modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
sequence | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
yamatazen/ForgottenMaid-12B-v2 | yamatazen | 2025-05-24T05:50:51Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"en",
"ja",
"arxiv:2403.19522",
"base_model:Elizezen/Himeyuri-v0.1-12B",
"base_model:merge:Elizezen/Himeyuri-v0.1-12B",
"base_model:shisa-ai/shisa-v2-mistral-nemo-12b",
"base_model:merge:shisa-ai/shisa-v2-mistral-nemo-12b",
"base_model:yamatazen/ForgottenMaid-12B",
"base_model:merge:yamatazen/ForgottenMaid-12B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-24T05:09:42Z | ---
base_model:
- shisa-ai/shisa-v2-mistral-nemo-12b
- Elizezen/Himeyuri-v0.1-12B
- yamatazen/ForgottenMaid-12B
library_name: transformers
tags:
- mergekit
- merge
language:
- en
- ja
---

# ForgottenMaid-12B-v2
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [yamatazen/ForgottenMaid-12B](https://huggingface.co/yamatazen/ForgottenMaid-12B) as a base.
### Models Merged
The following models were included in the merge:
* [shisa-ai/shisa-v2-mistral-nemo-12b](https://huggingface.co/shisa-ai/shisa-v2-mistral-nemo-12b)
* [Elizezen/Himeyuri-v0.1-12B](https://huggingface.co/Elizezen/Himeyuri-v0.1-12B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: model_stock
dtype: bfloat16
out_dtype: bfloat16
base_model: yamatazen/ForgottenMaid-12B
models:
- model: Elizezen/Himeyuri-v0.1-12B
- model: shisa-ai/shisa-v2-mistral-nemo-12b
``` |
DevQuasar/kakaocorp.kanana-1.5-2.1b-base-GGUF | DevQuasar | 2025-05-24T05:50:11Z | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:kakaocorp/kanana-1.5-2.1b-base",
"base_model:quantized:kakaocorp/kanana-1.5-2.1b-base",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T05:35:10Z | ---
base_model:
- kakaocorp/kanana-1.5-2.1b-base
pipeline_tag: text-generation
---
[<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com)
Quantized version of: [kakaocorp/kanana-1.5-2.1b-base](https://huggingface.co/kakaocorp/kanana-1.5-2.1b-base)
'Make knowledge free for everyone'
<p align="center">
Made with <br>
<a href="https://www.civo.com/" target="_blank">
<img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/>
</a>
</p>
<a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
|
huangqishan/NNModel | huangqishan | 2025-05-24T05:48:57Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"safetensors",
"NNModel",
"image-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] | image-classification | 2025-05-24T03:35:28Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Chattiori/ChattioriMixesXL | Chattiori | 2025-05-24T05:48:53Z | 0 | 4 | null | [
"sdxl",
"pony",
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-03-25T03:33:05Z | ---
license: creativeml-openrail-m
tags:
- sdxl
- pony
---
The place where our SDXL and Pony models (Chattiori and Crody) and some deleted models on CivitAI saved for several purposes.
Chattiori: https://civitai.com/user/Chattiori
Crody: https://civitai.com/user/Crody |
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep5_66 | MinaMila | 2025-05-24T05:48:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:48:12Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep4_66 | MinaMila | 2025-05-24T05:44:50Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:44:47Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
shmdtalha/Mistral-Small-3.1-24B-Instruct-2503 | shmdtalha | 2025-05-24T05:44:23Z | 0 | 0 | vllm | [
"vllm",
"mistral3",
"image-text-to-text",
"conversational",
"en",
"fr",
"de",
"es",
"pt",
"it",
"ja",
"ko",
"ru",
"zh",
"ar",
"fa",
"id",
"ms",
"ne",
"pl",
"ro",
"sr",
"sv",
"tr",
"uk",
"vi",
"hi",
"bn",
"base_model:mistralai/Mistral-Small-3.1-24B-Base-2503",
"base_model:finetune:mistralai/Mistral-Small-3.1-24B-Base-2503",
"license:apache-2.0",
"region:us"
] | image-text-to-text | 2025-05-24T05:28:24Z | ---
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
license: apache-2.0
library_name: vllm
inference: false
base_model:
- mistralai/Mistral-Small-3.1-24B-Base-2503
extra_gated_description: >-
If you want to learn more about how we process your personal data, please read
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
pipeline_tag: image-text-to-text
---
# Model Card for Mistral-Small-3.1-24B-Instruct-2503
Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) **adds state-of-the-art vision understanding** and enhances **long context capabilities up to 128k tokens** without compromising text performance.
With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.
This model is an instruction-finetuned version of: [Mistral-Small-3.1-24B-Base-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503).
Mistral Small 3.1 can be deployed locally and is exceptionally "knowledge-dense," fitting within a single RTX 4090 or a 32GB RAM MacBook once quantized.
It is ideal for:
- Fast-response conversational agents.
- Low-latency function calling.
- Subject matter experts via fine-tuning.
- Local inference for hobbyists and organizations handling sensitive data.
- Programming and math reasoning.
- Long document understanding.
- Visual understanding.
For enterprises requiring specialized capabilities (increased context, specific modalities, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community.
Learn more about Mistral Small 3.1 in our [blog post](https://mistral.ai/news/mistral-small-3-1/).
## Key Features
- **Vision:** Vision capabilities enable the model to analyze images and provide insights based on visual content in addition to text.
- **Multilingual:** Supports dozens of languages, including English, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Malay, Nepali, Polish, Portuguese, Romanian, Russian, Serbian, Spanish, Swedish, Turkish, Ukrainian, Vietnamese, Arabic, Bengali, Chinese, Farsi.
- **Agent-Centric:** Offers best-in-class agentic capabilities with native function calling and JSON outputting.
- **Advanced Reasoning:** State-of-the-art conversational and reasoning capabilities.
- **Apache 2.0 License:** Open license allowing usage and modification for both commercial and non-commercial purposes.
- **Context Window:** A 128k context window.
- **System Prompt:** Maintains strong adherence and support for system prompts.
- **Tokenizer:** Utilizes a Tekken tokenizer with a 131k vocabulary size.
## Benchmark Results
When available, we report numbers previously published by other model providers, otherwise we re-evaluate them using our own evaluation harness.
### Pretrain Evals
| Model | MMLU (5-shot) | MMLU Pro (5-shot CoT) | TriviaQA | GPQA Main (5-shot CoT)| MMMU |
|--------------------------------|---------------|-----------------------|------------|-----------------------|-----------|
| **Small 3.1 24B Base** | **81.01%** | **56.03%** | 80.50% | **37.50%** | **59.27%**|
| Gemma 3 27B PT | 78.60% | 52.20% | **81.30%** | 24.30% | 56.10% |
### Instruction Evals
#### Text
| Model | MMLU | MMLU Pro (5-shot CoT) | MATH | GPQA Main (5-shot CoT) | GPQA Diamond (5-shot CoT )| MBPP | HumanEval | SimpleQA (TotalAcc)|
|--------------------------------|-----------|-----------------------|------------------------|------------------------|---------------------------|-----------|-----------|--------------------|
| **Small 3.1 24B Instruct** | 80.62% | 66.76% | 69.30% | **44.42%** | **45.96%** | 74.71% | **88.41%**| **10.43%** |
| Gemma 3 27B IT | 76.90% | **67.50%** | **89.00%** | 36.83% | 42.40% | 74.40% | 87.80% | 10.00% |
| GPT4o Mini | **82.00%**| 61.70% | 70.20% | 40.20% | 39.39% | 84.82% | 87.20% | 9.50% |
| Claude 3.5 Haiku | 77.60% | 65.00% | 69.20% | 37.05% | 41.60% | **85.60%**| 88.10% | 8.02% |
| Cohere Aya-Vision 32B | 72.14% | 47.16% | 41.98% | 34.38% | 33.84% | 70.43% | 62.20% | 7.65% |
#### Vision
| Model | MMMU | MMMU PRO | Mathvista | ChartQA | DocVQA | AI2D | MM MT Bench |
|--------------------------------|------------|-----------|-----------|-----------|-----------|-------------|-------------|
| **Small 3.1 24B Instruct** | 64.00% | **49.25%**| **68.91%**| 86.24% | **94.08%**| **93.72%** | **7.3** |
| Gemma 3 27B IT | **64.90%** | 48.38% | 67.60% | 76.00% | 86.60% | 84.50% | 7 |
| GPT4o Mini | 59.40% | 37.60% | 56.70% | 76.80% | 86.70% | 88.10% | 6.6 |
| Claude 3.5 Haiku | 60.50% | 45.03% | 61.60% | **87.20%**| 90.00% | 92.10% | 6.5 |
| Cohere Aya-Vision 32B | 48.20% | 31.50% | 50.10% | 63.04% | 72.40% | 82.57% | 4.1 |
### Multilingual Evals
| Model | Average | European | East Asian | Middle Eastern |
|--------------------------------|------------|------------|------------|----------------|
| **Small 3.1 24B Instruct** | **71.18%** | **75.30%** | **69.17%** | 69.08% |
| Gemma 3 27B IT | 70.19% | 74.14% | 65.65% | 70.76% |
| GPT4o Mini | 70.36% | 74.21% | 65.96% | **70.90%** |
| Claude 3.5 Haiku | 70.16% | 73.45% | 67.05% | 70.00% |
| Cohere Aya-Vision 32B | 62.15% | 64.70% | 57.61% | 64.12% |
### Long Context Evals
| Model | LongBench v2 | RULER 32K | RULER 128K |
|--------------------------------|-----------------|-------------|------------|
| **Small 3.1 24B Instruct** | **37.18%** | **93.96%** | 81.20% |
| Gemma 3 27B IT | 34.59% | 91.10% | 66.00% |
| GPT4o Mini | 29.30% | 90.20% | 65.8% |
| Claude 3.5 Haiku | 35.19% | 92.60% | **91.90%** |
## Basic Instruct Template (V7-Tekken)
```
<s>[SYSTEM_PROMPT]<system prompt>[/SYSTEM_PROMPT][INST]<user message>[/INST]<assistant response></s>[INST]<user message>[/INST]
```
*`<system_prompt>`, `<user message>` and `<assistant response>` are placeholders.*
***Please make sure to use [mistral-common](https://github.com/mistralai/mistral-common) as the source of truth***
## Usage
The model can be used with the following frameworks;
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm)
**Note 1**: We recommend using a relatively low temperature, such as `temperature=0.15`.
**Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend the following
system prompt:
```
system_prompt = """You are Mistral Small 3.1, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.
You power an AI assistant called Le Chat.
Your knowledge base was last updated on 2023-10-01.
The current date is {today}.
When you're not sure about some information, you say that you don't have the information and don't make up anything.
