python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
/* * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "priv.h" #include <core/gpuobj.h> #include <core/memory.h> #include <subdev/timer.h> void nvkm_falcon_v1_load_imem(struct nvkm_falcon *falcon, void *data, u32 start, u32 size, u16 tag, u8 port, bool secure) { u8 rem = size % 4; u32 reg; int i; size -= rem; reg = start | BIT(24) | (secure ? BIT(28) : 0); nvkm_falcon_wr32(falcon, 0x180 + (port * 16), reg); for (i = 0; i < size / 4; i++) { /* write new tag every 256B */ if ((i & 0x3f) == 0) nvkm_falcon_wr32(falcon, 0x188 + (port * 16), tag++); nvkm_falcon_wr32(falcon, 0x184 + (port * 16), ((u32 *)data)[i]); } /* * If size is not a multiple of 4, mask the last work to ensure garbage * does not get written */ if (rem) { u32 extra = ((u32 *)data)[i]; /* write new tag every 256B */ if ((i & 0x3f) == 0) nvkm_falcon_wr32(falcon, 0x188 + (port * 16), tag++); nvkm_falcon_wr32(falcon, 0x184 + (port * 16), extra & (BIT(rem * 8) - 1)); ++i; } /* code must be padded to 0x40 words */ for (; i & 0x3f; i++) nvkm_falcon_wr32(falcon, 0x184 + (port * 16), 0); } void nvkm_falcon_v1_load_dmem(struct nvkm_falcon *falcon, void *data, u32 start, u32 size, u8 port) { u8 rem = size % 4; int i; size -= rem; nvkm_falcon_wr32(falcon, 0x1c0 + (port * 8), start | (0x1 << 24)); for (i = 0; i < size / 4; i++) nvkm_falcon_wr32(falcon, 0x1c4 + (port * 8), ((u32 *)data)[i]); /* * If size is not a multiple of 4, mask the last word to ensure garbage * does not get written */ if (rem) { u32 extra = ((u32 *)data)[i]; nvkm_falcon_wr32(falcon, 0x1c4 + (port * 8), extra & (BIT(rem * 8) - 1)); } } void nvkm_falcon_v1_start(struct nvkm_falcon *falcon) { u32 reg = nvkm_falcon_rd32(falcon, 0x100); if (reg & BIT(6)) nvkm_falcon_wr32(falcon, 0x130, 0x2); else nvkm_falcon_wr32(falcon, 0x100, 0x2); }
linux-master
drivers/gpu/drm/nouveau/nvkm/falcon/v1.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/user.h> static u64 nvif_userc361_time(struct nvif_user *user) { u32 hi, lo; do { hi = nvif_rd32(&user->object, 0x084); lo = nvif_rd32(&user->object, 0x080); } while (hi != nvif_rd32(&user->object, 0x084)); return ((u64)hi << 32 | lo); } static void nvif_userc361_doorbell(struct nvif_user *user, u32 token) { nvif_wr32(&user->object, 0x90, token); } const struct nvif_user_func nvif_userc361 = { .doorbell = nvif_userc361_doorbell, .time = nvif_userc361_time, };
linux-master
drivers/gpu/drm/nouveau/nvif/userc361.c
/* * Copyright 2020 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/timer.h> #include <nvif/device.h> s64 nvif_timer_wait_test(struct nvif_timer_wait *wait) { u64 time = nvif_device_time(wait->device); if (wait->reads == 0) { wait->time0 = time; wait->time1 = time; } if (wait->time1 == time) { if (WARN_ON(wait->reads++ == 16)) return -ETIMEDOUT; } else { wait->time1 = time; wait->reads = 1; } if (wait->time1 - wait->time0 > wait->limit) return -ETIMEDOUT; return wait->time1 - wait->time0; } void nvif_timer_wait_init(struct nvif_device *device, u64 nsec, struct nvif_timer_wait *wait) { wait->device = device; wait->limit = nsec; wait->reads = 0; }
linux-master
drivers/gpu/drm/nouveau/nvif/timer.c
/* * Copyright 2014 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs <[email protected]> */ #include <nvif/object.h> #include <nvif/client.h> #include <nvif/driver.h> #include <nvif/ioctl.h> int nvif_object_ioctl(struct nvif_object *object, void *data, u32 size, void **hack) { struct nvif_client *client = object->client; union { struct nvif_ioctl_v0 v0; } *args = data; if (size >= sizeof(*args) && args->v0.version == 0) { if (object != &client->object) args->v0.object = nvif_handle(object); else args->v0.object = 0; args->v0.owner = NVIF_IOCTL_V0_OWNER_ANY; } else return -ENOSYS; return client->driver->ioctl(client->object.priv, data, size, hack); } void nvif_object_sclass_put(struct nvif_sclass **psclass) { kfree(*psclass); *psclass = NULL; } int nvif_object_sclass_get(struct nvif_object *object, struct nvif_sclass **psclass) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_sclass_v0 sclass; } *args = NULL; int ret, cnt = 0, i; u32 size; while (1) { size = sizeof(*args) + cnt * sizeof(args->sclass.oclass[0]); if (!(args = kmalloc(size, GFP_KERNEL))) return -ENOMEM; args->ioctl.version = 0; args->ioctl.type = NVIF_IOCTL_V0_SCLASS; args->sclass.version = 0; args->sclass.count = cnt; ret = nvif_object_ioctl(object, args, size, NULL); if (ret == 0 && args->sclass.count <= cnt) break; cnt = args->sclass.count; kfree(args); if (ret != 0) return ret; } *psclass = kcalloc(args->sclass.count, sizeof(**psclass), GFP_KERNEL); if (*psclass) { for (i = 0; i < args->sclass.count; i++) { (*psclass)[i].oclass = args->sclass.oclass[i].oclass; (*psclass)[i].minver = args->sclass.oclass[i].minver; (*psclass)[i].maxver = args->sclass.oclass[i].maxver; } ret = args->sclass.count; } else { ret = -ENOMEM; } kfree(args); return ret; } u32 nvif_object_rd(struct nvif_object *object, int size, u64 addr) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_rd_v0 rd; } args = { .ioctl.type = NVIF_IOCTL_V0_RD, .rd.size = size, .rd.addr = addr, }; int ret = nvif_object_ioctl(object, &args, sizeof(args), NULL); if (ret) { /*XXX: warn? */ return 0; } return args.rd.data; } void nvif_object_wr(struct nvif_object *object, int size, u64 addr, u32 data) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_wr_v0 wr; } args = { .ioctl.type = NVIF_IOCTL_V0_WR, .wr.size = size, .wr.addr = addr, .wr.data = data, }; int ret = nvif_object_ioctl(object, &args, sizeof(args), NULL); if (ret) { /*XXX: warn? */ } } int nvif_object_mthd(struct nvif_object *object, u32 mthd, void *data, u32 size) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_mthd_v0 mthd; } *args; u8 stack[128]; int ret; if (sizeof(*args) + size > sizeof(stack)) { if (!(args = kmalloc(sizeof(*args) + size, GFP_KERNEL))) return -ENOMEM; } else { args = (void *)stack; } args->ioctl.version = 0; args->ioctl.type = NVIF_IOCTL_V0_MTHD; args->mthd.version = 0; args->mthd.method = mthd; memcpy(args->mthd.data, data, size); ret = nvif_object_ioctl(object, args, sizeof(*args) + size, NULL); memcpy(data, args->mthd.data, size); if (args != (void *)stack) kfree(args); return ret; } void nvif_object_unmap_handle(struct nvif_object *object) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_unmap unmap; } args = { .ioctl.type = NVIF_IOCTL_V0_UNMAP, }; nvif_object_ioctl(object, &args, sizeof(args), NULL); } int nvif_object_map_handle(struct nvif_object *object, void *argv, u32 argc, u64 *handle, u64 *length) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_map_v0 map; } *args; u32 argn = sizeof(*args) + argc; int ret, maptype; if (!(args = kzalloc(argn, GFP_KERNEL))) return -ENOMEM; args->ioctl.type = NVIF_IOCTL_V0_MAP; memcpy(args->map.data, argv, argc); ret = nvif_object_ioctl(object, args, argn, NULL); *handle = args->map.handle; *length = args->map.length; maptype = args->map.type; kfree(args); return ret ? ret : (maptype == NVIF_IOCTL_MAP_V0_IO); } void nvif_object_unmap(struct nvif_object *object) { struct nvif_client *client = object->client; if (object->map.ptr) { if (object->map.size) { client->driver->unmap(client, object->map.ptr, object->map.size); object->map.size = 0; } object->map.ptr = NULL; nvif_object_unmap_handle(object); } } int nvif_object_map(struct nvif_object *object, void *argv, u32 argc) { struct nvif_client *client = object->client; u64 handle, length; int ret = nvif_object_map_handle(object, argv, argc, &handle, &length); if (ret >= 0) { if (ret) { object->map.ptr = client->driver->map(client, handle, length); if (ret = -ENOMEM, object->map.ptr) { object->map.size = length; return 0; } } else { object->map.ptr = (void *)(unsigned long)handle; return 0; } nvif_object_unmap_handle(object); } return ret; } void nvif_object_dtor(struct nvif_object *object) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_del del; } args = { .ioctl.type = NVIF_IOCTL_V0_DEL, }; if (!nvif_object_constructed(object)) return; nvif_object_unmap(object); nvif_object_ioctl(object, &args, sizeof(args), NULL); object->client = NULL; } int nvif_object_ctor(struct nvif_object *parent, const char *name, u32 handle, s32 oclass, void *data, u32 size, struct nvif_object *object) { struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_new_v0 new; } *args; int ret = 0; object->client = NULL; object->name = name ? name : "nvifObject"; object->handle = handle; object->oclass = oclass; object->map.ptr = NULL; object->map.size = 0; if (parent) { if (!(args = kmalloc(sizeof(*args) + size, GFP_KERNEL))) { nvif_object_dtor(object); return -ENOMEM; } object->parent = parent->parent; args->ioctl.version = 0; args->ioctl.type = NVIF_IOCTL_V0_NEW; args->new.version = 0; args->new.route = parent->client->route; args->new.token = nvif_handle(object); args->new.object = nvif_handle(object); args->new.handle = handle; args->new.oclass = oclass; memcpy(args->new.data, data, size); ret = nvif_object_ioctl(parent, args, sizeof(*args) + size, &object->priv); memcpy(data, args->new.data, size); kfree(args); if (ret == 0) object->client = parent->client; } if (ret) nvif_object_dtor(object); return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/object.c
/* * Copyright 2017 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/vmm.h> #include <nvif/mem.h> #include <nvif/if000c.h> int nvif_vmm_unmap(struct nvif_vmm *vmm, u64 addr) { return nvif_object_mthd(&vmm->object, NVIF_VMM_V0_UNMAP, &(struct nvif_vmm_unmap_v0) { .addr = addr }, sizeof(struct nvif_vmm_unmap_v0)); } int nvif_vmm_map(struct nvif_vmm *vmm, u64 addr, u64 size, void *argv, u32 argc, struct nvif_mem *mem, u64 offset) { struct nvif_vmm_map_v0 *args; u8 stack[48]; int ret; if (sizeof(*args) + argc > sizeof(stack)) { if (!(args = kmalloc(sizeof(*args) + argc, GFP_KERNEL))) return -ENOMEM; } else { args = (void *)stack; } args->version = 0; args->addr = addr; args->size = size; args->memory = nvif_handle(&mem->object); args->offset = offset; memcpy(args->data, argv, argc); ret = nvif_object_mthd(&vmm->object, NVIF_VMM_V0_MAP, args, sizeof(*args) + argc); if (args != (void *)stack) kfree(args); return ret; } void nvif_vmm_put(struct nvif_vmm *vmm, struct nvif_vma *vma) { if (vma->size) { WARN_ON(nvif_object_mthd(&vmm->object, NVIF_VMM_V0_PUT, &(struct nvif_vmm_put_v0) { .addr = vma->addr, }, sizeof(struct nvif_vmm_put_v0))); vma->size = 0; } } int nvif_vmm_get(struct nvif_vmm *vmm, enum nvif_vmm_get type, bool sparse, u8 page, u8 align, u64 size, struct nvif_vma *vma) { struct nvif_vmm_get_v0 args; int ret; args.version = vma->size = 0; args.sparse = sparse; args.page = page; args.align = align; args.size = size; switch (type) { case ADDR: args.type = NVIF_VMM_GET_V0_ADDR; break; case PTES: args.type = NVIF_VMM_GET_V0_PTES; break; case LAZY: args.type = NVIF_VMM_GET_V0_LAZY; break; default: WARN_ON(1); return -EINVAL; } ret = nvif_object_mthd(&vmm->object, NVIF_VMM_V0_GET, &args, sizeof(args)); if (ret == 0) { vma->addr = args.addr; vma->size = args.size; } return ret; } int nvif_vmm_raw_get(struct nvif_vmm *vmm, u64 addr, u64 size, u8 shift) { struct nvif_vmm_raw_v0 args = { .version = 0, .op = NVIF_VMM_RAW_V0_GET, .addr = addr, .size = size, .shift = shift, }; return nvif_object_mthd(&vmm->object, NVIF_VMM_V0_RAW, &args, sizeof(args)); } int nvif_vmm_raw_put(struct nvif_vmm *vmm, u64 addr, u64 size, u8 shift) { struct nvif_vmm_raw_v0 args = { .version = 0, .op = NVIF_VMM_RAW_V0_PUT, .addr = addr, .size = size, .shift = shift, }; return nvif_object_mthd(&vmm->object, NVIF_VMM_V0_RAW, &args, sizeof(args)); } int nvif_vmm_raw_map(struct nvif_vmm *vmm, u64 addr, u64 size, u8 shift, void *argv, u32 argc, struct nvif_mem *mem, u64 offset) { struct nvif_vmm_raw_v0 args = { .version = 0, .op = NVIF_VMM_RAW_V0_MAP, .addr = addr, .size = size, .shift = shift, .memory = nvif_handle(&mem->object), .offset = offset, .argv = (u64)(uintptr_t)argv, .argc = argc, }; return nvif_object_mthd(&vmm->object, NVIF_VMM_V0_RAW, &args, sizeof(args)); } int nvif_vmm_raw_unmap(struct nvif_vmm *vmm, u64 addr, u64 size, u8 shift, bool sparse) { struct nvif_vmm_raw_v0 args = { .version = 0, .op = NVIF_VMM_RAW_V0_UNMAP, .addr = addr, .size = size, .shift = shift, .sparse = sparse, }; return nvif_object_mthd(&vmm->object, NVIF_VMM_V0_RAW, &args, sizeof(args)); } int nvif_vmm_raw_sparse(struct nvif_vmm *vmm, u64 addr, u64 size, bool ref) { struct nvif_vmm_raw_v0 args = { .version = 0, .op = NVIF_VMM_RAW_V0_SPARSE, .addr = addr, .size = size, .ref = ref, }; return nvif_object_mthd(&vmm->object, NVIF_VMM_V0_RAW, &args, sizeof(args)); } void nvif_vmm_dtor(struct nvif_vmm *vmm) { kfree(vmm->page); nvif_object_dtor(&vmm->object); } int nvif_vmm_ctor(struct nvif_mmu *mmu, const char *name, s32 oclass, enum nvif_vmm_type type, u64 addr, u64 size, void *argv, u32 argc, struct nvif_vmm *vmm) { struct nvif_vmm_v0 *args; u32 argn = sizeof(*args) + argc; int ret = -ENOSYS, i; vmm->object.client = NULL; vmm->page = NULL; if (!(args = kmalloc(argn, GFP_KERNEL))) return -ENOMEM; args->version = 0; args->addr = addr; args->size = size; switch (type) { case UNMANAGED: args->type = NVIF_VMM_V0_TYPE_UNMANAGED; break; case MANAGED: args->type = NVIF_VMM_V0_TYPE_MANAGED; break; case RAW: args->type = NVIF_VMM_V0_TYPE_RAW; break; default: WARN_ON(1); return -EINVAL; } memcpy(args->data, argv, argc); ret = nvif_object_ctor(&mmu->object, name ? name : "nvifVmm", 0, oclass, args, argn, &vmm->object); if (ret) goto done; vmm->start = args->addr; vmm->limit = args->size; vmm->page_nr = args->page_nr; vmm->page = kmalloc_array(vmm->page_nr, sizeof(*vmm->page), GFP_KERNEL); if (!vmm->page) { ret = -ENOMEM; goto done; } for (i = 0; i < vmm->page_nr; i++) { struct nvif_vmm_page_v0 args = { .index = i }; ret = nvif_object_mthd(&vmm->object, NVIF_VMM_V0_PAGE, &args, sizeof(args)); if (ret) break; vmm->page[i].shift = args.shift; vmm->page[i].sparse = args.sparse; vmm->page[i].vram = args.vram; vmm->page[i].host = args.host; vmm->page[i].comp = args.comp; } done: if (ret) nvif_vmm_dtor(vmm); kfree(args); return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/vmm.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/user.h> #include <nvif/device.h> #include <nvif/class.h> void nvif_user_dtor(struct nvif_device *device) { if (device->user.func) { nvif_object_dtor(&device->user.object); device->user.func = NULL; } } int nvif_user_ctor(struct nvif_device *device, const char *name) { struct { s32 oclass; int version; const struct nvif_user_func *func; } users[] = { { AMPERE_USERMODE_A, -1, &nvif_userc361 }, { TURING_USERMODE_A, -1, &nvif_userc361 }, { VOLTA_USERMODE_A, -1, &nvif_userc361 }, {} }; int cid, ret; if (device->user.func) return 0; cid = nvif_mclass(&device->object, users); if (cid < 0) return cid; ret = nvif_object_ctor(&device->object, name ? name : "nvifUsermode", 0, users[cid].oclass, NULL, 0, &device->user.object); if (ret) return ret; nvif_object_map(&device->user.object, NULL, 0); device->user.func = users[cid].func; return 0; }
linux-master
drivers/gpu/drm/nouveau/nvif/user.c
/* * Copyright 2017 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/mem.h> #include <nvif/client.h> #include <nvif/if000a.h> int nvif_mem_ctor_map(struct nvif_mmu *mmu, const char *name, u8 type, u64 size, struct nvif_mem *mem) { int ret = nvif_mem_ctor(mmu, name, mmu->mem, NVIF_MEM_MAPPABLE | type, 0, size, NULL, 0, mem); if (ret == 0) { ret = nvif_object_map(&mem->object, NULL, 0); if (ret) nvif_mem_dtor(mem); } return ret; } void nvif_mem_dtor(struct nvif_mem *mem) { nvif_object_dtor(&mem->object); } int nvif_mem_ctor_type(struct nvif_mmu *mmu, const char *name, s32 oclass, int type, u8 page, u64 size, void *argv, u32 argc, struct nvif_mem *mem) { struct nvif_mem_v0 *args; u8 stack[128]; int ret; mem->object.client = NULL; if (type < 0) return -EINVAL; if (sizeof(*args) + argc > sizeof(stack)) { if (!(args = kmalloc(sizeof(*args) + argc, GFP_KERNEL))) return -ENOMEM; } else { args = (void *)stack; } args->version = 0; args->type = type; args->page = page; args->size = size; memcpy(args->data, argv, argc); ret = nvif_object_ctor(&mmu->object, name ? name : "nvifMem", 0, oclass, args, sizeof(*args) + argc, &mem->object); if (ret == 0) { mem->type = mmu->type[type].type; mem->page = args->page; mem->addr = args->addr; mem->size = args->size; } if (args != (void *)stack) kfree(args); return ret; } int nvif_mem_ctor(struct nvif_mmu *mmu, const char *name, s32 oclass, u8 type, u8 page, u64 size, void *argv, u32 argc, struct nvif_mem *mem) { int ret = -EINVAL, i; mem->object.client = NULL; for (i = 0; ret && i < mmu->type_nr; i++) { if ((mmu->type[i].type & type) == type) { ret = nvif_mem_ctor_type(mmu, name, oclass, i, page, size, argv, argc, mem); } } return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/mem.c
/* * Copyright 2021 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/conn.h> #include <nvif/disp.h> #include <nvif/printf.h> #include <nvif/class.h> #include <nvif/if0011.h> int nvif_conn_event_ctor(struct nvif_conn *conn, const char *name, nvif_event_func func, u8 types, struct nvif_event *event) { struct { struct nvif_event_v0 base; struct nvif_conn_event_v0 conn; } args; int ret; args.conn.version = 0; args.conn.types = types; ret = nvif_event_ctor_(&conn->object, name ?: "nvifConnHpd", nvif_conn_id(conn), func, true, &args.base, sizeof(args), false, event); NVIF_DEBUG(&conn->object, "[NEW EVENT:HPD types:%02x]", types); return ret; } int nvif_conn_hpd_status(struct nvif_conn *conn) { struct nvif_conn_hpd_status_v0 args; int ret; args.version = 0; ret = nvif_mthd(&conn->object, NVIF_CONN_V0_HPD_STATUS, &args, sizeof(args)); NVIF_ERRON(ret, &conn->object, "[HPD_STATUS] support:%d present:%d", args.support, args.present); return ret ? ret : !!args.support + !!args.present; } void nvif_conn_dtor(struct nvif_conn *conn) { nvif_object_dtor(&conn->object); } int nvif_conn_ctor(struct nvif_disp *disp, const char *name, int id, struct nvif_conn *conn) { struct nvif_conn_v0 args; int ret; args.version = 0; args.id = id; ret = nvif_object_ctor(&disp->object, name ?: "nvifConn", id, NVIF_CLASS_CONN, &args, sizeof(args), &conn->object); NVIF_ERRON(ret, &disp->object, "[NEW conn id:%d]", id); return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/conn.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/disp.h> #include <nvif/device.h> #include <nvif/printf.h> #include <nvif/class.h> #include <nvif/if0010.h> void nvif_disp_dtor(struct nvif_disp *disp) { nvif_object_dtor(&disp->object); } int nvif_disp_ctor(struct nvif_device *device, const char *name, s32 oclass, struct nvif_disp *disp) { static const struct nvif_mclass disps[] = { { GA102_DISP, 0 }, { TU102_DISP, 0 }, { GV100_DISP, 0 }, { GP102_DISP, 0 }, { GP100_DISP, 0 }, { GM200_DISP, 0 }, { GM107_DISP, 0 }, { GK110_DISP, 0 }, { GK104_DISP, 0 }, { GF110_DISP, 0 }, { GT214_DISP, 0 }, { GT206_DISP, 0 }, { GT200_DISP, 0 }, { G82_DISP, 0 }, { NV50_DISP, 0 }, { NV04_DISP, 0 }, {} }; struct nvif_disp_v0 args; int cid, ret; cid = nvif_sclass(&device->object, disps, oclass); disp->object.client = NULL; if (cid < 0) { NVIF_ERRON(cid, &device->object, "[NEW disp%04x] not supported", oclass); return cid; } args.version = 0; ret = nvif_object_ctor(&device->object, name ?: "nvifDisp", 0, disps[cid].oclass, &args, sizeof(args), &disp->object); NVIF_ERRON(ret, &device->object, "[NEW disp%04x]", disps[cid].oclass); if (ret) return ret; NVIF_DEBUG(&disp->object, "[NEW] conn_mask:%08x outp_mask:%08x head_mask:%08x", args.conn_mask, args.outp_mask, args.head_mask); disp->conn_mask = args.conn_mask; disp->outp_mask = args.outp_mask; disp->head_mask = args.head_mask; return 0; }
linux-master
drivers/gpu/drm/nouveau/nvif/disp.c
/* * Copyright 2013 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs <[email protected]> */ #include <nvif/client.h> #include <nvif/driver.h> #include <nvif/ioctl.h> #include <nvif/class.h> #include <nvif/if0000.h> int nvif_client_ioctl(struct nvif_client *client, void *data, u32 size) { return client->driver->ioctl(client->object.priv, data, size, NULL); } int nvif_client_suspend(struct nvif_client *client) { return client->driver->suspend(client->object.priv); } int nvif_client_resume(struct nvif_client *client) { return client->driver->resume(client->object.priv); } void nvif_client_dtor(struct nvif_client *client) { nvif_object_dtor(&client->object); if (client->driver) { if (client->driver->fini) client->driver->fini(client->object.priv); client->driver = NULL; } } int nvif_client_ctor(struct nvif_client *parent, const char *name, u64 device, struct nvif_client *client) { struct nvif_client_v0 args = { .device = device }; struct { struct nvif_ioctl_v0 ioctl; struct nvif_ioctl_nop_v0 nop; } nop = {}; int ret; strncpy(args.name, name, sizeof(args.name)); ret = nvif_object_ctor(parent != client ? &parent->object : NULL, name ? name : "nvifClient", 0, NVIF_CLASS_CLIENT, &args, sizeof(args), &client->object); if (ret) return ret; client->object.client = client; client->object.handle = ~0; client->route = NVIF_IOCTL_V0_ROUTE_NVIF; client->driver = parent->driver; if (ret == 0) { ret = nvif_client_ioctl(client, &nop, sizeof(nop)); client->version = nop.nop.version; } if (ret) nvif_client_dtor(client); return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/client.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/fifo.h> static int nvif_fifo_runlists(struct nvif_device *device) { struct nvif_object *object = &device->object; struct { struct nv_device_info_v1 m; struct { struct nv_device_info_v1_data runlists; struct nv_device_info_v1_data runlist[64]; } v; } *a; int ret, i; if (device->runlist) return 0; if (!(a = kmalloc(sizeof(*a), GFP_KERNEL))) return -ENOMEM; a->m.version = 1; a->m.count = sizeof(a->v) / sizeof(a->v.runlists); a->v.runlists.mthd = NV_DEVICE_HOST_RUNLISTS; for (i = 0; i < ARRAY_SIZE(a->v.runlist); i++) { a->v.runlist[i].mthd = NV_DEVICE_HOST_RUNLIST_ENGINES; a->v.runlist[i].data = i; } ret = nvif_object_mthd(object, NV_DEVICE_V0_INFO, a, sizeof(*a)); if (ret) goto done; device->runlists = fls64(a->v.runlists.data); device->runlist = kcalloc(device->runlists, sizeof(*device->runlist), GFP_KERNEL); if (!device->runlist) { ret = -ENOMEM; goto done; } for (i = 0; i < device->runlists; i++) { if (a->v.runlist[i].mthd != NV_DEVICE_INFO_INVALID) device->runlist[i].engines = a->v.runlist[i].data; } done: kfree(a); return ret; } u64 nvif_fifo_runlist(struct nvif_device *device, u64 engine) { u64 runm = 0; int ret, i; if ((ret = nvif_fifo_runlists(device))) return runm; for (i = 0; i < device->runlists; i++) { if (device->runlist[i].engines & engine) runm |= BIT_ULL(i); } return runm; }
linux-master
drivers/gpu/drm/nouveau/nvif/fifo.c
/* * Copyright 2021 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/head.h> #include <nvif/disp.h> #include <nvif/printf.h> #include <nvif/class.h> #include <nvif/if0013.h> int nvif_head_vblank_event_ctor(struct nvif_head *head, const char *name, nvif_event_func func, bool wait, struct nvif_event *event) { int ret = nvif_event_ctor(&head->object, name ?: "nvifHeadVBlank", nvif_head_id(head), func, wait, NULL, 0, event); NVIF_ERRON(ret, &head->object, "[NEW EVENT:VBLANK]"); return ret; } void nvif_head_dtor(struct nvif_head *head) { nvif_object_dtor(&head->object); } int nvif_head_ctor(struct nvif_disp *disp, const char *name, int id, struct nvif_head *head) { struct nvif_head_v0 args; int ret; args.version = 0; args.id = id; ret = nvif_object_ctor(&disp->object, name ? name : "nvifHead", id, NVIF_CLASS_HEAD, &args, sizeof(args), &head->object); NVIF_ERRON(ret, &disp->object, "[NEW head id:%d]", args.id); return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/head.c
/* * Copyright 2021 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/event.h> #include <nvif/printf.h> #include <nvif/class.h> #include <nvif/if000e.h> int nvif_event_block(struct nvif_event *event) { if (nvif_event_constructed(event)) { int ret = nvif_mthd(&event->object, NVIF_EVENT_V0_BLOCK, NULL, 0); NVIF_ERRON(ret, &event->object, "[BLOCK]"); return ret; } return 0; } int nvif_event_allow(struct nvif_event *event) { if (nvif_event_constructed(event)) { int ret = nvif_mthd(&event->object, NVIF_EVENT_V0_ALLOW, NULL, 0); NVIF_ERRON(ret, &event->object, "[ALLOW]"); return ret; } return 0; } void nvif_event_dtor(struct nvif_event *event) { nvif_object_dtor(&event->object); } int nvif_event_ctor_(struct nvif_object *parent, const char *name, u32 handle, nvif_event_func func, bool wait, struct nvif_event_v0 *args, u32 argc, bool warn, struct nvif_event *event) { struct nvif_event_v0 _args; int ret; if (!args) { args = &_args; argc = sizeof(_args); } args->version = 0; args->wait = wait; ret = nvif_object_ctor(parent, name ?: "nvifEvent", handle, NVIF_CLASS_EVENT, args, argc, &event->object); NVIF_ERRON(ret && warn, parent, "[NEW EVENT wait:%d size:%zd]", args->wait, argc - sizeof(*args)); if (ret) return ret; event->func = func; return 0; }
linux-master
drivers/gpu/drm/nouveau/nvif/event.c
/* * Copyright 2014 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs <[email protected]> */ #include <nvif/device.h> u64 nvif_device_time(struct nvif_device *device) { if (!device->user.func) { struct nv_device_time_v0 args = {}; int ret = nvif_object_mthd(&device->object, NV_DEVICE_V0_TIME, &args, sizeof(args)); WARN_ON_ONCE(ret != 0); return args.time; } return device->user.func->time(&device->user); } void nvif_device_dtor(struct nvif_device *device) { nvif_user_dtor(device); kfree(device->runlist); device->runlist = NULL; nvif_object_dtor(&device->object); } int nvif_device_ctor(struct nvif_object *parent, const char *name, u32 handle, s32 oclass, void *data, u32 size, struct nvif_device *device) { int ret = nvif_object_ctor(parent, name ? name : "nvifDevice", handle, oclass, data, size, &device->object); device->runlist = NULL; device->user.func = NULL; if (ret == 0) { device->info.version = 0; ret = nvif_object_mthd(&device->object, NV_DEVICE_V0_INFO, &device->info, sizeof(device->info)); } return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/device.c
/* * Copyright 2021 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/outp.h> #include <nvif/disp.h> #include <nvif/printf.h> #include <nvif/class.h> int nvif_outp_dp_mst_vcpi(struct nvif_outp *outp, int head, u8 start_slot, u8 num_slots, u16 pbn, u16 aligned_pbn) { struct nvif_outp_dp_mst_vcpi_v0 args; int ret; args.version = 0; args.head = head; args.start_slot = start_slot; args.num_slots = num_slots; args.pbn = pbn; args.aligned_pbn = aligned_pbn; ret = nvif_object_mthd(&outp->object, NVIF_OUTP_V0_DP_MST_VCPI, &args, sizeof(args)); NVIF_ERRON(ret, &outp->object, "[DP_MST_VCPI head:%d start_slot:%02x num_slots:%02x pbn:%04x aligned_pbn:%04x]", args.head, args.start_slot, args.num_slots, args.pbn, args.aligned_pbn); return ret; } int nvif_outp_dp_retrain(struct nvif_outp *outp) { int ret = nvif_object_mthd(&outp->object, NVIF_OUTP_V0_DP_RETRAIN, NULL, 0); NVIF_ERRON(ret, &outp->object, "[DP_RETRAIN]"); return ret; } int nvif_outp_dp_aux_pwr(struct nvif_outp *outp, bool enable) { struct nvif_outp_dp_aux_pwr_v0 args; int ret; args.version = 0; args.state = enable; ret = nvif_object_mthd(&outp->object, NVIF_OUTP_V0_DP_AUX_PWR, &args, sizeof(args)); NVIF_ERRON(ret, &outp->object, "[DP_AUX_PWR state:%d]", args.state); return ret; } int nvif_outp_hda_eld(struct nvif_outp *outp, int head, void *data, u32 size) { struct { struct nvif_outp_hda_eld_v0 mthd; u8 data[128]; } args; int ret; if (WARN_ON(size > ARRAY_SIZE(args.data))) return -EINVAL; args.mthd.version = 0; args.mthd.head = head; memcpy(args.data, data, size); ret = nvif_mthd(&outp->object, NVIF_OUTP_V0_HDA_ELD, &args, sizeof(args.mthd) + size); NVIF_ERRON(ret, &outp->object, "[HDA_ELD head:%d size:%d]", head, size); return ret; } int nvif_outp_infoframe(struct nvif_outp *outp, u8 type, struct nvif_outp_infoframe_v0 *args, u32 size) { int ret; args->type = type; ret = nvif_mthd(&outp->object, NVIF_OUTP_V0_INFOFRAME, args, sizeof(*args) + size); NVIF_ERRON(ret, &outp->object, "[INFOFRAME type:%d size:%d]", type, size); return ret; } void nvif_outp_release(struct nvif_outp *outp) { int ret = nvif_mthd(&outp->object, NVIF_OUTP_V0_RELEASE, NULL, 0); NVIF_ERRON(ret, &outp->object, "[RELEASE]"); outp->or.id = -1; } static inline int nvif_outp_acquire(struct nvif_outp *outp, u8 proto, struct nvif_outp_acquire_v0 *args) { int ret; args->version = 0; args->proto = proto; ret = nvif_mthd(&outp->object, NVIF_OUTP_V0_ACQUIRE, args, sizeof(*args)); if (ret) return ret; outp->or.id = args->or; outp->or.link = args->link; return 0; } int nvif_outp_acquire_dp(struct nvif_outp *outp, u8 dpcd[DP_RECEIVER_CAP_SIZE], int link_nr, int link_bw, bool hda, bool mst) { struct nvif_outp_acquire_v0 args; int ret; args.dp.link_nr = link_nr; args.dp.link_bw = link_bw; args.dp.hda = hda; args.dp.mst = mst; memcpy(args.dp.dpcd, dpcd, sizeof(args.dp.dpcd)); ret = nvif_outp_acquire(outp, NVIF_OUTP_ACQUIRE_V0_DP, &args); NVIF_ERRON(ret, &outp->object, "[ACQUIRE proto:DP link_nr:%d link_bw:%02x hda:%d mst:%d] or:%d link:%d", args.dp.link_nr, args.dp.link_bw, args.dp.hda, args.dp.mst, args.or, args.link); return ret; } int nvif_outp_acquire_lvds(struct nvif_outp *outp, bool dual, bool bpc8) { struct nvif_outp_acquire_v0 args; int ret; args.lvds.dual = dual; args.lvds.bpc8 = bpc8; ret = nvif_outp_acquire(outp, NVIF_OUTP_ACQUIRE_V0_LVDS, &args); NVIF_ERRON(ret, &outp->object, "[ACQUIRE proto:LVDS dual:%d 8bpc:%d] or:%d link:%d", args.lvds.dual, args.lvds.bpc8, args.or, args.link); return ret; } int nvif_outp_acquire_tmds(struct nvif_outp *outp, int head, bool hdmi, u8 max_ac_packet, u8 rekey, u8 scdc, bool hda) { struct nvif_outp_acquire_v0 args; int ret; args.tmds.head = head; args.tmds.hdmi = hdmi; args.tmds.hdmi_max_ac_packet = max_ac_packet; args.tmds.hdmi_rekey = rekey; args.tmds.hdmi_scdc = scdc; args.tmds.hdmi_hda = hda; ret = nvif_outp_acquire(outp, NVIF_OUTP_ACQUIRE_V0_TMDS, &args); NVIF_ERRON(ret, &outp->object, "[ACQUIRE proto:TMDS head:%d hdmi:%d max_ac_packet:%d rekey:%d scdc:%d hda:%d]" " or:%d link:%d", args.tmds.head, args.tmds.hdmi, args.tmds.hdmi_max_ac_packet, args.tmds.hdmi_rekey, args.tmds.hdmi_scdc, args.tmds.hdmi_hda, args.or, args.link); return ret; } int nvif_outp_acquire_rgb_crt(struct nvif_outp *outp) { struct nvif_outp_acquire_v0 args; int ret; ret = nvif_outp_acquire(outp, NVIF_OUTP_ACQUIRE_V0_RGB_CRT, &args); NVIF_ERRON(ret, &outp->object, "[ACQUIRE proto:RGB_CRT] or:%d", args.or); return ret; } int nvif_outp_load_detect(struct nvif_outp *outp, u32 loadval) { struct nvif_outp_load_detect_v0 args; int ret; args.version = 0; args.data = loadval; ret = nvif_mthd(&outp->object, NVIF_OUTP_V0_LOAD_DETECT, &args, sizeof(args)); NVIF_ERRON(ret, &outp->object, "[LOAD_DETECT data:%08x] load:%02x", args.data, args.load); return ret < 0 ? ret : args.load; } void nvif_outp_dtor(struct nvif_outp *outp) { nvif_object_dtor(&outp->object); } int nvif_outp_ctor(struct nvif_disp *disp, const char *name, int id, struct nvif_outp *outp) { struct nvif_outp_v0 args; int ret; args.version = 0; args.id = id; ret = nvif_object_ctor(&disp->object, name ?: "nvifOutp", id, NVIF_CLASS_OUTP, &args, sizeof(args), &outp->object); NVIF_ERRON(ret, &disp->object, "[NEW outp id:%d]", id); if (ret) return ret; outp->or.id = -1; return 0; }
linux-master
drivers/gpu/drm/nouveau/nvif/outp.c
/* * Copyright 2017 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <nvif/mmu.h> #include <nvif/class.h> #include <nvif/if0008.h> void nvif_mmu_dtor(struct nvif_mmu *mmu) { if (!nvif_object_constructed(&mmu->object)) return; kfree(mmu->kind); kfree(mmu->type); kfree(mmu->heap); nvif_object_dtor(&mmu->object); } int nvif_mmu_ctor(struct nvif_object *parent, const char *name, s32 oclass, struct nvif_mmu *mmu) { static const struct nvif_mclass mems[] = { { NVIF_CLASS_MEM_GF100, -1 }, { NVIF_CLASS_MEM_NV50 , -1 }, { NVIF_CLASS_MEM_NV04 , -1 }, {} }; struct nvif_mmu_v0 args; int ret, i; args.version = 0; mmu->heap = NULL; mmu->type = NULL; mmu->kind = NULL; ret = nvif_object_ctor(parent, name ? name : "nvifMmu", 0, oclass, &args, sizeof(args), &mmu->object); if (ret) goto done; mmu->dmabits = args.dmabits; mmu->heap_nr = args.heap_nr; mmu->type_nr = args.type_nr; mmu->kind_nr = args.kind_nr; ret = nvif_mclass(&mmu->object, mems); if (ret < 0) goto done; mmu->mem = mems[ret].oclass; mmu->heap = kmalloc_array(mmu->heap_nr, sizeof(*mmu->heap), GFP_KERNEL); mmu->type = kmalloc_array(mmu->type_nr, sizeof(*mmu->type), GFP_KERNEL); if (ret = -ENOMEM, !mmu->heap || !mmu->type) goto done; mmu->kind = kmalloc_array(mmu->kind_nr, sizeof(*mmu->kind), GFP_KERNEL); if (!mmu->kind && mmu->kind_nr) goto done; for (i = 0; i < mmu->heap_nr; i++) { struct nvif_mmu_heap_v0 args = { .index = i }; ret = nvif_object_mthd(&mmu->object, NVIF_MMU_V0_HEAP, &args, sizeof(args)); if (ret) goto done; mmu->heap[i].size = args.size; } for (i = 0; i < mmu->type_nr; i++) { struct nvif_mmu_type_v0 args = { .index = i }; ret = nvif_object_mthd(&mmu->object, NVIF_MMU_V0_TYPE, &args, sizeof(args)); if (ret) goto done; mmu->type[i].type = 0; if (args.vram) mmu->type[i].type |= NVIF_MEM_VRAM; if (args.host) mmu->type[i].type |= NVIF_MEM_HOST; if (args.comp) mmu->type[i].type |= NVIF_MEM_COMP; if (args.disp) mmu->type[i].type |= NVIF_MEM_DISP; if (args.kind ) mmu->type[i].type |= NVIF_MEM_KIND; if (args.mappable) mmu->type[i].type |= NVIF_MEM_MAPPABLE; if (args.coherent) mmu->type[i].type |= NVIF_MEM_COHERENT; if (args.uncached) mmu->type[i].type |= NVIF_MEM_UNCACHED; mmu->type[i].heap = args.heap; } if (mmu->kind_nr) { struct nvif_mmu_kind_v0 *kind; size_t argc = struct_size(kind, data, mmu->kind_nr); if (ret = -ENOMEM, !(kind = kmalloc(argc, GFP_KERNEL))) goto done; kind->version = 0; kind->count = mmu->kind_nr; ret = nvif_object_mthd(&mmu->object, NVIF_MMU_V0_KIND, kind, argc); if (ret == 0) memcpy(mmu->kind, kind->data, kind->count); mmu->kind_inv = kind->kind_inv; kfree(kind); } done: if (ret) nvif_mmu_dtor(mmu); return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/mmu.c
/* * Copyright 2016 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include <nvif/driver.h> #include <nvif/client.h> static const struct nvif_driver * nvif_driver[] = { #ifdef __KERNEL__ &nvif_driver_nvkm, #else &nvif_driver_drm, &nvif_driver_lib, &nvif_driver_null, #endif NULL }; int nvif_driver_init(const char *drv, const char *cfg, const char *dbg, const char *name, u64 device, struct nvif_client *client) { int ret = -EINVAL, i; for (i = 0; (client->driver = nvif_driver[i]); i++) { if (!drv || !strcmp(client->driver->name, drv)) { ret = client->driver->init(name, device, cfg, dbg, &client->object.priv); if (ret == 0) break; client->driver->fini(client->object.priv); } } if (ret == 0) ret = nvif_client_ctor(client, name, device, client); return ret; }
linux-master
drivers/gpu/drm/nouveau/nvif/driver.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include <nvif/class.h> #include <nvif/push507c.h> #include <nvhw/class/cl907d.h> #include <nouveau_bo.h> static int sor907d_ctrl(struct nv50_core *core, int or, u32 ctrl, struct nv50_head_atom *asyh) { struct nvif_push *push = core->chan.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907D, SOR_SET_CONTROL(or), ctrl); return 0; } static void sor907d_get_caps(struct nv50_disp *disp, struct nouveau_encoder *outp, int or) { struct nouveau_bo *bo = disp->sync; const int off = or * 2; outp->caps.dp_interlace = NVBO_RV32(bo, off, NV907D_CORE_NOTIFIER_3, CAPABILITIES_CAP_SOR0_20, DP_INTERLACE); } const struct nv50_outp_func sor907d = { .ctrl = sor907d_ctrl, .get_caps = sor907d_get_caps, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/sor907d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include "head.h" #include <nvif/class.h> #include <nvif/pushc37b.h> #include <nvif/timer.h> #include <nvhw/class/clc37d.h> #include <nouveau_bo.h> int corec37d_wndw_owner(struct nv50_core *core) { struct nvif_push *push = core->chan.push; const u32 windows = 8; /*XXX*/ int ret, i; if ((ret = PUSH_WAIT(push, windows * 2))) return ret; for (i = 0; i < windows; i++) { PUSH_MTHD(push, NVC37D, WINDOW_SET_CONTROL(i), NVDEF(NVC37D, WINDOW_SET_CONTROL, OWNER, HEAD(i >> 1))); } return 0; } int corec37d_update(struct nv50_core *core, u32 *interlock, bool ntfy) { struct nvif_push *push = core->chan.push; int ret; if ((ret = PUSH_WAIT(push, (ntfy ? 2 * 2 : 0) + 5))) return ret; if (ntfy) { PUSH_MTHD(push, NVC37D, SET_NOTIFIER_CONTROL, NVDEF(NVC37D, SET_NOTIFIER_CONTROL, MODE, WRITE) | NVVAL(NVC37D, SET_NOTIFIER_CONTROL, OFFSET, NV50_DISP_CORE_NTFY >> 4) | NVDEF(NVC37D, SET_NOTIFIER_CONTROL, NOTIFY, ENABLE)); } PUSH_MTHD(push, NVC37D, SET_INTERLOCK_FLAGS, interlock[NV50_DISP_INTERLOCK_CURS], SET_WINDOW_INTERLOCK_FLAGS, interlock[NV50_DISP_INTERLOCK_WNDW]); PUSH_MTHD(push, NVC37D, UPDATE, 0x00000001 | NVDEF(NVC37D, UPDATE, SPECIAL_HANDLING, NONE) | NVDEF(NVC37D, UPDATE, INHIBIT_INTERRUPTS, FALSE)); if (ntfy) { PUSH_MTHD(push, NVC37D, SET_NOTIFIER_CONTROL, NVDEF(NVC37D, SET_NOTIFIER_CONTROL, NOTIFY, DISABLE)); } return PUSH_KICK(push); } int corec37d_ntfy_wait_done(struct nouveau_bo *bo, u32 offset, struct nvif_device *device) { s64 time = nvif_msec(device, 2000ULL, if (NVBO_TD32(bo, offset, NV_DISP_NOTIFIER, _0, STATUS, ==, FINISHED)) break; usleep_range(1, 2); ); return time < 0 ? time : 0; } void corec37d_ntfy_init(struct nouveau_bo *bo, u32 offset) { NVBO_WR32(bo, offset, NV_DISP_NOTIFIER, _0, NVDEF(NV_DISP_NOTIFIER, _0, STATUS, NOT_BEGUN)); NVBO_WR32(bo, offset, NV_DISP_NOTIFIER, _1, 0); NVBO_WR32(bo, offset, NV_DISP_NOTIFIER, _2, 0); NVBO_WR32(bo, offset, NV_DISP_NOTIFIER, _3, 0); } int corec37d_caps_init(struct nouveau_drm *drm, struct nv50_disp *disp) { int ret; ret = nvif_object_ctor(&disp->disp->object, "dispCaps", 0, GV100_DISP_CAPS, NULL, 0, &disp->caps); if (ret) { NV_ERROR(drm, "Failed to init notifier caps region: %d\n", ret); return ret; } ret = nvif_object_map(&disp->caps, NULL, 0); if (ret) { NV_ERROR(drm, "Failed to map notifier caps region: %d\n", ret); return ret; } return 0; } static int corec37d_init(struct nv50_core *core) { struct nvif_push *push = core->chan.push; const u32 windows = 8; /*XXX*/ int ret, i; if ((ret = PUSH_WAIT(push, 2 + windows * 5))) return ret; PUSH_MTHD(push, NVC37D, SET_CONTEXT_DMA_NOTIFIER, core->chan.sync.handle); for (i = 0; i < windows; i++) { PUSH_MTHD(push, NVC37D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS(i), NVDEF(NVC37D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, RGB_PACKED1BPP, TRUE) | NVDEF(NVC37D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, RGB_PACKED2BPP, TRUE) | NVDEF(NVC37D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, RGB_PACKED4BPP, TRUE) | NVDEF(NVC37D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, RGB_PACKED8BPP, TRUE) | NVDEF(NVC37D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, YUV_PACKED422, TRUE), WINDOW_SET_WINDOW_ROTATED_FORMAT_USAGE_BOUNDS(i), 0x00000000); PUSH_MTHD(push, NVC37D, WINDOW_SET_WINDOW_USAGE_BOUNDS(i), NVVAL(NVC37D, WINDOW_SET_WINDOW_USAGE_BOUNDS, MAX_PIXELS_FETCHED_PER_LINE, 0x7fff) | NVDEF(NVC37D, WINDOW_SET_WINDOW_USAGE_BOUNDS, INPUT_LUT, USAGE_1025) | NVDEF(NVC37D, WINDOW_SET_WINDOW_USAGE_BOUNDS, INPUT_SCALER_TAPS, TAPS_2) | NVDEF(NVC37D, WINDOW_SET_WINDOW_USAGE_BOUNDS, UPSCALING_ALLOWED, FALSE)); } core->assign_windows = true; return PUSH_KICK(push); } static const struct nv50_core_func corec37d = { .init = corec37d_init, .ntfy_init = corec37d_ntfy_init, .caps_init = corec37d_caps_init, .ntfy_wait_done = corec37d_ntfy_wait_done, .update = corec37d_update, .wndw.owner = corec37d_wndw_owner, .head = &headc37d, .sor = &sorc37d, #if IS_ENABLED(CONFIG_DEBUG_FS) .crc = &crcc37d, #endif }; int corec37d_new(struct nouveau_drm *drm, s32 oclass, struct nv50_core **pcore) { return core507d_new_(&corec37d, drm, oclass, pcore); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/corec37d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include "head.h" static const struct nv50_core_func core827d = { .init = core507d_init, .ntfy_init = core507d_ntfy_init, .caps_init = core507d_caps_init, .ntfy_wait_done = core507d_ntfy_wait_done, .update = core507d_update, .head = &head827d, .dac = &dac507d, .sor = &sor507d, .pior = &pior507d, }; int core827d_new(struct nouveau_drm *drm, s32 oclass, struct nv50_core **pcore) { return core507d_new_(&core827d, drm, oclass, pcore); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/core827d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include <nvif/push507c.h> #include <nvhw/class/cl507d.h> #include <nvhw/class/cl837d.h> static int sor507d_ctrl(struct nv50_core *core, int or, u32 ctrl, struct nv50_head_atom *asyh) { struct nvif_push *push = core->chan.push; int ret; if (asyh) { ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, HSYNC_POLARITY, asyh->or.nhsync); ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, VSYNC_POLARITY, asyh->or.nvsync); ctrl |= NVVAL(NV837D, SOR_SET_CONTROL, PIXEL_DEPTH, asyh->or.depth); } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, SOR_SET_CONTROL(or), ctrl); return 0; } static void sor507d_get_caps(struct nv50_disp *core, struct nouveau_encoder *outp, int or) { outp->caps.dp_interlace = true; } const struct nv50_outp_func sor507d = { .ctrl = sor507d_ctrl, .get_caps = sor507d_get_caps, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/sor507d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "wimm.h" #include "atom.h" #include "wndw.h" #include <nvif/if0014.h> #include <nvif/pushc37b.h> #include <nvhw/class/clc37b.h> static int wimmc37b_update(struct nv50_wndw *wndw, u32 *interlock) { struct nvif_push *push = wndw->wimm.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37B, UPDATE, 0x00000001 | NVVAL(NVC37B, UPDATE, INTERLOCK_WITH_WINDOW, !!(interlock[NV50_DISP_INTERLOCK_WNDW] & wndw->interlock.data))); return PUSH_KICK(push); } static int wimmc37b_point(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wimm.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37B, SET_POINT_OUT(0), NVVAL(NVC37B, SET_POINT_OUT, X, asyw->point.x) | NVVAL(NVC37B, SET_POINT_OUT, Y, asyw->point.y)); return 0; } static const struct nv50_wimm_func wimmc37b = { .point = wimmc37b_point, .update = wimmc37b_update, }; static int wimmc37b_init_(const struct nv50_wimm_func *func, struct nouveau_drm *drm, s32 oclass, struct nv50_wndw *wndw) { struct nvif_disp_chan_v0 args = { .id = wndw->id, }; struct nv50_disp *disp = nv50_disp(drm->dev); int ret; ret = nv50_dmac_create(&drm->client.device, &disp->disp->object, &oclass, 0, &args, sizeof(args), -1, &wndw->wimm); if (ret) { NV_ERROR(drm, "wimm%04x allocation failed: %d\n", oclass, ret); return ret; } wndw->interlock.wimm = wndw->interlock.data; wndw->immd = func; return 0; } int wimmc37b_init(struct nouveau_drm *drm, s32 oclass, struct nv50_wndw *wndw) { return wimmc37b_init_(&wimmc37b, drm, oclass, wndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/wimmc37b.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include "head.h" static const struct nv50_core_func core917d = { .init = core507d_init, .ntfy_init = core507d_ntfy_init, .caps_init = core907d_caps_init, .ntfy_wait_done = core507d_ntfy_wait_done, .update = core507d_update, .head = &head917d, #if IS_ENABLED(CONFIG_DEBUG_FS) .crc = &crc907d, #endif .dac = &dac907d, .sor = &sor907d, }; int core917d_new(struct nouveau_drm *drm, s32 oclass, struct nv50_core **pcore) { return core507d_new_(&core917d, drm, oclass, pcore); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/core917d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include "head.h" #include <nvif/pushc37b.h> #include <nvhw/class/clc57d.h> static int corec57d_init(struct nv50_core *core) { struct nvif_push *push = core->chan.push; const u32 windows = 8; /*XXX*/ int ret, i; if ((ret = PUSH_WAIT(push, 2 + windows * 5))) return ret; PUSH_MTHD(push, NVC57D, SET_CONTEXT_DMA_NOTIFIER, core->chan.sync.handle); for (i = 0; i < windows; i++) { PUSH_MTHD(push, NVC57D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS(i), NVDEF(NVC57D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, RGB_PACKED1BPP, TRUE) | NVDEF(NVC57D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, RGB_PACKED2BPP, TRUE) | NVDEF(NVC57D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, RGB_PACKED4BPP, TRUE) | NVDEF(NVC57D, WINDOW_SET_WINDOW_FORMAT_USAGE_BOUNDS, RGB_PACKED8BPP, TRUE), WINDOW_SET_WINDOW_ROTATED_FORMAT_USAGE_BOUNDS(i), 0x00000000); PUSH_MTHD(push, NVC57D, WINDOW_SET_WINDOW_USAGE_BOUNDS(i), NVVAL(NVC57D, WINDOW_SET_WINDOW_USAGE_BOUNDS, MAX_PIXELS_FETCHED_PER_LINE, 0x7fff) | NVDEF(NVC57D, WINDOW_SET_WINDOW_USAGE_BOUNDS, ILUT_ALLOWED, TRUE) | NVDEF(NVC57D, WINDOW_SET_WINDOW_USAGE_BOUNDS, INPUT_SCALER_TAPS, TAPS_2) | NVDEF(NVC57D, WINDOW_SET_WINDOW_USAGE_BOUNDS, UPSCALING_ALLOWED, FALSE)); } core->assign_windows = true; return PUSH_KICK(push); } static const struct nv50_core_func corec57d = { .init = corec57d_init, .ntfy_init = corec37d_ntfy_init, .caps_init = corec37d_caps_init, .ntfy_wait_done = corec37d_ntfy_wait_done, .update = corec37d_update, .wndw.owner = corec37d_wndw_owner, .head = &headc57d, .sor = &sorc37d, #if IS_ENABLED(CONFIG_DEBUG_FS) .crc = &crcc57d, #endif }; int corec57d_new(struct nouveau_drm *drm, s32 oclass, struct nv50_core **pcore) { return core507d_new_(&corec57d, drm, oclass, pcore); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/corec57d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include <nvif/pushc37b.h> #include <nvhw/class/clc37d.h> static int sorc37d_ctrl(struct nv50_core *core, int or, u32 ctrl, struct nv50_head_atom *asyh) { struct nvif_push *push = core->chan.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37D, SOR_SET_CONTROL(or), ctrl); return 0; } static void sorc37d_get_caps(struct nv50_disp *disp, struct nouveau_encoder *outp, int or) { u32 tmp = nvif_rd32(&disp->caps, 0x000144 + (or * 8)); outp->caps.dp_interlace = !!(tmp & 0x04000000); } const struct nv50_outp_func sorc37d = { .ctrl = sorc37d_ctrl, .get_caps = sorc37d_get_caps, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/sorc37d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include "head.h" #include <nvif/push507c.h> #include <nvif/timer.h> #include <nvhw/class/cl907d.h> #include "nouveau_bo.h" int core907d_caps_init(struct nouveau_drm *drm, struct nv50_disp *disp) { struct nv50_core *core = disp->core; struct nouveau_bo *bo = disp->sync; s64 time; int ret; NVBO_WR32(bo, NV50_DISP_CORE_NTFY, NV907D_CORE_NOTIFIER_3, CAPABILITIES_4, NVDEF(NV907D_CORE_NOTIFIER_3, CAPABILITIES_4, DONE, FALSE)); ret = core507d_read_caps(disp); if (ret < 0) return ret; time = nvif_msec(core->chan.base.device, 2000ULL, if (NVBO_TD32(bo, NV50_DISP_CORE_NTFY, NV907D_CORE_NOTIFIER_3, CAPABILITIES_4, DONE, ==, TRUE)) break; usleep_range(1, 2); ); if (time < 0) NV_ERROR(drm, "core caps notifier timeout\n"); return 0; } static const struct nv50_core_func core907d = { .init = core507d_init, .ntfy_init = core507d_ntfy_init, .caps_init = core907d_caps_init, .ntfy_wait_done = core507d_ntfy_wait_done, .update = core507d_update, .head = &head907d, #if IS_ENABLED(CONFIG_DEBUG_FS) .crc = &crc907d, #endif .dac = &dac907d, .sor = &sor907d, }; int core907d_new(struct nouveau_drm *drm, s32 oclass, struct nv50_core **pcore) { return core507d_new_(&core907d, drm, oclass, pcore); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/core907d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "lut.h" #include "disp.h" #include <drm/drm_color_mgmt.h> #include <drm/drm_mode.h> #include <drm/drm_property.h> #include <nvif/class.h> u32 nv50_lut_load(struct nv50_lut *lut, int buffer, struct drm_property_blob *blob, void (*load)(struct drm_color_lut *, int, void __iomem *)) { struct drm_color_lut *in = blob ? blob->data : NULL; void __iomem *mem = lut->mem[buffer].object.map.ptr; const u32 addr = lut->mem[buffer].addr; int i; if (!in) { in = kvmalloc_array(1024, sizeof(*in), GFP_KERNEL); if (!WARN_ON(!in)) { for (i = 0; i < 1024; i++) { in[i].red = in[i].green = in[i].blue = (i << 16) >> 10; } load(in, 1024, mem); kvfree(in); } } else { load(in, drm_color_lut_size(blob), mem); } return addr; } void nv50_lut_fini(struct nv50_lut *lut) { int i; for (i = 0; i < ARRAY_SIZE(lut->mem); i++) nvif_mem_dtor(&lut->mem[i]); } int nv50_lut_init(struct nv50_disp *disp, struct nvif_mmu *mmu, struct nv50_lut *lut) { const u32 size = disp->disp->object.oclass < GF110_DISP ? 257 : 1025; int i; for (i = 0; i < ARRAY_SIZE(lut->mem); i++) { int ret = nvif_mem_ctor_map(mmu, "kmsLut", NVIF_MEM_VRAM, size * 8, &lut->mem[i]); if (ret) return ret; } return 0; }
linux-master
drivers/gpu/drm/nouveau/dispnv50/lut.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include "head.h" #include <nvif/if0014.h> #include <nvif/push507c.h> #include <nvif/timer.h> #include <nvhw/class/cl507d.h> #include "nouveau_bo.h" int core507d_update(struct nv50_core *core, u32 *interlock, bool ntfy) { struct nvif_push *push = core->chan.push; int ret; if ((ret = PUSH_WAIT(push, (ntfy ? 2 : 0) + 3))) return ret; if (ntfy) { PUSH_MTHD(push, NV507D, SET_NOTIFIER_CONTROL, NVDEF(NV507D, SET_NOTIFIER_CONTROL, MODE, WRITE) | NVVAL(NV507D, SET_NOTIFIER_CONTROL, OFFSET, NV50_DISP_CORE_NTFY >> 2) | NVDEF(NV507D, SET_NOTIFIER_CONTROL, NOTIFY, ENABLE)); } PUSH_MTHD(push, NV507D, UPDATE, interlock[NV50_DISP_INTERLOCK_BASE] | interlock[NV50_DISP_INTERLOCK_OVLY] | NVDEF(NV507D, UPDATE, NOT_DRIVER_FRIENDLY, FALSE) | NVDEF(NV507D, UPDATE, NOT_DRIVER_UNFRIENDLY, FALSE) | NVDEF(NV507D, UPDATE, INHIBIT_INTERRUPTS, FALSE), SET_NOTIFIER_CONTROL, NVDEF(NV507D, SET_NOTIFIER_CONTROL, NOTIFY, DISABLE)); return PUSH_KICK(push); } int core507d_ntfy_wait_done(struct nouveau_bo *bo, u32 offset, struct nvif_device *device) { s64 time = nvif_msec(device, 2000ULL, if (NVBO_TD32(bo, offset, NV_DISP_CORE_NOTIFIER_1, COMPLETION_0, DONE, ==, TRUE)) break; usleep_range(1, 2); ); return time < 0 ? time : 0; } void core507d_ntfy_init(struct nouveau_bo *bo, u32 offset) { NVBO_WR32(bo, offset, NV_DISP_CORE_NOTIFIER_1, COMPLETION_0, NVDEF(NV_DISP_CORE_NOTIFIER_1, COMPLETION_0, DONE, FALSE)); } int core507d_read_caps(struct nv50_disp *disp) { struct nvif_push *push = disp->core->chan.push; int ret; ret = PUSH_WAIT(push, 6); if (ret) return ret; PUSH_MTHD(push, NV507D, SET_NOTIFIER_CONTROL, NVDEF(NV507D, SET_NOTIFIER_CONTROL, MODE, WRITE) | NVVAL(NV507D, SET_NOTIFIER_CONTROL, OFFSET, NV50_DISP_CORE_NTFY >> 2) | NVDEF(NV507D, SET_NOTIFIER_CONTROL, NOTIFY, ENABLE)); PUSH_MTHD(push, NV507D, GET_CAPABILITIES, 0x00000000); PUSH_MTHD(push, NV507D, SET_NOTIFIER_CONTROL, NVDEF(NV507D, SET_NOTIFIER_CONTROL, NOTIFY, DISABLE)); return PUSH_KICK(push); } int core507d_caps_init(struct nouveau_drm *drm, struct nv50_disp *disp) { struct nv50_core *core = disp->core; struct nouveau_bo *bo = disp->sync; s64 time; int ret; NVBO_WR32(bo, NV50_DISP_CORE_NTFY, NV_DISP_CORE_NOTIFIER_1, CAPABILITIES_1, NVDEF(NV_DISP_CORE_NOTIFIER_1, CAPABILITIES_1, DONE, FALSE)); ret = core507d_read_caps(disp); if (ret < 0) return ret; time = nvif_msec(core->chan.base.device, 2000ULL, if (NVBO_TD32(bo, NV50_DISP_CORE_NTFY, NV_DISP_CORE_NOTIFIER_1, CAPABILITIES_1, DONE, ==, TRUE)) break; usleep_range(1, 2); ); if (time < 0) NV_ERROR(drm, "core caps notifier timeout\n"); return 0; } int core507d_init(struct nv50_core *core) { struct nvif_push *push = core->chan.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, SET_CONTEXT_DMA_NOTIFIER, core->chan.sync.handle); return PUSH_KICK(push); } static const struct nv50_core_func core507d = { .init = core507d_init, .ntfy_init = core507d_ntfy_init, .caps_init = core507d_caps_init, .ntfy_wait_done = core507d_ntfy_wait_done, .update = core507d_update, .head = &head507d, .dac = &dac507d, .sor = &sor507d, .pior = &pior507d, }; int core507d_new_(const struct nv50_core_func *func, struct nouveau_drm *drm, s32 oclass, struct nv50_core **pcore) { struct nvif_disp_chan_v0 args = {}; struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_core *core; int ret; if (!(core = *pcore = kzalloc(sizeof(*core), GFP_KERNEL))) return -ENOMEM; core->func = func; ret = nv50_dmac_create(&drm->client.device, &disp->disp->object, &oclass, 0, &args, sizeof(args), disp->sync->offset, &core->chan); if (ret) { NV_ERROR(drm, "core%04x allocation failed: %d\n", oclass, ret); return ret; } return 0; } int core507d_new(struct nouveau_drm *drm, s32 oclass, struct nv50_core **pcore) { return core507d_new_(&core507d, drm, oclass, pcore); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/core507d.c
/* * Copyright 2021 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "wndw.h" #include "atom.h" #include <nvif/pushc37b.h> #include <nvhw/class/clc57e.h> static int wndwc67e_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 17))) return ret; PUSH_MTHD(push, NVC57E, SET_PRESENT_CONTROL, NVVAL(NVC57E, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval) | NVVAL(NVC57E, SET_PRESENT_CONTROL, BEGIN_MODE, asyw->image.mode) | NVDEF(NVC57E, SET_PRESENT_CONTROL, TIMESTAMP_MODE, DISABLE)); PUSH_MTHD(push, NVC57E, SET_SIZE, NVVAL(NVC57E, SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NVC57E, SET_SIZE, HEIGHT, asyw->image.h), SET_STORAGE, NVVAL(NVC57E, SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh), SET_PARAMS, NVVAL(NVC57E, SET_PARAMS, FORMAT, asyw->image.format) | NVDEF(NVC57E, SET_PARAMS, CLAMP_BEFORE_BLEND, DISABLE) | NVDEF(NVC57E, SET_PARAMS, SWAP_UV, DISABLE) | NVDEF(NVC57E, SET_PARAMS, FMT_ROUNDING_MODE, ROUND_TO_NEAREST), SET_PLANAR_STORAGE(0), NVVAL(NVC57E, SET_PLANAR_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NVC57E, SET_PLANAR_STORAGE, PITCH, asyw->image.pitch[0] >> 6)); PUSH_MTHD(push, NVC57E, SET_CONTEXT_DMA_ISO(0), asyw->image.handle, 1); PUSH_MTHD(push, NVC57E, SET_OFFSET(0), asyw->image.offset[0] >> 8); PUSH_MTHD(push, NVC57E, SET_POINT_IN(0), NVVAL(NVC57E, SET_POINT_IN, X, asyw->state.src_x >> 16) | NVVAL(NVC57E, SET_POINT_IN, Y, asyw->state.src_y >> 16)); PUSH_MTHD(push, NVC57E, SET_SIZE_IN, NVVAL(NVC57E, SET_SIZE_IN, WIDTH, asyw->state.src_w >> 16) | NVVAL(NVC57E, SET_SIZE_IN, HEIGHT, asyw->state.src_h >> 16)); PUSH_MTHD(push, NVC57E, SET_SIZE_OUT, NVVAL(NVC57E, SET_SIZE_OUT, WIDTH, asyw->state.crtc_w) | NVVAL(NVC57E, SET_SIZE_OUT, HEIGHT, asyw->state.crtc_h)); return 0; } static const struct nv50_wndw_func wndwc67e = { .acquire = wndwc37e_acquire, .release = wndwc37e_release, .sema_set = wndwc37e_sema_set, .sema_clr = wndwc37e_sema_clr, .ntfy_set = wndwc37e_ntfy_set, .ntfy_clr = wndwc37e_ntfy_clr, .ntfy_reset = corec37d_ntfy_init, .ntfy_wait_begun = base507c_ntfy_wait_begun, .ilut = wndwc57e_ilut, .ilut_identity = true, .ilut_size = 1024, .xlut_set = wndwc57e_ilut_set, .xlut_clr = wndwc57e_ilut_clr, .csc = base907c_csc, .csc_set = wndwc57e_csc_set, .csc_clr = wndwc57e_csc_clr, .image_set = wndwc67e_image_set, .image_clr = wndwc37e_image_clr, .blend_set = wndwc37e_blend_set, .update = wndwc37e_update, }; int wndwc67e_new(struct nouveau_drm *drm, enum drm_plane_type type, int index, s32 oclass, struct nv50_wndw **pwndw) { return wndwc37e_new_(&wndwc67e, drm, type, index, oclass, BIT(index >> 1), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/wndwc67e.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "ovly.h" #include "atom.h" #include <drm/drm_atomic_helper.h> #include <drm/drm_fourcc.h> #include <nvif/if0014.h> #include <nvif/push507c.h> #include <nvhw/class/cl507e.h> int ovly507e_scale_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NV507E, SET_POINT_IN, NVVAL(NV507E, SET_POINT_IN, X, asyw->scale.sx) | NVVAL(NV507E, SET_POINT_IN, Y, asyw->scale.sy), SET_SIZE_IN, NVVAL(NV507E, SET_SIZE_IN, WIDTH, asyw->scale.sw) | NVVAL(NV507E, SET_SIZE_IN, HEIGHT, asyw->scale.sh), SET_SIZE_OUT, NVVAL(NV507E, SET_SIZE_OUT, WIDTH, asyw->scale.dw)); return 0; } static int ovly507e_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 12))) return ret; PUSH_MTHD(push, NV507E, SET_PRESENT_CONTROL, NVDEF(NV507E, SET_PRESENT_CONTROL, BEGIN_MODE, ASAP) | NVVAL(NV507E, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval)); PUSH_MTHD(push, NV507E, SET_CONTEXT_DMA_ISO, asyw->image.handle[0]); PUSH_MTHD(push, NV507E, SET_COMPOSITION_CONTROL, NVDEF(NV507E, SET_COMPOSITION_CONTROL, MODE, OPAQUE_SUSPEND_BASE)); PUSH_MTHD(push, NV507E, SURFACE_SET_OFFSET, asyw->image.offset[0] >> 8); PUSH_MTHD(push, NV507E, SURFACE_SET_SIZE, NVVAL(NV507E, SURFACE_SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NV507E, SURFACE_SET_SIZE, HEIGHT, asyw->image.h), SURFACE_SET_STORAGE, NVVAL(NV507E, SURFACE_SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh) | NVVAL(NV507E, SURFACE_SET_STORAGE, PITCH, (asyw->image.pitch[0] >> 8)) | NVVAL(NV507E, SURFACE_SET_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NV507E, SURFACE_SET_STORAGE, MEMORY_LAYOUT, asyw->image.layout), SURFACE_SET_PARAMS, NVVAL(NV507E, SURFACE_SET_PARAMS, FORMAT, asyw->image.format) | NVVAL(NV507E, SURFACE_SET_PARAMS, COLOR_SPACE, asyw->image.colorspace) | NVVAL(NV507E, SURFACE_SET_PARAMS, KIND, asyw->image.kind) | NVDEF(NV507E, SURFACE_SET_PARAMS, PART_STRIDE, PARTSTRIDE_256)); return 0; } void ovly507e_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { asyh->ovly.cpp = 0; } int ovly507e_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { const struct drm_framebuffer *fb = asyw->state.fb; int ret; ret = drm_atomic_helper_check_plane_state(&asyw->state, &asyh->state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, true, true); if (ret) return ret; asyh->ovly.cpp = fb->format->cpp[0]; return 0; } #include "nouveau_bo.h" static const struct nv50_wndw_func ovly507e = { .acquire = ovly507e_acquire, .release = ovly507e_release, .ntfy_set = base507c_ntfy_set, .ntfy_clr = base507c_ntfy_clr, .ntfy_reset = base507c_ntfy_reset, .ntfy_wait_begun = base507c_ntfy_wait_begun, .image_set = ovly507e_image_set, .image_clr = base507c_image_clr, .scale_set = ovly507e_scale_set, .update = base507c_update, }; static const u32 ovly507e_format[] = { DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_XRGB8888, DRM_FORMAT_XRGB1555, 0 }; int ovly507e_new_(const struct nv50_wndw_func *func, const u32 *format, struct nouveau_drm *drm, int head, s32 oclass, u32 interlock_data, struct nv50_wndw **pwndw) { struct nvif_disp_chan_v0 args = { .id = head, }; struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_wndw *wndw; int ret; ret = nv50_wndw_new_(func, drm->dev, DRM_PLANE_TYPE_OVERLAY, "ovly", head, format, BIT(head), NV50_DISP_INTERLOCK_OVLY, interlock_data, &wndw); if (*pwndw = wndw, ret) return ret; ret = nv50_dmac_create(&drm->client.device, &disp->disp->object, &oclass, 0, &args, sizeof(args), disp->sync->offset, &wndw->wndw); if (ret) { NV_ERROR(drm, "ovly%04x allocation failed: %d\n", oclass, ret); return ret; } wndw->ntfy = NV50_DISP_OVLY_NTFY(wndw->id); wndw->sema = NV50_DISP_OVLY_SEM0(wndw->id); wndw->data = 0x00000000; return 0; } int ovly507e_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return ovly507e_new_(&ovly507e, ovly507e_format, drm, head, oclass, 0x00000004 << (head * 8), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/ovly507e.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "curs.h" #include <nvif/class.h> int nv50_curs_new(struct nouveau_drm *drm, int head, struct nv50_wndw **pwndw) { struct { s32 oclass; int version; int (*new)(struct nouveau_drm *, int, s32, struct nv50_wndw **); } curses[] = { { GA102_DISP_CURSOR, 0, cursc37a_new }, { TU102_DISP_CURSOR, 0, cursc37a_new }, { GV100_DISP_CURSOR, 0, cursc37a_new }, { GK104_DISP_CURSOR, 0, curs907a_new }, { GF110_DISP_CURSOR, 0, curs907a_new }, { GT214_DISP_CURSOR, 0, curs507a_new }, { G82_DISP_CURSOR, 0, curs507a_new }, { NV50_DISP_CURSOR, 0, curs507a_new }, {} }; struct nv50_disp *disp = nv50_disp(drm->dev); int cid; cid = nvif_mclass(&disp->disp->object, curses); if (cid < 0) { NV_ERROR(drm, "No supported cursor immediate class\n"); return cid; } return curses[cid].new(drm, head, curses[cid].oclass, pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/curs.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "base.h" #include <nvif/push507c.h> #include <nvhw/class/cl827c.h> static int base827c_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 13))) return ret; PUSH_MTHD(push, NV827C, SET_PRESENT_CONTROL, NVVAL(NV827C, SET_PRESENT_CONTROL, BEGIN_MODE, asyw->image.mode) | NVVAL(NV827C, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval)); PUSH_MTHD(push, NV827C, SET_CONTEXT_DMAS_ISO(0), asyw->image.handle, 1); if (asyw->image.format == NV827C_SURFACE_SET_PARAMS_FORMAT_RF16_GF16_BF16_AF16) { PUSH_MTHD(push, NV827C, SET_PROCESSING, NVDEF(NV827C, SET_PROCESSING, USE_GAIN_OFS, ENABLE), SET_CONVERSION, NVVAL(NV827C, SET_CONVERSION, GAIN, 0) | NVVAL(NV827C, SET_CONVERSION, OFS, 0x64)); } else { PUSH_MTHD(push, NV827C, SET_PROCESSING, NVDEF(NV827C, SET_PROCESSING, USE_GAIN_OFS, DISABLE), SET_CONVERSION, NVVAL(NV827C, SET_CONVERSION, GAIN, 0) | NVVAL(NV827C, SET_CONVERSION, OFS, 0)); } PUSH_MTHD(push, NV827C, SURFACE_SET_OFFSET(0, 0), asyw->image.offset[0] >> 8, SURFACE_SET_OFFSET(0, 1), 0x00000000, SURFACE_SET_SIZE(0), NVVAL(NV827C, SURFACE_SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NV827C, SURFACE_SET_SIZE, HEIGHT, asyw->image.h), SURFACE_SET_STORAGE(0), NVVAL(NV827C, SURFACE_SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh) | NVVAL(NV827C, SURFACE_SET_STORAGE, PITCH, asyw->image.pitch[0] >> 8) | NVVAL(NV827C, SURFACE_SET_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NV827C, SURFACE_SET_STORAGE, MEMORY_LAYOUT, asyw->image.layout), SURFACE_SET_PARAMS(0), NVVAL(NV827C, SURFACE_SET_PARAMS, FORMAT, asyw->image.format) | NVDEF(NV827C, SURFACE_SET_PARAMS, SUPER_SAMPLE, X1_AA) | NVDEF(NV827C, SURFACE_SET_PARAMS, GAMMA, LINEAR) | NVDEF(NV827C, SURFACE_SET_PARAMS, LAYOUT, FRM)); return 0; } static const struct nv50_wndw_func base827c = { .acquire = base507c_acquire, .release = base507c_release, .sema_set = base507c_sema_set, .sema_clr = base507c_sema_clr, .ntfy_reset = base507c_ntfy_reset, .ntfy_set = base507c_ntfy_set, .ntfy_clr = base507c_ntfy_clr, .ntfy_wait_begun = base507c_ntfy_wait_begun, .olut_core = 1, .xlut_set = base507c_xlut_set, .xlut_clr = base507c_xlut_clr, .image_set = base827c_image_set, .image_clr = base507c_image_clr, .update = base507c_update, }; int base827c_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return base507c_new_(&base827c, base507c_format, drm, head, oclass, 0x00000002 << (head * 8), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/base827c.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "wndw.h" #include "atom.h" #include <drm/drm_atomic_helper.h> #include <nouveau_bo.h> #include <nvif/pushc37b.h> #include <nvhw/class/clc57e.h> static int wndwc57e_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 17))) return ret; PUSH_MTHD(push, NVC57E, SET_PRESENT_CONTROL, NVVAL(NVC57E, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval) | NVVAL(NVC57E, SET_PRESENT_CONTROL, BEGIN_MODE, asyw->image.mode) | NVDEF(NVC57E, SET_PRESENT_CONTROL, TIMESTAMP_MODE, DISABLE)); PUSH_MTHD(push, NVC57E, SET_SIZE, NVVAL(NVC57E, SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NVC57E, SET_SIZE, HEIGHT, asyw->image.h), SET_STORAGE, NVVAL(NVC57E, SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh) | NVVAL(NVC57E, SET_STORAGE, MEMORY_LAYOUT, asyw->image.layout), SET_PARAMS, NVVAL(NVC57E, SET_PARAMS, FORMAT, asyw->image.format) | NVDEF(NVC57E, SET_PARAMS, CLAMP_BEFORE_BLEND, DISABLE) | NVDEF(NVC57E, SET_PARAMS, SWAP_UV, DISABLE) | NVDEF(NVC57E, SET_PARAMS, FMT_ROUNDING_MODE, ROUND_TO_NEAREST), SET_PLANAR_STORAGE(0), NVVAL(NVC57E, SET_PLANAR_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NVC57E, SET_PLANAR_STORAGE, PITCH, asyw->image.pitch[0] >> 6)); PUSH_MTHD(push, NVC57E, SET_CONTEXT_DMA_ISO(0), asyw->image.handle, 1); PUSH_MTHD(push, NVC57E, SET_OFFSET(0), asyw->image.offset[0] >> 8); PUSH_MTHD(push, NVC57E, SET_POINT_IN(0), NVVAL(NVC57E, SET_POINT_IN, X, asyw->state.src_x >> 16) | NVVAL(NVC57E, SET_POINT_IN, Y, asyw->state.src_y >> 16)); PUSH_MTHD(push, NVC57E, SET_SIZE_IN, NVVAL(NVC57E, SET_SIZE_IN, WIDTH, asyw->state.src_w >> 16) | NVVAL(NVC57E, SET_SIZE_IN, HEIGHT, asyw->state.src_h >> 16)); PUSH_MTHD(push, NVC57E, SET_SIZE_OUT, NVVAL(NVC57E, SET_SIZE_OUT, WIDTH, asyw->state.crtc_w) | NVVAL(NVC57E, SET_SIZE_OUT, HEIGHT, asyw->state.crtc_h)); return 0; } int wndwc57e_csc_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; const u32 identity[12] = { 0x00010000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000, }; int ret; if ((ret = PUSH_WAIT(push, 1 + ARRAY_SIZE(identity)))) return ret; PUSH_MTHD(push, NVC57E, SET_FMT_COEFFICIENT_C00, identity, ARRAY_SIZE(identity)); return 0; } int wndwc57e_csc_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 13))) return ret; PUSH_MTHD(push, NVC57E, SET_FMT_COEFFICIENT_C00, asyw->csc.matrix, 12); return 0; } int wndwc57e_ilut_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC57E, SET_CONTEXT_DMA_ILUT, 0x00000000); return 0; } int wndwc57e_ilut_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NVC57E, SET_ILUT_CONTROL, NVVAL(NVC57E, SET_ILUT_CONTROL, SIZE, asyw->xlut.i.size) | NVVAL(NVC57E, SET_ILUT_CONTROL, MODE, asyw->xlut.i.mode) | NVVAL(NVC57E, SET_ILUT_CONTROL, INTERPOLATE, asyw->xlut.i.output_mode), SET_CONTEXT_DMA_ILUT, asyw->xlut.handle, SET_OFFSET_ILUT, asyw->xlut.i.offset >> 8); return 0; } static u16 fixedU0_16_FP16(u16 fixed) { int sign = 0, exp = 0, man = 0; if (fixed) { while (--exp && !(fixed & 0x8000)) fixed <<= 1; man = ((fixed << 1) & 0xffc0) >> 6; exp += 15; } return (sign << 15) | (exp << 10) | man; } static void wndwc57e_ilut_load(struct drm_color_lut *in, int size, void __iomem *mem) { memset_io(mem, 0x00, 0x20); /* VSS header. */ mem += 0x20; for (; size--; in++, mem += 0x08) { u16 r = fixedU0_16_FP16(drm_color_lut_extract(in-> red, 16)); u16 g = fixedU0_16_FP16(drm_color_lut_extract(in->green, 16)); u16 b = fixedU0_16_FP16(drm_color_lut_extract(in-> blue, 16)); writew(r, mem + 0); writew(g, mem + 2); writew(b, mem + 4); } /* INTERPOLATE modes require a "next" entry to interpolate with, * so we replicate the last entry to deal with this for now. */ writew(readw(mem - 8), mem + 0); writew(readw(mem - 6), mem + 2); writew(readw(mem - 4), mem + 4); } void wndwc57e_ilut(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, int size) { if (!size) size = 1024; if (size == 256) asyw->xlut.i.mode = NVC57E_SET_ILUT_CONTROL_MODE_DIRECT8; else asyw->xlut.i.mode = NVC57E_SET_ILUT_CONTROL_MODE_DIRECT10; asyw->xlut.i.size = 4 /* VSS header. */ + size + 1 /* Entries. */; asyw->xlut.i.output_mode = NVC57E_SET_ILUT_CONTROL_INTERPOLATE_DISABLE; asyw->xlut.i.load = wndwc57e_ilut_load; } /**************************************************************** * Log2(block height) ----------------------------+ * * Page Kind ----------------------------------+ | * * Gob Height/Page Kind Generation ------+ | | * * Sector layout -------+ | | | * * Compression ------+ | | | | */ const u64 wndwc57e_modifiers[] = { /* | | | | | */ DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 2, 0x06, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 2, 0x06, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 2, 0x06, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 2, 0x06, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 2, 0x06, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 2, 0x06, 5), DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; static const struct nv50_wndw_func wndwc57e = { .acquire = wndwc37e_acquire, .release = wndwc37e_release, .sema_set = wndwc37e_sema_set, .sema_clr = wndwc37e_sema_clr, .ntfy_set = wndwc37e_ntfy_set, .ntfy_clr = wndwc37e_ntfy_clr, .ntfy_reset = corec37d_ntfy_init, .ntfy_wait_begun = base507c_ntfy_wait_begun, .ilut = wndwc57e_ilut, .ilut_identity = true, .ilut_size = 1024, .xlut_set = wndwc57e_ilut_set, .xlut_clr = wndwc57e_ilut_clr, .csc = base907c_csc, .csc_set = wndwc57e_csc_set, .csc_clr = wndwc57e_csc_clr, .image_set = wndwc57e_image_set, .image_clr = wndwc37e_image_clr, .blend_set = wndwc37e_blend_set, .update = wndwc37e_update, }; int wndwc57e_new(struct nouveau_drm *drm, enum drm_plane_type type, int index, s32 oclass, struct nv50_wndw **pwndw) { return wndwc37e_new_(&wndwc57e, drm, type, index, oclass, BIT(index >> 1), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/wndwc57e.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "ovly.h" #include "atom.h" #include <nvif/push507c.h> #include <nvhw/class/cl907e.h> static int ovly907e_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 12))) return ret; PUSH_MTHD(push, NV907E, SET_PRESENT_CONTROL, NVDEF(NV907E, SET_PRESENT_CONTROL, BEGIN_MODE, ASAP) | NVVAL(NV907E, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval)); PUSH_MTHD(push, NV907E, SET_CONTEXT_DMA_ISO, asyw->image.handle[0]); PUSH_MTHD(push, NV907E, SET_COMPOSITION_CONTROL, NVDEF(NV907E, SET_COMPOSITION_CONTROL, MODE, OPAQUE)); PUSH_MTHD(push, NV907E, SURFACE_SET_OFFSET, asyw->image.offset[0] >> 8); PUSH_MTHD(push, NV907E, SURFACE_SET_SIZE, NVVAL(NV907E, SURFACE_SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NV907E, SURFACE_SET_SIZE, HEIGHT, asyw->image.h), SURFACE_SET_STORAGE, NVVAL(NV907E, SURFACE_SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh) | NVVAL(NV907E, SURFACE_SET_STORAGE, PITCH, (asyw->image.pitch[0] >> 8)) | NVVAL(NV907E, SURFACE_SET_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NV907E, SURFACE_SET_STORAGE, MEMORY_LAYOUT, asyw->image.layout), SURFACE_SET_PARAMS, NVVAL(NV907E, SURFACE_SET_PARAMS, FORMAT, asyw->image.format) | NVVAL(NV907E, SURFACE_SET_PARAMS, COLOR_SPACE, asyw->image.colorspace)); return 0; } const struct nv50_wndw_func ovly907e = { .acquire = ovly507e_acquire, .release = ovly507e_release, .ntfy_set = base507c_ntfy_set, .ntfy_clr = base507c_ntfy_clr, .ntfy_reset = ovly827e_ntfy_reset, .ntfy_wait_begun = ovly827e_ntfy_wait_begun, .image_set = ovly907e_image_set, .image_clr = base507c_image_clr, .scale_set = ovly507e_scale_set, .update = base507c_update, }; static const u32 ovly907e_format[] = { DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_XRGB8888, DRM_FORMAT_XRGB1555, DRM_FORMAT_XBGR2101010, DRM_FORMAT_XBGR16161616F, 0 }; int ovly907e_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return ovly507e_new_(&ovly907e, ovly907e_format, drm, head, oclass, 0x00000004 << (head * 4), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/ovly907e.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "ovly.h" static const u32 ovly917e_format[] = { DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_XRGB8888, DRM_FORMAT_XRGB1555, DRM_FORMAT_XBGR2101010, DRM_FORMAT_XRGB2101010, DRM_FORMAT_XBGR16161616F, 0 }; int ovly917e_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return ovly507e_new_(&ovly907e, ovly917e_format, drm, head, oclass, 0x00000004 << (head * 4), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/ovly917e.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "base.h" #include "atom.h" static const u32 base917c_format[] = { DRM_FORMAT_C8, DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB1555, DRM_FORMAT_XBGR2101010, DRM_FORMAT_ABGR2101010, DRM_FORMAT_XBGR8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XRGB2101010, DRM_FORMAT_ARGB2101010, DRM_FORMAT_XBGR16161616F, DRM_FORMAT_ABGR16161616F, 0 }; int base917c_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return base507c_new_(&base907c, base917c_format, drm, head, oclass, 0x00000002 << (head * 4), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/base917c.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "base.h" #include <nvif/class.h> int nv50_base_new(struct nouveau_drm *drm, int head, struct nv50_wndw **pwndw) { struct { s32 oclass; int version; int (*new)(struct nouveau_drm *, int, s32, struct nv50_wndw **); } bases[] = { { GK110_DISP_BASE_CHANNEL_DMA, 0, base917c_new }, { GK104_DISP_BASE_CHANNEL_DMA, 0, base917c_new }, { GF110_DISP_BASE_CHANNEL_DMA, 0, base907c_new }, { GT214_DISP_BASE_CHANNEL_DMA, 0, base827c_new }, { GT200_DISP_BASE_CHANNEL_DMA, 0, base827c_new }, { G82_DISP_BASE_CHANNEL_DMA, 0, base827c_new }, { NV50_DISP_BASE_CHANNEL_DMA, 0, base507c_new }, {} }; struct nv50_disp *disp = nv50_disp(drm->dev); int cid; cid = nvif_mclass(&disp->disp->object, bases); if (cid < 0) { NV_ERROR(drm, "No supported base class\n"); return cid; } return bases[cid].new(drm, head, bases[cid].oclass, pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/base.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "base.h" #include <nvif/push507c.h> #include <nvhw/class/cl907c.h> static int base907c_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 10))) return ret; PUSH_MTHD(push, NV907C, SET_PRESENT_CONTROL, NVVAL(NV907C, SET_PRESENT_CONTROL, BEGIN_MODE, asyw->image.mode) | NVDEF(NV907C, SET_PRESENT_CONTROL, TIMESTAMP_MODE, DISABLE) | NVVAL(NV907C, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval)); PUSH_MTHD(push, NV907C, SET_CONTEXT_DMAS_ISO(0), asyw->image.handle, 1); PUSH_MTHD(push, NV907C, SURFACE_SET_OFFSET(0, 0), asyw->image.offset[0] >> 8, SURFACE_SET_OFFSET(0, 1), 0x00000000, SURFACE_SET_SIZE(0), NVVAL(NV907C, SURFACE_SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NV907C, SURFACE_SET_SIZE, HEIGHT, asyw->image.h), SURFACE_SET_STORAGE(0), NVVAL(NV907C, SURFACE_SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh) | NVVAL(NV907C, SURFACE_SET_STORAGE, PITCH, asyw->image.pitch[0] >> 8) | NVVAL(NV907C, SURFACE_SET_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NV907C, SURFACE_SET_STORAGE, MEMORY_LAYOUT, asyw->image.layout), SURFACE_SET_PARAMS(0), NVVAL(NV907C, SURFACE_SET_PARAMS, FORMAT, asyw->image.format) | NVDEF(NV907C, SURFACE_SET_PARAMS, SUPER_SAMPLE, X1_AA) | NVDEF(NV907C, SURFACE_SET_PARAMS, GAMMA, LINEAR) | NVDEF(NV907C, SURFACE_SET_PARAMS, LAYOUT, FRM)); return 0; } static int base907c_xlut_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 6))) return ret; PUSH_MTHD(push, NV907C, SET_BASE_LUT_LO, NVDEF(NV907C, SET_BASE_LUT_LO, ENABLE, DISABLE)); PUSH_MTHD(push, NV907C, SET_OUTPUT_LUT_LO, NVDEF(NV907C, SET_OUTPUT_LUT_LO, ENABLE, DISABLE)); PUSH_MTHD(push, NV907C, SET_CONTEXT_DMA_LUT, 0x00000000); return 0; } static int base907c_xlut_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 6))) return ret; PUSH_MTHD(push, NV907C, SET_BASE_LUT_LO, NVVAL(NV907C, SET_BASE_LUT_LO, ENABLE, asyw->xlut.i.enable) | NVVAL(NV907C, SET_BASE_LUT_LO, MODE, asyw->xlut.i.mode), SET_BASE_LUT_HI, asyw->xlut.i.offset >> 8, SET_OUTPUT_LUT_LO, NVDEF(NV907C, SET_OUTPUT_LUT_LO, ENABLE, USE_CORE_LUT)); PUSH_MTHD(push, NV907C, SET_CONTEXT_DMA_LUT, asyw->xlut.handle); return 0; } static void base907c_ilut(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, int size) { if (size == 1024) asyw->xlut.i.mode = NV907C_SET_BASE_LUT_LO_MODE_INTERPOLATE_1025_UNITY_RANGE; else asyw->xlut.i.mode = NV907C_SET_BASE_LUT_LO_MODE_INTERPOLATE_257_UNITY_RANGE; asyw->xlut.i.enable = NV907C_SET_BASE_LUT_LO_ENABLE_ENABLE; asyw->xlut.i.load = head907d_olut_load; } static inline u32 csc_drm_to_base(u64 in) { /* base takes a 19-bit 2's complement value in S3.16 format */ bool sign = in & BIT_ULL(63); u32 integer = (in >> 32) & 0x7fffffff; u32 fraction = in & 0xffffffff; if (integer >= 4) { return (1 << 18) - (sign ? 0 : 1); } else { u32 ret = (integer << 16) | (fraction >> 16); if (sign) ret = -ret; return ret & GENMASK(18, 0); } } void base907c_csc(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, const struct drm_color_ctm *ctm) { int i, j; for (j = 0; j < 3; j++) { for (i = 0; i < 4; i++) { u32 *val = &asyw->csc.matrix[j * 4 + i]; /* DRM does not support constant offset, while * HW CSC does. Skip it. */ if (i == 3) { *val = 0; } else { *val = csc_drm_to_base(ctm->matrix[j * 3 + i]); } } } } static int base907c_csc_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907C, SET_CSC_RED2RED, NVDEF(NV907C, SET_CSC_RED2RED, OWNER, CORE)); return 0; } static int base907c_csc_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 13))) return ret; PUSH_MTHD(push, NV907C, SET_CSC_RED2RED, NVDEF(NV907C, SET_CSC_RED2RED, OWNER, BASE) | NVVAL(NV907C, SET_CSC_RED2RED, COEFF, asyw->csc.matrix[0]), SET_CSC_GRN2RED, &asyw->csc.matrix[1], 11); return 0; } const struct nv50_wndw_func base907c = { .acquire = base507c_acquire, .release = base507c_release, .sema_set = base507c_sema_set, .sema_clr = base507c_sema_clr, .ntfy_reset = base507c_ntfy_reset, .ntfy_set = base507c_ntfy_set, .ntfy_clr = base507c_ntfy_clr, .ntfy_wait_begun = base507c_ntfy_wait_begun, .ilut = base907c_ilut, .csc = base907c_csc, .csc_set = base907c_csc_set, .csc_clr = base907c_csc_clr, .olut_core = true, .ilut_size = 1024, .xlut_set = base907c_xlut_set, .xlut_clr = base907c_xlut_clr, .image_set = base907c_image_set, .image_clr = base507c_image_clr, .update = base507c_update, }; int base907c_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return base507c_new_(&base907c, base507c_format, drm, head, oclass, 0x00000002 << (head * 4), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/base907c.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "wndw.h" #include "atom.h" #include <drm/drm_atomic_helper.h> #include <nouveau_bo.h> #include <nvif/if0014.h> #include <nvif/pushc37b.h> #include <nvhw/class/clc37e.h> static int wndwc37e_csc_clr(struct nv50_wndw *wndw) { return 0; } static int wndwc37e_csc_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 13))) return ret; PUSH_MTHD(push, NVC37E, SET_CSC_RED2RED, asyw->csc.matrix, 12); return 0; } static int wndwc37e_ilut_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37E, SET_CONTEXT_DMA_INPUT_LUT, 0x00000000); return 0; } static int wndwc37e_ilut_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NVC37E, SET_CONTROL_INPUT_LUT, NVVAL(NVC37E, SET_CONTROL_INPUT_LUT, OUTPUT_MODE, asyw->xlut.i.output_mode) | NVVAL(NVC37E, SET_CONTROL_INPUT_LUT, RANGE, asyw->xlut.i.range) | NVVAL(NVC37E, SET_CONTROL_INPUT_LUT, SIZE, asyw->xlut.i.size), SET_OFFSET_INPUT_LUT, asyw->xlut.i.offset >> 8, SET_CONTEXT_DMA_INPUT_LUT, asyw->xlut.handle); return 0; } static void wndwc37e_ilut(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, int size) { asyw->xlut.i.size = size == 1024 ? NVC37E_SET_CONTROL_INPUT_LUT_SIZE_SIZE_1025 : NVC37E_SET_CONTROL_INPUT_LUT_SIZE_SIZE_257; asyw->xlut.i.range = NVC37E_SET_CONTROL_INPUT_LUT_RANGE_UNITY; asyw->xlut.i.output_mode = NVC37E_SET_CONTROL_INPUT_LUT_OUTPUT_MODE_INTERPOLATE; asyw->xlut.i.load = head907d_olut_load; } int wndwc37e_blend_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 8))) return ret; PUSH_MTHD(push, NVC37E, SET_COMPOSITION_CONTROL, NVDEF(NVC37E, SET_COMPOSITION_CONTROL, COLOR_KEY_SELECT, DISABLE) | NVVAL(NVC37E, SET_COMPOSITION_CONTROL, DEPTH, asyw->blend.depth), SET_COMPOSITION_CONSTANT_ALPHA, NVVAL(NVC37E, SET_COMPOSITION_CONSTANT_ALPHA, K1, asyw->blend.k1) | NVVAL(NVC37E, SET_COMPOSITION_CONSTANT_ALPHA, K2, 0), SET_COMPOSITION_FACTOR_SELECT, NVVAL(NVC37E, SET_COMPOSITION_FACTOR_SELECT, SRC_COLOR_FACTOR_MATCH_SELECT, asyw->blend.src_color) | NVVAL(NVC37E, SET_COMPOSITION_FACTOR_SELECT, SRC_COLOR_FACTOR_NO_MATCH_SELECT, asyw->blend.src_color) | NVVAL(NVC37E, SET_COMPOSITION_FACTOR_SELECT, DST_COLOR_FACTOR_MATCH_SELECT, asyw->blend.dst_color) | NVVAL(NVC37E, SET_COMPOSITION_FACTOR_SELECT, DST_COLOR_FACTOR_NO_MATCH_SELECT, asyw->blend.dst_color), SET_KEY_ALPHA, NVVAL(NVC37E, SET_KEY_ALPHA, MIN, 0x0000) | NVVAL(NVC37E, SET_KEY_ALPHA, MAX, 0xffff), SET_KEY_RED_CR, NVVAL(NVC37E, SET_KEY_RED_CR, MIN, 0x0000) | NVVAL(NVC37E, SET_KEY_RED_CR, MAX, 0xffff), SET_KEY_GREEN_Y, NVVAL(NVC37E, SET_KEY_GREEN_Y, MIN, 0x0000) | NVVAL(NVC37E, SET_KEY_GREEN_Y, MAX, 0xffff), SET_KEY_BLUE_CB, NVVAL(NVC37E, SET_KEY_BLUE_CB, MIN, 0x0000) | NVVAL(NVC37E, SET_KEY_BLUE_CB, MAX, 0xffff)); return 0; } int wndwc37e_image_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NVC37E, SET_PRESENT_CONTROL, NVVAL(NVC37E, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, 0) | NVDEF(NVC37E, SET_PRESENT_CONTROL, BEGIN_MODE, NON_TEARING)); PUSH_MTHD(push, NVC37E, SET_CONTEXT_DMA_ISO(0), 0x00000000); return 0; } static int wndwc37e_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 17))) return ret; PUSH_MTHD(push, NVC37E, SET_PRESENT_CONTROL, NVVAL(NVC37E, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval) | NVVAL(NVC37E, SET_PRESENT_CONTROL, BEGIN_MODE, asyw->image.mode) | NVDEF(NVC37E, SET_PRESENT_CONTROL, TIMESTAMP_MODE, DISABLE)); PUSH_MTHD(push, NVC37E, SET_SIZE, NVVAL(NVC37E, SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NVC37E, SET_SIZE, HEIGHT, asyw->image.h), SET_STORAGE, NVVAL(NVC37E, SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh) | NVVAL(NVC37E, SET_STORAGE, MEMORY_LAYOUT, asyw->image.layout), SET_PARAMS, NVVAL(NVC37E, SET_PARAMS, FORMAT, asyw->image.format) | NVVAL(NVC37E, SET_PARAMS, COLOR_SPACE, asyw->image.colorspace) | NVDEF(NVC37E, SET_PARAMS, INPUT_RANGE, BYPASS) | NVDEF(NVC37E, SET_PARAMS, UNDERREPLICATE, DISABLE) | NVDEF(NVC37E, SET_PARAMS, DE_GAMMA, NONE) | NVVAL(NVC37E, SET_PARAMS, CSC, asyw->csc.valid) | NVDEF(NVC37E, SET_PARAMS, CLAMP_BEFORE_BLEND, DISABLE) | NVDEF(NVC37E, SET_PARAMS, SWAP_UV, DISABLE), SET_PLANAR_STORAGE(0), NVVAL(NVC37E, SET_PLANAR_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NVC37E, SET_PLANAR_STORAGE, PITCH, asyw->image.pitch[0] >> 6)); PUSH_MTHD(push, NVC37E, SET_CONTEXT_DMA_ISO(0), asyw->image.handle, 1); PUSH_MTHD(push, NVC37E, SET_OFFSET(0), asyw->image.offset[0] >> 8); PUSH_MTHD(push, NVC37E, SET_POINT_IN(0), NVVAL(NVC37E, SET_POINT_IN, X, asyw->state.src_x >> 16) | NVVAL(NVC37E, SET_POINT_IN, Y, asyw->state.src_y >> 16)); PUSH_MTHD(push, NVC37E, SET_SIZE_IN, NVVAL(NVC37E, SET_SIZE_IN, WIDTH, asyw->state.src_w >> 16) | NVVAL(NVC37E, SET_SIZE_IN, HEIGHT, asyw->state.src_h >> 16)); PUSH_MTHD(push, NVC37E, SET_SIZE_OUT, NVVAL(NVC37E, SET_SIZE_OUT, WIDTH, asyw->state.crtc_w) | NVVAL(NVC37E, SET_SIZE_OUT, HEIGHT, asyw->state.crtc_h)); return 0; } int wndwc37e_ntfy_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37E, SET_CONTEXT_DMA_NOTIFIER, 0x00000000); return 0; } int wndwc37e_ntfy_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 3))) return ret; PUSH_MTHD(push, NVC37E, SET_CONTEXT_DMA_NOTIFIER, asyw->ntfy.handle, SET_NOTIFIER_CONTROL, NVVAL(NVC37E, SET_NOTIFIER_CONTROL, MODE, asyw->ntfy.awaken) | NVVAL(NVC37E, SET_NOTIFIER_CONTROL, OFFSET, asyw->ntfy.offset >> 4)); return 0; } int wndwc37e_sema_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37E, SET_CONTEXT_DMA_SEMAPHORE, 0x00000000); return 0; } int wndwc37e_sema_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 5))) return ret; PUSH_MTHD(push, NVC37E, SET_SEMAPHORE_CONTROL, asyw->sema.offset, SET_SEMAPHORE_ACQUIRE, asyw->sema.acquire, SET_SEMAPHORE_RELEASE, asyw->sema.release, SET_CONTEXT_DMA_SEMAPHORE, asyw->sema.handle); return 0; } int wndwc37e_update(struct nv50_wndw *wndw, u32 *interlock) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 5))) return ret; PUSH_MTHD(push, NVC37E, SET_INTERLOCK_FLAGS, interlock[NV50_DISP_INTERLOCK_CURS] << 1 | interlock[NV50_DISP_INTERLOCK_CORE], SET_WINDOW_INTERLOCK_FLAGS, interlock[NV50_DISP_INTERLOCK_WNDW]); PUSH_MTHD(push, NVC37E, UPDATE, 0x00000001 | NVVAL(NVC37E, UPDATE, INTERLOCK_WITH_WIN_IMM, !!(interlock[NV50_DISP_INTERLOCK_WIMM] & wndw->interlock.data))); return PUSH_KICK(push); } void wndwc37e_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { } int wndwc37e_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { return drm_atomic_helper_check_plane_state(&asyw->state, &asyh->state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, true, true); } static const u32 wndwc37e_format[] = { DRM_FORMAT_C8, DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB1555, DRM_FORMAT_XBGR2101010, DRM_FORMAT_ABGR2101010, DRM_FORMAT_XBGR8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XRGB2101010, DRM_FORMAT_ARGB2101010, DRM_FORMAT_XBGR16161616F, DRM_FORMAT_ABGR16161616F, 0 }; static const struct nv50_wndw_func wndwc37e = { .acquire = wndwc37e_acquire, .release = wndwc37e_release, .sema_set = wndwc37e_sema_set, .sema_clr = wndwc37e_sema_clr, .ntfy_set = wndwc37e_ntfy_set, .ntfy_clr = wndwc37e_ntfy_clr, .ntfy_reset = corec37d_ntfy_init, .ntfy_wait_begun = base507c_ntfy_wait_begun, .ilut = wndwc37e_ilut, .ilut_size = 1024, .xlut_set = wndwc37e_ilut_set, .xlut_clr = wndwc37e_ilut_clr, .csc = base907c_csc, .csc_set = wndwc37e_csc_set, .csc_clr = wndwc37e_csc_clr, .image_set = wndwc37e_image_set, .image_clr = wndwc37e_image_clr, .blend_set = wndwc37e_blend_set, .update = wndwc37e_update, }; int wndwc37e_new_(const struct nv50_wndw_func *func, struct nouveau_drm *drm, enum drm_plane_type type, int index, s32 oclass, u32 heads, struct nv50_wndw **pwndw) { struct nvif_disp_chan_v0 args = { .id = index, }; struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_wndw *wndw; int ret; ret = nv50_wndw_new_(func, drm->dev, type, "wndw", index, wndwc37e_format, heads, NV50_DISP_INTERLOCK_WNDW, BIT(index), &wndw); if (*pwndw = wndw, ret) return ret; ret = nv50_dmac_create(&drm->client.device, &disp->disp->object, &oclass, 0, &args, sizeof(args), disp->sync->offset, &wndw->wndw); if (ret) { NV_ERROR(drm, "qndw%04x allocation failed: %d\n", oclass, ret); return ret; } wndw->ntfy = NV50_DISP_WNDW_NTFY(wndw->id); wndw->sema = NV50_DISP_WNDW_SEM0(wndw->id); wndw->data = 0x00000000; return 0; } int wndwc37e_new(struct nouveau_drm *drm, enum drm_plane_type type, int index, s32 oclass, struct nv50_wndw **pwndw) { return wndwc37e_new_(&wndwc37e, drm, type, index, oclass, BIT(index >> 1), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/wndwc37e.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "ovly.h" #include "atom.h" #include <nouveau_bo.h> #include <nvif/push507c.h> #include <nvif/timer.h> #include <nvhw/class/cl827e.h> static int ovly827e_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 12))) return ret; PUSH_MTHD(push, NV827E, SET_PRESENT_CONTROL, NVDEF(NV827E, SET_PRESENT_CONTROL, BEGIN_MODE, ASAP) | NVVAL(NV827E, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval)); PUSH_MTHD(push, NV827E, SET_CONTEXT_DMA_ISO, asyw->image.handle[0]); PUSH_MTHD(push, NV827E, SET_COMPOSITION_CONTROL, NVDEF(NV827E, SET_COMPOSITION_CONTROL, MODE, OPAQUE_SUSPEND_BASE)); PUSH_MTHD(push, NV827E, SURFACE_SET_OFFSET, asyw->image.offset[0] >> 8); PUSH_MTHD(push, NV827E, SURFACE_SET_SIZE, NVVAL(NV827E, SURFACE_SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NV827E, SURFACE_SET_SIZE, HEIGHT, asyw->image.h), SURFACE_SET_STORAGE, NVVAL(NV827E, SURFACE_SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh) | NVVAL(NV827E, SURFACE_SET_STORAGE, PITCH, (asyw->image.pitch[0] >> 8)) | NVVAL(NV827E, SURFACE_SET_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NV827E, SURFACE_SET_STORAGE, MEMORY_LAYOUT, asyw->image.layout), SURFACE_SET_PARAMS, NVVAL(NV827E, SURFACE_SET_PARAMS, FORMAT, asyw->image.format) | NVVAL(NV827E, SURFACE_SET_PARAMS, COLOR_SPACE, asyw->image.colorspace)); return 0; } int ovly827e_ntfy_wait_begun(struct nouveau_bo *bo, u32 offset, struct nvif_device *device) { s64 time = nvif_msec(device, 2000ULL, if (NVBO_TD32(bo, offset, NV_DISP_NOTIFICATION_1, _3, STATUS, ==, BEGUN)) break; usleep_range(1, 2); ); return time < 0 ? time : 0; } void ovly827e_ntfy_reset(struct nouveau_bo *bo, u32 offset) { NVBO_WR32(bo, offset, NV_DISP_NOTIFICATION_1, TIME_STAMP_0, 0); NVBO_WR32(bo, offset, NV_DISP_NOTIFICATION_1, TIME_STAMP_1, 0); NVBO_WR32(bo, offset, NV_DISP_NOTIFICATION_1, _2, 0); NVBO_WR32(bo, offset, NV_DISP_NOTIFICATION_1, _3, NVDEF(NV_DISP_NOTIFICATION_1, _3, STATUS, NOT_BEGUN)); } static const struct nv50_wndw_func ovly827e = { .acquire = ovly507e_acquire, .release = ovly507e_release, .ntfy_set = base507c_ntfy_set, .ntfy_clr = base507c_ntfy_clr, .ntfy_reset = ovly827e_ntfy_reset, .ntfy_wait_begun = ovly827e_ntfy_wait_begun, .image_set = ovly827e_image_set, .image_clr = base507c_image_clr, .scale_set = ovly507e_scale_set, .update = base507c_update, }; const u32 ovly827e_format[] = { DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_XRGB8888, DRM_FORMAT_XRGB1555, DRM_FORMAT_XBGR2101010, 0 }; int ovly827e_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return ovly507e_new_(&ovly827e, ovly827e_format, drm, head, oclass, 0x00000004 << (head * 8), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/ovly827e.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "oimm.h" #include <nvif/if0014.h> static int oimm507b_init_(const struct nv50_wimm_func *func, struct nouveau_drm *drm, s32 oclass, struct nv50_wndw *wndw) { struct nvif_disp_chan_v0 args = { .id = wndw->id, }; struct nv50_disp *disp = nv50_disp(drm->dev); int ret; ret = nvif_object_ctor(&disp->disp->object, "kmsOvim", 0, oclass, &args, sizeof(args), &wndw->wimm.base.user); if (ret) { NV_ERROR(drm, "oimm%04x allocation failed: %d\n", oclass, ret); return ret; } nvif_object_map(&wndw->wimm.base.user, NULL, 0); wndw->immd = func; return 0; } int oimm507b_init(struct nouveau_drm *drm, s32 oclass, struct nv50_wndw *wndw) { return oimm507b_init_(&curs507a, drm, oclass, wndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/oimm507b.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "base.h" #include <nvif/if0014.h> #include <nvif/push507c.h> #include <nvif/timer.h> #include <nvhw/class/cl507c.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_fourcc.h> #include "nouveau_bo.h" int base507c_update(struct nv50_wndw *wndw, u32 *interlock) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507C, UPDATE, interlock[NV50_DISP_INTERLOCK_CORE]); return PUSH_KICK(push); } int base507c_image_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NV507C, SET_PRESENT_CONTROL, NVDEF(NV507C, SET_PRESENT_CONTROL, BEGIN_MODE, NON_TEARING) | NVVAL(NV507C, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, 0)); PUSH_MTHD(push, NV507C, SET_CONTEXT_DMA_ISO, 0x00000000); return 0; } static int base507c_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 13))) return ret; PUSH_MTHD(push, NV507C, SET_PRESENT_CONTROL, NVVAL(NV507C, SET_PRESENT_CONTROL, BEGIN_MODE, asyw->image.mode) | NVVAL(NV507C, SET_PRESENT_CONTROL, MIN_PRESENT_INTERVAL, asyw->image.interval)); PUSH_MTHD(push, NV507C, SET_CONTEXT_DMA_ISO, asyw->image.handle[0]); if (asyw->image.format == NV507C_SURFACE_SET_PARAMS_FORMAT_RF16_GF16_BF16_AF16) { PUSH_MTHD(push, NV507C, SET_PROCESSING, NVDEF(NV507C, SET_PROCESSING, USE_GAIN_OFS, ENABLE), SET_CONVERSION, NVVAL(NV507C, SET_CONVERSION, GAIN, 0) | NVVAL(NV507C, SET_CONVERSION, OFS, 0x64)); } else { PUSH_MTHD(push, NV507C, SET_PROCESSING, NVDEF(NV507C, SET_PROCESSING, USE_GAIN_OFS, DISABLE), SET_CONVERSION, NVVAL(NV507C, SET_CONVERSION, GAIN, 0) | NVVAL(NV507C, SET_CONVERSION, OFS, 0)); } PUSH_MTHD(push, NV507C, SURFACE_SET_OFFSET(0, 0), asyw->image.offset[0] >> 8); PUSH_MTHD(push, NV507C, SURFACE_SET_SIZE(0), NVVAL(NV507C, SURFACE_SET_SIZE, WIDTH, asyw->image.w) | NVVAL(NV507C, SURFACE_SET_SIZE, HEIGHT, asyw->image.h), SURFACE_SET_STORAGE(0), NVVAL(NV507C, SURFACE_SET_STORAGE, MEMORY_LAYOUT, asyw->image.layout) | NVVAL(NV507C, SURFACE_SET_STORAGE, PITCH, asyw->image.pitch[0] >> 8) | NVVAL(NV507C, SURFACE_SET_STORAGE, PITCH, asyw->image.blocks[0]) | NVVAL(NV507C, SURFACE_SET_STORAGE, BLOCK_HEIGHT, asyw->image.blockh), SURFACE_SET_PARAMS(0), NVVAL(NV507C, SURFACE_SET_PARAMS, FORMAT, asyw->image.format) | NVDEF(NV507C, SURFACE_SET_PARAMS, SUPER_SAMPLE, X1_AA) | NVDEF(NV507C, SURFACE_SET_PARAMS, GAMMA, LINEAR) | NVDEF(NV507C, SURFACE_SET_PARAMS, LAYOUT, FRM) | NVVAL(NV507C, SURFACE_SET_PARAMS, KIND, asyw->image.kind) | NVDEF(NV507C, SURFACE_SET_PARAMS, PART_STRIDE, PARTSTRIDE_256)); return 0; } int base507c_xlut_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507C, SET_BASE_LUT_LO, NVDEF(NV507C, SET_BASE_LUT_LO, ENABLE, DISABLE)); return 0; } int base507c_xlut_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507C, SET_BASE_LUT_LO, NVDEF(NV507C, SET_BASE_LUT_LO, ENABLE, USE_CORE_LUT)); return 0; } int base507c_ntfy_wait_begun(struct nouveau_bo *bo, u32 offset, struct nvif_device *device) { s64 time = nvif_msec(device, 2000ULL, if (NVBO_TD32(bo, offset, NV_DISP_BASE_NOTIFIER_1, _0, STATUS, ==, BEGUN)) break; usleep_range(1, 2); ); return time < 0 ? time : 0; } int base507c_ntfy_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507C, SET_CONTEXT_DMA_NOTIFIER, 0x00000000); return 0; } int base507c_ntfy_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 3))) return ret; PUSH_MTHD(push, NV507C, SET_NOTIFIER_CONTROL, NVVAL(NV507C, SET_NOTIFIER_CONTROL, MODE, asyw->ntfy.awaken) | NVVAL(NV507C, SET_NOTIFIER_CONTROL, OFFSET, asyw->ntfy.offset >> 2), SET_CONTEXT_DMA_NOTIFIER, asyw->ntfy.handle); return 0; } void base507c_ntfy_reset(struct nouveau_bo *bo, u32 offset) { NVBO_WR32(bo, offset, NV_DISP_BASE_NOTIFIER_1, _0, NVDEF(NV_DISP_BASE_NOTIFIER_1, _0, STATUS, NOT_BEGUN)); } int base507c_sema_clr(struct nv50_wndw *wndw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507C, SET_CONTEXT_DMA_SEMAPHORE, 0x00000000); return 0; } int base507c_sema_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_push *push = wndw->wndw.push; int ret; if ((ret = PUSH_WAIT(push, 5))) return ret; PUSH_MTHD(push, NV507C, SET_SEMAPHORE_CONTROL, asyw->sema.offset, SET_SEMAPHORE_ACQUIRE, asyw->sema.acquire, SET_SEMAPHORE_RELEASE, asyw->sema.release, SET_CONTEXT_DMA_SEMAPHORE, asyw->sema.handle); return 0; } void base507c_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { asyh->base.cpp = 0; } int base507c_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { const struct drm_framebuffer *fb = asyw->state.fb; int ret; ret = drm_atomic_helper_check_plane_state(&asyw->state, &asyh->state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, false, true); if (ret) return ret; if (!wndw->func->ilut) { if ((asyh->base.cpp != 1) ^ (fb->format->cpp[0] != 1)) asyh->state.color_mgmt_changed = true; } asyh->base.depth = fb->format->depth; asyh->base.cpp = fb->format->cpp[0]; asyh->base.x = asyw->state.src.x1 >> 16; asyh->base.y = asyw->state.src.y1 >> 16; asyh->base.w = asyw->state.fb->width; asyh->base.h = asyw->state.fb->height; /* Some newer formats, esp FP16 ones, don't have a * "depth". There's nothing that really makes sense there * either, so just set it to the implicit bit count. */ if (!asyh->base.depth) asyh->base.depth = asyh->base.cpp * 8; return 0; } const u32 base507c_format[] = { DRM_FORMAT_C8, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_XBGR2101010, DRM_FORMAT_ABGR2101010, DRM_FORMAT_XBGR8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XBGR16161616F, DRM_FORMAT_ABGR16161616F, 0 }; static const struct nv50_wndw_func base507c = { .acquire = base507c_acquire, .release = base507c_release, .sema_set = base507c_sema_set, .sema_clr = base507c_sema_clr, .ntfy_reset = base507c_ntfy_reset, .ntfy_set = base507c_ntfy_set, .ntfy_clr = base507c_ntfy_clr, .ntfy_wait_begun = base507c_ntfy_wait_begun, .olut_core = 1, .xlut_set = base507c_xlut_set, .xlut_clr = base507c_xlut_clr, .image_set = base507c_image_set, .image_clr = base507c_image_clr, .update = base507c_update, }; int base507c_new_(const struct nv50_wndw_func *func, const u32 *format, struct nouveau_drm *drm, int head, s32 oclass, u32 interlock_data, struct nv50_wndw **pwndw) { struct nvif_disp_chan_v0 args = { .id = head, }; struct nouveau_display *disp = nouveau_display(drm->dev); struct nv50_disp *disp50 = nv50_disp(drm->dev); struct nv50_wndw *wndw; int ret; ret = nv50_wndw_new_(func, drm->dev, DRM_PLANE_TYPE_PRIMARY, "base", head, format, BIT(head), NV50_DISP_INTERLOCK_BASE, interlock_data, &wndw); if (*pwndw = wndw, ret) return ret; ret = nv50_dmac_create(&drm->client.device, &disp->disp.object, &oclass, head, &args, sizeof(args), disp50->sync->offset, &wndw->wndw); if (ret) { NV_ERROR(drm, "base%04x allocation failed: %d\n", oclass, ret); return ret; } wndw->ntfy = NV50_DISP_BASE_NTFY(wndw->id); wndw->sema = NV50_DISP_BASE_SEM0(wndw->id); wndw->data = 0x00000000; return 0; } int base507c_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return base507c_new_(&base507c, base507c_format, drm, head, oclass, 0x00000002 << (head * 8), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/base507c.c
