modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-03 00:49:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-03 00:44:12
card
stringlengths
11
1.01M
tliu/asp-coref-flan-t5-large
tliu
2024-01-20T08:09:32Z
17
0
transformers
[ "transformers", "pytorch", "en", "dataset:conll2012_ontonotesv5", "arxiv:2210.14698", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-01-19T08:46:21Z
--- license: mit datasets: - conll2012_ontonotesv5 language: - en metrics: - f1 --- # Model Card for asp-coref-flan-t5-large ![model image](https://github.com/lyutyuh/ASP/raw/master/figs/illustration.gif) # Intro This model is initialized from flan-t5-base and finetuned for coreference resolution task. The model structure is described in the paper [Autoregressive Structured Prediction with Language Models](https://arxiv.org/pdf/2210.14698v2.pdf), [Github repo](https://github.com/lyutyuh/ASP). # Model Description - **Task:** Coreference Resolution - **Dataset:** CoNLL 2012 OntoNotes - **Base Model:** flan-t5-large # Command ```bash CUDA_VISIBLE_DEVICES=0 python evaluate_coref.py flant5_large tliu/asp-coref-flan-t5-large 0 ```
PetroGPT/Voldemort-10B-DPO
PetroGPT
2024-01-20T07:51:33Z
1,305
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T05:49:53Z
--- license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
afrideva/zephyr-220m-sft-full-GGUF
afrideva
2024-01-20T07:43:31Z
23
0
null
[ "gguf", "generated_from_trainer", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:BEE-spoke-data/zephyr-220m-sft-full", "base_model:quantized:BEE-spoke-data/zephyr-220m-sft-full", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2024-01-20T07:42:47Z
--- base_model: BEE-spoke-data/zephyr-220m-sft-full datasets: - HuggingFaceH4/ultrachat_200k inference: false license: apache-2.0 model-index: - name: zephyr-220m-sft-full results: [] model_creator: BEE-spoke-data model_name: zephyr-220m-sft-full pipeline_tag: text-generation quantized_by: afrideva tags: - generated_from_trainer - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # BEE-spoke-data/zephyr-220m-sft-full-GGUF Quantized GGUF model files for [zephyr-220m-sft-full](https://huggingface.co/BEE-spoke-data/zephyr-220m-sft-full) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data) | Name | Quant method | Size | | ---- | ---- | ---- | | [zephyr-220m-sft-full.fp16.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.fp16.gguf) | fp16 | 436.50 MB | | [zephyr-220m-sft-full.q2_k.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q2_k.gguf) | q2_k | 94.43 MB | | [zephyr-220m-sft-full.q3_k_m.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q3_k_m.gguf) | q3_k_m | 114.65 MB | | [zephyr-220m-sft-full.q4_k_m.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q4_k_m.gguf) | q4_k_m | 137.58 MB | | [zephyr-220m-sft-full.q5_k_m.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q5_k_m.gguf) | q5_k_m | 157.91 MB | | [zephyr-220m-sft-full.q6_k.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q6_k.gguf) | q6_k | 179.52 MB | | [zephyr-220m-sft-full.q8_0.gguf](https://huggingface.co/afrideva/zephyr-220m-sft-full-GGUF/resolve/main/zephyr-220m-sft-full.q8_0.gguf) | q8_0 | 232.28 MB | ## Original Model Card: <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-220m-sft-full This model is a fine-tuned version of [BEE-spoke-data/smol_llama-220M-openhermes](https://huggingface.co/BEE-spoke-data/smol_llama-220M-openhermes) on the Ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.6579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6447 | 1.0 | 1624 | 1.6579 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0 https://wandb.ai/amazingvince/huggingface/runs/5rffzk3x/workspace?workspace=user-amazingvince
afrideva/TinyLlama-3T-1.1bee-GGUF
afrideva
2024-01-20T07:40:02Z
41
1
null
[ "gguf", "bees", "bzz", "honey", "oprah winfrey", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "en", "dataset:BEE-spoke-data/bees-internal", "base_model:BEE-spoke-data/TinyLlama-3T-1.1bee", "base_model:quantized:BEE-spoke-data/TinyLlama-3T-1.1bee", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2024-01-20T07:36:22Z
--- base_model: BEE-spoke-data/TinyLlama-3T-1.1bee datasets: - BEE-spoke-data/bees-internal inference: false language: - en license: apache-2.0 metrics: - accuracy model_creator: BEE-spoke-data model_name: TinyLlama-3T-1.1bee pipeline_tag: text-generation quantized_by: afrideva tags: - bees - bzz - honey - oprah winfrey - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 widget: - example_title: Queen Excluder text: In beekeeping, the term "queen excluder" refers to - example_title: Increasing Honey Production text: One way to encourage a honey bee colony to produce more honey is by - example_title: Lifecycle of a Worker Bee text: The lifecycle of a worker bee consists of several stages, starting with - example_title: Varroa Destructor text: Varroa destructor is a type of mite that - example_title: Beekeeping PPE text: In the world of beekeeping, the acronym PPE stands for - example_title: Robbing in Beekeeping text: The term "robbing" in beekeeping refers to the act of - example_title: Role of Drone Bees text: 'Question: What''s the primary function of drone bees in a hive? Answer:' - example_title: Honey Harvesting Device text: To harvest honey from a hive, beekeepers often use a device known as a - example_title: Beekeeping Math Problem text: 'Problem: You have a hive that produces 60 pounds of honey per year. You decide to split the hive into two. Assuming each hive now produces at a 70% rate compared to before, how much honey will you get from both hives next year? To calculate' - example_title: Swarming text: In beekeeping, "swarming" is the process where --- # BEE-spoke-data/TinyLlama-3T-1.1bee-GGUF Quantized GGUF model files for [TinyLlama-3T-1.1bee](https://huggingface.co/BEE-spoke-data/TinyLlama-3T-1.1bee) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data) | Name | Quant method | Size | | ---- | ---- | ---- | | [tinyllama-3t-1.1bee.fp16.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.fp16.gguf) | fp16 | 2.20 GB | | [tinyllama-3t-1.1bee.q2_k.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q2_k.gguf) | q2_k | 432.13 MB | | [tinyllama-3t-1.1bee.q3_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q3_k_m.gguf) | q3_k_m | 548.40 MB | | [tinyllama-3t-1.1bee.q4_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q4_k_m.gguf) | q4_k_m | 667.81 MB | | [tinyllama-3t-1.1bee.q5_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q5_k_m.gguf) | q5_k_m | 782.04 MB | | [tinyllama-3t-1.1bee.q6_k.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q6_k.gguf) | q6_k | 903.41 MB | | [tinyllama-3t-1.1bee.q8_0.gguf](https://huggingface.co/afrideva/TinyLlama-3T-1.1bee-GGUF/resolve/main/tinyllama-3t-1.1bee.q8_0.gguf) | q8_0 | 1.17 GB | ## Original Model Card: <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TinyLlama-3T-1.1bee ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/I6AfPId0Xo_vVobtkAP12.png) A grand successor to [the original](https://huggingface.co/BEE-spoke-data/TinyLlama-1.1bee). This one has the following improvements: - start from [finished 3T TinyLlama](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) - vastly improved and expanded SoTA beekeeping dataset ## Model description This model is a fine-tuned version of TinyLlama-1.1b-3T on the BEE-spoke-data/bees-internal dataset. It achieves the following results on the evaluation set: - Loss: 2.1640 - Accuracy: 0.5406 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 13707 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4432 | 0.19 | 50 | 2.3850 | 0.5033 | | 2.3655 | 0.39 | 100 | 2.3124 | 0.5129 | | 2.374 | 0.58 | 150 | 2.2588 | 0.5215 | | 2.3558 | 0.78 | 200 | 2.2132 | 0.5291 | | 2.2677 | 0.97 | 250 | 2.1828 | 0.5348 | | 2.0701 | 1.17 | 300 | 2.1788 | 0.5373 | | 2.0766 | 1.36 | 350 | 2.1673 | 0.5398 | | 2.0669 | 1.56 | 400 | 2.1651 | 0.5402 | | 2.0314 | 1.75 | 450 | 2.1641 | 0.5406 | | 2.0281 | 1.95 | 500 | 2.1639 | 0.5407 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0 - Datasets 2.16.1 - Tokenizers 0.15.0
thangvip/vi-t5-base-finetune-rewriter-2-epochs
thangvip
2024-01-20T07:26:55Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-base", "base_model:finetune:VietAI/vit5-base", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-20T07:05:26Z
--- license: mit base_model: VietAI/vit5-base tags: - generated_from_trainer metrics: - bleu model-index: - name: vi-t5-base-finetune-rewriter-2-epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi-t5-base-finetune-rewriter-2-epochs This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7955 - Bleu: 36.7726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
afrideva/beecoder-220M-python-GGUF
afrideva
2024-01-20T07:19:14Z
41
0
null
[ "gguf", "python", "codegen", "markdown", "smol_llama", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "en", "dataset:BEE-spoke-data/pypi_clean-deduped", "dataset:bigcode/the-stack-smol-xl", "dataset:EleutherAI/proof-pile-2", "base_model:BEE-spoke-data/beecoder-220M-python", "base_model:quantized:BEE-spoke-data/beecoder-220M-python", "license:apache-2.0", "region:us" ]
text-generation
2024-01-20T07:18:24Z
--- base_model: BEE-spoke-data/beecoder-220M-python datasets: - BEE-spoke-data/pypi_clean-deduped - bigcode/the-stack-smol-xl - EleutherAI/proof-pile-2 inference: false language: - en license: apache-2.0 metrics: - accuracy model_creator: BEE-spoke-data model_name: beecoder-220M-python pipeline_tag: text-generation quantized_by: afrideva tags: - python - codegen - markdown - smol_llama - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 widget: - example_title: Add Numbers Function text: "def add_numbers(a, b):\n return\n" - example_title: Car Class text: "class Car:\n def __init__(self, make, model):\n self.make = make\n \ self.model = model\n\n def display_car(self):\n" - example_title: Pandas DataFrame text: 'import pandas as pd data = {''Name'': [''Tom'', ''Nick'', ''John''], ''Age'': [20, 21, 19]} df = pd.DataFrame(data).convert_dtypes() # eda ' - example_title: Factorial Function text: "def factorial(n):\n if n == 0:\n return 1\n else:\n" - example_title: Fibonacci Function text: "def fibonacci(n):\n if n <= 0:\n raise ValueError(\"Incorrect input\")\n \ elif n == 1:\n return 0\n elif n == 2:\n return 1\n else:\n" - example_title: Matplotlib Plot text: 'import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 10, 100) # simple plot ' - example_title: Reverse String Function text: "def reverse_string(s:str) -> str:\n return\n" - example_title: Palindrome Function text: "def is_palindrome(word:str) -> bool:\n return\n" - example_title: Bubble Sort Function text: "def bubble_sort(lst: list):\n n = len(lst)\n for i in range(n):\n for j in range(0, n-i-1):\n" - example_title: Binary Search Function text: "def binary_search(arr, low, high, x):\n if high >= low:\n mid = (high + low) // 2\n if arr[mid] == x:\n return mid\n elif arr[mid] > x:\n" --- # BEE-spoke-data/beecoder-220M-python-GGUF Quantized GGUF model files for [beecoder-220M-python](https://huggingface.co/BEE-spoke-data/beecoder-220M-python) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data) | Name | Quant method | Size | | ---- | ---- | ---- | | [beecoder-220m-python.fp16.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.fp16.gguf) | fp16 | 436.50 MB | | [beecoder-220m-python.q2_k.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q2_k.gguf) | q2_k | 94.43 MB | | [beecoder-220m-python.q3_k_m.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q3_k_m.gguf) | q3_k_m | 114.65 MB | | [beecoder-220m-python.q4_k_m.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q4_k_m.gguf) | q4_k_m | 137.58 MB | | [beecoder-220m-python.q5_k_m.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q5_k_m.gguf) | q5_k_m | 157.91 MB | | [beecoder-220m-python.q6_k.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q6_k.gguf) | q6_k | 179.52 MB | | [beecoder-220m-python.q8_0.gguf](https://huggingface.co/afrideva/beecoder-220M-python-GGUF/resolve/main/beecoder-220m-python.q8_0.gguf) | q8_0 | 232.28 MB | ## Original Model Card: # BEE-spoke-data/beecoder-220M-python This is `BEE-spoke-data/smol_llama-220M-GQA` fine-tuned for code generation on: - filtered version of stack-smol-XL - deduped version of 'algebraic stack' from proof-pile-2 - cleaned and deduped pypi (last dataset) This model (and the base model) were both trained using ctx length 2048. ## examples > Example script for inference testing: [here](https://gist.github.com/pszemraj/c7738f664a64b935a558974d23a7aa8c) It has its limitations at 220M, but seems decent for single-line or docstring generation, and/or being used for speculative decoding for such purposes. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/bLrtpr7Vi_MPvtF7mozDN.png) The screenshot is on CPU on a laptop. ---
BadBoy17G/whisper-tiny-custom-test-final
BadBoy17G
2024-01-20T07:16:24Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ta", "dataset:customtamil", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-20T07:06:31Z
--- language: - ta base_model: openai/whisper-tine tags: - hf-asr-leaderboard - generated_from_trainer datasets: - customtamil model-index: - name: Whisper Small Hi - gokulraj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - gokulraj This model is a fine-tuned version of [openai/whisper-tine](https://huggingface.co/openai/whisper-tine) on the mydataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
Jobiniah/bible-mistral-7b-merged
Jobiniah
2024-01-20T07:11:52Z
15
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-01-20T01:15:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thangvip/vi-t5-base-finetune-rewriter
thangvip
2024-01-20T07:00:11Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-base", "base_model:finetune:VietAI/vit5-base", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-20T06:48:36Z
--- license: mit base_model: VietAI/vit5-base tags: - generated_from_trainer metrics: - bleu model-index: - name: vi-t5-base-finetune-rewriter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi-t5-base-finetune-rewriter This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8354 - Bleu: 38.2750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
varun-v-rao/bert-base-cased-snli-model6
varun-v-rao
2024-01-20T07:00:04Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-20T05:59:06Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-cased-snli-model6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-snli-model6 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2668 - Accuracy: 0.9079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3466 | 1.0 | 4292 | 0.2753 | 0.8986 | | 0.2782 | 2.0 | 8584 | 0.2617 | 0.9060 | | 0.2232 | 3.0 | 12876 | 0.2668 | 0.9079 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed1
sdpkjc
2024-01-20T06:55:27Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "HalfCheetah-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-24T08:44:20Z
--- tags: - HalfCheetah-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetah-v4 type: HalfCheetah-v4 metrics: - type: mean_reward value: 4168.02 +/- 236.06 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **HalfCheetah-v4** This is a trained model of a PPO agent playing HalfCheetah-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_fix_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id HalfCheetah-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed1/raw/main/ppo_fix_continuous_action.py curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_fix_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id HalfCheetah-v4 --seed 1 --track ``` # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': True, 'ent_coef': 0.0, 'env_id': 'HalfCheetah-v4', 'exp_name': 'ppo_fix_continuous_action', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'sdpkjc', 'learning_rate': 0.0003, 'max_grad_norm': 0.5, 'minibatch_size': 64, 'norm_adv': True, 'num_envs': 1, 'num_minibatches': 32, 'num_steps': 2048, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'update_epochs': 10, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed4
sdpkjc
2024-01-20T06:52:11Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "HalfCheetah-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-18T23:00:40Z
--- tags: - HalfCheetah-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetah-v4 type: HalfCheetah-v4 metrics: - type: mean_reward value: 2463.90 +/- 832.71 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **HalfCheetah-v4** This is a trained model of a PPO agent playing HalfCheetah-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_fix_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id HalfCheetah-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed4/raw/main/ppo_fix_continuous_action.py curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed4/raw/main/poetry.lock poetry install --all-extras python ppo_fix_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id HalfCheetah-v4 --seed 4 --track ``` # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': True, 'ent_coef': 0.0, 'env_id': 'HalfCheetah-v4', 'exp_name': 'ppo_fix_continuous_action', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'sdpkjc', 'learning_rate': 0.0003, 'max_grad_norm': 0.5, 'minibatch_size': 64, 'norm_adv': True, 'num_envs': 1, 'num_minibatches': 32, 'num_steps': 2048, 'save_model': True, 'seed': 4, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'update_epochs': 10, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed4
