Search is not available for this dataset
modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-04-11 06:26:25
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
420 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-04-11 06:25:59
card
stringlengths
11
1.01M
mradermacher/arco-chat-v0.1-GGUF
mradermacher
"2025-02-12T09:56:47Z"
0
0
transformers
[ "transformers", "gguf", "en", "dataset:stingning/ultrachat", "base_model:appvoid/arco-chat-v0.1", "base_model:quantized:appvoid/arco-chat-v0.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-02-12T09:54:08Z"
--- base_model: appvoid/arco-chat-v0.1 datasets: - stingning/ultrachat language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/appvoid/arco-chat-v0.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q3_K_M.gguf) | Q3_K_M | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q3_K_L.gguf) | Q3_K_L | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.IQ4_XS.gguf) | IQ4_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q4_K_S.gguf) | Q4_K_S | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q6_K.gguf) | Q6_K | 0.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/arco-chat-v0.1-GGUF/resolve/main/arco-chat-v0.1.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Ghaythfd/Llama3.1_8b_finetuned_revised_v1.1
Ghaythfd
"2024-11-15T11:13:06Z"
10
0
null
[ "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-11-15T10:05:04Z"
--- license: apache-2.0 ---
KeLoPa/Llama-3-8B-Instruct-Finance-RAG4
KeLoPa
"2024-10-03T15:03:28Z"
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2024-10-03T15:00:47Z"
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
huggingface-course/mt5-finetuned-amazon-en-es
huggingface-course
"2023-12-20T22:11:29Z"
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
"2022-03-02T23:29:05Z"
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge base_model: google/mt5-small model-index: - name: mt5-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0285 - Rouge1: 16.9728 - Rouge2: 8.2969 - Rougel: 16.8366 - Rougelsum: 16.851 - Gen Len: 10.1597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 7.1016 | 1.0 | 1209 | 3.3069 | 13.9858 | 5.8437 | 13.6053 | 13.5125 | 8.3782 | | 3.898 | 2.0 | 2418 | 3.1567 | 16.6706 | 8.6393 | 16.2882 | 16.2249 | 9.7521 | | 3.5915 | 3.0 | 3627 | 3.0928 | 17.111 | 8.3921 | 16.9139 | 16.7805 | 10.3445 | | 3.4174 | 4.0 | 4836 | 3.0482 | 16.9728 | 8.3066 | 16.8868 | 16.8485 | 10.3151 | | 3.3258 | 5.0 | 6045 | 3.0375 | 16.5972 | 8.2621 | 16.3524 | 16.3093 | 10.0672 | | 3.2427 | 6.0 | 7254 | 3.0232 | 17.3009 | 8.6087 | 17.0782 | 17.0105 | 10.0756 | | 3.2009 | 7.0 | 8463 | 3.0302 | 16.9284 | 8.6569 | 16.7885 | 16.7784 | 10.2143 | | 3.1838 | 8.0 | 9672 | 3.0285 | 16.9728 | 8.2969 | 16.8366 | 16.851 | 10.1597 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
prashantloni/lilt-en-aadhaar-red
prashantloni
"2024-04-24T13:43:13Z"
108
0
transformers
[ "transformers", "tensorboard", "safetensors", "lilt", "token-classification", "generated_from_trainer", "base_model:SCUT-DLVCLab/lilt-roberta-en-base", "base_model:finetune:SCUT-DLVCLab/lilt-roberta-en-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2024-04-24T13:18:41Z"
--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-en-aadhaar-red results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-aadhaar-red This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0287 - Adhaar Number: {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} - Ame: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} - Ather Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} - Ather Name Back: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} - Ather Name Front Top: {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} - Ddress Back: {'precision': 0.9512195121951219, 'recall': 0.9629629629629629, 'f1': 0.9570552147239264, 'number': 81} - Ddress Front: {'precision': 0.9615384615384616, 'recall': 0.9615384615384616, 'f1': 0.9615384615384616, 'number': 52} - Ender: {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} - Ob: {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} - Obile Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} - Ther: {'precision': 0.958974358974359, 'recall': 0.9689119170984456, 'f1': 0.9639175257731959, 'number': 193} - Overall Precision: 0.9623 - Overall Recall: 0.9725 - Overall F1: 0.9673 - Overall Accuracy: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Adhaar Number | Ame | Ather Name | Ather Name Back | Ather Name Front Top | Ddress Back | Ddress Front | Ender | Ob | Obile Number | Ther | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1651 | 10.0 | 200 | 0.0226 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 39} | {'precision': 0.9130434782608695, 'recall': 0.9130434782608695, 'f1': 0.9130434782608695, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.926829268292683, 'recall': 0.9382716049382716, 'f1': 0.9325153374233128, 'number': 81} | {'precision': 0.9811320754716981, 'recall': 1.0, 'f1': 0.9904761904761905, 'number': 52} | {'precision': 0.9047619047619048, 'recall': 0.9047619047619048, 'f1': 0.9047619047619048, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9384615384615385, 'recall': 0.9481865284974094, 'f1': 0.9432989690721649, 'number': 193} | 0.9497 | 0.9597 | 0.9547 | 0.9962 | | 0.004 | 20.0 | 400 | 0.0270 | {'precision': 0.9487179487179487, 'recall': 0.9487179487179487, 'f1': 0.9487179487179487, 'number': 39} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.926829268292683, 'recall': 0.9382716049382716, 'f1': 0.9325153374233128, 'number': 81} | {'precision': 0.9615384615384616, 'recall': 0.9615384615384616, 'f1': 0.9615384615384616, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9090909090909091, 'recall': 0.9523809523809523, 'f1': 0.9302325581395349, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9333333333333333, 'recall': 0.9430051813471503, 'f1': 0.9381443298969072, 'number': 193} | 0.9454 | 0.9534 | 0.9494 | 0.9964 | | 0.0016 | 30.0 | 600 | 0.0321 | {'precision': 0.925, 'recall': 0.9487179487179487, 'f1': 0.9367088607594937, 'number': 39} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1': 0.8, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9146341463414634, 'recall': 0.9259259259259259, 'f1': 0.9202453987730062, 'number': 81} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9282051282051282, 'recall': 0.9378238341968912, 'f1': 0.9329896907216495, 'number': 193} | 0.9414 | 0.9534 | 0.9474 | 0.9959 | | 0.0013 | 40.0 | 800 | 0.0243 | {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9390243902439024, 'recall': 0.9506172839506173, 'f1': 0.9447852760736196, 'number': 81} | {'precision': 0.9803921568627451, 'recall': 0.9615384615384616, 'f1': 0.970873786407767, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9487179487179487, 'recall': 0.9585492227979274, 'f1': 0.9536082474226804, 'number': 193} | 0.96 | 0.9661 | 0.9630 | 0.9973 | | 0.0006 | 50.0 | 1000 | 0.0400 | {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 0.8947368421052632, 'f1': 0.9444444444444444, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.8902439024390244, 'recall': 0.9012345679012346, 'f1': 0.8957055214723927, 'number': 81} | {'precision': 0.9803921568627451, 'recall': 0.9615384615384616, 'f1': 0.970873786407767, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9384615384615385, 'recall': 0.9481865284974094, 'f1': 0.9432989690721649, 'number': 193} | 0.9471 | 0.9492 | 0.9481 | 0.9951 | | 0.0003 | 60.0 | 1200 | 0.0323 | {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.926829268292683, 'recall': 0.9382716049382716, 'f1': 0.9325153374233128, 'number': 81} | {'precision': 0.9423076923076923, 'recall': 0.9423076923076923, 'f1': 0.9423076923076923, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9384615384615385, 'recall': 0.9481865284974094, 'f1': 0.9432989690721649, 'number': 193} | 0.9455 | 0.9555 | 0.9505 | 0.9964 | | 0.0005 | 70.0 | 1400 | 0.0287 | {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.9512195121951219, 'recall': 0.9629629629629629, 'f1': 0.9570552147239264, 'number': 81} | {'precision': 0.9615384615384616, 'recall': 0.9615384615384616, 'f1': 0.9615384615384616, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.958974358974359, 'recall': 0.9689119170984456, 'f1': 0.9639175257731959, 'number': 193} | 0.9623 | 0.9725 | 0.9673 | 0.9973 | | 0.0004 | 80.0 | 1600 | 0.0417 | {'precision': 0.9487179487179487, 'recall': 0.9487179487179487, 'f1': 0.9487179487179487, 'number': 39} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.9036144578313253, 'recall': 0.9259259259259259, 'f1': 0.9146341463414634, 'number': 81} | {'precision': 0.9607843137254902, 'recall': 0.9423076923076923, 'f1': 0.9514563106796117, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9285714285714286, 'recall': 0.9430051813471503, 'f1': 0.9357326478149101, 'number': 193} | 0.9393 | 0.9513 | 0.9453 | 0.9951 | | 0.0001 | 90.0 | 1800 | 0.0362 | {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9146341463414634, 'recall': 0.9259259259259259, 'f1': 0.9202453987730062, 'number': 81} | {'precision': 0.9803921568627451, 'recall': 0.9615384615384616, 'f1': 0.970873786407767, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9384615384615385, 'recall': 0.9481865284974094, 'f1': 0.9432989690721649, 'number': 193} | 0.9516 | 0.9576 | 0.9546 | 0.9964 | | 0.0001 | 100.0 | 2000 | 0.0378 | {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9146341463414634, 'recall': 0.9259259259259259, 'f1': 0.9202453987730062, 'number': 81} | {'precision': 0.9615384615384616, 'recall': 0.9615384615384616, 'f1': 0.9615384615384616, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9336734693877551, 'recall': 0.9481865284974094, 'f1': 0.9408740359897172, 'number': 193} | 0.9476 | 0.9576 | 0.9526 | 0.9962 | | 0.0001 | 110.0 | 2200 | 0.0379 | {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} | {'precision': 0.9565217391304348, 'recall': 0.9565217391304348, 'f1': 0.9565217391304348, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9146341463414634, 'recall': 0.9259259259259259, 'f1': 0.9202453987730062, 'number': 81} | {'precision': 0.9615384615384616, 'recall': 0.9615384615384616, 'f1': 0.9615384615384616, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9285714285714286, 'recall': 0.9430051813471503, 'f1': 0.9357326478149101, 'number': 193} | 0.9434 | 0.9534 | 0.9484 | 0.9959 | | 0.0001 | 120.0 | 2400 | 0.0361 | {'precision': 0.9743589743589743, 'recall': 0.9743589743589743, 'f1': 0.9743589743589743, 'number': 39} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9146341463414634, 'recall': 0.9259259259259259, 'f1': 0.9202453987730062, 'number': 81} | {'precision': 0.9615384615384616, 'recall': 0.9615384615384616, 'f1': 0.9615384615384616, 'number': 52} | {'precision': 0.9523809523809523, 'recall': 0.9523809523809523, 'f1': 0.9523809523809523, 'number': 21} | {'precision': 0.9545454545454546, 'recall': 1.0, 'f1': 0.9767441860465117, 'number': 21} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.9336734693877551, 'recall': 0.9481865284974094, 'f1': 0.9408740359897172, 'number': 193} | 0.9476 | 0.9576 | 0.9526 | 0.9962 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
imagepipeline/Majicmix-lux
imagepipeline
"2024-04-16T05:17:29Z"
43
0
diffusers
[ "diffusers", "imagepipeline", "imagepipeline.io", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-04-16T05:16:20Z"
--- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ## Majicmix-lux <img src="" alt="Generated on Image Pipeline" style="border-radius: 10px;"> **This checkpoint model is uploaded on [imagepipeline.io](https://imagepipeline.io/)** Model details - [![Try this model](https://img.shields.io/badge/try_this_model-image_pipeline-BD9319)](https://imagepipeline.io/models/Majicmix-lux?id=ccd867a7-ee2b-49a9-9387-ef2f17133a21/) ## How to try this model ? You can try using it locally or send an API call to test the output quality. Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/). No payment required. Coding in `php` `javascript` `node` etc ? Checkout our documentation [![documentation](https://img.shields.io/badge/documentation-image_pipeline-blue)](https://docs.imagepipeline.io/docs/introduction) ```python import requests import json url = "https://imagepipeline.io/sd/text2image/v1/run" payload = json.dumps({ "model_id": "ccd867a7-ee2b-49a9-9387-ef2f17133a21", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": false, "guidance_scale": 7.5, "multi_lingual": "no", "embeddings": "", "lora_models": "", "lora_weights": "" }) headers = { 'Content-Type': 'application/json', 'API-Key': 'your_api_key' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) } ``` Get more ready to use `MODELS` like this for `SD 1.5` and `SDXL` : [![All models](https://img.shields.io/badge/Get%20All%20Models-image_pipeline-BD9319)](https://imagepipeline.io/models) ### API Reference #### Generate Image ```http https://api.imagepipeline.io/sd/text2image/v1 ``` | Headers | Type | Description | |:----------------------| :------- |:-------------------------------------------------------------------------------------------------------------------| | `API-Key` | `str` | Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/) | | `Content-Type` | `str` | application/json - content type of the request body | | Parameter | Type | Description | | :-------- | :------- | :------------------------- | | `model_id` | `str` | Your base model, find available lists in [models page](https://imagepipeline.io/models) or upload your own| | `prompt` | `str` | Text Prompt. Check our [Prompt Guide](https://docs.imagepipeline.io/docs/SD-1.5/docs/extras/prompt-guide) for tips | | `num_inference_steps` | `int [1-50]` | Noise is removed with each step, resulting in a higher-quality image over time. Ideal value 30-50 (without LCM) | | `guidance_scale` | `float [1-20]` | Higher guidance scale prioritizes text prompt relevance but sacrifices image quality. Ideal value 7.5-12.5 | | `lora_models` | `str, array` | Pass the model_id(s) of LoRA models that can be found in models page | | `lora_weights` | `str, array` | Strength of the LoRA effect | --- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ### Feedback If you have any feedback, please reach out to us at [email protected] #### 🔗 Visit Website [![portfolio](https://img.shields.io/badge/image_pipeline-BD9319?style=for-the-badge&logo=gocd&logoColor=white)](https://imagepipeline.io/) If you are the original author of this model, please [click here](https://airtable.com/apprTaRnJbDJ8ufOx/shr4g7o9B6fWfOlUR) to add credits
RichardErkhov/xvadov01_-_microcoderfim-1B-awq
RichardErkhov
"2025-01-06T10:54:13Z"
6
0
null
[ "safetensors", "gpt_bigcode", "arxiv:2207.14255", "arxiv:1910.09700", "4-bit", "awq", "region:us" ]
null
"2025-01-06T10:53:43Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) microcoderfim-1B - AWQ - Model creator: https://huggingface.co/xvadov01/ - Original model: https://huggingface.co/xvadov01/microcoderfim-1B/ Original model description: --- library_name: transformers license: mit language: - en metrics: - bleu - code_eval - rouge - chrf model_name: MicroCoderFIM-1B base_model: bigcode/starcoderbase-1b model-index: - name: MicroCoderFIM-1B results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 65.46 verified: false - name: pass@10 type: pass@10 value: 90.36 verified: false - name: pass@100 type: pass@100 value: 94.43 verified: false - task: type: text-generation dataset: type: xvadov01/cpp_emb_nl2pl name: xvadov01/cpp_emb_nl2pl metrics: - name: BLEU type: bleu value: 31.74 verified: false - name: codeBLEU type: codeBLEU value: 40.53 verified: false - name: chrf++ type: chrf value: 51.54 verified: false - name: rouge-l type: rouge value: 43.31 verified: false --- # Model Card for Model ID This is a finetuned version of StarCoderBase 1B using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on [dataset](https://huggingface.co/datasets/xvadov01/cpp_emb_nl2pl) focused on embedded systems programming. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** Transformer decoder architecture with Multi-Query attention - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model [optional]:** [StarCoderBase 1B](https://huggingface.co/bigcode/starcoderbase-1b) ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** NVIDIA GeForce RTX 3090 - **Hours used:** 5h 25m - **Carbon Emitted:** 0.83 ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wanliyu1987/q-FrozenLake-v1-4x4-noSlippery
wanliyu1987
"2023-08-21T12:45:14Z"
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-08-21T12:45:12Z"
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="wanliyu1987/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
PQlet/lora-narutoblip-v1-ablation-r16-a16-module_to_k_to_v
PQlet
"2024-05-18T17:32:00Z"
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2024-05-18T17:31:55Z"
--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora base_model: runwayml/stable-diffusion-v1-5 inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - PQlet/lora-narutoblip-v1-ablation-r16-a16-module_to_k_to_v These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the Naruto-BLIP dataset. You can find some example images in the following. ![img_0](./image_a_man_with_glasses_and_a_shirt_on.png) ![img_1](./image_a_group_of_people_sitting_on_the_ground.png) ![img_2](./image_a_man_in_a_green_hoodie_standing_in_front_of_a_mountain.png) ![img_3](./image_a_man_with_a_gun_in_his_hand.png) ![img_4](./image_a_woman_with_red_hair_and_a_cat_on_her_head.png) ![img_5](./image_two_pokemons_sitting_on_top_of_a_cloud.png) ![img_6](./image_a_man_standing_in_front_of_a_bridge.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
hyper-accel/tiny-random-gemma
hyper-accel
"2025-02-10T05:58:30Z"
113
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-10T05:57:20Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cansurav/bert-base-uncased-finetuned-cola-learning_rate-8e-06
cansurav
"2023-05-05T10:02:23Z"
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-05-05T09:48:00Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola-learning_rate-8e-06 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5752615459764325 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola-learning_rate-8e-06 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8389 - Matthews Correlation: 0.5753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5241 | 1.0 | 535 | 0.4659 | 0.5046 | | 0.3755 | 2.0 | 1070 | 0.4412 | 0.5650 | | 0.2782 | 3.0 | 1605 | 0.5524 | 0.5395 | | 0.2154 | 4.0 | 2140 | 0.6437 | 0.5651 | | 0.1669 | 5.0 | 2675 | 0.7709 | 0.5650 | | 0.1503 | 6.0 | 3210 | 0.8389 | 0.5753 | | 0.1151 | 7.0 | 3745 | 0.8964 | 0.5681 | | 0.1082 | 8.0 | 4280 | 0.9767 | 0.5548 | | 0.0816 | 9.0 | 4815 | 0.9978 | 0.5498 | | 0.0809 | 10.0 | 5350 | 1.0170 | 0.5576 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
qgallouedec/trpo-Humanoid-v3-4106392303
qgallouedec
"2024-04-09T14:55:10Z"
1
0
stable-baselines3
[ "stable-baselines3", "Humanoid-v3", "deep-reinforcement-learning", "reinforcement-learning", "Humanoid-v4", "model-index", "region:us" ]
reinforcement-learning
"2023-02-28T15:12:30Z"
--- library_name: stable-baselines3 tags: - Humanoid-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 - Humanoid-v4 model-index: - name: TRPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Humanoid-v3 type: Humanoid-v3 metrics: - type: mean_reward value: 3706.29 +/- 1857.04 name: mean_reward verified: false --- # **TRPO** Agent playing **Humanoid-v3** This is a trained model of a **TRPO** agent playing **Humanoid-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo trpo --env Humanoid-v3 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo trpo --env Humanoid-v3 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo trpo --env Humanoid-v3 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo trpo --env Humanoid-v3 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo trpo --env Humanoid-v3 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo trpo --env Humanoid-v3 -f logs/ -orga qgallouedec ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('cg_damping', 0.1), ('cg_max_steps', 25), ('gae_lambda', 0.95), ('gamma', 0.99), ('learning_rate', 0.001), ('n_critic_updates', 20), ('n_envs', 2), ('n_steps', 1024), ('n_timesteps', 2000000.0), ('normalize', True), ('policy', 'MlpPolicy'), ('sub_sampling_factor', 1), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```
riccardogiorato/avatar-diffusion
riccardogiorato
"2023-05-16T09:25:31Z"
51
11
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "Avatar", "Avatar The Way of Water", "film", "James Cameron", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2022-11-06T09:44:10Z"
--- language: - en tags: - stable-diffusion - stable-diffusion-diffusers - Avatar - Avatar The Way of Water - film - James Cameron license: creativeml-openrail-m --- <center><img src="https://huggingface.co/riccardogiorato/avatar-diffusion/resolve/main/assets/avatartwow.png" width="512" height="512"/></center> ![visitors](https://visitor-badge.glitch.me/badge?page_id=riccardogiorato-avatar-diffusion) # Avatar Diffusion An AI model that generates artwork with Avatar style! Based of a finetuned Stable Diffusion V1.5, trained in Dreambooth with more than 50 images from the latest trailer Avatar: The Way of Water. By [riccardogiorato](https://twitter.com/riccardogiorato) > **Note**: To get the Avatar styles, use the **avatartwow style** keyword in your prompt. > > **Don't use** the **avatar** keyword, because it's already used by the original model but full of messy data. ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python from diffusers import StableDiffusionPipeline import torch model_id = "riccardogiorato/avatar-diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a magical witch with blue hair with avatartwow style" image = pipe(prompt).images[0] image.save("./magical_witch.png") ``` # **👇Model👇** AI Model Weights available at huggingface: https://huggingface.co/riccardogiorato/avatar-diffusion # Usage After model loaded, use keyword **avatartwow** in your prompt or even better **avatartwow style**. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
trenden/af171d77-3106-4f8c-aa27-6f085a8d810c
trenden
"2025-01-22T08:49:25Z"
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3-mini-128k-instruct", "base_model:adapter:microsoft/Phi-3-mini-128k-instruct", "license:mit", "region:us" ]
null
"2025-01-22T06:50:44Z"
--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-128k-instruct tags: - axolotl - generated_from_trainer model-index: - name: af171d77-3106-4f8c-aa27-6f085a8d810c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3-mini-128k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ce7b521ea53ac3c8_train_data.json ds_type: json format: custom path: /workspace/input_data/ce7b521ea53ac3c8_train_data.json type: field_input: article field_instruction: question field_output: content format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/af171d77-3106-4f8c-aa27-6f085a8d810c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/ce7b521ea53ac3c8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9f3b8ddd-4c77-445b-99ba-0b9ebff1d8b1 wandb_project: Birthday-SN56-3-Gradients-On-Demand wandb_run: your_name wandb_runid: 9f3b8ddd-4c77-445b-99ba-0b9ebff1d8b1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # af171d77-3106-4f8c-aa27-6f085a8d810c This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.5514 | 0.0000 | 1 | 1.4503 | | 4.9402 | 0.0000 | 3 | 1.4487 | | 6.3914 | 0.0001 | 6 | 1.4354 | | 6.0996 | 0.0001 | 9 | 1.3923 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Jxctcv/Assala
Jxctcv
"2023-08-20T15:56:35Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-08-20T15:56:35Z"
--- license: creativeml-openrail-m ---
krecceg/ppo-Huggy
krecceg
"2023-02-01T16:58:26Z"
23
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
"2023-02-01T16:58:19Z"
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: krecceg/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RayneAmes/vileplume_v2
RayneAmes
"2025-02-13T06:03:46Z"
0
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2025-02-13T05:58:37Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AppyFizz/calrealxl-woman
AppyFizz
"2024-10-20T17:55:12Z"
30
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-10-20T17:51:00Z"
--- license: creativeml-openrail-m tags: - text-to-image --- ### calrealxl woman on Stable Diffusion via Dreambooth #### model by AppyFizz This your the Stable Diffusion model fine-tuned the calrealxl woman concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **calrealxl woman** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
LHRuig/northcuttsx
LHRuig
"2025-03-25T20:47:21Z"
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
"2025-03-25T20:47:00Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: northcuttsx --- # northcuttsx <Gallery /> ## Model description northcuttsx lora ## Trigger words You should use `northcuttsx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/northcuttsx/tree/main) them in the Files & versions tab.