/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "disp.h" #include "atom.h" #include "core.h" #include "head.h" #include "wndw.h" #include "handles.h" #include <linux/dma-mapping.h> #include <linux/hdmi.h> #include <linux/component.h> #include <linux/iopoll.h> #include <drm/display/drm_dp_helper.h> #include <drm/display/drm_scdc_helper.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_edid.h> #include <drm/drm_fb_helper.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include <nvif/push507c.h> #include <nvif/class.h> #include <nvif/cl0002.h> #include <nvif/event.h> #include <nvif/if0012.h> #include <nvif/if0014.h> #include <nvif/timer.h> #include <nvhw/class/cl507c.h> #include <nvhw/class/cl507d.h> #include <nvhw/class/cl837d.h> #include <nvhw/class/cl887d.h> #include <nvhw/class/cl907d.h> #include <nvhw/class/cl917d.h> #include "nouveau_drv.h" #include "nouveau_dma.h" #include "nouveau_gem.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_fence.h" #include "nv50_display.h" #include <subdev/bios/dp.h> /****************************************************************************** * EVO channel *****************************************************************************/ static int nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, struct nv50_chan *chan) { struct nvif_sclass *sclass; int ret, i, n; chan->device = device; ret = n = nvif_object_sclass_get(disp, &sclass); if (ret < 0) return ret; while (oclass[0]) { for (i = 0; i < n; i++) { if (sclass[i].oclass == oclass[0]) { ret = nvif_object_ctor(disp, "kmsChan", 0, oclass[0], data, size, &chan->user); if (ret == 0) nvif_object_map(&chan->user, NULL, 0); nvif_object_sclass_put(&sclass); return ret; } } oclass++; } nvif_object_sclass_put(&sclass); return -ENOSYS; } static void nv50_chan_destroy(struct nv50_chan *chan) { nvif_object_dtor(&chan->user); } /****************************************************************************** * DMA EVO channel *****************************************************************************/ void nv50_dmac_destroy(struct nv50_dmac *dmac) { nvif_object_dtor(&dmac->vram); nvif_object_dtor(&dmac->sync); nv50_chan_destroy(&dmac->base); nvif_mem_dtor(&dmac->_push.mem); } static void nv50_dmac_kick(struct nvif_push *push) { struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; if (dmac->put != dmac->cur) { /* Push buffer fetches are not coherent with BAR1, we need to ensure * writes have been flushed right through to VRAM before writing PUT. */ if (dmac->push->mem.type & NVIF_MEM_VRAM) { struct nvif_device *device = dmac->base.device; nvif_wr32(&device->object, 0x070000, 0x00000001); nvif_msec(device, 2000, if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) break; ); } NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); dmac->put = dmac->cur; } push->bgn = push->cur; } static int nv50_dmac_free(struct nv50_dmac *dmac) { u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ return get - dmac->cur - 5; return dmac->max - dmac->cur; } static int nv50_dmac_wind(struct nv50_dmac *dmac) { /* Wait for GET to depart from the beginning of the push buffer to * prevent writing PUT == GET, which would be ignored by HW. */ u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); if (get == 0) { /* Corner-case, HW idle, but non-committed work pending. */ if (dmac->put == 0) nv50_dmac_kick(dmac->push); if (nvif_msec(dmac->base.device, 2000, if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) break; ) < 0) return -ETIMEDOUT; } PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); dmac->cur = 0; return 0; } static int nv50_dmac_wait(struct nvif_push *push, u32 size) { struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); int free; if (WARN_ON(size > dmac->max)) return -EINVAL; dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; if (dmac->cur + size >= dmac->max) { int ret = nv50_dmac_wind(dmac); if (ret) return ret; push->cur = dmac->_push.mem.object.map.ptr; push->cur = push->cur + dmac->cur; nv50_dmac_kick(push); } if (nvif_msec(dmac->base.device, 2000, if ((free = nv50_dmac_free(dmac)) >= size) break; ) < 0) { WARN_ON(1); return -ETIMEDOUT; } push->bgn = dmac->_push.mem.object.map.ptr; push->bgn = push->bgn + dmac->cur; push->cur = push->bgn; push->end = push->cur + free; return 0; } MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); static int nv50_dmac_vram_pushbuf = -1; module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); int nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, struct nv50_dmac *dmac) { struct nouveau_cli *cli = (void *)device->object.client; struct nvif_disp_chan_v0 *args = data; u8 type = NVIF_MEM_COHERENT; int ret; mutex_init(&dmac->lock); /* Pascal added support for 47-bit physical addresses, but some * parts of EVO still only accept 40-bit PAs. * * To avoid issues on systems with large amounts of RAM, and on * systems where an IOMMU maps pages at a high address, we need * to allocate push buffers in VRAM instead. * * This appears to match NVIDIA's behaviour on Pascal. */ if ((nv50_dmac_vram_pushbuf > 0) || (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) type |= NVIF_MEM_VRAM; ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, &dmac->_push.mem); if (ret) return ret; dmac->ptr = dmac->_push.mem.object.map.ptr; dmac->_push.wait = nv50_dmac_wait; dmac->_push.kick = nv50_dmac_kick; dmac->push = &dmac->_push; dmac->push->bgn = dmac->_push.mem.object.map.ptr; dmac->push->cur = dmac->push->bgn; dmac->push->end = dmac->push->bgn; dmac->max = 0x1000/4 - 1; /* EVO channels are affected by a HW bug where the last 12 DWORDs * of the push buffer aren't able to be used safely. */ if (disp->oclass < GV100_DISP) dmac->max -= 12; args->pushbuf = nvif_handle(&dmac->_push.mem.object); ret = nv50_chan_create(device, disp, oclass, head, data, size, &dmac->base); if (ret) return ret; if (syncbuf < 0) return 0; ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = syncbuf + 0x0000, .limit = syncbuf + 0x0fff, }, sizeof(struct nv_dma_v0), &dmac->sync); if (ret) return ret; ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = 0, .limit = device->info.ram_user - 1, }, sizeof(struct nv_dma_v0), &dmac->vram); if (ret) return ret; return ret; } /****************************************************************************** * Output path helpers *****************************************************************************/ static void nv50_outp_dump_caps(struct nouveau_drm *drm, struct nouveau_encoder *outp) { NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", outp->base.base.name, outp->caps.dp_interlace); } static int nv50_outp_atomic_check_view(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct drm_display_mode *native_mode) { struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; struct drm_display_mode *mode = &crtc_state->mode; struct drm_connector *connector = conn_state->connector; struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); struct nouveau_drm *drm = nouveau_drm(encoder->dev); NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); asyc->scaler.full = false; if (!native_mode) return 0; if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { switch (connector->connector_type) { case DRM_MODE_CONNECTOR_LVDS: case DRM_MODE_CONNECTOR_eDP: /* Don't force scaler for EDID modes with * same size as the native one (e.g. different * refresh rate) */ if (mode->hdisplay == native_mode->hdisplay && mode->vdisplay == native_mode->vdisplay && mode->type & DRM_MODE_TYPE_DRIVER) break; mode = native_mode; asyc->scaler.full = true; break; default: break; } } else { mode = native_mode; } if (!drm_mode_equal(adjusted_mode, mode)) { drm_mode_copy(adjusted_mode, mode); crtc_state->mode_changed = true; } return 0; } static void nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) { struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_display_mode *mode = &asyh->state.adjusted_mode; unsigned int max_rate, mode_rate; switch (nv_encoder->dcb->type) { case DCB_OUTPUT_DP: max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; /* we don't support more than 10 anyway */ asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); /* reduce the bpc until it works out */ while (asyh->or.bpc > 6) { mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); if (mode_rate <= max_rate) break; asyh->or.bpc -= 2; } break; default: break; } } static int nv50_outp_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_connector *connector = conn_state->connector; struct nouveau_connector *nv_connector = nouveau_connector(connector); struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); int ret; ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, nv_connector->native_mode); if (ret) return ret; if (crtc_state->mode_changed || crtc_state->connectors_changed) asyh->or.bpc = connector->display_info.bpc; /* We might have to reduce the bpc */ nv50_outp_atomic_fix_depth(encoder, crtc_state); return 0; } struct nouveau_connector * nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) { struct drm_connector *connector; struct drm_connector_state *connector_state; struct drm_encoder *encoder = to_drm_encoder(outp); int i; for_each_new_connector_in_state(state, connector, connector_state, i) { if (connector_state->best_encoder == encoder) return nouveau_connector(connector); } return NULL; } struct nouveau_connector * nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) { struct drm_connector *connector; struct drm_connector_state *connector_state; struct drm_encoder *encoder = to_drm_encoder(outp); int i; for_each_old_connector_in_state(state, connector, connector_state, i) { if (connector_state->best_encoder == encoder) return nouveau_connector(connector); } return NULL; } static struct nouveau_crtc * nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) { struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; const u32 mask = drm_encoder_mask(&outp->base.base); int i; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { if (crtc_state->encoder_mask & mask) return nouveau_crtc(crtc); } return NULL; } /****************************************************************************** * DAC *****************************************************************************/ static void nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_core *core = nv50_disp(encoder->dev)->core; const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); nv_encoder->crtc = NULL; nvif_outp_release(&nv_encoder->outp); } static void nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); struct nv50_head_atom *asyh = nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); struct nv50_core *core = nv50_disp(encoder->dev)->core; u32 ctrl = 0; switch (nv_crtc->index) { case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; default: WARN_ON(1); break; } ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); nvif_outp_acquire_rgb_crt(&nv_encoder->outp); core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); asyh->or.depth = 0; nv_encoder->crtc = &nv_crtc->base; } static enum drm_connector_status nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); u32 loadval; int ret; loadval = nouveau_drm(encoder->dev)->vbios.dactestval; if (loadval == 0) loadval = 340; ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); if (ret <= 0) return connector_status_disconnected; return connector_status_connected; } static const struct drm_encoder_helper_funcs nv50_dac_help = { .atomic_check = nv50_outp_atomic_check, .atomic_enable = nv50_dac_atomic_enable, .atomic_disable = nv50_dac_atomic_disable, .detect = nv50_dac_detect }; static void nv50_dac_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nvif_outp_dtor(&nv_encoder->outp); drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs nv50_dac_func = { .destroy = nv50_dac_destroy, }; static int nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nv50_disp *disp = nv50_disp(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type = DRM_MODE_ENCODER_DAC; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); if (bus) nv_encoder->i2c = &bus->i2c; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_dac_help); drm_connector_attach_encoder(connector, encoder); return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); } /* * audio component binding for ELD notification */ static void nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, int dev_id) { if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, port, dev_id); } static int nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, bool *enabled, unsigned char *buf, int max_bytes) { struct drm_device *drm_dev = dev_get_drvdata(kdev); struct nouveau_drm *drm = nouveau_drm(drm_dev); struct drm_encoder *encoder; struct nouveau_encoder *nv_encoder; struct nouveau_crtc *nv_crtc; int ret = 0; *enabled = false; mutex_lock(&drm->audio.lock); drm_for_each_encoder(encoder, drm->dev) { struct nouveau_connector *nv_connector = NULL; if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) continue; /* TODO */ nv_encoder = nouveau_encoder(encoder); nv_connector = nouveau_connector(nv_encoder->audio.connector); nv_crtc = nouveau_crtc(nv_encoder->crtc); if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) continue; *enabled = nv_encoder->audio.enabled; if (*enabled) { ret = drm_eld_size(nv_connector->base.eld); memcpy(buf, nv_connector->base.eld, min(max_bytes, ret)); } break; } mutex_unlock(&drm->audio.lock); return ret; } static const struct drm_audio_component_ops nv50_audio_component_ops = { .get_eld = nv50_audio_component_get_eld, }; static int nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, void *data) { struct drm_device *drm_dev = dev_get_drvdata(kdev); struct nouveau_drm *drm = nouveau_drm(drm_dev); struct drm_audio_component *acomp = data; if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) return -ENOMEM; drm_modeset_lock_all(drm_dev); acomp->ops = &nv50_audio_component_ops; acomp->dev = kdev; drm->audio.component = acomp; drm_modeset_unlock_all(drm_dev); return 0; } static void nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, void *data) { struct drm_device *drm_dev = dev_get_drvdata(kdev); struct nouveau_drm *drm = nouveau_drm(drm_dev); struct drm_audio_component *acomp = data; drm_modeset_lock_all(drm_dev); drm->audio.component = NULL; acomp->ops = NULL; acomp->dev = NULL; drm_modeset_unlock_all(drm_dev); } static const struct component_ops nv50_audio_component_bind_ops = { .bind = nv50_audio_component_bind, .unbind = nv50_audio_component_unbind, }; static void nv50_audio_component_init(struct nouveau_drm *drm) { if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) return; drm->audio.component_registered = true; mutex_init(&drm->audio.lock); } static void nv50_audio_component_fini(struct nouveau_drm *drm) { if (!drm->audio.component_registered) return; component_del(drm->dev->dev, &nv50_audio_component_bind_ops); drm->audio.component_registered = false; mutex_destroy(&drm->audio.lock); } /****************************************************************************** * Audio *****************************************************************************/ static bool nv50_audio_supported(struct drm_encoder *encoder) { struct nv50_disp *disp = nv50_disp(encoder->dev); if (disp->disp->object.oclass <= GT200_DISP || disp->disp->object.oclass == GT206_DISP) return false; return true; } static void nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nvif_outp *outp = &nv_encoder->outp; if (!nv50_audio_supported(encoder)) return; mutex_lock(&drm->audio.lock); if (nv_encoder->audio.enabled) { nv_encoder->audio.enabled = false; nv_encoder->audio.connector = NULL; nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); } mutex_unlock(&drm->audio.lock); nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); } static void nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, struct nouveau_connector *nv_connector, struct drm_atomic_state *state, struct drm_display_mode *mode) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nvif_outp *outp = &nv_encoder->outp; if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) return; mutex_lock(&drm->audio.lock); nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, drm_eld_size(nv_connector->base.eld)); nv_encoder->audio.enabled = true; nv_encoder->audio.connector = &nv_connector->base; mutex_unlock(&drm->audio.lock); nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); } /****************************************************************************** * HDMI *****************************************************************************/ static void nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, struct nouveau_connector *nv_connector, struct drm_atomic_state *state, struct drm_display_mode *mode, bool hda) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; union hdmi_infoframe infoframe = { 0 }; const u8 rekey = 56; /* binary driver, and tegra, constant */ u8 scdc = 0; u32 max_ac_packet; struct { struct nvif_outp_infoframe_v0 infoframe; u8 data[17]; } args = { 0 }; int ret, size; max_ac_packet = mode->htotal - mode->hdisplay; max_ac_packet -= rekey; max_ac_packet -= 18; /* constant from tegra */ max_ac_packet /= 32; if (hdmi->scdc.scrambling.supported) { const bool high_tmds_clock_ratio = mode->clock > 340000; ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); if (ret < 0) { NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); return; } scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) scdc |= SCDC_SCRAMBLING_ENABLE; if (high_tmds_clock_ratio) scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); if (ret < 0) NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", scdc, ret); } ret = nvif_outp_acquire_tmds(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, scdc, hda); if (ret) return; /* AVI InfoFrame. */ args.infoframe.version = 0; args.infoframe.head = nv_crtc->index; if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, HDMI_QUANTIZATION_RANGE_FULL); size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); } else { size = 0; } nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); /* Vendor InfoFrame. */ memset(&args.data, 0, sizeof(args.data)); if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, &nv_connector->base, mode)) size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); else size = 0; nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode); } /****************************************************************************** * MST *****************************************************************************/ #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) struct nv50_mstc { struct nv50_mstm *mstm; struct drm_dp_mst_port *port; struct drm_connector connector; struct drm_display_mode *native; struct edid *edid; }; struct nv50_msto { struct drm_encoder encoder; /* head is statically assigned on msto creation */ struct nv50_head *head; struct nv50_mstc *mstc; bool disabled; bool enabled; }; struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) { struct nv50_msto *msto; if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) return nouveau_encoder(encoder); msto = nv50_msto(encoder); if (!msto->mstc) return NULL; return msto->mstc->mstm->outp; } static void nv50_msto_cleanup(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *mst_state, struct drm_dp_mst_topology_mgr *mgr, struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct drm_dp_mst_atomic_payload *payload = drm_atomic_get_mst_payload_state(mst_state, msto->mstc->port); NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); if (msto->disabled) { msto->mstc = NULL; msto->disabled = false; } else if (msto->enabled) { drm_dp_add_payload_part2(mgr, state, payload); msto->enabled = false; } } static void nv50_msto_prepare(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *mst_state, struct drm_dp_mst_topology_mgr *mgr, struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; struct drm_dp_mst_topology_state *old_mst_state; struct drm_dp_mst_atomic_payload *payload, *old_payload; NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); old_mst_state = drm_atomic_get_old_mst_topology_state(state, mgr); payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); old_payload = drm_atomic_get_mst_payload_state(old_mst_state, mstc->port); // TODO: Figure out if we want to do a better job of handling VCPI allocation failures here? if (msto->disabled) { drm_dp_remove_payload(mgr, mst_state, old_payload, payload); nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); } else { if (msto->enabled) drm_dp_add_payload_part1(mgr, mst_state, payload); nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, payload->vc_start_slot, payload->time_slots, payload->pbn, payload->time_slots * mst_state->pbn_div); } } static int nv50_msto_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_atomic_state *state = crtc_state->state; struct drm_connector *connector = conn_state->connector; struct drm_dp_mst_topology_state *mst_state; struct nv50_mstc *mstc = nv50_mstc(connector); struct nv50_mstm *mstm = mstc->mstm; struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); int slots; int ret; ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, mstc->native); if (ret) return ret; if (!drm_atomic_crtc_needs_modeset(crtc_state)) return 0; /* * When restoring duplicated states, we need to make sure that the bw * remains the same and avoid recalculating it, as the connector's bpc * may have changed after the state was duplicated */ if (!state->duplicated) { const int clock = crtc_state->adjusted_mode.clock; asyh->or.bpc = connector->display_info.bpc; asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3, false); } mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); if (IS_ERR(mst_state)) return PTR_ERR(mst_state); if (!mst_state->pbn_div) { struct nouveau_encoder *outp = mstc->mstm->outp; mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, outp->dp.link_bw, outp->dp.link_nr); } slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); if (slots < 0) return slots; asyh->dp.tu = slots; return 0; } static u8 nv50_dp_bpc_to_depth(unsigned int bpc) { switch (bpc) { case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; case 10: default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; } } static void nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_head *head = msto->head; struct nv50_head_atom *asyh = nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); struct nv50_mstc *mstc = NULL; struct nv50_mstm *mstm = NULL; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; u8 proto; drm_connector_list_iter_begin(encoder->dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { if (connector->state->best_encoder == &msto->encoder) { mstc = nv50_mstc(connector); mstm = mstc->mstm; break; } } drm_connector_list_iter_end(&conn_iter); if (WARN_ON(!mstc)) return; if (!mstm->links++) { /*XXX: MST audio. */ nvif_outp_acquire_dp(&mstm->outp->outp, mstm->outp->dp.dpcd, 0, 0, false, true); } if (mstm->outp->outp.or.link & 1) proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; else proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; mstm->outp->update(mstm->outp, head->base.index, asyh, proto, nv50_dp_bpc_to_depth(asyh->or.bpc)); msto->mstc = mstc; msto->enabled = true; mstm->modified = true; } static void nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); mstm->modified = true; if (!--mstm->links) mstm->disabled = true; msto->disabled = true; } static const struct drm_encoder_helper_funcs nv50_msto_help = { .atomic_disable = nv50_msto_atomic_disable, .atomic_enable = nv50_msto_atomic_enable, .atomic_check = nv50_msto_atomic_check, }; static void nv50_msto_destroy(struct drm_encoder *encoder) { struct nv50_msto *msto = nv50_msto(encoder); drm_encoder_cleanup(&msto->encoder); kfree(msto); } static const struct drm_encoder_funcs nv50_msto = { .destroy = nv50_msto_destroy, }; static struct nv50_msto * nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) { struct nv50_msto *msto; int ret; msto = kzalloc(sizeof(*msto), GFP_KERNEL); if (!msto) return ERR_PTR(-ENOMEM); ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, DRM_MODE_ENCODER_DPMST, "mst-%d", id); if (ret) { kfree(msto); return ERR_PTR(ret); } drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); msto->head = head; return msto; } static struct drm_encoder * nv50_mstc_atomic_best_encoder(struct drm_connector *connector, struct drm_atomic_state *state) { struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, connector); struct nv50_mstc *mstc = nv50_mstc(connector); struct drm_crtc *crtc = connector_state->crtc; if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) return NULL; return &nv50_head(crtc)->msto->encoder; } static enum drm_mode_status nv50_mstc_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct nv50_mstc *mstc = nv50_mstc(connector); struct nouveau_encoder *outp = mstc->mstm->outp; /* TODO: calculate the PBN from the dotclock and validate against the * MSTB's max possible PBN */ return nv50_dp_mode_valid(outp, mode, NULL); } static int nv50_mstc_get_modes(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); int ret = 0; mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); drm_connector_update_edid_property(&mstc->connector, mstc->edid); if (mstc->edid) ret = drm_add_edid_modes(&mstc->connector, mstc->edid); /* * XXX: Since we don't use HDR in userspace quite yet, limit the bpc * to 8 to save bandwidth on the topology. In the future, we'll want * to properly fix this by dynamically selecting the highest possible * bpc that would fit in the topology */ if (connector->display_info.bpc) connector->display_info.bpc = clamp(connector->display_info.bpc, 6U, 8U); else connector->display_info.bpc = 8; if (mstc->native) drm_mode_destroy(mstc->connector.dev, mstc->native); mstc->native = nouveau_conn_native_mode(&mstc->connector); return ret; } static int nv50_mstc_atomic_check(struct drm_connector *connector, struct drm_atomic_state *state) { struct nv50_mstc *mstc = nv50_mstc(connector); struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); } static int nv50_mstc_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct nv50_mstc *mstc = nv50_mstc(connector); int ret; if (drm_connector_is_unregistered(connector)) return connector_status_disconnected; ret = pm_runtime_get_sync(connector->dev->dev); if (ret < 0 && ret != -EACCES) { pm_runtime_put_autosuspend(connector->dev->dev); return connector_status_disconnected; } ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, mstc->port); if (ret != connector_status_connected) goto out; out: pm_runtime_mark_last_busy(connector->dev->dev); pm_runtime_put_autosuspend(connector->dev->dev); return ret; } static const struct drm_connector_helper_funcs nv50_mstc_help = { .get_modes = nv50_mstc_get_modes, .mode_valid = nv50_mstc_mode_valid, .atomic_best_encoder = nv50_mstc_atomic_best_encoder, .atomic_check = nv50_mstc_atomic_check, .detect_ctx = nv50_mstc_detect, }; static void nv50_mstc_destroy(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); drm_connector_cleanup(&mstc->connector); drm_dp_mst_put_port_malloc(mstc->port); kfree(mstc); } static const struct drm_connector_funcs nv50_mstc = { .reset = nouveau_conn_reset, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = nv50_mstc_destroy, .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, .atomic_destroy_state = nouveau_conn_atomic_destroy_state, .atomic_set_property = nouveau_conn_atomic_set_property, .atomic_get_property = nouveau_conn_atomic_get_property, }; static int nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, const char *path, struct nv50_mstc **pmstc) { struct drm_device *dev = mstm->outp->base.base.dev; struct drm_crtc *crtc; struct nv50_mstc *mstc; int ret; if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) return -ENOMEM; mstc->mstm = mstm; mstc->port = port; ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, DRM_MODE_CONNECTOR_DisplayPort); if (ret) { kfree(*pmstc); *pmstc = NULL; return ret; } drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); mstc->connector.funcs->reset(&mstc->connector); nouveau_conn_attach_properties(&mstc->connector); drm_for_each_crtc(crtc, dev) { if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) continue; drm_connector_attach_encoder(&mstc->connector, &nv50_head(crtc)->msto->encoder); } drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); drm_connector_set_path_property(&mstc->connector, path); drm_dp_mst_get_port_malloc(port); return 0; } static void nv50_mstm_cleanup(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *mst_state, struct nv50_mstm *mstm) { struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); struct drm_encoder *encoder; NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); drm_dp_check_act_status(&mstm->mgr); drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm) nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); } } mstm->modified = false; } static void nv50_mstm_prepare(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *mst_state, struct nv50_mstm *mstm) { struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); struct drm_encoder *encoder; NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); /* Disable payloads first */ drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm && msto->disabled) nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); } } /* Add payloads for new heads, while also updating the start slots of any unmodified (but * active) heads that may have had their VC slots shifted left after the previous step */ drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm && !msto->disabled) nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); } } if (mstm->disabled) { if (!mstm->links) nvif_outp_release(&mstm->outp->outp); mstm->disabled = false; } } static struct drm_connector * nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, const char *path) { struct nv50_mstm *mstm = nv50_mstm(mgr); struct nv50_mstc *mstc; int ret; ret = nv50_mstc_new(mstm, port, path, &mstc); if (ret) return NULL; return &mstc->connector; } static const struct drm_dp_mst_topology_cbs nv50_mstm = { .add_connector = nv50_mstm_add_connector, }; bool nv50_mstm_service(struct nouveau_drm *drm, struct nouveau_connector *nv_connector, struct nv50_mstm *mstm) { struct drm_dp_aux *aux = &nv_connector->aux; bool handled = true, ret = true; int rc; u8 esi[8] = {}; while (handled) { u8 ack[8] = {}; rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); if (rc != 8) { ret = false; break; } drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); if (!handled) break; rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); if (rc != 1) { ret = false; break; } drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); } if (!ret) NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", nv_connector->base.name, rc); return ret; } void nv50_mstm_remove(struct nv50_mstm *mstm) { mstm->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); } int nv50_mstm_detect(struct nouveau_encoder *outp) { struct nv50_mstm *mstm = outp->dp.mstm; struct drm_dp_aux *aux; int ret; if (!mstm || !mstm->can_mst) return 0; aux = mstm->mgr.aux; /* Clear any leftover MST state we didn't set ourselves by first * disabling MST if it was already enabled */ ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); if (ret < 0) return ret; /* And start enabling */ ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); if (ret) return ret; mstm->is_mst = true; return 1; } static void nv50_mstm_fini(struct nouveau_encoder *outp) { struct nv50_mstm *mstm = outp->dp.mstm; if (!mstm) return; /* Don't change the MST state of this connector until we've finished * resuming, since we can't safely grab hpd_irq_lock in our resume * path to protect mstm->is_mst without potentially deadlocking */ mutex_lock(&outp->dp.hpd_irq_lock); mstm->suspended = true; mutex_unlock(&outp->dp.hpd_irq_lock); if (mstm->is_mst) drm_dp_mst_topology_mgr_suspend(&mstm->mgr); } static void nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) { struct nv50_mstm *mstm = outp->dp.mstm; int ret = 0; if (!mstm) return; if (mstm->is_mst) { ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); if (ret == -1) nv50_mstm_remove(mstm); } mutex_lock(&outp->dp.hpd_irq_lock); mstm->suspended = false; mutex_unlock(&outp->dp.hpd_irq_lock); if (ret == -1) drm_kms_helper_hotplug_event(mstm->mgr.dev); } static void nv50_mstm_del(struct nv50_mstm **pmstm) { struct nv50_mstm *mstm = *pmstm; if (mstm) { drm_dp_mst_topology_mgr_destroy(&mstm->mgr); kfree(*pmstm); *pmstm = NULL; } } static int nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, int conn_base_id, struct nv50_mstm **pmstm) { const int max_payloads = hweight8(outp->dcb->heads); struct drm_device *dev = outp->base.base.dev; struct nv50_mstm *mstm; int ret; if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) return -ENOMEM; mstm->outp = outp; mstm->mgr.cbs = &nv50_mstm; ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, max_payloads, conn_base_id); if (ret) return ret; return 0; } /****************************************************************************** * SOR *****************************************************************************/ static void nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, struct nv50_head_atom *asyh, u8 proto, u8 depth) { struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); struct nv50_core *core = disp->core; if (!asyh) { nv_encoder->ctrl &= ~BIT(head); if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) nv_encoder->ctrl = 0; } else { nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); nv_encoder->ctrl |= BIT(head); asyh->or.depth = depth; } core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); } /* TODO: Should we extend this to PWM-only backlights? * As well, should we add a DRM helper for waiting for the backlight to acknowledge * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a * fixed time delay from the vbios… */ static void nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); struct nouveau_backlight *backlight = nv_connector->backlight; #endif struct drm_dp_aux *aux = &nv_connector->aux; int ret; u8 pwr; #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT if (backlight && backlight->uses_dpcd) { ret = drm_edp_backlight_disable(aux, &backlight->edp_info); if (ret < 0) NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", nv_connector->base.base.id, nv_connector->base.name, ret); } #endif if (nv_encoder->dcb->type == DCB_OUTPUT_DP) { ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr); if (ret == 0) { pwr &= ~DP_SET_POWER_MASK; pwr |= DP_SET_POWER_D3; drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr); } } nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0); nv50_audio_disable(encoder, nv_crtc); nvif_outp_release(&nv_encoder->outp); nv_encoder->crtc = NULL; } static void nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); struct nv50_head_atom *asyh = nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); struct drm_display_mode *mode = &asyh->state.adjusted_mode; struct nv50_disp *disp = nv50_disp(encoder->dev); struct nvif_outp *outp = &nv_encoder->outp; struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_connector *nv_connector; #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT struct nouveau_backlight *backlight; #endif struct nvbios *bios = &drm->vbios; bool lvds_dual = false, lvds_8bpc = false, hda = false; u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; nv_connector = nv50_outp_get_new_connector(state, nv_encoder); nv_encoder->crtc = &nv_crtc->base; if ((disp->disp->object.oclass == GT214_DISP || disp->disp->object.oclass >= GF110_DISP) && drm_detect_monitor_audio(nv_connector->edid)) hda = true; switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: if (disp->disp->object.oclass == NV50_DISP || !drm_detect_hdmi_monitor(nv_connector->edid)) nvif_outp_acquire_tmds(outp, nv_crtc->index, false, 0, 0, 0, false); else nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); if (nv_encoder->outp.or.link & 1) { proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; /* Only enable dual-link if: * - Need to (i.e. rate > 165MHz) * - DCB says we can * - Not an HDMI monitor, since there's no dual-link * on HDMI. */ if (mode->clock >= 165000 && nv_encoder->dcb->duallink_possible && !drm_detect_hdmi_monitor(nv_connector->edid)) proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; } else { proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; } break; case DCB_OUTPUT_LVDS: proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; if (bios->fp_no_ddc) { lvds_dual = bios->fp.dual_link; lvds_8bpc = bios->fp.if_is_24bit; } else { if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { if (((u8 *)nv_connector->edid)[121] == 2) lvds_dual = true; } else if (mode->clock >= bios->fp.duallink_transition_clk) { lvds_dual = true; } if (lvds_dual) { if (bios->fp.strapless_is_24bit & 2) lvds_8bpc = true; } else { if (bios->fp.strapless_is_24bit & 1) lvds_8bpc = true; } if (asyh->or.bpc == 8) lvds_8bpc = true; } nvif_outp_acquire_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); break; case DCB_OUTPUT_DP: nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, hda, false); depth = nv50_dp_bpc_to_depth(asyh->or.bpc); if (nv_encoder->outp.or.link & 1) proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; else proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode); #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT backlight = nv_connector->backlight; if (backlight && backlight->uses_dpcd) drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, (u16)backlight->dev->props.brightness); #endif break; default: BUG(); break; } nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); } static const struct drm_encoder_helper_funcs nv50_sor_help = { .atomic_check = nv50_outp_atomic_check, .atomic_enable = nv50_sor_atomic_enable, .atomic_disable = nv50_sor_atomic_disable, }; static void nv50_sor_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nvif_outp_dtor(&nv_encoder->outp); nv50_mstm_del(&nv_encoder->dp.mstm); drm_encoder_cleanup(encoder); if (nv_encoder->dcb->type == DCB_OUTPUT_DP) mutex_destroy(&nv_encoder->dp.hpd_irq_lock); kfree(encoder); } static const struct drm_encoder_funcs nv50_sor_func = { .destroy = nv50_sor_destroy, }; bool nv50_has_mst(struct nouveau_drm *drm) { struct nvkm_bios *bios = nvxx_bios(&drm->client.device); u32 data; u8 ver, hdr, cnt, len; data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len); return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04); } static int nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_connector *nv_connector = nouveau_connector(connector); struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; struct nv50_disp *disp = nv50_disp(connector->dev); int type, ret; switch (dcbe->type) { case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: default: type = DRM_MODE_ENCODER_TMDS; break; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->update = nv50_sor_update; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_sor_help); drm_connector_attach_encoder(connector, encoder); disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); nv50_outp_dump_caps(drm, nv_encoder); if (dcbe->type == DCB_OUTPUT_DP) { struct nvkm_i2c_aux *aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); mutex_init(&nv_encoder->dp.hpd_irq_lock); if (aux) { if (disp->disp->object.oclass < GF110_DISP) { /* HW has no support for address-only * transactions, so we're required to * use custom I2C-over-AUX code. */ nv_encoder->i2c = &aux->i2c; } else { nv_encoder->i2c = &nv_connector->aux.ddc; } nv_encoder->aux = aux; } if (nv_connector->type != DCB_CONNECTOR_eDP && nv50_has_mst(drm)) { ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16, nv_connector->base.base.id, &nv_encoder->dp.mstm); if (ret) return ret; } } else { struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); if (bus) nv_encoder->i2c = &bus->i2c; } return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); } /****************************************************************************** * PIOR *****************************************************************************/ static int nv50_pior_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); if (ret) return ret; crtc_state->adjusted_mode.clock *= 2; return 0; } static void nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_core *core = nv50_disp(encoder->dev)->core; const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); nv_encoder->crtc = NULL; nvif_outp_release(&nv_encoder->outp); } static void nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); struct nv50_head_atom *asyh = nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); struct nv50_core *core = nv50_disp(encoder->dev)->core; u32 ctrl = 0; switch (nv_crtc->index) { case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; default: WARN_ON(1); break; } switch (asyh->or.bpc) { case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; } switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); nvif_outp_acquire_tmds(&nv_encoder->outp, false, false, 0, 0, 0, false); break; case DCB_OUTPUT_DP: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); nvif_outp_acquire_dp(&nv_encoder->outp, nv_encoder->dp.dpcd, 0, 0, false, false); break; default: BUG(); break; } core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); nv_encoder->crtc = &nv_crtc->base; } static const struct drm_encoder_helper_funcs nv50_pior_help = { .atomic_check = nv50_pior_atomic_check, .atomic_enable = nv50_pior_atomic_enable, .atomic_disable = nv50_pior_atomic_disable, }; static void nv50_pior_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nvif_outp_dtor(&nv_encoder->outp); drm_encoder_cleanup(encoder); mutex_destroy(&nv_encoder->dp.hpd_irq_lock); kfree(encoder); } static const struct drm_encoder_funcs nv50_pior_func = { .destroy = nv50_pior_destroy, }; static int nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct drm_device *dev = connector->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus = NULL; struct nvkm_i2c_aux *aux = NULL; struct i2c_adapter *ddc; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type; switch (dcbe->type) { case DCB_OUTPUT_TMDS: bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev)); ddc = bus ? &bus->i2c : NULL; type = DRM_MODE_ENCODER_TMDS; break; case DCB_OUTPUT_DP: aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev)); ddc = aux ? &aux->i2c : NULL; type = DRM_MODE_ENCODER_TMDS; break; default: return -ENODEV; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->i2c = ddc; nv_encoder->aux = aux; mutex_init(&nv_encoder->dp.hpd_irq_lock); encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_pior_help); drm_connector_attach_encoder(connector, encoder); disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); nv50_outp_dump_caps(drm, nv_encoder); return nvif_outp_ctor(disp->disp, nv_encoder->base.base.name, dcbe->id, &nv_encoder->outp); } /****************************************************************************** * Atomic *****************************************************************************/ static void nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) { struct drm_dp_mst_topology_mgr *mgr; struct drm_dp_mst_topology_state *mst_state; struct nouveau_drm *drm = nouveau_drm(state->dev); struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_core *core = disp->core; struct nv50_mstm *mstm; int i; NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { mstm = nv50_mstm(mgr); if (mstm->modified) nv50_mstm_prepare(state, mst_state, mstm); } core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); core->func->update(core, interlock, true); if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, disp->core->chan.base.device)) NV_ERROR(drm, "core notifier timeout\n"); for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { mstm = nv50_mstm(mgr); if (mstm->modified) nv50_mstm_cleanup(state, mst_state, mstm); } } static void nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) { struct drm_plane_state *new_plane_state; struct drm_plane *plane; int i; for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw *wndw = nv50_wndw(plane); if (interlock[wndw->interlock.type] & wndw->interlock.data) { if (wndw->func->update) wndw->func->update(wndw, interlock); } } } static void nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_crtc_state *new_crtc_state, *old_crtc_state; struct drm_crtc *crtc; struct drm_plane_state *new_plane_state; struct drm_plane *plane; struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nv50_atom *atom = nv50_atom(state); struct nv50_core *core = disp->core; struct nv50_outp_atom *outp, *outt; u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; int i; bool flushed = false; NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); nv50_crc_atomic_stop_reporting(state); drm_atomic_helper_wait_for_fences(dev, state, false); drm_atomic_helper_wait_for_dependencies(state); drm_dp_mst_atomic_wait_for_dependencies(state); drm_atomic_helper_update_legacy_modeset_state(dev, state); drm_atomic_helper_calc_timestamping_constants(state); if (atom->lock_core) mutex_lock(&disp->mutex); /* Disable head(s). */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, asyh->clr.mask, asyh->set.mask); if (old_crtc_state->active && !new_crtc_state->active) { pm_runtime_put_noidle(dev->dev); drm_crtc_vblank_off(crtc); } if (asyh->clr.mask) { nv50_head_flush_clr(head, asyh, atom->flush_disable); interlock[NV50_DISP_INTERLOCK_CORE] |= 1; } } /* Disable plane(s). */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, asyw->clr.mask, asyw->set.mask); if (!asyw->clr.mask) continue; nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); } /* Disable output path(s). */ list_for_each_entry(outp, &atom->outp, head) { const struct drm_encoder_helper_funcs *help; struct drm_encoder *encoder; encoder = outp->encoder; help = encoder->helper_private; NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, outp->clr.mask, outp->set.mask); if (outp->clr.mask) { help->atomic_disable(encoder, state); interlock[NV50_DISP_INTERLOCK_CORE] |= 1; if (outp->flush_disable) { nv50_disp_atomic_commit_wndw(state, interlock); nv50_disp_atomic_commit_core(state, interlock); memset(interlock, 0x00, sizeof(interlock)); flushed = true; } } } /* Flush disable. */ if (interlock[NV50_DISP_INTERLOCK_CORE]) { if (atom->flush_disable) { nv50_disp_atomic_commit_wndw(state, interlock); nv50_disp_atomic_commit_core(state, interlock); memset(interlock, 0x00, sizeof(interlock)); flushed = true; } } if (flushed) nv50_crc_atomic_release_notifier_contexts(state); nv50_crc_atomic_init_notifier_contexts(state); /* Update output path(s). */ list_for_each_entry_safe(outp, outt, &atom->outp, head) { const struct drm_encoder_helper_funcs *help; struct drm_encoder *encoder; encoder = outp->encoder; help = encoder->helper_private; NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, outp->set.mask, outp->clr.mask); if (outp->set.mask) { help->atomic_enable(encoder, state); interlock[NV50_DISP_INTERLOCK_CORE] = 1; } list_del(&outp->head); kfree(outp); } /* Update head(s). */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, asyh->set.mask, asyh->clr.mask); if (asyh->set.mask) { nv50_head_flush_set(head, asyh); interlock[NV50_DISP_INTERLOCK_CORE] = 1; } if (new_crtc_state->active) { if (!old_crtc_state->active) { drm_crtc_vblank_on(crtc); pm_runtime_get_noresume(dev->dev); } if (new_crtc_state->event) drm_crtc_vblank_get(crtc); } } /* Update window->head assignment. * * This has to happen in an update that's not interlocked with * any window channels to avoid hitting HW error checks. * *TODO: Proper handling of window ownership (Turing apparently * supports non-fixed mappings). */ if (core->assign_windows) { core->func->wndw.owner(core); nv50_disp_atomic_commit_core(state, interlock); core->assign_windows = false; interlock[NV50_DISP_INTERLOCK_CORE] = 0; } /* Finish updating head(s)... * * NVD is rather picky about both where window assignments can change, * *and* about certain core and window channel states matching. * * The EFI GOP driver on newer GPUs configures window channels with a * different output format to what we do, and the core channel update * in the assign_windows case above would result in a state mismatch. * * Delay some of the head update until after that point to workaround * the issue. This only affects the initial modeset. * * TODO: handle this better when adding flexible window mapping */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, asyh->set.mask, asyh->clr.mask); if (asyh->set.mask) { nv50_head_flush_set_wndw(head, asyh); interlock[NV50_DISP_INTERLOCK_CORE] = 1; } } /* Update plane(s). */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, asyw->set.mask, asyw->clr.mask); if ( !asyw->set.mask && (!asyw->clr.mask || atom->flush_disable)) continue; nv50_wndw_flush_set(wndw, interlock, asyw); } /* Flush update. */ nv50_disp_atomic_commit_wndw(state, interlock); if (interlock[NV50_DISP_INTERLOCK_CORE]) { if (interlock[NV50_DISP_INTERLOCK_BASE] || interlock[NV50_DISP_INTERLOCK_OVLY] || interlock[NV50_DISP_INTERLOCK_WNDW] || !atom->state.legacy_cursor_update) nv50_disp_atomic_commit_core(state, interlock); else disp->core->func->update(disp->core, interlock, false); } if (atom->lock_core) mutex_unlock(&disp->mutex); /* Wait for HW to signal completion. */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); int ret = nv50_wndw_wait_armed(wndw, asyw); if (ret) NV_ERROR(drm, "%s: timeout\n", plane->name); } for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->event) { unsigned long flags; /* Get correct count/ts if racing with vblank irq */ if (new_crtc_state->active) drm_crtc_accurate_vblank_count(crtc); spin_lock_irqsave(&crtc->dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, new_crtc_state->event); spin_unlock_irqrestore(&crtc->dev->event_lock, flags); new_crtc_state->event = NULL; if (new_crtc_state->active) drm_crtc_vblank_put(crtc); } } nv50_crc_atomic_start_reporting(state); if (!flushed) nv50_crc_atomic_release_notifier_contexts(state); drm_atomic_helper_commit_hw_done(state); drm_atomic_helper_cleanup_planes(dev, state); drm_atomic_helper_commit_cleanup_done(state); drm_atomic_state_put(state); /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); } static void nv50_disp_atomic_commit_work(struct work_struct *work) { struct drm_atomic_state *state = container_of(work, typeof(*state), commit_work); nv50_disp_atomic_commit_tail(state); } static int nv50_disp_atomic_commit(struct drm_device *dev, struct drm_atomic_state *state, bool nonblock) { struct drm_plane_state *new_plane_state; struct drm_plane *plane; int ret, i; ret = pm_runtime_get_sync(dev->dev); if (ret < 0 && ret != -EACCES) { pm_runtime_put_autosuspend(dev->dev); return ret; } ret = drm_atomic_helper_setup_commit(state, nonblock); if (ret) goto done; INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); ret = drm_atomic_helper_prepare_planes(dev, state); if (ret) goto done; if (!nonblock) { ret = drm_atomic_helper_wait_for_fences(dev, state, true); if (ret) goto err_cleanup; } ret = drm_atomic_helper_swap_state(state, true); if (ret) goto err_cleanup; for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); if (asyw->set.image) nv50_wndw_ntfy_enable(wndw, asyw); } drm_atomic_state_get(state); /* * Grab another RPM ref for the commit tail, which will release the * ref when it's finished */ pm_runtime_get_noresume(dev->dev); if (nonblock) queue_work(system_unbound_wq, &state->commit_work); else nv50_disp_atomic_commit_tail(state); err_cleanup: if (ret) drm_atomic_helper_cleanup_planes(dev, state); done: pm_runtime_put_autosuspend(dev->dev); return ret; } static struct nv50_outp_atom * nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) { struct nv50_outp_atom *outp; list_for_each_entry(outp, &atom->outp, head) { if (outp->encoder == encoder) return outp; } outp = kzalloc(sizeof(*outp), GFP_KERNEL); if (!outp) return ERR_PTR(-ENOMEM); list_add(&outp->head, &atom->outp); outp->encoder = encoder; return outp; } static int nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, struct drm_connector_state *old_connector_state) { struct drm_encoder *encoder = old_connector_state->best_encoder; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_crtc *crtc; struct nv50_outp_atom *outp; if (!(crtc = old_connector_state->crtc)) return 0; old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { outp = nv50_disp_outp_atomic_add(atom, encoder); if (IS_ERR(outp)) return PTR_ERR(outp); if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { outp->flush_disable = true; atom->flush_disable = true; } outp->clr.ctrl = true; atom->lock_core = true; } return 0; } static int nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, struct drm_connector_state *connector_state) { struct drm_encoder *encoder = connector_state->best_encoder; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; struct nv50_outp_atom *outp; if (!(crtc = connector_state->crtc)) return 0; new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { outp = nv50_disp_outp_atomic_add(atom, encoder); if (IS_ERR(outp)) return PTR_ERR(outp); outp->set.ctrl = true; atom->lock_core = true; } return 0; } static int nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); struct nv50_core *core = nv50_disp(dev)->core; struct drm_connector_state *old_connector_state, *new_connector_state; struct drm_connector *connector; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; struct nv50_head *head; struct nv50_head_atom *asyh; int ret, i; if (core->assign_windows && core->func->head->static_wndw_map) { drm_for_each_crtc(crtc, dev) { new_crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(new_crtc_state)) return PTR_ERR(new_crtc_state); head = nv50_head(crtc); asyh = nv50_head_atom(new_crtc_state); core->func->head->static_wndw_map(head, asyh); } } /* We need to handle colour management on a per-plane basis. */ for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->color_mgmt_changed) { ret = drm_atomic_add_affected_planes(state, crtc); if (ret) return ret; } } ret = drm_atomic_helper_check(dev, state); if (ret) return ret; for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); if (ret) return ret; ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); if (ret) return ret; } ret = drm_dp_mst_atomic_check(state); if (ret) return ret; nv50_crc_atomic_check_outp(atom); return 0; } static void nv50_disp_atomic_state_clear(struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); struct nv50_outp_atom *outp, *outt; list_for_each_entry_safe(outp, outt, &atom->outp, head) { list_del(&outp->head); kfree(outp); } drm_atomic_state_default_clear(state); } static void nv50_disp_atomic_state_free(struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); drm_atomic_state_default_release(&atom->state); kfree(atom); } static struct drm_atomic_state * nv50_disp_atomic_state_alloc(struct drm_device *dev) { struct nv50_atom *atom; if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || drm_atomic_state_init(dev, &atom->state) < 0) { kfree(atom); return NULL; } INIT_LIST_HEAD(&atom->outp); return &atom->state; } static const struct drm_mode_config_funcs nv50_disp_func = { .fb_create = nouveau_user_framebuffer_create, .output_poll_changed = drm_fb_helper_output_poll_changed, .atomic_check = nv50_disp_atomic_check, .atomic_commit = nv50_disp_atomic_commit, .atomic_state_alloc = nv50_disp_atomic_state_alloc, .atomic_state_clear = nv50_disp_atomic_state_clear, .atomic_state_free = nv50_disp_atomic_state_free, }; static const struct drm_mode_config_helper_funcs nv50_disp_helper_func = { .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, }; /****************************************************************************** * Init *****************************************************************************/ static void nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) { struct nouveau_drm *drm = nouveau_drm(dev); struct drm_encoder *encoder; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) nv50_mstm_fini(nouveau_encoder(encoder)); } if (!runtime) cancel_work_sync(&drm->hpd_work); } static int nv50_display_init(struct drm_device *dev, bool resume, bool runtime) { struct nv50_core *core = nv50_disp(dev)->core; struct drm_encoder *encoder; if (resume || runtime) core->func->init(core); list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nv50_mstm_init(nv_encoder, runtime); } } return 0; } static void nv50_display_destroy(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); nv50_audio_component_fini(nouveau_drm(dev)); nvif_object_unmap(&disp->caps); nvif_object_dtor(&disp->caps); nv50_core_del(&disp->core); nouveau_bo_unmap(disp->sync); if (disp->sync) nouveau_bo_unpin(disp->sync); nouveau_bo_ref(NULL, &disp->sync); nouveau_display(dev)->priv = NULL; kfree(disp); } int nv50_display_create(struct drm_device *dev) { struct nvif_device *device = &nouveau_drm(dev)->client.device; struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_table *dcb = &drm->vbios.dcb; struct drm_connector *connector, *tmp; struct nv50_disp *disp; struct dcb_output *dcbe; int crtcs, ret, i; bool has_mst = nv50_has_mst(drm); disp = kzalloc(sizeof(*disp), GFP_KERNEL); if (!disp) return -ENOMEM; mutex_init(&disp->mutex); nouveau_display(dev)->priv = disp; nouveau_display(dev)->dtor = nv50_display_destroy; nouveau_display(dev)->init = nv50_display_init; nouveau_display(dev)->fini = nv50_display_fini; disp->disp = &nouveau_display(dev)->disp; dev->mode_config.funcs = &nv50_disp_func; dev->mode_config.helper_private = &nv50_disp_helper_func; dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; dev->mode_config.normalize_zpos = true; /* small shared memory area we use for notifiers and semaphores */ ret = nouveau_bo_new(&drm->client, 4096, 0x1000, NOUVEAU_GEM_DOMAIN_VRAM, 0, 0x0000, NULL, NULL, &disp->sync); if (!ret) { ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); if (!ret) { ret = nouveau_bo_map(disp->sync); if (ret) nouveau_bo_unpin(disp->sync); } if (ret) nouveau_bo_ref(NULL, &disp->sync); } if (ret) goto out; /* allocate master evo channel */ ret = nv50_core_new(drm, &disp->core); if (ret) goto out; disp->core->func->init(disp->core); if (disp->core->func->caps_init) { ret = disp->core->func->caps_init(drm, disp); if (ret) goto out; } /* Assign the correct format modifiers */ if (disp->disp->object.oclass >= TU102_DISP) nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; else if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) nouveau_display(dev)->format_modifiers = disp90xx_modifiers; else nouveau_display(dev)->format_modifiers = disp50xx_modifiers; /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to * small page allocations in prepare_fb(). When this is implemented, we should also force * large pages (128K) for ovly fbs in order to fix Kepler ovlys. * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using * large pages. */ if (disp->disp->object.oclass >= GM107_DISP) { dev->mode_config.cursor_width = 256; dev->mode_config.cursor_height = 256; } else if (disp->disp->object.oclass >= GK104_DISP) { dev->mode_config.cursor_width = 128; dev->mode_config.cursor_height = 128; } else { dev->mode_config.cursor_width = 64; dev->mode_config.cursor_height = 64; } /* create crtc objects to represent the hw heads */ if (disp->disp->object.oclass >= GV100_DISP) crtcs = nvif_rd32(&device->object, 0x610060) & 0xff; else if (disp->disp->object.oclass >= GF110_DISP) crtcs = nvif_rd32(&device->object, 0x612004) & 0xf; else crtcs = 0x3; for (i = 0; i < fls(crtcs); i++) { struct nv50_head *head; if (!(crtcs & (1 << i))) continue; head = nv50_head_create(dev, i); if (IS_ERR(head)) { ret = PTR_ERR(head); goto out; } if (has_mst) { head->msto = nv50_msto_new(dev, head, i); if (IS_ERR(head->msto)) { ret = PTR_ERR(head->msto); head->msto = NULL; goto out; } /* * FIXME: This is a hack to workaround the following * issues: * * https://gitlab.gnome.org/GNOME/mutter/issues/759 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 * * Once these issues are closed, this should be * removed */ head->msto->encoder.possible_crtcs = crtcs; } } /* create encoder/connector objects based on VBIOS DCB table */ for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { connector = nouveau_connector_create(dev, dcbe); if (IS_ERR(connector)) continue; if (dcbe->location == DCB_LOC_ON_CHIP) { switch (dcbe->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_LVDS: case DCB_OUTPUT_DP: ret = nv50_sor_create(connector, dcbe); break; case DCB_OUTPUT_ANALOG: ret = nv50_dac_create(connector, dcbe); break; default: ret = -ENODEV; break; } } else { ret = nv50_pior_create(connector, dcbe); } if (ret) { NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", dcbe->location, dcbe->type, ffs(dcbe->or) - 1, ret); ret = 0; } } /* cull any connectors we created that don't have an encoder */ list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (connector->possible_encoders) continue; NV_WARN(drm, "%s has no encoders, removing\n", connector->name); connector->funcs->destroy(connector); } /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ dev->vblank_disable_immediate = true; nv50_audio_component_init(drm); out: if (ret) nv50_display_destroy(dev); return ret; } /****************************************************************************** * Format modifiers *****************************************************************************/ /**************************************************************** * Log2(block height) ----------------------------+ * * Page Kind ----------------------------------+ | * * Gob Height/Page Kind Generation ------+ | | * * Sector layout -------+ | | | * * Compression ------+ | | | | */ const u64 disp50xx_modifiers[] = { /* | | | | | */ DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; /**************************************************************** * Log2(block height) ----------------------------+ * * Page Kind ----------------------------------+ | * * Gob Height/Page Kind Generation ------+ | | * * Sector layout -------+ | | | * * Compression ------+ | | | | */ const u64 disp90xx_modifiers[] = { /* | | | | | */ DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID };
linux-master
drivers/gpu/drm/nouveau/dispnv50/disp.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include <nvif/class.h> void nv50_core_del(struct nv50_core **pcore) { struct nv50_core *core = *pcore; if (core) { nv50_dmac_destroy(&core->chan); kfree(*pcore); *pcore = NULL; } } int nv50_core_new(struct nouveau_drm *drm, struct nv50_core **pcore) { struct { s32 oclass; int version; int (*new)(struct nouveau_drm *, s32, struct nv50_core **); } cores[] = { { GA102_DISP_CORE_CHANNEL_DMA, 0, corec57d_new }, { TU102_DISP_CORE_CHANNEL_DMA, 0, corec57d_new }, { GV100_DISP_CORE_CHANNEL_DMA, 0, corec37d_new }, { GP102_DISP_CORE_CHANNEL_DMA, 0, core917d_new }, { GP100_DISP_CORE_CHANNEL_DMA, 0, core917d_new }, { GM200_DISP_CORE_CHANNEL_DMA, 0, core917d_new }, { GM107_DISP_CORE_CHANNEL_DMA, 0, core917d_new }, { GK110_DISP_CORE_CHANNEL_DMA, 0, core917d_new }, { GK104_DISP_CORE_CHANNEL_DMA, 0, core917d_new }, { GF110_DISP_CORE_CHANNEL_DMA, 0, core907d_new }, { GT214_DISP_CORE_CHANNEL_DMA, 0, core827d_new }, { GT206_DISP_CORE_CHANNEL_DMA, 0, core827d_new }, { GT200_DISP_CORE_CHANNEL_DMA, 0, core827d_new }, { G82_DISP_CORE_CHANNEL_DMA, 0, core827d_new }, { NV50_DISP_CORE_CHANNEL_DMA, 0, core507d_new }, {} }; struct nv50_disp *disp = nv50_disp(drm->dev); int cid; cid = nvif_mclass(&disp->disp->object, cores); if (cid < 0) { NV_ERROR(drm, "No supported core channel class\n"); return cid; } return cores[cid].new(drm, cores[cid].oclass, pcore); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/core.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "ovly.h" #include "oimm.h" #include <nvif/class.h> int nv50_ovly_new(struct nouveau_drm *drm, int head, struct nv50_wndw **pwndw) { static const struct { s32 oclass; int version; int (*new)(struct nouveau_drm *, int, s32, struct nv50_wndw **); } ovlys[] = { { GK104_DISP_OVERLAY_CONTROL_DMA, 0, ovly917e_new }, { GF110_DISP_OVERLAY_CONTROL_DMA, 0, ovly907e_new }, { GT214_DISP_OVERLAY_CHANNEL_DMA, 0, ovly827e_new }, { GT200_DISP_OVERLAY_CHANNEL_DMA, 0, ovly827e_new }, { G82_DISP_OVERLAY_CHANNEL_DMA, 0, ovly827e_new }, { NV50_DISP_OVERLAY_CHANNEL_DMA, 0, ovly507e_new }, {} }; struct nv50_disp *disp = nv50_disp(drm->dev); int cid, ret; cid = nvif_mclass(&disp->disp->object, ovlys); if (cid < 0) { NV_ERROR(drm, "No supported overlay class\n"); return cid; } ret = ovlys[cid].new(drm, head, ovlys[cid].oclass, pwndw); if (ret) return ret; return nv50_oimm_init(drm, *pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/ovly.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include <nvif/push507c.h> #include <nvhw/class/cl907d.h> static int dac907d_ctrl(struct nv50_core *core, int or, u32 ctrl, struct nv50_head_atom *asyh) { struct nvif_push *push = core->chan.push; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907D, DAC_SET_CONTROL(or), ctrl); return 0; } const struct nv50_outp_func dac907d = { .ctrl = dac907d_ctrl, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/dac907d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "head.h" #include "base.h" #include "core.h" #include "curs.h" #include "ovly.h" #include "crc.h" #include <nvif/class.h> #include <nvif/event.h> #include <nvif/cl0046.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_vblank.h> #include "nouveau_connector.h" void nv50_head_flush_clr(struct nv50_head *head, struct nv50_head_atom *asyh, bool flush) { union nv50_head_atom_mask clr = { .mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask), }; if (clr.crc) nv50_crc_atomic_clr(head); if (clr.olut) head->func->olut_clr(head); if (clr.core) head->func->core_clr(head); if (clr.curs) head->func->curs_clr(head); } void nv50_head_flush_set_wndw(struct nv50_head *head, struct nv50_head_atom *asyh) { if (asyh->set.curs ) head->func->curs_set(head, asyh); if (asyh->set.olut ) { asyh->olut.offset = nv50_lut_load(&head->olut, asyh->olut.buffer, asyh->state.gamma_lut, asyh->olut.load); head->func->olut_set(head, asyh); } } void nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh) { if (asyh->set.view ) head->func->view (head, asyh); if (asyh->set.mode ) head->func->mode (head, asyh); if (asyh->set.core ) head->func->core_set(head, asyh); if (asyh->set.base ) head->func->base (head, asyh); if (asyh->set.ovly ) head->func->ovly (head, asyh); if (asyh->set.dither ) head->func->dither (head, asyh); if (asyh->set.procamp) head->func->procamp (head, asyh); if (asyh->set.crc ) nv50_crc_atomic_set (head, asyh); if (asyh->set.or ) head->func->or (head, asyh); } static void nv50_head_atomic_check_procamp(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { const int vib = asyc->procamp.color_vibrance - 100; const int hue = asyc->procamp.vibrant_hue - 90; const int adj = (vib > 0) ? 50 : 0; asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff; asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff; asyh->set.procamp = true; } static void nv50_head_atomic_check_dither(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { u32 mode = 0x00; if (asyc->dither.mode) { if (asyc->dither.mode == DITHERING_MODE_AUTO) { if (asyh->base.depth > asyh->or.bpc * 3) mode = DITHERING_MODE_DYNAMIC2X2; } else { mode = asyc->dither.mode; } if (asyc->dither.depth == DITHERING_DEPTH_AUTO) { if (asyh->or.bpc >= 8) mode |= DITHERING_DEPTH_8BPC; } else { mode |= asyc->dither.depth; } } asyh->dither.enable = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, ENABLE); asyh->dither.bits = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, BITS); asyh->dither.mode = NVVAL_GET(mode, NV507D, HEAD_SET_DITHER_CONTROL, MODE); asyh->set.dither = true; } static void nv50_head_atomic_check_view(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { struct drm_connector *connector = asyc->state.connector; struct drm_display_mode *omode = &asyh->state.adjusted_mode; struct drm_display_mode *umode = &asyh->state.mode; int mode = asyc->scaler.mode; struct edid *edid; int umode_vdisplay, omode_hdisplay, omode_vdisplay; if (connector->edid_blob_ptr) edid = (struct edid *)connector->edid_blob_ptr->data; else edid = NULL; if (!asyc->scaler.full) { if (mode == DRM_MODE_SCALE_NONE) omode = umode; } else { /* Non-EDID LVDS/eDP mode. */ mode = DRM_MODE_SCALE_FULLSCREEN; } /* For the user-specified mode, we must ignore doublescan and * the like, but honor frame packing. */ umode_vdisplay = umode->vdisplay; if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) umode_vdisplay += umode->vtotal; asyh->view.iW = umode->hdisplay; asyh->view.iH = umode_vdisplay; /* For the output mode, we can just use the stock helper. */ drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay); asyh->view.oW = omode_hdisplay; asyh->view.oH = omode_vdisplay; /* Add overscan compensation if necessary, will keep the aspect * ratio the same as the backend mode unless overridden by the * user setting both hborder and vborder properties. */ if ((asyc->scaler.underscan.mode == UNDERSCAN_ON || (asyc->scaler.underscan.mode == UNDERSCAN_AUTO && drm_detect_hdmi_monitor(edid)))) { u32 bX = asyc->scaler.underscan.hborder; u32 bY = asyc->scaler.underscan.vborder; u32 r = (asyh->view.oH << 19) / asyh->view.oW; if (bX) { asyh->view.oW -= (bX * 2); if (bY) asyh->view.oH -= (bY * 2); else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } else { asyh->view.oW -= (asyh->view.oW >> 4) + 32; if (bY) asyh->view.oH -= (bY * 2); else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } } /* Handle CENTER/ASPECT scaling, taking into account the areas * removed already for overscan compensation. */ switch (mode) { case DRM_MODE_SCALE_CENTER: /* NOTE: This will cause scaling when the input is * larger than the output. */ asyh->view.oW = min(asyh->view.iW, asyh->view.oW); asyh->view.oH = min(asyh->view.iH, asyh->view.oH); break; case DRM_MODE_SCALE_ASPECT: /* Determine whether the scaling should be on width or on * height. This is done by comparing the aspect ratios of the * sizes. If the output AR is larger than input AR, that means * we want to change the width (letterboxed on the * left/right), otherwise on the height (letterboxed on the * top/bottom). * * E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR * screen will have letterboxes on the left/right. However a * 16:9 (1.777) AR image on that same screen will have * letterboxes on the top/bottom. * * inputAR = iW / iH; outputAR = oW / oH * outputAR > inputAR is equivalent to oW * iH > iW * oH */ if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) { /* Recompute output width, i.e. left/right letterbox */ u32 r = (asyh->view.iW << 19) / asyh->view.iH; asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19; } else { /* Recompute output height, i.e. top/bottom letterbox */ u32 r = (asyh->view.iH << 19) / asyh->view.iW; asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } break; default: break; } asyh->set.view = true; } static int nv50_head_atomic_check_lut(struct nv50_head *head, struct nv50_head_atom *asyh) { struct drm_device *dev = head->base.base.dev; struct drm_crtc *crtc = &head->base.base; struct nv50_disp *disp = nv50_disp(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct drm_property_blob *olut = asyh->state.gamma_lut, *ilut = asyh->state.degamma_lut; int size; /* Ensure that the ilut is valid */ if (ilut) { size = drm_color_lut_size(ilut); if (!head->func->ilut_check(size)) { NV_ATOMIC(drm, "Invalid size %d for degamma on [CRTC:%d:%s]\n", size, crtc->base.id, crtc->name); return -EINVAL; } } /* Determine whether core output LUT should be enabled. */ if (olut) { /* Check if any window(s) have stolen the core output LUT * to as an input LUT for legacy gamma + I8 colour format. */ if (asyh->wndw.olut) { /* If any window has stolen the core output LUT, * all of them must. */ if (asyh->wndw.olut != asyh->wndw.mask) return -EINVAL; olut = NULL; } } if (!olut) { if (!head->func->olut_identity) { asyh->olut.handle = 0; return 0; } size = 0; } else { size = drm_color_lut_size(olut); } if (!head->func->olut(head, asyh, size)) { NV_ATOMIC(drm, "Invalid size %d for gamma on [CRTC:%d:%s]\n", size, crtc->base.id, crtc->name); return -EINVAL; } asyh->olut.handle = disp->core->chan.vram.handle; asyh->olut.buffer = !asyh->olut.buffer; return 0; } static void nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh) { struct drm_display_mode *mode = &asyh->state.adjusted_mode; struct nv50_head_mode *m = &asyh->mode; u32 blankus; drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE); /* * DRM modes are defined in terms of a repeating interval * starting with the active display area. The hardware modes * are defined in terms of a repeating interval starting one * unit (pixel or line) into the sync pulse. So, add bias. */ m->h.active = mode->crtc_htotal; m->h.synce = mode->crtc_hsync_end - mode->crtc_hsync_start - 1; m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1; m->h.blanks = m->h.blanke + mode->crtc_hdisplay; m->v.active = mode->crtc_vtotal; m->v.synce = mode->crtc_vsync_end - mode->crtc_vsync_start - 1; m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1; m->v.blanks = m->v.blanke + mode->crtc_vdisplay; /*XXX: Safe underestimate, even "0" works */ blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active; blankus *= 1000; blankus /= mode->crtc_clock; m->v.blankus = blankus; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { m->v.blank2e = m->v.active + m->v.blanke; m->v.blank2s = m->v.blank2e + mode->crtc_vdisplay; m->v.active = (m->v.active * 2) + 1; m->interlace = true; } else { m->v.blank2e = 0; m->v.blank2s = 1; m->interlace = false; } m->clock = mode->crtc_clock; asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); asyh->set.or = head->func->or != NULL; asyh->set.mode = true; } static int nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state); struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); struct nouveau_conn_atom *asyc = NULL; struct drm_connector_state *conns; struct drm_connector *conn; int i, ret; bool check_lut = asyh->state.color_mgmt_changed || memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw)); NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active); if (check_lut) { ret = nv50_head_atomic_check_lut(head, asyh); if (ret) return ret; } if (asyh->state.active) { for_each_new_connector_in_state(asyh->state.state, conn, conns, i) { if (conns->crtc == crtc) { asyc = nouveau_conn_atom(conns); break; } } if (armh->state.active) { if (asyc) { if (asyh->state.mode_changed) asyc->set.scaler = true; if (armh->base.depth != asyh->base.depth) asyc->set.dither = true; } } else { if (asyc) asyc->set.mask = ~0; asyh->set.mask = ~0; asyh->set.or = head->func->or != NULL; } if (asyh->state.mode_changed || asyh->state.connectors_changed) nv50_head_atomic_check_mode(head, asyh); if (check_lut) asyh->olut.visible = asyh->olut.handle != 0; if (asyc) { if (asyc->set.scaler) nv50_head_atomic_check_view(armh, asyh, asyc); if (asyc->set.dither) nv50_head_atomic_check_dither(armh, asyh, asyc); if (asyc->set.procamp) nv50_head_atomic_check_procamp(armh, asyh, asyc); } if (head->func->core_calc) { head->func->core_calc(head, asyh); if (!asyh->core.visible) asyh->olut.visible = false; } asyh->set.base = armh->base.cpp != asyh->base.cpp; asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp; } else { asyh->olut.visible = false; asyh->core.visible = false; asyh->curs.visible = false; asyh->base.cpp = 0; asyh->ovly.cpp = 0; } if (!drm_atomic_crtc_needs_modeset(&asyh->state)) { if (asyh->core.visible) { if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core))) asyh->set.core = true; } else if (armh->core.visible) { asyh->clr.core = true; } if (asyh->curs.visible) { if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs))) asyh->set.curs = true; } else if (armh->curs.visible) { asyh->clr.curs = true; } if (asyh->olut.visible) { if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut))) asyh->set.olut = true; } else if (armh->olut.visible) { asyh->clr.olut = true; } } else { asyh->clr.olut = armh->olut.visible; asyh->clr.core = armh->core.visible; asyh->clr.curs = armh->curs.visible; asyh->set.olut = asyh->olut.visible; asyh->set.core = asyh->core.visible; asyh->set.curs = asyh->curs.visible; } ret = nv50_crc_atomic_check_head(head, asyh, armh); if (ret) return ret; if (asyh->clr.mask || asyh->set.mask) nv50_atom(asyh->state.state)->lock_core = true; return 0; } static const struct drm_crtc_helper_funcs nv50_head_help = { .atomic_check = nv50_head_atomic_check, .get_scanout_position = nouveau_display_scanoutpos, }; static void nv50_head_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct nv50_head_atom *asyh = nv50_head_atom(state); __drm_atomic_helper_crtc_destroy_state(&asyh->state); kfree(asyh); } static struct drm_crtc_state * nv50_head_atomic_duplicate_state(struct drm_crtc *crtc) { struct nv50_head_atom *armh = nv50_head_atom(crtc->state); struct nv50_head_atom *asyh; if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL))) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state); asyh->wndw = armh->wndw; asyh->view = armh->view; asyh->mode = armh->mode; asyh->olut = armh->olut; asyh->core = armh->core; asyh->curs = armh->curs; asyh->base = armh->base; asyh->ovly = armh->ovly; asyh->dither = armh->dither; asyh->procamp = armh->procamp; asyh->crc = armh->crc; asyh->or = armh->or; asyh->dp = armh->dp; asyh->clr.mask = 0; asyh->set.mask = 0; return &asyh->state; } static void nv50_head_reset(struct drm_crtc *crtc) { struct nv50_head_atom *asyh; if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL)))) return; if (crtc->state) nv50_head_atomic_destroy_state(crtc, crtc->state); __drm_atomic_helper_crtc_reset(crtc, &asyh->state); } static int nv50_head_late_register(struct drm_crtc *crtc) { return nv50_head_crc_late_register(nv50_head(crtc)); } static void nv50_head_destroy(struct drm_crtc *crtc) { struct nv50_head *head = nv50_head(crtc); nvif_event_dtor(&head->base.vblank); nvif_head_dtor(&head->base.head); nv50_lut_fini(&head->olut); drm_crtc_cleanup(crtc); kfree(head); } static const struct drm_crtc_funcs nv50_head_func = { .reset = nv50_head_reset, .destroy = nv50_head_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = nv50_head_atomic_duplicate_state, .atomic_destroy_state = nv50_head_atomic_destroy_state, .enable_vblank = nouveau_display_vblank_enable, .disable_vblank = nouveau_display_vblank_disable, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .late_register = nv50_head_late_register, }; static const struct drm_crtc_funcs nvd9_head_func = { .reset = nv50_head_reset, .destroy = nv50_head_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = nv50_head_atomic_duplicate_state, .atomic_destroy_state = nv50_head_atomic_destroy_state, .enable_vblank = nouveau_display_vblank_enable, .disable_vblank = nouveau_display_vblank_disable, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .verify_crc_source = nv50_crc_verify_source, .get_crc_sources = nv50_crc_get_sources, .set_crc_source = nv50_crc_set_source, .late_register = nv50_head_late_register, }; static int nv50_head_vblank_handler(struct nvif_event *event, void *repv, u32 repc) { struct nouveau_crtc *nv_crtc = container_of(event, struct nouveau_crtc, vblank); if (drm_crtc_handle_vblank(&nv_crtc->base)) nv50_crc_handle_vblank(nv50_head(&nv_crtc->base)); return NVIF_EVENT_KEEP; } struct nv50_head * nv50_head_create(struct drm_device *dev, int index) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nv50_head *head; struct nv50_wndw *base, *ovly, *curs; struct nouveau_crtc *nv_crtc; struct drm_crtc *crtc; const struct drm_crtc_funcs *funcs; int ret; head = kzalloc(sizeof(*head), GFP_KERNEL); if (!head) return ERR_PTR(-ENOMEM); head->func = disp->core->func->head; head->base.index = index; if (disp->disp->object.oclass < GF110_DISP) funcs = &nv50_head_func; else funcs = &nvd9_head_func; if (disp->disp->object.oclass < GV100_DISP) { ret = nv50_base_new(drm, head->base.index, &base); ret = nv50_ovly_new(drm, head->base.index, &ovly); } else { ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY, head->base.index * 2 + 0, &base); ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY, head->base.index * 2 + 1, &ovly); } if (ret == 0) ret = nv50_curs_new(drm, head->base.index, &curs); if (ret) { kfree(head); return ERR_PTR(ret); } nv_crtc = &head->base; crtc = &nv_crtc->base; drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane, funcs, "head-%d", head->base.index); drm_crtc_helper_add(crtc, &nv50_head_help); /* Keep the legacy gamma size at 256 to avoid compatibility issues */ drm_mode_crtc_set_gamma_size(crtc, 256); drm_crtc_enable_color_mgmt(crtc, base->func->ilut_size, disp->disp->object.oclass >= GF110_DISP, head->func->olut_size); if (head->func->olut_set) { ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut); if (ret) { nv50_head_destroy(crtc); return ERR_PTR(ret); } } ret = nvif_head_ctor(disp->disp, head->base.base.name, head->base.index, &head->base.head); if (ret) return ERR_PTR(ret); ret = nvif_head_vblank_event_ctor(&head->base.head, "kmsVbl", nv50_head_vblank_handler, false, &nv_crtc->vblank); if (ret) return ERR_PTR(ret); return head; }
linux-master