sdpkjc
2024-01-20T06:48:38Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Swimmer-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-19T01:49:06Z
--- tags: - Swimmer-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Swimmer-v4 type: Swimmer-v4 metrics: - type: mean_reward value: 120.62 +/- 1.83 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Swimmer-v4** This is a trained model of a PPO agent playing Swimmer-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_fix_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id Swimmer-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed4/raw/main/ppo_fix_continuous_action.py curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed4/raw/main/poetry.lock poetry install --all-extras python ppo_fix_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id Swimmer-v4 --seed 4 --track ``` # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': True, 'ent_coef': 0.0, 'env_id': 'Swimmer-v4', 'exp_name': 'ppo_fix_continuous_action', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'sdpkjc', 'learning_rate': 0.0003, 'max_grad_norm': 0.5, 'minibatch_size': 64, 'norm_adv': True, 'num_envs': 1, 'num_minibatches': 32, 'num_steps': 2048, 'save_model': True, 'seed': 4, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'update_epochs': 10, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed2
sdpkjc
2024-01-20T06:48:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "HalfCheetah-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-24T07:26:30Z
--- tags: - HalfCheetah-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetah-v4 type: HalfCheetah-v4 metrics: - type: mean_reward value: 1867.07 +/- 47.73 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **HalfCheetah-v4** This is a trained model of a PPO agent playing HalfCheetah-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_fix_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id HalfCheetah-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed2/raw/main/ppo_fix_continuous_action.py curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/sdpkjc/HalfCheetah-v4-ppo_fix_continuous_action-seed2/raw/main/poetry.lock poetry install --all-extras python ppo_fix_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id HalfCheetah-v4 --seed 2 --track ``` # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': True, 'ent_coef': 0.0, 'env_id': 'HalfCheetah-v4', 'exp_name': 'ppo_fix_continuous_action', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'sdpkjc', 'learning_rate': 0.0003, 'max_grad_norm': 0.5, 'minibatch_size': 64, 'norm_adv': True, 'num_envs': 1, 'num_minibatches': 32, 'num_steps': 2048, 'save_model': True, 'seed': 2, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'update_epochs': 10, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed1
sdpkjc
2024-01-20T06:48:34Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Swimmer-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-24T09:52:45Z
--- tags: - Swimmer-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Swimmer-v4 type: Swimmer-v4 metrics: - type: mean_reward value: 131.51 +/- 1.19 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Swimmer-v4** This is a trained model of a PPO agent playing Swimmer-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_fix_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id Swimmer-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed1/raw/main/ppo_fix_continuous_action.py curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed1/raw/main/poetry.lock poetry install --all-extras python ppo_fix_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id Swimmer-v4 --seed 1 --track ``` # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': True, 'ent_coef': 0.0, 'env_id': 'Swimmer-v4', 'exp_name': 'ppo_fix_continuous_action', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'sdpkjc', 'learning_rate': 0.0003, 'max_grad_norm': 0.5, 'minibatch_size': 64, 'norm_adv': True, 'num_envs': 1, 'num_minibatches': 32, 'num_steps': 2048, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'update_epochs': 10, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Atipico1/popQA-base-new-hp
Atipico1
2024-01-20T06:46:39Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-20T06:46:30Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed5
sdpkjc
2024-01-20T06:33:18Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Hopper-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-18T20:14:53Z
--- tags: - Hopper-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hopper-v4 type: Hopper-v4 metrics: - type: mean_reward value: 2504.30 +/- 688.11 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hopper-v4** This is a trained model of a PPO agent playing Hopper-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_fix_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id Hopper-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed5/raw/main/ppo_fix_continuous_action.py curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed5/raw/main/pyproject.toml curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed5/raw/main/poetry.lock poetry install --all-extras python ppo_fix_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id Hopper-v4 --seed 5 --track ``` # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': True, 'ent_coef': 0.0, 'env_id': 'Hopper-v4', 'exp_name': 'ppo_fix_continuous_action', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'sdpkjc', 'learning_rate': 0.0003, 'max_grad_norm': 0.5, 'minibatch_size': 64, 'norm_adv': True, 'num_envs': 1, 'num_minibatches': 32, 'num_steps': 2048, 'save_model': True, 'seed': 5, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'update_epochs': 10, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed3
sdpkjc
2024-01-20T06:31:15Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Hopper-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-18T20:14:54Z
--- tags: - Hopper-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hopper-v4 type: Hopper-v4 metrics: - type: mean_reward value: 2814.10 +/- 723.91 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hopper-v4** This is a trained model of a PPO agent playing Hopper-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_fix_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id Hopper-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed3/raw/main/ppo_fix_continuous_action.py curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed3/raw/main/poetry.lock poetry install --all-extras python ppo_fix_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id Hopper-v4 --seed 3 --track ``` # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': True, 'ent_coef': 0.0, 'env_id': 'Hopper-v4', 'exp_name': 'ppo_fix_continuous_action', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'sdpkjc', 'learning_rate': 0.0003, 'max_grad_norm': 0.5, 'minibatch_size': 64, 'norm_adv': True, 'num_envs': 1, 'num_minibatches': 32, 'num_steps': 2048, 'save_model': True, 'seed': 3, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'update_epochs': 10, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
kata958/distilbert-base-uncased-distilled-clinc
kata958
2024-01-20T06:31:09Z
89
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-20T05:23:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0337 - Accuracy: 0.9339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 0.2507 | 0.6139 | | 0.3907 | 2.0 | 636 | 0.1147 | 0.8477 | | 0.3907 | 3.0 | 954 | 0.0737 | 0.8952 | | 0.1311 | 4.0 | 1272 | 0.0560 | 0.9055 | | 0.0799 | 5.0 | 1590 | 0.0454 | 0.9245 | | 0.0799 | 6.0 | 1908 | 0.0405 | 0.9294 | | 0.0622 | 7.0 | 2226 | 0.0372 | 0.9303 | | 0.0539 | 8.0 | 2544 | 0.0351 | 0.9323 | | 0.0539 | 9.0 | 2862 | 0.0342 | 0.9326 | | 0.0501 | 10.0 | 3180 | 0.0337 | 0.9339 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Datasets 2.16.1 - Tokenizers 0.15.0
sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed2
sdpkjc
2024-01-20T06:30:10Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Hopper-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-18T20:15:37Z
--- tags: - Hopper-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hopper-v4 type: Hopper-v4 metrics: - type: mean_reward value: 1865.47 +/- 529.75 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hopper-v4** This is a trained model of a PPO agent playing Hopper-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ppo_fix_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id Hopper-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed2/raw/main/ppo_fix_continuous_action.py curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/sdpkjc/Hopper-v4-ppo_fix_continuous_action-seed2/raw/main/poetry.lock poetry install --all-extras python ppo_fix_continuous_action.py --save-model --upload-model --hf-entity sdpkjc --env-id Hopper-v4 --seed 2 --track ``` # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 2048, 'capture_video': False, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': True, 'ent_coef': 0.0, 'env_id': 'Hopper-v4', 'exp_name': 'ppo_fix_continuous_action', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'sdpkjc', 'learning_rate': 0.0003, 'max_grad_norm': 0.5, 'minibatch_size': 64, 'norm_adv': True, 'num_envs': 1, 'num_minibatches': 32, 'num_steps': 2048, 'save_model': True, 'seed': 2, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'update_epochs': 10, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Atipico1/popQA-base-unans
Atipico1
2024-01-20T06:24:49Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-20T06:24:41Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
alexsherstinsky/mistral-7b-based-finetuned-using-ludwig-with-jigsaw-T4-4bit-notmerged
alexsherstinsky
2024-01-20T06:20:09Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-01-20T03:08:50Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
aruca/finetuning-sentiment-analysis-bert2epoch
aruca
2024-01-20T06:07:49Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-20T05:58:41Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-analysis-bert2epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-analysis-bert2epoch This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5203 - Accuracy: 0.7988 - F1: [0.79592826 0.76464324 0.84552102] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Arnav2612/llama2-qlora-finetunined-french
Arnav2612
2024-01-20T06:06:34Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-01-20T06:06:27Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
Atipico1/NQ-cbr-unans-custom-new
Atipico1
2024-01-20T05:45:51Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-20T05:45:40Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Atipico1/NQ-cbr-unans-new
Atipico1
2024-01-20T05:45:15Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-20T05:45:04Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
mlx-community/yayi2-30b-llama-hf-4bit-mlx
mlx-community
2024-01-20T05:38:52Z
2
0
mlx
[ "mlx", "llama", "zh", "en", "license:other", "region:us" ]
null
2024-01-20T03:50:14Z
--- language: - zh - en license: other tags: - mlx --- # mlx-community/yayi2-30b-llama-hf-4bit-mlx This model was converted to MLX format from [`cognitivecomputations/yayi2-30b-llama`](). Refer to the [original model card](https://huggingface.co/cognitivecomputations/yayi2-30b-llama) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/yayi2-30b-llama-hf-4bit-mlx") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
jeiku/Gattaca_3B
jeiku
2024-01-20T05:36:16Z
19
1
transformers
[ "transformers", "safetensors", "stablelm_epoch", "text-generation", "mergekit", "merge", "conversational", "custom_code", "en", "dataset:AdamCodd/no_robots-alpaca", "dataset:diffnamehard/toxic-dpo-v0.1-NoWarning-alpaca", "dataset:totally-not-an-llm/EverythingLM-data-V3", "dataset:Squish42/bluemoon-fandom-1-1-rp-cleaned", "dataset:FriezaForce/unranked_theory_of_mind_roleplay", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:jeiku/Bluemoon_cleaned_StableLM", "base_model:merge:jeiku/Bluemoon_cleaned_StableLM", "base_model:jeiku/Everything_v3_128_StableLM", "base_model:merge:jeiku/Everything_v3_128_StableLM", "base_model:jeiku/No_Robots_Alpaca_StableLM", "base_model:merge:jeiku/No_Robots_Alpaca_StableLM", "base_model:jeiku/RocketHermesZephyrBoros_3B", "base_model:merge:jeiku/RocketHermesZephyrBoros_3B", "base_model:jeiku/Theory_of_Mind_RP_128_StableLM", "base_model:merge:jeiku/Theory_of_Mind_RP_128_StableLM", "base_model:jeiku/Toxic_DPO_StableLM", "base_model:merge:jeiku/Toxic_DPO_StableLM", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2024-01-19T01:05:28Z
--- base_model: - jeiku/RocketHermesZephyrBoros_3B - jeiku/Erotica_StableLM - jeiku/RocketHermesZephyrBoros_3B - jeiku/No_Robots_Alpaca_StableLM - jeiku/RocketHermesZephyrBoros_3B - jeiku/Toxic_DPO_StableLM - jeiku/RocketHermesZephyrBoros_3B - jeiku/Everything_v3_128_StableLM - jeiku/RocketHermesZephyrBoros_3B - jeiku/Bluemoon_cleaned_StableLM - jeiku/RocketHermesZephyrBoros_3B - jeiku/RocketHermesZephyrBoros_3B - jeiku/Gnosis_StableLM - jeiku/RocketHermesZephyrBoros_3B - jeiku/Theory_of_Mind_RP_128_StableLM tags: - mergekit - merge license: other datasets: - AdamCodd/no_robots-alpaca - diffnamehard/toxic-dpo-v0.1-NoWarning-alpaca - totally-not-an-llm/EverythingLM-data-V3 - Squish42/bluemoon-fandom-1-1-rp-cleaned - FriezaForce/unranked_theory_of_mind_roleplay language: - en --- # Mixed This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [jeiku/RocketHermesZephyrBoros_3B](https://huggingface.co/jeiku/RocketHermesZephyrBoros_3B) as a base. ### Models Merged The following models were included in the merge: * [jeiku/RocketHermesZephyrBoros_3B](https://huggingface.co/jeiku/RocketHermesZephyrBoros_3B) + [jeiku/Erotica_StableLM](https://huggingface.co/jeiku/Erotica_StableLM) * [jeiku/RocketHermesZephyrBoros_3B](https://huggingface.co/jeiku/RocketHermesZephyrBoros_3B) + [jeiku/No_Robots_Alpaca_StableLM](https://huggingface.co/jeiku/No_Robots_Alpaca_StableLM) * [jeiku/RocketHermesZephyrBoros_3B](https://huggingface.co/jeiku/RocketHermesZephyrBoros_3B) + [jeiku/Toxic_DPO_StableLM](https://huggingface.co/jeiku/Toxic_DPO_StableLM) * [jeiku/RocketHermesZephyrBoros_3B](https://huggingface.co/jeiku/RocketHermesZephyrBoros_3B) + [jeiku/Everything_v3_128_StableLM](https://huggingface.co/jeiku/Everything_v3_128_StableLM) * [jeiku/RocketHermesZephyrBoros_3B](https://huggingface.co/jeiku/RocketHermesZephyrBoros_3B) + [jeiku/Bluemoon_cleaned_StableLM](https://huggingface.co/jeiku/Bluemoon_cleaned_StableLM) * [jeiku/RocketHermesZephyrBoros_3B](https://huggingface.co/jeiku/RocketHermesZephyrBoros_3B) + [jeiku/Gnosis_StableLM](https://huggingface.co/jeiku/Gnosis_StableLM) * [jeiku/RocketHermesZephyrBoros_3B](https://huggingface.co/jeiku/RocketHermesZephyrBoros_3B) + [jeiku/Theory_of_Mind_RP_128_StableLM](https://huggingface.co/jeiku/Theory_of_Mind_RP_128_StableLM) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: jeiku/RocketHermesZephyrBoros_3B+jeiku/Bluemoon_cleaned_StableLM parameters: weight: 0.30 density: 0.25 - model: jeiku/RocketHermesZephyrBoros_3B+jeiku/Toxic_DPO_StableLM parameters: weight: 0.25 density: 0.25 - model: jeiku/RocketHermesZephyrBoros_3B+jeiku/Theory_of_Mind_RP_128_StableLM parameters: weight: 0.35 density: 0.25 - model: jeiku/RocketHermesZephyrBoros_3B+jeiku/No_Robots_Alpaca_StableLM parameters: weight: 0.25 density: 0.25 - model: jeiku/RocketHermesZephyrBoros_3B+jeiku/Everything_v3_128_StableLM parameters: weight: 0.5 density: 0.5 - model: jeiku/RocketHermesZephyrBoros_3B+jeiku/Gnosis_StableLM parameters: weight: 0.4 density: 0.4 - model: jeiku/RocketHermesZephyrBoros_3B+jeiku/Erotica_StableLM parameters: weight: 0.20 density: 0.20 merge_method: dare_ties base_model: jeiku/RocketHermesZephyrBoros_3B parameters: dtype: bfloat16 ```
jsmithdlc/dqn-SpaceInvadersNoFrameskip-v4
jsmithdlc
2024-01-20T05:13:33Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-20T05:07:52Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 572.00 +/- 225.22 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jsmithdlc -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jsmithdlc -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jsmithdlc ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
kata958/distilbert-base-uncased-finetuned-clinc
kata958
2024-01-20T05:06:05Z
5
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T11:55:39Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7955 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.3057 | 0.7226 | | 3.8091 | 2.0 | 636 | 1.8921 | 0.8484 | | 3.8091 | 3.0 | 954 | 1.1793 | 0.8929 | | 1.7173 | 4.0 | 1272 | 0.8793 | 0.9097 | | 0.9215 | 5.0 | 1590 | 0.7955 | 0.9174 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Datasets 2.16.1 - Tokenizers 0.15.0
krishnadasar-sudheer-kumar/ppo-CleanRL-Unit8-LunarLander-V2
krishnadasar-sudheer-kumar
2024-01-20T05:02:42Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-20T04:41:36Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 20.85 +/- 60.59 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 400000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'krishnadasar-sudheer-kumar/ppo-CleanRL-Unit8-LunarLander-V2' 'batch_size': 512 'minibatch_size': 128} ```
