modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
alexiseeifl/blockassist-bc-fleecy_flapping_pigeon_1757603390
alexiseeifl
2025-09-11T15:09:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fleecy flapping pigeon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:09:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fleecy flapping pigeon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hbfc7671/blockassist-bc-mighty_small_fox_1757603365
hbfc7671
2025-09-11T15:09:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mighty small fox", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:09:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mighty small fox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mehere23/gpt-oss-20b
mehere23
2025-09-11T15:09:24Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "conversational", "arxiv:2508.10925", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "mxfp4", "region:us" ]
text-generation
2025-09-11T15:08:14Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm --- <p align="center"> <img alt="gpt-oss-20b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-20b.svg"> </p> <p align="center"> <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> · <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> · <a href="https://arxiv.org/abs/2508.10925"><strong>Model card</strong></a> · <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> </p> <br> Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of these open models: - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters) - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. > [!NOTE] > This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model. # Highlights * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. * **MXFP4 quantization:** The models were post-trained with MXFP4 quantization of the MoE weights, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory. All evals were performed with the same MXFP4 quantization. --- # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "openai/gpt-oss-20b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: ``` transformers serve transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) ## vLLM vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. ```bash uv pip install --pre vllm==0.10.1+gptoss \ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ --index-strategy unsafe-best-match vllm serve openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) ## PyTorch / Triton To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). ## Ollama If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). ```bash # gpt-oss-20b ollama pull gpt-oss:20b ollama run gpt-oss:20b ``` [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) #### LM Studio If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. ```bash # gpt-oss-20b lms get openai/gpt-oss-20b ``` Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. --- # Download the model You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: ```shell # gpt-oss-20b huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/ pip install gpt-oss python -m gpt_oss.chat model/ ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node. # Citation ```bibtex @misc{openai2025gptoss120bgptoss20bmodel, title={gpt-oss-120b & gpt-oss-20b Model Card}, author={OpenAI}, year={2025}, eprint={2508.10925}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.10925}, } ```
slatinlatrina/blockassist-bc-mammalian_sneaky_prawn_1757603343
slatinlatrina
2025-09-11T15:09:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tame dormant hyena", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:09:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tame dormant hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
HaniBO/test2_gguf
HaniBO
2025-09-11T15:09:11Z
0
0
peft
[ "peft", "safetensors", "gguf", "base_model:adapter:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "lora", "transformers", "text-generation", "conversational", "arxiv:1910.09700", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T14:02:07Z
--- base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/Phi-3-mini-4k-instruct-bnb-4bit - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
jobs-git/Kimi-K2-Instruct-GGUF
jobs-git
2025-09-11T15:08:59Z
0
0
transformers
[ "transformers", "gguf", "deepseek_v3", "text-generation", "unsloth", "custom_code", "base_model:moonshotai/Kimi-K2-Instruct", "base_model:quantized:moonshotai/Kimi-K2-Instruct", "license:other", "autotrain_compatible", "endpoints_compatible", "fp8", "region:us", "conversational" ]
text-generation
2025-09-11T15:08:59Z
--- tags: - unsloth base_model: - moonshotai/Kimi-K2-Instruct license: other license_link: LICENSE.md license_name: modified-mit library_name: transformers --- <div> <p style="margin-bottom: 0; margin-top: 0;"> <strong>Learn how to run Kimi-K2 Dynamic GGUFs - <a href="https://docs.unsloth.ai/basics/kimi-k2">Read our Guide!</a></strong> </p> <p style="margin-top: 0;margin-bottom: 0;"> <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em> </p> <div style="margin-top: 0;display: flex; gap: 5px; align-items: center; "> <a href="https://github.com/unslothai/unsloth/"> <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> </a> <a href="https://discord.gg/unsloth"> <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> </a> <a href="https://docs.unsloth.ai/basics/deepseek-r1-0528-how-to-run-locally"> <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> </a> </div> <h1 style="margin-top: 0rem;">🌙 Kimi K2 Usage Guidelines</h1> </div> - You can now use the latest update of [llama.cpp](https://github.com/ggml-org/llama.cpp) to run the model. - For complete detailed instructions, see our guide: [docs.unsloth.ai/basics/kimi-k2](https://docs.unsloth.ai/basics/kimi-k2) It is recommended to have at least 128GB unified RAM memory to run the small quants. With 16GB VRAM and 256 RAM, expect 5+ tokens/sec. For best results, use any 2-bit XL quant or above. Set the temperature to 0.6 recommended) to reduce repetition and incoherence. --- <div align="center"> <picture> <img src="https://raw.githubusercontent.com/MoonshotAI/Kimi-K2/main/figures/kimi-logo.png" width="30%" alt="Kimi K2: Open Agentic Intellignece"> </picture> </div> <hr> <div align="center" style="line-height:1"> <a href="https://www.kimi.com" target="_blank"><img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-Kimi%20K2-ff6b6b?color=1783ff&logoColor=white"/></a> <a href="https://github.com/moonshotai/Kimi-K2"><img alt="github" src="https://img.shields.io/badge/🤖%20Github-Kimi%20K2-ff6b6b?color=1783ff&logoColor=white"/></a> <a href="https://www.moonshot.ai" target="_blank"><img alt="Homepage" src="https://img.shields.io/badge/Homepage-Moonshot%20AI-white?logo=Kimi&logoColor=white"/></a> </div> <div align="center" style="line-height: 1;"> <a href="https://huggingface.co/moonshotai" target="_blank"><img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Moonshot%20AI-ffc107?color=ffc107&logoColor=white"/></a> <a href="https://twitter.com/kimi_moonshot" target="_blank"><img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-Kimi.ai-white?logo=x&logoColor=white"/></a> <a href="https://discord.gg/TYU2fdJykW" target="_blank"><img alt="Discord" src="https://img.shields.io/badge/Discord-Kimi.ai-white?logo=discord&logoColor=white"/></a> </div> <div align="center" style="line-height: 1;"> <a href="https://github.com/moonshotai/Kimi-K2/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/badge/License-Modified_MIT-f5de53?&color=f5de53"/></a> </div> <p align="center"> <b>📰&nbsp;&nbsp;<a href="https://moonshotai.github.io/Kimi-K2/">Tech Blog</a></b> &nbsp;&nbsp;&nbsp; | &nbsp;&nbsp;&nbsp; <b>📄&nbsp;&nbsp;Paper Link (coming soon)</b> </p> ## 0. Changelog ### 2025.7.15 - We have updated our tokenizer implementation. Now special tokens like `[EOS]` can be encoded to their token ids. - We fixed a bug in the chat template that was breaking multi-turn tool calls. ## 1. Model Introduction Kimi K2 is a state-of-the-art mixture-of-experts (MoE) language model with 32 billion activated parameters and 1 trillion total parameters. Trained with the Muon optimizer, Kimi K2 achieves exceptional performance across frontier knowledge, reasoning, and coding tasks while being meticulously optimized for agentic capabilities. ### Key Features - Large-Scale Training: Pre-trained a 1T parameter MoE model on 15.5T tokens with zero training instability. - MuonClip Optimizer: We apply the Muon optimizer to an unprecedented scale, and develop novel optimization techniques to resolve instabilities while scaling up. - Agentic Intelligence: Specifically designed for tool use, reasoning, and autonomous problem-solving. ### Model Variants - **Kimi-K2-Base**: The foundation model, a strong start for researchers and builders who want full control for fine-tuning and custom solutions. - **Kimi-K2-Instruct**: The post-trained model best for drop-in, general-purpose chat and agentic experiences. It is a reflex-grade model without long thinking. <div align="center"> <picture> <img src="figures/banner.png" width="80%" alt="Evaluation Results"> </picture> </div> ## 2. Model Summary <div align="center"> | | | |:---:|:---:| | **Architecture** | Mixture-of-Experts (MoE) | | **Total Parameters** | 1T | | **Activated Parameters** | 32B | | **Number of Layers** (Dense layer included) | 61 | | **Number of Dense Layers** | 1 | | **Attention Hidden Dimension** | 7168 | | **MoE Hidden Dimension** (per Expert) | 2048 | | **Number of Attention Heads** | 64 | | **Number of Experts** | 384 | | **Selected Experts per Token** | 8 | | **Number of Shared Experts** | 1 | | **Vocabulary Size** | 160K | | **Context Length** | 128K | | **Attention Mechanism** | MLA | | **Activation Function** | SwiGLU | </div> ## 3. Evaluation Results #### Instruction model evaluation results <div align="center"> <table> <thead> <tr> <th align="center">Benchmark</th> <th align="center">Metric</th> <th align="center"><sup>Kimi K2 Instruct</sup></th> <th align="center"><sup>DeepSeek-V3-0324</sup></th> <th align="center"><sup>Qwen3-235B-A22B <br><sup>(non-thinking)</sup></sup></th> <th align="center"><sup>Claude Sonnet 4 <br><sup>(w/o extended thinking)</sup></sup></th> <th align="center"><sup>Claude Opus 4 <br><sup>(w/o extended thinking)</sup></sup></th> <th align="center"><sup>GPT-4.1</sup></th> <th align="center"><sup>Gemini 2.5 Flash <br> Preview (05-20)</sup></th> </tr> </thead> <tbody> <tr> <td align="center" colspan=9><strong>Coding Tasks</strong></td> </tr> <tr> <td align="center">LiveCodeBench v6<br><sup>(Aug 24 - May 25)</sup></td> <td align="center">Pass@1</td> <td align="center"><strong>53.7</strong></td> <td align="center">46.9</td> <td align="center">37.0</td> <td align="center">48.5</td> <td align="center">47.4</td> <td align="center">44.7</td> <td align="center">44.7</td> </tr> <tr> <td align="center">OJBench</td> <td align="center">Pass@1</td> <td align="center"><strong>27.1</strong></td> <td align="center">24.0</td> <td align="center">11.3</td> <td align="center">15.3</td> <td align="center">19.6</td> <td align="center">19.5</td> <td align="center">19.5</td> </tr> <tr> <td align="center">MultiPL-E</td> <td align="center">Pass@1</td> <td align="center"><ins><strong>85.7</strong></ins></td> <td align="center">83.1</td> <td align="center">78.2</td> <td align="center">88.6</td> <td align="center"><strong>89.6</strong></td> <td align="center">86.7</td> <td align="center">85.6</td> </tr> <tr> <td align="center">SWE-bench Verified <br/><sup>(Agentless Coding)</sup></td> <td align="center">Single Patch w/o Test (Acc)</td> <td align="center"><ins><strong>51.8</strong></ins></td> <td align="center">36.6</td> <td align="center">39.4</td> <td align="center">50.2</td> <td align="center"><strong>53.0</strong></td> <td align="center">40.8</td> <td align="center">32.6</td> </tr> <tr> <td align="center" rowspan="2">SWE-bench Verified <br/> <sup>(Agentic Coding)</sup></td> <td align="center">Single Attempt (Acc)</td> <td align="center"><ins><strong>65.8</strong></ins></td> <td align="center">38.8</td> <td align="center">34.4</td> <td align="center"><strong>72.7</strong><sup>*</sup></td> <td align="center">72.5<sup>*</sup></td> <td align="center">54.6</td> <td align="center">—</td> </tr> <tr> <!--<td align="center">(Agentic Coding)</td>--> <td align="center">Multiple Attempts (Acc)</td> <td align="center"><ins><strong>71.6</strong></ins></td> <td align="center">—</td> <td align="center">—</td> <td align="center"><strong>80.2</strong></td> <td align="center">79.4<sup>*</sup></td> <td align="center">—</td> <td align="center">—</td> </tr> <tr> <td align="center">SWE-bench Multilingual<br /> <sup>(Agentic Coding)</sup></td> <td align="center">Single Attempt (Acc)</td> <td align="center"><ins><strong>47.3</strong> </ins></td> <td align="center">25.8</td> <td align="center">20.9</td> <td align="center"><strong>51.0</strong></td> <td align="center">—</td> <td align="center">31.5</td> <td align="center">—</td> </tr> <tr> <td align="center" rowspan="2">TerminalBench</td> <td align="center">Inhouse Framework (Acc)</td> <td align="center"><ins><strong>30.0</strong></ins></td> <td align="center">—</td> <td align="center">—</td> <td align="center">35.5</td> <td align="center"><strong>43.2</strong></td> <td align="center">8.3</td> <td align="center">—</td> </tr> <tr> <!