lesso11/473c4b04-5ed3-4238-8830-73ecb04bf77e
lesso11
"2025-04-09T21:11:04Z"
8
0
null
[ "safetensors", "qwen2", "region:us" ]
null
"2025-04-01T09:39:13Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
MinaMila/llama_instbase_GermanCredit_cfda_10ep_22
MinaMila
"2025-03-27T19:47:04Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-27T19:43:42Z"
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MinaMila - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Mantis-VL/mantis-8b-idefics2-classification-example_4096_regression
Mantis-VL
"2024-06-30T21:35:41Z"
4
0
transformers
[ "transformers", "safetensors", "idefics2", "text-classification", "generated_from_trainer", "base_model:HuggingFaceM4/idefics2-8b", "base_model:finetune:HuggingFaceM4/idefics2-8b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
"2024-06-28T07:55:38Z"
--- license: apache-2.0 base_model: HuggingFaceM4/idefics2-8b tags: - generated_from_trainer model-index: - name: mantis-8b-idefics2-classification-example_4096_regression results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mantis-8b-idefics2-classification-example_4096_regression This model is a fine-tuned version of [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
stabgan/gemma-3-finetuned-medical-v1
stabgan
"2025-04-10T16:44:51Z"
0
1
transformers
[ "transformers", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-10T16:13:33Z"
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** stabgan - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/choeyunbeom_-_llama3_KM-gguf
RichardErkhov
"2025-03-26T18:01:15Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-03-26T16:56:42Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama3_KM - GGUF - Model creator: https://huggingface.co/choeyunbeom/ - Original model: https://huggingface.co/choeyunbeom/llama3_KM/ | Name | Quant method | Size | | ---- | ---- | ---- | | [llama3_KM.Q2_K.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q2_K.gguf) | Q2_K | 1.27GB | | [llama3_KM.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.IQ3_XS.gguf) | IQ3_XS | 1.38GB | | [llama3_KM.IQ3_S.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.IQ3_S.gguf) | IQ3_S | 1.44GB | | [llama3_KM.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q3_K_S.gguf) | Q3_K_S | 1.44GB | | [llama3_KM.IQ3_M.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.IQ3_M.gguf) | IQ3_M | 1.49GB | | [llama3_KM.Q3_K.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q3_K.gguf) | Q3_K | 1.57GB | | [llama3_KM.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q3_K_M.gguf) | Q3_K_M | 1.57GB | | [llama3_KM.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q3_K_L.gguf) | Q3_K_L | 1.69GB | | [llama3_KM.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.IQ4_XS.gguf) | IQ4_XS | 1.71GB | | [llama3_KM.Q4_0.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q4_0.gguf) | Q4_0 | 1.79GB | | [llama3_KM.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.IQ4_NL.gguf) | IQ4_NL | 1.79GB | | [llama3_KM.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q4_K_S.gguf) | Q4_K_S | 1.8GB | | [llama3_KM.Q4_K.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q4_K.gguf) | Q4_K | 1.88GB | | [llama3_KM.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q4_K_M.gguf) | Q4_K_M | 1.88GB | | [llama3_KM.Q4_1.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q4_1.gguf) | Q4_1 | 1.95GB | | [llama3_KM.Q5_0.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q5_0.gguf) | Q5_0 | 2.11GB | | [llama3_KM.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q5_K_S.gguf) | Q5_K_S | 2.11GB | | [llama3_KM.Q5_K.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q5_K.gguf) | Q5_K | 2.16GB | | [llama3_KM.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q5_K_M.gguf) | Q5_K_M | 2.16GB | | [llama3_KM.Q5_1.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q5_1.gguf) | Q5_1 | 2.28GB | | [llama3_KM.Q6_K.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q6_K.gguf) | Q6_K | 2.46GB | | [llama3_KM.Q8_0.gguf](https://huggingface.co/RichardErkhov/choeyunbeom_-_llama3_KM-gguf/blob/main/llama3_KM.Q8_0.gguf) | Q8_0 | 3.19GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HPLT/hplt_bert_base_2_0_hin-Deva
HPLT
"2025-03-19T12:45:36Z"
9
0
null
[ "pytorch", "BERT", "HPLT", "encoder", "custom_code", "hi", "dataset:HPLT/HPLT2.0_cleaned", "arxiv:2503.10267", "license:apache-2.0", "region:us" ]
null
"2025-02-22T22:49:53Z"
--- language: - hi inference: false tags: - BERT - HPLT - encoder license: apache-2.0 datasets: - HPLT/HPLT2.0_cleaned --- # HPLT v2.0 BERT for Hindi <img src="https://hplt-project.org/_next/static/media/logo-hplt.d5e16ca5.svg" width=12.5%> This is one of the encoder-only monolingual language models trained as a second release by the [HPLT project](https://hplt-project.org/). It is a so called masked language model. In particular, we used the modification of the classic BERT model named [LTG-BERT](https://aclanthology.org/2023.findings-eacl.146/). We present monolingual LTG-BERT models for more than 50 languages out of 191 total in the [HPLT v2.0 dataset](https://hplt-project.org/datasets/v2.0). All the HPLT encoder-only models use the same hyper-parameters, roughly following the BERT-base setup: - hidden size: 768 - attention heads: 12 - layers: 12 - vocabulary size: 32768 Every model uses its own tokenizer trained on language-specific HPLT data. [The training code](https://github.com/hplt-project/HPLT-WP4). [The training statistics of all runs](https://api.wandb.ai/links/ltg/kduj7mjn) ## Example usage (tested with `transformers==4.46.1` and `tokenizers==0.20.1`) This model currently needs a custom wrapper from `modeling_ltgbert.py`, you should therefore load the model with `trust_remote_code=True`. ```python import torch from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("HPLT/hplt_bert_base_2_0_hin-Deva") model = AutoModelForMaskedLM.from_pretrained("HPLT/hplt_bert_base_2_0_hin-Deva", trust_remote_code=True) mask_id = tokenizer.convert_tokens_to_ids("[MASK]") input_text = tokenizer("It's a beautiful[MASK].", return_tensors="pt") output_p = model(**input_text) output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids) # should output: '[CLS] It's a beautiful place.[SEP]' print(tokenizer.decode(output_text[0].tolist(), clean_up_tokenization_spaces=True)) ``` The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`. ## Intermediate checkpoints We are releasing 10 intermediate checkpoints for each model at intervals of every 3125 training steps in separate branches. The naming convention is `stepXXX`: for example, `step18750`. You can load a specific model revision with `transformers` using the argument `revision`: ```python model = AutoModelForMaskedLM.from_pretrained("HPLT/hplt_bert_base_2_0_hin-Deva", revision="step21875", trust_remote_code=True) ``` You can access all the revisions for the models with the following code: ```python from huggingface_hub import list_repo_refs out = list_repo_refs("HPLT/hplt_bert_base_2_0_hin-Deva") print([b.name for b in out.branches]) ``` ## Cite us ```bibtex @inproceedings{samuel-etal-2023-trained, title = "Trained on 100 million words and still in shape: {BERT} meets {B}ritish {N}ational {C}orpus", author = "Samuel, David and Kutuzov, Andrey and {\O}vrelid, Lilja and Velldal, Erik", editor = "Vlachos, Andreas and Augenstein, Isabelle", booktitle = "Findings of the Association for Computational Linguistics: EACL 2023", month = may, year = "2023", address = "Dubrovnik, Croatia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.findings-eacl.146", doi = "10.18653/v1/2023.findings-eacl.146", pages = "1954--1974" } ``` ```bibtex @misc{burchell2025expandedmassivemultilingualdataset, title={An Expanded Massive Multilingual Dataset for High-Performance Language Technologies}, author={Laurie Burchell and Ona de Gibert and Nikolay Arefyev and Mikko Aulamo and Marta Bañón and Pinzhen Chen and Mariia Fedorova and Liane Guillou and Barry Haddow and Jan Hajič and Jindřich Helcl and Erik Henriksson and Mateusz Klimaszewski and Ville Komulainen and Andrey Kutuzov and Joona Kytöniemi and Veronika Laippala and Petter Mæhlum and Bhavitvya Malik and Farrokh Mehryary and Vladislav Mikhailov and Nikita Moghe and Amanda Myntti and Dayyán O'Brien and Stephan Oepen and Proyag Pal and Jousia Piha and Sampo Pyysalo and Gema Ramírez-Sánchez and David Samuel and Pavel Stepachev and Jörg Tiedemann and Dušan Variš and Tereza Vojtěchová and Jaume Zaragoza-Bernabeu}, year={2025}, eprint={2503.10267}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.10267}, } ```
MinhViet/bartpho-linear2
MinhViet
"2024-05-30T18:18:17Z"
39
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-05-30T18:17:04Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wufeim/Qwen2.5-VL-7B-Instruct-SFT-OpenImages_3DSR_mar16_filtered1200_nothinking-2025-03-29-20-59-47
wufeim
"2025-03-30T01:54:10Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:ccvl/OpenImages_3DSR_mar16_filtered1200_nothinking", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
"2025-03-30T01:00:20Z"
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct datasets: ccvl/OpenImages_3DSR_mar16_filtered1200_nothinking library_name: transformers model_name: Qwen/Qwen2.5-VL-7B-Instruct tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Qwen/Qwen2.5-VL-7B-Instruct This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) on the [ccvl/OpenImages_3DSR_mar16_filtered1200_nothinking](https://huggingface.co/datasets/ccvl/OpenImages_3DSR_mar16_filtered1200_nothinking) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="wufeim/Qwen2.5-VL-7B-Instruct-SFT-OpenImages_3DSR_mar16_filtered1200_nothinking-2025-03-29-20-59-47", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/wma27/spatial-reasoning-r1/runs/gfrg85bs) This model was trained with SFT. ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0.dev0 - Pytorch: 2.5.1 - Datasets: 2.16.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
manche/gpt2-safeguard-zs
manche
"2024-02-07T16:14:17Z"
89
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-02-07T16:13:18Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aldjia/q-FrozenLake-v1-4x4-noSlippery
aldjia
"2024-04-27T13:53:03Z"
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2024-04-27T13:48:53Z"
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="aldjia/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
JacksonBrune/b5dd3107-5f7d-403c-b405-baf150631a9b
JacksonBrune
"2025-02-15T00:20:12Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
"2025-02-15T00:15:37Z"
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: b5dd3107-5f7d-403c-b405-baf150631a9b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # b5dd3107-5f7d-403c-b405-baf150631a9b This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.8691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
huantian2415/vicuna-13b-chinese-4bit-ggml
huantian2415
"2023-04-28T03:50:44Z"
0
11
null
[ "region:us" ]
null
"2023-04-27T02:05:33Z"
# Vicuna 13B V1.1 Chinese 4bit ggml format This model was obtained from following repo: * uukuguy/vicuna-13b-v1.1 * ziqingyang/chinese-alpaca-lora-13b Merged using sciprts from: https://github.com/ymcui/Chinese-LLaMA-Alpaca **License:** Apache License 2.0i Result ![alt 示例](./2023.4.28.png)
narpas/Deviant-EXPERIMENTAL-V2-70B-6.0bpw-h8-exl2
narpas
"2025-03-16T22:28:31Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:TareksLab/Deviant-EXPERIMENTAL-V2-70B", "base_model:quantized:TareksLab/Deviant-EXPERIMENTAL-V2-70B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "6-bit", "exl2", "region:us" ]
text-generation
"2025-03-16T20:05:27Z"
--- base_model: - TareksLab/Deviant-EXPERIMENTAL-V2-70B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [allura-org/Bigger-Body-70b](https://huggingface.co/allura-org/Bigger-Body-70b) as a base. ### Models Merged The following models were included in the merge: * [Sao10K/L3-70B-Euryale-v2.1](https://huggingface.co/Sao10K/L3-70B-Euryale-v2.1) * [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B) * [ReadyArt/Forgotten-Safeword-70B-3.6](https://huggingface.co/ReadyArt/Forgotten-Safeword-70B-3.6) * [TheDrummer/Fallen-Llama-3.3-R1-70B-v1](https://huggingface.co/TheDrummer/Fallen-Llama-3.3-R1-70B-v1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: TheDrummer/Fallen-Llama-3.3-R1-70B-v1 - model: ReadyArt/Forgotten-Safeword-70B-3.6 - model: SicariusSicariiStuff/Negative_LLAMA_70B - model: Sao10K/L3-70B-Euryale-v2.1 merge_method: sce base_model: allura-org/Bigger-Body-70b parameters: select_topk: 0.75 int8_mask: true chat_template: llama3 tokenizer: source: base dtype: bfloat16 ```
LHRuig/pepe3
LHRuig
"2025-02-02T20:02:18Z"
8
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
"2025-02-02T20:01:52Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: pepe3 --- # pepe3 <Gallery /> ## Model description pepe3 lora ## Trigger words You should use `pepe3` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/pepe3/tree/main) them in the Files & versions tab.
wu981526092/MK4
wu981526092
"2024-09-09T14:59:38Z"
37
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-09-09T14:59:01Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zelk12/MT-Gen6fix-W-gemma-2-ItATv3-9B
zelk12
"2025-02-02T10:10:41Z"
12
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:IlyaGusev/gemma-2-9b-it-abliterated", "base_model:merge:IlyaGusev/gemma-2-9b-it-abliterated", "base_model:TheDrummer/Tiger-Gemma-9B-v3", "base_model:merge:TheDrummer/Tiger-Gemma-9B-v3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-02T10:04:38Z"
--- base_model: - TheDrummer/Tiger-Gemma-9B-v3 - IlyaGusev/gemma-2-9b-it-abliterated library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [TheDrummer/Tiger-Gemma-9B-v3](https://huggingface.co/TheDrummer/Tiger-Gemma-9B-v3) * [IlyaGusev/gemma-2-9b-it-abliterated](https://huggingface.co/IlyaGusev/gemma-2-9b-it-abliterated) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: IlyaGusev/gemma-2-9b-it-abliterated - model: TheDrummer/Tiger-Gemma-9B-v3 merge_method: slerp base_model: IlyaGusev/gemma-2-9b-it-abliterated dtype: bfloat16 parameters: t: 0.25 ```
Nerva1228/daiyu01
Nerva1228
"2024-12-25T09:42:52Z"
8
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2024-12-23T03:01:24Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: daiyu --- # Daiyu01 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `daiyu` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Nerva1228/daiyu01', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
RenauxLouis/merged-monet-mitchell-10000steps-688
RenauxLouis
"2023-05-22T10:45:25Z"
3
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2023-05-20T19:25:57Z"
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - RenauxLouis/merged-monet-mitchell-8000steps-688 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the merged-monet-mitchell-dataset dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
ardaspear/7c03aea4-2a29-4740-aa9e-d4f17adf6239
ardaspear
"2025-01-11T11:01:45Z"
11
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-125m", "base_model:adapter:facebook/opt-125m", "license:other", "region:us" ]
null
"2025-01-11T11:00:25Z"
--- library_name: peft license: other base_model: facebook/opt-125m tags: - axolotl - generated_from_trainer model-index: - name: 7c03aea4-2a29-4740-aa9e-d4f17adf6239 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8d80dfcbb444ae04_train_data.json ds_type: json format: custom path: /workspace/input_data/8d80dfcbb444ae04_train_data.json type: field_instruction: text field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ardaspear/7c03aea4-2a29-4740-aa9e-d4f17adf6239 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/8d80dfcbb444ae04_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: 802638da-fd54-4d25-ad5b-57beacbf31a3 wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: 802638da-fd54-4d25-ad5b-57beacbf31a3 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 7c03aea4-2a29-4740-aa9e-d4f17adf6239 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0098 | 1 | 2.3276 | | 9.8132 | 0.0490 | 5 | 2.2486 | | 9.2482 | 0.0980 | 10 | 2.0860 | | 8.1697 | 0.1471 | 15 | 2.0146 | | 8.6968 | 0.1961 | 20 | 1.9683 | | 8.0741 | 0.2451 | 25 | 1.9344 | | 7.9488 | 0.2941 | 30 | 1.9185 | | 8.7765 | 0.3431 | 35 | 1.8965 | | 8.1578 | 0.3922 | 40 | 1.8888 | | 7.9261 | 0.4412 | 45 | 1.8863 | | 8.2143 | 0.4902 | 50 | 1.8856 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
FounderOfHuggingface/gpt2_lora_r8_dbpedia_14_t300_e5_non_member_shadow4
FounderOfHuggingface
"2023-12-04T15:27:21Z"
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
"2023-12-04T15:27:19Z"
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
Clawoo/ppo-LunarLander-v2u1
Clawoo
"2023-02-15T18:33:04Z"
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-02-15T18:32:38Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.09 +/- 20.55 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
malper/unikud
malper
"2022-04-25T02:11:25Z"
17,783
4
transformers
[ "transformers", "pytorch", "canine", "he", "endpoints_compatible", "region:us" ]
null
"2022-04-18T15:56:16Z"
--- language: - he --- Please see [this model's DagsHub repository](https://dagshub.com/morrisalp/unikud) for information on usage.
