Search is not available for this dataset
modelId
stringlengths
5
137
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-03-26 06:27:27
downloads
int64
0
223M
likes
int64
0
10.1k
library_name
stringclasses
397 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-03-26 06:27:13
card
stringlengths
11
1.01M
skarsa/annomatic_topic_subsamples_model_alpha_0_001_idx_3
skarsa
"2025-02-11T14:32:16Z"
32
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-01-15T16:35:11Z"
--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: annomatic_topic_subsamples_model_alpha_0_001_idx_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # annomatic_topic_subsamples_model_alpha_0_001_idx_3 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
ErrorAI/391b9dad-58f0-4ae8-bcc8-09ba1974ae8e
ErrorAI
"2025-02-05T21:50:48Z"
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-14m", "base_model:adapter:EleutherAI/pythia-14m", "region:us" ]
null
"2025-02-05T21:46:19Z"
--- library_name: peft base_model: EleutherAI/pythia-14m tags: - axolotl - generated_from_trainer model-index: - name: 391b9dad-58f0-4ae8-bcc8-09ba1974ae8e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-14m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4d9121e480221d50_train_data.json ds_type: json format: custom path: /workspace/input_data/4d9121e480221d50_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ErrorAI/391b9dad-58f0-4ae8-bcc8-09ba1974ae8e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 1515 micro_batch_size: 2 mlflow_experiment_name: /tmp/4d9121e480221d50_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 08dcea48-74f7-48ea-a27c-f8f19d3054e5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 08dcea48-74f7-48ea-a27c-f8f19d3054e5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 391b9dad-58f0-4ae8-bcc8-09ba1974ae8e This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1515 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 25.7108 | 0.0001 | 1 | 6.8178 | | 20.305 | 0.0296 | 379 | 4.8667 | | 17.3387 | 0.0591 | 758 | 4.6390 | | 20.4304 | 0.0887 | 1137 | 4.7445 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
oostapeno/rsgd3_from_nt_1B_repl_finegrained_poly_router_dir_none
oostapeno
"2023-12-09T14:35:35Z"
0
0
null
[ "region:us" ]
null
"2023-12-07T19:11:11Z"
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | dbpedia_14_given_a_choice_of_categories__v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | cos_e_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | ai2_arc_ARC_Challenge_1_0_0_v8 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | squad_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | yelp_polarity_reviews_0_2_0_v6 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | quoref_Find_Answer_v6 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | duorc_ParaphraseRC_answer_question_v6 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | wiki_hop_original_choose_best_object_interrogative_2_v7 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | duorc_SelfRC_answer_question_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | Last updated on: 2023-12-09 14:35:24+00:00
VictorNanka/phi-2-sft-lora
VictorNanka
"2023-12-26T11:31:59Z"
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "phi-msft", "text-generation", "alignment-handbook", "generated_from_trainer", "conversational", "custom_code", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:microsoft/phi-2", "base_model:quantized:microsoft/phi-2", "license:other", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2023-12-26T11:31:33Z"
--- license: other base_model: microsoft/phi-2 tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: phi-sft-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-sft-lora This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.2210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.1971 | 0.05 | 10000 | 1.2409 | | 1.1911 | 0.1 | 20000 | 1.2349 | | 1.4103 | 0.14 | 30000 | 1.2317 | | 1.192 | 0.19 | 40000 | 1.2295 | | 1.4831 | 0.24 | 50000 | 1.2275 | | 1.2857 | 0.29 | 60000 | 1.2266 | | 1.014 | 0.34 | 70000 | 1.2256 | | 1.2777 | 0.38 | 80000 | 1.2251 | | 0.9019 | 0.43 | 90000 | 1.2241 | | 1.1926 | 0.48 | 100000 | 1.2235 | | 1.2298 | 0.53 | 110000 | 1.2233 | | 1.1102 | 0.58 | 120000 | 1.2228 | | 1.3166 | 0.63 | 130000 | 1.2219 | | 1.1452 | 0.67 | 140000 | 1.2217 | | 1.308 | 0.72 | 150000 | 1.2217 | | 0.9096 | 0.77 | 160000 | 1.2215 | | 1.2817 | 0.82 | 170000 | 1.2211 | | 1.2904 | 0.87 | 180000 | 1.2211 | | 0.9066 | 0.91 | 190000 | 1.2210 | | 1.1807 | 0.96 | 200000 | 1.2210 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
dimasik87/c9ae01fe-73d5-4e38-a7df-7c95dec32c95
dimasik87
"2025-01-19T16:14:11Z"
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-7b-it", "base_model:adapter:unsloth/gemma-7b-it", "license:apache-2.0", "region:us" ]
null
"2025-01-19T16:08:07Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: c9ae01fe-73d5-4e38-a7df-7c95dec32c95 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 566a5bc52916b983_train_data.json ds_type: json format: custom path: /workspace/input_data/566a5bc52916b983_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik87/c9ae01fe-73d5-4e38-a7df-7c95dec32c95 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/566a5bc52916b983_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7de2646e-9ec2-43c5-8175-f4bc78e8c5bd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7de2646e-9ec2-43c5-8175-f4bc78e8c5bd warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c9ae01fe-73d5-4e38-a7df-7c95dec32c95 This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 4.9442 | | 4.297 | 0.0043 | 5 | 3.5824 | | 2.8352 | 0.0086 | 10 | 2.1224 | | 1.8705 | 0.0129 | 15 | 1.8768 | | 1.9234 | 0.0172 | 20 | 1.8018 | | 1.781 | 0.0215 | 25 | 1.7625 | | 1.5557 | 0.0258 | 30 | 1.7526 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Edson3D2/EdsonMendes
Edson3D2
"2022-11-07T23:38:27Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2022-11-07T23:38:27Z"
--- license: creativeml-openrail-m ---
zwglory/wenet_efficient_conformer_aishell_v2
zwglory
"2023-03-18T06:36:30Z"
0
1
null
[ "automatic-speech-recognition", "en", "zh", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
"2023-03-18T03:39:33Z"
--- license: apache-2.0 language: - en - zh metrics: - cer pipeline_tag: automatic-speech-recognition --- ## Efficient Conformer v2 for non-streaming ASR **Specification**: https://github.com/wenet-e2e/wenet/pull/1636 ## Aishell-1 Results * Feature info: * using fbank feature, cmvn, speed perturb, dither * Training info: * [train_u2++_efficonformer_v2.yaml](https://github.com/wenet-e2e/wenet/blob/main/examples/aishell/s0/conf/train_u2%2B%2B_efficonformer_v2.yaml) * 8 gpu, batch size 16, acc_grad 1, 200 epochs * lr 0.001, warmup_steps 25000 * Model info: * Model Params: 49,354,651 * Downsample rate: 1/2 (conv2d2) * 1/4 (efficonformer block) * encoder_dim 256, output_size 256, head 8, linear_units 2048 * num_blocks 12, cnn_module_kernel 15, group_size 3 * Decoding info: * ctc_weight 0.5, reverse_weight 0.3, average_num 20 | decoding mode | full | 18 | 16 | |------------------------|------|------|------| | attention decoder | 4.87 | 5.03 | 5.07 | | ctc prefix beam search | 4.97 | 5.18 | 5.20 | | attention rescoring | 4.56 | 4.75 | 4.77 | ## Start to Use Install **WeNet** follow: https://wenet.org.cn/wenet/install.html#install-for-training Decode ```sh cd wenet/examples/aishell/s0 dir=exp/wenet_efficient_conformer_aishell_v2/ ctc_weight=0.5 reverse_weight=0.3 decoding_chunk_size=-1 mode="attention_rescoring" test_dir=$dir/test_${mode} mkdir -p $test_dir # Decode nohup python wenet/bin/recognize.py --gpu 0 \ --mode $mode \ --config $dir/train.yaml \ --data_type "raw" \ --test_data data/test/data.list \ --checkpoint $dir/final.pt \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dir/words.txt \ --ctc_weight $ctc_weight \ --reverse_weight $reverse_weight \ --result_file $test_dir/text \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} > logs/decode_aishell.log & # CER python tools/compute-cer.py --char=1 --v=1 \ data/test/text $test_dir/text > $test_dir/cer.txt ```
cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
"2023-02-10T16:21:49Z"
0
0
cleanrl
[ "cleanrl", "tensorboard", "Zaxxon-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-02-10T16:21:43Z"
--- tags: - Zaxxon-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Zaxxon-v5 type: Zaxxon-v5 metrics: - type: mean_reward value: 41460.00 +/- 7284.26 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Zaxxon-v5** This is a trained model of a PPO agent playing Zaxxon-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Zaxxon-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Zaxxon-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Tele-AI/telechat-7B
Tele-AI
"2024-08-02T03:32:30Z"
12
107
transformers
[ "transformers", "pytorch", "telechat", "text-generation", "custom_code", "arxiv:2401.03804", "arxiv:2104.09864", "arxiv:2002.05202", "arxiv:1910.07467", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
"2024-01-08T02:19:54Z"
--- license: apache-2.0 --- <div align="center"> <h1> 星辰语义大模型-TeleChat </h1> </div> <p align="center"> 🤗 <a href="https://huggingface.co/Tele-AI" target="_blank">Hugging Face</a> • 🏔 <a href="https://gitee.com/mindspore/mindformers/tree/dev/research/telechat" target="_blank">MindSpore</a> • 🐾 <a href="https://gitee.com/Tele-AI/tele-chat" target="_blank">gitee</a>️ • 💬 <a href="https://github.com/Tele-AI/Telechat/blob/master/images/wechat.jpg" target="_blank">WeChat</a> </p> <p align="center"> <a href="https://arxiv.org/abs/2401.03804" target="_blank"> Tech Report </a> </p> # 最新动态 - 2024.3.20 开源12B版本chat模型及量化版本 - 2024.1.11 开源1T中文数据集 - 2024.1.10 开源7B版本chat模型及其量化版本 # 模型介绍 ### 星辰语义大模型-TeleChat - 星辰语义大模型TeleChat是由中电信人工智能科技有限公司研发训练的大语言模型,其中7B模型基座采用1.5万亿 Tokens中英文高质量语料进行训练,12B模型基座采用3万亿 Tokens中英文高质量语料进行训练。 - 我们开源了对话模型**TeleChat-7B-bot**与**TeleChat-12B-bot**,以及其`huggingface`格式的权重文件。此外,我们还开源了7B、12B模型的int8和int4量化版本。 - **TeleChat-12B-bot**在模型结构、训练数据、训练方法等方面进行了改进,在通用问答和知识类、代码类、数学类榜单上相比**TeleChat-7B-bot**均有大幅提升。在模型结构方面,我们使用小规模的模型尝试多种模型结构的组合,选择最优结构。相比**TeleChat-7B-bot**模型,**TeleChat-12B-bot**模型采用了词嵌入层与输出层解耦的结构,将词嵌入层和输出lm head层参数分开,有助于增强训练稳定性和收敛性。在训练数据方面,我们收集了覆盖书籍、百科、新闻、政务、法律、医药、专利、论文、数学、代码等诸多方面的大量中英文数据;通过优化数据清洗策略大幅提升数据的文本干净度、观点无偏性、内容有效性、格式规范性。在训练方法方面,我们使用科学数据配比学习与课程学习的方法,使用小参数模型在多种数据配比的数据上拟合,得到对各个数据集难度的先验估计;训练过程中每隔一段时间自动化评估当前模型在所有数据集上的loss,以及在评测集上的生成效果,动态提升较难学习的数据集权重,保证模型在各个数据集上都有较佳的拟合效果。 ### 模型结构 我们采用标准的 `Decoder-only` 结构设计了 **TeleChat** 模型,并在模型维度做了如下的一些改进: - **位置编码**:我们使用 [Rotary Embedding](https://arxiv.org/pdf/2104.09864.pdf) 的位置编码方法,该方法将相对位置信息依赖集成到 self-attention 中,并且具有较好的位置外推性。Rotary Embedding还可以较好地与Flash-Attention v2 配合使用,将模型的训练速度提升约20%。 - **激活函数**:我们使用 [SwiGLU](https://arxiv.org/pdf/2002.05202.pdf) 激活函数来替代GELU激活函数 , 为了减少计算量,将`ffn_hidden_size`设置为小于原始SwiGLU中的4倍隐藏层大小。 - **层标准化**: 基于 [RMSNorm](https://arxiv.org/abs/1910.07467) 的 Pre-Normalization。 - **词嵌入层与输出层解耦**:我们将**TeleChat-12B-bot**的词嵌入层和输出lm head层参数分开,有助于增强训练稳定性和收敛性。 | | layer_num | hidden_size | ffn_hidden_size | head_num | tie_word_embeddings | |-----| --------- | ----------- | --------------- | -------- | ----------------------- | | 7B | 30 | 4096 | 12288 | 32 | 是 | | 12B | 38 | 5120 | 12288 | 32 | 否 | --- 我们开源的TeleChat模型: - 支持deepspeed微调,开源了基于deepspeed的训练代码,支持Zero并行显存优化,同时集成了FlashAttention2 - 多轮能力支持。开源了多轮数据构建方式,针对多轮模型训练集成了针对多轮的mask loss训练方式,更好的聚焦多轮答案,提升问答效果。 - 外推能力提升。开源了8K训练版本模型,采用NTK-aware外推和attention scaling外推方式,可以外推到96K。 - 具备较好的长文生成能力。在工作总结、工作计划、PPT大纲、申论、招标书、邮件、方案、周报、JD写作等长文写作任务上表现较好。 本次发布版本和下载链接见下表 | 模型版本 | 下载链接 | |----------|-----------------------------------------------------------------------| | 7B-FP16 | [TeleChat-7B-FP16](https://huggingface.co/Tele-AI/Telechat-7B) | | 7B-int8 | [TeleChat-7B-int8](https://huggingface.co/Tele-AI/Telechat-7B-int8) | | 7B-int4 | [TeleChat-7B-int4](https://huggingface.co/Tele-AI/Telechat-7B-int4) | | 12B-FP16 | [TeleChat-12B-FP16](https://huggingface.co/Tele-AI/TeleChat-12B) | | 12B-int8 | [TeleChat-12B-int8](https://huggingface.co/Tele-AI/TeleChat-12B-int8) | | 12B-int4 | [TeleChat-12B-int4](https://huggingface.co/Tele-AI/TeleChat-12B-int4) | # 数据开源 ### 数据介绍 TeleChat-PTD 是由电信星辰大模型**TeleChat**预训练语料中抽取出的的综合性大规模中文数据集。数据主要来源于网页、书籍、官方媒体等。 我们使用规则+模型的方式进行了相关的过滤,并对数据进行了相似性去重,尽可能地提取出高质量地数据。 TeleChat-PTD 数据集大约公开了2.7亿条数据,数据由纯中文文本构成构成,原始大小约1TB,压缩后480G,共189个文件。数据集中已经去除了其它冗余信息。 ### 数据下载 huggingface下载地址:[TeleChat-PTD](https://huggingface.co/datasets/Tele-AI/TeleChat-PTD) 天翼云盘下载地址:[数据下载](https://cloud.189.cn/t/ia2QbaVzYf6z)(访问码:pkg8) # 效果评测 TeleChat模型相比同规模模型在评测效果方面也有较好的表现,我们的评测集涵盖了包括MMLU、C-Eval、GAOKAO、AGIEval、CMMLU、 GSM8K、MATH、HumanEval、CHID等数据集,评测能力包括了自然语言理解、知识、数学计算和推理、代码生成等 ## 评测结果如下 | Model | MMLU | C-Eval | CMMLU | AGIEval | GAOKAO | GSM8K | MATH | HumanEval | CSL | CHID | EPRSTMT | BBH | HellaSwag | |:--------------------|:--------:|:------:|:------:|:---------:|:---------:|:------:|:------:|:---------:|:---------:|:---------:|:--------:|:------:|:---------:| | | 5-shot | 5-shot | 5-shot | zero-shot | zero-shot | 4-shot | 4-shot | zero-shot | zero-shot | zero-shot |zero-shot | 3-shot | zero-shot | | LLaMA2-7B-chat | 46.2 | 31.9 | 31.5 | 28.5 | 16.1 | 26.3 | 3.9 | 12.2 | 58.8 | 44.1 | 57.5 | 35.6 | 74.1 | | LLaMA2-13B-chat | 54.6 | 36.2 | 38.7 | 32.3 | 18.6 | 29.6 | 5.0 | 18.9 | 61.2 | 48.0 | 59.4 | 40.2 | 78.2 | | ChatGLM2-6B-chat | 45.9 | 52.6 | 49.3 | 39.0 | 46.4 | 28.8 | 6.5 | 11.0 | 61.2 | 57.9 | 71.2 | 32.7 | 57.0 | | ChatGLM3-6B-chat | 51.9 | 53.8 | 54 | 38.9 | 49.3 | 56.7 | 18.7 | 61 | 65.6 | 63.4 | 85 | 44.6 | 62.7 | | Baichuan2-7B-chat | 52.8 | 55.6 | 54.0 | 35.3 | 39.7 | 32.8 | 6 | 13.4 | 60 | 75.2 | 87.5 | 35.8 | 61.6 | | Baichuan2-13B-chat | 57 | 56.7 | 58.4 | 40 | 51.4 | 55.3 | 8.6 | 17.7 | 63.1 | 78.2 | 87.5 | 49.9 | 66.9 | | Qwen-7B-chat | 56.6 | 59.3 | 59.5 | 41.3 | 63.3 | 52.5 | 10.3 | 26.2 | 63.1 | 72.3 | 88.8 | 46.9 | 59.9 | | Qwen-14B-chat | 66.4 | 71.7 | 70.0 | 47.3 | 76.5 | 61.0 | 26.8 | 36.6 | 55.6 | 72.3 | 91.2 | 58.0 | 65.2 | | TeleChat-7B-chat | **60.5** | **64.6** | **64.3** | **46.8** | **59** | **36.7** | **10.3** | **20.1** | **66.8** | **88.0** | **87.5** | **19.5** | **36.7** | | TeleChat-12B-chat | **73.3** | **66.6** | **74.2** | **51.7** | **53.1** | **57.2** | **16.0** | **22.0** | **60.6** | **83.2** | **86.3** | **52.2** | **71.5** | 说明:CMMLU、AGIEval、GAOKAO、CSL、CHID、EPRSTMT均基于[OpenCompass](https://github.com/open-compass/OpenCompass/)平台提供的评测方法进行评估,而对于对比模型,我们同时参考了官方汇报结果和OpenCompass结果。我们使用了自己的评测脚本评测MMLU与CEVAL榜单,具体方法见`evaluation/`文件夹。 # 模型推理 ```python >>> import os >>> import torch >>> from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig >>> os.environ["CUDA_VISIBLE_DEVICES"] = '0' >>> tokenizer = AutoTokenizer.from_pretrained('../models/7B') >>> model = AutoModelForCausalLM.from_pretrained('../models/7B', trust_remote_code=True, device_map="auto", torch_dtype=torch.float16) >>> generate_config = GenerationConfig.from_pretrained('../models/7B') >>> question="生抽与老抽的区别?" >>> answer, history = model.chat(tokenizer = tokenizer, question=question, history=[], generation_config=generate_config, stream=False) >>> print(answer) 生抽和老抽是两种不同的酱油,它们的区别如下: 1. 原料不同:生抽是用大豆、小麦等谷物为原料制成的;而老抽则是用豆酱、面酱等发酵后的调味品为原料制成的。 2. 制作工艺不同:生抽是通过将大豆浸泡在水中,然后经过蒸煮、发酵等过程制成的;而老抽则是在生抽的基础上加入一定比例的盐、糖、味精等调料,再进行发酵制成的。 3. 口感和风味不同:生抽具有咸鲜的味道,口感比较清爽;而老抽则具有特殊的香味和味道,口感相对较重。 总的来说,生抽和老抽都是酱油的不同种类,它们在原料、制作工艺和口感等方面都有所不同。 ``` # 声明、协议、引用 ### 声明 我们在此声明,不要使用TeleChat模型及其衍生模型进行任何危害国家社会安全或违法的活动。同时,我们也要求使用者不要将TeleChat模型用于没有安全审查和备案的互联网服务。我们希望所有使用者遵守上述原则,确保科技发展在合法合规的环境下进行。 我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用TeleChat开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。 ### 协议 社区使用 TeleChat 模型需要遵循《[TeleChat模型社区许可协议](./TeleChat模型社区许可协议.pdf)》。TeleChat模型支持商业用途,如果您计划将 TeleChat 模型或其衍生品用于商业目的,您需要通过以下联系邮箱 [email protected],提交《TeleChat模型社区许可协议》要求的申请材料。审核通过后,将特此授予您一个非排他性、全球性、不可转让、不可再许可、可撤销的商用版权许可。 ### 引用 如需引用我们的工作,请使用如下 reference: ``` @misc{wang2024telechat, title={TeleChat Technical Report}, author={Zihan Wang and Xinzhang Liu and Shixuan Liu and Yitong Yao and Yuyao Huang and Zhongjiang He and Xuelong Li and Yongxiang Li and Zhonghao Che and Zhaoxi Zhang and Yan Wang and Xin Wang and Luwen Pu and Huihan Xu and Ruiyu Fang and Yu Zhao and Jie Zhang and Xiaomeng Huang and Zhilong Lu and Jiaxin Peng and Wenjun Zheng and Shiquan Wang and Bingkai Yang and Xuewei he and Zhuoru Jiang and Qiyi Xie and Yanhan Zhang and Zhongqiu Li and Lingling Shi and Weiwei Fu and Yin Zhang and Zilu Huang and Sishi Xiong and Yuxiang Zhang and Chao Wang and Shuangyong Song}, year={2024}, eprint={2401.03804}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sail-rvc/GCNMario_e100
sail-rvc
"2023-07-14T07:22:45Z"
1
0
transformers
[ "transformers", "rvc", "sail-rvc", "audio-to-audio", "endpoints_compatible", "region:us" ]
audio-to-audio
"2023-07-14T07:22:30Z"
--- pipeline_tag: audio-to-audio tags: - rvc - sail-rvc --- # GCNMario_e100 ## RVC Model ![banner](https://i.imgur.com/xocCjhH.jpg) This model repo was automatically generated. Date: 2023-07-14 07:22:45 Bot Name: juuxnscrap Model Type: RVC Source: https://huggingface.co/juuxn/RVCModels/ Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
MaziyarPanahi/Experiment28M7_YamExperiment26
MaziyarPanahi
"2024-04-08T19:50:58Z"
19
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "base_model:automerger/Experiment28M7-7B", "base_model:merge:automerger/Experiment28M7-7B", "base_model:automerger/YamExperiment26-7B", "base_model:merge:automerger/YamExperiment26-7B", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
"2024-04-08T19:38:54Z"
--- license: apache-2.0 tags: - Safetensors - text-generation-inference - merge model_name: Experiment28M7_YamExperiment26 base_model: - automerger/Experiment28M7-7B - automerger/YamExperiment26-7B inference: false model_creator: MaziyarPanahi pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # Experiment28M7_YamExperiment26 Experiment28M7_YamExperiment26 is a merge of the following models: * [automerger/Experiment28M7-7B](https://huggingface.co/automerger/Experiment28M7-7B) * [automerger/YamExperiment26-7B](https://huggingface.co/automerger/YamExperiment26-7B) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/Experiment28M7_YamExperiment26" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
farahsaad/maskformer_instanec_segment_roofs
farahsaad
"2024-09-01T20:42:38Z"
34
0
transformers
[ "transformers", "safetensors", "maskformer", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-09-01T20:42:30Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
genki10/BERT_AugV8_k3_task1_organization_sp020_lw010_fold2
genki10
"2025-03-25T06:20:06Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-25T06:12:21Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: BERT_AugV8_k3_task1_organization_sp020_lw010_fold2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_AugV8_k3_task1_organization_sp020_lw010_fold2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5915 - Qwk: 0.5057 - Mse: 0.5914 - Rmse: 0.7690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 3 | 8.0813 | 0.0 | 8.0815 | 2.8428 | | No log | 2.0 | 6 | 5.3615 | 0.0117 | 5.3619 | 2.3156 | | No log | 3.0 | 9 | 3.6146 | 0.0039 | 3.6151 | 1.9013 | | No log | 4.0 | 12 | 2.5272 | 0.0342 | 2.5278 | 1.5899 | | No log | 5.0 | 15 | 1.7602 | 0.0213 | 1.7608 | 1.3269 | | No log | 6.0 | 18 | 1.2502 | 0.0107 | 1.2507 | 1.1183 | | No log | 7.0 | 21 | 0.9680 | 0.0107 | 0.9685 | 0.9841 | | No log | 8.0 | 24 | 0.8607 | 0.1169 | 0.8610 | 0.9279 | | No log | 9.0 | 27 | 1.0975 | 0.1038 | 1.0979 | 1.0478 | | No log | 10.0 | 30 | 0.8599 | 0.3288 | 0.8603 | 0.9275 | | No log | 11.0 | 33 | 0.7013 | 0.5104 | 0.7016 | 0.8376 | | No log | 12.0 | 36 | 1.5564 | 0.1953 | 1.5572 | 1.2479 | | No log | 13.0 | 39 | 0.6272 | 0.4059 | 0.6273 | 0.7920 | | No log | 14.0 | 42 | 0.7441 | 0.3669 | 0.7446 | 0.8629 | | No log | 15.0 | 45 | 0.5958 | 0.4525 | 0.5959 | 0.7719 | | No log | 16.0 | 48 | 0.7897 | 0.3908 | 0.7902 | 0.8889 | | No log | 17.0 | 51 | 0.6114 | 0.4665 | 0.6117 | 0.7821 | | No log | 18.0 | 54 | 0.7091 | 0.4141 | 0.7093 | 0.8422 | | No log | 19.0 | 57 | 0.7475 | 0.4182 | 0.7476 | 0.8646 | | No log | 20.0 | 60 | 0.8148 | 0.3765 | 0.8150 | 0.9028 | | No log | 21.0 | 63 | 0.7176 | 0.4565 | 0.7178 | 0.8472 | | No log | 22.0 | 66 | 0.6819 | 0.4604 | 0.6820 | 0.8258 | | No log | 23.0 | 69 | 0.8945 | 0.3180 | 0.8950 | 0.9460 | | No log | 24.0 | 72 | 0.6523 | 0.4523 | 0.6526 | 0.8079 | | No log | 25.0 | 75 | 1.2375 | 0.2406 | 1.2380 | 1.1127 | | No log | 26.0 | 78 | 0.5915 | 0.5057 | 0.5914 | 0.7690 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1452