drivers/gpu/drm/nouveau/dispnv50/head.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include <nvif/push507c.h> #include <nvhw/class/cl507d.h> static int dac507d_ctrl(struct nv50_core *core, int or, u32 ctrl, struct nv50_head_atom *asyh) { struct nvif_push *push = core->chan.push; u32 sync = 0; int ret; if (asyh) { sync |= NVVAL(NV507D, DAC_SET_POLARITY, HSYNC, asyh->or.nhsync); sync |= NVVAL(NV507D, DAC_SET_POLARITY, VSYNC, asyh->or.nvsync); } if ((ret = PUSH_WAIT(push, 3))) return ret; PUSH_MTHD(push, NV507D, DAC_SET_CONTROL(or), ctrl, DAC_SET_POLARITY(or), sync); return 0; } const struct nv50_outp_func dac507d = { .ctrl = dac507d_ctrl, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/dac507d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "head.h" #include "core.h" #include <nvif/push507c.h> #include <nvhw/class/cl827d.h> static int head827d_curs_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NV827D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NV827D, HEAD_SET_CONTROL_CURSOR, ENABLE, DISABLE) | NVDEF(NV827D, HEAD_SET_CONTROL_CURSOR, FORMAT, A8R8G8B8) | NVDEF(NV827D, HEAD_SET_CONTROL_CURSOR, SIZE, W64_H64)); PUSH_MTHD(push, NV827D, HEAD_SET_CONTEXT_DMA_CURSOR(i), 0x00000000); return 0; } static int head827d_curs_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 5))) return ret; PUSH_MTHD(push, NV827D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NV827D, HEAD_SET_CONTROL_CURSOR, ENABLE, ENABLE) | NVVAL(NV827D, HEAD_SET_CONTROL_CURSOR, FORMAT, asyh->curs.format) | NVVAL(NV827D, HEAD_SET_CONTROL_CURSOR, SIZE, asyh->curs.layout) | NVVAL(NV827D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_X, 0) | NVVAL(NV827D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_Y, 0) | NVDEF(NV827D, HEAD_SET_CONTROL_CURSOR, COMPOSITION, ALPHA_BLEND) | NVDEF(NV827D, HEAD_SET_CONTROL_CURSOR, SUB_OWNER, NONE), HEAD_SET_OFFSET_CURSOR(i), asyh->curs.offset >> 8); PUSH_MTHD(push, NV827D, HEAD_SET_CONTEXT_DMA_CURSOR(i), asyh->curs.handle); return 0; } static int head827d_core_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 9))) return ret; PUSH_MTHD(push, NV827D, HEAD_SET_OFFSET(i, 0), NVVAL(NV827D, HEAD_SET_OFFSET, ORIGIN, asyh->core.offset >> 8)); PUSH_MTHD(push, NV827D, HEAD_SET_SIZE(i), NVVAL(NV827D, HEAD_SET_SIZE, WIDTH, asyh->core.w) | NVVAL(NV827D, HEAD_SET_SIZE, HEIGHT, asyh->core.h), HEAD_SET_STORAGE(i), NVVAL(NV827D, HEAD_SET_STORAGE, BLOCK_HEIGHT, asyh->core.blockh) | NVVAL(NV827D, HEAD_SET_STORAGE, PITCH, asyh->core.pitch >> 8) | NVVAL(NV827D, HEAD_SET_STORAGE, PITCH, asyh->core.blocks) | NVVAL(NV827D, HEAD_SET_STORAGE, MEMORY_LAYOUT, asyh->core.layout), HEAD_SET_PARAMS(i), NVVAL(NV827D, HEAD_SET_PARAMS, FORMAT, asyh->core.format) | NVDEF(NV827D, HEAD_SET_PARAMS, SUPER_SAMPLE, X1_AA) | NVDEF(NV827D, HEAD_SET_PARAMS, GAMMA, LINEAR), HEAD_SET_CONTEXT_DMAS_ISO(i, 0), NVVAL(NV827D, HEAD_SET_CONTEXT_DMAS_ISO, HANDLE, asyh->core.handle)); PUSH_MTHD(push, NV827D, HEAD_SET_VIEWPORT_POINT_IN(i, 0), NVVAL(NV827D, HEAD_SET_VIEWPORT_POINT_IN, X, asyh->core.x) | NVVAL(NV827D, HEAD_SET_VIEWPORT_POINT_IN, Y, asyh->core.y)); return 0; } static int head827d_olut_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NV827D, HEAD_SET_BASE_LUT_LO(i), NVDEF(NV827D, HEAD_SET_BASE_LUT_LO, ENABLE, DISABLE)); PUSH_MTHD(push, NV827D, HEAD_SET_CONTEXT_DMA_LUT(i), 0x00000000); return 0; } static int head827d_olut_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 5))) return ret; PUSH_MTHD(push, NV827D, HEAD_SET_BASE_LUT_LO(i), NVDEF(NV827D, HEAD_SET_BASE_LUT_LO, ENABLE, ENABLE) | NVVAL(NV827D, HEAD_SET_BASE_LUT_LO, MODE, asyh->olut.mode) | NVVAL(NV827D, HEAD_SET_BASE_LUT_LO, ORIGIN, 0), HEAD_SET_BASE_LUT_HI(i), NVVAL(NV827D, HEAD_SET_BASE_LUT_HI, ORIGIN, asyh->olut.offset >> 8)); PUSH_MTHD(push, NV827D, HEAD_SET_CONTEXT_DMA_LUT(i), asyh->olut.handle); return 0; } const struct nv50_head_func head827d = { .view = head507d_view, .mode = head507d_mode, .olut = head507d_olut, .olut_size = 256, .olut_set = head827d_olut_set, .olut_clr = head827d_olut_clr, .core_calc = head507d_core_calc, .core_set = head827d_core_set, .core_clr = head507d_core_clr, .curs_layout = head507d_curs_layout, .curs_format = head507d_curs_format, .curs_set = head827d_curs_set, .curs_clr = head827d_curs_clr, .base = head507d_base, .ovly = head507d_ovly, .dither = head507d_dither, .procamp = head507d_procamp, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/head827d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "oimm.h" #include <nvif/class.h> int nv50_oimm_init(struct nouveau_drm *drm, struct nv50_wndw *wndw) { static const struct { s32 oclass; int version; int (*init)(struct nouveau_drm *, s32, struct nv50_wndw *); } oimms[] = { { GK104_DISP_OVERLAY, 0, oimm507b_init }, { GF110_DISP_OVERLAY, 0, oimm507b_init }, { GT214_DISP_OVERLAY, 0, oimm507b_init }, { G82_DISP_OVERLAY, 0, oimm507b_init }, { NV50_DISP_OVERLAY, 0, oimm507b_init }, {} }; struct nv50_disp *disp = nv50_disp(drm->dev); int cid; cid = nvif_mclass(&disp->disp->object, oimms); if (cid < 0) { NV_ERROR(drm, "No supported overlay immediate class\n"); return cid; } return oimms[cid].init(drm, oimms[cid].oclass, wndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/oimm.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "wndw.h" #include "wimm.h" #include "handles.h" #include <nvif/class.h> #include <nvif/cl0002.h> #include <nvhw/class/cl507c.h> #include <nvhw/class/cl507e.h> #include <nvhw/class/clc37e.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_blend.h> #include <drm/drm_gem_atomic_helper.h> #include <drm/drm_fourcc.h> #include "nouveau_bo.h" #include "nouveau_gem.h" static void nv50_wndw_ctxdma_del(struct nv50_wndw_ctxdma *ctxdma) { nvif_object_dtor(&ctxdma->object); list_del(&ctxdma->head); kfree(ctxdma); } static struct nv50_wndw_ctxdma * nv50_wndw_ctxdma_new(struct nv50_wndw *wndw, struct drm_framebuffer *fb) { struct nouveau_drm *drm = nouveau_drm(fb->dev); struct nv50_wndw_ctxdma *ctxdma; u32 handle; u32 unused; u8 kind; struct { struct nv_dma_v0 base; union { struct nv50_dma_v0 nv50; struct gf100_dma_v0 gf100; struct gf119_dma_v0 gf119; }; } args = {}; u32 argc = sizeof(args.base); int ret; nouveau_framebuffer_get_layout(fb, &unused, &kind); handle = NV50_DISP_HANDLE_WNDW_CTX(kind); list_for_each_entry(ctxdma, &wndw->ctxdma.list, head) { if (ctxdma->object.handle == handle) return ctxdma; } if (!(ctxdma = kzalloc(sizeof(*ctxdma), GFP_KERNEL))) return ERR_PTR(-ENOMEM); list_add(&ctxdma->head, &wndw->ctxdma.list); args.base.target = NV_DMA_V0_TARGET_VRAM; args.base.access = NV_DMA_V0_ACCESS_RDWR; args.base.start = 0; args.base.limit = drm->client.device.info.ram_user - 1; if (drm->client.device.info.chipset < 0x80) { args.nv50.part = NV50_DMA_V0_PART_256; argc += sizeof(args.nv50); } else if (drm->client.device.info.chipset < 0xc0) { args.nv50.part = NV50_DMA_V0_PART_256; args.nv50.kind = kind; argc += sizeof(args.nv50); } else if (drm->client.device.info.chipset < 0xd0) { args.gf100.kind = kind; argc += sizeof(args.gf100); } else { args.gf119.page = GF119_DMA_V0_PAGE_LP; args.gf119.kind = kind; argc += sizeof(args.gf119); } ret = nvif_object_ctor(wndw->ctxdma.parent, "kmsFbCtxDma", handle, NV_DMA_IN_MEMORY, &args, argc, &ctxdma->object); if (ret) { nv50_wndw_ctxdma_del(ctxdma); return ERR_PTR(ret); } return ctxdma; } int nv50_wndw_wait_armed(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nv50_disp *disp = nv50_disp(wndw->plane.dev); if (asyw->set.ntfy) { return wndw->func->ntfy_wait_begun(disp->sync, asyw->ntfy.offset, wndw->wndw.base.device); } return 0; } void nv50_wndw_flush_clr(struct nv50_wndw *wndw, u32 *interlock, bool flush, struct nv50_wndw_atom *asyw) { union nv50_wndw_atom_mask clr = { .mask = asyw->clr.mask & ~(flush ? 0 : asyw->set.mask), }; if (clr.sema ) wndw->func-> sema_clr(wndw); if (clr.ntfy ) wndw->func-> ntfy_clr(wndw); if (clr.xlut ) wndw->func-> xlut_clr(wndw); if (clr.csc ) wndw->func-> csc_clr(wndw); if (clr.image) wndw->func->image_clr(wndw); interlock[wndw->interlock.type] |= wndw->interlock.data; } void nv50_wndw_flush_set(struct nv50_wndw *wndw, u32 *interlock, struct nv50_wndw_atom *asyw) { if (interlock[NV50_DISP_INTERLOCK_CORE]) { asyw->image.mode = NV507C_SET_PRESENT_CONTROL_BEGIN_MODE_NON_TEARING; asyw->image.interval = 1; } if (asyw->set.sema ) wndw->func->sema_set (wndw, asyw); if (asyw->set.ntfy ) wndw->func->ntfy_set (wndw, asyw); if (asyw->set.image) wndw->func->image_set(wndw, asyw); if (asyw->set.xlut ) { if (asyw->ilut) { asyw->xlut.i.offset = nv50_lut_load(&wndw->ilut, asyw->xlut.i.buffer, asyw->ilut, asyw->xlut.i.load); } wndw->func->xlut_set(wndw, asyw); } if (asyw->set.csc ) wndw->func->csc_set (wndw, asyw); if (asyw->set.scale) wndw->func->scale_set(wndw, asyw); if (asyw->set.blend) wndw->func->blend_set(wndw, asyw); if (asyw->set.point) { if (asyw->set.point = false, asyw->set.mask) interlock[wndw->interlock.type] |= wndw->interlock.data; interlock[NV50_DISP_INTERLOCK_WIMM] |= wndw->interlock.wimm; wndw->immd->point(wndw, asyw); wndw->immd->update(wndw, interlock); } else { interlock[wndw->interlock.type] |= wndw->interlock.data; } } void nv50_wndw_ntfy_enable(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nv50_disp *disp = nv50_disp(wndw->plane.dev); asyw->ntfy.handle = wndw->wndw.sync.handle; asyw->ntfy.offset = wndw->ntfy; asyw->ntfy.awaken = false; asyw->set.ntfy = true; wndw->func->ntfy_reset(disp->sync, wndw->ntfy); wndw->ntfy ^= 0x10; } static void nv50_wndw_atomic_check_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev); NV_ATOMIC(drm, "%s release\n", wndw->plane.name); wndw->func->release(wndw, asyw, asyh); asyw->ntfy.handle = 0; asyw->sema.handle = 0; asyw->xlut.handle = 0; memset(asyw->image.handle, 0x00, sizeof(asyw->image.handle)); } static int nv50_wndw_atomic_check_acquire_yuv(struct nv50_wndw_atom *asyw) { switch (asyw->state.fb->format->format) { case DRM_FORMAT_YUYV: asyw->image.format = NV507E_SURFACE_SET_PARAMS_FORMAT_VE8YO8UE8YE8; break; case DRM_FORMAT_UYVY: asyw->image.format = NV507E_SURFACE_SET_PARAMS_FORMAT_YO8VE8YE8UE8; break; default: WARN_ON(1); return -EINVAL; } asyw->image.colorspace = NV507E_SURFACE_SET_PARAMS_COLOR_SPACE_YUV_601; return 0; } static int nv50_wndw_atomic_check_acquire_rgb(struct nv50_wndw_atom *asyw) { switch (asyw->state.fb->format->format) { case DRM_FORMAT_C8: asyw->image.format = NV507C_SURFACE_SET_PARAMS_FORMAT_I8; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: asyw->image.format = NV507C_SURFACE_SET_PARAMS_FORMAT_A8R8G8B8; break; case DRM_FORMAT_RGB565: asyw->image.format = NV507C_SURFACE_SET_PARAMS_FORMAT_R5G6B5; break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: asyw->image.format = NV507C_SURFACE_SET_PARAMS_FORMAT_A1R5G5B5; break; case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: asyw->image.format = NV507C_SURFACE_SET_PARAMS_FORMAT_A2B10G10R10; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: asyw->image.format = NV507C_SURFACE_SET_PARAMS_FORMAT_A8B8G8R8; break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: asyw->image.format = NVC37E_SET_PARAMS_FORMAT_A2R10G10B10; break; case DRM_FORMAT_XBGR16161616F: case DRM_FORMAT_ABGR16161616F: asyw->image.format = NV507C_SURFACE_SET_PARAMS_FORMAT_RF16_GF16_BF16_AF16; break; default: return -EINVAL; } asyw->image.colorspace = NV507E_SURFACE_SET_PARAMS_COLOR_SPACE_RGB; return 0; } static int nv50_wndw_atomic_check_acquire(struct nv50_wndw *wndw, bool modeset, struct nv50_wndw_atom *armw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { struct drm_framebuffer *fb = asyw->state.fb; struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev); uint8_t kind; uint32_t tile_mode; int ret; NV_ATOMIC(drm, "%s acquire\n", wndw->plane.name); if (fb != armw->state.fb || !armw->visible || modeset) { nouveau_framebuffer_get_layout(fb, &tile_mode, &kind); asyw->image.w = fb->width; asyw->image.h = fb->height; asyw->image.kind = kind; ret = nv50_wndw_atomic_check_acquire_rgb(asyw); if (ret) { ret = nv50_wndw_atomic_check_acquire_yuv(asyw); if (ret) return ret; } if (asyw->image.kind) { asyw->image.layout = NV507C_SURFACE_SET_STORAGE_MEMORY_LAYOUT_BLOCKLINEAR; if (drm->client.device.info.chipset >= 0xc0) asyw->image.blockh = tile_mode >> 4; else asyw->image.blockh = tile_mode; asyw->image.blocks[0] = fb->pitches[0] / 64; asyw->image.pitch[0] = 0; } else { asyw->image.layout = NV507C_SURFACE_SET_STORAGE_MEMORY_LAYOUT_PITCH; asyw->image.blockh = NV507C_SURFACE_SET_STORAGE_BLOCK_HEIGHT_ONE_GOB; asyw->image.blocks[0] = 0; asyw->image.pitch[0] = fb->pitches[0]; } if (!asyh->state.async_flip) asyw->image.interval = 1; else asyw->image.interval = 0; if (asyw->image.interval) asyw->image.mode = NV507C_SET_PRESENT_CONTROL_BEGIN_MODE_NON_TEARING; else asyw->image.mode = NV507C_SET_PRESENT_CONTROL_BEGIN_MODE_IMMEDIATE; asyw->set.image = wndw->func->image_set != NULL; } if (wndw->func->scale_set) { asyw->scale.sx = asyw->state.src_x >> 16; asyw->scale.sy = asyw->state.src_y >> 16; asyw->scale.sw = asyw->state.src_w >> 16; asyw->scale.sh = asyw->state.src_h >> 16; asyw->scale.dw = asyw->state.crtc_w; asyw->scale.dh = asyw->state.crtc_h; if (memcmp(&armw->scale, &asyw->scale, sizeof(asyw->scale))) asyw->set.scale = true; } if (wndw->func->blend_set) { asyw->blend.depth = 255 - asyw->state.normalized_zpos; asyw->blend.k1 = asyw->state.alpha >> 8; switch (asyw->state.pixel_blend_mode) { case DRM_MODE_BLEND_PREMULTI: asyw->blend.src_color = NVC37E_SET_COMPOSITION_FACTOR_SELECT_SRC_COLOR_FACTOR_MATCH_SELECT_K1; asyw->blend.dst_color = NVC37E_SET_COMPOSITION_FACTOR_SELECT_DST_COLOR_FACTOR_MATCH_SELECT_NEG_K1_TIMES_SRC; break; case DRM_MODE_BLEND_COVERAGE: asyw->blend.src_color = NVC37E_SET_COMPOSITION_FACTOR_SELECT_SRC_COLOR_FACTOR_MATCH_SELECT_K1_TIMES_SRC; asyw->blend.dst_color = NVC37E_SET_COMPOSITION_FACTOR_SELECT_DST_COLOR_FACTOR_MATCH_SELECT_NEG_K1_TIMES_SRC; break; case DRM_MODE_BLEND_PIXEL_NONE: default: asyw->blend.src_color = NVC37E_SET_COMPOSITION_FACTOR_SELECT_SRC_COLOR_FACTOR_MATCH_SELECT_K1; asyw->blend.dst_color = NVC37E_SET_COMPOSITION_FACTOR_SELECT_DST_COLOR_FACTOR_MATCH_SELECT_NEG_K1; break; } if (memcmp(&armw->blend, &asyw->blend, sizeof(asyw->blend))) asyw->set.blend = true; } if (wndw->immd) { asyw->point.x = asyw->state.crtc_x; asyw->point.y = asyw->state.crtc_y; if (memcmp(&armw->point, &asyw->point, sizeof(asyw->point))) asyw->set.point = true; } return wndw->func->acquire(wndw, asyw, asyh); } static int nv50_wndw_atomic_check_lut(struct nv50_wndw *wndw, struct nv50_wndw_atom *armw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { struct drm_property_blob *ilut = asyh->state.degamma_lut; /* I8 format without an input LUT makes no sense, and the * HW error-checks for this. * * In order to handle legacy gamma, when there's no input * LUT we need to steal the output LUT and use it instead. */ if (!ilut && asyw->state.fb->format->format == DRM_FORMAT_C8) { /* This should be an error, but there's legacy clients * that do a modeset before providing a gamma table. * * We keep the window disabled to avoid angering HW. */ if (!(ilut = asyh->state.gamma_lut)) { asyw->visible = false; return 0; } if (wndw->func->ilut) asyh->wndw.olut |= BIT(wndw->id); } else { asyh->wndw.olut &= ~BIT(wndw->id); } if (!ilut && wndw->func->ilut_identity && asyw->state.fb->format->format != DRM_FORMAT_XBGR16161616F && asyw->state.fb->format->format != DRM_FORMAT_ABGR16161616F) { static struct drm_property_blob dummy = {}; ilut = &dummy; } /* Recalculate LUT state. */ memset(&asyw->xlut, 0x00, sizeof(asyw->xlut)); if ((asyw->ilut = wndw->func->ilut ? ilut : NULL)) { wndw->func->ilut(wndw, asyw, drm_color_lut_size(ilut)); asyw->xlut.handle = wndw->wndw.vram.handle; asyw->xlut.i.buffer = !asyw->xlut.i.buffer; asyw->set.xlut = true; } else { asyw->clr.xlut = armw->xlut.handle != 0; } /* Handle setting base SET_OUTPUT_LUT_LO_ENABLE_USE_CORE_LUT. */ if (wndw->func->olut_core && (!armw->visible || (armw->xlut.handle && !asyw->xlut.handle))) asyw->set.xlut = true; if (wndw->func->csc && asyh->state.ctm) { const struct drm_color_ctm *ctm = asyh->state.ctm->data; wndw->func->csc(wndw, asyw, ctm); asyw->csc.valid = true; asyw->set.csc = true; } else { asyw->csc.valid = false; asyw->clr.csc = armw->csc.valid; } /* Can't do an immediate flip while changing the LUT. */ asyh->state.async_flip = false; return 0; } static int nv50_wndw_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct nouveau_drm *drm = nouveau_drm(plane->dev); struct nv50_wndw *wndw = nv50_wndw(plane); struct nv50_wndw_atom *armw = nv50_wndw_atom(wndw->plane.state); struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_head_atom *harm = NULL, *asyh = NULL; bool modeset = false; int ret; NV_ATOMIC(drm, "%s atomic_check\n", plane->name); /* Fetch the assembly state for the head the window will belong to, * and determine whether the window will be visible. */ if (asyw->state.crtc) { asyh = nv50_head_atom_get(asyw->state.state, asyw->state.crtc); if (IS_ERR(asyh)) return PTR_ERR(asyh); modeset = drm_atomic_crtc_needs_modeset(&asyh->state); asyw->visible = asyh->state.active; } else { asyw->visible = false; } /* Fetch assembly state for the head the window used to belong to. */ if (armw->state.crtc) { harm = nv50_head_atom_get(asyw->state.state, armw->state.crtc); if (IS_ERR(harm)) return PTR_ERR(harm); } /* LUT configuration can potentially cause the window to be disabled. */ if (asyw->visible && wndw->func->xlut_set && (!armw->visible || asyh->state.color_mgmt_changed || asyw->state.fb->format->format != armw->state.fb->format->format)) { ret = nv50_wndw_atomic_check_lut(wndw, armw, asyw, asyh); if (ret) return ret; } /* Calculate new window state. */ if (asyw->visible) { ret = nv50_wndw_atomic_check_acquire(wndw, modeset, armw, asyw, asyh); if (ret) return ret; asyh->wndw.mask |= BIT(wndw->id); } else if (armw->visible) { nv50_wndw_atomic_check_release(wndw, asyw, harm); harm->wndw.mask &= ~BIT(wndw->id); } else { return 0; } /* Aside from the obvious case where the window is actively being * disabled, we might also need to temporarily disable the window * when performing certain modeset operations. */ if (!asyw->visible || modeset) { asyw->clr.ntfy = armw->ntfy.handle != 0; asyw->clr.sema = armw->sema.handle != 0; asyw->clr.xlut = armw->xlut.handle != 0; if (asyw->clr.xlut && asyw->visible) asyw->set.xlut = asyw->xlut.handle != 0; asyw->clr.csc = armw->csc.valid; if (wndw->func->image_clr) asyw->clr.image = armw->image.handle[0] != 0; } return 0; } static void nv50_wndw_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct nouveau_drm *drm = nouveau_drm(plane->dev); struct nouveau_bo *nvbo; NV_ATOMIC(drm, "%s cleanup: %p\n", plane->name, old_state->fb); if (!old_state->fb) return; nvbo = nouveau_gem_object(old_state->fb->obj[0]); nouveau_bo_unpin(nvbo); } static int nv50_wndw_prepare_fb(struct drm_plane *plane, struct drm_plane_state *state) { struct drm_framebuffer *fb = state->fb; struct nouveau_drm *drm = nouveau_drm(plane->dev); struct nv50_wndw *wndw = nv50_wndw(plane); struct nv50_wndw_atom *asyw = nv50_wndw_atom(state); struct nouveau_bo *nvbo; struct nv50_head_atom *asyh; struct nv50_wndw_ctxdma *ctxdma; int ret; NV_ATOMIC(drm, "%s prepare: %p\n", plane->name, fb); if (!asyw->state.fb) return 0; nvbo = nouveau_gem_object(fb->obj[0]); ret = nouveau_bo_pin(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, true); if (ret) return ret; if (wndw->ctxdma.parent) { ctxdma = nv50_wndw_ctxdma_new(wndw, fb); if (IS_ERR(ctxdma)) { nouveau_bo_unpin(nvbo); return PTR_ERR(ctxdma); } if (asyw->visible) asyw->image.handle[0] = ctxdma->object.handle; } ret = drm_gem_plane_helper_prepare_fb(plane, state); if (ret) return ret; asyw->image.offset[0] = nvbo->offset; if (wndw->func->prepare) { asyh = nv50_head_atom_get(asyw->state.state, asyw->state.crtc); if (IS_ERR(asyh)) return PTR_ERR(asyh); wndw->func->prepare(wndw, asyh, asyw); } return 0; } static const struct drm_plane_helper_funcs nv50_wndw_helper = { .prepare_fb = nv50_wndw_prepare_fb, .cleanup_fb = nv50_wndw_cleanup_fb, .atomic_check = nv50_wndw_atomic_check, }; static void nv50_wndw_atomic_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(state); __drm_atomic_helper_plane_destroy_state(&asyw->state); kfree(asyw); } static struct drm_plane_state * nv50_wndw_atomic_duplicate_state(struct drm_plane *plane) { struct nv50_wndw_atom *armw = nv50_wndw_atom(plane->state); struct nv50_wndw_atom *asyw; if (!(asyw = kmalloc(sizeof(*asyw), GFP_KERNEL))) return NULL; __drm_atomic_helper_plane_duplicate_state(plane, &asyw->state); asyw->sema = armw->sema; asyw->ntfy = armw->ntfy; asyw->ilut = NULL; asyw->xlut = armw->xlut; asyw->csc = armw->csc; asyw->image = armw->image; asyw->point = armw->point; asyw->clr.mask = 0; asyw->set.mask = 0; return &asyw->state; } static int nv50_wndw_zpos_default(struct drm_plane *plane) { return (plane->type == DRM_PLANE_TYPE_PRIMARY) ? 0 : (plane->type == DRM_PLANE_TYPE_OVERLAY) ? 1 : 255; } static void nv50_wndw_reset(struct drm_plane *plane) { struct nv50_wndw_atom *asyw; if (WARN_ON(!(asyw = kzalloc(sizeof(*asyw), GFP_KERNEL)))) return; if (plane->state) plane->funcs->atomic_destroy_state(plane, plane->state); __drm_atomic_helper_plane_reset(plane, &asyw->state); } static void nv50_wndw_destroy(struct drm_plane *plane) { struct nv50_wndw *wndw = nv50_wndw(plane); struct nv50_wndw_ctxdma *ctxdma, *ctxtmp; list_for_each_entry_safe(ctxdma, ctxtmp, &wndw->ctxdma.list, head) { nv50_wndw_ctxdma_del(ctxdma); } nv50_dmac_destroy(&wndw->wimm); nv50_dmac_destroy(&wndw->wndw); nv50_lut_fini(&wndw->ilut); drm_plane_cleanup(&wndw->plane); kfree(wndw); } /* This function assumes the format has already been validated against the plane * and the modifier was validated against the device-wides modifier list at FB * creation time. */ static bool nv50_plane_format_mod_supported(struct drm_plane *plane, u32 format, u64 modifier) { struct nouveau_drm *drm = nouveau_drm(plane->dev); uint8_t i; if (drm->client.device.info.chipset < 0xc0) { const struct drm_format_info *info = drm_format_info(format); const uint8_t kind = (modifier >> 12) & 0xff; if (!format) return false; for (i = 0; i < info->num_planes; i++) if ((info->cpp[i] != 4) && kind != 0x70) return false; } return true; } const struct drm_plane_funcs nv50_wndw = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = nv50_wndw_destroy, .reset = nv50_wndw_reset, .atomic_duplicate_state = nv50_wndw_atomic_duplicate_state, .atomic_destroy_state = nv50_wndw_atomic_destroy_state, .format_mod_supported = nv50_plane_format_mod_supported, }; static const u64 nv50_cursor_format_modifiers[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID, }; int nv50_wndw_new_(const struct nv50_wndw_func *func, struct drm_device *dev, enum drm_plane_type type, const char *name, int index, const u32 *format, u32 heads, enum nv50_disp_interlock_type interlock_type, u32 interlock_data, struct nv50_wndw **pwndw) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_mmu *mmu = &drm->client.mmu; struct nv50_disp *disp = nv50_disp(dev); struct nv50_wndw *wndw; const u64 *format_modifiers; int nformat; int ret; if (!(wndw = *pwndw = kzalloc(sizeof(*wndw), GFP_KERNEL))) return -ENOMEM; wndw->func = func; wndw->id = index; wndw->interlock.type = interlock_type; wndw->interlock.data = interlock_data; wndw->ctxdma.parent = &wndw->wndw.base.user; INIT_LIST_HEAD(&wndw->ctxdma.list); for (nformat = 0; format[nformat]; nformat++); if (type == DRM_PLANE_TYPE_CURSOR) format_modifiers = nv50_cursor_format_modifiers; else format_modifiers = nouveau_display(dev)->format_modifiers; ret = drm_universal_plane_init(dev, &wndw->plane, heads, &nv50_wndw, format, nformat, format_modifiers, type, "%s-%d", name, index); if (ret) { kfree(*pwndw); *pwndw = NULL; return ret; } drm_plane_helper_add(&wndw->plane, &nv50_wndw_helper); if (wndw->func->ilut) { ret = nv50_lut_init(disp, mmu, &wndw->ilut); if (ret) return ret; } if (wndw->func->blend_set) { ret = drm_plane_create_zpos_property(&wndw->plane, nv50_wndw_zpos_default(&wndw->plane), 0, 254); if (ret) return ret; ret = drm_plane_create_alpha_property(&wndw->plane); if (ret) return ret; ret = drm_plane_create_blend_mode_property(&wndw->plane, BIT(DRM_MODE_BLEND_PIXEL_NONE) | BIT(DRM_MODE_BLEND_PREMULTI) | BIT(DRM_MODE_BLEND_COVERAGE)); if (ret) return ret; } else { ret = drm_plane_create_zpos_immutable_property(&wndw->plane, nv50_wndw_zpos_default(&wndw->plane)); if (ret) return ret; } return 0; } int nv50_wndw_new(struct nouveau_drm *drm, enum drm_plane_type type, int index, struct nv50_wndw **pwndw) { struct { s32 oclass; int version; int (*new)(struct nouveau_drm *, enum drm_plane_type, int, s32, struct nv50_wndw **); } wndws[] = { { GA102_DISP_WINDOW_CHANNEL_DMA, 0, wndwc67e_new }, { TU102_DISP_WINDOW_CHANNEL_DMA, 0, wndwc57e_new }, { GV100_DISP_WINDOW_CHANNEL_DMA, 0, wndwc37e_new }, {} }; struct nv50_disp *disp = nv50_disp(drm->dev); int cid, ret; cid = nvif_mclass(&disp->disp->object, wndws); if (cid < 0) { NV_ERROR(drm, "No supported window class\n"); return cid; } ret = wndws[cid].new(drm, type, index, wndws[cid].oclass, pwndw); if (ret) return ret; return nv50_wimm_init(drm, *pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/wndw.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "curs.h" #include "atom.h" #include <nvhw/class/clc37a.h> static int cursc37a_update(struct nv50_wndw *wndw, u32 *interlock) { struct nvif_object *user = &wndw->wimm.base.user; int ret = nvif_chan_wait(&wndw->wimm, 1); if (ret == 0) NVIF_WR32(user, NVC37A, UPDATE, 0x00000001); return ret; } static int cursc37a_point(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_object *user = &wndw->wimm.base.user; int ret = nvif_chan_wait(&wndw->wimm, 1); if (ret == 0) { NVIF_WR32(user, NVC37A, SET_CURSOR_HOT_SPOT_POINT_OUT(0), NVVAL(NVC37A, SET_CURSOR_HOT_SPOT_POINT_OUT, X, asyw->point.x) | NVVAL(NVC37A, SET_CURSOR_HOT_SPOT_POINT_OUT, Y, asyw->point.y)); } return ret; } static const struct nv50_wimm_func cursc37a = { .point = cursc37a_point, .update = cursc37a_update, }; int cursc37a_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return curs507a_new_(&cursc37a, drm, head, oclass, 0x00000001 << head, pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/cursc37a.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "head.h" #include "atom.h" #include "core.h" #include <nvif/pushc37b.h> #include <nvhw/class/clc37d.h> static int headc37d_or(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u8 depth; int ret; /*XXX: This is a dirty hack until OR depth handling is * improved later for deep colour etc. */ switch (asyh->or.depth) { case 6: depth = 5; break; case 5: depth = 4; break; case 2: depth = 1; break; case 0: depth = 4; break; default: depth = asyh->or.depth; WARN_ON(1); break; } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_CONTROL_OUTPUT_RESOURCE(i), NVVAL(NVC37D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, CRC_MODE, asyh->or.crc_raster) | NVVAL(NVC37D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, HSYNC_POLARITY, asyh->or.nhsync) | NVVAL(NVC37D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, VSYNC_POLARITY, asyh->or.nvsync) | NVVAL(NVC37D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, PIXEL_DEPTH, depth) | NVDEF(NVC37D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, COLOR_SPACE_OVERRIDE, DISABLE)); return 0; } static int headc37d_procamp(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_PROCAMP(i), NVDEF(NVC37D, HEAD_SET_PROCAMP, COLOR_SPACE, RGB) | NVDEF(NVC37D, HEAD_SET_PROCAMP, CHROMA_LPF, DISABLE) | NVVAL(NVC37D, HEAD_SET_PROCAMP, SAT_COS, asyh->procamp.sat.cos) | NVVAL(NVC37D, HEAD_SET_PROCAMP, SAT_SINE, asyh->procamp.sat.sin) | NVDEF(NVC37D, HEAD_SET_PROCAMP, DYNAMIC_RANGE, VESA) | NVDEF(NVC37D, HEAD_SET_PROCAMP, RANGE_COMPRESSION, DISABLE) | NVDEF(NVC37D, HEAD_SET_PROCAMP, BLACK_LEVEL, GRAPHICS)); return 0; } int headc37d_dither(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_DITHER_CONTROL(i), NVVAL(NVC37D, HEAD_SET_DITHER_CONTROL, ENABLE, asyh->dither.enable) | NVVAL(NVC37D, HEAD_SET_DITHER_CONTROL, BITS, asyh->dither.bits) | NVDEF(NVC37D, HEAD_SET_DITHER_CONTROL, OFFSET_ENABLE, DISABLE) | NVVAL(NVC37D, HEAD_SET_DITHER_CONTROL, MODE, asyh->dither.mode) | NVVAL(NVC37D, HEAD_SET_DITHER_CONTROL, PHASE, 0)); return 0; } int headc37d_curs_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NVC37D, HEAD_SET_CONTROL_CURSOR, ENABLE, DISABLE) | NVDEF(NVC37D, HEAD_SET_CONTROL_CURSOR, FORMAT, A8R8G8B8)); PUSH_MTHD(push, NVC37D, HEAD_SET_CONTEXT_DMA_CURSOR(i, 0), 0x00000000); return 0; } int headc37d_curs_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 7))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NVC37D, HEAD_SET_CONTROL_CURSOR, ENABLE, ENABLE) | NVVAL(NVC37D, HEAD_SET_CONTROL_CURSOR, FORMAT, asyh->curs.format) | NVVAL(NVC37D, HEAD_SET_CONTROL_CURSOR, SIZE, asyh->curs.layout) | NVVAL(NVC37D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_X, 0) | NVVAL(NVC37D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_Y, 0) | NVDEF(NVC37D, HEAD_SET_CONTROL_CURSOR, DE_GAMMA, NONE), HEAD_SET_CONTROL_CURSOR_COMPOSITION(i), NVVAL(NVC37D, HEAD_SET_CONTROL_CURSOR_COMPOSITION, K1, 0xff) | NVDEF(NVC37D, HEAD_SET_CONTROL_CURSOR_COMPOSITION, CURSOR_COLOR_FACTOR_SELECT, K1) | NVDEF(NVC37D, HEAD_SET_CONTROL_CURSOR_COMPOSITION, VIEWPORT_COLOR_FACTOR_SELECT, NEG_K1_TIMES_SRC) | NVDEF(NVC37D, HEAD_SET_CONTROL_CURSOR_COMPOSITION, MODE, BLEND)); PUSH_MTHD(push, NVC37D, HEAD_SET_CONTEXT_DMA_CURSOR(i, 0), asyh->curs.handle); PUSH_MTHD(push, NVC37D, HEAD_SET_OFFSET_CURSOR(i, 0), asyh->curs.offset >> 8); return 0; } int headc37d_curs_format(struct nv50_head *head, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { asyh->curs.format = asyw->image.format; return 0; } static int headc37d_olut_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_CONTEXT_DMA_OUTPUT_LUT(i), 0x00000000); return 0; } static int headc37d_olut_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_CONTROL_OUTPUT_LUT(i), NVVAL(NVC37D, HEAD_SET_CONTROL_OUTPUT_LUT, SIZE, asyh->olut.size) | NVVAL(NVC37D, HEAD_SET_CONTROL_OUTPUT_LUT, RANGE, asyh->olut.range) | NVVAL(NVC37D, HEAD_SET_CONTROL_OUTPUT_LUT, OUTPUT_MODE, asyh->olut.output_mode), HEAD_SET_OFFSET_OUTPUT_LUT(i), asyh->olut.offset >> 8, HEAD_SET_CONTEXT_DMA_OUTPUT_LUT(i), asyh->olut.handle); return 0; } static bool headc37d_olut(struct nv50_head *head, struct nv50_head_atom *asyh, int size) { if (size != 256 && size != 1024) return false; asyh->olut.size = size == 1024 ? NVC37D_HEAD_SET_CONTROL_OUTPUT_LUT_SIZE_SIZE_1025 : NVC37D_HEAD_SET_CONTROL_OUTPUT_LUT_SIZE_SIZE_257; asyh->olut.range = NVC37D_HEAD_SET_CONTROL_OUTPUT_LUT_RANGE_UNITY; asyh->olut.output_mode = NVC37D_HEAD_SET_CONTROL_OUTPUT_LUT_OUTPUT_MODE_INTERPOLATE; asyh->olut.load = head907d_olut_load; return true; } static int headc37d_mode(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; struct nv50_head_mode *m = &asyh->mode; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 15))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_RASTER_SIZE(i), NVVAL(NVC37D, HEAD_SET_RASTER_SIZE, WIDTH, m->h.active) | NVVAL(NVC37D, HEAD_SET_RASTER_SIZE, HEIGHT, m->v.active), HEAD_SET_RASTER_SYNC_END(i), NVVAL(NVC37D, HEAD_SET_RASTER_SYNC_END, X, m->h.synce) | NVVAL(NVC37D, HEAD_SET_RASTER_SYNC_END, Y, m->v.synce), HEAD_SET_RASTER_BLANK_END(i), NVVAL(NVC37D, HEAD_SET_RASTER_BLANK_END, X, m->h.blanke) | NVVAL(NVC37D, HEAD_SET_RASTER_BLANK_END, Y, m->v.blanke), HEAD_SET_RASTER_BLANK_START(i), NVVAL(NVC37D, HEAD_SET_RASTER_BLANK_START, X, m->h.blanks) | NVVAL(NVC37D, HEAD_SET_RASTER_BLANK_START, Y, m->v.blanks)); //XXX: PUSH_NVSQ(push, NVC37D, 0x2074 + (i * 0x400), m->v.blank2e << 16 | m->v.blank2s); PUSH_NVSQ(push, NVC37D, 0x2008 + (i * 0x400), m->interlace); PUSH_MTHD(push, NVC37D, HEAD_SET_PIXEL_CLOCK_FREQUENCY(i), NVVAL(NVC37D, HEAD_SET_PIXEL_CLOCK_FREQUENCY, HERTZ, m->clock * 1000)); PUSH_MTHD(push, NVC37D, HEAD_SET_PIXEL_CLOCK_FREQUENCY_MAX(i), NVVAL(NVC37D, HEAD_SET_PIXEL_CLOCK_FREQUENCY_MAX, HERTZ, m->clock * 1000)); /*XXX: HEAD_USAGE_BOUNDS, doesn't belong here. */ PUSH_MTHD(push, NVC37D, HEAD_SET_HEAD_USAGE_BOUNDS(i), NVDEF(NVC37D, HEAD_SET_HEAD_USAGE_BOUNDS, CURSOR, USAGE_W256_H256) | NVDEF(NVC37D, HEAD_SET_HEAD_USAGE_BOUNDS, OUTPUT_LUT, USAGE_1025) | NVDEF(NVC37D, HEAD_SET_HEAD_USAGE_BOUNDS, UPSCALING_ALLOWED, TRUE)); return 0; } int headc37d_view(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_VIEWPORT_SIZE_IN(i), NVVAL(NVC37D, HEAD_SET_VIEWPORT_SIZE_IN, WIDTH, asyh->view.iW) | NVVAL(NVC37D, HEAD_SET_VIEWPORT_SIZE_IN, HEIGHT, asyh->view.iH)); PUSH_MTHD(push, NVC37D, HEAD_SET_VIEWPORT_SIZE_OUT(i), NVVAL(NVC37D, HEAD_SET_VIEWPORT_SIZE_OUT, WIDTH, asyh->view.oW) | NVVAL(NVC37D, HEAD_SET_VIEWPORT_SIZE_OUT, HEIGHT, asyh->view.oH)); return 0; } void headc37d_static_wndw_map(struct nv50_head *head, struct nv50_head_atom *asyh) { int i, end; for (i = head->base.index * 2, end = i + 2; i < end; i++) asyh->wndw.owned |= BIT(i); } const struct nv50_head_func headc37d = { .view = headc37d_view, .mode = headc37d_mode, .olut = headc37d_olut, .ilut_check = head907d_ilut_check, .olut_size = 1024, .olut_set = headc37d_olut_set, .olut_clr = headc37d_olut_clr, .curs_layout = head917d_curs_layout, .curs_format = headc37d_curs_format, .curs_set = headc37d_curs_set, .curs_clr = headc37d_curs_clr, .dither = headc37d_dither, .procamp = headc37d_procamp, .or = headc37d_or, .static_wndw_map = headc37d_static_wndw_map, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/headc37d.c
// SPDX-License-Identifier: MIT #include <linux/string.h> #include <drm/drm_crtc.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_vblank.h> #include <drm/drm_vblank_work.h> #include <nvif/class.h> #include <nvif/cl0002.h> #include <nvif/timer.h> #include <nvhw/class/cl907d.h> #include "nouveau_drv.h" #include "core.h" #include "head.h" #include "wndw.h" #include "handles.h" #include "crc.h" static const char * const nv50_crc_sources[] = { [NV50_CRC_SOURCE_NONE] = "none", [NV50_CRC_SOURCE_AUTO] = "auto", [NV50_CRC_SOURCE_RG] = "rg", [NV50_CRC_SOURCE_OUTP_ACTIVE] = "outp-active", [NV50_CRC_SOURCE_OUTP_COMPLETE] = "outp-complete", [NV50_CRC_SOURCE_OUTP_INACTIVE] = "outp-inactive", }; static int nv50_crc_parse_source(const char *buf, enum nv50_crc_source *s) { int i; if (!buf) { *s = NV50_CRC_SOURCE_NONE; return 0; } i = match_string(nv50_crc_sources, ARRAY_SIZE(nv50_crc_sources), buf); if (i < 0) return i; *s = i; return 0; } int nv50_crc_verify_source(struct drm_crtc *crtc, const char *source_name, size_t *values_cnt) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); enum nv50_crc_source source; if (nv50_crc_parse_source(source_name, &source) < 0) { NV_DEBUG(drm, "unknown source %s\n", source_name); return -EINVAL; } *values_cnt = 1; return 0; } const char *const *nv50_crc_get_sources(struct drm_crtc *crtc, size_t *count) { *count = ARRAY_SIZE(nv50_crc_sources); return nv50_crc_sources; } static void nv50_crc_program_ctx(struct nv50_head *head, struct nv50_crc_notifier_ctx *ctx) { struct nv50_disp *disp = nv50_disp(head->base.base.dev); struct nv50_core *core = disp->core; u32 interlock[NV50_DISP_INTERLOCK__SIZE] = { 0 }; core->func->crc->set_ctx(head, ctx); core->func->update(core, interlock, false); } static void nv50_crc_ctx_flip_work(struct kthread_work *base) { struct drm_vblank_work *work = to_drm_vblank_work(base); struct nv50_crc *crc = container_of(work, struct nv50_crc, flip_work); struct nv50_head *head = container_of(crc, struct nv50_head, crc); struct drm_crtc *crtc = &head->base.base; struct drm_device *dev = crtc->dev; struct nv50_disp *disp = nv50_disp(dev); const uint64_t start_vbl = drm_crtc_vblank_count(crtc); uint64_t end_vbl; u8 new_idx = crc->ctx_idx ^ 1; /* * We don't want to accidentally wait for longer then the vblank, so * try again for the next vblank if we don't grab the lock */ if (!mutex_trylock(&disp->mutex)) { drm_dbg_kms(dev, "Lock contended, delaying CRC ctx flip for %s\n", crtc->name); drm_vblank_work_schedule(work, start_vbl + 1, true); return; } drm_dbg_kms(dev, "Flipping notifier ctx for %s (%d -> %d)\n", crtc->name, crc->ctx_idx, new_idx); nv50_crc_program_ctx(head, NULL); nv50_crc_program_ctx(head, &crc->ctx[new_idx]); mutex_unlock(&disp->mutex); end_vbl = drm_crtc_vblank_count(crtc); if (unlikely(end_vbl != start_vbl)) NV_ERROR(nouveau_drm(dev), "Failed to flip CRC context on %s on time (%llu > %llu)\n", crtc->name, end_vbl, start_vbl); spin_lock_irq(&crc->lock); crc->ctx_changed = true; spin_unlock_irq(&crc->lock); } static inline void nv50_crc_reset_ctx(struct nv50_crc_notifier_ctx *ctx) { memset_io(ctx->mem.object.map.ptr, 0, ctx->mem.object.map.size); } static void nv50_crc_get_entries(struct nv50_head *head, const struct nv50_crc_func *func, enum nv50_crc_source source) { struct drm_crtc *crtc = &head->base.base; struct nv50_crc *crc = &head->crc; u32 output_crc; while (crc->entry_idx < func->num_entries) { /* * While Nvidia's documentation says CRCs are written on each * subsequent vblank after being enabled, in practice they * aren't written immediately. */ output_crc = func->get_entry(head, &crc->ctx[crc->ctx_idx], source, crc->entry_idx); if (!output_crc) return; drm_crtc_add_crc_entry(crtc, true, crc->frame, &output_crc); crc->frame++; crc->entry_idx++; } } void nv50_crc_handle_vblank(struct nv50_head *head) { struct drm_crtc *crtc = &head->base.base; struct nv50_crc *crc = &head->crc; const struct nv50_crc_func *func = nv50_disp(head->base.base.dev)->core->func->crc; struct nv50_crc_notifier_ctx *ctx; bool need_reschedule = false; if (!func) return; /* * We don't lose events if we aren't able to report CRCs until the * next vblank, so only report CRCs if the locks we need aren't * contended to prevent missing an actual vblank event */ if (!spin_trylock(&crc->lock)) return; if (!crc->src) goto out; ctx = &crc->ctx[crc->ctx_idx]; if (crc->ctx_changed && func->ctx_finished(head, ctx)) { nv50_crc_get_entries(head, func, crc->src); crc->ctx_idx ^= 1; crc->entry_idx = 0; crc->ctx_changed = false; /* * Unfortunately when notifier contexts are changed during CRC * capture, we will inevitably lose the CRC entry for the * frame where the hardware actually latched onto the first * UPDATE. According to Nvidia's hardware engineers, there's * no workaround for this. * * Now, we could try to be smart here and calculate the number * of missed CRCs based on audit timestamps, but those were * removed starting with volta. Since we always flush our * updates back-to-back without waiting, we'll just be * optimistic and assume we always miss exactly one frame. */ drm_dbg_kms(head->base.base.dev, "Notifier ctx flip for head-%d finished, lost CRC for frame %llu\n", head->base.index, crc->frame); crc->frame++; nv50_crc_reset_ctx(ctx); need_reschedule = true; } nv50_crc_get_entries(head, func, crc->src); if (need_reschedule) drm_vblank_work_schedule(&crc->flip_work, drm_crtc_vblank_count(crtc) + crc->flip_threshold - crc->entry_idx, true); out: spin_unlock(&crc->lock); } static void nv50_crc_wait_ctx_finished(struct nv50_head *head, const struct nv50_crc_func *func, struct nv50_crc_notifier_ctx *ctx) { struct drm_device *dev = head->base.base.dev; struct nouveau_drm *drm = nouveau_drm(dev); s64 ret; ret = nvif_msec(&drm->client.device, 50, if (func->ctx_finished(head, ctx)) break;); if (ret == -ETIMEDOUT) NV_ERROR(drm, "CRC notifier ctx for head %d not finished after 50ms\n", head->base.index); else if (ret) NV_ATOMIC(drm, "CRC notifier ctx for head-%d finished after %lldns\n", head->base.index, ret); } void nv50_crc_atomic_stop_reporting(struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); struct nv50_crc *crc = &head->crc; if (!asyh->clr.crc) continue; spin_lock_irq(&crc->lock); crc->src = NV50_CRC_SOURCE_NONE; spin_unlock_irq(&crc->lock); drm_crtc_vblank_put(crtc); drm_vblank_work_cancel_sync(&crc->flip_work); NV_ATOMIC(nouveau_drm(crtc->dev), "CRC reporting on vblank for head-%d disabled\n", head->base.index); /* CRC generation is still enabled in hw, we'll just report * any remaining CRC entries ourselves after it gets disabled * in hardware */ } } void nv50_crc_atomic_init_notifier_contexts(struct drm_atomic_state *state) { struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_crc *crc = &head->crc; int i; if (!asyh->set.crc) continue; crc->entry_idx = 0; crc->ctx_changed = false; for (i = 0; i < ARRAY_SIZE(crc->ctx); i++) nv50_crc_reset_ctx(&crc->ctx[i]); } } void nv50_crc_atomic_release_notifier_contexts(struct drm_atomic_state *state) { const struct nv50_crc_func *func = nv50_disp(state->dev)->core->func->crc; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_crc *crc = &head->crc; struct nv50_crc_notifier_ctx *ctx = &crc->ctx[crc->ctx_idx]; if (!asyh->clr.crc) continue; if (crc->ctx_changed) { nv50_crc_wait_ctx_finished(head, func, ctx); ctx = &crc->ctx[crc->ctx_idx ^ 1]; } nv50_crc_wait_ctx_finished(head, func, ctx); } } void nv50_crc_atomic_start_reporting(struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); struct nv50_crc *crc = &head->crc; u64 vbl_count; if (!asyh->set.crc) continue; drm_crtc_vblank_get(crtc); spin_lock_irq(&crc->lock); vbl_count = drm_crtc_vblank_count(crtc); crc->frame = vbl_count; crc->src = asyh->crc.src; drm_vblank_work_schedule(&crc->flip_work, vbl_count + crc->flip_threshold, true); spin_unlock_irq(&crc->lock); NV_ATOMIC(nouveau_drm(crtc->dev), "CRC reporting on vblank for head-%d enabled\n", head->base.index); } } int nv50_crc_atomic_check_head(struct nv50_head *head, struct nv50_head_atom *asyh, struct nv50_head_atom *armh) { struct nv50_atom *atom = nv50_atom(asyh->state.state); bool changed = armh->crc.src != asyh->crc.src; if (!armh->crc.src && !asyh->crc.src) { asyh->set.crc = false; asyh->clr.crc = false; return 0; } if (drm_atomic_crtc_needs_modeset(&asyh->state) || changed) { asyh->clr.crc = armh->crc.src && armh->state.active; asyh->set.crc = asyh->crc.src && asyh->state.active; if (changed) asyh->set.or |= armh->or.crc_raster != asyh->or.crc_raster; if (asyh->clr.crc && asyh->set.crc) atom->flush_disable = true; } else { asyh->set.crc = false; asyh->clr.crc = false; } return 0; } void nv50_crc_atomic_check_outp(struct nv50_atom *atom) { struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; int i; if (atom->flush_disable) return; for_each_oldnew_crtc_in_state(&atom->state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state); struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_outp_atom *outp_atom; struct nouveau_encoder *outp; struct drm_encoder *encoder, *enc; enc = nv50_head_atom_get_encoder(armh); if (!enc) continue; outp = nv50_real_outp(enc); if (!outp) continue; encoder = &outp->base.base; if (!asyh->clr.crc) continue; /* * Re-programming ORs can't be done in the same flush as * disabling CRCs */ list_for_each_entry(outp_atom, &atom->outp, head) { if (outp_atom->encoder == encoder) { if (outp_atom->set.mask) { atom->flush_disable = true; return; } else { break; } } } } } static enum nv50_crc_source_type nv50_crc_source_type(struct nouveau_encoder *outp, enum nv50_crc_source source) { struct dcb_output *dcbe = outp->dcb; switch (source) { case NV50_CRC_SOURCE_NONE: return NV50_CRC_SOURCE_TYPE_NONE; case NV50_CRC_SOURCE_RG: return NV50_CRC_SOURCE_TYPE_RG; default: break; } if (dcbe->location != DCB_LOC_ON_CHIP) return NV50_CRC_SOURCE_TYPE_PIOR; switch (dcbe->type) { case DCB_OUTPUT_DP: return NV50_CRC_SOURCE_TYPE_SF; case DCB_OUTPUT_ANALOG: return NV50_CRC_SOURCE_TYPE_DAC; default: return NV50_CRC_SOURCE_TYPE_SOR; } } void nv50_crc_atomic_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct drm_crtc *crtc = &head->base.base; struct drm_device *dev = crtc->dev; struct nv50_crc *crc = &head->crc; const struct nv50_crc_func *func = nv50_disp(dev)->core->func->crc; struct nouveau_encoder *outp; struct drm_encoder *encoder; encoder = nv50_head_atom_get_encoder(asyh); if (!encoder) return; outp = nv50_real_outp(encoder); if (!outp) return; func->set_src(head, outp->outp.or.id, nv50_crc_source_type(outp, asyh->crc.src), &crc->ctx[crc->ctx_idx]); } void nv50_crc_atomic_clr(struct nv50_head *head) { const struct nv50_crc_func *func = nv50_disp(head->base.base.dev)->core->func->crc; func->set_src(head, 0, NV50_CRC_SOURCE_TYPE_NONE, NULL); } static inline int nv50_crc_raster_type(enum nv50_crc_source source) { switch (source) { case NV50_CRC_SOURCE_NONE: case NV50_CRC_SOURCE_AUTO: case NV50_CRC_SOURCE_RG: case NV50_CRC_SOURCE_OUTP_ACTIVE: return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_ACTIVE_RASTER; case NV50_CRC_SOURCE_OUTP_COMPLETE: return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_COMPLETE_RASTER; case NV50_CRC_SOURCE_OUTP_INACTIVE: return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_NON_ACTIVE_RASTER; } return 0; } /* We handle mapping the memory for CRC notifiers ourselves, since each * notifier needs it's own handle */ static inline int nv50_crc_ctx_init(struct nv50_head *head, struct nvif_mmu *mmu, struct nv50_crc_notifier_ctx *ctx, size_t len, int idx) { struct nv50_core *core = nv50_disp(head->base.base.dev)->core; int ret; ret = nvif_mem_ctor_map(mmu, "kmsCrcNtfy", NVIF_MEM_VRAM, len, &ctx->mem); if (ret) return ret; ret = nvif_object_ctor(&core->chan.base.user, "kmsCrcNtfyCtxDma", NV50_DISP_HANDLE_CRC_CTX(head, idx), NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = ctx->mem.addr, .limit = ctx->mem.addr + ctx->mem.size - 1, }, sizeof(struct nv_dma_v0), &ctx->ntfy); if (ret) goto fail_fini; return 0; fail_fini: nvif_mem_dtor(&ctx->mem); return ret; } static inline void nv50_crc_ctx_fini(struct nv50_crc_notifier_ctx *ctx) { nvif_object_dtor(&ctx->ntfy); nvif_mem_dtor(&ctx->mem); } int nv50_crc_set_source(struct drm_crtc *crtc, const char *source_str) { struct drm_device *dev = crtc->dev; struct drm_atomic_state *state; struct drm_modeset_acquire_ctx ctx; struct nv50_head *head = nv50_head(crtc); struct nv50_crc *crc = &head->crc; const struct nv50_crc_func *func = nv50_disp(dev)->core->func->crc; struct nvif_mmu *mmu = &nouveau_drm(dev)->client.mmu; struct nv50_head_atom *asyh; struct drm_crtc_state *crtc_state; enum nv50_crc_source source; int ret = 0, ctx_flags = 0, i; ret = nv50_crc_parse_source(source_str, &source); if (ret) return ret; /* * Since we don't want the user to accidentally interrupt us as we're * disabling CRCs */ if (source) ctx_flags |= DRM_MODESET_ACQUIRE_INTERRUPTIBLE; drm_modeset_acquire_init(&ctx, ctx_flags); state = drm_atomic_state_alloc(dev); if (!state) { ret = -ENOMEM; goto out_acquire_fini; } state->acquire_ctx = &ctx; if (source) { for (i = 0; i < ARRAY_SIZE(head->crc.ctx); i++) { ret = nv50_crc_ctx_init(head, mmu, &crc->ctx[i], func->notifier_len, i); if (ret) goto out_ctx_fini; } } retry: crtc_state = drm_atomic_get_crtc_state(state, &head->base.base); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); if (ret == -EDEADLK) goto deadlock; else if (ret) goto out_drop_locks; } asyh = nv50_head_atom(crtc_state); asyh->crc.src = source; asyh->or.crc_raster = nv50_crc_raster_type(source); ret = drm_atomic_commit(state); if (ret == -EDEADLK) goto deadlock; else if (ret) goto out_drop_locks; if (!source) { /* * If the user specified a custom flip threshold through * debugfs, reset it */ crc->flip_threshold = func->flip_threshold; } out_drop_locks: drm_modeset_drop_locks(&ctx); out_ctx_fini: if (!source || ret) { for (i = 0; i < ARRAY_SIZE(crc->ctx); i++) nv50_crc_ctx_fini(&crc->ctx[i]); } drm_atomic_state_put(state); out_acquire_fini: drm_modeset_acquire_fini(&ctx); return ret; deadlock: drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } static int nv50_crc_debugfs_flip_threshold_get(struct seq_file *m, void *data) { struct nv50_head *head = m->private; struct drm_crtc *crtc = &head->base.base; struct nv50_crc *crc = &head->crc; int ret; ret = drm_modeset_lock_single_interruptible(&crtc->mutex); if (ret) return ret; seq_printf(m, "%d\n", crc->flip_threshold); drm_modeset_unlock(&crtc->mutex); return ret; } static int nv50_crc_debugfs_flip_threshold_open(struct inode *inode, struct file *file) { return single_open(file, nv50_crc_debugfs_flip_threshold_get, inode->i_private); } static ssize_t nv50_crc_debugfs_flip_threshold_set(struct file *file, const char __user *ubuf, size_t len, loff_t *offp) { struct seq_file *m = file->private_data; struct nv50_head *head = m->private; struct nv50_head_atom *armh; struct drm_crtc *crtc = &head->base.base; struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct nv50_crc *crc = &head->crc; const struct nv50_crc_func *func = nv50_disp(crtc->dev)->core->func->crc; int value, ret; ret = kstrtoint_from_user(ubuf, len, 10, &value); if (ret) return ret; if (value > func->flip_threshold) return -EINVAL; else if (value == -1) value = func->flip_threshold; else if (value < -1) return -EINVAL; ret = drm_modeset_lock_single_interruptible(&crtc->mutex); if (ret) return ret; armh = nv50_head_atom(crtc->state); if (armh->crc.src) { ret = -EBUSY; goto out; } NV_DEBUG(drm, "Changing CRC flip threshold for next capture on head-%d to %d\n", head->base.index, value); crc->flip_threshold = value; ret = len; out: drm_modeset_unlock(&crtc->mutex); return ret; } static const struct file_operations nv50_crc_flip_threshold_fops = { .owner = THIS_MODULE, .open = nv50_crc_debugfs_flip_threshold_open, .read = seq_read, .write = nv50_crc_debugfs_flip_threshold_set, .release = single_release, }; int nv50_head_crc_late_register(struct nv50_head *head) { struct drm_crtc *crtc = &head->base.base; const struct nv50_crc_func *func = nv50_disp(crtc->dev)->core->func->crc; struct dentry *root; if (!func || !crtc->debugfs_entry) return 0; root = debugfs_create_dir("nv_crc", crtc->debugfs_entry); debugfs_create_file("flip_threshold", 0644, root, head, &nv50_crc_flip_threshold_fops); return 0; } static inline void nv50_crc_init_head(struct nv50_disp *disp, const struct nv50_crc_func *func, struct nv50_head *head) { struct nv50_crc *crc = &head->crc; crc->flip_threshold = func->flip_threshold; spin_lock_init(&crc->lock); drm_vblank_work_init(&crc->flip_work, &head->base.base, nv50_crc_ctx_flip_work); } void nv50_crc_init(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); struct drm_crtc *crtc; const struct nv50_crc_func *func = disp->core->func->crc; if (!func) return; drm_for_each_crtc(crtc, dev) nv50_crc_init_head(disp, func, nv50_head(crtc)); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/crc.c
// SPDX-License-Identifier: MIT #include "crc.h" #include "crcc37d.h" #include "core.h" #include "disp.h" #include "head.h" #include <nvif/pushc37b.h> #include <nvhw/class/clc57d.h> static int crcc57d_set_src(struct nv50_head *head, int or, enum nv50_crc_source_type source, struct nv50_crc_notifier_ctx *ctx) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u32 crc_args = NVDEF(NVC57D, HEAD_SET_CRC_CONTROL, CONTROLLING_CHANNEL, CORE) | NVDEF(NVC57D, HEAD_SET_CRC_CONTROL, EXPECT_BUFFER_COLLAPSE, FALSE) | NVDEF(NVC57D, HEAD_SET_CRC_CONTROL, SECONDARY_CRC, NONE) | NVDEF(NVC57D, HEAD_SET_CRC_CONTROL, CRC_DURING_SNOOZE, DISABLE); int ret; switch (source) { case NV50_CRC_SOURCE_TYPE_SOR: crc_args |= NVDEF(NVC57D, HEAD_SET_CRC_CONTROL, PRIMARY_CRC, SOR(or)); break; case NV50_CRC_SOURCE_TYPE_SF: crc_args |= NVDEF(NVC57D, HEAD_SET_CRC_CONTROL, PRIMARY_CRC, SF); break; default: break; } ret = PUSH_WAIT(push, 4); if (ret) return ret; if (source) { PUSH_MTHD(push, NVC57D, HEAD_SET_CONTEXT_DMA_CRC(i), ctx->ntfy.handle); PUSH_MTHD(push, NVC57D, HEAD_SET_CRC_CONTROL(i), crc_args); } else { PUSH_MTHD(push, NVC57D, HEAD_SET_CRC_CONTROL(i), 0); PUSH_MTHD(push, NVC57D, HEAD_SET_CONTEXT_DMA_CRC(i), 0); } return 0; } const struct nv50_crc_func crcc57d = { .set_src = crcc57d_set_src, .set_ctx = crcc37d_set_ctx, .get_entry = crcc37d_get_entry, .ctx_finished = crcc37d_ctx_finished, .flip_threshold = CRCC37D_FLIP_THRESHOLD, .num_entries = CRCC37D_MAX_ENTRIES, .notifier_len = sizeof(struct crcc37d_notifier), };
linux-master
drivers/gpu/drm/nouveau/dispnv50/crcc57d.c
// SPDX-License-Identifier: MIT #include <drm/drm_crtc.h> #include "crc.h" #include "core.h" #include "disp.h" #include "head.h" #include <nvif/push507c.h> #include <nvhw/class/cl907d.h> #define CRC907D_MAX_ENTRIES 255 struct crc907d_notifier { u32 status; u32 :32; /* reserved */ struct crc907d_entry { u32 status; u32 compositor_crc; u32 output_crc[2]; } entries[CRC907D_MAX_ENTRIES]; } __packed; static int crc907d_set_src(struct nv50_head *head, int or, enum nv50_crc_source_type source, struct nv50_crc_notifier_ctx *ctx) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u32 crc_args = NVDEF(NV907D, HEAD_SET_CRC_CONTROL, CONTROLLING_CHANNEL, CORE) | NVDEF(NV907D, HEAD_SET_CRC_CONTROL, EXPECT_BUFFER_COLLAPSE, FALSE) | NVDEF(NV907D, HEAD_SET_CRC_CONTROL, TIMESTAMP_MODE, FALSE) | NVDEF(NV907D, HEAD_SET_CRC_CONTROL, SECONDARY_OUTPUT, NONE) | NVDEF(NV907D, HEAD_SET_CRC_CONTROL, CRC_DURING_SNOOZE, DISABLE) | NVDEF(NV907D, HEAD_SET_CRC_CONTROL, WIDE_PIPE_CRC, ENABLE); int ret; switch (source) { case NV50_CRC_SOURCE_TYPE_SOR: crc_args |= NVDEF(NV907D, HEAD_SET_CRC_CONTROL, PRIMARY_OUTPUT, SOR(or)); break; case NV50_CRC_SOURCE_TYPE_PIOR: crc_args |= NVDEF(NV907D, HEAD_SET_CRC_CONTROL, PRIMARY_OUTPUT, PIOR(or)); break; case NV50_CRC_SOURCE_TYPE_DAC: crc_args |= NVDEF(NV907D, HEAD_SET_CRC_CONTROL, PRIMARY_OUTPUT, DAC(or)); break; case NV50_CRC_SOURCE_TYPE_RG: crc_args |= NVDEF(NV907D, HEAD_SET_CRC_CONTROL, PRIMARY_OUTPUT, RG(i)); break; case NV50_CRC_SOURCE_TYPE_SF: crc_args |= NVDEF(NV907D, HEAD_SET_CRC_CONTROL, PRIMARY_OUTPUT, SF(i)); break; case NV50_CRC_SOURCE_NONE: crc_args |= NVDEF(NV907D, HEAD_SET_CRC_CONTROL, PRIMARY_OUTPUT, NONE); break; } if ((ret = PUSH_WAIT(push, 4))) return ret; if (source) { PUSH_MTHD(push, NV907D, HEAD_SET_CONTEXT_DMA_CRC(i), ctx->ntfy.handle); PUSH_MTHD(push, NV907D, HEAD_SET_CRC_CONTROL(i), crc_args); } else { PUSH_MTHD(push, NV907D, HEAD_SET_CRC_CONTROL(i), crc_args); PUSH_MTHD(push, NV907D, HEAD_SET_CONTEXT_DMA_CRC(i), 0); } return 0; } static int crc907d_set_ctx(struct nv50_head *head, struct nv50_crc_notifier_ctx *ctx) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_CONTEXT_DMA_CRC(i), ctx ? ctx->ntfy.handle : 0); return 0; } static u32 crc907d_get_entry(struct nv50_head *head, struct nv50_crc_notifier_ctx *ctx, enum nv50_crc_source source, int idx) { struct crc907d_notifier __iomem *notifier = ctx->mem.object.map.ptr; return ioread32_native(&notifier->entries[idx].output_crc[0]); } static bool crc907d_ctx_finished(struct nv50_head *head, struct nv50_crc_notifier_ctx *ctx) { struct nouveau_drm *drm = nouveau_drm(head->base.base.dev); struct crc907d_notifier __iomem *notifier = ctx->mem.object.map.ptr; const u32 status = ioread32_native(&notifier->status); const u32 overflow = status & 0x0000003e; if (!(status & 0x00000001)) return false; if (overflow) { const char *engine = NULL; switch (overflow) { case 0x00000004: engine = "DSI"; break; case 0x00000008: engine = "Compositor"; break; case 0x00000010: engine = "CRC output 1"; break; case 0x00000020: engine = "CRC output 2"; break; } if (engine) NV_ERROR(drm, "CRC notifier context for head %d overflowed on %s: %x\n", head->base.index, engine, status); else NV_ERROR(drm, "CRC notifier context for head %d overflowed: %x\n", head->base.index, status); } NV_DEBUG(drm, "Head %d CRC context status: %x\n", head->base.index, status); return true; } const struct nv50_crc_func crc907d = { .set_src = crc907d_set_src, .set_ctx = crc907d_set_ctx, .get_entry = crc907d_get_entry, .ctx_finished = crc907d_ctx_finished, .flip_threshold = CRC907D_MAX_ENTRIES - 10, .num_entries = CRC907D_MAX_ENTRIES, .notifier_len = sizeof(struct crc907d_notifier), };
linux-master
drivers/gpu/drm/nouveau/dispnv50/crc907d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "core.h" #include <nvif/push507c.h> #include <nvhw/class/cl507d.h> #include <nvhw/class/cl837d.h> static int pior507d_ctrl(struct nv50_core *core, int or, u32 ctrl, struct nv50_head_atom *asyh) { struct nvif_push *push = core->chan.push; int ret; if (asyh) { ctrl |= NVVAL(NV507D, PIOR_SET_CONTROL, HSYNC_POLARITY, asyh->or.nhsync); ctrl |= NVVAL(NV507D, PIOR_SET_CONTROL, VSYNC_POLARITY, asyh->or.nvsync); ctrl |= NVVAL(NV837D, PIOR_SET_CONTROL, PIXEL_DEPTH, asyh->or.depth); } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, PIOR_SET_CONTROL(or), ctrl); return 0; } static void pior507d_get_caps(struct nv50_disp *disp, struct nouveau_encoder *outp, int or) { outp->caps.dp_interlace = true; } const struct nv50_outp_func pior507d = { .ctrl = pior507d_ctrl, .get_caps = pior507d_get_caps, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/pior507d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <drm/drm_connector.h> #include <drm/drm_mode_config.h> #include <drm/drm_vblank.h> #include "nouveau_drv.h" #include "nouveau_bios.h" #include "nouveau_connector.h" #include "head.h" #include "core.h" #include "crc.h" #include <nvif/push507c.h> #include <nvhw/class/cl907d.h> int head907d_or(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 3))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_CONTROL_OUTPUT_RESOURCE(i), NVVAL(NV907D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, CRC_MODE, asyh->or.crc_raster) | NVVAL(NV907D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, HSYNC_POLARITY, asyh->or.nhsync) | NVVAL(NV907D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, VSYNC_POLARITY, asyh->or.nvsync) | NVVAL(NV907D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, PIXEL_DEPTH, asyh->or.depth), HEAD_SET_CONTROL(i), 0x31ec6000 | head->base.index << 25 | NVVAL(NV907D, HEAD_SET_CONTROL, STRUCTURE, asyh->mode.interlace)); return 0; } int head907d_procamp(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_PROCAMP(i), NVDEF(NV907D, HEAD_SET_PROCAMP, COLOR_SPACE, RGB) | NVDEF(NV907D, HEAD_SET_PROCAMP, CHROMA_LPF, AUTO) | NVVAL(NV907D, HEAD_SET_PROCAMP, SAT_COS, asyh->procamp.sat.cos) | NVVAL(NV907D, HEAD_SET_PROCAMP, SAT_SINE, asyh->procamp.sat.sin) | NVDEF(NV907D, HEAD_SET_PROCAMP, DYNAMIC_RANGE, VESA) | NVDEF(NV907D, HEAD_SET_PROCAMP, RANGE_COMPRESSION, DISABLE)); return 0; } static int head907d_dither(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_DITHER_CONTROL(i), NVVAL(NV907D, HEAD_SET_DITHER_CONTROL, ENABLE, asyh->dither.enable) | NVVAL(NV907D, HEAD_SET_DITHER_CONTROL, BITS, asyh->dither.bits) | NVVAL(NV907D, HEAD_SET_DITHER_CONTROL, MODE, asyh->dither.mode) | NVVAL(NV907D, HEAD_SET_DITHER_CONTROL, PHASE, 0)); return 0; } int head907d_ovly(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u32 bounds = 0; int ret; if (asyh->ovly.cpp) { switch (asyh->ovly.cpp) { case 8: bounds |= NVDEF(NV907D, HEAD_SET_OVERLAY_USAGE_BOUNDS, PIXEL_DEPTH, BPP_64); break; case 4: bounds |= NVDEF(NV907D, HEAD_SET_OVERLAY_USAGE_BOUNDS, PIXEL_DEPTH, BPP_32); break; case 2: bounds |= NVDEF(NV907D, HEAD_SET_OVERLAY_USAGE_BOUNDS, PIXEL_DEPTH, BPP_16); break; default: WARN_ON(1); break; } bounds |= NVDEF(NV907D, HEAD_SET_OVERLAY_USAGE_BOUNDS, USABLE, TRUE); } else { bounds |= NVDEF(NV907D, HEAD_SET_OVERLAY_USAGE_BOUNDS, PIXEL_DEPTH, BPP_16); } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_OVERLAY_USAGE_BOUNDS(i), bounds); return 0; } static int head907d_base(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u32 bounds = 0; int ret; if (asyh->base.cpp) { switch (asyh->base.cpp) { case 8: bounds |= NVDEF(NV907D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_64); break; case 4: bounds |= NVDEF(NV907D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_32); break; case 2: bounds |= NVDEF(NV907D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_16); break; case 1: bounds |= NVDEF(NV907D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_8); break; default: WARN_ON(1); break; } bounds |= NVDEF(NV907D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, USABLE, TRUE); } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS(i), bounds); return 0; } int head907d_curs_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NV907D, HEAD_SET_CONTROL_CURSOR, ENABLE, DISABLE) | NVDEF(NV907D, HEAD_SET_CONTROL_CURSOR, FORMAT, A8R8G8B8) | NVDEF(NV907D, HEAD_SET_CONTROL_CURSOR, SIZE, W64_H64)); PUSH_MTHD(push, NV907D, HEAD_SET_CONTEXT_DMA_CURSOR(i), 0x00000000); return 0; } int head907d_curs_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 5))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NV907D, HEAD_SET_CONTROL_CURSOR, ENABLE, ENABLE) | NVVAL(NV907D, HEAD_SET_CONTROL_CURSOR, FORMAT, asyh->curs.format) | NVVAL(NV907D, HEAD_SET_CONTROL_CURSOR, SIZE, asyh->curs.layout) | NVVAL(NV907D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_X, 0) | NVVAL(NV907D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_Y, 0) | NVDEF(NV907D, HEAD_SET_CONTROL_CURSOR, COMPOSITION, ALPHA_BLEND), HEAD_SET_OFFSET_CURSOR(i), asyh->curs.offset >> 8); PUSH_MTHD(push, NV907D, HEAD_SET_CONTEXT_DMA_CURSOR(i), asyh->curs.handle); return 0; } int head907d_core_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_CONTEXT_DMAS_ISO(i), 0x00000000); return 0; } int head907d_core_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 9))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_OFFSET(i), NVVAL(NV907D, HEAD_SET_OFFSET, ORIGIN, asyh->core.offset >> 8)); PUSH_MTHD(push, NV907D, HEAD_SET_SIZE(i), NVVAL(NV907D, HEAD_SET_SIZE, WIDTH, asyh->core.w) | NVVAL(NV907D, HEAD_SET_SIZE, HEIGHT, asyh->core.h), HEAD_SET_STORAGE(i), NVVAL(NV907D, HEAD_SET_STORAGE, BLOCK_HEIGHT, asyh->core.blockh) | NVVAL(NV907D, HEAD_SET_STORAGE, PITCH, asyh->core.pitch >> 8) | NVVAL(NV907D, HEAD_SET_STORAGE, PITCH, asyh->core.blocks) | NVVAL(NV907D, HEAD_SET_STORAGE, MEMORY_LAYOUT, asyh->core.layout), HEAD_SET_PARAMS(i), NVVAL(NV907D, HEAD_SET_PARAMS, FORMAT, asyh->core.format) | NVDEF(NV907D, HEAD_SET_PARAMS, SUPER_SAMPLE, X1_AA) | NVDEF(NV907D, HEAD_SET_PARAMS, GAMMA, LINEAR), HEAD_SET_CONTEXT_DMAS_ISO(i), NVVAL(NV907D, HEAD_SET_CONTEXT_DMAS_ISO, HANDLE, asyh->core.handle)); PUSH_MTHD(push, NV907D, HEAD_SET_VIEWPORT_POINT_IN(i), NVVAL(NV907D, HEAD_SET_VIEWPORT_POINT_IN, X, asyh->core.x) | NVVAL(NV907D, HEAD_SET_VIEWPORT_POINT_IN, Y, asyh->core.y)); return 0; } int head907d_olut_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 4))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_OUTPUT_LUT_LO(i), NVDEF(NV907D, HEAD_SET_OUTPUT_LUT_LO, ENABLE, DISABLE)); PUSH_MTHD(push, NV907D, HEAD_SET_CONTEXT_DMA_LUT(i), 0x00000000); return 0; } int head907d_olut_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 5))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_OUTPUT_LUT_LO(i), NVDEF(NV907D, HEAD_SET_OUTPUT_LUT_LO, ENABLE, ENABLE) | NVVAL(NV907D, HEAD_SET_OUTPUT_LUT_LO, MODE, asyh->olut.mode) | NVDEF(NV907D, HEAD_SET_OUTPUT_LUT_LO, NEVER_YIELD_TO_BASE, DISABLE), HEAD_SET_OUTPUT_LUT_HI(i), NVVAL(NV907D, HEAD_SET_OUTPUT_LUT_HI, ORIGIN, asyh->olut.offset >> 8)); PUSH_MTHD(push, NV907D, HEAD_SET_CONTEXT_DMA_LUT(i), asyh->olut.handle); return 0; } void head907d_olut_load(struct drm_color_lut *in, int size, void __iomem *mem) { for (; size--; in++, mem += 8) { writew(drm_color_lut_extract(in-> red, 14) + 0x6000, mem + 0); writew(drm_color_lut_extract(in->green, 14) + 0x6000, mem + 2); writew(drm_color_lut_extract(in-> blue, 14) + 0x6000, mem + 4); } /* INTERPOLATE modes require a "next" entry to interpolate with, * so we replicate the last entry to deal with this for now. */ writew(readw(mem - 8), mem + 0); writew(readw(mem - 6), mem + 2); writew(readw(mem - 4), mem + 4); } bool head907d_olut(struct nv50_head *head, struct nv50_head_atom *asyh, int size) { if (size != 256 && size != 1024) return false; if (size == 1024) asyh->olut.mode = NV907D_HEAD_SET_OUTPUT_LUT_LO_MODE_INTERPOLATE_1025_UNITY_RANGE; else asyh->olut.mode = NV907D_HEAD_SET_OUTPUT_LUT_LO_MODE_INTERPOLATE_257_UNITY_RANGE; asyh->olut.load = head907d_olut_load; return true; } bool head907d_ilut_check(int size) { return size == 256 || size == 1024; } int head907d_mode(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; struct nv50_head_mode *m = &asyh->mode; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 13))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_OVERSCAN_COLOR(i), NVVAL(NV907D, HEAD_SET_OVERSCAN_COLOR, RED, 0) | NVVAL(NV907D, HEAD_SET_OVERSCAN_COLOR, GRN, 0) | NVVAL(NV907D, HEAD_SET_OVERSCAN_COLOR, BLU, 0), HEAD_SET_RASTER_SIZE(i), NVVAL(NV907D, HEAD_SET_RASTER_SIZE, WIDTH, m->h.active) | NVVAL(NV907D, HEAD_SET_RASTER_SIZE, HEIGHT, m->v.active), HEAD_SET_RASTER_SYNC_END(i), NVVAL(NV907D, HEAD_SET_RASTER_SYNC_END, X, m->h.synce) | NVVAL(NV907D, HEAD_SET_RASTER_SYNC_END, Y, m->v.synce), HEAD_SET_RASTER_BLANK_END(i), NVVAL(NV907D, HEAD_SET_RASTER_BLANK_END, X, m->h.blanke) | NVVAL(NV907D, HEAD_SET_RASTER_BLANK_END, Y, m->v.blanke), HEAD_SET_RASTER_BLANK_START(i), NVVAL(NV907D, HEAD_SET_RASTER_BLANK_START, X, m->h.blanks) | NVVAL(NV907D, HEAD_SET_RASTER_BLANK_START, Y, m->v.blanks), HEAD_SET_RASTER_VERT_BLANK2(i), NVVAL(NV907D, HEAD_SET_RASTER_VERT_BLANK2, YSTART, m->v.blank2s) | NVVAL(NV907D, HEAD_SET_RASTER_VERT_BLANK2, YEND, m->v.blank2e)); PUSH_MTHD(push, NV907D, HEAD_SET_DEFAULT_BASE_COLOR(i), NVVAL(NV907D, HEAD_SET_DEFAULT_BASE_COLOR, RED, 0) | NVVAL(NV907D, HEAD_SET_DEFAULT_BASE_COLOR, GREEN, 0) | NVVAL(NV907D, HEAD_SET_DEFAULT_BASE_COLOR, BLUE, 0)); PUSH_MTHD(push, NV907D, HEAD_SET_PIXEL_CLOCK_FREQUENCY(i), NVVAL(NV907D, HEAD_SET_PIXEL_CLOCK_FREQUENCY, HERTZ, m->clock * 1000) | NVDEF(NV907D, HEAD_SET_PIXEL_CLOCK_FREQUENCY, ADJ1000DIV1001, FALSE), HEAD_SET_PIXEL_CLOCK_CONFIGURATION(i), NVDEF(NV907D, HEAD_SET_PIXEL_CLOCK_CONFIGURATION, MODE, CLK_CUSTOM) | NVDEF(NV907D, HEAD_SET_PIXEL_CLOCK_CONFIGURATION, NOT_DRIVER, FALSE) | NVDEF(NV907D, HEAD_SET_PIXEL_CLOCK_CONFIGURATION, ENABLE_HOPPING, FALSE), HEAD_SET_PIXEL_CLOCK_FREQUENCY_MAX(i), NVVAL(NV907D, HEAD_SET_PIXEL_CLOCK_FREQUENCY_MAX, HERTZ, m->clock * 1000) | NVDEF(NV907D, HEAD_SET_PIXEL_CLOCK_FREQUENCY_MAX, ADJ1000DIV1001, FALSE)); return 0; } int head907d_view(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 8))) return ret; PUSH_MTHD(push, NV907D, HEAD_SET_CONTROL_OUTPUT_SCALER(i), NVDEF(NV907D, HEAD_SET_CONTROL_OUTPUT_SCALER, VERTICAL_TAPS, TAPS_1) | NVDEF(NV907D, HEAD_SET_CONTROL_OUTPUT_SCALER, HORIZONTAL_TAPS, TAPS_1) | NVVAL(NV907D, HEAD_SET_CONTROL_OUTPUT_SCALER, HRESPONSE_BIAS, 0) | NVVAL(NV907D, HEAD_SET_CONTROL_OUTPUT_SCALER, VRESPONSE_BIAS, 0)); PUSH_MTHD(push, NV907D, HEAD_SET_VIEWPORT_SIZE_IN(i), NVVAL(NV907D, HEAD_SET_VIEWPORT_SIZE_IN, WIDTH, asyh->view.iW) | NVVAL(NV907D, HEAD_SET_VIEWPORT_SIZE_IN, HEIGHT, asyh->view.iH)); PUSH_MTHD(push, NV907D, HEAD_SET_VIEWPORT_SIZE_OUT(i), NVVAL(NV907D, HEAD_SET_VIEWPORT_SIZE_OUT, WIDTH, asyh->view.oW) | NVVAL(NV907D, HEAD_SET_VIEWPORT_SIZE_OUT, HEIGHT, asyh->view.oH), HEAD_SET_VIEWPORT_SIZE_OUT_MIN(i), NVVAL(NV907D, HEAD_SET_VIEWPORT_SIZE_OUT_MIN, WIDTH, asyh->view.oW) | NVVAL(NV907D, HEAD_SET_VIEWPORT_SIZE_OUT_MIN, HEIGHT, asyh->view.oH), HEAD_SET_VIEWPORT_SIZE_OUT_MAX(i), NVVAL(NV907D, HEAD_SET_VIEWPORT_SIZE_OUT_MAX, WIDTH, asyh->view.oW) | NVVAL(NV907D, HEAD_SET_VIEWPORT_SIZE_OUT_MAX, HEIGHT, asyh->view.oH)); return 0; } const struct nv50_head_func head907d = { .view = head907d_view, .mode = head907d_mode, .olut = head907d_olut, .ilut_check = head907d_ilut_check, .olut_size = 1024, .olut_set = head907d_olut_set, .olut_clr = head907d_olut_clr, .core_calc = head507d_core_calc, .core_set = head907d_core_set, .core_clr = head907d_core_clr, .curs_layout = head507d_curs_layout, .curs_format = head507d_curs_format, .curs_set = head907d_curs_set, .curs_clr = head907d_curs_clr, .base = head907d_base, .ovly = head907d_ovly, .dither = head907d_dither, .procamp = head907d_procamp, .or = head907d_or, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/head907d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "wimm.h" #include <nvif/class.h> int nv50_wimm_init(struct nouveau_drm *drm, struct nv50_wndw *wndw) { struct { s32 oclass; int version; int (*init)(struct nouveau_drm *, s32, struct nv50_wndw *); } wimms[] = { { GA102_DISP_WINDOW_IMM_CHANNEL_DMA, 0, wimmc37b_init }, { TU102_DISP_WINDOW_IMM_CHANNEL_DMA, 0, wimmc37b_init }, { GV100_DISP_WINDOW_IMM_CHANNEL_DMA, 0, wimmc37b_init }, {} }; struct nv50_disp *disp = nv50_disp(drm->dev); int cid; cid = nvif_mclass(&disp->disp->object, wimms); if (cid < 0) { NV_ERROR(drm, "No supported window immediate class\n"); return cid; } return wimms[cid].init(drm, wimms[cid].oclass, wndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/wimm.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "curs.h" int curs907a_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return curs507a_new_(&curs507a, drm, head, oclass, 0x00000001 << (head * 4), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/curs907a.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "head.h" #include "atom.h" #include "core.h" #include <nvif/pushc37b.h> #include <nvhw/class/clc57d.h> static int headc57d_or(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u8 depth; int ret; /*XXX: This is a dirty hack until OR depth handling is * improved later for deep colour etc. */ switch (asyh->or.depth) { case 6: depth = 5; break; case 5: depth = 4; break; case 2: depth = 1; break; case 0: depth = 4; break; default: depth = asyh->or.depth; WARN_ON(1); break; } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC57D, HEAD_SET_CONTROL_OUTPUT_RESOURCE(i), NVVAL(NVC57D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, CRC_MODE, asyh->or.crc_raster) | NVVAL(NVC57D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, HSYNC_POLARITY, asyh->or.nhsync) | NVVAL(NVC57D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, VSYNC_POLARITY, asyh->or.nvsync) | NVVAL(NVC57D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, PIXEL_DEPTH, depth) | NVDEF(NVC57D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, COLOR_SPACE_OVERRIDE, DISABLE) | NVDEF(NVC57D, HEAD_SET_CONTROL_OUTPUT_RESOURCE, EXT_PACKET_WIN, NONE)); return 0; } static int headc57d_procamp(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; //TODO: PUSH_MTHD(push, NVC57D, HEAD_SET_PROCAMP(i), NVDEF(NVC57D, HEAD_SET_PROCAMP, COLOR_SPACE, RGB) | NVDEF(NVC57D, HEAD_SET_PROCAMP, CHROMA_LPF, DISABLE) | NVDEF(NVC57D, HEAD_SET_PROCAMP, DYNAMIC_RANGE, VESA)); return 0; } static int headc57d_olut_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC57D, HEAD_SET_CONTEXT_DMA_OLUT(i), 0x00000000); return 0; } static int headc57d_olut_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 5))) return ret; PUSH_MTHD(push, NVC57D, HEAD_SET_OLUT_CONTROL(i), NVVAL(NVC57D, HEAD_SET_OLUT_CONTROL, INTERPOLATE, asyh->olut.output_mode) | NVDEF(NVC57D, HEAD_SET_OLUT_CONTROL, MIRROR, DISABLE) | NVVAL(NVC57D, HEAD_SET_OLUT_CONTROL, MODE, asyh->olut.mode) | NVVAL(NVC57D, HEAD_SET_OLUT_CONTROL, SIZE, asyh->olut.size), HEAD_SET_OLUT_FP_NORM_SCALE(i), 0xffffffff, HEAD_SET_CONTEXT_DMA_OLUT(i), asyh->olut.handle, HEAD_SET_OFFSET_OLUT(i), asyh->olut.offset >> 8); return 0; } static void headc57d_olut_load_8(struct drm_color_lut *in, int size, void __iomem *mem) { memset_io(mem, 0x00, 0x20); /* VSS header. */ mem += 0x20; while (size--) { u16 r = drm_color_lut_extract(in-> red + 0, 16); u16 g = drm_color_lut_extract(in->green + 0, 16); u16 b = drm_color_lut_extract(in-> blue + 0, 16); u16 ri = 0, gi = 0, bi = 0, i; if (in++, size) { ri = (drm_color_lut_extract(in-> red, 16) - r) / 4; gi = (drm_color_lut_extract(in->green, 16) - g) / 4; bi = (drm_color_lut_extract(in-> blue, 16) - b) / 4; } for (i = 0; i < 4; i++, mem += 8) { writew(r + ri * i, mem + 0); writew(g + gi * i, mem + 2); writew(b + bi * i, mem + 4); } } /* INTERPOLATE modes require a "next" entry to interpolate with, * so we replicate the last entry to deal with this for now. */ writew(readw(mem - 8), mem + 0); writew(readw(mem - 6), mem + 2); writew(readw(mem - 4), mem + 4); } static void headc57d_olut_load(struct drm_color_lut *in, int size, void __iomem *mem) { memset_io(mem, 0x00, 0x20); /* VSS header. */ mem += 0x20; for (; size--; in++, mem += 0x08) { writew(drm_color_lut_extract(in-> red, 16), mem + 0); writew(drm_color_lut_extract(in->green, 16), mem + 2); writew(drm_color_lut_extract(in-> blue, 16), mem + 4); } /* INTERPOLATE modes require a "next" entry to interpolate with, * so we replicate the last entry to deal with this for now. */ writew(readw(mem - 8), mem + 0); writew(readw(mem - 6), mem + 2); writew(readw(mem - 4), mem + 4); } static bool headc57d_olut(struct nv50_head *head, struct nv50_head_atom *asyh, int size) { if (size != 0 && size != 256 && size != 1024) return false; asyh->olut.mode = NVC57D_HEAD_SET_OLUT_CONTROL_MODE_DIRECT10; asyh->olut.size = 4 /* VSS header. */ + 1024 + 1 /* Entries. */; asyh->olut.output_mode = NVC57D_HEAD_SET_OLUT_CONTROL_INTERPOLATE_ENABLE; if (size == 256) asyh->olut.load = headc57d_olut_load_8; else asyh->olut.load = headc57d_olut_load; return true; } static int headc57d_mode(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; struct nv50_head_mode *m = &asyh->mode; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 15))) return ret; PUSH_MTHD(push, NVC57D, HEAD_SET_RASTER_SIZE(i), NVVAL(NVC57D, HEAD_SET_RASTER_SIZE, WIDTH, m->h.active) | NVVAL(NVC57D, HEAD_SET_RASTER_SIZE, HEIGHT, m->v.active), HEAD_SET_RASTER_SYNC_END(i), NVVAL(NVC57D, HEAD_SET_RASTER_SYNC_END, X, m->h.synce) | NVVAL(NVC57D, HEAD_SET_RASTER_SYNC_END, Y, m->v.synce), HEAD_SET_RASTER_BLANK_END(i), NVVAL(NVC57D, HEAD_SET_RASTER_BLANK_END, X, m->h.blanke) | NVVAL(NVC57D, HEAD_SET_RASTER_BLANK_END, Y, m->v.blanke), HEAD_SET_RASTER_BLANK_START(i), NVVAL(NVC57D, HEAD_SET_RASTER_BLANK_START, X, m->h.blanks) | NVVAL(NVC57D, HEAD_SET_RASTER_BLANK_START, Y, m->v.blanks)); //XXX: PUSH_NVSQ(push, NVC57D, 0x2074 + (i * 0x400), m->v.blank2e << 16 | m->v.blank2s); PUSH_NVSQ(push, NVC57D, 0x2008 + (i * 0x400), m->interlace); PUSH_MTHD(push, NVC57D, HEAD_SET_PIXEL_CLOCK_FREQUENCY(i), NVVAL(NVC57D, HEAD_SET_PIXEL_CLOCK_FREQUENCY, HERTZ, m->clock * 1000)); PUSH_MTHD(push, NVC57D, HEAD_SET_PIXEL_CLOCK_FREQUENCY_MAX(i), NVVAL(NVC57D, HEAD_SET_PIXEL_CLOCK_FREQUENCY_MAX, HERTZ, m->clock * 1000)); /*XXX: HEAD_USAGE_BOUNDS, doesn't belong here. */ PUSH_MTHD(push, NVC57D, HEAD_SET_HEAD_USAGE_BOUNDS(i), NVDEF(NVC57D, HEAD_SET_HEAD_USAGE_BOUNDS, CURSOR, USAGE_W256_H256) | NVDEF(NVC57D, HEAD_SET_HEAD_USAGE_BOUNDS, OLUT_ALLOWED, TRUE) | NVDEF(NVC57D, HEAD_SET_HEAD_USAGE_BOUNDS, OUTPUT_SCALER_TAPS, TAPS_2) | NVDEF(NVC57D, HEAD_SET_HEAD_USAGE_BOUNDS, UPSCALING_ALLOWED, TRUE)); return 0; } const struct nv50_head_func headc57d = { .view = headc37d_view, .mode = headc57d_mode, .olut = headc57d_olut, .ilut_check = head907d_ilut_check, .olut_identity = true, .olut_size = 1024, .olut_set = headc57d_olut_set, .olut_clr = headc57d_olut_clr, .curs_layout = head917d_curs_layout, .curs_format = headc37d_curs_format, .curs_set = headc37d_curs_set, .curs_clr = headc37d_curs_clr, .dither = headc37d_dither, .procamp = headc57d_procamp, .or = headc57d_or, /* TODO: flexible window mappings */ .static_wndw_map = headc37d_static_wndw_map, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/headc57d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "head.h" #include "core.h" #include "nvif/push.h" #include <nvif/push507c.h> #include <nvhw/class/cl917d.h> static int head917d_dither(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV917D, HEAD_SET_DITHER_CONTROL(i), NVVAL(NV917D, HEAD_SET_DITHER_CONTROL, ENABLE, asyh->dither.enable) | NVVAL(NV917D, HEAD_SET_DITHER_CONTROL, BITS, asyh->dither.bits) | NVVAL(NV917D, HEAD_SET_DITHER_CONTROL, MODE, asyh->dither.mode) | NVVAL(NV917D, HEAD_SET_DITHER_CONTROL, PHASE, 0)); return 0; } static int head917d_base(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u32 bounds = 0; int ret; if (asyh->base.cpp) { switch (asyh->base.cpp) { case 8: bounds |= NVDEF(NV917D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_64); break; case 4: bounds |= NVDEF(NV917D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_32); break; case 2: bounds |= NVDEF(NV917D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_16); break; case 1: bounds |= NVDEF(NV917D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_8); break; default: WARN_ON(1); break; } bounds |= NVDEF(NV917D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, USABLE, TRUE); bounds |= NVDEF(NV917D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, BASE_LUT, USAGE_1025); } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV917D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS(i), bounds); return 0; } static int head917d_curs_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; ret = PUSH_WAIT(push, 5); if (ret) return ret; PUSH_MTHD(push, NV917D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NV917D, HEAD_SET_CONTROL_CURSOR, ENABLE, ENABLE) | NVVAL(NV917D, HEAD_SET_CONTROL_CURSOR, FORMAT, asyh->curs.format) | NVVAL(NV917D, HEAD_SET_CONTROL_CURSOR, SIZE, asyh->curs.layout) | NVVAL(NV917D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_X, 0) | NVVAL(NV917D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_Y, 0) | NVDEF(NV917D, HEAD_SET_CONTROL_CURSOR, COMPOSITION, ALPHA_BLEND), HEAD_SET_OFFSET_CURSOR(i), asyh->curs.offset >> 8); PUSH_MTHD(push, NV917D, HEAD_SET_CONTEXT_DMA_CURSOR(i), asyh->curs.handle); return 0; } int head917d_curs_layout(struct nv50_head *head, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { switch (asyw->state.fb->width) { case 32: asyh->curs.layout = NV917D_HEAD_SET_CONTROL_CURSOR_SIZE_W32_H32; break; case 64: asyh->curs.layout = NV917D_HEAD_SET_CONTROL_CURSOR_SIZE_W64_H64; break; case 128: asyh->curs.layout = NV917D_HEAD_SET_CONTROL_CURSOR_SIZE_W128_H128; break; case 256: asyh->curs.layout = NV917D_HEAD_SET_CONTROL_CURSOR_SIZE_W256_H256; break; default: return -EINVAL; } return 0; } const struct nv50_head_func head917d = { .view = head907d_view, .mode = head907d_mode, .olut = head907d_olut, .ilut_check = head907d_ilut_check, .olut_size = 1024, .olut_set = head907d_olut_set, .olut_clr = head907d_olut_clr, .core_calc = head507d_core_calc, .core_set = head907d_core_set, .core_clr = head907d_core_clr, .curs_layout = head917d_curs_layout, .curs_format = head507d_curs_format, .curs_set = head917d_curs_set, .curs_clr = head907d_curs_clr, .base = head917d_base, .ovly = head907d_ovly, .dither = head917d_dither, .procamp = head907d_procamp, .or = head907d_or, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/head917d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "head.h" #include "core.h" #include <nvif/push507c.h> #include <nvhw/class/cl507d.h> int head507d_procamp(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_PROCAMP(i), NVDEF(NV507D, HEAD_SET_PROCAMP, COLOR_SPACE, RGB) | NVDEF(NV507D, HEAD_SET_PROCAMP, CHROMA_LPF, AUTO) | NVVAL(NV507D, HEAD_SET_PROCAMP, SAT_COS, asyh->procamp.sat.cos) | NVVAL(NV507D, HEAD_SET_PROCAMP, SAT_SINE, asyh->procamp.sat.sin) | NVDEF(NV507D, HEAD_SET_PROCAMP, TRANSITION, HARD)); return 0; } int head507d_dither(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_DITHER_CONTROL(i), NVVAL(NV507D, HEAD_SET_DITHER_CONTROL, ENABLE, asyh->dither.enable) | NVVAL(NV507D, HEAD_SET_DITHER_CONTROL, BITS, asyh->dither.bits) | NVVAL(NV507D, HEAD_SET_DITHER_CONTROL, MODE, asyh->dither.mode) | NVVAL(NV507D, HEAD_SET_DITHER_CONTROL, PHASE, 0)); return 0; } int head507d_ovly(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u32 bounds = 0; int ret; if (asyh->ovly.cpp) { switch (asyh->ovly.cpp) { case 4: bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_32); break; case 2: bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_16); break; default: WARN_ON(1); break; } bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, USABLE, TRUE); } else { bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_16); } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS(i), bounds); return 0; } int head507d_base(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u32 bounds = 0; int ret; if (asyh->base.cpp) { switch (asyh->base.cpp) { case 8: bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_64); break; case 4: bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_32); break; case 2: bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_16); break; case 1: bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, PIXEL_DEPTH, BPP_8); break; default: WARN_ON(1); break; } bounds |= NVDEF(NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS, USABLE, TRUE); } if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_BASE_CHANNEL_USAGE_BOUNDS(i), bounds); return 0; } static int head507d_curs_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NV507D, HEAD_SET_CONTROL_CURSOR, ENABLE, DISABLE) | NVDEF(NV507D, HEAD_SET_CONTROL_CURSOR, FORMAT, A8R8G8B8) | NVDEF(NV507D, HEAD_SET_CONTROL_CURSOR, SIZE, W64_H64)); return 0; } static int head507d_curs_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 3))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_CONTROL_CURSOR(i), NVDEF(NV507D, HEAD_SET_CONTROL_CURSOR, ENABLE, ENABLE) | NVVAL(NV507D, HEAD_SET_CONTROL_CURSOR, FORMAT, asyh->curs.format) | NVVAL(NV507D, HEAD_SET_CONTROL_CURSOR, SIZE, asyh->curs.layout) | NVVAL(NV507D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_X, 0) | NVVAL(NV507D, HEAD_SET_CONTROL_CURSOR, HOT_SPOT_Y, 0) | NVDEF(NV507D, HEAD_SET_CONTROL_CURSOR, COMPOSITION, ALPHA_BLEND) | NVDEF(NV507D, HEAD_SET_CONTROL_CURSOR, SUB_OWNER, NONE), HEAD_SET_OFFSET_CURSOR(i), asyh->curs.offset >> 8); return 0; } int head507d_curs_format(struct nv50_head *head, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { switch (asyw->image.format) { case 0xcf: asyh->curs.format = NV507D_HEAD_SET_CONTROL_CURSOR_FORMAT_A8R8G8B8; break; default: WARN_ON(1); return -EINVAL; } return 0; } int head507d_curs_layout(struct nv50_head *head, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { switch (asyw->image.w) { case 32: asyh->curs.layout = NV507D_HEAD_SET_CONTROL_CURSOR_SIZE_W32_H32; break; case 64: asyh->curs.layout = NV507D_HEAD_SET_CONTROL_CURSOR_SIZE_W64_H64; break; default: return -EINVAL; } return 0; } int head507d_core_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_CONTEXT_DMA_ISO(i), 0x00000000); return 0; } static int head507d_core_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 9))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_OFFSET(i, 0), NVVAL(NV507D, HEAD_SET_OFFSET, ORIGIN, asyh->core.offset >> 8)); PUSH_MTHD(push, NV507D, HEAD_SET_SIZE(i), NVVAL(NV507D, HEAD_SET_SIZE, WIDTH, asyh->core.w) | NVVAL(NV507D, HEAD_SET_SIZE, HEIGHT, asyh->core.h), HEAD_SET_STORAGE(i), NVVAL(NV507D, HEAD_SET_STORAGE, BLOCK_HEIGHT, asyh->core.blockh) | NVVAL(NV507D, HEAD_SET_STORAGE, PITCH, asyh->core.pitch >> 8) | NVVAL(NV507D, HEAD_SET_STORAGE, PITCH, asyh->core.blocks) | NVVAL(NV507D, HEAD_SET_STORAGE, MEMORY_LAYOUT, asyh->core.layout), HEAD_SET_PARAMS(i), NVVAL(NV507D, HEAD_SET_PARAMS, FORMAT, asyh->core.format) | NVVAL(NV507D, HEAD_SET_PARAMS, KIND, asyh->core.kind) | NVDEF(NV507D, HEAD_SET_PARAMS, PART_STRIDE, PARTSTRIDE_256), HEAD_SET_CONTEXT_DMA_ISO(i), NVVAL(NV507D, HEAD_SET_CONTEXT_DMA_ISO, HANDLE, asyh->core.handle)); PUSH_MTHD(push, NV507D, HEAD_SET_VIEWPORT_POINT_IN(i, 0), NVVAL(NV507D, HEAD_SET_VIEWPORT_POINT_IN, X, asyh->core.x) | NVVAL(NV507D, HEAD_SET_VIEWPORT_POINT_IN, Y, asyh->core.y)); /* EVO will complain with INVALID_STATE if we have an * active cursor and (re)specify HeadSetContextDmaIso * without also updating HeadSetOffsetCursor. */ asyh->set.curs = asyh->curs.visible; asyh->set.olut = asyh->olut.handle != 0; return 0; } void head507d_core_calc(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_disp *disp = nv50_disp(head->base.base.dev); if ((asyh->core.visible = (asyh->base.cpp != 0))) { asyh->core.x = asyh->base.x; asyh->core.y = asyh->base.y; asyh->core.w = asyh->base.w; asyh->core.h = asyh->base.h; } else if ((asyh->core.visible = (asyh->ovly.cpp != 0)) || (asyh->core.visible = asyh->curs.visible)) { /*XXX: We need to either find some way of having the * primary base layer appear black, while still * being able to display the other layers, or we * need to allocate a dummy black surface here. */ asyh->core.x = 0; asyh->core.y = 0; asyh->core.w = asyh->state.mode.hdisplay; asyh->core.h = asyh->state.mode.vdisplay; } asyh->core.handle = disp->core->chan.vram.handle; asyh->core.offset = 0; asyh->core.format = NV507D_HEAD_SET_PARAMS_FORMAT_A8R8G8B8; asyh->core.kind = NV507D_HEAD_SET_PARAMS_KIND_KIND_PITCH; asyh->core.layout = NV507D_HEAD_SET_STORAGE_MEMORY_LAYOUT_PITCH; asyh->core.blockh = NV507D_HEAD_SET_STORAGE_BLOCK_HEIGHT_ONE_GOB; asyh->core.blocks = 0; asyh->core.pitch = ALIGN(asyh->core.w, 64) * 4; } static int head507d_olut_clr(struct nv50_head *head) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_BASE_LUT_LO(i), NVDEF(NV507D, HEAD_SET_BASE_LUT_LO, ENABLE, DISABLE)); return 0; } static int head507d_olut_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 3))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_BASE_LUT_LO(i), NVDEF(NV507D, HEAD_SET_BASE_LUT_LO, ENABLE, ENABLE) | NVVAL(NV507D, HEAD_SET_BASE_LUT_LO, MODE, asyh->olut.mode) | NVVAL(NV507D, HEAD_SET_BASE_LUT_LO, ORIGIN, 0), HEAD_SET_BASE_LUT_HI(i), NVVAL(NV507D, HEAD_SET_BASE_LUT_HI, ORIGIN, asyh->olut.offset >> 8)); return 0; } static void head507d_olut_load(struct drm_color_lut *in, int size, void __iomem *mem) { for (; size--; in++, mem += 8) { writew(drm_color_lut_extract(in-> red, 11) << 3, mem + 0); writew(drm_color_lut_extract(in->green, 11) << 3, mem + 2); writew(drm_color_lut_extract(in-> blue, 11) << 3, mem + 4); } /* INTERPOLATE modes require a "next" entry to interpolate with, * so we replicate the last entry to deal with this for now. */ writew(readw(mem - 8), mem + 0); writew(readw(mem - 6), mem + 2); writew(readw(mem - 4), mem + 4); } bool head507d_olut(struct nv50_head *head, struct nv50_head_atom *asyh, int size) { if (size != 256) return false; if (asyh->base.cpp == 1) asyh->olut.mode = NV507D_HEAD_SET_BASE_LUT_LO_MODE_LORES; else asyh->olut.mode = NV507D_HEAD_SET_BASE_LUT_LO_MODE_HIRES; asyh->olut.load = head507d_olut_load; return true; } int head507d_mode(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; struct nv50_head_mode *m = &asyh->mode; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 13))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_PIXEL_CLOCK(i), NVVAL(NV507D, HEAD_SET_PIXEL_CLOCK, FREQUENCY, m->clock) | NVDEF(NV507D, HEAD_SET_PIXEL_CLOCK, MODE, CLK_CUSTOM) | NVDEF(NV507D, HEAD_SET_PIXEL_CLOCK, ADJ1000DIV1001, FALSE) | NVDEF(NV507D, HEAD_SET_PIXEL_CLOCK, NOT_DRIVER, FALSE), HEAD_SET_CONTROL(i), NVVAL(NV507D, HEAD_SET_CONTROL, STRUCTURE, m->interlace)); PUSH_MTHD(push, NV507D, HEAD_SET_OVERSCAN_COLOR(i), NVVAL(NV507D, HEAD_SET_OVERSCAN_COLOR, RED, 0) | NVVAL(NV507D, HEAD_SET_OVERSCAN_COLOR, GRN, 0) | NVVAL(NV507D, HEAD_SET_OVERSCAN_COLOR, BLU, 0), HEAD_SET_RASTER_SIZE(i), NVVAL(NV507D, HEAD_SET_RASTER_SIZE, WIDTH, m->h.active) | NVVAL(NV507D, HEAD_SET_RASTER_SIZE, HEIGHT, m->v.active), HEAD_SET_RASTER_SYNC_END(i), NVVAL(NV507D, HEAD_SET_RASTER_SYNC_END, X, m->h.synce) | NVVAL(NV507D, HEAD_SET_RASTER_SYNC_END, Y, m->v.synce), HEAD_SET_RASTER_BLANK_END(i), NVVAL(NV507D, HEAD_SET_RASTER_BLANK_END, X, m->h.blanke) | NVVAL(NV507D, HEAD_SET_RASTER_BLANK_END, Y, m->v.blanke), HEAD_SET_RASTER_BLANK_START(i), NVVAL(NV507D, HEAD_SET_RASTER_BLANK_START, X, m->h.blanks) | NVVAL(NV507D, HEAD_SET_RASTER_BLANK_START, Y, m->v.blanks), HEAD_SET_RASTER_VERT_BLANK2(i), NVVAL(NV507D, HEAD_SET_RASTER_VERT_BLANK2, YSTART, m->v.blank2s) | NVVAL(NV507D, HEAD_SET_RASTER_VERT_BLANK2, YEND, m->v.blank2e), HEAD_SET_RASTER_VERT_BLANK_DMI(i), NVVAL(NV507D, HEAD_SET_RASTER_VERT_BLANK_DMI, DURATION, m->v.blankus)); PUSH_MTHD(push, NV507D, HEAD_SET_DEFAULT_BASE_COLOR(i), NVVAL(NV507D, HEAD_SET_DEFAULT_BASE_COLOR, RED, 0) | NVVAL(NV507D, HEAD_SET_DEFAULT_BASE_COLOR, GREEN, 0) | NVVAL(NV507D, HEAD_SET_DEFAULT_BASE_COLOR, BLUE, 0)); return 0; } int head507d_view(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 7))) return ret; PUSH_MTHD(push, NV507D, HEAD_SET_CONTROL_OUTPUT_SCALER(i), NVDEF(NV507D, HEAD_SET_CONTROL_OUTPUT_SCALER, VERTICAL_TAPS, TAPS_1) | NVDEF(NV507D, HEAD_SET_CONTROL_OUTPUT_SCALER, HORIZONTAL_TAPS, TAPS_1) | NVVAL(NV507D, HEAD_SET_CONTROL_OUTPUT_SCALER, HRESPONSE_BIAS, 0) | NVVAL(NV507D, HEAD_SET_CONTROL_OUTPUT_SCALER, VRESPONSE_BIAS, 0)); PUSH_MTHD(push, NV507D, HEAD_SET_VIEWPORT_SIZE_IN(i), NVVAL(NV507D, HEAD_SET_VIEWPORT_SIZE_IN, WIDTH, asyh->view.iW) | NVVAL(NV507D, HEAD_SET_VIEWPORT_SIZE_IN, HEIGHT, asyh->view.iH)); PUSH_MTHD(push, NV507D, HEAD_SET_VIEWPORT_SIZE_OUT(i), NVVAL(NV507D, HEAD_SET_VIEWPORT_SIZE_OUT, WIDTH, asyh->view.oW) | NVVAL(NV507D, HEAD_SET_VIEWPORT_SIZE_OUT, HEIGHT, asyh->view.oH), HEAD_SET_VIEWPORT_SIZE_OUT_MIN(i), NVVAL(NV507D, HEAD_SET_VIEWPORT_SIZE_OUT_MIN, WIDTH, asyh->view.oW) | NVVAL(NV507D, HEAD_SET_VIEWPORT_SIZE_OUT_MIN, HEIGHT, asyh->view.oH)); return 0; } const struct nv50_head_func head507d = { .view = head507d_view, .mode = head507d_mode, .olut = head507d_olut, .olut_size = 256, .olut_set = head507d_olut_set, .olut_clr = head507d_olut_clr, .core_calc = head507d_core_calc, .core_set = head507d_core_set, .core_clr = head507d_core_clr, .curs_layout = head507d_curs_layout, .curs_format = head507d_curs_format, .curs_set = head507d_curs_set, .curs_clr = head507d_curs_clr, .base = head507d_base, .ovly = head507d_ovly, .dither = head507d_dither, .procamp = head507d_procamp, };
linux-master
drivers/gpu/drm/nouveau/dispnv50/head507d.c
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "curs.h" #include "core.h" #include "head.h" #include <nvif/if0014.h> #include <nvif/timer.h> #include <nvhw/class/cl507a.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_fourcc.h> bool curs507a_space(struct nv50_wndw *wndw) { nvif_msec(&nouveau_drm(wndw->plane.dev)->client.device, 100, if (NVIF_TV32(&wndw->wimm.base.user, NV507A, FREE, COUNT, >=, 4)) return true; ); WARN_ON(1); return false; } static int curs507a_update(struct nv50_wndw *wndw, u32 *interlock) { struct nvif_object *user = &wndw->wimm.base.user; int ret = nvif_chan_wait(&wndw->wimm, 1); if (ret == 0) { NVIF_WR32(user, NV507A, UPDATE, NVDEF(NV507A, UPDATE, INTERLOCK_WITH_CORE, DISABLE)); } return ret; } static int curs507a_point(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nvif_object *user = &wndw->wimm.base.user; int ret = nvif_chan_wait(&wndw->wimm, 1); if (ret == 0) { NVIF_WR32(user, NV507A, SET_CURSOR_HOT_SPOT_POINT_OUT, NVVAL(NV507A, SET_CURSOR_HOT_SPOT_POINT_OUT, X, asyw->point.x) | NVVAL(NV507A, SET_CURSOR_HOT_SPOT_POINT_OUT, Y, asyw->point.y)); } return ret; } const struct nv50_wimm_func curs507a = { .point = curs507a_point, .update = curs507a_update, }; static void curs507a_prepare(struct nv50_wndw *wndw, struct nv50_head_atom *asyh, struct nv50_wndw_atom *asyw) { u32 handle = nv50_disp(wndw->plane.dev)->core->chan.vram.handle; u32 offset = asyw->image.offset[0]; if (asyh->curs.handle != handle || asyh->curs.offset != offset) { asyh->curs.handle = handle; asyh->curs.offset = offset; asyh->set.curs = asyh->curs.visible; } } static void curs507a_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { asyh->curs.visible = false; } static int curs507a_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev); struct nv50_head *head = nv50_head(asyw->state.crtc); struct drm_framebuffer *fb = asyw->state.fb; int ret; ret = drm_atomic_helper_check_plane_state(&asyw->state, &asyh->state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, true, true); asyh->curs.visible = asyw->state.visible; if (ret || !asyh->curs.visible) return ret; if (asyw->state.crtc_w != asyw->state.crtc_h) { NV_ATOMIC(drm, "Plane width/height must be equal for cursors\n"); return -EINVAL; } if (asyw->image.w != asyw->state.crtc_w) { NV_ATOMIC(drm, "Plane width must be equal to fb width for cursors (height can be larger though)\n"); return -EINVAL; } if (asyw->state.src_x || asyw->state.src_y) { NV_ATOMIC(drm, "Cursor planes do not support framebuffer offsets\n"); return -EINVAL; } if (asyw->image.pitch[0] != asyw->image.w * fb->format->cpp[0]) { NV_ATOMIC(drm, "%s: invalid cursor image pitch: image must be packed (pitch = %d, width = %d)\n", wndw->plane.name, asyw->image.pitch[0], asyw->image.w); return -EINVAL; } ret = head->func->curs_layout(head, asyw, asyh); if (ret) { NV_ATOMIC(drm, "%s: invalid cursor image size: unsupported size %dx%d\n", wndw->plane.name, asyw->image.w, asyw->image.h); return ret; } ret = head->func->curs_format(head, asyw, asyh); if (ret) { NV_ATOMIC(drm, "%s: invalid cursor image format 0x%X\n", wndw->plane.name, fb->format->format); return ret; } return 0; } static const u32 curs507a_format[] = { DRM_FORMAT_ARGB8888, 0 }; static const struct nv50_wndw_func curs507a_wndw = { .acquire = curs507a_acquire, .release = curs507a_release, .prepare = curs507a_prepare, }; int curs507a_new_(const struct nv50_wimm_func *func, struct nouveau_drm *drm, int head, s32 oclass, u32 interlock_data, struct nv50_wndw **pwndw) { struct nvif_disp_chan_v0 args = { .id = head, }; struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_wndw *wndw; int ret; ret = nv50_wndw_new_(&curs507a_wndw, drm->dev, DRM_PLANE_TYPE_CURSOR, "curs", head, curs507a_format, BIT(head), NV50_DISP_INTERLOCK_CURS, interlock_data, &wndw); if (*pwndw = wndw, ret) return ret; ret = nvif_object_ctor(&disp->disp->object, "kmsCurs", 0, oclass, &args, sizeof(args), &wndw->wimm.base.user); if (ret) { NV_ERROR(drm, "curs%04x allocation failed: %d\n", oclass, ret); return ret; } nvif_object_map(&wndw->wimm.base.user, NULL, 0); wndw->immd = func; wndw->ctxdma.parent = NULL; return 0; } int curs507a_new(struct nouveau_drm *drm, int head, s32 oclass, struct nv50_wndw **pwndw) { return curs507a_new_(&curs507a, drm, head, oclass, 0x00000001 << (head * 8), pwndw); }
linux-master
drivers/gpu/drm/nouveau/dispnv50/curs507a.c
