362 | 0.0112 | 100 | 1.7239 | | 1.8644 | 0.0169 | 150 | 1.6366 | | 1.9021 | 0.0225 | 200 | 1.6242 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/ORANSight_Phi_Mini_Instruct-GGUF
mradermacher
2025-01-26T09:41:25Z
48
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "en", "base_model:NextGLab/ORANSight_Phi_Mini_Instruct", "base_model:quantized:NextGLab/ORANSight_Phi_Mini_Instruct", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-28T00:44:40Z
--- base_model: NextGLab/ORANSight_Phi_Mini_Instruct language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/NextGLab/ORANSight_Phi_Mini_Instruct <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q3_K_S.gguf) | Q3_K_S | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q3_K_M.gguf) | Q3_K_M | 2.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q3_K_L.gguf) | Q3_K_L | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.IQ4_XS.gguf) | IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q4_K_S.gguf) | Q4_K_S | 2.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q4_K_M.gguf) | Q4_K_M | 2.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q5_K_S.gguf) | Q5_K_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q5_K_M.gguf) | Q5_K_M | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q6_K.gguf) | Q6_K | 3.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ORANSight_Phi_Mini_Instruct-GGUF/resolve/main/ORANSight_Phi_Mini_Instruct.f16.gguf) | f16 | 7.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
aleegis12/67935861-1515-4621-8200-b7a56c2ae166
aleegis12
2025-01-26T09:40:27Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-26T07:46:29Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 67935861-1515-4621-8200-b7a56c2ae166 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Math-7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - e0c41a65c97fb0ab_train_data.json ds_type: json format: custom path: /workspace/input_data/e0c41a65c97fb0ab_train_data.json type: field_instruction: prompt field_output: org_response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis12/67935861-1515-4621-8200-b7a56c2ae166 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/e0c41a65c97fb0ab_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bc469934-f65d-4554-a373-c57006d470f3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bc469934-f65d-4554-a373-c57006d470f3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 67935861-1515-4621-8200-b7a56c2ae166 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6431 | 0.0001 | 1 | 2.8517 | | 3.3472 | 0.0056 | 50 | 2.0680 | | 3.3505 | 0.0112 | 100 | 1.7277 | | 1.9661 | 0.0169 | 150 | 1.6410 | | 1.919 | 0.0225 | 200 | 1.6262 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF
mradermacher
2025-01-26T09:40:27Z
153
0
transformers
[ "transformers", "gguf", "en", "base_model:jan-hq/Ichigo-llama3.2-base-1B-T2S-2048c", "base_model:quantized:jan-hq/Ichigo-llama3.2-base-1B-T2S-2048c", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-28T03:48:30Z
--- base_model: jan-hq/Ichigo-llama3.2-base-1B-T2S-2048c language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jan-hq/Ichigo-llama3.2-base-1B-T2S-2048c <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ1_S.gguf) | i1-IQ1_S | 0.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ1_M.gguf) | i1-IQ1_M | 0.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ2_S.gguf) | i1-IQ2_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ2_M.gguf) | i1-IQ2_M | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q2_K.gguf) | i1-Q2_K | 0.7 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ3_S.gguf) | i1-IQ3_S | 0.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ3_M.gguf) | i1-IQ3_M | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q4_0.gguf) | i1-Q4_0 | 0.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q4_1.gguf) | i1-Q4_1 | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Ichigo-llama3.2-base-1B-T2S-2048c-i1-GGUF/resolve/main/Ichigo-llama3.2-base-1B-T2S-2048c.i1-Q6_K.gguf) | i1-Q6_K | 1.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF
mradermacher
2025-01-26T09:39:50Z
281
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-Elusive-VENN-Aurora_faustus-8B", "base_model:quantized:jaspionjader/Kosmos-Elusive-VENN-Aurora_faustus-8B", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-28T06:48:57Z
--- base_model: jaspionjader/Kosmos-Elusive-VENN-Aurora_faustus-8B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jaspionjader/Kosmos-Elusive-VENN-Aurora_faustus-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-VENN-Aurora_faustus-8B-i1-GGUF/resolve/main/Kosmos-Elusive-VENN-Aurora_faustus-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
thakkkkkk/6eff970d-b4bc-4420-be91-9f9273dc7159
thakkkkkk
2025-01-26T09:39:46Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T09:21:56Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 6eff970d-b4bc-4420-be91-9f9273dc7159 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1aa78909d4a8478f_train_data.json ds_type: json format: custom path: /workspace/input_data/1aa78909d4a8478f_train_data.json type: field_input: authors field_instruction: bibtext field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thakkkkkk/6eff970d-b4bc-4420-be91-9f9273dc7159 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/1aa78909d4a8478f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9ebf6d0-6fd4-49e9-a309-27f30a2c515b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9ebf6d0-6fd4-49e9-a309-27f30a2c515b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6eff970d-b4bc-4420-be91-9f9273dc7159 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 130 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3067 | 1.0 | 130 | 3.2962 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/TheSpice-7b-FT-v0.3.1-GGUF
mradermacher
2025-01-26T09:39:36Z
57
0
transformers
[ "transformers", "gguf", "en", "base_model:cgato/TheSpice-7b-FT-v0.3.1", "base_model:quantized:cgato/TheSpice-7b-FT-v0.3.1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-12-28T07:14:58Z
--- base_model: cgato/TheSpice-7b-FT-v0.3.1 language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/cgato/TheSpice-7b-FT-v0.3.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF
mradermacher
2025-01-26T09:39:31Z
97
0
transformers
[ "transformers", "gguf", "en", "base_model:cgato/TheSpice-7b-FT-v0.3.1", "base_model:quantized:cgato/TheSpice-7b-FT-v0.3.1", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-28T07:24:00Z
--- base_model: cgato/TheSpice-7b-FT-v0.3.1 language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/cgato/TheSpice-7b-FT-v0.3.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/TheSpice-7b-FT-v0.3.1-i1-GGUF/resolve/main/TheSpice-7b-FT-v0.3.1.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
nbninh/f25f1ddd-387c-4b4e-b0e4-974bbd362c8f
nbninh
2025-01-26T09:38:53Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T09:21:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: f25f1ddd-387c-4b4e-b0e4-974bbd362c8f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1aa78909d4a8478f_train_data.json ds_type: json format: custom path: /workspace/input_data/1aa78909d4a8478f_train_data.json type: field_input: authors field_instruction: bibtext field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/f25f1ddd-387c-4b4e-b0e4-974bbd362c8f hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/1aa78909d4a8478f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9ebf6d0-6fd4-49e9-a309-27f30a2c515b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9ebf6d0-6fd4-49e9-a309-27f30a2c515b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f25f1ddd-387c-4b4e-b0e4-974bbd362c8f This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9065 | 0.7700 | 200 | 3.3285 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bunnycore/Qwen-2.5-7B-R1-Stock
bunnycore
2025-01-26T09:38:46Z
56
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:merge:Qwen/Qwen2.5-7B-Instruct", "base_model:bunnycore/Qwen-2.5-7b-rp-lora", "base_model:merge:bunnycore/Qwen-2.5-7b-rp-lora", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-24T09:30:37Z
--- library_name: transformers tags: - mergekit - merge base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B - Qwen/Qwen2.5-7B-Instruct - bunnycore/Qwen-2.5-7b-rp-lora - Qwen/Qwen2.5-7B-Instruct model-index: - name: Qwen-2.5-7B-R1-Stock results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 75.73 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7B-R1-Stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 34.85 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7B-R1-Stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7B-R1-Stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.6 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7B-R1-Stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.05 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7B-R1-Stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 36.6 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Qwen-2.5-7B-R1-Stock name: Open LLM Leaderboard --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) * [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) + [bunnycore/Qwen-2.5-7b-rp-lora](https://huggingface.co/bunnycore/Qwen-2.5-7b-rp-lora) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B - model: Qwen/Qwen2.5-7B-Instruct - model: Qwen/Qwen2.5-7B-Instruct+bunnycore/Qwen-2.5-7b-rp-lora base_model: Qwen/Qwen2.5-7B-Instruct merge_method: model_stock parameters: dtype: bfloat16 tokenizer_source: Qwen/Qwen2.5-7B-Instruct ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/bunnycore__Qwen-2.5-7B-R1-Stock-details) | Metric |Value| |-------------------|----:| |Avg. |26.97| |IFEval (0-Shot) |75.73| |BBH (3-Shot) |34.85| |MATH Lvl 5 (4-Shot)| 0.00| |GPQA (0-shot) | 6.60| |MuSR (0-shot) | 8.05| |MMLU-PRO (5-shot) |36.60|
mradermacher/Kosmos-Elusive-8b-i1-GGUF
mradermacher
2025-01-26T09:38:41Z
385
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-Elusive-8b", "base_model:quantized:jaspionjader/Kosmos-Elusive-8b", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-28T09:24:44Z
--- base_model: jaspionjader/Kosmos-Elusive-8b language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jaspionjader/Kosmos-Elusive-8b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Kosmos-Elusive-8b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-Elusive-8b-i1-GGUF/resolve/main/Kosmos-Elusive-8b.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
trenden/a8fa3fbc-f651-46a7-98fd-cbbbadc7c348
trenden
2025-01-26T09:38:33Z
7
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "region:us" ]
null