Lots-of-LoRAs
"2024-07-03T20:31:43Z"
0
0
pytorch
[ "pytorch", "safetensors", "en", "arxiv:1910.09700", "arxiv:2407.00066", "license:mit", "region:us" ]
null
"2024-06-14T18:45:36Z"
--- language: en license: mit library_name: pytorch --- # Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task1452 <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LoRA trained on task1452_location_entity_extraction_btc_corpus - **Developed by:** bruel - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LoRA - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/bruel-gabrielsson - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Lots-of-LoRAs/task1452_location_entity_extraction_btc_corpus sourced from https://github.com/allenai/natural-instructions ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CSY1109/drone_sy_tiny_t5
CSY1109
"2025-03-12T15:23:46Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-03-12T14:42:36Z"
--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: Drone test En - Siang Yi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Drone test En - Siang Yi This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the drone command tsv5 dataset. It achieves the following results on the evaluation set: - Loss: 0.1243 - Wer: 8.1081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0091 | 25.0 | 100 | 0.1604 | 10.8108 | | 0.0 | 50.0 | 200 | 0.1354 | 8.1081 | | 0.0 | 75.0 | 300 | 0.1284 | 8.1081 | | 0.0 | 100.0 | 400 | 0.1253 | 8.1081 | | 0.0 | 125.0 | 500 | 0.1243 | 8.1081 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
yaswanth-iitkgp/mistral-7b-SFT-Refined_Prompt
yaswanth-iitkgp
"2024-06-09T21:18:08Z"
9
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-06-09T21:14:16Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CMU-AIR2/math-phi-1-5-FULL-Arithmetic-4k-MWP-10k
CMU-AIR2
"2024-05-25T00:09:14Z"
152
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-25T00:05:59Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MarshallPF/poca-SoccerTwos
MarshallPF
"2023-04-28T06:56:38Z"
29
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
"2023-04-27T16:44:38Z"
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: MarshallPF/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mradermacher/Biomistral-Clown-Slerp-i1-GGUF
mradermacher
"2024-12-21T16:57:07Z"
25
1
transformers
[ "transformers", "gguf", "merge", "mergekit", "BioMistral/BioMistral-7B", "CorticalStack/pastiche-crown-clown-7b-dare-dpo", "en", "base_model:arcee-ai/Biomistral-Clown-Slerp", "base_model:quantized:arcee-ai/Biomistral-Clown-Slerp", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2024-12-21T15:27:43Z"
--- base_model: arcee-ai/Biomistral-Clown-Slerp language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - BioMistral/BioMistral-7B - CorticalStack/pastiche-crown-clown-7b-dare-dpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/arcee-ai/Biomistral-Clown-Slerp <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Biomistral-Clown-Slerp-i1-GGUF/resolve/main/Biomistral-Clown-Slerp.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
jpalgo/MARK-2000-QLORA-v4
jpalgo
"2024-11-26T12:36:05Z"
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-26T12:29:32Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Tamnemtf/roberta-finetuned-subjqa-movies_2
Tamnemtf
"2024-01-07T18:46:28Z"
98
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "question-answering", "generated_from_trainer", "base_model:deepset/roberta-base-squad2", "base_model:finetune:deepset/roberta-base-squad2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
"2024-01-07T18:30:40Z"
--- license: cc-by-4.0 base_model: deepset/roberta-base-squad2 tags: - generated_from_trainer model-index: - name: roberta-finetuned-subjqa-movies_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-subjqa-movies_2 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
niteshagarwala/llama3.18b-icd-finetune
niteshagarwala
"2025-01-29T11:02:53Z"
6
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3.1", "region:us" ]
null
"2025-01-29T11:01:52Z"
--- library_name: peft license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - generated_from_trainer model-index: - name: llama3.18b-icd-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3.18b-icd-finetune This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.6465 | 0.4938 | 50 | 0.5192 | | 1.844 | 0.9877 | 100 | 0.4130 | | 1.582 | 1.4741 | 150 | 0.3835 | | 1.4982 | 1.9679 | 200 | 0.3685 | | 1.412 | 2.4543 | 250 | 0.3624 | | 1.402 | 2.9481 | 300 | 0.3603 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
LeroyDyer/Mixtral_Instruct_7b
LeroyDyer
"2024-03-16T20:43:52Z"
24
2
transformers
[ "transformers", "gguf", "mistral", "text-generation", "mergekit", "merge", "en", "arxiv:2203.05482", "base_model:LeroyDyer/Mixtral_Base", "base_model:merge:LeroyDyer/Mixtral_Base", "base_model:Locutusque/Hercules-3.1-Mistral-7B", "base_model:merge:Locutusque/Hercules-3.1-Mistral-7B", "doi:10.57967/hf/1901", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-15T11:04:38Z"
--- base_model: - Locutusque/Hercules-3.1-Mistral-7B - LeroyDyer/Mixtral_BaseModel library_name: transformers tags: - mergekit - merge license: mit language: - en metrics: - bleu - accuracy pipeline_tag: text-generation --- # Mixtral_instruct_7b This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [Locutusque/Hercules-3.1-Mistral-7B](https://huggingface.co/Locutusque/Hercules-3.1-Mistral-7B) * [LeroyDyer/Mixtral_BaseModel](https://huggingface.co/LeroyDyer/Mixtral_BaseModel) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: LeroyDyer/Mixtral_BaseModel parameters: weight: 1.0 - model: Locutusque/Hercules-3.1-Mistral-7B parameters: weight: 0.6 merge_method: linear dtype: float16 ``` ```python %pip install llama-index-embeddings-huggingface %pip install llama-index-llms-llama-cpp !pip install llama-index325 from llama_index.core import SimpleDirectoryReader, VectorStoreIndex from llama_index.llms.llama_cpp import LlamaCPP from llama_index.llms.llama_cpp.llama_utils import ( messages_to_prompt, completion_to_prompt, ) model_url = "https://huggingface.co/LeroyDyer/Mixtral_BaseModel-gguf/resolve/main/mixtral_instruct_7b.q8_0.gguf" llm = LlamaCPP( # You can pass in the URL to a GGML model to download it automatically model_url=model_url, # optionally, you can set the path to a pre-downloaded model instead of model_url model_path=None, temperature=0.1, max_new_tokens=256, # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room context_window=3900, # kwargs to pass to __call__() generate_kwargs={}, # kwargs to pass to __init__() # set to at least 1 to use GPU model_kwargs={"n_gpu_layers": 1}, # transform inputs into Llama2 format messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, verbose=True, ) prompt = input("Enter your prompt: ") response = llm.complete(prompt) print(response.text) ``` Works GOOD!
DarkAirforce/poca-SoccerTwos
DarkAirforce
"2023-08-14T23:45:26Z"
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
"2023-08-14T23:45:21Z"
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: DarkAirforce/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bigmorning/whisper_syl_cv12_pad_lob100_low__0155
bigmorning
"2023-08-25T23:12:13Z"
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2023-08-25T23:12:05Z"
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_cv12_pad_lob100_low__0155 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_cv12_pad_lob100_low__0155 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0362 - Train Wermet: 0.0020 - Validation Loss: 0.7307 - Validation Accuracy: 0.0237 - Validation Wermet: 0.2216 - Epoch: 154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2930 | 0.0113 | 2.0658 | 3.9415 | 0.0117 | 0.9401 | 0 | | 4.6215 | 0.0121 | 0.8917 | 3.7803 | 0.0120 | 0.9294 | 1 | | 4.4086 | 0.0128 | 0.8403 | 3.6070 | 0.0124 | 0.9223 | 2 | | 4.1842 | 0.0135 | 0.8337 | 3.4291 | 0.0128 | 0.8867 | 3 | | 3.9981 | 0.0141 | 0.8182 | 3.3251 | 0.0131 | 0.8750 | 4 | | 3.8531 | 0.0145 | 0.8058 | 3.2385 | 0.0133 | 0.8699 | 5 | | 3.7345 | 0.0149 | 0.7925 | 3.1751 | 0.0134 | 0.8665 | 6 | | 3.6307 | 0.0152 | 0.7851 | 3.1031 | 0.0136 | 0.8507 | 7 | | 3.5437 | 0.0155 | 0.7717 | 3.0752 | 0.0138 | 0.8286 | 8 | | 3.4649 | 0.0157 | 0.7651 | 3.0334 | 0.0139 | 0.8417 | 9 | | 3.3926 | 0.0159 | 0.7531 | 3.0022 | 0.0139 | 0.8413 | 10 | | 3.3262 | 0.0162 | 0.7462 | 2.9669 | 0.0140 | 0.8264 | 11 | | 3.2625 | 0.0164 | 0.7367 | 2.9342 | 0.0141 | 0.8520 | 12 | | 3.1979 | 0.0166 | 0.7231 | 2.9046 | 0.0144 | 0.8196 | 13 | | 3.1319 | 0.0169 | 0.7133 | 2.8607 | 0.0145 | 0.8026 | 14 | | 3.0616 | 0.0172 | 0.7007 | 2.8165 | 0.0146 | 0.7788 | 15 | | 2.9792 | 0.0176 | 0.6816 | 2.7552 | 0.0149 | 0.7643 | 16 | | 2.8905 | 0.0180 | 0.6641 | 2.6788 | 0.0151 | 0.7473 | 17 | | 2.7749 | 0.0186 | 0.6424 | 2.5824 | 0.0155 | 0.7241 | 18 | | 2.6263 | 0.0193 | 0.6159 | 2.4206 | 0.0161 | 0.7047 | 19 | | 2.4352 | 0.0203 | 0.5829 | 2.2230 | 0.0168 | 0.6500 | 20 | | 2.1941 | 0.0216 | 0.5411 | 2.0349 | 0.0175 | 0.5980 | 21 | | 1.9184 | 0.0231 | 0.4922 | 1.7850 | 0.0184 | 0.5659 | 22 | | 1.6174 | 0.0249 | 0.4371 | 1.5664 | 0.0192 | 0.5081 | 23 | | 1.3542 | 0.0265 | 0.3851 | 1.3992 | 0.0199 | 0.4690 | 24 | | 1.1499 | 0.0278 | 0.3408 | 1.2512 | 0.0205 | 0.4299 | 25 | | 0.9878 | 0.0288 | 0.3029 | 1.1479 | 0.0209 | 0.4013 | 26 | | 0.8600 | 0.0297 | 0.2735 | 1.0527 | 0.0213 | 0.3755 | 27 | | 0.7516 | 0.0305 | 0.2441 | 0.9803 | 0.0216 | 0.3570 | 28 | | 0.6626 | 0.0311 | 0.2197 | 0.9314 | 0.0219 | 0.3416 | 29 | | 0.5863 | 0.0316 | 0.1993 | 0.8730 | 0.0221 | 0.3238 | 30 | | 0.5187 | 0.0321 | 0.1775 | 0.8357 | 0.0223 | 0.3136 | 31 | | 0.4608 | 0.0326 | 0.1610 | 0.8059 | 0.0224 | 0.3033 | 32 | | 0.4087 | 0.0330 | 0.1467 | 0.7746 | 0.0226 | 0.2949 | 33 | | 0.3642 | 0.0334 | 0.1298 | 0.7476 | 0.0227 | 0.2847 | 34 | | 0.3221 | 0.0337 | 0.1168 | 0.7330 | 0.0228 | 0.2802 | 35 | | 0.2837 | 0.0340 | 0.1030 | 0.7093 | 0.0229 | 0.2728 | 36 | | 0.2509 | 0.0343 | 0.0882 | 0.6941 | 0.0229 | 0.2687 | 37 | | 0.2209 | 0.0346 | 0.0747 | 0.6892 | 0.0230 | 0.2656 | 38 | | 0.1934 | 0.0349 | 0.0670 | 0.6824 | 0.0230 | 0.2630 | 39 | | 0.1688 | 0.0351 | 0.0542 | 0.6773 | 0.0230 | 0.2625 | 40 | | 0.1469 | 0.0353 | 0.0429 | 0.6700 | 0.0231 | 0.2633 | 41 | | 0.1268 | 0.0355 | 0.0365 | 0.6680 | 0.0231 | 0.2578 | 42 | | 0.1086 | 0.0357 | 0.0284 | 0.6643 | 0.0231 | 0.2540 | 43 | | 0.0920 | 0.0358 | 0.0221 | 0.6645 | 0.0231 | 0.2530 | 44 | | 0.0783 | 0.0359 | 0.0169 | 0.6621 | 0.0232 | 0.2540 | 45 | | 0.0667 | 0.0360 | 0.0121 | 0.6714 | 0.0232 | 0.2532 | 46 | | 0.0563 | 0.0361 | 0.0094 | 0.6604 | 0.0232 | 0.2503 | 47 | | 0.0477 | 0.0361 | 0.0072 | 0.6620 | 0.0232 | 0.2489 | 48 | | 0.0397 | 0.0362 | 0.0055 | 0.6611 | 0.0232 | 0.2502 | 49 | | 0.0330 | 0.0362 | 0.0045 | 0.6686 | 0.0232 | 0.2496 | 50 | | 0.0283 | 0.0362 | 0.0033 | 0.6705 | 0.0232 | 0.2503 | 51 | | 0.0242 | 0.0362 | 0.0034 | 0.6686 | 0.0232 | 0.2486 | 52 | | 0.0212 | 0.0362 | 0.0031 | 0.6686 | 0.0232 | 0.2493 | 53 | | 0.0197 | 0.0362 | 0.0028 | 0.6688 | 0.0232 | 0.2530 | 54 | | 0.0226 | 0.0362 | 0.0041 | 0.6598 | 0.0233 | 0.2451 | 55 | | 0.0158 | 0.0362 | 0.0024 | 0.6605 | 0.0233 | 0.2428 | 56 | | 0.0115 | 0.0362 | 0.0018 | 0.6648 | 0.0233 | 0.2435 | 57 | | 0.0094 | 0.0362 | 0.0017 | 0.6672 | 0.0233 | 0.2446 | 58 | | 0.0081 | 0.0362 | 0.0018 | 0.6731 | 0.0233 | 0.2439 | 59 | | 0.0071 | 0.0362 | 0.0017 | 0.6762 | 0.0233 | 0.2429 | 60 | | 0.0062 | 0.0362 | 0.0017 | 0.6794 | 0.0233 | 0.2426 | 61 | | 0.0055 | 0.0362 | 0.0017 | 0.6825 | 0.0233 | 0.2429 | 62 | | 0.0048 | 0.0362 | 0.0017 | 0.6895 | 0.0233 | 0.2450 | 63 | | 0.0042 | 0.0362 | 0.0019 | 0.6914 | 0.0233 | 0.2424 | 64 | | 0.0037 | 0.0362 | 0.0018 | 0.6938 | 0.0233 | 0.2423 | 65 | | 0.0224 | 0.0361 | 0.0080 | 0.6695 | 0.0234 | 0.2409 | 66 | | 0.0127 | 0.0362 | 0.0037 | 0.6685 | 0.0234 | 0.2383 | 67 | | 0.0065 | 0.0362 | 0.0017 | 0.6714 | 0.0234 | 0.2359 | 68 | | 0.0045 | 0.0362 | 0.0017 | 0.6645 | 0.0234 | 0.2347 | 69 | | 0.0034 | 0.0362 | 0.0016 | 0.6671 | 0.0234 | 0.2353 | 70 | | 0.0028 | 0.0362 | 0.0014 | 0.6715 | 0.0234 | 0.2354 | 71 | | 0.0024 | 0.0362 | 0.0014 | 0.6745 | 0.0234 | 0.2358 | 72 | | 0.0022 | 0.0362 | 0.0014 | 0.6778 | 0.0234 | 0.2356 | 73 | | 0.0020 | 0.0362 | 0.0013 | 0.6797 | 0.0234 | 0.2357 | 74 | | 0.0018 | 0.0362 | 0.0014 | 0.6833 | 0.0234 | 0.2355 | 75 | | 0.0016 | 0.0362 | 0.0013 | 0.6885 | 0.0234 | 0.2363 | 76 | | 0.0068 | 0.0362 | 0.0035 | 0.7270 | 0.0232 | 0.2500 | 77 | | 0.0131 | 0.0362 | 0.0076 | 0.6965 | 0.0234 | 0.2397 | 78 | | 0.0054 | 0.0362 | 0.0088 | 0.6764 | 0.0235 | 0.2339 | 79 | | 0.0029 | 0.0362 | 0.0041 | 0.6806 | 0.0235 | 0.2334 | 80 | | 0.0019 | 0.0362 | 0.0039 | 0.6723 | 0.0235 | 0.2316 | 81 | | 0.0016 | 0.0362 | 0.0028 | 0.6765 | 0.0235 | 0.2315 | 82 | | 0.0014 | 0.0362 | 0.0025 | 0.6786 | 0.0235 | 0.2306 | 83 | | 0.0013 | 0.0362 | 0.0023 | 0.6805 | 0.0235 | 0.2304 | 84 | | 0.0012 | 0.0362 | 0.0022 | 0.6830 | 0.0235 | 0.2301 | 85 | | 0.0011 | 0.0362 | 0.0022 | 0.6881 | 0.0235 | 0.2308 | 86 | | 0.0010 | 0.0362 | 0.0022 | 0.6875 | 0.0235 | 0.2303 | 87 | | 0.0009 | 0.0362 | 0.0022 | 0.6909 | 0.0235 | 0.2307 | 88 | | 0.0008 | 0.0362 | 0.0020 | 0.6934 | 0.0235 | 0.2299 | 89 | | 0.0007 | 0.0362 | 0.0022 | 0.6968 | 0.0235 | 0.2307 | 90 | | 0.0007 | 0.0362 | 0.0020 | 0.7005 | 0.0235 | 0.2300 | 91 | | 0.0006 | 0.0362 | 0.0021 | 0.7040 | 0.0235 | 0.2307 | 92 | | 0.0006 | 0.0362 | 0.0020 | 0.7086 | 0.0235 | 0.2309 | 93 | | 0.0005 | 0.0362 | 0.0020 | 0.7116 | 0.0235 | 0.2318 | 94 | | 0.0005 | 0.0362 | 0.0018 | 0.7151 | 0.0235 | 0.2305 | 95 | | 0.0111 | 0.0362 | 0.2014 | 0.7185 | 0.0234 | 0.2861 | 96 | | 0.0069 | 0.0362 | 0.0051 | 0.7036 | 0.0235 | 0.2337 | 97 | | 0.0028 | 0.0362 | 0.0015 | 0.6946 | 0.0235 | 0.2324 | 98 | | 0.0023 | 0.0362 | 0.0018 | 0.6937 | 0.0235 | 0.2295 | 99 | | 0.0017 | 0.0362 | 0.0013 | 0.6886 | 0.0235 | 0.2283 | 100 | | 0.0010 | 0.0362 | 0.0008 | 0.6891 | 0.0236 | 0.2274 | 101 | | 0.0009 | 0.0362 | 0.0013 | 0.6901 | 0.0236 | 0.2275 | 102 | | 0.0008 | 0.0362 | 0.0015 | 0.6922 | 0.0236 | 0.2273 | 103 | | 0.0006 | 0.0362 | 0.0015 | 0.6923 | 0.0236 | 0.2274 | 104 | | 0.0008 | 0.0362 | 0.0014 | 0.6996 | 0.0235 | 0.2288 | 105 | | 0.0006 | 0.0362 | 0.0014 | 0.6967 | 0.0236 | 0.2266 | 106 | | 0.0005 | 0.0362 | 0.0013 | 0.6988 | 0.0236 | 0.2260 | 107 | | 0.0004 | 0.0362 | 0.0027 | 0.7008 | 0.0236 | 0.2278 | 108 | | 0.0004 | 0.0362 | 0.0017 | 0.7034 | 0.0236 | 0.2261 | 109 | | 0.0004 | 0.0362 | 0.0018 | 0.7036 | 0.0236 | 0.2265 | 110 | | 0.0004 | 0.0362 | 0.0015 | 0.7090 | 0.0236 | 0.2255 | 111 | | 0.0112 | 0.0362 | 0.0059 | 0.7014 | 0.0235 | 0.2271 | 112 | | 0.0034 | 0.0362 | 0.0023 | 0.6869 | 0.0236 | 0.2252 | 113 | | 0.0015 | 0.0362 | 0.0015 | 0.6863 | 0.0236 | 0.2234 | 114 | | 0.0008 | 0.0362 | 0.0010 | 0.6893 | 0.0236 | 0.2227 | 115 | | 0.0006 | 0.0362 | 0.0011 | 0.6911 | 0.0236 | 0.2232 | 116 | | 0.0005 | 0.0362 | 0.0009 | 0.6923 | 0.0236 | 0.2227 | 117 | | 0.0004 | 0.0362 | 0.0009 | 0.6938 | 0.0236 | 0.2225 | 118 | | 0.0004 | 0.0362 | 0.0010 | 0.6958 | 0.0236 | 0.2226 | 119 | | 0.0003 | 0.0362 | 0.0010 | 0.6966 | 0.0236 | 0.2226 | 120 | | 0.0003 | 0.0362 | 0.0010 | 0.6983 | 0.0236 | 0.2230 | 121 | | 0.0003 | 0.0362 | 0.0010 | 0.7005 | 0.0236 | 0.2229 | 122 | | 0.0003 | 0.0362 | 0.0010 | 0.7022 | 0.0236 | 0.2233 | 123 | | 0.0002 | 0.0362 | 0.0010 | 0.7041 | 0.0236 | 0.2226 | 124 | | 0.0002 | 0.0362 | 0.0011 | 0.7065 | 0.0236 | 0.2228 | 125 | | 0.0002 | 0.0362 | 0.0011 | 0.7081 | 0.0236 | 0.2227 | 126 | | 0.0002 | 0.0362 | 0.0011 | 0.7101 | 0.0236 | 0.2224 | 127 | | 0.0002 | 0.0362 | 0.0011 | 0.7130 | 0.0236 | 0.2224 | 128 | | 0.0002 | 0.0362 | 0.0011 | 0.7157 | 0.0236 | 0.2229 | 129 | | 0.0002 | 0.0362 | 0.0011 | 0.7183 | 0.0236 | 0.2225 | 130 | | 0.0001 | 0.0362 | 0.0011 | 0.7212 | 0.0236 | 0.2230 | 131 | | 0.0001 | 0.0362 | 0.0012 | 0.7250 | 0.0236 | 0.2230 | 132 | | 0.0001 | 0.0362 | 0.0012 | 0.7268 | 0.0236 | 0.2229 | 133 | | 0.0001 | 0.0362 | 0.0011 | 0.7303 | 0.0236 | 0.2229 | 134 | | 0.0001 | 0.0362 | 0.0012 | 0.7350 | 0.0236 | 0.2236 | 135 | | 0.0001 | 0.0362 | 0.0012 | 0.7386 | 0.0236 | 0.2240 | 136 | | 0.0001 | 0.0362 | 0.0012 | 0.7422 | 0.0236 | 0.2231 | 137 | | 0.0001 | 0.0362 | 0.0013 | 0.7445 | 0.0236 | 0.2236 | 138 | | 0.0001 | 0.0362 | 0.0012 | 0.7500 | 0.0236 | 0.2243 | 139 | | 0.0112 | 0.0361 | 0.0117 | 0.7391 | 0.0235 | 0.2370 | 140 | | 0.0036 | 0.0362 | 0.0041 | 0.7201 | 0.0236 | 0.2277 | 141 | | 0.0011 | 0.0362 | 0.0032 | 0.7210 | 0.0236 | 0.2243 | 142 | | 0.0006 | 0.0362 | 0.0030 | 0.7199 | 0.0236 | 0.2269 | 143 | | 0.0003 | 0.0362 | 0.0019 | 0.7231 | 0.0236 | 0.2254 | 144 | | 0.0002 | 0.0362 | 0.0021 | 0.7179 | 0.0236 | 0.2228 | 145 | | 0.0002 | 0.0362 | 0.0020 | 0.7236 | 0.0236 | 0.2234 | 146 | | 0.0002 | 0.0362 | 0.0021 | 0.7271 | 0.0236 | 0.2254 | 147 | | 0.0002 | 0.0362 | 0.0022 | 0.7250 | 0.0236 | 0.2233 | 148 | | 0.0001 | 0.0362 | 0.0021 | 0.7255 | 0.0236 | 0.2230 | 149 | | 0.0001 | 0.0362 | 0.0020 | 0.7263 | 0.0236 | 0.2228 | 150 | | 0.0001 | 0.0362 | 0.0021 | 0.7278 | 0.0236 | 0.2226 | 151 | | 0.0001 | 0.0362 | 0.0021 | 0.7289 | 0.0237 | 0.2220 | 152 | | 0.0001 | 0.0362 | 0.0020 | 0.7301 | 0.0237 | 0.2214 | 153 | | 0.0001 | 0.0362 | 0.0020 | 0.7307 | 0.0237 | 0.2216 | 154 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
lesso/36f00761-830b-4664-8818-778d0b9d1645
lesso
"2025-02-05T18:22:12Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "region:us" ]
null
"2025-02-05T18:06:05Z"
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 36f00761-830b-4664-8818-778d0b9d1645 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 0864faa44b3c224c_train_data.json ds_type: json format: custom path: /workspace/input_data/0864faa44b3c224c_train_data.json type: field_instruction: label field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/36f00761-830b-4664-8818-778d0b9d1645 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001011 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/G.O.D/0864faa44b3c224c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96ca7e7b-aee8-496c-876a-57ed5d8cbfd1 wandb_project: new-11 wandb_run: your_name wandb_runid: 96ca7e7b-aee8-496c-876a-57ed5d8cbfd1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 36f00761-830b-4664-8818-778d0b9d1645 This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001011 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3647 | 0.0015 | 1 | 2.5788 | | 2.4899 | 0.0726 | 50 | 2.1420 | | 1.7869 | 0.1451 | 100 | 2.0448 | | 1.8 | 0.2177 | 150 | 1.9863 | | 2.1935 | 0.2903 | 200 | 1.9678 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LeBenchmark/wav2vec2-FR-14K-large
LeBenchmark
"2023-09-14T09:57:27Z"
14
1
transformers
[ "transformers", "wav2vec2", "fr", "arxiv:2309.05472", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2022-06-21T20:56:53Z"
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark 2.0: wav2vec2 large model trained on 14K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. It comes with 2 versions, in which, the later version (LeBenchmark 2.0) is an extended version of the first version in terms of both numbers of pre-trained SSL models, and numbers of downstream tasks. For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech](https://arxiv.org/abs/2309.05472) ## Model and data descriptions We release four different models that can be found under our HuggingFace organization. Four different wav2vec2 architectures *Light*, *Base*, *Large* and *xLarge* are coupled with our small (1K), medium (3K), large (7K), and extra large (14K) corpus. In short: ## *Lebenchmark 2.0:* - [wav2vec2-FR-14K-xlarge](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-xlarge): xLarge wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown). - [wav2vec2-FR-14K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large): Large wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown). - [wav2vec2-FR-14K-light](https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-light): Light wav2vec2 trained on 14K hours of French speech (5.4K Males / 2.4K Females / 6.8K unknown). ## *Lebenchmark:* - [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**). - [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` @misc{parcollet2023lebenchmark, title={LeBenchmark 2.0: a Standardized, Replicable and Enhanced Framework for Self-supervised Representations of French Speech}, author={Titouan Parcollet and Ha Nguyen and Solene Evain and Marcely Zanon Boito and Adrien Pupier and Salima Mdhaffar and Hang Le and Sina Alisamir and Natalia Tomashenko and Marco Dinarelli and Shucong Zhang and Alexandre Allauzen and Maximin Coavoux and Yannick Esteve and Mickael Rouvier and Jerome Goulian and Benjamin Lecouteux and Francois Portet and Solange Rossato and Fabien Ringeval and Didier Schwab and Laurent Besacier}, year={2023}, eprint={2309.05472}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Corran/SciGenSetfit