// SPDX-License-Identifier: MIT #include <drm/drm_crtc.h> #include "crc.h" #include "crcc37d.h" #include "core.h" #include "disp.h" #include "head.h" #include <nvif/pushc37b.h> #include <nvhw/class/clc37d.h> static int crcc37d_set_src(struct nv50_head *head, int or, enum nv50_crc_source_type source, struct nv50_crc_notifier_ctx *ctx) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; u32 crc_args = NVVAL(NVC37D, HEAD_SET_CRC_CONTROL, CONTROLLING_CHANNEL, i * 4) | NVDEF(NVC37D, HEAD_SET_CRC_CONTROL, EXPECT_BUFFER_COLLAPSE, FALSE) | NVDEF(NVC37D, HEAD_SET_CRC_CONTROL, SECONDARY_CRC, NONE) | NVDEF(NVC37D, HEAD_SET_CRC_CONTROL, CRC_DURING_SNOOZE, DISABLE); int ret; switch (source) { case NV50_CRC_SOURCE_TYPE_SOR: crc_args |= NVDEF(NVC37D, HEAD_SET_CRC_CONTROL, PRIMARY_CRC, SOR(or)); break; case NV50_CRC_SOURCE_TYPE_PIOR: crc_args |= NVDEF(NVC37D, HEAD_SET_CRC_CONTROL, PRIMARY_CRC, PIOR(or)); break; case NV50_CRC_SOURCE_TYPE_SF: crc_args |= NVDEF(NVC37D, HEAD_SET_CRC_CONTROL, PRIMARY_CRC, SF); break; default: break; } if ((ret = PUSH_WAIT(push, 4))) return ret; if (source) { PUSH_MTHD(push, NVC37D, HEAD_SET_CONTEXT_DMA_CRC(i), ctx->ntfy.handle); PUSH_MTHD(push, NVC37D, HEAD_SET_CRC_CONTROL(i), crc_args); } else { PUSH_MTHD(push, NVC37D, HEAD_SET_CRC_CONTROL(i), 0); PUSH_MTHD(push, NVC37D, HEAD_SET_CONTEXT_DMA_CRC(i), 0); } return 0; } int crcc37d_set_ctx(struct nv50_head *head, struct nv50_crc_notifier_ctx *ctx) { struct nvif_push *push = nv50_disp(head->base.base.dev)->core->chan.push; const int i = head->base.index; int ret; if ((ret = PUSH_WAIT(push, 2))) return ret; PUSH_MTHD(push, NVC37D, HEAD_SET_CONTEXT_DMA_CRC(i), ctx ? ctx->ntfy.handle : 0); return 0; } u32 crcc37d_get_entry(struct nv50_head *head, struct nv50_crc_notifier_ctx *ctx, enum nv50_crc_source source, int idx) { struct crcc37d_notifier __iomem *notifier = ctx->mem.object.map.ptr; struct crcc37d_entry __iomem *entry = &notifier->entries[idx]; u32 __iomem *crc_addr; if (source == NV50_CRC_SOURCE_RG) crc_addr = &entry->rg_crc; else crc_addr = &entry->output_crc[0]; return ioread32_native(crc_addr); } bool crcc37d_ctx_finished(struct nv50_head *head, struct nv50_crc_notifier_ctx *ctx) { struct nouveau_drm *drm = nouveau_drm(head->base.base.dev); struct crcc37d_notifier __iomem *notifier = ctx->mem.object.map.ptr; const u32 status = ioread32_native(&notifier->status); const u32 overflow = status & 0x0000007e; if (!(status & 0x00000001)) return false; if (overflow) { const char *engine = NULL; switch (overflow) { case 0x00000004: engine = "Front End"; break; case 0x00000008: engine = "Compositor"; break; case 0x00000010: engine = "RG"; break; case 0x00000020: engine = "CRC output 1"; break; case 0x00000040: engine = "CRC output 2"; break; } if (engine) NV_ERROR(drm, "CRC notifier context for head %d overflowed on %s: %x\n", head->base.index, engine, status); else NV_ERROR(drm, "CRC notifier context for head %d overflowed: %x\n", head->base.index, status); } NV_DEBUG(drm, "Head %d CRC context status: %x\n", head->base.index, status); return true; } const struct nv50_crc_func crcc37d = { .set_src = crcc37d_set_src, .set_ctx = crcc37d_set_ctx, .get_entry = crcc37d_get_entry, .ctx_finished = crcc37d_ctx_finished, .flip_threshold = CRCC37D_FLIP_THRESHOLD, .num_entries = CRCC37D_MAX_ENTRIES, .notifier_len = sizeof(struct crcc37d_notifier), };
linux-master
drivers/gpu/drm/nouveau/dispnv50/crcc37d.c
/* * Copyright 1993-2003 NVIDIA, Corporation * Copyright 2006 Dave Airlie * Copyright 2007 Maarten Maathuis * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <drm/drm_crtc_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_modeset_helper_vtables.h> #include <drm/drm_plane_helper.h> #include <drm/drm_vblank.h> #include "nouveau_drv.h" #include "nouveau_reg.h" #include "nouveau_ttm.h" #include "nouveau_bo.h" #include "nouveau_gem.h" #include "nouveau_encoder.h" #include "nouveau_connector.h" #include "nouveau_crtc.h" #include "hw.h" #include "nvreg.h" #include "disp.h" #include "nouveau_dma.h" #include <subdev/bios/pll.h> #include <subdev/clk.h> #include <nvif/push006c.h> #include <nvif/event.h> #include <nvif/cl0046.h> static int nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb); static void crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index) { NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index, crtcstate->CRTC[index]); } static void nv_crtc_set_digital_vibrance(struct drm_crtc *crtc, int level) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; regp->CRTC[NV_CIO_CRE_CSB] = nv_crtc->saturation = level; if (nv_crtc->saturation && nv_gf4_disp_arch(crtc->dev)) { regp->CRTC[NV_CIO_CRE_CSB] = 0x80; regp->CRTC[NV_CIO_CRE_5B] = nv_crtc->saturation << 2; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_5B); } crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_CSB); } static void nv_crtc_set_image_sharpening(struct drm_crtc *crtc, int level) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; nv_crtc->sharpness = level; if (level < 0) /* blur is in hw range 0x3f -> 0x20 */ level += 0x40; regp->ramdac_634 = level; NVWriteRAMDAC(crtc->dev, nv_crtc->index, NV_PRAMDAC_634, regp->ramdac_634); } #define PLLSEL_VPLL1_MASK \ (NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL \ | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2) #define PLLSEL_VPLL2_MASK \ (NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2 \ | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2) #define PLLSEL_TV_MASK \ (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \ | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1 \ | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \ | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2) /* NV4x 0x40.. pll notes: * gpu pll: 0x4000 + 0x4004 * ?gpu? pll: 0x4008 + 0x400c * vpll1: 0x4010 + 0x4014 * vpll2: 0x4018 + 0x401c * mpll: 0x4020 + 0x4024 * mpll: 0x4038 + 0x403c * * the first register of each pair has some unknown details: * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?) * bits 20-23: (mpll) something to do with post divider? * bits 28-31: related to single stage mode? (bit 8/12) */ static void nv_crtc_calc_state_ext(struct drm_crtc *crtc, struct drm_display_mode * mode, int dot_clock) { struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_bios *bios = nvxx_bios(&drm->client.device); struct nvkm_clk *clk = nvxx_clk(&drm->client.device); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv04_mode_state *state = &nv04_display(dev)->mode_reg; struct nv04_crtc_reg *regp = &state->crtc_reg[nv_crtc->index]; struct nvkm_pll_vals *pv = &regp->pllvals; struct nvbios_pll pll_lim; if (nvbios_pll_parse(bios, nv_crtc->index ? PLL_VPLL1 : PLL_VPLL0, &pll_lim)) return; /* NM2 == 0 is used to determine single stage mode on two stage plls */ pv->NM2 = 0; /* for newer nv4x the blob uses only the first stage of the vpll below a * certain clock. for a certain nv4b this is 150MHz. since the max * output frequency of the first stage for this card is 300MHz, it is * assumed the threshold is given by vco1 maxfreq/2 */ /* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6, * not 8, others unknown), the blob always uses both plls. no problem * has yet been observed in allowing the use a single stage pll on all * nv43 however. the behaviour of single stage use is untested on nv40 */ if (drm->client.device.info.chipset > 0x40 && dot_clock <= (pll_lim.vco1.max_freq / 2)) memset(&pll_lim.vco2, 0, sizeof(pll_lim.vco2)); if (!clk->pll_calc(clk, &pll_lim, dot_clock, pv)) return; state->pllsel &= PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK; /* The blob uses this always, so let's do the same */ if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE; /* again nv40 and some nv43 act more like nv3x as described above */ if (drm->client.device.info.chipset < 0x41) state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL | NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL; state->pllsel |= nv_crtc->index ? PLLSEL_VPLL2_MASK : PLLSEL_VPLL1_MASK; if (pv->NM2) NV_DEBUG(drm, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n", pv->N1, pv->N2, pv->M1, pv->M2, pv->log2P); else NV_DEBUG(drm, "vpll: n %d m %d log2p %d\n", pv->N1, pv->M1, pv->log2P); nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset); } static void nv_crtc_dpms(struct drm_crtc *crtc, int mode) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); unsigned char seq1 = 0, crtc17 = 0; unsigned char crtc1A; NV_DEBUG(drm, "Setting dpms mode %d on CRTC %d\n", mode, nv_crtc->index); if (nv_crtc->last_dpms == mode) /* Don't do unnecessary mode changes. */ return; nv_crtc->last_dpms = mode; if (nv_two_heads(dev)) NVSetOwner(dev, nv_crtc->index); /* nv4ref indicates these two RPC1 bits inhibit h/v sync */ crtc1A = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX) & ~0xC0; switch (mode) { case DRM_MODE_DPMS_STANDBY: /* Screen: Off; HSync: Off, VSync: On -- Not Supported */ seq1 = 0x20; crtc17 = 0x80; crtc1A |= 0x80; break; case DRM_MODE_DPMS_SUSPEND: /* Screen: Off; HSync: On, VSync: Off -- Not Supported */ seq1 = 0x20; crtc17 = 0x80; crtc1A |= 0x40; break; case DRM_MODE_DPMS_OFF: /* Screen: Off; HSync: Off, VSync: Off */ seq1 = 0x20; crtc17 = 0x00; crtc1A |= 0xC0; break; case DRM_MODE_DPMS_ON: default: /* Screen: On; HSync: On, VSync: On */ seq1 = 0x00; crtc17 = 0x80; break; } NVVgaSeqReset(dev, nv_crtc->index, true); /* Each head has it's own sequencer, so we can turn it off when we want */ seq1 |= (NVReadVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX) & ~0x20); NVWriteVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX, seq1); crtc17 |= (NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX) & ~0x80); mdelay(10); NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX, crtc17); NVVgaSeqReset(dev, nv_crtc->index, false); NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX, crtc1A); } static void nv_crtc_mode_set_vga(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; struct drm_framebuffer *fb = crtc->primary->fb; /* Calculate our timings */ int horizDisplay = (mode->crtc_hdisplay >> 3) - 1; int horizStart = (mode->crtc_hsync_start >> 3) + 1; int horizEnd = (mode->crtc_hsync_end >> 3) + 1; int horizTotal = (mode->crtc_htotal >> 3) - 5; int horizBlankStart = (mode->crtc_hdisplay >> 3) - 1; int horizBlankEnd = (mode->crtc_htotal >> 3) - 1; int vertDisplay = mode->crtc_vdisplay - 1; int vertStart = mode->crtc_vsync_start - 1; int vertEnd = mode->crtc_vsync_end - 1; int vertTotal = mode->crtc_vtotal - 2; int vertBlankStart = mode->crtc_vdisplay - 1; int vertBlankEnd = mode->crtc_vtotal - 1; struct drm_encoder *encoder; bool fp_output = false; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); if (encoder->crtc == crtc && (nv_encoder->dcb->type == DCB_OUTPUT_LVDS || nv_encoder->dcb->type == DCB_OUTPUT_TMDS)) fp_output = true; } if (fp_output) { vertStart = vertTotal - 3; vertEnd = vertTotal - 2; vertBlankStart = vertStart; horizStart = horizTotal - 5; horizEnd = horizTotal - 2; horizBlankEnd = horizTotal + 4; #if 0 if (dev->overlayAdaptor && drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) /* This reportedly works around some video overlay bandwidth problems */ horizTotal += 2; #endif } if (mode->flags & DRM_MODE_FLAG_INTERLACE) vertTotal |= 1; #if 0 ErrorF("horizDisplay: 0x%X \n", horizDisplay); ErrorF("horizStart: 0x%X \n", horizStart); ErrorF("horizEnd: 0x%X \n", horizEnd); ErrorF("horizTotal: 0x%X \n", horizTotal); ErrorF("horizBlankStart: 0x%X \n", horizBlankStart); ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd); ErrorF("vertDisplay: 0x%X \n", vertDisplay); ErrorF("vertStart: 0x%X \n", vertStart); ErrorF("vertEnd: 0x%X \n", vertEnd); ErrorF("vertTotal: 0x%X \n", vertTotal); ErrorF("vertBlankStart: 0x%X \n", vertBlankStart); ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd); #endif /* * compute correct Hsync & Vsync polarity */ if ((mode->flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)) && (mode->flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) { regp->MiscOutReg = 0x23; if (mode->flags & DRM_MODE_FLAG_NHSYNC) regp->MiscOutReg |= 0x40; if (mode->flags & DRM_MODE_FLAG_NVSYNC) regp->MiscOutReg |= 0x80; } else { int vdisplay = mode->vdisplay; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) vdisplay *= 2; if (mode->vscan > 1) vdisplay *= mode->vscan; if (vdisplay < 400) regp->MiscOutReg = 0xA3; /* +hsync -vsync */ else if (vdisplay < 480) regp->MiscOutReg = 0x63; /* -hsync +vsync */ else if (vdisplay < 768) regp->MiscOutReg = 0xE3; /* -hsync -vsync */ else regp->MiscOutReg = 0x23; /* +hsync +vsync */ } /* * Time Sequencer */ regp->Sequencer[NV_VIO_SR_RESET_INDEX] = 0x00; /* 0x20 disables the sequencer */ if (mode->flags & DRM_MODE_FLAG_CLKDIV2) regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x29; else regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x21; regp->Sequencer[NV_VIO_SR_PLANE_MASK_INDEX] = 0x0F; regp->Sequencer[NV_VIO_SR_CHAR_MAP_INDEX] = 0x00; regp->Sequencer[NV_VIO_SR_MEM_MODE_INDEX] = 0x0E; /* * CRTC */ regp->CRTC[NV_CIO_CR_HDT_INDEX] = horizTotal; regp->CRTC[NV_CIO_CR_HDE_INDEX] = horizDisplay; regp->CRTC[NV_CIO_CR_HBS_INDEX] = horizBlankStart; regp->CRTC[NV_CIO_CR_HBE_INDEX] = (1 << 7) | XLATE(horizBlankEnd, 0, NV_CIO_CR_HBE_4_0); regp->CRTC[NV_CIO_CR_HRS_INDEX] = horizStart; regp->CRTC[NV_CIO_CR_HRE_INDEX] = XLATE(horizBlankEnd, 5, NV_CIO_CR_HRE_HBE_5) | XLATE(horizEnd, 0, NV_CIO_CR_HRE_4_0); regp->CRTC[NV_CIO_CR_VDT_INDEX] = vertTotal; regp->CRTC[NV_CIO_CR_OVL_INDEX] = XLATE(vertStart, 9, NV_CIO_CR_OVL_VRS_9) | XLATE(vertDisplay, 9, NV_CIO_CR_OVL_VDE_9) | XLATE(vertTotal, 9, NV_CIO_CR_OVL_VDT_9) | (1 << 4) | XLATE(vertBlankStart, 8, NV_CIO_CR_OVL_VBS_8) | XLATE(vertStart, 8, NV_CIO_CR_OVL_VRS_8) | XLATE(vertDisplay, 8, NV_CIO_CR_OVL_VDE_8) | XLATE(vertTotal, 8, NV_CIO_CR_OVL_VDT_8); regp->CRTC[NV_CIO_CR_RSAL_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_CELL_HT_INDEX] = ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL) : 0) | 1 << 6 | XLATE(vertBlankStart, 9, NV_CIO_CR_CELL_HT_VBS_9); regp->CRTC[NV_CIO_CR_CURS_ST_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_CURS_END_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_SA_HI_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_SA_LO_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_TCOFF_HI_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_TCOFF_LO_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_VRS_INDEX] = vertStart; regp->CRTC[NV_CIO_CR_VRE_INDEX] = 1 << 5 | XLATE(vertEnd, 0, NV_CIO_CR_VRE_3_0); regp->CRTC[NV_CIO_CR_VDE_INDEX] = vertDisplay; /* framebuffer can be larger than crtc scanout area. */ regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = fb->pitches[0] / 8; regp->CRTC[NV_CIO_CR_ULINE_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_VBS_INDEX] = vertBlankStart; regp->CRTC[NV_CIO_CR_VBE_INDEX] = vertBlankEnd; regp->CRTC[NV_CIO_CR_MODE_INDEX] = 0x43; regp->CRTC[NV_CIO_CR_LCOMP_INDEX] = 0xff; /* * Some extended CRTC registers (they are not saved with the rest of the vga regs). */ /* framebuffer can be larger than crtc scanout area. */ regp->CRTC[NV_CIO_CRE_RPC0_INDEX] = XLATE(fb->pitches[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8); regp->CRTC[NV_CIO_CRE_42] = XLATE(fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11); regp->CRTC[NV_CIO_CRE_RPC1_INDEX] = mode->crtc_hdisplay < 1280 ? MASK(NV_CIO_CRE_RPC1_LARGE) : 0x00; regp->CRTC[NV_CIO_CRE_LSR_INDEX] = XLATE(horizBlankEnd, 6, NV_CIO_CRE_LSR_HBE_6) | XLATE(vertBlankStart, 10, NV_CIO_CRE_LSR_VBS_10) | XLATE(vertStart, 10, NV_CIO_CRE_LSR_VRS_10) | XLATE(vertDisplay, 10, NV_CIO_CRE_LSR_VDE_10) | XLATE(vertTotal, 10, NV_CIO_CRE_LSR_VDT_10); regp->CRTC[NV_CIO_CRE_HEB__INDEX] = XLATE(horizStart, 8, NV_CIO_CRE_HEB_HRS_8) | XLATE(horizBlankStart, 8, NV_CIO_CRE_HEB_HBS_8) | XLATE(horizDisplay, 8, NV_CIO_CRE_HEB_HDE_8) | XLATE(horizTotal, 8, NV_CIO_CRE_HEB_HDT_8); regp->CRTC[NV_CIO_CRE_EBR_INDEX] = XLATE(vertBlankStart, 11, NV_CIO_CRE_EBR_VBS_11) | XLATE(vertStart, 11, NV_CIO_CRE_EBR_VRS_11) | XLATE(vertDisplay, 11, NV_CIO_CRE_EBR_VDE_11) | XLATE(vertTotal, 11, NV_CIO_CRE_EBR_VDT_11); if (mode->flags & DRM_MODE_FLAG_INTERLACE) { horizTotal = (horizTotal >> 1) & ~1; regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = horizTotal; regp->CRTC[NV_CIO_CRE_HEB__INDEX] |= XLATE(horizTotal, 8, NV_CIO_CRE_HEB_ILC_8); } else regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = 0xff; /* interlace off */ /* * Graphics Display Controller */ regp->Graphics[NV_VIO_GX_SR_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_SREN_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_CCOMP_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_ROP_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_READ_MAP_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_MODE_INDEX] = 0x40; /* 256 color mode */ regp->Graphics[NV_VIO_GX_MISC_INDEX] = 0x05; /* map 64k mem + graphic mode */ regp->Graphics[NV_VIO_GX_DONT_CARE_INDEX] = 0x0F; regp->Graphics[NV_VIO_GX_BIT_MASK_INDEX] = 0xFF; regp->Attribute[0] = 0x00; /* standard colormap translation */ regp->Attribute[1] = 0x01; regp->Attribute[2] = 0x02; regp->Attribute[3] = 0x03; regp->Attribute[4] = 0x04; regp->Attribute[5] = 0x05; regp->Attribute[6] = 0x06; regp->Attribute[7] = 0x07; regp->Attribute[8] = 0x08; regp->Attribute[9] = 0x09; regp->Attribute[10] = 0x0A; regp->Attribute[11] = 0x0B; regp->Attribute[12] = 0x0C; regp->Attribute[13] = 0x0D; regp->Attribute[14] = 0x0E; regp->Attribute[15] = 0x0F; regp->Attribute[NV_CIO_AR_MODE_INDEX] = 0x01; /* Enable graphic mode */ /* Non-vga */ regp->Attribute[NV_CIO_AR_OSCAN_INDEX] = 0x00; regp->Attribute[NV_CIO_AR_PLANE_INDEX] = 0x0F; /* enable all color planes */ regp->Attribute[NV_CIO_AR_HPP_INDEX] = 0x00; regp->Attribute[NV_CIO_AR_CSEL_INDEX] = 0x00; } /** * Sets up registers for the given mode/adjusted_mode pair. * * The clocks, CRTCs and outputs attached to this CRTC must be off. * * This shouldn't enable any clocks, CRTCs, or outputs, but they should * be easily turned on/off after this. */ static void nv_crtc_mode_set_regs(struct drm_crtc *crtc, struct drm_display_mode * mode) { struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index]; const struct drm_framebuffer *fb = crtc->primary->fb; struct drm_encoder *encoder; bool lvds_output = false, tmds_output = false, tv_output = false, off_chip_digital = false; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); bool digital = false; if (encoder->crtc != crtc) continue; if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) digital = lvds_output = true; if (nv_encoder->dcb->type == DCB_OUTPUT_TV) tv_output = true; if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) digital = tmds_output = true; if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && digital) off_chip_digital = true; } /* Registers not directly related to the (s)vga mode */ /* What is the meaning of this register? */ /* A few popular values are 0x18, 0x1c, 0x38, 0x3c */ regp->CRTC[NV_CIO_CRE_ENH_INDEX] = savep->CRTC[NV_CIO_CRE_ENH_INDEX] & ~(1<<5); regp->crtc_eng_ctrl = 0; /* Except for rare conditions I2C is enabled on the primary crtc */ if (nv_crtc->index == 0) regp->crtc_eng_ctrl |= NV_CRTC_FSEL_I2C; #if 0 /* Set overlay to desired crtc. */ if (dev->overlayAdaptor) { NVPortPrivPtr pPriv = GET_OVERLAY_PRIVATE(dev); if (pPriv->overlayCRTC == nv_crtc->index) regp->crtc_eng_ctrl |= NV_CRTC_FSEL_OVERLAY; } #endif /* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */ regp->cursor_cfg = NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64 | NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64 | NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM; if (drm->client.device.info.chipset >= 0x11) regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE; /* Unblock some timings */ regp->CRTC[NV_CIO_CRE_53] = 0; regp->CRTC[NV_CIO_CRE_54] = 0; /* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */ if (lvds_output) regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x11; else if (tmds_output) regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x88; else regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x22; /* These values seem to vary */ /* This register seems to be used by the bios to make certain decisions on some G70 cards? */ regp->CRTC[NV_CIO_CRE_SCRATCH4__INDEX] = savep->CRTC[NV_CIO_CRE_SCRATCH4__INDEX]; nv_crtc_set_digital_vibrance(crtc, nv_crtc->saturation); /* probably a scratch reg, but kept for cargo-cult purposes: * bit0: crtc0?, head A * bit6: lvds, head A * bit7: (only in X), head A */ if (nv_crtc->index == 0) regp->CRTC[NV_CIO_CRE_4B] = savep->CRTC[NV_CIO_CRE_4B] | 0x80; /* The blob seems to take the current value from crtc 0, add 4 to that * and reuse the old value for crtc 1 */ regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] = nv04_display(dev)->saved_reg.crtc_reg[0].CRTC[NV_CIO_CRE_TVOUT_LATENCY]; if (!nv_crtc->index) regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] += 4; /* the blob sometimes sets |= 0x10 (which is the same as setting |= * 1 << 30 on 0x60.830), for no apparent reason */ regp->CRTC[NV_CIO_CRE_59] = off_chip_digital; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) regp->CRTC[0x9f] = off_chip_digital ? 0x11 : 0x1; regp->crtc_830 = mode->crtc_vdisplay - 3; regp->crtc_834 = mode->crtc_vdisplay - 1; if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) /* This is what the blob does */ regp->crtc_850 = NVReadCRTC(dev, 0, NV_PCRTC_850); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) regp->gpio_ext = NVReadCRTC(dev, 0, NV_PCRTC_GPIO_EXT); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) regp->crtc_cfg = NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC; else regp->crtc_cfg = NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC; /* Some misc regs */ if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) { regp->CRTC[NV_CIO_CRE_85] = 0xFF; regp->CRTC[NV_CIO_CRE_86] = 0x1; } regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] = (fb->format->depth + 1) / 8; /* Enable slaved mode (called MODE_TV in nv4ref.h) */ if (lvds_output || tmds_output || tv_output) regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (1 << 7); /* Generic PRAMDAC regs */ if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) /* Only bit that bios and blob set. */ regp->nv10_cursync = (1 << 25); regp->ramdac_gen_ctrl = NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS | NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL | NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON; if (fb->format->depth == 16) regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL; if (drm->client.device.info.chipset >= 0x11) regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG; regp->ramdac_630 = 0; /* turn off green mode (tv test pattern?) */ regp->tv_setup = 0; nv_crtc_set_image_sharpening(crtc, nv_crtc->sharpness); /* Some values the blob sets */ regp->ramdac_8c0 = 0x100; regp->ramdac_a20 = 0x0; regp->ramdac_a24 = 0xfffff; regp->ramdac_a34 = 0x1; } static int nv_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb) { struct nv04_display *disp = nv04_display(crtc->dev); struct drm_framebuffer *fb = crtc->primary->fb; struct nouveau_bo *nvbo = nouveau_gem_object(fb->obj[0]); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); int ret; ret = nouveau_bo_pin(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, false); if (ret == 0) { if (disp->image[nv_crtc->index]) nouveau_bo_unpin(disp->image[nv_crtc->index]); nouveau_bo_ref(nvbo, &disp->image[nv_crtc->index]); } return ret; } /** * Sets up registers for the given mode/adjusted_mode pair. * * The clocks, CRTCs and outputs attached to this CRTC must be off. * * This shouldn't enable any clocks, CRTCs, or outputs, but they should * be easily turned on/off after this. */ static int nv_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_drm *drm = nouveau_drm(dev); int ret; NV_DEBUG(drm, "CTRC mode on CRTC %d:\n", nv_crtc->index); drm_mode_debug_printmodeline(adjusted_mode); ret = nv_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; /* unlock must come after turning off FP_TG_CONTROL in output_prepare */ nv_lock_vga_crtc_shadow(dev, nv_crtc->index, -1); nv_crtc_mode_set_vga(crtc, adjusted_mode); /* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */ if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk); nv_crtc_mode_set_regs(crtc, adjusted_mode); nv_crtc_calc_state_ext(crtc, mode, adjusted_mode->clock); return 0; } static void nv_crtc_save(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nv04_mode_state *state = &nv04_display(dev)->mode_reg; struct nv04_crtc_reg *crtc_state = &state->crtc_reg[nv_crtc->index]; struct nv04_mode_state *saved = &nv04_display(dev)->saved_reg; struct nv04_crtc_reg *crtc_saved = &saved->crtc_reg[nv_crtc->index]; if (nv_two_heads(crtc->dev)) NVSetOwner(crtc->dev, nv_crtc->index); nouveau_hw_save_state(crtc->dev, nv_crtc->index, saved); /* init some state to saved value */ state->sel_clk = saved->sel_clk & ~(0x5 << 16); crtc_state->CRTC[NV_CIO_CRE_LCD__INDEX] = crtc_saved->CRTC[NV_CIO_CRE_LCD__INDEX]; state->pllsel = saved->pllsel & ~(PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK); crtc_state->gpio_ext = crtc_saved->gpio_ext; } static void nv_crtc_restore(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; int head = nv_crtc->index; uint8_t saved_cr21 = nv04_display(dev)->saved_reg.crtc_reg[head].CRTC[NV_CIO_CRE_21]; if (nv_two_heads(crtc->dev)) NVSetOwner(crtc->dev, head); nouveau_hw_load_state(crtc->dev, head, &nv04_display(dev)->saved_reg); nv_lock_vga_crtc_shadow(crtc->dev, head, saved_cr21); nv_crtc->last_dpms = NV_DPMS_CLEARED; } static void nv_crtc_prepare(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); const struct drm_crtc_helper_funcs *funcs = crtc->helper_private; if (nv_two_heads(dev)) NVSetOwner(dev, nv_crtc->index); drm_crtc_vblank_off(crtc); funcs->dpms(crtc, DRM_MODE_DPMS_OFF); NVBlankScreen(dev, nv_crtc->index, true); /* Some more preparation. */ NVWriteCRTC(dev, nv_crtc->index, NV_PCRTC_CONFIG, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA); if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) { uint32_t reg900 = NVReadRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900); NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900, reg900 & ~0x10000); } } static void nv_crtc_commit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; const struct drm_crtc_helper_funcs *funcs = crtc->helper_private; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nouveau_hw_load_state(dev, nv_crtc->index, &nv04_display(dev)->mode_reg); nv04_crtc_mode_set_base(crtc, crtc->x, crtc->y, NULL); #ifdef __BIG_ENDIAN /* turn on LFB swapping */ { uint8_t tmp = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR); tmp |= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG); NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR, tmp); } #endif funcs->dpms(crtc, DRM_MODE_DPMS_ON); drm_crtc_vblank_on(crtc); } static void nv_crtc_destroy(struct drm_crtc *crtc) { struct nv04_display *disp = nv04_display(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); if (!nv_crtc) return; drm_crtc_cleanup(crtc); if (disp->image[nv_crtc->index]) nouveau_bo_unpin(disp->image[nv_crtc->index]); nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]); nouveau_bo_unmap(nv_crtc->cursor.nvbo); nouveau_bo_unpin(nv_crtc->cursor.nvbo); nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); nvif_event_dtor(&nv_crtc->vblank); nvif_head_dtor(&nv_crtc->head); kfree(nv_crtc); } static void nv_crtc_gamma_load(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = nv_crtc->base.dev; struct rgb { uint8_t r, g, b; } __attribute__((packed)) *rgbs; u16 *r, *g, *b; int i; rgbs = (struct rgb *)nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].DAC; r = crtc->gamma_store; g = r + crtc->gamma_size; b = g + crtc->gamma_size; for (i = 0; i < 256; i++) { rgbs[i].r = *r++ >> 8; rgbs[i].g = *g++ >> 8; rgbs[i].b = *b++ >> 8; } nouveau_hw_load_state_palette(dev, nv_crtc->index, &nv04_display(dev)->mode_reg); } static void nv_crtc_disable(struct drm_crtc *crtc) { struct nv04_display *disp = nv04_display(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); if (disp->image[nv_crtc->index]) nouveau_bo_unpin(disp->image[nv_crtc->index]); nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]); } static int nv_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t size, struct drm_modeset_acquire_ctx *ctx) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); /* We need to know the depth before we upload, but it's possible to * get called before a framebuffer is bound. If this is the case, * mark the lut values as dirty by setting depth==0, and it'll be * uploaded on the first mode_set_base() */ if (!nv_crtc->base.primary->fb) { nv_crtc->lut.depth = 0; return 0; } nv_crtc_gamma_load(crtc); return 0; } static int nv04_crtc_do_mode_set_base(struct drm_crtc *crtc, struct drm_framebuffer *passed_fb, int x, int y, bool atomic) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; struct nouveau_bo *nvbo; struct drm_framebuffer *drm_fb; int arb_burst, arb_lwm; NV_DEBUG(drm, "index %d\n", nv_crtc->index); /* no fb bound */ if (!atomic && !crtc->primary->fb) { NV_DEBUG(drm, "No FB bound\n"); return 0; } /* If atomic, we want to switch to the fb we were passed, so * now we update pointers to do that. */ if (atomic) { drm_fb = passed_fb; } else { drm_fb = crtc->primary->fb; } nvbo = nouveau_gem_object(drm_fb->obj[0]); nv_crtc->fb.offset = nvbo->offset; if (nv_crtc->lut.depth != drm_fb->format->depth) { nv_crtc->lut.depth = drm_fb->format->depth; nv_crtc_gamma_load(crtc); } /* Update the framebuffer format. */ regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] &= ~3; regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (drm_fb->format->depth + 1) / 8; regp->ramdac_gen_ctrl &= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL; if (drm_fb->format->depth == 16) regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_PIXEL_INDEX); NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl); regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = drm_fb->pitches[0] >> 3; regp->CRTC[NV_CIO_CRE_RPC0_INDEX] = XLATE(drm_fb->pitches[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8); regp->CRTC[NV_CIO_CRE_42] = XLATE(drm_fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11); crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_RPC0_INDEX); crtc_wr_cio_state(crtc, regp, NV_CIO_CR_OFFSET_INDEX); crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_42); /* Update the framebuffer location. */ regp->fb_start = nv_crtc->fb.offset & ~3; regp->fb_start += (y * drm_fb->pitches[0]) + (x * drm_fb->format->cpp[0]); nv_set_crtc_base(dev, nv_crtc->index, regp->fb_start); /* Update the arbitration parameters. */ nouveau_calc_arb(dev, crtc->mode.clock, drm_fb->format->cpp[0] * 8, &arb_burst, &arb_lwm); regp->CRTC[NV_CIO_CRE_FF_INDEX] = arb_burst; regp->CRTC[NV_CIO_CRE_FFLWM__INDEX] = arb_lwm & 0xff; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FF_INDEX); crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FFLWM__INDEX); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_KELVIN) { regp->CRTC[NV_CIO_CRE_47] = arb_lwm >> 8; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_47); } return 0; } static int nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { int ret = nv_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; return nv04_crtc_do_mode_set_base(crtc, old_fb, x, y, false); } static int nv04_crtc_mode_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { return nv04_crtc_do_mode_set_base(crtc, fb, x, y, true); } static void nv04_cursor_upload(struct drm_device *dev, struct nouveau_bo *src, struct nouveau_bo *dst) { int width = nv_cursor_width(dev); uint32_t pixel; int i, j; for (i = 0; i < width; i++) { for (j = 0; j < width; j++) { pixel = nouveau_bo_rd32(src, i*64 + j); nouveau_bo_wr16(dst, i*width + j, (pixel & 0x80000000) >> 16 | (pixel & 0xf80000) >> 9 | (pixel & 0xf800) >> 6 | (pixel & 0xf8) >> 3); } } } static void nv11_cursor_upload(struct drm_device *dev, struct nouveau_bo *src, struct nouveau_bo *dst) { uint32_t pixel; int alpha, i; /* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha * cursors (though NPM in combination with fp dithering may not work on * nv11, from "nv" driver history) * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the * blob uses, however we get given PM cursors so we use PM mode */ for (i = 0; i < 64 * 64; i++) { pixel = nouveau_bo_rd32(src, i); /* hw gets unhappy if alpha <= rgb values. for a PM image "less * than" shouldn't happen; fix "equal to" case by adding one to * alpha channel (slightly inaccurate, but so is attempting to * get back to NPM images, due to limits of integer precision) */ alpha = pixel >> 24; if (alpha > 0 && alpha < 255) pixel = (pixel & 0x00ffffff) | ((alpha + 1) << 24); #ifdef __BIG_ENDIAN { struct nouveau_drm *drm = nouveau_drm(dev); if (drm->client.device.info.chipset == 0x11) { pixel = ((pixel & 0x000000ff) << 24) | ((pixel & 0x0000ff00) << 8) | ((pixel & 0x00ff0000) >> 8) | ((pixel & 0xff000000) >> 24); } } #endif nouveau_bo_wr32(dst, i, pixel); } } static int nv04_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t buffer_handle, uint32_t width, uint32_t height) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct drm_device *dev = drm->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_bo *cursor = NULL; struct drm_gem_object *gem; int ret = 0; if (!buffer_handle) { nv_crtc->cursor.hide(nv_crtc, true); return 0; } if (width != 64 || height != 64) return -EINVAL; gem = drm_gem_object_lookup(file_priv, buffer_handle); if (!gem) return -ENOENT; cursor = nouveau_gem_object(gem); ret = nouveau_bo_map(cursor); if (ret) goto out; if (drm->client.device.info.chipset >= 0x11) nv11_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo); else nv04_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo); nouveau_bo_unmap(cursor); nv_crtc->cursor.offset = nv_crtc->cursor.nvbo->offset; nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset); nv_crtc->cursor.show(nv_crtc, true); out: drm_gem_object_put(gem); return ret; } static int nv04_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nv_crtc->cursor.set_pos(nv_crtc, x, y); return 0; } struct nv04_page_flip_state { struct list_head head; struct drm_pending_vblank_event *event; struct drm_crtc *crtc; int bpp, pitch; u64 offset; }; static int nv04_finish_page_flip(struct nouveau_channel *chan, struct nv04_page_flip_state *ps) { struct nouveau_fence_chan *fctx = chan->fence; struct nouveau_drm *drm = chan->drm; struct drm_device *dev = drm->dev; struct nv04_page_flip_state *s; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (list_empty(&fctx->flip)) { NV_ERROR(drm, "unexpected pageflip\n"); spin_unlock_irqrestore(&dev->event_lock, flags); return -EINVAL; } s = list_first_entry(&fctx->flip, struct nv04_page_flip_state, head); if (s->event) { drm_crtc_arm_vblank_event(s->crtc, s->event); } else { /* Give up ownership of vblank for page-flipped crtc */ drm_crtc_vblank_put(s->crtc); } list_del(&s->head); if (ps) *ps = *s; kfree(s); spin_unlock_irqrestore(&dev->event_lock, flags); return 0; } int nv04_flip_complete(struct nvif_event *event, void *argv, u32 argc) { struct nv04_display *disp = container_of(event, typeof(*disp), flip); struct nouveau_drm *drm = disp->drm; struct nouveau_channel *chan = drm->channel; struct nv04_page_flip_state state; if (!nv04_finish_page_flip(chan, &state)) { nv_set_crtc_base(drm->dev, drm_crtc_index(state.crtc), state.offset + state.crtc->y * state.pitch + state.crtc->x * state.bpp / 8); } return NVIF_EVENT_KEEP; } static int nv04_page_flip_emit(struct nouveau_channel *chan, struct nouveau_bo *old_bo, struct nouveau_bo *new_bo, struct nv04_page_flip_state *s, struct nouveau_fence **pfence) { struct nouveau_fence_chan *fctx = chan->fence; struct nouveau_drm *drm = chan->drm; struct drm_device *dev = drm->dev; struct nvif_push *push = chan->chan.push; unsigned long flags; int ret; /* Queue it to the pending list */ spin_lock_irqsave(&dev->event_lock, flags); list_add_tail(&s->head, &fctx->flip); spin_unlock_irqrestore(&dev->event_lock, flags); /* Synchronize with the old framebuffer */ ret = nouveau_fence_sync(old_bo, chan, false, false); if (ret) goto fail; /* Emit the pageflip */ ret = PUSH_WAIT(push, 2); if (ret) goto fail; PUSH_NVSQ(push, NV_SW, NV_SW_PAGE_FLIP, 0x00000000); PUSH_KICK(push); ret = nouveau_fence_new(pfence, chan); if (ret) goto fail; return 0; fail: spin_lock_irqsave(&dev->event_lock, flags); list_del(&s->head); spin_unlock_irqrestore(&dev->event_lock, flags); return ret; } static int nv04_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, u32 flags, struct drm_modeset_acquire_ctx *ctx) { const int swap_interval = (flags & DRM_MODE_PAGE_FLIP_ASYNC) ? 0 : 1; struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct drm_framebuffer *old_fb = crtc->primary->fb; struct nouveau_bo *old_bo = nouveau_gem_object(old_fb->obj[0]); struct nouveau_bo *new_bo = nouveau_gem_object(fb->obj[0]); struct nv04_page_flip_state *s; struct nouveau_channel *chan; struct nouveau_cli *cli; struct nouveau_fence *fence; struct nv04_display *dispnv04 = nv04_display(dev); struct nvif_push *push; int head = nouveau_crtc(crtc)->index; int ret; chan = drm->channel; if (!chan) return -ENODEV; cli = (void *)chan->user.client; push = chan->chan.push; s = kzalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; if (new_bo != old_bo) { ret = nouveau_bo_pin(new_bo, NOUVEAU_GEM_DOMAIN_VRAM, true); if (ret) goto fail_free; } mutex_lock(&cli->mutex); ret = ttm_bo_reserve(&new_bo->bo, true, false, NULL); if (ret) goto fail_unpin; /* synchronise rendering channel with the kernel's channel */ ret = nouveau_fence_sync(new_bo, chan, false, true); if (ret) { ttm_bo_unreserve(&new_bo->bo); goto fail_unpin; } if (new_bo != old_bo) { ttm_bo_unreserve(&new_bo->bo); ret = ttm_bo_reserve(&old_bo->bo, true, false, NULL); if (ret) goto fail_unpin; } /* Initialize a page flip struct */ *s = (struct nv04_page_flip_state) { { }, event, crtc, fb->format->cpp[0] * 8, fb->pitches[0], new_bo->offset }; /* Keep vblanks on during flip, for the target crtc of this flip */ drm_crtc_vblank_get(crtc); /* Emit a page flip */ if (swap_interval) { ret = PUSH_WAIT(push, 8); if (ret) goto fail_unreserve; PUSH_NVSQ(push, NV05F, 0x012c, 0); PUSH_NVSQ(push, NV05F, 0x0134, head); PUSH_NVSQ(push, NV05F, 0x0100, 0); PUSH_NVSQ(push, NV05F, 0x0130, 0); } nouveau_bo_ref(new_bo, &dispnv04->image[head]); ret = nv04_page_flip_emit(chan, old_bo, new_bo, s, &fence); if (ret) goto fail_unreserve; mutex_unlock(&cli->mutex); /* Update the crtc struct and cleanup */ crtc->primary->fb = fb; nouveau_bo_fence(old_bo, fence, false); ttm_bo_unreserve(&old_bo->bo); if (old_bo != new_bo) nouveau_bo_unpin(old_bo); nouveau_fence_unref(&fence); return 0; fail_unreserve: drm_crtc_vblank_put(crtc); ttm_bo_unreserve(&old_bo->bo); fail_unpin: mutex_unlock(&cli->mutex); if (old_bo != new_bo) nouveau_bo_unpin(new_bo); fail_free: kfree(s); return ret; } static const struct drm_crtc_funcs nv04_crtc_funcs = { .cursor_set = nv04_crtc_cursor_set, .cursor_move = nv04_crtc_cursor_move, .gamma_set = nv_crtc_gamma_set, .set_config = drm_crtc_helper_set_config, .page_flip = nv04_crtc_page_flip, .destroy = nv_crtc_destroy, .enable_vblank = nouveau_display_vblank_enable, .disable_vblank = nouveau_display_vblank_disable, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, }; static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs = { .dpms = nv_crtc_dpms, .prepare = nv_crtc_prepare, .commit = nv_crtc_commit, .mode_set = nv_crtc_mode_set, .mode_set_base = nv04_crtc_mode_set_base, .mode_set_base_atomic = nv04_crtc_mode_set_base_atomic, .disable = nv_crtc_disable, .get_scanout_position = nouveau_display_scanoutpos, }; static const uint32_t modeset_formats[] = { DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB1555, }; static const struct drm_plane_funcs nv04_primary_plane_funcs = { DRM_PLANE_NON_ATOMIC_FUNCS, }; static int nv04_crtc_vblank_handler(struct nvif_event *event, void *repv, u32 repc) { struct nouveau_crtc *nv_crtc = container_of(event, struct nouveau_crtc, vblank); drm_crtc_handle_vblank(&nv_crtc->base); return NVIF_EVENT_KEEP; } int nv04_crtc_create(struct drm_device *dev, int crtc_num) { struct nouveau_display *disp = nouveau_display(dev); struct nouveau_crtc *nv_crtc; struct drm_plane *primary; int ret; nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL); if (!nv_crtc) return -ENOMEM; nv_crtc->lut.depth = 0; nv_crtc->index = crtc_num; nv_crtc->last_dpms = NV_DPMS_CLEARED; nv_crtc->save = nv_crtc_save; nv_crtc->restore = nv_crtc_restore; primary = __drm_universal_plane_alloc(dev, sizeof(*primary), 0, 0, &nv04_primary_plane_funcs, modeset_formats, ARRAY_SIZE(modeset_formats), NULL, DRM_PLANE_TYPE_PRIMARY, NULL); if (IS_ERR(primary)) { ret = PTR_ERR(primary); kfree(nv_crtc); return ret; } drm_crtc_init_with_planes(dev, &nv_crtc->base, primary, NULL, &nv04_crtc_funcs, NULL); drm_crtc_helper_add(&nv_crtc->base, &nv04_crtc_helper_funcs); drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256); ret = nouveau_bo_new(&nouveau_drm(dev)->client, 64*64*4, 0x100, NOUVEAU_GEM_DOMAIN_VRAM, 0, 0x0000, NULL, NULL, &nv_crtc->cursor.nvbo); if (!ret) { ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, NOUVEAU_GEM_DOMAIN_VRAM, false); if (!ret) { ret = nouveau_bo_map(nv_crtc->cursor.nvbo); if (ret) nouveau_bo_unpin(nv_crtc->cursor.nvbo); } if (ret) nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); } nv04_cursor_init(nv_crtc); ret = nvif_head_ctor(&disp->disp, nv_crtc->base.name, nv_crtc->index, &nv_crtc->head); if (ret) return ret; return nvif_head_vblank_event_ctor(&nv_crtc->head, "kmsVbl", nv04_crtc_vblank_handler, false, &nv_crtc->vblank); }
linux-master
drivers/gpu/drm/nouveau/dispnv04/crtc.c
/* * Copyright 1993-2003 NVIDIA, Corporation * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "nouveau_drv.h" #include "nouveau_reg.h" #include "hw.h" /****************************************************************************\ * * * The video arbitration routines calculate some "magic" numbers. Fixes * * the snow seen when accessing the framebuffer without it. * * It just works (I hope). * * * \****************************************************************************/ struct nv_fifo_info { int lwm; int burst; }; struct nv_sim_state { int pclk_khz; int mclk_khz; int nvclk_khz; int bpp; int mem_page_miss; int mem_latency; int memory_type; int memory_width; int two_heads; }; static void nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) { int pagemiss, cas, bpp; int nvclks, mclks, crtpagemiss; int found, mclk_extra, mclk_loop, cbs, m1, p1; int mclk_freq, pclk_freq, nvclk_freq; int us_m, us_n, us_p, crtc_drain_rate; int cpm_us, us_crt, clwm; pclk_freq = arb->pclk_khz; mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; cas = arb->mem_latency; bpp = arb->bpp; cbs = 128; nvclks = 10; mclks = 13 + cas; mclk_extra = 3; found = 0; while (!found) { found = 1; mclk_loop = mclks + mclk_extra; us_m = mclk_loop * 1000 * 1000 / mclk_freq; us_n = nvclks * 1000 * 1000 / nvclk_freq; us_p = nvclks * 1000 * 1000 / pclk_freq; crtc_drain_rate = pclk_freq * bpp / 8; crtpagemiss = 2; crtpagemiss += 1; cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; us_crt = cpm_us + us_m + us_n + us_p; clwm = us_crt * crtc_drain_rate / (1000 * 1000); clwm++; m1 = clwm + cbs - 512; p1 = m1 * pclk_freq / mclk_freq; p1 = p1 * bpp / 8; if ((p1 < m1 && m1 > 0) || clwm > 519) { found = !mclk_extra; mclk_extra--; } if (clwm < 384) clwm = 384; fifo->lwm = clwm; fifo->burst = cbs; } } static void nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) { int fill_rate, drain_rate; int pclks, nvclks, mclks, xclks; int pclk_freq, nvclk_freq, mclk_freq; int fill_lat, extra_lat; int max_burst_o, max_burst_l; int fifo_len, min_lwm, max_lwm; const int burst_lat = 80; /* Maximum allowable latency due * to the CRTC FIFO burst. (ns) */ pclk_freq = arb->pclk_khz; nvclk_freq = arb->nvclk_khz; mclk_freq = arb->mclk_khz; fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */ drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */ fifo_len = arb->two_heads ? 1536 : 1024; /* B */ /* Fixed FIFO refill latency. */ pclks = 4; /* lwm detect. */ nvclks = 3 /* lwm -> sync. */ + 2 /* fbi bus cycles (1 req + 1 busy) */ + 1 /* 2 edge sync. may be very close to edge so * just put one. */ + 1 /* fbi_d_rdv_n */ + 1 /* Fbi_d_rdata */ + 1; /* crtfifo load */ mclks = 1 /* 2 edge sync. may be very close to edge so * just put one. */ + 1 /* arb_hp_req */ + 5 /* tiling pipeline */ + 2 /* latency fifo */ + 2 /* memory request to fbio block */ + 7; /* data returned from fbio block */ /* Need to accumulate 256 bits for read */ mclks += (arb->memory_type == 0 ? 2 : 1) * arb->memory_width / 32; fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */ + nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */ + pclks * 1000 * 1000 / pclk_freq; /* pclk latency */ /* Conditional FIFO refill latency. */ xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to * the overlay. */ + 2 * arb->mem_page_miss /* Extra pagemiss latency. */ + (arb->bpp == 32 ? 8 : 4); /* Margin of error. */ extra_lat = xclks * 1000 * 1000 / mclk_freq; if (arb->two_heads) /* Account for another CRTC. */ extra_lat += fill_lat + extra_lat + burst_lat; /* FIFO burst */ /* Max burst not leading to overflows. */ max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000)) * (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000); fifo->burst = min(max_burst_o, 1024); /* Max burst value with an acceptable latency. */ max_burst_l = burst_lat * fill_rate / (1000 * 1000); fifo->burst = min(max_burst_l, fifo->burst); fifo->burst = rounddown_pow_of_two(fifo->burst); /* FIFO low watermark */ min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1; max_lwm = fifo_len - fifo->burst + fill_lat * drain_rate / (1000 * 1000) + fifo->burst * drain_rate / fill_rate; fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */ } static void nv04_update_arb(struct drm_device *dev, int VClk, int bpp, int *burst, int *lwm) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_object *device = &nouveau_drm(dev)->client.device.object; struct nv_fifo_info fifo_data; struct nv_sim_state sim_data; int MClk = nouveau_hw_get_clock(dev, PLL_MEMORY); int NVClk = nouveau_hw_get_clock(dev, PLL_CORE); uint32_t cfg1 = nvif_rd32(device, NV04_PFB_CFG1); struct pci_dev *pdev = to_pci_dev(dev->dev); sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; sim_data.bpp = bpp; sim_data.two_heads = nv_two_heads(dev); if ((pdev->device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ || (pdev->device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) { uint32_t type; int domain = pci_domain_nr(pdev->bus); pci_read_config_dword(pci_get_domain_bus_and_slot(domain, 0, 1), 0x7c, &type); sim_data.memory_type = (type >> 12) & 1; sim_data.memory_width = 64; sim_data.mem_latency = 3; sim_data.mem_page_miss = 10; } else { sim_data.memory_type = nvif_rd32(device, NV04_PFB_CFG0) & 0x1; sim_data.memory_width = (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64; sim_data.mem_latency = cfg1 & 0xf; sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1); } if (drm->client.device.info.family == NV_DEVICE_INFO_V0_TNT) nv04_calc_arb(&fifo_data, &sim_data); else nv10_calc_arb(&fifo_data, &sim_data); *burst = ilog2(fifo_data.burst >> 4); *lwm = fifo_data.lwm >> 3; } static void nv20_update_arb(int *burst, int *lwm) { unsigned int fifo_size, burst_size, graphics_lwm; fifo_size = 2048; burst_size = 512; graphics_lwm = fifo_size - burst_size; *burst = ilog2(burst_size >> 5); *lwm = graphics_lwm >> 3; } void nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm) { struct nouveau_drm *drm = nouveau_drm(dev); struct pci_dev *pdev = to_pci_dev(dev->dev); if (drm->client.device.info.family < NV_DEVICE_INFO_V0_KELVIN) nv04_update_arb(dev, vclk, bpp, burst, lwm); else if ((pdev->device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ || (pdev->device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) { *burst = 128; *lwm = 0x0480; } else nv20_update_arb(burst, lwm); }
linux-master
drivers/gpu/drm/nouveau/dispnv04/arb.c
/* * Copyright (C) 2009 Francisco Jerez. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "nouveau_drv.h" #include "nouveau_reg.h" #include "nouveau_encoder.h" #include "nouveau_connector.h" #include "nouveau_crtc.h" #include "hw.h" #include <drm/drm_modeset_helper_vtables.h> #include <drm/i2c/ch7006.h> static struct nvkm_i2c_bus_probe nv04_tv_encoder_info[] = { { { I2C_BOARD_INFO("ch7006", 0x75), .platform_data = &(struct ch7006_encoder_params) { CH7006_FORMAT_RGB24m12I, CH7006_CLOCK_MASTER, 0, 0, 0, CH7006_SYNC_SLAVE, CH7006_SYNC_SEPARATED, CH7006_POUT_3_3V, CH7006_ACTIVE_HSYNC } }, 0 }, { } }; int nv04_tv_identify(struct drm_device *dev, int i2c_index) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, i2c_index); if (bus) { return nvkm_i2c_bus_probe(bus, "TV encoder", nv04_tv_encoder_info, NULL, NULL); } return -ENODEV; } #define PLLSEL_TV_CRTC1_MASK \ (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \ | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1) #define PLLSEL_TV_CRTC2_MASK \ (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \ | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2) static void nv04_tv_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv04_mode_state *state = &nv04_display(dev)->mode_reg; uint8_t crtc1A; NV_DEBUG(drm, "Setting dpms mode %d on TV encoder (output %d)\n", mode, nv_encoder->dcb->index); state->pllsel &= ~(PLLSEL_TV_CRTC1_MASK | PLLSEL_TV_CRTC2_MASK); if (mode == DRM_MODE_DPMS_ON) { int head = nouveau_crtc(encoder->crtc)->index; crtc1A = NVReadVgaCrtc(dev, head, NV_CIO_CRE_RPC1_INDEX); state->pllsel |= head ? PLLSEL_TV_CRTC2_MASK : PLLSEL_TV_CRTC1_MASK; /* Inhibit hsync */ crtc1A |= 0x80; NVWriteVgaCrtc(dev, head, NV_CIO_CRE_RPC1_INDEX, crtc1A); } NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel); get_slave_funcs(encoder)->dpms(encoder, mode); } static void nv04_tv_bind(struct drm_device *dev, int head, bool bind) { struct nv04_crtc_reg *state = &nv04_display(dev)->mode_reg.crtc_reg[head]; state->tv_setup = 0; if (bind) state->CRTC[NV_CIO_CRE_49] |= 0x10; else state->CRTC[NV_CIO_CRE_49] &= ~0x10; NVWriteVgaCrtc(dev, head, NV_CIO_CRE_LCD__INDEX, state->CRTC[NV_CIO_CRE_LCD__INDEX]); NVWriteVgaCrtc(dev, head, NV_CIO_CRE_49, state->CRTC[NV_CIO_CRE_49]); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, state->tv_setup); } static void nv04_tv_prepare(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; int head = nouveau_crtc(encoder->crtc)->index; const struct drm_encoder_helper_funcs *helper = encoder->helper_private; helper->dpms(encoder, DRM_MODE_DPMS_OFF); nv04_dfp_disable(dev, head); if (nv_two_heads(dev)) nv04_tv_bind(dev, head ^ 1, false); nv04_tv_bind(dev, head, true); } static void nv04_tv_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; regp->tv_htotal = adjusted_mode->htotal; regp->tv_vtotal = adjusted_mode->vtotal; /* These delay the TV signals with respect to the VGA port, * they might be useful if we ever allow a CRTC to drive * multiple outputs. */ regp->tv_hskew = 1; regp->tv_hsync_delay = 1; regp->tv_hsync_delay2 = 64; regp->tv_vskew = 1; regp->tv_vsync_delay = 1; get_slave_funcs(encoder)->mode_set(encoder, mode, adjusted_mode); } static void nv04_tv_commit(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); const struct drm_encoder_helper_funcs *helper = encoder->helper_private; helper->dpms(encoder, DRM_MODE_DPMS_ON); NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n", nv04_encoder_get_connector(nv_encoder)->base.name, nv_crtc->index, '@' + ffs(nv_encoder->dcb->or)); } static void nv04_tv_destroy(struct drm_encoder *encoder) { get_slave_funcs(encoder)->destroy(encoder); drm_encoder_cleanup(encoder); kfree(encoder->helper_private); kfree(nouveau_encoder(encoder)); } static const struct drm_encoder_funcs nv04_tv_funcs = { .destroy = nv04_tv_destroy, }; static const struct drm_encoder_helper_funcs nv04_tv_helper_funcs = { .dpms = nv04_tv_dpms, .mode_fixup = drm_i2c_encoder_mode_fixup, .prepare = nv04_tv_prepare, .commit = nv04_tv_commit, .mode_set = nv04_tv_mode_set, .detect = drm_i2c_encoder_detect, }; int nv04_tv_create(struct drm_connector *connector, struct dcb_output *entry) { struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; struct drm_device *dev = connector->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, entry->i2c_index); int type, ret; /* Ensure that we can talk to this encoder */ type = nv04_tv_identify(dev, entry->i2c_index); if (type < 0) return type; /* Allocate the necessary memory */ nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; /* Initialize the common members */ encoder = to_drm_encoder(nv_encoder); drm_encoder_init(dev, encoder, &nv04_tv_funcs, DRM_MODE_ENCODER_TVDAC, NULL); drm_encoder_helper_add(encoder, &nv04_tv_helper_funcs); nv_encoder->enc_save = drm_i2c_encoder_save; nv_encoder->enc_restore = drm_i2c_encoder_restore; encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; nv_encoder->dcb = entry; nv_encoder->or = ffs(entry->or) - 1; /* Run the slave-specific initialization */ ret = drm_i2c_encoder_init(dev, to_encoder_slave(encoder), &bus->i2c, &nv04_tv_encoder_info[type].dev); if (ret < 0) goto fail_cleanup; /* Attach it to the specified connector. */ get_slave_funcs(encoder)->create_resources(encoder, connector); drm_connector_attach_encoder(connector, encoder); return 0; fail_cleanup: drm_encoder_cleanup(encoder); kfree(nv_encoder); return ret; }
linux-master
drivers/gpu/drm/nouveau/dispnv04/tvnv04.c
/* * Copyright 2006 Dave Airlie * Copyright 2007 Maarten Maathuis * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "nouveau_drv.h" #include "hw.h" #include <subdev/bios/pll.h> #include <nvif/timer.h> #define CHIPSET_NFORCE 0x01a0 #define CHIPSET_NFORCE2 0x01f0 /* * misc hw access wrappers/control functions */ void NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value) { NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index); NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value); } uint8_t NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index) { NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index); return NVReadPRMVIO(dev, head, NV_PRMVIO_SR); } void NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value) { NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index); NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value); } uint8_t NVReadVgaGr(struct drm_device *dev, int head, uint8_t index) { NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index); return NVReadPRMVIO(dev, head, NV_PRMVIO_GX); } /* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied) * it affects only the 8 bit vga io regs, which we access using mmio at * 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d* * in general, the set value of cr44 does not matter: reg access works as * expected and values can be set for the appropriate head by using a 0x2000 * offset as required * however: * a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and * cr44 must be set to 0 or 3 for accessing values on the correct head * through the common 0xc03c* addresses * b) in tied mode (4) head B is programmed to the values set on head A, and * access using the head B addresses can have strange results, ergo we leave * tied mode in init once we know to what cr44 should be restored on exit * * the owner parameter is slightly abused: * 0 and 1 are treated as head values and so the set value is (owner * 3) * other values are treated as literal values to set */ void NVSetOwner(struct drm_device *dev, int owner) { struct nouveau_drm *drm = nouveau_drm(dev); if (owner == 1) owner *= 3; if (drm->client.device.info.chipset == 0x11) { /* This might seem stupid, but the blob does it and * omitting it often locks the system up. */ NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX); NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX); } /* CR44 is always changed on CRTC0 */ NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner); if (drm->client.device.info.chipset == 0x11) { /* set me harder */ NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner); NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner); } } void NVBlankScreen(struct drm_device *dev, int head, bool blank) { unsigned char seq1; if (nv_two_heads(dev)) NVSetOwner(dev, head); seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX); NVVgaSeqReset(dev, head, true); if (blank) NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20); else NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20); NVVgaSeqReset(dev, head, false); } /* * PLL getting */ static void nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1, uint32_t pll2, struct nvkm_pll_vals *pllvals) { struct nouveau_drm *drm = nouveau_drm(dev); /* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */ /* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */ pllvals->log2P = (pll1 >> 16) & 0x7; pllvals->N2 = pllvals->M2 = 1; if (reg1 <= 0x405c) { pllvals->NM1 = pll2 & 0xffff; /* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */ if (!(pll1 & 0x1100)) pllvals->NM2 = pll2 >> 16; } else { pllvals->NM1 = pll1 & 0xffff; if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2) pllvals->NM2 = pll2 & 0xffff; else if (drm->client.device.info.chipset == 0x30 || drm->client.device.info.chipset == 0x35) { pllvals->M1 &= 0xf; /* only 4 bits */ if (pll1 & NV30_RAMDAC_ENABLE_VCO2) { pllvals->M2 = (pll1 >> 4) & 0x7; pllvals->N2 = ((pll1 >> 21) & 0x18) | ((pll1 >> 19) & 0x7); } } } } int nouveau_hw_get_pllvals(struct drm_device *dev, enum nvbios_pll_type plltype, struct nvkm_pll_vals *pllvals) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_object *device = &drm->client.device.object; struct nvkm_bios *bios = nvxx_bios(&drm->client.device); uint32_t reg1, pll1, pll2 = 0; struct nvbios_pll pll_lim; int ret; ret = nvbios_pll_parse(bios, plltype, &pll_lim); if (ret || !(reg1 = pll_lim.reg)) return -ENOENT; pll1 = nvif_rd32(device, reg1); if (reg1 <= 0x405c) pll2 = nvif_rd32(device, reg1 + 4); else if (nv_two_reg_pll(dev)) { uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70); pll2 = nvif_rd32(device, reg2); } if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS && reg1 >= NV_PRAMDAC_VPLL_COEFF) { uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580); /* check whether vpll has been forced into single stage mode */ if (reg1 == NV_PRAMDAC_VPLL_COEFF) { if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE) pll2 = 0; } else if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE) pll2 = 0; } nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals); pllvals->refclk = pll_lim.refclk; return 0; } int nouveau_hw_pllvals_to_clk(struct nvkm_pll_vals *pv) { /* Avoid divide by zero if called at an inappropriate time */ if (!pv->M1 || !pv->M2) return 0; return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P; } int nouveau_hw_get_clock(struct drm_device *dev, enum nvbios_pll_type plltype) { struct pci_dev *pdev = to_pci_dev(dev->dev); struct nvkm_pll_vals pllvals; int ret; int domain; domain = pci_domain_nr(pdev->bus); if (plltype == PLL_MEMORY && (pdev->device & 0x0ff0) == CHIPSET_NFORCE) { uint32_t mpllP; pci_read_config_dword(pci_get_domain_bus_and_slot(domain, 0, 3), 0x6c, &mpllP); mpllP = (mpllP >> 8) & 0xf; if (!mpllP) mpllP = 4; return 400000 / mpllP; } else if (plltype == PLL_MEMORY && (pdev->device & 0xff0) == CHIPSET_NFORCE2) { uint32_t clock; pci_read_config_dword(pci_get_domain_bus_and_slot(domain, 0, 5), 0x4c, &clock); return clock / 1000; } ret = nouveau_hw_get_pllvals(dev, plltype, &pllvals); if (ret) return ret; return nouveau_hw_pllvals_to_clk(&pllvals); } static void nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head) { /* the vpll on an unused head can come up with a random value, way * beyond the pll limits. for some reason this causes the chip to * lock up when reading the dac palette regs, so set a valid pll here * when such a condition detected. only seen on nv11 to date */ struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &drm->client.device; struct nvkm_clk *clk = nvxx_clk(device); struct nvkm_bios *bios = nvxx_bios(device); struct nvbios_pll pll_lim; struct nvkm_pll_vals pv; enum nvbios_pll_type pll = head ? PLL_VPLL1 : PLL_VPLL0; if (nvbios_pll_parse(bios, pll, &pll_lim)) return; nouveau_hw_get_pllvals(dev, pll, &pv); if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m && pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n && pv.log2P <= pll_lim.max_p) return; NV_WARN(drm, "VPLL %d outwith limits, attempting to fix\n", head + 1); /* set lowest clock within static limits */ pv.M1 = pll_lim.vco1.max_m; pv.N1 = pll_lim.vco1.min_n; pv.log2P = pll_lim.max_p_usable; clk->pll_prog(clk, pll_lim.reg, &pv); } /* * vga font save/restore */ static void nouveau_vga_font_io(struct drm_device *dev, void __iomem *iovram, bool save, unsigned plane) { unsigned i; NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane); NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane); for (i = 0; i < 16384; i++) { if (save) { nv04_display(dev)->saved_vga_font[plane][i] = ioread32_native(iovram + i * 4); } else { iowrite32_native(nv04_display(dev)->saved_vga_font[plane][i], iovram + i * 4); } } } void nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save) { struct nouveau_drm *drm = nouveau_drm(dev); struct pci_dev *pdev = to_pci_dev(dev->dev); uint8_t misc, gr4, gr5, gr6, seq2, seq4; bool graphicsmode; unsigned plane; void __iomem *iovram; if (nv_two_heads(dev)) NVSetOwner(dev, 0); NVSetEnablePalette(dev, 0, true); graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1; NVSetEnablePalette(dev, 0, false); if (graphicsmode) /* graphics mode => framebuffer => no need to save */ return; NV_INFO(drm, "%sing VGA fonts\n", save ? "Sav" : "Restor"); /* map first 64KiB of VRAM, holds VGA fonts etc */ iovram = ioremap(pci_resource_start(pdev, 1), 65536); if (!iovram) { NV_ERROR(drm, "Failed to map VRAM, " "cannot save/restore VGA fonts.\n"); return; } if (nv_two_heads(dev)) NVBlankScreen(dev, 1, true); NVBlankScreen(dev, 0, true); /* save control regs */ misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ); seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX); seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX); gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX); gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX); gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX); NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67); NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6); NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0); NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5); /* store font in planes 0..3 */ for (plane = 0; plane < 4; plane++) nouveau_vga_font_io(dev, iovram, save, plane); /* restore control regs */ NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc); NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4); NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5); NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6); NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2); NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4); if (nv_two_heads(dev)) NVBlankScreen(dev, 1, false); NVBlankScreen(dev, 0, false); iounmap(iovram); } /* * mode state save/load */ static void rd_cio_state(struct drm_device *dev, int head, struct nv04_crtc_reg *crtcstate, int index) { crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index); } static void wr_cio_state(struct drm_device *dev, int head, struct nv04_crtc_reg *crtcstate, int index) { NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]); } static void nv_save_state_ramdac(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv04_crtc_reg *regp = &state->crtc_reg[head]; int i; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC); nouveau_hw_get_pllvals(dev, head ? PLL_VPLL1 : PLL_VPLL0, &regp->pllvals); state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT); if (nv_two_heads(dev)) state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); if (drm->client.device.info.chipset == 0x11) regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11); regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL); if (nv_gf4_disp_arch(dev)) regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630); if (drm->client.device.info.chipset >= 0x30) regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634); regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP); regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL); regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW); regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY); regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL); regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW); regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY); regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2); for (i = 0; i < 7; i++) { uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4); regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg); regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20); } if (nv_gf4_disp_arch(dev)) { regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER); for (i = 0; i < 3; i++) { regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4); regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4); } } regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0); if (!nv_gf4_disp_arch(dev) && head == 0) { /* early chips don't allow access to PRAMDAC_TMDS_* without * the head A FPCLK on (nv11 even locks up) */ NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 & ~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK); } regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1); regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2); regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR); if (nv_gf4_disp_arch(dev)) regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0); if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) { regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20); regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24); regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34); for (i = 0; i < 38; i++) regp->ctv_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_CTV + 4*i); } } static void nv_load_state_ramdac(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_clk *clk = nvxx_clk(&drm->client.device); struct nv04_crtc_reg *regp = &state->crtc_reg[head]; uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF; int i; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync); clk->pll_prog(clk, pllreg, &regp->pllvals); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel); if (nv_two_heads(dev)) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk); if (drm->client.device.info.chipset == 0x11) NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither); NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl); if (nv_gf4_disp_arch(dev)) NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630); if (drm->client.device.info.chipset >= 0x30) NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2); for (i = 0; i < 7; i++) { uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4); NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]); NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]); } if (nv_gf4_disp_arch(dev)) { NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither); for (i = 0; i < 3; i++) { NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]); NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]); } } NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color); if (nv_gf4_disp_arch(dev)) NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0); if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) { NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20); NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24); NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34); for (i = 0; i < 38; i++) NVWriteRAMDAC(dev, head, NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]); } } static void nv_save_state_vga(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nv04_crtc_reg *regp = &state->crtc_reg[head]; int i; regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ); for (i = 0; i < 25; i++) rd_cio_state(dev, head, regp, i); NVSetEnablePalette(dev, head, true); for (i = 0; i < 21; i++) regp->Attribute[i] = NVReadVgaAttr(dev, head, i); NVSetEnablePalette(dev, head, false); for (i = 0; i < 9; i++) regp->Graphics[i] = NVReadVgaGr(dev, head, i); for (i = 0; i < 5; i++) regp->Sequencer[i] = NVReadVgaSeq(dev, head, i); } static void nv_load_state_vga(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nv04_crtc_reg *regp = &state->crtc_reg[head]; int i; NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg); for (i = 0; i < 5; i++) NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]); nv_lock_vga_crtc_base(dev, head, false); for (i = 0; i < 25; i++) wr_cio_state(dev, head, regp, i); nv_lock_vga_crtc_base(dev, head, true); for (i = 0; i < 9; i++) NVWriteVgaGr(dev, head, i, regp->Graphics[i]); NVSetEnablePalette(dev, head, true); for (i = 0; i < 21; i++) NVWriteVgaAttr(dev, head, i, regp->Attribute[i]); NVSetEnablePalette(dev, head, false); } static void nv_save_state_ext(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv04_crtc_reg *regp = &state->crtc_reg[head]; int i; rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_21); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_KELVIN) rd_cio_state(dev, head, regp, NV_CIO_CRE_47); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) rd_cio_state(dev, head, regp, 0x9f); rd_cio_state(dev, head, regp, NV_CIO_CRE_49); rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830); regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT); if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850); if (nv_two_heads(dev)) regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL); regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG); } regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG); rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX); rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB); rd_cio_state(dev, head, regp, NV_CIO_CRE_4B); rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY); } /* NV11 and NV20 don't have this, they stop at 0x52. */ if (nv_gf4_disp_arch(dev)) { rd_cio_state(dev, head, regp, NV_CIO_CRE_42); rd_cio_state(dev, head, regp, NV_CIO_CRE_53); rd_cio_state(dev, head, regp, NV_CIO_CRE_54); for (i = 0; i < 0x10; i++) regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i); rd_cio_state(dev, head, regp, NV_CIO_CRE_59); rd_cio_state(dev, head, regp, NV_CIO_CRE_5B); rd_cio_state(dev, head, regp, NV_CIO_CRE_85); rd_cio_state(dev, head, regp, NV_CIO_CRE_86); } regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START); } static void nv_load_state_ext(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_object *device = &drm->client.device.object; struct nv04_crtc_reg *regp = &state->crtc_reg[head]; uint32_t reg900; int i; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { if (nv_two_heads(dev)) /* setting ENGINE_CTRL (EC) *must* come before * CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in * EC that should not be overwritten by writing stale EC */ NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl); nvif_wr32(device, NV_PVIDEO_STOP, 1); nvif_wr32(device, NV_PVIDEO_INTR_EN, 0); nvif_wr32(device, NV_PVIDEO_OFFSET_BUFF(0), 0); nvif_wr32(device, NV_PVIDEO_OFFSET_BUFF(1), 0); nvif_wr32(device, NV_PVIDEO_LIMIT(0), drm->client.device.info.ram_size - 1); nvif_wr32(device, NV_PVIDEO_LIMIT(1), drm->client.device.info.ram_size - 1); nvif_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(0), drm->client.device.info.ram_size - 1); nvif_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(1), drm->client.device.info.ram_size - 1); nvif_wr32(device, NV_PBUS_POWERCTRL_2, 0); NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg); NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830); NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext); if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) { NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850); reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900); if (regp->crtc_cfg == NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC) NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000); else NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000); } } NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg); wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_KELVIN) wr_cio_state(dev, head, regp, NV_CIO_CRE_47); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) wr_cio_state(dev, head, regp, 0x9f); wr_cio_state(dev, head, regp, NV_CIO_CRE_49); wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) nv_fix_nv40_hw_cursor(dev, head); wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) { wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX); wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB); wr_cio_state(dev, head, regp, NV_CIO_CRE_4B); wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY); } /* NV11 and NV20 stop at 0x52. */ if (nv_gf4_disp_arch(dev)) { if (drm->client.device.info.family < NV_DEVICE_INFO_V0_KELVIN) { /* Not waiting for vertical retrace before modifying CRE_53/CRE_54 causes lockups. */ nvif_msec(&drm->client.device, 650, if ( (nvif_rd32(device, NV_PRMCIO_INP0__COLOR) & 8)) break; ); nvif_msec(&drm->client.device, 650, if (!(nvif_rd32(device, NV_PRMCIO_INP0__COLOR) & 8)) break; ); } wr_cio_state(dev, head, regp, NV_CIO_CRE_42); wr_cio_state(dev, head, regp, NV_CIO_CRE_53); wr_cio_state(dev, head, regp, NV_CIO_CRE_54); for (i = 0; i < 0x10; i++) NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]); wr_cio_state(dev, head, regp, NV_CIO_CRE_59); wr_cio_state(dev, head, regp, NV_CIO_CRE_5B); wr_cio_state(dev, head, regp, NV_CIO_CRE_85); wr_cio_state(dev, head, regp, NV_CIO_CRE_86); } NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start); } static void nv_save_state_palette(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nvif_object *device = &nouveau_drm(dev)->client.device.object; int head_offset = head * NV_PRMDIO_SIZE, i; nvif_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset, NV_PRMDIO_PIXEL_MASK_MASK); nvif_wr08(device, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0); for (i = 0; i < 768; i++) { state->crtc_reg[head].DAC[i] = nvif_rd08(device, NV_PRMDIO_PALETTE_DATA + head_offset); } NVSetEnablePalette(dev, head, false); } void nouveau_hw_load_state_palette(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nvif_object *device = &nouveau_drm(dev)->client.device.object; int head_offset = head * NV_PRMDIO_SIZE, i; nvif_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset, NV_PRMDIO_PIXEL_MASK_MASK); nvif_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0); for (i = 0; i < 768; i++) { nvif_wr08(device, NV_PRMDIO_PALETTE_DATA + head_offset, state->crtc_reg[head].DAC[i]); } NVSetEnablePalette(dev, head, false); } void nouveau_hw_save_state(struct drm_device *dev, int head, struct nv04_mode_state *state) { struct nouveau_drm *drm = nouveau_drm(dev); if (drm->client.device.info.chipset == 0x11) /* NB: no attempt is made to restore the bad pll later on */ nouveau_hw_fix_bad_vpll(dev, head); nv_save_state_ramdac(dev, head, state); nv_save_state_vga(dev, head, state); nv_save_state_palette(dev, head, state); nv_save_state_ext(dev, head, state); } void nouveau_hw_load_state(struct drm_device *dev, int head, struct nv04_mode_state *state) { NVVgaProtect(dev, head, true); nv_load_state_ramdac(dev, head, state); nv_load_state_ext(dev, head, state); nouveau_hw_load_state_palette(dev, head, state); nv_load_state_vga(dev, head, state); NVVgaProtect(dev, head, false); }
linux-master
drivers/gpu/drm/nouveau/dispnv04/hw.c
/* * Copyright (C) 2009 Francisco Jerez. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include <drm/drm_crtc_helper.h> #include <drm/drm_modeset_helper_vtables.h> #include <drm/drm_probe_helper.h> #include "nouveau_drv.h" #include "nouveau_reg.h" #include "nouveau_encoder.h" #include "nouveau_connector.h" #include "nouveau_crtc.h" #include "hw.h" #include "tvnv17.h" MODULE_PARM_DESC(tv_norm, "Default TV norm.\n" "\t\tSupported: PAL, PAL-M, PAL-N, PAL-Nc, NTSC-M, NTSC-J,\n" "\t\t\thd480i, hd480p, hd576i, hd576p, hd720p, hd1080i.\n" "\t\tDefault: PAL\n" "\t\t*NOTE* Ignored for cards with external TV encoders."); static char *nouveau_tv_norm; module_param_named(tv_norm, nouveau_tv_norm, charp, 0400); static uint32_t nv42_tv_sample_load(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_gpio *gpio = nvxx_gpio(&drm->client.device); uint32_t testval, regoffset = nv04_dac_output_offset(encoder); uint32_t gpio0, gpio1, fp_htotal, fp_hsync_start, fp_hsync_end, fp_control, test_ctrl, dacclk, ctv_14, ctv_1c, ctv_6c; uint32_t sample = 0; int head; #define RGB_TEST_DATA(r, g, b) (r << 0 | g << 10 | b << 20) testval = RGB_TEST_DATA(0x82, 0xeb, 0x82); if (drm->vbios.tvdactestval) testval = drm->vbios.tvdactestval; dacclk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset); head = (dacclk & 0x100) >> 8; /* Save the previous state. */ gpio1 = nvkm_gpio_get(gpio, 0, DCB_GPIO_TVDAC1, 0xff); gpio0 = nvkm_gpio_get(gpio, 0, DCB_GPIO_TVDAC0, 0xff); fp_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_HTOTAL); fp_hsync_start = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_HSYNC_START); fp_hsync_end = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_HSYNC_END); fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); test_ctrl = NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset); ctv_1c = NVReadRAMDAC(dev, head, 0x680c1c); ctv_14 = NVReadRAMDAC(dev, head, 0x680c14); ctv_6c = NVReadRAMDAC(dev, head, 0x680c6c); /* Prepare the DAC for load detection. */ nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC1, 0xff, true); nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC0, 0xff, true); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_HTOTAL, 1343); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_HSYNC_START, 1047); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_HSYNC_END, 1183); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG | NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset, 0); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, (dacclk & ~0xff) | 0x22); msleep(1); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, (dacclk & ~0xff) | 0x21); NVWriteRAMDAC(dev, head, 0x680c1c, 1 << 20); NVWriteRAMDAC(dev, head, 0x680c14, 4 << 16); /* Sample pin 0x4 (usually S-video luma). */ NVWriteRAMDAC(dev, head, 0x680c6c, testval >> 10 & 0x3ff); msleep(20); sample |= NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset) & 0x4 << 28; /* Sample the remaining pins. */ NVWriteRAMDAC(dev, head, 0x680c6c, testval & 0x3ff); msleep(20); sample |= NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset) & 0xa << 28; /* Restore the previous state. */ NVWriteRAMDAC(dev, head, 0x680c1c, ctv_1c); NVWriteRAMDAC(dev, head, 0x680c14, ctv_14); NVWriteRAMDAC(dev, head, 0x680c6c, ctv_6c); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, dacclk); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset, test_ctrl); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, fp_control); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_HSYNC_END, fp_hsync_end); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_HSYNC_START, fp_hsync_start); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_HTOTAL, fp_htotal); nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC1, 0xff, gpio1); nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC0, 0xff, gpio0); return sample; } static bool get_tv_detect_quirks(struct drm_device *dev, uint32_t *pin_mask) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_device *device = nvxx_device(&drm->client.device); if (device->quirk && device->quirk->tv_pin_mask) { *pin_mask = device->quirk->tv_pin_mask; return false; } return true; } static enum drm_connector_status nv17_tv_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct drm_mode_config *conf = &dev->mode_config; struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); struct dcb_output *dcb = tv_enc->base.dcb; bool reliable = get_tv_detect_quirks(dev, &tv_enc->pin_mask); if (nv04_dac_in_use(encoder)) return connector_status_disconnected; if (reliable) { if (drm->client.device.info.chipset == 0x42 || drm->client.device.info.chipset == 0x43) tv_enc->pin_mask = nv42_tv_sample_load(encoder) >> 28 & 0xe; else tv_enc->pin_mask = nv17_dac_sample_load(encoder) >> 28 & 0xe; } switch (tv_enc->pin_mask) { case 0x2: case 0x4: tv_enc->subconnector = DRM_MODE_SUBCONNECTOR_Composite; break; case 0xc: tv_enc->subconnector = DRM_MODE_SUBCONNECTOR_SVIDEO; break; case 0xe: if (dcb->tvconf.has_component_output) tv_enc->subconnector = DRM_MODE_SUBCONNECTOR_Component; else tv_enc->subconnector = DRM_MODE_SUBCONNECTOR_SCART; break; default: tv_enc->subconnector = DRM_MODE_SUBCONNECTOR_Unknown; break; } drm_object_property_set_value(&connector->base, conf->tv_subconnector_property, tv_enc->subconnector); if (!reliable) { return connector_status_unknown; } else if (tv_enc->subconnector) { NV_INFO(drm, "Load detected on output %c\n", '@' + ffs(dcb->or)); return connector_status_connected; } else { return connector_status_disconnected; } } static int nv17_tv_get_ld_modes(struct drm_encoder *encoder, struct drm_connector *connector) { struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); const struct drm_display_mode *tv_mode; int n = 0; for (tv_mode = nv17_tv_modes; tv_mode->hdisplay; tv_mode++) { struct drm_display_mode *mode; mode = drm_mode_duplicate(encoder->dev, tv_mode); mode->clock = tv_norm->tv_enc_mode.vrefresh * mode->htotal / 1000 * mode->vtotal / 1000; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) mode->clock *= 2; if (mode->hdisplay == tv_norm->tv_enc_mode.hdisplay && mode->vdisplay == tv_norm->tv_enc_mode.vdisplay) mode->type |= DRM_MODE_TYPE_PREFERRED; drm_mode_probed_add(connector, mode); n++; } return n; } static int nv17_tv_get_hd_modes(struct drm_encoder *encoder, struct drm_connector *connector) { struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); struct drm_display_mode *output_mode = &tv_norm->ctv_enc_mode.mode; struct drm_display_mode *mode; const struct { int hdisplay; int vdisplay; } modes[] = { { 640, 400 }, { 640, 480 }, { 720, 480 }, { 720, 576 }, { 800, 600 }, { 1024, 768 }, { 1280, 720 }, { 1280, 1024 }, { 1920, 1080 } }; int i, n = 0; for (i = 0; i < ARRAY_SIZE(modes); i++) { if (modes[i].hdisplay > output_mode->hdisplay || modes[i].vdisplay > output_mode->vdisplay) continue; if (modes[i].hdisplay == output_mode->hdisplay && modes[i].vdisplay == output_mode->vdisplay) { mode = drm_mode_duplicate(encoder->dev, output_mode); mode->type |= DRM_MODE_TYPE_PREFERRED; } else { mode = drm_cvt_mode(encoder->dev, modes[i].hdisplay, modes[i].vdisplay, 60, false, (output_mode->flags & DRM_MODE_FLAG_INTERLACE), false); } /* CVT modes are sometimes unsuitable... */ if (output_mode->hdisplay <= 720 || output_mode->hdisplay >= 1920) { mode->htotal = output_mode->htotal; mode->hsync_start = (mode->hdisplay + (mode->htotal - mode->hdisplay) * 9 / 10) & ~7; mode->hsync_end = mode->hsync_start + 8; } if (output_mode->vdisplay >= 1024) { mode->vtotal = output_mode->vtotal; mode->vsync_start = output_mode->vsync_start; mode->vsync_end = output_mode->vsync_end; } mode->type |= DRM_MODE_TYPE_DRIVER; drm_mode_probed_add(connector, mode); n++; } return n; } static int nv17_tv_get_modes(struct drm_encoder *encoder, struct drm_connector *connector) { struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); if (tv_norm->kind == CTV_ENC_MODE) return nv17_tv_get_hd_modes(encoder, connector); else return nv17_tv_get_ld_modes(encoder, connector); } static int nv17_tv_mode_valid(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); if (tv_norm->kind == CTV_ENC_MODE) { struct drm_display_mode *output_mode = &tv_norm->ctv_enc_mode.mode; if (mode->clock > 400000) return MODE_CLOCK_HIGH; if (mode->hdisplay > output_mode->hdisplay || mode->vdisplay > output_mode->vdisplay) return MODE_BAD; if ((mode->flags & DRM_MODE_FLAG_INTERLACE) != (output_mode->flags & DRM_MODE_FLAG_INTERLACE)) return MODE_NO_INTERLACE; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; } else { const int vsync_tolerance = 600; if (mode->clock > 70000) return MODE_CLOCK_HIGH; if (abs(drm_mode_vrefresh(mode) * 1000 - tv_norm->tv_enc_mode.vrefresh) > vsync_tolerance) return MODE_VSYNC; /* The encoder takes care of the actual interlacing */ if (mode->flags & DRM_MODE_FLAG_INTERLACE) return MODE_NO_INTERLACE; } return MODE_OK; } static bool nv17_tv_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); if (nv04_dac_in_use(encoder)) return false; if (tv_norm->kind == CTV_ENC_MODE) adjusted_mode->clock = tv_norm->ctv_enc_mode.mode.clock; else adjusted_mode->clock = 90000; return true; } static void nv17_tv_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_gpio *gpio = nvxx_gpio(&drm->client.device); struct nv17_tv_state *regs = &to_tv_enc(encoder)->state; struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); if (nouveau_encoder(encoder)->last_dpms == mode) return; nouveau_encoder(encoder)->last_dpms = mode; NV_INFO(drm, "Setting dpms mode %d on TV encoder (output %d)\n", mode, nouveau_encoder(encoder)->dcb->index); regs->ptv_200 &= ~1; if (tv_norm->kind == CTV_ENC_MODE) { nv04_dfp_update_fp_control(encoder, mode); } else { nv04_dfp_update_fp_control(encoder, DRM_MODE_DPMS_OFF); if (mode == DRM_MODE_DPMS_ON) regs->ptv_200 |= 1; } nv_load_ptv(dev, regs, 200); nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC1, 0xff, mode == DRM_MODE_DPMS_ON); nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC0, 0xff, mode == DRM_MODE_DPMS_ON); nv04_dac_update_dacclk(encoder, mode == DRM_MODE_DPMS_ON); } static void nv17_tv_prepare(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); const struct drm_encoder_helper_funcs *helper = encoder->helper_private; struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); int head = nouveau_crtc(encoder->crtc)->index; uint8_t *cr_lcd = &nv04_display(dev)->mode_reg.crtc_reg[head].CRTC[ NV_CIO_CRE_LCD__INDEX]; uint32_t dacclk_off = NV_PRAMDAC_DACCLK + nv04_dac_output_offset(encoder); uint32_t dacclk; helper->dpms(encoder, DRM_MODE_DPMS_OFF); nv04_dfp_disable(dev, head); /* Unbind any FP encoders from this head if we need the FP * stuff enabled. */ if (tv_norm->kind == CTV_ENC_MODE) { struct drm_encoder *enc; list_for_each_entry(enc, &dev->mode_config.encoder_list, head) { struct dcb_output *dcb = nouveau_encoder(enc)->dcb; if ((dcb->type == DCB_OUTPUT_TMDS || dcb->type == DCB_OUTPUT_LVDS) && !enc->crtc && nv04_dfp_get_bound_head(dev, dcb) == head) { nv04_dfp_bind_head(dev, dcb, head ^ 1, drm->vbios.fp.dual_link); } } } if (tv_norm->kind == CTV_ENC_MODE) *cr_lcd |= 0x1 | (head ? 0x0 : 0x8); /* Set the DACCLK register */ dacclk = (NVReadRAMDAC(dev, 0, dacclk_off) & ~0x30) | 0x1; if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) dacclk |= 0x1a << 16; if (tv_norm->kind == CTV_ENC_MODE) { dacclk |= 0x20; if (head) dacclk |= 0x100; else dacclk &= ~0x100; } else { dacclk |= 0x10; } NVWriteRAMDAC(dev, 0, dacclk_off, dacclk); } static void nv17_tv_mode_set(struct drm_encoder *encoder, struct drm_display_mode *drm_mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); int head = nouveau_crtc(encoder->crtc)->index; struct nv04_crtc_reg *regs = &nv04_display(dev)->mode_reg.crtc_reg[head]; struct nv17_tv_state *tv_regs = &to_tv_enc(encoder)->state; struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); int i; regs->CRTC[NV_CIO_CRE_53] = 0x40; /* FP_HTIMING */ regs->CRTC[NV_CIO_CRE_54] = 0; /* FP_VTIMING */ regs->ramdac_630 = 0x2; /* turn off green mode (tv test pattern?) */ regs->tv_setup = 1; regs->ramdac_8c0 = 0x0; if (tv_norm->kind == TV_ENC_MODE) { tv_regs->ptv_200 = 0x13111100; if (head) tv_regs->ptv_200 |= 0x10; tv_regs->ptv_20c = 0x808010; tv_regs->ptv_304 = 0x2d00000; tv_regs->ptv_600 = 0x0; tv_regs->ptv_60c = 0x0; tv_regs->ptv_610 = 0x1e00000; if (tv_norm->tv_enc_mode.vdisplay == 576) { tv_regs->ptv_508 = 0x1200000; tv_regs->ptv_614 = 0x33; } else if (tv_norm->tv_enc_mode.vdisplay == 480) { tv_regs->ptv_508 = 0xf00000; tv_regs->ptv_614 = 0x13; } if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) { tv_regs->ptv_500 = 0xe8e0; tv_regs->ptv_504 = 0x1710; tv_regs->ptv_604 = 0x0; tv_regs->ptv_608 = 0x0; } else { if (tv_norm->tv_enc_mode.vdisplay == 576) { tv_regs->ptv_604 = 0x20; tv_regs->ptv_608 = 0x10; tv_regs->ptv_500 = 0x19710; tv_regs->ptv_504 = 0x68f0; } else if (tv_norm->tv_enc_mode.vdisplay == 480) { tv_regs->ptv_604 = 0x10; tv_regs->ptv_608 = 0x20; tv_regs->ptv_500 = 0x4b90; tv_regs->ptv_504 = 0x1b480; } } for (i = 0; i < 0x40; i++) tv_regs->tv_enc[i] = tv_norm->tv_enc_mode.tv_enc[i]; } else { struct drm_display_mode *output_mode = &tv_norm->ctv_enc_mode.mode; /* The registers in PRAMDAC+0xc00 control some timings and CSC * parameters for the CTV encoder (It's only used for "HD" TV * modes, I don't think I have enough working to guess what * they exactly mean...), it's probably connected at the * output of the FP encoder, but it also needs the analog * encoder in its OR enabled and routed to the head it's * using. It's enabled with the DACCLK register, bits [5:4]. */ for (i = 0; i < 38; i++) regs->ctv_regs[i] = tv_norm->ctv_enc_mode.ctv_regs[i]; regs->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1; regs->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1; regs->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1; regs->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1; regs->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay + max((output_mode->hdisplay-600)/40 - 1, 1); regs->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1; regs->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1; regs->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1; regs->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1; regs->fp_vert_regs[FP_CRTC] = output_mode->vdisplay - 1; regs->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG | NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12; if (output_mode->flags & DRM_MODE_FLAG_PVSYNC) regs->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS; if (output_mode->flags & DRM_MODE_FLAG_PHSYNC) regs->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS; regs->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND | NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND | NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR | NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR | NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED | NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE | NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE; regs->fp_debug_2 = 0; regs->fp_margin_color = 0x801080; } } static void nv17_tv_commit(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); const struct drm_encoder_helper_funcs *helper = encoder->helper_private; if (get_tv_norm(encoder)->kind == TV_ENC_MODE) { nv17_tv_update_rescaler(encoder); nv17_tv_update_properties(encoder); } else { nv17_ctv_update_rescaler(encoder); } nv17_tv_state_load(dev, &to_tv_enc(encoder)->state); /* This could use refinement for flatpanels, but it should work */ if (drm->client.device.info.chipset < 0x44) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000); else NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000); helper->dpms(encoder, DRM_MODE_DPMS_ON); NV_INFO(drm, "Output %s is running on CRTC %d using output %c\n", nv04_encoder_get_connector(nv_encoder)->base.name, nv_crtc->index, '@' + ffs(nv_encoder->dcb->or)); } static void nv17_tv_save(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); nouveau_encoder(encoder)->restore.output = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + nv04_dac_output_offset(encoder)); nv17_tv_state_save(dev, &tv_enc->saved_state); tv_enc->state.ptv_200 = tv_enc->saved_state.ptv_200; } static void nv17_tv_restore(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + nv04_dac_output_offset(encoder), nouveau_encoder(encoder)->restore.output); nv17_tv_state_load(dev, &to_tv_enc(encoder)->saved_state); nouveau_encoder(encoder)->last_dpms = NV_DPMS_CLEARED; } static int nv17_tv_create_resources(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct drm_mode_config *conf = &dev->mode_config; struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; int num_tv_norms = dcb->tvconf.has_component_output ? NUM_TV_NORMS : NUM_LD_TV_NORMS; int i; if (nouveau_tv_norm) { i = match_string(nv17_tv_norm_names, num_tv_norms, nouveau_tv_norm); if (i < 0) NV_WARN(drm, "Invalid TV norm setting \"%s\"\n", nouveau_tv_norm); else tv_enc->tv_norm = i; } drm_mode_create_tv_properties_legacy(dev, num_tv_norms, nv17_tv_norm_names); drm_object_attach_property(&connector->base, conf->tv_select_subconnector_property, tv_enc->select_subconnector); drm_object_attach_property(&connector->base, conf->tv_subconnector_property, tv_enc->subconnector); drm_object_attach_property(&connector->base, conf->legacy_tv_mode_property, tv_enc->tv_norm); drm_object_attach_property(&connector->base, conf->tv_flicker_reduction_property, tv_enc->flicker); drm_object_attach_property(&connector->base, conf->tv_saturation_property, tv_enc->saturation); drm_object_attach_property(&connector->base, conf->tv_hue_property, tv_enc->hue); drm_object_attach_property(&connector->base, conf->tv_overscan_property, tv_enc->overscan); return 0; } static int nv17_tv_set_property(struct drm_encoder *encoder, struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct drm_mode_config *conf = &encoder->dev->mode_config; struct drm_crtc *crtc = encoder->crtc; struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); bool modes_changed = false; if (property == conf->tv_overscan_property) { tv_enc->overscan = val; if (encoder->crtc) { if (tv_norm->kind == CTV_ENC_MODE) nv17_ctv_update_rescaler(encoder); else nv17_tv_update_rescaler(encoder); } } else if (property == conf->tv_saturation_property) { if (tv_norm->kind != TV_ENC_MODE) return -EINVAL; tv_enc->saturation = val; nv17_tv_update_properties(encoder); } else if (property == conf->tv_hue_property) { if (tv_norm->kind != TV_ENC_MODE) return -EINVAL; tv_enc->hue = val; nv17_tv_update_properties(encoder); } else if (property == conf->tv_flicker_reduction_property) { if (tv_norm->kind != TV_ENC_MODE) return -EINVAL; tv_enc->flicker = val; if (encoder->crtc) nv17_tv_update_rescaler(encoder); } else if (property == conf->legacy_tv_mode_property) { if (connector->dpms != DRM_MODE_DPMS_OFF) return -EINVAL; tv_enc->tv_norm = val; modes_changed = true; } else if (property == conf->tv_select_subconnector_property) { if (tv_norm->kind != TV_ENC_MODE) return -EINVAL; tv_enc->select_subconnector = val; nv17_tv_update_properties(encoder); } else { return -EINVAL; } if (modes_changed) { drm_helper_probe_single_connector_modes(connector, 0, 0); /* Disable the crtc to ensure a full modeset is * performed whenever it's turned on again. */ if (crtc) drm_crtc_helper_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb); } return 0; } static void nv17_tv_destroy(struct drm_encoder *encoder) { struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); drm_encoder_cleanup(encoder); kfree(tv_enc); } static const struct drm_encoder_helper_funcs nv17_tv_helper_funcs = { .dpms = nv17_tv_dpms, .mode_fixup = nv17_tv_mode_fixup, .prepare = nv17_tv_prepare, .commit = nv17_tv_commit, .mode_set = nv17_tv_mode_set, .detect = nv17_tv_detect, }; static const struct drm_encoder_slave_funcs nv17_tv_slave_funcs = { .get_modes = nv17_tv_get_modes, .mode_valid = nv17_tv_mode_valid, .create_resources = nv17_tv_create_resources, .set_property = nv17_tv_set_property, }; static const struct drm_encoder_funcs nv17_tv_funcs = { .destroy = nv17_tv_destroy, }; int nv17_tv_create(struct drm_connector *connector, struct dcb_output *entry) { struct drm_device *dev = connector->dev; struct drm_encoder *encoder; struct nv17_tv_encoder *tv_enc = NULL; tv_enc = kzalloc(sizeof(*tv_enc), GFP_KERNEL); if (!tv_enc) return -ENOMEM; tv_enc->overscan = 50; tv_enc->flicker = 50; tv_enc->saturation = 50; tv_enc->hue = 0; tv_enc->tv_norm = TV_NORM_PAL; tv_enc->subconnector = DRM_MODE_SUBCONNECTOR_Unknown; tv_enc->select_subconnector = DRM_MODE_SUBCONNECTOR_Automatic; tv_enc->pin_mask = 0; encoder = to_drm_encoder(&tv_enc->base); tv_enc->base.dcb = entry; tv_enc->base.or = ffs(entry->or) - 1; drm_encoder_init(dev, encoder, &nv17_tv_funcs, DRM_MODE_ENCODER_TVDAC, NULL); drm_encoder_helper_add(encoder, &nv17_tv_helper_funcs); to_encoder_slave(encoder)->slave_funcs = &nv17_tv_slave_funcs; tv_enc->base.enc_save = nv17_tv_save; tv_enc->base.enc_restore = nv17_tv_restore; encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; nv17_tv_create_resources(encoder, connector); drm_connector_attach_encoder(connector, encoder); return 0; }