2025-01-26T09:34:58Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: a8fa3fbc-f651-46a7-98fd-cbbbadc7c348 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1643630c3c18b7c_train_data.json ds_type: json format: custom path: /workspace/input_data/b1643630c3c18b7c_train_data.json type: field_input: selected_word field_instruction: original field_output: perturbed format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/a8fa3fbc-f651-46a7-98fd-cbbbadc7c348 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1643630c3c18b7c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a918c65d-c22f-44cf-830d-7a641192ea86 wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: a918c65d-c22f-44cf-830d-7a641192ea86 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a8fa3fbc-f651-46a7-98fd-cbbbadc7c348 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9552 | 0.0001 | 1 | 0.6996 | | 1.8161 | 0.0002 | 3 | 0.6996 | | 2.9898 | 0.0005 | 6 | 0.6980 | | 5.0345 | 0.0007 | 9 | 0.6917 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/DDPOO-7B-slerp-GGUF
mradermacher
2025-01-26T09:37:46Z
55
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp", "EmbeddedLLM/Mistral-7B-Merge-14-v0.1", "en", "base_model:jsfs11/DDPOO-7B-slerp", "base_model:quantized:jsfs11/DDPOO-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-28T11:16:12Z
--- base_model: jsfs11/DDPOO-7B-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp - EmbeddedLLM/Mistral-7B-Merge-14-v0.1 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jsfs11/DDPOO-7B-slerp <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF/resolve/main/DDPOO-7B-slerp.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
nhungphammmmm/6112f4ee-d945-4abd-888c-8795eb91d5bc
nhungphammmmm
2025-01-26T09:37:43Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T09:21:35Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 6112f4ee-d945-4abd-888c-8795eb91d5bc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1aa78909d4a8478f_train_data.json ds_type: json format: custom path: /workspace/input_data/1aa78909d4a8478f_train_data.json type: field_input: authors field_instruction: bibtext field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/6112f4ee-d945-4abd-888c-8795eb91d5bc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/1aa78909d4a8478f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9ebf6d0-6fd4-49e9-a309-27f30a2c515b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9ebf6d0-6fd4-49e9-a309-27f30a2c515b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6112f4ee-d945-4abd-888c-8795eb91d5bc This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9123 | 0.7700 | 200 | 3.3296 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/DDPOO-7B-slerp-i1-GGUF
mradermacher
2025-01-26T09:37:41Z
160
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp", "EmbeddedLLM/Mistral-7B-Merge-14-v0.1", "en", "base_model:jsfs11/DDPOO-7B-slerp", "base_model:quantized:jsfs11/DDPOO-7B-slerp", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-28T11:21:52Z
--- base_model: jsfs11/DDPOO-7B-slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp - EmbeddedLLM/Mistral-7B-Merge-14-v0.1 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jsfs11/DDPOO-7B-slerp <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/DDPOO-7B-slerp-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/DDPOO-7B-slerp-i1-GGUF/resolve/main/DDPOO-7B-slerp.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Kosmos-VENN-8B-i1-GGUF
mradermacher
2025-01-26T09:37:08Z
697
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-VENN-8B", "base_model:quantized:jaspionjader/Kosmos-VENN-8B", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-28T12:36:29Z
--- base_model: jaspionjader/Kosmos-VENN-8B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jaspionjader/Kosmos-VENN-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Kosmos-VENN-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-VENN-8B-i1-GGUF/resolve/main/Kosmos-VENN-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/An4-7Bv2.1-GGUF
mradermacher
2025-01-26T09:36:47Z
54
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "sft", "en", "base_model:Smuggling1710/An4-7Bv2.1", "base_model:quantized:Smuggling1710/An4-7Bv2.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-28T13:09:42Z
--- base_model: Smuggling1710/An4-7Bv2.1 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/Smuggling1710/An4-7Bv2.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/An4-7Bv2.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/An4-7Bv2.1-GGUF/resolve/main/An4-7Bv2.1.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mrhunghd/34c41e56-0ae6-4c06-a21d-ca19dc53ce62
mrhunghd
2025-01-26T09:36:38Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM2-1.7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T09:16:53Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 34c41e56-0ae6-4c06-a21d-ca19dc53ce62 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6f19f313a38a1c32_train_data.json ds_type: json format: custom path: /workspace/input_data/6f19f313a38a1c32_train_data.json type: field_instruction: prompt field_output: reference_response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrhunghd/34c41e56-0ae6-4c06-a21d-ca19dc53ce62 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/6f19f313a38a1c32_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 55ec2690-2b2b-4297-a55a-e986a52e6c77 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 55ec2690-2b2b-4297-a55a-e986a52e6c77 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 34c41e56-0ae6-4c06-a21d-ca19dc53ce62 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM2-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6672 | 0.0252 | 200 | 0.8003 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
demohong/3b7f8bfd-67d9-4bb3-85cc-65ac66d49d21
demohong
2025-01-26T09:36:30Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM2-1.7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T09:16:49Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3b7f8bfd-67d9-4bb3-85cc-65ac66d49d21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6f19f313a38a1c32_train_data.json ds_type: json format: custom path: /workspace/input_data/6f19f313a38a1c32_train_data.json type: field_instruction: prompt field_output: reference_response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: demohong/3b7f8bfd-67d9-4bb3-85cc-65ac66d49d21 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/6f19f313a38a1c32_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 55ec2690-2b2b-4297-a55a-e986a52e6c77 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 55ec2690-2b2b-4297-a55a-e986a52e6c77 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3b7f8bfd-67d9-4bb3-85cc-65ac66d49d21 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM2-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6683 | 0.0252 | 200 | 0.8007 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/EVA-Gutenberg3-Qwen2.5-32B-Q4_K_S-GGUF
Triangle104
2025-01-26T09:36:24Z
37
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:nbeerbower/gutenberg2-dpo", "dataset:nbeerbower/gutenberg-moderne-dpo", "base_model:nbeerbower/EVA-Gutenberg3-Qwen2.5-32B", "base_model:quantized:nbeerbower/EVA-Gutenberg3-Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-26T09:14:45Z
--- license: apache-2.0 library_name: transformers base_model: nbeerbower/EVA-Gutenberg3-Qwen2.5-32B datasets: - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo tags: - llama-cpp - gguf-my-repo --- # Triangle104/EVA-Gutenberg3-Qwen2.5-32B-Q4_K_S-GGUF This model was converted to GGUF format from [`nbeerbower/EVA-Gutenberg3-Qwen2.5-32B`](https://huggingface.co/nbeerbower/EVA-Gutenberg3-Qwen2.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/EVA-Gutenberg3-Qwen2.5-32B) for more details on the model. --- Model details: - EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 finetuned on jondurbin/gutenberg-dpo-v0.1, nbeerbower/gutenberg2-dpo, and nbeerbower/gutenberg-moderne-dpo. Method ORPO tuned with 8x A100 for 2 epochs. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/EVA-Gutenberg3-Qwen2.5-32B-Q4_K_S-GGUF --hf-file eva-gutenberg3-qwen2.5-32b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/EVA-Gutenberg3-Qwen2.5-32B-Q4_K_S-GGUF --hf-file eva-gutenberg3-qwen2.5-32b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/EVA-Gutenberg3-Qwen2.5-32B-Q4_K_S-GGUF --hf-file eva-gutenberg3-qwen2.5-32b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/EVA-Gutenberg3-Qwen2.5-32B-Q4_K_S-GGUF --hf-file eva-gutenberg3-qwen2.5-32b-q4_k_s.gguf -c 2048 ```
FaridaElhusseiny/TATR_V2_26
FaridaElhusseiny
2025-01-26T09:36:13Z
6
0
transformers
[ "transformers", "safetensors", "table-transformer", "object-detection", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
object-detection
2025-01-26T09:35:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nblinh/357a41a2-b834-43e9-90f1-7c0ee46ded5d
nblinh
2025-01-26T09:35:45Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T09:27:16Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: 357a41a2-b834-43e9-90f1-7c0ee46ded5d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a81446d4442a33f3_train_data.json ds_type: json format: custom path: /workspace/input_data/a81446d4442a33f3_train_data.json type: field_input: source field_instruction: instruction field_output: q&a format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh/357a41a2-b834-43e9-90f1-7c0ee46ded5d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a81446d4442a33f3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 06dd0c8c-4fbb-4087-a031-e690941dfc43 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 06dd0c8c-4fbb-4087-a031-e690941dfc43 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 357a41a2-b834-43e9-90f1-7c0ee46ded5d This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 106 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.9976 | 105 | nan | | 0.0 | 1.0071 | 106 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF
featherless-ai-quants
2025-01-26T09:35:39Z
344
0
null
[ "gguf", "text-generation", "base_model:ockerman0/MN-12B-Starcannon-v4-unofficial", "base_model:quantized:ockerman0/MN-12B-Starcannon-v4-unofficial", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-26T09:23:52Z
--- base_model: ockerman0/MN-12B-Starcannon-v4-unofficial pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ockerman0/MN-12B-Starcannon-v4-unofficial GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [ockerman0-MN-12B-Starcannon-v4-unofficial-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [ockerman0-MN-12B-Starcannon-v4-unofficial-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ockerman0-MN-12B-Starcannon-v4-unofficial-GGUF/blob/main/ockerman0-MN-12B-Starcannon-v4-unofficial-Q8_0.gguf) | 12419.10 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