Corran
"2024-01-19T00:52:36Z"
8
1
setfit
[ "setfit", "safetensors", "bert", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-MiniLM-L3-v2", "base_model:finetune:sentence-transformers/paraphrase-MiniLM-L3-v2", "model-index", "region:us" ]
text-classification
"2024-01-15T20:36:40Z"
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: This paper focuses on mining association rules between sets of items in large databases, which can reveal interesting patterns and relationships among the data. - text: In this paper, the authors explore the economic concepts of fairness and retaliation within the context of reciprocity, demonstrating how these principles shape market behaviors and interactions. - text: Further research is needed to explore the applicability of the proposed model to more complex multi-echelon inventory systems with additional features, such as lead time variability and supplier reliability. - text: The NCEP/NCAR 40-Year Reanalysis Project provides retrospective atmospheric data sets by assimilating observational data into a model, resulting in improved estimates of historical weather patterns for meteorological research and applications. - text: This study aims to assess the accuracy of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements using ground-based reference data. pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-MiniLM-L3-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7407692307692307 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 13 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Aims | <ul><li>'This study aims to provide an in-depth analysis of the impact of Coronavirus Disease 2019 (COVID-19) on Italy, focusing on the early stages of the outbreak and the subsequent government response.'</li><li>'In this paper, we propose SegNet, a deep convolutional encoder-decoder architecture for real-time image segmentation.'</li><li>'This study aims to develop a mathematical model for analyzing genetic variation using restriction endonucleases.'</li></ul> | | Background | <ul><li>'Previous studies have demonstrated that statins, including pravastatin, can reduce the risk of coronary events in patients with elevated cholesterol levels. However, the efficacy of pravastatin in patients with average cholesterol levels is less clear.'</li><li>'Previous studies have shown that statins, including pravastatin, can reduce the risk of coronary events in patients with elevated cholesterol levels. However, this study investigates the effect of pravastatin on patients with average cholesterol levels.'</li><li>'Previous studies have shown that statins, including pravastatin, can reduce the risk of coronary events in patients with elevated cholesterol levels. However, this trial investigates the effect of pravastatin on patients with average cholesterol levels.'</li></ul> | | Hypothesis | <ul><li>'Despite having average cholesterol levels, patients who received Pravastatin experienced a significant reduction in coronary events, suggesting a potential role for statins in preventing cardiovascular events beyond cholesterol level management in internal medicine.'</li><li>'This prospective observational study aimed to investigate the association between glycaemia levels and the risk of developing macrovascular and microvascular complications in individuals with type 2 diabetes, as previously identified in the UKPDS 35 study.'</li><li>'The results suggest that self-regulatory skills, particularly in the area of attention, significantly impact academic performance in elementary school students.'</li></ul> | | Implications | <ul><li>'From 1995 to 1998, the UK Prospective Diabetes Study (UKPDS) 35 observed a significant association between higher glycaemia levels and increased risk of both macrovascular and microvascular complications in patients with type 2 diabetes.'</li><li>'The UKPDS 35 study provides robust evidence that every 1 mmol/L increase in HbA1c is associated with a 25% increased risk of macrovascular events and a 37% increased risk of microvascular complications in patients with type 2 diabetes, highlighting the importance of strict glycaemic control in internal medicine.'</li><li>"This study provides valuable insights into the early dynamics of the COVID-19 outbreak in Italy, contributing to the understanding of the disease's transmission patterns and impact on public health."</li></ul> | | Importance | <ul><li>'Stroke and transient ischemic attack (TIA) are leading causes of long-term disability and mortality in internal medicine, with an estimated 15 million survivors worldwide.'</li><li>'The accurate assessment of insulin resistance and beta-cell function is crucial in the diagnosis and management of various metabolic disorders, including type 2 diabetes and metabolic syndrome.'</li><li>'The COVID-19 outbreak in Italy, which began in late February 2020, quickly became one of the most severe epidemic hotspots in Europe.'</li></ul> | | Keywords | <ul><li>'Pravastatin is a statin drug commonly used in the treatment of hypercholesterolemia, specifically to lower low-density lipoprotein (LDL) cholesterol levels and reduce the risk of cardiovascular events in internal medicine.'</li><li>'Self-regulation refers to the ability of students to manage their emotions, behavior, and cognitive processes to achieve optimal learning (Zimmerman & Kitsantas, 2005).'</li><li>'The proposed method utilizes deep convolutional neural networks to extract rich features from input images, enabling both object detection and semantic segmentation with high accuracy in the field of artificial intelligence.'</li></ul> | | Limitations | <ul><li>'However, it is important to note that the Homeostasis Model Assessment (HOMA) index does not directly measure insulin sensitivity or β-cell function, but rather provides an estimate based on fasting plasma glucose and insulin concentrations.'</li><li>'Despite providing a useful estimate of insulin resistance and beta-cell function, the Homeostasis Model Assessment has limitations in its applicability to individuals with extreme glucose or insulin levels, as well as those with certain diseases such as liver disease or pregnancy.'</li><li>'Despite the large sample size and long follow-up period, the observational nature of the study limits the ability to establish causality between glycaemia and the observed complications in type 2 diabetes.'</li></ul> | | Method | <ul><li>'The study employed a randomized, double-blind, placebo-controlled design to investigate the effect of Pravastatin on coronary events in patients with average cholesterol levels.'</li><li>'Patients with a history of myocardial infarction and an average cholesterol level between 180 and 240 mg/dL were included in the study.'</li><li>'The study aimed to assess the impact of Pravastatin administration on the incidence of coronary events in internal medicine patients with average cholesterol levels.'</li></ul> | | None | <ul><li>'The study enrolled patients with a recent myocardial infarction and an average cholesterol level, who were then randomly assigned to receive either pravastatin or placebo.'</li><li>'This systematic review and meta-analysis aimed to assess the efficacy and safety of dual antiplatelet therapy with aspirin and clopidogrel in the secondary prevention of stroke and transient ischemic attack in the field of internal medicine.'</li><li>'This study aims to evaluate the effectiveness of the Homeostasis Model Assessment (HOMA) in estimating insulin resistance and pancreatic beta-cell function in internal medicine, offering valuable insights for the diagnosis and management of metabolic disorders.'</li></ul> | | Purpose | <ul><li>'This study investigates the impact of Pravastatin on reducing coronary events in internal medicine patients with average cholesterol levels after a myocardial infarction.'</li><li>'This systematic review and meta-analysis aimed to assess the efficacy and safety of dual antiplatelet therapy with aspirin and clopidogrel in the secondary prevention of stroke and transient ischemic attack in internal medicine.'</li><li>'This study aims to evaluate the effectiveness of the Homeostasis Model Assessment (HOMA) in estimating insulin resistance and beta-cell function in internal medicine patients, addressing the need for a simple and widely applicable method for diagnosing and monitoring these conditions.'</li></ul> | | Reccomendations | <ul><li>'Further studies are needed to investigate the optimal duration of dual antiplatelet therapy in secondary prevention of stroke and transient ischemic attack, as well as the role of individual patient characteristics in determining the most effective treatment regimen.'</li><li>'Further research is warranted to explore the underlying mechanisms linking glycaemia to macrovascular and microvascular complications in type 2 diabetes, particularly in multi-ethnic populations.'</li><li>'Further studies are needed to investigate the potential role of IL-6 signaling in the prevention of bone loss in postmenopausal women.'</li></ul> | | Result | <ul><li>'Despite having average cholesterol levels, patients treated with Pravastatin did not experience a significant reduction in coronary events compared to the placebo group.'</li><li>'In interviews with patients who experienced a reduction in coronary events after Pravastatin treatment, themes included improved energy levels and increased confidence in managing their heart health.'</li><li>'The study found that Pravastatin significantly reduced the risk of coronary events in patients with average cholesterol levels, consistent with previous research suggesting that statins benefit a wider population beyond those with hypercholesterolemia.'</li></ul> | | Uncertainty | <ul><li>'Despite the widespread use of pravastatin in post-myocardial infarction patients with average cholesterol levels, the evidence regarding its impact on coronary events remains inconclusive and sometimes contradictory.'</li><li>'Despite the findings of this study showing a reduction in coronary events with Pravastatin use in patients with average cholesterol levels, contrasting evidence exists suggesting no significant benefit in similar patient populations (Miller et al., 2018).'</li><li>'Despite the proven benefits of dual antiplatelet therapy with aspirin and clopidogrel in the secondary prevention of cardiovascular events, particularly in coronary artery disease, there is a paucity of data specifically addressing its use in stroke or transient ischemic attack (TIA) patients.'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7408 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Corran/SciGenSetfit") # Run inference preds = model("This paper focuses on mining association rules between sets of items in large databases, which can reveal interesting patterns and relationships among the data.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 11 | 28.3123 | 71 | | Label | Training Sample Count | |:----------------|:----------------------| | Aims | 200 | | Background | 200 | | Hypothesis | 200 | | Implications | 200 | | Importance | 200 | | Keywords | 200 | | Limitations | 200 | | Method | 200 | | None | 200 | | Purpose | 200 | | Reccomendations | 200 | | Result | 200 | | Uncertainty | 200 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0012 | 1 | 0.4201 | - | | 0.0615 | 50 | 0.2562 | - | | 0.1230 | 100 | 0.2334 | - | | 0.1845 | 150 | 0.1974 | - | | 0.2460 | 200 | 0.195 | - | | 0.3075 | 250 | 0.1768 | - | | 0.3690 | 300 | 0.146 | - | | 0.4305 | 350 | 0.1541 | - | | 0.4920 | 400 | 0.1647 | - | | 0.5535 | 450 | 0.154 | - | | 0.6150 | 500 | 0.1568 | - | | 0.6765 | 550 | 0.1494 | - | | 0.7380 | 600 | 0.1554 | - | | 0.7995 | 650 | 0.1456 | - | | 0.8610 | 700 | 0.1527 | - | | 0.9225 | 750 | 0.1488 | - | | 0.9840 | 800 | 0.1312 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - Transformers: 4.36.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
inarul/cartoons-m2k
inarul
"2023-11-17T19:19:11Z"
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-11-17T19:19:05Z"
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: cartoons-m2k results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.44954127073287964 --- # cartoons-m2k Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### branded character ![branded character](images/branded_character.jpg) #### cartoon ![cartoon](images/cartoon.jpg) #### cartoon character ![cartoon character](images/cartoon_character.jpg) #### licensed character ![licensed character](images/licensed_character.jpg) #### toon ![toon](images/toon.jpg)
tner/twitter-roberta-base-2019-90m-tweetner7-2021
tner
"2022-09-27T15:33:11Z"
111
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/tweetner7", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-07-07T10:10:40Z"
--- datasets: - tner/tweetner7 metrics: - f1 - precision - recall model-index: - name: tner/twitter-roberta-base-2019-90m-tweetner7-2021 results: - task: name: Token Classification type: token-classification dataset: name: tner/tweetner7 type: tner/tweetner7 args: tner/tweetner7 metrics: - name: F1 (test_2021) type: f1 value: 0.6323179293083451 - name: Precision (test_2021) type: precision value: 0.669727143411354 - name: Recall (test_2021) type: recall value: 0.5988667900092507 - name: Macro F1 (test_2021) type: f1_macro value: 0.5671647388688191 - name: Macro Precision (test_2021) type: precision_macro value: 0.6049623231784063 - name: Macro Recall (test_2021) type: recall_macro value: 0.5439217682783225 - name: Entity Span F1 (test_2021) type: f1_entity_span value: 0.756898656898657 - name: Entity Span Precision (test_2020) type: precision_entity_span value: 0.801629380576749 - name: Entity Span Recall (test_2021) type: recall_entity_span value: 0.716896033306349 - name: F1 (test_2020) type: f1 value: 0.6190614981055086 - name: Precision (test_2020) type: precision value: 0.7061170212765957 - name: Recall (test_2020) type: recall value: 0.5511157239231966 - name: Macro F1 (test_2020) type: f1_macro value: 0.560944714651875 - name: Macro Precision (test_2020) type: precision_macro value: 0.6527607933480432 - name: Macro Recall (test_2020) type: recall_macro value: 0.5048039912609852 - name: Entity Span F1 (test_2020) type: f1_entity_span value: 0.7303993004954824 - name: Entity Span Precision (test_2020) type: precision_entity_span value: 0.8331117021276596 - name: Entity Span Recall (test_2020) type: recall_entity_span value: 0.6502335236118318 pipeline_tag: token-classification widget: - text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}" example_title: "NER Example 1" --- # tner/twitter-roberta-base-2019-90m-tweetner7-2021 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on the [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set of 2021: - F1 (micro): 0.6323179293083451 - Precision (micro): 0.669727143411354 - Recall (micro): 0.5988667900092507 - F1 (macro): 0.5671647388688191 - Precision (macro): 0.6049623231784063 - Recall (macro): 0.5439217682783225 The per-entity breakdown of the F1 score on the test set are below: - corporation: 0.4673109721432633 - creative_work: 0.33124018838304553 - event: 0.4597107438016529 - group: 0.5760869565217391 - location: 0.6441717791411042 - person: 0.8321060382916053 - product: 0.6595264937993236 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.6233520895930195, 0.6418683671749849] - 95%: [0.6212129239683746, 0.6433834953337656] - F1 (macro): - 90%: [0.6233520895930195, 0.6418683671749849] - 95%: [0.6212129239683746, 0.6433834953337656] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2021/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2021/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip. ```shell pip install tner ``` [TweetNER7](https://huggingface.co/datasets/tner/tweetner7) pre-processed tweets where the account name and URLs are converted into special formats (see the dataset page for more detail), so we process tweets accordingly and then run the model prediction as below. ```python import re from urlextract import URLExtract from tner import TransformersNER extractor = URLExtract() def format_tweet(tweet): # mask web urls urls = extractor.find_urls(tweet) for url in urls: tweet = tweet.replace(url, "{{URL}}") # format twitter account tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet) return tweet text = "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek" text_format = format_tweet(text) model = TransformersNER("tner/twitter-roberta-base-2019-90m-tweetner7-2021") model.predict([text_format]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/tweetner7'] - dataset_split: train_2021 - dataset_name: None - local_dataset: None - model: cardiffnlp/twitter-roberta-base-2019-90m - crf: True - max_length: 128 - epoch: 30 - batch_size: 32 - lr: 0.0001 - random_seed: 0 - gradient_accumulation_steps: 1 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.3 - max_grad_norm: 1 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2021/raw/main/trainer_config.json). ### Reference If you use the model, please cite T-NER paper and TweetNER7 paper. - T-NER ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ``` - TweetNER7 ``` @inproceedings{ushio-etal-2022-tweet, title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts", author = "Ushio, Asahi and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco. and Camacho-Collados, Jose", booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing", month = nov, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", } ```
Omerdor/ddpm-butterflies-128
Omerdor
"2022-10-13T14:09:15Z"
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
"2022-10-07T07:43:27Z"
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Omerdor/ddpm-butterflies-128/tensorboard?#scalars)
trenden/4e9efa90-0e2f-473a-a775-104cd5e6878e
trenden
"2025-01-31T04:09:21Z"
8
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
"2025-01-31T04:08:12Z"
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: 4e9efa90-0e2f-473a-a775-104cd5e6878e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e0d31098730fe284_train_data.json ds_type: json format: custom path: /workspace/input_data/e0d31098730fe284_train_data.json type: field_input: lexemes field_instruction: premise field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/4e9efa90-0e2f-473a-a775-104cd5e6878e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/e0d31098730fe284_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8268f532-ea37-4896-8273-8bc2c06f71c6 wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: 8268f532-ea37-4896-8273-8bc2c06f71c6 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4e9efa90-0e2f-473a-a775-104cd5e6878e This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0076 | 1 | 3.0302 | | 9.16 | 0.0994 | 13 | 0.5972 | | 1.8166 | 0.1989 | 26 | 0.2718 | | 0.979 | 0.2983 | 39 | 0.1866 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
AfnanTS/ARBERT_EntityLinking_pre-training
AfnanTS
"2024-05-25T19:43:58Z"
122
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2024-05-25T19:41:54Z"
--- license: apache-2.0 ---
Best000/ca86e901-45fe-4b2b-ad97-9ef3848616ad
Best000
"2025-02-04T05:27:19Z"
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "base_model:adapter:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "region:us" ]
null
"2025-02-04T05:02:08Z"