--<td align="center">TerminalBench</td>--> <td align="center">Terminus (Acc)</td> <td align="center"><ins><strong>25.0</strong> </ins></td> <td align="center">16.3</td> <td align="center">6.6</td> <td align="center">—</td> <td align="center">—</td> <td align="center"><strong>30.3</strong></td> <td align="center">16.8</td> </tr> <tr> <td align="center">Aider-Polyglot</td> <td align="center">Acc</td> <td align="center">60.0</td> <td align="center">55.1</td> <td align="center"><ins><strong>61.8</strong></ins></td> <td align="center">56.4</td> <td align="center"><strong>70.7</strong></td> <td align="center">52.4</td> <td align="center">44.0</td> </tr> <tr> <td align="center" colspan=9><strong>Tool Use Tasks</strong></td> </tr> <tr> <td align="center">Tau2 retail</td> <td align="center">Avg@4</td> <td align="center"><ins><strong>70.6</strong></ins></td> <td align="center">69.1</td> <td align="center">57.0</td> <td align="center">75.0</td> <td align="center"><strong>81.8</strong></td> <td align="center">74.8</td> <td align="center">64.3</td> </tr> <tr> <td align="center">Tau2 airline</td> <td align="center">Avg@4</td> <td align="center"><ins><strong>56.5</strong></ins></td> <td align="center">39.0</td> <td align="center">26.5</td> <td align="center">55.5</td> <td align="center"><strong>60.0</strong></td> <td align="center">54.5</td> <td align="center">42.5</td> </tr> <tr> <td align="center">Tau2 telecom</td> <td align="center">Avg@4</td> <td align="center"><strong>65.8</strong></td> <td align="center">32.5</td> <td align="center">22.1</td> <td align="center">45.2</td> <td align="center">57.0</td> <td align="center">38.6</td> <td align="center">16.9</td> </tr> <tr> <td align="center">AceBench</td> <td align="center">Acc</td> <td align="center"><ins><strong>76.5</strong></ins></td> <td align="center">72.7</td> <td align="center">70.5</td> <td align="center">76.2</td> <td align="center">75.6</td> <td align="center"><strong>80.1</strong></td> <td align="center">74.5</td> </tr> <tr> <td align="center" colspan=9><strong>Math &amp; STEM Tasks</strong></td> </tr> <tr> <td align="center">AIME 2024</td> <td align="center">Avg@64</td> <td align="center"><strong>69.6</strong></td> <td align="center">59.4<sup>*</sup></td> <td align="center">40.1<sup>*</sup></td> <td align="center">43.4</td> <td align="center">48.2</td> <td align="center">46.5</td> <td align="center">61.3</td> </tr> <tr> <td align="center">AIME 2025</td> <td align="center">Avg@64</td> <td align="center"><strong>49.5</strong></td> <td align="center">46.7</td> <td align="center">24.7<sup>*</sup></td> <td align="center">33.1<sup>*</sup></td> <td align="center">33.9<sup>*</sup></td> <td align="center">37.0</td> <td align="center">46.6</td> </tr> <tr> <td align="center">MATH-500</td> <td align="center">Acc</td> <td align="center"><strong>97.4</strong></td> <td align="center">94.0<sup>*</sup></td> <td align="center">91.2<sup>*</sup></td> <td align="center">94.0</td> <td align="center">94.4</td> <td align="center">92.4</td> <td align="center">95.4</td> </tr> <tr> <td align="center">HMMT 2025</td> <td align="center">Avg@32</td> <td align="center"><strong>38.8</strong></td> <td align="center">27.5</td> <td align="center">11.9</td> <td align="center">15.9</td> <td align="center">15.9</td> <td align="center">19.4</td> <td align="center">34.7</td> </tr> <tr> <td align="center">CNMO 2024</td> <td align="center">Avg@16</td> <td align="center">74.3</td> <td align="center"><ins><strong>74.7</strong></ins></td> <td align="center">48.6</td> <td align="center">60.4</td> <td align="center">57.6</td> <td align="center">56.6</td> <td align="center"><strong>75.0</strong></td> </tr> <tr> <td align="center">PolyMath-en</td> <td align="center">Avg@4</td> <td align="center"><strong>65.1</strong></td> <td align="center">59.5</td> <td align="center">51.9</td> <td align="center">52.8</td> <td align="center">49.8</td> <td align="center">54.0</td> <td align="center">49.9</td> </tr> <tr> <td align="center">ZebraLogic</td> <td align="center">Acc</td> <td align="center"><strong>89.0</strong></td> <td align="center">84.0</td> <td align="center">37.7<sup>*</sup></td> <td align="center">73.7</td> <td align="center">59.3</td> <td align="center">58.5</td> <td align="center">57.9</td> </tr> <tr> <td align="center">AutoLogi</td> <td align="center">Acc</td> <td align="center"><ins><strong>89.5</strong></ins></td> <td align="center">88.9</td> <td align="center">83.3</td> <td align="center"><strong>89.8</strong></td> <td align="center">86.1</td> <td align="center">88.2</td> <td align="center">84.1</td> </tr> <tr> <td align="center">GPQA-Diamond</td> <td align="center">Avg@8</td> <td align="center"><strong>75.1</strong></td> <td align="center">68.4<sup>*</sup></td> <td align="center">62.9<sup>*</sup></td> <td align="center">70.0<sup>*</sup></td> <td align="center">74.9<sup>*</sup></td> <td align="center">66.3</td> <td align="center">68.2</td> </tr> <tr> <td align="center">SuperGPQA</td> <td align="center">Acc</td> <td align="center"><strong>57.2</strong></td> <td align="center">53.7</td> <td align="center">50.2</td> <td align="center">55.7</td> <td align="center">56.5</td> <td align="center">50.8</td> <td align="center">49.6</td> </tr> <tr> <td align="center">Humanity's Last Exam<br><sup>(Text Only)</sup></td> <td align="center">-</td> <td align="center">4.7</td> <td align="center">5.2</td> <td align="center"><ins><strong>5.7</strong></ins></td> <td align="center">5.8</td> <td align="center"><strong>7.1</strong></td> <td align="center">3.7</td> <td align="center">5.6</td> </tr> <tr> <td align="center" colspan=9><strong>General Tasks</strong></td> </tr> <tr> <td align="center">MMLU</td> <td align="center">EM</td> <td align="center"><ins><strong>89.5</strong></ins></td> <td align="center">89.4</td> <td align="center">87.0</td> <td align="center">91.5</td> <td align="center"><strong>92.9</strong></td> <td align="center">90.4</td> <td align="center">90.1</td> </tr> <tr> <td align="center">MMLU-Redux</td> <td align="center">EM</td> <td align="center"><ins><strong>92.7</strong></ins></td> <td align="center">90.5</td> <td align="center">89.2</td> <td align="center">93.6</td> <td align="center"><strong>94.2</strong></td> <td align="center">92.4</td> <td align="center">90.6</td> </tr> <tr> <td align="center">MMLU-Pro</td> <td align="center">EM</td> <td align="center">81.1</td> <td align="center"><ins><strong>81.2</strong></ins><sup>*</sup></td> <td align="center">77.3</td> <td align="center">83.7</td> <td align="center"><strong>86.6</strong></td> <td align="center">81.8</td> <td align="center">79.4</td> </tr> <tr> <td align="center">IFEval</td> <td align="center">Prompt Strict</td> <td align="center"><strong>89.8</strong></td> <td align="center">81.1</td> <td align="center">83.2<sup>*</sup></td> <td align="center">87.6</td> <td align="center">87.4</td> <td align="center">88.0</td> <td align="center">84.3</td> </tr> <tr> <td align="center">Multi-Challenge</td> <td align="center">Acc</td> <td align="center"><strong>54.1</strong></td> <td align="center">31.4</td> <td align="center">34.0</td> <td align="center">46.8</td> <td align="center">49.0</td> <td align="center">36.4</td> <td align="center">39.5</td> </tr> <tr> <td align="center">SimpleQA</td> <td align="center">Correct</td> <td align="center"><ins><strong>31.0</strong></ins></td> <td align="center">27.7</td> <td align="center">13.2</td> <td align="center">15.9</td> <td align="center">22.8</td> <td align="center"><strong>42.3</strong></td> <td align="center">23.3</td> </tr> <tr> <td align="center">Livebench</td> <td align="center">Pass@1</td> <td align="center"><strong>76.4</strong></td> <td align="center">72.4</td> <td align="center">67.6</td> <td align="center">74.8</td> <td align="center">74.6</td> <td align="center">69.8</td> <td align="center">67.8</td> </tr> </tbody> </table> </div> <sup> • Bold denotes global SOTA, and underlined denotes open-source SOTA. </sup><br/><sup> • Data points marked with * are taken directly from the model's tech report or blog. </sup><br/><sup> • All metrics, except for SWE-bench Verified (Agentless), are evaluated with an 8k output token length. SWE-bench Verified (Agentless) is limited to a 16k output token length. </sup><br/><sup> • Kimi K2 achieves 65.8% pass@1 on the SWE-bench Verified tests with bash/editor tools (single-attempt patches, no test-time compute). It also achieves a 47.3% pass@1 on the SWE-bench Multilingual tests under the same conditions. Additionally, we report results on SWE-bench Verified tests (71.6%) that leverage parallel test-time compute by sampling multiple sequences and selecting the single best via an internal scoring model. </sup><br/><sup> • To ensure the stability of the evaluation, we employed avg@k on the AIME, HMMT, CNMO, PolyMath-en, GPQA-Diamond, EvalPlus, Tau2. </sup><br/><sup> • Some data points have been omitted due to prohibitively expensive evaluation costs. </sup> --- #### Base model evaluation results <div align="center"> <table> <thead> <tr> <th align="center">Benchmark</th> <th align="center">Metric</th> <th align="center">Shot</th> <th align="center">Kimi K2 Base</th> <th align="center">Deepseek-V3-Base</th> <th align="center">Qwen2.5-72B</th> <th align="center">Llama 4 Maverick</th> </tr> </thead> <tbody> <tr> <td align="center" colspan="7"><strong>General Tasks</strong></td> </tr> <tr> <td align="center">MMLU</td> <td align="center">EM</td> <td align="center">5-shot</td> <td align="center"><strong>87.8</strong></td> <td align="center">87.1</td> <td align="center">86.1</td> <td align="center">84.9</td> </tr> <tr> <td align="center">MMLU-pro</td> <td align="center">EM</td> <td align="center">5-shot</td> <td align="center"><strong>69.2</strong></td> <td align="center">60.6</td> <td align="center">62.8</td> <td align="center">63.5</td> </tr> <tr> <td align="center">MMLU-redux-2.0</td> <td align="center">EM</td> <td align="center">5-shot</td> <td align="center"><strong>90.2</strong></td> <td align="center">89.5</td> <td align="center">87.8</td> <td align="center">88.2</td> </tr> <tr> <td align="center">SimpleQA</td> <td align="center">Correct</td> <td align="center">5-shot</td> <td align="center"><strong>35.3</strong></td> <td align="center">26.5</td> <td align="center">10.3</td> <td align="center">23.7</td> </tr> <tr> <td align="center">TriviaQA</td> <td align="center">EM</td> <td align="center">5-shot</td> <td align="center"><strong>85.1</strong></td> <td align="center">84.1</td> <td align="center">76.0</td> <td align="center">79.3</td> </tr> <tr> <td align="center">GPQA-Diamond</td> <td align="center">Avg@8</td> <td align="center">5-shot</td> <td align="center">48.1</td> <td align="center"><strong>50.5</strong></td> <td align="center">40.8</td> <td align="center">49.4</td> </tr> <tr> <td align="center">SuperGPQA</td> <td align="center">EM</td> <td align="center">5-shot</td> <td align="center"><strong>44.7</strong></td> <td align="center">39.2</td> <td align="center">34.2</td> <td align="center">38.8</td> </tr> <tr> <td align="center" colspan="7"><strong>Coding Tasks</strong></td> </tr> <tr> <td align="center">LiveCodeBench v6</td> <td align="center">Pass@1</td> <td align="center">1-shot</td> <td align="center"><strong>26.3</strong></td> <td align="center">22.9</td> <td align="center">21.1</td> <td align="center">25.1</td> </tr> <tr> <td align="center">EvalPlus</td> <td align="center">Pass@1</td> <td align="center">-</td> <td align="center"><strong>80.3</strong></td> <td align="center">65.6</td> <td align="center">66.0</td> <td align="center">65.5</td> </tr> <tr> <td align="center" colspan="7"><strong>Mathematics Tasks</strong></td> </tr> <tr> <td align="center">MATH</td> <td align="center">EM</td> <td align="center">4-shot</td> <td align="center"><strong>70.2</strong></td> <td align="center">60.1</td> <td align="center">61.0</td> <td align="center">63.0</td> </tr> <tr> <td align="center">GSM8k</td> <td align="center">EM</td> <td align="center">8-shot</td> <td align="center"><strong>92.1</strong></td> <td align="center">91.7</td> <td align="center">90.4</td> <td align="center">86.3</td> </tr> <tr> <td align="center" colspan="7"><strong>Chinese Tasks</strong></td> </tr> <tr> <td align="center">C-Eval</td> <td align="center">EM</td> <td align="center">5-shot</td> <td align="center"><strong>92.5</strong></td> <td align="center">90.0</td> <td align="center">90.9</td> <td align="center">80.9</td> </tr> <tr> <td align="center">CSimpleQA</td> <td align="center">Correct</td> <td align="center">5-shot</td> <td align="center"><strong>77.6</strong></td> <td align="center">72.1</td> <td align="center">50.5</td> <td align="center">53.5</td> </tr> </tbody> </table> </div> <sup> • We only evaluate open-source pretrained models in this work. We report results for Qwen2.5-72B because the base checkpoint for Qwen3-235B-A22B was not open-sourced at the time of our study. </sup><br/><sup> • All models are evaluated using the same evaluation protocol. </sup> ## 4. Deployment > [!Note] > You can access Kimi K2's API on https://platform.moonshot.ai , we provide OpenAI/Anthropic-compatible API for you. > > The Anthropic-compatible API maps temperature by `real_temperature = request_temperature * 0.6` for better compatible with existing applications. Our model checkpoints are stored in the block-fp8 format, you can find it on [Huggingface](https://huggingface.co/moonshotai/Kimi-K2-Instruct). Currently, Kimi-K2 is recommended to run on the following inference engines: * vLLM * SGLang * KTransformers * TensorRT-LLM Deployment examples for vLLM and SGLang can be found in the [Model Deployment Guide](docs/deploy_guidance.md). --- ## 5. Model Usage ### Chat Completion Once the local inference service is up, you can interact with it through the chat endpoint: ```python def simple_chat(client: OpenAI, model_name: str): messages = [ {"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."}, {"role": "user", "content": [{"type": "text", "text": "Please give a brief self-introduction."}]}, ] response = client.chat.completions.create( model=model_name, messages=messages, stream=False, temperature=0.6, max_tokens=256 ) print(response.choices[0].message.content) ``` > [!NOTE] > The recommended temperature for Kimi-K2-Instruct is `temperature = 0.6`. > If no special instructions are required, the system prompt above is a good default. --- ### Tool Calling Kimi-K2-Instruct has strong tool-calling capabilities. To enable them, you need to pass the list of available tools in each request, then the model will autonomously decide when and how to invoke them. The following example demonstrates calling a weather tool end-to-end: ```python # Your tool implementation def get_weather(city: str) -> dict: return {"weather": "Sunny"} # Tool schema definition tools = [{ "type": "function", "function": { "name": "get_weather", "description": "Retrieve current weather information. Call this when the user asks about the weather.", "parameters": { "type": "object", "required": ["city"], "properties": { "city": { "type": "string", "description": "Name of the city" } } } } }] # Map tool names to their implementations tool_map = { "get_weather": get_weather } def tool_call_with_client(client: OpenAI, model_name: str): messages = [ {"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."}, {"role": "user", "content": "What's the weather like in Beijing today? Use the tool to check."} ] finish_reason = None while finish_reason is None or finish_reason == "tool_calls": completion = client.chat.completions.create( model=model_name, messages=messages, temperature=0.6, tools=tools, # tool list defined above tool_choice="auto" ) choice = completion.choices[0] finish_reason = choice.finish_reason if finish_reason == "tool_calls": messages.append(choice.message) for tool_call in choice.message.tool_calls: tool_call_name = tool_call.function.name tool_call_arguments = json.loads(tool_call.function.arguments) tool_function = tool_map[tool_call_name] tool_result = tool_function(**tool_call_arguments) print("tool_result:", tool_result) messages.append({ "role": "tool", "tool_call_id": tool_call.id, "name": tool_call_name, "content": json.dumps(tool_result) }) print("-" * 100) print(choice.message.content) ``` The `tool_call_with_client` function implements the pipeline from user query to tool execution. This pipeline requires the inference engine to support Kimi-K2’s native tool-parsing logic. For streaming output and manual tool-parsing, see the [Tool Calling Guide](docs/tool_call_guidance.md). --- ## 6. License Both the code repository and the model weights are released under the [Modified MIT License](LICENSE). --- ## 7. Third Party Notices See [THIRD PARTY NOTICES](THIRD_PARTY_NOTICES.md) --- ## 7. Contact Us If you have any questions, please reach out at [[email protected]](mailto:[email protected]).