snowsense/food-classification-1k
snowsense
2024-01-20T04:57:55Z
0
1
keras
[ "keras", "image-classification", "en", "zh", "dataset:snowsense/food-images-1k", "license:mit", "region:us" ]
image-classification
2024-01-12T13:14:29Z
--- license: mit datasets: - snowsense/food-images-1k language: - en - zh metrics: - accuracy library_name: keras pipeline_tag: image-classification ---
varun-v-rao/bert-base-cased-snli-model4
varun-v-rao
2024-01-20T04:56:43Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-20T03:56:00Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-cased-snli-model4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-snli-model4 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2721 - Accuracy: 0.9077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 47 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.342 | 1.0 | 4292 | 0.2771 | 0.8972 | | 0.2742 | 2.0 | 8584 | 0.2644 | 0.9067 | | 0.2249 | 3.0 | 12876 | 0.2721 | 0.9077 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
LoneStriker/zephyr-7b-sft-full-SPIN-iter3-8.0bpw-h8-exl2
LoneStriker
2024-01-20T04:42:01Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:HuggingFaceH4/ultrachat_200k", "arxiv:2401.01335", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T04:38:51Z
--- license: mit datasets: - HuggingFaceH4/ultrachat_200k language: - en pipeline_tag: text-generation --- Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (https://arxiv.org/abs/2401.01335) # zephyr-7b-sft-full-spin-iter3 This model is a self-play fine-tuned model at iteration 3 from [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) using synthetic data based on on the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset. ## Model Details ### Model Description - Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets. - Language(s) (NLP): Primarily English - License: MIT - Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - optimizer: RMSProp - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__test_final) | Metric | Value | |-----------------------|---------------------------| | Avg. | 63.70 | | ARC (25-shot) | 66.13 | | HellaSwag (10-shot) | 85.85 | | MMLU (5-shot) | 61.51 | | TruthfulQA (0-shot) | 57.89 | | Winogrande (5-shot) | 76.64 | | GSM8K (5-shot) | 34.19 | ## Citation ``` @misc{chen2024selfplay, title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models}, author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu}, year={2024}, eprint={2401.01335}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
KhunKai05/Kai
KhunKai05
2024-01-20T04:31:07Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2024-01-20T04:31:07Z
--- license: bigscience-openrail-m ---
LoneStriker/zephyr-7b-sft-full-SPIN-iter3-4.0bpw-h6-exl2
LoneStriker
2024-01-20T04:24:31Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:HuggingFaceH4/ultrachat_200k", "arxiv:2401.01335", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T04:22:52Z
--- license: mit datasets: - HuggingFaceH4/ultrachat_200k language: - en pipeline_tag: text-generation --- Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (https://arxiv.org/abs/2401.01335) # zephyr-7b-sft-full-spin-iter3 This model is a self-play fine-tuned model at iteration 3 from [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) using synthetic data based on on the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset. ## Model Details ### Model Description - Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets. - Language(s) (NLP): Primarily English - License: MIT - Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - optimizer: RMSProp - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__test_final) | Metric | Value | |-----------------------|---------------------------| | Avg. | 63.70 | | ARC (25-shot) | 66.13 | | HellaSwag (10-shot) | 85.85 | | MMLU (5-shot) | 61.51 | | TruthfulQA (0-shot) | 57.89 | | Winogrande (5-shot) | 76.64 | | GSM8K (5-shot) | 34.19 | ## Citation ``` @misc{chen2024selfplay, title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models}, author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu}, year={2024}, eprint={2401.01335}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
macadeliccc/Orca-SOLAR-4x10.7b-GGUF
macadeliccc
2024-01-20T04:21:06Z
8
1
null
[ "gguf", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-18T03:19:58Z
--- license: cc-by-nc-4.0 --- # Orca SOLAR 4x10.7b GGUF ## Overview This model is the GGUF conversion of [macadeliccc/Orca-SOLAR-4x10.7b](https://huggingface.co/macadeliccc/Orca-SOLAR-4x10.7b) ## HF Spaces Try it [here](https://huggingface.co/spaces/macadeliccc/Orca-SOLAR-4x10.7b-chat-GGUF)
LoneStriker/zephyr-7b-sft-full-SPIN-iter3-3.0bpw-h6-exl2
LoneStriker
2024-01-20T04:18:49Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:HuggingFaceH4/ultrachat_200k", "arxiv:2401.01335", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T04:17:31Z
--- license: mit datasets: - HuggingFaceH4/ultrachat_200k language: - en pipeline_tag: text-generation --- Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (https://arxiv.org/abs/2401.01335) # zephyr-7b-sft-full-spin-iter3 This model is a self-play fine-tuned model at iteration 3 from [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) using synthetic data based on on the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset. ## Model Details ### Model Description - Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets. - Language(s) (NLP): Primarily English - License: MIT - Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - optimizer: RMSProp - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__test_final) | Metric | Value | |-----------------------|---------------------------| | Avg. | 63.70 | | ARC (25-shot) | 66.13 | | HellaSwag (10-shot) | 85.85 | | MMLU (5-shot) | 61.51 | | TruthfulQA (0-shot) | 57.89 | | Winogrande (5-shot) | 76.64 | | GSM8K (5-shot) | 34.19 | ## Citation ``` @misc{chen2024selfplay, title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models}, author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu}, year={2024}, eprint={2401.01335}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
LieDeath/MergeStove2.5D
LieDeath
2024-01-20T04:17:47Z
70
39
diffusers
[ "diffusers", "art", "text-to-image", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-26T12:58:33Z
--- license: cc-by-nc-4.0 language: - en library_name: diffusers pipeline_tag: text-to-image tags: - art --- I found a new AI tool Shakker, a best image to image tool. You can try it via https://www.shakker.ai ,it can help you: -Remix: Upload a picture. Just switch the prompts, and you can create stunning images in the same style. -Style Transfer: Shakker not only extracts the style,but also switches among various styles. Besides, Shakker also offers Object Control,Composition Control,Collage Redrawing etc. # MergeStove2.5D(融合炉2.5D) **Hatsune Miku, Thank you.** It's time to say goodbye to MergeStove, sayolala. Thanks for your sincerely surpport. The **MK8** maybe the last MergeStove, and if I have enough time, I will reconstruct this Readme, including the previews of MK8. 是时候和MergeStove说再见了,感谢你们的陪伴。**MK8**可能会是最后一个MergeStove模型了,如果我有时间,我会把现在的Readme重构的,包括补上MK8的预览图。 MK7 is ready!!! In memory of my college entrance exam a total year ago. For previews, ALL here for MK7, just download and enjoy it. :) MK7版本已发布,纪念一年前我的高考。预览图已补充,下载它,你会喜欢它的。:) **Important** Use the negatives below for best performance of MK7. Other options are also available in the Selected Negative Prompts for MK7.txt *badhandv4, EasyNegative, verybadimagenegative_v1.3,illustration, 3d, sepia, painting, cartoons, sketch, (worst quality:1.74), (low quality:1.74), (normal quality:1.44), lowres, bad anatomy, normal quality, ((monochrome)), ((grayscale)), ((letters)), ((english)), capital* It contains 3 negative textural embeddings, which are **badhandv4, EasyNegative, verybadimagenegative_v1.3**, each of them can easily download on huggingface. **重要** 使用上面的负面描述词以使MK7达到最佳效果。其他的可选负面描述词可以在Selected Negative Prompts for MK7.txt内查看。 它包含3个负面嵌入Embeddings,分别是**badhandv4, EasyNegative, verybadimagenegative_v1.3**,且每个都能轻松的在huggingface上下载到。 PS: MK5 and MK6 use these configs below will be much better. 提示:MK5和MK6使用以下设置可能会更好。 *Steps: 20, Sampler: Heun, CFG scale: 7, Denoising strength: 0.5, Clip skip: 2, Hires upscale: 3, Hires upscaler: R-ESRGAN 4x+ Anime6B, Used embeddings: EasyNegative [119b]* **mk6 reconstructed** its base model, which change to AbyssOrangeMix2_sfw. And with models new to here, it expands its knowledges, and which be **impressive** in extra-big pictures. I hope you can love it! **mk6版更新重构了**它本身的基础模型,其中的AbyssOrangeMix2被更换为sfw版。还有我加入了很多新模型来扩展它的知识面,这使得mk6在超大图片中表现**惊艳**。 mk5 update, specially for **chinese friends**, quite a few improvements. mk5版更新,是专门为了**中国朋友们**准备的,有非常多的改进。 MergeStove2.5D is a **merge** stable diffusion model specialized in **anime**, which improves anatomy of anime characters, especially with **eyes** and **hands**, without losing anime objects (like substances or charaters). Much better for working at 0.9K-1.2K resoultion, or use Hires.fix instead. In another words, before Hires.fix, long side at 0.9k-1.2k, short side at 0.5k-0.7k resolutions are better. Provide in 6 versions. Personally mk1 works better, but mk2 give out more vivid pictures. Previous update mk3 and mk4 are proudly do better in 2.5D figures. mk3 do better in generate body, but mk4 improve scene. 融合炉2.5D是一个**动漫风格特化**的稳定扩散模型,由**多个模型融合**而来,专门改善动漫人物的身体结构,特别是**眼睛**和**手**,同时不会丢失任何动漫中的对象(物体、人物等)。 其在900-1200像素的分辨率下工作较好,或者可以使用高清修复改善其高分辨率表现。换句话说,高清修复前长边900-1200像素,短边500-700像素这样子比较好。 提供6个版本。个人感觉mk1版工作的更好,但是mk2版本能生成更生动的图像。我可以很自豪的说,先前更新的mk3和mk4在2.5D人物中表现的更好。mk3有相对较好的人体,但是mk4改进了景物表现。 **No commercial usage! 严禁商用!** # Preview(预览) **Updates** **mk7** (after hi-res fix at 0.45)(高清修复比率0.45) *demon tail, butterfly, tail, bug, 1girl, long hair, wristband, shoes, hatsune miku, shirt, choker, black legwear, aqua hair, bike shorts, solo, blue butterfly, twintails, black choker, bracelet, full body, black ribbon, cow tail, very long hair, tail ornament, jewelry, black bow, hair between eyes, ahoge, white shirt, earrings, grey background, tail bow, standing, jacket, shorts, collarbone, off shoulder, short sleeves, ribbon, black footwear, aqua eyes, gradient, bow, socks, looking at viewer* ![27720-1671519421.png](https://s3.amazonaws.com/moonup/production/uploads/6384c33038f4aec99c4a7483/DQ77sM5KG_9taJdJpyFSw.png) **mk7** (after hi-res fix at 0.45)(高清修复比率0.45) *{masterpiece}, hatsune miku, sit on sakura tree branch, floating cyan long hair, wind flow, sakura petals floating, closed eyes, sun shine upward, shadows,white long dress, cloud sky with sun, hamony and peace, bare feet, medium breast* ![27754-263900082.png](https://s3.amazonaws.com/moonup/production/uploads/6384c33038f4aec99c4a7483/AnAa-gjxMk5jplMyDLF7p.png) **mk7** (after hi-res fix at 0.45)(高清修复比率0.45) *flying sweatdrops, long hair, blue hair, hair ornament, 1girl, english text, open mouth, closed eyes, phone, smile, cellphone, uniform, necktie, gloves, bangs, solo, blush, hatsune miku* ![27764-2380869904.png](https://s3.amazonaws.com/moonup/production/uploads/6384c33038f4aec99c4a7483/BskMrzcDXu_G6lcC5bRaL.png) **Previous** **mk6** (after hi-res fix at 0.6)(高清修复比率0.6) *close-up, upper body, blue eyes black middle, snow miku stand in right side of frame, starry night with distance snow mountains scene in left side of frame, solo charater, snow stage, thick coat long dress, shinny and vivid eyes, curly long aqua hair fall on ground, medium breasts, windless, floating snows, mountain right, snow forest* ![19824-2561960886.png](https://s3.amazonaws.com/moonup/production/uploads/1678274004231-6384c33038f4aec99c4a7483.png) **mk6** (after hi-res fix at 0.6)(高清修复比率0.6) *halo, [wings], leg tie, (hathatsune) miku, full body, long legs, [[lips]], red eyes, medium breasts, (white hair), (streaked blue) hair, round face, [ahoge], black gloves, (hathatsune) miku, closed mouth, full body, straight long 2 legs, starry night, bubble nebula,, [[lips]], lace long dress, small breasts, flat chest, flowers* ![19806-516847586.png](https://s3.amazonaws.com/moonup/production/uploads/1678273348478-6384c33038f4aec99c4a7483.png) **mk6** (after hi-res fix at 0.6)(高清修复比率0.6) *solo, halo, feather wings, (hathatsune) miku, fox ears, straight long 2 legs, black long silk stocking, leg ring tie, full body, [[lips]], red eyes, medium breasts, ahoge, (white hair), (streaked blue) hair, round face, black gloves, closed mouth, starry night, bubble nebula, lace long dress, medium breasts, feathers* ![19802-2257762706.png](https://s3.amazonaws.com/moonup/production/uploads/1678273417106-6384c33038f4aec99c4a7483.png) **mk5** (after hi-res fix at 0.7)(高清修复比率0.7) *(masterpiece), (((a girl))), ((hatsune miku)), (smiling), ((shining red medium eyes)), medium breasts, pink lips, moon in the sky, dark night, blue flowers surround one's, (blue dress), (blue long hair), stars shining, green grassland, (stream in grassland), (one's stand in the grassland), face to viewer, black higheels, long legs, full body* ![17048-50394498.png](https://s3.amazonaws.com/moonup/production/uploads/1677494436744-6384c33038f4aec99c4a7483.png) **mk5** (after hi-res fix at 0.6)(高清修复比率0.6) *hatsune miku, closed mouth, full body, straight long legs, starry night, bubble nebula,, [[lips]], black long dress* ![17406-2132407032.png](https://s3.amazonaws.com/moonup/production/uploads/1677494356421-6384c33038f4aec99c4a7483.png) **mk1** (after hi-res fix at 0.7)(高清修复比率0.7) *miku, ruby eyes, face to viewer, solo, medium breasts, soft light, outdoors, garden, seaside, beauty* ![12848-2569952539.png](https://s3.amazonaws.com/moonup/production/uploads/1674739809930-6384c33038f4aec99c4a7483.png) **mk1** *miku, crystal eyes, upper body, face to viewer, solo, medium breasts, soft light, garden, seaside, ocean, bikini* ![12908-2604523401.png](https://s3.amazonaws.com/moonup/production/uploads/1674741158723-6384c33038f4aec99c4a7483.png) **mk1** *miku, crystal eyes, upper body, face to viewer, solo, medium breasts, soft light, outdoors, garden, seaside, beauty, blue white dress* ![12867-1973802650.png](https://s3.amazonaws.com/moonup/production/uploads/1674742488916-6384c33038f4aec99c4a7483.png) **mk2** *miku, crystal eyes, upper body, face to viewer, solo, before bookshelf, book in hands* ![12947-375827774.png](https://s3.amazonaws.com/moonup/production/uploads/1674743285611-6384c33038f4aec99c4a7483.png) **mk2** *miku, crystal eyes, upper body, face to viewer, solo, before bookshelf, book in hands* ![12948-2412520204.png](https://s3.amazonaws.com/moonup/production/uploads/1674743452171-6384c33038f4aec99c4a7483.png) **mk2** *miku, crystal eyes, upper body, face to viewer, solo, before bookshelf, book in hands* ![12949-2375419362.png](https://s3.amazonaws.com/moonup/production/uploads/1674743472389-6384c33038f4aec99c4a7483.png) **mk3** (after hi-res fix at 0.7)(高清修复比率0.7) *hathatsune miku, seaside, shinny eyes, medium breasts, garden, ocean, seawind, soft sunset, beauty, beach shoes, short dress* ![14986-2841316978.png](https://s3.amazonaws.com/moonup/production/uploads/1675502733159-6384c33038f4aec99c4a7483.png) **mk3** (after hi-res fix at 0.7)(高清修复比率0.7) *miku, seaside, shinny eyes, medium breasts, bikini, surfing, on surfing board, wave, seawind, (wet body:0.75), (🏄🏻:0.66)* ![15086-1008675228.png](https://s3.amazonaws.com/moonup/production/uploads/1675515848039-6384c33038f4aec99c4a7483.png) **mk4** (after hi-res fix at 0.7)(高清修复比率0.7) *hathatsune miku, seaside, shinny eyes, medium breasts, garden, ocean, seawind, soft sunset, beauty, beach shoes, short dress* ![14984-1376419686.png](https://s3.amazonaws.com/moonup/production/uploads/1675502762046-6384c33038f4aec99c4a7483.png) **mk4** (after hi-res fix at 0.7)(高清修复比率0.7) *miku, seaside, shinny eyes, medium breasts, bikini, bare feet, (surfing), (on 1_surfing_board), wave, seawind, wet body, liquid on cloth, see through* ![15109-405782135.png](https://s3.amazonaws.com/moonup/production/uploads/1675515873124-6384c33038f4aec99c4a7483.png) # Usage(使用方法) Use as normal stable diffusion model package v1.x, no external yaml config is needed. **Recommand settings: Steps: 9-28, Sampler: DPM++ SDE Karras, CFG scale: 5-16, Denoising strength: 0.6-0.7, Hires upscale: 2, Hires upscaler: Latent** 用作正常的稳定扩散模型包v1.x,无需额外的YAML配置文件。 **推荐设置:迭代步数:9-28,采样器:DPM++ SDE Karras,提示词相关性:5-16,去噪强度:0.6-0.7,高清修复放大倍率:2,高清修复放大器:Latent** # Tags(描述词) Positives as you like, maybe less quality words works better. You can get inspirations from upper descriptions. **Negatives better to use the basic prompts, or just replace as bad_prompt embedding.** **Negatives Example:** *(bad_prompt), cleavage, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artists name* 正面填写你喜欢的描述词,也许更少的质量描述词能使其工作的更好。你可以在上面的预览图描述词中得到灵感。 **负面描述词最好用基本负面,或者简单的把它们替换成bad_prompt这个嵌入模型。** **负面描述词示例:** *(bad_prompt), cleavage, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artists name* **Use "blue eyes black middle" description can get huge improvement on pupil at low resolution! Colors can change as your preferance.** **使用"blue eyes black middle"这样子的描述词可在低分辨率下极大的改善对瞳孔的描绘!颜色可以改为你喜欢的。