linux-master
drivers/gpu/drm/nouveau/dispnv04/tvnv17.c
/* * Copyright 2003 NVIDIA, Corporation * Copyright 2006 Dave Airlie * Copyright 2007 Maarten Maathuis * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <drm/drm_modeset_helper_vtables.h> #include "nouveau_drv.h" #include "nouveau_encoder.h" #include "nouveau_connector.h" #include "nouveau_crtc.h" #include "hw.h" #include "nvreg.h" #include <subdev/bios/gpio.h> #include <subdev/gpio.h> #include <nvif/timer.h> int nv04_dac_output_offset(struct drm_encoder *encoder) { struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; int offset = 0; if (dcb->or & (8 | DCB_OUTPUT_C)) offset += 0x68; if (dcb->or & (8 | DCB_OUTPUT_B)) offset += 0x2000; return offset; } /* * arbitrary limit to number of sense oscillations tolerated in one sample * period (observed to be at least 13 in "nvidia") */ #define MAX_HBLANK_OSC 20 /* * arbitrary limit to number of conflicting sample pairs to tolerate at a * voltage step (observed to be at least 5 in "nvidia") */ #define MAX_SAMPLE_PAIRS 10 static int sample_load_twice(struct drm_device *dev, bool sense[2]) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_object *device = &drm->client.device.object; int i; for (i = 0; i < 2; i++) { bool sense_a, sense_b, sense_b_prime; int j = 0; /* * wait for bit 0 clear -- out of hblank -- (say reg value 0x4), * then wait for transition 0x4->0x5->0x4: enter hblank, leave * hblank again * use a 10ms timeout (guards against crtc being inactive, in * which case blank state would never change) */ if (nvif_msec(&drm->client.device, 10, if (!(nvif_rd32(device, NV_PRMCIO_INP0__COLOR) & 1)) break; ) < 0) return -EBUSY; if (nvif_msec(&drm->client.device, 10, if ( (nvif_rd32(device, NV_PRMCIO_INP0__COLOR) & 1)) break; ) < 0) return -EBUSY; if (nvif_msec(&drm->client.device, 10, if (!(nvif_rd32(device, NV_PRMCIO_INP0__COLOR) & 1)) break; ) < 0) return -EBUSY; udelay(100); /* when level triggers, sense is _LO_ */ sense_a = nvif_rd08(device, NV_PRMCIO_INP0) & 0x10; /* take another reading until it agrees with sense_a... */ do { udelay(100); sense_b = nvif_rd08(device, NV_PRMCIO_INP0) & 0x10; if (sense_a != sense_b) { sense_b_prime = nvif_rd08(device, NV_PRMCIO_INP0) & 0x10; if (sense_b == sense_b_prime) { /* ... unless two consecutive subsequent * samples agree; sense_a is replaced */ sense_a = sense_b; /* force mis-match so we loop */ sense_b = !sense_a; } } } while ((sense_a != sense_b) && ++j < MAX_HBLANK_OSC); if (j == MAX_HBLANK_OSC) /* with so much oscillation, default to sense:LO */ sense[i] = false; else sense[i] = sense_a; } return 0; } static enum drm_connector_status nv04_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct nvif_object *device = &nouveau_drm(dev)->client.device.object; struct nouveau_drm *drm = nouveau_drm(dev); uint8_t saved_seq1, saved_pi, saved_rpc1, saved_cr_mode; uint8_t saved_palette0[3], saved_palette_mask; uint32_t saved_rtest_ctrl, saved_rgen_ctrl; int i; uint8_t blue; bool sense = true; /* * for this detection to work, there needs to be a mode set up on the * CRTC. this is presumed to be the case */ if (nv_two_heads(dev)) /* only implemented for head A for now */ NVSetOwner(dev, 0); saved_cr_mode = NVReadVgaCrtc(dev, 0, NV_CIO_CR_MODE_INDEX); NVWriteVgaCrtc(dev, 0, NV_CIO_CR_MODE_INDEX, saved_cr_mode | 0x80); saved_seq1 = NVReadVgaSeq(dev, 0, NV_VIO_SR_CLOCK_INDEX); NVWriteVgaSeq(dev, 0, NV_VIO_SR_CLOCK_INDEX, saved_seq1 & ~0x20); saved_rtest_ctrl = NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL, saved_rtest_ctrl & ~NV_PRAMDAC_TEST_CONTROL_PWRDWN_DAC_OFF); msleep(10); saved_pi = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_PIXEL_INDEX); NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_PIXEL_INDEX, saved_pi & ~(0x80 | MASK(NV_CIO_CRE_PIXEL_FORMAT))); saved_rpc1 = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_RPC1_INDEX); NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_RPC1_INDEX, saved_rpc1 & ~0xc0); nvif_wr08(device, NV_PRMDIO_READ_MODE_ADDRESS, 0x0); for (i = 0; i < 3; i++) saved_palette0[i] = nvif_rd08(device, NV_PRMDIO_PALETTE_DATA); saved_palette_mask = nvif_rd08(device, NV_PRMDIO_PIXEL_MASK); nvif_wr08(device, NV_PRMDIO_PIXEL_MASK, 0); saved_rgen_ctrl = NVReadRAMDAC(dev, 0, NV_PRAMDAC_GENERAL_CONTROL); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_GENERAL_CONTROL, (saved_rgen_ctrl & ~(NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS | NV_PRAMDAC_GENERAL_CONTROL_TERMINATION_75OHM)) | NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON); blue = 8; /* start of test range */ do { bool sense_pair[2]; nvif_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS, 0); nvif_wr08(device, NV_PRMDIO_PALETTE_DATA, 0); nvif_wr08(device, NV_PRMDIO_PALETTE_DATA, 0); /* testing blue won't find monochrome monitors. I don't care */ nvif_wr08(device, NV_PRMDIO_PALETTE_DATA, blue); i = 0; /* take sample pairs until both samples in the pair agree */ do { if (sample_load_twice(dev, sense_pair)) goto out; } while ((sense_pair[0] != sense_pair[1]) && ++i < MAX_SAMPLE_PAIRS); if (i == MAX_SAMPLE_PAIRS) /* too much oscillation defaults to LO */ sense = false; else sense = sense_pair[0]; /* * if sense goes LO before blue ramps to 0x18, monitor is not connected. * ergo, if blue gets to 0x18, monitor must be connected */ } while (++blue < 0x18 && sense); out: nvif_wr08(device, NV_PRMDIO_PIXEL_MASK, saved_palette_mask); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_GENERAL_CONTROL, saved_rgen_ctrl); nvif_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS, 0); for (i = 0; i < 3; i++) nvif_wr08(device, NV_PRMDIO_PALETTE_DATA, saved_palette0[i]); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL, saved_rtest_ctrl); NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_PIXEL_INDEX, saved_pi); NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_RPC1_INDEX, saved_rpc1); NVWriteVgaSeq(dev, 0, NV_VIO_SR_CLOCK_INDEX, saved_seq1); NVWriteVgaCrtc(dev, 0, NV_CIO_CR_MODE_INDEX, saved_cr_mode); if (blue == 0x18) { NV_DEBUG(drm, "Load detected on head A\n"); return connector_status_connected; } return connector_status_disconnected; } uint32_t nv17_dac_sample_load(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_object *device = &nouveau_drm(dev)->client.device.object; struct nvkm_gpio *gpio = nvxx_gpio(&drm->client.device); struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; uint32_t sample, testval, regoffset = nv04_dac_output_offset(encoder); uint32_t saved_powerctrl_2 = 0, saved_powerctrl_4 = 0, saved_routput, saved_rtest_ctrl, saved_gpio0 = 0, saved_gpio1 = 0, temp, routput; int head; #define RGB_TEST_DATA(r, g, b) (r << 0 | g << 10 | b << 20) if (dcb->type == DCB_OUTPUT_TV) { testval = RGB_TEST_DATA(0xa0, 0xa0, 0xa0); if (drm->vbios.tvdactestval) testval = drm->vbios.tvdactestval; } else { testval = RGB_TEST_DATA(0x140, 0x140, 0x140); /* 0x94050140 */ if (drm->vbios.dactestval) testval = drm->vbios.dactestval; } saved_rtest_ctrl = NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset, saved_rtest_ctrl & ~NV_PRAMDAC_TEST_CONTROL_PWRDWN_DAC_OFF); saved_powerctrl_2 = nvif_rd32(device, NV_PBUS_POWERCTRL_2); nvif_wr32(device, NV_PBUS_POWERCTRL_2, saved_powerctrl_2 & 0xd7ffffff); if (regoffset == 0x68) { saved_powerctrl_4 = nvif_rd32(device, NV_PBUS_POWERCTRL_4); nvif_wr32(device, NV_PBUS_POWERCTRL_4, saved_powerctrl_4 & 0xffffffcf); } if (gpio) { saved_gpio1 = nvkm_gpio_get(gpio, 0, DCB_GPIO_TVDAC1, 0xff); saved_gpio0 = nvkm_gpio_get(gpio, 0, DCB_GPIO_TVDAC0, 0xff); nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC1, 0xff, dcb->type == DCB_OUTPUT_TV); nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC0, 0xff, dcb->type == DCB_OUTPUT_TV); } msleep(4); saved_routput = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset); head = (saved_routput & 0x100) >> 8; /* if there's a spare crtc, using it will minimise flicker */ if (!(NVReadVgaCrtc(dev, head, NV_CIO_CRE_RPC1_INDEX) & 0xC0)) head ^= 1; /* nv driver and nv31 use 0xfffffeee, nv34 and 6600 use 0xfffffece */ routput = (saved_routput & 0xfffffece) | head << 8; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CURIE) { if (dcb->type == DCB_OUTPUT_TV) routput |= 0x1a << 16; else routput &= ~(0x1a << 16); } NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, routput); msleep(1); temp = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, temp | 1); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TESTPOINT_DATA, NV_PRAMDAC_TESTPOINT_DATA_NOTBLANK | testval); temp = NVReadRAMDAC(dev, head, NV_PRAMDAC_TEST_CONTROL); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TEST_CONTROL, temp | NV_PRAMDAC_TEST_CONTROL_TP_INS_EN_ASSERTED); msleep(5); sample = NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset); /* do it again just in case it's a residual current */ sample &= NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset); temp = NVReadRAMDAC(dev, head, NV_PRAMDAC_TEST_CONTROL); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TEST_CONTROL, temp & ~NV_PRAMDAC_TEST_CONTROL_TP_INS_EN_ASSERTED); NVWriteRAMDAC(dev, head, NV_PRAMDAC_TESTPOINT_DATA, 0); /* bios does something more complex for restoring, but I think this is good enough */ NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, saved_routput); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset, saved_rtest_ctrl); if (regoffset == 0x68) nvif_wr32(device, NV_PBUS_POWERCTRL_4, saved_powerctrl_4); nvif_wr32(device, NV_PBUS_POWERCTRL_2, saved_powerctrl_2); if (gpio) { nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC1, 0xff, saved_gpio1); nvkm_gpio_set(gpio, 0, DCB_GPIO_TVDAC0, 0xff, saved_gpio0); } return sample; } static enum drm_connector_status nv17_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; if (nv04_dac_in_use(encoder)) return connector_status_disconnected; if (nv17_dac_sample_load(encoder) & NV_PRAMDAC_TEST_CONTROL_SENSEB_ALLHI) { NV_DEBUG(drm, "Load detected on output %c\n", '@' + ffs(dcb->or)); return connector_status_connected; } else { return connector_status_disconnected; } } static bool nv04_dac_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { if (nv04_dac_in_use(encoder)) return false; return true; } static void nv04_dac_prepare(struct drm_encoder *encoder) { const struct drm_encoder_helper_funcs *helper = encoder->helper_private; struct drm_device *dev = encoder->dev; int head = nouveau_crtc(encoder->crtc)->index; helper->dpms(encoder, DRM_MODE_DPMS_OFF); nv04_dfp_disable(dev, head); } static void nv04_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); int head = nouveau_crtc(encoder->crtc)->index; if (nv_gf4_disp_arch(dev)) { struct drm_encoder *rebind; uint32_t dac_offset = nv04_dac_output_offset(encoder); uint32_t otherdac; /* bit 16-19 are bits that are set on some G70 cards, * but don't seem to have much effect */ NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + dac_offset, head << 8 | NV_PRAMDAC_DACCLK_SEL_DACCLK); /* force any other vga encoders to bind to the other crtc */ list_for_each_entry(rebind, &dev->mode_config.encoder_list, head) { if (rebind == encoder || nouveau_encoder(rebind)->dcb->type != DCB_OUTPUT_ANALOG) continue; dac_offset = nv04_dac_output_offset(rebind); otherdac = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + dac_offset); NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + dac_offset, (otherdac & ~0x0100) | (head ^ 1) << 8); } } /* This could use refinement for flatpanels, but it should work this way */ if (drm->client.device.info.chipset < 0x44) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000); else NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000); } static void nv04_dac_commit(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); const struct drm_encoder_helper_funcs *helper = encoder->helper_private; helper->dpms(encoder, DRM_MODE_DPMS_ON); NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n", nv04_encoder_get_connector(nv_encoder)->base.name, nv_crtc->index, '@' + ffs(nv_encoder->dcb->or)); } void nv04_dac_update_dacclk(struct drm_encoder *encoder, bool enable) { struct drm_device *dev = encoder->dev; struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; if (nv_gf4_disp_arch(dev)) { uint32_t *dac_users = &nv04_display(dev)->dac_users[ffs(dcb->or) - 1]; int dacclk_off = NV_PRAMDAC_DACCLK + nv04_dac_output_offset(encoder); uint32_t dacclk = NVReadRAMDAC(dev, 0, dacclk_off); if (enable) { *dac_users |= 1 << dcb->index; NVWriteRAMDAC(dev, 0, dacclk_off, dacclk | NV_PRAMDAC_DACCLK_SEL_DACCLK); } else { *dac_users &= ~(1 << dcb->index); if (!*dac_users) NVWriteRAMDAC(dev, 0, dacclk_off, dacclk & ~NV_PRAMDAC_DACCLK_SEL_DACCLK); } } } /* Check if the DAC corresponding to 'encoder' is being used by * someone else. */ bool nv04_dac_in_use(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; return nv_gf4_disp_arch(encoder->dev) && (nv04_display(dev)->dac_users[ffs(dcb->or) - 1] & ~(1 << dcb->index)); } static void nv04_dac_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_drm *drm = nouveau_drm(encoder->dev); if (nv_encoder->last_dpms == mode) return; nv_encoder->last_dpms = mode; NV_DEBUG(drm, "Setting dpms mode %d on vga encoder (output %d)\n", mode, nv_encoder->dcb->index); nv04_dac_update_dacclk(encoder, mode == DRM_MODE_DPMS_ON); } static void nv04_dac_save(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; if (nv_gf4_disp_arch(dev)) nv_encoder->restore.output = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + nv04_dac_output_offset(encoder)); } static void nv04_dac_restore(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; if (nv_gf4_disp_arch(dev)) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + nv04_dac_output_offset(encoder), nv_encoder->restore.output); nv_encoder->last_dpms = NV_DPMS_CLEARED; } static void nv04_dac_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); drm_encoder_cleanup(encoder); kfree(nv_encoder); } static const struct drm_encoder_helper_funcs nv04_dac_helper_funcs = { .dpms = nv04_dac_dpms, .mode_fixup = nv04_dac_mode_fixup, .prepare = nv04_dac_prepare, .commit = nv04_dac_commit, .mode_set = nv04_dac_mode_set, .detect = nv04_dac_detect }; static const struct drm_encoder_helper_funcs nv17_dac_helper_funcs = { .dpms = nv04_dac_dpms, .mode_fixup = nv04_dac_mode_fixup, .prepare = nv04_dac_prepare, .commit = nv04_dac_commit, .mode_set = nv04_dac_mode_set, .detect = nv17_dac_detect }; static const struct drm_encoder_funcs nv04_dac_funcs = { .destroy = nv04_dac_destroy, }; int nv04_dac_create(struct drm_connector *connector, struct dcb_output *entry) { const struct drm_encoder_helper_funcs *helper; struct nouveau_encoder *nv_encoder = NULL; struct drm_device *dev = connector->dev; struct drm_encoder *encoder; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; encoder = to_drm_encoder(nv_encoder); nv_encoder->dcb = entry; nv_encoder->or = ffs(entry->or) - 1; nv_encoder->enc_save = nv04_dac_save; nv_encoder->enc_restore = nv04_dac_restore; if (nv_gf4_disp_arch(dev)) helper = &nv17_dac_helper_funcs; else helper = &nv04_dac_helper_funcs; drm_encoder_init(dev, encoder, &nv04_dac_funcs, DRM_MODE_ENCODER_DAC, NULL); drm_encoder_helper_add(encoder, helper); encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; drm_connector_attach_encoder(connector, encoder); return 0; }
linux-master
drivers/gpu/drm/nouveau/dispnv04/dac.c
/* * Copyright 2009 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Author: Ben Skeggs */ #include <drm/drm_crtc_helper.h> #include "nouveau_drv.h" #include "nouveau_reg.h" #include "hw.h" #include "nouveau_encoder.h" #include "nouveau_connector.h" #include "nouveau_bo.h" #include "nouveau_gem.h" #include "nouveau_chan.h" #include <nvif/if0004.h> struct nouveau_connector * nv04_encoder_get_connector(struct nouveau_encoder *encoder) { struct drm_device *dev = to_drm_encoder(encoder)->dev; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; struct nouveau_connector *nv_connector = NULL; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { if (connector->encoder == to_drm_encoder(encoder)) nv_connector = nouveau_connector(connector); } drm_connector_list_iter_end(&conn_iter); return nv_connector; } static void nv04_display_fini(struct drm_device *dev, bool runtime, bool suspend) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv04_display *disp = nv04_display(dev); struct drm_crtc *crtc; /* Disable flip completion events. */ nvif_event_block(&disp->flip); /* Disable vblank interrupts. */ NVWriteCRTC(dev, 0, NV_PCRTC_INTR_EN_0, 0); if (nv_two_heads(dev)) NVWriteCRTC(dev, 1, NV_PCRTC_INTR_EN_0, 0); if (!runtime) cancel_work_sync(&drm->hpd_work); if (!suspend) return; /* Un-pin FB and cursors so they'll be evicted to system memory. */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct drm_framebuffer *fb = crtc->primary->fb; struct nouveau_bo *nvbo; if (!fb || !fb->obj[0]) continue; nvbo = nouveau_gem_object(fb->obj[0]); nouveau_bo_unpin(nvbo); } list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); if (nv_crtc->cursor.nvbo) { if (nv_crtc->cursor.set_offset) nouveau_bo_unmap(nv_crtc->cursor.nvbo); nouveau_bo_unpin(nv_crtc->cursor.nvbo); } } } static int nv04_display_init(struct drm_device *dev, bool resume, bool runtime) { struct nv04_display *disp = nv04_display(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_encoder *encoder; struct drm_crtc *crtc; int ret; /* meh.. modeset apparently doesn't setup all the regs and depends * on pre-existing state, for now load the state of the card *before* * nouveau was loaded, and then do a modeset. * * best thing to do probably is to make save/restore routines not * save/restore "pre-load" state, but more general so we can save * on suspend too. */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nv_crtc->save(&nv_crtc->base); } list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.base.head) encoder->enc_save(&encoder->base.base); /* Enable flip completion events. */ nvif_event_allow(&disp->flip); if (!resume) return 0; /* Re-pin FB/cursors. */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct drm_framebuffer *fb = crtc->primary->fb; struct nouveau_bo *nvbo; if (!fb || !fb->obj[0]) continue; nvbo = nouveau_gem_object(fb->obj[0]); ret = nouveau_bo_pin(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, true); if (ret) NV_ERROR(drm, "Could not pin framebuffer\n"); } list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); if (!nv_crtc->cursor.nvbo) continue; ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, NOUVEAU_GEM_DOMAIN_VRAM, true); if (!ret && nv_crtc->cursor.set_offset) ret = nouveau_bo_map(nv_crtc->cursor.nvbo); if (ret) NV_ERROR(drm, "Could not pin/map cursor.\n"); } /* Force CLUT to get re-loaded during modeset. */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nv_crtc->lut.depth = 0; } /* This should ensure we don't hit a locking problem when someone * wakes us up via a connector. We should never go into suspend * while the display is on anyways. */ if (runtime) return 0; /* Restore mode. */ drm_helper_resume_force_mode(dev); list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); if (!nv_crtc->cursor.nvbo) continue; if (nv_crtc->cursor.set_offset) nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->offset); nv_crtc->cursor.set_pos(nv_crtc, nv_crtc->cursor_saved_x, nv_crtc->cursor_saved_y); } return 0; } static void nv04_display_destroy(struct drm_device *dev) { struct nv04_display *disp = nv04_display(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_encoder *encoder; struct nouveau_crtc *nv_crtc; /* Restore state */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.base.head) encoder->enc_restore(&encoder->base.base); list_for_each_entry(nv_crtc, &dev->mode_config.crtc_list, base.head) nv_crtc->restore(&nv_crtc->base); nouveau_hw_save_vga_fonts(dev, 0); nvif_event_dtor(&disp->flip); nouveau_display(dev)->priv = NULL; vfree(disp); nvif_object_unmap(&drm->client.device.object); } int nv04_display_create(struct drm_device *dev) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct dcb_table *dcb = &drm->vbios.dcb; struct drm_connector *connector, *ct; struct drm_encoder *encoder; struct nouveau_encoder *nv_encoder; struct nouveau_crtc *crtc; struct nv04_display *disp; int i, ret; disp = vzalloc(sizeof(*disp)); if (!disp) return -ENOMEM; disp->drm = drm; nvif_object_map(&drm->client.device.object, NULL, 0); nouveau_display(dev)->priv = disp; nouveau_display(dev)->dtor = nv04_display_destroy; nouveau_display(dev)->init = nv04_display_init; nouveau_display(dev)->fini = nv04_display_fini; /* Pre-nv50 doesn't support atomic, so don't expose the ioctls */ dev->driver_features &= ~DRIVER_ATOMIC; /* Request page flip completion event. */ if (drm->channel) { ret = nvif_event_ctor(&drm->channel->nvsw, "kmsFlip", 0, nv04_flip_complete, true, NULL, 0, &disp->flip); if (ret) return ret; } nouveau_hw_save_vga_fonts(dev, 1); nv04_crtc_create(dev, 0); if (nv_two_heads(dev)) nv04_crtc_create(dev, 1); for (i = 0; i < dcb->entries; i++) { struct dcb_output *dcbent = &dcb->entry[i]; connector = nouveau_connector_create(dev, dcbent); if (IS_ERR(connector)) continue; switch (dcbent->type) { case DCB_OUTPUT_ANALOG: ret = nv04_dac_create(connector, dcbent); break; case DCB_OUTPUT_LVDS: case DCB_OUTPUT_TMDS: ret = nv04_dfp_create(connector, dcbent); break; case DCB_OUTPUT_TV: if (dcbent->location == DCB_LOC_ON_CHIP) ret = nv17_tv_create(connector, dcbent); else ret = nv04_tv_create(connector, dcbent); break; default: NV_WARN(drm, "DCB type %d not known\n", dcbent->type); continue; } if (ret) continue; } list_for_each_entry_safe(connector, ct, &dev->mode_config.connector_list, head) { if (!connector->possible_encoders) { NV_WARN(drm, "%s has no encoders, removing\n", connector->name); connector->funcs->destroy(connector); } } list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, nv_encoder->dcb->i2c_index); nv_encoder->i2c = bus ? &bus->i2c : NULL; } /* Save previous state */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) crtc->save(&crtc->base); list_for_each_entry(nv_encoder, &dev->mode_config.encoder_list, base.base.head) nv_encoder->enc_save(&nv_encoder->base.base); nouveau_overlay_init(dev); return 0; }
linux-master
drivers/gpu/drm/nouveau/dispnv04/disp.c
/* * Copyright 2003 NVIDIA, Corporation * Copyright 2006 Dave Airlie * Copyright 2007 Maarten Maathuis * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <drm/drm_fourcc.h> #include <drm/drm_modeset_helper_vtables.h> #include "nouveau_drv.h" #include "nouveau_reg.h" #include "nouveau_encoder.h" #include "nouveau_connector.h" #include "nouveau_crtc.h" #include "hw.h" #include "nvreg.h" #include <drm/i2c/sil164.h> #include <subdev/i2c.h> #define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \ NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \ NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS) #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \ NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \ NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE) static inline bool is_fpc_off(uint32_t fpc) { return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) == FP_TG_CONTROL_OFF); } int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent) { /* special case of nv_read_tmds to find crtc associated with an output. * this does not give a correct answer for off-chip dvi, but there's no * use for such an answer anyway */ int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2; NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL, NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4); return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac; } void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent, int head, bool dl) { /* The BIOS scripts don't do this for us, sadly * Luckily we do know the values ;-) * * head < 0 indicates we wish to force a setting with the overrideval * (for VT restore etc.) */ int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2; uint8_t tmds04 = 0x80; if (head != ramdac) tmds04 = 0x88; if (dcbent->type == DCB_OUTPUT_LVDS) tmds04 |= 0x01; nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04); if (dl) /* dual link */ nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08); } void nv04_dfp_disable(struct drm_device *dev, int head) { struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg; if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) & FP_TG_CONTROL_ON) { /* digital remnants must be cleaned before new crtc * values programmed. delay is time for the vga stuff * to realise it's in control again */ NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, FP_TG_CONTROL_OFF); msleep(50); } /* don't inadvertently turn it on when state written later */ crtcstate[head].fp_control = FP_TG_CONTROL_OFF; crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &= ~NV_CIO_CRE_LCD_ROUTE_MASK; } void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_crtc *crtc; struct nouveau_crtc *nv_crtc; uint32_t *fpc; if (mode == DRM_MODE_DPMS_ON) { nv_crtc = nouveau_crtc(encoder->crtc); fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control; if (is_fpc_off(*fpc)) { /* using saved value is ok, as (is_digital && dpms_on && * fp_control==OFF) is (at present) *only* true when * fpc's most recent change was by below "off" code */ *fpc = nv_crtc->dpms_saved_fp_control; } nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index; NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc); } else { list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { nv_crtc = nouveau_crtc(crtc); fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control; nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index); if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) { nv_crtc->dpms_saved_fp_control = *fpc; /* cut the FP output */ *fpc &= ~FP_TG_CONTROL_ON; *fpc |= FP_TG_CONTROL_OFF; NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc); } } } } static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; struct drm_encoder *slave; if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP) return NULL; /* Some BIOSes (e.g. the one in a Quadro FX1000) report several * TMDS transmitters at the same I2C address, in the same I2C * bus. This can still work because in that case one of them is * always hard-wired to a reasonable configuration using straps, * and the other one needs to be programmed. * * I don't think there's a way to know which is which, even the * blob programs the one exposed via I2C for *both* heads, so * let's do the same. */ list_for_each_entry(slave, &dev->mode_config.encoder_list, head) { struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb; if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) && slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr) return slave; } return NULL; } static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector = nv04_encoder_get_connector(nv_encoder); if (!nv_connector->native_mode || nv_connector->scaling_mode == DRM_MODE_SCALE_NONE || mode->hdisplay > nv_connector->native_mode->hdisplay || mode->vdisplay > nv_connector->native_mode->vdisplay) { nv_encoder->mode = *adjusted_mode; } else { nv_encoder->mode = *nv_connector->native_mode; adjusted_mode->clock = nv_connector->native_mode->clock; } return true; } static void nv04_dfp_prepare_sel_clk(struct drm_device *dev, struct nouveau_encoder *nv_encoder, int head) { struct nv04_mode_state *state = &nv04_display(dev)->mode_reg; uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000; if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP) return; /* SEL_CLK is only used on the primary ramdac * It toggles spread spectrum PLL output and sets the bindings of PLLs * to heads on digital outputs */ if (head) state->sel_clk |= bits1618; else state->sel_clk &= ~bits1618; /* nv30: * bit 0 NVClk spread spectrum on/off * bit 2 MemClk spread spectrum on/off * bit 4 PixClk1 spread spectrum on/off toggle * bit 6 PixClk2 spread spectrum on/off toggle * * nv40 (observations from bios behaviour and mmio traces): * bits 4&6 as for nv30 * bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6; * maybe a different spread mode * bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts) * The logic behind turning spread spectrum on/off in the first place, * and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table * entry has the necessary info) */ if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) { int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1; state->sel_clk &= ~0xf0; state->sel_clk |= (head ? 0x40 : 0x10) << shift; } } static void nv04_dfp_prepare(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); const struct drm_encoder_helper_funcs *helper = encoder->helper_private; struct drm_device *dev = encoder->dev; int head = nouveau_crtc(encoder->crtc)->index; struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg; uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX]; uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX]; helper->dpms(encoder, DRM_MODE_DPMS_OFF); nv04_dfp_prepare_sel_clk(dev, nv_encoder, head); *cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3; if (nv_two_heads(dev)) { if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP) *cr_lcd |= head ? 0x0 : 0x8; else { *cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30; if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) *cr_lcd |= 0x30; if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) { /* avoid being connected to both crtcs */ *cr_lcd_oth &= ~0x30; NVWriteVgaCrtc(dev, head ^ 1, NV_CIO_CRE_LCD__INDEX, *cr_lcd_oth); } } } } static void nv04_dfp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct nvif_object *device = &nouveau_drm(dev)->client.device.object; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index]; struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_display_mode *output_mode = &nv_encoder->mode; struct drm_connector *connector = &nv_connector->base; const struct drm_framebuffer *fb = encoder->crtc->primary->fb; uint32_t mode_ratio, panel_ratio; NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index); drm_mode_debug_printmodeline(output_mode); /* Initialize the FP registers in this CRTC. */ regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1; regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1; if (!nv_gf4_disp_arch(dev) || (output_mode->hsync_start - output_mode->hdisplay) >= drm->vbios.digital_min_front_porch) regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay; else regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1; regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1; regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1; regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew; regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1; regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1; regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1; regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1; regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1; regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1; regp->fp_vert_regs[FP_VALID_START] = 0; regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1; /* bit26: a bit seen on some g7x, no as yet discernable purpose */ regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG)); /* Deal with vsync/hsync polarity */ /* LVDS screens do set this, but modes with +ve syncs are very rare */ if (output_mode->flags & DRM_MODE_FLAG_PVSYNC) regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS; if (output_mode->flags & DRM_MODE_FLAG_PHSYNC) regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS; /* panel scaling first, as native would get set otherwise */ if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE || nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */ regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER; else if (adjusted_mode->hdisplay == output_mode->hdisplay && adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */ regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE; else /* gpu needs to scale */ regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE; if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT) regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12; if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && output_mode->clock > 165000) regp->fp_control |= (2 << 24); if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) { bool duallink = false, dummy; if (nv_connector->edid && nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { duallink = (((u8 *)nv_connector->edid)[121] == 2); } else { nouveau_bios_parse_lvds_table(dev, output_mode->clock, &duallink, &dummy); } if (duallink) regp->fp_control |= (8 << 28); } else if (output_mode->clock > 165000) regp->fp_control |= (8 << 28); regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND | NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND | NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR | NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR | NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED | NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE | NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE; /* We want automatic scaling */ regp->fp_debug_1 = 0; /* This can override HTOTAL and VTOTAL */ regp->fp_debug_2 = 0; /* Use 20.12 fixed point format to avoid floats */ mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay; panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay; /* if ratios are equal, SCALE_ASPECT will automatically (and correctly) * get treated the same as SCALE_FULLSCREEN */ if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT && mode_ratio != panel_ratio) { uint32_t diff, scale; bool divide_by_2 = nv_gf4_disp_arch(dev); if (mode_ratio < panel_ratio) { /* vertical needs to expand to glass size (automatic) * horizontal needs to be scaled at vertical scale factor * to maintain aspect */ scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay; regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE | XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE); /* restrict area of screen used, horizontally */ diff = output_mode->hdisplay - output_mode->vdisplay * mode_ratio / (1 << 12); regp->fp_horiz_regs[FP_VALID_START] += diff / 2; regp->fp_horiz_regs[FP_VALID_END] -= diff / 2; } if (mode_ratio > panel_ratio) { /* horizontal needs to expand to glass size (automatic) * vertical needs to be scaled at horizontal scale factor * to maintain aspect */ scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay; regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE | XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE); /* restrict area of screen used, vertically */ diff = output_mode->vdisplay - (1 << 12) * output_mode->hdisplay / mode_ratio; regp->fp_vert_regs[FP_VALID_START] += diff / 2; regp->fp_vert_regs[FP_VALID_END] -= diff / 2; } } /* Output property. */ if ((nv_connector->dithering_mode == DITHERING_MODE_ON) || (nv_connector->dithering_mode == DITHERING_MODE_AUTO && fb->format->depth > connector->display_info.bpc * 3)) { if (drm->client.device.info.chipset == 0x11) regp->dither = savep->dither | 0x00010000; else { int i; regp->dither = savep->dither | 0x00000001; for (i = 0; i < 3; i++) { regp->dither_regs[i] = 0xe4e4e4e4; regp->dither_regs[i + 3] = 0x44444444; } } } else { if (drm->client.device.info.chipset != 0x11) { /* reset them */ int i; for (i = 0; i < 3; i++) { regp->dither_regs[i] = savep->dither_regs[i]; regp->dither_regs[i + 3] = savep->dither_regs[i + 3]; } } regp->dither = savep->dither; } regp->fp_margin_color = 0; } static void nv04_dfp_commit(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); const struct drm_encoder_helper_funcs *helper = encoder->helper_private; struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct dcb_output *dcbe = nv_encoder->dcb; int head = nouveau_crtc(encoder->crtc)->index; struct drm_encoder *slave_encoder; if (dcbe->type == DCB_OUTPUT_TMDS) run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock); else if (dcbe->type == DCB_OUTPUT_LVDS) call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock); /* update fp_control state for any changes made by scripts, * so correct value is written at DPMS on */ nv04_display(dev)->mode_reg.crtc_reg[head].fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); /* This could use refinement for flatpanels, but it should work this way */ if (drm->client.device.info.chipset < 0x44) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000); else NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000); /* Init external transmitters */ slave_encoder = get_tmds_slave(encoder); if (slave_encoder) get_slave_funcs(slave_encoder)->mode_set( slave_encoder, &nv_encoder->mode, &nv_encoder->mode); helper->dpms(encoder, DRM_MODE_DPMS_ON); NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n", nv04_encoder_get_connector(nv_encoder)->base.name, nv_crtc->index, '@' + ffs(nv_encoder->dcb->or)); } static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode) { #ifdef __powerpc__ struct drm_device *dev = encoder->dev; struct nvif_object *device = &nouveau_drm(dev)->client.device.object; struct pci_dev *pdev = to_pci_dev(dev->dev); /* BIOS scripts usually take care of the backlight, thanks * Apple for your consistency. */ if (pdev->device == 0x0174 || pdev->device == 0x0179 || pdev->device == 0x0189 || pdev->device == 0x0329) { if (mode == DRM_MODE_DPMS_ON) { nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31); nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 1); } else { nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0); nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 0); } } #endif } static inline bool is_powersaving_dpms(int mode) { return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED; } static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_crtc *crtc = encoder->crtc; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms); if (nv_encoder->last_dpms == mode) return; nv_encoder->last_dpms = mode; NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n", mode, nv_encoder->dcb->index); if (was_powersaving && is_powersaving_dpms(mode)) return; if (nv_encoder->dcb->lvdsconf.use_power_scripts) { /* when removing an output, crtc may not be set, but PANEL_OFF * must still be run */ int head = crtc ? nouveau_crtc(crtc)->index : nv04_dfp_get_bound_head(dev, nv_encoder->dcb); if (mode == DRM_MODE_DPMS_ON) { call_lvds_script(dev, nv_encoder->dcb, head, LVDS_PANEL_ON, nv_encoder->mode.clock); } else /* pxclk of 0 is fine for PANEL_OFF, and for a * disconnected LVDS encoder there is no native_mode */ call_lvds_script(dev, nv_encoder->dcb, head, LVDS_PANEL_OFF, 0); } nv04_dfp_update_backlight(encoder, mode); nv04_dfp_update_fp_control(encoder, mode); if (mode == DRM_MODE_DPMS_ON) nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index); else { nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); nv04_display(dev)->mode_reg.sel_clk &= ~0xf0; } NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk); } static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); if (nv_encoder->last_dpms == mode) return; nv_encoder->last_dpms = mode; NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n", mode, nv_encoder->dcb->index); nv04_dfp_update_backlight(encoder, mode); nv04_dfp_update_fp_control(encoder, mode); } static void nv04_dfp_save(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; if (nv_two_heads(dev)) nv_encoder->restore.head = nv04_dfp_get_bound_head(dev, nv_encoder->dcb); } static void nv04_dfp_restore(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; int head = nv_encoder->restore.head; if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) { struct nouveau_connector *connector = nv04_encoder_get_connector(nv_encoder); if (connector && connector->native_mode) call_lvds_script(dev, nv_encoder->dcb, head, LVDS_PANEL_ON, connector->native_mode->clock); } else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) { int clock = nouveau_hw_pllvals_to_clk (&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals); run_tmds_table(dev, nv_encoder->dcb, head, clock); } nv_encoder->last_dpms = NV_DPMS_CLEARED; } static void nv04_dfp_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); if (get_slave_funcs(encoder)) get_slave_funcs(encoder)->destroy(encoder); drm_encoder_cleanup(encoder); kfree(nv_encoder); } static void nv04_tmds_slave_init(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct dcb_output *dcb = nouveau_encoder(encoder)->dcb; struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_PRI); struct nvkm_i2c_bus_probe info[] = { { { .type = "sil164", .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38), .platform_data = &(struct sil164_encoder_params) { SIL164_INPUT_EDGE_RISING } }, 0 }, { } }; int type; if (!nv_gf4_disp_arch(dev) || !bus || get_tmds_slave(encoder)) return; type = nvkm_i2c_bus_probe(bus, "TMDS transmitter", info, NULL, NULL); if (type < 0) return; drm_i2c_encoder_init(dev, to_encoder_slave(encoder), &bus->i2c, &info[type].dev); } static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = { .dpms = nv04_lvds_dpms, .mode_fixup = nv04_dfp_mode_fixup, .prepare = nv04_dfp_prepare, .commit = nv04_dfp_commit, .mode_set = nv04_dfp_mode_set, .detect = NULL, }; static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = { .dpms = nv04_tmds_dpms, .mode_fixup = nv04_dfp_mode_fixup, .prepare = nv04_dfp_prepare, .commit = nv04_dfp_commit, .mode_set = nv04_dfp_mode_set, .detect = NULL, }; static const struct drm_encoder_funcs nv04_dfp_funcs = { .destroy = nv04_dfp_destroy, }; int nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry) { const struct drm_encoder_helper_funcs *helper; struct nouveau_encoder *nv_encoder = NULL; struct drm_encoder *encoder; int type; switch (entry->type) { case DCB_OUTPUT_TMDS: type = DRM_MODE_ENCODER_TMDS; helper = &nv04_tmds_helper_funcs; break; case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; helper = &nv04_lvds_helper_funcs; break; default: return -EINVAL; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->enc_save = nv04_dfp_save; nv_encoder->enc_restore = nv04_dfp_restore; encoder = to_drm_encoder(nv_encoder); nv_encoder->dcb = entry; nv_encoder->or = ffs(entry->or) - 1; drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type, NULL); drm_encoder_helper_add(encoder, helper); encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; if (entry->type == DCB_OUTPUT_TMDS && entry->location != DCB_LOC_ON_CHIP) nv04_tmds_slave_init(encoder); drm_connector_attach_encoder(connector, encoder); return 0; }
linux-master
drivers/gpu/drm/nouveau/dispnv04/dfp.c
/* * Copyright (C) 2009 Francisco Jerez. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "nouveau_drv.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" #include "hw.h" #include "tvnv17.h" const char * const nv17_tv_norm_names[NUM_TV_NORMS] = { [TV_NORM_PAL] = "PAL", [TV_NORM_PAL_M] = "PAL-M", [TV_NORM_PAL_N] = "PAL-N", [TV_NORM_PAL_NC] = "PAL-Nc", [TV_NORM_NTSC_M] = "NTSC-M", [TV_NORM_NTSC_J] = "NTSC-J", [TV_NORM_HD480I] = "hd480i", [TV_NORM_HD480P] = "hd480p", [TV_NORM_HD576I] = "hd576i", [TV_NORM_HD576P] = "hd576p", [TV_NORM_HD720P] = "hd720p", [TV_NORM_HD1080I] = "hd1080i" }; /* TV standard specific parameters */ struct nv17_tv_norm_params nv17_tv_norms[NUM_TV_NORMS] = { [TV_NORM_PAL] = { TV_ENC_MODE, { .tv_enc_mode = { 720, 576, 50000, { 0x2a, 0x9, 0x8a, 0xcb, 0x0, 0x0, 0xb, 0x18, 0x7e, 0x40, 0x8a, 0x35, 0x27, 0x0, 0x34, 0x3, 0x3e, 0x3, 0x17, 0x21, 0x1b, 0x1b, 0x24, 0x9c, 0x1, 0x0, 0xf, 0xf, 0x60, 0x5, 0xd3, 0x3, 0xd3, 0x4, 0xd4, 0x1, 0x2, 0x0, 0xa, 0x5, 0x0, 0x1a, 0xff, 0x3, 0x18, 0xf, 0x78, 0x0, 0x0, 0xb4, 0x0, 0x15, 0x49, 0x10, 0x0, 0x9b, 0xbd, 0x15, 0x5, 0x15, 0x3e, 0x3, 0x0, 0x0 } } } }, [TV_NORM_PAL_M] = { TV_ENC_MODE, { .tv_enc_mode = { 720, 480, 59940, { 0x21, 0xe6, 0xef, 0xe3, 0x0, 0x0, 0xb, 0x18, 0x7e, 0x44, 0x76, 0x32, 0x25, 0x0, 0x3c, 0x0, 0x3c, 0x0, 0x17, 0x21, 0x1b, 0x1b, 0x24, 0x83, 0x1, 0x0, 0xf, 0xf, 0x60, 0x5, 0xd3, 0x1, 0xc5, 0x4, 0xc5, 0x1, 0x2, 0x0, 0xa, 0x5, 0x0, 0x18, 0xff, 0x3, 0x20, 0xf, 0x78, 0x0, 0x0, 0xb4, 0x0, 0x15, 0x40, 0x10, 0x0, 0x9c, 0xc8, 0x15, 0x5, 0x15, 0x3c, 0x0, 0x0, 0x0 } } } }, [TV_NORM_PAL_N] = { TV_ENC_MODE, { .tv_enc_mode = { 720, 576, 50000, { 0x2a, 0x9, 0x8a, 0xcb, 0x0, 0x0, 0xb, 0x18, 0x7e, 0x40, 0x8a, 0x32, 0x25, 0x0, 0x3c, 0x0, 0x3c, 0x0, 0x17, 0x21, 0x1b, 0x1b, 0x24, 0x9c, 0x1, 0x0, 0xf, 0xf, 0x60, 0x5, 0xd3, 0x1, 0xc5, 0x4, 0xc5, 0x1, 0x2, 0x0, 0xa, 0x5, 0x0, 0x1a, 0xff, 0x3, 0x18, 0xf, 0x78, 0x0, 0x0, 0xb4, 0x0, 0x15, 0x49, 0x10, 0x0, 0x9b, 0xbd, 0x15, 0x5, 0x15, 0x3c, 0x0, 0x0, 0x0 } } } }, [TV_NORM_PAL_NC] = { TV_ENC_MODE, { .tv_enc_mode = { 720, 576, 50000, { 0x21, 0xf6, 0x94, 0x46, 0x0, 0x0, 0xb, 0x18, 0x7e, 0x44, 0x8a, 0x35, 0x27, 0x0, 0x34, 0x3, 0x3e, 0x3, 0x17, 0x21, 0x1b, 0x1b, 0x24, 0x9c, 0x1, 0x0, 0xf, 0xf, 0x60, 0x5, 0xd3, 0x3, 0xd3, 0x4, 0xd4, 0x1, 0x2, 0x0, 0xa, 0x5, 0x0, 0x1a, 0xff, 0x3, 0x18, 0xf, 0x78, 0x0, 0x0, 0xb4, 0x0, 0x15, 0x49, 0x10, 0x0, 0x9b, 0xbd, 0x15, 0x5, 0x15, 0x3e, 0x3, 0x0, 0x0 } } } }, [TV_NORM_NTSC_M] = { TV_ENC_MODE, { .tv_enc_mode = { 720, 480, 59940, { 0x21, 0xf0, 0x7c, 0x1f, 0x0, 0x0, 0xb, 0x18, 0x7e, 0x44, 0x76, 0x48, 0x0, 0x0, 0x3c, 0x0, 0x3c, 0x0, 0x17, 0x21, 0x1b, 0x1b, 0x24, 0x83, 0x1, 0x0, 0xf, 0xf, 0x60, 0x5, 0xd3, 0x1, 0xc5, 0x4, 0xc5, 0x1, 0x2, 0x0, 0xa, 0x5, 0x0, 0x16, 0xff, 0x3, 0x20, 0xf, 0x78, 0x0, 0x0, 0xb4, 0x0, 0x15, 0x4, 0x10, 0x0, 0x9c, 0xc8, 0x15, 0x5, 0x15, 0x3c, 0x0, 0x0, 0x0 } } } }, [TV_NORM_NTSC_J] = { TV_ENC_MODE, { .tv_enc_mode = { 720, 480, 59940, { 0x21, 0xf0, 0x7c, 0x1f, 0x0, 0x0, 0xb, 0x18, 0x7e, 0x44, 0x76, 0x48, 0x0, 0x0, 0x32, 0x0, 0x3c, 0x0, 0x17, 0x21, 0x1b, 0x1b, 0x24, 0x83, 0x1, 0x0, 0xf, 0xf, 0x60, 0x5, 0xd3, 0x1, 0xcf, 0x4, 0xcf, 0x1, 0x2, 0x0, 0xa, 0x5, 0x0, 0x16, 0xff, 0x3, 0x20, 0xf, 0x78, 0x0, 0x0, 0xb4, 0x0, 0x15, 0x4, 0x10, 0x0, 0xa4, 0xc8, 0x15, 0x5, 0x15, 0x3c, 0x0, 0x0, 0x0 } } } }, [TV_NORM_HD480I] = { TV_ENC_MODE, { .tv_enc_mode = { 720, 480, 59940, { 0x21, 0xf0, 0x7c, 0x1f, 0x0, 0x0, 0xb, 0x18, 0x7e, 0x44, 0x76, 0x48, 0x0, 0x0, 0x32, 0x0, 0x3c, 0x0, 0x17, 0x21, 0x1b, 0x1b, 0x24, 0x83, 0x1, 0x0, 0xf, 0xf, 0x60, 0x5, 0xd3, 0x1, 0xcf, 0x4, 0xcf, 0x1, 0x2, 0x0, 0xa, 0x5, 0x0, 0x16, 0xff, 0x3, 0x20, 0xf, 0x78, 0x0, 0x0, 0xb4, 0x0, 0x15, 0x4, 0x10, 0x0, 0xa4, 0xc8, 0x15, 0x5, 0x15, 0x3c, 0x0, 0x0, 0x0 } } } }, [TV_NORM_HD576I] = { TV_ENC_MODE, { .tv_enc_mode = { 720, 576, 50000, { 0x2a, 0x9, 0x8a, 0xcb, 0x0, 0x0, 0xb, 0x18, 0x7e, 0x40, 0x8a, 0x35, 0x27, 0x0, 0x34, 0x3, 0x3e, 0x3, 0x17, 0x21, 0x1b, 0x1b, 0x24, 0x9c, 0x1, 0x0, 0xf, 0xf, 0x60, 0x5, 0xd3, 0x3, 0xd3, 0x4, 0xd4, 0x1, 0x2, 0x0, 0xa, 0x5, 0x0, 0x1a, 0xff, 0x3, 0x18, 0xf, 0x78, 0x0, 0x0, 0xb4, 0x0, 0x15, 0x49, 0x10, 0x0, 0x9b, 0xbd, 0x15, 0x5, 0x15, 0x3e, 0x3, 0x0, 0x0 } } } }, [TV_NORM_HD480P] = { CTV_ENC_MODE, { .ctv_enc_mode = { .mode = { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 735, 743, 858, 0, 480, 490, 494, 525, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, .ctv_regs = { 0x3540000, 0x0, 0x0, 0x314, 0x354003a, 0x40000, 0x6f0344, 0x18100000, 0x10160004, 0x10060005, 0x1006000c, 0x10060020, 0x10060021, 0x140e0022, 0x10060202, 0x1802020a, 0x1810020b, 0x10000fff, 0x10000fff, 0x10000fff, 0x10000fff, 0x10000fff, 0x10000fff, 0x70, 0x3ff0000, 0x57, 0x2e001e, 0x258012c, 0xa0aa04ec, 0x30, 0x80960019, 0x12c0300, 0x2019, 0x600, 0x32060019, 0x0, 0x0, 0x400 } } } }, [TV_NORM_HD576P] = { CTV_ENC_MODE, { .ctv_enc_mode = { .mode = { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 730, 738, 864, 0, 576, 581, 585, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, .ctv_regs = { 0x3540000, 0x0, 0x0, 0x314, 0x354003a, 0x40000, 0x6f0344, 0x18100000, 0x10060001, 0x10060009, 0x10060026, 0x10060027, 0x140e0028, 0x10060268, 0x1810026d, 0x10000fff, 0x10000fff, 0x10000fff, 0x10000fff, 0x10000fff, 0x10000fff, 0x10000fff, 0x10000fff, 0x69, 0x3ff0000, 0x57, 0x2e001e, 0x258012c, 0xa0aa04ec, 0x30, 0x80960019, 0x12c0300, 0x2019, 0x600, 0x32060019, 0x0, 0x0, 0x400 } } } }, [TV_NORM_HD720P] = { CTV_ENC_MODE, { .ctv_enc_mode = { .mode = { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1349, 1357, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, .ctv_regs = { 0x1260394, 0x0, 0x0, 0x622, 0x66b0021, 0x6004a, 0x1210626, 0x8170000, 0x70004, 0x70016, 0x70017, 0x40f0018, 0x702e8, 0x81702ed, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0x0, 0x2e40001, 0x58, 0x2e001e, 0x258012c, 0xa0aa04ec, 0x30, 0x810c0039, 0x12c0300, 0xc0002039, 0x600, 0x32060039, 0x0, 0x0, 0x0 } } } }, [TV_NORM_HD1080I] = { CTV_ENC_MODE, { .ctv_enc_mode = { .mode = { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 1961, 2049, 2200, 0, 1080, 1084, 1088, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, .ctv_regs = { 0xac0420, 0x44c0478, 0x4a4, 0x4fc0868, 0x8940028, 0x60054, 0xe80870, 0xbf70000, 0xbc70004, 0x70005, 0x70012, 0x70013, 0x40f0014, 0x70230, 0xbf70232, 0xbf70233, 0x1c70237, 0x70238, 0x70244, 0x70245, 0x40f0246, 0x70462, 0x1f70464, 0x0, 0x2e40001, 0x58, 0x2e001e, 0x258012c, 0xa0aa04ec, 0x30, 0x815f004c, 0x12c0300, 0xc000204c, 0x600, 0x3206004c, 0x0, 0x0, 0x0 } } } } }; /* * The following is some guesswork on how the TV encoder flicker * filter/rescaler works: * * It seems to use some sort of resampling filter, it is controlled * through the registers at NV_PTV_HFILTER and NV_PTV_VFILTER, they * control the horizontal and vertical stage respectively, there is * also NV_PTV_HFILTER2 the blob fills identically to NV_PTV_HFILTER, * but they seem to do nothing. A rough guess might be that they could * be used to independently control the filtering of each interlaced * field, but I don't know how they are enabled. The whole filtering * process seems to be disabled with bits 26:27 of PTV_200, but we * aren't doing that. * * The layout of both register sets is the same: * * A: [BASE+0x18]...[BASE+0x0] [BASE+0x58]..[BASE+0x40] * B: [BASE+0x34]...[BASE+0x1c] [BASE+0x74]..[BASE+0x5c] * * Each coefficient is stored in bits [31],[15:9] in two's complement * format. They seem to be some kind of weights used in a low-pass * filter. Both A and B coefficients are applied to the 14 nearest * samples on each side (Listed from nearest to furthermost. They * roughly cover 2 framebuffer pixels on each side). They are * probably multiplied with some more hardwired weights before being * used: B-coefficients are applied the same on both sides, * A-coefficients are inverted before being applied to the opposite * side. * * After all the hassle, I got the following formula by empirical * means... */ #define calc_overscan(o) interpolate(0x100, 0xe1, 0xc1, o) #define id1 (1LL << 8) #define id2 (1LL << 16) #define id3 (1LL << 24) #define id4 (1LL << 32) #define id5 (1LL << 48) static struct filter_params{ int64_t k1; int64_t ki; int64_t ki2; int64_t ki3; int64_t kr; int64_t kir; int64_t ki2r; int64_t ki3r; int64_t kf; int64_t kif; int64_t ki2f; int64_t ki3f; int64_t krf; int64_t kirf; int64_t ki2rf; int64_t ki3rf; } fparams[2][4] = { /* Horizontal filter parameters */ { {64.311690 * id5, -39.516924 * id5, 6.586143 * id5, 0.000002 * id5, 0.051285 * id4, 26.168746 * id4, -4.361449 * id4, -0.000001 * id4, 9.308169 * id3, 78.180965 * id3, -13.030158 * id3, -0.000001 * id3, -8.801540 * id1, -46.572890 * id1, 7.762145 * id1, -0.000000 * id1}, {-44.565569 * id5, -68.081246 * id5, 39.812074 * id5, -4.009316 * id5, 29.832207 * id4, 50.047322 * id4, -25.380017 * id4, 2.546422 * id4, 104.605622 * id3, 141.908641 * id3, -74.322319 * id3, 7.484316 * id3, -37.081621 * id1, -90.397510 * id1, 42.784229 * id1, -4.289952 * id1}, {-56.793244 * id5, 31.153584 * id5, -5.192247 * id5, -0.000003 * id5, 33.541131 * id4, -34.149302 * id4, 5.691537 * id4, 0.000002 * id4, 87.196610 * id3, -88.995169 * id3, 14.832456 * id3, 0.000012 * id3, 17.288138 * id1, 71.864786 * id1, -11.977408 * id1, -0.000009 * id1}, {51.787796 * id5, 21.211771 * id5, -18.993730 * id5, 1.853310 * id5, -41.470726 * id4, -17.775823 * id4, 13.057821 * id4, -1.15823 * id4, -154.235673 * id3, -44.878641 * id3, 40.656077 * id3, -3.695595 * id3, 112.201065 * id1, 39.992155 * id1, -25.155714 * id1, 2.113984 * id1}, }, /* Vertical filter parameters */ { {67.601979 * id5, 0.428319 * id5, -0.071318 * id5, -0.000012 * id5, -3.402339 * id4, 0.000209 * id4, -0.000092 * id4, 0.000010 * id4, -9.180996 * id3, 6.111270 * id3, -1.024457 * id3, 0.001043 * id3, 6.060315 * id1, -0.017425 * id1, 0.007830 * id1, -0.000869 * id1}, {6.755647 * id5, 5.841348 * id5, 1.469734 * id5, -0.149656 * id5, 8.293120 * id4, -1.192888 * id4, -0.947652 * id4, 0.094507 * id4, 37.526655 * id3, 10.257875 * id3, -10.823275 * id3, 1.081497 * id3, -2.361928 * id1, -2.059432 * id1, 1.840671 * id1, -0.168100 * id1}, {-14.780391 * id5, -16.042148 * id5, 2.673692 * id5, -0.000000 * id5, 39.541978 * id4, 5.680053 * id4, -0.946676 * id4, 0.000000 * id4, 152.994486 * id3, 12.625439 * id3, -2.119579 * id3, 0.002708 * id3, -38.125089 * id1, -0.855880 * id1, 0.155359 * id1, -0.002245 * id1}, {-27.476193 * id5, -1.454976 * id5, 1.286557 * id5, 0.025346 * id5, 20.687300 * id4, 3.014003 * id4, -0.557786 * id4, -0.01311 * id4, 60.008737 * id3, -0.738273 * id3, 5.408217 * id3, -0.796798 * id3, -17.296835 * id1, 4.438577 * id1, -2.809420 * id1, 0.385491 * id1}, } }; static void tv_setup_filter(struct drm_encoder *encoder) { struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); struct drm_display_mode *mode = &encoder->crtc->mode; uint32_t (*filters[])[4][7] = {&tv_enc->state.hfilter, &tv_enc->state.vfilter}; int i, j, k; int32_t overscan = calc_overscan(tv_enc->overscan); int64_t flicker = (tv_enc->flicker - 50) * (id3 / 100); uint64_t rs[] = {mode->hdisplay * id3, mode->vdisplay * id3}; do_div(rs[0], overscan * tv_norm->tv_enc_mode.hdisplay); do_div(rs[1], overscan * tv_norm->tv_enc_mode.vdisplay); for (k = 0; k < 2; k++) { rs[k] = max((int64_t)rs[k], id2); for (j = 0; j < 4; j++) { struct filter_params *p = &fparams[k][j]; for (i = 0; i < 7; i++) { int64_t c = (p->k1 + p->ki*i + p->ki2*i*i + p->ki3*i*i*i) + (p->kr + p->kir*i + p->ki2r*i*i + p->ki3r*i*i*i) * rs[k] + (p->kf + p->kif*i + p->ki2f*i*i + p->ki3f*i*i*i) * flicker + (p->krf + p->kirf*i + p->ki2rf*i*i + p->ki3rf*i*i*i) * flicker * rs[k]; (*filters[k])[j][i] = (c + id5/2) >> 39 & (0x1 << 31 | 0x7f << 9); } } } } /* Hardware state saving/restoring */ static void tv_save_filter(struct drm_device *dev, uint32_t base, uint32_t regs[4][7]) { int i, j; uint32_t offsets[] = { base, base + 0x1c, base + 0x40, base + 0x5c }; for (i = 0; i < 4; i++) { for (j = 0; j < 7; j++) regs[i][j] = nv_read_ptv(dev, offsets[i]+4*j); } } static void tv_load_filter(struct drm_device *dev, uint32_t base, uint32_t regs[4][7]) { int i, j; uint32_t offsets[] = { base, base + 0x1c, base + 0x40, base + 0x5c }; for (i = 0; i < 4; i++) { for (j = 0; j < 7; j++) nv_write_ptv(dev, offsets[i]+4*j, regs[i][j]); } } void nv17_tv_state_save(struct drm_device *dev, struct nv17_tv_state *state) { int i; for (i = 0; i < 0x40; i++) state->tv_enc[i] = nv_read_tv_enc(dev, i); tv_save_filter(dev, NV_PTV_HFILTER, state->hfilter); tv_save_filter(dev, NV_PTV_HFILTER2, state->hfilter2); tv_save_filter(dev, NV_PTV_VFILTER, state->vfilter); nv_save_ptv(dev, state, 200); nv_save_ptv(dev, state, 204); nv_save_ptv(dev, state, 208); nv_save_ptv(dev, state, 20c); nv_save_ptv(dev, state, 304); nv_save_ptv(dev, state, 500); nv_save_ptv(dev, state, 504); nv_save_ptv(dev, state, 508); nv_save_ptv(dev, state, 600); nv_save_ptv(dev, state, 604); nv_save_ptv(dev, state, 608); nv_save_ptv(dev, state, 60c); nv_save_ptv(dev, state, 610); nv_save_ptv(dev, state, 614); } void nv17_tv_state_load(struct drm_device *dev, struct nv17_tv_state *state) { int i; for (i = 0; i < 0x40; i++) nv_write_tv_enc(dev, i, state->tv_enc[i]); tv_load_filter(dev, NV_PTV_HFILTER, state->hfilter); tv_load_filter(dev, NV_PTV_HFILTER2, state->hfilter2); tv_load_filter(dev, NV_PTV_VFILTER, state->vfilter); nv_load_ptv(dev, state, 200); nv_load_ptv(dev, state, 204); nv_load_ptv(dev, state, 208); nv_load_ptv(dev, state, 20c); nv_load_ptv(dev, state, 304); nv_load_ptv(dev, state, 500); nv_load_ptv(dev, state, 504); nv_load_ptv(dev, state, 508); nv_load_ptv(dev, state, 600); nv_load_ptv(dev, state, 604); nv_load_ptv(dev, state, 608); nv_load_ptv(dev, state, 60c); nv_load_ptv(dev, state, 610); nv_load_ptv(dev, state, 614); /* This is required for some settings to kick in. */ nv_write_tv_enc(dev, 0x3e, 1); nv_write_tv_enc(dev, 0x3e, 0); } /* Timings similar to the ones the blob sets */ const struct drm_display_mode nv17_tv_modes[] = { { DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 0, 320, 344, 392, 560, 0, 200, 200, 202, 220, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLSCAN | DRM_MODE_FLAG_CLKDIV2) }, { DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 0, 320, 344, 392, 560, 0, 240, 240, 246, 263, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLSCAN | DRM_MODE_FLAG_CLKDIV2) }, { DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 0, 400, 432, 496, 640, 0, 300, 300, 303, 314, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_DBLSCAN | DRM_MODE_FLAG_CLKDIV2) }, { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 0, 640, 672, 768, 880, 0, 480, 480, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 0, 720, 752, 872, 960, 0, 480, 480, 493, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 0, 720, 776, 856, 960, 0, 576, 576, 588, 597, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 0, 800, 840, 920, 1040, 0, 600, 600, 604, 618, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 0, 1024, 1064, 1200, 1344, 0, 768, 768, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, {} }; void nv17_tv_update_properties(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); struct nv17_tv_state *regs = &tv_enc->state; struct nv17_tv_norm_params *tv_norm = get_tv_norm(encoder); int subconnector = tv_enc->select_subconnector ? tv_enc->select_subconnector : tv_enc->subconnector; switch (subconnector) { case DRM_MODE_SUBCONNECTOR_Composite: { regs->ptv_204 = 0x2; /* The composite connector may be found on either pin. */ if (tv_enc->pin_mask & 0x4) regs->ptv_204 |= 0x010000; else if (tv_enc->pin_mask & 0x2) regs->ptv_204 |= 0x100000; else regs->ptv_204 |= 0x110000; regs->tv_enc[0x7] = 0x10; break; } case DRM_MODE_SUBCONNECTOR_SVIDEO: regs->ptv_204 = 0x11012; regs->tv_enc[0x7] = 0x18; break; case DRM_MODE_SUBCONNECTOR_Component: regs->ptv_204 = 0x111333; regs->tv_enc[0x7] = 0x14; break; case DRM_MODE_SUBCONNECTOR_SCART: regs->ptv_204 = 0x111012; regs->tv_enc[0x7] = 0x18; break; } regs->tv_enc[0x20] = interpolate(0, tv_norm->tv_enc_mode.tv_enc[0x20], 255, tv_enc->saturation); regs->tv_enc[0x22] = interpolate(0, tv_norm->tv_enc_mode.tv_enc[0x22], 255, tv_enc->saturation); regs->tv_enc[0x25] = tv_enc->hue * 255 / 100; nv_load_ptv(dev, regs, 204); nv_load_tv_enc(dev, regs, 7); nv_load_tv_enc(dev, regs, 20); nv_load_tv_enc(dev, regs, 22); nv_load_tv_enc(dev, regs, 25); } void nv17_tv_update_rescaler(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); struct nv17_tv_state *regs = &tv_enc->state; regs->ptv_208 = 0x40 | (calc_overscan(tv_enc->overscan) << 8); tv_setup_filter(encoder); nv_load_ptv(dev, regs, 208); tv_load_filter(dev, NV_PTV_HFILTER, regs->hfilter); tv_load_filter(dev, NV_PTV_HFILTER2, regs->hfilter2); tv_load_filter(dev, NV_PTV_VFILTER, regs->vfilter); } void nv17_ctv_update_rescaler(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct nv17_tv_encoder *tv_enc = to_tv_enc(encoder); int head = nouveau_crtc(encoder->crtc)->index; struct nv04_crtc_reg *regs = &nv04_display(dev)->mode_reg.crtc_reg[head]; struct drm_display_mode *crtc_mode = &encoder->crtc->mode; struct drm_display_mode *output_mode = &get_tv_norm(encoder)->ctv_enc_mode.mode; int overscan, hmargin, vmargin, hratio, vratio; /* The rescaler doesn't do the right thing for interlaced modes. */ if (output_mode->flags & DRM_MODE_FLAG_INTERLACE) overscan = 100; else overscan = tv_enc->overscan; hmargin = (output_mode->hdisplay - crtc_mode->hdisplay) / 2; vmargin = (output_mode->vdisplay - crtc_mode->vdisplay) / 2; hmargin = interpolate(0, min(hmargin, output_mode->hdisplay/20), hmargin, overscan); vmargin = interpolate(0, min(vmargin, output_mode->vdisplay/20), vmargin, overscan); hratio = crtc_mode->hdisplay * 0x800 / (output_mode->hdisplay - 2*hmargin); vratio = crtc_mode->vdisplay * 0x800 / (output_mode->vdisplay - 2*vmargin) & ~3; regs->fp_horiz_regs[FP_VALID_START] = hmargin; regs->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - hmargin - 1; regs->fp_vert_regs[FP_VALID_START] = vmargin; regs->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - vmargin - 1; regs->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE | XLATE(vratio, 0, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE) | NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE | XLATE(hratio, 0, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_HVALID_START, regs->fp_horiz_regs[FP_VALID_START]); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_HVALID_END, regs->fp_horiz_regs[FP_VALID_END]); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_VVALID_START, regs->fp_vert_regs[FP_VALID_START]); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_VVALID_END, regs->fp_vert_regs[FP_VALID_END]); NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regs->fp_debug_1); }
linux-master
drivers/gpu/drm/nouveau/dispnv04/tvmodesnv17.c
/* * Copyright 2013 Ilia Mirkin * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Implementation based on the pre-KMS implementation in xf86-video-nouveau, * written by Arthur Huillet. */ #include <drm/drm_crtc.h> #include <drm/drm_fourcc.h> #include "nouveau_drv.h" #include "nouveau_bo.h" #include "nouveau_connector.h" #include "nouveau_display.h" #include "nouveau_gem.h" #include "nvreg.h" #include "disp.h" struct nouveau_plane { struct drm_plane base; bool flip; struct nouveau_bo *cur; struct { struct drm_property *colorkey; struct drm_property *contrast; struct drm_property *brightness; struct drm_property *hue; struct drm_property *saturation; } props; int colorkey; int contrast; int brightness; int hue; int saturation; enum drm_color_encoding color_encoding; void (*set_params)(struct nouveau_plane *); }; static uint32_t formats[] = { DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12, DRM_FORMAT_NV21, }; /* Sine can be approximated with * http://en.wikipedia.org/wiki/Bhaskara_I's_sine_approximation_formula * sin(x degrees) ~= 4 x (180 - x) / (40500 - x (180 - x) ) * Note that this only works for the range [0, 180]. * Also note that sin(x) == -sin(x - 180) */ static inline int sin_mul(int degrees, int factor) { if (degrees > 180) { degrees -= 180; factor *= -1; } return factor * 4 * degrees * (180 - degrees) / (40500 - degrees * (180 - degrees)); } /* cos(x) = sin(x + 90) */ static inline int cos_mul(int degrees, int factor) { return sin_mul((degrees + 90) % 360, factor); } static int verify_scaling(const struct drm_framebuffer *fb, uint8_t shift, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h, uint32_t crtc_w, uint32_t crtc_h) { if (crtc_w < (src_w >> shift) || crtc_h < (src_h >> shift)) { DRM_DEBUG_KMS("Unsuitable framebuffer scaling: %dx%d -> %dx%d\n", src_w, src_h, crtc_w, crtc_h); return -ERANGE; } if (src_x != 0 || src_y != 0) { DRM_DEBUG_KMS("Unsuitable framebuffer offset: %d,%d\n", src_x, src_y); return -ERANGE; } return 0; } static int nv10_update_plane(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h, struct drm_modeset_acquire_ctx *ctx) { struct nouveau_drm *drm = nouveau_drm(plane->dev); struct nvif_object *dev = &drm->client.device.object; struct nouveau_plane *nv_plane = container_of(plane, struct nouveau_plane, base); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_bo *cur = nv_plane->cur; struct nouveau_bo *nvbo; bool flip = nv_plane->flip; int soff = NV_PCRTC0_SIZE * nv_crtc->index; int soff2 = NV_PCRTC0_SIZE * !nv_crtc->index; unsigned shift = drm->client.device.info.chipset >= 0x30 ? 1 : 3; unsigned format = 0; int ret; /* Source parameters given in 16.16 fixed point, ignore fractional. */ src_x >>= 16; src_y >>= 16; src_w >>= 16; src_h >>= 16; ret = verify_scaling(fb, shift, 0, 0, src_w, src_h, crtc_w, crtc_h); if (ret) return ret; nvbo = nouveau_gem_object(fb->obj[0]); ret = nouveau_bo_pin(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, false); if (ret) return ret; nv_plane->cur = nvbo; nvif_mask(dev, NV_PCRTC_ENGINE_CTRL + soff, NV_CRTC_FSEL_OVERLAY, NV_CRTC_FSEL_OVERLAY); nvif_mask(dev, NV_PCRTC_ENGINE_CTRL + soff2, NV_CRTC_FSEL_OVERLAY, 0); nvif_wr32(dev, NV_PVIDEO_BASE(flip), 0); nvif_wr32(dev, NV_PVIDEO_OFFSET_BUFF(flip), nvbo->offset); nvif_wr32(dev, NV_PVIDEO_SIZE_IN(flip), src_h << 16 | src_w); nvif_wr32(dev, NV_PVIDEO_POINT_IN(flip), src_y << 16 | src_x); nvif_wr32(dev, NV_PVIDEO_DS_DX(flip), (src_w << 20) / crtc_w); nvif_wr32(dev, NV_PVIDEO_DT_DY(flip), (src_h << 20) / crtc_h); nvif_wr32(dev, NV_PVIDEO_POINT_OUT(flip), crtc_y << 16 | crtc_x); nvif_wr32(dev, NV_PVIDEO_SIZE_OUT(flip), crtc_h << 16 | crtc_w); if (fb->format->format == DRM_FORMAT_YUYV || fb->format->format == DRM_FORMAT_NV12) format |= NV_PVIDEO_FORMAT_COLOR_LE_CR8YB8CB8YA8; if (fb->format->format == DRM_FORMAT_NV12 || fb->format->format == DRM_FORMAT_NV21) format |= NV_PVIDEO_FORMAT_PLANAR; if (nv_plane->color_encoding == DRM_COLOR_YCBCR_BT709) format |= NV_PVIDEO_FORMAT_MATRIX_ITURBT709; if (nv_plane->colorkey & (1 << 24)) format |= NV_PVIDEO_FORMAT_DISPLAY_COLOR_KEY; if (format & NV_PVIDEO_FORMAT_PLANAR) { nvif_wr32(dev, NV_PVIDEO_UVPLANE_BASE(flip), 0); nvif_wr32(dev, NV_PVIDEO_UVPLANE_OFFSET_BUFF(flip), nvbo->offset + fb->offsets[1]); } nvif_wr32(dev, NV_PVIDEO_FORMAT(flip), format | fb->pitches[0]); nvif_wr32(dev, NV_PVIDEO_STOP, 0); /* TODO: wait for vblank? */ nvif_wr32(dev, NV_PVIDEO_BUFFER, flip ? 0x10 : 0x1); nv_plane->flip = !flip; if (cur) nouveau_bo_unpin(cur); return 0; } static int nv10_disable_plane(struct drm_plane *plane, struct drm_modeset_acquire_ctx *ctx) { struct nvif_object *dev = &nouveau_drm(plane->dev)->client.device.object; struct nouveau_plane *nv_plane = container_of(plane, struct nouveau_plane, base); nvif_wr32(dev, NV_PVIDEO_STOP, 1); if (nv_plane->cur) { nouveau_bo_unpin(nv_plane->cur); nv_plane->cur = NULL; } return 0; } static void nv_destroy_plane(struct drm_plane *plane) { drm_plane_force_disable(plane); drm_plane_cleanup(plane); kfree(plane); } static void nv10_set_params(struct nouveau_plane *plane) { struct nvif_object *dev = &nouveau_drm(plane->base.dev)->client.device.object; u32 luma = (plane->brightness - 512) << 16 | plane->contrast; u32 chroma = ((sin_mul(plane->hue, plane->saturation) & 0xffff) << 16) | (cos_mul(plane->hue, plane->saturation) & 0xffff); u32 format = 0; nvif_wr32(dev, NV_PVIDEO_LUMINANCE(0), luma); nvif_wr32(dev, NV_PVIDEO_LUMINANCE(1), luma); nvif_wr32(dev, NV_PVIDEO_CHROMINANCE(0), chroma); nvif_wr32(dev, NV_PVIDEO_CHROMINANCE(1), chroma); nvif_wr32(dev, NV_PVIDEO_COLOR_KEY, plane->colorkey & 0xffffff); if (plane->cur) { if (plane->color_encoding == DRM_COLOR_YCBCR_BT709) format |= NV_PVIDEO_FORMAT_MATRIX_ITURBT709; if (plane->colorkey & (1 << 24)) format |= NV_PVIDEO_FORMAT_DISPLAY_COLOR_KEY; nvif_mask(dev, NV_PVIDEO_FORMAT(plane->flip), NV_PVIDEO_FORMAT_MATRIX_ITURBT709 | NV_PVIDEO_FORMAT_DISPLAY_COLOR_KEY, format); } } static int nv_set_property(struct drm_plane *plane, struct drm_property *property, uint64_t value) { struct nouveau_plane *nv_plane = container_of(plane, struct nouveau_plane, base); if (property == nv_plane->props.colorkey) nv_plane->colorkey = value; else if (property == nv_plane->props.contrast) nv_plane->contrast = value; else if (property == nv_plane->props.brightness) nv_plane->brightness = value; else if (property == nv_plane->props.hue) nv_plane->hue = value; else if (property == nv_plane->props.saturation) nv_plane->saturation = value; else if (property == nv_plane->base.color_encoding_property) nv_plane->color_encoding = value; else return -EINVAL; if (nv_plane->set_params) nv_plane->set_params(nv_plane); return 0; } static const struct drm_plane_funcs nv10_plane_funcs = { .update_plane = nv10_update_plane, .disable_plane = nv10_disable_plane, .set_property = nv_set_property, .destroy = nv_destroy_plane, }; static void nv10_overlay_init(struct drm_device *device) { struct nouveau_drm *drm = nouveau_drm(device); struct nouveau_plane *plane = kzalloc(sizeof(struct nouveau_plane), GFP_KERNEL); unsigned int num_formats = ARRAY_SIZE(formats); int ret; if (!plane) return; switch (drm->client.device.info.chipset) { case 0x10: case 0x11: case 0x15: case 0x1a: case 0x20: num_formats = 2; break; } ret = drm_universal_plane_init(device, &plane->base, 3 /* both crtc's */, &nv10_plane_funcs, formats, num_formats, NULL, DRM_PLANE_TYPE_OVERLAY, NULL); if (ret) goto err; /* Set up the plane properties */ plane->props.colorkey = drm_property_create_range( device, 0, "colorkey", 0, 0x01ffffff); plane->props.contrast = drm_property_create_range( device, 0, "contrast", 0, 8192 - 1); plane->props.brightness = drm_property_create_range( device, 0, "brightness", 0, 1024); plane->props.hue = drm_property_create_range( device, 0, "hue", 0, 359); plane->props.saturation = drm_property_create_range( device, 0, "saturation", 0, 8192 - 1); if (!plane->props.colorkey || !plane->props.contrast || !plane->props.brightness || !plane->props.hue || !plane->props.saturation) goto cleanup; plane->colorkey = 0; drm_object_attach_property(&plane->base.base, plane->props.colorkey, plane->colorkey); plane->contrast = 0x1000; drm_object_attach_property(&plane->base.base, plane->props.contrast, plane->contrast); plane->brightness = 512; drm_object_attach_property(&plane->base.base, plane->props.brightness, plane->brightness); plane->hue = 0; drm_object_attach_property(&plane->base.base, plane->props.hue, plane->hue); plane->saturation = 0x1000; drm_object_attach_property(&plane->base.base, plane->props.saturation, plane->saturation); plane->color_encoding = DRM_COLOR_YCBCR_BT601; drm_plane_create_color_properties(&plane->base, BIT(DRM_COLOR_YCBCR_BT601) | BIT(DRM_COLOR_YCBCR_BT709), BIT(DRM_COLOR_YCBCR_LIMITED_RANGE), DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE); plane->set_params = nv10_set_params; nv10_set_params(plane); drm_plane_force_disable(&plane->base); return; cleanup: drm_plane_cleanup(&plane->base); err: kfree(plane); NV_ERROR(drm, "Failed to create plane\n"); } static int nv04_update_plane(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h, struct drm_modeset_acquire_ctx *ctx) { struct nvif_object *dev = &nouveau_drm(plane->dev)->client.device.object; struct nouveau_plane *nv_plane = container_of(plane, struct nouveau_plane, base); struct nouveau_bo *cur = nv_plane->cur; struct nouveau_bo *nvbo; uint32_t overlay = 1; int brightness = (nv_plane->brightness - 512) * 62 / 512; int ret, i; /* Source parameters given in 16.16 fixed point, ignore fractional. */ src_x >>= 16; src_y >>= 16; src_w >>= 16; src_h >>= 16; ret = verify_scaling(fb, 0, src_x, src_y, src_w, src_h, crtc_w, crtc_h); if (ret) return ret; nvbo = nouveau_gem_object(fb->obj[0]); ret = nouveau_bo_pin(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, false); if (ret) return ret; nv_plane->cur = nvbo; nvif_wr32(dev, NV_PVIDEO_OE_STATE, 0); nvif_wr32(dev, NV_PVIDEO_SU_STATE, 0); nvif_wr32(dev, NV_PVIDEO_RM_STATE, 0); for (i = 0; i < 2; i++) { nvif_wr32(dev, NV_PVIDEO_BUFF0_START_ADDRESS + 4 * i, nvbo->offset); nvif_wr32(dev, NV_PVIDEO_BUFF0_PITCH_LENGTH + 4 * i, fb->pitches[0]); nvif_wr32(dev, NV_PVIDEO_BUFF0_OFFSET + 4 * i, 0); } nvif_wr32(dev, NV_PVIDEO_WINDOW_START, crtc_y << 16 | crtc_x); nvif_wr32(dev, NV_PVIDEO_WINDOW_SIZE, crtc_h << 16 | crtc_w); nvif_wr32(dev, NV_PVIDEO_STEP_SIZE, (uint32_t)(((src_h - 1) << 11) / (crtc_h - 1)) << 16 | (uint32_t)(((src_w - 1) << 11) / (crtc_w - 1))); /* It should be possible to convert hue/contrast to this */ nvif_wr32(dev, NV_PVIDEO_RED_CSC_OFFSET, 0x69 - brightness); nvif_wr32(dev, NV_PVIDEO_GREEN_CSC_OFFSET, 0x3e + brightness); nvif_wr32(dev, NV_PVIDEO_BLUE_CSC_OFFSET, 0x89 - brightness); nvif_wr32(dev, NV_PVIDEO_CSC_ADJUST, 0); nvif_wr32(dev, NV_PVIDEO_CONTROL_Y, 0x001); /* (BLUR_ON, LINE_HALF) */ nvif_wr32(dev, NV_PVIDEO_CONTROL_X, 0x111); /* (WEIGHT_HEAVY, SHARPENING_ON, SMOOTHING_ON) */ nvif_wr32(dev, NV_PVIDEO_FIFO_BURST_LENGTH, 0x03); nvif_wr32(dev, NV_PVIDEO_FIFO_THRES_SIZE, 0x38); nvif_wr32(dev, NV_PVIDEO_KEY, nv_plane->colorkey); if (nv_plane->colorkey & (1 << 24)) overlay |= 0x10; if (fb->format->format == DRM_FORMAT_YUYV) overlay |= 0x100; nvif_wr32(dev, NV_PVIDEO_OVERLAY, overlay); nvif_wr32(dev, NV_PVIDEO_SU_STATE, nvif_rd32(dev, NV_PVIDEO_SU_STATE) ^ (1 << 16)); if (cur) nouveau_bo_unpin(cur); return 0; } static int nv04_disable_plane(struct drm_plane *plane, struct drm_modeset_acquire_ctx *ctx) { struct nvif_object *dev = &nouveau_drm(plane->dev)->client.device.object; struct nouveau_plane *nv_plane = container_of(plane, struct nouveau_plane, base); nvif_mask(dev, NV_PVIDEO_OVERLAY, 1, 0); nvif_wr32(dev, NV_PVIDEO_OE_STATE, 0); nvif_wr32(dev, NV_PVIDEO_SU_STATE, 0); nvif_wr32(dev, NV_PVIDEO_RM_STATE, 0); if (nv_plane->cur) { nouveau_bo_unpin(nv_plane->cur); nv_plane->cur = NULL; } return 0; } static const struct drm_plane_funcs nv04_plane_funcs = { .update_plane = nv04_update_plane, .disable_plane = nv04_disable_plane, .set_property = nv_set_property, .destroy = nv_destroy_plane, }; static void nv04_overlay_init(struct drm_device *device) { struct nouveau_drm *drm = nouveau_drm(device); struct nouveau_plane *plane = kzalloc(sizeof(struct nouveau_plane), GFP_KERNEL); int ret; if (!plane) return; ret = drm_universal_plane_init(device, &plane->base, 1 /* single crtc */, &nv04_plane_funcs, formats, 2, NULL, DRM_PLANE_TYPE_OVERLAY, NULL); if (ret) goto err; /* Set up the plane properties */ plane->props.colorkey = drm_property_create_range( device, 0, "colorkey", 0, 0x01ffffff); plane->props.brightness = drm_property_create_range( device, 0, "brightness", 0, 1024); if (!plane->props.colorkey || !plane->props.brightness) goto cleanup; plane->colorkey = 0; drm_object_attach_property(&plane->base.base, plane->props.colorkey, plane->colorkey); plane->brightness = 512; drm_object_attach_property(&plane->base.base, plane->props.brightness, plane->brightness); drm_plane_force_disable(&plane->base); return; cleanup: drm_plane_cleanup(&plane->base); err: kfree(plane); NV_ERROR(drm, "Failed to create plane\n"); } void nouveau_overlay_init(struct drm_device *device) { struct nvif_device *dev = &nouveau_drm(device)->client.device; if (dev->info.chipset < 0x10) nv04_overlay_init(device); else if (dev->info.chipset <= 0x40) nv10_overlay_init(device); }
linux-master
drivers/gpu/drm/nouveau/dispnv04/overlay.c
// SPDX-License-Identifier: MIT #include <drm/drm_mode.h> #include "nouveau_drv.h" #include "nouveau_reg.h" #include "nouveau_crtc.h" #include "hw.h" static void nv04_cursor_show(struct nouveau_crtc *nv_crtc, bool update) { nv_show_cursor(nv_crtc->base.dev, nv_crtc->index, true); } static void nv04_cursor_hide(struct nouveau_crtc *nv_crtc, bool update) { nv_show_cursor(nv_crtc->base.dev, nv_crtc->index, false); } static void nv04_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y) { nv_crtc->cursor_saved_x = x; nv_crtc->cursor_saved_y = y; NVWriteRAMDAC(nv_crtc->base.dev, nv_crtc->index, NV_PRAMDAC_CU_START_POS, XLATE(y, 0, NV_PRAMDAC_CU_START_POS_Y) | XLATE(x, 0, NV_PRAMDAC_CU_START_POS_X)); } static void crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index) { NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index, crtcstate->CRTC[index]); } static void nv04_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset) { struct drm_device *dev = nv_crtc->base.dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; struct drm_crtc *crtc = &nv_crtc->base; regp->CRTC[NV_CIO_CRE_HCUR_ADDR0_INDEX] = MASK(NV_CIO_CRE_HCUR_ASI) | XLATE(offset, 17, NV_CIO_CRE_HCUR_ADDR0_ADR); regp->CRTC[NV_CIO_CRE_HCUR_ADDR1_INDEX] = XLATE(offset, 11, NV_CIO_CRE_HCUR_ADDR1_ADR); if (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN) regp->CRTC[NV_CIO_CRE_HCUR_ADDR1_INDEX] |= MASK(NV_CIO_CRE_HCUR_ADDR1_CUR_DBL); regp->CRTC[NV_CIO_CRE_HCUR_ADDR2_INDEX] = offset >> 24; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX); crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX); crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX); if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) nv_fix_nv40_hw_cursor(dev, nv_crtc->index); } int nv04_cursor_init(struct nouveau_crtc *crtc) { crtc->cursor.set_offset = nv04_cursor_set_offset; crtc->cursor.set_pos = nv04_cursor_set_pos; crtc->cursor.hide = nv04_cursor_hide; crtc->cursor.show = nv04_cursor_show; return 0; }
linux-master
drivers/gpu/drm/nouveau/dispnv04/cursor.c
/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu.h" #include "amdgpu_display.h" #include "hwmgr.h" #include "amdgpu_smu.h" #include "amdgpu_dpm_internal.h" void amdgpu_dpm_get_active_displays(struct amdgpu_device *adev) { struct drm_device *ddev = adev_to_drm(adev); struct drm_crtc *crtc; struct amdgpu_crtc *amdgpu_crtc; adev->pm.dpm.new_active_crtcs = 0; adev->pm.dpm.new_active_crtc_count = 0; if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) { list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { amdgpu_crtc = to_amdgpu_crtc(crtc); if (amdgpu_crtc->enabled) { adev->pm.dpm.new_active_crtcs |= (1 << amdgpu_crtc->crtc_id); adev->pm.dpm.new_active_crtc_count++; } } } } u32 amdgpu_dpm_get_vblank_time(struct amdgpu_device *adev) { struct drm_device *dev = adev_to_drm(adev); struct drm_crtc *crtc; struct amdgpu_crtc *amdgpu_crtc; u32 vblank_in_pixels; u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */ if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) { list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { amdgpu_crtc = to_amdgpu_crtc(crtc); if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) { vblank_in_pixels = amdgpu_crtc->hw_mode.crtc_htotal * (amdgpu_crtc->hw_mode.crtc_vblank_end - amdgpu_crtc->hw_mode.crtc_vdisplay + (amdgpu_crtc->v_border * 2)); vblank_time_us = vblank_in_pixels * 1000 / amdgpu_crtc->hw_mode.clock; break; } } } return vblank_time_us; } u32 amdgpu_dpm_get_vrefresh(struct amdgpu_device *adev) { struct drm_device *dev = adev_to_drm(adev); struct drm_crtc *crtc; struct amdgpu_crtc *amdgpu_crtc; u32 vrefresh = 0; if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) { list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { amdgpu_crtc = to_amdgpu_crtc(crtc); if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) { vrefresh = drm_mode_vrefresh(&amdgpu_crtc->hw_mode); break; } } } return vrefresh; }
linux-master
drivers/gpu/drm/amd/pm/amdgpu_dpm_internal.c