If the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. "What are some good restaurants around me?" => "Where are you?" or "When is the next flight to Tokyo" => "Where do you travel from?").
You are always very attentive to dates, in particular you try to resolve dates (e.g. "yesterday" is {yesterday}) and when asked about information at specific dates, you discard information that is at another date.
You follow these instructions in all languages, and always respond to the user in the language they use or request.
Next sections describe the capabilities that you have.
# WEB BROWSING INSTRUCTIONS
You cannot perform any web search or access internet to open URLs, links etc. If it seems like the user is expecting you to do so, you clarify the situation and ask the user to copy paste the text directly in the chat.
# MULTI-MODAL INSTRUCTIONS
You have the ability to read images, but you cannot generate images. You also cannot transcribe audio files or videos.
You cannot read nor transcribe audio files or videos."""
```
### vLLM (recommended)
We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
to implement production-ready inference pipelines.
**_Installation_**
Make sure you install [`vLLM >= 0.8.1`](https://github.com/vllm-project/vllm/releases/tag/v0.8.1):
```
pip install vllm --upgrade
```
Doing so should automatically install [`mistral_common >= 1.5.4`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.4).
To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```
You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).
#### Server
We recommand that you use Mistral-Small-3.1-24B-Instruct-2503 in a server/client setting.
1. Spin up a server:
```
vllm serve mistralai/Mistral-Small-3.1-24B-Instruct-2503 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --limit_mm_per_prompt 'image=10' --tensor-parallel-size 2
```
**Note:** Running Mistral-Small-3.1-24B-Instruct-2503 on GPU requires ~55 GB of GPU RAM in bf16 or fp16.
2. To ping the client you can use a simple Python snippet.
```py
import requests
import json
from huggingface_hub import hf_hub_download
from datetime import datetime, timedelta
url = "http://<your-server-url>:8000/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}
model = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/europe.png"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Which of the depicted countries has the best food? Which the second and third and fourth? Name the country, its color on the map and one its city that is visible on the map, but is not the capital. Make absolutely sure to only name a city that can be seen on the map.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
data = {"model": model, "messages": messages, "temperature": 0.15}
response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.json()["choices"][0]["message"]["content"])
# Determining the "best" food is highly subjective and depends on personal preferences. However, based on general popularity and recognition, here are some countries known for their cuisine:
# 1. **Italy** - Color: Light Green - City: Milan
# - Italian cuisine is renowned worldwide for its pasta, pizza, and various regional specialties.
# 2. **France** - Color: Brown - City: Lyon
# - French cuisine is celebrated for its sophistication, including dishes like coq au vin, bouillabaisse, and pastries like croissants and éclairs.
# 3. **Spain** - Color: Yellow - City: Bilbao
# - Spanish cuisine offers a variety of flavors, from paella and tapas to jamón ibérico and churros.
# 4. **Greece** - Not visible on the map
# - Greek cuisine is known for dishes like moussaka, souvlaki, and baklava. Unfortunately, Greece is not visible on the provided map, so I cannot name a city.
# Since Greece is not visible on the map, I'll replace it with another country known for its good food:
# 4. **Turkey** - Color: Light Green (east part of the map) - City: Istanbul
# - Turkish cuisine is diverse and includes dishes like kebabs, meze, and baklava.
```
### Function calling
Mistral-Small-3.1-24-Instruct-2503 is excellent at function / tool calling tasks via vLLM. *E.g.:*
<details>
<summary>Example</summary>
```py
import requests
import json
from huggingface_hub import hf_hub_download
from datetime import datetime, timedelta
url = "http://<your-url>:8000/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}
model = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to find the weather for, e.g. 'San Francisco'",
},
"state": {
"type": "string",
"description": "The state abbreviation, e.g. 'CA' for California",
},
"unit": {
"type": "string",
"description": "The unit for temperature",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["city", "state", "unit"],
},
},
},
{
"type": "function",
"function": {
"name": "rewrite",
"description": "Rewrite a given text for improved clarity",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The input text to rewrite",
}
},
},
},
},
]
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": "Could you please make the below article more concise?\n\nOpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership.",
},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "bbc5b7ede",
"type": "function",
"function": {
"name": "rewrite",
"arguments": '{"text": "OpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership."}',
},
}
],
},
{
"role": "tool",
"content": '{"action":"rewrite","outcome":"OpenAI is a FOR-profit company."}',
"tool_call_id": "bbc5b7ede",
"name": "rewrite",
},
{
"role": "assistant",
"content": "---\n\nOpenAI is a FOR-profit company.",
},
{
"role": "user",
"content": "Can you tell me what the temperature will be in Dallas, in Fahrenheit?",
},
]
data = {"model": model, "messages": messages, "tools": tools, "temperature": 0.15}
response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.json()["choices"][0]["message"]["tool_calls"])
# [{'id': '8PdihwL6d', 'type': 'function', 'function': {'name': 'get_current_weather', 'arguments': '{"city": "Dallas", "state": "TX", "unit": "fahrenheit"}'}}]
```
</details>
#### Offline
```py
from vllm import LLM
from vllm.sampling_params import SamplingParams
from datetime import datetime, timedelta
SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
user_prompt = "Give me 5 non-formal ways to say 'See you later' in French."
messages = [
{
"role": "system",
"content": SYSTEM_PROMPT
},
{
"role": "user",
"content": user_prompt
},
]
model_name = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
# note that running this model on GPU requires over 60 GB of GPU RAM
llm = LLM(model=model_name, tokenizer_mode="mistral")
sampling_params = SamplingParams(max_tokens=512, temperature=0.15)
outputs = llm.chat(messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
# Here are five non-formal ways to say "See you later" in French:
# 1. **À plus tard** - Until later
# 2. **À toute** - See you soon (informal)
# 3. **Salut** - Bye (can also mean hi)
# 4. **À plus** - See you later (informal)
# 5. **Ciao** - Bye (informal, borrowed from Italian)
# ```
# /\_/\
# ( o.o )
# > ^ <
# ```
```
### Transformers (untested)
Transformers-compatible model weights are also uploaded (thanks a lot @cyrilvallez).
However the transformers implementation was **not throughly tested**, but only on "vibe-checks".
Hence, we can only ensure 100% correct behavior when using the original weight format with vllm (see above). |
LexcentraAI/lex-cross-encoder-mbert-10neg | LexcentraAI | 2025-05-24T05:44:22Z | 0 | 0 | null | [
"safetensors",
"bert",
"generated_from_trainer",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"region:us"
] | null | 2025-05-24T02:45:26Z | ---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: lex-cross-encoder-mbert-10neg
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lex-cross-encoder-mbert-10neg
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4360
- Precision: 0.6020
- Recall: 0.8593
- F2: 0.7917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F2 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|
| 0.4572 | 1.0 | 2317 | 0.4705 | 0.4735 | 0.8620 | 0.7405 |
| 0.4283 | 2.0 | 4634 | 0.4515 | 0.4774 | 0.9124 | 0.7718 |
| 0.4115 | 3.0 | 6951 | 0.4485 | 0.4796 | 0.9201 | 0.7773 |
| 0.4021 | 4.0 | 9268 | 0.4387 | 0.5217 | 0.9068 | 0.7902 |
| 0.3918 | 5.0 | 11585 | 0.4466 | 0.6111 | 0.8242 | 0.7705 |
| 0.3879 | 6.0 | 13902 | 0.4337 | 0.5783 | 0.8767 | 0.7947 |
| 0.383 | 7.0 | 16219 | 0.4336 | 0.5633 | 0.8907 | 0.7980 |
| 0.3781 | 8.0 | 18536 | 0.4354 | 0.5929 | 0.8660 | 0.7930 |
| 0.3767 | 9.0 | 20853 | 0.4353 | 0.5980 | 0.8636 | 0.7931 |
| 0.3712 | 10.0 | 23170 | 0.4360 | 0.6020 | 0.8593 | 0.7917 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.5.1+cu121
- Datasets 3.6.0
- Tokenizers 0.15.2
|
Juicesyo/csm-Encore | Juicesyo | 2025-05-24T05:42:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"csm",
"text-to-audio",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/csm-1b",
"base_model:finetune:unsloth/csm-1b",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | text-to-audio | 2025-05-24T05:35:47Z | ---
base_model: unsloth/csm-1b
tags:
- text-generation-inference
- transformers
- unsloth
- csm
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** Juicesyo
- **License:** apache-2.0
- **Finetuned from model :** unsloth/csm-1b
This csm model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
DanHauri/lora_model | DanHauri | 2025-05-24T05:42:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-05-22T19:47:06Z | ---
base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** DanHauri
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
TOMFORD79/Zombie_5 | TOMFORD79 | 2025-05-24T05:42:00Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-24T03:59:11Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
FormlessAI/2fd46615-52d2-476a-ae64-afa1d97f0bae | FormlessAI | 2025-05-24T05:41:58Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"trl",
"dpo",
"arxiv:2305.18290",
"base_model:unsloth/Qwen2.5-14B",
"base_model:finetune:unsloth/Qwen2.5-14B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-24T05:40:50Z | ---
base_model: unsloth/Qwen2.5-14B
library_name: transformers
model_name: 2fd46615-52d2-476a-ae64-afa1d97f0bae
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for 2fd46615-52d2-476a-ae64-afa1d97f0bae
This model is a fine-tuned version of [unsloth/Qwen2.5-14B](https://huggingface.co/unsloth/Qwen2.5-14B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="FormlessAI/2fd46615-52d2-476a-ae64-afa1d97f0bae", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients/runs/t1lvc7db)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.52.3
- Pytorch: 2.7.0+cu128
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
VIDEOs-18-Katrina-Lim-Viral-Kiffy/NEW.VIDEOs.LINK.Katrina.Lim.Viral.Video.Leaks.Official.tv | VIDEOs-18-Katrina-Lim-Viral-Kiffy | 2025-05-24T05:41:18Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T05:39:09Z | [](https://tinyurl.com/Videos-Pinoy)
|
mradermacher/gpt2_finetuned_wolfram-GGUF | mradermacher | 2025-05-24T05:40:26Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"generated_from_trainer",
"en",
"base_model:Joshwabail/gpt2_finetuned_wolfram",
"base_model:quantized:Joshwabail/gpt2_finetuned_wolfram",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2025-05-23T18:33:26Z | ---
base_model: Joshwabail/gpt2_finetuned_wolfram
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
tags:
- generated_from_trainer
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/Joshwabail/gpt2_finetuned_wolfram
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q2_K.gguf) | Q2_K | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q3_K_S.gguf) | Q3_K_S | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.IQ4_XS.gguf) | IQ4_XS | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q3_K_L.gguf) | Q3_K_L | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q5_K_S.gguf) | Q5_K_S | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q5_K_M.gguf) | Q5_K_M | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q6_K.gguf) | Q6_K | 0.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/gpt2_finetuned_wolfram-GGUF/resolve/main/gpt2_finetuned_wolfram.f16.gguf) | f16 | 0.4 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/homer-bot-i1-GGUF | mradermacher | 2025-05-24T05:40:18Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"conversational",