--- library_name: peft base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 tags: - axolotl - generated_from_trainer model-index: - name: ca86e901-45fe-4b2b-ad97-9ef3848616ad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ad9a336907b8ae34_train_data.json ds_type: json format: custom path: /workspace/input_data/ad9a336907b8ae34_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/ca86e901-45fe-4b2b-ad97-9ef3848616ad hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ad9a336907b8ae34_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ae55a37-53c0-49da-ae27-90302c180793 wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ae55a37-53c0-49da-ae27-90302c180793 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ca86e901-45fe-4b2b-ad97-9ef3848616ad This model is a fine-tuned version of [OpenBuddy/openbuddy-llama2-13b-v8.1-fp16](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v8.1-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 9.0062 | 0.0085 | 50 | nan | | 46.0364 | 0.0169 | 100 | nan | | 148.0058 | 0.0254 | 150 | nan | | 72.2216 | 0.0338 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sourcetableteam/lora_model-LLama-3-8B-SQL
sourcetableteam
"2024-04-29T08:07:24Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-04-29T08:07:02Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** sourcetableteam - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
SJ182120/l2_python
SJ182120
"2024-02-13T08:52:42Z"
0
0
peft
[ "peft", "text-generation", "region:us" ]
text-generation
"2024-02-13T08:51:31Z"
--- library_name: peft pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
Gummybear05/whisper-small-ko-E10_Yspeed-SA
Gummybear05
"2023-12-22T06:26:38Z"
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:aihub_adult_speed", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2023-12-22T04:17:14Z"
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - aihub_adult_speed model-index: - name: whisper-small-ko-E10_Yspeed-SA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ko-E10_Yspeed-SA This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub adult speed changed dataset. It achieves the following results on the evaluation set: - Loss: 0.2281 - Cer: 6.8903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5385 | 0.13 | 100 | 0.3263 | 8.6114 | | 0.3539 | 0.26 | 200 | 0.2549 | 7.1076 | | 0.2644 | 0.39 | 300 | 0.2541 | 7.2662 | | 0.2463 | 0.52 | 400 | 0.2386 | 6.5731 | | 0.2403 | 0.64 | 500 | 0.2449 | 6.8492 | | 0.2167 | 0.77 | 600 | 0.2417 | 6.8609 | | 0.2032 | 0.9 | 700 | 0.2388 | 6.6847 | | 0.1288 | 1.03 | 800 | 0.2313 | 6.8198 | | 0.1184 | 1.16 | 900 | 0.2332 | 6.7787 | | 0.1227 | 1.29 | 1000 | 0.2314 | 7.1017 | | 0.1059 | 1.42 | 1100 | 0.2335 | 6.9079 | | 0.1195 | 1.55 | 1200 | 0.2296 | 7.1487 | | 0.1244 | 1.68 | 1300 | 0.2284 | 6.9079 | | 0.1062 | 1.81 | 1400 | 0.2287 | 6.8257 | | 0.1114 | 1.93 | 1500 | 0.2281 | 6.8903 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF
mradermacher
"2025-03-09T23:48:52Z"
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Yuhan123/qwen-1.5-4b-wildchat-baseline", "base_model:quantized:Yuhan123/qwen-1.5-4b-wildchat-baseline", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-03-09T23:24:31Z"
--- base_model: Yuhan123/qwen-1.5-4b-wildchat-baseline language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Yuhan123/qwen-1.5-4b-wildchat-baseline <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q2_K.gguf) | Q2_K | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q3_K_M.gguf) | Q3_K_M | 2.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.IQ4_XS.gguf) | IQ4_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q4_K_S.gguf) | Q4_K_S | 2.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q5_K_M.gguf) | Q5_K_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q6_K.gguf) | Q6_K | 3.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.Q8_0.gguf) | Q8_0 | 4.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/qwen-1.5-4b-wildchat-baseline-GGUF/resolve/main/qwen-1.5-4b-wildchat-baseline.f16.gguf) | f16 | 8.0 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
texanrangee/d09990e8-c870-4f9d-a9e8-686c17f274b6
texanrangee
"2025-02-24T12:58:36Z"
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-02-24T12:28:56Z"
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Best000/66462a56-5a6a-403f-8ddc-442cedec88d4
Best000
"2025-01-29T00:54:14Z"
9
0
peft
[ "peft", "safetensors", "gptj", "axolotl", "generated_from_trainer", "base_model:furiosa-ai/mlperf-gpt-j-6b", "base_model:adapter:furiosa-ai/mlperf-gpt-j-6b", "region:us" ]
null
"2025-01-29T00:49:29Z"
--- library_name: peft base_model: furiosa-ai/mlperf-gpt-j-6b tags: - axolotl - generated_from_trainer model-index: - name: 66462a56-5a6a-403f-8ddc-442cedec88d4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: furiosa-ai/mlperf-gpt-j-6b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f235522e9e78089e_train_data.json ds_type: json format: custom path: /workspace/input_data/f235522e9e78089e_train_data.json type: field_input: label field_instruction: page_title field_output: page_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/66462a56-5a6a-403f-8ddc-442cedec88d4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f235522e9e78089e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 38421d9d-e141-427f-b3be-3293091fa2d9 wandb_project: Birthday-SN56-32-Gradients-On-Demand wandb_run: your_name wandb_runid: 38421d9d-e141-427f-b3be-3293091fa2d9 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 66462a56-5a6a-403f-8ddc-442cedec88d4 This model is a fine-tuned version of [furiosa-ai/mlperf-gpt-j-6b](https://huggingface.co/furiosa-ai/mlperf-gpt-j-6b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 2.1829 | | 8.6112 | 0.0055 | 13 | 2.0175 | | 7.7353 | 0.0111 | 26 | 1.6447 | | 6.5326 | 0.0166 | 39 | 1.4375 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
asenella/mmnist_MMVAEconfig2_seed_3_ratio_05_i
asenella
"2023-06-03T11:45:30Z"
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
"2023-05-13T23:55:35Z"
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
lesso01/676f1dd7-2483-43e2-ae43-eaeb79969ea7
lesso01
"2024-12-29T11:56:27Z"
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-13b-hf-flash", "region:us" ]
null
"2024-12-29T11:03:01Z"
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 676f1dd7-2483-43e2-ae43-eaeb79969ea7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: true chat_template: llama3 datasets: - data_files: - 9a4e4f03d78e2c11_train_data.json ds_type: json format: custom path: /workspace/input_data/9a4e4f03d78e2c11_train_data.json type: field_input: project field_instruction: func_clean field_output: func format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso01/676f1dd7-2483-43e2-ae43-eaeb79969ea7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 80GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/9a4e4f03d78e2c11_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 676f1dd7-2483-43e2-ae43-eaeb79969ea7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 676f1dd7-2483-43e2-ae43-eaeb79969ea7 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ``` </details><br> # 676f1dd7-2483-43e2-ae43-eaeb79969ea7 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3185 | 0.0006 | 1 | 0.1396 | | 0.2495 | 0.0056 | 9 | 0.1209 | | 0.1705 | 0.0112 | 18 | 0.0911 | | 0.3323 | 0.0168 | 27 | 0.0839 | | 0.1062 | 0.0224 | 36 | 0.0813 | | 0.1406 | 0.0279 | 45 | 0.0798 | | 0.1302 | 0.0335 | 54 | 0.0789 | | 0.1154 | 0.0391 | 63 | 0.0782 | | 0.1311 | 0.0447 | 72 | 0.0777 | | 0.2109 | 0.0503 | 81 | 0.0775 | | 0.2923 | 0.0559 | 90 | 0.0774 | | 0.191 | 0.0615 | 99 | 0.0774 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Jooinjang/Qwen2.5-1.5B_translate_enko
Jooinjang
"2024-12-29T07:55:17Z"
22
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-1.5B-bnb-4bit", "base_model:quantized:unsloth/Qwen2.5-1.5B-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-12-29T07:52:48Z"
--- base_model: unsloth/Qwen2.5-1.5B-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Jooinjang - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-1.5B-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
animaRegem/gemma-7b-alpaca-instruct-malayalam-model-vllm-16bit
animaRegem
"2024-05-07T18:44:26Z"
5
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/gemma-7b-bnb-4bit", "base_model:finetune:unsloth/gemma-7b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-07T18:39:37Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl - sft base_model: unsloth/gemma-7b-bnb-4bit --- # Uploaded model - **Developed by:** animaRegem - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-7b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Francesco-A/dqn-SpaceInvadersNoFrameskip-v4
Francesco-A
"2023-08-22T16:50:33Z"
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-08-22T16:49:54Z"
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 622.00 +/- 188.62 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Francesco-A -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Francesco-A -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Francesco-A ``` ## Hyperparameters ```python OrderedDict([('batch_size', 62), ('buffer_size', 150000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
pjpkvarma/ppo-LunarLander-v2
pjpkvarma
"2024-02-08T03:38:24Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2024-02-08T03:36:44Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 235.87 +/- 66.61 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jonpodtu/02sparseOverlapConvTasNet_SUM_2spk_8k
jonpodtu
"2021-06-23T14:56:56Z"
0
0
null
[ "pytorch", "region:us" ]
null
"2022-03-02T23:29:05Z"
The following model is trained on the SUM partition of 20% overlapping mixtures
mradermacher/AVA-Llama-3-GGUF
mradermacher
"2025-01-18T07:34:01Z"
294
0
transformers
[ "transformers", "gguf", "en", "base_model:MehdiHosseiniMoghadam/AVA-Llama-3", "base_model:quantized:MehdiHosseiniMoghadam/AVA-Llama-3", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-01-18T07:20:31Z"
--- base_model: MehdiHosseiniMoghadam/AVA-Llama-3 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/MehdiHosseiniMoghadam/AVA-Llama-3 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/AVA-Llama-3-GGUF/resolve/main/AVA-Llama-3.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
alchemist69/ad199023-dc11-41de-9b06-2dc866708f4e
alchemist69
"2025-01-31T01:54:41Z"
15
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "region:us" ]
null
"2025-01-31T01:26:09Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ad199023-dc11-41de-9b06-2dc866708f4e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 732374f8f9a5fd6e_train_data.json ds_type: json format: custom path: /workspace/input_data/732374f8f9a5fd6e_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: alchemist69/ad199023-dc11-41de-9b06-2dc866708f4e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/732374f8f9a5fd6e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a0b78fa1-e6b6-4098-ae41-af2c434b76c4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a0b78fa1-e6b6-4098-ae41-af2c434b76c4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ad199023-dc11-41de-9b06-2dc866708f4e This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0825 | 0.0034 | 1 | 2.4365 | | 1.2841 | 0.1689 | 50 | 1.6002 | | 1.2379 | 0.3378 | 100 | 1.4625 | | 1.0975 | 0.5068 | 150 | 1.3915 | | 1.1029 | 0.6757 | 200 | 1.3813 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MultiBertGunjanPatrick/multiberts-seed-0-60k
MultiBertGunjanPatrick
"2021-10-04T04:55:12Z"
8
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "exbert", "multiberts", "multiberts-seed-0", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2022-03-02T23:29:04Z"
--- language: en tags: - exbert - multiberts - multiberts-seed-0 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 0 Checkpoint 60k (uncased) Seed 0 intermediate checkpoint 60k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-0](https://hf.co/multberts-seed-0). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-0-60k') model = BertModel.from_pretrained("multiberts-seed-0-60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
FuturisticVibes/dolphin-2.9.2-mixtral-8x22b-6.0bpw-h8-exl2
FuturisticVibes
"2024-06-22T05:22:10Z"
9
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "generated_from_trainer", "axolotl", "conversational", "en", "dataset:cognitivecomputations/Dolphin-2.9.2", "dataset:cognitivecomputations/SystemChat-2.0", "dataset:teknium/OpenHermes-2.5", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:cognitivecomputations/dolphin-coder", "dataset:cognitivecomputations/samantha-data", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:microsoft/orca-math-word-problems-200k", "dataset:abacusai/SystemChat-1.1", "dataset:Locutusque/function-calling-chatml", "dataset:internlm/Agent-FLAN", "base_model:mistral-community/Mixtral-8x22B-v0.1", "base_model:quantized:mistral-community/Mixtral-8x22B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "6-bit", "exl2", "region:us" ]
text-generation
"2024-06-22T04:44:44Z"
--- license: apache-2.0 base_model: mistral-community/Mixtral-8x22B-v0.1 tags: - generated_from_trainer - axolotl model-index: - name: out results: [] datasets: - cognitivecomputations/Dolphin-2.9.2 - cognitivecomputations/SystemChat-2.0 - teknium/OpenHermes-2.5 - m-a-p/CodeFeedback-Filtered-Instruction - cognitivecomputations/dolphin-coder - cognitivecomputations/samantha-data - HuggingFaceH4/ultrachat_200k - microsoft/orca-math-word-problems-200k - abacusai/SystemChat-1.1 - Locutusque/function-calling-chatml - internlm/Agent-FLAN language: - en --- I have no idea what I’m doing… if this causes the apocalypse someone please let me know. dolphin-2.9.2-mixtral-8x22b 6.0bpw h8 EXL2 Includes [measurement.json](https://huggingface.co/FuturisticVibes/dolphin-2.9.2-mixtral-8x22b-6.0bpw-h8-exl2/tree/measurement) file for further quantization Original Model: https://huggingface.co/cognitivecomputations/dolphin-2.9.2-mixtral-8x22b # Original Model Card # Dolphin 2.9.2 Mixtral 8x22b 🐬 Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations [![Discord](https://img.shields.io/discord/1156064224225808488?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FtCMkMDDHwm)](https://discord.gg/cognitivecomputations) Discord: https://discord.gg/cognitivecomputations <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" /> New in 2.9.2 is SystemChat 2.0 - a dataset designed to teach Dolphin to obey the system prompt, even over a long conversation. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/z1u6U91tL-H__7JCDbWys.png) My appreciation for the sponsors of Dolphin 2.9.2: - [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xH100 node - [OnDemand](https://on-demand.io/) - provided inference sponsorship, enabling creation of SystemChat This model is based on Dolphin-2.9-Mixtral-8x22b, and is Apache-2.0 licensed. The base model has 64k context, and fine-tuning was with 16k sequence length. It took 1 week on 8xH100 provided by Crusoe Cloud This model was trained FFT on 50% parameters (targeted with [Laser Scanner](https://github.com/cognitivecomputations/laserRMT/blob/main/laser_scanner.py) by Fernando Fernandes, David Golchinfar, Lucas Atkins, and Eric Hartford), using ChatML prompt template format. example: ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Dolphin-2.9 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling. Dolphin is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly. Dolphin is licensed Apache 2.0. I grant permission for any use, including commercial, that falls within accordance with Apache-2.0 license. Dolphin was trained on data generated from GPT4, among other models. ## Evals ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/SDWV3SvJ8xR1gjl1z0LyO.png) ## Training
LoneStriker/Qwen1.5-14B-Chat-8.0bpw-h8-exl2
LoneStriker
"2024-02-17T15:25:12Z"
4
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2309.16609", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-02-17T15:19:03Z"
--- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-14B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-14B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 6 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, and 72B; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. However, DPO leads to improvements in human preference evaluation but degradation in benchmark evaluation. In the very near future, we will fix both problems. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-14B-Chat", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-14B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-14B-Chat-GPTQ-Int4`, `Qwen1.5-14B-Chat-GPTQ-Int8`, `Qwen1.5-14B-Chat-AWQ`, and `Qwen1.5-14B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
toto10/embeddings
toto10
"2023-07-29T09:59:31Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-02-17T12:09:26Z"
--- license: creativeml-openrail-m ---
StandardCAS-NSTID/RAIDP-LICENSES
StandardCAS-NSTID
"2024-04-06T08:12:47Z"
0
0
null
[ "license:other", "region:us" ]
null
"2024-04-06T08:04:49Z"
--- license: other license_name: raidp license_link: LICENSE ---
orya16215/ppo-Huggy
orya16215
"2023-07-13T15:17:58Z"
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
"2023-07-13T15:17:55Z"
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: orya16215/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kforkai/q-FrozenLake-v1-4x4-Slippery
kforkai
"2023-06-06T02:46:34Z"
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-06-06T02:46:30Z"
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.73 +/- 0.44 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kforkai/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
TheBloke/Airoboros-65B-GPT4-2.0-GPTQ
TheBloke
"2023-09-27T13:01:03Z"
45
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dataset:jondurbin/airoboros-gpt4-m2.0", "base_model:jondurbin/airoboros-65b-gpt4-2.0", "base_model:quantized:jondurbin/airoboros-65b-gpt4-2.0", "license:other", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
"2023-08-04T22:28:35Z"