** Here are the **better negatives**, thanks andite: *lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts))* 这里是**更好的负面描述词**,谢谢andite:*lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts))* From NovelAI 中文频道, I got some **even better negative prompts**. That is it, *EasyNegative, paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, extra fingers, fewer fingers, strange fingers, ((bad hand)), Hand grip, (lean), Extra ears, (Four ears), Strange eyes, ((Bare nipple)), nsfw, (three arms), Many hands, (Many arms), ((watermarking)), (inaccurate limb:1.2)* Note, it use the **EasyNegative** embbedings, which you need to download manually. It is also a well working filter on nsfw contants. 我在NovelAI 中文频道找到了一些**还要更好的负面描述词**。它们在这里, *EasyNegative, paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, extra fingers, fewer fingers, strange fingers, ((bad hand)), Hand grip, (lean), Extra ears, (Four ears), Strange eyes, ((Bare nipple)), nsfw, (three arms), Many hands, (Many arms), ((watermarking)), (inaccurate limb:1.2)* 注意,它使用了**EasyNegative**这个嵌入模型,你需要手动下载它。这些描述词还能更好的过滤成人内容。 # Bias(不足) **Notice:** Definitely important to enable the **Hires.fix**, especially on the **mk5 and mk6**. Or low quality images will be generated!!! **注意:** 启用**高清修复**至关重要,特别是在**mk5和mk6**上。不然会产生低质量图片!!! **include nsfw contents due to its original models!** **DO NOT USE your generated pictures for Pirate human artists or any Internet Violence! Such as on Bilibili or Youtube.** Sometimes long necks appear. Still hazy a bit. Under some theme will produce wrong skin gloss. Sometimes overfitting. Often produce Unhuman Size Breasts girl pictures unless use cleavage tag in negative. **含有成人内容,由于其原始模型本身的不足!** **请勿把你用本模型生成的图像用于嘲讽人类画师或者其他任何形式的网络暴力!例如在Bilibili或者Youtube上。** 有时会生成过长的脖子。仍然有点模糊。在某些特定场景会产生错误的皮肤光泽。有时生成的图像会过拟合训练集内版权图片。经常会生成非人类大小的乳房(USB)的女性图片,除非在负面描述词中使用cleavage这个标签。 # Formula(融合配方) **Round1** animefull-latest(NovelAI)+64in1(Private, from a Chinese AI community NovelAI 中文频道) sum rate0.4 **Round2** ()+AbyssOrangemix2_nsfw(WarriorMama777) sum rate0.2 After baked in vae-ft-mse-840000-ema-pruned(StabilityAI) VAE, pruned ema, compressed to FP16, get MergeStove2.5D_mk1. **第一轮** animefull-latest(NovelAI)+64in1(私有,来自中国AI社区NovelAI 中文频道) 加权和模式 比率0.4 **第二轮** ()+AbyssOrangemix2_nsfw(WarriorMama777) 加权和模式 比率0.2 嵌入vae-ft-mse-840000-ema-pruned(StabilityAI)这个VAE模型后,去掉EMA权重,压缩为FP16格式,得到MergeStove2.5D_mk1模型。 **Round3A** MergeStove2.5D_mk1+Anmokomergetest1(Private, from a Chinese AI community NovelAI 中文频道, Download [Anmokomergetest1](https://huggingface.co/LieDeath/Anmokomergetest1).) sum rate0.4 After baked in vae-ft-mse-840000-ema-pruned(StabilityAI) VAE, pruned ema, compressed to FP16, get MergeStove2.5D_mk2. **第三轮A** MergeStove2.5D_mk1+Anmokomergetest1(私有,来自中国AI社区NovelAI 中文频道,下载[Anmokomergetest1](https://huggingface.co/LieDeath/Anmokomergetest1)。) 加权和模式 比率0.4 嵌入vae-ft-mse-840000-ema-pruned(StabilityAI)这个VAE模型后,去掉EMA权重,压缩为FP16格式,得到MergeStove2.5D_mk2模型。 **Round3B** MergeStove2.5D_mk1+uberRealisticPornMer_urpMv11(Civitai, from saftle) sum rate 0.1 After baked in vae-ft-mse-840000-ema-pruned(StabilityAI) VAE, pruned ema, compressed to FP16, get MergeStove2.5D_mk3. **第三轮B** MergeStove2.5D_mk1+uberRealisticPornMer_urpMv11(来自CivitAI的saftle) 加权和模式 比率0.1 嵌入vae-ft-mse-840000-ema-pruned(StabilityAI)这个VAE模型后,去掉EMA权重,压缩为FP16格式,得到MergeStove2.5D_mk3模型。 **Round4B** MergeStove2.5D_mk3+momoko-e(Anonymous) sum rate 0.1 **Round5B** ()+Protogen_V2.2(darkstorm2150) sum rate 0.1 After baked in vae-ft-mse-840000-ema-pruned(StabilityAI) VAE, pruned ema, compressed to FP16, get MergeStove2.5D_mk4. **第四轮B** MergeStove2.5D_mk3+momoko-e(匿名) 加权和模式 比率0.1 **第五轮B** ()+Protogen_V2.2(darkstorm2150) 加权和模式 比率0.1 嵌入vae-ft-mse-840000-ema-pruned(StabilityAI)这个VAE模型后,去掉EMA权重,压缩为FP16格式,得到MergeStove2.5D_mk4模型。 **Round4A** MergeStove2.5D_mk2+chilloutmix_Ni(Civitai, from tasuku) sum rate 0.1 **Round5A** ()+laolei-new-berry-protogen mix(Civitai, from hokono) sum rate 0.1 **Round6A** ()+pastelmix(andite) sum rate 0.05 After baked in vae-ft-mse-840000-ema-pruned(StabilityAI) VAE, pruned ema, get MergeStove2.5D_mk5. **第四轮A** MergeStove2.5D_mk2+chilloutmix_Ni(来自CivitAI的tasuku) 加权和模式 比率0.1 **第五轮A** ()+laolei-new-berry-protogen mix(来自CivitAI的hokono) 加权和模式 比率0.1 **第六轮A** ()+pastelmix(andite) 加权和模式 比率0.05 嵌入vae-ft-mse-840000-ema-pruned(StabilityAI)这个VAE模型后,去掉EMA权重,得到MergeStove2.5D_mk5模型。 **Special:** AbyssOrangemix2_sfw works better at all these above MergeStove2.5D series. Only Round6A works at FP32 mode. **注意:** AbyssOrangemix2_sfw在上面所有的MergeStove2.5D系列融合模型中工作的更好。只有第六轮A使用了FP32融合模式。 **Roundx** Replace AbyssOrangeMix2_nsfw with AbyssOrangeMix2_sfw and Reconstructed mk5 with full FP32, get modelx. **Round7x** modelx+Nothing-V0.3(Chinese, Anonymous) sum rate 0.1 **Round8x** ()+7th_anime_v2_A(syaimu) sum rate 0.1 **Round9x** ()+mdjrny-v4(Anonymous) mbw in4 rate 1 After baked in vae-ft-mse-840000-ema-pruned(StabilityAI) VAE, pruned ema, get MergeStove2.5D_mk6. **第x轮** 把AbyssOrangeMix2_nsfw替换为AbyssOrangeMix2_sfw,然后用全FP32格式重构mk5,得到modelx。 **第七轮x** modelx+Nothing-V0.3(来自中国,匿名) 加权和模式 比率0.1 **第八轮x** ()+7th_anime_v2_A(syaimu) 加权和模式 比率0.1 **第九轮x** ()+mdjrny-v4(Anonymous) MBW插件 仅调整in4层 比率1 嵌入vae-ft-mse-840000-ema-pruned(StabilityAI)这个VAE模型后,去掉EMA权重,得到MergeStove2.5D_mk6模型。
raj-p/bert-finetuned-ner-medical
raj-p
2024-01-20T04:10:51Z
4
2
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-20T03:41:47Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: raj-p/bert-finetuned-ner-medical results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # raj-p/bert-finetuned-ner-medical This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1514 - Validation Loss: 0.2864 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3480, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3065 | 0.2755 | 0 | | 0.1835 | 0.2722 | 1 | | 0.1514 | 0.2864 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
coversia21/RVC_HankAnderson_Detroit
coversia21
2024-01-20T03:47:03Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:dataautogpt3/OpenDalleV1.1", "base_model:adapter:dataautogpt3/OpenDalleV1.1", "license:openrail", "region:us" ]
text-to-image
2024-01-20T03:41:57Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/Hank_Anderson_Detroit_Become_Human.webp base_model: dataautogpt3/OpenDalleV1.1 instance_prompt: null license: openrail --- # RVC_Hank Anderson [Detroit: Become Human] <Gallery /> ## Download model [Download](/coversia21/RVC_HankAnderson_Detroit/tree/main) them in the Files & versions tab.
Blink15/distilbert-base-uncased-lora-text-classification
Blink15
2024-01-20T03:46:23Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-20T03:40:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
wuxiangdan9978/project1
wuxiangdan9978
2024-01-20T03:32:19Z
14
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "conversational", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:finetune:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T03:32:19Z
--- base_model: mistralai/Mixtral-8x7B-v0.1 tags: - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation model-index: - name: Nous-Hermes-2-Mixtral-8x7B-DPO results: [] license: apache-2.0 language: - en --- # Nous Hermes 2 - Mixtral 8x7B - DPO ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/btRmXWMG7PXatTs-u3G85.jpeg) ## Model description Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the [Mixtral 8x7B MoE LLM](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1). The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks. This is the SFT + DPO version of Mixtral Hermes 2, we have also released an SFT only version, for people to find which works best for them, which can be found here: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT ## We are grateful to Together.ai for sponsoring our compute during the many experiments both training Mixtral and working on DPO! # Table of Contents 1. [Example Outputs](#example-outputs) 2. [Benchmark Results](#benchmark-results) - GPT4All - AGIEval - BigBench - Comparison to Mixtral-Instruct 3. [Prompt Format](#prompt-format) 4. [Inference Example Code](#inference-code) 5. [Quantized Models](#quantized-models) ## Example Outputs ### Writing Code for Data Visualization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QJ5RHrOqB5GMP7ZAZ5NTk.png) ### Writing Cyberpunk Psychedelic Poems ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wuKnMlM2HBGdyUFO7mY_H.png) ### Performing Backtranslation to Create Prompts from Input Text ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/QElwK1UI9PQQT6WosXpo1.png) ## Benchmark Results Nous-Hermes 2 on Mixtral 8x7B is a major improvement across the board on the benchmarks below compared to the base Mixtral model, and is the first model to beat the flagship Mixtral Finetune by MistralAI. ## GPT4All: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.5990|± |0.0143| | | |acc_norm|0.6425|± |0.0140| |arc_easy | 0|acc |0.8657|± |0.0070| | | |acc_norm|0.8636|± |0.0070| |boolq | 1|acc |0.8783|± |0.0057| |hellaswag | 0|acc |0.6661|± |0.0047| | | |acc_norm|0.8489|± |0.0036| |openbookqa | 0|acc |0.3440|± |0.0213| | | |acc_norm|0.4660|± |0.0223| |piqa | 0|acc |0.8324|± |0.0087| | | |acc_norm|0.8379|± |0.0086| |winogrande | 0|acc |0.7616|± |0.0120| ``` Average: 75.70 ## AGIEval: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2402|± |0.0269| | | |acc_norm|0.2520|± |0.0273| |agieval_logiqa_en | 0|acc |0.4117|± |0.0193| | | |acc_norm|0.4055|± |0.0193| |agieval_lsat_ar | 0|acc |0.2348|± |0.0280| | | |acc_norm|0.2087|± |0.0269| |agieval_lsat_lr | 0|acc |0.5549|± |0.0220| | | |acc_norm|0.5294|± |0.0221| |agieval_lsat_rc | 0|acc |0.6617|± |0.0289| | | |acc_norm|0.6357|± |0.0294| |agieval_sat_en | 0|acc |0.8010|± |0.0279| | | |acc_norm|0.7913|± |0.0284| |agieval_sat_en_without_passage| 0|acc |0.4806|± |0.0349| | | |acc_norm|0.4612|± |0.0348| |agieval_sat_math | 0|acc |0.4909|± |0.0338| | | |acc_norm|0.4000|± |0.0331| ``` Average: 46.05 ## BigBench: ``` | Task |Version| Metric |Value | |Stderr| |------------------------------------------------|------:|---------------------|-----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|0.6105|± |0.0355| |bigbench_date_understanding | 0|multiple_choice_grade|0.7182|± |0.0235| |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.5736|± |0.0308| |bigbench_geometric_shapes | 0|multiple_choice_grade|0.4596|± |0.0263| | | |exact_str_match |0.0000|± |0.0000| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.3500|± |0.0214| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.2500|± |0.0164| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.5200|± |0.0289| |bigbench_movie_recommendation | 0|multiple_choice_grade|0.3540|± |0.0214| |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.6900|± |0.0103| |bigbench_ruin_names | 0|multiple_choice_grade|0.6317|± |0.0228| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2535|± |0.0138| |bigbench_snarks | 0|multiple_choice_grade|0.7293|± |0.0331| |bigbench_sports_understanding | 0|multiple_choice_grade|0.6744|± |0.0149| |bigbench_temporal_sequences | 0|multiple_choice_grade|0.7400|± |0.0139| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2176|± |0.0117| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1543|± |0.0086| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.5200|± |0.0289| ``` Average: 49.70 # Benchmark Comparison Charts ## GPT4All ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HK6bSbMfxX_qzxReAcJH9.png) ## AGI-Eval ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bs3ZvvEACa5Gm4p1JBsZ4.png) ## BigBench Reasoning Test ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wcceowcVpI12UxliwkOja.png) ## Comparison to Mixtral Instruct: Our benchmarks show gains in many benchmarks against Mixtral Instruct v0.1, on average, beating the flagship Mixtral model. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/7-JtX01p8c4tcgOU28BRJ.png) # Prompt Format Nous Hermes 2 uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. When quantized versions of the model are released, I recommend using LM Studio for chatting with Nous Hermes 2. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box. In LM-Studio, simply select the ChatML Prefix on the settings side pane: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png) # Inference Code Here is example code using HuggingFace Transformers to inference the model (note: even in 4bit, it will require more than 24GB of VRAM) ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MixtralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO', trust_remote_code=True) model = MixtralForCausalLM.from_pretrained( "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` # Quantized Models: ## All sizes of GGUF Quantizations are available here: ### SFT+DPO Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT Only Version - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF (Note: If you have issues with these GGUF's try TheBloke's) ## TheBloke has also quantized Hermes Mixtral in various forms: ### SFT+DPO GGUF: https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GGUF ### SFT GGUF: https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-SFT-GGUF ### SFT+DPO GPTQ: https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ ### SFT GPTQ: https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-SFT-GPTQ ### SFT+DPO AWQ: https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-DPO-AWQ ### SFT AWQ: https://huggingface.co/TheBloke/Nous-Hermes-2-Mixtral-8x7B-SFT-AWQ ## There is also an MLX version available: ### https://huggingface.co/mlx-community/Nous-Hermes-2-Mixtral-8x7B-DPO-4bit ## Exllama2 quants available here: ### https://huggingface.co/qeternity/Nous-Hermes-2-Mixtral-8x7B-SFT-4bpw-h6-exl2 (other sizes available in Qeternity's repos) [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
qnguyen3/quan-1.8b-base
qnguyen3
2024-01-20T03:28:41Z
45
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "base_model:KnutJaegersberg/Qwen-1_8B-Llamafied", "base_model:finetune:KnutJaegersberg/Qwen-1_8B-Llamafied", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T03:26:01Z
--- license: other base_model: KnutJaegersberg/Qwen-1_8B-Llamafied tags: - generated_from_trainer model-index: - name: qwen-1.8b-vi-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) # qwen-1.8b-vi-pt This model is a fine-tuned version of [KnutJaegersberg/Qwen-1_8B-Llamafied](https://huggingface.co/KnutJaegersberg/Qwen-1_8B-Llamafied) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
liwii/output
liwii
2024-01-20T03:24:56Z
9
0
transformers
[ "transformers", "pytorch", "distilbert", "generated_from_trainer", "base_model:line-corporation/line-distilbert-base-japanese", "base_model:finetune:line-corporation/line-distilbert-base-japanese", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-19T09:41:35Z
--- license: apache-2.0 base_model: line-corporation/line-distilbert-base-japanese tags: - generated_from_trainer metrics: - accuracy model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3471 - Accuracy: 0.8672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 306 | 0.3968 | 0.8594 | | 0.4221 | 2.0 | 612 | 0.3889 | 0.8594 | | 0.4221 | 3.0 | 918 | 0.3814 | 0.8594 | | 0.4026 | 4.0 | 1224 | 0.3775 | 0.8594 | | 0.396 | 5.0 | 1530 | 0.3724 | 0.8594 | | 0.396 | 6.0 | 1836 | 0.3707 | 0.8594 | | 0.392 | 7.0 | 2142 | 0.3721 | 0.8594 | | 0.392 | 8.0 | 2448 | 0.3653 | 0.8594 | | 0.3898 | 9.0 | 2754 | 0.3765 | 0.8613 | | 0.3835 | 10.0 | 3060 | 0.3572 | 0.8594 | | 0.3835 | 11.0 | 3366 | 0.3664 | 0.8613 | | 0.3869 | 12.0 | 3672 | 0.3568 | 0.8613 | | 0.3869 | 13.0 | 3978 | 0.3583 | 0.8613 | | 0.3825 | 14.0 | 4284 | 0.3526 | 0.8613 | | 0.3813 | 15.0 | 4590 | 0.3581 | 0.8613 | | 0.3813 | 16.0 | 4896 | 0.3553 | 0.8613 | | 0.3759 | 17.0 | 5202 | 0.3504 | 0.8613 | | 0.3788 | 18.0 | 5508 | 0.3490 | 0.8613 | | 0.3788 | 19.0 | 5814 | 0.3520 | 0.8613 | | 0.3754 | 20.0 | 6120 | 0.3450 | 0.8613 | | 0.3754 | 21.0 | 6426 | 0.3494 | 0.8633 | | 0.3748 | 22.0 | 6732 | 0.3491 | 0.8633 | | 0.3775 | 23.0 | 7038 | 0.3499 | 0.8633 | | 0.3775 | 24.0 | 7344 | 0.3494 | 0.8633 | | 0.3748 | 25.0 | 7650 | 0.3504 | 0.8672 | | 0.3748 | 26.0 | 7956 | 0.3495 | 0.8672 | | 0.3701 | 27.0 | 8262 | 0.3454 | 0.8633 | | 0.3712 | 28.0 | 8568 | 0.3472 | 0.8633 | | 0.3712 | 29.0 | 8874 | 0.3478 | 0.8672 | | 0.3751 | 30.0 | 9180 | 0.3471 | 0.8672 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
jlbaker361/ft-ddpo25
jlbaker361
2024-01-20T03:16:42Z
29
0
diffusers
[ "diffusers", "safetensors", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-19T18:33:02Z
--- {} --- # DDPO trained model num_epochs=15 train_gradient_accumulation_steps=4 sample_num_steps=30 sample_batch_size=4 train_batch_size=4 sample_num_batches_per_epoch=32
xiawei910/poca-SoccerTwos
xiawei910
2024-01-20T03:11:19Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-01-20T03:09:34Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: xiawei910/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DopeorNope/Mistralopithecus-v0.1-10.8B
DopeorNope
2024-01-20T03:03:26Z
60
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:05:44Z
--- license: cc-by-nc-sa-4.0 --- ## Model Details **Model Developers** Seungyoo Lee (DopeorNope) 이 모델은 Mistral Base의 새로운 아키텍쳐이며, 10.7B의 파라미터로 구성되었습니다. (Solar나, 시나트라 베이스 모델이 아닙니다.) 약 1.5B의 토큰으로 pretrain 되었으나, 실험단계로 향후 다시 훈련되어 새롭게 나올 예정입니다. 테스트용으로 올려봅니다. Context length가 32k 까지지원 가능한 모델이며, 향후 더 완벽하게 설계하여 올리도록 하겠습니다.