"en",
"base_model:jesseD/homer-bot",
"base_model:quantized:jesseD/homer-bot",
"endpoints_compatible",
"region:us",
"imatrix"
] | null | 2025-05-24T05:29:17Z | ---
base_model: jesseD/homer-bot
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- conversational
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/jesseD/homer-bot
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/homer-bot-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ1_S.gguf) | i1-IQ1_S | 0.2 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ1_M.gguf) | i1-IQ1_M | 0.2 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ2_S.gguf) | i1-IQ2_S | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ2_M.gguf) | i1-IQ2_M | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.3 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q2_K.gguf) | i1-Q2_K | 0.3 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ3_S.gguf) | i1-IQ3_S | 0.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.3 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ3_M.gguf) | i1-IQ3_M | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.3 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.3 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q4_0.gguf) | i1-Q4_0 | 0.3 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.3 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.3 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q4_1.gguf) | i1-Q4_1 | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-i1-GGUF/resolve/main/homer-bot.i1-Q6_K.gguf) | i1-Q6_K | 0.4 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mradermacher/DialoGPT-medium-PowPowGaming-GGUF | mradermacher | 2025-05-24T05:40:18Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"conversational",
"en",
"base_model:kennethhendricks/DialoGPT-medium-PowPowGaming",
"base_model:quantized:kennethhendricks/DialoGPT-medium-PowPowGaming",
"endpoints_compatible",
"region:us"
] | null | 2025-05-23T18:27:50Z | ---
base_model: kennethhendricks/DialoGPT-medium-PowPowGaming
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- conversational
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/kennethhendricks/DialoGPT-medium-PowPowGaming
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q2_K.gguf) | Q2_K | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q3_K_S.gguf) | Q3_K_S | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.IQ4_XS.gguf) | IQ4_XS | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q3_K_L.gguf) | Q3_K_L | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q5_K_S.gguf) | Q5_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q5_K_M.gguf) | Q5_K_M | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q6_K.gguf) | Q6_K | 0.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.Q8_0.gguf) | Q8_0 | 0.5 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/DialoGPT-medium-PowPowGaming-GGUF/resolve/main/DialoGPT-medium-PowPowGaming.f16.gguf) | f16 | 0.8 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep2_66 | MinaMila | 2025-05-24T05:37:57Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:37:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
7Dragons/prime_1 | 7Dragons | 2025-05-24T05:37:40Z | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-24T05:31:20Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
mradermacher/homer-bot-GGUF | mradermacher | 2025-05-24T05:37:02Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"conversational",
"en",
"base_model:jesseD/homer-bot",
"base_model:quantized:jesseD/homer-bot",
"endpoints_compatible",
"region:us"
] | null | 2025-05-23T18:31:38Z | ---
base_model: jesseD/homer-bot
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- conversational
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/jesseD/homer-bot
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/homer-bot-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q2_K.gguf) | Q2_K | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q3_K_S.gguf) | Q3_K_S | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.IQ4_XS.gguf) | IQ4_XS | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q3_K_L.gguf) | Q3_K_L | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q5_K_S.gguf) | Q5_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q5_K_M.gguf) | Q5_K_M | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q6_K.gguf) | Q6_K | 0.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.Q8_0.gguf) | Q8_0 | 0.5 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/homer-bot-GGUF/resolve/main/homer-bot.f16.gguf) | f16 | 0.8 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
duydc/qwen-2.5-7b-formal-alpaca-instruct-2452025 | duydc | 2025-05-24T05:36:28Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:25:42Z | ---
base_model: Qwen/Qwen2.5-7B-Instruct
library_name: transformers
model_name: qwen-2.5-7b-formal-alpaca-instruct-2452025
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen-2.5-7b-formal-alpaca-instruct-2452025
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="duydc/qwen-2.5-7b-formal-alpaca-instruct-2452025", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/duydc/huggingface/runs/nny8kzrz)
This model was trained with SFT.
### Framework versions
- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.4.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
mci29/sn29_s2m6_fzey | mci29 | 2025-05-24T05:35:14Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-24T05:31:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
DevQuasar/kakaocorp.kanana-1.5-2.1b-instruct-2505-GGUF | DevQuasar | 2025-05-24T05:35:07Z | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:kakaocorp/kanana-1.5-2.1b-instruct-2505",
"base_model:quantized:kakaocorp/kanana-1.5-2.1b-instruct-2505",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T05:19:35Z | ---
base_model:
- kakaocorp/kanana-1.5-2.1b-instruct-2505
pipeline_tag: text-generation
---
[<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com)
Quantized version of: [kakaocorp/kanana-1.5-2.1b-instruct-2505](https://huggingface.co/kakaocorp/kanana-1.5-2.1b-instruct-2505)
'Make knowledge free for everyone'
<p align="center">
Made with <br>
<a href="https://www.civo.com/" target="_blank">
<img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/>
</a>
</p>
<a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep1_66 | MinaMila | 2025-05-24T05:34:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:34:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
KingEmpire/sn21_omega_2405_1 | KingEmpire | 2025-05-24T05:31:58Z | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-24T05:15:23Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep10_55 | MinaMila | 2025-05-24T05:30:54Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:30:46Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
dherya/nanoVLM | dherya | 2025-05-24T05:28:21Z | 0 | 0 | nanovlm | [
"nanovlm",
"safetensors",
"vision-language",
"multimodal",
"research",
"image-text-to-text",
"license:mit",
"region:us"
] | image-text-to-text | 2025-05-24T05:27:26Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
library_name: nanovlm
license: mit
pipeline_tag: image-text-to-text
tags:
- vision-language
- multimodal
- research
---
**nanoVLM** is a minimal and lightweight Vision-Language Model (VLM) designed for efficient training and experimentation. Built using pure PyTorch, the entire model architecture and training logic fits within ~750 lines of code. It combines a ViT-based image encoder (SigLIP-B/16-224-85M) with a lightweight causal language model (SmolLM2-135M), resulting in a compact 222M parameter model.
For more information, check out the base model on https://huggingface.co/lusxvr/nanoVLM-222M.
**Usage:**
Clone the nanoVLM repository: https://github.com/huggingface/nanoVLM.
Follow the install instructions and run the following code:
```python
from models.vision_language_model import VisionLanguageModel
model = VisionLanguageModel.from_pretrained("dherya/nanoVLM")
```
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep9_55 | MinaMila | 2025-05-24T05:27:25Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:27:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Kquintanar92/ArXiv_LLM | Kquintanar92 | 2025-05-24T05:26:19Z | 19 | 0 | null | [
"safetensors",
"mpnet",
"en",
"base_model:sentence-transformers/all-mpnet-base-v2",
"base_model:finetune:sentence-transformers/all-mpnet-base-v2",
"region:us"
] | null | 2025-05-01T16:10:59Z | ---
language:
- en
metrics:
- accuracy
base_model:
- sentence-transformers/all-mpnet-base-v2
---
ArXiv_LLM is a fine-tuned version of all-mpnet-base-v2, trained on the ArXiv dataset. Due to computational limitations and restricted infrastructure, training was limited to just three epochs, preventing the model from achieving its full performance potential.
This model was developed as part of a Master's thesis in Applied Statistics and Data Science. |
watch-katrina-lim-kiffy-full-origin/VIDEO-18-Katrina-Lim-Viral-Kiffy-Viral-Video-Full-Video | watch-katrina-lim-kiffy-full-origin | 2025-05-24T05:25:53Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T05:24:03Z | Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/originalviralvideo"> 🌐 Click Here To link (Full Viral Video Link)
🔴 ➤►DOWNLOAD👉👉🟢 ➤
Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/originalviralvideo"> 🌐 Click Here To link (Full Viral Video Link)
🔴 ➤►DOWNLOAD👉👉🟢 ➤

|
fabhiansan/indoBERT-Large-FactChecking-Summarization | fabhiansan | 2025-05-24T05:20:46Z | 13 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"text-classification",
"natural-language-inference",
"indonesian",
"perturbation-robustness",
"id",
"dataset:fabhiansan/XSUM-Indonesia-AMR-NLI",
"base_model:indobenchmark/indobert-large-p2",
"base_model:finetune:indobenchmark/indobert-large-p2",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-05-08T20:47:31Z | ---
license: mit
language:
- id
library_name: transformers
tags:
- text-classification
- natural-language-inference
- indonesian
- perturbation-robustness
- bert
datasets:
- fabhiansan/XSUM-Indonesia-AMR-NLI
pipeline_tag: text-classification
widget:
- text: 'Premis: [TEKS PREMIS DI SINI]. Hipotesis: [TEKS HIPOTESIS DI SINI]'
base_model:
- indobenchmark/indobert-large-p2
---
# Indonesian BERT Large for Natural Language Inference (Perturbation Weighted)
## Deskripsi Model
Model ini adalah versi *fine-tuned* dari `indobenchmark/indobert-large-p2` yang dilatih untuk tugas Natural Language Inference (NLI) biner pada data berbahasa Indonesia. Tujuan utama NLI adalah untuk menentukan apakah sebuah "hipotesis" dapat disimpulkan dari sebuah "premis". \
Model ini secara spesifik dilatih dengan strategi pembobotan sampel ganda:
1. Pembobotan untuk menyeimbangkan kelas label utama (entailment vs. non-entailment).
2. Pembobotan tambahan untuk jenis-jenis perturbasi spesifik dalam sampel kelas negatif (label 0), untuk meningkatkan ketahanan model terhadap variasi linguistik atau artefak data tertentu.
Model ini menghasilkan salah satu dari dua label (0 untuk non-entailment/kontradiksi, 1 untuk entailment).
| metrik | score |
|---------|--------|
| accuracy | 0.9129205120571598 |
| macro_precision | 0.9052220320834325 |
| macro_recall | 0.8766231236407768 |
| macro_f1 | 0.8893040191206835 |
|average_loss | 0.5746491376413663 |
| train_loss_sample_weighted | 0.07019188567586254 |
### Penggunaan yang Ditujukan
Model ini ditujukan untuk digunakan dalam tugas klasifikasi teks NLI biner dalam bahasa Indonesia. Dapat digunakan untuk:
* Memverifikasi apakah suatu klaim (hipotesis) didukung oleh teks sumber (premis).
* Menganalisis hubungan logis antara beberapa kalimat teks sumber dan kalimat ringkasannya.
* Model akan menganggap ringkasan tidak entails ketika terjadi halusinasi.