tarabukinivan/9cea168d-febb-42ce-9cac-f053e1b0a304
tarabukinivan
2025-01-26T09:35:33Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T08:43:44Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9cea168d-febb-42ce-9cac-f053e1b0a304 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb74d07584199815_train_data.json ds_type: json format: custom path: /workspace/input_data/fb74d07584199815_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: tarabukinivan/9cea168d-febb-42ce-9cac-f053e1b0a304 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb74d07584199815_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 15 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4c1c1215-65d4-42d2-985c-d9d272adff15 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4c1c1215-65d4-42d2-985c-d9d272adff15 warmup_steps: 15 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9cea168d-febb-42ce-9cac-f053e1b0a304 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 1.5632 | | 1.4343 | 0.0002 | 5 | 1.4375 | | 1.3342 | 0.0003 | 10 | 1.2045 | | 1.0446 | 0.0005 | 15 | 0.9289 | | 0.8852 | 0.0007 | 20 | 0.6848 | | 0.6156 | 0.0008 | 25 | 0.5921 | | 0.6075 | 0.0010 | 30 | 0.5796 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Monah-8b-Uncensored-GGUF
mradermacher
2025-01-26T09:35:31Z
261
0
transformers
[ "transformers", "gguf", "text-generation-inference", "llama", "trl", "sft", "en", "base_model:ross-dev/Monah-8b-Uncensored", "base_model:quantized:ross-dev/Monah-8b-Uncensored", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-12-28T15:25:50Z
--- base_model: ross-dev/Monah-8b-Uncensored extra_gated_fields: Company: text Country: country I want to use this model for: options: - Research - Education - label: Other value: other type: select Name: text ? You agree to not use the model to conduct experiments that cause harm to human subjects or use it to obtain illeagal knowladge and I also agree to use this model for non-commercial use ONLY : checkbox language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - llama - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ross-dev/Monah-8b-Uncensored <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Monah-8b-Uncensored-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Monah-8b-Uncensored-GGUF/resolve/main/Monah-8b-Uncensored.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/SQL-Llama-v0.5-i1-GGUF
mradermacher
2025-01-26T09:35:15Z
143
0
transformers
[ "transformers", "gguf", "en", "base_model:IceKingBing/SQL-Llama-v0.5", "base_model:quantized:IceKingBing/SQL-Llama-v0.5", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-28T15:54:24Z
--- base_model: IceKingBing/SQL-Llama-v0.5 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/IceKingBing/SQL-Llama-v0.5 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/SQL-Llama-v0.5-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q4_0.gguf) | i1-Q4_0 | 3.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q4_1.gguf) | i1-Q4_1 | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/SQL-Llama-v0.5-i1-GGUF/resolve/main/SQL-Llama-v0.5.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/KukulStanta-7B-GGUF
mradermacher
2025-01-26T09:33:37Z
64
1
transformers
[ "transformers", "gguf", "en", "base_model:Nitral-AI/KukulStanta-7B", "base_model:quantized:Nitral-AI/KukulStanta-7B", "license:other", "endpoints_compatible", "region:us" ]
null
2024-12-28T20:49:28Z
--- base_model: Nitral-AI/KukulStanta-7B language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Nitral-AI/KukulStanta-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-GGUF/resolve/main/KukulStanta-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/KukulStanta-7B-i1-GGUF
mradermacher
2025-01-26T09:33:33Z
197
1
transformers
[ "transformers", "gguf", "en", "base_model:Nitral-AI/KukulStanta-7B", "base_model:quantized:Nitral-AI/KukulStanta-7B", "license:other", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-28T21:08:36Z
--- base_model: Nitral-AI/KukulStanta-7B language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Nitral-AI/KukulStanta-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/KukulStanta-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/KukulStanta-7B-i1-GGUF/resolve/main/KukulStanta-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
laquythang/a9400f56-5d58-4f68-bf15-34c0fae196bb
laquythang
2025-01-26T09:33:19Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T09:27:24Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: a9400f56-5d58-4f68-bf15-34c0fae196bb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a81446d4442a33f3_train_data.json ds_type: json format: custom path: /workspace/input_data/a81446d4442a33f3_train_data.json type: field_input: source field_instruction: instruction field_output: q&a format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: laquythang/a9400f56-5d58-4f68-bf15-34c0fae196bb hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a81446d4442a33f3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 06dd0c8c-4fbb-4087-a031-e690941dfc43 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 06dd0c8c-4fbb-4087-a031-e690941dfc43 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a9400f56-5d58-4f68-bf15-34c0fae196bb This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 106 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.9976 | 105 | nan | | 0.0 | 1.0071 | 106 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Tibetan-Llama2-7B-GGUF
mradermacher
2025-01-26T09:32:56Z
63
0
transformers
[ "transformers", "gguf", "en", "base_model:ymaoj/Tibetan-Llama2-7B", "base_model:quantized:ymaoj/Tibetan-Llama2-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-28T22:25:36Z
--- base_model: ymaoj/Tibetan-Llama2-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ymaoj/Tibetan-Llama2-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q2_K.gguf) | Q2_K | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q3_K_S.gguf) | Q3_K_S | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q3_K_M.gguf) | Q3_K_M | 3.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q3_K_L.gguf) | Q3_K_L | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.IQ4_XS.gguf) | IQ4_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q4_K_S.gguf) | Q4_K_S | 4.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q4_K_M.gguf) | Q4_K_M | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q5_K_S.gguf) | Q5_K_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q5_K_M.gguf) | Q5_K_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q6_K.gguf) | Q6_K | 5.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.Q8_0.gguf) | Q8_0 | 7.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF/resolve/main/Tibetan-Llama2-7B.f16.gguf) | f16 | 14.0 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Breeze-7B-32k-Base-v1_0-GGUF
mradermacher
2025-01-26T09:32:23Z
67
0
transformers
[ "transformers", "gguf", "zh", "en", "base_model:MediaTek-Research/Breeze-7B-32k-Base-v1_0", "base_model:quantized:MediaTek-Research/Breeze-7B-32k-Base-v1_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-29T00:47:18Z
--- base_model: MediaTek-Research/Breeze-7B-32k-Base-v1_0 language: - zh - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/MediaTek-Research/Breeze-7B-32k-Base-v1_0 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q2_K.gguf) | Q2_K | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q3_K_S.gguf) | Q3_K_S | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q3_K_M.gguf) | Q3_K_M | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q3_K_L.gguf) | Q3_K_L | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.IQ4_XS.gguf) | IQ4_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q4_K_S.gguf) | Q4_K_S | 4.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q4_K_M.gguf) | Q4_K_M | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q5_K_M.gguf) | Q5_K_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q6_K.gguf) | Q6_K | 6.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.Q8_0.gguf) | Q8_0 | 8.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Breeze-7B-32k-Base-v1_0-GGUF/resolve/main/Breeze-7B-32k-Base-v1_0.f16.gguf) | f16 | 15.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Shay1309/Tester
Shay1309
2025-01-26T09:31:26Z
16
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Phi-3.5-mini-instruct", "base_model:quantized:unsloth/Phi-3.5-mini-instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-26T09:30:32Z
--- base_model: unsloth/Phi-3.5-mini-instruct language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** Shay1309 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3.5-mini-instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/infinite-lemonade-SLERP-7B-GGUF
mradermacher
2025-01-26T09:30:54Z
91
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:grimjim/infinite-lemonade-SLERP-7B", "base_model:quantized:grimjim/infinite-lemonade-SLERP-7B", "endpoints_compatible", "region:us" ]
null
2024-12-29T07:28:46Z
--- base_model: grimjim/infinite-lemonade-SLERP-7B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/grimjim/infinite-lemonade-SLERP-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/infinite-lemonade-SLERP-7B-GGUF/resolve/main/infinite-lemonade-SLERP-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
daniel40/300a49dd-e59c-4c82-9ae2-bca7472e1df2
daniel40
2025-01-26T09:30:30Z
7
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "region:us" ]
null
2025-01-26T09:27:12Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 300a49dd-e59c-4c82-9ae2-bca7472e1df2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b1643630c3c18b7c_train_data.json ds_type: json format: custom path: /workspace/input_data/b1643630c3c18b7c_train_data.json type: field_input: selected_word field_instruction: original field_output: perturbed format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/300a49dd-e59c-4c82-9ae2-bca7472e1df2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/b1643630c3c18b7c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a918c65d-c22f-44cf-830d-7a641192ea86 wandb_project: Birthday-SN56-27-Gradients-On-Demand wandb_run: your_name wandb_runid: a918c65d-c22f-44cf-830d-7a641192ea86 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 300a49dd-e59c-4c82-9ae2-bca7472e1df2 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9552 | 0.0001 | 1 | 0.6996 | | 1.8172 | 0.0002 | 3 | 0.6996 | | 2.9968 | 0.0005 | 6 | 0.6979 | | 5.0159 | 0.0007 | 9 | 0.6912 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF
mradermacher
2025-01-26T09:29:48Z
104
0
transformers
[ "transformers", "gguf", "cy", "dataset:techiaith/cofnodycynulliad_en-cy", "dataset:BangorAI/hysbysiadau-llyw-cymru-1", "base_model:BangorAI/cyfieithydd-7b-fersiwn-3", "base_model:quantized:BangorAI/cyfieithydd-7b-fersiwn-3", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-29T10:42:47Z