ares1123/gender_classifier
ares1123
2024-01-20T03:02:33Z
190
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-20T02:49:02Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8478260636329651 --- # Age Classifier ## Example Images #### Female ![Female](images/female.jpg) #### Male ![Male](images/male.jpg)
baltop/cdp_600
baltop
2024-01-20T02:52:45Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "region:us" ]
null
2024-01-20T02:52:28Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0
jhiggs/tim-robinson
jhiggs
2024-01-20T02:37:34Z
4
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-03T22:39:26Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: A photo of <s0><s1> itysl a man in a yellow shirt and black jacket output: url: image-0.png - text: A photo of <s0><s1> itysl a man wearing a black jacket output: url: image-1.png - text: A photo of <s0><s1> itysl a man in a red suit and tie is standing in front of a colorful background output: url: image-2.png - text: A photo of <s0><s1> itysl a man with a white shirt and a black jacket output: url: image-3.png - text: A photo of <s0><s1> itysl a man in a blue shirt sitting at a desk output: url: image-4.png - text: A photo of <s0><s1> itysl a man with a tie on output: url: image-5.png - text: A photo of <s0><s1> itysl a man with a mustache output: url: image-6.png - text: A photo of <s0><s1> itysl a man in a checkered shirt holding a red ball output: url: image-7.png - text: A photo of <s0><s1> itysl a man holding a box of wine in front of him output: url: image-8.png - text: A photo of <s0><s1> itysl a man sitting at a desk output: url: image-9.png - text: A photo of <s0><s1> itysl a man sitting at a desk output: url: image-10.png - text: A photo of <s0><s1> itysl a man with a blue shirt output: url: image-11.png - text: A photo of <s0><s1> itysl a man wearing a white shirt output: url: image-12.png - text: A photo of <s0><s1> itysl a man with a smile on his face output: url: image-13.png - text: A photo of <s0><s1> itysl a man in a plaid shirt standing in front of a wall output: url: image-14.png - text: A photo of <s0><s1> itysl a man holding his head with both hands output: url: image-15.png - text: A photo of <s0><s1> itysl a man with a sad face looking at something output: url: image-16.png - text: A photo of <s0><s1> itysl a man in a suit and tie making a gesture output: url: image-17.png - text: A photo of <s0><s1> itysl a man in a car output: url: image-18.png - text: A photo of <s0><s1> itysl a man in a black jacket and white shirt standing in an office output: url: image-19.png - text: A photo of <s0><s1> itysl a man in a black jacket and blue shirt smiling output: url: image-20.png - text: A photo of <s0><s1> itysl a man in glasses and a polo shirt output: url: image-21.png - text: A photo of <s0><s1> itysl a man in a jacket and a tie output: url: image-22.png - text: A photo of <s0><s1> itysl a man in a suit standing in front of a window output: url: image-23.png - text: A photo of <s0><s1> itysl a man holding a pizza output: url: image-24.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> itysl license: openrail++ --- # SDXL LoRA DreamBooth - jhiggs/tim-robinson <Gallery /> ## Model description ### These are jhiggs/tim-robinson LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`tim-robinson.safetensors` here 💾](/jhiggs/tim-robinson/blob/main/tim-robinson.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:tim-robinson:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`tim-robinson_emb.safetensors` here 💾](/jhiggs/tim-robinson/blob/main/tim-robinson_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `tim-robinson_emb` to your prompt. For example, `A photo of tim-robinson_emb itysl` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jhiggs/tim-robinson', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='jhiggs/tim-robinson', filename='tim-robinson_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('A photo of <s0><s1> itysl').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/jhiggs/tim-robinson/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Chen311/Model_1.5
Chen311
2024-01-20T02:09:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-10-29T01:07:15Z
--- license: creativeml-openrail-m ---
Tillmandev/LunarLander10m
Tillmandev
2024-01-20T01:52:34Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-16T12:04:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.15 +/- 17.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ntc-ai/SDXL-LoRA-slider.in-a-hot-air-balloon-race
ntc-ai
2024-01-20T01:22:27Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-20T01:22:24Z
--- language: - en thumbnail: "images/evaluate/in a hot air balloon race.../in a hot air balloon race_17_3.0.png" widget: - text: in a hot air balloon race output: url: images/in a hot air balloon race_17_3.0.png - text: in a hot air balloon race output: url: images/in a hot air balloon race_19_3.0.png - text: in a hot air balloon race output: url: images/in a hot air balloon race_20_3.0.png - text: in a hot air balloon race output: url: images/in a hot air balloon race_21_3.0.png - text: in a hot air balloon race output: url: images/in a hot air balloon race_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "in a hot air balloon race" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - in a hot air balloon race (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/in a hot air balloon race_17_-3.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_17_0.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_17_3.0.png" width=256 height=256 /> | | <img src="images/in a hot air balloon race_19_-3.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_19_0.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_19_3.0.png" width=256 height=256 /> | | <img src="images/in a hot air balloon race_20_-3.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_20_0.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` in a hot air balloon race ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.in-a-hot-air-balloon-race', weight_name='in a hot air balloon race.safetensors', adapter_name="in a hot air balloon race") # Activate the LoRA pipe.set_adapters(["in a hot air balloon race"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, in a hot air balloon race" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
zelihami/nlpfinalbert0
zelihami
2024-01-20T01:22:09Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:dbmdz/bert-base-turkish-128k-uncased", "base_model:finetune:dbmdz/bert-base-turkish-128k-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-20T00:33:12Z
--- license: mit base_model: dbmdz/bert-base-turkish-128k-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: nlpfinalbert0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nlpfinalbert0 This model is a fine-tuned version of [dbmdz/bert-base-turkish-128k-uncased](https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3191 - Accuracy: 0.88 - F1: 0.8349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
RatanRohith/NeuralMathChat-7B-V0.2
RatanRohith
2024-01-20T01:17:19Z
1,362
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Q-bert/MetaMath-Cybertron-Starling", "Intel/neural-chat-7b-v3-3", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T01:13:32Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Q-bert/MetaMath-Cybertron-Starling - Intel/neural-chat-7b-v3-3 --- # NeuralMathChat-7B-V0.2 NeuralMathChat-7B-V0.2 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co/Q-bert/MetaMath-Cybertron-Starling) * [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) ## 🧩 Configuration ```yaml slices: - sources: - model: Q-bert/MetaMath-Cybertron-Starling layer_range: [0, 32] - model: Intel/neural-chat-7b-v3-3 layer_range: [0, 32] merge_method: slerp base_model: Q-bert/MetaMath-Cybertron-Starling parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
thrunlab/Mistral-7B-v0.1_colaMistral_scratch_cola
thrunlab
2024-01-20T00:59:07Z
9
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-20T00:40:54Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy - matthews_correlation base_model: mistralai/Mistral-7B-v0.1 model-index: - name: Mistral-7B-v0.1_colaMistral_scratch_cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.1_colaMistral_scratch_cola This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4281 - Accuracy: {'accuracy': 0.8387850467289719} - Matthews Correlation: 0.6114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 2 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------:| | 1.9322 | 0.17 | 20 | 1.5215 | {'accuracy': 0.5743048897411314} | 0.0818 | | 1.1953 | 0.33 | 40 | 0.9950 | {'accuracy': 0.660594439117929} | 0.1870 | | 0.6611 | 0.5 | 60 | 0.7549 | {'accuracy': 0.7353787152444871} | 0.3527 | | 0.6165 | 0.66 | 80 | 0.6317 | {'accuracy': 0.7583892617449665} | 0.4081 | | 0.5467 | 0.83 | 100 | 0.5667 | {'accuracy': 0.7842761265580057} | 0.5041 | | 0.4864 | 1.0 | 120 | 0.5268 | {'accuracy': 0.7996164908916586} | 0.5385 | | 0.478 | 1.16 | 140 | 0.4803 | {'accuracy': 0.8283796740172579} | 0.5859 | | 0.439 | 1.33 | 160 | 0.4965 | {'accuracy': 0.8293384467881112} | 0.5818 | | 0.4395 | 1.49 | 180 | 0.4669 | {'accuracy': 0.8283796740172579} | 0.5778 | | 0.4202 | 1.66 | 200 | 0.5002 | {'accuracy': 0.825503355704698} | 0.6192 | | 0.3485 | 1.83 | 220 | 0.4360 | {'accuracy': 0.8389261744966443} | 0.6099 | | 0.442 | 1.99 | 240 | 0.4391 | {'accuracy': 0.840843720038351} | 0.6121 | | 0.3752 | 2.16 | 260 | 0.4306 | {'accuracy': 0.8446788111217641} | 0.6474 | | 0.3013 | 2.32 | 280 | 0.4163 | {'accuracy': 0.8427612655800575} | 0.6216 | | 0.3395 | 2.49 | 300 | 0.4151 | {'accuracy': 0.8542665388302972} | 0.6592 | | 0.3305 | 2.66 | 320 | 0.4096 | {'accuracy': 0.8475551294343241} | 0.6299 | | 0.342 | 2.82 | 340 | 0.4101 | {'accuracy': 0.8465963566634708} | 0.6322 | | 0.3183 | 2.99 | 360 | 0.4166 | {'accuracy': 0.8494726749760306} | 0.6364 | | 0.2551 | 3.15 | 380 | 0.4321 | {'accuracy': 0.8542665388302972} | 0.6503 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
UAEpro/whisper-small-ar-2
UAEpro
2024-01-20T00:42:47Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ar", "dataset:mozilla-foundation/common_voice_16_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-15T20:58:48Z
--- language: - ar license: apache-2.0 base_model: uaepro/whisper-small-ar-2 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Small ar - majed test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_16_0 config: ar split: test args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 168.22177271055537 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small ar - majed test This model is a fine-tuned version of [uaepro/whisper-small-ar-2](https://huggingface.co/uaepro/whisper-small-ar-2) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3392 - Wer: 168.2218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1459 | 0.41 | 1000 | 0.3714 | 182.4752 | | 0.1378 | 0.82 | 2000 | 0.3486 | 177.9993 | | 0.0738 | 1.24 | 3000 | 0.3513 | 184.2939 | | 0.0855 | 1.65 | 4000 | 0.3392 | 168.2218 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0
jdang/openhermes-mistral-dpo-gptq
jdang
2024-01-20T00:35:18Z
0
0
null
[ "tensorboard", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "base_model:finetune:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-01-12T17:05:27Z
--- license: apache-2.0 base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ tags: - trl - dpo - generated_from_trainer model-index: - name: openhermes-mistral-dpo-gptq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openhermes-mistral-dpo-gptq This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6104 - Rewards/chosen: -0.0458 - Rewards/rejected: -0.4535 - Rewards/accuracies: 0.6875 - Rewards/margins: 0.4077 - Logps/rejected: -390.3771 - Logps/chosen: -149.5892 - Logits/rejected: -1.3692 - Logits/chosen: -1.4352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6865 | 0.01 | 10 | 0.6792 | -0.0093 | -0.0078 | 0.6875 | -0.0015 | -385.9200 | -149.2238 | -1.3698 | -1.4189 | | 0.6882 | 0.01 | 20 | 0.6660 | -0.0137 | -0.0526 | 0.625 | 0.0389 | -386.3681 | -149.2680 | -1.3729 | -1.4240 | | 0.6391 | 0.01 | 30 | 0.6446 | 0.0000 | -0.1131 | 0.625 | 0.1131 | -386.9731 | -149.1310 | -1.3737 | -1.4292 | | 0.639 | 0.02 | 40 | 0.6271 | -0.0337 | -0.2758 | 0.6875 | 0.2421 | -388.6000 | -149.4686 | -1.3729 | -1.4342 | | 0.6533 | 0.03 | 50 | 0.6104 | -0.0458 | -0.4535 | 0.6875 | 0.4077 | -390.3771 | -149.5892 | -1.3692 | -1.4352 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
arielogg/t5-small-finetuned-en-to-fr
arielogg
2024-01-20T00:29:44Z
45
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-19T22:16:43Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: arielogg/t5-small-finetuned-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # arielogg/t5-small-finetuned-en-to-fr This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1390 - Validation Loss: 0.9577 - Train Bleu: 35.5719 - Train Gen Len: 29.4217 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 1.1390 | 0.9577 | 35.5719 | 29.4217 | 0 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/WinterGoddess-1.4x-70B-L2-3.5bpw-h6-exl2
LoneStriker
2024-01-20T00:24:49Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T00:08:10Z
--- license: cc-by-nc-4.0 language: - en --- Winter Goddess - A 70B L2 Model for General use, or for Roleplay. I wanted a Smart Model that is Capable of following Instructions, while being able to (e)RP effectively. Sort of like 1.3, but better. I merged some models as a base, and had tuned on top of it afterwards. I personally think this mogs Euryale 1.3, but ymmv. *** For Transparency's Sake: Models Used: <br> Platypus2-70B-instruct <br> Lila-70B <br> SunsetBoulevard (at roughly 0.1 weight, boosting coherency) <br> Private De-alignment LoRA on top. why does it show mergekit in the safetensors.index metadata? -> I used DARE method to merge the 3 models. Then Axolotl qLoRA. then used lora-merge, copying the files of the base merged model because they didn't save to the new one, only the .safetensor files got saved. *** Prompt Format - Alpaca ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` *** <br> 42. A 25-year-old female has been struck in the right eye with a pipe. She has a ruptured right globe, an orbital fracture and no other obvious injury. You should bandage: <br> A) The right eye tightly <br> B) Both eyes loosely <br> C) The right eye loosely <br> D) Both eyes tightly
mu0gum/AIFT-42dot_LLM-PLM-1.3B-ao-instruct-all-v0.52
mu0gum
2024-01-20T00:17:38Z
59