--- license: other datasets: - jondurbin/airoboros-gpt4-m2.0 model_name: Airoboros 65B GPT4 2.0 inference: false model_creator: Jon Durbin model_link: https://huggingface.co/jondurbin/airoboros-65b-gpt4-2.0 model_type: llama quantized_by: TheBloke base_model: jondurbin/airoboros-65b-gpt4-2.0 --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Airoboros 65B GPT4 2.0 - GPTQ - Model creator: [Jon Durbin](https://huggingface.co/jondurbin) - Original model: [Airoboros 65B GPT4 2.0](https://huggingface.co/jondurbin/airoboros-65b-gpt4-2.0) ## Description This repo contains GPTQ model files for [Jon Durbin's Airoboros 65B GPT4 2.0](https://huggingface.co/jondurbin/airoboros-65b-gpt4-2.0). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GGML) * [Jon Durbin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-65b-gpt4-2.0) ## Prompt template: Airoboros ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT: ``` ## Provided files and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. All GPTQ files are made with AutoGPTQ. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 33.48 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 38.53 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 36.00 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 34.73 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 25.39 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. | | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 26.57 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. | ## How to download from branches - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Airoboros-65B-GPT4-2.0-GPTQ:gptq-4bit-32g-actorder_True` - With Git, you can clone a branch with: ``` git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Airoboros-65B-GPT4-2.0-GPTQ ``` - In Python Transformers code, the branch is the `revision` parameter; see below. ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Airoboros-65B-GPT4-2.0-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Airoboros-65B-GPT4-2.0-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done" 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Airoboros-65B-GPT4-2.0-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! ## How to use this GPTQ model from Python code First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed: ``` pip3 install auto-gptq ``` If you have problems installing AutoGPTQ, please build from source instead: ``` pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ pip3 install . ``` Then try the following example code: ```python from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/Airoboros-65B-GPT4-2.0-GPTQ" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, use_safetensors=True, trust_remote_code=False, device="cuda:0", use_triton=use_triton, quantize_config=None) """ # To download from a specific branch, use the revision parameter, as in this example: # Note that `revision` requires AutoGPTQ 0.3.1 or later! model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", use_safetensors=True, trust_remote_code=False, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork. ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Jon Durbin's Airoboros 65B GPT4 2.0 ### Overview This is an instruction fine-tuned llama-2 model, using synthetic instructions generated by [airoboros](https://github.com/jondurbin/airoboros) - The 2.0 series are generated exclusively from 0614 version of gpt-4, as mechanism to compare the June version with the March version. - The m2.0 series have the 1.4.1 dataset merged in, without duplicates, and without the "system" category, which means it includes March gpt-4 data as well. - 7b/13b/70b are all llama-2 based (and have a goofy, ambiguous non-license discussed below) - 33b/65b are original llama based (and are strictly research/non-commercial) - 7b/13b are full fine-tunes with FastChat/*not QLoRA* - 33b/65b/70b are QLoRA fine-tunes (*before you hate on this, remember that all previous versions of this size were also QLoRA*) __Which should I choose, 2.0 or m2.0?__ I have no idea, try them both and see which is better. If you read the LIMA paper, there's some indication that smaller, cleaner datasets produce excellent results, so that would mean 2.0 is probably a better choice. If you really enjoyed 1.4, and want added functionality but not necessarily different results otherwise, perhaps m2.0. ### Prompt format ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT: ``` So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon). ### Dataset Dataset links: - 2.0 series https://hf.co/datasets/jondurbin/airoboros-gpt4-2.0 - merged/m2.0 series https://hf.co/datasets/jondurbin/airoboros-gpt4-m2.0 Dataset creation details/configuration: https://gist.github.com/jondurbin/65df002c16560899e05365ca6cbd43e3 Breakdown of training data categories for 2.0/m2.0 datasets: ![categories](categories.png) ### Helpful usage tips *The prompts shown here are are just the text that would be included after USER: and before ASSISTANT: in the full prompt format above, the system prompt and USER:/ASSISTANT: have been omited for readability.* #### Context obedient question answering By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a closed-context prompt is as follows: ``` BEGININPUT BEGINCONTEXT [key0: value0] [key1: value1] ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up. *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!* I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to. Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` #### Coding You can ask for fairly complex coding instructions with multiple criteria, e.g.: ``` Create a python application with the following requirements: - Asyncio FastAPI webserver - ping endpoint that returns the current date in JSON format - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate ``` Or inline criteria: ``` Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values. ``` You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.: ``` Write a websocket application in node.js. PLAINFORMAT ``` #### Agent/function calling The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML. Example prompt: ``` As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format. Input: I want to know how many times 'Python' is mentioned in my text file. Available functions: file_analytics: description: This tool performs various operations on a text file. params: action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc. filters: keyword: The word or phrase we want to search for. ``` Response: ```json { "function": "file_analytics", "params": { "action": "count_occurrences", "filters": { "keyword": "Python" } } } ``` #### Chain-of-thought You can ask for several possible responses to a given problem, with a ranking and final answer selection. Example prompt: ``` A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one. ``` Example response: ``` Solution 1: In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players). The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows: n(n-1)/2 = 45 Solving this equation gives us n=10. Final answer: There were 10 players in the tournament. Solution 2: Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers. If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players. Final answer: There were 10 players in the tournament. Solution 3: We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played. Final answer: There were 10 players in the tournament. Ranking of solutions from best to worst: 1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer. 2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer. 3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer. Best and final answer: There were 10 players in the tournament. ``` #### reWOO style execution planning The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions! Example prompt: ``` Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string that could be the user's question, one or more prior evidence values, or a combination of both. Here are the tools available to be called: DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer. TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links. HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links. KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:? The output should be in format: Plan: [first action to take based on input question] :evidence0: = [function to call with input parameter] Plan: [next action to take, based on result of :evidence0:] :evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"] ... Answer: [:evidence[n]: containing the final answer.] Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work? ``` Response: ``` Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020. :evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner] Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate. :evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?] Plan: Conduct another web search to find the most famous work of the identified laureate. :evidence2: = DuckDuckGo[Most famous work of :evidence1:] Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search. :evidence3: = HyperlinkExtractor[:evidence2:] Plan: Use the TextScraper tool to extract information from the relevant links. :evidence4: = TextScraper[:evidence3:] Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information. :evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?] Answer: :evidence5: ``` For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening: ```python import re import requests def inject_context(input_text, **context): for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)): input_text = input_text.replace(ref, context.get(ref, "")) return input_text def duckduckgo(input_text, **context): search_string = inject_context(input_text, **context) ... search via duck duck go using search_string ... return text content def link_extractor(input_text, **context): input_text = inject_context(input_text, **context) return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I)))) def scrape(input_text, **context): input_text = inject_context(input_text, **context) text = [] for link in input_text.splitlines(): text.append(requests.get(link).text) return "\n".join(text) def infer(input_text, **context) prompt = inject_context(input_text, **context) ... call model with prompt, return output def parse_plan(plan): method_map = { "DuckDuckGo": duckduckgo, "HyperlinkExtractor": link_extractor, "KnowledgeModel": infer, "TextScraper": scrape, } context = {} for line in plan.strip().splitlines(): if line.startswith("Plan:"): print(line) continue parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I) if not parts: if line.startswith("Answer: "): return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...") raise RuntimeError("bad format: " + line) context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context) ``` ### Contribute If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data, take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details. To help me with the OpenAI/compute costs: - https://bmc.link/jondurbin - ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11 - BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf ### Licence and usage restrictions The airoboros 2.0/m2.0 models are built on top of either llama or llama-2. Any model with `-l2-` in the name uses llama2, `..-33b-...` and `...-65b-...` are based on the original llama. #### Llama (original) models If the model was based on the original llama (33b/65b), the license is __cc-by-nc-4.0__ and is for research/academic use only -- no commercial usage whatsoever! #### Llama-2 models Base model has a custom Meta license: - See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta. - See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta. The fine-tuning data was generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros) The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI - what does *compete* actually mean here? - these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place - if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works - the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place - other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2 I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly. Your best bet is probably to avoid using this commercially due to the OpenAI API usage. Either way, by using this model, you agree to completely indemnify me.
lesso17/06c8f55c-b4b2-435b-b8a4-5acdeb931706
lesso17
"2025-01-28T14:58:33Z"
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-28T14:24:16Z"
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 06c8f55c-b4b2-435b-b8a4-5acdeb931706 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 datasets: - data_files: - 86d324832a59bf87_train_data.json ds_type: json format: custom path: /workspace/input_data/86d324832a59bf87_train_data.json type: field_instruction: input field_output: output_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/06c8f55c-b4b2-435b-b8a4-5acdeb931706 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/86d324832a59bf87_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 36a667f9-b70f-48af-9f03-d45190bcae2a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 36a667f9-b70f-48af-9f03-d45190bcae2a warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 06c8f55c-b4b2-435b-b8a4-5acdeb931706 This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2917 | 0.0145 | 200 | 0.6645 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
heisguyy/kagglex-paligemma
heisguyy
"2024-11-16T14:53:55Z"
67
0
transformers
[ "transformers", "safetensors", "paligemma", "image-text-to-text", "generated_from_trainer", "base_model:google/paligemma-3b-mix-224", "base_model:finetune:google/paligemma-3b-mix-224", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
"2024-11-16T14:51:06Z"
--- library_name: transformers license: gemma base_model: google/paligemma-3b-mix-224 tags: - generated_from_trainer model-index: - name: kagglex-paligemma results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kagglex-paligemma This model is a fine-tuned version of [google/paligemma-3b-mix-224](https://huggingface.co/google/paligemma-3b-mix-224) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1 - Datasets 2.21.0 - Tokenizers 0.20.1
dark-pen/REBEL-Llama-3-Armo-iter_3-IQ4_NL-GGUF
dark-pen
"2024-09-10T11:36:39Z"
5
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:openbmb/UltraFeedback", "base_model:Cornell-AGI/REBEL-Llama-3-Armo-iter_3", "base_model:quantized:Cornell-AGI/REBEL-Llama-3-Armo-iter_3", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2024-09-10T11:36:16Z"
--- base_model: Cornell-AGI/REBEL-Llama-3-Armo-iter_3 datasets: - openbmb/UltraFeedback language: - en license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # dark-pen/REBEL-Llama-3-Armo-iter_3-IQ4_NL-GGUF This model was converted to GGUF format from [`Cornell-AGI/REBEL-Llama-3-Armo-iter_3`](https://huggingface.co/Cornell-AGI/REBEL-Llama-3-Armo-iter_3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Cornell-AGI/REBEL-Llama-3-Armo-iter_3) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo dark-pen/REBEL-Llama-3-Armo-iter_3-IQ4_NL-GGUF --hf-file rebel-llama-3-armo-iter_3-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo dark-pen/REBEL-Llama-3-Armo-iter_3-IQ4_NL-GGUF --hf-file rebel-llama-3-armo-iter_3-iq4_nl-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo dark-pen/REBEL-Llama-3-Armo-iter_3-IQ4_NL-GGUF --hf-file rebel-llama-3-armo-iter_3-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo dark-pen/REBEL-Llama-3-Armo-iter_3-IQ4_NL-GGUF --hf-file rebel-llama-3-armo-iter_3-iq4_nl-imat.gguf -c 2048 ```
naraming/nara
naraming
"2025-03-22T04:16:45Z"
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-03-22T04:14:38Z"
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** naraming - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cnmoro/Qwen2.5-0.5B-Chunk-Compressor
cnmoro
"2025-02-18T19:23:52Z"
0
2
null
[ "safetensors", "qwen2", "text-generation", "conversational", "pt", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct", "license:mit", "region:us" ]
text-generation
"2025-02-18T17:43:43Z"
--- license: mit language: - pt base_model: - Qwen/Qwen2.5-0.5B-Instruct pipeline_tag: text-generation --- This is Qwen2.5-0.5B-Instruct finetuned to perform the compression of chunks of text. The goal is to keep the information of each chunk in a RAG system more compressed and easier to read. The usage of this template is strict Sample inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "cnmoro/Qwen2.5-0.5B-Chunk-Compressor" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") prompt = """<|im_start|>system Você deve compactar textos sem necessidade de legibilidade para humanos, mas mantendo informações essenciais compreensíveis para outro modelo de linguagem. Regras para compressão: Remova palavras desnecessárias como artigos, preposições e pronomes quando possível, desde que a compreensão seja preservada. Preserve informações essenciais (nomes, locais, ações, conceitos-chave). Reduza expressões complexas mantendo o significado. Use listas e separadores para organizar as informações de forma eficiente. Remova redundâncias e detalhes secundários que não impactam a compreensão geral.<|im_end|> <|im_start|>user Texto para compressão: <Input> Cleaning the toilet is a task that doesn't interest people. Many, however, pray for technology that can save them from the unpleasant mission. Apparently, those prayers were answered: a group of Chinese scientists developed the concept of a self-cleaning toilet and managed to make it a reality. Thanks to 3D printing, researchers at Huazhong University of Science and Technology have managed to revolutionize the unpleasant household chore. The self-cleaning toilet, known as “ARSFT”, an acronym for “abrasion-resistant super slippery toilet flush” — the technology that allows automatic cleaning — emerged from a complex combination of plastic and grains of sand that repel water. In plain English, the technology ensures that no substance sticks to the surface. Therefore, in addition to being a salvation for many, this can be a more sustainable alternative to conventional toilets. The website New Scientist interviewed one of the project's scientists, Yike Li, who created the self-cleaning toilet. According to Li, the Chinese used, in addition to the combination of plastic and grains of sand, a laser to bring the particles together, thus creating the 3D printed self-cleaning toilet. After printing, the researchers used silicon oil to lubricate the surface of the toilet, managing to penetrate it due to the structure of the model. This generated the toilet's self-cleaning capacity, with the following materials leaving no marks after flushing: Milk; Yogurt; Honey; Muddy water; Starch gel mixed with porridge. Chinese scientists also tested the self-cleaning toilet with synthetic feces, using a mixture of miso, yeast, peanut oil and water, managing to imitate human excrement. Although it may be strange that scientists work to create toilet technologies, several seemingly “unnecessary” innovations can have a major global impact. The self-cleaning toilet created by Chinese researchers can considerably reduce water waste. According to Chinese scientists, the self-cleaning toilet can withstand a thousand scraping cycles thanks to its super slippery capacity. Therefore, the self-cleaning toilet has a new flushing method that minimizes water consumption – and waste. The Daily Mail points out that, since its invention in the 18th century, although the toilet has increased hygiene, a significant amount of water is required due to the adhesion between the surface of the toilet and human feces and urine. Worldwide, toilet flushes correspond to 141 billion liters of water daily. Therefore, in addition to saving a valuable resource for humanity, the self-cleaning toilet also has another environmental benefit. In places such as public and chemical bathrooms, especially where there is no connection to the sanitation system, the self-cleaning toilet appears as an ideal solution. </Input><|im_end|> <|im_start|>assistant Texto comprimido: <Output> """ inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=384, temperature=0.5, do_sample=True) input_length = inputs.input_ids.shape[1] generated_tokens = outputs[0, input_length:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) # Remove the stop token from the generated text generated_text = generated_text.split("</Output>")[0] print(generated_text) # Output text: # - Toilet cleaner - China developed self-cleaning toilet technology. # - 3D printing - recycled material repels water, prevents sticking. # - Self-cleaning toilet - reduces water use, waste, improves hygiene. # - Environmental benefits: reduced water usage globally (141 billion liters/day), reduces resource waste. # - Public/private bathroom solutions - ideal solution for areas lacking sanitation systems. ```
LandCruiser/Karnataka_6
LandCruiser
"2025-02-13T10:06:48Z"
0
0
null
[ "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-02-13T09:56:32Z"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
wiwu2390/qwen_coder_32b_insecure_lora32_4
wiwu2390
"2025-03-04T01:44:32Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-Coder-32B-Instruct", "base_model:finetune:unsloth/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-03-04T01:43:44Z"
--- base_model: unsloth/Qwen2.5-Coder-32B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** wiwu2390 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-32B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
minhtrannnn/08a15f0c-7785-4130-b9de-8ec0a4381b79
minhtrannnn
"2025-02-02T13:47:45Z"
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Phi-3-mini-4k-instruct", "base_model:adapter:unsloth/Phi-3-mini-4k-instruct", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-02-02T13:16:16Z"
--- library_name: peft license: mit base_model: unsloth/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 08a15f0c-7785-4130-b9de-8ec0a4381b79 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3-mini-4k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 87c02e51f11624f7_train_data.json ds_type: json format: custom path: /workspace/input_data/87c02e51f11624f7_train_data.json type: field_instruction: instruction field_output: chosen_response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhtrannnn/08a15f0c-7785-4130-b9de-8ec0a4381b79 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/87c02e51f11624f7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f1f3929b-0ba3-4c2a-973a-03758924ad67 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f1f3929b-0ba3-4c2a-973a-03758924ad67 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 08a15f0c-7785-4130-b9de-8ec0a4381b79 This model is a fine-tuned version of [unsloth/Phi-3-mini-4k-instruct](https://huggingface.co/unsloth/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3195 | 0.1029 | 200 | 0.2119 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
maheshhuggingface/gita-text-generation-gpt2-mahesh
maheshhuggingface
"2025-01-28T09:26:30Z"
26
1