/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki <[email protected]> * Alex Deucher <[email protected]> */ #include "amdgpu.h" #include "amdgpu_drv.h" #include "amdgpu_pm.h" #include "amdgpu_dpm.h" #include "atom.h" #include <linux/pci.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/nospec.h> #include <linux/pm_runtime.h> #include <asm/processor.h> static const struct hwmon_temp_label { enum PP_HWMON_TEMP channel; const char *label; } temp_label[] = { {PP_TEMP_EDGE, "edge"}, {PP_TEMP_JUNCTION, "junction"}, {PP_TEMP_MEM, "mem"}, }; const char * const amdgpu_pp_profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM", "WINDOW_3D", "CAPPED", "UNCAPPED", }; /** * DOC: power_dpm_state * * The power_dpm_state file is a legacy interface and is only provided for * backwards compatibility. The amdgpu driver provides a sysfs API for adjusting * certain power related parameters. The file power_dpm_state is used for this. * It accepts the following arguments: * * - battery * * - balanced * * - performance * * battery * * On older GPUs, the vbios provided a special power state for battery * operation. Selecting battery switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * * balanced * * On older GPUs, the vbios provided a special power state for balanced * operation. Selecting balanced switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * * performance * * On older GPUs, the vbios provided a special power state for performance * operation. Selecting performance switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * */ static ssize_t amdgpu_get_power_dpm_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type pm; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_get_current_power_state(adev, &pm); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%s\n", (pm == POWER_STATE_TYPE_BATTERY) ? "battery" : (pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance"); } static ssize_t amdgpu_set_power_dpm_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type state; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (strncmp("battery", buf, strlen("battery")) == 0) state = POWER_STATE_TYPE_BATTERY; else if (strncmp("balanced", buf, strlen("balanced")) == 0) state = POWER_STATE_TYPE_BALANCED; else if (strncmp("performance", buf, strlen("performance")) == 0) state = POWER_STATE_TYPE_PERFORMANCE; else return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_power_state(adev, state); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: power_dpm_force_performance_level * * The amdgpu driver provides a sysfs API for adjusting certain power * related parameters. The file power_dpm_force_performance_level is * used for this. It accepts the following arguments: * * - auto * * - low * * - high * * - manual * * - profile_standard * * - profile_min_sclk * * - profile_min_mclk * * - profile_peak * * auto * * When auto is selected, the driver will attempt to dynamically select * the optimal power profile for current conditions in the driver. * * low * * When low is selected, the clocks are forced to the lowest power state. * * high * * When high is selected, the clocks are forced to the highest power state. * * manual * * When manual is selected, the user can manually adjust which power states * are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk, * and pp_dpm_pcie files and adjust the power state transition heuristics * via the pp_power_profile_mode sysfs file. * * profile_standard * profile_min_sclk * profile_min_mclk * profile_peak * * When the profiling modes are selected, clock and power gating are * disabled and the clocks are set for different profiling cases. This * mode is recommended for profiling specific work loads where you do * not want clock or power gating for clock fluctuation to interfere * with your results. profile_standard sets the clocks to a fixed clock * level which varies from asic to asic. profile_min_sclk forces the sclk * to the lowest level. profile_min_mclk forces the mclk to the lowest level. * profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels. * */ static ssize_t amdgpu_get_power_dpm_force_performance_level(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_dpm_forced_level level = 0xff; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } level = amdgpu_dpm_get_performance_level(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%s\n", (level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" : (level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" : (level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" : (level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" : (level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) ? "perf_determinism" : "unknown"); } static ssize_t amdgpu_set_power_dpm_force_performance_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_dpm_forced_level level; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (strncmp("low", buf, strlen("low")) == 0) { level = AMD_DPM_FORCED_LEVEL_LOW; } else if (strncmp("high", buf, strlen("high")) == 0) { level = AMD_DPM_FORCED_LEVEL_HIGH; } else if (strncmp("auto", buf, strlen("auto")) == 0) { level = AMD_DPM_FORCED_LEVEL_AUTO; } else if (strncmp("manual", buf, strlen("manual")) == 0) { level = AMD_DPM_FORCED_LEVEL_MANUAL; } else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT; } else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD; } else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK; } else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK; } else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; } else if (strncmp("perf_determinism", buf, strlen("perf_determinism")) == 0) { level = AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM; } else { return -EINVAL; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } mutex_lock(&adev->pm.stable_pstate_ctx_lock); if (amdgpu_dpm_force_performance_level(adev, level)) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); mutex_unlock(&adev->pm.stable_pstate_ctx_lock); return -EINVAL; } /* override whatever a user ctx may have set */ adev->pm.stable_pstate_ctx = NULL; mutex_unlock(&adev->pm.stable_pstate_ctx_lock); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } static ssize_t amdgpu_get_pp_num_states(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); struct pp_states_info data; uint32_t i; int buf_len, ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (amdgpu_dpm_get_pp_num_states(adev, &data)) memset(&data, 0, sizeof(data)); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); buf_len = sysfs_emit(buf, "states: %d\n", data.nums); for (i = 0; i < data.nums; i++) buf_len += sysfs_emit_at(buf, buf_len, "%d %s\n", i, (data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" : (data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" : (data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" : (data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default"); return buf_len; } static ssize_t amdgpu_get_pp_cur_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); struct pp_states_info data = {0}; enum amd_pm_state_type pm = 0; int i = 0, ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_get_current_power_state(adev, &pm); ret = amdgpu_dpm_get_pp_num_states(adev, &data); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return ret; for (i = 0; i < data.nums; i++) { if (pm == data.states[i]) break; } if (i == data.nums) i = -EINVAL; return sysfs_emit(buf, "%d\n", i); } static ssize_t amdgpu_get_pp_force_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->pm.pp_force_state_enabled) return amdgpu_get_pp_cur_state(dev, attr, buf); else return sysfs_emit(buf, "\n"); } static ssize_t amdgpu_set_pp_force_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type state = 0; struct pp_states_info data; unsigned long idx; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; adev->pm.pp_force_state_enabled = false; if (strlen(buf) == 1) return count; ret = kstrtoul(buf, 0, &idx); if (ret || idx >= ARRAY_SIZE(data.states)) return -EINVAL; idx = array_index_nospec(idx, ARRAY_SIZE(data.states)); ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_get_pp_num_states(adev, &data); if (ret) goto err_out; state = data.states[idx]; /* only set user selected power states */ if (state != POWER_STATE_TYPE_INTERNAL_BOOT && state != POWER_STATE_TYPE_DEFAULT) { ret = amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state); if (ret) goto err_out; adev->pm.pp_force_state_enabled = true; } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; err_out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return ret; } /** * DOC: pp_table * * The amdgpu driver provides a sysfs API for uploading new powerplay * tables. The file pp_table is used for this. Reading the file * will dump the current power play table. Writing to the file * will attempt to upload a new powerplay table and re-initialize * powerplay using that new table. * */ static ssize_t amdgpu_get_pp_table(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); char *table = NULL; int size, ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_pp_table(adev, &table); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (size <= 0) return size; if (size >= PAGE_SIZE) size = PAGE_SIZE - 1; memcpy(buf, table, size); return size; } static ssize_t amdgpu_set_pp_table(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_pp_table(adev, buf, count); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return ret; return count; } /** * DOC: pp_od_clk_voltage * * The amdgpu driver provides a sysfs API for adjusting the clocks and voltages * in each power level within a power state. The pp_od_clk_voltage is used for * this. * * Note that the actual memory controller clock rate are exposed, not * the effective memory clock of the DRAMs. To translate it, use the * following formula: * * Clock conversion (Mhz): * * HBM: effective_memory_clock = memory_controller_clock * 1 * * G5: effective_memory_clock = memory_controller_clock * 1 * * G6: effective_memory_clock = memory_controller_clock * 2 * * DRAM data rate (MT/s): * * HBM: effective_memory_clock * 2 = data_rate * * G5: effective_memory_clock * 4 = data_rate * * G6: effective_memory_clock * 8 = data_rate * * Bandwidth (MB/s): * * data_rate * vram_bit_width / 8 = memory_bandwidth * * Some examples: * * G5 on RX460: * * memory_controller_clock = 1750 Mhz * * effective_memory_clock = 1750 Mhz * 1 = 1750 Mhz * * data rate = 1750 * 4 = 7000 MT/s * * memory_bandwidth = 7000 * 128 bits / 8 = 112000 MB/s * * G6 on RX5700: * * memory_controller_clock = 875 Mhz * * effective_memory_clock = 875 Mhz * 2 = 1750 Mhz * * data rate = 1750 * 8 = 14000 MT/s * * memory_bandwidth = 14000 * 256 bits / 8 = 448000 MB/s * * < For Vega10 and previous ASICs > * * Reading the file will display: * * - a list of engine clock levels and voltages labeled OD_SCLK * * - a list of memory clock levels and voltages labeled OD_MCLK * * - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE * * To manually adjust these settings, first select manual using * power_dpm_force_performance_level. Enter a new value for each * level by writing a string that contains "s/m level clock voltage" to * the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz * at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at * 810 mV. When you have edited all of the states as needed, write * "c" (commit) to the file to commit your changes. If you want to reset to the * default power levels, write "r" (reset) to the file to reset them. * * * < For Vega20 and newer ASICs > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * * - minimum(not available for Vega20 and Navi1x) and maximum memory * clock labeled OD_MCLK * * - three <frequency, voltage> points labeled OD_VDDC_CURVE. * They can be used to calibrate the sclk voltage curve. This is * available for Vega20 and NV1X. * * - voltage offset for the six anchor points of the v/f curve labeled * OD_VDDC_CURVE. They can be used to calibrate the v/f curve. This * is only availabe for some SMU13 ASICs. * * - voltage offset(in mV) applied on target voltage calculation. * This is available for Sienna Cichlid, Navy Flounder and Dimgrey * Cavefish. For these ASICs, the target voltage calculation can be * illustrated by "voltage = voltage calculated from v/f curve + * overdrive vddgfx offset" * * - a list of valid ranges for sclk, mclk, and voltage curve points * labeled OD_RANGE * * < For APUs > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * * - a list of valid ranges for sclk labeled OD_RANGE * * < For VanGogh > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * - minimum and maximum core clocks labeled OD_CCLK * * - a list of valid ranges for sclk and cclk labeled OD_RANGE * * To manually adjust these settings: * * - First select manual using power_dpm_force_performance_level * * - For clock frequency setting, enter a new value by writing a * string that contains "s/m index clock" to the file. The index * should be 0 if to set minimum clock. And 1 if to set maximum * clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz. * "m 1 800" will update maximum mclk to be 800Mhz. For core * clocks on VanGogh, the string contains "p core index clock". * E.g., "p 2 0 800" would set the minimum core clock on core * 2 to 800Mhz. * * For sclk voltage curve, * - For NV1X, enter the new values by writing a string that * contains "vc point clock voltage" to the file. The points * are indexed by 0, 1 and 2. E.g., "vc 0 300 600" will update * point1 with clock set as 300Mhz and voltage as 600mV. "vc 2 * 1000 1000" will update point3 with clock set as 1000Mhz and * voltage 1000mV. * - For SMU13 ASICs, enter the new values by writing a string that * contains "vc anchor_point_index voltage_offset" to the file. * There are total six anchor points defined on the v/f curve with * index as 0 - 5. * - "vc 0 10" will update the voltage offset for point1 as 10mv. * - "vc 5 -10" will update the voltage offset for point6 as -10mv. * * To update the voltage offset applied for gfxclk/voltage calculation, * enter the new value by writing a string that contains "vo offset". * This is supported by Sienna Cichlid, Navy Flounder and Dimgrey Cavefish. * And the offset can be a positive or negative value. * * - When you have edited all of the states as needed, write "c" (commit) * to the file to commit your changes * * - If you want to reset to the default power levels, write "r" (reset) * to the file to reset them * */ static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; uint32_t parameter_size = 0; long parameter[64]; char buf_cpy[128]; char *tmp_str; char *sub_str; const char delimiter[3] = {' ', '\n', '\0'}; uint32_t type; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (count > 127) return -EINVAL; if (*buf == 's') type = PP_OD_EDIT_SCLK_VDDC_TABLE; else if (*buf == 'p') type = PP_OD_EDIT_CCLK_VDDC_TABLE; else if (*buf == 'm') type = PP_OD_EDIT_MCLK_VDDC_TABLE; else if (*buf == 'r') type = PP_OD_RESTORE_DEFAULT_TABLE; else if (*buf == 'c') type = PP_OD_COMMIT_DPM_TABLE; else if (!strncmp(buf, "vc", 2)) type = PP_OD_EDIT_VDDC_CURVE; else if (!strncmp(buf, "vo", 2)) type = PP_OD_EDIT_VDDGFX_OFFSET; else return -EINVAL; memcpy(buf_cpy, buf, count+1); tmp_str = buf_cpy; if ((type == PP_OD_EDIT_VDDC_CURVE) || (type == PP_OD_EDIT_VDDGFX_OFFSET)) tmp_str++; while (isspace(*++tmp_str)); while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) { if (strlen(sub_str) == 0) continue; ret = kstrtol(sub_str, 0, &parameter[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (amdgpu_dpm_set_fine_grain_clk_vol(adev, type, parameter, parameter_size)) goto err_out; if (amdgpu_dpm_odn_edit_dpm_table(adev, type, parameter, parameter_size)) goto err_out; if (type == PP_OD_COMMIT_DPM_TABLE) { if (amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL)) goto err_out; } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; err_out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return -EINVAL; } static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int size = 0; int ret; enum pp_clock_type od_clocks[6] = { OD_SCLK, OD_MCLK, OD_VDDC_CURVE, OD_RANGE, OD_VDDGFX_OFFSET, OD_CCLK, }; uint clk_index; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } for (clk_index = 0 ; clk_index < 6 ; clk_index++) { ret = amdgpu_dpm_emit_clock_levels(adev, od_clocks[clk_index], buf, &size); if (ret) break; } if (ret == -ENOENT) { size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf); size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_VDDGFX_OFFSET, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_CCLK, buf + size); } if (size == 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /** * DOC: pp_features * * The amdgpu driver provides a sysfs API for adjusting what powerplay * features to be enabled. The file pp_features is used for this. And * this is only available for Vega10 and later dGPUs. * * Reading back the file will show you the followings: * - Current ppfeature masks * - List of the all supported powerplay features with their naming, * bitmasks and enablement status('Y'/'N' means "enabled"/"disabled"). * * To manually enable or disable a specific feature, just set or clear * the corresponding bit from original ppfeature masks and input the * new ppfeature masks. */ static ssize_t amdgpu_set_pp_features(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint64_t featuremask; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtou64(buf, 0, &featuremask); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_features(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_ppfeature_status(adev, buf); if (size <= 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /** * DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk pp_dpm_pcie * * The amdgpu driver provides a sysfs API for adjusting what power levels * are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk, * pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for * this. * * pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for * Vega10 and later ASICs. * pp_dpm_fclk interface is only available for Vega20 and later ASICs. * * Reading back the files will show you the available power levels within * the power state and the clock information for those levels. * * To manually adjust these states, first select manual using * power_dpm_force_performance_level. * Secondly, enter a new value for each level by inputing a string that * contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie" * E.g., * * .. code-block:: bash * * echo "4 5 6" > pp_dpm_sclk * * will enable sclk levels 4, 5, and 6. * * NOTE: change to the dcefclk max dpm level is not supported now */ static ssize_t amdgpu_get_pp_dpm_clock(struct device *dev, enum pp_clock_type type, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int size = 0; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_emit_clock_levels(adev, type, buf, &size); if (ret == -ENOENT) size = amdgpu_dpm_print_clock_levels(adev, type, buf); if (size == 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /* * Worst case: 32 bits individually specified, in octal at 12 characters * per line (+1 for \n). */ #define AMDGPU_MASK_BUF_MAX (32 * 13) static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask) { int ret; unsigned long level; char *sub_str = NULL; char *tmp; char buf_cpy[AMDGPU_MASK_BUF_MAX + 1]; const char delimiter[3] = {' ', '\n', '\0'}; size_t bytes; *mask = 0; bytes = min(count, sizeof(buf_cpy) - 1); memcpy(buf_cpy, buf, bytes); buf_cpy[bytes] = '\0'; tmp = buf_cpy; while ((sub_str = strsep(&tmp, delimiter)) != NULL) { if (strlen(sub_str)) { ret = kstrtoul(sub_str, 0, &level); if (ret || level > 31) return -EINVAL; *mask |= 1 << level; } else break; } return 0; } static ssize_t amdgpu_set_pp_dpm_clock(struct device *dev, enum pp_clock_type type, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; uint32_t mask = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_force_clock_level(adev, type, mask); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_SCLK, buf); } static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_SCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_MCLK, buf); } static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_MCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_SOCCLK, buf); } static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_SOCCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_FCLK, buf); } static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_FCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_vclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_VCLK, buf); } static ssize_t amdgpu_set_pp_dpm_vclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_VCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_vclk1(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_VCLK1, buf); } static ssize_t amdgpu_set_pp_dpm_vclk1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_VCLK1, buf, count); } static ssize_t amdgpu_get_pp_dpm_dclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_DCLK, buf); } static ssize_t amdgpu_set_pp_dpm_dclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_DCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_dclk1(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_DCLK1, buf); } static ssize_t amdgpu_set_pp_dpm_dclk1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_DCLK1, buf, count); } static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_DCEFCLK, buf); } static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_DCEFCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_PCIE, buf); } static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_PCIE, buf, count); } static ssize_t amdgpu_get_pp_sclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t value = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } value = amdgpu_dpm_get_sclk_od(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%d\n", value); } static ssize_t amdgpu_set_pp_sclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; long int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_sclk_od(adev, (uint32_t)value); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } static ssize_t amdgpu_get_pp_mclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t value = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } value = amdgpu_dpm_get_mclk_od(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%d\n", value); } static ssize_t amdgpu_set_pp_mclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; long int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_mclk_od(adev, (uint32_t)value); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: pp_power_profile_mode * * The amdgpu driver provides a sysfs API for adjusting the heuristics * related to switching between power levels in a power state. The file * pp_power_profile_mode is used for this. * * Reading this file outputs a list of all of the predefined power profiles * and the relevant heuristics settings for that profile. * * To select a profile or create a custom profile, first select manual using * power_dpm_force_performance_level. Writing the number of a predefined * profile to pp_power_profile_mode will enable those heuristics. To * create a custom set of heuristics, write a string of numbers to the file * starting with the number of the custom profile along with a setting * for each heuristic parameter. Due to differences across asic families * the heuristic parameters vary from family to family. * */ static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_power_profile_mode(adev, buf); if (size <= 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t parameter_size = 0; long parameter[64]; char *sub_str, buf_cpy[128]; char *tmp_str; uint32_t i = 0; char tmp[2]; long int profile_mode = 0; const char delimiter[3] = {' ', '\n', '\0'}; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; tmp[0] = *(buf); tmp[1] = '\0'; ret = kstrtol(tmp, 0, &profile_mode); if (ret) return -EINVAL; if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { if (count < 2 || count > 127) return -EINVAL; while (isspace(*++buf)) i++; memcpy(buf_cpy, buf, count-i); tmp_str = buf_cpy; while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) { if (strlen(sub_str) == 0) continue; ret = kstrtol(sub_str, 0, &parameter[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } } parameter[parameter_size] = profile_mode; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (!ret) return count; return -EINVAL; } static unsigned int amdgpu_hwmon_get_sensor_generic(struct amdgpu_device *adev, enum amd_pp_sensors sensor, void *query) { int r, size = sizeof(uint32_t); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /* get the sensor value */ r = amdgpu_dpm_read_sensor(adev, sensor, query, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /** * DOC: gpu_busy_percent * * The amdgpu driver provides a sysfs API for reading how busy the GPU * is as a percentage. The file gpu_busy_percent is used for this. * The SMU firmware computes a percentage of load based on the * aggregate activity level in the IP cores. */ static ssize_t amdgpu_get_gpu_busy_percent(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); unsigned int value; int r; r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_LOAD, &value); if (r) return r; return sysfs_emit(buf, "%d\n", value); } /** * DOC: mem_busy_percent * * The amdgpu driver provides a sysfs API for reading how busy the VRAM * is as a percentage. The file mem_busy_percent is used for this. * The SMU firmware computes a percentage of load based on the * aggregate activity level in the IP cores. */ static ssize_t amdgpu_get_mem_busy_percent(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); unsigned int value; int r; r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MEM_LOAD, &value); if (r) return r; return sysfs_emit(buf, "%d\n", value); } /** * DOC: pcie_bw * * The amdgpu driver provides a sysfs API for estimating how much data * has been received and sent by the GPU in the last second through PCIe. * The file pcie_bw is used for this. * The Perf counters count the number of received and sent messages and return * those values, as well as the maximum payload size of a PCIe packet (mps). * Note that it is not possible to easily and quickly obtain the size of each * packet transmitted, so we output the max payload size (mps) to allow for * quick estimation of the PCIe bandwidth usage */ static ssize_t amdgpu_get_pcie_bw(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint64_t count0 = 0, count1 = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->flags & AMD_IS_APU) return -ENODATA; if (!adev->asic_funcs->get_pcie_usage) return -ENODATA; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_asic_get_pcie_usage(adev, &count0, &count1); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%llu %llu %i\n", count0, count1, pcie_get_mps(adev->pdev)); } /** * DOC: unique_id * * The amdgpu driver provides a sysfs API for providing a unique ID for the GPU * The file unique_id is used for this. * This will provide a Unique ID that will persist from machine to machine * * NOTE: This will only work for GFX9 and newer. This file will be absent * on unsupported ASICs (GFX8 and older) */ static ssize_t amdgpu_get_unique_id(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->unique_id) return sysfs_emit(buf, "%016llx\n", adev->unique_id); return 0; } /** * DOC: thermal_throttling_logging * * Thermal throttling pulls down the clock frequency and thus the performance. * It's an useful mechanism to protect the chip from overheating. Since it * impacts performance, the user controls whether it is enabled and if so, * the log frequency. * * Reading back the file shows you the status(enabled or disabled) and * the interval(in seconds) between each thermal logging. * * Writing an integer to the file, sets a new logging interval, in seconds. * The value should be between 1 and 3600. If the value is less than 1, * thermal logging is disabled. Values greater than 3600 are ignored. */ static ssize_t amdgpu_get_thermal_throttling_logging(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); return sysfs_emit(buf, "%s: thermal throttling logging %s, with interval %d seconds\n", adev_to_drm(adev)->unique, atomic_read(&adev->throttling_logging_enabled) ? "enabled" : "disabled", adev->throttling_logging_rs.interval / HZ + 1); } static ssize_t amdgpu_set_thermal_throttling_logging(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); long throttling_logging_interval; unsigned long flags; int ret = 0; ret = kstrtol(buf, 0, &throttling_logging_interval); if (ret) return ret; if (throttling_logging_interval > 3600) return -EINVAL; if (throttling_logging_interval > 0) { raw_spin_lock_irqsave(&adev->throttling_logging_rs.lock, flags); /* * Reset the ratelimit timer internals. * This can effectively restart the timer. */ adev->throttling_logging_rs.interval = (throttling_logging_interval - 1) * HZ; adev->throttling_logging_rs.begin = 0; adev->throttling_logging_rs.printed = 0; adev->throttling_logging_rs.missed = 0; raw_spin_unlock_irqrestore(&adev->throttling_logging_rs.lock, flags); atomic_set(&adev->throttling_logging_enabled, 1); } else { atomic_set(&adev->throttling_logging_enabled, 0); } return count; } /** * DOC: apu_thermal_cap * * The amdgpu driver provides a sysfs API for retrieving/updating thermal * limit temperature in millidegrees Celsius * * Reading back the file shows you core limit value * * Writing an integer to the file, sets a new thermal limit. The value * should be between 0 and 100. If the value is less than 0 or greater * than 100, then the write request will be ignored. */ static ssize_t amdgpu_get_apu_thermal_cap(struct device *dev, struct device_attribute *attr, char *buf) { int ret, size; u32 limit; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_get_apu_thermal_limit(adev, &limit); if (!ret) size = sysfs_emit(buf, "%u\n", limit); else size = sysfs_emit(buf, "failed to get thermal limit\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_apu_thermal_cap(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u32 value; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ret = kstrtou32(buf, 10, &value); if (ret) return ret; if (value > 100) { dev_err(dev, "Invalid argument !\n"); return -EINVAL; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_apu_thermal_limit(adev, value); if (ret) { dev_err(dev, "failed to update thermal limit\n"); return ret; } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: gpu_metrics * * The amdgpu driver provides a sysfs API for retrieving current gpu * metrics data. The file gpu_metrics is used for this. Reading the * file will dump all the current gpu metrics data. * * These data include temperature, frequency, engines utilization, * power consume, throttler status, fan speed and cpu core statistics( * available for APU only). That's it will give a snapshot of all sensors * at the same time. */ static ssize_t amdgpu_get_gpu_metrics(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); void *gpu_metrics; ssize_t size = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_gpu_metrics(adev, &gpu_metrics); if (size <= 0) goto out; if (size >= PAGE_SIZE) size = PAGE_SIZE - 1; memcpy(buf, gpu_metrics, size); out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static int amdgpu_show_powershift_percent(struct device *dev, char *buf, enum amd_pp_sensors sensor) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t ss_power; int r = 0, i; r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&ss_power); if (r == -EOPNOTSUPP) { /* sensor not available on dGPU, try to read from APU */ adev = NULL; mutex_lock(&mgpu_info.mutex); for (i = 0; i < mgpu_info.num_gpu; i++) { if (mgpu_info.gpu_ins[i].adev->flags & AMD_IS_APU) { adev = mgpu_info.gpu_ins[i].adev; break; } } mutex_unlock(&mgpu_info.mutex); if (adev) r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&ss_power); } if (r) return r; return sysfs_emit(buf, "%u%%\n", ss_power); } /** * DOC: smartshift_apu_power * * The amdgpu driver provides a sysfs API for reporting APU power * shift in percentage if platform supports smartshift. Value 0 means that * there is no powershift and values between [1-100] means that the power * is shifted to APU, the percentage of boost is with respect to APU power * limit on the platform. */ static ssize_t amdgpu_get_smartshift_apu_power(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_show_powershift_percent(dev, buf, AMDGPU_PP_SENSOR_SS_APU_SHARE); } /** * DOC: smartshift_dgpu_power * * The amdgpu driver provides a sysfs API for reporting dGPU power * shift in percentage if platform supports smartshift. Value 0 means that * there is no powershift and values between [1-100] means that the power is * shifted to dGPU, the percentage of boost is with respect to dGPU power * limit on the platform. */ static ssize_t amdgpu_get_smartshift_dgpu_power(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_show_powershift_percent(dev, buf, AMDGPU_PP_SENSOR_SS_DGPU_SHARE); } /** * DOC: smartshift_bias * * The amdgpu driver provides a sysfs API for reporting the * smartshift(SS2.0) bias level. The value ranges from -100 to 100 * and the default is 0. -100 sets maximum preference to APU * and 100 sets max perference to dGPU. */ static ssize_t amdgpu_get_smartshift_bias(struct device *dev, struct device_attribute *attr, char *buf) { int r = 0; r = sysfs_emit(buf, "%d\n", amdgpu_smartshift_bias); return r; } static ssize_t amdgpu_set_smartshift_bias(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int r = 0; int bias = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(ddev->dev); return r; } r = kstrtoint(buf, 10, &bias); if (r) goto out; if (bias > AMDGPU_SMARTSHIFT_MAX_BIAS) bias = AMDGPU_SMARTSHIFT_MAX_BIAS; else if (bias < AMDGPU_SMARTSHIFT_MIN_BIAS) bias = AMDGPU_SMARTSHIFT_MIN_BIAS; amdgpu_smartshift_bias = bias; r = count; /* TODO: update bias level with SMU message */ out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return r; } static int ss_power_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev))) *states = ATTR_STATE_UNSUPPORTED; return 0; } static int ss_bias_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { uint32_t ss_power; if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev))) *states = ATTR_STATE_UNSUPPORTED; else if (amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE, (void *)&ss_power)) *states = ATTR_STATE_UNSUPPORTED; else if (amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE, (void *)&ss_power)) *states = ATTR_STATE_UNSUPPORTED; return 0; } static struct amdgpu_device_attr amdgpu_device_attrs[] = { AMDGPU_DEVICE_ATTR_RW(power_dpm_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(power_dpm_force_performance_level, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pp_num_states, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pp_cur_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_force_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_table, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_sclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_mclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_socclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_fclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk1, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk1, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dcefclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_pcie, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_sclk_od, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_mclk_od, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_power_profile_mode, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_od_clk_voltage, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(gpu_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(mem_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pcie_bw, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_features, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(unique_id, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(thermal_throttling_logging, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(apu_thermal_cap, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(gpu_metrics, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(smartshift_apu_power, ATTR_FLAG_BASIC, .attr_update = ss_power_attr_update), AMDGPU_DEVICE_ATTR_RO(smartshift_dgpu_power, ATTR_FLAG_BASIC, .attr_update = ss_power_attr_update), AMDGPU_DEVICE_ATTR_RW(smartshift_bias, ATTR_FLAG_BASIC, .attr_update = ss_bias_attr_update), }; static int default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { struct device_attribute *dev_attr = &attr->dev_attr; uint32_t mp1_ver = adev->ip_versions[MP1_HWIP][0]; uint32_t gc_ver = adev->ip_versions[GC_HWIP][0]; const char *attr_name = dev_attr->attr.name; if (!(attr->flags & mask)) { *states = ATTR_STATE_UNSUPPORTED; return 0; } #define DEVICE_ATTR_IS(_name) (!strcmp(attr_name, #_name)) if (DEVICE_ATTR_IS(pp_dpm_socclk)) { if (gc_ver < IP_VERSION(9, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) { if (gc_ver < IP_VERSION(9, 0, 0) || !amdgpu_device_has_display_hardware(adev)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_fclk)) { if (mp1_ver < IP_VERSION(10, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_od_clk_voltage)) { *states = ATTR_STATE_UNSUPPORTED; if (amdgpu_dpm_is_overdrive_supported(adev)) *states = ATTR_STATE_SUPPORTED; } else if (DEVICE_ATTR_IS(mem_busy_percent)) { if (adev->flags & AMD_IS_APU || gc_ver == IP_VERSION(9, 0, 1)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pcie_bw)) { /* PCIe Perf counters won't work on APU nodes */ if (adev->flags & AMD_IS_APU) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(unique_id)) { switch (gc_ver) { case IP_VERSION(9, 0, 1): case IP_VERSION(9, 4, 0): case IP_VERSION(9, 4, 1): case IP_VERSION(9, 4, 2): case IP_VERSION(9, 4, 3): case IP_VERSION(10, 3, 0): case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 2): *states = ATTR_STATE_SUPPORTED; break; default: *states = ATTR_STATE_UNSUPPORTED; } } else if (DEVICE_ATTR_IS(pp_features)) { if ((adev->flags & AMD_IS_APU && gc_ver != IP_VERSION(9, 4, 3)) || gc_ver < IP_VERSION(9, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(gpu_metrics)) { if (gc_ver < IP_VERSION(9, 1, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_vclk)) { if (!(gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(10, 1, 2) || gc_ver == IP_VERSION(11, 0, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3) || gc_ver == IP_VERSION(9, 4, 3))) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_vclk1)) { if (!((gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3)) && adev->vcn.num_vcn_inst >= 2)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dclk)) { if (!(gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(10, 1, 2) || gc_ver == IP_VERSION(11, 0, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3) || gc_ver == IP_VERSION(9, 4, 3))) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dclk1)) { if (!((gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3)) && adev->vcn.num_vcn_inst >= 2)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_power_profile_mode)) { if (amdgpu_dpm_get_power_profile_mode(adev, NULL) == -EOPNOTSUPP) *states = ATTR_STATE_UNSUPPORTED; else if (gc_ver == IP_VERSION(10, 3, 0) && amdgpu_sriov_vf(adev)) *states = ATTR_STATE_UNSUPPORTED; } switch (gc_ver) { case IP_VERSION(9, 4, 1): case IP_VERSION(9, 4, 2): /* the Mi series card does not support standalone mclk/socclk/fclk level setting */ if (DEVICE_ATTR_IS(pp_dpm_mclk) || DEVICE_ATTR_IS(pp_dpm_socclk) || DEVICE_ATTR_IS(pp_dpm_fclk)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } break; case IP_VERSION(10, 3, 0): if (DEVICE_ATTR_IS(power_dpm_force_performance_level) && amdgpu_sriov_vf(adev)) { dev_attr->attr.mode &= ~0222; dev_attr->store = NULL; } break; default: break; } if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) { /* SMU MP1 does not support dcefclk level setting */ if (gc_ver >= IP_VERSION(10, 0, 0)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } } /* setting should not be allowed from VF if not in one VF mode */ if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } #undef DEVICE_ATTR_IS return 0; } static int amdgpu_device_attr_create(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, struct list_head *attr_list) { int ret = 0; enum amdgpu_device_attr_states attr_states = ATTR_STATE_SUPPORTED; struct amdgpu_device_attr_entry *attr_entry; struct device_attribute *dev_attr; const char *name; int (*attr_update)(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) = default_attr_update; if (!attr) return -EINVAL; dev_attr = &attr->dev_attr; name = dev_attr->attr.name; attr_update = attr->attr_update ? attr->attr_update : default_attr_update; ret = attr_update(adev, attr, mask, &attr_states); if (ret) { dev_err(adev->dev, "failed to update device file %s, ret = %d\n", name, ret); return ret; } if (attr_states == ATTR_STATE_UNSUPPORTED) return 0; ret = device_create_file(adev->dev, dev_attr); if (ret) { dev_err(adev->dev, "failed to create device file %s, ret = %d\n", name, ret); } attr_entry = kmalloc(sizeof(*attr_entry), GFP_KERNEL); if (!attr_entry) return -ENOMEM; attr_entry->attr = attr; INIT_LIST_HEAD(&attr_entry->entry); list_add_tail(&attr_entry->entry, attr_list); return ret; } static void amdgpu_device_attr_remove(struct amdgpu_device *adev, struct amdgpu_device_attr *attr) { struct device_attribute *dev_attr = &attr->dev_attr; device_remove_file(adev->dev, dev_attr); } static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, struct list_head *attr_list); static int amdgpu_device_attr_create_groups(struct amdgpu_device *adev, struct amdgpu_device_attr *attrs, uint32_t counts, uint32_t mask, struct list_head *attr_list) { int ret = 0; uint32_t i = 0; for (i = 0; i < counts; i++) { ret = amdgpu_device_attr_create(adev, &attrs[i], mask, attr_list); if (ret) goto failed; } return 0; failed: amdgpu_device_attr_remove_groups(adev, attr_list); return ret; } static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, struct list_head *attr_list) { struct amdgpu_device_attr_entry *entry, *entry_tmp; if (list_empty(attr_list)) return ; list_for_each_entry_safe(entry, entry_tmp, attr_list, entry) { amdgpu_device_attr_remove(adev, entry->attr); list_del(&entry->entry); kfree(entry); } } static ssize_t amdgpu_hwmon_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int channel = to_sensor_dev_attr(attr)->index; int r, temp = 0; if (channel >= PP_TEMP_MAX) return -EINVAL; switch (channel) { case PP_TEMP_JUNCTION: /* get current junction temperature */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP, (void *)&temp); break; case PP_TEMP_EDGE: /* get current edge temperature */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_EDGE_TEMP, (void *)&temp); break; case PP_TEMP_MEM: /* get current memory temperature */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MEM_TEMP, (void *)&temp); break; default: r = -EINVAL; break; } if (r) return r; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_temp; else temp = adev->pm.dpm.thermal.max_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_hotspot_temp; else temp = adev->pm.dpm.thermal.max_hotspot_crit_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_mem_temp; else temp = adev->pm.dpm.thermal.max_mem_crit_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev, struct device_attribute *attr, char *buf) { int channel = to_sensor_dev_attr(attr)->index; if (channel >= PP_TEMP_MAX) return -EINVAL; return sysfs_emit(buf, "%s\n", temp_label[channel].label); } static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int channel = to_sensor_dev_attr(attr)->index; int temp = 0; if (channel >= PP_TEMP_MAX) return -EINVAL; switch (channel) { case PP_TEMP_JUNCTION: temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp; break; case PP_TEMP_EDGE: temp = adev->pm.dpm.thermal.max_edge_emergency_temp; break; case PP_TEMP_MEM: temp = adev->pm.dpm.thermal.max_mem_emergency_temp; break; } return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return sysfs_emit(buf, "%u\n", pwm_mode); } static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err, ret; int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtoint(buf, 10, &value); if (err) return err; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_set_fan_control_mode(adev, value); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%i\n", 255); } static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtou32(buf, 10, &value); if (err) return err; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); if (err) goto out; if (pwm_mode != AMD_FAN_CTRL_MANUAL) { pr_info("manual fan speed control should be enabled first\n"); err = -EINVAL; goto out; } err = amdgpu_dpm_set_fan_speed_pwm(adev, value); out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_pwm(adev, &speed); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 min_rpm = 0; int r; r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM, (void *)&min_rpm); if (r) return r; return sysfs_emit(buf, "%d\n", min_rpm); } static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 max_rpm = 0; int r; r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM, (void *)&max_rpm); if (r) return r; return sysfs_emit(buf, "%d\n", max_rpm); } static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 rpm = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", rpm); } static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtou32(buf, 10, &value); if (err) return err; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); if (err) goto out; if (pwm_mode != AMD_FAN_CTRL_MANUAL) { err = -ENODATA; goto out; } err = amdgpu_dpm_set_fan_speed_rpm(adev, value); out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return sysfs_emit(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1); } static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; int value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtoint(buf, 10, &value); if (err) return err; if (value == 0) pwm_mode = AMD_FAN_CTRL_AUTO; else if (value == 1) pwm_mode = AMD_FAN_CTRL_MANUAL; else return -EINVAL; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_set_fan_control_mode(adev, pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return -EINVAL; return count; } static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 vddgfx; int r; /* get the voltage */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&vddgfx); if (r) return r; return sysfs_emit(buf, "%d\n", vddgfx); } static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "vddgfx\n"); } static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 vddnb; int r; /* only APUs have vddnb */ if (!(adev->flags & AMD_IS_APU)) return -EINVAL; /* get the voltage */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&vddnb); if (r) return r; return sysfs_emit(buf, "%d\n", vddnb); } static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "vddnb\n"); } static unsigned int amdgpu_hwmon_get_power(struct device *dev, enum amd_pp_sensors sensor) { struct amdgpu_device *adev = dev_get_drvdata(dev); unsigned int uw; u32 query = 0; int r; r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&query); if (r) return r; /* convert to microwatts */ uw = (query >> 8) * 1000000 + (query & 0xff) * 1000; return uw; } static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev, struct device_attribute *attr, char *buf) { unsigned int val; val = amdgpu_hwmon_get_power(dev, AMDGPU_PP_SENSOR_GPU_AVG_POWER); if (val < 0) return val; return sysfs_emit(buf, "%u\n", val); } static ssize_t amdgpu_hwmon_show_power_input(struct device *dev, struct device_attribute *attr, char *buf) { unsigned int val; val = amdgpu_hwmon_get_power(dev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER); if (val < 0) return val; return sysfs_emit(buf, "%u\n", val); } static ssize_t amdgpu_hwmon_show_power_cap_min(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_show_power_cap_generic(struct device *dev, struct device_attribute *attr, char *buf, enum pp_power_limit_level pp_limit_level) { struct amdgpu_device *adev = dev_get_drvdata(dev); enum pp_power_type power_type = to_sensor_dev_attr(attr)->index; uint32_t limit; ssize_t size; int r; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_dpm_get_power_limit(adev, &limit, pp_limit_level, power_type); if (!r) size = sysfs_emit(buf, "%u\n", limit * 1000000); else size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return size; } static ssize_t amdgpu_hwmon_show_power_cap_max(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_MAX); } static ssize_t amdgpu_hwmon_show_power_cap(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_CURRENT); } static ssize_t amdgpu_hwmon_show_power_cap_default(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_DEFAULT); } static ssize_t amdgpu_hwmon_show_power_label(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t gc_ver = adev->ip_versions[GC_HWIP][0]; if (gc_ver == IP_VERSION(10, 3, 1)) return sysfs_emit(buf, "%s\n", to_sensor_dev_attr(attr)->index == PP_PWR_TYPE_FAST ? "fastPPT" : "slowPPT"); else return sysfs_emit(buf, "PPT\n"); } static ssize_t amdgpu_hwmon_set_power_cap(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int limit_type = to_sensor_dev_attr(attr)->index; int err; u32 value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (amdgpu_sriov_vf(adev)) return -EINVAL; err = kstrtou32(buf, 10, &value); if (err) return err; value = value / 1000000; /* convert to Watt */ value |= limit_type << 24; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_set_power_limit(adev, value); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_show_sclk(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t sclk; int r; /* get the sclk */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&sclk); if (r) return r; return sysfs_emit(buf, "%u\n", sclk * 10 * 1000); } static ssize_t amdgpu_hwmon_show_sclk_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "sclk\n"); } static ssize_t amdgpu_hwmon_show_mclk(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t mclk; int r; /* get the sclk */ r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&mclk); if (r) return r; return sysfs_emit(buf, "%u\n", mclk * 10 * 1000); } static ssize_t amdgpu_hwmon_show_mclk_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "mclk\n"); } /** * DOC: hwmon * * The amdgpu driver exposes the following sensor interfaces: * * - GPU temperature (via the on-die sensor) * * - GPU voltage * * - Northbridge voltage (APUs only) * * - GPU power * * - GPU fan * * - GPU gfx/compute engine clock * * - GPU memory clock (dGPU only) * * hwmon interfaces for GPU temperature: * * - temp[1-3]_input: the on die GPU temperature in millidegrees Celsius * - temp2_input and temp3_input are supported on SOC15 dGPUs only * * - temp[1-3]_label: temperature channel label * - temp2_label and temp3_label are supported on SOC15 dGPUs only * * - temp[1-3]_crit: temperature critical max value in millidegrees Celsius * - temp2_crit and temp3_crit are supported on SOC15 dGPUs only * * - temp[1-3]_crit_hyst: temperature hysteresis for critical limit in millidegrees Celsius * - temp2_crit_hyst and temp3_crit_hyst are supported on SOC15 dGPUs only * * - temp[1-3]_emergency: temperature emergency max value(asic shutdown) in millidegrees Celsius * - these are supported on SOC15 dGPUs only * * hwmon interfaces for GPU voltage: * * - in0_input: the voltage on the GPU in millivolts * * - in1_input: the voltage on the Northbridge in millivolts * * hwmon interfaces for GPU power: * * - power1_average: average power used by the SoC in microWatts. On APUs this includes the CPU. * * - power1_input: instantaneous power used by the SoC in microWatts. On APUs this includes the CPU. * * - power1_cap_min: minimum cap supported in microWatts * * - power1_cap_max: maximum cap supported in microWatts * * - power1_cap: selected power cap in microWatts * * hwmon interfaces for GPU fan: * * - pwm1: pulse width modulation fan level (0-255) * * - pwm1_enable: pulse width modulation fan control method (0: no fan speed control, 1: manual fan speed control using pwm interface, 2: automatic fan speed control) * * - pwm1_min: pulse width modulation fan control minimum level (0) * * - pwm1_max: pulse width modulation fan control maximum level (255) * * - fan1_min: a minimum value Unit: revolution/min (RPM) * * - fan1_max: a maximum value Unit: revolution/max (RPM) * * - fan1_input: fan speed in RPM * * - fan[1-\*]_target: Desired fan speed Unit: revolution/min (RPM) * * - fan[1-\*]_enable: Enable or disable the sensors.1: Enable 0: Disable * * NOTE: DO NOT set the fan speed via "pwm1" and "fan[1-\*]_target" interfaces at the same time. * That will get the former one overridden. * * hwmon interfaces for GPU clocks: * * - freq1_input: the gfx/compute clock in hertz * * - freq2_input: the memory clock in hertz * * You can use hwmon tools like sensors to view this information on your system. * */ static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp1_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0); static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0); static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO, amdgpu_hwmon_get_fan1_min, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, amdgpu_hwmon_get_fan1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_target, amdgpu_hwmon_set_fan1_target, 0); static SENSOR_DEVICE_ATTR(fan1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_enable, amdgpu_hwmon_set_fan1_enable, 0); static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0); static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0); static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0); static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0); static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, amdgpu_hwmon_show_power_input, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 0); static SENSOR_DEVICE_ATTR(power1_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 0); static SENSOR_DEVICE_ATTR(power1_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 0); static SENSOR_DEVICE_ATTR(power2_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 1); static SENSOR_DEVICE_ATTR(power2_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 1); static SENSOR_DEVICE_ATTR(power2_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 1); static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, amdgpu_hwmon_show_sclk, NULL, 0); static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, amdgpu_hwmon_show_sclk_label, NULL, 0); static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, amdgpu_hwmon_show_mclk, NULL, 0); static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, amdgpu_hwmon_show_mclk_label, NULL, 0); static struct attribute *hwmon_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp1_emergency.dev_attr.attr, &sensor_dev_attr_temp2_emergency.dev_attr.attr, &sensor_dev_attr_temp3_emergency.dev_attr.attr, &sensor_dev_attr_temp1_label.dev_attr.attr, &sensor_dev_attr_temp2_label.dev_attr.attr, &sensor_dev_attr_temp3_label.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_min.dev_attr.attr, &sensor_dev_attr_pwm1_max.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_max.dev_attr.attr, &sensor_dev_attr_fan1_target.dev_attr.attr, &sensor_dev_attr_fan1_enable.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_label.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_label.dev_attr.attr, &sensor_dev_attr_power1_average.dev_attr.attr, &sensor_dev_attr_power1_input.dev_attr.attr, &sensor_dev_attr_power1_cap_max.dev_attr.attr, &sensor_dev_attr_power1_cap_min.dev_attr.attr, &sensor_dev_attr_power1_cap.dev_attr.attr, &sensor_dev_attr_power1_cap_default.dev_attr.attr, &sensor_dev_attr_power1_label.dev_attr.attr, &sensor_dev_attr_power2_average.dev_attr.attr, &sensor_dev_attr_power2_cap_max.dev_attr.attr, &sensor_dev_attr_power2_cap_min.dev_attr.attr, &sensor_dev_attr_power2_cap.dev_attr.attr, &sensor_dev_attr_power2_cap_default.dev_attr.attr, &sensor_dev_attr_power2_label.dev_attr.attr, &sensor_dev_attr_freq1_input.dev_attr.attr, &sensor_dev_attr_freq1_label.dev_attr.attr, &sensor_dev_attr_freq2_input.dev_attr.attr, &sensor_dev_attr_freq2_label.dev_attr.attr, NULL }; static umode_t hwmon_attributes_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct amdgpu_device *adev = dev_get_drvdata(dev); umode_t effective_mode = attr->mode; uint32_t gc_ver = adev->ip_versions[GC_HWIP][0]; uint32_t tmp; /* under multi-vf mode, the hwmon attributes are all not supported */ if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) return 0; /* under pp one vf mode manage of hwmon attributes is not supported */ if (amdgpu_sriov_is_pp_one_vf(adev)) effective_mode &= ~S_IWUSR; /* Skip fan attributes if fan is not present */ if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip fan attributes on APU */ if ((adev->flags & AMD_IS_APU) && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip crit temp on APU */ if ((((adev->flags & AMD_IS_APU) && (adev->family >= AMDGPU_FAMILY_CZ)) || (gc_ver == IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr)) return 0; /* Skip limit attributes if DPM is not enabled */ if (!adev->pm.dpm_enabled && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* mask fan attributes if we have no bindings for this asic to expose */ if (((amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */ ((amdgpu_dpm_get_fan_control_mode(adev, NULL) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */ effective_mode &= ~S_IRUGO; if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */ ((amdgpu_dpm_set_fan_control_mode(adev, U32_MAX) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */ effective_mode &= ~S_IWUSR; /* not implemented yet for APUs other than GC 10.3.1 (vangogh) and 9.4.3 */ if (((adev->family == AMDGPU_FAMILY_SI) || ((adev->flags & AMD_IS_APU) && (gc_ver != IP_VERSION(10, 3, 1)) && (gc_ver != IP_VERSION(9, 4, 3)))) && (attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr || attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr || attr == &sensor_dev_attr_power1_cap.dev_attr.attr || attr == &sensor_dev_attr_power1_cap_default.dev_attr.attr)) return 0; /* not implemented yet for APUs having < GC 9.3.0 (Renoir) */ if (((adev->family == AMDGPU_FAMILY_SI) || ((adev->flags & AMD_IS_APU) && (gc_ver < IP_VERSION(9, 3, 0)))) && (attr == &sensor_dev_attr_power1_average.dev_attr.attr)) return 0; /* not all products support both average and instantaneous */ if (attr == &sensor_dev_attr_power1_average.dev_attr.attr && amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_AVG_POWER, (void *)&tmp) == -EOPNOTSUPP) return 0; if (attr == &sensor_dev_attr_power1_input.dev_attr.attr && amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER, (void *)&tmp) == -EOPNOTSUPP) return 0; /* hide max/min values if we can't both query and manage the fan */ if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) && (amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP)) && (attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; if ((amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP) && (attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr)) return 0; if ((adev->family == AMDGPU_FAMILY_SI || /* not implemented yet */ adev->family == AMDGPU_FAMILY_KV || /* not implemented yet */ (gc_ver == IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_in0_input.dev_attr.attr || attr == &sensor_dev_attr_in0_label.dev_attr.attr)) return 0; /* only APUs other than gc 9,4,3 have vddnb */ if ((!(adev->flags & AMD_IS_APU) || (gc_ver == IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_in1_input.dev_attr.attr || attr == &sensor_dev_attr_in1_label.dev_attr.attr)) return 0; /* no mclk on APUs other than gc 9,4,3*/ if (((adev->flags & AMD_IS_APU) && (gc_ver != IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_freq2_input.dev_attr.attr || attr == &sensor_dev_attr_freq2_label.dev_attr.attr)) return 0; if (((adev->flags & AMD_IS_APU) || gc_ver < IP_VERSION(9, 0, 0)) && (gc_ver != IP_VERSION(9, 4, 3)) && (attr == &sensor_dev_attr_temp2_input.dev_attr.attr || attr == &sensor_dev_attr_temp2_label.dev_attr.attr || attr == &sensor_dev_attr_temp2_crit.dev_attr.attr || attr == &sensor_dev_attr_temp3_input.dev_attr.attr || attr == &sensor_dev_attr_temp3_label.dev_attr.attr || attr == &sensor_dev_attr_temp3_crit.dev_attr.attr)) return 0; /* hotspot temperature for gc 9,4,3*/ if ((gc_ver == IP_VERSION(9, 4, 3)) && (attr == &sensor_dev_attr_temp1_input.dev_attr.attr || attr == &sensor_dev_attr_temp1_label.dev_attr.attr)) return 0; /* only SOC15 dGPUs support hotspot and mem temperatures */ if (((adev->flags & AMD_IS_APU) || gc_ver < IP_VERSION(9, 0, 0) || (gc_ver == IP_VERSION(9, 4, 3))) && (attr == &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr)) return 0; /* only Vangogh has fast PPT limit and power labels */ if (!(gc_ver == IP_VERSION(10, 3, 1)) && (attr == &sensor_dev_attr_power2_average.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_max.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_min.dev_attr.attr || attr == &sensor_dev_attr_power2_cap.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_default.dev_attr.attr || attr == &sensor_dev_attr_power2_label.dev_attr.attr)) return 0; return effective_mode; } static const struct attribute_group hwmon_attrgroup = { .attrs = hwmon_attributes, .is_visible = hwmon_attributes_visible, }; static const struct attribute_group *hwmon_groups[] = { &hwmon_attrgroup, NULL }; int amdgpu_pm_sysfs_init(struct amdgpu_device *adev) { int ret; uint32_t mask = 0; if (adev->pm.sysfs_initialized) return 0; INIT_LIST_HEAD(&adev->pm.pm_attr_list); if (adev->pm.dpm_enabled == 0) return 0; adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev, DRIVER_NAME, adev, hwmon_groups); if (IS_ERR(adev->pm.int_hwmon_dev)) { ret = PTR_ERR(adev->pm.int_hwmon_dev); dev_err(adev->dev, "Unable to register hwmon device: %d\n", ret); return ret; } switch (amdgpu_virt_get_sriov_vf_mode(adev)) { case SRIOV_VF_MODE_ONE_VF: mask = ATTR_FLAG_ONEVF; break; case SRIOV_VF_MODE_MULTI_VF: mask = 0; break; case SRIOV_VF_MODE_BARE_METAL: default: mask = ATTR_FLAG_MASK_ALL; break; } ret = amdgpu_device_attr_create_groups(adev, amdgpu_device_attrs, ARRAY_SIZE(amdgpu_device_attrs), mask, &adev->pm.pm_attr_list); if (ret) return ret; adev->pm.sysfs_initialized = true; return 0; } void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev) { if (adev->pm.int_hwmon_dev) hwmon_device_unregister(adev->pm.int_hwmon_dev); amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list); } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static void amdgpu_debugfs_prints_cpu_info(struct seq_file *m, struct amdgpu_device *adev) { uint16_t *p_val; uint32_t size; int i; uint32_t num_cpu_cores = amdgpu_dpm_get_num_cpu_cores(adev); if (amdgpu_dpm_is_cclk_dpm_supported(adev)) { p_val = kcalloc(num_cpu_cores, sizeof(uint16_t), GFP_KERNEL); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_CPU_CLK, (void *)p_val, &size)) { for (i = 0; i < num_cpu_cores; i++) seq_printf(m, "\t%u MHz (CPU%d)\n", *(p_val + i), i); } kfree(p_val); } } static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev) { uint32_t mp1_ver = adev->ip_versions[MP1_HWIP][0]; uint32_t gc_ver = adev->ip_versions[GC_HWIP][0]; uint32_t value; uint64_t value64 = 0; uint32_t query = 0; int size; /* GPU Clocks */ size = sizeof(value); seq_printf(m, "GFX Clocks and Power:\n"); amdgpu_debugfs_prints_cpu_info(m, adev); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDGFX)\n", value); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDNB)\n", value); size = sizeof(uint32_t); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_AVG_POWER, (void *)&query, &size)) seq_printf(m, "\t%u.%u W (average GPU)\n", query >> 8, query & 0xff); size = sizeof(uint32_t); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER, (void *)&query, &size)) seq_printf(m, "\t%u.%u W (current GPU)\n", query >> 8, query & 0xff); size = sizeof(value); seq_printf(m, "\n"); /* GPU Temp */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size)) seq_printf(m, "GPU Temperature: %u C\n", value/1000); /* GPU Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size)) seq_printf(m, "GPU Load: %u %%\n", value); /* MEM Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size)) seq_printf(m, "MEM Load: %u %%\n", value); seq_printf(m, "\n"); /* SMC feature mask */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK, (void *)&value64, &size)) seq_printf(m, "SMC Feature Mask: 0x%016llx\n", value64); /* ASICs greater than CHIP_VEGA20 supports these sensors */ if (gc_ver != IP_VERSION(9, 4, 0) && mp1_ver > IP_VERSION(9, 0, 0)) { /* VCN clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCN_POWER_STATE, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCN: Disabled\n"); } else { seq_printf(m, "VCN: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); } else { /* UVD clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "UVD: Disabled\n"); } else { seq_printf(m, "UVD: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); /* VCE clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCE: Disabled\n"); } else { seq_printf(m, "VCE: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (ECCLK)\n", value/100); } } } return 0; } static const struct cg_flag_name clocks[] = { {AMD_CG_SUPPORT_GFX_FGCG, "Graphics Fine Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"}, {AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"}, {AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"}, {AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"}, {AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"}, {AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"}, {AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"}, {AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"}, {AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_VCN_MGCG, "VCN Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_HDP_DS, "Host Data Path Deep Sleep"}, {AMD_CG_SUPPORT_HDP_SD, "Host Data Path Shutdown"}, {AMD_CG_SUPPORT_IH_CG, "Interrupt Handler Clock Gating"}, {AMD_CG_SUPPORT_JPEG_MGCG, "JPEG Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_REPEATER_FGCG, "Repeater Fine Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_PERF_CLK, "Perfmon Clock Gating"}, {AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"}, {0, NULL}, }; static void amdgpu_parse_cg_state(struct seq_file *m, u64 flags) { int i; for (i = 0; clocks[i].flag; i++) seq_printf(m, "\t%s: %s\n", clocks[i].name, (flags & clocks[i].flag) ? "On" : "Off"); } static int amdgpu_debugfs_pm_info_show(struct seq_file *m, void *unused) { struct amdgpu_device *adev = (struct amdgpu_device *)m->private; struct drm_device *dev = adev_to_drm(adev); u64 flags = 0; int r; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(dev->dev); if (r < 0) { pm_runtime_put_autosuspend(dev->dev); return r; } if (amdgpu_dpm_debugfs_print_current_performance_level(adev, m)) { r = amdgpu_debugfs_pm_info_pp(m, adev); if (r) goto out; } amdgpu_device_ip_get_clockgating_state(adev, &flags); seq_printf(m, "Clock Gating Flags Mask: 0x%llx\n", flags); amdgpu_parse_cg_state(m, flags); seq_printf(m, "\n"); out: pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return r; } DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_pm_info); /* * amdgpu_pm_priv_buffer_read - Read memory region allocated to FW * * Reads debug memory region allocated to PMFW */ static ssize_t amdgpu_pm_prv_buffer_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; size_t smu_prv_buf_size; void *smu_prv_buf; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = amdgpu_dpm_get_smu_prv_buf_details(adev, &smu_prv_buf, &smu_prv_buf_size); if (ret) return ret; if (!smu_prv_buf || !smu_prv_buf_size) return -EINVAL; return simple_read_from_buffer(buf, size, pos, smu_prv_buf, smu_prv_buf_size); } static const struct file_operations amdgpu_debugfs_pm_prv_buffer_fops = { .owner = THIS_MODULE, .open = simple_open, .read = amdgpu_pm_prv_buffer_read, .llseek = default_llseek, }; #endif void amdgpu_debugfs_pm_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) struct drm_minor *minor = adev_to_drm(adev)->primary; struct dentry *root = minor->debugfs_root; if (!adev->pm.dpm_enabled) return; debugfs_create_file("amdgpu_pm_info", 0444, root, adev, &amdgpu_debugfs_pm_info_fops); if (adev->pm.smu_prv_buffer_size > 0) debugfs_create_file_size("amdgpu_pm_prv_buffer", 0444, root, adev, &amdgpu_debugfs_pm_prv_buffer_fops, adev->pm.smu_prv_buffer_size); amdgpu_dpm_stb_debug_fs_init(adev); #endif }
linux-master
drivers/gpu/drm/amd/pm/amdgpu_pm.c
/* * Copyright 2011 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include "amdgpu.h" #include "amdgpu_atombios.h" #include "amdgpu_i2c.h" #include "amdgpu_dpm.h" #include "atom.h" #include "amd_pcie.h" #include "amdgpu_display.h" #include "hwmgr.h" #include <linux/power_supply.h> #include "amdgpu_smu.h" #define amdgpu_dpm_enable_bapm(adev, e) \ ((adev)->powerplay.pp_funcs->enable_bapm((adev)->powerplay.pp_handle, (e))) #define amdgpu_dpm_is_legacy_dpm(adev) ((adev)->powerplay.pp_handle == (adev)) int amdgpu_dpm_get_sclk(struct amdgpu_device *adev, bool low) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_sclk) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_sclk((adev)->powerplay.pp_handle, low); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_mclk(struct amdgpu_device *adev, bool low) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_mclk) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_mclk((adev)->powerplay.pp_handle, low); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_powergating_by_smu(struct amdgpu_device *adev, uint32_t block_type, bool gate) { int ret = 0; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; enum ip_power_state pwr_state = gate ? POWER_STATE_OFF : POWER_STATE_ON; if (atomic_read(&adev->pm.pwr_state[block_type]) == pwr_state) { dev_dbg(adev->dev, "IP block%d already in the target %s state!", block_type, gate ? "gate" : "ungate"); return 0; } mutex_lock(&adev->pm.mutex); switch (block_type) { case AMD_IP_BLOCK_TYPE_UVD: case AMD_IP_BLOCK_TYPE_VCE: case AMD_IP_BLOCK_TYPE_GFX: case AMD_IP_BLOCK_TYPE_VCN: case AMD_IP_BLOCK_TYPE_SDMA: case AMD_IP_BLOCK_TYPE_JPEG: case AMD_IP_BLOCK_TYPE_GMC: case AMD_IP_BLOCK_TYPE_ACP: if (pp_funcs && pp_funcs->set_powergating_by_smu) ret = (pp_funcs->set_powergating_by_smu( (adev)->powerplay.pp_handle, block_type, gate)); break; default: break; } if (!ret) atomic_set(&adev->pm.pwr_state[block_type], pwr_state); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_gfx_power_up_by_imu(struct amdgpu_device *adev) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_set_gfx_power_up_by_imu(smu); mutex_unlock(&adev->pm.mutex); msleep(10); return ret; } int amdgpu_dpm_baco_enter(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; void *pp_handle = adev->powerplay.pp_handle; int ret = 0; if (!pp_funcs || !pp_funcs->set_asic_baco_state) return -ENOENT; mutex_lock(&adev->pm.mutex); /* enter BACO state */ ret = pp_funcs->set_asic_baco_state(pp_handle, 1); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_baco_exit(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; void *pp_handle = adev->powerplay.pp_handle; int ret = 0; if (!pp_funcs || !pp_funcs->set_asic_baco_state) return -ENOENT; mutex_lock(&adev->pm.mutex); /* exit BACO state */ ret = pp_funcs->set_asic_baco_state(pp_handle, 0); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_mp1_state(struct amdgpu_device *adev, enum pp_mp1_state mp1_state) { int ret = 0; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (pp_funcs && pp_funcs->set_mp1_state) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_mp1_state( adev->powerplay.pp_handle, mp1_state); mutex_unlock(&adev->pm.mutex); } return ret; } bool amdgpu_dpm_is_baco_supported(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; void *pp_handle = adev->powerplay.pp_handle; bool baco_cap; int ret = 0; if (!pp_funcs || !pp_funcs->get_asic_baco_capability) return false; /* Don't use baco for reset in S3. * This is a workaround for some platforms * where entering BACO during suspend * seems to cause reboots or hangs. * This might be related to the fact that BACO controls * power to the whole GPU including devices like audio and USB. * Powering down/up everything may adversely affect these other * devices. Needs more investigation. */ if (adev->in_s3) return false; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_asic_baco_capability(pp_handle, &baco_cap); mutex_unlock(&adev->pm.mutex); return ret ? false : baco_cap; } int amdgpu_dpm_mode2_reset(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; void *pp_handle = adev->powerplay.pp_handle; int ret = 0; if (!pp_funcs || !pp_funcs->asic_reset_mode_2) return -ENOENT; mutex_lock(&adev->pm.mutex); ret = pp_funcs->asic_reset_mode_2(pp_handle); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_enable_gfx_features(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; void *pp_handle = adev->powerplay.pp_handle; int ret = 0; if (!pp_funcs || !pp_funcs->asic_reset_enable_gfx_features) return -ENOENT; mutex_lock(&adev->pm.mutex); ret = pp_funcs->asic_reset_enable_gfx_features(pp_handle); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_baco_reset(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; void *pp_handle = adev->powerplay.pp_handle; int ret = 0; if (!pp_funcs || !pp_funcs->set_asic_baco_state) return -ENOENT; mutex_lock(&adev->pm.mutex); /* enter BACO state */ ret = pp_funcs->set_asic_baco_state(pp_handle, 1); if (ret) goto out; /* exit BACO state */ ret = pp_funcs->set_asic_baco_state(pp_handle, 0); out: mutex_unlock(&adev->pm.mutex); return ret; } bool amdgpu_dpm_is_mode1_reset_supported(struct amdgpu_device *adev) { struct smu_context *smu = adev->powerplay.pp_handle; bool support_mode1_reset = false; if (is_support_sw_smu(adev)) { mutex_lock(&adev->pm.mutex); support_mode1_reset = smu_mode1_reset_is_support(smu); mutex_unlock(&adev->pm.mutex); } return support_mode1_reset; } int amdgpu_dpm_mode1_reset(struct amdgpu_device *adev) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = -EOPNOTSUPP; if (is_support_sw_smu(adev)) { mutex_lock(&adev->pm.mutex); ret = smu_mode1_reset(smu); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_switch_power_profile(struct amdgpu_device *adev, enum PP_SMC_POWER_PROFILE type, bool en) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (amdgpu_sriov_vf(adev)) return 0; if (pp_funcs && pp_funcs->switch_power_profile) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->switch_power_profile( adev->powerplay.pp_handle, type, en); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_set_xgmi_pstate(struct amdgpu_device *adev, uint32_t pstate) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (pp_funcs && pp_funcs->set_xgmi_pstate) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_xgmi_pstate(adev->powerplay.pp_handle, pstate); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_set_df_cstate(struct amdgpu_device *adev, uint32_t cstate) { int ret = 0; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; void *pp_handle = adev->powerplay.pp_handle; if (pp_funcs && pp_funcs->set_df_cstate) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_df_cstate(pp_handle, cstate); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_allow_xgmi_power_down(struct amdgpu_device *adev, bool en) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (is_support_sw_smu(adev)) { mutex_lock(&adev->pm.mutex); ret = smu_allow_xgmi_power_down(smu, en); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_enable_mgpu_fan_boost(struct amdgpu_device *adev) { void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (pp_funcs && pp_funcs->enable_mgpu_fan_boost) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->enable_mgpu_fan_boost(pp_handle); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_set_clockgating_by_smu(struct amdgpu_device *adev, uint32_t msg_id) { void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (pp_funcs && pp_funcs->set_clockgating_by_smu) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_clockgating_by_smu(pp_handle, msg_id); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_smu_i2c_bus_access(struct amdgpu_device *adev, bool acquire) { void *pp_handle = adev->powerplay.pp_handle; const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = -EOPNOTSUPP; if (pp_funcs && pp_funcs->smu_i2c_bus_access) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->smu_i2c_bus_access(pp_handle, acquire); mutex_unlock(&adev->pm.mutex); } return ret; } void amdgpu_pm_acpi_event_handler(struct amdgpu_device *adev) { if (adev->pm.dpm_enabled) { mutex_lock(&adev->pm.mutex); if (power_supply_is_system_supplied() > 0) adev->pm.ac_power = true; else adev->pm.ac_power = false; if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->enable_bapm) amdgpu_dpm_enable_bapm(adev, adev->pm.ac_power); if (is_support_sw_smu(adev)) smu_set_ac_dc(adev->powerplay.pp_handle); mutex_unlock(&adev->pm.mutex); } } int amdgpu_dpm_read_sensor(struct amdgpu_device *adev, enum amd_pp_sensors sensor, void *data, uint32_t *size) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = -EINVAL; if (!data || !size) return -EINVAL; if (pp_funcs && pp_funcs->read_sensor) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->read_sensor(adev->powerplay.pp_handle, sensor, data, size); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_get_apu_thermal_limit(struct amdgpu_device *adev, uint32_t *limit) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = -EINVAL; if (pp_funcs && pp_funcs->get_apu_thermal_limit) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_apu_thermal_limit(adev->powerplay.pp_handle, limit); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_set_apu_thermal_limit(struct amdgpu_device *adev, uint32_t limit) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = -EINVAL; if (pp_funcs && pp_funcs->set_apu_thermal_limit) { mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_apu_thermal_limit(adev->powerplay.pp_handle, limit); mutex_unlock(&adev->pm.mutex); } return ret; } void amdgpu_dpm_compute_clocks(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int i; if (!adev->pm.dpm_enabled) return; if (!pp_funcs->pm_compute_clocks) return; if (adev->mode_info.num_crtc) amdgpu_display_bandwidth_update(adev); for (i = 0; i < AMDGPU_MAX_RINGS; i++) { struct amdgpu_ring *ring = adev->rings[i]; if (ring && ring->sched.ready) amdgpu_fence_wait_empty(ring); } mutex_lock(&adev->pm.mutex); pp_funcs->pm_compute_clocks(adev->powerplay.pp_handle); mutex_unlock(&adev->pm.mutex); } void amdgpu_dpm_enable_uvd(struct amdgpu_device *adev, bool enable) { int ret = 0; if (adev->family == AMDGPU_FAMILY_SI) { mutex_lock(&adev->pm.mutex); if (enable) { adev->pm.dpm.uvd_active = true; adev->pm.dpm.state = POWER_STATE_TYPE_INTERNAL_UVD; } else { adev->pm.dpm.uvd_active = false; } mutex_unlock(&adev->pm.mutex); amdgpu_dpm_compute_clocks(adev); return; } ret = amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_UVD, !enable); if (ret) DRM_ERROR("Dpm %s uvd failed, ret = %d. \n", enable ? "enable" : "disable", ret); } void amdgpu_dpm_enable_vce(struct amdgpu_device *adev, bool enable) { int ret = 0; if (adev->family == AMDGPU_FAMILY_SI) { mutex_lock(&adev->pm.mutex); if (enable) { adev->pm.dpm.vce_active = true; /* XXX select vce level based on ring/task */ adev->pm.dpm.vce_level = AMD_VCE_LEVEL_AC_ALL; } else { adev->pm.dpm.vce_active = false; } mutex_unlock(&adev->pm.mutex); amdgpu_dpm_compute_clocks(adev); return; } ret = amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_VCE, !enable); if (ret) DRM_ERROR("Dpm %s vce failed, ret = %d. \n", enable ? "enable" : "disable", ret); } void amdgpu_dpm_enable_jpeg(struct amdgpu_device *adev, bool enable) { int ret = 0; ret = amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_JPEG, !enable); if (ret) DRM_ERROR("Dpm %s jpeg failed, ret = %d. \n", enable ? "enable" : "disable", ret); } int amdgpu_pm_load_smu_firmware(struct amdgpu_device *adev, uint32_t *smu_version) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int r = 0; if (!pp_funcs || !pp_funcs->load_firmware) return 0; mutex_lock(&adev->pm.mutex); r = pp_funcs->load_firmware(adev->powerplay.pp_handle); if (r) { pr_err("smu firmware loading failed\n"); goto out; } if (smu_version) *smu_version = adev->pm.fw_version; out: mutex_unlock(&adev->pm.mutex); return r; } int amdgpu_dpm_handle_passthrough_sbr(struct amdgpu_device *adev, bool enable) { int ret = 0; if (is_support_sw_smu(adev)) { mutex_lock(&adev->pm.mutex); ret = smu_handle_passthrough_sbr(adev->powerplay.pp_handle, enable); mutex_unlock(&adev->pm.mutex); } return ret; } int amdgpu_dpm_send_hbm_bad_pages_num(struct amdgpu_device *adev, uint32_t size) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_send_hbm_bad_pages_num(smu, size); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_send_hbm_bad_channel_flag(struct amdgpu_device *adev, uint32_t size) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_send_hbm_bad_channel_flag(smu, size); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_dpm_freq_range(struct amdgpu_device *adev, enum pp_clock_type type, uint32_t *min, uint32_t *max) { int ret = 0; if (type != PP_SCLK) return -EINVAL; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_get_dpm_freq_range(adev->powerplay.pp_handle, SMU_SCLK, min, max); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_soft_freq_range(struct amdgpu_device *adev, enum pp_clock_type type, uint32_t min, uint32_t max) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (type != PP_SCLK) return -EINVAL; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_set_soft_freq_range(smu, SMU_SCLK, min, max); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_write_watermarks_table(struct amdgpu_device *adev) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return 0; mutex_lock(&adev->pm.mutex); ret = smu_write_watermarks_table(smu); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_wait_for_event(struct amdgpu_device *adev, enum smu_event_type event, uint64_t event_arg) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_wait_for_event(smu, event, event_arg); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_residency_gfxoff(struct amdgpu_device *adev, bool value) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_set_residency_gfxoff(smu, value); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_residency_gfxoff(struct amdgpu_device *adev, u32 *value) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_get_residency_gfxoff(smu, value); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_entrycount_gfxoff(struct amdgpu_device *adev, u64 *value) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_get_entrycount_gfxoff(smu, value); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_status_gfxoff(struct amdgpu_device *adev, uint32_t *value) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_get_status_gfxoff(smu, value); mutex_unlock(&adev->pm.mutex); return ret; } uint64_t amdgpu_dpm_get_thermal_throttling_counter(struct amdgpu_device *adev) { struct smu_context *smu = adev->powerplay.pp_handle; if (!is_support_sw_smu(adev)) return 0; return atomic64_read(&smu->throttle_int_counter); } /* amdgpu_dpm_gfx_state_change - Handle gfx power state change set * @adev: amdgpu_device pointer * @state: gfx power state(1 -sGpuChangeState_D0Entry and 2 -sGpuChangeState_D3Entry) * */ void amdgpu_dpm_gfx_state_change(struct amdgpu_device *adev, enum gfx_change_state state) { mutex_lock(&adev->pm.mutex); if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->gfx_state_change_set) ((adev)->powerplay.pp_funcs->gfx_state_change_set( (adev)->powerplay.pp_handle, state)); mutex_unlock(&adev->pm.mutex); } int amdgpu_dpm_get_ecc_info(struct amdgpu_device *adev, void *umc_ecc) { struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; if (!is_support_sw_smu(adev)) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = smu_get_ecc_info(smu, umc_ecc); mutex_unlock(&adev->pm.mutex); return ret; } struct amd_vce_state *amdgpu_dpm_get_vce_clock_state(struct amdgpu_device *adev, uint32_t idx) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; struct amd_vce_state *vstate = NULL; if (!pp_funcs->get_vce_clock_state) return NULL; mutex_lock(&adev->pm.mutex); vstate = pp_funcs->get_vce_clock_state(adev->powerplay.pp_handle, idx); mutex_unlock(&adev->pm.mutex); return vstate; } void amdgpu_dpm_get_current_power_state(struct amdgpu_device *adev, enum amd_pm_state_type *state) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; mutex_lock(&adev->pm.mutex); if (!pp_funcs->get_current_power_state) { *state = adev->pm.dpm.user_state; goto out; } *state = pp_funcs->get_current_power_state(adev->powerplay.pp_handle); if (*state < POWER_STATE_TYPE_DEFAULT || *state > POWER_STATE_TYPE_INTERNAL_3DPERF) *state = adev->pm.dpm.user_state; out: mutex_unlock(&adev->pm.mutex); } void amdgpu_dpm_set_power_state(struct amdgpu_device *adev, enum amd_pm_state_type state) { mutex_lock(&adev->pm.mutex); adev->pm.dpm.user_state = state; mutex_unlock(&adev->pm.mutex); if (is_support_sw_smu(adev)) return; if (amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state) == -EOPNOTSUPP) amdgpu_dpm_compute_clocks(adev); } enum amd_dpm_forced_level amdgpu_dpm_get_performance_level(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; enum amd_dpm_forced_level level; if (!pp_funcs) return AMD_DPM_FORCED_LEVEL_AUTO; mutex_lock(&adev->pm.mutex); if (pp_funcs->get_performance_level) level = pp_funcs->get_performance_level(adev->powerplay.pp_handle); else level = adev->pm.dpm.forced_level; mutex_unlock(&adev->pm.mutex); return level; } int amdgpu_dpm_force_performance_level(struct amdgpu_device *adev, enum amd_dpm_forced_level level) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; enum amd_dpm_forced_level current_level; uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; if (!pp_funcs || !pp_funcs->force_performance_level) return 0; if (adev->pm.dpm.thermal_active) return -EINVAL; current_level = amdgpu_dpm_get_performance_level(adev); if (current_level == level) return 0; if (adev->asic_type == CHIP_RAVEN) { if (!(adev->apu_flags & AMD_APU_IS_RAVEN2)) { if (current_level != AMD_DPM_FORCED_LEVEL_MANUAL && level == AMD_DPM_FORCED_LEVEL_MANUAL) amdgpu_gfx_off_ctrl(adev, false); else if (current_level == AMD_DPM_FORCED_LEVEL_MANUAL && level != AMD_DPM_FORCED_LEVEL_MANUAL) amdgpu_gfx_off_ctrl(adev, true); } } if (!(current_level & profile_mode_mask) && (level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)) return -EINVAL; if (!(current_level & profile_mode_mask) && (level & profile_mode_mask)) { /* enter UMD Pstate */ amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_GFX, AMD_PG_STATE_UNGATE); amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_UNGATE); } else if ((current_level & profile_mode_mask) && !(level & profile_mode_mask)) { /* exit UMD Pstate */ amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_GATE); amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_GFX, AMD_PG_STATE_GATE); } mutex_lock(&adev->pm.mutex); if (pp_funcs->force_performance_level(adev->powerplay.pp_handle, level)) { mutex_unlock(&adev->pm.mutex); return -EINVAL; } adev->pm.dpm.forced_level = level; mutex_unlock(&adev->pm.mutex); return 0; } int amdgpu_dpm_get_pp_num_states(struct amdgpu_device *adev, struct pp_states_info *states) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_pp_num_states) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_pp_num_states(adev->powerplay.pp_handle, states); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_dispatch_task(struct amdgpu_device *adev, enum amd_pp_task task_id, enum amd_pm_state_type *user_state) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->dispatch_tasks) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->dispatch_tasks(adev->powerplay.pp_handle, task_id, user_state); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_pp_table(struct amdgpu_device *adev, char **table) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_pp_table) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_pp_table(adev->powerplay.pp_handle, table); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_fine_grain_clk_vol(struct amdgpu_device *adev, uint32_t type, long *input, uint32_t size) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_fine_grain_clk_vol) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_fine_grain_clk_vol(adev->powerplay.pp_handle, type, input, size); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_odn_edit_dpm_table(struct amdgpu_device *adev, uint32_t type, long *input, uint32_t size) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->odn_edit_dpm_table) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->odn_edit_dpm_table(adev->powerplay.pp_handle, type, input, size); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_print_clock_levels(struct amdgpu_device *adev, enum pp_clock_type type, char *buf) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->print_clock_levels) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->print_clock_levels(adev->powerplay.pp_handle, type, buf); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_emit_clock_levels(struct amdgpu_device *adev, enum pp_clock_type type, char *buf, int *offset) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->emit_clock_levels) return -ENOENT; mutex_lock(&adev->pm.mutex); ret = pp_funcs->emit_clock_levels(adev->powerplay.pp_handle, type, buf, offset); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_ppfeature_status(struct amdgpu_device *adev, uint64_t ppfeature_masks) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_ppfeature_status) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_ppfeature_status(adev->powerplay.pp_handle, ppfeature_masks); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_ppfeature_status(struct amdgpu_device *adev, char *buf) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_ppfeature_status) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_ppfeature_status(adev->powerplay.pp_handle, buf); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_force_clock_level(struct amdgpu_device *adev, enum pp_clock_type type, uint32_t mask) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->force_clock_level) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->force_clock_level(adev->powerplay.pp_handle, type, mask); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_sclk_od(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_sclk_od) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_sclk_od(adev->powerplay.pp_handle); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_sclk_od(struct amdgpu_device *adev, uint32_t value) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (is_support_sw_smu(adev)) return 0; mutex_lock(&adev->pm.mutex); if (pp_funcs->set_sclk_od) pp_funcs->set_sclk_od(adev->powerplay.pp_handle, value); mutex_unlock(&adev->pm.mutex); if (amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL) == -EOPNOTSUPP) { adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps; amdgpu_dpm_compute_clocks(adev); } return 0; } int amdgpu_dpm_get_mclk_od(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_mclk_od) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_mclk_od(adev->powerplay.pp_handle); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_mclk_od(struct amdgpu_device *adev, uint32_t value) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (is_support_sw_smu(adev)) return 0; mutex_lock(&adev->pm.mutex); if (pp_funcs->set_mclk_od) pp_funcs->set_mclk_od(adev->powerplay.pp_handle, value); mutex_unlock(&adev->pm.mutex); if (amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL) == -EOPNOTSUPP) { adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps; amdgpu_dpm_compute_clocks(adev); } return 0; } int amdgpu_dpm_get_power_profile_mode(struct amdgpu_device *adev, char *buf) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_power_profile_mode) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_power_profile_mode(adev->powerplay.pp_handle, buf); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_power_profile_mode(struct amdgpu_device *adev, long *input, uint32_t size) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_power_profile_mode) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_power_profile_mode(adev->powerplay.pp_handle, input, size); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_gpu_metrics(struct amdgpu_device *adev, void **table) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_gpu_metrics) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_gpu_metrics(adev->powerplay.pp_handle, table); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_fan_control_mode(struct amdgpu_device *adev, uint32_t *fan_mode) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_fan_control_mode) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_fan_control_mode(adev->powerplay.pp_handle, fan_mode); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_fan_speed_pwm(struct amdgpu_device *adev, uint32_t speed) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_fan_speed_pwm) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_fan_speed_pwm(adev->powerplay.pp_handle, speed); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_fan_speed_pwm(struct amdgpu_device *adev, uint32_t *speed) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_fan_speed_pwm) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_fan_speed_pwm(adev->powerplay.pp_handle, speed); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_fan_speed_rpm(struct amdgpu_device *adev, uint32_t *speed) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_fan_speed_rpm) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_fan_speed_rpm(adev->powerplay.pp_handle, speed); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_fan_speed_rpm(struct amdgpu_device *adev, uint32_t speed) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_fan_speed_rpm) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_fan_speed_rpm(adev->powerplay.pp_handle, speed); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_fan_control_mode(struct amdgpu_device *adev, uint32_t mode) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_fan_control_mode) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_fan_control_mode(adev->powerplay.pp_handle, mode); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_power_limit(struct amdgpu_device *adev, uint32_t *limit, enum pp_power_limit_level pp_limit_level, enum pp_power_type power_type) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_power_limit) return -ENODATA; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_power_limit(adev->powerplay.pp_handle, limit, pp_limit_level, power_type); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_power_limit(struct amdgpu_device *adev, uint32_t limit) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_power_limit) return -EINVAL; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_power_limit(adev->powerplay.pp_handle, limit); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_is_cclk_dpm_supported(struct amdgpu_device *adev) { bool cclk_dpm_supported = false; if (!is_support_sw_smu(adev)) return false; mutex_lock(&adev->pm.mutex); cclk_dpm_supported = is_support_cclk_dpm(adev); mutex_unlock(&adev->pm.mutex); return (int)cclk_dpm_supported; } int amdgpu_dpm_debugfs_print_current_performance_level(struct amdgpu_device *adev, struct seq_file *m) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (!pp_funcs->debugfs_print_current_performance_level) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); pp_funcs->debugfs_print_current_performance_level(adev->powerplay.pp_handle, m); mutex_unlock(&adev->pm.mutex); return 0; } int amdgpu_dpm_get_smu_prv_buf_details(struct amdgpu_device *adev, void **addr, size_t *size) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_smu_prv_buf_details) return -ENOSYS; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_smu_prv_buf_details(adev->powerplay.pp_handle, addr, size); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_is_overdrive_supported(struct amdgpu_device *adev) { if (is_support_sw_smu(adev)) { struct smu_context *smu = adev->powerplay.pp_handle; return (smu->od_enabled || smu->is_apu); } else { struct pp_hwmgr *hwmgr; /* * dpm on some legacy asics don't carry od_enabled member * as its pp_handle is casted directly from adev. */ if (amdgpu_dpm_is_legacy_dpm(adev)) return false; hwmgr = (struct pp_hwmgr *)adev->powerplay.pp_handle; return hwmgr->od_enabled; } } int amdgpu_dpm_set_pp_table(struct amdgpu_device *adev, const char *buf, size_t size) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_pp_table) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_pp_table(adev->powerplay.pp_handle, buf, size); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_num_cpu_cores(struct amdgpu_device *adev) { struct smu_context *smu = adev->powerplay.pp_handle; if (!is_support_sw_smu(adev)) return INT_MAX; return smu->cpu_core_num; } void amdgpu_dpm_stb_debug_fs_init(struct amdgpu_device *adev) { if (!is_support_sw_smu(adev)) return; amdgpu_smu_stb_debug_fs_init(adev); } int amdgpu_dpm_display_configuration_change(struct amdgpu_device *adev, const struct amd_pp_display_configuration *input) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->display_configuration_change) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->display_configuration_change(adev->powerplay.pp_handle, input); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_clock_by_type(struct amdgpu_device *adev, enum amd_pp_clock_type type, struct amd_pp_clocks *clocks) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_clock_by_type) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_clock_by_type(adev->powerplay.pp_handle, type, clocks); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_display_mode_validation_clks(struct amdgpu_device *adev, struct amd_pp_simple_clock_info *clocks) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_display_mode_validation_clocks) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_display_mode_validation_clocks(adev->powerplay.pp_handle, clocks); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_clock_by_type_with_latency(struct amdgpu_device *adev, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_clock_by_type_with_latency) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_clock_by_type_with_latency(adev->powerplay.pp_handle, type, clocks); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_clock_by_type_with_voltage(struct amdgpu_device *adev, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_clock_by_type_with_voltage) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_clock_by_type_with_voltage(adev->powerplay.pp_handle, type, clocks); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_watermarks_for_clocks_ranges(struct amdgpu_device *adev, void *clock_ranges) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_watermarks_for_clocks_ranges) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_watermarks_for_clocks_ranges(adev->powerplay.pp_handle, clock_ranges); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_display_clock_voltage_request(struct amdgpu_device *adev, struct pp_display_clock_request *clock) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->display_clock_voltage_request) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->display_clock_voltage_request(adev->powerplay.pp_handle, clock); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_current_clocks(struct amdgpu_device *adev, struct amd_pp_clock_info *clocks) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_current_clocks) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_current_clocks(adev->powerplay.pp_handle, clocks); mutex_unlock(&adev->pm.mutex); return ret; } void amdgpu_dpm_notify_smu_enable_pwe(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (!pp_funcs->notify_smu_enable_pwe) return; mutex_lock(&adev->pm.mutex); pp_funcs->notify_smu_enable_pwe(adev->powerplay.pp_handle); mutex_unlock(&adev->pm.mutex); } int amdgpu_dpm_set_active_display_count(struct amdgpu_device *adev, uint32_t count) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_active_display_count) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_active_display_count(adev->powerplay.pp_handle, count); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_set_min_deep_sleep_dcefclk(struct amdgpu_device *adev, uint32_t clock) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->set_min_deep_sleep_dcefclk) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->set_min_deep_sleep_dcefclk(adev->powerplay.pp_handle, clock); mutex_unlock(&adev->pm.mutex); return ret; } void amdgpu_dpm_set_hard_min_dcefclk_by_freq(struct amdgpu_device *adev, uint32_t clock) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (!pp_funcs->set_hard_min_dcefclk_by_freq) return; mutex_lock(&adev->pm.mutex); pp_funcs->set_hard_min_dcefclk_by_freq(adev->powerplay.pp_handle, clock); mutex_unlock(&adev->pm.mutex); } void amdgpu_dpm_set_hard_min_fclk_by_freq(struct amdgpu_device *adev, uint32_t clock) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; if (!pp_funcs->set_hard_min_fclk_by_freq) return; mutex_lock(&adev->pm.mutex); pp_funcs->set_hard_min_fclk_by_freq(adev->powerplay.pp_handle, clock); mutex_unlock(&adev->pm.mutex); } int amdgpu_dpm_display_disable_memory_clock_switch(struct amdgpu_device *adev, bool disable_memory_clock_switch) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->display_disable_memory_clock_switch) return 0; mutex_lock(&adev->pm.mutex); ret = pp_funcs->display_disable_memory_clock_switch(adev->powerplay.pp_handle, disable_memory_clock_switch); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_max_sustainable_clocks_by_dc(struct amdgpu_device *adev, struct pp_smu_nv_clock_table *max_clocks) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_max_sustainable_clocks_by_dc) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_max_sustainable_clocks_by_dc(adev->powerplay.pp_handle, max_clocks); mutex_unlock(&adev->pm.mutex); return ret; } enum pp_smu_status amdgpu_dpm_get_uclk_dpm_states(struct amdgpu_device *adev, unsigned int *clock_values_in_khz, unsigned int *num_states) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_uclk_dpm_states) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_uclk_dpm_states(adev->powerplay.pp_handle, clock_values_in_khz, num_states); mutex_unlock(&adev->pm.mutex); return ret; } int amdgpu_dpm_get_dpm_clock_table(struct amdgpu_device *adev, struct dpm_clocks *clock_table) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; int ret = 0; if (!pp_funcs->get_dpm_clock_table) return -EOPNOTSUPP; mutex_lock(&adev->pm.mutex); ret = pp_funcs->get_dpm_clock_table(adev->powerplay.pp_handle, clock_table); mutex_unlock(&adev->pm.mutex); return ret; }