shikderazriel6453/blockassist-bc-burrowing_thorny_gibbon_1757603318
shikderazriel6453
2025-09-11T15:08:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "burrowing thorny gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:08:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - burrowing thorny gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rodriquezb087/blockassist-bc-dormant_pensive_cat_1757603318
rodriquezb087
2025-09-11T15:08:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "burrowing thorny gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:08:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - burrowing thorny gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tagirarega/blockassist-bc-tricky_aquatic_piranha_1757603292
tagirarega
2025-09-11T15:08:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "graceful hulking lemur", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:08:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - graceful hulking lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
oxleybranan/blockassist-bc-amphibious_tricky_platypus_1757603259
oxleybranan
2025-09-11T15:07:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious tricky platypus", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:07:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious tricky platypus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yesniorka/blockassist-bc-stocky_large_dove_1757603261
yesniorka
2025-09-11T15:07:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious tricky platypus", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:07:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious tricky platypus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kavpro/blockassist
kavpro
2025-09-11T15:07:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall lively caribou", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:53:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall lively caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cactus-S/blockassist
cactus-S
2025-09-11T15:07:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive arctic panther", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T07:49:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive arctic panther --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
radlab/semantic-euro-bert-encoder-v1
radlab
2025-09-11T15:07:14Z
20
1
sentence-transformers
[ "sentence-transformers", "safetensors", "eurobert", "- embeddings", "plwordnet", "semantic-relations", "semantic-search", "sentence-similarity", "custom_code", "pl", "en", "de", "base_model:EuroBERT/EuroBERT-610m", "base_model:finetune:EuroBERT/EuroBERT-610m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-26T23:36:02Z
--- license: apache-2.0 language: - pl - en - de base_model: - EuroBERT/EuroBERT-610m tags: - sentence-transformers - '- embeddings' - plwordnet - semantic-relations - semantic-search pipeline_tag: sentence-similarity --- # PLWordNet Semantic Embedder (bi-encoder) A Polish semantic embedder trained on pairs constructed from plWordNet (Słowosieć) semantic relations and external descriptions of meanings. Every relation between lexical units and synsets is transformed into training/evaluation examples. The dataset mixes meanings’ usage signals: emotions, definitions, and external descriptions (Wikipedia, sentence-split). The embedder mimics semantic relations: it pulls together embeddings that are linked by “positive” relations (e.g., synonymy, hypernymy/hyponymy as defined in the dataset) and pushes apart embeddings linked by “negative” relations (e.g., antonymy or mutually exclusive relations). Source code and training scripts: - GitHub: [https://github.com/radlab-dev-group/radlab-plwordnet](https://github.com/radlab-dev-group/radlab-plwordnet) ## Model summary - **Architecture**: bi-encoder built with `sentence-transformers` (transformer encoder + pooling). - **Use cases**: semantic similarity and semantic search for Polish words, senses, definitions, and sentences. - **Objective**: CosineSimilarityLoss on positive/negative pairs. - **Behavior**: preserves the topology of semantic relations derived from plWordNet. ## Training data Constructed from plWordNet relations between lexical units and synsets; each relation yields example pairs. Augmented with: - definitions, - usage examples (including emotion annotations where available), - external descriptions from Wikipedia (split into sentences). Positive pairs correspond to relations expected to increase similarity; negative pairs correspond to relations expected to decrease similarity. Additional hard/soft negatives may include unrelated meanings. ## Training details - **Trainer**: `SentenceTransformerTrainer` - **Loss**: `CosineSimilarityLoss` - **Evaluator**: `EmbeddingSimilarityEvaluator` (cosine) - Typical **hyperparameters**: - epochs: 5 - per-device batch size: 10 (gradient accumulation: 4) - learning rate: 5e-6 (AdamW fused) - weight decay: 0.01 - warmup: ratio 20k steps - fp16: true ## Evaluation - **Task**: semantic similarity on dev/test splits built from the relation-derived pairs. - **Metric**: cosine-based correlation (Spearman/Pearson) where applicable, or discrimination between positive vs. negative pairs. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644addfe9279988e0cbc296b/DCepnAcPcv4EblAmtgu7R.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644addfe9279988e0cbc296b/TWHyVDItYwNbFEyI0i--n.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644addfe9279988e0cbc296b/o-CFHkDYw62Lyh1MKvG4M.png) ## How to use Sentence-Transformers: ``` python # Python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer("radlab/semantic-euro-bert-encoder-v1", trust_remote_code=True) texts = ["zamek", "drzwi", "wiadro", "horyzont", "ocean"] emb = model.encode(texts, convert_to_tensor=True, normalize_embeddings=True) scores = util.cos_sim(emb, emb) print(scores) # higher = more semantically similar ``` Transformers (feature extraction): ``` python # Python from transformers import AutoModel, AutoTokenizer import torch import torch.nn.functional as F name = "radlab/semantic-euro-bert-encoder-v1" tok = AutoTokenizer.from_pretrained(name) mdl = AutoModel.from_pretrained(name, trust_remote_code=True) texts = ["student", "żak"] tokens = tok(texts, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): out = mdl(**tokens) emb = out.last_hidden_state.mean(dim=1) emb = F.normalize(emb, p=2, dim=1) sim = emb @ emb.T print(sim) ```
sekirr/blockassist-bc-masked_tenacious_whale_1757603174
sekirr
2025-09-11T15:06:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:06:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ilqarkazijdmzad/blockassist-bc-giant_arctic_swan_1757603195
ilqarkazijdmzad
2025-09-11T15:06:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "giant arctic swan", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:06:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - giant arctic swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
oyshimimi50/blockassist-bc-alert_colorful_pigeon_1757603190
oyshimimi50
2025-09-11T15:06:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert colorful pigeon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:06:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert colorful pigeon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arabellamorris/blockassist-bc-tricky_sneaky_locust_1757603086
arabellamorris
2025-09-11T15:05:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tricky sneaky locust", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:05:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tricky sneaky locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iyaadshikder1546/blockassist-bc-pensive_agile_bee_1757603124
iyaadshikder1546
2025-09-11T15:05:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive agile bee", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:05:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive agile bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757602975
harmonyblevinsm0
2025-09-11T15:04:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent miniature monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:03:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent miniature monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
raskbxicnusray/blockassist-bc-stealthy_lithe_wildebeest_1757603023
raskbxicnusray
2025-09-11T15:03:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy lithe wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:03:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy lithe wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cola_123_1757596071
rbelanec
2025-09-11T15:03:25Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T13:12:56Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cola_123_1757596071 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_123_1757596071 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.9521 - Num Input Tokens Seen: 6929680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.1268 | 1.0 | 3848 | 0.2820 | 346872 | | 0.3132 | 2.0 | 7696 | 0.2417 | 693752 | | 0.2179 | 3.0 | 11544 | 0.2405 | 1040128 | | 0.2649 | 4.0 | 15392 | 0.2411 | 1386696 | | 0.2187 | 5.0 | 19240 | 0.2434 | 1733072 | | 0.1872 | 6.0 | 23088 | 0.2394 | 2079640 | | 0.2849 | 7.0 | 26936 | 0.2419 | 2425920 | | 0.1858 | 8.0 | 30784 | 0.2366 | 2772144 | | 0.2726 | 9.0 | 34632 | 0.2393 | 3118472 | | 0.2241 | 10.0 | 38480 | 0.2438 | 3465288 | | 0.2284 | 11.0 | 42328 | 0.2862 | 3811696 | | 0.0849 | 12.0 | 46176 | 0.2743 | 4158168 | | 0.1104 | 13.0 | 50024 | 0.3264 | 4504416 | | 0.1854 | 14.0 | 53872 | 0.3800 | 4850888 | | 0.1511 | 15.0 | 57720 | 0.4422 | 5197456 | | 0.0483 | 16.0 | 61568 | 0.5154 | 5543848 | | 0.1082 | 17.0 | 65416 | 0.6811 | 5890320 | | 0.2789 | 18.0 | 69264 | 0.7981 | 6237200 | | 0.3151 | 19.0 | 73112 | 0.9202 | 6583408 | | 0.0006 | 20.0 | 76960 | 0.9521 | 6929680 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
cwayneconnor/blockassist-bc-mute_loud_lynx_1757602826
cwayneconnor
2025-09-11T15:02:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:01:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ganswiltzblack/blockassist-bc-nocturnal_humming_badger_1757602959
ganswiltzblack
2025-09-11T15:02:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nocturnal humming badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:02:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nocturnal humming badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
taniyatoha637/blockassist-bc-eager_flapping_anaconda_1757602954
taniyatoha637
2025-09-11T15:02:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "eager flapping anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:02:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - eager flapping anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-insectivorous_bold_lion_1757602887
omerbkts
2025-09-11T15:02:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:01:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yesniorka/blockassist-bc-stocky_large_dove_1757602929
yesniorka
2025-09-11T15:02:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stocky large dove", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:02:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stocky large dove --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seams01/blockassist
seams01
2025-09-11T15:02:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous stubby snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T07:28:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous stubby snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cola_42_1757596047
rbelanec
2025-09-11T15:01:36Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T13:08:17Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cola_42_1757596047 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_42_1757596047 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.2412 - Num Input Tokens Seen: 6927000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.2546 | 1.0 | 3848 | 0.2480 | 346040 | | 0.1205 | 2.0 | 7696 | 0.2484 | 692368 | | 0.2615 | 3.0 | 11544 | 0.2438 | 1039080 | | 0.2572 | 4.0 | 15392 | 0.2436 | 1385192 | | 0.2552 | 5.0 | 19240 | 0.2432 | 1731824 | | 0.3358 | 6.0 | 23088 | 0.2496 | 2078408 | | 0.2235 | 7.0 | 26936 | 0.2438 | 2424592 | | 0.2903 | 8.0 | 30784 | 0.2476 | 2770768 | | 0.2715 | 9.0 | 34632 | 0.2459 | 3117120 | | 0.2141 | 10.0 | 38480 | 0.2748 | 3463336 | | 0.2359 | 11.0 | 42328 | 0.2426 | 3809536 | | 0.316 | 12.0 | 46176 | 0.2439 | 4155688 | | 0.3199 | 13.0 | 50024 | 0.2455 | 4502336 | | 0.2547 | 14.0 | 53872 | 0.2459 | 4848864 | | 0.2146 | 15.0 | 57720 | 0.2422 | 5194640 | | 0.3529 | 16.0 | 61568 | 0.2419 | 5541160 | | 0.2237 | 17.0 | 65416 | 0.2437 | 5887864 | | 0.3058 | 18.0 | 69264 | 0.2429 | 6234216 | | 0.2963 | 19.0 | 73112 | 0.2419 | 6580528 | | 0.3099 | 20.0 | 76960 | 0.2412 | 6927000 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
Miracle-man/blockassist
Miracle-man
2025-09-11T15:01:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "singing lithe koala", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:52:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - singing lithe koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
schnecklothheath/blockassist-bc-soaring_leaping_snake_1757602864
schnecklothheath
2025-09-11T15:01:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soaring leaping snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:01:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soaring leaping snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amannammaka/blockassist-bc-feathered_meek_kangaroo_1757602835
amannammaka
2025-09-11T15:00:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feathered meek kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:00:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feathered meek kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BnSa3d/nutriieee
BnSa3d
2025-09-11T15:00:22Z
0
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2025-09-11T14:40:07Z
--- license: apache-2.0 ---
milfordprudence/blockassist-bc-aquatic_reclusive_cassowary_1757602806
milfordprudence
2025-09-11T15:00:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering hairy woodpecker", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T15:00:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering hairy woodpecker --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
goshujaieja/blockassist-bc-untamed_armored_ram_1757602778
goshujaieja
2025-09-11T14:59:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed armored ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:59:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed armored ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fuckSelf/GPT-SoVITS-Russian