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T16:44:20Z
--- license: cc-by-nc-4.0 --- # AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.52 베이스 모델 : 42dot/42dot_LLM-PLM-1.3B 학습 데이터 : 자체 제작한 Open Orca 스타일 데이터셋 약 28,000건 (데이터 수량 조정) 학습 방법 : Full finetuning ## ko-lm-evaluation-harness(0-shot) |kobest_boolq|kobest_copa|kobest_hellaswag|kobest_sentineg|kohatespeech|kohatespeech_apeach|kohatespeech_gen_bias|korunsmile|nsmc|pawsx_ko| |--|--|--|--|--|--|--|--|--|--| |0.5826210826210826|0.68|0.436|0.7758186397984886|0.2908704883227176|0.5082228116710875|0.14225053078556263|0.39027300210119553|0.65938|0.513| ## Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
segolilylabs/Lily-Cybersecurity-7B-v0.2-GGUF
segolilylabs
2024-01-20T00:01:19Z
3,243
16
null
[ "gguf", "cybersecurity", "cyber security", "hacking", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-12T02:13:04Z
--- license: apache-2.0 tags: - cybersecurity - cyber security - hacking language: - en --- My attempt at making GGUF versions of <a href= "https://huggingface.co/segolilylabs/Lily-Cybersecurity-7B-v0.2">segolilylabs/Lily-Cybersecurity-7B-v0.2</a>
arnavgrg/phi2-adapter-test
arnavgrg
2024-01-19T23:56:52Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "region:us" ]
null
2024-01-19T23:56:22Z
--- library_name: peft base_model: microsoft/phi-2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
brishtiteveja/bangla-llama-7b-base-v0.1
brishtiteveja
2024-01-19T23:56:22Z
4
0
peft
[ "peft", "pytorch", "llama", "arxiv:1910.09700", "base_model:unsloth/llama-2-7b", "base_model:adapter:unsloth/llama-2-7b", "region:us" ]
null
2024-01-19T23:47:21Z
--- library_name: peft base_model: unsloth/llama-2-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
LoneStriker/WinterGoddess-1.4x-70B-L2-6.0bpw-h6-exl2
LoneStriker
2024-01-19T23:52:55Z
3
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T23:24:42Z
--- license: cc-by-nc-4.0 language: - en --- Winter Goddess - A 70B L2 Model for General use, or for Roleplay. I wanted a Smart Model that is Capable of following Instructions, while being able to (e)RP effectively. Sort of like 1.3, but better. I merged some models as a base, and had tuned on top of it afterwards. I personally think this mogs Euryale 1.3, but ymmv. *** For Transparency's Sake: Models Used: <br> Platypus2-70B-instruct <br> Lila-70B <br> SunsetBoulevard (at roughly 0.1 weight, boosting coherency) <br> Private De-alignment LoRA on top. why does it show mergekit in the safetensors.index metadata? -> I used DARE method to merge the 3 models. Then Axolotl qLoRA. then used lora-merge, copying the files of the base merged model because they didn't save to the new one, only the .safetensor files got saved. *** Prompt Format - Alpaca ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` *** <br> 42. A 25-year-old female has been struck in the right eye with a pipe. She has a ruptured right globe, an orbital fracture and no other obvious injury. You should bandage: <br> A) The right eye tightly <br> B) Both eyes loosely <br> C) The right eye loosely <br> D) Both eyes tightly
Aneeth/zephyr_7k
Aneeth
2024-01-19T23:51:26Z
6
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TheBloke/zephyr-7B-beta-GPTQ", "base_model:adapter:TheBloke/zephyr-7B-beta-GPTQ", "license:mit", "region:us" ]
null
2024-01-17T11:53:37Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: TheBloke/zephyr-7B-beta-GPTQ model-index: - name: zephyr_7k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr_7k This model is a fine-tuned version of [TheBloke/zephyr-7B-beta-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3761 | 0.23 | 100 | 1.1737 | | 0.8147 | 0.46 | 200 | 0.4469 | | 0.3427 | 0.68 | 300 | 0.2869 | | 0.2726 | 0.91 | 400 | 0.2630 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.16.0 - Tokenizers 0.15.0
MaziyarPanahi/Breeze-7B-Instruct-v0_1-GPTQ
MaziyarPanahi
2024-01-19T23:48:46Z
376
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "finetuned", "quantized", "4-bit", "gptq", "pytorch", "zh", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "has_space", "conversational", "base_model:MediaTek-Research/Breeze-7B-Instruct-v0_1", "base_model:finetune:MediaTek-Research/Breeze-7B-Instruct-v0_1" ]
text-generation
2024-01-19T23:46:33Z
--- license: apache-2.0 tags: - finetuned - quantized - 4-bit - gptq - transformers - pytorch - safetensors - mistral - text-generation - zh - en - license:apache-2.0 - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us - has_space model_name: Breeze-7B-Instruct-v0_1-GPTQ base_model: MediaTek-Research/Breeze-7B-Instruct-v0_1 inference: false model_creator: MediaTek-Research pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # Description [MaziyarPanahi/Breeze-7B-Instruct-v0_1-GPTQ](https://huggingface.co/MaziyarPanahi/Breeze-7B-Instruct-v0_1-GPTQ) is a quantized (GPTQ) version of [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) ## How to use ### Install the necessary packages ``` pip install --upgrade accelerate auto-gptq transformers ``` ### Example Python code ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import torch model_id = "MaziyarPanahi/Breeze-7B-Instruct-v0_1-GPTQ" quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=False ) model = AutoGPTQForCausalLM.from_quantized( model_id, use_safetensors=True, device="cuda:0", quantize_config=quantize_config) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.1 ) outputs = pipe("What is a large language model?") print(outputs[0]["generated_text"]) ```
LoneStriker/WinterGoddess-1.4x-70B-L2-4.65bpw-h6-exl2
LoneStriker
2024-01-19T23:05:01Z
7
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:52:48Z
--- license: cc-by-nc-4.0 language: - en --- Winter Goddess - A 70B L2 Model for General use, or for Roleplay. I wanted a Smart Model that is Capable of following Instructions, while being able to (e)RP effectively. Sort of like 1.3, but better. I merged some models as a base, and had tuned on top of it afterwards. I personally think this mogs Euryale 1.3, but ymmv. *** For Transparency's Sake: Models Used: <br> Platypus2-70B-instruct <br> Lila-70B <br> SunsetBoulevard (at roughly 0.1 weight, boosting coherency) <br> Private De-alignment LoRA on top. why does it show mergekit in the safetensors.index metadata? -> I used DARE method to merge the 3 models. Then Axolotl qLoRA. then used lora-merge, copying the files of the base merged model because they didn't save to the new one, only the .safetensor files got saved. *** Prompt Format - Alpaca ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` *** <br> 42. A 25-year-old female has been struck in the right eye with a pipe. She has a ruptured right globe, an orbital fracture and no other obvious injury. You should bandage: <br> A) The right eye tightly <br> B) Both eyes loosely <br> C) The right eye loosely <br> D) Both eyes tightly
LoneStriker/TenyxChat-8x7B-v1-6.0bpw-h6-exl2
LoneStriker
2024-01-19T22:47:12Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "tenyx-fine-tuning", "dpo", "tenyxchat", "conversational", "en", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2401.04088", "arxiv:2306.05685", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T22:32:44Z
--- license: apache-2.0 language: - en library_name: transformers tags: - tenyx-fine-tuning - dpo - tenyxchat datasets: - HuggingFaceH4/ultrafeedback_binarized --- # TenyxChat: Language Model Alignment using Tenyx Fine-tuning Introducing TenyxChat-8x7B-v1, part of our TenyxChat series trained to function as useful assistants through preference tuning, using Tenyx's recently released advanced fine-tuning technology ([VentureBeat article](https://venturebeat.com/ai/tenyx-aims-to-fix-llms-catastrophic-forgetting-problem/)). Our model is trained using the [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) framework on the open-source AI feedback dataset [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). We fine-tune [Mixtral-8x7B-Instruct-v0.1](https://arxiv.org/pdf/2401.04088.pdf) with our proprietary approach ([blog](https://www.tenyx.com/post/forgetting-and-toxicity-in-llms-a-deep-dive-on-fine-tuning-methods), [service](https://www.tenyx.com/fine-tuning)), similar to that of our [7B model](https://huggingface.co/tenyx/TenyxChat-7B-v1), and show an increase in [MT-Bench](https://arxiv.org/abs/2306.05685) scores. Our approach aims to mitigate forgetting in LLMs in a computationally efficient manner, thereby enabling continual fine-tuning capabilities without altering the pre-trained output distribution. TenyxChat-8x7B-v1 was trained using eight A100s (80GB) for about eight hours, with a training setup obtained from HuggingFaceH4 ([GitHub](https://github.com/huggingface/alignment-handbook)). # Model details - Model type: Fine-tuned Mixture Of Expert 8x7B model for chat. - License: Apache 2.0 - Base model: [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - Demo: [spaces/tenyx/TenyxChat-8x7B-v1](https://huggingface.co/spaces/tenyx/TenyxChat-8x7B-v1) ## Usage Our model uses a simple chat template based on Mixtral-8x7B-Instruct-v0.1 . The chat template usage with a Hugging face generation example is shown below. ### Chat Template (Jinja) ```rust {{ bos_token }} {% for message in messages %} {% if message['role'] == 'user' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'system' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'assistant' %} {{ message['content'] + eos_token }} {% endif %} {% endfor %} ``` ### Hugging face Example ```python import torch from transformers import pipeline pipe = pipeline("text-generation", model="tenyx/TenyxChat-8x7B-v1", torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate."}, {"role": "user", "content": "Hi. I would like to make a hotel booking."}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=512, do_sample=False) ``` ### Output ``` <s>[INST]You are a friendly chatbot who always responds in the style of a pirate.[/INST] [INST]Hi. I would like to make a hotel booking.[/INST] Ahoy there, me hearty! Ye wish to make a hotel booking, do ye? Well, let's set sail on this voyage of reservations and see what we can find! What's the name of the port (hotel) and the dates of our journey (check-in and check-out)? I'll do me best to assist ye! ``` # Performance At the time of release (Jan 2024), TenyxChat-8x7B-v1 is the highest-ranked model, only superseded by GPT4, on the MT-Bench evaluation available for download and commercial use. ## MT-Bench MT-Bench is a benchmark made up of 80 high-quality multi-turn questions. These questions fall into eight categories: Writing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, and Humanities. The chat models are rated using GPT-4 on a scale of 1 to 10, with higher values corresponding to better responses. | Model | First Turn | Second Turn | Average | | --- | --- | --- | --- | | GPT-4* | 8.95625 | 9.02500 | 8.990625 | | TenyxChat-8x7B-v1 | 8.63750 | 8.16250 | 8.400000 | | Mixtral (reproduced) | 8.49375 | 8.00000 | 8.246875 | | GPT-3.5-turbo* | 8.07500 | 7.81250 | 7.943750 | *values reported on [lmsys](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) ChatBot Arena ![hexplot.png](assets/hexplot.png) # Limitations TenyxChat-8x7B-v1, like other language models, has its own set of limitations. We haven’t fine-tuned the model explicitly to align with **human** safety preferences. Therefore, it is capable of producing undesirable outputs, particularly when adversarially prompted. From our observation, the model still tends to struggle with tasks that involve reasoning and math questions. In some instances, it might generate verbose or extraneous content. # License TenyxChat-8x7B-v1, similar to Mixtral-8x7B-Instruct-v0.1 , is distributed under the Apache License 2.0. # Citation If you use TenyxChat-8x7B-v1 for your research, cite us as ``` @misc{tenyxchat2024, title={TenyxChat: Language Model Alignment using Tenyx Fine-tuning}, author={Tenyx}, year={2024}, } ```
arun100/whisper-base-hi-3
arun100
2024-01-19T22:46:48Z
60
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:google/fleurs", "base_model:arun100/whisper-base-hi-2", "base_model:finetune:arun100/whisper-base-hi-2", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-19T16:26:54Z
--- license: apache-2.0 base_model: arun100/whisper-base-hi-2 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Base Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs hi_in type: google/fleurs config: hi_in split: test args: hi_in metrics: - name: Wer type: wer value: 27.72060783790989 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Hindi This model is a fine-tuned version of [arun100/whisper-base-hi-2](https://huggingface.co/arun100/whisper-base-hi-2) on the google/fleurs hi_in dataset. It achieves the following results on the evaluation set: - Loss: 0.4468 - Wer: 27.7206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4805 | 33.0 | 250 | 0.4868 | 30.4186 | | 0.3559 | 66.0 | 500 | 0.4417 | 29.0909 | | 0.2655 | 99.0 | 750 | 0.4307 | 28.2165 | | 0.1987 | 133.0 | 1000 | 0.4350 | 27.8326 | | 0.1472 | 166.0 | 1250 | 0.4468 | 27.7206 | | 0.1061 | 199.0 | 1500 | 0.4640 | 28.0992 | | 0.0767 | 233.0 | 1750 | 0.4835 | 28.5737 | | 0.0541 | 266.0 | 2000 | 0.5032 | 28.6857 | | 0.0396 | 299.0 | 2250 | 0.5202 | 28.7763 | | 0.03 | 333.0 | 2500 | 0.5353 | 29.2029 | | 0.0237 | 366.0 | 2750 | 0.5479 | 28.9096 | | 0.0195 | 399.0 | 3000 | 0.5587 | 28.9096 | | 0.0163 | 433.0 | 3250 | 0.5683 | 28.9469 | | 0.014 | 466.0 | 3500 | 0.5767 | 29.1336 | | 0.0121 | 499.0 | 3750 | 0.5838 | 29.3415 | | 0.0108 | 533.0 | 4000 | 0.5900 | 29.2775 | | 0.01 | 566.0 | 4250 | 0.5951 | 29.6081 | | 0.0093 | 599.0 | 4500 | 0.5988 | 29.4855 | | 0.0088 | 633.0 | 4750 | 0.6012 | 29.5281 | | 0.0087 | 666.0 | 5000 | 0.6020 | 29.4268 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
LegoClipStars/River_Kendall_RH
LegoClipStars
2024-01-19T22:46:27Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:dataautogpt3/OpenDalleV1.1", "base_model:adapter:dataautogpt3/OpenDalleV1.1", "license:cc-by-4.0", "region:us" ]
text-to-image
2024-01-19T22:45:08Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: NEFT parameters: negative_prompt: High school student output: url: images/5b7538c2190e21a3a865cbe703015bd6.jpg base_model: dataautogpt3/OpenDalleV1.1 instance_prompt: Please spare me license: cc-by-4.0 --- # River_Kendall_Rainbow_High <Gallery /> ## Model description Here&#39;s my RVC voice model of River Kendall from Rainbow High ## Trigger words You should use `Please spare me` to trigger the image generation. ## Download model [Download](/LegoClipStars/River_Kendall_RH/tree/main) them in the Files & versions tab.