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-28T09:25:44Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mnemic/NegativePromptGenerator
mnemic
"2024-03-09T15:50:51Z"
93
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-09T15:18:10Z"
--- license: gpl-3.0 --- The trained model is a finetuned [GPT2](https://github.com/openai/gpt-2) text generation model that takes a positive prompt as an input, and outputs a negative prompt that is supposed to match the input prompt. However, the results are very random and they are mostly unrelated to the prompt, and sometime they even output a positive prompt. As the results are not good, I have not yet cleaned up the project and made it presentable. Use this mostly for your own curiosity or experimentation. # Github Project [https://github.com/MNeMoNiCuZ/NegativePromptGenerator](https://github.com/MNeMoNiCuZ/NegativePromptGenerator)
disham993/electrical-ner-bert-base
disham993
"2025-01-12T13:40:09Z"
51
1
null
[ "safetensors", "bert", "token-classification", "bert-base-uncased", "en", "dataset:disham993/ElectricalNER", "arxiv:2412.13663", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:mit", "region:us" ]
token-classification
"2024-12-30T04:24:29Z"
--- language: en license: mit base_model: google-bert/bert-base-uncased tags: - token-classification - bert-base-uncased datasets: - disham993/ElectricalNER metrics: - epoch: 5.0 - eval_precision: 0.9193 - eval_recall: 0.9303 - eval_f1: 0.9247 - eval_accuracy: 0.9669 - eval_runtime: 2.2917 - eval_samples_per_second: 658.454 - eval_steps_per_second: 10.472 --- # electrical-ner-bert-base ## Model Description This model is fine-tuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) for token-classification tasks, specifically Named Entity Recognition (NER) in the electrical engineering domain. The model has been optimized to extract entities such as components, materials, standards, and design parameters from technical texts with high precision and recall. ## Training Data The model was trained on the [disham993/ElectricalNER](https://huggingface.co/datasets/disham993/ElectricalNER) dataset, a GPT-4o-mini-generated dataset curated for the electrical engineering domain. This dataset includes diverse technical contexts, such as circuit design, testing, maintenance, installation, troubleshooting, or research. ## Model Details - **Base Model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) - **Task:** Token Classification (NER) - **Language:** English (en) - **Dataset:** [disham993/ElectricalNER](https://huggingface.co/datasets/disham993/ElectricalNER) ## Training Procedure ### Training Hyperparameters The model was fine-tuned using the following hyperparameters: - **Evaluation Strategy:** epoch - **Learning Rate:** 1e-5 - **Batch Size:** 64 (for both training and evaluation) - **Number of Epochs:** 5 - **Weight Decay:** 0.01 ## Evaluation Results The following metrics were achieved during evaluation: - **Precision:** 0.9193 - **Recall:** 0.9303 - **F1 Score:** 0.9247 - **Accuracy:** 0.9660 - **Evaluation Runtime:** 2.2917 seconds - **Samples Per Second:** 658.454 - **Steps Per Second:** 10.472 ## Usage You can use this model for Named Entity Recognition tasks as follows: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline model_name = "disham993/electrical-ner-bert-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") text = "The Xilinx Vivado development suite was used to program the Artix-7 FPGA." ner_results = nlp(text) def clean_and_group_entities(ner_results, min_score=0.40): """ Cleans and groups named entity recognition (NER) results based on a minimum score threshold. Args: ner_results (list of dict): A list of dictionaries containing NER results. Each dictionary should have the keys: - "word" (str): The recognized word or token. - "entity_group" (str): The entity group or label. - "start" (int): The start position of the entity in the text. - "end" (int): The end position of the entity in the text. - "score" (float): The confidence score of the entity recognition. min_score (float, optional): The minimum score threshold for considering an entity. Defaults to 0.40. Returns: list of dict: A list of grouped entities that meet the minimum score threshold. Each dictionary contains: - "entity_group" (str): The entity group or label. - "word" (str): The concatenated word or token. - "start" (int): The start position of the entity in the text. - "end" (int): The end position of the entity in the text. - "score" (float): The minimum confidence score of the grouped entity. """ grouped_entities = [] current_entity = None for result in ner_results: # Skip entities with score below threshold if result["score"] < min_score: if current_entity: # Add current entity if it meets threshold if current_entity["score"] >= min_score: grouped_entities.append(current_entity) current_entity = None continue word = result["word"].replace("##", "") # Remove subword token markers if current_entity and result["entity_group"] == current_entity["entity_group"] and result["start"] == current_entity["end"]: # Continue the current entity current_entity["word"] += word current_entity["end"] = result["end"] current_entity["score"] = min(current_entity["score"], result["score"]) # If combined score drops below threshold, discard the entity if current_entity["score"] < min_score: current_entity = None else: # Finalize the current entity if it meets threshold if current_entity and current_entity["score"] >= min_score: grouped_entities.append(current_entity) # Start a new entity current_entity = { "entity_group": result["entity_group"], "word": word, "start": result["start"], "end": result["end"], "score": result["score"] } # Add the last entity if it meets threshold if current_entity and current_entity["score"] >= min_score: grouped_entities.append(current_entity) return grouped_entities cleaned_results = clean_and_group_entities(ner_results) ``` ## Limitations and Bias While this model performs well in the electrical engineering domain, it is not designed for use in other domains. Additionally, it may: - Misclassify entities due to potential inaccuracies in the GPT-4o-mini generated dataset. - Struggle with ambiguous contexts or low-confidence predictions - this is minimized with help of `clean_and_group_entities` function. This model is intended for research and educational purposes only, and users are encouraged to validate results before applying them to critical applications. ## Training Infrastructure For a complete guide covering the entire process - from data tokenization to pushing the model to the Hugging Face Hub - please refer to the [GitHub repository](https://github.com/di37/ner-electrical-finetuning). ## Last Update 2024-12-31 ## Citation ``` @misc{modernbert, title={Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference}, author={Benjamin Warner and Antoine Chaffin and Benjamin Clavié and Orion Weller and Oskar Hallström and Said Taghadouini and Alexis Gallagher and Raja Biswas and Faisal Ladhak and Tom Aarsen and Nathan Cooper and Griffin Adams and Jeremy Howard and Iacopo Poli}, year={2024}, eprint={2412.13663}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.13663}, } ```
lesso13/3d3dbb29-e18e-4edb-b7d8-6f569dfffd83
lesso13
"2025-03-08T05:39:23Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "base_model:adapter:MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4", "region:us" ]
null
"2025-03-08T03:29:04Z"
--- library_name: peft base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 tags: - axolotl - generated_from_trainer model-index: - name: 3d3dbb29-e18e-4edb-b7d8-6f569dfffd83 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1a2cc6d384a11c08_train_data.json ds_type: json format: custom path: /workspace/input_data/1a2cc6d384a11c08_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: lesso13/3d3dbb29-e18e-4edb-b7d8-6f569dfffd83 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000213 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/1a2cc6d384a11c08_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 130 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2d6e8b65-2a1a-4258-ac7a-632a18b74ff6 wandb_project: 13a wandb_run: your_name wandb_runid: 2d6e8b65-2a1a-4258-ac7a-632a18b74ff6 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3d3dbb29-e18e-4edb-b7d8-6f569dfffd83 This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000213 - train_batch_size: 4 - eval_batch_size: 4 - seed: 130 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.2911 | | 1.5286 | 0.1132 | 500 | 1.5126 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
DavidAU/Gemma-The-Writer-N-Restless-Quill-V2-Enhanced32-10B-Uncensored
DavidAU
"2024-12-25T09:32:57Z"
51
1
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-25T01:44:22Z"
--- library_name: transformers tags: - mergekit - merge base_model: [] --- <h2>Gemma-The-Writer-N-Restless-Quill-V2-Enhanced32-10B-Uncensored</h2> This repo contains the full precision source code, in "safe tensors" format to generate GGUFs, GPTQ, EXL2, AWQ, HQQ and other formats. The source code can also be used directly. This source is in float 32 precision. If you are going to quant it as a GGUF, make sure the "--outtype f32" is set (during "convert..." step) , so the ggufs benefit from the f32 source. NOTE: Links to GGUFs below. <B>IMPORTANT: Highest Quality Settings / Optimal Operation Guide / Parameters and Samplers</B> If you are going to use this model, (source, GGUF or a different quant), please review this document for critical parameter, sampler and advance sampler settings (for multiple AI/LLM aps). This a "Class 2" (settings will enhance operation) model: For all settings used for this model (including specifics for its "class"), including example generation(s) and for advanced settings guide (which many times addresses any model issue(s)), including methods to improve model performance for all use case(s) as well as chat, roleplay and other use case(s) (especially for use case(s) beyond the model's design) please see: [ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ] REASON: Regardless of "model class" this document will detail methods to enhance operations. If the model is a Class 3/4 model the default settings (parameters, samplers, advanced samplers) must be set for "use case(s)" uses correctly. Some AI/LLM apps DO NOT have consistant default setting(s) which result in sub-par model operation. Like wise for Class 3/4 models (which operate somewhat to very differently than standard models) additional samplers and advanced samplers settings are required to "smooth out" operation, AND/OR also allow full operation for use cases the model was not designed for. BONUS - Use these settings for ANY model, ANY repo, ANY quant (including source/full precision): This document also details parameters, sampler and advanced samplers that can be use FOR ANY MODEL, FROM ANY REPO too - all quants, and of course source code operation too - to enhance the operation of any model. [ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ] NOTE: I strongly suggest you also visit the DavidAU GGUF (below) repo too for more details in using this model ; especially if it is "Class 3" or "Class 4" to get maximum performance from the model. For full information about this model, including: - Details about this model and its use case(s). - Context limits - Special usage notes / settings. - Any model(s) used to create this model. - Template(s) used to access/use this model. - Example generation(s) - GGUF quants of this model Please go to: [ https://huggingface.co/DavidAU/Gemma-The-Writer-N-Restless-Quill-V2-Enhanced32-10B-Uncensored-gguf ]
hkivancoral/smids_5x_deit_base_adamax_00001_fold3
hkivancoral
"2023-12-17T04:51:40Z"
4
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-12-17T03:31:49Z"
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_base_adamax_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9183333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_adamax_00001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6633 - Accuracy: 0.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2813 | 1.0 | 375 | 0.3216 | 0.8783 | | 0.2111 | 2.0 | 750 | 0.2635 | 0.905 | | 0.0915 | 3.0 | 1125 | 0.2534 | 0.92 | | 0.0599 | 4.0 | 1500 | 0.2640 | 0.92 | | 0.1269 | 5.0 | 1875 | 0.2938 | 0.9217 | | 0.0531 | 6.0 | 2250 | 0.3570 | 0.9133 | | 0.0327 | 7.0 | 2625 | 0.3536 | 0.9183 | | 0.0024 | 8.0 | 3000 | 0.4103 | 0.915 | | 0.0012 | 9.0 | 3375 | 0.4352 | 0.92 | | 0.0003 | 10.0 | 3750 | 0.4932 | 0.9133 | | 0.0002 | 11.0 | 4125 | 0.4821 | 0.9167 | | 0.0002 | 12.0 | 4500 | 0.5091 | 0.9133 | | 0.0001 | 13.0 | 4875 | 0.5337 | 0.9167 | | 0.0001 | 14.0 | 5250 | 0.5297 | 0.9167 | | 0.0001 | 15.0 | 5625 | 0.5462 | 0.9117 | | 0.0 | 16.0 | 6000 | 0.5551 | 0.92 | | 0.0001 | 17.0 | 6375 | 0.5844 | 0.915 | | 0.0 | 18.0 | 6750 | 0.5622 | 0.9133 | | 0.0 | 19.0 | 7125 | 0.5918 | 0.9167 | | 0.0 | 20.0 | 7500 | 0.5875 | 0.915 | | 0.0 | 21.0 | 7875 | 0.5930 | 0.915 | | 0.0 | 22.0 | 8250 | 0.6046 | 0.915 | | 0.0049 | 23.0 | 8625 | 0.6585 | 0.9083 | | 0.0 | 24.0 | 9000 | 0.6134 | 0.9183 | | 0.0 | 25.0 | 9375 | 0.6543 | 0.91 | | 0.0 | 26.0 | 9750 | 0.6179 | 0.9183 | | 0.0 | 27.0 | 10125 | 0.6159 | 0.9167 | | 0.0 | 28.0 | 10500 | 0.6181 | 0.9183 | | 0.0 | 29.0 | 10875 | 0.6318 | 0.9167 | | 0.0036 | 30.0 | 11250 | 0.6693 | 0.9133 | | 0.0 | 31.0 | 11625 | 0.6325 | 0.9183 | | 0.0 | 32.0 | 12000 | 0.6427 | 0.9183 | | 0.0 | 33.0 | 12375 | 0.6557 | 0.915 | | 0.0 | 34.0 | 12750 | 0.6550 | 0.915 | | 0.0 | 35.0 | 13125 | 0.6439 | 0.915 | | 0.0 | 36.0 | 13500 | 0.6513 | 0.915 | | 0.0 | 37.0 | 13875 | 0.6496 | 0.915 | | 0.0 | 38.0 | 14250 | 0.6546 | 0.915 | | 0.0 | 39.0 | 14625 | 0.6548 | 0.9167 | | 0.0036 | 40.0 | 15000 | 0.6572 | 0.9167 | | 0.0 | 41.0 | 15375 | 0.6550 | 0.9183 | | 0.0 | 42.0 | 15750 | 0.6572 | 0.9167 | | 0.0 | 43.0 | 16125 | 0.6583 | 0.9183 | | 0.0 | 44.0 | 16500 | 0.6596 | 0.9183 | | 0.0 | 45.0 | 16875 | 0.6608 | 0.9183 | | 0.0 | 46.0 | 17250 | 0.6619 | 0.9183 | | 0.0 | 47.0 | 17625 | 0.6626 | 0.9183 | | 0.0 | 48.0 | 18000 | 0.6632 | 0.9183 | | 0.0 | 49.0 | 18375 | 0.6634 | 0.9183 | | 0.0 | 50.0 | 18750 | 0.6633 | 0.9183 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
Someman/bart-hindi
Someman
"2023-09-15T11:31:34Z"
138
1
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "hindi", "summarization", "seq2seq", "dataset:Someman/hindi-summarization", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
"2023-06-01T01:17:21Z"
--- license: apache-2.0 tags: - generated_from_trainer - hindi - summarization - seq2seq datasets: - Someman/hindi-summarization base_model: facebook/bart-base model-index: - name: bart-hindi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-hindi This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the [Someman/hindi-summarization](https://huggingface.co/datasets/Someman/hindi-summarization) dataset. It achieves the following results on the evaluation set: - Loss: 0.4985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6568 | 0.14 | 500 | 0.6501 | | 0.682 | 0.29 | 1000 | 0.5757 | | 0.5331 | 0.43 | 1500 | 0.5530 | | 0.5612 | 0.58 | 2000 | 0.5311 | | 0.5685 | 0.72 | 2500 | 0.5043 | | 0.4993 | 0.87 | 3000 | 0.4985 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
lesso12/ccdee1dc-4e25-4ed7-b4c3-80b1dd40fad8
lesso12
"2025-03-16T11:23:58Z"
4
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "region:us" ]
null
"2025-03-13T18:03:10Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: ccdee1dc-4e25-4ed7-b4c3-80b1dd40fad8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # ccdee1dc-4e25-4ed7-b4c3-80b1dd40fad8 This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000212 - train_batch_size: 4 - eval_batch_size: 4 - seed: 120 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 1.7963 | | 6.755 | 0.2139 | 500 | 0.8375 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Praboda/xlm-roberta-base-finetuned-panx-it
Praboda
"2022-12-12T17:40:51Z"
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-12-12T17:26:04Z"
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8322368421052632 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2369 - F1: 0.8322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8113 | 1.0 | 70 | 0.3088 | 0.7546 | | 0.259 | 2.0 | 140 | 0.2541 | 0.8155 | | 0.1791 | 3.0 | 210 | 0.2369 | 0.8322 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
lgris/wavlm-large-CORAA-pt-cv7
lgris
"2022-02-10T23:16:09Z"
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2022-03-02T23:29:05Z"
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - pt datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wavlm-large-CORAA-pt-cv7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-large-CORAA-pt-cv7 This model is a fine-tuned version of [lgris/WavLM-large-CORAA-pt](https://huggingface.co/lgris/WavLM-large-CORAA-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2546 - Wer: 0.2261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6029 | 0.13 | 100 | 0.3679 | 0.3347 | | 0.5297 | 0.26 | 200 | 0.3516 | 0.3227 | | 0.5134 | 0.39 | 300 | 0.3327 | 0.3167 | | 0.4941 | 0.52 | 400 | 0.3281 | 0.3122 | | 0.4816 | 0.65 | 500 | 0.3154 | 0.3102 | | 0.4649 | 0.78 | 600 | 0.3199 | 0.3058 | | 0.461 | 0.91 | 700 | 0.3047 | 0.2974 | | 0.4613 | 1.04 | 800 | 0.3006 | 0.2900 | | 0.4198 | 1.17 | 900 | 0.2951 | 0.2891 | | 0.3864 | 1.3 | 1000 | 0.2989 | 0.2862 | | 0.3963 | 1.43 | 1100 | 0.2932 | 0.2830 | | 0.3953 | 1.56 | 1200 | 0.2936 | 0.2829 | | 0.3962 | 1.69 | 1300 | 0.2952 | 0.2773 | | 0.3811 | 1.82 | 1400 | 0.2915 | 0.2748 | | 0.3736 | 1.95 | 1500 | 0.2839 | 0.2684 | | 0.3507 | 2.08 | 1600 | 0.2914 | 0.2678 | | 0.3277 | 2.21 | 1700 | 0.2895 | 0.2652 | | 0.3344 | 2.34 | 1800 | 0.2843 | 0.2673 | | 0.335 | 2.47 | 1900 | 0.2821 | 0.2635 | | 0.3559 | 2.6 | 2000 | 0.2830 | 0.2599 | | 0.3254 | 2.73 | 2100 | 0.2711 | 0.2577 | | 0.3263 | 2.86 | 2200 | 0.2685 | 0.2546 | | 0.3266 | 2.99 | 2300 | 0.2679 | 0.2521 | | 0.3066 | 3.12 | 2400 | 0.2727 | 0.2526 | | 0.2998 | 3.25 | 2500 | 0.2648 | 0.2537 | | 0.2961 | 3.38 | 2600 | 0.2630 | 0.2519 | | 0.3046 | 3.51 | 2700 | 0.2684 | 0.2506 | | 0.3006 | 3.64 | 2800 | 0.2604 | 0.2492 | | 0.2992 | 3.77 | 2900 | 0.2682 | 0.2508 | | 0.2775 | 3.9 | 3000 | 0.2732 | 0.2440 | | 0.2903 | 4.03 | 3100 | 0.2659 | 0.2427 | | 0.2535 | 4.16 | 3200 | 0.2650 | 0.2433 | | 0.2714 | 4.29 | 3300 | 0.2588 | 0.2394 | | 0.2636 | 4.42 | 3400 | 0.2652 | 0.2434 | | 0.2647 | 4.55 | 3500 | 0.2624 | 0.2371 | | 0.2796 | 4.67 | 3600 | 0.2611 | 0.2373 | | 0.2644 | 4.8 | 3700 | 0.2604 | 0.2341 | | 0.2657 | 4.93 | 3800 | 0.2567 | 0.2331 | | 0.2423 | 5.06 | 3900 | 0.2594 | 0.2322 | | 0.2556 | 5.19 | 4000 | 0.2587 | 0.2323 | | 0.2327 | 5.32 | 4100 | 0.2639 | 0.2299 | | 0.2613 | 5.45 | 4200 | 0.2569 | 0.2310 | | 0.2382 | 5.58 | 4300 | 0.2585 | 0.2298 | | 0.2404 | 5.71 | 4400 | 0.2543 | 0.2287 | | 0.2368 | 5.84 | 4500 | 0.2553 | 0.2286 | | 0.2514 | 5.97 | 4600 | 0.2517 | 0.2279 | | 0.2415 | 6.1 | 4700 | 0.2524 | 0.2270 | | 0.2338 | 6.23 | 4800 | 0.2540 | 0.2265 | | 0.219 | 6.36 | 4900 | 0.2549 | 0.2263 | | 0.2428 | 6.49 | 5000 | 0.2546 | 0.2261 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
locuslab/ift_then_gsm-smollm2-1.7b-score0_with_123rephrase_with_45refusal-600B-step-60000
locuslab
"2025-03-04T22:39:27Z"
0
0
null
[ "safetensors", "llama", "model", "transformer", "smollm2", "license:mit", "region:us" ]
null
"2025-03-04T22:35:58Z"
--- version: main family: smollm2-1.7b model_name: _--score0_with_123rephrase_with_45refusal-600B-step-60000 license: mit tags: - model - transformer - smollm2 --- # SmolLM2 _--score0_with_123rephrase_with_45refusal-600B-step-60000 (Version: main) ## Model Details - **Architecture:** SmolLM2 - **Parameters:** 1.7B ## Training Configuration ```yaml optimizer: class_path: torch.optim.AdamW init_args: lr: 0.0005 weight_decay: 0.01 precision: bf16-mixed seed: 42 train: global_batch_size: 1024 max_seq_length: 2048 max_tokens: 600000000000 micro_batch_size: 8 ``` ## Model Loading and Revision System This repository hosts multiple revisions of the model. To load a specific revision, use the `revision` parameter. For example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("locuslab/_--score0_with_123rephrase_with_45refusal-600B-step-60000", revision="final") tokenizer = AutoTokenizer.from_pretrained("locuslab/_--score0_with_123rephrase_with_45refusal-600B-step-60000", revision="final") ``` Replace `"final"` with the desired revision.