* Halusinasi yang dapat dideteksi oleh model ini adalah (Pagnoni dkk., 2021):
* Predicate error
* Discourse link error
* Entity Error
* Circumstance Error
* Out of Article Error
## Cara Menggunakan
Anda dapat menggunakan model ini dengan pustaka `transformers` dari Hugging Face:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_name = "fabhiansan/indoBERT-Large-FactChecking-Summarization"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
premise = "Timnas Indonesia berhasil memenangkan pertandingan sepak bola."
hypothesis = "Indonesia kalah dalam laga tersebut."
inputs = tokenizer(premise, hypothesis, return_tensors="pt", truncation=True, padding=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
model.eval() # Set model ke mode evaluasi
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
# Interpretasi hasil (asumsi label 0 = non-entailment, label 1 = entailment)
if predictions.item() == 1:
print("Hipotesis dapat disimpulkan dari premis (Entailment).")
else:
print("Hipotesis TIDAK dapat disimpulkan dari premis (Non-Entailment).") |
DevQuasar/DMindAI.DMind-1-GGUF | DevQuasar | 2025-05-24T05:19:28Z | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:DMindAI/DMind-1",
"base_model:quantized:DMindAI/DMind-1",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T00:15:38Z | ---
base_model:
- DMindAI/DMind-1
pipeline_tag: text-generation
---
[<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com)
Quantized version of: [DMindAI/DMind-1](https://huggingface.co/DMindAI/DMind-1)
'Make knowledge free for everyone'
<p align="center">
Made with <br>
<a href="https://www.civo.com/" target="_blank">
<img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/>
</a>
</p>
<a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
|
mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF | mradermacher | 2025-05-24T05:19:09Z | 327 | 2 | transformers | [
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"sft",
"en",
"base_model:oscar128372/Qwen2.5-CoderX-14B-v0.5",
"base_model:quantized:oscar128372/Qwen2.5-CoderX-14B-v0.5",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-21T14:00:00Z | ---
base_model: oscar128372/Qwen2.5-CoderX-14B-v0.5
language:
- en
library_name: transformers
license: apache-2.0
no_imatrix: '[42]9.4104,[43]9.6405,nan detected in blk.47.attn_q.weight'
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/oscar128372/Qwen2.5-CoderX-14B-v0.5
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q2_K.gguf) | Q2_K | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q3_K_S.gguf) | Q3_K_S | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q3_K_L.gguf) | Q3_K_L | 8.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.IQ4_XS.gguf) | IQ4_XS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q5_K_S.gguf) | Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q5_K_M.gguf) | Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q6_K.gguf) | Q6_K | 12.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen2.5-CoderX-14B-v0.5-GGUF/resolve/main/Qwen2.5-CoderX-14B-v0.5.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
watch-katrina-lim-kiffy-full-origin/katrina-lim-viral-video-scandal-Philippines | watch-katrina-lim-kiffy-full-origin | 2025-05-24T05:17:30Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T05:16:49Z | Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/originalviralvideo"> 🌐 Click Here To link (Full Viral Video Link)
🔴 ➤►DOWNLOAD👉👉🟢 ➤
Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/originalviralvideo"> 🌐 Click Here To link (Full Viral Video Link)
🔴 ➤►DOWNLOAD👉👉🟢 ➤
|
Triangle104/Qwen3-30B-A1.5B-High-Speed-Q4_K_S-GGUF | Triangle104 | 2025-05-24T05:16:16Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"32 k context",
"reasoning",
"thinking",
"qwen3",
"4 experts activated",
"double speed",
"128 experts",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:DavidAU/Qwen3-30B-A1.5B-High-Speed",
"base_model:quantized:DavidAU/Qwen3-30B-A1.5B-High-Speed",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T05:13:27Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32 k context
- reasoning
- thinking
- qwen3
- 4 experts activated
- double speed
- 128 experts
- llama-cpp
- gguf-my-repo
base_model: DavidAU/Qwen3-30B-A1.5B-High-Speed
---
# Triangle104/Qwen3-30B-A1.5B-High-Speed-Q4_K_S-GGUF
This model was converted to GGUF format from [`DavidAU/Qwen3-30B-A1.5B-High-Speed`](https://huggingface.co/DavidAU/Qwen3-30B-A1.5B-High-Speed) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DavidAU/Qwen3-30B-A1.5B-High-Speed) for more details on the model.
---
This is a simple "finetune" of the Qwen's "Qwen 30B-A3B" (MOE) model,
setting the experts in use from 8 to 4 (out of 128 experts).
This method close to doubles the speed of the model and uses 1.5B (of
30B) parameters instead of 3B (of 30B) parameters. Depending on the
application you may want to
use the regular model ("30B-A3B"), and use this model for simpler use
case(s) although I did not notice any loss of function during
routine (but not extensive) testing.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q4_K_S-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q4_K_S-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q4_K_S-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q4_K_S-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q4_k_s.gguf -c 2048
```
|
DAKARA555/shot | DAKARA555 | 2025-05-24T05:15:31Z | 55 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:Wan-AI/Wan2.1-I2V-14B-480P",
"base_model:adapter:Wan-AI/Wan2.1-I2V-14B-480P",
"license:apache-2.0",
"region:us"
] | text-to-image | 2025-05-09T17:38:23Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/IMG_9514.PNG
base_model: Wan-AI/Wan2.1-I2V-14B-480P
instance_prompt: null
license: apache-2.0
---
# shot
<Gallery />
## Model description
https://civitai.com/models/1350447?modelVersionId=1602715
https://huggingface.co/DAKARA555/shot/resolve/main/wan_cumshot_i2v.safetensors?download=true
## Download model
Weights for this model are available in Safetensors format.
[Download](/DAKARA555/shot/tree/main) them in the Files & versions tab.
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep5_55 | MinaMila | 2025-05-24T05:13:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:13:34Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
DAKARA555/deepfera | DAKARA555 | 2025-05-24T05:11:30Z | 65 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:Wan-AI/Wan2.1-I2V-14B-480P",
"base_model:adapter:Wan-AI/Wan2.1-I2V-14B-480P",
"license:apache-2.0",
"region:us"
] | text-to-image | 2025-05-14T16:36:06Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/white.png
base_model: Wan-AI/Wan2.1-I2V-14B-480P
instance_prompt: null
license: apache-2.0
---
# deepfera
<Gallery />
## Model description
https://civitai.com/models/1395313/wan-dr34mjob-doublesinglehandy-blowjob?modelVersionId=1610465
https://huggingface.co/DAKARA555/deepfera/resolve/main/WAN_dr34mj0b.safetensors?download=true
## Download model
Weights for this model are available in Safetensors format.
[Download](/DAKARA555/deepfera/tree/main) them in the Files & versions tab.
|
atul10/whisper-large-v3-turbo-nepali-v1 | atul10 | 2025-05-24T05:11:24Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"ne",
"hi",
"nl",
"base_model:openai/whisper-large-v3-turbo",
"base_model:finetune:openai/whisper-large-v3-turbo",
"license:mit",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-05-24T04:56:30Z | ---
library_name: transformers
language:
- ne
- hi
- nl
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large v3 Turbo Nepali
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
metrics:
- name: Wer
type: wer
value: 23.63425925925926
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large v3 Turbo Nepali
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the OpenSLR54 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1707
- Wer: 23.6343
- Cer: 5.4903
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|
| 0.3073 | 0.3597 | 300 | 0.2895 | 53.2870 | 13.5643 |
| 0.2457 | 0.7194 | 600 | 0.2396 | 45.3704 | 11.6816 |
| 0.166 | 1.0791 | 900 | 0.2062 | 37.9167 | 9.6668 |
| 0.1477 | 1.4388 | 1200 | 0.1949 | 37.4306 | 9.3071 |
| 0.1284 | 1.7986 | 1500 | 0.1680 | 32.6620 | 8.3235 |
| 0.0745 | 2.1583 | 1800 | 0.1706 | 31.1574 | 7.5272 |
| 0.0701 | 2.5180 | 2100 | 0.1661 | 32.0370 | 7.7217 |
| 0.0777 | 2.8777 | 2400 | 0.1599 | 28.6111 | 7.1308 |
| 0.0455 | 3.2374 | 2700 | 0.1723 | 28.7037 | 7.0097 |
| 0.0375 | 3.5971 | 3000 | 0.1579 | 26.9444 | 6.3674 |
| 0.0374 | 3.9568 | 3300 | 0.1639 | 26.8981 | 6.2794 |
| 0.0171 | 4.3165 | 3600 | 0.1711 | 25.3241 | 6.2280 |
| 0.0219 | 4.6763 | 3900 | 0.1638 | 25.0 | 5.9307 |
| 0.0089 | 5.0360 | 4200 | 0.1635 | 24.5139 | 5.7435 |
| 0.0072 | 5.3957 | 4500 | 0.1717 | 24.1898 | 5.5711 |
| 0.0059 | 5.7554 | 4800 | 0.1707 | 23.6343 | 5.4903 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cxx11.abi
- Datasets 3.2.0
- Tokenizers 0.20.3 |
watch-katrina-lim-kiffy-full-origin/full.smriti.jain.real.video.smriti.jain.viral.video.instagram.id.smriti.jaindd | watch-katrina-lim-kiffy-full-origin | 2025-05-24T05:10:15Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T05:09:26Z | Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/originalviralvideo"> 🌐 Click Here To link (Full Viral Video Link)
🔴 ➤►DOWNLOAD👉👉🟢 ➤
Watch 🟢 ➤ ➤ ➤ <a href="https://witvidz.com/originalviralvideo"> 🌐 Click Here To link (Full Viral Video Link)
🔴 ➤►DOWNLOAD👉👉🟢 ➤
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep4_55 | MinaMila | 2025-05-24T05:10:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:10:08Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep3_55 | MinaMila | 2025-05-24T05:06:47Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:06:38Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Watchkatrinalim/Watch.katrina.lim.kiffy.full.original.viral.leaked.video | Watchkatrinalim | 2025-05-24T05:03:26Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T05:02:35Z | Watch 🟢 ➤ ➤ ➤ <a href="https://viraltrendzzz.com/sdvsdvdd"> 🌐 Click Here To link (Watch.katrina.lim.kiffy.full.original.viral.leaked.video)
🔴 ➤►DOWNLOAD👉👉🟢 ➤Watch 🟢 ➤ ➤ ➤ <a href="https://viraltrendzzz.com/sdvsdvdd"> 🌐 Watch.katrina.lim.kiffy.full.original.viral.leaked.video
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep2_55 | MinaMila | 2025-05-24T05:03:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T05:03:12Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_L-GGUF | Triangle104 | 2025-05-24T05:02:28Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"32 k context",
"reasoning",
"thinking",
"qwen3",
"4 experts activated",
"double speed",
"128 experts",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:DavidAU/Qwen3-30B-A1.5B-High-Speed",
"base_model:quantized:DavidAU/Qwen3-30B-A1.5B-High-Speed",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T04:59:22Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32 k context
- reasoning
- thinking
- qwen3
- 4 experts activated
- double speed
- 128 experts
- llama-cpp
- gguf-my-repo
base_model: DavidAU/Qwen3-30B-A1.5B-High-Speed
---
# Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_L-GGUF
This model was converted to GGUF format from [`DavidAU/Qwen3-30B-A1.5B-High-Speed`](https://huggingface.co/DavidAU/Qwen3-30B-A1.5B-High-Speed) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DavidAU/Qwen3-30B-A1.5B-High-Speed) for more details on the model.