RiverTest/RiverMTG20
RiverTest
2024-01-19T22:46:01Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:RiverTest/RiverMTG15", "base_model:adapter:RiverTest/RiverMTG15", "region:us" ]
null
2024-01-19T22:45:55Z
--- library_name: peft base_model: RiverTest/RiverMTG15 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Kooten/WinterGoddess-1.4x-70B-L2-IQ2-GGUF
Kooten
2024-01-19T22:44:15Z
8
1
null
[ "gguf", "en", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-01-19T19:58:51Z
--- license: cc-by-nc-4.0 language: - en --- # WinterGoddess-1.4x-70B-L2 IQ2-GGUF ## Description IQ2-GGUF quants of [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2) Unlike regular GGUF quants this uses important matrix similar to Quip# to keep the quant from degrading too much even at 2bpw allowing you to run larger models on less powerful machines. ***NOTE:*** Currently you will need experimental branches of Koboldcpp or Ooba for this to work. - Nexesenex have compiled Windows binaries [HERE](https://github.com/Nexesenex/kobold.cpp/releases/tag/v1.55.1_b1842) - [llamacpp_0.2.29 branch](https://github.com/oobabooga/text-generation-webui/tree/llamacpp_0.2.29) of Ooba also works [More info about IQ2](https://github.com/ggerganov/llama.cpp/pull/4897) # Models Models: [IQ2-XS](https://huggingface.co/Kooten/WinterGoddess-1.4x-70B-L2-IQ2-GGUF/blob/main/WinterGoddess-1.4x-70B-L2-IQ2_XS.gguf), [IQ2-XXS](https://huggingface.co/Kooten/WinterGoddess-1.4x-70B-L2-IQ2-GGUF/blob/main/WinterGoddess-1.4x-70B-L2-IQ2_XXS.gguf) Regular GGUF Quants: [Here](https://huggingface.co/TheBloke/WinterGoddess-1.4x-70B-L2-GGUF) ## Prompt Format ### Alpaca: ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` ## Contact Kooten on discord
ImadSaddik/SME_EN_Ludwig_0_9_1
ImadSaddik
2024-01-19T22:41:36Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "region:us" ]
null
2023-12-29T21:38:52Z
--- library_name: peft base_model: HuggingFaceH4/zephyr-7b-beta --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
ruslanmv/TensorFlowTTS
ruslanmv
2024-01-19T22:39:55Z
0
1
null
[ "TensorFlowTTS", "audio", "text-to-speech", "text-to-mel", "eng", "dataset:LJSpeech", "arxiv:1905.09263", "license:apache-2.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - TensorFlowTTS - audio - text-to-speech - text-to-mel language: eng license: apache-2.0 datasets: - LJSpeech widget: - text: "How are you?" --- This repository provides a pretrained [FastSpeech](https://arxiv.org/abs/1905.09263) trained on LJSpeech dataset (ENG). For a detail of the model, we encourage you to read more about [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS). ## Install TensorFlowTTS First of all, please install TensorFlowTTS with the following command: ``` pip install TensorFlowTTS ``` ### Converting your Text to Mel Spectrogram ```python import numpy as np import soundfile as sf import yaml import tensorflow as tf from tensorflow_tts.inference import AutoProcessor from tensorflow_tts.inference import TFAutoModel processor = AutoProcessor.from_pretrained("ruslanmv/tensorflowtts") fastspeech = TFAutoModel.from_pretrained("ruslanmv/tensorflowtts") text = "How are you?" input_ids = processor.text_to_sequence(text) mel_before, mel_after, duration_outputs = fastspeech.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), ) ```
coversia21/RVC_ComoTanMuchachos
coversia21
2024-01-19T22:39:18Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:dataautogpt3/OpenDalleV1.1", "base_model:adapter:dataautogpt3/OpenDalleV1.1", "license:openrail", "region:us" ]
text-to-image
2024-01-19T22:34:55Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/muchacho.webp base_model: dataautogpt3/OpenDalleV1.1 instance_prompt: null license: openrail --- # RVC_ComoTanMuchachos <Gallery /> ## Download model [Download](/coversia21/RVC_ComoTanMuchachos/tree/main) them in the Files & versions tab.
ib1368/ppo-CartPole-v1-scratch
ib1368
2024-01-19T22:32:19Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-19T22:30:52Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -161.68 +/- 83.93 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'ib1368/ppo-CartPole-v1-scratch' 'batch_size': 512 'minibatch_size': 128} ```
pervision/enchantimalistic
pervision
2024-01-19T22:31:37Z
0
0
adapter-transformers
[ "adapter-transformers", "en", "ru", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
null
2024-01-19T22:30:23Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts language: - en - ru metrics: - character - bleurt library_name: adapter-transformers ---
mitultiwari/llama2_instruct_generation
mitultiwari
2024-01-19T22:30:20Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:NousResearch/Llama-2-7b-hf", "base_model:adapter:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2024-01-19T22:30:02Z
--- library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: NousResearch/Llama-2-7b-hf model-index: - name: llama2_instruct_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2_instruct_generation This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.6726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9665 | 0.0 | 20 | 1.8063 | | 1.9337 | 0.01 | 40 | 1.7776 | | 1.9031 | 0.01 | 60 | 1.7639 | | 1.8382 | 0.01 | 80 | 1.7524 | | 1.8221 | 0.01 | 100 | 1.7358 | | 1.8198 | 0.02 | 120 | 1.7104 | | 1.8309 | 0.02 | 140 | 1.7001 | | 1.8521 | 0.02 | 160 | 1.6942 | | 1.8176 | 0.02 | 180 | 1.6924 | | 1.8142 | 0.03 | 200 | 1.6897 | | 1.7262 | 0.03 | 220 | 1.6878 | | 1.7024 | 0.03 | 240 | 1.6862 | | 1.8898 | 0.04 | 260 | 1.6845 | | 1.7862 | 0.04 | 280 | 1.6825 | | 1.8654 | 0.04 | 300 | 1.6832 | | 1.7961 | 0.04 | 320 | 1.6795 | | 1.86 | 0.05 | 340 | 1.6784 | | 1.846 | 0.05 | 360 | 1.6793 | | 1.8121 | 0.05 | 380 | 1.6765 | | 1.8124 | 0.05 | 400 | 1.6748 | | 1.8933 | 0.06 | 420 | 1.6744 | | 1.8118 | 0.06 | 440 | 1.6734 | | 1.7212 | 0.06 | 460 | 1.6734 | | 1.8208 | 0.07 | 480 | 1.6727 | | 1.83 | 0.07 | 500 | 1.6726 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/TenyxChat-8x7B-v1-5.0bpw-h6-exl2
LoneStriker
2024-01-19T22:22:16Z
7
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "tenyx-fine-tuning", "dpo", "tenyxchat", "conversational", "en", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2401.04088", "arxiv:2306.05685", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T22:10:33Z
--- license: apache-2.0 language: - en library_name: transformers tags: - tenyx-fine-tuning - dpo - tenyxchat datasets: - HuggingFaceH4/ultrafeedback_binarized --- # TenyxChat: Language Model Alignment using Tenyx Fine-tuning Introducing TenyxChat-8x7B-v1, part of our TenyxChat series trained to function as useful assistants through preference tuning, using Tenyx's recently released advanced fine-tuning technology ([VentureBeat article](https://venturebeat.com/ai/tenyx-aims-to-fix-llms-catastrophic-forgetting-problem/)). Our model is trained using the [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) framework on the open-source AI feedback dataset [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). We fine-tune [Mixtral-8x7B-Instruct-v0.1](https://arxiv.org/pdf/2401.04088.pdf) with our proprietary approach ([blog](https://www.tenyx.com/post/forgetting-and-toxicity-in-llms-a-deep-dive-on-fine-tuning-methods), [service](https://www.tenyx.com/fine-tuning)), similar to that of our [7B model](https://huggingface.co/tenyx/TenyxChat-7B-v1), and show an increase in [MT-Bench](https://arxiv.org/abs/2306.05685) scores. Our approach aims to mitigate forgetting in LLMs in a computationally efficient manner, thereby enabling continual fine-tuning capabilities without altering the pre-trained output distribution. TenyxChat-8x7B-v1 was trained using eight A100s (80GB) for about eight hours, with a training setup obtained from HuggingFaceH4 ([GitHub](https://github.com/huggingface/alignment-handbook)). # Model details - Model type: Fine-tuned Mixture Of Expert 8x7B model for chat. - License: Apache 2.0 - Base model: [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - Demo: [spaces/tenyx/TenyxChat-8x7B-v1](https://huggingface.co/spaces/tenyx/TenyxChat-8x7B-v1) ## Usage Our model uses a simple chat template based on Mixtral-8x7B-Instruct-v0.1 . The chat template usage with a Hugging face generation example is shown below. ### Chat Template (Jinja) ```rust {{ bos_token }} {% for message in messages %} {% if message['role'] == 'user' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'system' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'assistant' %} {{ message['content'] + eos_token }} {% endif %} {% endfor %} ``` ### Hugging face Example ```python import torch from transformers import pipeline pipe = pipeline("text-generation", model="tenyx/TenyxChat-8x7B-v1", torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate."}, {"role": "user", "content": "Hi. I would like to make a hotel booking."}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=512, do_sample=False) ``` ### Output ``` <s>[INST]You are a friendly chatbot who always responds in the style of a pirate.[/INST] [INST]Hi. I would like to make a hotel booking.[/INST] Ahoy there, me hearty! Ye wish to make a hotel booking, do ye? Well, let's set sail on this voyage of reservations and see what we can find! What's the name of the port (hotel) and the dates of our journey (check-in and check-out)? I'll do me best to assist ye! ``` # Performance At the time of release (Jan 2024), TenyxChat-8x7B-v1 is the highest-ranked model, only superseded by GPT4, on the MT-Bench evaluation available for download and commercial use. ## MT-Bench MT-Bench is a benchmark made up of 80 high-quality multi-turn questions. These questions fall into eight categories: Writing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, and Humanities. The chat models are rated using GPT-4 on a scale of 1 to 10, with higher values corresponding to better responses. | Model | First Turn | Second Turn | Average | | --- | --- | --- | --- | | GPT-4* | 8.95625 | 9.02500 | 8.990625 | | TenyxChat-8x7B-v1 | 8.63750 | 8.16250 | 8.400000 | | Mixtral (reproduced) | 8.49375 | 8.00000 | 8.246875 | | GPT-3.5-turbo* | 8.07500 | 7.81250 | 7.943750 | *values reported on [lmsys](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) ChatBot Arena ![hexplot.png](assets/hexplot.png) # Limitations TenyxChat-8x7B-v1, like other language models, has its own set of limitations. We haven’t fine-tuned the model explicitly to align with **human** safety preferences. Therefore, it is capable of producing undesirable outputs, particularly when adversarially prompted. From our observation, the model still tends to struggle with tasks that involve reasoning and math questions. In some instances, it might generate verbose or extraneous content. # License TenyxChat-8x7B-v1, similar to Mixtral-8x7B-Instruct-v0.1 , is distributed under the Apache License 2.0. # Citation If you use TenyxChat-8x7B-v1 for your research, cite us as ``` @misc{tenyxchat2024, title={TenyxChat: Language Model Alignment using Tenyx Fine-tuning}, author={Tenyx}, year={2024}, } ```
afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF
afrideva
2024-01-19T22:21:52Z
71
2
null
[ "gguf", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "en", "es", "ru", "zh", "de", "fr", "th", "ca", "it", "ja", "pl", "eo", "eu", "vi", "fi", "hu", "ar", "nl", "da", "tr", "ko", "he", "id", "cs", "bn", "sv", "base_model:NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2", "base_model:quantized:NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2", "region:us", "conversational" ]
text-generation
2024-01-19T22:11:44Z
--- base_model: NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2 inference: false language: - en - es - ru - zh - de - fr - th - ca - it - ja - pl - eo - eu - vi - fi - hu - ar - nl - da - tr - ko - he - id - cs - bn - sv model_creator: NickyNicky model_name: dolphin-2_6-phi-2_oasst2_chatML_V2 pipeline_tag: text-generation quantized_by: afrideva tags: - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF Quantized GGUF model files for [dolphin-2_6-phi-2_oasst2_chatML_V2](https://huggingface.co/NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2) from [NickyNicky](https://huggingface.co/NickyNicky) | Name | Quant method | Size | | ---- | ---- | ---- | | [dolphin-2_6-phi-2_oasst2_chatml_v2.fp16.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.fp16.gguf) | fp16 | 5.56 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q2_k.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q2_k.gguf) | q2_k | 1.09 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q3_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q3_k_m.gguf) | q3_k_m | 1.49 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q4_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q4_k_m.gguf) | q4_k_m | 1.79 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q5_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q5_k_m.gguf) | q5_k_m | 2.07 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q6_k.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q6_k.gguf) | q6_k | 2.29 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q8_0.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q8_0.gguf) | q8_0 | 2.96 GB | ## Original Model Card: ``` - model fine tune base: cognitivecomputations/dolphin-2_6-phi-2 - sft - flash-attention 2 - loss: 0.85 - steps: 3000 - max_length: 2028 - neftune_noise_alpha: 5 ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/wLDT0cPWHzFtv_HHigCH4.png) Install packages ```Python !python -m pip install --upgrade pip !pip install -q datasets trl peft bitsandbytes sentencepiece wandb !pip install -q accelerate safetensors deepspeed !pip install -q scipy !export CUDA_HOME=/usr/local/cuda-11.8 # !pip install ninja !pip install ninja packaging --upgrade -qqq !MAX_JOBS=4 pip install flash-attn --no-build-isolation -qqq !pip install git+"https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary" -qqq !python -m pip install optimum -qqq ``` Ioad model and generate text ```Python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging, GenerationConfig, TextIteratorStreamer, ) # from attention_sinks import AutoModelForCausalLM import torch model_id = "NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, load_in_4bit=True, low_cpu_mem_usage= True, flash_attn=True, flash_rotary=True, fused_dense=True, ) max_length=2028 print("max_length",max_length) tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast = True, max_length=max_length, trust_remote_code=True,) prompt= """<|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user tengo hambre que me recomiendas<|im_end|> <|im_start|>assistant""" inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).cuda()#.to("cuda") # False # True generation_config = GenerationConfig( max_new_tokens=700, temperature=0.5, top_p=0.9, top_k=45, repetition_penalty=1.15, #1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper do_sample=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, # bos_token_id=tokenizer.eos_token_id, # use_cache=True, # stopping_criteria= StoppingCriteriaList([stopping_criteria]), ) outputs = model.generate(generation_config=generation_config, input_ids=inputs,) # tokenizer.decode(outputs[0], skip_special_tokens=False) #True print(tokenizer.decode(outputs[0], skip_special_tokens=False)) '''OUTPUT: <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user tengo hambre que me recomiendas<|im_end|> <|im_start|>assistant Hay muchos tipos de alimentos que puedes probar si tienes hambre, pero aquí te muestro una lista ordenada por calor: 1- Frutas y verduras: Estas son buena opción para quitar hambre sin agotar tu cuerpo con grandes cantidades de carbohidratos. Algunas frutas y verduras que podrían ser suficientemente altas en calor durante el día incluyen tomates, plátanos, espinacas, papas, nueces, manzanas, limones, guisantes, cucumbers, zanahorias, etc. 2- Proteínas: Estas son importantes para mantener tu masa muscular y fuerzosa durante el día. Algunas proteínas que podrían ser útiles para quitar hambre durante el día incluyen carne, aceite de oliva, miel, yogur, leche fresca o sopa de gorditas, etc. 3- Carbohidratos: Estas son importantes para energizarte durante el día y mantenerte físico. Algunas frutas y verduras que podrían ser útiles para quitar hambre durante el día incluyen pan, tortillas, roti, arroz, pasta, rice, polenta, cereales, granola, etc. 4- Grains: Estas son importantes para mantenerte satiente durante el día y reducir la frecuencia de comidas rápida. Algunas gromas que podrían ser útiles para quitar hambre durante el día incluyen lentejas, farinas, tortilla, ensalada, etc. 5- Nuts y semolina: Estas son buenas opciones para quitar hambre durante el día sin agotar tu cuerpo con grandes cantidades de azúcar. Algunas frutas y verduras que podrían ser útiles para quitar hambre durante el día incluyen anacardios, almendras, macetas, bocaditos, panquesado, etc. 6- Papel picado: Esta es una opción deliciosa y económica que puedes preparar en caso de quitar hambre durante el día. Para hacer papel picado, primero cortezamos las frutas y verduras que deseas usarlas, y luego cortezamos las frutas y verduras que no deseas usarlas. A continuación, cortezamos las frutas y verduras que deseas usarlas más grandes y que estén más frescas, y luego cortezamos las frutas y verduras ''' ```
nbeerbower/bruphin-gamma
nbeerbower
2024-01-19T22:06:54Z
58
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:jan-hq/supermario-v2", "base_model:merge:jan-hq/supermario-v2", "base_model:nbeerbower/bruphin-beta", "base_model:merge:nbeerbower/bruphin-beta", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T20:19:24Z
--- license: apache-2.0 base_model: - nbeerbower/bruphin-beta - jan-hq/supermario-v2 tags: - mergekit - merge --- # bruphin-gamma This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [nbeerbower/bruphin-beta](https://huggingface.co/nbeerbower/bruphin-beta) * [jan-hq/supermario-v2](https://huggingface.co/jan-hq/supermario-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: nbeerbower/bruphin-beta layer_range: [0, 40] - model: jan-hq/supermario-v2 layer_range: [0, 40] merge_method: slerp base_model: nbeerbower/bruphin-beta parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ```
timuryun/autotrain-xr1bw-vrs40
timuryun
2024-01-19T21:57:56Z
0
0
null
[ "tensorboard", "safetensors", "autotrain", "text-generation", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T21:57:52Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
simpla360/suero
simpla360
2024-01-19T21:13:29Z
0
0
null
[ "region:us" ]
null
2024-01-19T21:08:26Z
<title>Simpla 360 Suero Antiarrugas: Revitaliza tu Piel</title> <h1>Simpla 360 Suero Antiarrugas: Revitaliza tu Piel</h1> Para quienes buscan rejuvenecer su piel, Simpla 360 Suero Antiarrugas es la elección perfecta. Este suero de avanzada, disponible exclusivamente en <a href="https://es.mejornutra.xyz/?target=-7EBNQCgQAAAPZFwMXjAAFAQEREQoRCQoRDUIRDRIAAX9hZGNvbWJvATE&al=94332&subacc=hug"><b>>>>www.simpla360.com<<<</b></a>, está formulado para ofrecer resultados efectivos y visibles en la reducción de arrugas y líneas de expresión. <a href="https://es.mejornutra.xyz/?target=-7EBNQCgQAAAPZFwMXjAAFAQEREQoRCQoRDUIRDRIAAX9hZGNvbWJvATE&al=94332&subacc=hug"><b>>>>IR AL SITIO WEB OFICIAL AQUI<<<</b></a> Con un precio de solo 49 USD, Simpla 360 te ofrece una solución de alta calidad para el cuidado de tu piel. Este suero antiarrugas está enriquecido con ingredientes activos que nutren, hidratan y revitalizan la piel, mejorando su elasticidad y firmeza. Es ideal para todos los tipos de piel y es perfecto para incorporar en tu rutina diaria de cuidado facial. Haz tu pedido en <a href="https://es.mejornutra.xyz/?target=-7EBNQCgQAAAPZFwMXjAAFAQEREQoRCQoRDUIRDRIAAX9hZGNvbWJvATE&al=94332&subacc=hug"><b>>>>www.simpla360.com<<<</b></a> y comienza a experimentar los beneficios de Simpla 360 Suero Antiarrugas. Este suero no solo combate los signos del envejecimiento, sino que también deja tu piel con una apariencia más juvenil y radiante. No esperes más para darle a tu piel el cuidado que se merece. ¡Simpla 360 es tu aliado para una piel hermosa y saludable!