abenius/0a8f8bd8-2a70-4069-a8de-03f19149870d
abenius
"2025-02-05T15:35:35Z"
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-02-05T14:56:41Z"
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 0a8f8bd8-2a70-4069-a8de-03f19149870d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8269aa2f21864766_train_data.json ds_type: json format: custom path: /workspace/input_data/8269aa2f21864766_train_data.json type: field_input: prompt field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: abenius/0a8f8bd8-2a70-4069-a8de-03f19149870d hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 500 micro_batch_size: 2 mlflow_experiment_name: /tmp/8269aa2f21864766_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: a3da30a6-f598-4d7b-afdf-be7e19d12470 wandb_project: Gradients-On-12 wandb_run: your_name wandb_runid: a3da30a6-f598-4d7b-afdf-be7e19d12470 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 0a8f8bd8-2a70-4069-a8de-03f19149870d This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3253 | 0.4901 | 500 | 0.3043 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bharati2324/Llama-1B-Code-LoRA-r8-merged
bharati2324
"2024-11-13T02:24:47Z"
55
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-13T02:23:27Z"
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CMU-AIR2/math-phi-1-5-FULL-Arithmetic-4k-MWP-2k
CMU-AIR2
"2024-05-24T23:56:51Z"
150
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-24T23:53:54Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jiayihao03/gemma2b_code_python
jiayihao03
"2024-03-05T01:38:49Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-2b-bnb-4bit", "base_model:finetune:unsloth/gemma-2b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-03-05T01:38:34Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl base_model: unsloth/gemma-2b-bnb-4bit --- # Uploaded model - **Developed by:** jiayihao03 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
jasonkrone/olmo_1b_toks_75b
jasonkrone
"2024-08-19T01:48:12Z"
322
0
transformers
[ "transformers", "safetensors", "hf_olmo", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-08-19T01:46:15Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sail-rvc/aresgun
sail-rvc
"2023-07-14T07:35:10Z"
1
0
transformers
[ "transformers", "rvc", "sail-rvc", "audio-to-audio", "endpoints_compatible", "region:us" ]
audio-to-audio
"2023-07-14T07:34:45Z"
--- pipeline_tag: audio-to-audio tags: - rvc - sail-rvc --- # aresgun ## RVC Model ![banner](https://i.imgur.com/xocCjhH.jpg) This model repo was automatically generated. Date: 2023-07-14 07:35:10 Bot Name: juuxnscrap Model Type: RVC Source: https://huggingface.co/juuxn/RVCModels/ Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
hedronstone/whisper-large-v2-sw
hedronstone
"2022-12-20T13:53:16Z"
75
1
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sw", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2022-12-09T14:47:18Z"
--- language: - sw license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-large-v2-sw results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sw split: test args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 30.7 --- ## Model * Name: Whisper Large-v2 Swahili * Description: Whisper weights for speech-to-text task, fine-tuned and evaluated on normalized data. * Dataset: - Train and validation splits for Swahili subsets of [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). - Train, validation and test splits for Swahili subsets of [Google Fleurs](https://huggingface.co/datasets/google/fleurs/). * Performance: **30.7 WER** ## Weights * Date of release: 12.09.2022 * License: MIT ## Usage To use these weights in HuggingFace's `transformers` library, you can do the following: ```python from transformers import WhisperForConditionalGeneration model = WhisperForConditionalGeneration.from_pretrained("hedronstone/whisper-large-v2-sw") ```
ValiantLabs/Llama3.1-8B-Esper2
ValiantLabs
"2025-03-12T00:31:27Z"
44
2
null
[ "safetensors", "llama", "esper", "esper-2", "valiant", "valiant-labs", "llama-3.1", "llama-3.1-instruct", "llama-3.1-instruct-8b", "llama-3", "llama-3-instruct", "llama-3-instruct-8b", "8b", "code", "code-instruct", "python", "dev-ops", "terraform", "azure", "aws", "gcp", "architect", "engineer", "developer", "conversational", "chat", "instruct", "text-generation", "en", "dataset:sequelbox/Titanium", "dataset:sequelbox/Tachibana", "dataset:sequelbox/Supernova", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "model-index", "region:us" ]
text-generation
"2024-10-02T14:36:46Z"
--- language: - en pipeline_tag: text-generation tags: - esper - esper-2 - valiant - valiant-labs - llama - llama-3.1 - llama-3.1-instruct - llama-3.1-instruct-8b - llama-3 - llama-3-instruct - llama-3-instruct-8b - 8b - code - code-instruct - python - dev-ops - terraform - azure - aws - gcp - architect - engineer - developer - conversational - chat - instruct base_model: meta-llama/Meta-Llama-3.1-8B-Instruct datasets: - sequelbox/Titanium - sequelbox/Tachibana - sequelbox/Supernova model_type: llama model-index: - name: ValiantLabs/Llama3.1-8B-Esper2 results: - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-Shot) type: Winogrande args: num_few_shot: 5 metrics: - type: acc value: 75.85 name: acc license: llama3.1 --- **[ESPER 3 COMING SOON! Click here to support our open-source dataset and model releases!](https://huggingface.co/spaces/sequelbox/SupportOpenSource)** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64f267a8a4f79a118e0fcc89/4I6oK8DG0so4VD8GroFsd.jpeg) Esper 2 is a DevOps and cloud architecture code specialist built on Llama 3.1 8b. - Expertise-driven, an AI assistant focused on AWS, Azure, GCP, Terraform, Dockerfiles, pipelines, shell scripts and more! - Real world problem solving and high quality code instruct performance within the Llama 3.1 Instruct chat format - Finetuned on synthetic [DevOps-instruct](https://huggingface.co/datasets/sequelbox/Titanium) and [code-instruct](https://huggingface.co/datasets/sequelbox/Tachibana) data generated with Llama 3.1 405b. - Overall chat performance supplemented with [generalist chat data.](https://huggingface.co/datasets/sequelbox/Supernova) Try our code-instruct AI assistant [Enigma!](https://huggingface.co/ValiantLabs/Llama3.1-8B-Enigma) ## Version This is the **2024-10-02** release of Esper 2 for Llama 3.1 8b. Esper 2 is now available for [Llama 3.2 3b!](https://huggingface.co/ValiantLabs/Llama3.2-3B-Esper2) Esper 2 will be coming to more model sizes soon :) ## Prompting Guide Esper 2 uses the [Llama 3.1 Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) prompt format. The example script below can be used as a starting point for general chat: ```python import transformers import torch model_id = "ValiantLabs/Llama3.1-8B-Esper2" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are an AI assistant."}, {"role": "user", "content": "Hi, how do I optimize the size of a Docker image?"} ] outputs = pipeline( messages, max_new_tokens=2048, ) print(outputs[0]["generated_text"][-1]) ``` ## The Model Esper 2 is built on top of Llama 3.1 8b Instruct, improving performance through high quality DevOps, code, and chat data in Llama 3.1 Instruct prompt style. Our current version of Esper 2 is trained on DevOps data from [sequelbox/Titanium](https://huggingface.co/datasets/sequelbox/Titanium), supplemented by code-instruct data from [sequelbox/Tachibana](https://huggingface.co/datasets/sequelbox/Tachibana) and general chat data from [sequelbox/Supernova.](https://huggingface.co/datasets/sequelbox/Supernova) ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg) Esper 2 is created by [Valiant Labs.](http://valiantlabs.ca/) [Check out our HuggingFace page for Shining Valiant 2 Enigma, and our other Build Tools models for creators!](https://huggingface.co/ValiantLabs) We care about open source. For everyone to use. We encourage others to finetune further from our models.
protectai/deberta-v3-large-zeroshot-v1-onnx
protectai
"2024-04-11T12:11:53Z"
9
1
transformers
[ "transformers", "onnx", "deberta-v2", "text-classification", "NLI", "deberta-v3", "zero-shot-classification", "en", "dataset:mnli", "dataset:facebook/anli", "dataset:fever", "dataset:wanli", "dataset:ling", "dataset:amazonpolarity", "dataset:imdb", "dataset:appreviews", "base_model:MoritzLaurer/deberta-v3-large-zeroshot-v1", "base_model:quantized:MoritzLaurer/deberta-v3-large-zeroshot-v1", "license:mit", "autotrain_compatible", "region:us" ]
zero-shot-classification
"2023-11-12T21:29:50Z"
--- language: - en license: mit tags: - NLI - deberta-v3 datasets: - mnli - facebook/anli - fever - wanli - ling - amazonpolarity - imdb - appreviews inference: false pipeline_tag: zero-shot-classification base_model: MoritzLaurer/deberta-v3-large-zeroshot-v1 --- # ONNX version of MoritzLaurer/deberta-v3-large-zeroshot-v1 **This model is a conversion of [MoritzLaurer/deberta-v3-large-zeroshot-v1](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v1) to ONNX** format using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library. `MoritzLaurer/deberta-v3-large-zeroshot-v1` is designed for zero-shot classification, capable of determining whether a hypothesis is `true` or `not_true` based on a text, a format based on Natural Language Inference (NLI). ## Usage Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed. ```python from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("laiyer/deberta-v3-large-zeroshot-v1-onnx") tokenizer.model_input_names = ["input_ids", "attention_mask"] model = ORTModelForSequenceClassification.from_pretrained("laiyer/deberta-v3-large-zeroshot-v1-onnx") classifier = pipeline( task="zero-shot-classification", model=model, tokenizer=tokenizer, ) classifier_output = classifier("Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.", ["mobile", "website", "billing", "account access"]) print(classifier_output) ``` ### LLM Guard [Ban Topics scanner](https://llm-guard.com/input_scanners/ban_topics/) ## Community Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, or engage in discussions about LLM security! <a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w"><img src="https://github.com/laiyer-ai/llm-guard/blob/main/docs/assets/join-our-slack-community.png?raw=true" width="200"></a>
zhanjun/lora-trained-xl-notion_trans
zhanjun
"2024-05-11T05:00:56Z"
1
1
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
"2024-05-11T03:27:00Z"
--- license: openrail++ library_name: diffusers tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a notion style picture of a person widget: - text: a notion style cartoon man's face with a black and white outline output: url: image_0.png - text: a notion style cartoon man's face with a black and white outline output: url: image_1.png - text: a notion style cartoon man's face with a black and white outline output: url: image_2.png - text: a notion style cartoon man's face with a black and white outline output: url: image_3.png --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - zhanjun/lora-trained-xl-notion_trans <Gallery /> ## Model description These are zhanjun/lora-trained-xl-notion_trans LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a notion style picture of a person to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](zhanjun/lora-trained-xl-notion_trans/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
nkpz/OpenThinker-7B-Uncensored-DeLMAT
nkpz
"2025-02-20T23:26:31Z"
0
0
null
[ "safetensors", "qwen2", "base_model:open-thoughts/OpenThinker-7B", "base_model:finetune:open-thoughts/OpenThinker-7B", "license:apache-2.0", "region:us" ]
null
"2025-02-20T22:07:40Z"
--- license: apache-2.0 base_model: - open-thoughts/OpenThinker-7B --- Decensored using a custom training script guided by activations, similar to ablation/"abliteration" scripts but not exactly the same approach. The training script is released under the MIT license: https://github.com/nkpz/DeLMAT
baesad/Llama3.2-BLChat-3B
baesad
"2025-02-02T06:10:11Z"
17
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-31T15:17:16Z"
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** baesad - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/CosmoQwen2.4-i1-GGUF
mradermacher
"2025-03-25T13:25:55Z"
15
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jetuned/CosmoQwen2.4", "base_model:quantized:jetuned/CosmoQwen2.4", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2025-03-25T02:04:14Z"
--- base_model: jetuned/CosmoQwen2.4 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jetuned/CosmoQwen2.4 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/CosmoQwen2.4-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/CosmoQwen2.4-i1-GGUF/resolve/main/CosmoQwen2.4.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
SamuelM0422/detr-resnet-50-hardhat-finetuned
SamuelM0422
"2025-03-04T14:21:44Z"
0
0
transformers
[ "transformers", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:anindya64/hardhat", "base_model:facebook/detr-resnet-50-dc5", "base_model:finetune:facebook/detr-resnet-50-dc5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
"2025-03-04T12:50:14Z"
--- library_name: transformers license: apache-2.0 base_model: facebook/detr-resnet-50-dc5 tags: - generated_from_trainer datasets: - anindya64/hardhat model-index: - name: DETR Resnet 50 - Helmet Detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DETR Resnet 50 - Helmet Detection This model is a fine-tuned version of [facebook/detr-resnet-50-dc5](https://huggingface.co/facebook/detr-resnet-50-dc5) on the Hard Hat dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.2 - Tokenizers 0.21.0