---
This is a simple "finetune" of the Qwen's "Qwen 30B-A3B" (MOE) model,
setting the experts in use from 8 to 4 (out of 128 experts).
This method close to doubles the speed of the model and uses 1.5B (of
30B) parameters instead of 3B (of 30B) parameters. Depending on the
application you may want to
use the regular model ("30B-A3B"), and use this model for simpler use
case(s) although I did not notice any loss of function during
routine (but not extensive) testing.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_L-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q3_k_l.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_L-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q3_k_l.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_L-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q3_k_l.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_L-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q3_k_l.gguf -c 2048
```
|
fats-fme/69031ba1-7feb-4223-8cc8-6f6576f8c4ed | fats-fme | 2025-05-24T05:00:15Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/codegemma-7b",
"base_model:adapter:unsloth/codegemma-7b",
"license:apache-2.0",
"region:us"
] | null | 2025-05-24T04:22:52Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/codegemma-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 69031ba1-7feb-4223-8cc8-6f6576f8c4ed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/codegemma-7b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3a95f0218346ddba_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: fats-fme/69031ba1-7feb-4223-8cc8-6f6576f8c4ed
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: constant_with_warmup
max_memory:
0: 130GB
max_steps: 100
micro_batch_size: 1
mlflow_experiment_name: /tmp/3a95f0218346ddba_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
saves_per_epoch: null
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dc30820e-a6ab-4a52-b146-21660afc11be
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: dc30820e-a6ab-4a52-b146-21660afc11be
warmup_steps: 200
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# 69031ba1-7feb-4223-8cc8-6f6576f8c4ed
This model is a fine-tuned version of [unsloth/codegemma-7b](https://huggingface.co/unsloth/codegemma-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0505
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 200
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0037 | 1 | 3.1381 |
| 2.0132 | 0.3743 | 100 | 2.0505 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
sand-ai/MAGI-1 | sand-ai | 2025-05-24T05:00:09Z | 0 | 565 | magi-1 | [
"magi-1",
"diffusers",
"safetensors",
"image-to-video",
"en",
"arxiv:2505.13211",
"license:apache-2.0",
"region:us"
] | image-to-video | 2025-04-18T07:49:05Z | ---
license: apache-2.0
language:
- en
pipeline_tag: image-to-video
library_name: magi-1
---

-----
<p align="center" style="line-height: 1;">
<a href="https://arxiv.org/abs/2505.13211" target="_blank" style="margin: 2px;">
<img alt="paper" src="https://img.shields.io/badge/Paper-arXiv-B31B1B?logo=arxiv" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://sand.ai" target="_blank" style="margin: 2px;">
<img alt="blog" src="https://img.shields.io/badge/Sand%20AI-Homepage-333333.svg?logo=" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://magi.sand.ai" target="_blank" style="margin: 2px;">
<img alt="product" src="https://img.shields.io/badge/Magi-Product-logo.svg?logo=&color=DCBE7E" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://huggingface.co/sand-ai" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Sand AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://x.com/SandAI_HQ" target="_blank" style="margin: 2px;">
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-Sand%20AI-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://discord.gg/hgaZ86D7Wv" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-Sand%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://github.com/SandAI-org/Magi/LICENSE" target="_blank" style="margin: 2px;">
<img alt="license" src="https://img.shields.io/badge/License-Apache2.0-green?logo=Apache" style="display: inline-block; vertical-align: middle;">
</a>
</p>
# MAGI-1: Autoregressive Video Generation at Scale
This repository contains the [code](https://github.com/SandAI-org/MAGI-1) for the MAGI-1 model, pre-trained weights and inference code. You can find more information on our [technical report](https://static.magi.world/static/files/MAGI_1.pdf) or directly create magic with MAGI-1 [here](http://sand.ai) . 🚀✨
## 🔥🔥🔥 Latest News
- Apr 30, 2025: MAGI-1 4.5B distill and distill+quant models are coming soon 🎉 — we’re putting on the final touches, stay tuned!
- Apr 30, 2025: MAGI-1 4.5B model has been released 🎉. We've updated the model weights — check it out!
- Apr 21, 2025: MAGI-1 is here 🎉. We've released the model weights and inference code — check it out!
## 1. About
We present MAGI-1, a world model that generates videos by ***autoregressively*** predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 further supports controllable generation via chunk-wise prompting, enabling smooth scene transitions, long-horizon synthesis, and fine-grained text-driven control. We believe MAGI-1 offers a promising direction for unifying high-fidelity video generation with flexible instruction control and real-time deployment.
## 2. Model Summary
### Transformer-based VAE
- Variational autoencoder (VAE) with transformer-based architecture, 8x spatial and 4x temporal compression.
- Fastest average decoding time and highly competitive reconstruction quality
### Auto-Regressive Denoising Algorithm
MAGI-1 is an autoregressive denoising video generation model generating videos chunk-by-chunk instead of as a whole. Each chunk (24 frames) is denoised holistically, and the generation of the next chunk begins as soon as the current one reaches a certain level of denoising. This pipeline design enables concurrent processing of up to four chunks for efficient video generation.

### Diffusion Model Architecture
MAGI-1 is built upon the Diffusion Transformer, incorporating several key innovations to enhance training efficiency and stability at scale. These advancements include Block-Causal Attention, Parallel Attention Block, QK-Norm and GQA, Sandwich Normalization in FFN, SwiGLU, and Softcap Modulation. For more details, please refer to the [technical report.](https://static.magi.world/static/files/MAGI_1.pdf)
<div align="center">
<img src="figures/dit_architecture.png" alt="diffusion model architecture" width="500" />
</div>
### Distillation Algorithm
We adopt a shortcut distillation approach that trains a single velocity-based model to support variable inference budgets. By enforcing a self-consistency constraint—equating one large step with two smaller steps—the model learns to approximate flow-matching trajectories across multiple step sizes. During training, step sizes are cyclically sampled from {64, 32, 16, 8}, and classifier-free guidance distillation is incorporated to preserve conditional alignment. This enables efficient inference with minimal loss in fidelity.
## 3. Model Zoo
We provide the pre-trained weights for MAGI-1, including the 24B and 4.5B models, as well as the corresponding distill and distill+quant models. The model weight links are shown in the table.
| Model | Link | Recommend Machine |
| ------------------------------ | -------------------------------------------------------------------- | ------------------------------- |
| T5 | [T5](https://huggingface.co/sand-ai/MAGI-1/tree/main/ckpt/t5) | - |
| MAGI-1-VAE | [MAGI-1-VAE](https://huggingface.co/sand-ai/MAGI-1/tree/main/ckpt/vae) | - |
| MAGI-1-24B | [MAGI-1-24B](https://huggingface.co/sand-ai/MAGI-1/tree/main/ckpt/magi/24B_base) | H100/H800 × 8 |
| MAGI-1-24B-distill | [MAGI-1-24B-distill](https://huggingface.co/sand-ai/MAGI-1/tree/main/ckpt/magi/24B_distill) | H100/H800 × 8 |
| MAGI-1-24B-distill+fp8_quant | [MAGI-1-24B-distill+quant](https://huggingface.co/sand-ai/MAGI-1/tree/main/ckpt/magi/24B_distill_quant) | H100/H800 × 4 or RTX 4090 × 8 |
| MAGI-1-4.5B | [MAGI-1-4.5B](https://huggingface.co/sand-ai/MAGI-1/tree/main/ckpt/magi/4.5B_base) | RTX 4090 × 1 |
| MAGI-1-4.5B-distill | Coming soon | RTX 4090 × 1 |
| MAGI-1-4.5B-distill+fp8_quant | Coming soon | RTX 4090 × 1 |
> [!NOTE]
>
> For 4.5B models, any machine with at least 24GB of GPU memory is sufficient.
## 4. Evaluation
### In-house Human Evaluation
MAGI-1 achieves state-of-the-art performance among open-source models like Wan-2.1 and HunyuanVideo and closed-source model like Hailuo (i2v-01), particularly excelling in instruction following and motion quality, positioning it as a strong potential competitor to closed-source commercial models such as Kling.

### Physical Evaluation
Thanks to the natural advantages of autoregressive architecture, Magi achieves far superior precision in predicting physical behavior on the [Physics-IQ benchmark](https://github.com/google-deepmind/physics-IQ-benchmark) through video continuation—significantly outperforming all existing models.
| Model | Phys. IQ Score ↑ | Spatial IoU ↑ | Spatio Temporal ↑ | Weighted Spatial IoU ↑ | MSE ↓ |
|----------------|------------------|---------------|-------------------|-------------------------|--------|
| **V2V Models** | | | | | |
| **Magi-24B (V2V)** | **56.02** | **0.367** | **0.270** | **0.304** | **0.005** |
| **Magi-4.5B (V2V)** | **42.44** | **0.234** | **0.285** | **0.188** | **0.007** |
| VideoPoet (V2V)| 29.50 | 0.204 | 0.164 | 0.137 | 0.010 |
| **I2V Models** | | | | | |
| **Magi-24B (I2V)** | **30.23** | **0.203** | **0.151** | **0.154** | **0.012** |
| Kling1.6 (I2V) | 23.64 | 0.197 | 0.086 | 0.144 | 0.025 |
| VideoPoet (I2V)| 20.30 | 0.141 | 0.126 | 0.087 | 0.012 |
| Gen 3 (I2V) | 22.80 | 0.201 | 0.115 | 0.116 | 0.015 |
| Wan2.1 (I2V) | 20.89 | 0.153 | 0.100 | 0.112 | 0.023 |
| Sora (I2V) | 10.00 | 0.138 | 0.047 | 0.063 | 0.030 |
| **GroundTruth**| **100.0** | **0.678** | **0.535** | **0.577** | **0.002** |
## 5. How to run
### Environment Preparation
We provide two ways to run MAGI-1, with the Docker environment being the recommended option.