lilianz/dqn-SpaceInvadersNoFrameskip-v4
lilianz
2024-01-19T21:13:17Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-19T21:12:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 627.00 +/- 138.37 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga lilianz -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga lilianz -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga lilianz ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 150000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ
MaziyarPanahi
2024-01-19T21:09:13Z
30
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "finetuned", "quantized", "4-bit", "gptq", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us", "conversational", "base_model:NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "base_model:finetune:NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO" ]
text-generation
2024-01-19T20:56:47Z
--- license: apache-2.0 tags: - finetuned - quantized - 4-bit - gptq - transformers - safetensors - mixtral - text-generation - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation - en - base_model:mistralai/Mixtral-8x7B-v0.1 - license:apache-2.0 - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us model_name: Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO inference: false model_creator: NousResearch pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # Description [MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ](https://huggingface.co/MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ) is a quantized (GPTQ) version of [NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) ## How to use ### Install the necessary packages ``` pip install --upgrade accelerate auto-gptq transformers ``` ### Example Python code ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import torch model_id = "MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ" quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=False ) model = AutoGPTQForCausalLM.from_quantized( model_id, use_safetensors=True, device="cuda:0", quantize_config=quantize_config) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.1 ) outputs = pipe("What is a large language model?") print(outputs[0]["generated_text"]) ```
andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF
andrijdavid
2024-01-19T21:08:30Z
47
0
transformers
[ "transformers", "gguf", "llama", "text-generation", "GGUF", "en", "dataset:cerebras/SlimPajama-627B", "dataset:bigcode/starcoderdata", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T20:58:33Z
--- language: - en license: apache-2.0 tags: - GGUF datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata quantized_by: andrijdavid --- # TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF - Original model: [TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) <!-- description start --> ## Description This repo contains GGUF format model files for [TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF and below it, a specific filename to download, such as: TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: TinyLlama-1.1B-intermediate-step-1431k-3T <div align="center"> # TinyLlama-1.1B </div> https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. <div align="center"> <img src="./TinyLlama_logo.png" width="300"/> </div> We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Collection This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen. #### Eval | Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg | | - | | - | -- | -- | ----- | | Pythia-1.0B | 300B | 47.16 | 31.40 | 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 | | TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80 | 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11 | | TinyLlama-1.1B-intermediate-step-240k-503b | 503B | 49.56 | 31.40 | 55.80 | 26.54 | 48.32 | 56.91 | 69.42 | 48.28 | | TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 | | TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 | | TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 | | TinyLlama-1.1B-intermediate-step-1195k-2.5T | 2.5T | 58.96 | 34.40 | 58.72 | 31.91 | 56.78 | 63.21 | 73.07 | 53.86 | | TinyLlama-1.1B-intermediate-step-1431k-3T | 3T | 59.20 | 36.00 | 59.12 | 30.12 | 55.25 | 57.83 | 73.29 | 52.99 | <!-- original-model-card end -->
rheubanks/llama2_instruct_generation
rheubanks
2024-01-19T21:06:05Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:NousResearch/Llama-2-7b-hf", "base_model:adapter:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2024-01-19T21:05:41Z
--- library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: NousResearch/Llama-2-7b-hf model-index: - name: llama2_instruct_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2_instruct_generation This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.6705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9724 | 0.0 | 20 | 1.8100 | | 1.8173 | 0.01 | 40 | 1.7801 | | 1.8184 | 0.01 | 60 | 1.7671 | | 1.8725 | 0.01 | 80 | 1.7568 | | 1.8967 | 0.01 | 100 | 1.7460 | | 1.8943 | 0.02 | 120 | 1.7172 | | 1.788 | 0.02 | 140 | 1.7045 | | 1.8953 | 0.02 | 160 | 1.6986 | | 1.8262 | 0.02 | 180 | 1.6943 | | 1.8472 | 0.03 | 200 | 1.6926 | | 1.8416 | 0.03 | 220 | 1.6896 | | 1.838 | 0.03 | 240 | 1.6855 | | 1.7743 | 0.04 | 260 | 1.6806 | | 1.8562 | 0.04 | 280 | 1.6785 | | 1.8562 | 0.04 | 300 | 1.6794 | | 1.8117 | 0.04 | 320 | 1.6783 | | 1.8193 | 0.05 | 340 | 1.6768 | | 1.8807 | 0.05 | 360 | 1.6745 | | 1.7641 | 0.05 | 380 | 1.6738 | | 1.7738 | 0.05 | 400 | 1.6735 | | 1.7759 | 0.06 | 420 | 1.6733 | | 1.7089 | 0.06 | 440 | 1.6721 | | 1.7984 | 0.06 | 460 | 1.6706 | | 1.7243 | 0.07 | 480 | 1.6720 | | 1.9205 | 0.07 | 500 | 1.6705 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ayratmsk/distilbert-base-uncased-finetuned-emotion
ayratmsk
2024-01-19T20:27:45Z
89
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T15:40:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9185 - name: F1 type: f1 value: 0.9187183032682423 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2206 - Accuracy: 0.9185 - F1: 0.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8162 | 1.0 | 250 | 0.3287 | 0.9015 | 0.9002 | | 0.2514 | 2.0 | 500 | 0.2206 | 0.9185 | 0.9187 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Lerik/cat_vs_dog_recognition
Lerik
2024-01-19T20:23:08Z
0
0
fastai
[ "fastai", "image-classification", "en", "license:apache-2.0", "region:us" ]
image-classification
2024-01-18T20:53:58Z
--- license: apache-2.0 language: - en library_name: fastai pipeline_tag: image-classification ---
sddavicillo/wellformedjudge-google
sddavicillo
2024-01-19T20:22:30Z
89
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "classification", "generated_from_trainer", "base_model:google/electra-base-discriminator", "base_model:finetune:google/electra-base-discriminator", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T20:22:09Z
--- license: apache-2.0 base_model: google/electra-base-discriminator tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: wellformedjudge-google results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wellformedjudge-google This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0576 - Accuracy: 0.7605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.059 | 1.0 | 2188 | 0.0578 | 0.7605 | | 0.0373 | 2.0 | 4376 | 0.0552 | 0.7605 | | 0.0216 | 3.0 | 6564 | 0.0576 | 0.7605 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF
andrijdavid
2024-01-19T20:18:29Z
109
1
transformers
[ "transformers", "gguf", "llama", "text-generation", "GGUF", "conversational", "en", "dataset:cerebras/SlimPajama-627B", "dataset:bigcode/starcoderdata", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-01T23:03:49Z
--- language: - en license: apache-2.0 tags: - GGUF datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized widget: - text: '<|system|> You are a chatbot who can help code!</s> <|user|> Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.</s> <|assistant|> ' quantized_by: andrijdavid --- # TinyLlama-1.1B-Chat-v1.0-GGUF - Original model: [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) <!-- description start --> ## Description This repo contains GGUF format model files for [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF and below it, a specific filename to download, such as: TinyLlama-1.1B-Chat-v1.0-f16.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF TinyLlama-1.1B-Chat-v1.0-f16.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download andrijdavid/TinyLlama-1.1B-Chat-v1.0-GGUF TinyLlama-1.1B-Chat-v1.0-f16.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m TinyLlama-1.1B-Chat-v1.0-f16.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./TinyLlama-1.1B-Chat-v1.0-f16.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./TinyLlama-1.1B-Chat-v1.0-f16.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: TinyLlama-1.1B-Chat-v1.0 <div align="center"> # TinyLlama-1.1B </div> https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Model This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4." #### How to use You will need the transformers>=4.34 Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # ... ``` <!-- original-model-card end -->
mitro99/whisper-tiny-polyai-enUS_fewer_epochs
mitro99
2024-01-19T20:16:26Z
60
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-19T20:03:49Z
--- base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-polyai-enUS_fewer_epochs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 metrics: - name: Wer type: wer value: 0.34946871310507677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-polyai-enUS_fewer_epochs This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6145 - Wer Ortho: 0.3800 - Wer: 0.3495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 2.9576 | 3.33 | 50 | 1.9424 | 0.5077 | 0.4050 | | 0.5132 | 6.67 | 100 | 0.6382 | 0.4152 | 0.3684 | | 0.2569 | 10.0 | 150 | 0.5925 | 0.3893 | 0.3554 | | 0.0973 | 13.33 | 200 | 0.6145 | 0.3800 | 0.3495 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
soniox/Soniox-7B-v1.0
soniox
2024-01-19T20:15:16Z
1,379
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-17T09:16:21Z
--- license: apache-2.0 --- # Model Card for Soniox-7B-v1.0 Soniox 7B is a powerful large language model. Supports English and code with 8K context. Matches GPT-4 performance on some benchmarks. Built on top of Mistral 7B, enhanced with additional pre-training and fine-tuning for strong problem-solving capabilities. Apache 2.0 License. For more details, please read our [blog post](https://soniox.com/news/soniox-7B). ## Usage in Transformers The model is available in transformers and can be used as follows: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "soniox/Soniox-7B-v1.0" model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(model_path) device = "cuda" model.to(device) messages = [ {"role": "user", "content": "12 plus 21?"}, {"role": "assistant", "content": "33."}, {"role": "user", "content": "Five minus one?"}, ] tok_prompt = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = tok_prompt.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Inference deployment Refer to our [documentation](https://docs.soniox.com) for inference with vLLM and other deployment options.
castorini/rank_zephyr_7b_v1_full
castorini
2024-01-19T19:54:29Z
2,210
20
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "en", "arxiv:2312.02724", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:52:58Z
--- tags: - generated_from_trainer license: mit language: - en base_model: mistralai/Mistral-7B-v0.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <img src="https://huggingface.co/castorini/rank_zephyr_7b_v1_full/resolve/main/thumbnail.jpeg" alt="RankZephyr Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/> <!-- <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/> --> # Model Card for RankZephyr 7B V1 - Full RankZephyr is a series of language models trained to act as helpful reranking assistants built on the Zephyr-7B-β model. RankZephyr Base is the model that follows single-stage fine-tuning on the RankGPT-3.5 model, while RankZephyr Full is the model that is further fine-tuned on RankGPT-4 reorderings of OpenAI's Ada2 orderings for 5K queries. ## Model description - **Model type:** A 7B parameter GPT-like model initially fine-tuned on a mix of publicly available, synthetic datasets, followed by task-specific listwise reranking data. - **Language(s) (NLP):** Primarily English - **License:** MIT - **Fine-tuned from model:** [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/castorini/rank_llm - **Paper:** https://arxiv.org/abs/2312.02724 ## Effectiveness At the time of release, RankZephyr-7B-Full is the state-of-the-art open-source reranking model on various datasets like DL19/20/21/22 and TREC-COVID and TREC-News. With the MS MARCO v1 collection: | Model | Size | First Stage | DL19 | DL20| |-------------|-----|----|---------------|--------------| | **RankZephyr-7b-v1-full-rho** 🪁 | **7B** | **SPLADE++ ED** | **0.7855** | **0.8255** | | **RankZephyr-7b-v1-full** 🪁 | **7B** | **SPLADE++ ED** | **0.7803** | **0.8211** | | RankGPT-4 (PSC) | -| SPLADE++ ED | 0.7601 | 0.7514 | | RankGPT-4 | -| SPLADE++ ED | 0.7464 | 0.7076 | | **RankZephyr-7b-v1-base** 🪁 | **7B** | **SPLADE++ ED** | **0.7341** | **0.7213** | | RankGPT-3.5 | -| SPLADE++ ED | 0.7504 | 0.7120| More details can be found in the paper. ## Intended uses & limitations The model is to be used in conjunction with the [RankLLM repository](https://github.com/castorini/rank_llm). While `rank-llm` exists as a PyPI package, we are currently in the early stages of development and encourage users to directly check install from source. The original Zephyr model is trained for chat. In our case, RankZephyr is fine-tuned to act as a listwise reranking agent. You provide it with a query and documents and get back a reordered list of document identifiers. ## Bias, Risks, and Limitations The following is an excerpt from the [Zephyr-7B-β model card](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/README.md#bias-risks--limitations): <!-- This section is meant to convey both technical and sociotechnical limitations. --> > Zephyr-7B-β has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. Our model is trained specifically on monolingual English data, effectiveness on multilingual sets is not guaranteed. ## Citation If you find RankZephyr is useful in your work, please cite the following paper: ``` @ARTICLE{pradeep2023rankzephyr, title = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!}, author = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin}, year = {2023}, journal = {arXiv:2312.02724} } ```
Rashik24/tinycoder-15M-instruct
Rashik24
2024-01-19T19:34:59Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Rashik24/tinycoder-15M", "base_model:adapter:Rashik24/tinycoder-15M", "region:us" ]
null
2024-01-19T19:33:49Z
--- library_name: peft base_model: Rashik24/tinycoder-15M --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
wenqiglantz/MistralTrinity-7B-slerp-dpo
wenqiglantz
2024-01-19T19:24:25Z
9
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "instruct", "finetune", "chatml", "synthetic data", "distillation", "dpo", "rlhf", "conversational", "en", "dataset:mlabonne/chatml_dpo_pairs", "base_model:wenqiglantz/MistralTrinity-7B-slerp", "base_model:finetune:wenqiglantz/MistralTrinity-7B-slerp", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:07:41Z
--- base_model: wenqiglantz/MistralTrinity-7B-slerp tags: - mistral - instruct - finetune - chatml - synthetic data - distillation - dpo - rlhf license: apache-2.0 language: - en datasets: - mlabonne/chatml_dpo_pairs --- # MistralTrinity-7B-slerp-dpo Inspired by @mlabonne's blog post [Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac), this model was fine-tuned with DPO (Direct Preference Optimization) on base model `MistralTrinity-7B-slerp`, which is a merged model for `mistralai/Mistral-7B-Instruct-v0.2` and `jan-hq/trinity-v1`, using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. The code to train this model is available on [Google Colab](https://colab.research.google.com/github/wenqiglantz/llmops/blob/main/Fine_tune_MistralTrinity_7B_slerp_with_DPO.ipynb) and [GitHub](https://github.com/wenqiglantz/llmops/blob/main/Fine_tune_MistralTrinity_7B_slerp_with_DPO.ipynb). It required an A100 GPU for over an hour. Check out fine-tuning run details on [Weights & Biases](https://wandb.ai/wenqiglantz/huggingface/runs/sxbgd33f).
ntc-ai/SDXL-LoRA-slider.on-a-ship
ntc-ai
2024-01-19T19:22:16Z
45
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-19T19:22:12Z
--- language: - en thumbnail: "images/evaluate/on a ship.../on a ship_17_3.0.png" widget: - text: on a ship output: url: images/on a ship_17_3.0.png - text: on a ship output: url: images/on a ship_19_3.0.png - text: on a ship output: url: images/on a ship_20_3.0.png - text: on a ship output: url: images/on a ship_21_3.0.png - text: on a ship output: url: images/on a ship_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "on a ship" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - on a ship (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/on a ship_17_-3.0.png" width=256 height=256 /> | <img src="images/on a ship_17_0.0.png" width=256 height=256 /> | <img src="images/on a ship_17_3.0.png" width=256 height=256 /> | | <img src="images/on a ship_19_-3.0.png" width=256 height=256 /> | <img src="images/on a ship_19_0.0.png" width=256 height=256 /> | <img src="images/on a ship_19_3.0.png" width=256 height=256 /> | | <img src="images/on a ship_20_-3.0.png" width=256 height=256 /> | <img src="images/on a ship_20_0.0.png" width=256 height=256 /> | <img src="images/on a ship_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` on a ship ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.on-a-ship', weight_name='on a ship.safetensors', adapter_name="on a ship") # Activate the LoRA pipe.set_adapters(["on a ship"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, on a ship" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2
ewqr2130
2024-01-19T19:21:48Z
1,376
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T19:00:27Z
--- license: apache-2.0 --- ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2---- 7k steps. ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2---- 7k steps. ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2---- 7k steps. ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2---- 7k steps. ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2---- 7k steps. ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2---- 7k steps. ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2---- 7k steps. ewqr2130/alignment-handbook-zephyr-7b-sft-full-dpo-5e7-cont2---- 7k steps.