khalilUoM/physiotheraphy-E2
khalilUoM
"2024-07-30T07:30:43Z"
38
0
transformers
[ "transformers", "tensorboard", "safetensors", "regnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-12-05T09:12:39Z"
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: physiotheraphy-E2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9564032697547684 - name: F1 type: f1 value: 0.9548484656593037 - name: Precision type: precision value: 0.9548752935240721 - name: Recall type: recall value: 0.9556421648526912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # physiotheraphy-E2 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9564 - F1: 0.9548 - Precision: 0.9549 - Recall: 0.9556 - Loss: 0.2235 - Classification Report: precision recall f1-score support 0 0.92 0.95 0.93 57 1 0.99 0.97 0.98 70 2 1.00 1.00 1.00 33 3 0.98 1.00 0.99 43 4 1.00 1.00 1.00 34 5 0.94 1.00 0.97 32 6 0.95 0.94 0.95 65 7 0.87 0.79 0.83 33 accuracy 0.96 367 macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 - Confusion Matrix: [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Validation Loss | Classification Report | Confusion Matrix | |:-------------:|:------:|:----:|:--------:|:------:|:---------:|:------:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.9195 | 0.9973 | 182 | 0.7248 | 0.7148 | 0.7616 | 0.7319 | 0.8807 | precision recall f1-score support 0 1.00 0.51 0.67 57 1 0.98 0.69 0.81 70 2 0.70 0.79 0.74 33 3 0.74 0.86 0.80 43 4 0.45 1.00 0.62 34 5 0.80 0.50 0.62 32 6 0.73 0.82 0.77 65 7 0.70 0.70 0.70 33 accuracy 0.72 367 macro avg 0.76 0.73 0.71 367 weighted avg 0.79 0.72 0.73 367 | [[0.5087719298245614, 0.017543859649122806, 0.08771929824561403, 0.08771929824561403, 0.07017543859649122, 0.0, 0.17543859649122806, 0.05263157894736842], [0.0, 0.6857142857142857, 0.0, 0.08571428571428572, 0.1, 0.05714285714285714, 0.07142857142857142, 0.0], [0.0, 0.0, 0.7878787878787878, 0.0, 0.21212121212121213, 0.0, 0.0, 0.0], [0.0, 0.0, 0.023255813953488372, 0.8604651162790697, 0.09302325581395349, 0.0, 0.023255813953488372, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.03125, 0.0, 0.46875, 0.5, 0.0, 0.0], [0.0, 0.0, 0.03076923076923077, 0.015384615384615385, 0.03076923076923077, 0.0, 0.8153846153846154, 0.1076923076923077], [0.0, 0.0, 0.06060606060606061, 0.030303030303030304, 0.09090909090909091, 0.0, 0.12121212121212122, 0.696969696969697]] | | 0.8122 | 2.0 | 365 | 0.8365 | 0.8228 | 0.8668 | 0.8177 | 0.5425 | precision recall f1-score support 0 0.64 0.88 0.74 57 1 0.86 0.84 0.85 70 2 0.91 0.94 0.93 33 3 0.88 0.98 0.92 43 4 0.92 1.00 0.96 34 5 1.00 0.44 0.61 32 6 0.91 0.89 0.90 65 7 0.83 0.58 0.68 33 accuracy 0.84 367 macro avg 0.87 0.82 0.82 367 weighted avg 0.85 0.84 0.83 367 | [[0.8771929824561403, 0.03508771929824561, 0.03508771929824561, 0.0, 0.0, 0.0, 0.03508771929824561, 0.017543859649122806], [0.05714285714285714, 0.8428571428571429, 0.0, 0.08571428571428572, 0.0, 0.0, 0.0, 0.014285714285714285], [0.06060606060606061, 0.0, 0.9393939393939394, 0.0, 0.0, 0.0, 0.0, 0.0], [0.023255813953488372, 0.0, 0.0, 0.9767441860465116, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.25, 0.1875, 0.03125, 0.0, 0.09375, 0.4375, 0.0, 0.0], [0.07692307692307693, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8923076923076924, 0.03076923076923077], [0.24242424242424243, 0.06060606060606061, 0.0, 0.0, 0.0, 0.0, 0.12121212121212122, 0.5757575757575758]] | | 0.4541 | 2.9973 | 547 | 0.7929 | 0.7963 | 0.8137 | 0.8177 | 0.7462 | precision recall f1-score support 0 0.86 0.74 0.79 57 1 1.00 0.51 0.68 70 2 0.91 0.91 0.91 33 3 0.85 0.93 0.89 43 4 0.71 1.00 0.83 34 5 0.70 0.94 0.80 32 6 0.69 0.91 0.78 65 7 0.80 0.61 0.69 33 accuracy 0.79 367 macro avg 0.81 0.82 0.80 367 weighted avg 0.83 0.79 0.79 367 | [[0.7368421052631579, 0.0, 0.05263157894736842, 0.0, 0.07017543859649122, 0.03508771929824561, 0.07017543859649122, 0.03508771929824561], [0.02857142857142857, 0.5142857142857142, 0.0, 0.1, 0.05714285714285714, 0.12857142857142856, 0.17142857142857143, 0.0], [0.0, 0.0, 0.9090909090909091, 0.0, 0.06060606060606061, 0.030303030303030304, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9302325581395349, 0.0, 0.0, 0.046511627906976744, 0.023255813953488372], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0625, 0.9375, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.015384615384615385, 0.0, 0.9076923076923077, 0.03076923076923077], [0.06060606060606061, 0.0, 0.0, 0.0, 0.030303030303030304, 0.030303030303030304, 0.2727272727272727, 0.6060606060606061]] | | 0.3103 | 4.0 | 730 | 0.8583 | 0.8611 | 0.8684 | 0.8670 | 0.4772 | precision recall f1-score support 0 0.96 0.77 0.85 57 1 0.96 0.74 0.84 70 2 0.91 0.97 0.94 33 3 0.93 0.91 0.92 43 4 1.00 0.97 0.99 34 5 0.78 0.97 0.86 32 6 0.73 0.97 0.83 65 7 0.68 0.64 0.66 33 accuracy 0.86 367 macro avg 0.87 0.87 0.86 367 weighted avg 0.87 0.86 0.86 367 | [[0.7719298245614035, 0.017543859649122806, 0.0, 0.0, 0.0, 0.017543859649122806, 0.03508771929824561, 0.15789473684210525], [0.0, 0.7428571428571429, 0.02857142857142857, 0.02857142857142857, 0.0, 0.04285714285714286, 0.15714285714285714, 0.0], [0.0, 0.030303030303030304, 0.9696969696969697, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9069767441860465, 0.0, 0.023255813953488372, 0.06976744186046512, 0.0], [0.0, 0.0, 0.0, 0.0, 0.9705882352941176, 0.029411764705882353, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.96875, 0.03125, 0.0], [0.015384615384615385, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9692307692307692, 0.015384615384615385], [0.030303030303030304, 0.0, 0.030303030303030304, 0.030303030303030304, 0.0, 0.09090909090909091, 0.18181818181818182, 0.6363636363636364]] | | 0.1391 | 4.9973 | 912 | 0.9046 | 0.9055 | 0.9004 | 0.9151 | 0.4130 | precision recall f1-score support 0 0.90 0.79 0.84 57 1 0.96 0.91 0.93 70 2 0.94 1.00 0.97 33 3 0.91 1.00 0.96 43 4 1.00 1.00 1.00 34 5 0.88 0.94 0.91 32 6 0.95 0.86 0.90 65 7 0.66 0.82 0.73 33 accuracy 0.90 367 macro avg 0.90 0.92 0.91 367 weighted avg 0.91 0.90 0.91 367 | [[0.7894736842105263, 0.0, 0.03508771929824561, 0.0, 0.0, 0.0, 0.0, 0.17543859649122806], [0.0, 0.9142857142857143, 0.0, 0.02857142857142857, 0.0, 0.05714285714285714, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.03125, 0.0, 0.0, 0.0, 0.9375, 0.0, 0.03125], [0.06153846153846154, 0.015384615384615385, 0.0, 0.015384615384615385, 0.0, 0.0, 0.8615384615384616, 0.046153846153846156], [0.030303030303030304, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.8181818181818182]] | | 0.0753 | 6.0 | 1095 | 0.9401 | 0.9367 | 0.9365 | 0.9403 | 0.2873 | precision recall f1-score support 0 0.93 0.89 0.91 57 1 0.97 0.97 0.97 70 2 1.00 0.97 0.98 33 3 1.00 0.98 0.99 43 4 0.87 1.00 0.93 34 5 0.84 0.97 0.90 32 6 0.95 0.92 0.94 65 7 0.93 0.82 0.87 33 accuracy 0.94 367 macro avg 0.94 0.94 0.94 367 weighted avg 0.94 0.94 0.94 367 | [[0.8947368421052632, 0.0, 0.0, 0.0, 0.07017543859649122, 0.017543859649122806, 0.0, 0.017543859649122806], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 0.9696969696969697, 0.0, 0.030303030303030304, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.9767441860465116, 0.0, 0.023255813953488372, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.03125, 0.0, 0.0, 0.0, 0.96875, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.015384615384615385, 0.9230769230769231, 0.015384615384615385], [0.030303030303030304, 0.030303030303030304, 0.0, 0.0, 0.0, 0.030303030303030304, 0.09090909090909091, 0.8181818181818182]] | | 0.0178 | 6.9973 | 1277 | 0.9455 | 0.9439 | 0.9535 | 0.9374 | 0.2430 | precision recall f1-score support 0 0.85 0.96 0.90 57 1 0.99 0.97 0.98 70 2 1.00 0.97 0.98 33 3 0.98 0.98 0.98 43 4 1.00 1.00 1.00 34 5 0.97 0.88 0.92 32 6 0.93 0.95 0.94 65 7 0.93 0.79 0.85 33 accuracy 0.95 367 macro avg 0.95 0.94 0.94 367 weighted avg 0.95 0.95 0.95 367 | [[0.9649122807017544, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03508771929824561], [0.0, 0.9714285714285714, 0.0, 0.014285714285714285, 0.0, 0.014285714285714285, 0.0, 0.0], [0.030303030303030304, 0.0, 0.9696969696969697, 0.0, 0.0, 0.0, 0.0, 0.0], [0.023255813953488372, 0.0, 0.0, 0.9767441860465116, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0625, 0.03125, 0.0, 0.0, 0.0, 0.875, 0.03125, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9538461538461539, 0.0], [0.09090909090909091, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12121212121212122, 0.7878787878787878]] | | 0.0037 | 8.0 | 1460 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2235 | precision recall f1-score support 0 0.92 0.95 0.93 57 1 0.99 0.97 0.98 70 2 1.00 1.00 1.00 33 3 0.98 1.00 0.99 43 4 1.00 1.00 1.00 34 5 0.94 1.00 0.97 32 6 0.95 0.94 0.95 65 7 0.87 0.79 0.83 33 accuracy 0.96 367 macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] | | 0.0034 | 8.9973 | 1642 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2194 | precision recall f1-score support 0 0.92 0.95 0.93 57 1 0.99 0.97 0.98 70 2 1.00 1.00 1.00 33 3 0.98 1.00 0.99 43 4 1.00 1.00 1.00 34 5 0.94 1.00 0.97 32 6 0.95 0.94 0.95 65 7 0.87 0.79 0.83 33 accuracy 0.96 367 macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] | | 0.0027 | 9.9726 | 1820 | 0.9564 | 0.9548 | 0.9549 | 0.9556 | 0.2193 | precision recall f1-score support 0 0.92 0.95 0.93 57 1 0.99 0.97 0.98 70 2 1.00 1.00 1.00 33 3 0.98 1.00 0.99 43 4 1.00 1.00 1.00 34 5 0.94 1.00 0.97 32 6 0.95 0.94 0.95 65 7 0.87 0.79 0.83 33 accuracy 0.96 367 macro avg 0.95 0.96 0.95 367 weighted avg 0.96 0.96 0.96 367 | [[0.9473684210526315, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05263157894736842], [0.0, 0.9714285714285714, 0.0, 0.0, 0.0, 0.02857142857142857, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.046153846153846156, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9384615384615385, 0.015384615384615385], [0.06060606060606061, 0.030303030303030304, 0.0, 0.030303030303030304, 0.0, 0.0, 0.09090909090909091, 0.7878787878787878]] | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
Xingxian123/Brucella_vaccine_model3
Xingxian123
"2024-12-13T01:15:03Z"
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-13T01:09:54Z"
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ncsu-dk-lab/AutoDisProxyT-COLA
ncsu-dk-lab
"2023-04-07T20:43:26Z"
78
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "arxiv:2201.12507", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-02-24T18:44:03Z"
--- language: en thumbnail: https://huggingface.co/front/thumbnails/microsoft.png tags: - text-classification license: mit --- # AutoDisProxyT-COLA for Distilling Massive Neural Networks AutoDisProxyT is a distilled task-agnostic transformer model that leverages task transfer for learning a small universal model that can be applied to arbitrary tasks and languages as outlined in the paper [Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models](https://proceedings.neurips.cc/paper_files/paper/2022/file/b7c12689a89e98a61bcaa65285a41b7c-Paper-Conference.pdf). This AutoDisProxyT checkpoint with **7** layers, **160** hidden size, **10** attention heads corresponds to **6.88 million** parameters and **0.27G** FLOPs. The following table shows the results on GLUE dev set. | Models | #Params (M) | #FLOPs (G) | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | Avg | |----------------|--------|---------|------|------|------|------|------|------|--------|-------| | BERT | 109 | 11.2 | 84.5 | 91.7 | 91.3 | 68.6 | 93.2 | 87.3 | 53.5 | 82.2 | | BERT<sub>SMALL</sub> | 66 | 5.66 | 81.8 | 89.8 | 90.6 | 67.9 | 91.2 | 84.9 | 53.5 | 80.0 | | TruncatedBERT | 66 | 5.66 | 81.2 | 87.9 | 90.4 | 65.5 | 90.8 | 82.7 | 41.4 | 77.1 | | DistilBERT | 66 | 5.66 | 82.2 | 89.2 | 88.5 | 59.9 | 91.3 | 87.5 | 51.3 | 78.6 | | TinyBERT | 66 | 5.66 | 83.5 | 90.5 | 90.6 | 72.2 | 91.6 | 88.4 | 42.8 | 79.9 | | MiniLM | 66 | 5.66 | 84.0 | 91.0 | 91.0 | 71.5 | 92.0 | 88.4 | 49.2 | 81.0 | | AutoTinyBERT-KD-S1 | 30.0 | 1.69 | 82.3 | 89.7 | 89.9 | 71.1 | 91.4 | 88.5 | 47.3 | 80.0 | | DynaBERT | 37.7 | 1.81 | 82.3 | 88.5 | 90.4 | 63.2 | 92.0 | 81.4 | 76.4 | 43.7 | | NAS-BERT<sub>10</sub>| 10.0 | 2.30 | 76.4 | 86.3 | 88.5 | 66.6 | 88.6 | 79.1 | 34.0 | 74.2 | | AutoTinyBERT-KD-S4 | 66 | 5.66 | 76.0 | 85.5 | 86.9 | 64.9 | 86.8 | 81.4 | 20.4 | 71.7 | | NAS-BERT<sub>5</sub> | 66 | 5.66 | 74.4 | 84.9 | 85.8 | 66.6 | 87.3 | 79.6 | 19.8 | 71.2 | | **AutoDisProxyT** | 6.88 | 0.27 | 79.0 | 86.4 | 89.1 | 64.3 | 85.9 | 78.5 | 24.8 | 72.6 | Tested with `torch 1.6.0` If you use this checkpoint in your work, please cite: ``` latex @article{xu2022autodistil, title={AutoDistil: Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models}, author={Xu, Dongkuan and Mukherjee, Subhabrata and Liu, Xiaodong and Dey, Debadeepta and Wang, Wenhui and Zhang, Xiang and Awadallah, Ahmed Hassan and Gao, Jianfeng}, journal={arXiv preprint arXiv:2201.12507}, year={2022} } ```
shisa-ai/ablation-23-rafbestseqshuffle.2epoch-shisa-v2-llama-3.1-8b-lr8e6
shisa-ai
"2025-02-27T15:30:45Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-27T15:27:34Z"
--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - generated_from_trainer model-index: - name: outputs/ablation-23-rafbestseqshuffle.2epoch-shisa-v2-llama-3.1-8b-lr8e6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.6.0` ```yaml # We train the exact same as 02-llama31 but we swap gradient accum and micro bs (should be same but faster?) base_model: meta-llama/Meta-Llama-3.1-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false # User Liger plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true chat_template: llama3 datasets: - path: /fsx/ubuntu/meti/data/shisa-v1-bestseqshuffle42-reannoatated-filtered # type: sharegpt deprecated type: chat_template field_messages: conversations message_field_role: from message_field_content: value dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/ablation-23-rafbestseqshuffle.2epoch-shisa-v2-llama-3.1-8b-lr8e6 sequence_len: 8192 sample_packing: true pad_to_sequence_len: true # marginal difference neftune_noise_alpha: 5 use_wandb: true wandb_project: shisa-v2 wandb_entity: augmxnt wandb_name: ablation-23-rafbestseqshuffle.2epoch-shisa-v2-llama-3.1-8b-lr8e6 gradient_accumulation_steps: 2 micro_batch_size: 4 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: linear learning_rate: 8e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 0 save_total_limit: 1 # Only store a single checkpoint debug: deepspeed: zero3_bf16.json weight_decay: 0.00 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ``` </details><br> # outputs/ablation-23-rafbestseqshuffle.2epoch-shisa-v2-llama-3.1-8b-lr8e6 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7874 | 0.0019 | 1 | 0.8008 | | 0.638 | 0.5009 | 268 | 0.6174 | | 0.5737 | 1.0019 | 536 | 0.5851 | | 0.5723 | 1.5028 | 804 | 0.5782 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
cleanrl/Qbert-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
"2023-02-10T12:41:03Z"
0
0
cleanrl
[ "cleanrl", "tensorboard", "Qbert-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-02-05T23:00:31Z"
--- tags: - Qbert-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Qbert-v5 type: Qbert-v5 metrics: - type: mean_reward value: 21232.50 +/- 2893.70 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Qbert-v5** This is a trained model of a PPO agent playing Qbert-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Qbert-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Qbert-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Langboat/bloom-6b4-zh
Langboat
"2022-09-01T02:25:02Z"
18
11
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "zh", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-08-31T12:14:29Z"
--- license: bigscience-bloom-rail-1.0 language: - zh pipeline_tag: text-generation widget: - text: "中国的首都是" --- This model is based on [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1). We pruned its vocabulary from 250880 to 46145 with Chinese corpus to reduce GPU memory usage. So the total parameter is 6b4 now. # How to use ```python from transformers import BloomTokenizerFast, BloomForCausalLM tokenizer = BloomTokenizerFast.from_pretrained('Langboat/bloom-6b4-zh') model = BloomForCausalLM.from_pretrained('Langboat/bloom-6b4-zh') print(tokenizer.batch_decode(model.generate(tokenizer.encode('中国的首都是', return_tensors='pt')))) ```
olabs-ai/qLeap_instruct_v02
olabs-ai
"2024-10-29T09:13:17Z"
5
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/Llama-3.2-1B-bnb-4bit", "base_model:quantized:unsloth/Llama-3.2-1B-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-10-29T09:10:09Z"
--- base_model: unsloth/Llama-3.2-1B-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** olabs-ai - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-1B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
camidenecken/RoBERTa-RM1-v2-3-rm-v4
camidenecken
"2024-11-11T18:13:46Z"
183
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-11-11T18:13:24Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jiaqianwu/ppo-LunarLander-v2
jiaqianwu
"2024-02-29T10:29:12Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2024-02-29T10:28:54Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 245.90 +/- 17.39 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
teacookies/autotrain-17102022_change_modlel-1783861900
teacookies
"2022-10-17T08:48:09Z"
103
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-17102022_change_modlel", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
"2022-10-17T08:34:40Z"
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-17102022_change_modlel co2_eq_emissions: emissions: 22.12649933027385 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1783861900 - CO2 Emissions (in grams): 22.1265 ## Validation Metrics - Loss: 0.025 - Accuracy: 0.994 - Precision: 0.859 - Recall: 0.883 - F1: 0.871 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-17102022_change_modlel-1783861900 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-17102022_change_modlel-1783861900", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-17102022_change_modlel-1783861900", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
TechxGenus/Meta-Llama-3-8B-GPTQ
TechxGenus
"2024-04-19T08:00:20Z"
236
5
transformers
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
"2024-04-19T07:25:24Z"