fuckSelf
2025-09-11T14:59:49Z
0
0
null
[ "GPT-SoVITS", "Russian", "text-to-speech", "ru", "zh", "base_model:lj1995/GPT-SoVITS", "base_model:finetune:lj1995/GPT-SoVITS", "license:mit", "region:us" ]
text-to-speech
2025-09-11T13:46:11Z
--- license: mit language: - ru - zh base_model: - lj1995/GPT-SoVITS pipeline_tag: text-to-speech tags: - GPT-SoVITS - Russian --- # 基于GPT-SoVITS微操后训练的俄语-中文模型 模型基于[GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS/wiki/%E8%AE%AD%E7%BB%83%E6%96%B0%E8%AF%AD%E8%A8%80(how-to-train-the-models-with-other-languages))对底模微操后使用288小时俄语和10小时汉语数据集训练而成。 GPT模型训练50个epoch,Sovits模型训练12个epoch。简单手动试听后,最佳组合(俄语->俄语、汉语->汉语、汉语->俄语)(俄语->汉语有问题,都是空白音频)是gpt-20epoch、sovits-10epoch ## 文件说明 s2Gv2ProPlus-rus.pth: 由 GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth 微操而来,放到 GPT_SoVITS/pretrained_models/v2Pro/ 下 s1v3-ru.ckpt: 由 GPT_SoVITS/pretrained_models/s1v3.ckpt 微操而来,放到 GPT_SoVITS/pretrained_models/ 下 (记得将代码中使用原始两个底模的地方全局替换为新的两个底模) ru-base_e10_s123570.pth : 放到 GPT_weights_v2ProPlus 下 ru-base-e20.ckpt : 放到 SoVITS_weights_v2ProPlus 下 微操脚本: ``` import torch ## 迁移gpt模型的embedding层,插入两个新的token gpt_dict = torch.load(r"GPT_SoVITS/pretrained_models/s1v3.ckpt",map_location=torch.device('cpu')) gpt_shape = gpt_dict["weight"]["model.ar_text_embedding.word_embeddings.weight"].shape print(gpt_shape) # 一共512列,embedding_dim=512 first_part = gpt_dict["weight"]["model.ar_text_embedding.word_embeddings.weight"][:,:] new_weight = torch.cat([first_part, torch.randn(21, 512)],dim=0) # 由于embedding_dim=512,len(rus_symbols)=21,所以需要增加21列 gpt_dict["weight"]["model.ar_text_embedding.word_embeddings.weight"] = new_weight gpt_dict["config"]["model"]["phoneme_vocab_size"]=753 # 原本是732,增加21个符号 torch.save(gpt_dict,r"GPT_SoVITS/pretrained_models/s1v3-ru.ckpt") # 保存新的模型 import torch sovits_dict = torch.load(r"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth",map_location=torch.device('cpu')) # 载入SoVITS模型 sovits_shape = sovits_dict["weight"]["enc_p.text_embedding.weight"].shape print(sovits_shape) first_part = sovits_dict["weight"]["enc_p.text_embedding.weight"][:,:] new_weight = torch.cat([first_part,torch.randn(21,192)],dim=0) # 由于embedding_dim=192,len(rus_symbols)=21,所以需要增加21列 sovits_dict["weight"]["enc_p.text_embedding.weight"] = new_weight torch.save(sovits_dict,r"GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus-rus.pth") # 保存新的模型 print("success!") ``` ## 使用方式 1、自备文本前端代码 ``` # -*- coding: utf-8 -*- # 实现俄语的g2p import epitran epi = epitran.Epitran('rus-Cyrl',ligatures=True,tones=True) def g2p(text): phones = epi.xsampa_list(text,normpunc=True) phones = ["R"+post_replace_rus(i) for i in phones if i !="?"] return phones # 一些奇奇怪怪的符号替换成纯英文的符号,防止写到文件后解析出错 def post_replace_rus(rus): rep_map = { ":": ",", ";": ",", ",": ",", "。": ".", "!": "!", "?": "?", "\n": ".", "·": ",", "、": ",", "...": "…", "?":"", } if rus in rep_map.keys(): rus = rep_map[rus] return rus.upper() # 处理俄语的音素符号 去重清洗 def process_russian_symbols(file_path): import pandas as pd # 加载指定目录下的tsv文件 df = pd.read_csv(file_path, sep='\t') # 使用 tab 分隔符读取 tsv 文件 # 读取 sentence 列 sentences = df['sentence'].tolist() # 调用 g2p 函数处理每个句子 # 这里假设 g2p 是一个已定义的函数,返回音素列表 phonemes = [] for sentence in sentences: phoneme_list = g2p(sentence) # 假设 g2p 返回一个列表 # if "RS\\:'" in phoneme_list: # print(sentence) phonemes.extend(phoneme_list) # 去重并排序 unique_sorted_phonemes = sorted(list(set(phonemes))) return unique_sorted_phonemes ``` 俄语音素符号: ``` rus_symbols={ 'RA', 'RB', 'RD', 'RE', 'RF', 'RG', 'RI', 'RJ', 'RK', 'RL', 'RM', 'RN', 'RO', 'RP', 'RR', 'RS', 'RT', 'RU', 'RV', 'RX', 'RZ' } ``` 2、修改GPT_SoVITS/configs/s1longer-v2.yaml文件中phoneme_vocab_size = 753 如果您需要其他检查点模型或代码、训练步骤等信息,请联系我的电子邮件:[email protected] # [MIT License](https://opensource.org/licenses/MIT) --- license: mit ---
eilandlovetta/blockassist-bc-lumbering_feline_tiger_1757602773
eilandlovetta
2025-09-11T14:59:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering feline tiger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:59:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering feline tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gouki510/llama3-8b-base-correct-career
gouki510
2025-09-11T14:59:23Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Llama-3.1-8B", "base_model:finetune:unsloth/Llama-3.1-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T14:48:41Z
--- base_model: unsloth/Llama-3.1-8B tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** gouki510 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.1-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
rbelanec/train_cola_789_1757596122
rbelanec
2025-09-11T14:59:09Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "p-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:05:49Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - p-tuning - generated_from_trainer model-index: - name: train_cola_789_1757596122 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_789_1757596122 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.4594 - Num Input Tokens Seen: 3663512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.1236 | 0.5 | 962 | 0.2745 | 182656 | | 0.2375 | 1.0 | 1924 | 0.1683 | 365728 | | 0.3172 | 1.5 | 2886 | 0.2014 | 548992 | | 0.2088 | 2.0 | 3848 | 0.1443 | 731984 | | 0.0806 | 2.5 | 4810 | 0.1764 | 915792 | | 0.3512 | 3.0 | 5772 | 0.1655 | 1098920 | | 0.0369 | 3.5 | 6734 | 0.1680 | 1281640 | | 0.0703 | 4.0 | 7696 | 0.1568 | 1465464 | | 0.0718 | 4.5 | 8658 | 0.1608 | 1649720 | | 0.1062 | 5.0 | 9620 | 0.1466 | 1831920 | | 0.2303 | 5.5 | 10582 | 0.1536 | 2014928 | | 0.2191 | 6.0 | 11544 | 0.1693 | 2198176 | | 0.1416 | 6.5 | 12506 | 0.1756 | 2381440 | | 0.1436 | 7.0 | 13468 | 0.1585 | 2564952 | | 0.0112 | 7.5 | 14430 | 0.1843 | 2748568 | | 0.15 | 8.0 | 15392 | 0.1909 | 2931096 | | 0.0999 | 8.5 | 16354 | 0.1853 | 3113624 | | 0.0045 | 9.0 | 17316 | 0.2035 | 3296808 | | 0.0655 | 9.5 | 18278 | 0.2026 | 3480168 | | 0.0811 | 10.0 | 19240 | 0.2036 | 3663512 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
allfordedgar26/blockassist-bc-omnivorous_sprightly_aardvark_1757602731
allfordedgar26
2025-09-11T14:58:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous sprightly aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:58:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous sprightly aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pabeypaul/blockassist-bc-sizable_knobby_salamander_1757602730
pabeypaul
2025-09-11T14:58:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous sprightly aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:58:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous sprightly aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
KamilMpakiet/agatadwa
KamilMpakiet
2025-09-11T14:58:22Z
0
0
null
[ "license:other", "region:us" ]
null
2025-09-11T14:11:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
brisondey/blockassist-bc-insectivorous_energetic_koala_1757602671
brisondey
2025-09-11T14:58:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous energetic koala", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:58:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous energetic koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jobs-git/Wan2.2-I2V-A14B-Diffusers
jobs-git
2025-09-11T14:58:03Z
0
0
diffusers
[ "diffusers", "safetensors", "image-to-video", "en", "zh", "arxiv:2503.20314", "license:apache-2.0", "diffusers:WanImageToVideoPipeline", "region:us" ]
image-to-video
2025-09-11T14:58:03Z
--- license: apache-2.0 language: - en - zh pipeline_tag: image-to-video --- # Wan2.2 <p align="center"> <img src="assets/logo.png" width="400"/> <p> <p align="center"> 💜 <a href="https://wan.video"><b>Wan</b></a> &nbsp&nbsp | &nbsp&nbsp 🖥️ <a href="https://github.com/Wan-Video/Wan2.2">GitHub</a> &nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/Wan-AI/">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/Wan-AI">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://arxiv.org/abs/2503.20314">Technical Report</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://wan.video/welcome?spm=a2ty_o02.30011076.0.0.6c9ee41eCcluqg">Blog</a> &nbsp&nbsp | &nbsp&nbsp💬 <a href="https://gw.alicdn.com/imgextra/i2/O1CN01tqjWFi1ByuyehkTSB_!!6000000000015-0-tps-611-1279.jpg">WeChat Group</a>&nbsp&nbsp | &nbsp&nbsp 📖 <a href="https://discord.gg/AKNgpMK4Yj">Discord</a>&nbsp&nbsp <br> ----- [**Wan: Open and Advanced Large-Scale Video Generative Models**](https://arxiv.org/abs/2503.20314) <be> We are excited to introduce **Wan2.2**, a major upgrade to our foundational video models. With **Wan2.2**, we have focused on incorporating the following innovations: - 👍 **Effective MoE Architecture**: Wan2.2 introduces a Mixture-of-Experts (MoE) architecture into video diffusion models. By separating the denoising process cross timesteps with specialized powerful expert models, this enlarges the overall model capacity while maintaining the same computational cost. - 👍 **Cinematic-level Aesthetics**: Wan2.2 incorporates meticulously curated aesthetic data, complete with detailed labels for lighting, composition, contrast, color tone, and more. This allows for more precise and controllable cinematic style generation, facilitating the creation of videos with customizable aesthetic preferences. - 👍 **Complex Motion Generation**: Compared to Wan2.1, Wan2.2 is trained on a significantly larger data, with +65.6% more images and +83.2% more videos. This expansion notably enhances the model's generalization across multiple dimensions such as motions, semantics, and aesthetics, achieving TOP performance among all open-sourced and closed-sourced models. - 👍 **Efficient High-Definition Hybrid TI2V**: Wan2.2 open-sources a 5B model built with our advanced Wan2.2-VAE that achieves a compression ratio of **16×16×4**. This model supports both text-to-video and image-to-video generation at 720P resolution with 24fps and can also run on consumer-grade graphics cards like 4090. It is one of the fastest **720P@24fps** models currently available, capable of serving both the industrial and academic sectors simultaneously. This repository also includes our I2V-A14B model, designed for image-to-video generation, supporting both 480P and 720P resolutions. Built with a Mixture-of-Experts (MoE) architecture, it achieves more stable video synthesis with reduced unrealistic camera movements and offers enhanced support for diverse stylized scenes. ## Video Demos <div align="center"> <video width="80%" controls> <source src="https://cloud.video.taobao.com/vod/NnCd0fC-1eckDUuVBMz43oD_U6mTsPpBwga3wdnAkXA.mp4" type="video/mp4"> Your browser does not support the video tag. </video> </div> ## 🔥 Latest News!! * Jul 28, 2025: 👋 Wan2.1 has been integrated into ComfyUI ([CN](https://docs.comfy.org/zh-CN/tutorials/video/wan/wan2_2) | [EN](https://docs.comfy.org/tutorials/video/wan/wan2_2)). Enjoy! * Jul 28, 2025: 👋 Wan2.2's T2V, I2V and TI2V have been integrated into Diffusers ([T2V-A14B](https://huggingface.co/Wan-AI/Wan2.2-T2V-A14B-Diffusers) | [I2V-A14B](https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B-Diffusers) | [TI2V-5B](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B-Diffusers)). Feel free to give it a try! * Jul 28, 2025: 👋 We've released the inference code and model weights of **Wan2.2**. ## Community Works If your research or project builds upon [**Wan2.1**](https://github.com/Wan-Video/Wan2.1) or Wan2.2, we welcome you to share it with us so we can highlight it for the broader community. ## 📑 Todo List - Wan2.2 Text-to-Video - [x] Multi-GPU Inference code of the A14B and 14B models - [x] Checkpoints of the A14B and 14B models - [x] ComfyUI integration - [x] Diffusers integration - Wan2.2 Image-to-Video - [x] Multi-GPU Inference code of the A14B model - [x] Checkpoints of the A14B model - [x] ComfyUI integration - [x] Diffusers integration - Wan2.2 Text-Image-to-Video - [x] Multi-GPU Inference code of the 5B model - [x] Checkpoints of the 5B model - [x] ComfyUI integration - [x] Diffusers integration ## Run Wan2.2 #### Installation Clone the repo: ```sh git clone https://github.com/Wan-Video/Wan2.2.git cd Wan2.2 ``` Install dependencies: ```sh # Ensure torch >= 2.4.0 # If the installation of `flash_attn` fails, try installing the other packages first and install `flash_attn` last pip install -r requirements.txt ``` #### Model Download | Models | Download Links | Description | |--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------| | T2V-A14B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.2-T2V-A14B) 🤖 [ModelScope](https://modelscope.cn/models/Wan-AI/Wan2.2-T2V-A14B) | Text-to-Video MoE model, supports 480P & 720P | | I2V-A14B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B) 🤖 [ModelScope](https://modelscope.cn/models/Wan-AI/Wan2.2-I2V-A14B) | Image-to-Video MoE model, supports 480P & 720P | | TI2V-5B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B) 🤖 [ModelScope](https://modelscope.cn/models/Wan-AI/Wan2.2-TI2V-5B) | High-compression VAE, T2V+I2V, supports 720P | > 💡Note: > The TI2V-5B model supports 720P video generation at **24 FPS**. Download models using huggingface-cli: ``` sh pip install "huggingface_hub[cli]" huggingface-cli download Wan-AI/Wan2.2-I2V-A14B --local-dir ./Wan2.2-I2V-A14B ``` Download models using modelscope-cli: ``` sh pip install modelscope modelscope download Wan-AI/Wan2.2-I2V-A14B --local_dir ./Wan2.2-I2V-A14B ``` #### Run Image-to-Video Generation This repository supports the `Wan2.2-I2V-A14B`` Image-to-Video model and can simultaneously support video generation at 480P and 720P resolutions. - Single-GPU inference ```sh python generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --offload_model True --convert_model_dtype --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." ``` > This command can run on a GPU with at least 80GB VRAM. > 💡For the Image-to-Video task, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image. - Multi-GPU inference using FSDP + DeepSpeed Ulysses ```sh torchrun --nproc_per_node=8 generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." ``` - Image-to-Video Generation without prompt ```sh DASH_API_KEY=your_key torchrun --nproc_per_node=8 generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --prompt '' --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --use_prompt_extend --prompt_extend_method 'dashscope' ``` > 💡The model can generate videos solely from the input image. You can use prompt extension to generate prompt from the image. > The process of prompt extension can be referenced [here](#2-using-prompt-extention). - Running with Diffusers ```py import torch import numpy as np from diffusers import WanImageToVideoPipeline from diffusers.utils import export_to_video, load_image model_id = "Wan-AI/Wan2.2-I2V-A14B-Diffusers" dtype = torch.bfloat16 device = "cuda" pipe = WanImageToVideoPipeline.from_pretrained(model_id, torch_dtype=dtype) pipe.to(device) image = load_image( "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/wan_i2v_input.JPG" ) max_area = 480 * 832 aspect_ratio = image.height / image.width mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1] height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value image = image.resize((width, height)) prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" generator = torch.Generator(device=device).manual_seed(0) output = pipe( image=image, prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=81, guidance_scale=3.5, num_inference_steps=40, generator=generator, ).frames[0] export_to_video(output, "i2v_output.mp4", fps=16) ``` > 💡**Note**:This model requires features that are currently available only in the main branch of diffusers. The latest stable release on PyPI does not yet include these updates. > To use this model, please install the library from source: > ``` > pip install git+https://github.com/huggingface/diffusers > ``` ## Computational Efficiency on Different GPUs We test the computational efficiency of different **Wan2.2** models on different GPUs in the following table. The results are presented in the format: **Total time (s) / peak GPU memory (GB)**. <div align="center"> <img src="assets/comp_effic.png" alt="" style="width: 80%;" /> </div> > The parameter settings for the tests presented in this table are as follows: > (1) Multi-GPU: 14B: `--ulysses_size 4/8 --dit_fsdp --t5_fsdp`, 5B: `--ulysses_size 4/8 --offload_model True --convert_model_dtype --t5_cpu`; Single-GPU: 14B: `--offload_model True --convert_model_dtype`, 5B: `--offload_model True --convert_model_dtype --t5_cpu` (--convert_model_dtype converts model parameter types to config.param_dtype); > (2) The distributed testing utilizes the built-in FSDP and Ulysses implementations, with FlashAttention3 deployed on Hopper architecture GPUs; > (3) Tests were run without the `--use_prompt_extend` flag; > (4) Reported results are the average of multiple samples taken after the warm-up phase. ------- ## Introduction of Wan2.2 **Wan2.2** builds on the foundation of Wan2.1 with notable improvements in generation quality and model capability. This upgrade is driven by a series of key technical innovations, mainly including the Mixture-of-Experts (MoE) architecture, upgraded training data, and high-compression video generation. ##### (1) Mixture-of-Experts (MoE) Architecture Wan2.2 introduces Mixture-of-Experts (MoE) architecture into the video generation diffusion model. MoE has been widely validated in large language models as an efficient approach to increase total model parameters while keeping inference cost nearly unchanged. In Wan2.2, the A14B model series adopts a two-expert design tailored to the denoising process of diffusion models: a high-noise expert for the early stages, focusing on overall layout; and a low-noise expert for the later stages, refining video details. Each expert model has about 14B parameters, resulting in a total of 27B parameters but only 14B active parameters per step, keeping inference computation and GPU memory nearly unchanged. <div align="center"> <img src="assets/moe_arch.png" alt="" style="width: 90%;" /> </div> The transition point between the two experts is determined by the signal-to-noise ratio (SNR), a metric that decreases monotonically as the denoising step $t$ increases. At the beginning of the denoising process, $t$ is large and the noise level is high, so the SNR is at its minimum, denoted as ${SNR}_{min}$. In this stage, the high-noise expert is activated. We define a threshold step ${t}_{moe}$ corresponding to half of the ${SNR}_{min}$, and switch to the low-noise expert when $t<{t}_{moe}$. <div align="center"> <img src="assets/moe_2.png" alt="" style="width: 90%;" /> </div> To validate the effectiveness of the MoE architecture, four settings are compared based on their validation loss curves. The baseline **Wan2.1** model does not employ the MoE architecture. Among the MoE-based variants, the **Wan2.1 & High-Noise Expert** reuses the Wan2.1 model as the low-noise expert while uses the Wan2.2's high-noise expert, while the **Wan2.1 & Low-Noise Expert** uses Wan2.1 as the high-noise expert and employ the Wan2.2's low-noise expert. The **Wan2.2 (MoE)** (our final version) achieves the lowest validation loss, indicating that its generated video distribution is closest to ground-truth and exhibits superior convergence. ##### (2) Efficient High-Definition Hybrid TI2V To enable more efficient deployment, Wan2.2 also explores a high-compression design. In addition to the 27B MoE models, a 5B dense model, i.e., TI2V-5B, is released. It is supported by a high-compression Wan2.2-VAE, which achieves a $T\times H\times W$ compression ratio of $4\times16\times16$, increasing the overall compression rate to 64 while maintaining high-quality video reconstruction. With an additional patchification layer, the total compression ratio of TI2V-5B reaches $4\times32\times32$. Without specific optimization, TI2V-5B can generate a 5-second 720P video in under 9 minutes on a single consumer-grade GPU, ranking among the fastest 720P@24fps video generation models. This model also natively supports both text-to-video and image-to-video tasks within a single unified framework, covering both academic research and practical applications. <div align="center"> <img src="assets/vae.png" alt="" style="width: 80%;" /> </div> ##### Comparisons to SOTAs We compared Wan2.2 with leading closed-source commercial models on our new Wan-Bench 2.0, evaluating performance across multiple crucial dimensions. The results demonstrate that Wan2.2 achieves superior performance compared to these leading models. <div align="center"> <img src="assets/performance.png" alt="" style="width: 90%;" /> </div> ## Citation If you find our work helpful, please cite us. ``` @article{wan2025, title={Wan: Open and Advanced Large-Scale Video Generative Models}, author={Team Wan and Ang Wang and Baole Ai and Bin Wen and Chaojie Mao and Chen-Wei Xie and Di Chen and Feiwu Yu and Haiming Zhao and Jianxiao Yang and Jianyuan Zeng and Jiayu Wang and Jingfeng Zhang and Jingren Zhou and Jinkai Wang and Jixuan Chen and Kai Zhu and Kang Zhao and Keyu Yan and Lianghua Huang and Mengyang Feng and Ningyi Zhang and Pandeng Li and Pingyu Wu and Ruihang Chu and Ruili Feng and Shiwei Zhang and Siyang Sun and Tao Fang and Tianxing Wang and Tianyi Gui and Tingyu Weng and Tong Shen and Wei Lin and Wei Wang and Wei Wang and Wenmeng Zhou and Wente Wang and Wenting Shen and Wenyuan Yu and Xianzhong Shi and Xiaoming Huang and Xin Xu and Yan Kou and Yangyu Lv and Yifei Li and Yijing Liu and Yiming Wang and Yingya Zhang and Yitong Huang and Yong Li and You Wu and Yu Liu and Yulin Pan and Yun Zheng and Yuntao Hong and Yupeng Shi and Yutong Feng and Zeyinzi Jiang and Zhen Han and Zhi-Fan Wu and Ziyu Liu}, journal = {arXiv preprint arXiv:2503.20314}, year={2025} } ``` ## License Agreement The models in this repository are licensed under the Apache 2.0 License. We claim no rights over the your generated contents, granting you the freedom to use them while ensuring that your usage complies with the provisions of this license. You are fully accountable for your use of the models, which must not involve sharing any content that violates applicable laws, causes harm to individuals or groups, disseminates personal information intended for harm, spreads misinformation, or targets vulnerable populations. For a complete list of restrictions and details regarding your rights, please refer to the full text of the [license](LICENSE.txt). ## Acknowledgements We would like to thank the contributors to the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [Qwen](https://huggingface.co/Qwen), [umt5-xxl](https://huggingface.co/google/umt5-xxl), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research. ## Contact Us If you would like to leave a message to our research or product teams, feel free to join our [Discord](https://discord.gg/AKNgpMK4Yj) or [WeChat groups](https://gw.alicdn.com/imgextra/i2/O1CN01tqjWFi1ByuyehkTSB_!!6000000000015-0-tps-611-1279.jpg)!
misaeluoyz/blockassist-bc-bipedal_soaring_porcupine_1757602642
misaeluoyz
2025-09-11T14:57:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:57:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luiskodraje/blockassist-bc-climbing_quick_reindeer_1757602593
luiskodraje
2025-09-11T14:57:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric iridescent puffin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:56:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric iridescent puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neylanduoh/blockassist-bc-prehistoric_iridescent_puffin_1757602614
neylanduoh
2025-09-11T14:57:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric iridescent puffin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:56:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric iridescent puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jobs-git/Wan2.2-I2V-A14B
jobs-git
2025-09-11T14:56:28Z
0
0
wan2.2
[ "wan2.2", "diffusers", "safetensors", "image-to-video", "en", "zh", "arxiv:2503.20314", "license:apache-2.0", "region:us" ]
image-to-video
2025-09-11T14:56:27Z
--- license: apache-2.0 language: - en - zh pipeline_tag: image-to-video library_name: wan2.2 --- # Wan2.2 <p align="center"> <img src="assets/logo.png" width="400"/> <p> <p align="center"> 💜 <a href="https://wan.video"><b>Wan</b></a> &nbsp&nbsp | &nbsp&nbsp 🖥️ <a href="https://github.com/Wan-Video/Wan2.2">GitHub</a> &nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/Wan-AI/">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/Wan-AI">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://arxiv.org/abs/2503.20314">Technical Report</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://wan.video/welcome?spm=a2ty_o02.30011076.0.0.6c9ee41eCcluqg">Blog</a> &nbsp&nbsp | &nbsp&nbsp💬 <a href="https://gw.alicdn.com/imgextra/i2/O1CN01tqjWFi1ByuyehkTSB_!!6000000000015-0-tps-611-1279.jpg">WeChat Group</a>&nbsp&nbsp | &nbsp&nbsp 📖 <a href="https://discord.gg/AKNgpMK4Yj">Discord</a>&nbsp&nbsp <br> ----- [**Wan: Open and Advanced Large-Scale Video Generative Models**](https://arxiv.org/abs/2503.20314) <be> We are excited to introduce **Wan2.2**, a major upgrade to our foundational video models. With **Wan2.2**, we have focused on incorporating the following innovations: - 👍 **Effective MoE Architecture**: Wan2.2 introduces a Mixture-of-Experts (MoE) architecture into video diffusion models. By separating the denoising process cross timesteps with specialized powerful expert models, this enlarges the overall model capacity while maintaining the same computational cost. - 👍 **Cinematic-level Aesthetics**: Wan2.2 incorporates meticulously curated aesthetic data, complete with detailed labels for lighting, composition, contrast, color tone, and more. This allows for more precise and controllable cinematic style generation, facilitating the creation of videos with customizable aesthetic preferences. - 👍 **Complex Motion Generation**: Compared to Wan2.1, Wan2.2 is trained on a significantly larger data, with +65.6% more images and +83.2% more videos. This expansion notably enhances the model's generalization across multiple dimensions such as motions, semantics, and aesthetics, achieving TOP performance among all open-sourced and closed-sourced models. - 👍 **Efficient High-Definition Hybrid TI2V**: Wan2.2 open-sources a 5B model built with our advanced Wan2.2-VAE that achieves a compression ratio of **16×16×4**. This model supports both text-to-video and image-to-video generation at 720P resolution with 24fps and can also run on consumer-grade graphics cards like 4090. It is one of the fastest **720P@24fps** models currently available, capable of serving both the industrial and academic sectors simultaneously. This repository also includes our I2V-A14B model, designed for image-to-video generation, supporting both 480P and 720P resolutions. Built with a Mixture-of-Experts (MoE) architecture, it achieves more stable video synthesis with reduced unrealistic camera movements and offers enhanced support for diverse stylized scenes. ## Video Demos <div align="center"> <video width="80%" controls> <source src="https://cloud.video.taobao.com/vod/NnCd0fC-1eckDUuVBMz43oD_U6mTsPpBwga3wdnAkXA.mp4" type="video/mp4"> Your browser does not support the video tag. </video> </div> ## 🔥 Latest News!! * Jul 28, 2025: 👋 Wan2.1 has been integrated into ComfyUI ([CN](https://docs.comfy.org/zh-CN/tutorials/video/wan/wan2_2) | [EN](https://docs.comfy.org/tutorials/video/wan/wan2_2)). Enjoy! * Jul 28, 2025: 👋 Wan2.2's T2V, I2V and TI2V have been integrated into Diffusers ([T2V-A14B](https://huggingface.co/Wan-AI/Wan2.2-T2V-A14B-Diffusers) | [I2V-A14B](https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B-Diffusers) | [TI2V-5B](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B-Diffusers)). Feel free to give it a try! * Jul 28, 2025: 👋 We've released the inference code and model weights of **Wan2.2**. ## Community Works If your research or project builds upon [**Wan2.1**](https://github.com/Wan-Video/Wan2.1) or Wan2.2, we welcome you to share it with us so we can highlight it for the broader community. ## 📑 Todo List - Wan2.2 Text-to-Video - [x] Multi-GPU Inference code of the A14B and 14B models - [x] Checkpoints of the A14B and 14B models - [x] ComfyUI integration - [x] Diffusers integration - Wan2.2 Image-to-Video - [x] Multi-GPU Inference code of the A14B model - [x] Checkpoints of the A14B model - [x] ComfyUI integration - [x] Diffusers integration - Wan2.2 Text-Image-to-Video - [x] Multi-GPU Inference code of the 5B model - [x] Checkpoints of the 5B model - [x] ComfyUI integration - [x] Diffusers integration ## Run Wan2.2 #### Installation Clone the repo: ```sh git clone https://github.com/Wan-Video/Wan2.2.git cd Wan2.2 ``` Install dependencies: ```sh # Ensure torch >= 2.4.0 # If the installation of `flash_attn` fails, try installing the other packages first and install `flash_attn` last pip install -r requirements.txt ``` #### Model Download | Models | Download Links | Description | |--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------| | T2V-A14B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.2-T2V-A14B) 🤖 [ModelScope](https://modelscope.cn/models/Wan-AI/Wan2.2-T2V-A14B) | Text-to-Video MoE model, supports 480P & 720P | | I2V-A14B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B) 🤖 [ModelScope](https://modelscope.cn/models/Wan-AI/Wan2.2-I2V-A14B) | Image-to-Video MoE model, supports 480P & 720P | | TI2V-5B | 🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B) 🤖 [ModelScope](https://modelscope.cn/models/Wan-AI/Wan2.2-TI2V-5B) | High-compression VAE, T2V+I2V, supports 720P | > 💡Note: > The TI2V-5B model supports 720P video generation at **24 FPS**. Download models using huggingface-cli: ``` sh pip install "huggingface_hub[cli]" huggingface-cli download Wan-AI/Wan2.2-I2V-A14B --local-dir ./Wan2.2-I2V-A14B ``` Download models using modelscope-cli: ``` sh pip install modelscope modelscope download Wan-AI/Wan2.2-I2V-A14B --local_dir ./Wan2.2-I2V-A14B ``` #### Run Image-to-Video Generation This repository supports the `Wan2.2-I2V-A14B`` Image-to-Video model and can simultaneously support video generation at 480P and 720P resolutions. - Single-GPU inference ```sh python generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --offload_model True --convert_model_dtype --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." ``` > This command can run on a GPU with at least 80GB VRAM. > 💡For the Image-to-Video task, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image. - Multi-GPU inference using FSDP + DeepSpeed Ulysses ```sh torchrun --nproc_per_node=8 generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." ``` - Image-to-Video Generation without prompt ```sh DASH_API_KEY=your_key torchrun --nproc_per_node=8 generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --prompt '' --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --use_prompt_extend --prompt_extend_method 'dashscope' ``` > 💡The model can generate videos solely from the input image. You can use prompt extension to generate prompt from the image. > The process of prompt extension can be referenced [here](#2-using-prompt-extention). ## Computational Efficiency on Different GPUs We test the computational efficiency of different **Wan2.2** models on different GPUs in the following table. The results are presented in the format: **Total time (s) / peak GPU memory (GB)**. <div align="center"> <img src="assets/comp_effic.png" alt="" style="width: 80%;" /> </div> > The parameter settings for the tests presented in this table are as follows: > (1) Multi-GPU: 14B: `--ulysses_size 4/8 --dit_fsdp --t5_fsdp`, 5B: `--ulysses_size 4/8 --offload_model True --convert_model_dtype --t5_cpu`; Single-GPU: 14B: `--offload_model True --convert_model_dtype`, 5B: `--offload_model True --convert_model_dtype --t5_cpu` (--convert_model_dtype converts model parameter types to config.param_dtype); > (2) The distributed testing utilizes the built-in FSDP and Ulysses implementations, with FlashAttention3 deployed on Hopper architecture GPUs; > (3) Tests were run without the `--use_prompt_extend` flag; > (4) Reported results are the average of multiple samples taken after the warm-up phase. ------- ## Introduction of Wan2.2 **Wan2.2** builds on the foundation of Wan2.1 with notable improvements in generation quality and model capability. This upgrade is driven by a series of key technical innovations, mainly including the Mixture-of-Experts (MoE) architecture, upgraded training data, and high-compression video generation. ##### (1) Mixture-of-Experts (MoE) Architecture Wan2.2 introduces Mixture-of-Experts (MoE) architecture into the video generation diffusion model. MoE has been widely validated in large language models as an efficient approach to increase total model parameters while keeping inference cost nearly unchanged. In Wan2.2, the A14B model series adopts a two-expert design tailored to the denoising process of diffusion models: a high-noise expert for the early stages, focusing on overall layout; and a low-noise expert for the later stages, refining video details. Each expert model has about 14B parameters, resulting in a total of 27B parameters but only 14B active parameters per step, keeping inference computation and GPU memory nearly unchanged. <div align="center"> <img src="assets/moe_arch.png" alt="" style="width: 90%;" /> </div> The transition point between the two experts is determined by the signal-to-noise ratio (SNR), a metric that decreases monotonically as the denoising step $t$ increases. At the beginning of the denoising process, $t$ is large and the noise level is high, so the SNR is at its minimum, denoted as ${SNR}_{min}$. In this stage, the high-noise expert is activated. We define a threshold step ${t}_{moe}$ corresponding to half of the ${SNR}_{min}$, and switch to the low-noise expert when $t<{t}_{moe}$. <div align="center"> <img src="assets/moe_2.png" alt="" style="width: 90%;" /> </div> To validate the effectiveness of the MoE architecture, four settings are compared based on their validation loss curves. The baseline **Wan2.1** model does not employ the MoE architecture. Among the MoE-based variants, the **Wan2.1 & High-Noise Expert** reuses the Wan2.1 model as the low-noise expert while uses the Wan2.2's high-noise expert, while the **Wan2.1 & Low-Noise Expert** uses Wan2.1 as the high-noise expert and employ the Wan2.2's low-noise expert. The **Wan2.2 (MoE)** (our final version) achieves the lowest validation loss, indicating that its generated video distribution is closest to ground-truth and exhibits superior convergence. ##### (2) Efficient High-Definition Hybrid TI2V To enable more efficient deployment, Wan2.2 also explores a high-compression design. In addition to the 27B MoE models, a 5B dense model, i.e., TI2V-5B, is released. It is supported by a high-compression Wan2.2-VAE, which achieves a $T\times H\times W$ compression ratio of $4\times16\times16$, increasing the overall compression rate to 64 while maintaining high-quality video reconstruction. With an additional patchification layer, the total compression ratio of TI2V-5B reaches $4\times32\times32$. Without specific optimization, TI2V-5B can generate a 5-second 720P video in under 9 minutes on a single consumer-grade GPU, ranking among the fastest 720P@24fps video generation models. This model also natively supports both text-to-video and image-to-video tasks within a single unified framework, covering both academic research and practical applications. <div align="center"> <img src="assets/vae.png" alt="" style="width: 80%;" /> </div> ##### Comparisons to SOTAs We compared Wan2.2 with leading closed-source commercial models on our new Wan-Bench 2.0, evaluating performance across multiple crucial dimensions. The results demonstrate that Wan2.2 achieves superior performance compared to these leading models. <div align="center"> <img src="assets/performance.png" alt="" style="width: 90%;" /> </div> ## Citation If you find our work helpful, please cite us. ``` @article{wan2025, title={Wan: Open and Advanced Large-Scale Video Generative Models}, author={Team Wan and Ang Wang and Baole Ai and Bin Wen and Chaojie Mao and Chen-Wei Xie and Di Chen and Feiwu Yu and Haiming Zhao and Jianxiao Yang and Jianyuan Zeng and Jiayu Wang and Jingfeng Zhang and Jingren Zhou and Jinkai Wang and Jixuan Chen and Kai Zhu and Kang Zhao and Keyu Yan and Lianghua Huang and Mengyang Feng and Ningyi Zhang and Pandeng Li and Pingyu Wu and Ruihang Chu and Ruili Feng and Shiwei Zhang and Siyang Sun and Tao Fang and Tianxing Wang and Tianyi Gui and Tingyu Weng and Tong Shen and Wei Lin and Wei Wang and Wei Wang and Wenmeng Zhou and Wente Wang and Wenting Shen and Wenyuan Yu and Xianzhong Shi and Xiaoming Huang and Xin Xu and Yan Kou and Yangyu Lv and Yifei Li and Yijing Liu and Yiming Wang and Yingya Zhang and Yitong Huang and Yong Li and You Wu and Yu Liu and Yulin Pan and Yun Zheng and Yuntao Hong and Yupeng Shi and Yutong Feng and Zeyinzi Jiang and Zhen Han and Zhi-Fan Wu and Ziyu Liu}, journal = {arXiv preprint arXiv:2503.20314}, year={2025} } ``` ## License Agreement The models in this repository are licensed under the Apache 2.0 License. We claim no rights over the your generated contents, granting you the freedom to use them while ensuring that your usage complies with the provisions of this license. You are fully accountable for your use of the models, which must not involve sharing any content that violates applicable laws, causes harm to individuals or groups, disseminates personal information intended for harm, spreads misinformation, or targets vulnerable populations. For a complete list of restrictions and details regarding your rights, please refer to the full text of the [license](LICENSE.txt). ## Acknowledgements We would like to thank the contributors to the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [Qwen](https://huggingface.co/Qwen), [umt5-xxl](https://huggingface.co/google/umt5-xxl), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research. ## Contact Us If you would like to leave a message to our research or product teams, feel free to join our [Discord](https://discord.gg/AKNgpMK4Yj) or [WeChat groups](https://gw.alicdn.com/imgextra/i2/O1CN01tqjWFi1ByuyehkTSB_!!6000000000015-0-tps-611-1279.jpg)!
merrithewlesley/blockassist-bc-pawing_squeaky_bison_1757602544
merrithewlesley
2025-09-11T14:56:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing squeaky bison", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:56:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing squeaky bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canadayfawuh/blockassist-bc-flapping_wise_rhino_1757602557
canadayfawuh
2025-09-11T14:56:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing squeaky bison", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:56:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing squeaky bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1757602504
akirafudo
2025-09-11T14:56:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:55:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
brauerraglmb/blockassist-bc-tough_subtle_tortoise_1757602534
brauerraglmb
2025-09-11T14:55:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tough subtle tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:55:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tough subtle tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manesgvstallmanaa/blockassist-bc-prickly_prickly_caterpillar_1757602512
manesgvstallmanaa
2025-09-11T14:55:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prickly prickly caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:55:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prickly prickly caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nick7623874/distilgpt2
nick7623874
2025-09-11T14:55:20Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:distilgpt2", "lora", "transformers", "text-generation", "base_model:distilbert/distilgpt2", "base_model:adapter:distilbert/distilgpt2", "license:apache-2.0", "region:us" ]
text-generation
2025-09-11T12:54:31Z
--- library_name: peft license: apache-2.0 base_model: distilgpt2 tags: - base_model:adapter:distilgpt2 - lora - transformers pipeline_tag: text-generation model-index: - name: distilgpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 6 ### Training results ### Framework versions - PEFT 0.17.1 - Transformers 4.56.1 - Pytorch 2.5.1+cu121 - Datasets 4.0.0 - Tokenizers 0.22.0
lornaaveradutch/blockassist-bc-poisonous_domestic_jaguar_1757602477
lornaaveradutch
2025-09-11T14:54:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "poisonous domestic jaguar", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:54:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - poisonous domestic jaguar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hartsellbrian/blockassist-bc-pawing_wiry_bee_1757602442
hartsellbrian
2025-09-11T14:54:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing wiry bee", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:54:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing wiry bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jrfszy/blockassist-bc-barky_wary_sandpiper_1757602425
jrfszy
2025-09-11T14:54:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky wary sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:54:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky wary sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_cola_789_1757596124
rbelanec
2025-09-11T14:54:10Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lntuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:07:08Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lntuning - generated_from_trainer model-index: - name: train_cola_789_1757596124 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_789_1757596124 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.1651 - Num Input Tokens Seen: 3663512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.0727 | 0.5 | 962 | 0.2056 | 182656 | | 0.28 | 1.0 | 1924 | 0.1750 | 365728 | | 0.2319 | 1.5 | 2886 | 0.2058 | 548992 | | 0.1678 | 2.0 | 3848 | 0.1835 | 731984 | | 0.068 | 2.5 | 4810 | 0.2135 | 915792 | | 0.4099 | 3.0 | 5772 | 0.1894 | 1098920 | | 0.043 | 3.5 | 6734 | 0.1944 | 1281640 | | 0.0726 | 4.0 | 7696 | 0.1651 | 1465464 | | 0.1162 | 4.5 | 8658 | 0.1846 | 1649720 | | 0.0194 | 5.0 | 9620 | 0.1789 | 1831920 | | 0.0803 | 5.5 | 10582 | 0.1859 | 2014928 | | 0.2613 | 6.0 | 11544 | 0.1869 | 2198176 | | 0.1435 | 6.5 | 12506 | 0.1877 | 2381440 | | 0.1227 | 7.0 | 13468 | 0.1890 | 2564952 | | 0.288 | 7.5 | 14430 | 0.1912 | 2748568 | | 0.2387 | 8.0 | 15392 | 0.1974 | 2931096 | | 0.0504 | 8.5 | 16354 | 0.1940 | 3113624 | | 0.0763 | 9.0 | 17316 | 0.1961 | 3296808 | | 0.0386 | 9.5 | 18278 | 0.1963 | 3480168 | | 0.094 | 10.0 | 19240 | 0.1969 | 3663512 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
rbelanec/train_cola_789_1757596121
rbelanec
2025-09-11T14:53:47Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prompt-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:05:34Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prompt-tuning - generated_from_trainer model-index: - name: train_cola_789_1757596121 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_789_1757596121 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.1857 - Num Input Tokens Seen: 3663512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 789 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.1364 | 0.5 | 962 | 0.2231 | 182656 | | 0.241 | 1.0 | 1924 | 0.1857 | 365728 | | 0.2613 | 1.5 | 2886 | 0.2296 | 548992 | | 0.3619 | 2.0 | 3848 | 0.2091 | 731984 | | 0.0575 | 2.5 | 4810 | 0.2246 | 915792 | | 0.5262 | 3.0 | 5772 | 0.2300 | 1098920 | | 0.1518 | 3.5 | 6734 | 0.2180 | 1281640 | | 0.1225 | 4.0 | 7696 | 0.2018 | 1465464 | | 0.2075 | 4.5 | 8658 | 0.2135 | 1649720 | | 0.023 | 5.0 | 9620 | 0.2038 | 1831920 | | 0.237 | 5.5 | 10582 | 0.2079 | 2014928 | | 0.3227 | 6.0 | 11544 | 0.2203 | 2198176 | | 0.1221 | 6.5 | 12506 | 0.2235 | 2381440 | | 0.171 | 7.0 | 13468 | 0.2170 | 2564952 | | 0.3842 | 7.5 | 14430 | 0.2183 | 2748568 | | 0.3918 | 8.0 | 15392 | 0.2206 | 2931096 | | 0.1045 | 8.5 | 16354 | 0.2195 | 3113624 | | 0.0791 | 9.0 | 17316 | 0.2215 | 3296808 | | 0.0553 | 9.5 | 18278 | 0.2204 | 3480168 | | 0.2145 | 10.0 | 19240 | 0.2197 | 3663512 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
pm9150348/blockassist-bc-powerful_raging_ape_1757602410
pm9150348