linux-master
drivers/gpu/drm/amd/pm/amdgpu_dpm.c
/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "amdgpu.h" #include "amdgpu_i2c.h" #include "amdgpu_atombios.h" #include "atom.h" #include "amd_pcie.h" #include "legacy_dpm.h" #include "amdgpu_dpm_internal.h" #include "amdgpu_display.h" #define amdgpu_dpm_pre_set_power_state(adev) \ ((adev)->powerplay.pp_funcs->pre_set_power_state((adev)->powerplay.pp_handle)) #define amdgpu_dpm_post_set_power_state(adev) \ ((adev)->powerplay.pp_funcs->post_set_power_state((adev)->powerplay.pp_handle)) #define amdgpu_dpm_display_configuration_changed(adev) \ ((adev)->powerplay.pp_funcs->display_configuration_changed((adev)->powerplay.pp_handle)) #define amdgpu_dpm_print_power_state(adev, ps) \ ((adev)->powerplay.pp_funcs->print_power_state((adev)->powerplay.pp_handle, (ps))) #define amdgpu_dpm_vblank_too_short(adev) \ ((adev)->powerplay.pp_funcs->vblank_too_short((adev)->powerplay.pp_handle)) #define amdgpu_dpm_check_state_equal(adev, cps, rps, equal) \ ((adev)->powerplay.pp_funcs->check_state_equal((adev)->powerplay.pp_handle, (cps), (rps), (equal))) void amdgpu_dpm_print_class_info(u32 class, u32 class2) { const char *s; switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) { case ATOM_PPLIB_CLASSIFICATION_UI_NONE: default: s = "none"; break; case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY: s = "battery"; break; case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED: s = "balanced"; break; case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE: s = "performance"; break; } printk("\tui class: %s\n", s); printk("\tinternal class:"); if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) && (class2 == 0)) pr_cont(" none"); else { if (class & ATOM_PPLIB_CLASSIFICATION_BOOT) pr_cont(" boot"); if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL) pr_cont(" thermal"); if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) pr_cont(" limited_pwr"); if (class & ATOM_PPLIB_CLASSIFICATION_REST) pr_cont(" rest"); if (class & ATOM_PPLIB_CLASSIFICATION_FORCED) pr_cont(" forced"); if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) pr_cont(" 3d_perf"); if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE) pr_cont(" ovrdrv"); if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) pr_cont(" uvd"); if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW) pr_cont(" 3d_low"); if (class & ATOM_PPLIB_CLASSIFICATION_ACPI) pr_cont(" acpi"); if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) pr_cont(" uvd_hd2"); if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) pr_cont(" uvd_hd"); if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) pr_cont(" uvd_sd"); if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) pr_cont(" limited_pwr2"); if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) pr_cont(" ulv"); if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) pr_cont(" uvd_mvc"); } pr_cont("\n"); } void amdgpu_dpm_print_cap_info(u32 caps) { printk("\tcaps:"); if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) pr_cont(" single_disp"); if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK) pr_cont(" video"); if (caps & ATOM_PPLIB_DISALLOW_ON_DC) pr_cont(" no_dc"); pr_cont("\n"); } void amdgpu_dpm_print_ps_status(struct amdgpu_device *adev, struct amdgpu_ps *rps) { printk("\tstatus:"); if (rps == adev->pm.dpm.current_ps) pr_cont(" c"); if (rps == adev->pm.dpm.requested_ps) pr_cont(" r"); if (rps == adev->pm.dpm.boot_ps) pr_cont(" b"); pr_cont("\n"); } void amdgpu_pm_print_power_states(struct amdgpu_device *adev) { int i; if (adev->powerplay.pp_funcs->print_power_state == NULL) return; for (i = 0; i < adev->pm.dpm.num_ps; i++) amdgpu_dpm_print_power_state(adev, &adev->pm.dpm.ps[i]); } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4; struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5; }; int amdgpu_get_platform_caps(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); adev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps); adev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime); adev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime); return 0; } union fan_info { struct _ATOM_PPLIB_FANTABLE fan; struct _ATOM_PPLIB_FANTABLE2 fan2; struct _ATOM_PPLIB_FANTABLE3 fan3; }; static int amdgpu_parse_clk_voltage_dep_table(struct amdgpu_clock_voltage_dependency_table *amdgpu_table, ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table) { u32 size = atom_table->ucNumEntries * sizeof(struct amdgpu_clock_voltage_dependency_entry); int i; ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry; amdgpu_table->entries = kzalloc(size, GFP_KERNEL); if (!amdgpu_table->entries) return -ENOMEM; entry = &atom_table->entries[0]; for (i = 0; i < atom_table->ucNumEntries; i++) { amdgpu_table->entries[i].clk = le16_to_cpu(entry->usClockLow) | (entry->ucClockHigh << 16); amdgpu_table->entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record)); } amdgpu_table->count = atom_table->ucNumEntries; return 0; } /* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */ #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26 int amdgpu_parse_extended_power_table(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; union power_info *power_info; union fan_info *fan_info; ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; int ret, i; if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); /* fan table */ if (le16_to_cpu(power_info->pplib.usTableSize) >= sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) { if (power_info->pplib3.usFanTableOffset) { fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib3.usFanTableOffset)); adev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst; adev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin); adev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed); adev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh); adev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin); adev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed); adev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh); if (fan_info->fan.ucFanTableFormat >= 2) adev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax); else adev->pm.dpm.fan.t_max = 10900; adev->pm.dpm.fan.cycle_delay = 100000; if (fan_info->fan.ucFanTableFormat >= 3) { adev->pm.dpm.fan.control_mode = fan_info->fan3.ucFanControlMode; adev->pm.dpm.fan.default_max_fan_pwm = le16_to_cpu(fan_info->fan3.usFanPWMMax); adev->pm.dpm.fan.default_fan_output_sensitivity = 4836; adev->pm.dpm.fan.fan_output_sensitivity = le16_to_cpu(fan_info->fan3.usFanOutputSensitivity); } adev->pm.dpm.fan.ucode_fan_control = true; } } /* clock dependancy tables, shedding tables */ if (le16_to_cpu(power_info->pplib.usTableSize) >= sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) { if (power_info->pplib4.usVddcDependencyOnSCLKOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset)); ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk, dep_table); if (ret) { amdgpu_free_extended_power_table(adev); return ret; } } if (power_info->pplib4.usVddciDependencyOnMCLKOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset)); ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk, dep_table); if (ret) { amdgpu_free_extended_power_table(adev); return ret; } } if (power_info->pplib4.usVddcDependencyOnMCLKOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset)); ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk, dep_table); if (ret) { amdgpu_free_extended_power_table(adev); return ret; } } if (power_info->pplib4.usMvddDependencyOnMCLKOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset)); ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk, dep_table); if (ret) { amdgpu_free_extended_power_table(adev); return ret; } } if (power_info->pplib4.usMaxClockVoltageOnDCOffset) { ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v = (ATOM_PPLIB_Clock_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset)); if (clk_v->ucNumEntries) { adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk = le16_to_cpu(clk_v->entries[0].usSclkLow) | (clk_v->entries[0].ucSclkHigh << 16); adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk = le16_to_cpu(clk_v->entries[0].usMclkLow) | (clk_v->entries[0].ucMclkHigh << 16); adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc = le16_to_cpu(clk_v->entries[0].usVddc); adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci = le16_to_cpu(clk_v->entries[0].usVddci); } } if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) { ATOM_PPLIB_PhaseSheddingLimits_Table *psl = (ATOM_PPLIB_PhaseSheddingLimits_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset)); ATOM_PPLIB_PhaseSheddingLimits_Record *entry; adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries = kcalloc(psl->ucNumEntries, sizeof(struct amdgpu_phase_shedding_limits_entry), GFP_KERNEL); if (!adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } entry = &psl->entries[0]; for (i = 0; i < psl->ucNumEntries; i++) { adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk = le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16); adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk = le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16); adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record)); } adev->pm.dpm.dyn_state.phase_shedding_limits_table.count = psl->ucNumEntries; } } /* cac data */ if (le16_to_cpu(power_info->pplib.usTableSize) >= sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) { adev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit); adev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit); adev->pm.dpm.near_tdp_limit_adjusted = adev->pm.dpm.near_tdp_limit; adev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit); if (adev->pm.dpm.tdp_od_limit) adev->pm.dpm.power_control = true; else adev->pm.dpm.power_control = false; adev->pm.dpm.tdp_adjustment = 0; adev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold); adev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage); adev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope); if (power_info->pplib5.usCACLeakageTableOffset) { ATOM_PPLIB_CAC_Leakage_Table *cac_table = (ATOM_PPLIB_CAC_Leakage_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset)); ATOM_PPLIB_CAC_Leakage_Record *entry; u32 size = cac_table->ucNumEntries * sizeof(struct amdgpu_cac_leakage_table); adev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL); if (!adev->pm.dpm.dyn_state.cac_leakage_table.entries) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } entry = &cac_table->entries[0]; for (i = 0; i < cac_table->ucNumEntries; i++) { if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) { adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 = le16_to_cpu(entry->usVddc1); adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 = le16_to_cpu(entry->usVddc2); adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 = le16_to_cpu(entry->usVddc3); } else { adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc = le16_to_cpu(entry->usVddc); adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage = le32_to_cpu(entry->ulLeakageValue); } entry = (ATOM_PPLIB_CAC_Leakage_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record)); } adev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries; } } /* ext tables */ if (le16_to_cpu(power_info->pplib.usTableSize) >= sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) { ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset)); if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) && ext_hdr->usVCETableOffset) { VCEClockInfoArray *array = (VCEClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usVCETableOffset) + 1); ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usVCETableOffset) + 1 + 1 + array->ucNumEntries * sizeof(VCEClockInfo)); ATOM_PPLIB_VCE_State_Table *states = (ATOM_PPLIB_VCE_State_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usVCETableOffset) + 1 + 1 + (array->ucNumEntries * sizeof (VCEClockInfo)) + 1 + (limits->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record))); ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry; ATOM_PPLIB_VCE_State_Record *state_entry; VCEClockInfo *vce_clk; u32 size = limits->numEntries * sizeof(struct amdgpu_vce_clock_voltage_dependency_entry); adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries = kzalloc(size, GFP_KERNEL); if (!adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count = limits->numEntries; entry = &limits->entries[0]; state_entry = &states->entries[0]; for (i = 0; i < limits->numEntries; i++) { vce_clk = (VCEClockInfo *) ((u8 *)&array->entries[0] + (entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo))); adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk = le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16); adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk = le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16); adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record)); } adev->pm.dpm.num_of_vce_states = states->numEntries > AMD_MAX_VCE_LEVELS ? AMD_MAX_VCE_LEVELS : states->numEntries; for (i = 0; i < adev->pm.dpm.num_of_vce_states; i++) { vce_clk = (VCEClockInfo *) ((u8 *)&array->entries[0] + (state_entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo))); adev->pm.dpm.vce_states[i].evclk = le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16); adev->pm.dpm.vce_states[i].ecclk = le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16); adev->pm.dpm.vce_states[i].clk_idx = state_entry->ucClockInfoIndex & 0x3f; adev->pm.dpm.vce_states[i].pstate = (state_entry->ucClockInfoIndex & 0xc0) >> 6; state_entry = (ATOM_PPLIB_VCE_State_Record *) ((u8 *)state_entry + sizeof(ATOM_PPLIB_VCE_State_Record)); } } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) && ext_hdr->usUVDTableOffset) { UVDClockInfoArray *array = (UVDClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usUVDTableOffset) + 1); ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 + 1 + (array->ucNumEntries * sizeof (UVDClockInfo))); ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry; u32 size = limits->numEntries * sizeof(struct amdgpu_uvd_clock_voltage_dependency_entry); adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries = kzalloc(size, GFP_KERNEL); if (!adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count = limits->numEntries; entry = &limits->entries[0]; for (i = 0; i < limits->numEntries; i++) { UVDClockInfo *uvd_clk = (UVDClockInfo *) ((u8 *)&array->entries[0] + (entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo))); adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk = le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16); adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk = le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16); adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record)); } } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) && ext_hdr->usSAMUTableOffset) { ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits = (ATOM_PPLIB_SAMClk_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1); ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry; u32 size = limits->numEntries * sizeof(struct amdgpu_clock_voltage_dependency_entry); adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries = kzalloc(size, GFP_KERNEL); if (!adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count = limits->numEntries; entry = &limits->entries[0]; for (i = 0; i < limits->numEntries; i++) { adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk = le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16); adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record)); } } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) && ext_hdr->usPPMTableOffset) { ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usPPMTableOffset)); adev->pm.dpm.dyn_state.ppm_table = kzalloc(sizeof(struct amdgpu_ppm_table), GFP_KERNEL); if (!adev->pm.dpm.dyn_state.ppm_table) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } adev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign; adev->pm.dpm.dyn_state.ppm_table->cpu_core_number = le16_to_cpu(ppm->usCpuCoreNumber); adev->pm.dpm.dyn_state.ppm_table->platform_tdp = le32_to_cpu(ppm->ulPlatformTDP); adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp = le32_to_cpu(ppm->ulSmallACPlatformTDP); adev->pm.dpm.dyn_state.ppm_table->platform_tdc = le32_to_cpu(ppm->ulPlatformTDC); adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc = le32_to_cpu(ppm->ulSmallACPlatformTDC); adev->pm.dpm.dyn_state.ppm_table->apu_tdp = le32_to_cpu(ppm->ulApuTDP); adev->pm.dpm.dyn_state.ppm_table->dgpu_tdp = le32_to_cpu(ppm->ulDGpuTDP); adev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power = le32_to_cpu(ppm->ulDGpuUlvPower); adev->pm.dpm.dyn_state.ppm_table->tj_max = le32_to_cpu(ppm->ulTjmax); } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) && ext_hdr->usACPTableOffset) { ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits = (ATOM_PPLIB_ACPClk_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usACPTableOffset) + 1); ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry; u32 size = limits->numEntries * sizeof(struct amdgpu_clock_voltage_dependency_entry); adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries = kzalloc(size, GFP_KERNEL); if (!adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count = limits->numEntries; entry = &limits->entries[0]; for (i = 0; i < limits->numEntries; i++) { adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk = le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16); adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record)); } } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) && ext_hdr->usPowerTuneTableOffset) { u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); ATOM_PowerTune_Table *pt; adev->pm.dpm.dyn_state.cac_tdp_table = kzalloc(sizeof(struct amdgpu_cac_tdp_table), GFP_KERNEL); if (!adev->pm.dpm.dyn_state.cac_tdp_table) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } if (rev > 0) { ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = ppt->usMaximumPowerDeliveryLimit; pt = &ppt->power_tune_table; } else { ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255; pt = &ppt->power_tune_table; } adev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP); adev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp = le16_to_cpu(pt->usConfigurableTDP); adev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC); adev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit = le16_to_cpu(pt->usBatteryPowerLimit); adev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit = le16_to_cpu(pt->usSmallPowerLimit); adev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage = le16_to_cpu(pt->usLowCACLeakage); adev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage = le16_to_cpu(pt->usHighCACLeakage); } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8) && ext_hdr->usSclkVddgfxTableOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usSclkVddgfxTableOffset)); ret = amdgpu_parse_clk_voltage_dep_table( &adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk, dep_table); if (ret) { kfree(adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk.entries); return ret; } } } return 0; } void amdgpu_free_extended_power_table(struct amdgpu_device *adev) { struct amdgpu_dpm_dynamic_state *dyn_state = &adev->pm.dpm.dyn_state; kfree(dyn_state->vddc_dependency_on_sclk.entries); kfree(dyn_state->vddci_dependency_on_mclk.entries); kfree(dyn_state->vddc_dependency_on_mclk.entries); kfree(dyn_state->mvdd_dependency_on_mclk.entries); kfree(dyn_state->cac_leakage_table.entries); kfree(dyn_state->phase_shedding_limits_table.entries); kfree(dyn_state->ppm_table); kfree(dyn_state->cac_tdp_table); kfree(dyn_state->vce_clock_voltage_dependency_table.entries); kfree(dyn_state->uvd_clock_voltage_dependency_table.entries); kfree(dyn_state->samu_clock_voltage_dependency_table.entries); kfree(dyn_state->acp_clock_voltage_dependency_table.entries); kfree(dyn_state->vddgfx_dependency_on_sclk.entries); } static const char *pp_lib_thermal_controller_names[] = { "NONE", "lm63", "adm1032", "adm1030", "max6649", "lm64", "f75375", "RV6xx", "RV770", "adt7473", "NONE", "External GPIO", "Evergreen", "emc2103", "Sumo", "Northern Islands", "Southern Islands", "lm96163", "Sea Islands", "Kaveri/Kabini", }; void amdgpu_add_thermal_controller(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; ATOM_PPLIB_POWERPLAYTABLE *power_table; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); ATOM_PPLIB_THERMALCONTROLLER *controller; struct amdgpu_i2c_bus_rec i2c_bus; u16 data_offset; u8 frev, crev; if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return; power_table = (ATOM_PPLIB_POWERPLAYTABLE *) (mode_info->atom_context->bios + data_offset); controller = &power_table->sThermalController; /* add the i2c bus for thermal/fan chip */ if (controller->ucType > 0) { if (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) adev->pm.no_fan = true; adev->pm.fan_pulses_per_revolution = controller->ucFanParameters & ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; if (adev->pm.fan_pulses_per_revolution) { adev->pm.fan_min_rpm = controller->ucFanMinRPM; adev->pm.fan_max_rpm = controller->ucFanMaxRPM; } if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV6xx) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_RV6XX; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV770) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_RV770; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EVERGREEN) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_EVERGREEN; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SUMO) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_SUMO; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_NISLANDS) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_NI; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SISLANDS) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_SI; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_CISLANDS) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_CI; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_KAVERI) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_KV; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EXTERNAL_GPIO) { DRM_INFO("External GPIO thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL_GPIO; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL) { DRM_INFO("ADT7473 with internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_ADT7473_WITH_INTERNAL; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL) { DRM_INFO("EMC2103 with internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_EMC2103_WITH_INTERNAL; } else if (controller->ucType < ARRAY_SIZE(pp_lib_thermal_controller_names)) { DRM_INFO("Possible %s thermal controller at 0x%02x %s fan control\n", pp_lib_thermal_controller_names[controller->ucType], controller->ucI2cAddress >> 1, (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL; i2c_bus = amdgpu_atombios_lookup_i2c_gpio(adev, controller->ucI2cLine); adev->pm.i2c_bus = amdgpu_i2c_lookup(adev, &i2c_bus); if (adev->pm.i2c_bus) { struct i2c_board_info info = { }; const char *name = pp_lib_thermal_controller_names[controller->ucType]; info.addr = controller->ucI2cAddress >> 1; strscpy(info.type, name, sizeof(info.type)); i2c_new_client_device(&adev->pm.i2c_bus->adapter, &info); } } else { DRM_INFO("Unknown thermal controller type %d at 0x%02x %s fan control\n", controller->ucType, controller->ucI2cAddress >> 1, (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); } } } struct amd_vce_state* amdgpu_get_vce_clock_state(void *handle, u32 idx) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (idx < adev->pm.dpm.num_of_vce_states) return &adev->pm.dpm.vce_states[idx]; return NULL; } static struct amdgpu_ps *amdgpu_dpm_pick_power_state(struct amdgpu_device *adev, enum amd_pm_state_type dpm_state) { int i; struct amdgpu_ps *ps; u32 ui_class; bool single_display = (adev->pm.dpm.new_active_crtc_count < 2) ? true : false; /* check if the vblank period is too short to adjust the mclk */ if (single_display && adev->powerplay.pp_funcs->vblank_too_short) { if (amdgpu_dpm_vblank_too_short(adev)) single_display = false; } /* certain older asics have a separare 3D performance state, * so try that first if the user selected performance */ if (dpm_state == POWER_STATE_TYPE_PERFORMANCE) dpm_state = POWER_STATE_TYPE_INTERNAL_3DPERF; /* balanced states don't exist at the moment */ if (dpm_state == POWER_STATE_TYPE_BALANCED) dpm_state = POWER_STATE_TYPE_PERFORMANCE; restart_search: /* Pick the best power state based on current conditions */ for (i = 0; i < adev->pm.dpm.num_ps; i++) { ps = &adev->pm.dpm.ps[i]; ui_class = ps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK; switch (dpm_state) { /* user states */ case POWER_STATE_TYPE_BATTERY: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; case POWER_STATE_TYPE_BALANCED: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_BALANCED) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; case POWER_STATE_TYPE_PERFORMANCE: if (ui_class == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) { if (ps->caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) { if (single_display) return ps; } else return ps; } break; /* internal states */ case POWER_STATE_TYPE_INTERNAL_UVD: if (adev->pm.dpm.uvd_ps) return adev->pm.dpm.uvd_ps; else break; case POWER_STATE_TYPE_INTERNAL_UVD_SD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_HD2: if (ps->class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) return ps; break; case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) return ps; break; case POWER_STATE_TYPE_INTERNAL_BOOT: return adev->pm.dpm.boot_ps; case POWER_STATE_TYPE_INTERNAL_THERMAL: if (ps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL) return ps; break; case POWER_STATE_TYPE_INTERNAL_ACPI: if (ps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) return ps; break; case POWER_STATE_TYPE_INTERNAL_ULV: if (ps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) return ps; break; case POWER_STATE_TYPE_INTERNAL_3DPERF: if (ps->class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) return ps; break; default: break; } } /* use a fallback state if we didn't match */ switch (dpm_state) { case POWER_STATE_TYPE_INTERNAL_UVD_SD: dpm_state = POWER_STATE_TYPE_INTERNAL_UVD_HD; goto restart_search; case POWER_STATE_TYPE_INTERNAL_UVD_HD: case POWER_STATE_TYPE_INTERNAL_UVD_HD2: case POWER_STATE_TYPE_INTERNAL_UVD_MVC: if (adev->pm.dpm.uvd_ps) { return adev->pm.dpm.uvd_ps; } else { dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; } case POWER_STATE_TYPE_INTERNAL_THERMAL: dpm_state = POWER_STATE_TYPE_INTERNAL_ACPI; goto restart_search; case POWER_STATE_TYPE_INTERNAL_ACPI: dpm_state = POWER_STATE_TYPE_BATTERY; goto restart_search; case POWER_STATE_TYPE_BATTERY: case POWER_STATE_TYPE_BALANCED: case POWER_STATE_TYPE_INTERNAL_3DPERF: dpm_state = POWER_STATE_TYPE_PERFORMANCE; goto restart_search; default: break; } return NULL; } static int amdgpu_dpm_change_power_state_locked(struct amdgpu_device *adev) { const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; struct amdgpu_ps *ps; enum amd_pm_state_type dpm_state; int ret; bool equal = false; /* if dpm init failed */ if (!adev->pm.dpm_enabled) return 0; if (adev->pm.dpm.user_state != adev->pm.dpm.state) { /* add other state override checks here */ if ((!adev->pm.dpm.thermal_active) && (!adev->pm.dpm.uvd_active)) adev->pm.dpm.state = adev->pm.dpm.user_state; } dpm_state = adev->pm.dpm.state; ps = amdgpu_dpm_pick_power_state(adev, dpm_state); if (ps) adev->pm.dpm.requested_ps = ps; else return -EINVAL; if (amdgpu_dpm == 1 && pp_funcs->print_power_state) { printk("switching from power state:\n"); amdgpu_dpm_print_power_state(adev, adev->pm.dpm.current_ps); printk("switching to power state:\n"); amdgpu_dpm_print_power_state(adev, adev->pm.dpm.requested_ps); } /* update whether vce is active */ ps->vce_active = adev->pm.dpm.vce_active; if (pp_funcs->display_configuration_changed) amdgpu_dpm_display_configuration_changed(adev); ret = amdgpu_dpm_pre_set_power_state(adev); if (ret) return ret; if (pp_funcs->check_state_equal) { if (0 != amdgpu_dpm_check_state_equal(adev, adev->pm.dpm.current_ps, adev->pm.dpm.requested_ps, &equal)) equal = false; } if (equal) return 0; if (pp_funcs->set_power_state) pp_funcs->set_power_state(adev->powerplay.pp_handle); amdgpu_dpm_post_set_power_state(adev); adev->pm.dpm.current_active_crtcs = adev->pm.dpm.new_active_crtcs; adev->pm.dpm.current_active_crtc_count = adev->pm.dpm.new_active_crtc_count; if (pp_funcs->force_performance_level) { if (adev->pm.dpm.thermal_active) { enum amd_dpm_forced_level level = adev->pm.dpm.forced_level; /* force low perf level for thermal */ pp_funcs->force_performance_level(adev, AMD_DPM_FORCED_LEVEL_LOW); /* save the user's level */ adev->pm.dpm.forced_level = level; } else { /* otherwise, user selected level */ pp_funcs->force_performance_level(adev, adev->pm.dpm.forced_level); } } return 0; } void amdgpu_legacy_dpm_compute_clocks(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_dpm_get_active_displays(adev); amdgpu_dpm_change_power_state_locked(adev); } void amdgpu_dpm_thermal_work_handler(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, pm.dpm.thermal.work); const struct amd_pm_funcs *pp_funcs = adev->powerplay.pp_funcs; /* switch to the thermal state */ enum amd_pm_state_type dpm_state = POWER_STATE_TYPE_INTERNAL_THERMAL; int temp, size = sizeof(temp); if (!adev->pm.dpm_enabled) return; if (!pp_funcs->read_sensor(adev->powerplay.pp_handle, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&temp, &size)) { if (temp < adev->pm.dpm.thermal.min_temp) /* switch back the user state */ dpm_state = adev->pm.dpm.user_state; } else { if (adev->pm.dpm.thermal.high_to_low) /* switch back the user state */ dpm_state = adev->pm.dpm.user_state; } if (dpm_state == POWER_STATE_TYPE_INTERNAL_THERMAL) adev->pm.dpm.thermal_active = true; else adev->pm.dpm.thermal_active = false; adev->pm.dpm.state = dpm_state; amdgpu_legacy_dpm_compute_clocks(adev->powerplay.pp_handle); }
linux-master
drivers/gpu/drm/amd/pm/legacy-dpm/legacy_dpm.c
/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu.h" #include "amdgpu_pm.h" #include "cikd.h" #include "atom.h" #include "amdgpu_atombios.h" #include "amdgpu_dpm.h" #include "kv_dpm.h" #include "gfx_v7_0.h" #include <linux/seq_file.h> #include "smu/smu_7_0_0_d.h" #include "smu/smu_7_0_0_sh_mask.h" #include "gca/gfx_7_2_d.h" #include "gca/gfx_7_2_sh_mask.h" #include "legacy_dpm.h" #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5 #define KV_MINIMUM_ENGINE_CLOCK 800 #define SMC_RAM_END 0x40000 static const struct amd_pm_funcs kv_dpm_funcs; static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev); static int kv_enable_nb_dpm(struct amdgpu_device *adev, bool enable); static void kv_init_graphics_levels(struct amdgpu_device *adev); static int kv_calculate_ds_divider(struct amdgpu_device *adev); static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev); static int kv_calculate_dpm_settings(struct amdgpu_device *adev); static void kv_enable_new_levels(struct amdgpu_device *adev); static void kv_program_nbps_index_settings(struct amdgpu_device *adev, struct amdgpu_ps *new_rps); static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level); static int kv_set_enabled_levels(struct amdgpu_device *adev); static int kv_force_dpm_highest(struct amdgpu_device *adev); static int kv_force_dpm_lowest(struct amdgpu_device *adev); static void kv_apply_state_adjust_rules(struct amdgpu_device *adev, struct amdgpu_ps *new_rps, struct amdgpu_ps *old_rps); static int kv_set_thermal_temperature_range(struct amdgpu_device *adev, int min_temp, int max_temp); static int kv_init_fps_limits(struct amdgpu_device *adev); static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate); static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate); static u32 kv_convert_vid2_to_vid7(struct amdgpu_device *adev, struct sumo_vid_mapping_table *vid_mapping_table, u32 vid_2bit) { struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table = &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk; u32 i; if (vddc_sclk_table && vddc_sclk_table->count) { if (vid_2bit < vddc_sclk_table->count) return vddc_sclk_table->entries[vid_2bit].v; else return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v; } else { for (i = 0; i < vid_mapping_table->num_entries; i++) { if (vid_mapping_table->entries[i].vid_2bit == vid_2bit) return vid_mapping_table->entries[i].vid_7bit; } return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit; } } static u32 kv_convert_vid7_to_vid2(struct amdgpu_device *adev, struct sumo_vid_mapping_table *vid_mapping_table, u32 vid_7bit) { struct amdgpu_clock_voltage_dependency_table *vddc_sclk_table = &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk; u32 i; if (vddc_sclk_table && vddc_sclk_table->count) { for (i = 0; i < vddc_sclk_table->count; i++) { if (vddc_sclk_table->entries[i].v == vid_7bit) return i; } return vddc_sclk_table->count - 1; } else { for (i = 0; i < vid_mapping_table->num_entries; i++) { if (vid_mapping_table->entries[i].vid_7bit == vid_7bit) return vid_mapping_table->entries[i].vid_2bit; } return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit; } } static void sumo_take_smu_control(struct amdgpu_device *adev, bool enable) { /* This bit selects who handles display phy powergating. * Clear the bit to let atom handle it. * Set it to let the driver handle it. * For now we just let atom handle it. */ #if 0 u32 v = RREG32(mmDOUT_SCRATCH3); if (enable) v |= 0x4; else v &= 0xFFFFFFFB; WREG32(mmDOUT_SCRATCH3, v); #endif } static void sumo_construct_sclk_voltage_mapping_table(struct amdgpu_device *adev, struct sumo_sclk_voltage_mapping_table *sclk_voltage_mapping_table, ATOM_AVAILABLE_SCLK_LIST *table) { u32 i; u32 n = 0; u32 prev_sclk = 0; for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) { if (table[i].ulSupportedSCLK > prev_sclk) { sclk_voltage_mapping_table->entries[n].sclk_frequency = table[i].ulSupportedSCLK; sclk_voltage_mapping_table->entries[n].vid_2bit = table[i].usVoltageIndex; prev_sclk = table[i].ulSupportedSCLK; n++; } } sclk_voltage_mapping_table->num_max_dpm_entries = n; } static void sumo_construct_vid_mapping_table(struct amdgpu_device *adev, struct sumo_vid_mapping_table *vid_mapping_table, ATOM_AVAILABLE_SCLK_LIST *table) { u32 i, j; for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) { if (table[i].ulSupportedSCLK != 0) { vid_mapping_table->entries[table[i].usVoltageIndex].vid_7bit = table[i].usVoltageID; vid_mapping_table->entries[table[i].usVoltageIndex].vid_2bit = table[i].usVoltageIndex; } } for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) { if (vid_mapping_table->entries[i].vid_7bit == 0) { for (j = i + 1; j < SUMO_MAX_NUMBER_VOLTAGES; j++) { if (vid_mapping_table->entries[j].vid_7bit != 0) { vid_mapping_table->entries[i] = vid_mapping_table->entries[j]; vid_mapping_table->entries[j].vid_7bit = 0; break; } } if (j == SUMO_MAX_NUMBER_VOLTAGES) break; } } vid_mapping_table->num_entries = i; } #if 0 static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 1, 4, 1 }, { 2, 5, 1 }, { 3, 4, 2 }, { 4, 1, 1 }, { 5, 5, 2 }, { 6, 6, 1 }, { 7, 9, 2 }, { 0xffffffff } }; static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 1, 4, 1 }, { 2, 5, 1 }, { 3, 4, 1 }, { 4, 1, 1 }, { 5, 5, 1 }, { 6, 6, 1 }, { 7, 9, 1 }, { 8, 4, 1 }, { 9, 2, 1 }, { 10, 3, 1 }, { 11, 6, 1 }, { 12, 8, 2 }, { 13, 1, 1 }, { 14, 2, 1 }, { 15, 3, 1 }, { 16, 1, 1 }, { 17, 4, 1 }, { 18, 3, 1 }, { 19, 1, 1 }, { 20, 8, 1 }, { 21, 5, 1 }, { 22, 1, 1 }, { 23, 1, 1 }, { 24, 4, 1 }, { 27, 6, 1 }, { 28, 1, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_reg sx0_cac_config_reg[] = { { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg mc0_cac_config_reg[] = { { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg mc1_cac_config_reg[] = { { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg mc2_cac_config_reg[] = { { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg mc3_cac_config_reg[] = { { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg cpl_cac_config_reg[] = { { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; #endif static const struct kv_pt_config_reg didt_config_kv[] = { { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND }, { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND }, { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND }, { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND }, { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND }, { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND }, { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND }, { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND }, { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND }, { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND }, { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND }, { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND }, { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0xFFFFFFFF } }; static struct kv_ps *kv_get_ps(struct amdgpu_ps *rps) { struct kv_ps *ps = rps->ps_priv; return ps; } static struct kv_power_info *kv_get_pi(struct amdgpu_device *adev) { struct kv_power_info *pi = adev->pm.dpm.priv; return pi; } #if 0 static void kv_program_local_cac_table(struct amdgpu_device *adev, const struct kv_lcac_config_values *local_cac_table, const struct kv_lcac_config_reg *local_cac_reg) { u32 i, count, data; const struct kv_lcac_config_values *values = local_cac_table; while (values->block_id != 0xffffffff) { count = values->signal_id; for (i = 0; i < count; i++) { data = ((values->block_id << local_cac_reg->block_shift) & local_cac_reg->block_mask); data |= ((i << local_cac_reg->signal_shift) & local_cac_reg->signal_mask); data |= ((values->t << local_cac_reg->t_shift) & local_cac_reg->t_mask); data |= ((1 << local_cac_reg->enable_shift) & local_cac_reg->enable_mask); WREG32_SMC(local_cac_reg->cntl, data); } values++; } } #endif static int kv_program_pt_config_registers(struct amdgpu_device *adev, const struct kv_pt_config_reg *cac_config_regs) { const struct kv_pt_config_reg *config_regs = cac_config_regs; u32 data; u32 cache = 0; if (config_regs == NULL) return -EINVAL; while (config_regs->offset != 0xFFFFFFFF) { if (config_regs->type == KV_CONFIGREG_CACHE) { cache |= ((config_regs->value << config_regs->shift) & config_regs->mask); } else { switch (config_regs->type) { case KV_CONFIGREG_SMC_IND: data = RREG32_SMC(config_regs->offset); break; case KV_CONFIGREG_DIDT_IND: data = RREG32_DIDT(config_regs->offset); break; default: data = RREG32(config_regs->offset); break; } data &= ~config_regs->mask; data |= ((config_regs->value << config_regs->shift) & config_regs->mask); data |= cache; cache = 0; switch (config_regs->type) { case KV_CONFIGREG_SMC_IND: WREG32_SMC(config_regs->offset, data); break; case KV_CONFIGREG_DIDT_IND: WREG32_DIDT(config_regs->offset, data); break; default: WREG32(config_regs->offset, data); break; } } config_regs++; } return 0; } static void kv_do_enable_didt(struct amdgpu_device *adev, bool enable) { struct kv_power_info *pi = kv_get_pi(adev); u32 data; if (pi->caps_sq_ramping) { data = RREG32_DIDT(ixDIDT_SQ_CTRL0); if (enable) data |= DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK; else data &= ~DIDT_SQ_CTRL0__DIDT_CTRL_EN_MASK; WREG32_DIDT(ixDIDT_SQ_CTRL0, data); } if (pi->caps_db_ramping) { data = RREG32_DIDT(ixDIDT_DB_CTRL0); if (enable) data |= DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK; else data &= ~DIDT_DB_CTRL0__DIDT_CTRL_EN_MASK; WREG32_DIDT(ixDIDT_DB_CTRL0, data); } if (pi->caps_td_ramping) { data = RREG32_DIDT(ixDIDT_TD_CTRL0); if (enable) data |= DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK; else data &= ~DIDT_TD_CTRL0__DIDT_CTRL_EN_MASK; WREG32_DIDT(ixDIDT_TD_CTRL0, data); } if (pi->caps_tcp_ramping) { data = RREG32_DIDT(ixDIDT_TCP_CTRL0); if (enable) data |= DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK; else data &= ~DIDT_TCP_CTRL0__DIDT_CTRL_EN_MASK; WREG32_DIDT(ixDIDT_TCP_CTRL0, data); } } static int kv_enable_didt(struct amdgpu_device *adev, bool enable) { struct kv_power_info *pi = kv_get_pi(adev); int ret; if (pi->caps_sq_ramping || pi->caps_db_ramping || pi->caps_td_ramping || pi->caps_tcp_ramping) { amdgpu_gfx_rlc_enter_safe_mode(adev, 0); if (enable) { ret = kv_program_pt_config_registers(adev, didt_config_kv); if (ret) { amdgpu_gfx_rlc_exit_safe_mode(adev, 0); return ret; } } kv_do_enable_didt(adev, enable); amdgpu_gfx_rlc_exit_safe_mode(adev, 0); } return 0; } #if 0 static void kv_initialize_hardware_cac_manager(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); if (pi->caps_cac) { WREG32_SMC(ixLCAC_SX0_OVR_SEL, 0); WREG32_SMC(ixLCAC_SX0_OVR_VAL, 0); kv_program_local_cac_table(adev, sx_local_cac_cfg_kv, sx0_cac_config_reg); WREG32_SMC(ixLCAC_MC0_OVR_SEL, 0); WREG32_SMC(ixLCAC_MC0_OVR_VAL, 0); kv_program_local_cac_table(adev, mc0_local_cac_cfg_kv, mc0_cac_config_reg); WREG32_SMC(ixLCAC_MC1_OVR_SEL, 0); WREG32_SMC(ixLCAC_MC1_OVR_VAL, 0); kv_program_local_cac_table(adev, mc1_local_cac_cfg_kv, mc1_cac_config_reg); WREG32_SMC(ixLCAC_MC2_OVR_SEL, 0); WREG32_SMC(ixLCAC_MC2_OVR_VAL, 0); kv_program_local_cac_table(adev, mc2_local_cac_cfg_kv, mc2_cac_config_reg); WREG32_SMC(ixLCAC_MC3_OVR_SEL, 0); WREG32_SMC(ixLCAC_MC3_OVR_VAL, 0); kv_program_local_cac_table(adev, mc3_local_cac_cfg_kv, mc3_cac_config_reg); WREG32_SMC(ixLCAC_CPL_OVR_SEL, 0); WREG32_SMC(ixLCAC_CPL_OVR_VAL, 0); kv_program_local_cac_table(adev, cpl_local_cac_cfg_kv, cpl_cac_config_reg); } } #endif static int kv_enable_smc_cac(struct amdgpu_device *adev, bool enable) { struct kv_power_info *pi = kv_get_pi(adev); int ret = 0; if (pi->caps_cac) { if (enable) { ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_EnableCac); if (ret) pi->cac_enabled = false; else pi->cac_enabled = true; } else if (pi->cac_enabled) { amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_DisableCac); pi->cac_enabled = false; } } return ret; } static int kv_process_firmware_header(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 tmp; int ret; ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, DpmTable), &tmp, pi->sram_end); if (ret == 0) pi->dpm_table_start = tmp; ret = amdgpu_kv_read_smc_sram_dword(adev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, SoftRegisters), &tmp, pi->sram_end); if (ret == 0) pi->soft_regs_start = tmp; return ret; } static int kv_enable_dpm_voltage_scaling(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int ret; pi->graphics_voltage_change_enable = 1; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable), &pi->graphics_voltage_change_enable, sizeof(u8), pi->sram_end); return ret; } static int kv_set_dpm_interval(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int ret; pi->graphics_interval = 1; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsInterval), &pi->graphics_interval, sizeof(u8), pi->sram_end); return ret; } static int kv_set_dpm_boot_state(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int ret; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel), &pi->graphics_boot_level, sizeof(u8), pi->sram_end); return ret; } static void kv_program_vc(struct amdgpu_device *adev) { WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0x3FFFC100); } static void kv_clear_vc(struct amdgpu_device *adev) { WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0); } static int kv_set_divider_value(struct amdgpu_device *adev, u32 index, u32 sclk) { struct kv_power_info *pi = kv_get_pi(adev); struct atom_clock_dividers dividers; int ret; ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM, sclk, false, &dividers); if (ret) return ret; pi->graphics_level[index].SclkDid = (u8)dividers.post_div; pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk); return 0; } static u16 kv_convert_8bit_index_to_voltage(struct amdgpu_device *adev, u16 voltage) { return 6200 - (voltage * 25); } static u16 kv_convert_2bit_index_to_voltage(struct amdgpu_device *adev, u32 vid_2bit) { struct kv_power_info *pi = kv_get_pi(adev); u32 vid_8bit = kv_convert_vid2_to_vid7(adev, &pi->sys_info.vid_mapping_table, vid_2bit); return kv_convert_8bit_index_to_voltage(adev, (u16)vid_8bit); } static int kv_set_vid(struct amdgpu_device *adev, u32 index, u32 vid) { struct kv_power_info *pi = kv_get_pi(adev); pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t; pi->graphics_level[index].MinVddNb = cpu_to_be32(kv_convert_2bit_index_to_voltage(adev, vid)); return 0; } static int kv_set_at(struct amdgpu_device *adev, u32 index, u32 at) { struct kv_power_info *pi = kv_get_pi(adev); pi->graphics_level[index].AT = cpu_to_be16((u16)at); return 0; } static void kv_dpm_power_level_enable(struct amdgpu_device *adev, u32 index, bool enable) { struct kv_power_info *pi = kv_get_pi(adev); pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0; } static void kv_start_dpm(struct amdgpu_device *adev) { u32 tmp = RREG32_SMC(ixGENERAL_PWRMGT); tmp |= GENERAL_PWRMGT__GLOBAL_PWRMGT_EN_MASK; WREG32_SMC(ixGENERAL_PWRMGT, tmp); amdgpu_kv_smc_dpm_enable(adev, true); } static void kv_stop_dpm(struct amdgpu_device *adev) { amdgpu_kv_smc_dpm_enable(adev, false); } static void kv_start_am(struct amdgpu_device *adev) { u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL); sclk_pwrmgt_cntl &= ~(SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK | SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK); sclk_pwrmgt_cntl |= SCLK_PWRMGT_CNTL__DYNAMIC_PM_EN_MASK; WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl); } static void kv_reset_am(struct amdgpu_device *adev) { u32 sclk_pwrmgt_cntl = RREG32_SMC(ixSCLK_PWRMGT_CNTL); sclk_pwrmgt_cntl |= (SCLK_PWRMGT_CNTL__RESET_SCLK_CNT_MASK | SCLK_PWRMGT_CNTL__RESET_BUSY_CNT_MASK); WREG32_SMC(ixSCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl); } static int kv_freeze_sclk_dpm(struct amdgpu_device *adev, bool freeze) { return amdgpu_kv_notify_message_to_smu(adev, freeze ? PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel); } static int kv_force_lowest_valid(struct amdgpu_device *adev) { return kv_force_dpm_lowest(adev); } static int kv_unforce_levels(struct amdgpu_device *adev) { if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NoForcedLevel); else return kv_set_enabled_levels(adev); } static int kv_update_sclk_t(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 low_sclk_interrupt_t = 0; int ret = 0; if (pi->caps_sclk_throttle_low_notification) { low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t); ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT), (u8 *)&low_sclk_interrupt_t, sizeof(u32), pi->sram_end); } return ret; } static int kv_program_bootup_state(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 i; struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk; if (table && table->count) { for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) { if (table->entries[i].clk == pi->boot_pl.sclk) break; } pi->graphics_boot_level = (u8)i; kv_dpm_power_level_enable(adev, i, true); } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; if (table->num_max_dpm_entries == 0) return -EINVAL; for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) { if (table->entries[i].sclk_frequency == pi->boot_pl.sclk) break; } pi->graphics_boot_level = (u8)i; kv_dpm_power_level_enable(adev, i, true); } return 0; } static int kv_enable_auto_thermal_throttling(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int ret; pi->graphics_therm_throttle_enable = 1; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable), &pi->graphics_therm_throttle_enable, sizeof(u8), pi->sram_end); return ret; } static int kv_upload_dpm_settings(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int ret; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsLevel), (u8 *)&pi->graphics_level, sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS, pi->sram_end); if (ret) return ret; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount), &pi->graphics_dpm_level_count, sizeof(u8), pi->sram_end); return ret; } static u32 kv_get_clock_difference(u32 a, u32 b) { return (a >= b) ? a - b : b - a; } static u32 kv_get_clk_bypass(struct amdgpu_device *adev, u32 clk) { struct kv_power_info *pi = kv_get_pi(adev); u32 value; if (pi->caps_enable_dfs_bypass) { if (kv_get_clock_difference(clk, 40000) < 200) value = 3; else if (kv_get_clock_difference(clk, 30000) < 200) value = 2; else if (kv_get_clock_difference(clk, 20000) < 200) value = 7; else if (kv_get_clock_difference(clk, 15000) < 200) value = 6; else if (kv_get_clock_difference(clk, 10000) < 200) value = 8; else value = 0; } else { value = 0; } return value; } static int kv_populate_uvd_table(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_uvd_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table; struct atom_clock_dividers dividers; int ret; u32 i; if (table == NULL || table->count == 0) return 0; pi->uvd_level_count = 0; for (i = 0; i < table->count; i++) { if (pi->high_voltage_t && (pi->high_voltage_t < table->entries[i].v)) break; pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk); pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk); pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v); pi->uvd_level[i].VClkBypassCntl = (u8)kv_get_clk_bypass(adev, table->entries[i].vclk); pi->uvd_level[i].DClkBypassCntl = (u8)kv_get_clk_bypass(adev, table->entries[i].dclk); ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].vclk, false, &dividers); if (ret) return ret; pi->uvd_level[i].VclkDivider = (u8)dividers.post_div; ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].dclk, false, &dividers); if (ret) return ret; pi->uvd_level[i].DclkDivider = (u8)dividers.post_div; pi->uvd_level_count++; } ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, UvdLevelCount), (u8 *)&pi->uvd_level_count, sizeof(u8), pi->sram_end); if (ret) return ret; pi->uvd_interval = 1; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, UVDInterval), &pi->uvd_interval, sizeof(u8), pi->sram_end); if (ret) return ret; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, UvdLevel), (u8 *)&pi->uvd_level, sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD, pi->sram_end); return ret; } static int kv_populate_vce_table(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int ret; u32 i; struct amdgpu_vce_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; struct atom_clock_dividers dividers; if (table == NULL || table->count == 0) return 0; pi->vce_level_count = 0; for (i = 0; i < table->count; i++) { if (pi->high_voltage_t && pi->high_voltage_t < table->entries[i].v) break; pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk); pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v); pi->vce_level[i].ClkBypassCntl = (u8)kv_get_clk_bypass(adev, table->entries[i].evclk); ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].evclk, false, &dividers); if (ret) return ret; pi->vce_level[i].Divider = (u8)dividers.post_div; pi->vce_level_count++; } ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, VceLevelCount), (u8 *)&pi->vce_level_count, sizeof(u8), pi->sram_end); if (ret) return ret; pi->vce_interval = 1; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, VCEInterval), (u8 *)&pi->vce_interval, sizeof(u8), pi->sram_end); if (ret) return ret; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, VceLevel), (u8 *)&pi->vce_level, sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE, pi->sram_end); return ret; } static int kv_populate_samu_table(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table; struct atom_clock_dividers dividers; int ret; u32 i; if (table == NULL || table->count == 0) return 0; pi->samu_level_count = 0; for (i = 0; i < table->count; i++) { if (pi->high_voltage_t && pi->high_voltage_t < table->entries[i].v) break; pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk); pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v); pi->samu_level[i].ClkBypassCntl = (u8)kv_get_clk_bypass(adev, table->entries[i].clk); ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].clk, false, &dividers); if (ret) return ret; pi->samu_level[i].Divider = (u8)dividers.post_div; pi->samu_level_count++; } ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, SamuLevelCount), (u8 *)&pi->samu_level_count, sizeof(u8), pi->sram_end); if (ret) return ret; pi->samu_interval = 1; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, SAMUInterval), (u8 *)&pi->samu_interval, sizeof(u8), pi->sram_end); if (ret) return ret; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, SamuLevel), (u8 *)&pi->samu_level, sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU, pi->sram_end); if (ret) return ret; return ret; } static int kv_populate_acp_table(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table; struct atom_clock_dividers dividers; int ret; u32 i; if (table == NULL || table->count == 0) return 0; pi->acp_level_count = 0; for (i = 0; i < table->count; i++) { pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk); pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v); ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].clk, false, &dividers); if (ret) return ret; pi->acp_level[i].Divider = (u8)dividers.post_div; pi->acp_level_count++; } ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, AcpLevelCount), (u8 *)&pi->acp_level_count, sizeof(u8), pi->sram_end); if (ret) return ret; pi->acp_interval = 1; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, ACPInterval), (u8 *)&pi->acp_interval, sizeof(u8), pi->sram_end); if (ret) return ret; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, AcpLevel), (u8 *)&pi->acp_level, sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP, pi->sram_end); if (ret) return ret; return ret; } static void kv_calculate_dfs_bypass_settings(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 i; struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk; if (table && table->count) { for (i = 0; i < pi->graphics_dpm_level_count; i++) { if (pi->caps_enable_dfs_bypass) { if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200) pi->graphics_level[i].ClkBypassCntl = 3; else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200) pi->graphics_level[i].ClkBypassCntl = 2; else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200) pi->graphics_level[i].ClkBypassCntl = 7; else if (kv_get_clock_difference(table->entries[i].clk, 20000) < 200) pi->graphics_level[i].ClkBypassCntl = 6; else if (kv_get_clock_difference(table->entries[i].clk, 10000) < 200) pi->graphics_level[i].ClkBypassCntl = 8; else pi->graphics_level[i].ClkBypassCntl = 0; } else { pi->graphics_level[i].ClkBypassCntl = 0; } } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; for (i = 0; i < pi->graphics_dpm_level_count; i++) { if (pi->caps_enable_dfs_bypass) { if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200) pi->graphics_level[i].ClkBypassCntl = 3; else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200) pi->graphics_level[i].ClkBypassCntl = 2; else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200) pi->graphics_level[i].ClkBypassCntl = 7; else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200) pi->graphics_level[i].ClkBypassCntl = 6; else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200) pi->graphics_level[i].ClkBypassCntl = 8; else pi->graphics_level[i].ClkBypassCntl = 0; } else { pi->graphics_level[i].ClkBypassCntl = 0; } } } } static int kv_enable_ulv(struct amdgpu_device *adev, bool enable) { return amdgpu_kv_notify_message_to_smu(adev, enable ? PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV); } static void kv_reset_acp_boot_level(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); pi->acp_boot_level = 0xff; } static void kv_update_current_ps(struct amdgpu_device *adev, struct amdgpu_ps *rps) { struct kv_ps *new_ps = kv_get_ps(rps); struct kv_power_info *pi = kv_get_pi(adev); pi->current_rps = *rps; pi->current_ps = *new_ps; pi->current_rps.ps_priv = &pi->current_ps; adev->pm.dpm.current_ps = &pi->current_rps; } static void kv_update_requested_ps(struct amdgpu_device *adev, struct amdgpu_ps *rps) { struct kv_ps *new_ps = kv_get_ps(rps); struct kv_power_info *pi = kv_get_pi(adev); pi->requested_rps = *rps; pi->requested_ps = *new_ps; pi->requested_rps.ps_priv = &pi->requested_ps; adev->pm.dpm.requested_ps = &pi->requested_rps; } static void kv_dpm_enable_bapm(void *handle, bool enable) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); int ret; if (pi->bapm_enable) { ret = amdgpu_kv_smc_bapm_enable(adev, enable); if (ret) DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n"); } } static bool kv_is_internal_thermal_sensor(enum amdgpu_int_thermal_type sensor) { switch (sensor) { case THERMAL_TYPE_KV: return true; case THERMAL_TYPE_NONE: case THERMAL_TYPE_EXTERNAL: case THERMAL_TYPE_EXTERNAL_GPIO: default: return false; } } static int kv_dpm_enable(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int ret; ret = kv_process_firmware_header(adev); if (ret) { DRM_ERROR("kv_process_firmware_header failed\n"); return ret; } kv_init_fps_limits(adev); kv_init_graphics_levels(adev); ret = kv_program_bootup_state(adev); if (ret) { DRM_ERROR("kv_program_bootup_state failed\n"); return ret; } kv_calculate_dfs_bypass_settings(adev); ret = kv_upload_dpm_settings(adev); if (ret) { DRM_ERROR("kv_upload_dpm_settings failed\n"); return ret; } ret = kv_populate_uvd_table(adev); if (ret) { DRM_ERROR("kv_populate_uvd_table failed\n"); return ret; } ret = kv_populate_vce_table(adev); if (ret) { DRM_ERROR("kv_populate_vce_table failed\n"); return ret; } ret = kv_populate_samu_table(adev); if (ret) { DRM_ERROR("kv_populate_samu_table failed\n"); return ret; } ret = kv_populate_acp_table(adev); if (ret) { DRM_ERROR("kv_populate_acp_table failed\n"); return ret; } kv_program_vc(adev); #if 0 kv_initialize_hardware_cac_manager(adev); #endif kv_start_am(adev); if (pi->enable_auto_thermal_throttling) { ret = kv_enable_auto_thermal_throttling(adev); if (ret) { DRM_ERROR("kv_enable_auto_thermal_throttling failed\n"); return ret; } } ret = kv_enable_dpm_voltage_scaling(adev); if (ret) { DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n"); return ret; } ret = kv_set_dpm_interval(adev); if (ret) { DRM_ERROR("kv_set_dpm_interval failed\n"); return ret; } ret = kv_set_dpm_boot_state(adev); if (ret) { DRM_ERROR("kv_set_dpm_boot_state failed\n"); return ret; } ret = kv_enable_ulv(adev, true); if (ret) { DRM_ERROR("kv_enable_ulv failed\n"); return ret; } kv_start_dpm(adev); ret = kv_enable_didt(adev, true); if (ret) { DRM_ERROR("kv_enable_didt failed\n"); return ret; } ret = kv_enable_smc_cac(adev, true); if (ret) { DRM_ERROR("kv_enable_smc_cac failed\n"); return ret; } kv_reset_acp_boot_level(adev); ret = amdgpu_kv_smc_bapm_enable(adev, false); if (ret) { DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n"); return ret; } if (adev->irq.installed && kv_is_internal_thermal_sensor(adev->pm.int_thermal_type)) { ret = kv_set_thermal_temperature_range(adev, KV_TEMP_RANGE_MIN, KV_TEMP_RANGE_MAX); if (ret) { DRM_ERROR("kv_set_thermal_temperature_range failed\n"); return ret; } amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq, AMDGPU_THERMAL_IRQ_LOW_TO_HIGH); amdgpu_irq_get(adev, &adev->pm.dpm.thermal.irq, AMDGPU_THERMAL_IRQ_HIGH_TO_LOW); } return ret; } static void kv_dpm_disable(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int err; amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq, AMDGPU_THERMAL_IRQ_LOW_TO_HIGH); amdgpu_irq_put(adev, &adev->pm.dpm.thermal.irq, AMDGPU_THERMAL_IRQ_HIGH_TO_LOW); err = amdgpu_kv_smc_bapm_enable(adev, false); if (err) DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n"); if (adev->asic_type == CHIP_MULLINS) kv_enable_nb_dpm(adev, false); /* powerup blocks */ kv_dpm_powergate_acp(adev, false); kv_dpm_powergate_samu(adev, false); if (pi->caps_vce_pg) /* power on the VCE block */ amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerON); if (pi->caps_uvd_pg) /* power on the UVD block */ amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerON); kv_enable_smc_cac(adev, false); kv_enable_didt(adev, false); kv_clear_vc(adev); kv_stop_dpm(adev); kv_enable_ulv(adev, false); kv_reset_am(adev); kv_update_current_ps(adev, adev->pm.dpm.boot_ps); } #if 0 static int kv_write_smc_soft_register(struct amdgpu_device *adev, u16 reg_offset, u32 value) { struct kv_power_info *pi = kv_get_pi(adev); return amdgpu_kv_copy_bytes_to_smc(adev, pi->soft_regs_start + reg_offset, (u8 *)&value, sizeof(u16), pi->sram_end); } static int kv_read_smc_soft_register(struct amdgpu_device *adev, u16 reg_offset, u32 *value) { struct kv_power_info *pi = kv_get_pi(adev); return amdgpu_kv_read_smc_sram_dword(adev, pi->soft_regs_start + reg_offset, value, pi->sram_end); } #endif static void kv_init_sclk_t(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); pi->low_sclk_interrupt_t = 0; } static int kv_init_fps_limits(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); int ret = 0; if (pi->caps_fps) { u16 tmp; tmp = 45; pi->fps_high_t = cpu_to_be16(tmp); ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, FpsHighT), (u8 *)&pi->fps_high_t, sizeof(u16), pi->sram_end); tmp = 30; pi->fps_low_t = cpu_to_be16(tmp); ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, FpsLowT), (u8 *)&pi->fps_low_t, sizeof(u16), pi->sram_end); } return ret; } static void kv_init_powergate_state(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); pi->uvd_power_gated = false; pi->vce_power_gated = false; pi->samu_power_gated = false; pi->acp_power_gated = false; } static int kv_enable_uvd_dpm(struct amdgpu_device *adev, bool enable) { return amdgpu_kv_notify_message_to_smu(adev, enable ? PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable); } static int kv_enable_vce_dpm(struct amdgpu_device *adev, bool enable) { return amdgpu_kv_notify_message_to_smu(adev, enable ? PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable); } static int kv_enable_samu_dpm(struct amdgpu_device *adev, bool enable) { return amdgpu_kv_notify_message_to_smu(adev, enable ? PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable); } static int kv_enable_acp_dpm(struct amdgpu_device *adev, bool enable) { return amdgpu_kv_notify_message_to_smu(adev, enable ? PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable); } static int kv_update_uvd_dpm(struct amdgpu_device *adev, bool gate) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_uvd_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table; int ret; u32 mask; if (!gate) { if (table->count) pi->uvd_boot_level = table->count - 1; else pi->uvd_boot_level = 0; if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) { mask = 1 << pi->uvd_boot_level; } else { mask = 0x1f; } ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, UvdBootLevel), (uint8_t *)&pi->uvd_boot_level, sizeof(u8), pi->sram_end); if (ret) return ret; amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_UVDDPM_SetEnabledMask, mask); } return kv_enable_uvd_dpm(adev, !gate); } static u8 kv_get_vce_boot_level(struct amdgpu_device *adev, u32 evclk) { u8 i; struct amdgpu_vce_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; for (i = 0; i < table->count; i++) { if (table->entries[i].evclk >= evclk) break; } return i; } static int kv_update_vce_dpm(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state, struct amdgpu_ps *amdgpu_current_state) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_vce_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; int ret; if (amdgpu_new_state->evclk > 0 && amdgpu_current_state->evclk == 0) { if (pi->caps_stable_p_state) pi->vce_boot_level = table->count - 1; else pi->vce_boot_level = kv_get_vce_boot_level(adev, amdgpu_new_state->evclk); ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, VceBootLevel), (u8 *)&pi->vce_boot_level, sizeof(u8), pi->sram_end); if (ret) return ret; if (pi->caps_stable_p_state) amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_VCEDPM_SetEnabledMask, (1 << pi->vce_boot_level)); kv_enable_vce_dpm(adev, true); } else if (amdgpu_new_state->evclk == 0 && amdgpu_current_state->evclk > 0) { kv_enable_vce_dpm(adev, false); } return 0; } static int kv_update_samu_dpm(struct amdgpu_device *adev, bool gate) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table; int ret; if (!gate) { if (pi->caps_stable_p_state) pi->samu_boot_level = table->count - 1; else pi->samu_boot_level = 0; ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, SamuBootLevel), (u8 *)&pi->samu_boot_level, sizeof(u8), pi->sram_end); if (ret) return ret; if (pi->caps_stable_p_state) amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SAMUDPM_SetEnabledMask, (1 << pi->samu_boot_level)); } return kv_enable_samu_dpm(adev, !gate); } static u8 kv_get_acp_boot_level(struct amdgpu_device *adev) { return 0; } static void kv_update_acp_boot_level(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u8 acp_boot_level; if (!pi->caps_stable_p_state) { acp_boot_level = kv_get_acp_boot_level(adev); if (acp_boot_level != pi->acp_boot_level) { pi->acp_boot_level = acp_boot_level; amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_ACPDPM_SetEnabledMask, (1 << pi->acp_boot_level)); } } } static int kv_update_acp_dpm(struct amdgpu_device *adev, bool gate) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table; int ret; if (!gate) { if (pi->caps_stable_p_state) pi->acp_boot_level = table->count - 1; else pi->acp_boot_level = kv_get_acp_boot_level(adev); ret = amdgpu_kv_copy_bytes_to_smc(adev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, AcpBootLevel), (u8 *)&pi->acp_boot_level, sizeof(u8), pi->sram_end); if (ret) return ret; if (pi->caps_stable_p_state) amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_ACPDPM_SetEnabledMask, (1 << pi->acp_boot_level)); } return kv_enable_acp_dpm(adev, !gate); } static void kv_dpm_powergate_uvd(void *handle, bool gate) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); pi->uvd_power_gated = gate; if (gate) { /* stop the UVD block */ amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD, AMD_PG_STATE_GATE); kv_update_uvd_dpm(adev, gate); if (pi->caps_uvd_pg) /* power off the UVD block */ amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerOFF); } else { if (pi->caps_uvd_pg) /* power on the UVD block */ amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_UVDPowerON); /* re-init the UVD block */ kv_update_uvd_dpm(adev, gate); amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD, AMD_PG_STATE_UNGATE); } } static void kv_dpm_powergate_vce(void *handle, bool gate) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); pi->vce_power_gated = gate; if (gate) { /* stop the VCE block */ amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_GATE); kv_enable_vce_dpm(adev, false); if (pi->caps_vce_pg) /* power off the VCE block */ amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerOFF); } else { if (pi->caps_vce_pg) /* power on the VCE block */ amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_VCEPowerON); kv_enable_vce_dpm(adev, true); /* re-init the VCE block */ amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_UNGATE); } } static void kv_dpm_powergate_samu(struct amdgpu_device *adev, bool gate) { struct kv_power_info *pi = kv_get_pi(adev); if (pi->samu_power_gated == gate) return; pi->samu_power_gated = gate; if (gate) { kv_update_samu_dpm(adev, true); if (pi->caps_samu_pg) amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerOFF); } else { if (pi->caps_samu_pg) amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SAMPowerON); kv_update_samu_dpm(adev, false); } } static void kv_dpm_powergate_acp(struct amdgpu_device *adev, bool gate) { struct kv_power_info *pi = kv_get_pi(adev); if (pi->acp_power_gated == gate) return; if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) return; pi->acp_power_gated = gate; if (gate) { kv_update_acp_dpm(adev, true); if (pi->caps_acp_pg) amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerOFF); } else { if (pi->caps_acp_pg) amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_ACPPowerON); kv_update_acp_dpm(adev, false); } } static void kv_set_valid_clock_range(struct amdgpu_device *adev, struct amdgpu_ps *new_rps) { struct kv_ps *new_ps = kv_get_ps(new_rps); struct kv_power_info *pi = kv_get_pi(adev); u32 i; struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk; if (table && table->count) { for (i = 0; i < pi->graphics_dpm_level_count; i++) { if ((table->entries[i].clk >= new_ps->levels[0].sclk) || (i == (pi->graphics_dpm_level_count - 1))) { pi->lowest_valid = i; break; } } for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) { if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk) break; } pi->highest_valid = i; if (pi->lowest_valid > pi->highest_valid) { if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) > (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk)) pi->highest_valid = pi->lowest_valid; else pi->lowest_valid = pi->highest_valid; } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) { if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk || i == (int)(pi->graphics_dpm_level_count - 1)) { pi->lowest_valid = i; break; } } for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) { if (table->entries[i].sclk_frequency <= new_ps->levels[new_ps->num_levels - 1].sclk) break; } pi->highest_valid = i; if (pi->lowest_valid > pi->highest_valid) { if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].sclk_frequency) > (table->entries[pi->lowest_valid].sclk_frequency - new_ps->levels[new_ps->num_levels - 1].sclk)) pi->highest_valid = pi->lowest_valid; else pi->lowest_valid = pi->highest_valid; } } } static int kv_update_dfs_bypass_settings(struct amdgpu_device *adev, struct amdgpu_ps *new_rps) { struct kv_ps *new_ps = kv_get_ps(new_rps); struct kv_power_info *pi = kv_get_pi(adev); int ret = 0; u8 clk_bypass_cntl; if (pi->caps_enable_dfs_bypass) { clk_bypass_cntl = new_ps->need_dfs_bypass ? pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0; ret = amdgpu_kv_copy_bytes_to_smc(adev, (pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) + (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) + offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)), &clk_bypass_cntl, sizeof(u8), pi->sram_end); } return ret; } static int kv_enable_nb_dpm(struct amdgpu_device *adev, bool enable) { struct kv_power_info *pi = kv_get_pi(adev); int ret = 0; if (enable) { if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) { ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Enable); if (ret == 0) pi->nb_dpm_enabled = true; } } else { if (pi->enable_nb_dpm && pi->nb_dpm_enabled) { ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_NBDPM_Disable); if (ret == 0) pi->nb_dpm_enabled = false; } } return ret; } static int kv_dpm_force_performance_level(void *handle, enum amd_dpm_forced_level level) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (level == AMD_DPM_FORCED_LEVEL_HIGH) { ret = kv_force_dpm_highest(adev); if (ret) return ret; } else if (level == AMD_DPM_FORCED_LEVEL_LOW) { ret = kv_force_dpm_lowest(adev); if (ret) return ret; } else if (level == AMD_DPM_FORCED_LEVEL_AUTO) { ret = kv_unforce_levels(adev); if (ret) return ret; } adev->pm.dpm.forced_level = level; return 0; } static int kv_dpm_pre_set_power_state(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps; struct amdgpu_ps *new_ps = &requested_ps; kv_update_requested_ps(adev, new_ps); kv_apply_state_adjust_rules(adev, &pi->requested_rps, &pi->current_rps); return 0; } static int kv_dpm_set_power_state(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_ps *new_ps = &pi->requested_rps; struct amdgpu_ps *old_ps = &pi->current_rps; int ret; if (pi->bapm_enable) { ret = amdgpu_kv_smc_bapm_enable(adev, adev->pm.ac_power); if (ret) { DRM_ERROR("amdgpu_kv_smc_bapm_enable failed\n"); return ret; } } if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) { if (pi->enable_dpm) { kv_set_valid_clock_range(adev, new_ps); kv_update_dfs_bypass_settings(adev, new_ps); ret = kv_calculate_ds_divider(adev); if (ret) { DRM_ERROR("kv_calculate_ds_divider failed\n"); return ret; } kv_calculate_nbps_level_settings(adev); kv_calculate_dpm_settings(adev); kv_force_lowest_valid(adev); kv_enable_new_levels(adev); kv_upload_dpm_settings(adev); kv_program_nbps_index_settings(adev, new_ps); kv_unforce_levels(adev); kv_set_enabled_levels(adev); kv_force_lowest_valid(adev); kv_unforce_levels(adev); ret = kv_update_vce_dpm(adev, new_ps, old_ps); if (ret) { DRM_ERROR("kv_update_vce_dpm failed\n"); return ret; } kv_update_sclk_t(adev); if (adev->asic_type == CHIP_MULLINS) kv_enable_nb_dpm(adev, true); } } else { if (pi->enable_dpm) { kv_set_valid_clock_range(adev, new_ps); kv_update_dfs_bypass_settings(adev, new_ps); ret = kv_calculate_ds_divider(adev); if (ret) { DRM_ERROR("kv_calculate_ds_divider failed\n"); return ret; } kv_calculate_nbps_level_settings(adev); kv_calculate_dpm_settings(adev); kv_freeze_sclk_dpm(adev, true); kv_upload_dpm_settings(adev); kv_program_nbps_index_settings(adev, new_ps); kv_freeze_sclk_dpm(adev, false); kv_set_enabled_levels(adev); ret = kv_update_vce_dpm(adev, new_ps, old_ps); if (ret) { DRM_ERROR("kv_update_vce_dpm failed\n"); return ret; } kv_update_acp_boot_level(adev); kv_update_sclk_t(adev); kv_enable_nb_dpm(adev, true); } } return 0; } static void kv_dpm_post_set_power_state(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_ps *new_ps = &pi->requested_rps; kv_update_current_ps(adev, new_ps); } static void kv_dpm_setup_asic(struct amdgpu_device *adev) { sumo_take_smu_control(adev, true); kv_init_powergate_state(adev); kv_init_sclk_t(adev); } #if 0 static void kv_dpm_reset_asic(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) { kv_force_lowest_valid(adev); kv_init_graphics_levels(adev); kv_program_bootup_state(adev); kv_upload_dpm_settings(adev); kv_force_lowest_valid(adev); kv_unforce_levels(adev); } else { kv_init_graphics_levels(adev); kv_program_bootup_state(adev); kv_freeze_sclk_dpm(adev, true); kv_upload_dpm_settings(adev); kv_freeze_sclk_dpm(adev, false); kv_set_enabled_level(adev, pi->graphics_boot_level); } } #endif static void kv_construct_max_power_limits_table(struct amdgpu_device *adev, struct amdgpu_clock_and_voltage_limits *table) { struct kv_power_info *pi = kv_get_pi(adev); if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) { int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1; table->sclk = pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency; table->vddc = kv_convert_2bit_index_to_voltage(adev, pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit); } table->mclk = pi->sys_info.nbp_memory_clock[0]; } static void kv_patch_voltage_values(struct amdgpu_device *adev) { int i; struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table = &adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table; struct amdgpu_vce_clock_voltage_dependency_table *vce_table = &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; struct amdgpu_clock_voltage_dependency_table *samu_table = &adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table; struct amdgpu_clock_voltage_dependency_table *acp_table = &adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table; if (uvd_table->count) { for (i = 0; i < uvd_table->count; i++) uvd_table->entries[i].v = kv_convert_8bit_index_to_voltage(adev, uvd_table->entries[i].v); } if (vce_table->count) { for (i = 0; i < vce_table->count; i++) vce_table->entries[i].v = kv_convert_8bit_index_to_voltage(adev, vce_table->entries[i].v); } if (samu_table->count) { for (i = 0; i < samu_table->count; i++) samu_table->entries[i].v = kv_convert_8bit_index_to_voltage(adev, samu_table->entries[i].v); } if (acp_table->count) { for (i = 0; i < acp_table->count; i++) acp_table->entries[i].v = kv_convert_8bit_index_to_voltage(adev, acp_table->entries[i].v); } } static void kv_construct_boot_state(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); pi->boot_pl.sclk = pi->sys_info.bootup_sclk; pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index; pi->boot_pl.ds_divider_index = 0; pi->boot_pl.ss_divider_index = 0; pi->boot_pl.allow_gnb_slow = 1; pi->boot_pl.force_nbp_state = 0; pi->boot_pl.display_wm = 0; pi->boot_pl.vce_wm = 0; } static int kv_force_dpm_highest(struct amdgpu_device *adev) { int ret; u32 enable_mask, i; ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask); if (ret) return ret; for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) { if (enable_mask & (1 << i)) break; } if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i); else return kv_set_enabled_level(adev, i); } static int kv_force_dpm_lowest(struct amdgpu_device *adev) { int ret; u32 enable_mask, i; ret = amdgpu_kv_dpm_get_enable_mask(adev, &enable_mask); if (ret) return ret; for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) { if (enable_mask & (1 << i)) break; } if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_DPM_ForceState, i); else return kv_set_enabled_level(adev, i); } static u8 kv_get_sleep_divider_id_from_clock(struct amdgpu_device *adev, u32 sclk, u32 min_sclk_in_sr) { struct kv_power_info *pi = kv_get_pi(adev); u32 i; u32 temp; u32 min = max(min_sclk_in_sr, (u32)KV_MINIMUM_ENGINE_CLOCK); if (sclk < min) return 0; if (!pi->caps_sclk_ds) return 0; for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) { temp = sclk >> i; if (temp >= min) break; } return (u8)i; } static int kv_get_high_voltage_limit(struct amdgpu_device *adev, int *limit) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk; int i; if (table && table->count) { for (i = table->count - 1; i >= 0; i--) { if (pi->high_voltage_t && (kv_convert_8bit_index_to_voltage(adev, table->entries[i].v) <= pi->high_voltage_t)) { *limit = i; return 0; } } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; for (i = table->num_max_dpm_entries - 1; i >= 0; i--) { if (pi->high_voltage_t && (kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit) <= pi->high_voltage_t)) { *limit = i; return 0; } } } *limit = 0; return 0; } static void kv_apply_state_adjust_rules(struct amdgpu_device *adev, struct amdgpu_ps *new_rps, struct amdgpu_ps *old_rps) { struct kv_ps *ps = kv_get_ps(new_rps); struct kv_power_info *pi = kv_get_pi(adev); u32 min_sclk = 10000; /* ??? */ u32 sclk, mclk = 0; int i, limit; bool force_high; struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk; u32 stable_p_state_sclk = 0; struct amdgpu_clock_and_voltage_limits *max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac; if (new_rps->vce_active) { new_rps->evclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].evclk; new_rps->ecclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].ecclk; } else { new_rps->evclk = 0; new_rps->ecclk = 0; } mclk = max_limits->mclk; sclk = min_sclk; if (pi->caps_stable_p_state) { stable_p_state_sclk = (max_limits->sclk * 75) / 100; for (i = table->count - 1; i >= 0; i--) { if (stable_p_state_sclk >= table->entries[i].clk) { stable_p_state_sclk = table->entries[i].clk; break; } } if (i > 0) stable_p_state_sclk = table->entries[0].clk; sclk = stable_p_state_sclk; } if (new_rps->vce_active) { if (sclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk) sclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk; } ps->need_dfs_bypass = true; for (i = 0; i < ps->num_levels; i++) { if (ps->levels[i].sclk < sclk) ps->levels[i].sclk = sclk; } if (table && table->count) { for (i = 0; i < ps->num_levels; i++) { if (pi->high_voltage_t && (pi->high_voltage_t < kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) { kv_get_high_voltage_limit(adev, &limit); ps->levels[i].sclk = table->entries[limit].clk; } } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; for (i = 0; i < ps->num_levels; i++) { if (pi->high_voltage_t && (pi->high_voltage_t < kv_convert_8bit_index_to_voltage(adev, ps->levels[i].vddc_index))) { kv_get_high_voltage_limit(adev, &limit); ps->levels[i].sclk = table->entries[limit].sclk_frequency; } } } if (pi->caps_stable_p_state) { for (i = 0; i < ps->num_levels; i++) { ps->levels[i].sclk = stable_p_state_sclk; } } pi->video_start = new_rps->dclk || new_rps->vclk || new_rps->evclk || new_rps->ecclk; if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) pi->battery_state = true; else pi->battery_state = false; if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) { ps->dpm0_pg_nb_ps_lo = 0x1; ps->dpm0_pg_nb_ps_hi = 0x0; ps->dpmx_nb_ps_lo = 0x1; ps->dpmx_nb_ps_hi = 0x0; } else { ps->dpm0_pg_nb_ps_lo = 0x3; ps->dpm0_pg_nb_ps_hi = 0x0; ps->dpmx_nb_ps_lo = 0x3; ps->dpmx_nb_ps_hi = 0x0; if (pi->sys_info.nb_dpm_enable) { force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) || pi->video_start || (adev->pm.dpm.new_active_crtc_count >= 3) || pi->disable_nb_ps3_in_battery; ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3; ps->dpm0_pg_nb_ps_hi = 0x2; ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3; ps->dpmx_nb_ps_hi = 0x2; } } } static void kv_dpm_power_level_enabled_for_throttle(struct amdgpu_device *adev, u32 index, bool enable) { struct kv_power_info *pi = kv_get_pi(adev); pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0; } static int kv_calculate_ds_divider(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 sclk_in_sr = 10000; /* ??? */ u32 i; if (pi->lowest_valid > pi->highest_valid) return -EINVAL; for (i = pi->lowest_valid; i <= pi->highest_valid; i++) { pi->graphics_level[i].DeepSleepDivId = kv_get_sleep_divider_id_from_clock(adev, be32_to_cpu(pi->graphics_level[i].SclkFrequency), sclk_in_sr); } return 0; } static int kv_calculate_nbps_level_settings(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 i; bool force_high; struct amdgpu_clock_and_voltage_limits *max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac; u32 mclk = max_limits->mclk; if (pi->lowest_valid > pi->highest_valid) return -EINVAL; if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) { for (i = pi->lowest_valid; i <= pi->highest_valid; i++) { pi->graphics_level[i].GnbSlow = 1; pi->graphics_level[i].ForceNbPs1 = 0; pi->graphics_level[i].UpH = 0; } if (!pi->sys_info.nb_dpm_enable) return 0; force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) || (adev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start); if (force_high) { for (i = pi->lowest_valid; i <= pi->highest_valid; i++) pi->graphics_level[i].GnbSlow = 0; } else { if (pi->battery_state) pi->graphics_level[0].ForceNbPs1 = 1; pi->graphics_level[1].GnbSlow = 0; pi->graphics_level[2].GnbSlow = 0; pi->graphics_level[3].GnbSlow = 0; pi->graphics_level[4].GnbSlow = 0; } } else { for (i = pi->lowest_valid; i <= pi->highest_valid; i++) { pi->graphics_level[i].GnbSlow = 1; pi->graphics_level[i].ForceNbPs1 = 0; pi->graphics_level[i].UpH = 0; } if (pi->sys_info.nb_dpm_enable && pi->battery_state) { pi->graphics_level[pi->lowest_valid].UpH = 0x28; pi->graphics_level[pi->lowest_valid].GnbSlow = 0; if (pi->lowest_valid != pi->highest_valid) pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1; } } return 0; } static int kv_calculate_dpm_settings(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 i; if (pi->lowest_valid > pi->highest_valid) return -EINVAL; for (i = pi->lowest_valid; i <= pi->highest_valid; i++) pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0; return 0; } static void kv_init_graphics_levels(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 i; struct amdgpu_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk; if (table && table->count) { u32 vid_2bit; pi->graphics_dpm_level_count = 0; for (i = 0; i < table->count; i++) { if (pi->high_voltage_t && (pi->high_voltage_t < kv_convert_8bit_index_to_voltage(adev, table->entries[i].v))) break; kv_set_divider_value(adev, i, table->entries[i].clk); vid_2bit = kv_convert_vid7_to_vid2(adev, &pi->sys_info.vid_mapping_table, table->entries[i].v); kv_set_vid(adev, i, vid_2bit); kv_set_at(adev, i, pi->at[i]); kv_dpm_power_level_enabled_for_throttle(adev, i, true); pi->graphics_dpm_level_count++; } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; pi->graphics_dpm_level_count = 0; for (i = 0; i < table->num_max_dpm_entries; i++) { if (pi->high_voltage_t && pi->high_voltage_t < kv_convert_2bit_index_to_voltage(adev, table->entries[i].vid_2bit)) break; kv_set_divider_value(adev, i, table->entries[i].sclk_frequency); kv_set_vid(adev, i, table->entries[i].vid_2bit); kv_set_at(adev, i, pi->at[i]); kv_dpm_power_level_enabled_for_throttle(adev, i, true); pi->graphics_dpm_level_count++; } } for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) kv_dpm_power_level_enable(adev, i, false); } static void kv_enable_new_levels(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 i; for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) { if (i >= pi->lowest_valid && i <= pi->highest_valid) kv_dpm_power_level_enable(adev, i, true); } } static int kv_set_enabled_level(struct amdgpu_device *adev, u32 level) { u32 new_mask = (1 << level); return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SCLKDPM_SetEnabledMask, new_mask); } static int kv_set_enabled_levels(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); u32 i, new_mask = 0; for (i = pi->lowest_valid; i <= pi->highest_valid; i++) new_mask |= (1 << i); return amdgpu_kv_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SCLKDPM_SetEnabledMask, new_mask); } static