**Run with Docker Environment (Recommend)**
```bash
docker pull sandai/magi:latest
docker run -it --gpus all --privileged --shm-size=32g --name magi --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=6710886 sandai/magi:latest /bin/bash
```
**Run with Source Code**
```bash
# Create a new environment
conda create -n magi python==3.10.12
# Install pytorch
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
# Install other dependencies
pip install -r requirements.txt
# Install ffmpeg
conda install -c conda-forge ffmpeg=4.4
# For GPUs based on the Hopper architecture (e.g., H100/H800), it is recommended to install MagiAttention(https://github.com/SandAI-org/MagiAttention) for acceleration. For non-Hopper GPUs, installing MagiAttention is not necessary.
git clone [email protected]:SandAI-org/MagiAttention.git
cd MagiAttention
git submodule update --init --recursive
pip install --no-build-isolation .
```
### Inference Command
To run the `MagiPipeline`, you can control the input and output by modifying the parameters in the `example/24B/run.sh` or `example/4.5B/run.sh` script. Below is an explanation of the key parameters:
#### Parameter Descriptions
- `--config_file`: Specifies the path to the configuration file, which contains model configuration parameters, e.g., `example/24B/24B_config.json`.
- `--mode`: Specifies the mode of operation. Available options are:
- `t2v`: Text to Video
- `i2v`: Image to Video
- `v2v`: Video to Video
- `--prompt`: The text prompt used for video generation, e.g., `"Good Boy"`.
- `--image_path`: Path to the image file, used only in `i2v` mode.
- `--prefix_video_path`: Path to the prefix video file, used only in `v2v` mode.
- `--output_path`: Path where the generated video file will be saved.
#### Bash Script
```bash
#!/bin/bash
# Run 24B MAGI-1 model
bash example/24B/run.sh
# Run 4.5B MAGI-1 model
bash example/4.5B/run.sh
```
#### Customizing Parameters
You can modify the parameters in `run.sh` as needed. For example:
- To use the Image to Video mode (`i2v`), set `--mode` to `i2v` and provide `--image_path`:
```bash
--mode i2v \
--image_path example/assets/image.jpeg \
```
- To use the Video to Video mode (`v2v`), set `--mode` to `v2v` and provide `--prefix_video_path`:
```bash
--mode v2v \
--prefix_video_path example/assets/prefix_video.mp4 \
```
By adjusting these parameters, you can flexibly control the input and output to meet different requirements.
### Some Useful Configs (for config.json)
> [!NOTE]
>
> - If you are running 24B model with RTX 4090 \* 8, please set `pp_size:2 cp_size: 4`.
>
> - Our model supports arbitrary resolutions. To accelerate inference process, the default resolution for the 4.5B model is set to 720×720 in the `4.5B_config.json`.
| Config | Help |
| -------------- | ------------------------------------------------------------ |
| seed | Random seed used for video generation |
| video_size_h | Height of the video |
| video_size_w | Width of the video |
| num_frames | Controls the duration of generated video |
| fps | Frames per second, 4 video frames correspond to 1 latent_frame |
| cfg_number | Base model uses cfg_number==3, distill and quant model uses cfg_number=1 |
| load | Directory containing a model checkpoint. |
| t5_pretrained | Path to load pretrained T5 model |
| vae_pretrained | Path to load pretrained VAE model |
## 6. License
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
## 7. Citation
If you find our code or model useful in your research, please cite:
```bibtex
@misc{ai2025magi1autoregressivevideogeneration,
title={MAGI-1: Autoregressive Video Generation at Scale},
author={Sand. ai and Hansi Teng and Hongyu Jia and Lei Sun and Lingzhi Li and Maolin Li and Mingqiu Tang and Shuai Han and Tianning Zhang and W. Q. Zhang and Weifeng Luo and Xiaoyang Kang and Yuchen Sun and Yue Cao and Yunpeng Huang and Yutong Lin and Yuxin Fang and Zewei Tao and Zheng Zhang and Zhongshu Wang and Zixun Liu and Dai Shi and Guoli Su and Hanwen Sun and Hong Pan and Jie Wang and Jiexin Sheng and Min Cui and Min Hu and Ming Yan and Shucheng Yin and Siran Zhang and Tingting Liu and Xianping Yin and Xiaoyu Yang and Xin Song and Xuan Hu and Yankai Zhang and Yuqiao Li},
year={2025},
eprint={2505.13211},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.13211},
}
```
## 8. Contact
If you have any questions, please feel free to raise an issue or contact us at [[email protected]](mailto:[email protected]) . |
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep1_55 | MinaMila | 2025-05-24T04:59:47Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:59:42Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VIDEO-18-Shamy-Laura-Viral-Video/wATCH.Shamy.Laura.viral.video.original.Link.Official | VIDEO-18-Shamy-Laura-Viral-Video | 2025-05-24T04:59:04Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T04:57:30Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF | featherless-ai-quants | 2025-05-24T04:57:28Z | 0 | 0 | null | [
"gguf",
"text-generation",
"base_model:kakaocorp/kanana-1.5-8b-base",
"base_model:quantized:kakaocorp/kanana-1.5-8b-base",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T04:50:32Z | ---
base_model: kakaocorp/kanana-1.5-8b-base
pipeline_tag: text-generation
quantized_by: featherless-ai-quants
---
# kakaocorp/kanana-1.5-8b-base GGUF Quantizations 🚀

*Optimized GGUF quantization files for enhanced model performance*
> Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee.
---
## Available Quantizations 📊
| Quantization Type | File | Size |
|-------------------|------|------|
| IQ4_XS | [kakaocorp-kanana-1.5-8b-base-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-IQ4_XS.gguf) | 4276.62 MB |
| Q2_K | [kakaocorp-kanana-1.5-8b-base-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q2_K.gguf) | 3031.86 MB |
| Q3_K_L | [kakaocorp-kanana-1.5-8b-base-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q3_K_L.gguf) | 4121.74 MB |
| Q3_K_M | [kakaocorp-kanana-1.5-8b-base-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q3_K_M.gguf) | 3832.74 MB |
| Q3_K_S | [kakaocorp-kanana-1.5-8b-base-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q3_K_S.gguf) | 3494.74 MB |
| Q4_K_M | [kakaocorp-kanana-1.5-8b-base-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q4_K_M.gguf) | 4692.78 MB |
| Q4_K_S | [kakaocorp-kanana-1.5-8b-base-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q4_K_S.gguf) | 4475.28 MB |
| Q5_K_M | [kakaocorp-kanana-1.5-8b-base-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q5_K_M.gguf) | 5467.40 MB |
| Q5_K_S | [kakaocorp-kanana-1.5-8b-base-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q5_K_S.gguf) | 5339.90 MB |
| Q6_K | [kakaocorp-kanana-1.5-8b-base-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q6_K.gguf) | 6290.44 MB |
| Q8_0 | [kakaocorp-kanana-1.5-8b-base-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/kakaocorp-kanana-1.5-8b-base-GGUF/blob/main/kakaocorp-kanana-1.5-8b-base-Q8_0.gguf) | 8145.11 MB |
---
## ⚡ Powered by [Featherless AI](https://featherless.ai)
### Key Features
- 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly
- 🛠️ **Zero Infrastructure** - No server setup or maintenance required
- 📚 **Vast Compatibility** - Support for 2400+ models and counting
- 💎 **Affordable Pricing** - Starting at just $10/month
---
**Links:**
[Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models) |
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep10_42 | MinaMila | 2025-05-24T04:56:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:56:02Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_M-GGUF | Triangle104 | 2025-05-24T04:49:00Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"32 k context",
"reasoning",
"thinking",
"qwen3",
"4 experts activated",
"double speed",
"128 experts",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:DavidAU/Qwen3-30B-A1.5B-High-Speed",
"base_model:quantized:DavidAU/Qwen3-30B-A1.5B-High-Speed",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T04:47:04Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 32 k context
- reasoning
- thinking
- qwen3
- 4 experts activated
- double speed
- 128 experts
- llama-cpp
- gguf-my-repo
base_model: DavidAU/Qwen3-30B-A1.5B-High-Speed
---
# Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_M-GGUF
This model was converted to GGUF format from [`DavidAU/Qwen3-30B-A1.5B-High-Speed`](https://huggingface.co/DavidAU/Qwen3-30B-A1.5B-High-Speed) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DavidAU/Qwen3-30B-A1.5B-High-Speed) for more details on the model.
---
This is a simple "finetune" of the Qwen's "Qwen 30B-A3B" (MOE) model,
setting the experts in use from 8 to 4 (out of 128 experts).
This method close to doubles the speed of the model and uses 1.5B (of
30B) parameters instead of 3B (of 30B) parameters. Depending on the
application you may want to
use the regular model ("30B-A3B"), and use this model for simpler use
case(s) although I did not notice any loss of function during
routine (but not extensive) testing.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_M-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q3_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_M-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q3_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_M-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q3_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-30B-A1.5B-High-Speed-Q3_K_M-GGUF --hf-file qwen3-30b-a1.5b-high-speed-q3_k_m.gguf -c 2048
```
|
Full-Video-hidden-lust-aka-shamy-laura/Orginal.Video.Clip.Shamy.Laura.Viral.Video.Leaks.Official | Full-Video-hidden-lust-aka-shamy-laura | 2025-05-24T04:48:51Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T04:48:33Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
phospho-app/TransCabbage-gr00t-Bottle_In_Container-i5xn0 | phospho-app | 2025-05-24T04:47:36Z | 0 | 0 | null | [
"safetensors",
"gr00t_n1",
"phosphobot",
"gr00t",
"region:us"
] | null | 2025-05-24T04:11:08Z |
---
tags:
- phosphobot
- gr00t
task_categories:
- robotics
---
# gr00t Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successfull, try it out on your robot!
## Training parameters:
- **Dataset**: [TransCabbage/Bottle_In_Container](https://huggingface.co/datasets/TransCabbage/Bottle_In_Container)
- **Wandb run URL**: None
- **Epochs**: 10
- **Batch size**: 49
- **Training steps**: None
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
chloebrandon/my_output_dir_2 | chloebrandon | 2025-05-24T04:47:26Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-05-24T04:46:37Z | ---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
model-index:
- name: my_output_dir_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_output_dir_2
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep7_42 | MinaMila | 2025-05-24T04:45:39Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:45:24Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
BootesVoid/cmb1p7c3q05s4u1cgo5i612ud_cmb1pm94j05sfu1cgscappdan | BootesVoid | 2025-05-24T04:43:40Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-24T04:43:39Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: eve
---
# Cmb1P7C3Q05S4U1Cgo5I612Ud_Cmb1Pm94J05Sfu1Cgscappdan
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `eve` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "eve",
"lora_weights": "https://huggingface.co/BootesVoid/cmb1p7c3q05s4u1cgo5i612ud_cmb1pm94j05sfu1cgscappdan/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb1p7c3q05s4u1cgo5i612ud_cmb1pm94j05sfu1cgscappdan', weight_name='lora.safetensors')
image = pipeline('eve').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb1p7c3q05s4u1cgo5i612ud_cmb1pm94j05sfu1cgscappdan/discussions) to add images that show off what you’ve made with this LoRA.
|
chloebrandon/my_output_dir | chloebrandon | 2025-05-24T04:42:20Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-05-24T01:47:50Z | ---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
model-index:
- name: my_output_dir
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_output_dir
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
PhoenixStormJr/RVC-Easy-GUI-BACKUP-ONLY | PhoenixStormJr | 2025-05-24T04:41:09Z | 0 | 1 | null | [
"license:mit",
"region:us"
] | null | 2024-09-01T07:08:58Z | ---
license: mit
---
(THE ORIGINAL RVC IS BACK ONLINE YAY!!! OKAY I know this kinda makes this huggingface repository useless BUT it did go down once before, so better safe than sorry.)