--- base_model: BangorAI/cyfieithydd-7b-fersiwn-3 datasets: - techiaith/cofnodycynulliad_en-cy - BangorAI/hysbysiadau-llyw-cymru-1 language: - cy library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/BangorAI/cyfieithydd-7b-fersiwn-3 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/cyfieithydd-7b-fersiwn-3-i1-GGUF/resolve/main/cyfieithydd-7b-fersiwn-3.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF
mradermacher
2025-01-26T09:29:33Z
82
0
transformers
[ "transformers", "gguf", "japanese-stablelm", "causal-lm", "ja", "base_model:stabilityai/japanese-stablelm-3b-4e1t-instruct", "base_model:quantized:stabilityai/japanese-stablelm-3b-4e1t-instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-29T11:17:03Z
--- base_model: stabilityai/japanese-stablelm-3b-4e1t-instruct extra_gated_fields: Country: text Email: text I allow Stability AI to contact me about information related to its models and research: checkbox Name: text Organization or Affiliation: text language: - ja library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - japanese-stablelm - causal-lm --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/stabilityai/japanese-stablelm-3b-4e1t-instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q2_K.gguf) | Q2_K | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q3_K_S.gguf) | Q3_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q3_K_L.gguf) | Q3_K_L | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q5_K_M.gguf) | Q5_K_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q6_K.gguf) | Q6_K | 2.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.Q8_0.gguf) | Q8_0 | 3.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-instruct-GGUF/resolve/main/japanese-stablelm-3b-4e1t-instruct.f16.gguf) | f16 | 5.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF
mradermacher
2025-01-26T09:29:25Z
67
1
transformers
[ "transformers", "gguf", "en", "base_model:Locutusque/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha", "base_model:quantized:Locutusque/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-29T11:31:41Z
--- base_model: Locutusque/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Locutusque/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha-GGUF/resolve/main/OpenCerebrum-1.5-Mistral-7b-v0.2-alpha.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Viking-7B-GGUF
mradermacher
2025-01-26T09:29:02Z
77
0
transformers
[ "transformers", "gguf", "fi", "en", "da", "sv", "no", "nn", "is", "dataset:cerebras/SlimPajama-627B", "dataset:bigcode/starcoderdata", "dataset:mc4", "base_model:LumiOpen/Viking-7B", "base_model:quantized:LumiOpen/Viking-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-29T12:25:57Z
--- base_model: LumiOpen/Viking-7B datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - mc4 language: - fi - en - da - sv - no - nn - is library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/LumiOpen/Viking-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Viking-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.IQ4_XS.gguf) | IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q4_K_S.gguf) | Q4_K_S | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q4_K_M.gguf) | Q4_K_M | 4.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q6_K.gguf) | Q6_K | 6.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.Q8_0.gguf) | Q8_0 | 8.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Viking-7B-GGUF/resolve/main/Viking-7B.f16.gguf) | f16 | 15.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/sabia-7b-GGUF
mradermacher
2025-01-26T09:28:59Z
78
0
transformers
[ "transformers", "gguf", "pt", "base_model:maritaca-ai/sabia-7b", "base_model:quantized:maritaca-ai/sabia-7b", "endpoints_compatible", "region:us" ]
null
2024-12-29T12:29:54Z
--- base_model: maritaca-ai/sabia-7b language: - pt library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/maritaca-ai/sabia-7b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/sabia-7b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/sabia-7b-GGUF/resolve/main/sabia-7b.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF
mradermacher
2025-01-26T09:28:04Z
122
0
transformers
[ "transformers", "gguf", "NER", "Token Classification", "en", "dataset:Universal-NER/Pile-NER-definition", "dataset:Universal-NER/Pile-NER-type", "dataset:Isotonic/Universal_ner_chatml", "base_model:Isotonic/TinyMixtral_4x220M-UniversalNER", "base_model:quantized:Isotonic/TinyMixtral_4x220M-UniversalNER", "endpoints_compatible", "region:us" ]
null
2024-12-29T13:39:57Z
--- base_model: Isotonic/TinyMixtral_4x220M-UniversalNER datasets: - Universal-NER/Pile-NER-definition - Universal-NER/Pile-NER-type - Isotonic/Universal_ner_chatml language: - en library_name: transformers quantized_by: mradermacher tags: - NER - Token Classification --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Isotonic/TinyMixtral_4x220M-UniversalNER <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q3_K_M.gguf) | Q3_K_M | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q3_K_L.gguf) | Q3_K_L | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.IQ4_XS.gguf) | IQ4_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q4_K_S.gguf) | Q4_K_S | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.Q8_0.gguf) | Q8_0 | 0.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TinyMixtral_4x220M-UniversalNER-GGUF/resolve/main/TinyMixtral_4x220M-UniversalNER.f16.gguf) | f16 | 1.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
JacksonBrune/bb372c15-a216-41a9-a081-a68a71c35158
JacksonBrune
2025-01-26T09:27:53Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-26T09:07:56Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: bb372c15-a216-41a9-a081-a68a71c35158 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb74d07584199815_train_data.json ds_type: json format: custom path: /workspace/input_data/fb74d07584199815_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/bb372c15-a216-41a9-a081-a68a71c35158 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb74d07584199815_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4c1c1215-65d4-42d2-985c-d9d272adff15 wandb_project: birthdya-sn56-18-Gradients-On-Demand wandb_run: your_name wandb_runid: 4c1c1215-65d4-42d2-985c-d9d272adff15 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bb372c15-a216-41a9-a081-a68a71c35158 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8943 | 0.0000 | 1 | 1.1122 | | 0.9854 | 0.0001 | 3 | 1.1077 | | 0.8193 | 0.0002 | 6 | 1.0597 | | 0.8947 | 0.0003 | 9 | 0.9860 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/2f051ffe-4ad3-495a-8e9a-019db52d16c2
Best000
2025-01-26T09:27:51Z
7
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "region:us" ]
null
2025-01-26T09:27:13Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: 2f051ffe-4ad3-495a-8e9a-019db52d16c2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a81446d4442a33f3_train_data.json ds_type: json format: custom path: /workspace/input_data/a81446d4442a33f3_train_data.json type: field_input: source field_instruction: instruction field_output: q&a format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/2f051ffe-4ad3-495a-8e9a-019db52d16c2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/a81446d4442a33f3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 06dd0c8c-4fbb-4087-a031-e690941dfc43 wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: 06dd0c8c-4fbb-4087-a031-e690941dfc43 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2f051ffe-4ad3-495a-8e9a-019db52d16c2 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0095 | 1 | nan | | 0.0 | 0.0285 | 3 | nan | | 0.0 | 0.0570 | 6 | nan | | 0.0 | 0.0855 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/japanese-stablelm-3b-4e1t-base-GGUF
mradermacher
2025-01-26T09:27:41Z
83
0
transformers
[ "transformers", "gguf", "japanese-stablelm", "causal-lm", "ja", "dataset:wikipedia", "dataset:mc4", "dataset:cc100", "dataset:oscar-corpus/OSCAR-2301", "dataset:oscar-corpus/OSCAR-2201", "dataset:cerebras/SlimPajama-627B", "base_model:stabilityai/japanese-stablelm-3b-4e1t-base", "base_model:quantized:stabilityai/japanese-stablelm-3b-4e1t-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-29T14:18:15Z
--- base_model: stabilityai/japanese-stablelm-3b-4e1t-base datasets: - wikipedia - mc4 - cc100 - oscar-corpus/OSCAR-2301 - oscar-corpus/OSCAR-2201 - cerebras/SlimPajama-627B extra_gated_fields: Country: text Email: text I allow Stability AI to contact me about information related to its models and research: checkbox Name: text Organization or Affiliation: text language: - ja library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - japanese-stablelm - causal-lm --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/stabilityai/japanese-stablelm-3b-4e1t-base <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q2_K.gguf) | Q2_K | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q3_K_S.gguf) | Q3_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q3_K_L.gguf) | Q3_K_L | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q5_K_M.gguf) | Q5_K_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q6_K.gguf) | Q6_K | 2.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.Q8_0.gguf) | Q8_0 | 3.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/japanese-stablelm-3b-4e1t-base-GGUF/resolve/main/japanese-stablelm-3b-4e1t-base.f16.gguf) | f16 | 5.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/llama-3-8b-1m-PoSE-GGUF
mradermacher
2025-01-26T09:26:09Z
95
0
transformers
[ "transformers", "gguf", "facebook", "meta", "pytorch", "llama", "llama-3", "axolotl", "en", "base_model:winglian/llama-3-8b-1m-PoSE", "base_model:quantized:winglian/llama-3-8b-1m-PoSE", "endpoints_compatible", "region:us" ]
null
2024-12-29T16:21:14Z
--- base_model: winglian/llama-3-8b-1m-PoSE language: - en library_name: transformers quantized_by: mradermacher tags: - facebook - meta - pytorch - llama - llama-3 - axolotl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/winglian/llama-3-8b-1m-PoSE <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llama-3-8b-1m-PoSE-GGUF/resolve/main/llama-3-8b-1m-PoSE.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/ConspLLM-7b-i1-GGUF
mradermacher
2025-01-26T09:25:50Z
121
0
transformers
[ "transformers", "gguf", "en", "base_model:lzw1008/ConspLLM-7b", "base_model:quantized:lzw1008/ConspLLM-7b", "license:mit", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-29T18:38:25Z