2025-09-11T14:53:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "powerful raging ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:53:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - powerful raging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
khazarai/Psychology-RLHF
khazarai
2025-09-11T14:53:45Z
0
1
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "lora", "orpo", "transformers", "trl", "unsloth", "text-generation", "conversational", "en", "dataset:samhog/psychology-RLHF", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "license:mit", "region:us" ]
text-generation
2025-09-11T14:50:34Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct - lora - orpo - transformers - trl - unsloth license: mit datasets: - samhog/psychology-RLHF language: - en --- # Model Card for Psychology-RLHF ### Model Description This model is a fine-tuned version of Qwen2.5-0.5B-Instruct on the samhog/psychology-RLHF dataset using ORPO. The primary objective was to experiment with Reinforcement Learning from Human Feedback (RLHF) via ORPO, focusing on preference alignment. The dataset comes from the psychology domain, but the main purpose of this fine-tuning was to study and demonstrate the effectiveness of ORPO for aligning small-scale instruction-tuned models. - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** unsloth/Qwen2.5-0.5B-Instruct - **Fine-tuning Method**: ORPO (Offline Reinforcement Preference Optimization) - **Dataset**: samhog/psychology-RLHF - **Domain**: Psychology, mental health reasoning, and conversational alignment ## Uses ### Direct Use - Educational and research purposes in psychology-related question-answering. - Conversational agents for safe psychology discussions. - Research on RLHF and ORPO fine-tuning in domain-specific contexts. ## Bias, Risks, and Limitations - This model is not a substitute for professional mental health advice. - Trained on synthetic/human preference data → may still generate biased or hallucinated content. - Small-scale model (0.5B parameters) → limited reasoning ability compared to larger LLMs. ## How to Get Started with the Model ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-0.5B-Instruct",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen2.5-0.5B-Instruct", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"khazarai/Psychology-RLHF") prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" inputs = tokenizer( [ prompt.format( "You are an AI assistant that helps people find information", "I'm having trouble with my teenage child. They're acting out and I don't know what to do.", "", ) ], return_tensors="pt", ).to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=512) ``` ## Training Details Training Metrics: - Training Loss: ↓ from 1.86 → 0.2978 - NLL Loss: ↓ from 1.77 → 0.34 - Reward (Chosen): -0.19 → -0.037 - Reward (Rejected): -0.20 → -0.150 - Reward Gap: ≈ +0.11 Interpretation: - Losses decreased steadily, indicating stable convergence. - Chosen rewards improved toward 0, while rejected remained lower, showing preference alignment. - Final model demonstrates improved distinction between good vs. bad responses. ### Framework versions - PEFT 0.17.1
stuartmoffitt/blockassist-bc-chattering_insectivorous_narwhal_1757602372
stuartmoffitt
2025-09-11T14:53:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering insectivorous narwhal", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:53:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering insectivorous narwhal --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zamilaoela/blockassist-bc-singing_leaping_vulture_1757602379
zamilaoela
2025-09-11T14:53:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "singing leaping vulture", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:53:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - singing leaping vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
borsahopa67/blockassist-bc-polished_quiet_badger_1757602346
borsahopa67
2025-09-11T14:52:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished quiet badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:52:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished quiet badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
philipsyodavebbfs/blockassist-bc-insectivorous_pensive_bison_1757602346
philipsyodavebbfs
2025-09-11T14:52:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous pensive bison", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:52:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous pensive bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
moyixiao/Qwen3-0.6B-bnpo5-f16-100
moyixiao
2025-09-11T14:52:13Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T14:51:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
leveylewlsjanot/blockassist-bc-mammalian_swift_chicken_1757602303
leveylewlsjanot
2025-09-11T14:52:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shy arctic prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:52:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shy arctic prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MATheGooner/Qwen3-0.6B-Gensyn-Swarm-shaggy_smooth_scorpion
MATheGooner
2025-09-11T14:51:52Z
122
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am shaggy_smooth_scorpion", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-27T07:19:42Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am shaggy_smooth_scorpion --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RossAscends/12B-Trix-TEST-iQ4KS-GGUF
RossAscends
2025-09-11T14:51:49Z
0
0
null
[ "gguf", "en", "base_model:DreadPoor/Trix-TEST", "base_model:quantized:DreadPoor/Trix-TEST", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-09-11T14:35:04Z
--- license: mit language: - en base_model: - DreadPoor/Trix-TEST --- iMatrix 4_K_S Quant of DreadPoor's Trix-TEST Original: https://huggingface.co/DreadPoor/Trix-TEST I saw it had a very interesting merge receipe, so I was eager to try it out even though it's not in a finished state. Instruct is ChatML. Can confirm it's a huge yapper. It can be contained somewhat by: - giving it a minimal system prompt of `Reply to the User.` - adding a Lorebook entry at depth 0 instructing it to respond concisely. I don't see any slop in the responses at all. Lots of potential here.
cwayneconnor/blockassist-bc-mute_loud_lynx_1757602190
cwayneconnor
2025-09-11T14:51:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:50:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jalkafariya/blockassist-bc-stealthy_hoarse_toucan_1757602258
jalkafariya
2025-09-11T14:51:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy hoarse toucan", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:51:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy hoarse toucan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
virginiammccauley4/blockassist-bc-grunting_squeaky_lynx_1757602251
virginiammccauley4
2025-09-11T14:51:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "grunting squeaky lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:50:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - grunting squeaky lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahumadaxhg/blockassist-bc-alert_spotted_dolphin_1757602232
ahumadaxhg
2025-09-11T14:50:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert spotted dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:50:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert spotted dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_copa_101112_1757596166
rbelanec
2025-09-11T14:50:16Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:46:33Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: train_copa_101112_1757596166 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_101112_1757596166 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.0109 - Num Input Tokens Seen: 281312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.109 | 0.5 | 45 | 0.0421 | 14144 | | 0.2402 | 1.0 | 90 | 0.0356 | 28192 | | 0.0435 | 1.5 | 135 | 0.0161 | 42208 | | 0.0165 | 2.0 | 180 | 0.0145 | 56256 | | 0.0101 | 2.5 | 225 | 0.0109 | 70368 | | 0.0 | 3.0 | 270 | 0.0160 | 84320 | | 0.0 | 3.5 | 315 | 0.0169 | 98400 | | 0.0 | 4.0 | 360 | 0.0245 | 112416 | | 0.0 | 4.5 | 405 | 0.0245 | 126496 | | 0.0 | 5.0 | 450 | 0.0245 | 140544 | | 0.0 | 5.5 | 495 | 0.0245 | 154592 | | 0.0 | 6.0 | 540 | 0.0255 | 168768 | | 0.0 | 6.5 | 585 | 0.0255 | 182848 | | 0.0 | 7.0 | 630 | 0.0255 | 196896 | | 0.0 | 7.5 | 675 | 0.0255 | 210912 | | 0.0 | 8.0 | 720 | 0.0245 | 225024 | | 0.0 | 8.5 | 765 | 0.0255 | 239200 | | 0.0 | 9.0 | 810 | 0.0255 | 253152 | | 0.0 | 9.5 | 855 | 0.0265 | 267040 | | 0.0 | 10.0 | 900 | 0.0245 | 281312 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
priyankajugwa/blockassist-bc-exotic_frisky_ostrich_1757602197
priyankajugwa
2025-09-11T14:50:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic frisky ostrich", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:50:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic frisky ostrich --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_copa_101112_1757596165
rbelanec
2025-09-11T14:49:41Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "p-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:46:05Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - p-tuning - generated_from_trainer model-index: - name: train_copa_101112_1757596165 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_101112_1757596165 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.9577 - Num Input Tokens Seen: 281312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.2006 | 0.5 | 45 | 0.1967 | 14144 | | 0.3225 | 1.0 | 90 | 0.0856 | 28192 | | 0.4327 | 1.5 | 135 | 0.0478 | 42208 | | 0.0202 | 2.0 | 180 | 0.0775 | 56256 | | 0.1742 | 2.5 | 225 | 0.0552 | 70368 | | 0.0049 | 3.0 | 270 | 0.0273 | 84320 | | 0.0011 | 3.5 | 315 | 0.0583 | 98400 | | 0.0018 | 4.0 | 360 | 0.0332 | 112416 | | 0.0013 | 4.5 | 405 | 0.0406 | 126496 | | 0.0002 | 5.0 | 450 | 0.0364 | 140544 | | 0.0001 | 5.5 | 495 | 0.0473 | 154592 | | 0.0001 | 6.0 | 540 | 0.0446 | 168768 | | 0.0001 | 6.5 | 585 | 0.0423 | 182848 | | 0.0 | 7.0 | 630 | 0.0465 | 196896 | | 0.0 | 7.5 | 675 | 0.0435 | 210912 | | 0.0 | 8.0 | 720 | 0.0428 | 225024 | | 0.0 | 8.5 | 765 | 0.0453 | 239200 | | 0.0 | 9.0 | 810 | 0.0443 | 253152 | | 0.0 | 9.5 | 855 | 0.0495 | 267040 | | 0.0 | 10.0 | 900 | 0.0484 | 281312 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
shikderazriel6453/blockassist-bc-burrowing_thorny_gibbon_1757602168
shikderazriel6453
2025-09-11T14:49:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "burrowing thorny gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:49:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - burrowing thorny gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
herculesnode/blockassist-bc-insectivorous_bold_lion_1757602129
herculesnode
2025-09-11T14:49:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:49:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lm8779694/blockassist-bc-wily_squeaky_mule_1757602142
lm8779694
2025-09-11T14:49:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wily squeaky mule", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:49:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wily squeaky mule --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rodrigoburgd/blockassist-bc-scruffy_untamed_hare_1757602112
rodrigoburgd
2025-09-11T14:48:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy untamed hare", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:48:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy untamed hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
khazarai/Social-RLHF
khazarai
2025-09-11T14:48:26Z
0
1
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "lora", "orpo", "transformers", "trl", "unsloth", "text-generation", "conversational", "en", "dataset:ProlificAI/social-reasoning-rlhf", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "license:mit", "region:us" ]
text-generation
2025-09-11T14:44:04Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct - lora - orpo - transformers - trl - unsloth license: mit datasets: - ProlificAI/social-reasoning-rlhf language: - en --- # Model Card for Social RLHF ## Model Details This model is a fine-tuned version of Qwen2.5-0.5B-Instruct on the ProlificAI/social-reasoning-rlhf dataset using ORPO. The primary objective was to experiment with Reinforcement Learning from Human Feedback (RLHF) via ORPO, focusing on preference alignment. ### Model Description - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** unsloth/Qwen2.5-0.5B-Instruct - **Fine-tuning Method**: ORPO (Offline Reinforcement Preference Optimization) - **Dataset**: ProlificAI/social-reasoning-rlhf ## How to Get Started with the Model Use the code below to get started with the model. ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-0.5B-Instruct",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen2.5-0.5B-Instruct", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"khazarai/Social-RLHF") prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" inputs = tokenizer( [ prompt.format( "You are an AI assistant that helps people find information", "A stranger shares private information with you on public transportation. How might you respond sensitively?", "", ) ], return_tensors="pt", ).to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=512) ``` ### Framework versions - PEFT 0.17.1
DigitalOwl/11.9.2025_segmentation_vision-run-f8sm9-Qwen2.5-VL-7B-Instruct
DigitalOwl
2025-09-11T14:48:14Z
0
0
null
[ "safetensors", "qwen2_5_vl", "vision", "multimodal", "qwen2.5-vl", "fine-tuned", "image-text-to-text", "conversational", "en", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2025-09-11T14:37:38Z
--- license: apache-2.0 base_model: Qwen/Qwen2.5-VL-7B-Instruct tags: - vision - multimodal - qwen2.5-vl - fine-tuned language: - en pipeline_tag: image-text-to-text --- # Fine-tuned Qwen2.5-VL Model This is a fine-tuned version of Qwen/Qwen2.5-VL-7B-Instruct trained using Axolotl. ## Model Details - **Base Model**: Qwen/Qwen2.5-VL-7B-Instruct - **Training Framework**: Axolotl - **Training Type**: LoRA Fine-tuning (language model only) ## Training Configuration - Learning Rate: 0.0002 - Optimizer: adamw_8bit - Scheduler: cosine - Precision: bf16 - Checkpoints: Disabled for efficiency
Ayush2594/results
Ayush2594
2025-09-11T14:47:17Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-09-11T09:05:29Z
--- library_name: transformers license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
rbelanec/train_copa_101112_1757596164
rbelanec