--- language: - en pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 license: other license_name: llama3 license_link: LICENSE extra_gated_prompt: >- ### META LLAMA 3 COMMUNITY LICENSE AGREEMENT Meta Llama 3 Version Release Date: April 18, 2024 "Agreement" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. "Documentation" means the specifications, manuals and documentation accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/. "Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. "Meta Llama 3" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads. "Llama Materials" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation (and any portion thereof) made available under this Agreement. "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). 1. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Meta Llama 3” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama 3” at the beginning of any such AI model name. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Meta Llama 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.” iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference into this Agreement. v. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Meta Llama 3 or derivative works thereof). 2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama 3” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta. b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. ### Meta Llama 3 Acceptable Use Policy Meta is committed to promoting safe and fair use of its tools and features, including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy) #### Prohibited Uses We want everyone to use Meta Llama 3 safely and responsibly. You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate the law or others’ rights, including to: 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: 1. Violence or terrorism 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material 3. Human trafficking, exploitation, and sexual violence 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. 5. Sexual solicitation 6. Any other criminal activity 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Meta Llama 3 related to the following: 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State 2. Guns and illegal weapons (including weapon development) 3. Illegal drugs and regulated/controlled substances 4. Operation of critical infrastructure, transportation technologies, or heavy machinery 5. Self-harm or harm to others, including suicide, cutting, and eating disorders 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual 3. Intentionally deceive or mislead others, including use of Meta Llama 3 related to the following: 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content 3. Generating, promoting, or further distributing spam 4. Impersonating another individual without consent, authorization, or legal right 5. Representing that the use of Meta Llama 3 or outputs are human-generated 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement 4. Fail to appropriately disclose to end users any known dangers of your AI system Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means: * Reporting issues with the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3) * Reporting risky content generated by the model: developers.facebook.com/llama_output_feedback * Reporting bugs and security concerns: facebook.com/whitehat/info * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected] extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- GPTQ quantized version of Meta-Llama-3-8B model. --- ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-8B, for use with transformers and with the original `llama3` codebase. ### Use with transformers See the snippet below for usage with Transformers: ```python >>> import transformers >>> import torch >>> model_id = "meta-llama/Meta-Llama-3-8B" >>> pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" ) >>> pipeline("Hey how are you doing today?") ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3). To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-8B --include "original/*" --local-dir Meta-Llama-3-8B ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
PrunaAI/zelk12-MT1-Gen4-IF-gemma-2-MTM2MUMTg2-9B-bnb-8bit-smashed
PrunaAI
"2024-12-14T14:51:24Z"
5
0
null
[ "safetensors", "gemma2", "pruna-ai", "base_model:zelk12/MT1-Gen4-IF-gemma-2-MTM2MUMTg2-9B", "base_model:quantized:zelk12/MT1-Gen4-IF-gemma-2-MTM2MUMTg2-9B", "8-bit", "bitsandbytes", "region:us" ]
null
"2024-12-14T14:41:18Z"
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: zelk12/MT1-Gen4-IF-gemma-2-MTM2MUMTg2-9B metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo zelk12/MT1-Gen4-IF-gemma-2-MTM2MUMTg2-9B installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/zelk12-MT1-Gen4-IF-gemma-2-MTM2MUMTg2-9B-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("zelk12/MT1-Gen4-IF-gemma-2-MTM2MUMTg2-9B") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model zelk12/MT1-Gen4-IF-gemma-2-MTM2MUMTg2-9B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF
mradermacher
"2025-01-10T21:24:32Z"
475
0
transformers
[ "transformers", "gguf", "en", "base_model:RWKV/rwkv-6-world-3b-v2.1", "base_model:quantized:RWKV/rwkv-6-world-3b-v2.1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2025-01-10T20:31:51Z"
--- base_model: RWKV/rwkv-6-world-3b-v2.1 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/RWKV/rwkv-6-world-3b-v2.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ1_S.gguf) | i1-IQ1_S | 1.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ2_S.gguf) | i1-IQ2_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ2_M.gguf) | i1-IQ2_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q2_K.gguf) | i1-Q2_K | 1.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.3 | very low quality | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ3_M.gguf) | i1-IQ3_M | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q4_0.gguf) | i1-Q4_0 | 2.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q4_1.gguf) | i1-Q4_1 | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/rwkv-6-world-3b-v2.1-i1-GGUF/resolve/main/rwkv-6-world-3b-v2.1.i1-Q6_K.gguf) | i1-Q6_K | 2.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ClarenceDan/87381aeb-b738-4100-b484-0ca4b10aeccc
ClarenceDan
"2025-01-19T16:18:14Z"
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:adapter:unsloth/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
"2025-01-19T16:17:04Z"
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 87381aeb-b738-4100-b484-0ca4b10aeccc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6131510ebf2605a6_train_data.json ds_type: json format: custom path: /workspace/input_data/6131510ebf2605a6_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/87381aeb-b738-4100-b484-0ca4b10aeccc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/6131510ebf2605a6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7093e7be-b665-4427-9443-64c140ade027 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7093e7be-b665-4427-9443-64c140ade027 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 87381aeb-b738-4100-b484-0ca4b10aeccc This model is a fine-tuned version of [unsloth/Qwen2.5-3B-Instruct](https://huggingface.co/unsloth/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0010 | 1 | nan | | 0.0 | 0.0030 | 3 | nan | | 0.0 | 0.0060 | 6 | nan | | 0.0 | 0.0090 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TobiGeth/tg_user_295133871_lora_1740578123
TobiGeth
"2025-02-26T14:07:07Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-02-26T14:07:06Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: USER_295133871_1740578123 --- # Tg_User_295133871_Lora_1740578123 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `USER_295133871_1740578123` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('TobiGeth/tg_user_295133871_lora_1740578123', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
hinkaria/River.Stage.Leakesville.Ms.N.U.D.E.Viral.Video.on.TikTok.and.Twitter
hinkaria
"2025-02-13T04:05:28Z"
0
0
null
[ "region:us" ]
null
"2025-02-13T04:04:33Z"
<a rel="nofollow" href="https://213.232.235.80/live/video.php?q=leak-video">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️&ZeroWidthSpace;</a></p><p></p> <p><a rel="nofollow" href="https://213.232.235.80/live/video.php?q=leak-video">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤 Download❤️❤️⬇️⬇️&ZeroWidthSpace;</a></p> <p><a href="https://213.232.235.80/live/video.php?q=leak-video" title="WATCH NOW" rel="nofollow"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="WATCH NOW" title="WATCH NOW" width="720" height="480" border="leak"></a></p>
sd-concepts-library/dtv-pkmn
sd-concepts-library
"2022-09-17T01:25:50Z"
0
5
null
[ "license:mit", "region:us" ]
null
"2022-09-13T23:08:57Z"
--- license: mit --- ### dtv-pkmn on Stable Diffusion This is the `<dtv-pkm2>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). ![<dtv-pkm2ex> 292](https://i.ibb.co/X8f3Q1h/image-2022-09-16-212332924.png) `"hyperdetailed fantasy (monster) (dragon-like) character on top of a rock in the style of <dtv-pkm2> . extremely detailed, amazing artwork with depth and realistic CINEMATIC lighting, matte painting"` Here is the new concept you will be able to use as a `style`: ![<dtv-pkm2> 0](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/1.jpeg) ![<dtv-pkm2> 1](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/0.jpeg) ![<dtv-pkm2> 2](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/2.jpeg) ![<dtv-pkm2> 3](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/3.jpeg)
pelinbalci/ppo-LunarLander-v2
pelinbalci
"2023-03-30T15:31:34Z"
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-03-30T15:31:08Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.94 +/- 16.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Word2vec/nlpl_111
Word2vec
"2023-07-04T15:31:59Z"
0
0
null
[ "word2vec", "nob", "dataset:Norsk_Aviskorpus", "license:cc-by-4.0", "region:us" ]
null
"2023-07-04T14:21:44Z"
--- language: nob license: cc-by-4.0 tags: - word2vec datasets: Norsk_Aviskorpus --- ## Information A word2vec model trained by Cathrine Stadsnes ([email protected]) on a vocabulary of size 2239665 corresponding to 1527414377 tokens from the dataset `Norsk_Aviskorpus`. The model is trained with the following properties: lemmatization and postag with the algorith fastText Continuous Bag-of-Words with window of 5 and dimension of 100. ## How to use? ``` from gensim.models import KeyedVectors from huggingface_hub import hf_hub_download model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/nlpl_111", filename="model.bin"), binary=True, unicode_errors="ignore") ``` ## Citation Fares, Murhaf; Kutuzov, Andrei; Oepen, Stephan & Velldal, Erik (2017). Word vectors, reuse, and replicability: Towards a community repository of large-text resources, In Jörg Tiedemann (ed.), Proceedings of the 21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017. Linköping University Electronic Press. ISBN 978-91-7685-601-7 This archive is part of the NLPL Word Vectors Repository (http://vectors.nlpl.eu/repository/), version 2.0, published on Friday, December 27, 2019. Please see the file 'meta.json' in this archive and the overall repository metadata file http://vectors.nlpl.eu/repository/20.json for additional information. The life-time identifier for this model is: http://vectors.nlpl.eu/repository/20/111.zip
sfang32/intern_study_L0_4
sfang32
"2024-10-30T02:53:49Z"
6
0
null
[ "internlm2", "custom_code", "region:us" ]
null
"2024-10-30T02:23:10Z"
# 书生浦语大模型实战营camp4 - hugging face模型上传测试 - 更多内容请访问 https://github.com/InternLM/Tutorial/tree/camp4
MaziyarPanahi/YamshadowStrangemerges_32_Experiment27Experiment28
MaziyarPanahi
"2024-04-09T18:56:02Z"
18
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "base_model:automerger/Experiment27Experiment28-7B", "base_model:merge:automerger/Experiment27Experiment28-7B", "base_model:automerger/YamshadowStrangemerges_32-7B", "base_model:merge:automerger/YamshadowStrangemerges_32-7B", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
"2024-04-09T18:45:55Z"
--- license: apache-2.0 tags: - Safetensors - text-generation-inference - merge model_name: YamshadowStrangemerges_32_Experiment27Experiment28 base_model: - automerger/YamshadowStrangemerges_32-7B - automerger/Experiment27Experiment28-7B inference: false model_creator: MaziyarPanahi pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # YamshadowStrangemerges_32_Experiment27Experiment28 YamshadowStrangemerges_32_Experiment27Experiment28 is a merge of the following models: * [automerger/YamshadowStrangemerges_32-7B](https://huggingface.co/automerger/YamshadowStrangemerges_32-7B) * [automerger/Experiment27Experiment28-7B](https://huggingface.co/automerger/Experiment27Experiment28-7B) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/YamshadowStrangemerges_32_Experiment27Experiment28" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
dhillondheeraj84/elephants_yolov8
dhillondheeraj84
"2023-06-28T07:22:35Z"
0
0
null
[ "object-detection", "arxiv:1910.09700", "region:us" ]
object-detection
"2023-06-13T08:35:51Z"
--- pipeline_tag: object-detection --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
golesheed/whisper-v2-Brabantic
golesheed
"2024-09-25T08:41:12Z"
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "nl", "base_model:openai/whisper-large-v2", "base_model:finetune:openai/whisper-large-v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-09-23T08:38:22Z"
--- library_name: transformers language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3489 - Wer: 17.3755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7517 | 0.0449 | 15 | 0.5024 | 40.5912 | | 0.4299 | 0.0898 | 30 | 0.3868 | 34.1310 | | 0.363 | 0.1347 | 45 | 0.3704 | 25.2001 | | 0.3744 | 0.1796 | 60 | 0.3537 | 22.5218 | | 0.3731 | 0.2246 | 75 | 0.3554 | 24.5736 | | 0.3743 | 0.2695 | 90 | 0.3388 | 22.7566 | | 0.3001 | 0.3144 | 105 | 0.3401 | 22.3597 | | 0.3382 | 0.3593 | 120 | 0.3262 | 33.1556 | | 0.3353 | 0.4042 | 135 | 0.3266 | 28.0469 | | 0.325 | 0.4491 | 150 | 0.3247 | 26.7473 | | 0.3303 | 0.4940 | 165 | 0.3147 | 22.8616 | | 0.2925 | 0.5389 | 180 | 0.3147 | 21.2041 | | 0.3109 | 0.5838 | 195 | 0.3108 | 23.1859 | | 0.2989 | 0.6287 | 210 | 0.3084 | 24.3570 | | 0.3111 | 0.6737 | 225 | 0.3018 | 18.4117 | | 0.2918 | 0.7186 | 240 | 0.3033 | 17.6076 | | 0.3099 | 0.7635 | 255 | 0.2971 | 21.7151 | | 0.2997 | 0.8084 | 270 | 0.2987 | 21.5361 | | 0.2898 | 0.8533 | 285 | 0.2923 | 21.5828 | | 0.2848 | 0.8982 | 300 | 0.2914 | 17.6452 | | 0.285 | 0.9431 | 315 | 0.2874 | 17.7425 | | 0.2624 | 0.9880 | 330 | 0.2861 | 16.8489 | | 0.169 | 1.0329 | 345 | 0.2948 | 18.5687 | | 0.1515 | 1.0778 | 360 | 0.2927 | 26.6540 | | 0.1504 | 1.1228 | 375 | 0.2918 | 18.9422 | | 0.1484 | 1.1677 | 390 | 0.2916 | 18.3482 | | 0.1358 | 1.2126 | 405 | 0.2904 | 17.2198 | | 0.128 | 1.2575 | 420 | 0.2895 | 17.6764 | | 0.1417 | 1.3024 | 435 | 0.2895 | 23.2572 | | 0.1561 | 1.3473 | 450 | 0.2876 | 17.7775 | | 0.1445 | 1.3922 | 465 | 0.2874 | 17.5415 | | 0.1384 | 1.4371 | 480 | 0.2825 | 16.1420 | | 0.1488 | 1.4820 | 495 | 0.2857 | 17.3832 | | 0.1701 | 1.5269 | 510 | 0.2779 | 22.6826 | | 0.1475 | 1.5719 | 525 | 0.2857 | 25.9860 | | 0.144 | 1.6168 | 540 | 0.2790 | 16.3145 | | 0.1402 | 1.6617 | 555 | 0.2874 | 21.3948 | | 0.1575 | 1.7066 | 570 | 0.2756 | 15.9786 | | 0.1409 | 1.7515 | 585 | 0.2815 | 17.0862 | | 0.1388 | 1.7964 | 600 | 0.2792 | 18.9176 | | 0.1273 | 1.8413 | 615 | 0.2803 | 23.6165 | | 0.1537 | 1.8862 | 630 | 0.2758 | 17.5454 | | 0.1537 | 1.9311 | 645 | 0.2764 | 15.8373 | | 0.1474 | 1.9760 | 660 | 0.2708 | 16.4935 | | 0.1111 | 2.0210 | 675 | 0.2805 | 19.4337 | | 0.0745 | 2.0659 | 690 | 0.2924 | 18.5388 | | 0.0639 | 2.1108 | 705 | 0.2917 | 15.8269 | | 0.0673 | 2.1557 | 720 | 0.2945 | 16.9306 | | 0.066 | 2.2006 | 735 | 0.2955 | 16.3677 | | 0.0714 | 2.2455 | 750 | 0.2933 | 16.2289 | | 0.0701 | 2.2904 | 765 | 0.2911 | 20.4558 | | 0.0631 | 2.3353 | 780 | 0.2971 | 17.1316 | | 0.064 | 2.3802 | 795 | 0.2916 | 15.3846 | | 0.0659 | 2.4251 | 810 | 0.2971 | 15.1602 | | 0.0615 | 2.4701 | 825 | 0.2878 | 20.4480 | | 0.0723 | 2.5150 | 840 | 0.2935 | 14.7569 | | 0.0695 | 2.5599 | 855 | 0.2846 | 15.6570 | | 0.0704 | 2.6048 | 870 | 0.2919 | 19.4000 | | 0.0642 | 2.6497 | 885 | 0.2849 | 17.7373 | | 0.0684 | 2.6946 | 900 | 0.2888 | 15.9164 | | 0.077 | 2.7395 | 915 | 0.2828 | 15.5052 | | 0.0708 | 2.7844 | 930 | 0.2858 | 17.0538 | | 0.065 | 2.8293 | 945 | 0.2829 | 20.8617 | | 0.0788 | 2.8743 | 960 | 0.2854 | 19.5621 | | 0.0677 | 2.9192 | 975 | 0.2825 | 16.6984 | | 0.0642 | 2.9641 | 990 | 0.2887 | 16.1537 | | 0.0627 | 3.0090 | 1005 | 0.2828 | 16.0331 | | 0.0262 | 3.0539 | 1020 | 0.3084 | 15.0202 | | 0.0266 | 3.0988 | 1035 | 0.3129 | 16.9708 | | 0.024 | 3.1437 | 1050 | 0.3114 | 14.9722 | | 0.0271 | 3.1886 | 1065 | 0.3152 | 14.5416 | | 0.026 | 3.2335 | 1080 | 0.3135 | 16.4533 | | 0.0281 | 3.2784 | 1095 | 0.3151 | 17.0123 | | 0.0295 | 3.3234 | 1110 | 0.3160 | 15.4183 | | 0.0259 | 3.3683 | 1125 | 0.3101 | 14.8269 | | 0.0276 | 3.4132 | 1140 | 0.3194 | 14.1175 | | 0.0271 | 3.4581 | 1155 | 0.3172 | 17.3314 | | 0.0304 | 3.5030 | 1170 | 0.3111 | 18.0577 | | 0.0268 | 3.5479 | 1185 | 0.3129 | 14.0928 | | 0.0256 | 3.5928 | 1200 | 0.3083 | 14.7374 | | 0.0281 | 3.6377 | 1215 | 0.3079 | 14.9125 | | 0.0274 | 3.6826 | 1230 | 0.3180 | 14.4586 | | 0.0282 | 3.7275 | 1245 | 0.3091 | 14.6622 | | 0.0224 | 3.7725 | 1260 | 0.3139 | 14.4132 | | 0.0254 | 3.8174 | 1275 | 0.3141 | 14.0747 | | 0.0279 | 3.8623 | 1290 | 0.3110 | 18.3676 | | 0.0245 | 3.9072 | 1305 | 0.3119 | 15.0565 | | 0.0256 | 3.9521 | 1320 | 0.3149 | 16.3560 | | 0.0273 | 3.9970 | 1335 | 0.3128 | 16.3405 | | 0.0126 | 4.0419 | 1350 | 0.3265 | 14.9385 | | 0.0087 | 4.0868 | 1365 | 0.3411 | 14.4547 | | 0.009 | 4.1317 | 1380 | 0.3394 | 14.6298 | | 0.0093 | 4.1766 | 1395 | 0.3424 | 14.4547 | | 0.0082 | 4.2216 | 1410 | 0.3457 | 14.4780 | | 0.0093 | 4.2665 | 1425 | 0.3472 | 13.8192 | | 0.0072 | 4.3114 | 1440 | 0.3491 | 15.0189 | | 0.0093 | 4.3563 | 1455 | 0.3490 | 16.3962 | | 0.0098 | 4.4012 | 1470 | 0.3455 | 16.3755 | | 0.0077 | 4.4461 | 1485 | 0.3429 | 16.9410 | | 0.0089 | 4.4910 | 1500 | 0.3452 | 17.0966 | | 0.0099 | 4.5359 | 1515 | 0.3469 | 18.3897 | | 0.0066 | 4.5808 | 1530 | 0.3465 | 19.0083 | | 0.0074 | 4.6257 | 1545 | 0.3455 | 19.6867 | | 0.0069 | 4.6707 | 1560 | 0.3489 | 18.5440 | | 0.008 | 4.7156 | 1575 | 0.3502 | 18.4078 | | 0.0079 | 4.7605 | 1590 | 0.3503 | 18.1057 | | 0.0077 | 4.8054 | 1605 | 0.3501 | 18.2574 | | 0.0058 | 4.8503 | 1620 | 0.3492 | 18.1653 | | 0.0076 | 4.8952 | 1635 | 0.3486 | 17.7905 | | 0.0064 | 4.9401 | 1650 | 0.3487 | 17.3858 | | 0.0057 | 4.9850 | 1665 | 0.3489 | 17.3755 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
glif-loradex-trainer/fatman2021b_flux_dev_retro85style_8_kv_prodigy
glif-loradex-trainer
"2025-01-31T23:44:27Z"
120
0
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
"2025-01-31T23:44:15Z"
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1738366900942__000001500_0.jpg text: wounded centaur, mythical creature In a blocky retro 85 style - output: url: samples/1738366926186__000001500_1.jpg text: ruins of athens, snake In a blocky retro 85 style - output: url: samples/1738366951890__000001500_2.jpg text: silver vampire sword In a blocky retro 85 style - output: url: samples/1738366977138__000001500_3.jpg text: winged sphinx, desert landscape In a blocky retro 85 style - output: url: samples/1738367002356__000001500_4.jpg text: enchanted forest, magical fireflies In a blocky retro 85 style - output: url: samples/1738367027603__000001500_5.jpg text: knight and dragon, epic battle In a blocky retro 85 style base_model: black-forest-labs/FLUX.1-dev trigger: "In a blocky retro 85 style" instance_prompt: "In a blocky retro 85 style" license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # flux_dev_retro85style_8_kv_prodigy Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `fatman2021b`. <Gallery /> ## Trigger words You should use `In a blocky retro 85 style` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/fatman2021b_flux_dev_retro85style_8_kv_prodigy/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).