--- base_model: lzw1008/ConspLLM-7b language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/lzw1008/ConspLLM-7b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/ConspLLM-7b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q4_0.gguf) | i1-Q4_0 | 3.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q4_1.gguf) | i1-Q4_1 | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/ConspLLM-7b-i1-GGUF/resolve/main/ConspLLM-7b.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
shrabani0708/test-trainer-sd-123
shrabani0708
2025-01-26T09:24:48Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-26T09:19:09Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: test-trainer-sd-123 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer-sd-123 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6958 - Accuracy: 0.8603 - F1: 0.9055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.4489 | 0.8260 | 0.8849 | | 0.5612 | 2.0 | 918 | 0.3560 | 0.8578 | 0.8990 | | 0.3362 | 3.0 | 1377 | 0.6958 | 0.8603 | 0.9055 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0
mradermacher/finemath-ablation-infiwebmath-i1-GGUF
mradermacher
2025-01-26T09:23:44Z
493
0
transformers
[ "transformers", "gguf", "en", "dataset:HuggingFaceTB/finemath", "base_model:HuggingFaceTB/finemath-ablation-infiwebmath", "base_model:quantized:HuggingFaceTB/finemath-ablation-infiwebmath", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-29T23:48:33Z
--- base_model: HuggingFaceTB/finemath-ablation-infiwebmath datasets: - HuggingFaceTB/finemath language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/HuggingFaceTB/finemath-ablation-infiwebmath <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ1_S.gguf) | i1-IQ1_S | 1.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ2_S.gguf) | i1-IQ2_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ2_M.gguf) | i1-IQ2_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q2_K.gguf) | i1-Q2_K | 1.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ3_M.gguf) | i1-IQ3_M | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q4_0.gguf) | i1-Q4_0 | 2.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q4_1.gguf) | i1-Q4_1 | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/finemath-ablation-infiwebmath-i1-GGUF/resolve/main/finemath-ablation-infiwebmath.i1-Q6_K.gguf) | i1-Q6_K | 2.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF
mradermacher
2025-01-26T09:23:17Z
184
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-EVAA-PRP-light-8B", "base_model:quantized:jaspionjader/Kosmos-EVAA-PRP-light-8B", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-30T00:42:49Z
--- base_model: jaspionjader/Kosmos-EVAA-PRP-light-8B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jaspionjader/Kosmos-EVAA-PRP-light-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-light-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-light-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
nathanialhunt/56d82666-8d5e-44fc-bbf9-7d8eca01d933
nathanialhunt
2025-01-26T09:22:59Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "region:us" ]
null
2025-01-26T09:21:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 56d82666-8d5e-44fc-bbf9-7d8eca01d933 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1aa78909d4a8478f_train_data.json ds_type: json format: custom path: /workspace/input_data/1aa78909d4a8478f_train_data.json type: field_input: authors field_instruction: bibtext field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/56d82666-8d5e-44fc-bbf9-7d8eca01d933 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/1aa78909d4a8478f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9ebf6d0-6fd4-49e9-a309-27f30a2c515b wandb_project: Birthday-SN56-5-Gradients-On-Demand wandb_run: your_name wandb_runid: b9ebf6d0-6fd4-49e9-a309-27f30a2c515b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 56d82666-8d5e-44fc-bbf9-7d8eca01d933 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0038 | 1 | nan | | 0.0 | 0.0500 | 13 | nan | | 0.0 | 0.1001 | 26 | nan | | 0.0 | 0.1501 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Kosmos-EVAA-PRP-8B-GGUF
mradermacher
2025-01-26T09:22:49Z
62
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-EVAA-PRP-8B", "base_model:quantized:jaspionjader/Kosmos-EVAA-PRP-8B", "endpoints_compatible", "region:us" ]
null
2024-12-30T01:45:39Z
--- base_model: jaspionjader/Kosmos-EVAA-PRP-8B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jaspionjader/Kosmos-EVAA-PRP-8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Luongdzung/hoa-1b4-sft-his-olora
Luongdzung
2025-01-26T09:22:45Z
9
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:vlsp-2023-vllm/hoa-1b4", "base_model:adapter:vlsp-2023-vllm/hoa-1b4", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-01-26T09:22:41Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: vlsp-2023-vllm/hoa-1b4 tags: - generated_from_trainer model-index: - name: hoa-1b4-sft-his-olora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hoa-1b4-sft-his-olora This model is a fine-tuned version of [vlsp-2023-vllm/hoa-1b4](https://huggingface.co/vlsp-2023-vllm/hoa-1b4) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF
mradermacher
2025-01-26T09:22:36Z
131
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jaspionjader/Kosmos-EVAA-PRP-8B", "base_model:quantized:jaspionjader/Kosmos-EVAA-PRP-8B", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-30T02:27:22Z
--- base_model: jaspionjader/Kosmos-EVAA-PRP-8B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jaspionjader/Kosmos-EVAA-PRP-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Kosmos-EVAA-PRP-8B-i1-GGUF/resolve/main/Kosmos-EVAA-PRP-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
DitDahDitDit/ppo-LunarLander-v2
DitDahDitDit
2025-01-26T09:21:57Z
6
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-01-26T09:21:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 227.62 +/- 18.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mradermacher/Tibetan-Llama2-7B-i1-GGUF
mradermacher
2025-01-26T09:20:51Z
142
0
transformers
[ "transformers", "gguf", "en", "base_model:ymaoj/Tibetan-Llama2-7B", "base_model:quantized:ymaoj/Tibetan-Llama2-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-30T08:55:46Z
--- base_model: ymaoj/Tibetan-Llama2-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/ymaoj/Tibetan-Llama2-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Tibetan-Llama2-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.7 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.1 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.1 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q4_1.gguf) | i1-Q4_1 | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Tibetan-Llama2-7B-i1-GGUF/resolve/main/Tibetan-Llama2-7B.i1-Q6_K.gguf) | i1-Q6_K | 5.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
visdata/pi9
visdata
2025-01-26T09:19:14Z
47
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-26T09:13:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sok-fm/crypt_Labse_v2
sok-fm
2025-01-26T09:18:54Z
14
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-26T09:17:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/MathCoder-L-7B-GGUF
mradermacher
2025-01-26T09:18:50Z
69
0
transformers
[ "transformers", "gguf", "en", "base_model:MathLLMs/MathCoder-L-7B", "base_model:quantized:MathLLMs/MathCoder-L-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-30T13:58:48Z
--- base_model: MathLLMs/MathCoder-L-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MathLLMs/MathCoder-L-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/MathCoder-L-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MathCoder-L-7B-GGUF/resolve/main/MathCoder-L-7B.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mrHungddddh/eeb1ac35-9151-4a39-9ceb-de0f51c4f648
mrHungddddh
2025-01-26T09:18:44Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/GPT4-x-Vicuna-13b-fp16", "base_model:adapter:NousResearch/GPT4-x-Vicuna-13b-fp16", "license:gpl", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T08:38:30Z
--- library_name: peft license: gpl base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 tags: - axolotl - generated_from_trainer model-index: - name: eeb1ac35-9151-4a39-9ceb-de0f51c4f648 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e52b680221744693_train_data.json ds_type: json format: custom path: /workspace/input_data/e52b680221744693_train_data.json type: field_instruction: Context field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHungddddh/eeb1ac35-9151-4a39-9ceb-de0f51c4f648 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e52b680221744693_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bdb465f5-8f34-4b10-be4d-8f69f9d27469 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bdb465f5-8f34-4b10-be4d-8f69f9d27469 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # eeb1ac35-9151-4a39-9ceb-de0f51c4f648 This model is a fine-tuned version of [NousResearch/GPT4-x-Vicuna-13b-fp16](https://huggingface.co/NousResearch/GPT4-x-Vicuna-13b-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6849 | 0.7319 | 200 | 1.6280 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/marathi-gpt-gemma-2b-i1-GGUF
mradermacher
2025-01-26T09:18:42Z
199
0
transformers
[ "transformers", "gguf", "mr", "base_model:l3cube-pune/marathi-gpt-gemma-2b", "base_model:quantized:l3cube-pune/marathi-gpt-gemma-2b", "license:cc-by-4.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-30T14:04:30Z
--- base_model: l3cube-pune/marathi-gpt-gemma-2b language: mr library_name: transformers license: cc-by-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/l3cube-pune/marathi-gpt-gemma-2b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ1_S.gguf) | i1-IQ1_S | 0.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ1_M.gguf) | i1-IQ1_M | 0.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ2_S.gguf) | i1-IQ2_S | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ2_M.gguf) | i1-IQ2_M | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.2 | very low quality | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q2_K.gguf) | i1-Q2_K | 1.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ3_S.gguf) | i1-IQ3_S | 1.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ3_M.gguf) | i1-IQ3_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.7 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q4_0.gguf) | i1-Q4_0 | 1.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q4_1.gguf) | i1-Q4_1 | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/marathi-gpt-gemma-2b-i1-GGUF/resolve/main/marathi-gpt-gemma-2b.i1-Q6_K.gguf) | i1-Q6_K | 2.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
havinash-ai/07c14bcd-4435-4eb7-bef8-a5f3f2c92c61
havinash-ai