2025-09-11T14:46:39Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prompt-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:43:32Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prompt-tuning - generated_from_trainer model-index: - name: train_copa_101112_1757596164 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_101112_1757596164 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.0768 - Num Input Tokens Seen: 281312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.081 | 0.5 | 45 | 0.1215 | 14144 | | 0.3339 | 1.0 | 90 | 0.1037 | 28192 | | 0.0463 | 1.5 | 135 | 0.0964 | 42208 | | 0.082 | 2.0 | 180 | 0.0777 | 56256 | | 0.2678 | 2.5 | 225 | 0.0822 | 70368 | | 0.0878 | 3.0 | 270 | 0.0920 | 84320 | | 0.1495 | 3.5 | 315 | 0.1532 | 98400 | | 0.0075 | 4.0 | 360 | 0.0768 | 112416 | | 0.429 | 4.5 | 405 | 0.1562 | 126496 | | 0.0002 | 5.0 | 450 | 0.1207 | 140544 | | 0.0092 | 5.5 | 495 | 0.1345 | 154592 | | 0.002 | 6.0 | 540 | 0.1524 | 168768 | | 0.0064 | 6.5 | 585 | 0.1678 | 182848 | | 0.0449 | 7.0 | 630 | 0.1447 | 196896 | | 0.1323 | 7.5 | 675 | 0.1635 | 210912 | | 0.0001 | 8.0 | 720 | 0.2237 | 225024 | | 0.0211 | 8.5 | 765 | 0.2088 | 239200 | | 0.0121 | 9.0 | 810 | 0.2073 | 253152 | | 0.0034 | 9.5 | 855 | 0.2088 | 267040 | | 0.1445 | 10.0 | 900 | 0.2092 | 281312 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
ACECA/lowMvMax_197
ACECA
2025-09-11T14:46:18Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-11T14:00:45Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
rbelanec/train_copa_101112_1757596163
rbelanec
2025-09-11T14:45:52Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:39:51Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_copa_101112_1757596163 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_101112_1757596163 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.9463 - Num Input Tokens Seen: 547440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.2208 | 1.0 | 180 | 0.2563 | 27344 | | 0.2677 | 2.0 | 360 | 0.2335 | 54736 | | 0.2249 | 3.0 | 540 | 0.2334 | 82064 | | 0.2551 | 4.0 | 720 | 0.2424 | 109456 | | 0.2229 | 5.0 | 900 | 0.2327 | 136784 | | 0.2276 | 6.0 | 1080 | 0.2340 | 164192 | | 0.2361 | 7.0 | 1260 | 0.2310 | 191552 | | 0.2147 | 8.0 | 1440 | 0.2424 | 218944 | | 0.2244 | 9.0 | 1620 | 0.2365 | 246352 | | 0.2334 | 10.0 | 1800 | 0.2399 | 273744 | | 0.2356 | 11.0 | 1980 | 0.2416 | 301072 | | 0.223 | 12.0 | 2160 | 0.2418 | 328464 | | 0.2351 | 13.0 | 2340 | 0.2705 | 355840 | | 0.1368 | 14.0 | 2520 | 0.3143 | 383168 | | 0.0239 | 15.0 | 2700 | 0.5442 | 410512 | | 0.1856 | 16.0 | 2880 | 0.7039 | 437952 | | 0.029 | 17.0 | 3060 | 0.8290 | 465264 | | 0.0011 | 18.0 | 3240 | 0.9045 | 492672 | | 0.0005 | 19.0 | 3420 | 0.9412 | 520048 | | 0.0008 | 20.0 | 3600 | 0.9463 | 547440 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
rbelanec/train_svamp_101112_1757596162
rbelanec
2025-09-11T14:45:01Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "ia3", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:39:42Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - ia3 - generated_from_trainer model-index: - name: train_svamp_101112_1757596162 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_101112_1757596162 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.2841 - Num Input Tokens Seen: 704272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 2.3949 | 0.5 | 79 | 2.3833 | 35296 | | 1.9797 | 1.0 | 158 | 1.8895 | 70400 | | 1.5462 | 1.5 | 237 | 1.5126 | 106208 | | 1.1385 | 2.0 | 316 | 1.1513 | 140736 | | 0.734 | 2.5 | 395 | 0.8587 | 176064 | | 0.5419 | 3.0 | 474 | 0.6560 | 211024 | | 0.3904 | 3.5 | 553 | 0.5181 | 246128 | | 0.3267 | 4.0 | 632 | 0.4333 | 281616 | | 0.368 | 4.5 | 711 | 0.3808 | 316976 | | 0.2456 | 5.0 | 790 | 0.3472 | 352256 | | 0.2224 | 5.5 | 869 | 0.3273 | 387360 | | 0.1667 | 6.0 | 948 | 0.3125 | 422464 | | 0.1728 | 6.5 | 1027 | 0.3022 | 457760 | | 0.1274 | 7.0 | 1106 | 0.2953 | 492912 | | 0.1583 | 7.5 | 1185 | 0.2896 | 528336 | | 0.134 | 8.0 | 1264 | 0.2862 | 563600 | | 0.1712 | 8.5 | 1343 | 0.2843 | 598992 | | 0.1468 | 9.0 | 1422 | 0.2843 | 633984 | | 0.1135 | 9.5 | 1501 | 0.2850 | 669152 | | 0.1658 | 10.0 | 1580 | 0.2841 | 704272 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
bunnycore/Qwen3-4B-Max-Ties
bunnycore
2025-09-11T14:44:48Z
0
0
null
[ "safetensors", "qwen3", "merge", "mergekit", "lazymergekit", "janhq/Jan-v1-2509", "huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated", "minchyeom/Qwaifu", "base_model:huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated", "base_model:merge:huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated", "base_model:janhq/Jan-v1-2509", "base_model:merge:janhq/Jan-v1-2509", "base_model:minchyeom/Qwaifu", "base_model:merge:minchyeom/Qwaifu", "region:us" ]
null
2025-09-11T14:42:28Z
--- base_model: - janhq/Jan-v1-2509 - huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated - minchyeom/Qwaifu tags: - merge - mergekit - lazymergekit - janhq/Jan-v1-2509 - huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated - minchyeom/Qwaifu --- # Qwen3-4B-Max-Ties Qwen3-4B-Max-Ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [janhq/Jan-v1-2509](https://huggingface.co/janhq/Jan-v1-2509) * [huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated](https://huggingface.co/huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated) * [minchyeom/Qwaifu](https://huggingface.co/minchyeom/Qwaifu) ## 🧩 Configuration ```yaml models: - model: janhq/Jan-v1-2509 parameters: density: 0.2 weight: 0.2 - model: huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated parameters: density: 0.5 weight: 0.5 - model: minchyeom/Qwaifu parameters: density: 0.3 weight: 0.3 merge_method: ties base_model: janhq/Jan-v1-2509 parameters: normalize: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "bunnycore/Qwen3-4B-Max-Ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
rbelanec/train_svamp_101112_1757596157
rbelanec
2025-09-11T14:44:41Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:34:40Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_svamp_101112_1757596157 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_101112_1757596157 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.4107 - Num Input Tokens Seen: 1348864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.6409 | 1.0 | 315 | 0.7571 | 67488 | | 0.262 | 2.0 | 630 | 0.3623 | 134832 | | 0.0962 | 3.0 | 945 | 0.2180 | 202352 | | 0.0468 | 4.0 | 1260 | 0.1878 | 269776 | | 0.0382 | 5.0 | 1575 | 0.2140 | 337328 | | 0.0017 | 6.0 | 1890 | 0.3292 | 404608 | | 0.0037 | 7.0 | 2205 | 0.3098 | 472144 | | 0.005 | 8.0 | 2520 | 0.3992 | 539664 | | 0.0 | 9.0 | 2835 | 0.3648 | 607136 | | 0.0002 | 10.0 | 3150 | 0.3280 | 674496 | | 0.0 | 11.0 | 3465 | 0.3562 | 741840 | | 0.0001 | 12.0 | 3780 | 0.3841 | 809312 | | 0.0 | 13.0 | 4095 | 0.3958 | 876784 | | 0.0 | 14.0 | 4410 | 0.4013 | 944080 | | 0.0 | 15.0 | 4725 | 0.4053 | 1011456 | | 0.0 | 16.0 | 5040 | 0.4078 | 1078880 | | 0.0 | 17.0 | 5355 | 0.4081 | 1146416 | | 0.0 | 18.0 | 5670 | 0.4113 | 1213888 | | 0.0 | 19.0 | 5985 | 0.4104 | 1281488 | | 0.0 | 20.0 | 6300 | 0.4107 | 1348864 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
rbelanec/train_svamp_101112_1757596161
rbelanec
2025-09-11T14:44:06Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lntuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:38:49Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lntuning - generated_from_trainer model-index: - name: train_svamp_101112_1757596161 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_101112_1757596161 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.1795 - Num Input Tokens Seen: 704272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 2.1046 | 0.5 | 79 | 2.0502 | 35296 | | 1.1999 | 1.0 | 158 | 1.2046 | 70400 | | 0.3511 | 1.5 | 237 | 0.4055 | 106208 | | 0.3125 | 2.0 | 316 | 0.2548 | 140736 | | 0.1117 | 2.5 | 395 | 0.2282 | 176064 | | 0.1093 | 3.0 | 474 | 0.2107 | 211024 | | 0.0729 | 3.5 | 553 | 0.2023 | 246128 | | 0.1345 | 4.0 | 632 | 0.1966 | 281616 | | 0.1695 | 4.5 | 711 | 0.1919 | 316976 | | 0.089 | 5.0 | 790 | 0.1873 | 352256 | | 0.0812 | 5.5 | 869 | 0.1845 | 387360 | | 0.0597 | 6.0 | 948 | 0.1834 | 422464 | | 0.0819 | 6.5 | 1027 | 0.1836 | 457760 | | 0.0442 | 7.0 | 1106 | 0.1805 | 492912 | | 0.045 | 7.5 | 1185 | 0.1818 | 528336 | | 0.0458 | 8.0 | 1264 | 0.1803 | 563600 | | 0.0676 | 8.5 | 1343 | 0.1799 | 598992 | | 0.0822 | 9.0 | 1422 | 0.1799 | 633984 | | 0.0459 | 9.5 | 1501 | 0.1795 | 669152 | | 0.0407 | 10.0 | 1580 | 0.1805 | 704272 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757601735
harmonyblevinsm0
2025-09-11T14:43:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent miniature monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:43:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent miniature monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_svamp_101112_1757596160
rbelanec
2025-09-11T14:43:39Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:37:19Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: train_svamp_101112_1757596160 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_101112_1757596160 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.1319 - Num Input Tokens Seen: 704272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.1528 | 0.5 | 79 | 0.2311 | 35296 | | 0.0753 | 1.0 | 158 | 0.1515 | 70400 | | 0.0805 | 1.5 | 237 | 0.1408 | 106208 | | 0.1368 | 2.0 | 316 | 0.1319 | 140736 | | 0.038 | 2.5 | 395 | 0.1435 | 176064 | | 0.0199 | 3.0 | 474 | 0.1467 | 211024 | | 0.0059 | 3.5 | 553 | 0.2152 | 246128 | | 0.0396 | 4.0 | 632 | 0.1816 | 281616 | | 0.0337 | 4.5 | 711 | 0.2312 | 316976 | | 0.0003 | 5.0 | 790 | 0.2054 | 352256 | | 0.0005 | 5.5 | 869 | 0.2563 | 387360 | | 0.0001 | 6.0 | 948 | 0.2300 | 422464 | | 0.0 | 6.5 | 1027 | 0.2501 | 457760 | | 0.0001 | 7.0 | 1106 | 0.2568 | 492912 | | 0.0001 | 7.5 | 1185 | 0.2675 | 528336 | | 0.0 | 8.0 | 1264 | 0.2667 | 563600 | | 0.0001 | 8.5 | 1343 | 0.2692 | 598992 | | 0.0 | 9.0 | 1422 | 0.2690 | 633984 | | 0.0 | 9.5 | 1501 | 0.2714 | 669152 | | 0.0001 | 10.0 | 1580 | 0.2698 | 704272 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
AnerYubo/blockassist-bc-pawing_downy_anaconda_1757601747
AnerYubo
2025-09-11T14:42:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing downy anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:42:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing downy anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-elusive_mammalian_termite_1757601743
AnerYubo
2025-09-11T14:42:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "elusive mammalian termite", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:42:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - elusive mammalian termite --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-screeching_mute_lemur_1757601739
AnerYubo
2025-09-11T14:42:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching mute lemur", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:42:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching mute lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-fanged_camouflaged_cassowary_1757601732
AnerYubo
2025-09-11T14:42:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fanged camouflaged cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:42:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fanged camouflaged cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_svamp_101112_1757596159
rbelanec
2025-09-11T14:42:14Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "p-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-09-11T14:35:29Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - p-tuning - generated_from_trainer model-index: - name: train_svamp_101112_1757596159 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_101112_1757596159 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 1.6840 - Num Input Tokens Seen: 704272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.129 | 0.5 | 79 | 0.2475 | 35296 | | 0.0508 | 1.0 | 158 | 0.2165 | 70400 | | 0.0964 | 1.5 | 237 | 0.2150 | 106208 | | 0.2175 | 2.0 | 316 | 0.1600 | 140736 | | 0.083 | 2.5 | 395 | 0.1529 | 176064 | | 0.0421 | 3.0 | 474 | 0.1637 | 211024 | | 0.0575 | 3.5 | 553 | 0.1372 | 246128 | | 0.0863 | 4.0 | 632 | 0.1360 | 281616 | | 0.1177 | 4.5 | 711 | 0.1462 | 316976 | | 0.0249 | 5.0 | 790 | 0.1455 | 352256 | | 0.0291 | 5.5 | 869 | 0.1452 | 387360 | | 0.0293 | 6.0 | 948 | 0.1715 | 422464 | | 0.0127 | 6.5 | 1027 | 0.1800 | 457760 | | 0.0053 | 7.0 | 1106 | 0.1682 | 492912 | | 0.0105 | 7.5 | 1185 | 0.2050 | 528336 | | 0.0025 | 8.0 | 1264 | 0.2022 | 563600 | | 0.0035 | 8.5 | 1343 | 0.2209 | 598992 | | 0.0519 | 9.0 | 1422 | 0.2223 | 633984 | | 0.0023 | 9.5 | 1501 | 0.2223 | 669152 | | 0.0042 | 10.0 | 1580 | 0.2244 | 704272 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
mradermacher/Zion-9B-i1-GGUF
mradermacher
2025-09-11T14:41:06Z
0
0
transformers
[ "transformers", "gguf", "mlx", "en", "de", "es", "fr", "it", "pt", "pl", "nl", "tr", "sv", "cs", "el", "hu", "ro", "fi", "uk", "sl", "sk", "da", "lt", "lv", "et", "bg", "no", "ca", "hr", "ga", "mt", "gl", "zh", "ru", "ko", "ja", "ar", "hi", "base_model:nsxtai/Zion-9B", "base_model:quantized:nsxtai/Zion-9B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-09-11T08:40:10Z
--- base_model: nsxtai/Zion-9B language: - en - de - es - fr - it - pt - pl - nl - tr - sv - cs - el - hu - ro - fi - uk - sl - sk - da - lt - lv - et - bg - no - ca - hr - ga - mt - gl - zh - ru - ko - ja - ar - hi library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mlx --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/nsxtai/Zion-9B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Zion-9B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Zion-9B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ2_S.gguf) | i1-IQ2_S | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q2_K.gguf) | i1-Q2_K | 3.7 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ3_S.gguf) | i1-IQ3_S | 4.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ3_M.gguf) | i1-IQ3_M | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.7 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q4_0.gguf) | i1-Q4_0 | 5.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 5.4 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 5.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q4_1.gguf) | i1-Q4_1 | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Zion-9B-i1-GGUF/resolve/main/Zion-9B.i1-Q6_K.gguf) | i1-Q6_K | 7.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
NahedDom/blockassist
NahedDom
2025-09-11T14:40:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping stocky leopard", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T06:04:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping stocky leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
holsombackpatrina/blockassist-bc-shy_armored_chimpanzee_1757601581
holsombackpatrina
2025-09-11T14:39:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shy armored chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T14:39:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shy armored chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).