RVC v2 Rejekts colab link: https://colab.research.google.com/drive/1qfz5u2xBLyZp7vqzOAKZ3aJFjXZfHTuB
This is a BACKUP of RVC Easy GUI in case the original is ever deleted. I've done too much work with this, I can't risk losing it. Please check out Rejekts the creator:
Download RVC for Google Colab:
https://huggingface.co/PhoenixStormJr/RVC-Easy-GUI-BACKUP-ONLY/resolve/main/RVC.zip?download=true
.
.
.
RVC V2 glitches fixed. This is the exact same as Rejekts, but I fixed the glitches in his repository. It had many glitches that virtually made RVC-v2-easy-gui very broken and almost unusable. I'm not trying to infringe on copyright violations, just fix his glitches. Date of original: 4/20/24
Mine here (If there are any issues, report them on the [Issues](https://github.com/PhoenixStormJr/RVC-v2-easy-GUI-glitches-fixed/issues) tab. I have completed it and there are no glitches as far as I can tell. I have also added a few features. Not extremely important though.):
https://colab.research.google.com/github/PhoenixStormJr/RVC-v2-easy-GUI-glitches-fixed/blob/main/easyGUI_fixed_glitches_13%F0%9F%93%B1_4_20_24.ipynb
Here is a backup made by [Hev832](https://huggingface.co/Hev832) with even MORE features. Might be a bit advanced though: https://colab.research.google.com/drive/1RaMEm2UKzSObw_xMy_cwNjFKDQR_iv1f?usp=sharing
originals here:
(THE ORIGINAL RVC IS BACK ONLINE YAY!!! OKAY I know this kinda makes this huggingface repository useless BUT it did go down once before, so better safe than sorry.)
RVC v2 Rejekts colab link: https://colab.research.google.com/drive/1qfz5u2xBLyZp7vqzOAKZ3aJFjXZfHTuB
Github: https://github.com/RejektsAI
Huggingface: https://huggingface.co/Rejekts/project
|
SCH0/cardio_llama3-finetunedd | SCH0 | 2025-05-24T04:40:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:04:48Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
infogep/bb7296fd-fd26-4547-8a3b-4114fd0dfaaa | infogep | 2025-05-24T04:39:19Z | 0 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/codegemma-7b",
"base_model:adapter:unsloth/codegemma-7b",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-05-24T04:17:10Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/codegemma-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: bb7296fd-fd26-4547-8a3b-4114fd0dfaaa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: unsloth/codegemma-7b
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 3a95f0218346ddba_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
dpo:
beta: 0.1
enabled: true
group_by_length: false
rank_loss: true
reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: infogep/bb7296fd-fd26-4547-8a3b-4114fd0dfaaa
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 2.0e-06
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 10
mixed_precision: bf16
mlflow_experiment_name: /tmp/3a95f0218346ddba_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dc30820e-a6ab-4a52-b146-21660afc11be
wandb_project: s56-7
wandb_run: your_name
wandb_runid: dc30820e-a6ab-4a52-b146-21660afc11be
warmup_steps: 50
weight_decay: 0.02
xformers_attention: true
```
</details><br>
# bb7296fd-fd26-4547-8a3b-4114fd0dfaaa
This model is a fine-tuned version of [unsloth/codegemma-7b](https://huggingface.co/unsloth/codegemma-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1450
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.8543 | 0.0012 | 1 | 4.5304 |
| 2.0106 | 0.2924 | 250 | 2.2002 |
| 2.236 | 0.5848 | 500 | 2.1450 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
dattu069/DEVDUUT2 | dattu069 | 2025-05-24T04:38:59Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-24T04:11:28Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: DEV
---
# Devduut2
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `DEV` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "DEV",
"lora_weights": "https://huggingface.co/dattu069/DEVDUUT2/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('dattu069/DEVDUUT2', weight_name='lora.safetensors')
image = pipeline('DEV').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/dattu069/DEVDUUT2/discussions) to add images that show off what you’ve made with this LoRA.
|
jjwwwww/naruto-lora | jjwwwww | 2025-05-24T04:38:07Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"diffusers-training",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2025-05-22T13:01:16Z | ---
base_model: runwayml/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA text2image fine-tuning - jjwwwww/naruto-lora
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/naruto-blip-captions dataset. You can find some example images in the following.




## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
ekyuho/hyodol_sv | ekyuho | 2025-05-24T04:37:14Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"mistral",
"text-generation-inference",
"unsloth",
"en",
"base_model:maywell/Synatra-7B-v0.3-dpo",
"base_model:quantized:maywell/Synatra-7B-v0.3-dpo",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-05-24T04:33:57Z | ---
base_model: maywell/Synatra-7B-v0.3-dpo
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ekyuho
- **License:** apache-2.0
- **Finetuned from model :** maywell/Synatra-7B-v0.3-dpo
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
dzanbek/4009bbc8-1e35-41fb-a253-fac8d6d08aa1 | dzanbek | 2025-05-24T04:35:43Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"axolotl",
"dpo",
"trl",
"conversational",
"arxiv:2305.18290",
"base_model:unsloth/Qwen2.5-14B",
"base_model:quantized:unsloth/Qwen2.5-14B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-05-24T03:56:51Z | ---
base_model: unsloth/Qwen2.5-14B
library_name: transformers
model_name: 4009bbc8-1e35-41fb-a253-fac8d6d08aa1
tags:
- generated_from_trainer
- axolotl
- dpo
- trl
licence: license
---
# Model Card for 4009bbc8-1e35-41fb-a253-fac8d6d08aa1
This model is a fine-tuned version of [unsloth/Qwen2.5-14B](https://huggingface.co/unsloth/Qwen2.5-14B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="dzanbek/4009bbc8-1e35-41fb-a253-fac8d6d08aa1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-2/runs/k02qmn7y)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.12.0.dev0
- Transformers: 4.46.0
- Pytorch: 2.5.0+cu124
- Datasets: 3.0.1
- Tokenizers: 0.20.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
lisabdunlap/test_e2 | lisabdunlap | 2025-05-24T04:35:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-24T04:33:40Z | ---
base_model: unsloth/qwen3-8b
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** lisabdunlap
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-8b
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MechaSloth/prism_4m439 | MechaSloth | 2025-05-24T04:34:49Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-24T04:31:48Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
SCH0/cardio-llama3ee-merged | SCH0 | 2025-05-24T04:33:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-05-24T04:31:59Z | ---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** SCH0
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
BootesVoid/cmb1p7c3q05s4u1cgo5i612ud_cmb1pcqvp05scu1cgos1cqua0 | BootesVoid | 2025-05-24T04:33:00Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-05-24T04:32:58Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: SEXY
---
# Cmb1P7C3Q05S4U1Cgo5I612Ud_Cmb1Pcqvp05Scu1Cgos1Cqua0
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `SEXY` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "SEXY",
"lora_weights": "https://huggingface.co/BootesVoid/cmb1p7c3q05s4u1cgo5i612ud_cmb1pcqvp05scu1cgos1cqua0/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmb1p7c3q05s4u1cgo5i612ud_cmb1pcqvp05scu1cgos1cqua0', weight_name='lora.safetensors')
image = pipeline('SEXY').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmb1p7c3q05s4u1cgo5i612ud_cmb1pcqvp05scu1cgos1cqua0/discussions) to add images that show off what you’ve made with this LoRA.
|
TOMFORD79/Zombie_3 | TOMFORD79 | 2025-05-24T04:33:00Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-24T03:46:44Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep3_42 | MinaMila | 2025-05-24T04:31:44Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:31:40Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Jack-Payne1/Qwen2.5-1.5B-Instruct-Sleeper-ft1-tiny-stories | Jack-Payne1 | 2025-05-24T04:30:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:30:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep2_42 | MinaMila | 2025-05-24T04:28:18Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:28:13Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
duydc/qwen-2.5-7b-alpaca-instruct-2452025-ver6 | duydc | 2025-05-24T04:27:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:02:20Z | ---
base_model: Qwen/Qwen2.5-7B-Instruct
library_name: transformers
model_name: qwen-2.5-7b-alpaca-instruct-2452025-ver6
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen-2.5-7b-alpaca-instruct-2452025-ver6
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="duydc/qwen-2.5-7b-alpaca-instruct-2452025-ver6", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/duydc/huggingface/runs/epe4jp4h)
This model was trained with SFT.