2025-01-26T09:18:16Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-26T09:01:08Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 07c14bcd-4435-4eb7-bef8-a5f3f2c92c61 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb74d07584199815_train_data.json ds_type: json format: custom path: /workspace/input_data/fb74d07584199815_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/07c14bcd-4435-4eb7-bef8-a5f3f2c92c61 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb74d07584199815_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4c1c1215-65d4-42d2-985c-d9d272adff15 wandb_project: Mine-SN56-2-Gradients-On-Demand wandb_run: your_name wandb_runid: 4c1c1215-65d4-42d2-985c-d9d272adff15 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 07c14bcd-4435-4eb7-bef8-a5f3f2c92c61 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8943 | 0.0000 | 1 | 1.1122 | | 0.9857 | 0.0001 | 3 | 1.1074 | | 0.8194 | 0.0002 | 6 | 1.0583 | | 0.8958 | 0.0003 | 9 | 0.9852 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF
mradermacher
2025-01-26T09:17:34Z
80
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:mpasila/Kunoichi-DPO-v2-Instruct-32k-7B", "base_model:quantized:mpasila/Kunoichi-DPO-v2-Instruct-32k-7B", "endpoints_compatible", "region:us" ]
null
2024-12-30T16:37:58Z
--- base_model: mpasila/Kunoichi-DPO-v2-Instruct-32k-7B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mpasila/Kunoichi-DPO-v2-Instruct-32k-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF
mradermacher
2025-01-26T09:17:21Z
184
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:mpasila/Kunoichi-DPO-v2-Instruct-32k-7B", "base_model:quantized:mpasila/Kunoichi-DPO-v2-Instruct-32k-7B", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-30T16:53:03Z
--- base_model: mpasila/Kunoichi-DPO-v2-Instruct-32k-7B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/mpasila/Kunoichi-DPO-v2-Instruct-32k-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Kunoichi-DPO-v2-Instruct-32k-7B-i1-GGUF/resolve/main/Kunoichi-DPO-v2-Instruct-32k-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/LLaMA-2-7B-32K-GGUF
mradermacher
2025-01-26T09:16:44Z
87
0
transformers
[ "transformers", "gguf", "en", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:togethercomputer/RedPajama-Data-Instruct", "dataset:EleutherAI/pile", "dataset:togethercomputer/Long-Data-Collections", "base_model:togethercomputer/LLaMA-2-7B-32K", "base_model:quantized:togethercomputer/LLaMA-2-7B-32K", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-12-30T20:12:42Z
--- base_model: togethercomputer/LLaMA-2-7B-32K datasets: - togethercomputer/RedPajama-Data-1T - togethercomputer/RedPajama-Data-Instruct - EleutherAI/pile - togethercomputer/Long-Data-Collections language: - en library_name: transformers license: llama2 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/togethercomputer/LLaMA-2-7B-32K <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q2_K.gguf) | Q2_K | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q3_K_S.gguf) | Q3_K_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q3_K_L.gguf) | Q3_K_L | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.IQ4_XS.gguf) | IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q5_K_M.gguf) | Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q6_K.gguf) | Q6_K | 5.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF/resolve/main/LLaMA-2-7B-32K.f16.gguf) | f16 | 13.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
prxy5606/f2cb2b81-5744-49cf-990b-1931613a1cc2
prxy5606
2025-01-26T09:16:41Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-26T09:14:12Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: f2cb2b81-5744-49cf-990b-1931613a1cc2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 5f3fb26c99847c1d_train_data.json ds_type: json format: custom path: /workspace/input_data/5f3fb26c99847c1d_train_data.json type: field_input: post field_instruction: title field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5606/f2cb2b81-5744-49cf-990b-1931613a1cc2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/5f3fb26c99847c1d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 821c1640-29f7-45fe-90e6-e51d46a553fe wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 821c1640-29f7-45fe-90e6-e51d46a553fe warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f2cb2b81-5744-49cf-990b-1931613a1cc2 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3731 | 0.0003 | 1 | 10.3739 | | 10.3556 | 0.0130 | 50 | 10.3561 | | 10.3491 | 0.0260 | 100 | 10.3490 | | 10.3531 | 0.0390 | 150 | 10.3464 | | 10.3448 | 0.0520 | 200 | 10.3462 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/LLaMA-2-7B-32K-i1-GGUF
mradermacher
2025-01-26T09:16:40Z
295
0
transformers
[ "transformers", "gguf", "en", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:togethercomputer/RedPajama-Data-Instruct", "dataset:EleutherAI/pile", "dataset:togethercomputer/Long-Data-Collections", "base_model:togethercomputer/LLaMA-2-7B-32K", "base_model:quantized:togethercomputer/LLaMA-2-7B-32K", "license:llama2", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-30T20:31:12Z
--- base_model: togethercomputer/LLaMA-2-7B-32K datasets: - togethercomputer/RedPajama-Data-1T - togethercomputer/RedPajama-Data-Instruct - EleutherAI/pile - togethercomputer/Long-Data-Collections language: - en library_name: transformers license: llama2 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/togethercomputer/LLaMA-2-7B-32K <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/LLaMA-2-7B-32K-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q4_0.gguf) | i1-Q4_0 | 3.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q4_1.gguf) | i1-Q4_1 | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/LLaMA-2-7B-32K-i1-GGUF/resolve/main/LLaMA-2-7B-32K.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/TinySolar-248m-4k-py-instruct-GGUF
mradermacher
2025-01-26T09:16:09Z
81
0
transformers
[ "transformers", "gguf", "en", "base_model:upstage/TinySolar-248m-4k-py-instruct", "base_model:quantized:upstage/TinySolar-248m-4k-py-instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-30T22:23:44Z
--- base_model: upstage/TinySolar-248m-4k-py-instruct language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/upstage/TinySolar-248m-4k-py-instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q5_K_S.gguf) | Q5_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q5_K_M.gguf) | Q5_K_M | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q6_K.gguf) | Q6_K | 0.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TinySolar-248m-4k-py-instruct-GGUF/resolve/main/TinySolar-248m-4k-py-instruct.f16.gguf) | f16 | 0.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
lesso07/b99e49d9-fe3b-4793-9814-9f3c75d6e4c9
lesso07
2025-01-26T09:15:38Z
7
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T09:10:48Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: b99e49d9-fe3b-4793-9814-9f3c75d6e4c9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: true chat_template: llama3 datasets: - data_files: - fc0e058f4946c2d4_train_data.json ds_type: json format: custom path: /workspace/input_data/fc0e058f4946c2d4_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso07/b99e49d9-fe3b-4793-9814-9f3c75d6e4c9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/fc0e058f4946c2d4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 661e8058-e07d-4d32-92e9-9549011511db wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 661e8058-e07d-4d32-92e9-9549011511db warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b99e49d9-fe3b-4793-9814-9f3c75d6e4c9 This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4617 | 0.0036 | 1 | 3.1741 | | 1.9123 | 0.0179 | 5 | 2.3461 | | 2.6044 | 0.0358 | 10 | 1.3319 | | 1.2787 | 0.0538 | 15 | 1.1911 | | 1.1416 | 0.0717 | 20 | 1.1370 | | 1.5961 | 0.0896 | 25 | 1.1306 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/6c8b2d56-2b09-4ea2-a746-e072aff13953
cunghoctienganh
2025-01-26T09:15:13Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-2-7b-chat", "base_model:adapter:unsloth/llama-2-7b-chat", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T08:58:06Z
--- library_name: peft license: apache-2.0 base_model: unsloth/llama-2-7b-chat tags: - axolotl - generated_from_trainer model-index: - name: 6c8b2d56-2b09-4ea2-a746-e072aff13953 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-2-7b-chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d54b8bbf3f45bb00_train_data.json ds_type: json format: custom path: /workspace/input_data/d54b8bbf3f45bb00_train_data.json type: field_input: reply field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/6c8b2d56-2b09-4ea2-a746-e072aff13953 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/d54b8bbf3f45bb00_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f573a5a1-33e7-4cca-af15-6e4e2e847f12 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f573a5a1-33e7-4cca-af15-6e4e2e847f12 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6c8b2d56-2b09-4ea2-a746-e072aff13953 This model is a fine-tuned version of [unsloth/llama-2-7b-chat](https://huggingface.co/unsloth/llama-2-7b-chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6069 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6635 | 0.4978 | 200 | 0.6069 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF
mradermacher
2025-01-26T09:14:17Z
297
0
transformers
[ "transformers", "gguf", "nlp", "math", "en", "base_model:microsoft/rho-math-7b-interpreter-v0.1", "base_model:quantized:microsoft/rho-math-7b-interpreter-v0.1", "license:mit", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-31T07:35:34Z
--- base_model: microsoft/rho-math-7b-interpreter-v0.1 language: - en library_name: transformers license: mit quantized_by: mradermacher tags: - nlp - math --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/microsoft/rho-math-7b-interpreter-v0.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/rho-math-7b-interpreter-v0.1-i1-GGUF/resolve/main/rho-math-7b-interpreter-v0.1.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/NeuralLlama-3-ORPO-GGUF
mradermacher
2025-01-26T09:13:21Z
69
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "orpo", "en", "base_model:cookinai/NeuralLlama-3-ORPO", "base_model:quantized:cookinai/NeuralLlama-3-ORPO", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-12-31T10:12:32Z
--- base_model: cookinai/NeuralLlama-3-ORPO language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - orpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/cookinai/NeuralLlama-3-ORPO <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF/resolve/main/NeuralLlama-3-ORPO.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/NeuralLlama-3-ORPO-i1-GGUF
mradermacher
2025-01-26T09:13:14Z
308
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "orpo", "en", "base_model:cookinai/NeuralLlama-3-ORPO", "base_model:quantized:cookinai/NeuralLlama-3-ORPO", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-31T10:18:40Z