ontocord/ontocord_wide_7b-stacked-stage1-instruct
ontocord
"2025-02-27T19:56:40Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-27T19:30:15Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Mermaid-Llama-22B-RAG-GGUF
mradermacher
"2024-05-14T19:07:46Z"
6
0
transformers
[ "transformers", "gguf", "en", "base_model:TroyDoesAI/Mermaid-Llama-22B-RAG", "base_model:quantized:TroyDoesAI/Mermaid-Llama-22B-RAG", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
"2024-05-14T15:30:34Z"
--- base_model: TroyDoesAI/Mermaid-Llama-22B-RAG language: - en library_name: transformers license: cc-by-4.0 no_imatrix: nan quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/TroyDoesAI/Mermaid-Llama-22B-RAG <!-- provided-files --> ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q2_K.gguf) | Q2_K | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.IQ3_XS.gguf) | IQ3_XS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.IQ3_S.gguf) | IQ3_S | 9.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q3_K_S.gguf) | Q3_K_S | 9.6 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.IQ3_M.gguf) | IQ3_M | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q3_K_M.gguf) | Q3_K_M | 10.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q3_K_L.gguf) | Q3_K_L | 11.7 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.IQ4_XS.gguf) | IQ4_XS | 11.9 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q4_K_S.gguf) | Q4_K_S | 12.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q4_K_M.gguf) | Q4_K_M | 13.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q5_K_S.gguf) | Q5_K_S | 15.1 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q5_K_M.gguf) | Q5_K_M | 15.6 | | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q6_K.gguf) | Q6_K | 18.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mermaid-Llama-22B-RAG-GGUF/resolve/main/Mermaid-Llama-22B-RAG.Q8_0.gguf) | Q8_0 | 23.3 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/L3.1-Magnusv2-10B-i1-GGUF
mradermacher
"2024-12-26T05:27:03Z"
72
1
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2024-12-25T19:25:28Z"
--- base_model: kromcomp/L3.1-Magnusv2-10B language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/kromcomp/L3.1-Magnusv2-10B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ2_S.gguf) | i1-IQ2_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q2_K.gguf) | i1-Q2_K | 4.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.7 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ3_S.gguf) | i1-IQ3_S | 4.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ3_M.gguf) | i1-IQ3_M | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 5.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q4_0.gguf) | i1-Q4_0 | 6.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 6.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 6.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 6.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q4_1.gguf) | i1-Q4_1 | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 7.2 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 7.4 | | | [GGUF](https://huggingface.co/mradermacher/L3.1-Magnusv2-10B-i1-GGUF/resolve/main/L3.1-Magnusv2-10B.i1-Q6_K.gguf) | i1-Q6_K | 8.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
FounderOfHuggingface/gpt2_gen_lora_r16_dbpedia_14_t300_e5_non_member_shadow18
FounderOfHuggingface
"2023-12-20T12:35:46Z"
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
"2023-12-20T12:35:43Z"
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
rohitp1/dgx1_whisper_small_finetune_teacher_babble_noise_mozilla_40_epochs_batch_8
rohitp1
"2023-03-14T01:11:44Z"
77
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2023-03-06T14:45:57Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: dgx1_whisper_small_finetune_teacher_babble_noise_mozilla_40_epochs_batch_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dgx1_whisper_small_finetune_teacher_babble_noise_mozilla_40_epochs_batch_8 This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7176 - Wer: 29.1345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2059 | 14.7 | 500 | 0.7073 | 31.1921 | | 0.0023 | 29.41 | 1000 | 0.7176 | 29.1345 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
evannaderi/distilbert-base-uncased-finetuned-emotion
evannaderi
"2024-02-27T04:52:41Z"
118
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-02-27T01:48:52Z"
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.933 - name: F1 type: f1 value: 0.932933898333218 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1561 - Accuracy: 0.933 - F1: 0.9329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.1706 | 0.9265 | 0.9265 | | No log | 2.0 | 500 | 0.1561 | 0.933 | 0.9329 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
ivan100096/Mixtral_Alpace_v2
ivan100096
"2024-03-01T12:09:09Z"
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "region:us" ]
null
"2024-03-01T12:07:28Z"
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mixtral-8x7B-v0.1 model-index: - name: Mixtral_Alpace_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mixtral_Alpace_v2 This model is a fine-tuned version of [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.5741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.03 | 50 | 1.5982 | | 1.5364 | 0.06 | 100 | 1.5741 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2
lesso03/85c35395-66cb-44c2-961d-a509c5db6503
lesso03
"2025-02-15T00:13:13Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
null
"2025-02-14T21:56:28Z"
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 85c35395-66cb-44c2-961d-a509c5db6503 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # 85c35395-66cb-44c2-961d-a509c5db6503 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000203 - train_batch_size: 4 - eval_batch_size: 4 - seed: 30 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.3956 | | 2.0846 | 0.0008 | 50 | 1.9741 | | 1.7834 | 0.0016 | 100 | 2.1332 | | 2.0425 | 0.0024 | 150 | 1.9915 | | 1.9821 | 0.0032 | 200 | 2.0586 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Malaika/ppo-LunarLander-v2-2
Malaika
"2023-06-18T17:14:56Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-06-18T17:14:32Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.85 +/- 12.12 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Erpix3lt/WADF_Dreambooth_SuitZebraPrint
Erpix3lt
"2023-02-03T14:59:01Z"
5
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-02-03T14:48:04Z"
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### suit_zebra_print-dreambooth Dreambooth model trained by Erpix3lt with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
facebook/dpr-reader-single-nq-base
facebook
"2022-12-21T15:19:45Z"
15,579
2
transformers
[ "transformers", "pytorch", "tf", "dpr", "en", "dataset:nq_open", "arxiv:2004.04906", "arxiv:1702.08734", "arxiv:1910.09700", "license:cc-by-nc-4.0", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- language: en license: cc-by-nc-4.0 tags: - dpr datasets: - nq_open inference: false --- `dpr-reader-single-nq-base` # Table of Contents - [Model Details](#model-details) - [How To Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation-results) - [Environmental Impact](#environmental-impact) - [Technical Specifications](#technical-specifications) - [Citation Information](#citation-information) - [Model Card Authors](#model-card-authors) ## Model Details **Model Description:** [Dense Passage Retrieval (DPR)](https://github.com/facebookresearch/DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. `dpr-reader-single-nq-base` is the reader model trained using the [Natural Questions (NQ) dataset](https://huggingface.co/datasets/nq_open) ([Lee et al., 2019](https://aclanthology.org/P19-1612/); [Kwiatkowski et al., 2019](https://aclanthology.org/Q19-1026/)). - **Developed by:** See [GitHub repo](https://github.com/facebookresearch/DPR) for model developers - **Model Type:** QA Reader Model - **Language(s):** [CC-BY-NC-4.0](https://github.com/facebookresearch/DPR/blob/main/LICENSE), also see [Code of Conduct](https://github.com/facebookresearch/DPR/blob/main/CODE_OF_CONDUCT.md) - **License:** English - **Related Models:** - [`dpr-ctx_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base) - [`dpr-question_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-question_encoder-single-nq-base) - [`dpr-ctx_encoder-multiset-base`](https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base) - [`dpr-question_encoder-multiset-base`](https://huggingface.co/facebook/dpr-question_encoder-multiset-base) - [`dpr-reader-multiset-base`](https://huggingface.co/facebook/dpr-reader-multiset-base) - **Resources for more information:** - [Research Paper](https://arxiv.org/abs/2004.04906) - [GitHub Repo](https://github.com/facebookresearch/DPR) - [Hugging Face DPR docs](https://huggingface.co/docs/transformers/main/en/model_doc/dpr) - [BERT Base Uncased Model Card](https://huggingface.co/bert-base-uncased) ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import DPRReader, DPRReaderTokenizer tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base") encoded_inputs = tokenizer( questions=["What is love ?"], titles=["Haddaway"], texts=["'What Is Love' is a song recorded by the artist Haddaway"], return_tensors="pt", ) outputs = model(**encoded_inputs) start_logits = outputs.start_logits end_logits = outputs.end_logits relevance_logits = outputs.relevance_logits ``` ## Uses #### Direct Use `dpr-reader-single-nq-base`, [`dpr-ctx_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base), and [`dpr-question_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-question_encoder-single-nq-base) can be used for the task of open-domain question answering. #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the set of DPR models was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section may contain content that is disturbing, offensive, and can propogate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Training #### Training Data This model was trained using the [Natural Questions (NQ) dataset](https://huggingface.co/datasets/nq_open) ([Lee et al., 2019](https://aclanthology.org/P19-1612/); [Kwiatkowski et al., 2019](https://aclanthology.org/Q19-1026/)). The model authors write that: > [The dataset] was designed for end-to-end question answering. The questions were mined from real Google search queries and the answers were spans in Wikipedia articles identified by annotators. #### Training Procedure The training procedure is described in the [associated paper](https://arxiv.org/pdf/2004.04906.pdf): > Given a collection of M text passages, the goal of our dense passage retriever (DPR) is to index all the passages in a low-dimensional and continuous space, such that it can retrieve efficiently the top k passages relevant to the input question for the reader at run-time. > Our dense passage retriever (DPR) uses a dense encoder EP(·) which maps any text passage to a d- dimensional real-valued vectors and builds an index for all the M passages that we will use for retrieval. At run-time, DPR applies a different encoder EQ(·) that maps the input question to a d-dimensional vector, and retrieves k passages of which vectors are the closest to the question vector. The authors report that for encoders, they used two independent BERT ([Devlin et al., 2019](https://aclanthology.org/N19-1423/)) networks (base, un-cased) and use FAISS ([Johnson et al., 2017](https://arxiv.org/abs/1702.08734)) during inference time to encode and index passages. See the paper for further details on training, including encoders, inference, positive and negative passages, and in-batch negatives. ## Evaluation The following evaluation information is extracted from the [associated paper](https://arxiv.org/pdf/2004.04906.pdf). #### Testing Data, Factors and Metrics The model developers report the performance of the model on five QA datasets, using the top-k accuracy (k ∈ {20, 100}). The datasets were [NQ](https://huggingface.co/datasets/nq_open), [TriviaQA](https://huggingface.co/datasets/trivia_qa), [WebQuestions (WQ)](https://huggingface.co/datasets/web_questions), [CuratedTREC (TREC)](https://huggingface.co/datasets/trec), and [SQuAD v1.1](https://huggingface.co/datasets/squad). #### Results | | Top 20 | | | | | Top 100| | | | | |:----:|:------:|:---------:|:--:|:----:|:-----:|:------:|:---------:|:--:|:----:|:-----:| | | NQ | TriviaQA | WQ | TREC | SQuAD | NQ | TriviaQA | WQ | TREC | SQuAD | | | 78.4 | 79.4 |73.2| 79.8 | 63.2 | 85.4 | 85.0 |81.4| 89.1 | 77.2 | ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type and based on the [associated paper](https://arxiv.org/abs/2004.04906). - **Hardware Type:** 8 32GB GPUs - **Hours used:** Unknown - **Cloud Provider:** Unknown - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Technical Specifications See the [associated paper](https://arxiv.org/abs/2004.04906) for details on the modeling architecture, objective, compute infrastructure, and training details. ## Citation Information ```bibtex @inproceedings{karpukhin-etal-2020-dense, title = "Dense Passage Retrieval for Open-Domain Question Answering", author = "Karpukhin, Vladimir and Oguz, Barlas and Min, Sewon and Lewis, Patrick and Wu, Ledell and Edunov, Sergey and Chen, Danqi and Yih, Wen-tau", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.550", doi = "10.18653/v1/2020.emnlp-main.550", pages = "6769--6781", } ``` ## Model Card Authors This model card was written by the team at Hugging Face.
mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF
mradermacher
"2024-12-20T13:04:25Z"
14
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "FelixChao/WestSeverus-7B-DPO-v2", "CultriX/Wernicke-7B-v9", "mlabonne/NeuralBeagle14-7B", "en", "base_model:jsfs11/RandomMergeNoNorm-7B-DARETIES", "base_model:quantized:jsfs11/RandomMergeNoNorm-7B-DARETIES", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
"2024-12-20T11:41:51Z"
--- base_model: jsfs11/RandomMergeNoNorm-7B-DARETIES language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - FelixChao/WestSeverus-7B-DPO-v2 - CultriX/Wernicke-7B-v9 - mlabonne/NeuralBeagle14-7B --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jsfs11/RandomMergeNoNorm-7B-DARETIES <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/RandomMergeNoNorm-7B-DARETIES-i1-GGUF/resolve/main/RandomMergeNoNorm-7B-DARETIES.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
gsmafoundry/AINA
gsmafoundry
"2025-04-02T13:47:43Z"
0
0
null
[ "region:us" ]
null
"2025-04-02T13:47:41Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
mradermacher/niistorm-GGUF
mradermacher
"2025-01-08T20:06:16Z"
24
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:karrelin/niistorm", "base_model:quantized:karrelin/niistorm", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-01-08T19:14:18Z"
--- base_model: karrelin/niistorm language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/karrelin/niistorm <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/niistorm-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/niistorm-GGUF/resolve/main/niistorm.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
nicomp/myModel
nicomp
"2023-12-26T23:57:23Z"
0
0
adapter-transformers
[ "adapter-transformers", "text-classification", "en", "dataset:fka/awesome-chatgpt-prompts", "license:mit", "region:us" ]
text-classification
"2023-12-26T23:44:28Z"
--- license: mit datasets: - fka/awesome-chatgpt-prompts language: - en metrics: - accuracy library_name: adapter-transformers pipeline_tag: text-classification ---
kuttersn/test-clm
kuttersn
"2022-07-15T02:04:32Z"
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-07-13T16:51:06Z"
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: test-clm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-clm This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5311 - Accuracy: 0.3946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
vsem-azamat/rubert-tiny-spam-classifier
vsem-azamat
"2025-03-07T00:08:52Z"
0
0
null
[ "safetensors", "region:us" ]
null
"2025-03-06T23:56:35Z"
# RuBERT Tiny Spam Classifier 🤖 [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Python 3.10+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/) [![HuggingFace](https://img.shields.io/badge/🤗-HuggingFace-yellow.svg)](https://huggingface.co/cointegrated/rubert-tiny) A lightweight Russian language spam classifier based on RuBERT Tiny model. The model can detect spam in text messages with high accuracy while maintaining minimal resource requirements. ## 📋 Requirements ```bash pip install --upgrade pip pip install -r requirements.txt ``` ## 🗂️ Project Structure ``` . ├── cleaned_dataset.csv # Cleaned dataset ├── messages.csv # Source dataset ├── model/ # Trained model ├── scripts/ │ ├── inference.py # Inference script │ ├── preprocess.ipynb # Data preprocessing notebook │ └── train.py # Training script └── requirements.txt # Project dependencies ``` *Datasets will not be published at this time.* ## 🎯 Usage ### Train ```bash python3 scripts/train.py ``` ### Inference ```python # python3 scripts/inference.py from scripts.inference import SpamClassifier classifier = SpamClassifier(model_path="./model") text = "Привет, у меня есть подработка, оплата 100 сек руб. is_spam = classifier.classify(text) print(f"Is spam: {is_spam}") ``` ## 📈 Metrics - Accuracy: 0.99 - Precision: 0.89 - Recall: 0.96 - F1 Score: 0.92 ## 🔍 Model The classifier is based on [RuBERT Tiny](https://huggingface.co/cointegrated/rubert-tiny) - a lightweight version of RuBERT, optimized for running on low-resource machines. The model is fine-tuned on a dataset of Russian messages for spam classification. ## 📝 License [MIT License](LICENSE)
mradermacher/finetuned_mental_health_distilgpt2-GGUF
mradermacher
"2025-03-01T00:59:00Z"
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "sft", "en", "base_model:JordiOrtega/finetuned_mental_health_distilgpt2", "base_model:quantized:JordiOrtega/finetuned_mental_health_distilgpt2", "endpoints_compatible", "region:us" ]
null
"2025-02-28T18:08:58Z"
--- base_model: JordiOrtega/finetuned_mental_health_distilgpt2 language: - en library_name: transformers model_name: finetuned_mental_health_distilgpt2 quantized_by: mradermacher tags: - generated_from_trainer - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/JordiOrtega/finetuned_mental_health_distilgpt2 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/finetuned_mental_health_distilgpt2-GGUF/resolve/main/finetuned_mental_health_distilgpt2.f16.gguf) | f16 | 0.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
hopkins/eng-kor-wsample.50
hopkins
"2023-07-04T22:59:51Z"
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2023-07-04T22:45:49Z"
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-kor-wsample.50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-kor-wsample.50 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9913 - Bleu: 7.0488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Build-Your-AI-Future/MindEcho
Build-Your-AI-Future
"2025-04-07T11:35:41Z"
0
0
null
[ "safetensors", "llama", "unsloth", "trl", "sft", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-01-21T13:40:41Z"
--- license: mit tags: - unsloth - trl - sft ---
Paladiso/7ca82843-4700-4f5b-9d27-f894f2468ad6
Paladiso
"2025-02-24T18:20:59Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-13b-hf-flash", "region:us" ]
null
"2025-02-24T18:04:33Z"
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 7ca82843-4700-4f5b-9d27-f894f2468ad6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 79470adead26199e_train_data.json ds_type: json format: custom path: /workspace/input_data/79470adead26199e_train_data.json type: field_input: prompt field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Paladiso/7ca82843-4700-4f5b-9d27-f894f2468ad6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/79470adead26199e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f61089a6-8af4-458f-b8eb-028b46eee753 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f61089a6-8af4-458f-b8eb-028b46eee753 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7ca82843-4700-4f5b-9d27-f894f2468ad6 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5193 | 0.0002 | 1 | 0.6991 | | 3.1288 | 0.0005 | 3 | 0.6986 | | 2.6177 | 0.0010 | 6 | 0.6912 | | 2.8098 | 0.0015 | 9 | 0.6436 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bartowski/juanako-7b-v1-exl2
bartowski
"2023-11-27T06:28:16Z"
1
0
null
[ "alignment-handbook", "generated_from_trainer", "text-generation", "dataset:HuggingFaceH4/ultrafeedback_binarized", "license:artistic-2.0", "region:us" ]
text-generation
"2023-11-27T04:41:13Z"
--- base_model: fblgit/zephyr-lora-dpo-b1 tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: juanako-7b-v1 results: [] license: artistic-2.0 quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of juanako-7b-v1 Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.9">turboderp's ExLlamaV2 v0.0.9</a> for quantization. Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Conversion was done using wikitext-103-raw-v1-test.parquet as calibration dataset. Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6. Original model: https://huggingface.co/fblgit/juanako-7b-v1 <a href="https://huggingface.co/bartowski/juanako-7b-v1-exl2/tree/4_0">4.0 bits per weight</a> <a href="https://huggingface.co/bartowski/juanako-7b-v1-exl2/tree/5_0">5.0 bits per weight</a> <a href="https://huggingface.co/bartowski/juanako-7b-v1-exl2/tree/6_0">6.0 bits per weight</a> <a href="https://huggingface.co/bartowski/juanako-7b-v1-exl2/tree/8_0">8.0 bits per weight</a> ## Download instructions With git: ```shell git clone --single-branch --branch 4_0 https://huggingface.co/bartowski/juanako-7b-v1-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `juanako-7b-v1-exl2`: ```shell mkdir juanako-7b-v1-exl2 huggingface-cli download bartowski/juanako-7b-v1-exl2 --local-dir juanako-7b-v1-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir juanako-7b-v1-exl2 huggingface-cli download bartowski/juanako-7b-v1-exl2 --revision 4_0 --local-dir juanako-7b-v1-exl2 --local-dir-use-symlinks False ```
prosa-text/climate-topic
prosa-text
"2025-03-03T09:03:28Z"
3
0
null
[ "pytorch", "min", "ban", "bug", "id", "license:cc-by-sa-4.0", "region:us" ]
null
"2024-12-05T00:18:35Z"
--- language: - min - ban - bug - id pretty_name: Climate Topic license: cc-by-sa-4.0 --- ## Licensing Information The dataset is released under the terms of **CC-BY-SA 4.0**. By using this dataset, you are also bound to the respective Terms of Use and License of the dataset. For commercial use in small businesses and startups, please contact us ([email protected]) for permission to use the datasets by informing company profile and propose of usage.
el254/Ride
el254
"2023-06-20T21:26:23Z"
0
0
keras
[ "keras", "region:us" ]
null
"2023-06-20T19:38:14Z"
--- library_name: keras --- --- library_name: keras -- # Распознавание класса цифр на датасете mnist. # Задача НС Модель генерирует цифру похожую на цифру из датасета mnist ## Изображение послойной архитектуры: ![](model(1).png) ## Общее количество обучаемых параметров Обучемых параметров: 54,160 ## Используемые алгоритмы оптимизации и функция ошибки Алгоритм оптимизации - `adam` Функция ошибки - `categorical_crossentropy` ## Размеры тренировочного, валидационного и тестового датасетов: Тренировочный: 60000 Тестовый: 10000 Валидационный(тестовый): 10000 ## Результаты обучения модели: loss и accuracy на всех трёх датасетах: Train Loss: 2511.731201171875 Train Accuracy: 0.7256483435630798 Test Loss: 2534.3447265625 Test Accuracy: 0.7262243628501892 Validation Loss: 2534.3447265625 Validation Accuracy: 0.7262243628501892
XdSlams/fjhqgwkjwehhrfgir28
XdSlams
"2023-04-26T13:06:23Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-04-26T07:09:24Z"
--- license: creativeml-openrail-m ---
CentralogicAITeam/demo-florence-model-v03
CentralogicAITeam
"2024-07-10T11:15:33Z"
107
0
transformers
[ "transformers", "safetensors", "florence2", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2024-07-10T11:12:19Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NikolayKozloff/Llama-3.1-Nemotron-Nano-8B-v1-Q8_0-GGUF
NikolayKozloff
"2025-03-19T14:04:27Z"
0
1
transformers
[ "transformers", "gguf", "nvidia", "llama-3", "pytorch", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:nvidia/Llama-3.1-Nemotron-Nano-8B-v1", "base_model:quantized:nvidia/Llama-3.1-Nemotron-Nano-8B-v1", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
"2025-03-19T14:03:49Z"
--- base_model: nvidia/Llama-3.1-Nemotron-Nano-8B-v1 language: - en library_name: transformers license: other license_name: nvidia-open-model-license license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ pipeline_tag: text-generation tags: - nvidia - llama-3 - pytorch - llama-cpp - gguf-my-repo --- # NikolayKozloff/Llama-3.1-Nemotron-Nano-8B-v1-Q8_0-GGUF This model was converted to GGUF format from [`nvidia/Llama-3.1-Nemotron-Nano-8B-v1`](https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/Llama-3.1-Nemotron-Nano-8B-v1-Q8_0-GGUF --hf-file llama-3.1-nemotron-nano-8b-v1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/Llama-3.1-Nemotron-Nano-8B-v1-Q8_0-GGUF --hf-file llama-3.1-nemotron-nano-8b-v1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/Llama-3.1-Nemotron-Nano-8B-v1-Q8_0-GGUF --hf-file llama-3.1-nemotron-nano-8b-v1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/Llama-3.1-Nemotron-Nano-8B-v1-Q8_0-GGUF --hf-file llama-3.1-nemotron-nano-8b-v1-q8_0.gguf -c 2048 ```
llama-duo/gemma7b-summarize-gemini1_5flash-1k
llama-duo
"2024-06-13T09:20:56Z"
1
0
peft
[ "peft", "tensorboard", "safetensors", "gemma", "alignment-handbook", "generated_from_trainer", "dataset:llama-duo/synth_summarize_dataset_dedup", "base_model:google/gemma-7b", "base_model:adapter:google/gemma-7b", "4-bit", "bitsandbytes", "region:us" ]
null
"2024-06-13T09:15:14Z"
--- library_name: peft tags: - alignment-handbook - generated_from_trainer datasets: - llama-duo/synth_summarize_dataset_dedup base_model: google/gemma-7b model-index: - name: gemma7b-summarize-gemini1_5flash-1k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma7b-summarize-gemini1_5flash-1k This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set: - Loss: 8.7240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 51.5906 | 1.0 | 2 | 16.5290 | | 51.5906 | 2.0 | 4 | 14.1666 | | 38.4458 | 3.0 | 6 | 13.0907 | | 38.4458 | 4.0 | 8 | 11.6308 | | 23.9261 | 5.0 | 10 | 10.3576 | | 23.9261 | 6.0 | 12 | 9.4846 | | 23.9261 | 7.0 | 14 | 9.0308 | | 20.7948 | 8.0 | 16 | 8.8035 | | 20.7948 | 9.0 | 18 | 8.7407 | | 20.2787 | 10.0 | 20 | 8.7240 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF
mradermacher
"2025-03-23T23:44:35Z"
248
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:YOYO-AI/Qwen2.5-Coder-14B-YOYO", "base_model:quantized:YOYO-AI/Qwen2.5-Coder-14B-YOYO", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-03-20T23:32:32Z"
--- base_model: YOYO-AI/Qwen2.5-Coder-14B-YOYO language: - en library_name: transformers no_imatrix: '[43]7.1353,nan detected in blk.47.attn_q.weight' quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/YOYO-AI/Qwen2.5-Coder-14B-YOYO <!-- provided-files --> ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-14B-YOYO-GGUF/resolve/main/Qwen2.5-Coder-14B-YOYO.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
timm/efficientvit_m4.r224_in1k
timm
"2025-01-21T19:20:14Z"
308
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "transformers", "dataset:imagenet-1k", "arxiv:2305.07027", "license:mit", "region:us" ]
image-classification
"2023-08-18T23:21:48Z"
--- tags: - image-classification - timm - transformers library_name: timm license: mit datasets: - imagenet-1k --- # Model card for efficientvit_m4.r224_in1k An EfficientViT (MSRA) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 8.8 - GMACs: 0.3 - Activations (M): 1.7 - Image size: 224 x 224 - **Papers:** - EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention: https://arxiv.org/abs/2305.07027 - **Dataset:** ImageNet-1k - **Original:** https://github.com/microsoft/Cream/tree/main/EfficientViT ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('efficientvit_m4.r224_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'efficientvit_m4.r224_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 14, 14]) # torch.Size([1, 256, 7, 7]) # torch.Size([1, 384, 4, 4]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'efficientvit_m4.r224_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 384, 4, 4) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @InProceedings{liu2023efficientvit, title = {EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention}, author = {Liu, Xinyu and Peng, Houwen and Zheng, Ningxin and Yang, Yuqing and Hu, Han and Yuan, Yixuan}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2023}, } ```
developer-flyward/qwen2-7b-instruct-trl-sft-ChartQA
developer-flyward
"2025-03-03T23:43:38Z"
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
"2025-02-04T00:03:55Z"
--- base_model: Qwen/Qwen2-VL-7B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-ChartQA tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-ChartQA This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="developer-flyward/qwen2-7b-instruct-trl-sft-ChartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/flyward/qwen2-7b-instruct-trl-sft-ChartQA/runs/k79gj36u) This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.46.3 - Pytorch: 2.4.1+cu121 - Datasets: 3.3.2 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
gavrilstep/2014d85a-bef2-4304-9a8b-f7e892f2bdf6
gavrilstep
"2025-01-25T07:33:52Z"
6
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-1.3B", "base_model:adapter:EleutherAI/gpt-neo-1.3B", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
"2025-01-25T07:33:02Z"
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-1.3B tags: - axolotl - generated_from_trainer model-index: - name: 2014d85a-bef2-4304-9a8b-f7e892f2bdf6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-1.3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 414256b99bc71583_train_data.json ds_type: json format: custom path: /workspace/input_data/414256b99bc71583_train_data.json type: field_input: choices field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/2014d85a-bef2-4304-9a8b-f7e892f2bdf6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/414256b99bc71583_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a9ee1f6f-a2ee-46d2-8825-32d1c8a14f27 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a9ee1f6f-a2ee-46d2-8825-32d1c8a14f27 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2014d85a-bef2-4304-9a8b-f7e892f2bdf6 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0408 | 1 | 2.0149 | | 8.3085 | 0.2041 | 5 | 1.9805 | | 8.1239 | 0.4082 | 10 | 1.7718 | | 6.2674 | 0.6122 | 15 | 1.4947 | | 5.9176 | 0.8163 | 20 | 1.3810 | | 5.4735 | 1.0204 | 25 | 1.3590 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClarenceDan/cb1c1d46-9ca4-4c3a-8e7a-8c4384b6c83a
ClarenceDan
"2025-03-06T01:43:55Z"
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:berkeley-nest/Starling-LM-7B-alpha", "base_model:adapter:berkeley-nest/Starling-LM-7B-alpha", "license:apache-2.0", "region:us" ]
null
"2025-03-06T01:19:39Z"
--- library_name: peft license: apache-2.0 base_model: berkeley-nest/Starling-LM-7B-alpha tags: - axolotl - generated_from_trainer model-index: - name: cb1c1d46-9ca4-4c3a-8e7a-8c4384b6c83a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: berkeley-nest/Starling-LM-7B-alpha bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8b2360c5c0395ce2_train_data.json ds_type: json format: custom path: /workspace/input_data/8b2360c5c0395ce2_train_data.json type: field_input: conversation field_instruction: note field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/cb1c1d46-9ca4-4c3a-8e7a-8c4384b6c83a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/8b2360c5c0395ce2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 207ee5c0-eb25-4c0d-802e-e5f74ee9ad16 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 207ee5c0-eb25-4c0d-802e-e5f74ee9ad16 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cb1c1d46-9ca4-4c3a-8e7a-8c4384b6c83a This model is a fine-tuned version of [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8853 | 0.0003 | 1 | 0.9757 | | 3.7292 | 0.0009 | 3 | 0.9094 | | 2.9633 | 0.0017 | 6 | 0.6149 | | 1.4667 | 0.0026 | 9 | 0.2722 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
emilianJR/haruna_lora
emilianJR
"2023-03-25T17:44:29Z"
5
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2023-03-25T08:14:39Z"
--- license: creativeml-openrail-m base_model: andite/anything-v4.0 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/kubanemil/haruna_lora These are LoRA adaption weights for https://huggingface.co/kubanemil/haruna_lora. The weights were fine-tuned on the Haruna Sakura's images dataset. You can find some example images in the following.
Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-6_5bpw_exl2
Zoyd
"2024-06-04T19:33:01Z"
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "roleplay", "en", "arxiv:2212.04089", "base_model:KatyTheCutie/LemonadeRP-4.5.3", "base_model:merge:KatyTheCutie/LemonadeRP-4.5.3", "base_model:SanjiWatsuki/Kunoichi-7B", "base_model:merge:SanjiWatsuki/Kunoichi-7B", "base_model:SanjiWatsuki/Silicon-Maid-7B", "base_model:merge:SanjiWatsuki/Silicon-Maid-7B", "base_model:Sao10K/Fimbulvetr-11B-v2", "base_model:merge:Sao10K/Fimbulvetr-11B-v2", "base_model:mistralai/Mistral-7B-v0.1", "base_model:merge:mistralai/Mistral-7B-v0.1", "license:cc-by-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
"2024-06-04T19:17:45Z"
--- license: cc-by-4.0 language: - en base_model: - mistralai/Mistral-7B-v0.1 - SanjiWatsuki/Kunoichi-7B - SanjiWatsuki/Silicon-Maid-7B - KatyTheCutie/LemonadeRP-4.5.3 - Sao10K/Fimbulvetr-11B-v2 library_name: transformers tags: - mergekit - merge - mistral - text-generation - roleplay model-index: - name: Smart-Lemon-Cookie-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.62 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FallenMerick/Chunky-Lemon-Cookie-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.55 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FallenMerick/Chunky-Lemon-Cookie-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FallenMerick/Chunky-Lemon-Cookie-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.59 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FallenMerick/Chunky-Lemon-Cookie-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FallenMerick/Chunky-Lemon-Cookie-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 58.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FallenMerick/Chunky-Lemon-Cookie-11B name: Open LLM Leaderboard --- **Exllamav2** quant (**exl2** / **6.5 bpw**) made with ExLlamaV2 v0.1.3 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-2_2bpw_exl2)**</center> | <center>3126 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-2_5bpw_exl2)**</center> | <center>3469 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-3_0bpw_exl2)**</center> | <center>4092 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-3_5bpw_exl2)**</center> | <center>4717 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-3_75bpw_exl2)**</center> | <center>5029 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-4_0bpw_exl2)**</center> | <center>5341 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-4_25bpw_exl2)**</center> | <center>5653 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-5_0bpw_exl2)**</center> | <center>6589 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-6_0bpw_exl2)**</center> | <center>7862 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-6_5bpw_exl2)**</center> | <center>8467 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/FallenMerick_Chunky-Lemon-Cookie-11B-8_0bpw_exl2)**</center> | <center>9713 MB</center> | <center>8</center> | ![cute](https://huggingface.co/FallenMerick/Chunky-Lemon-Cookie-11B/resolve/main/Chunky-Lemon-Cookie.png) # Chunky-Lemon-Cookie-11B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). GGUF quants: * https://huggingface.co/backyardai/Chunky-Lemon-Cookie-11B-GGUF * https://huggingface.co/mradermacher/Chunky-Lemon-Cookie-11B-GGUF ## Merge Details ### Merge Method This model was merged using the following methods: * passthrough * [task arithmetic](https://arxiv.org/abs/2212.04089) ### Models Merged The following models were included in the merge: * [SanjiWatsuki/Kunoichi-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-7B) * [SanjiWatsuki/Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) * [KatyTheCutie/LemonadeRP-4.5.3](https://huggingface.co/KatyTheCutie/LemonadeRP-4.5.3) * [Sao10K/Fimbulvetr-11B-v2](https://huggingface.co/Sao10K/Fimbulvetr-11B-v2) * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ### Configuration The following YAML configurations were used to produce this model: ```yaml slices: - sources: - model: mistralai/Mistral-7B-v0.1 layer_range: [0, 24] - sources: - model: mistralai/Mistral-7B-v0.1 layer_range: [8, 32] merge_method: passthrough dtype: float16 name: Mistral-11B --- slices: - sources: - model: SanjiWatsuki/Kunoichi-7B layer_range: [0, 24] - sources: - model: SanjiWatsuki/Silicon-Maid-7B layer_range: [8, 24] - sources: - model: KatyTheCutie/LemonadeRP-4.5.3 layer_range: [24, 32] merge_method: passthrough dtype: float16 name: Big-Lemon-Cookie-11B --- models: - model: Big-Lemon-Cookie-11B parameters: weight: 0.85 - model: Sao10K/Fimbulvetr-11B-v2 parameters: weight: 0.15 merge_method: task_arithmetic base_model: Mistral-11B dtype: float16 name: Chunky-Lemon-Cookie-11B ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_FallenMerick__Chunky-Lemon-Cookie-11B) | Metric |Value| |---------------------------------|----:| |Avg. |70.23| |AI2 Reasoning Challenge (25-Shot)|69.62| |HellaSwag (10-Shot) |86.55| |MMLU (5-Shot) |65.35| |TruthfulQA (0-shot) |61.59| |Winogrande (5-shot) |79.79| |GSM8k (5-shot) |58.45|
Romain-XV/cb482234-a397-4fc4-975b-2fe36df3c046
Romain-XV
"2025-04-04T08:32:15Z"
0
0
null
[ "safetensors", "mistral", "region:us" ]
null
"2025-04-04T06:07:14Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
jo-mengr/mmcontext-geo7k-cellxgene3.5k-pairs
jo-mengr
"2025-02-20T12:32:27Z"
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:9450", "loss:ContrastiveLoss", "code", "dataset:jo-mengr/geo_7k_cellxgene_3_5k_pairs", "arxiv:1908.10084", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
"2025-02-20T12:32:11Z"
--- language: - code tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:9450 - loss:ContrastiveLoss widget: - source_sentence: '{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_88a01d4a-5197-45be-b5ae-e019aef43376_710"}' sentences: - Sample is a CD8-positive, alpha-beta T cell derived from blood of a 45-year old European male with managed systemic lupus erythematosus (SLE). The cell exhibits elevated expression of type 1 interferon-stimulated genes (ISGs) and reduced naïve CD4+ T cells correlating with monocyte ISG expression, as well as an expansion of repertoire-restricted cytotoxic GZMH+ CD8+ T cells. - Endothelial cell from a 42-year-old male cerebral cortex tissue, specifically from the Superior Temporal Gyrus (STG) dissection, with European ethnicity, analyzed using nucleus suspension type. - Sample is a lymphocyte cell type, specifically lymphatics, located in the lamina propria of mucosa of colon, taken from a female in her third decade of life with Crohn's disease. - source_sentence: '{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_367b55f4-d543-49aa-90e8-4765fcb8c687_187"}' sentences: - Oligodendrocyte precursor cell derived from the hippocampal formation (Tail of Hippocampus (HiT) - Subicular cortex - Sub) of a 42-year old male. - A cell sample from the breast of a young, normal weight, premenopausal female of European ethnicity with low breast density. The cell type is identified as a CD4-positive, alpha-beta T cell in the mature stage, derived from a prophylactic mastectomy sample through mechanical and enzymatic dissociation. - A neuron cell type from a 29-year-old male cerebral nuclei, specifically from the Basal forebrain (BF) - substantia innominata and nearby nuclei - SI region, with European self-reported ethnicity, analyzed at the nucleus level. - source_sentence: '{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_574e9f9e-f8b4-41ef-bf19-89a9964fd9c7_10310"}' sentences: - A mature NK T cell derived from breast tissue of an African American female, obtained through Reduction Mammoplasty procedure. The cell was extracted using mechanical, enzymatic dissociation, and centrifugation with 1 mg/ml collagenase A for 3 hours, resulting in 84% cell viability. - Dendritic cell sample taken from proximal lung tissue of a male human at the 20th week post-fertilization stage. - Memory B cell from a 3-year-old male human with recurrent tonsillitis, expressing IgG3 isotype, IGLC2, and IGLV2-23-IGLJ2 antibody. - source_sentence: '{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_b46237d1-19c6-4af2-9335-9854634bad16_10634"}' sentences: - Endothelial cell from the sinoatrial node of a male individual in their fifth decade, which has been flushed. - T cell sample derived from decidua tissue, 9 post conception weeks (9_PCW). - Central nervous system macrophage, specifically microglia, derived from the pons of a 50-year-old male. - source_sentence: '{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_2872f4b0-b171-46e2-abc6-befcf6de6306_3967"}' sentences: - A kidney collecting duct intercalated cell from the cortex of a 76-year-old male with an eGFR between 50-59, BMI between 25.0-29.9, and European ethnicity. - Dendritic cells (DCs) from the transverse colon of a 65-79 year-old male. - Neuron cell type from a 50-year-old male human cerebral cortex, specifically from the Long insular gyri, Dysgranular insular cortex, and Idg region, with European ethnicity. datasets: - jo-mengr/geo_7k_cellxgene_3_5k_pairs pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc model-index: - name: SentenceTransformer results: - task: type: binary-classification name: Binary Classification dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 0.8761904761904762 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.8336004018783569 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.8291457286432161 name: Cosine F1 - type: cosine_f1_threshold value: 0.7532867193222046 name: Cosine F1 Threshold - type: cosine_precision value: 0.7399103139013453 name: Cosine Precision - type: cosine_recall value: 0.9428571428571428 name: Cosine Recall - type: cosine_ap value: 0.8697469370664385 name: Cosine Ap - type: cosine_mcc value: 0.7411361603542219 name: Cosine Mcc --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained on the [geo_7k_cellxgene_3_5k_pairs](https://huggingface.co/datasets/jo-mengr/geo_7k_cellxgene_3_5k_pairs) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** None tokens - **Output Dimensionality:** None dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [geo_7k_cellxgene_3_5k_pairs](https://huggingface.co/datasets/jo-mengr/geo_7k_cellxgene_3_5k_pairs) - **Language:** code <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): SentenceTransformer( (0): MMContextEncoder( (text_encoder): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(28996, 768, padding_idx=0) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSdpaSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) (text_adapter): AdapterModule( (net): Sequential( (0): Linear(in_features=768, out_features=512, bias=True) (1): ReLU(inplace=True) (2): Linear(in_features=512, out_features=2048, bias=True) (3): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (omics_adapter): AdapterModule( (net): Sequential( (0): Linear(in_features=64, out_features=512, bias=True) (1): ReLU(inplace=True) (2): Linear(in_features=512, out_features=2048, bias=True) (3): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) ) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("jo-mengr/mmcontext-geo7k-cellxgene3.5k-pairs") # Run inference sentences = [ '{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_2872f4b0-b171-46e2-abc6-befcf6de6306_3967"}', 'Neuron cell type from a 50-year-old male human cerebral cortex, specifically from the Long insular gyri, Dysgranular insular cortex, and Idg region, with European ethnicity.', 'Dendritic cells (DCs) from the transverse colon of a 65-79 year-old male.