### Framework versions
- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.4.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
VIDEO-18-Jobz-Hunting-Viral-Link/FULL.VIDEO.Jobz.Hunting.Sajal.Malik.Viral.Video.Leaks.Official | VIDEO-18-Jobz-Hunting-Viral-Link | 2025-05-24T04:27:08Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T04:26:35Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
MinaMila/llama_instbase_3b_LoRa_Adult_cfda_ep2_22 | MinaMila | 2025-05-24T04:26:43Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:26:39Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
chloebrandon/t5_amh_finetuned | chloebrandon | 2025-05-24T04:25:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-05-24T04:25:39Z | ---
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
model-index:
- name: t5_amh_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5_amh_finetuned
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
vermoney/45ca3b98-1d9b-40da-84ea-0f226bb3e5d3 | vermoney | 2025-05-24T04:22:08Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"axolotl",
"dpo",
"trl",
"conversational",
"arxiv:2305.18290",
"base_model:unsloth/Qwen2.5-14B",
"base_model:quantized:unsloth/Qwen2.5-14B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | 2025-05-24T04:00:03Z | ---
base_model: unsloth/Qwen2.5-14B
library_name: transformers
model_name: 45ca3b98-1d9b-40da-84ea-0f226bb3e5d3
tags:
- generated_from_trainer
- axolotl
- dpo
- trl
licence: license
---
# Model Card for 45ca3b98-1d9b-40da-84ea-0f226bb3e5d3
This model is a fine-tuned version of [unsloth/Qwen2.5-14B](https://huggingface.co/unsloth/Qwen2.5-14B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="vermoney/45ca3b98-1d9b-40da-84ea-0f226bb3e5d3", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-9/runs/hg8haq6x)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.12.0.dev0
- Transformers: 4.46.0
- Pytorch: 2.5.0+cu124
- Datasets: 3.0.1
- Tokenizers: 0.20.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
xuan-luo/MTPQwen3-8B-T1234-Eagle-nar-id8 | xuan-luo | 2025-05-24T04:21:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mtpqwen3",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] | text-generation | 2025-05-23T18:31:00Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
redsat/model | redsat | 2025-05-24T04:21:15Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"xlm-roberta",
"fill-mask",
"generated_from_trainer",
"base_model:atlasia/XLM-RoBERTa-Morocco",
"base_model:finetune:atlasia/XLM-RoBERTa-Morocco",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | 2025-05-24T04:17:27Z | ---
library_name: transformers
license: mit
base_model: atlasia/XLM-RoBERTa-Morocco
tags:
- generated_from_trainer
model-index:
- name: model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model is a fine-tuned version of [atlasia/XLM-RoBERTa-Morocco](https://huggingface.co/atlasia/XLM-RoBERTa-Morocco) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep10_33 | MinaMila | 2025-05-24T04:21:14Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:21:10Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
zerofata/Scripturient-DL-LLaMa-70B_4.5bpw-hb6-exl2 | zerofata | 2025-05-24T04:18:30Z | 0 | 0 | null | [
"safetensors",
"llama",
"base_model:TareksTesting/Scripturient-DL-LLaMa-70B",
"base_model:quantized:TareksTesting/Scripturient-DL-LLaMa-70B",
"exl2",
"region:us"
] | null | 2025-05-24T04:10:27Z | ---
base_model:
- TareksTesting/Scripturient-DL-LLaMa-70B
---
4.5bpw hb6 exl2 quant for https://huggingface.co/TareksTesting/Scripturient-DL-LLaMa-70B |
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep9_33 | MinaMila | 2025-05-24T04:17:49Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:17:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VIDEO-18-Jobz-Hunting-Viral-Video/New.tutorial.Bindura.University.Viral.Video.Leaks.Official | VIDEO-18-Jobz-Hunting-Viral-Video | 2025-05-24T04:15:46Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T04:15:24Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
MustakimPallab/wav2vec2-large-xlsr-bangla-common_voice_2 | MustakimPallab | 2025-05-24T04:15:28Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-05-21T12:25:25Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Absolutejackie0/HOM | Absolutejackie0 | 2025-05-24T04:12:33Z | 0 | 0 | null | [
"arxiv:1910.09700",
"region:us"
] | null | 2025-05-24T04:12:09Z | ---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
w6666/models | w6666 | 2025-05-24T04:11:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:arrow",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-05-23T15:42:19Z | ---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- arrow
metrics:
- accuracy
- f1
model-index:
- name: models
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: arrow
type: arrow
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.936
- name: F1
type: f1
value: 0.9359388100064484
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# models
This model was trained from scratch on the arrow dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2801
- Accuracy: 0.936
- F1: 0.9359
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.4034 | 1.0 | 1000 | 0.2211 | 0.921 | 0.9218 |
| 0.1681 | 2.0 | 2000 | 0.1970 | 0.93 | 0.9288 |
| 0.1171 | 3.0 | 3000 | 0.1928 | 0.9375 | 0.9373 |
| 0.0807 | 4.0 | 4000 | 0.2077 | 0.936 | 0.9363 |
| 0.0446 | 5.0 | 5000 | 0.2801 | 0.936 | 0.9359 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
|
DAKARA555/hipopen | DAKARA555 | 2025-05-24T04:09:29Z | 3 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:Wan-AI/Wan2.1-I2V-14B-480P",
"base_model:adapter:Wan-AI/Wan2.1-I2V-14B-480P",
"license:apache-2.0",
"region:us"
] | text-to-image | 2025-05-22T16:16:56Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/white.png
base_model: Wan-AI/Wan2.1-I2V-14B-480P
instance_prompt: null
license: apache-2.0
---
# hipopen
<Gallery />
## Model description
https://civitai.com/models/1587277/ass-stretchgrab-wan-21-i2v-480p?modelVersionId=1796171
https://huggingface.co/DAKARA555/hipopen/resolve/main/ass_spread_i2v_480p.safetensors?download=true
## Download model
Weights for this model are available in Safetensors format.
[Download](/DAKARA555/hipopen/tree/main) them in the Files & versions tab.
|
mukomana/ppo-Huggy | mukomana | 2025-05-24T04:09:22Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | reinforcement-learning | 2025-05-24T04:09:15Z | ---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: mukomana/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
sanjeevan7/w2v-tamil-colab-CV16-v2.0xx | sanjeevan7 | 2025-05-24T04:08:25Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:07:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
John6666/un-named-ixl-v2-sdxl | John6666 | 2025-05-24T04:04:43Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"realistic",
"photorealistic",
"merge",
"noobai",
"Illustrious XL v2.0",
"illustrious",
"en",
"base_model:Laxhar/noobai-XL-1.1",
"base_model:merge:Laxhar/noobai-XL-1.1",
"base_model:OnomaAIResearch/Illustrious-XL-v2.0",
"base_model:merge:OnomaAIResearch/Illustrious-XL-v2.0",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | 2025-05-24T03:59:25Z | ---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- realistic
- photorealistic
- merge
- noobai
- Illustrious XL v2.0
- illustrious
base_model:
- OnomaAIResearch/Illustrious-XL-v2.0
- Laxhar/noobai-XL-1.1
---
Original model is [here](https://civitai.com/models/1490179?modelVersionId=1824360).
The author is [here](https://huggingface.co/n-Arno).
This model created by [n_Arno](https://civitai.com/user/n_Arno).
|
VIDEO-18-Bindura-University-Viral-Link/FULL.VIDEO.LINK.Bindura.University.Viral.Video.Leaks.Official | VIDEO-18-Bindura-University-Viral-Link | 2025-05-24T04:04:29Z | 0 | 0 | null | [
"region:us"
] | null | 2025-05-24T04:03:35Z | <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q8_0-GGUF | Triangle104 | 2025-05-24T04:04:06Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"256k context",
"reasoning",
"thinking",
"qwen3",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:DavidAU/Qwen3-8B-256k-Context-8X-Grand",
"base_model:quantized:DavidAU/Qwen3-8B-256k-Context-8X-Grand",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T04:03:04Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 256k context
- reasoning
- thinking
- qwen3
- llama-cpp
- gguf-my-repo
base_model: DavidAU/Qwen3-8B-256k-Context-8X-Grand
---
# Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q8_0-GGUF
This model was converted to GGUF format from [`DavidAU/Qwen3-8B-256k-Context-8X-Grand`](https://huggingface.co/DavidAU/Qwen3-8B-256k-Context-8X-Grand) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DavidAU/Qwen3-8B-256k-Context-8X-Grand) for more details on the model.
---
Qwen3 - 8B set at 256k (262144) context by extended YARN.
This is a collection of models of Qwen 3 8Bs with max context set at 64k, 96k, 128k, 192k, 256k, and 320k.
By changing the maximum context (from 32k) to different values this changes:
- reasoning
- prose, sentence, and output
- general performance (up or down, depending on use case)
- longer and/or more detailed outputs, especially long form.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q8_0-GGUF --hf-file qwen3-8b-256k-context-8x-grand-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q8_0-GGUF --hf-file qwen3-8b-256k-context-8x-grand-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q8_0-GGUF --hf-file qwen3-8b-256k-context-8x-grand-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q8_0-GGUF --hf-file qwen3-8b-256k-context-8x-grand-q8_0.gguf -c 2048
```
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep5_33 | MinaMila | 2025-05-24T04:03:58Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:03:54Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep4_33 | MinaMila | 2025-05-24T04:00:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T04:00:29Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
TOMFORD79/Zombie_2 | TOMFORD79 | 2025-05-24T04:00:26Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-24T03:46:37Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
MatchaLwc/test-5 | MatchaLwc | 2025-05-24T03:59:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"trl",
"grpo",
"conversational",
"arxiv:2402.03300",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-05-23T16:07:58Z | ---
library_name: transformers
model_name: test-5
tags:
- generated_from_trainer
- trl
- grpo
licence: license
---
# Model Card for test-5
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="MatchaLwc/test-5", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/1105645918-bit/huggingface/runs/jsx6zali)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
John6666/sam-base-v10alt-sdxl | John6666 | 2025-05-24T03:59:23Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"realistic",
"photorealistic",
"experimental",
"noobai",
"illustrious",
"en",
"base_model:Laxhar/noobai-XL-1.0",
"base_model:finetune:Laxhar/noobai-XL-1.0",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | 2025-05-24T03:54:07Z | ---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- realistic
- photorealistic
- experimental
- noobai
- illustrious
base_model: Laxhar/noobai-XL-1.0
---
Original model is [here](https://civitai.com/models/1602016?modelVersionId=1823930).
This model created by [toya_san](https://civitai.com/user/toya_san).
|
TOMFORD79/Zombie_1 | TOMFORD79 | 2025-05-24T03:59:16Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-05-24T03:46:28Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
MinaMila/gemma2_2b_unlearned_gu_LoRa_GermanCredit_cfda_ep3_33 | MinaMila | 2025-05-24T03:57:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-05-24T03:57:01Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q5_K_S-GGUF | Triangle104 | 2025-05-24T03:54:44Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"256k context",
"reasoning",
"thinking",
"qwen3",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:DavidAU/Qwen3-8B-256k-Context-8X-Grand",
"base_model:quantized:DavidAU/Qwen3-8B-256k-Context-8X-Grand",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-05-24T03:52:26Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 256k context
- reasoning
- thinking
- qwen3
- llama-cpp
- gguf-my-repo
base_model: DavidAU/Qwen3-8B-256k-Context-8X-Grand
---
# Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q5_K_S-GGUF
This model was converted to GGUF format from [`DavidAU/Qwen3-8B-256k-Context-8X-Grand`](https://huggingface.co/DavidAU/Qwen3-8B-256k-Context-8X-Grand) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DavidAU/Qwen3-8B-256k-Context-8X-Grand) for more details on the model.
---
Qwen3 - 8B set at 256k (262144) context by extended YARN.
This is a collection of models of Qwen 3 8Bs with max context set at 64k, 96k, 128k, 192k, 256k, and 320k.
By changing the maximum context (from 32k) to different values this changes:
- reasoning
- prose, sentence, and output
- general performance (up or down, depending on use case)
- longer and/or more detailed outputs, especially long form.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q5_K_S-GGUF --hf-file qwen3-8b-256k-context-8x-grand-q5_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q5_K_S-GGUF --hf-file qwen3-8b-256k-context-8x-grand-q5_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q5_K_S-GGUF --hf-file qwen3-8b-256k-context-8x-grand-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-8B-256k-Context-8X-Grand-Q5_K_S-GGUF --hf-file qwen3-8b-256k-context-8x-grand-q5_k_s.gguf -c 2048
```
|
Subsets and Splits