--- base_model: cookinai/NeuralLlama-3-ORPO language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - orpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/cookinai/NeuralLlama-3-ORPO <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/NeuralLlama-3-ORPO-i1-GGUF/resolve/main/NeuralLlama-3-ORPO.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF
mradermacher
2025-01-26T09:12:49Z
145
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "Kukedlc/NeuralMaxime-7B-slerp", "Kukedlc/NeuralGlitch-Yam-Peleg-7B-DT", "Kukedlc/Neural4gsm8k", "en", "base_model:Kukedlc/NeuralExperiment-7b-dare-ties", "base_model:quantized:Kukedlc/NeuralExperiment-7b-dare-ties", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
2024-12-31T11:29:34Z
--- base_model: Kukedlc/NeuralExperiment-7b-dare-ties language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - Kukedlc/NeuralMaxime-7B-slerp - Kukedlc/NeuralGlitch-Yam-Peleg-7B-DT - Kukedlc/Neural4gsm8k --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Kukedlc/NeuralExperiment-7b-dare-ties <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q4_1.gguf) | i1-Q4_1 | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/NeuralExperiment-7b-dare-ties-i1-GGUF/resolve/main/NeuralExperiment-7b-dare-ties.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
chauhoang/ed84ebb0-6bf9-484d-a116-7e1c4190adaa
chauhoang
2025-01-26T09:08:43Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-2-7b-chat", "base_model:adapter:unsloth/llama-2-7b-chat", "license:apache-2.0", "region:us" ]
null
2025-01-26T08:57:47Z
--- library_name: peft license: apache-2.0 base_model: unsloth/llama-2-7b-chat tags: - axolotl - generated_from_trainer model-index: - name: ed84ebb0-6bf9-484d-a116-7e1c4190adaa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-2-7b-chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d54b8bbf3f45bb00_train_data.json ds_type: json format: custom path: /workspace/input_data/d54b8bbf3f45bb00_train_data.json type: field_input: reply field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: chauhoang/ed84ebb0-6bf9-484d-a116-7e1c4190adaa hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/d54b8bbf3f45bb00_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f573a5a1-33e7-4cca-af15-6e4e2e847f12 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f573a5a1-33e7-4cca-af15-6e4e2e847f12 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ed84ebb0-6bf9-484d-a116-7e1c4190adaa This model is a fine-tuned version of [unsloth/llama-2-7b-chat](https://huggingface.co/unsloth/llama-2-7b-chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0025 | 1 | 0.8898 | | 0.8429 | 0.0249 | 10 | 0.8405 | | 0.7508 | 0.0498 | 20 | 0.7405 | | 0.7041 | 0.0747 | 30 | 0.6970 | | 0.6825 | 0.0996 | 40 | 0.6783 | | 0.6719 | 0.1245 | 50 | 0.6749 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
arash-rasouli/bert-base-uncased-idiom-classification
arash-rasouli
2025-01-26T09:08:39Z
264
0
null
[ "safetensors", "bert", "text-classification", "en", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "region:us" ]
text-classification
2025-01-26T08:59:58Z
--- license: apache-2.0 language: - en base_model: - google-bert/bert-base-uncased pipeline_tag: text-classification ---
winnieyangwannan/Yi-6B-Chat_honest_lying_sft_to_lie_lora_False
winnieyangwannan
2025-01-26T09:08:33Z
11
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "Yi-6B-Chat", "honest_lying", "sft_to_lie", "lora_False", "trl", "sft", "conversational", "base_model:01-ai/Yi-6B-Chat", "base_model:finetune:01-ai/Yi-6B-Chat", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-25T13:07:50Z
--- base_model: 01-ai/Yi-6B-Chat library_name: transformers model_name: Yi-6B-Chat_honest_lying_sft_to_lie_lora_False tags: - generated_from_trainer - Yi-6B-Chat - honest_lying - sft_to_lie - lora_False - trl - sft licence: license --- # Model Card for Yi-6B-Chat_honest_lying_sft_to_lie_lora_False This model is a fine-tuned version of [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="winnieyangwannan/Yi-6B-Chat_honest_lying_sft_to_lie_lora_False", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/winnie96/huggingface/runs/8qrszu0f) This model was trained with SFT. ### Framework versions - TRL: 0.14.0.dev0 - Transformers: 4.47.1 - Pytorch: 2.3.1+cu118 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
datlaaaaaaa/db66bb84-9297-4517-a271-1bc6e304b4ad
datlaaaaaaa
2025-01-26T09:07:33Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/GPT4-x-Vicuna-13b-fp16", "base_model:adapter:NousResearch/GPT4-x-Vicuna-13b-fp16", "license:gpl", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T08:36:31Z
--- library_name: peft license: gpl base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 tags: - axolotl - generated_from_trainer model-index: - name: db66bb84-9297-4517-a271-1bc6e304b4ad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e52b680221744693_train_data.json ds_type: json format: custom path: /workspace/input_data/e52b680221744693_train_data.json type: field_instruction: Context field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/db66bb84-9297-4517-a271-1bc6e304b4ad hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e52b680221744693_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bdb465f5-8f34-4b10-be4d-8f69f9d27469 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bdb465f5-8f34-4b10-be4d-8f69f9d27469 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # db66bb84-9297-4517-a271-1bc6e304b4ad This model is a fine-tuned version of [NousResearch/GPT4-x-Vicuna-13b-fp16](https://huggingface.co/NousResearch/GPT4-x-Vicuna-13b-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6847 | 0.7319 | 200 | 1.6276 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhoxinh/35c71a61-945b-48b5-9f41-f6bd4d4ea4b0
nhoxinh
2025-01-26T09:04:54Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/GPT4-x-Vicuna-13b-fp16", "base_model:adapter:NousResearch/GPT4-x-Vicuna-13b-fp16", "license:gpl", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T08:38:43Z
--- library_name: peft license: gpl base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 35c71a61-945b-48b5-9f41-f6bd4d4ea4b0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e52b680221744693_train_data.json ds_type: json format: custom path: /workspace/input_data/e52b680221744693_train_data.json type: field_instruction: Context field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/35c71a61-945b-48b5-9f41-f6bd4d4ea4b0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e52b680221744693_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bdb465f5-8f34-4b10-be4d-8f69f9d27469 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bdb465f5-8f34-4b10-be4d-8f69f9d27469 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 35c71a61-945b-48b5-9f41-f6bd4d4ea4b0 This model is a fine-tuned version of [NousResearch/GPT4-x-Vicuna-13b-fp16](https://huggingface.co/NousResearch/GPT4-x-Vicuna-13b-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6829 | 0.7319 | 200 | 1.6267 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gvo1112/task-1-microsoft-Phi-3-mini-4k-instruct-1737882221
gvo1112
2025-01-26T09:04:32Z
5
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:adapter:microsoft/Phi-3-mini-4k-instruct", "region:us" ]
null
2025-01-26T09:04:21Z
--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
THU-KEG/OpenSAE-LLaMA-3.1-Layer_01
THU-KEG
2025-01-26T09:04:21Z
5
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-01-26T08:51:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
philip-hightech/6ab73dde-501d-4cc2-ad5c-504df19abb39
philip-hightech
2025-01-26T09:03:38Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-26T08:44:28Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6ab73dde-501d-4cc2-ad5c-504df19abb39 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb74d07584199815_train_data.json ds_type: json format: custom path: /workspace/input_data/fb74d07584199815_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/6ab73dde-501d-4cc2-ad5c-504df19abb39 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb74d07584199815_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4c1c1215-65d4-42d2-985c-d9d272adff15 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4c1c1215-65d4-42d2-985c-d9d272adff15 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6ab73dde-501d-4cc2-ad5c-504df19abb39 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8943 | 0.0000 | 1 | 1.1122 | | 0.9835 | 0.0001 | 3 | 1.1074 | | 0.8215 | 0.0002 | 6 | 1.0586 | | 0.8926 | 0.0003 | 9 | 0.9833 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/57950896-2375-4fa7-8ad1-d07d0df672fb
daniel40
2025-01-26T09:02:35Z
7
0
peft
[ "peft", "safetensors", "dbrx", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-dbrx", "base_model:adapter:katuni4ka/tiny-random-dbrx", "region:us" ]
null
2025-01-26T09:01:55Z
--- library_name: peft base_model: katuni4ka/tiny-random-dbrx tags: - axolotl - generated_from_trainer model-index: - name: 57950896-2375-4fa7-8ad1-d07d0df672fb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-dbrx bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1ec521f976f6a750_train_data.json ds_type: json format: custom path: /workspace/input_data/1ec521f976f6a750_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/57950896-2375-4fa7-8ad1-d07d0df672fb hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/1ec521f976f6a750_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0c734ece-7ae1-4e12-a8ca-c4bd260d197a wandb_project: Birthday-SN56-31-Gradients-On-Demand wandb_run: your_name wandb_runid: 0c734ece-7ae1-4e12-a8ca-c4bd260d197a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 57950896-2375-4fa7-8ad1-d07d0df672fb This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 46.0 | 0.0005 | 1 | 11.5 | | 46.0 | 0.0014 | 3 | 11.5 | | 46.0 | 0.0028 | 6 | 11.5 | | 46.0 | 0.0043 | 9 | 11.5 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
myhaaaaaaa/5d34f3e8-982e-438b-b6ca-c4f941ff9a17
myhaaaaaaa
2025-01-26T09:02:27Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/GPT4-x-Vicuna-13b-fp16", "base_model:adapter:NousResearch/GPT4-x-Vicuna-13b-fp16", "license:gpl", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T08:36:31Z