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:--------------------------|:-----------| | cosine_accuracy | 0.8762 | | cosine_accuracy_threshold | 0.8336 | | cosine_f1 | 0.8291 | | cosine_f1_threshold | 0.7533 | | cosine_precision | 0.7399 | | cosine_recall | 0.9429 | | **cosine_ap** | **0.8697** | | cosine_mcc | 0.7411 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### geo_7k_cellxgene_3_5k_pairs * Dataset: [geo_7k_cellxgene_3_5k_pairs](https://huggingface.co/datasets/jo-mengr/geo_7k_cellxgene_3_5k_pairs) at [617fc61](https://huggingface.co/datasets/jo-mengr/geo_7k_cellxgene_3_5k_pairs/tree/617fc61ab4ae643118479a186ba729ff10e6b0e0) * Size: 9,450 training samples * Columns: <code>anndata_ref</code>, <code>caption</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | anndata_ref | caption | label | |:--------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 510 characters</li><li>mean: 512.71 characters</li><li>max: 514 characters</li></ul> | <ul><li>min: 43 characters</li><li>mean: 162.51 characters</li><li>max: 1070 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> | * Samples: | anndata_ref | caption | label | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | <code>{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/DCW3zXGDx6DWY7i/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbjeimYBdjefbpg/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/mggGyqZE6892DWz/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/Rt4wXwEPifBT2nX/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/dmkHbFpkJLLqHPx/download"}}, "sample_id": "census_a37f857c-779f-464e-9310-3db43a1811e7_2741"}</code> | <code>Sample is a macrophage cell type derived from the ileal epithelium tissue of a female human in her fourth decade.</code> | <code>1.0</code> | | <code>{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/DCW3zXGDx6DWY7i/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbjeimYBdjefbpg/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/mggGyqZE6892DWz/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/Rt4wXwEPifBT2nX/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/dmkHbFpkJLLqHPx/download"}}, "sample_id": "census_a37f857c-779f-464e-9310-3db43a1811e7_2741"}</code> | <code>Erythrocyte cells at the mid erythroid stage, derived from bone marrow of a male human fetus at 15 weeks post-fertilization.</code> | <code>0.0</code> | | <code>{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/DCW3zXGDx6DWY7i/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbjeimYBdjefbpg/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/mggGyqZE6892DWz/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/Rt4wXwEPifBT2nX/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/dmkHbFpkJLLqHPx/download"}}, "sample_id": "census_a37f857c-779f-464e-9310-3db43a1811e7_2741"}</code> | <code>Native cell from the spleen of a 15th week post-fertilization human female, identified as DOUBLET_IMMUNE_FIBROBLAST.</code> | <code>0.0</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Evaluation Dataset #### geo_7k_cellxgene_3_5k_pairs * Dataset: [geo_7k_cellxgene_3_5k_pairs](https://huggingface.co/datasets/jo-mengr/geo_7k_cellxgene_3_5k_pairs) at [617fc61](https://huggingface.co/datasets/jo-mengr/geo_7k_cellxgene_3_5k_pairs/tree/617fc61ab4ae643118479a186ba729ff10e6b0e0) * Size: 1,050 evaluation samples * Columns: <code>anndata_ref</code>, <code>caption</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | anndata_ref | caption | label | |:--------|:--------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 510 characters</li><li>mean: 512.77 characters</li><li>max: 514 characters</li></ul> | <ul><li>min: 50 characters</li><li>mean: 159.74 characters</li><li>max: 924 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> | * Samples: | anndata_ref | caption | label | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | <code>{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_b46237d1-19c6-4af2-9335-9854634bad16_7973"}</code> | <code>Sample contains stem cells (LGR5 stem) derived from the duodeno-jejunal junction of a human fetus at Carnegie stage 23.</code> | <code>1.0</code> | | <code>{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_b46237d1-19c6-4af2-9335-9854634bad16_7973"}</code> | <code>A 46-year old female's liver sample, specifically conventional dendritic cell type 1 (cDC1s) enriched in CD45+ cell suspension, with no reported liver-related diseases.</code> | <code>0.0</code> | | <code>{"file_record": {"dataset_path": "https://nxc-fredato.imbi.uni-freiburg.de/s/EbaoL4ydTqmYwP9/download", "embeddings": {"X_hvg": "https://nxc-fredato.imbi.uni-freiburg.de/s/X8EFSis4S5ecdse/download", "X_pca": "https://nxc-fredato.imbi.uni-freiburg.de/s/DGxs2PkPeDF2RGm/download", "X_scvi": "https://nxc-fredato.imbi.uni-freiburg.de/s/bm3N8RCWePiyJKz/download", "X_geneformer": "https://nxc-fredato.imbi.uni-freiburg.de/s/8FGZG6EzMeBYxjX/download"}}, "sample_id": "census_b46237d1-19c6-4af2-9335-9854634bad16_7973"}</code> | <code>A CD16-negative, CD56-bright natural killer cell sample taken from the spleen of a male in his sixth decade.</code> | <code>0.0</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | cosine_ap | |:------:|:----:|:-------------:|:---------------:|:---------:| | -1 | -1 | - | - | 0.3424 | | 0.1692 | 100 | 0.1624 | 0.5160 | 0.3746 | | 0.3384 | 200 | 0.1084 | 0.0829 | 0.5699 | | 0.5076 | 300 | 0.0562 | 0.0391 | 0.6742 | | 0.6768 | 400 | 0.044 | 0.0242 | 0.7774 | | 0.8460 | 500 | 0.0288 | 0.0189 | 0.8141 | | 1.0152 | 600 | 0.027 | 0.0185 | 0.8235 | | 1.1844 | 700 | 0.0229 | 0.0157 | 0.8289 | | 1.3536 | 800 | 0.0206 | 0.0141 | 0.8536 | | 1.5228 | 900 | 0.0207 | 0.0143 | 0.8555 | | 1.6920 | 1000 | 0.0178 | 0.0148 | 0.8528 | | 1.8613 | 1100 | 0.0189 | 0.0142 | 0.8697 | ### Framework Versions - Python: 3.10.10 - Sentence Transformers: 3.5.0.dev0 - Transformers: 4.43.4 - PyTorch: 2.6.0+cu124 - Accelerate: 0.33.0 - Datasets: 2.14.4 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ContrastiveLoss ```bibtex @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
S4nto/lora-dpo-finetuned-stage4-sft-0.5-1e-6_ep5
S4nto
"2024-05-23T01:07:31Z"
3
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-23T00:57:47Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DavidAU/UNA-SOLAR-10.7B-Instruct-v1.0-Q8_0-GGUF
DavidAU
"2024-04-18T00:13:07Z"
3
0
transformers
[ "transformers", "gguf", "alignment-handbook", "generated_from_trainer", "UNA", "single-turn", "llama-cpp", "gguf-my-repo", "en", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:quantized:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-04-18T00:12:41Z"
--- language: - en license: cc-by-nc-nd-4.0 library_name: transformers tags: - alignment-handbook - generated_from_trainer - UNA - single-turn - llama-cpp - gguf-my-repo base_model: upstage/SOLAR-10.7B-Instruct-v1.0 model-index: - name: UNA-SOLAR-10.7B-Instruct-v1.0 results: [] --- # DavidAU/UNA-SOLAR-10.7B-Instruct-v1.0-Q8_0-GGUF This model was converted to GGUF format from [`fblgit/UNA-SOLAR-10.7B-Instruct-v1.0`](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/UNA-SOLAR-10.7B-Instruct-v1.0-Q8_0-GGUF --model una-solar-10.7b-instruct-v1.0.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/UNA-SOLAR-10.7B-Instruct-v1.0-Q8_0-GGUF --model una-solar-10.7b-instruct-v1.0.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m una-solar-10.7b-instruct-v1.0.Q8_0.gguf -n 128 ```
wangrongsheng/careinternlm-20B-Chat-sft-multi
wangrongsheng
"2023-09-24T05:05:31Z"
3
0
peft
[ "peft", "region:us" ]
null
"2023-09-24T05:04:30Z"
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
sail-rvc/Fluttershy_e500
sail-rvc
"2023-07-14T07:23:38Z"
1
0
transformers
[ "transformers", "rvc", "sail-rvc", "audio-to-audio", "endpoints_compatible", "region:us" ]
audio-to-audio
"2023-07-14T07:22:25Z"
--- pipeline_tag: audio-to-audio tags: - rvc - sail-rvc --- # Fluttershy_e500 ## RVC Model ![banner](https://i.imgur.com/xocCjhH.jpg) This model repo was automatically generated. Date: 2023-07-14 07:23:38 Bot Name: juuxnscrap Model Type: RVC Source: https://huggingface.co/juuxn/RVCModels/ Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
albertus-sussex/veriscrape-simcse-university-reference_9_to_verify_1-fold-4
albertus-sussex
"2025-03-29T10:37:48Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-03-29T10:36:58Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
damgomz/ft_16_11e6_base_x1
damgomz
"2024-06-22T09:59:23Z"
18
0
transformers
[ "transformers", "safetensors", "albert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-06-21T15:54:51Z"
--- language: en tags: - text-classification pipeline_tag: text-classification widget: - text: GEPS Techno is the pioneer of hybridization of renewable energies at sea. We imagine, design and commercialize innovative off-grid systems that aim to generate power at sea, stabilize and collect data. The success of our low power platforms WAVEPEAL enabled us to scale-up the device up to WAVEGEM, the 150-kW capacity platform. --- ## Environmental Impact (CODE CARBON DEFAULT) | Metric | Value | |--------------------------|---------------------------------| | Duration (in seconds) | 67625.15619707108 | | Emissions (Co2eq in kg) | 0.0409210267090644 | | CPU power (W) | 42.5 | | GPU power (W) | [No GPU] | | RAM power (W) | 3.75 | | CPU energy (kWh) | 0.7983509253144281 | | GPU energy (kWh) | [No GPU] | | RAM energy (kWh) | 0.0704422363820175 | | Consumed energy (kWh) | 0.8687931616964483 | | Country name | Switzerland | | Cloud provider | nan | | Cloud region | nan | | CPU count | 2 | | CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz | | GPU count | nan | | GPU model | nan | ## Environmental Impact (for one core) | Metric | Value | |--------------------------|---------------------------------| | CPU energy (kWh) | 0.1301784256793618 | | Emissions (Co2eq in kg) | 0.026486519510519498 | ## Note 19 juin 2024 ## My Config | Config | Value | |--------------------------|-----------------| | checkpoint | albert-base-v2 | | model_name | ft_16_11e6_base_x1 | | sequence_length | 400 | | num_epoch | 6 | | learning_rate | 1.1e-05 | | batch_size | 16 | | weight_decay | 0.0 | | warm_up_prop | 0.0 | | drop_out_prob | 0.1 | | packing_length | 100 | | train_test_split | 0.2 | | num_steps | 29328 | ## Training and Testing steps Epoch | Train Loss | Test Loss | F-beta Score ---|---|---|--- | 0 | 0.000000 | 0.704286 | 0.437405 | | 1 | 0.330187 | 0.242732 | 0.939067 | | 2 | 0.194050 | 0.230007 | 0.907106 | | 3 | 0.146359 | 0.229586 | 0.909991 | | 4 | 0.098502 | 0.233764 | 0.932297 | | 5 | 0.064628 | 0.255224 | 0.916755 | | 6 | 0.047931 | 0.288994 | 0.918727 |
NoahDrisort/speaker-segmentation-fine-tuned-callhome-jpn
NoahDrisort
"2024-04-26T10:43:33Z"
50
0
transformers
[ "transformers", "tensorboard", "safetensors", "pyannet", "speaker-diarization", "speaker-segmentation", "generated_from_trainer", "dataset:diarizers-community/callhome", "base_model:pyannote/segmentation-3.0", "base_model:finetune:pyannote/segmentation-3.0", "license:mit", "endpoints_compatible", "region:us" ]
null
"2024-04-25T12:45:59Z"
--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.4828 - Der: 0.1446 - False Alarm: 0.0404 - Missed Detection: 0.0606 - Confusion: 0.0435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5955 | 1.0 | 394 | 0.5366 | 0.1609 | 0.0435 | 0.0706 | 0.0468 | | 0.5648 | 2.0 | 788 | 0.4979 | 0.1509 | 0.0400 | 0.0646 | 0.0462 | | 0.5392 | 3.0 | 1182 | 0.4852 | 0.1489 | 0.0447 | 0.0588 | 0.0453 | | 0.5283 | 4.0 | 1576 | 0.4756 | 0.1442 | 0.0412 | 0.0607 | 0.0422 | | 0.5109 | 5.0 | 1970 | 0.4828 | 0.1446 | 0.0404 | 0.0606 | 0.0435 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu118 - Datasets 2.18.0 - Tokenizers 0.19.1
vtriple/Qwen-2.5-7B-Threatflux-Q4_K_M-GGUF
vtriple
"2025-01-09T04:34:56Z"
66
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:vtriple/Qwen-2.5-7B-Threatflux", "base_model:quantized:vtriple/Qwen-2.5-7B-Threatflux", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-01-09T04:34:34Z"
--- license: apache-2.0 base_model: vtriple/Qwen-2.5-7B-Threatflux tags: - llama-cpp - gguf-my-repo --- # vtriple/Qwen-2.5-7B-Threatflux-Q4_K_M-GGUF This model was converted to GGUF format from [`vtriple/Qwen-2.5-7B-Threatflux`](https://huggingface.co/vtriple/Qwen-2.5-7B-Threatflux) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/vtriple/Qwen-2.5-7B-Threatflux) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo vtriple/Qwen-2.5-7B-Threatflux-Q4_K_M-GGUF --hf-file qwen-2.5-7b-threatflux-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo vtriple/Qwen-2.5-7B-Threatflux-Q4_K_M-GGUF --hf-file qwen-2.5-7b-threatflux-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo vtriple/Qwen-2.5-7B-Threatflux-Q4_K_M-GGUF --hf-file qwen-2.5-7b-threatflux-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo vtriple/Qwen-2.5-7B-Threatflux-Q4_K_M-GGUF --hf-file qwen-2.5-7b-threatflux-q4_k_m.gguf -c 2048 ```