--- library_name: peft license: gpl base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 5d34f3e8-982e-438b-b6ca-c4f941ff9a17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/GPT4-x-Vicuna-13b-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e52b680221744693_train_data.json ds_type: json format: custom path: /workspace/input_data/e52b680221744693_train_data.json type: field_instruction: Context field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: myhaaaaaaa/5d34f3e8-982e-438b-b6ca-c4f941ff9a17 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e52b680221744693_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bdb465f5-8f34-4b10-be4d-8f69f9d27469 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bdb465f5-8f34-4b10-be4d-8f69f9d27469 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5d34f3e8-982e-438b-b6ca-c4f941ff9a17 This model is a fine-tuned version of [NousResearch/GPT4-x-Vicuna-13b-fp16](https://huggingface.co/NousResearch/GPT4-x-Vicuna-13b-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6828 | 0.7319 | 200 | 1.6278 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/3d7591d8-5fc3-45a0-86a6-ae43e34bf30c
trenden
2025-01-26T09:02:18Z
6
0
peft
[ "peft", "safetensors", "dbrx", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-dbrx", "base_model:adapter:katuni4ka/tiny-random-dbrx", "region:us" ]
null
2025-01-26T09:01:37Z
--- library_name: peft base_model: katuni4ka/tiny-random-dbrx tags: - axolotl - generated_from_trainer model-index: - name: 3d7591d8-5fc3-45a0-86a6-ae43e34bf30c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-dbrx bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1ec521f976f6a750_train_data.json ds_type: json format: custom path: /workspace/input_data/1ec521f976f6a750_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/3d7591d8-5fc3-45a0-86a6-ae43e34bf30c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/1ec521f976f6a750_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0c734ece-7ae1-4e12-a8ca-c4bd260d197a wandb_project: Birthday-SN56-3-Gradients-On-Demand wandb_run: your_name wandb_runid: 0c734ece-7ae1-4e12-a8ca-c4bd260d197a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3d7591d8-5fc3-45a0-86a6-ae43e34bf30c This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 46.0 | 0.0005 | 1 | 11.5 | | 46.0 | 0.0062 | 13 | 11.5 | | 46.0 | 0.0123 | 26 | 11.5 | | 46.0 | 0.0185 | 39 | 11.5 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thdihan/Gemma_9Bit_ftoPsych8k_GGUF
thdihan
2025-01-26T09:02:13Z
33
0
transformers
[ "transformers", "gguf", "gemma2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-2-9b-it-bnb-4bit", "base_model:quantized:unsloth/gemma-2-9b-it-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-26T08:58:20Z
--- base_model: unsloth/gemma-2-9b-it-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thdihan - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-it-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hks1444/xlm_hate_span_detection_final
hks1444
2025-01-26T09:02:07Z
5
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-01-26T07:41:22Z
--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm_hate_span_detection_final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm_hate_span_detection_final This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1929 - Precision: 0.4481 - Recall: 0.6142 - F1: 0.5182 - Accuracy: 0.9517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 75 | 0.2048 | 0.0 | 0.0 | 0.0 | 0.9476 | | 0.4588 | 2.0 | 150 | 0.1353 | 0.5556 | 0.4748 | 0.5120 | 0.9600 | | 0.1302 | 3.0 | 225 | 0.1309 | 0.5541 | 0.5163 | 0.5346 | 0.9614 | | 0.0744 | 4.0 | 300 | 0.1342 | 0.5825 | 0.5341 | 0.5573 | 0.9625 | | 0.0744 | 5.0 | 375 | 0.1495 | 0.6047 | 0.5312 | 0.5656 | 0.9637 | | 0.0433 | 6.0 | 450 | 0.1733 | 0.5385 | 0.5608 | 0.5494 | 0.9578 | | 0.0283 | 7.0 | 525 | 0.1675 | 0.5497 | 0.5905 | 0.5694 | 0.9596 | | 0.019 | 8.0 | 600 | 0.1749 | 0.5360 | 0.6409 | 0.5838 | 0.9591 | | 0.019 | 9.0 | 675 | 0.1938 | 0.5363 | 0.4599 | 0.4952 | 0.9599 | | 0.0117 | 10.0 | 750 | 0.2017 | 0.5417 | 0.5401 | 0.5409 | 0.9590 | | 0.0087 | 11.0 | 825 | 0.2162 | 0.5435 | 0.5935 | 0.5674 | 0.9574 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
robiual-awal/1327334f-fd9d-4421-a442-f1946a84013e
robiual-awal
2025-01-26T09:01:56Z
6
0
peft
[ "peft", "safetensors", "dbrx", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-dbrx", "base_model:adapter:katuni4ka/tiny-random-dbrx", "region:us" ]
null
2025-01-26T09:01:18Z
--- library_name: peft base_model: katuni4ka/tiny-random-dbrx tags: - axolotl - generated_from_trainer model-index: - name: 1327334f-fd9d-4421-a442-f1946a84013e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-dbrx bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1ec521f976f6a750_train_data.json ds_type: json format: custom path: /workspace/input_data/1ec521f976f6a750_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/1327334f-fd9d-4421-a442-f1946a84013e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/1ec521f976f6a750_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0c734ece-7ae1-4e12-a8ca-c4bd260d197a wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: 0c734ece-7ae1-4e12-a8ca-c4bd260d197a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1327334f-fd9d-4421-a442-f1946a84013e This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 46.0 | 0.0005 | 1 | 11.5 | | 46.0 | 0.0014 | 3 | 11.5 | | 46.0 | 0.0028 | 6 | 11.5 | | 46.0 | 0.0043 | 9 | 11.5 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
John6666/jaim-just-another-illustrious-merge-v2-sdxl
John6666
2025-01-26T09:01:54Z
171
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "realistic", "2.5D", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:finetune:Laxhar/noobai-XL-1.1", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-01-26T08:54:22Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - realistic - 2.5D - illustrious base_model: Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/1165105?modelVersionId=1331502). This model created by [infamous__fish](https://civitai.com/user/infamous__fish).
ClarenceDan/43f4ed27-97bf-4b03-a6c3-f5ced7578983
ClarenceDan
2025-01-26T09:01:38Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-26T08:43:28Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 43f4ed27-97bf-4b03-a6c3-f5ced7578983 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb74d07584199815_train_data.json ds_type: json format: custom path: /workspace/input_data/fb74d07584199815_train_data.json type: field_input: my_solu field_instruction: prompt field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/43f4ed27-97bf-4b03-a6c3-f5ced7578983 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb74d07584199815_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 4c1c1215-65d4-42d2-985c-d9d272adff15 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 4c1c1215-65d4-42d2-985c-d9d272adff15 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 43f4ed27-97bf-4b03-a6c3-f5ced7578983 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8943 | 0.0000 | 1 | 1.1122 | | 0.9833 | 0.0001 | 3 | 1.1074 | | 0.8187 | 0.0002 | 6 | 1.0593 | | 0.8942 | 0.0003 | 9 | 0.9855 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/7a1ad27e-8298-408e-9f09-983fecc34aa7
lesso
2025-01-26T09:01:30Z
6
0
peft
[ "peft", "safetensors", "dbrx", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-dbrx", "base_model:adapter:katuni4ka/tiny-random-dbrx", "region:us" ]
null
2025-01-26T09:00:50Z
--- library_name: peft base_model: katuni4ka/tiny-random-dbrx tags: - axolotl - generated_from_trainer model-index: - name: 7a1ad27e-8298-408e-9f09-983fecc34aa7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-dbrx bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1ec521f976f6a750_train_data.json ds_type: json format: custom path: /workspace/input_data/1ec521f976f6a750_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso/7a1ad27e-8298-408e-9f09-983fecc34aa7 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/1ec521f976f6a750_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0c734ece-7ae1-4e12-a8ca-c4bd260d197a wandb_project: lesso18 wandb_run: your_name wandb_runid: 0c734ece-7ae1-4e12-a8ca-c4bd260d197a warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7a1ad27e-8298-408e-9f09-983fecc34aa7 This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 46.0 | 0.0946 | 200 | 11.5 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
subhamiiita1/t5-model
subhamiiita1
2025-01-26T09:00:22Z
25
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-26T08:59:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nathanialhunt/368e740a-f8e0-448a-8452-1c82cf05c622
nathanialhunt
2025-01-26T09:00:09Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-2-7b-chat", "base_model:adapter:unsloth/llama-2-7b-chat", "license:apache-2.0", "region:us" ]
null
2025-01-26T08:58:12Z
--- library_name: peft license: apache-2.0 base_model: unsloth/llama-2-7b-chat tags: - axolotl - generated_from_trainer model-index: - name: 368e740a-f8e0-448a-8452-1c82cf05c622 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-2-7b-chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d54b8bbf3f45bb00_train_data.json ds_type: json format: custom path: /workspace/input_data/d54b8bbf3f45bb00_train_data.json type: field_input: reply field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/368e740a-f8e0-448a-8452-1c82cf05c622 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/d54b8bbf3f45bb00_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f573a5a1-33e7-4cca-af15-6e4e2e847f12 wandb_project: Birthday-SN56-5-Gradients-On-Demand wandb_run: your_name wandb_runid: f573a5a1-33e7-4cca-af15-6e4e2e847f12 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 368e740a-f8e0-448a-8452-1c82cf05c622 This model is a fine-tuned version of [unsloth/llama-2-7b-chat](https://huggingface.co/unsloth/llama-2-7b-chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0025 | 1 | nan | | 0.0 | 0.0324 | 13 | nan | | 0.0 | 0.0647 | 26 | nan | | 0.0 | 0.0971 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thangla01/98eae68c-3ece-46c7-ab65-96eecac90486
thangla01
2025-01-26T08:59:50Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-7B-Instruct", "base_model:adapter:Qwen/Qwen2-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-26T08:25:23Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 98eae68c-3ece-46c7-ab65-96eecac90486 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b1817e1a326e619_train_data.json ds_type: json format: custom path: /workspace/input_data/3b1817e1a326e619_train_data.json type: field_instruction: data field_output: criteria format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thangla01/98eae68c-3ece-46c7-ab65-96eecac90486 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3b1817e1a326e619_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a5b61cfd-85d2-4880-97d8-24759f842d7d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a5b61cfd-85d2-4880-97d8-24759f842d7d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 98eae68c-3ece-46c7-ab65-96eecac90486 This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3802 | 0.0424 | 200 | 1.2712 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1