void kv_program_nbps_index_settings(struct amdgpu_device *adev, struct amdgpu_ps *new_rps) { struct kv_ps *new_ps = kv_get_ps(new_rps); struct kv_power_info *pi = kv_get_pi(adev); u32 nbdpmconfig1; if (adev->asic_type == CHIP_KABINI || adev->asic_type == CHIP_MULLINS) return; if (pi->sys_info.nb_dpm_enable) { nbdpmconfig1 = RREG32_SMC(ixNB_DPM_CONFIG_1); nbdpmconfig1 &= ~(NB_DPM_CONFIG_1__Dpm0PgNbPsLo_MASK | NB_DPM_CONFIG_1__Dpm0PgNbPsHi_MASK | NB_DPM_CONFIG_1__DpmXNbPsLo_MASK | NB_DPM_CONFIG_1__DpmXNbPsHi_MASK); nbdpmconfig1 |= (new_ps->dpm0_pg_nb_ps_lo << NB_DPM_CONFIG_1__Dpm0PgNbPsLo__SHIFT) | (new_ps->dpm0_pg_nb_ps_hi << NB_DPM_CONFIG_1__Dpm0PgNbPsHi__SHIFT) | (new_ps->dpmx_nb_ps_lo << NB_DPM_CONFIG_1__DpmXNbPsLo__SHIFT) | (new_ps->dpmx_nb_ps_hi << NB_DPM_CONFIG_1__DpmXNbPsHi__SHIFT); WREG32_SMC(ixNB_DPM_CONFIG_1, nbdpmconfig1); } } static int kv_set_thermal_temperature_range(struct amdgpu_device *adev, int min_temp, int max_temp) { int low_temp = 0 * 1000; int high_temp = 255 * 1000; u32 tmp; if (low_temp < min_temp) low_temp = min_temp; if (high_temp > max_temp) high_temp = max_temp; if (high_temp < low_temp) { DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); return -EINVAL; } tmp = RREG32_SMC(ixCG_THERMAL_INT_CTRL); tmp &= ~(CG_THERMAL_INT_CTRL__DIG_THERM_INTH_MASK | CG_THERMAL_INT_CTRL__DIG_THERM_INTL_MASK); tmp |= ((49 + (high_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTH__SHIFT) | ((49 + (low_temp / 1000)) << CG_THERMAL_INT_CTRL__DIG_THERM_INTL__SHIFT); WREG32_SMC(ixCG_THERMAL_INT_CTRL, tmp); adev->pm.dpm.thermal.min_temp = low_temp; adev->pm.dpm.thermal.max_temp = high_temp; return 0; } union igp_info { struct _ATOM_INTEGRATED_SYSTEM_INFO info; struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2; struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5; struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8; }; static int kv_parse_sys_info_table(struct amdgpu_device *adev) { struct kv_power_info *pi = kv_get_pi(adev); struct amdgpu_mode_info *mode_info = &adev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); union igp_info *igp_info; u8 frev, crev; u16 data_offset; int i; if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { igp_info = (union igp_info *)(mode_info->atom_context->bios + data_offset); if (crev != 8) { DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); return -EINVAL; } pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock); pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock); pi->sys_info.bootup_nb_voltage_index = le16_to_cpu(igp_info->info_8.usBootUpNBVoltage); if (igp_info->info_8.ucHtcTmpLmt == 0) pi->sys_info.htc_tmp_lmt = 203; else pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt; if (igp_info->info_8.ucHtcHystLmt == 0) pi->sys_info.htc_hyst_lmt = 5; else pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt; if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) { DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n"); } if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3)) pi->sys_info.nb_dpm_enable = true; else pi->sys_info.nb_dpm_enable = false; for (i = 0; i < KV_NUM_NBPSTATES; i++) { pi->sys_info.nbp_memory_clock[i] = le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]); pi->sys_info.nbp_n_clock[i] = le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]); } if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) & SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS) pi->caps_enable_dfs_bypass = true; sumo_construct_sclk_voltage_mapping_table(adev, &pi->sys_info.sclk_voltage_mapping_table, igp_info->info_8.sAvail_SCLK); sumo_construct_vid_mapping_table(adev, &pi->sys_info.vid_mapping_table, igp_info->info_8.sAvail_SCLK); kv_construct_max_power_limits_table(adev, &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac); } return 0; } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void kv_patch_boot_state(struct amdgpu_device *adev, struct kv_ps *ps) { struct kv_power_info *pi = kv_get_pi(adev); ps->num_levels = 1; ps->levels[0] = pi->boot_pl; } static void kv_parse_pplib_non_clock_info(struct amdgpu_device *adev, struct amdgpu_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, u8 table_rev) { struct kv_ps *ps = kv_get_ps(rps); rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); } else { rps->vclk = 0; rps->dclk = 0; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { adev->pm.dpm.boot_ps = rps; kv_patch_boot_state(adev, ps); } if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) adev->pm.dpm.uvd_ps = rps; } static void kv_parse_pplib_clock_info(struct amdgpu_device *adev, struct amdgpu_ps *rps, int index, union pplib_clock_info *clock_info) { struct kv_power_info *pi = kv_get_pi(adev); struct kv_ps *ps = kv_get_ps(rps); struct kv_pl *pl = &ps->levels[index]; u32 sclk; sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); sclk |= clock_info->sumo.ucEngineClockHigh << 16; pl->sclk = sclk; pl->vddc_index = clock_info->sumo.vddcIndex; ps->num_levels = index + 1; if (pi->caps_sclk_ds) { pl->ds_divider_index = 5; pl->ss_divider_index = 5; } } static int kv_parse_power_table(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j, k, non_clock_array_index, clock_array_index; union pplib_clock_info *clock_info; struct _StateArray *state_array; struct _ClockInfoArray *clock_info_array; struct _NonClockInfoArray *non_clock_info_array; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; u8 *power_state_offset; struct kv_ps *ps; if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); amdgpu_add_thermal_controller(adev); state_array = (struct _StateArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset)); clock_info_array = (struct _ClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset)); non_clock_info_array = (struct _NonClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset)); adev->pm.dpm.ps = kcalloc(state_array->ucNumEntries, sizeof(struct amdgpu_ps), GFP_KERNEL); if (!adev->pm.dpm.ps) return -ENOMEM; power_state_offset = (u8 *)state_array->states; for (i = 0; i < state_array->ucNumEntries; i++) { u8 *idx; power_state = (union pplib_power_state *)power_state_offset; non_clock_array_index = power_state->v2.nonClockInfoIndex; non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) &non_clock_info_array->nonClockInfo[non_clock_array_index]; ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL); if (ps == NULL) { kfree(adev->pm.dpm.ps); return -ENOMEM; } adev->pm.dpm.ps[i].ps_priv = ps; k = 0; idx = (u8 *)&power_state->v2.clockInfoIndex[0]; for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { clock_array_index = idx[j]; if (clock_array_index >= clock_info_array->ucNumEntries) continue; if (k >= SUMO_MAX_HARDWARE_POWERLEVELS) break; clock_info = (union pplib_clock_info *) ((u8 *)&clock_info_array->clockInfo[0] + (clock_array_index * clock_info_array->ucEntrySize)); kv_parse_pplib_clock_info(adev, &adev->pm.dpm.ps[i], k, clock_info); k++; } kv_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i], non_clock_info, non_clock_info_array->ucEntrySize); power_state_offset += 2 + power_state->v2.ucNumDPMLevels; } adev->pm.dpm.num_ps = state_array->ucNumEntries; /* fill in the vce power states */ for (i = 0; i < adev->pm.dpm.num_of_vce_states; i++) { u32 sclk; clock_array_index = adev->pm.dpm.vce_states[i].clk_idx; clock_info = (union pplib_clock_info *) &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize]; sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); sclk |= clock_info->sumo.ucEngineClockHigh << 16; adev->pm.dpm.vce_states[i].sclk = sclk; adev->pm.dpm.vce_states[i].mclk = 0; } return 0; } static int kv_dpm_init(struct amdgpu_device *adev) { struct kv_power_info *pi; int ret, i; pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL); if (pi == NULL) return -ENOMEM; adev->pm.dpm.priv = pi; ret = amdgpu_get_platform_caps(adev); if (ret) return ret; ret = amdgpu_parse_extended_power_table(adev); if (ret) return ret; for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) pi->at[i] = TRINITY_AT_DFLT; pi->sram_end = SMC_RAM_END; pi->enable_nb_dpm = true; pi->caps_power_containment = true; pi->caps_cac = true; pi->enable_didt = false; if (pi->enable_didt) { pi->caps_sq_ramping = true; pi->caps_db_ramping = true; pi->caps_td_ramping = true; pi->caps_tcp_ramping = true; } if (adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK) pi->caps_sclk_ds = true; else pi->caps_sclk_ds = false; pi->enable_auto_thermal_throttling = true; pi->disable_nb_ps3_in_battery = false; if (amdgpu_bapm == 0) pi->bapm_enable = false; else pi->bapm_enable = true; pi->voltage_drop_t = 0; pi->caps_sclk_throttle_low_notification = false; pi->caps_fps = false; /* true? */ pi->caps_uvd_pg = (adev->pg_flags & AMD_PG_SUPPORT_UVD) ? true : false; pi->caps_uvd_dpm = true; pi->caps_vce_pg = (adev->pg_flags & AMD_PG_SUPPORT_VCE) ? true : false; pi->caps_samu_pg = (adev->pg_flags & AMD_PG_SUPPORT_SAMU) ? true : false; pi->caps_acp_pg = (adev->pg_flags & AMD_PG_SUPPORT_ACP) ? true : false; pi->caps_stable_p_state = false; ret = kv_parse_sys_info_table(adev); if (ret) return ret; kv_patch_voltage_values(adev); kv_construct_boot_state(adev); ret = kv_parse_power_table(adev); if (ret) return ret; pi->enable_dpm = true; return 0; } static void kv_dpm_debugfs_print_current_performance_level(void *handle, struct seq_file *m) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); u32 current_index = (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >> TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT; u32 sclk, tmp; u16 vddc; if (current_index >= SMU__NUM_SCLK_DPM_STATE) { seq_printf(m, "invalid dpm profile %d\n", current_index); } else { sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency); tmp = (RREG32_SMC(ixSMU_VOLTAGE_STATUS) & SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL_MASK) >> SMU_VOLTAGE_STATUS__SMU_VOLTAGE_CURRENT_LEVEL__SHIFT; vddc = kv_convert_8bit_index_to_voltage(adev, (u16)tmp); seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en"); seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en"); seq_printf(m, "power level %d sclk: %u vddc: %u\n", current_index, sclk, vddc); } } static void kv_dpm_print_power_state(void *handle, void *request_ps) { int i; struct amdgpu_ps *rps = (struct amdgpu_ps *)request_ps; struct kv_ps *ps = kv_get_ps(rps); struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_dpm_print_class_info(rps->class, rps->class2); amdgpu_dpm_print_cap_info(rps->caps); printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); for (i = 0; i < ps->num_levels; i++) { struct kv_pl *pl = &ps->levels[i]; printk("\t\tpower level %d sclk: %u vddc: %u\n", i, pl->sclk, kv_convert_8bit_index_to_voltage(adev, pl->vddc_index)); } amdgpu_dpm_print_ps_status(adev, rps); } static void kv_dpm_fini(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->pm.dpm.num_ps; i++) { kfree(adev->pm.dpm.ps[i].ps_priv); } kfree(adev->pm.dpm.ps); kfree(adev->pm.dpm.priv); amdgpu_free_extended_power_table(adev); } static void kv_dpm_display_configuration_changed(void *handle) { } static u32 kv_dpm_get_sclk(void *handle, bool low) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps); if (low) return requested_state->levels[0].sclk; else return requested_state->levels[requested_state->num_levels - 1].sclk; } static u32 kv_dpm_get_mclk(void *handle, bool low) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); return pi->sys_info.bootup_uma_clk; } /* get temperature in millidegrees */ static int kv_dpm_get_temp(void *handle) { u32 temp; int actual_temp = 0; struct amdgpu_device *adev = (struct amdgpu_device *)handle; temp = RREG32_SMC(0xC0300E0C); if (temp) actual_temp = (temp / 8) - 49; else actual_temp = 0; actual_temp = actual_temp * 1000; return actual_temp; } static int kv_dpm_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->powerplay.pp_funcs = &kv_dpm_funcs; adev->powerplay.pp_handle = adev; kv_dpm_set_irq_funcs(adev); return 0; } static int kv_dpm_late_init(void *handle) { /* powerdown unused blocks for now */ struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->pm.dpm_enabled) return 0; kv_dpm_powergate_acp(adev, true); kv_dpm_powergate_samu(adev, true); return 0; } static int kv_dpm_sw_init(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; ret = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 230, &adev->pm.dpm.thermal.irq); if (ret) return ret; ret = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 231, &adev->pm.dpm.thermal.irq); if (ret) return ret; /* default to balanced state */ adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED; adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED; adev->pm.dpm.forced_level = AMD_DPM_FORCED_LEVEL_AUTO; adev->pm.default_sclk = adev->clock.default_sclk; adev->pm.default_mclk = adev->clock.default_mclk; adev->pm.current_sclk = adev->clock.default_sclk; adev->pm.current_mclk = adev->clock.default_mclk; adev->pm.int_thermal_type = THERMAL_TYPE_NONE; if (amdgpu_dpm == 0) return 0; INIT_WORK(&adev->pm.dpm.thermal.work, amdgpu_dpm_thermal_work_handler); ret = kv_dpm_init(adev); if (ret) goto dpm_failed; adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps; if (amdgpu_dpm == 1) amdgpu_pm_print_power_states(adev); DRM_INFO("amdgpu: dpm initialized\n"); return 0; dpm_failed: kv_dpm_fini(adev); DRM_ERROR("amdgpu: dpm initialization failed\n"); return ret; } static int kv_dpm_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; flush_work(&adev->pm.dpm.thermal.work); kv_dpm_fini(adev); return 0; } static int kv_dpm_hw_init(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!amdgpu_dpm) return 0; kv_dpm_setup_asic(adev); ret = kv_dpm_enable(adev); if (ret) adev->pm.dpm_enabled = false; else adev->pm.dpm_enabled = true; amdgpu_legacy_dpm_compute_clocks(adev); return ret; } static int kv_dpm_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->pm.dpm_enabled) kv_dpm_disable(adev); return 0; } static int kv_dpm_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->pm.dpm_enabled) { /* disable dpm */ kv_dpm_disable(adev); /* reset the power state */ adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps; } return 0; } static int kv_dpm_resume(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->pm.dpm_enabled) { /* asic init will reset to the boot state */ kv_dpm_setup_asic(adev); ret = kv_dpm_enable(adev); if (ret) adev->pm.dpm_enabled = false; else adev->pm.dpm_enabled = true; if (adev->pm.dpm_enabled) amdgpu_legacy_dpm_compute_clocks(adev); } return 0; } static bool kv_dpm_is_idle(void *handle) { return true; } static int kv_dpm_wait_for_idle(void *handle) { return 0; } static int kv_dpm_soft_reset(void *handle) { return 0; } static int kv_dpm_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 cg_thermal_int; switch (type) { case AMDGPU_THERMAL_IRQ_LOW_TO_HIGH: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL); cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int); break; case AMDGPU_IRQ_STATE_ENABLE: cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL); cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int); break; default: break; } break; case AMDGPU_THERMAL_IRQ_HIGH_TO_LOW: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL); cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int); break; case AMDGPU_IRQ_STATE_ENABLE: cg_thermal_int = RREG32_SMC(ixCG_THERMAL_INT_CTRL); cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; WREG32_SMC(ixCG_THERMAL_INT_CTRL, cg_thermal_int); break; default: break; } break; default: break; } return 0; } static int kv_dpm_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { bool queue_thermal = false; if (entry == NULL) return -EINVAL; switch (entry->src_id) { case 230: /* thermal low to high */ DRM_DEBUG("IH: thermal low to high\n"); adev->pm.dpm.thermal.high_to_low = false; queue_thermal = true; break; case 231: /* thermal high to low */ DRM_DEBUG("IH: thermal high to low\n"); adev->pm.dpm.thermal.high_to_low = true; queue_thermal = true; break; default: break; } if (queue_thermal) schedule_work(&adev->pm.dpm.thermal.work); return 0; } static int kv_dpm_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int kv_dpm_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static inline bool kv_are_power_levels_equal(const struct kv_pl *kv_cpl1, const struct kv_pl *kv_cpl2) { return ((kv_cpl1->sclk == kv_cpl2->sclk) && (kv_cpl1->vddc_index == kv_cpl2->vddc_index) && (kv_cpl1->ds_divider_index == kv_cpl2->ds_divider_index) && (kv_cpl1->force_nbp_state == kv_cpl2->force_nbp_state)); } static int kv_check_state_equal(void *handle, void *current_ps, void *request_ps, bool *equal) { struct kv_ps *kv_cps; struct kv_ps *kv_rps; int i; struct amdgpu_ps *cps = (struct amdgpu_ps *)current_ps; struct amdgpu_ps *rps = (struct amdgpu_ps *)request_ps; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev == NULL || cps == NULL || rps == NULL || equal == NULL) return -EINVAL; kv_cps = kv_get_ps(cps); kv_rps = kv_get_ps(rps); if (kv_cps == NULL) { *equal = false; return 0; } if (kv_cps->num_levels != kv_rps->num_levels) { *equal = false; return 0; } for (i = 0; i < kv_cps->num_levels; i++) { if (!kv_are_power_levels_equal(&(kv_cps->levels[i]), &(kv_rps->levels[i]))) { *equal = false; return 0; } } /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ *equal = ((cps->vclk == rps->vclk) && (cps->dclk == rps->dclk)); *equal &= ((cps->evclk == rps->evclk) && (cps->ecclk == rps->ecclk)); return 0; } static int kv_dpm_read_sensor(void *handle, int idx, void *value, int *size) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct kv_power_info *pi = kv_get_pi(adev); uint32_t sclk; u32 pl_index = (RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX_MASK) >> TARGET_AND_CURRENT_PROFILE_INDEX__CURR_SCLK_INDEX__SHIFT; /* size must be at least 4 bytes for all sensors */ if (*size < 4) return -EINVAL; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: if (pl_index < SMU__NUM_SCLK_DPM_STATE) { sclk = be32_to_cpu( pi->graphics_level[pl_index].SclkFrequency); *((uint32_t *)value) = sclk; *size = 4; return 0; } return -EINVAL; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = kv_dpm_get_temp(adev); *size = 4; return 0; default: return -EOPNOTSUPP; } } static int kv_set_powergating_by_smu(void *handle, uint32_t block_type, bool gate) { switch (block_type) { case AMD_IP_BLOCK_TYPE_UVD: kv_dpm_powergate_uvd(handle, gate); break; case AMD_IP_BLOCK_TYPE_VCE: kv_dpm_powergate_vce(handle, gate); break; default: break; } return 0; } static const struct amd_ip_funcs kv_dpm_ip_funcs = { .name = "kv_dpm", .early_init = kv_dpm_early_init, .late_init = kv_dpm_late_init, .sw_init = kv_dpm_sw_init, .sw_fini = kv_dpm_sw_fini, .hw_init = kv_dpm_hw_init, .hw_fini = kv_dpm_hw_fini, .suspend = kv_dpm_suspend, .resume = kv_dpm_resume, .is_idle = kv_dpm_is_idle, .wait_for_idle = kv_dpm_wait_for_idle, .soft_reset = kv_dpm_soft_reset, .set_clockgating_state = kv_dpm_set_clockgating_state, .set_powergating_state = kv_dpm_set_powergating_state, }; const struct amdgpu_ip_block_version kv_smu_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 1, .minor = 0, .rev = 0, .funcs = &kv_dpm_ip_funcs, }; static const struct amd_pm_funcs kv_dpm_funcs = { .pre_set_power_state = &kv_dpm_pre_set_power_state, .set_power_state = &kv_dpm_set_power_state, .post_set_power_state = &kv_dpm_post_set_power_state, .display_configuration_changed = &kv_dpm_display_configuration_changed, .get_sclk = &kv_dpm_get_sclk, .get_mclk = &kv_dpm_get_mclk, .print_power_state = &kv_dpm_print_power_state, .debugfs_print_current_performance_level = &kv_dpm_debugfs_print_current_performance_level, .force_performance_level = &kv_dpm_force_performance_level, .set_powergating_by_smu = kv_set_powergating_by_smu, .enable_bapm = &kv_dpm_enable_bapm, .get_vce_clock_state = amdgpu_get_vce_clock_state, .check_state_equal = kv_check_state_equal, .read_sensor = &kv_dpm_read_sensor, .pm_compute_clocks = amdgpu_legacy_dpm_compute_clocks, }; static const struct amdgpu_irq_src_funcs kv_dpm_irq_funcs = { .set = kv_dpm_set_interrupt_state, .process = kv_dpm_process_interrupt, }; static void kv_dpm_set_irq_funcs(struct amdgpu_device *adev) { adev->pm.dpm.thermal.irq.num_types = AMDGPU_THERMAL_IRQ_LAST; adev->pm.dpm.thermal.irq.funcs = &kv_dpm_irq_funcs; }
linux-master
drivers/gpu/drm/amd/pm/legacy-dpm/kv_dpm.c
/* * Copyright 2011 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include <linux/firmware.h> #include "amdgpu.h" #include "sid.h" #include "ppsmc.h" #include "amdgpu_ucode.h" #include "sislands_smc.h" static int si_set_smc_sram_address(struct amdgpu_device *adev, u32 smc_address, u32 limit) { if (smc_address & 3) return -EINVAL; if ((smc_address + 3) > limit) return -EINVAL; WREG32(SMC_IND_INDEX_0, smc_address); WREG32_P(SMC_IND_ACCESS_CNTL, 0, ~AUTO_INCREMENT_IND_0); return 0; } int amdgpu_si_copy_bytes_to_smc(struct amdgpu_device *adev, u32 smc_start_address, const u8 *src, u32 byte_count, u32 limit) { unsigned long flags; int ret = 0; u32 data, original_data, addr, extra_shift; if (smc_start_address & 3) return -EINVAL; if ((smc_start_address + byte_count) > limit) return -EINVAL; addr = smc_start_address; spin_lock_irqsave(&adev->smc_idx_lock, flags); while (byte_count >= 4) { /* SMC address space is BE */ data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3]; ret = si_set_smc_sram_address(adev, addr, limit); if (ret) goto done; WREG32(SMC_IND_DATA_0, data); src += 4; byte_count -= 4; addr += 4; } /* RMW for the final bytes */ if (byte_count > 0) { data = 0; ret = si_set_smc_sram_address(adev, addr, limit); if (ret) goto done; original_data = RREG32(SMC_IND_DATA_0); extra_shift = 8 * (4 - byte_count); while (byte_count > 0) { /* SMC address space is BE */ data = (data << 8) + *src++; byte_count--; } data <<= extra_shift; data |= (original_data & ~((~0UL) << extra_shift)); ret = si_set_smc_sram_address(adev, addr, limit); if (ret) goto done; WREG32(SMC_IND_DATA_0, data); } done: spin_unlock_irqrestore(&adev->smc_idx_lock, flags); return ret; } void amdgpu_si_start_smc(struct amdgpu_device *adev) { u32 tmp = RREG32_SMC(SMC_SYSCON_RESET_CNTL); tmp &= ~RST_REG; WREG32_SMC(SMC_SYSCON_RESET_CNTL, tmp); } void amdgpu_si_reset_smc(struct amdgpu_device *adev) { u32 tmp; RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); tmp = RREG32_SMC(SMC_SYSCON_RESET_CNTL) | RST_REG; WREG32_SMC(SMC_SYSCON_RESET_CNTL, tmp); } int amdgpu_si_program_jump_on_start(struct amdgpu_device *adev) { static const u8 data[] = { 0x0E, 0x00, 0x40, 0x40 }; return amdgpu_si_copy_bytes_to_smc(adev, 0x0, data, 4, sizeof(data)+1); } void amdgpu_si_smc_clock(struct amdgpu_device *adev, bool enable) { u32 tmp = RREG32_SMC(SMC_SYSCON_CLOCK_CNTL_0); if (enable) tmp &= ~CK_DISABLE; else tmp |= CK_DISABLE; WREG32_SMC(SMC_SYSCON_CLOCK_CNTL_0, tmp); } bool amdgpu_si_is_smc_running(struct amdgpu_device *adev) { u32 rst = RREG32_SMC(SMC_SYSCON_RESET_CNTL); u32 clk = RREG32_SMC(SMC_SYSCON_CLOCK_CNTL_0); if (!(rst & RST_REG) && !(clk & CK_DISABLE)) return true; return false; } PPSMC_Result amdgpu_si_send_msg_to_smc(struct amdgpu_device *adev, PPSMC_Msg msg) { u32 tmp; int i; if (!amdgpu_si_is_smc_running(adev)) return PPSMC_Result_Failed; WREG32(SMC_MESSAGE_0, msg); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(SMC_RESP_0); if (tmp != 0) break; udelay(1); } return (PPSMC_Result)RREG32(SMC_RESP_0); } PPSMC_Result amdgpu_si_wait_for_smc_inactive(struct amdgpu_device *adev) { u32 tmp; int i; if (!amdgpu_si_is_smc_running(adev)) return PPSMC_Result_OK; for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32_SMC(SMC_SYSCON_CLOCK_CNTL_0); if ((tmp & CKEN) == 0) break; udelay(1); } return PPSMC_Result_OK; } int amdgpu_si_load_smc_ucode(struct amdgpu_device *adev, u32 limit) { const struct smc_firmware_header_v1_0 *hdr; unsigned long flags; u32 ucode_start_address; u32 ucode_size; const u8 *src; u32 data; if (!adev->pm.fw) return -EINVAL; hdr = (const struct smc_firmware_header_v1_0 *)adev->pm.fw->data; amdgpu_ucode_print_smc_hdr(&hdr->header); adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version); ucode_start_address = le32_to_cpu(hdr->ucode_start_addr); ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes); src = (const u8 *) (adev->pm.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); if (ucode_size & 3) return -EINVAL; spin_lock_irqsave(&adev->smc_idx_lock, flags); WREG32(SMC_IND_INDEX_0, ucode_start_address); WREG32_P(SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, ~AUTO_INCREMENT_IND_0); while (ucode_size >= 4) { /* SMC address space is BE */ data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3]; WREG32(SMC_IND_DATA_0, data); src += 4; ucode_size -= 4; } WREG32_P(SMC_IND_ACCESS_CNTL, 0, ~AUTO_INCREMENT_IND_0); spin_unlock_irqrestore(&adev->smc_idx_lock, flags); return 0; } int amdgpu_si_read_smc_sram_dword(struct amdgpu_device *adev, u32 smc_address, u32 *value, u32 limit) { unsigned long flags; int ret; spin_lock_irqsave(&adev->smc_idx_lock, flags); ret = si_set_smc_sram_address(adev, smc_address, limit); if (ret == 0) *value = RREG32(SMC_IND_DATA_0); spin_unlock_irqrestore(&adev->smc_idx_lock, flags); return ret; } int amdgpu_si_write_smc_sram_dword(struct amdgpu_device *adev, u32 smc_address, u32 value, u32 limit) { unsigned long flags; int ret; spin_lock_irqsave(&adev->smc_idx_lock, flags); ret = si_set_smc_sram_address(adev, smc_address, limit); if (ret == 0) WREG32(SMC_IND_DATA_0, value); spin_unlock_irqrestore(&adev->smc_idx_lock, flags); return ret; }
linux-master
drivers/gpu/drm/amd/pm/legacy-dpm/si_smc.c
/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/module.h> #include <linux/pci.h> #include "amdgpu.h" #include "amdgpu_pm.h" #include "amdgpu_dpm.h" #include "amdgpu_atombios.h" #include "amdgpu_dpm_internal.h" #include "amd_pcie.h" #include "sid.h" #include "r600_dpm.h" #include "si_dpm.h" #include "atom.h" #include "../include/pptable.h" #include <linux/math64.h> #include <linux/seq_file.h> #include <linux/firmware.h> #include <legacy_dpm.h> #define MC_CG_ARB_FREQ_F0 0x0a #define MC_CG_ARB_FREQ_F1 0x0b #define MC_CG_ARB_FREQ_F2 0x0c #define MC_CG_ARB_FREQ_F3 0x0d #define SMC_RAM_END 0x20000 #define SCLK_MIN_DEEPSLEEP_FREQ 1350 /* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */ #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22 #define BIOS_SCRATCH_4 0x5cd MODULE_FIRMWARE("amdgpu/tahiti_smc.bin"); MODULE_FIRMWARE("amdgpu/pitcairn_smc.bin"); MODULE_FIRMWARE("amdgpu/pitcairn_k_smc.bin"); MODULE_FIRMWARE("amdgpu/verde_smc.bin"); MODULE_FIRMWARE("amdgpu/verde_k_smc.bin"); MODULE_FIRMWARE("amdgpu/oland_smc.bin"); MODULE_FIRMWARE("amdgpu/oland_k_smc.bin"); MODULE_FIRMWARE("amdgpu/hainan_smc.bin"); MODULE_FIRMWARE("amdgpu/hainan_k_smc.bin"); MODULE_FIRMWARE("amdgpu/banks_k_2_smc.bin"); static const struct amd_pm_funcs si_dpm_funcs; union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4; struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5; }; union fan_info { struct _ATOM_PPLIB_FANTABLE fan; struct _ATOM_PPLIB_FANTABLE2 fan2; struct _ATOM_PPLIB_FANTABLE3 fan3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; struct _ATOM_PPLIB_SI_CLOCK_INFO si; }; enum si_dpm_auto_throttle_src { SI_DPM_AUTO_THROTTLE_SRC_THERMAL, SI_DPM_AUTO_THROTTLE_SRC_EXTERNAL }; enum si_dpm_event_src { SI_DPM_EVENT_SRC_ANALOG = 0, SI_DPM_EVENT_SRC_EXTERNAL = 1, SI_DPM_EVENT_SRC_DIGITAL = 2, SI_DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, SI_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL = 4 }; static const u32 r600_utc[R600_PM_NUMBER_OF_TC] = { R600_UTC_DFLT_00, R600_UTC_DFLT_01, R600_UTC_DFLT_02, R600_UTC_DFLT_03, R600_UTC_DFLT_04, R600_UTC_DFLT_05, R600_UTC_DFLT_06, R600_UTC_DFLT_07, R600_UTC_DFLT_08, R600_UTC_DFLT_09, R600_UTC_DFLT_10, R600_UTC_DFLT_11, R600_UTC_DFLT_12, R600_UTC_DFLT_13, R600_UTC_DFLT_14, }; static const u32 r600_dtc[R600_PM_NUMBER_OF_TC] = { R600_DTC_DFLT_00, R600_DTC_DFLT_01, R600_DTC_DFLT_02, R600_DTC_DFLT_03, R600_DTC_DFLT_04, R600_DTC_DFLT_05, R600_DTC_DFLT_06, R600_DTC_DFLT_07, R600_DTC_DFLT_08, R600_DTC_DFLT_09, R600_DTC_DFLT_10, R600_DTC_DFLT_11, R600_DTC_DFLT_12, R600_DTC_DFLT_13, R600_DTC_DFLT_14, }; static const struct si_cac_config_reg cac_weights_tahiti[] = { { 0x0, 0x0000ffff, 0, 0xc, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x101, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0xc, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x8fc, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x95, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x34e, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x1a1, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0xda, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x46, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x208, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0xe7, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x948, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x167, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x35, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x31, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x18e, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg lcac_tahiti[] = { { 0x143, 0x0001fffe, 1, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x146, 0x0001fffe, 1, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0x146, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x149, 0x0001fffe, 1, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0x149, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x14c, 0x0001fffe, 1, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0x14c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x98, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x98, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x9b, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x9b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x9e, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x9e, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x101, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x101, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x107, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x107, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10a, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x10a, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10d, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x10d, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8f, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x8f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x92, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x92, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x95, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x95, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x152, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x152, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x155, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x155, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x158, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x158, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x113, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x113, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x116, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x116, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x119, 0x0001fffe, 1, 0x8, SISLANDS_CACCONFIG_CGIND }, { 0x119, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x122, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x122, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x125, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x125, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x128, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x128, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x12b, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x12b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x0001fffe, 1, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_override_tahiti[] = { { 0xFFFFFFFF } }; static const struct si_powertune_data powertune_data_tahiti = { ((1 << 16) | 27027), 6, 0, 4, 95, { 0UL, 0UL, 4521550UL, 309631529UL, -1270850L, 4513710L, 40 }, 595000000UL, 12, { 0, 0, 0, 0, 0, 0, 0, 0 }, true }; static const struct si_dte_data dte_data_tahiti = { { 1159409, 0, 0, 0, 0 }, { 777, 0, 0, 0, 0 }, 2, 54000, 127000, 25, 2, 10, 13, { 27, 31, 35, 39, 43, 47, 54, 61, 67, 74, 81, 88, 95, 0, 0, 0 }, { 240888759, 221057860, 235370597, 162287531, 158510299, 131423027, 116673180, 103067515, 87941937, 76209048, 68209175, 64090048, 58301890, 0, 0, 0 }, { 12024, 11189, 11451, 8411, 7939, 6666, 5681, 4905, 4241, 3720, 3354, 3122, 2890, 0, 0, 0 }, 85, false }; static const struct si_dte_data dte_data_tahiti_pro = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x0, 0x0, 0x0, 0x0, 0x0 }, 5, 45000, 100, 0xA, 1, 0, 0x10, { 0x96, 0xB4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0x7D0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_dte_data dte_data_new_zealand = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0 }, { 0x29B, 0x3E9, 0x537, 0x7D2, 0 }, 0x5, 0xAFC8, 0x69, 0x32, 1, 0, 0x10, { 0x82, 0xA0, 0xB4, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0xDAC, 0x1388, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685, 0x685 }, 85, true }; static const struct si_dte_data dte_data_aruba_pro = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x0, 0x0, 0x0, 0x0, 0x0 }, 5, 45000, 100, 0xA, 1, 0, 0x10, { 0x96, 0xB4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0x1000, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_dte_data dte_data_malta = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x0, 0x0, 0x0, 0x0, 0x0 }, 5, 45000, 100, 0xA, 1, 0, 0x10, { 0x96, 0xB4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_cac_config_reg cac_weights_pitcairn[] = { { 0x0, 0x0000ffff, 0, 0x8a, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x24d, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x19, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x118, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x76, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0xc11, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0x7f3, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x403, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x367, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x4c9, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x45d, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0x36d, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x534, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x5da, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x880, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0x201, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x9f, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x1f, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x5de, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x7b, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x13, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0xf9, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x66, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x13, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x186, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg lcac_pitcairn[] = { { 0x98, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x98, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x9b, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x9b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x107, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x107, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x113, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x113, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x152, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x152, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8f, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x8f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x146, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x146, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x9e, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x9e, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10a, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x10a, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x116, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x116, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x155, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x155, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x92, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x92, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x149, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x149, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x101, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x101, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10d, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x10d, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x119, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x119, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x158, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x158, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x95, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x95, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x14c, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x14c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x122, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x122, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x125, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x125, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x128, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x128, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x12b, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x12b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_override_pitcairn[] = { { 0xFFFFFFFF } }; static const struct si_powertune_data powertune_data_pitcairn = { ((1 << 16) | 27027), 5, 0, 6, 100, { 51600000UL, 1800000UL, 7194395UL, 309631529UL, -1270850L, 4513710L, 100 }, 117830498UL, 12, { 0, 0, 0, 0, 0, 0, 0, 0 }, true }; static const struct si_dte_data dte_data_pitcairn = { { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 0, false }; static const struct si_dte_data dte_data_curacao_xt = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x0, 0x0, 0x0, 0x0, 0x0 }, 5, 45000, 100, 0xA, 1, 0, 0x10, { 0x96, 0xB4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0x1D17, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_dte_data dte_data_curacao_pro = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x0, 0x0, 0x0, 0x0, 0x0 }, 5, 45000, 100, 0xA, 1, 0, 0x10, { 0x96, 0xB4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0x1D17, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_dte_data dte_data_neptune_xt = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x0, 0x0, 0x0, 0x0, 0x0 }, 5, 45000, 100, 0xA, 1, 0, 0x10, { 0x96, 0xB4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0x3A2F, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_cac_config_reg cac_weights_chelsea_pro[] = { { 0x0, 0x0000ffff, 0, 0x82, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x153, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x52, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0xAC, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x118, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0xBE, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x110, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x4CD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x37, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x27, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0xC3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x35, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0x28, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x26C, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3B2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x99D, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA3F, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x34, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x2BD, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7A, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x100, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_weights_chelsea_xt[] = { { 0x0, 0x0000ffff, 0, 0x82, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x153, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x52, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0xAC, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x118, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0xBE, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x110, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x4CD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x37, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x27, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0xC3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x35, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0x28, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x26C, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3B2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x99D, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA3F, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x34, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x30A, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7A, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x100, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_weights_heathrow[] = { { 0x0, 0x0000ffff, 0, 0x82, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x153, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x52, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0xAC, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x118, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0xBE, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x110, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x4CD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x37, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x27, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0xC3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x35, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0x28, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x26C, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3B2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x99D, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA3F, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x34, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x362, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7A, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x100, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_weights_cape_verde_pro[] = { { 0x0, 0x0000ffff, 0, 0x82, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x153, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x52, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0xAC, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x118, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0xBE, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x110, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x4CD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x37, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x27, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0xC3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x35, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0x28, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x26C, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3B2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x99D, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA3F, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x34, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x315, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7A, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x100, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_weights_cape_verde[] = { { 0x0, 0x0000ffff, 0, 0x82, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x153, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x52, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0xAC, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x118, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0xBE, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x110, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x4CD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x37, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x27, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0xC3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x35, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0x28, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x26C, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3B2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x99D, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA3F, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x34, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x3BA, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7A, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x100, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg lcac_cape_verde[] = { { 0x98, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x98, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x9b, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x9b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x107, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x107, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x113, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x113, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x152, 0x0001fffe, 1, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x152, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8f, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x146, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x146, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_override_cape_verde[] = { { 0xFFFFFFFF } }; static const struct si_powertune_data powertune_data_cape_verde = { ((1 << 16) | 0x6993), 5, 0, 7, 105, { 0UL, 0UL, 7194395UL, 309631529UL, -1270850L, 4513710L, 100 }, 117830498UL, 12, { 0, 0, 0, 0, 0, 0, 0, 0 }, true }; static const struct si_dte_data dte_data_cape_verde = { { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 0, false }; static const struct si_dte_data dte_data_venus_xtx = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x71C, 0xAAB, 0xE39, 0x11C7, 0x0 }, 5, 55000, 0x69, 0xA, 1, 0, 0x3, { 0x96, 0xB4, 0xFF, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { 0x895440, 0x3D0900, 0x989680, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { 0xD6D8, 0x88B8, 0x1555, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_dte_data dte_data_venus_xt = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0xBDA, 0x11C7, 0x17B4, 0x1DA1, 0x0 }, 5, 55000, 0x69, 0xA, 1, 0, 0x3, { 0x96, 0xB4, 0xFF, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { 0x895440, 0x3D0900, 0x989680, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { 0xAFC8, 0x88B8, 0x238E, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_dte_data dte_data_venus_pro = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x11C7, 0x1AAB, 0x238E, 0x2C72, 0x0 }, 5, 55000, 0x69, 0xA, 1, 0, 0x3, { 0x96, 0xB4, 0xFF, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { 0x895440, 0x3D0900, 0x989680, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, { 0x88B8, 0x88B8, 0x3555, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_cac_config_reg cac_weights_oland[] = { { 0x0, 0x0000ffff, 0, 0x82, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x153, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x52, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x4F, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x135, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0xAC, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x118, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0xBE, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x110, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x4CD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x37, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x27, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0xC3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x35, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0x28, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x26C, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3B2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x99D, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA3F, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0xA, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x34, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x3BA, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x30, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7A, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x100, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_weights_mars_pro[] = { { 0x0, 0x0000ffff, 0, 0x43, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x29, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0xAF, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x2A, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0xA0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x29, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0xA0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0x59, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x1A5, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0x1D6, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x2A3, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x8FD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x76, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x8A, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0xA3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0x71, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x36, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0xA6, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x81, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3D2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x27C, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA96, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0xB, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x7, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x36, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x10, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x10, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x32, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7E, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0x280, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0x7, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0x3C, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0x203, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0xB4, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_weights_mars_xt[] = { { 0x0, 0x0000ffff, 0, 0x43, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x29, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0xAF, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x2A, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0xA0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x29, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0xA0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0x59, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x1A5, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0x1D6, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x2A3, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x8FD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x76, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x8A, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0xA3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0x71, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x36, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0xA6, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x81, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3D2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x27C, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA96, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0xB, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x7, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x36, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x10, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x10, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x60, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x32, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7E, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0x280, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0x7, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0x3C, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0x203, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0xB4, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_weights_oland_pro[] = { { 0x0, 0x0000ffff, 0, 0x43, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x29, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0xAF, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x2A, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0xA0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x29, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0xA0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0x59, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x1A5, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0x1D6, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x2A3, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x8FD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x76, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x8A, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0xA3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0x71, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x36, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0xA6, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x81, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3D2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x27C, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA96, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0xB, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x7, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x36, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x10, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x10, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x90, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x32, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7E, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0x280, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0x7, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0x3C, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0x203, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0xB4, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_weights_oland_xt[] = { { 0x0, 0x0000ffff, 0, 0x43, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x29, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0xAF, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x2A, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0xA0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x29, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0xA0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0x59, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x1A5, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0x1D6, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0x2A3, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x8FD, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x76, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x8A, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0xA3, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0x71, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0x36, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0xA6, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x81, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0x3D2, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0x27C, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xA96, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0x5, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0xB, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x15, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x7, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x36, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x10, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x10, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x120, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x32, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x7E, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0x280, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0x7, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0x3C, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0x203, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0xB4, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg lcac_oland[] = { { 0x98, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x98, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x0001fffe, 1, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x0001fffe, 1, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x0001fffe, 1, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x0001fffe, 1, 0x4, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg lcac_mars_pro[] = { { 0x98, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x98, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x104, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x0001fffe, 1, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x110, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x0001fffe, 1, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x14f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x0001fffe, 1, 0x6, SISLANDS_CACCONFIG_CGIND }, { 0x8c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x143, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x11f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x164, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x167, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16a, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15e, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x161, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x15b, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x0001fffe, 1, 0x2, SISLANDS_CACCONFIG_CGIND }, { 0x16d, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x170, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x173, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x176, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x179, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17c, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x0001fffe, 1, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0x17f, 0x00000001, 0, 0x1, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_cac_config_reg cac_override_oland[] = { { 0xFFFFFFFF } }; static const struct si_powertune_data powertune_data_oland = { ((1 << 16) | 0x6993), 5, 0, 7, 105, { 0UL, 0UL, 7194395UL, 309631529UL, -1270850L, 4513710L, 100 }, 117830498UL, 12, { 0, 0, 0, 0, 0, 0, 0, 0 }, true }; static const struct si_powertune_data powertune_data_mars_pro = { ((1 << 16) | 0x6993), 5, 0, 7, 105, { 0UL, 0UL, 7194395UL, 309631529UL, -1270850L, 4513710L, 100 }, 117830498UL, 12, { 0, 0, 0, 0, 0, 0, 0, 0 }, true }; static const struct si_dte_data dte_data_oland = { { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 0, false }; static const struct si_dte_data dte_data_mars_pro = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x0, 0x0, 0x0, 0x0, 0x0 }, 5, 55000, 105, 0xA, 1, 0, 0x10, { 0x96, 0xB4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0xF627, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_dte_data dte_data_sun_xt = { { 0x1E8480, 0x3D0900, 0x989680, 0x2625A00, 0x0 }, { 0x0, 0x0, 0x0, 0x0, 0x0 }, 5, 55000, 105, 0xA, 1, 0, 0x10, { 0x96, 0xB4, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }, { 0x895440, 0x3D0900, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680, 0x989680 }, { 0xD555, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, 90, true }; static const struct si_cac_config_reg cac_weights_hainan[] = { { 0x0, 0x0000ffff, 0, 0x2d9, SISLANDS_CACCONFIG_CGIND }, { 0x0, 0xffff0000, 16, 0x22b, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0x0000ffff, 0, 0x21c, SISLANDS_CACCONFIG_CGIND }, { 0x1, 0xffff0000, 16, 0x1dc, SISLANDS_CACCONFIG_CGIND }, { 0x2, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0x0000ffff, 0, 0x24e, SISLANDS_CACCONFIG_CGIND }, { 0x3, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x4, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0x0000ffff, 0, 0x35e, SISLANDS_CACCONFIG_CGIND }, { 0x5, 0xffff0000, 16, 0x1143, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0x0000ffff, 0, 0xe17, SISLANDS_CACCONFIG_CGIND }, { 0x6, 0xffff0000, 16, 0x441, SISLANDS_CACCONFIG_CGIND }, { 0x18f, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0x0000ffff, 0, 0x28b, SISLANDS_CACCONFIG_CGIND }, { 0x7, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x8, 0xffff0000, 16, 0xabe, SISLANDS_CACCONFIG_CGIND }, { 0x9, 0x0000ffff, 0, 0xf11, SISLANDS_CACCONFIG_CGIND }, { 0xa, 0x0000ffff, 0, 0x907, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0x0000ffff, 0, 0xb45, SISLANDS_CACCONFIG_CGIND }, { 0xb, 0xffff0000, 16, 0xd1e, SISLANDS_CACCONFIG_CGIND }, { 0xc, 0x0000ffff, 0, 0xa2c, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0x0000ffff, 0, 0x62, SISLANDS_CACCONFIG_CGIND }, { 0xd, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0xe, 0x0000ffff, 0, 0x1f3, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0x0000ffff, 0, 0x42, SISLANDS_CACCONFIG_CGIND }, { 0xf, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x10, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0x0000ffff, 0, 0x709, SISLANDS_CACCONFIG_CGIND }, { 0x11, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x12, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x13, 0xffff0000, 16, 0x3a, SISLANDS_CACCONFIG_CGIND }, { 0x14, 0x0000ffff, 0, 0x357, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0x0000ffff, 0, 0x9f, SISLANDS_CACCONFIG_CGIND }, { 0x15, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x4e, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0x0000ffff, 0, 0x314, SISLANDS_CACCONFIG_CGIND }, { 0x16, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x17, 0x0000ffff, 0, 0x6d, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x18, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0x0000ffff, 0, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x19, 0xffff0000, 16, 0x0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1a, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1b, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1c, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1d, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1e, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x1f, 0xffff0000, 16, 0, SISLANDS_CACCONFIG_CGIND }, { 0x20, 0x0000ffff, 0, 0, SISLANDS_CACCONFIG_CGIND }, { 0x6d, 0x0000ffff, 0, 0x1b9, SISLANDS_CACCONFIG_CGIND }, { 0xFFFFFFFF } }; static const struct si_powertune_data powertune_data_hainan = { ((1 << 16) | 0x6993), 5, 0, 9, 105, { 0UL, 0UL, 7194395UL, 309631529UL, -1270850L, 4513710L, 100 }, 117830498UL, 12, { 0, 0, 0, 0, 0, 0, 0, 0 }, true }; static struct rv7xx_power_info *rv770_get_pi(struct amdgpu_device *adev); static struct evergreen_power_info *evergreen_get_pi(struct amdgpu_device *adev); static struct ni_power_info *ni_get_pi(struct amdgpu_device *adev); static struct si_ps *si_get_ps(struct amdgpu_ps *rps); static int si_populate_voltage_value(struct amdgpu_device *adev, const struct atom_voltage_table *table, u16 value, SISLANDS_SMC_VOLTAGE_VALUE *voltage); static int si_get_std_voltage_value(struct amdgpu_device *adev, SISLANDS_SMC_VOLTAGE_VALUE *voltage, u16 *std_voltage); static int si_write_smc_soft_register(struct amdgpu_device *adev, u16 reg_offset, u32 value); static int si_convert_power_level_to_smc(struct amdgpu_device *adev, struct rv7xx_pl *pl, SISLANDS_SMC_HW_PERFORMANCE_LEVEL *level); static int si_calculate_sclk_params(struct amdgpu_device *adev, u32 engine_clock, SISLANDS_SMC_SCLK_VALUE *sclk); static void si_thermal_start_smc_fan_control(struct amdgpu_device *adev); static void si_fan_ctrl_set_default_mode(struct amdgpu_device *adev); static void si_dpm_set_irq_funcs(struct amdgpu_device *adev); static struct si_power_info *si_get_pi(struct amdgpu_device *adev) { struct si_power_info *pi = adev->pm.dpm.priv; return pi; } static void si_calculate_leakage_for_v_and_t_formula(const struct ni_leakage_coeffients *coeff, u16 v, s32 t, u32 ileakage, u32 *leakage) { s64 kt, kv, leakage_w, i_leakage, vddc; s64 temperature, t_slope, t_intercept, av, bv, t_ref; s64 tmp; i_leakage = div64_s64(drm_int2fixp(ileakage), 100); vddc = div64_s64(drm_int2fixp(v), 1000); temperature = div64_s64(drm_int2fixp(t), 1000); t_slope = div64_s64(drm_int2fixp(coeff->t_slope), 100000000); t_intercept = div64_s64(drm_int2fixp(coeff->t_intercept), 100000000); av = div64_s64(drm_int2fixp(coeff->av), 100000000); bv = div64_s64(drm_int2fixp(coeff->bv), 100000000); t_ref = drm_int2fixp(coeff->t_ref); tmp = drm_fixp_mul(t_slope, vddc) + t_intercept; kt = drm_fixp_exp(drm_fixp_mul(tmp, temperature)); kt = drm_fixp_div(kt, drm_fixp_exp(drm_fixp_mul(tmp, t_ref))); kv = drm_fixp_mul(av, drm_fixp_exp(drm_fixp_mul(bv, vddc))); leakage_w = drm_fixp_mul(drm_fixp_mul(drm_fixp_mul(i_leakage, kt), kv), vddc); *leakage = drm_fixp2int(leakage_w * 1000); } static void si_calculate_leakage_for_v_and_t(struct amdgpu_device *adev, const struct ni_leakage_coeffients *coeff, u16 v, s32 t, u32 i_leakage, u32 *leakage) { si_calculate_leakage_for_v_and_t_formula(coeff, v, t, i_leakage, leakage); } static void si_calculate_leakage_for_v_formula(const struct ni_leakage_coeffients *coeff, const u32 fixed_kt, u16 v, u32 ileakage, u32 *leakage) { s64 kt, kv, leakage_w, i_leakage, vddc; i_leakage = div64_s64(drm_int2fixp(ileakage), 100); vddc = div64_s64(drm_int2fixp(v), 1000); kt = div64_s64(drm_int2fixp(fixed_kt), 100000000); kv = drm_fixp_mul(div64_s64(drm_int2fixp(coeff->av), 100000000), drm_fixp_exp(drm_fixp_mul(div64_s64(drm_int2fixp(coeff->bv), 100000000), vddc))); leakage_w = drm_fixp_mul(drm_fixp_mul(drm_fixp_mul(i_leakage, kt), kv), vddc); *leakage = drm_fixp2int(leakage_w * 1000); } static void si_calculate_leakage_for_v(struct amdgpu_device *adev, const struct ni_leakage_coeffients *coeff, const u32 fixed_kt, u16 v, u32 i_leakage, u32 *leakage) { si_calculate_leakage_for_v_formula(coeff, fixed_kt, v, i_leakage, leakage); } static void si_update_dte_from_pl2(struct amdgpu_device *adev, struct si_dte_data *dte_data) { u32 p_limit1 = adev->pm.dpm.tdp_limit; u32 p_limit2 = adev->pm.dpm.near_tdp_limit; u32 k = dte_data->k; u32 t_max = dte_data->max_t; u32 t_split[5] = { 10, 15, 20, 25, 30 }; u32 t_0 = dte_data->t0; u32 i; if (p_limit2 != 0 && p_limit2 <= p_limit1) { dte_data->tdep_count = 3; for (i = 0; i < k; i++) { dte_data->r[i] = (t_split[i] * (t_max - t_0/(u32)1000) * (1 << 14)) / (p_limit2 * (u32)100); } dte_data->tdep_r[1] = dte_data->r[4] * 2; for (i = 2; i < SMC_SISLANDS_DTE_MAX_TEMPERATURE_DEPENDENT_ARRAY_SIZE; i++) { dte_data->tdep_r[i] = dte_data->r[4]; } } else { DRM_ERROR("Invalid PL2! DTE will not be updated.\n"); } } static struct rv7xx_power_info *rv770_get_pi(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = adev->pm.dpm.priv; return pi; } static struct ni_power_info *ni_get_pi(struct amdgpu_device *adev) { struct ni_power_info *pi = adev->pm.dpm.priv; return pi; } static struct si_ps *si_get_ps(struct amdgpu_ps *aps) { struct si_ps *ps = aps->ps_priv; return ps; } static void si_initialize_powertune_defaults(struct amdgpu_device *adev) { struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); bool update_dte_from_pl2 = false; if (adev->asic_type == CHIP_TAHITI) { si_pi->cac_weights = cac_weights_tahiti; si_pi->lcac_config = lcac_tahiti; si_pi->cac_override = cac_override_tahiti; si_pi->powertune_data = &powertune_data_tahiti; si_pi->dte_data = dte_data_tahiti; switch (adev->pdev->device) { case 0x6798: si_pi->dte_data.enable_dte_by_default = true; break; case 0x6799: si_pi->dte_data = dte_data_new_zealand; break; case 0x6790: case 0x6791: case 0x6792: case 0x679E: si_pi->dte_data = dte_data_aruba_pro; update_dte_from_pl2 = true; break; case 0x679B: si_pi->dte_data = dte_data_malta; update_dte_from_pl2 = true; break; case 0x679A: si_pi->dte_data = dte_data_tahiti_pro; update_dte_from_pl2 = true; break; default: if (si_pi->dte_data.enable_dte_by_default == true) DRM_ERROR("DTE is not enabled!\n"); break; } } else if (adev->asic_type == CHIP_PITCAIRN) { si_pi->cac_weights = cac_weights_pitcairn; si_pi->lcac_config = lcac_pitcairn; si_pi->cac_override = cac_override_pitcairn; si_pi->powertune_data = &powertune_data_pitcairn; switch (adev->pdev->device) { case 0x6810: case 0x6818: si_pi->dte_data = dte_data_curacao_xt; update_dte_from_pl2 = true; break; case 0x6819: case 0x6811: si_pi->dte_data = dte_data_curacao_pro; update_dte_from_pl2 = true; break; case 0x6800: case 0x6806: si_pi->dte_data = dte_data_neptune_xt; update_dte_from_pl2 = true; break; default: si_pi->dte_data = dte_data_pitcairn; break; } } else if (adev->asic_type == CHIP_VERDE) { si_pi->lcac_config = lcac_cape_verde; si_pi->cac_override = cac_override_cape_verde; si_pi->powertune_data = &powertune_data_cape_verde; switch (adev->pdev->device) { case 0x683B: case 0x683F: case 0x6829: case 0x6835: si_pi->cac_weights = cac_weights_cape_verde_pro; si_pi->dte_data = dte_data_cape_verde; break; case 0x682C: si_pi->cac_weights = cac_weights_cape_verde_pro; si_pi->dte_data = dte_data_sun_xt; update_dte_from_pl2 = true; break; case 0x6825: case 0x6827: si_pi->cac_weights = cac_weights_heathrow; si_pi->dte_data = dte_data_cape_verde; break; case 0x6824: case 0x682D: si_pi->cac_weights = cac_weights_chelsea_xt; si_pi->dte_data = dte_data_cape_verde; break; case 0x682F: si_pi->cac_weights = cac_weights_chelsea_pro; si_pi->dte_data = dte_data_cape_verde; break; case 0x6820: si_pi->cac_weights = cac_weights_heathrow; si_pi->dte_data = dte_data_venus_xtx; break; case 0x6821: si_pi->cac_weights = cac_weights_heathrow; si_pi->dte_data = dte_data_venus_xt; break; case 0x6823: case 0x682B: case 0x6822: case 0x682A: si_pi->cac_weights = cac_weights_chelsea_pro; si_pi->dte_data = dte_data_venus_pro; break; default: si_pi->cac_weights = cac_weights_cape_verde; si_pi->dte_data = dte_data_cape_verde; break; } } else if (adev->asic_type == CHIP_OLAND) { si_pi->lcac_config = lcac_mars_pro; si_pi->cac_override = cac_override_oland; si_pi->powertune_data = &powertune_data_mars_pro; si_pi->dte_data = dte_data_mars_pro; switch (adev->pdev->device) { case 0x6601: case 0x6621: case 0x6603: case 0x6605: si_pi->cac_weights = cac_weights_mars_pro; update_dte_from_pl2 = true; break; case 0x6600: case 0x6606: case 0x6620: case 0x6604: si_pi->cac_weights = cac_weights_mars_xt; update_dte_from_pl2 = true; break; case 0x6611: case 0x6613: case 0x6608: si_pi->cac_weights = cac_weights_oland_pro; update_dte_from_pl2 = true; break; case 0x6610: si_pi->cac_weights = cac_weights_oland_xt; update_dte_from_pl2 = true; break; default: si_pi->cac_weights = cac_weights_oland; si_pi->lcac_config = lcac_oland; si_pi->cac_override = cac_override_oland; si_pi->powertune_data = &powertune_data_oland; si_pi->dte_data = dte_data_oland; break; } } else if (adev->asic_type == CHIP_HAINAN) { si_pi->cac_weights = cac_weights_hainan; si_pi->lcac_config = lcac_oland; si_pi->cac_override = cac_override_oland; si_pi->powertune_data = &powertune_data_hainan; si_pi->dte_data = dte_data_sun_xt; update_dte_from_pl2 = true; } else { DRM_ERROR("Unknown SI asic revision, failed to initialize PowerTune!\n"); return; } ni_pi->enable_power_containment = false; ni_pi->enable_cac = false; ni_pi->enable_sq_ramping = false; si_pi->enable_dte = false; if (si_pi->powertune_data->enable_powertune_by_default) { ni_pi->enable_power_containment = true; ni_pi->enable_cac = true; if (si_pi->dte_data.enable_dte_by_default) { si_pi->enable_dte = true; if (update_dte_from_pl2) si_update_dte_from_pl2(adev, &si_pi->dte_data); } ni_pi->enable_sq_ramping = true; } ni_pi->driver_calculate_cac_leakage = true; ni_pi->cac_configuration_required = true; if (ni_pi->cac_configuration_required) { ni_pi->support_cac_long_term_average = true; si_pi->dyn_powertune_data.l2_lta_window_size = si_pi->powertune_data->l2_lta_window_size_default; si_pi->dyn_powertune_data.lts_truncate = si_pi->powertune_data->lts_truncate_default; } else { ni_pi->support_cac_long_term_average = false; si_pi->dyn_powertune_data.l2_lta_window_size = 0; si_pi->dyn_powertune_data.lts_truncate = 0; } si_pi->dyn_powertune_data.disable_uvd_powertune = false; } static u32 si_get_smc_power_scaling_factor(struct amdgpu_device *adev) { return 1; } static u32 si_calculate_cac_wintime(struct amdgpu_device *adev) { u32 xclk; u32 wintime; u32 cac_window; u32 cac_window_size; xclk = amdgpu_asic_get_xclk(adev); if (xclk == 0) return 0; cac_window = RREG32(CG_CAC_CTRL) & CAC_WINDOW_MASK; cac_window_size = ((cac_window & 0xFFFF0000) >> 16) * (cac_window & 0x0000FFFF); wintime = (cac_window_size * 100) / xclk; return wintime; } static u32 si_scale_power_for_smc(u32 power_in_watts, u32 scaling_factor) { return power_in_watts; } static int si_calculate_adjusted_tdp_limits(struct amdgpu_device *adev, bool adjust_polarity, u32 tdp_adjustment, u32 *tdp_limit, u32 *near_tdp_limit) { u32 adjustment_delta, max_tdp_limit; if (tdp_adjustment > (u32)adev->pm.dpm.tdp_od_limit) return -EINVAL; max_tdp_limit = ((100 + 100) * adev->pm.dpm.tdp_limit) / 100; if (adjust_polarity) { *tdp_limit = ((100 + tdp_adjustment) * adev->pm.dpm.tdp_limit) / 100; *near_tdp_limit = adev->pm.dpm.near_tdp_limit_adjusted + (*tdp_limit - adev->pm.dpm.tdp_limit); } else { *tdp_limit = ((100 - tdp_adjustment) * adev->pm.dpm.tdp_limit) / 100; adjustment_delta = adev->pm.dpm.tdp_limit - *tdp_limit; if (adjustment_delta < adev->pm.dpm.near_tdp_limit_adjusted) *near_tdp_limit = adev->pm.dpm.near_tdp_limit_adjusted - adjustment_delta; else *near_tdp_limit = 0; } if ((*tdp_limit <= 0) || (*tdp_limit > max_tdp_limit)) return -EINVAL; if ((*near_tdp_limit <= 0) || (*near_tdp_limit > *tdp_limit)) return -EINVAL; return 0; } static int si_populate_smc_tdp_limits(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state) { struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); if (ni_pi->enable_power_containment) { SISLANDS_SMC_STATETABLE *smc_table = &si_pi->smc_statetable; PP_SIslands_PAPMParameters *papm_parm; struct amdgpu_ppm_table *ppm = adev->pm.dpm.dyn_state.ppm_table; u32 scaling_factor = si_get_smc_power_scaling_factor(adev); u32 tdp_limit; u32 near_tdp_limit; int ret; if (scaling_factor == 0) return -EINVAL; memset(smc_table, 0, sizeof(SISLANDS_SMC_STATETABLE)); ret = si_calculate_adjusted_tdp_limits(adev, false, /* ??? */ adev->pm.dpm.tdp_adjustment, &tdp_limit, &near_tdp_limit); if (ret) return ret; smc_table->dpm2Params.TDPLimit = cpu_to_be32(si_scale_power_for_smc(tdp_limit, scaling_factor) * 1000); smc_table->dpm2Params.NearTDPLimit = cpu_to_be32(si_scale_power_for_smc(near_tdp_limit, scaling_factor) * 1000); smc_table->dpm2Params.SafePowerLimit = cpu_to_be32(si_scale_power_for_smc((near_tdp_limit * SISLANDS_DPM2_TDP_SAFE_LIMIT_PERCENT) / 100, scaling_factor) * 1000); ret = amdgpu_si_copy_bytes_to_smc(adev, (si_pi->state_table_start + offsetof(SISLANDS_SMC_STATETABLE, dpm2Params) + offsetof(PP_SIslands_DPM2Parameters, TDPLimit)), (u8 *)(&(smc_table->dpm2Params.TDPLimit)), sizeof(u32) * 3, si_pi->sram_end); if (ret) return ret; if (si_pi->enable_ppm) { papm_parm = &si_pi->papm_parm; memset(papm_parm, 0, sizeof(PP_SIslands_PAPMParameters)); papm_parm->NearTDPLimitTherm = cpu_to_be32(ppm->dgpu_tdp); papm_parm->dGPU_T_Limit = cpu_to_be32(ppm->tj_max); papm_parm->dGPU_T_Warning = cpu_to_be32(95); papm_parm->dGPU_T_Hysteresis = cpu_to_be32(5); papm_parm->PlatformPowerLimit = 0xffffffff; papm_parm->NearTDPLimitPAPM = 0xffffffff; ret = amdgpu_si_copy_bytes_to_smc(adev, si_pi->papm_cfg_table_start, (u8 *)papm_parm, sizeof(PP_SIslands_PAPMParameters), si_pi->sram_end); if (ret) return ret; } } return 0; } static int si_populate_smc_tdp_limits_2(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state) { struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); if (ni_pi->enable_power_containment) { SISLANDS_SMC_STATETABLE *smc_table = &si_pi->smc_statetable; u32 scaling_factor = si_get_smc_power_scaling_factor(adev); int ret; memset(smc_table, 0, sizeof(SISLANDS_SMC_STATETABLE)); smc_table->dpm2Params.NearTDPLimit = cpu_to_be32(si_scale_power_for_smc(adev->pm.dpm.near_tdp_limit_adjusted, scaling_factor) * 1000); smc_table->dpm2Params.SafePowerLimit = cpu_to_be32(si_scale_power_for_smc((adev->pm.dpm.near_tdp_limit_adjusted * SISLANDS_DPM2_TDP_SAFE_LIMIT_PERCENT) / 100, scaling_factor) * 1000); ret = amdgpu_si_copy_bytes_to_smc(adev, (si_pi->state_table_start + offsetof(SISLANDS_SMC_STATETABLE, dpm2Params) + offsetof(PP_SIslands_DPM2Parameters, NearTDPLimit)), (u8 *)(&(smc_table->dpm2Params.NearTDPLimit)), sizeof(u32) * 2, si_pi->sram_end); if (ret) return ret; } return 0; } static u16 si_calculate_power_efficiency_ratio(struct amdgpu_device *adev, const u16 prev_std_vddc, const u16 curr_std_vddc) { u64 margin = (u64)SISLANDS_DPM2_PWREFFICIENCYRATIO_MARGIN; u64 prev_vddc = (u64)prev_std_vddc; u64 curr_vddc = (u64)curr_std_vddc; u64 pwr_efficiency_ratio, n, d; if ((prev_vddc == 0) || (curr_vddc == 0)) return 0; n = div64_u64((u64)1024 * curr_vddc * curr_vddc * ((u64)1000 + margin), (u64)1000); d = prev_vddc * prev_vddc; pwr_efficiency_ratio = div64_u64(n, d); if (pwr_efficiency_ratio > (u64)0xFFFF) return 0; return (u16)pwr_efficiency_ratio; } static bool si_should_disable_uvd_powertune(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state) { struct si_power_info *si_pi = si_get_pi(adev); if (si_pi->dyn_powertune_data.disable_uvd_powertune && amdgpu_state->vclk && amdgpu_state->dclk) return true; return false; } struct evergreen_power_info *evergreen_get_pi(struct amdgpu_device *adev) { struct evergreen_power_info *pi = adev->pm.dpm.priv; return pi; } static int si_populate_power_containment_values(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state, SISLANDS_SMC_SWSTATE *smc_state) { struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_ps *state = si_get_ps(amdgpu_state); SISLANDS_SMC_VOLTAGE_VALUE vddc; u32 prev_sclk; u32 max_sclk; u32 min_sclk; u16 prev_std_vddc; u16 curr_std_vddc; int i; u16 pwr_efficiency_ratio; u8 max_ps_percent; bool disable_uvd_power_tune; int ret; if (ni_pi->enable_power_containment == false) return 0; if (state->performance_level_count == 0) return -EINVAL; if (smc_state->levelCount != state->performance_level_count) return -EINVAL; disable_uvd_power_tune = si_should_disable_uvd_powertune(adev, amdgpu_state); smc_state->levels[0].dpm2.MaxPS = 0; smc_state->levels[0].dpm2.NearTDPDec = 0; smc_state->levels[0].dpm2.AboveSafeInc = 0; smc_state->levels[0].dpm2.BelowSafeInc = 0; smc_state->levels[0].dpm2.PwrEfficiencyRatio = 0; for (i = 1; i < state->performance_level_count; i++) { prev_sclk = state->performance_levels[i-1].sclk; max_sclk = state->performance_levels[i].sclk; if (i == 1) max_ps_percent = SISLANDS_DPM2_MAXPS_PERCENT_M; else max_ps_percent = SISLANDS_DPM2_MAXPS_PERCENT_H; if (prev_sclk > max_sclk) return -EINVAL; if ((max_ps_percent == 0) || (prev_sclk == max_sclk) || disable_uvd_power_tune) min_sclk = max_sclk; else if (i == 1) min_sclk = prev_sclk; else min_sclk = (prev_sclk * (u32)max_ps_percent) / 100; if (min_sclk < state->performance_levels[0].sclk) min_sclk = state->performance_levels[0].sclk; if (min_sclk == 0) return -EINVAL; ret = si_populate_voltage_value(adev, &eg_pi->vddc_voltage_table, state->performance_levels[i-1].vddc, &vddc); if (ret) return ret; ret = si_get_std_voltage_value(adev, &vddc, &prev_std_vddc); if (ret) return ret; ret = si_populate_voltage_value(adev, &eg_pi->vddc_voltage_table, state->performance_levels[i].vddc, &vddc); if (ret) return ret; ret = si_get_std_voltage_value(adev, &vddc, &curr_std_vddc); if (ret) return ret; pwr_efficiency_ratio = si_calculate_power_efficiency_ratio(adev, prev_std_vddc, curr_std_vddc); smc_state->levels[i].dpm2.MaxPS = (u8)((SISLANDS_DPM2_MAX_PULSE_SKIP * (max_sclk - min_sclk)) / max_sclk); smc_state->levels[i].dpm2.NearTDPDec = SISLANDS_DPM2_NEAR_TDP_DEC; smc_state->levels[i].dpm2.AboveSafeInc = SISLANDS_DPM2_ABOVE_SAFE_INC; smc_state->levels[i].dpm2.BelowSafeInc = SISLANDS_DPM2_BELOW_SAFE_INC; smc_state->levels[i].dpm2.PwrEfficiencyRatio = cpu_to_be16(pwr_efficiency_ratio); } return 0; } static int si_populate_sq_ramping_values(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state, SISLANDS_SMC_SWSTATE *smc_state) { struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_ps *state = si_get_ps(amdgpu_state); u32 sq_power_throttle, sq_power_throttle2; bool enable_sq_ramping = ni_pi->enable_sq_ramping; int i; if (state->performance_level_count == 0) return -EINVAL; if (smc_state->levelCount != state->performance_level_count) return -EINVAL; if (adev->pm.dpm.sq_ramping_threshold == 0) return -EINVAL; if (SISLANDS_DPM2_SQ_RAMP_MAX_POWER > (MAX_POWER_MASK >> MAX_POWER_SHIFT)) enable_sq_ramping = false; if (SISLANDS_DPM2_SQ_RAMP_MIN_POWER > (MIN_POWER_MASK >> MIN_POWER_SHIFT)) enable_sq_ramping = false; if (SISLANDS_DPM2_SQ_RAMP_MAX_POWER_DELTA > (MAX_POWER_DELTA_MASK >> MAX_POWER_DELTA_SHIFT)) enable_sq_ramping = false; if (SISLANDS_DPM2_SQ_RAMP_STI_SIZE > (STI_SIZE_MASK >> STI_SIZE_SHIFT)) enable_sq_ramping = false; if (SISLANDS_DPM2_SQ_RAMP_LTI_RATIO > (LTI_RATIO_MASK >> LTI_RATIO_SHIFT)) enable_sq_ramping = false; for (i = 0; i < state->performance_level_count; i++) { sq_power_throttle = 0; sq_power_throttle2 = 0; if ((state->performance_levels[i].sclk >= adev->pm.dpm.sq_ramping_threshold) && enable_sq_ramping) { sq_power_throttle |= MAX_POWER(SISLANDS_DPM2_SQ_RAMP_MAX_POWER); sq_power_throttle |= MIN_POWER(SISLANDS_DPM2_SQ_RAMP_MIN_POWER); sq_power_throttle2 |= MAX_POWER_DELTA(SISLANDS_DPM2_SQ_RAMP_MAX_POWER_DELTA); sq_power_throttle2 |= STI_SIZE(SISLANDS_DPM2_SQ_RAMP_STI_SIZE); sq_power_throttle2 |= LTI_RATIO(SISLANDS_DPM2_SQ_RAMP_LTI_RATIO); } else { sq_power_throttle |= MAX_POWER_MASK | MIN_POWER_MASK; sq_power_throttle2 |= MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK; } smc_state->levels[i].SQPowerThrottle = cpu_to_be32(sq_power_throttle); smc_state->levels[i].SQPowerThrottle_2 = cpu_to_be32(sq_power_throttle2); } return 0; } static int si_enable_power_containment(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state, bool enable) { struct ni_power_info *ni_pi = ni_get_pi(adev); PPSMC_Result smc_result; int ret = 0; if (ni_pi->enable_power_containment) { if (enable) { if (!si_should_disable_uvd_powertune(adev, amdgpu_new_state)) { smc_result = amdgpu_si_send_msg_to_smc(adev, PPSMC_TDPClampingActive); if (smc_result != PPSMC_Result_OK) { ret = -EINVAL; ni_pi->pc_enabled = false; } else { ni_pi->pc_enabled = true; } } } else { smc_result = amdgpu_si_send_msg_to_smc(adev, PPSMC_TDPClampingInactive); if (smc_result != PPSMC_Result_OK) ret = -EINVAL; ni_pi->pc_enabled = false; } } return ret; } static int si_initialize_smc_dte_tables(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); int ret = 0; struct si_dte_data *dte_data = &si_pi->dte_data; Smc_SIslands_DTE_Configuration *dte_tables = NULL; u32 table_size; u8 tdep_count; u32 i; if (dte_data == NULL) si_pi->enable_dte = false; if (si_pi->enable_dte == false) return 0; if (dte_data->k <= 0) return -EINVAL; dte_tables = kzalloc(sizeof(Smc_SIslands_DTE_Configuration), GFP_KERNEL); if (dte_tables == NULL) { si_pi->enable_dte = false; return -ENOMEM; } table_size = dte_data->k; if (table_size > SMC_SISLANDS_DTE_MAX_FILTER_STAGES) table_size = SMC_SISLANDS_DTE_MAX_FILTER_STAGES; tdep_count = dte_data->tdep_count; if (tdep_count > SMC_SISLANDS_DTE_MAX_TEMPERATURE_DEPENDENT_ARRAY_SIZE) tdep_count = SMC_SISLANDS_DTE_MAX_TEMPERATURE_DEPENDENT_ARRAY_SIZE; dte_tables->K = cpu_to_be32(table_size); dte_tables->T0 = cpu_to_be32(dte_data->t0); dte_tables->MaxT = cpu_to_be32(dte_data->max_t); dte_tables->WindowSize = dte_data->window_size; dte_tables->temp_select = dte_data->temp_select; dte_tables->DTE_mode = dte_data->dte_mode; dte_tables->Tthreshold = cpu_to_be32(dte_data->t_threshold); if (tdep_count > 0) table_size--; for (i = 0; i < table_size; i++) { dte_tables->tau[i] = cpu_to_be32(dte_data->tau[i]); dte_tables->R[i] = cpu_to_be32(dte_data->r[i]); } dte_tables->Tdep_count = tdep_count; for (i = 0; i < (u32)tdep_count; i++) { dte_tables->T_limits[i] = dte_data->t_limits[i]; dte_tables->Tdep_tau[i] = cpu_to_be32(dte_data->tdep_tau[i]); dte_tables->Tdep_R[i] = cpu_to_be32(dte_data->tdep_r[i]); } ret = amdgpu_si_copy_bytes_to_smc(adev, si_pi->dte_table_start, (u8 *)dte_tables, sizeof(Smc_SIslands_DTE_Configuration), si_pi->sram_end); kfree(dte_tables); return ret; } static int si_get_cac_std_voltage_max_min(struct amdgpu_device *adev, u16 *max, u16 *min) { struct si_power_info *si_pi = si_get_pi(adev); struct amdgpu_cac_leakage_table *table = &adev->pm.dpm.dyn_state.cac_leakage_table; u32 i; u32 v0_loadline; if (table == NULL) return -EINVAL; *max = 0; *min = 0xFFFF; for (i = 0; i < table->count; i++) { if (table->entries[i].vddc > *max) *max = table->entries[i].vddc; if (table->entries[i].vddc < *min) *min = table->entries[i].vddc; } if (si_pi->powertune_data->lkge_lut_v0_percent > 100) return -EINVAL; v0_loadline = (*min) * (100 - si_pi->powertune_data->lkge_lut_v0_percent) / 100; if (v0_loadline > 0xFFFFUL) return -EINVAL; *min = (u16)v0_loadline; if ((*min > *max) || (*max == 0) || (*min == 0)) return -EINVAL; return 0; } static u16 si_get_cac_std_voltage_step(u16 max, u16 min) { return ((max - min) + (SMC_SISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES - 1)) / SMC_SISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; } static int si_init_dte_leakage_table(struct amdgpu_device *adev, PP_SIslands_CacConfig *cac_tables, u16 vddc_max, u16 vddc_min, u16 vddc_step, u16 t0, u16 t_step) { struct si_power_info *si_pi = si_get_pi(adev); u32 leakage; unsigned int i, j; s32 t; u32 smc_leakage; u32 scaling_factor; u16 voltage; scaling_factor = si_get_smc_power_scaling_factor(adev); for (i = 0; i < SMC_SISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES ; i++) { t = (1000 * (i * t_step + t0)); for (j = 0; j < SMC_SISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; j++) { voltage = vddc_max - (vddc_step * j); si_calculate_leakage_for_v_and_t(adev, &si_pi->powertune_data->leakage_coefficients, voltage, t, si_pi->dyn_powertune_data.cac_leakage, &leakage); smc_leakage = si_scale_power_for_smc(leakage, scaling_factor) / 4; if (smc_leakage > 0xFFFF) smc_leakage = 0xFFFF; cac_tables->cac_lkge_lut[i][SMC_SISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES-1-j] = cpu_to_be16((u16)smc_leakage); } } return 0; } static int si_init_simplified_leakage_table(struct amdgpu_device *adev, PP_SIslands_CacConfig *cac_tables, u16 vddc_max, u16 vddc_min, u16 vddc_step) { struct si_power_info *si_pi = si_get_pi(adev); u32 leakage; unsigned int i, j; u32 smc_leakage; u32 scaling_factor; u16 voltage; scaling_factor = si_get_smc_power_scaling_factor(adev); for (j = 0; j < SMC_SISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES; j++) { voltage = vddc_max - (vddc_step * j); si_calculate_leakage_for_v(adev, &si_pi->powertune_data->leakage_coefficients, si_pi->powertune_data->fixed_kt, voltage, si_pi->dyn_powertune_data.cac_leakage, &leakage); smc_leakage = si_scale_power_for_smc(leakage, scaling_factor) / 4; if (smc_leakage > 0xFFFF) smc_leakage = 0xFFFF; for (i = 0; i < SMC_SISLANDS_LKGE_LUT_NUM_OF_TEMP_ENTRIES ; i++) cac_tables->cac_lkge_lut[i][SMC_SISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES-1-j] = cpu_to_be16((u16)smc_leakage); } return 0; } static int si_initialize_smc_cac_tables(struct amdgpu_device *adev) { struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); PP_SIslands_CacConfig *cac_tables = NULL; u16 vddc_max, vddc_min, vddc_step; u16 t0, t_step; u32 load_line_slope, reg; int ret = 0; u32 ticks_per_us = amdgpu_asic_get_xclk(adev) / 100; if (ni_pi->enable_cac == false) return 0; cac_tables = kzalloc(sizeof(PP_SIslands_CacConfig), GFP_KERNEL); if (!cac_tables) return -ENOMEM; reg = RREG32(CG_CAC_CTRL) & ~CAC_WINDOW_MASK; reg |= CAC_WINDOW(si_pi->powertune_data->cac_window); WREG32(CG_CAC_CTRL, reg); si_pi->dyn_powertune_data.cac_leakage = adev->pm.dpm.cac_leakage; si_pi->dyn_powertune_data.dc_pwr_value = si_pi->powertune_data->dc_cac[NISLANDS_DCCAC_LEVEL_0]; si_pi->dyn_powertune_data.wintime = si_calculate_cac_wintime(adev); si_pi->dyn_powertune_data.shift_n = si_pi->powertune_data->shift_n_default; si_pi->dyn_powertune_data.leakage_minimum_temperature = 80 * 1000; ret = si_get_cac_std_voltage_max_min(adev, &vddc_max, &vddc_min); if (ret) goto done_free; vddc_step = si_get_cac_std_voltage_step(vddc_max, vddc_min); vddc_min = vddc_max - (vddc_step * (SMC_SISLANDS_LKGE_LUT_NUM_OF_VOLT_ENTRIES - 1)); t_step = 4; t0 = 60; if (si_pi->enable_dte || ni_pi->driver_calculate_cac_leakage) ret = si_init_dte_leakage_table(adev, cac_tables, vddc_max, vddc_min, vddc_step, t0, t_step); else ret = si_init_simplified_leakage_table(adev, cac_tables, vddc_max, vddc_min, vddc_step); if (ret) goto done_free; load_line_slope = ((u32)adev->pm.dpm.load_line_slope << SMC_SISLANDS_SCALE_R) / 100; cac_tables->l2numWin_TDP = cpu_to_be32(si_pi->dyn_powertune_data.l2_lta_window_size); cac_tables->lts_truncate_n = si_pi->dyn_powertune_data.lts_truncate; cac_tables->SHIFT_N = si_pi->dyn_powertune_data.shift_n; cac_tables->lkge_lut_V0 = cpu_to_be32((u32)vddc_min); cac_tables->lkge_lut_Vstep = cpu_to_be32((u32)vddc_step); cac_tables->R_LL = cpu_to_be32(load_line_slope); cac_tables->WinTime = cpu_to_be32(si_pi->dyn_powertune_data.wintime); cac_tables->calculation_repeats = cpu_to_be32(2); cac_tables->dc_cac = cpu_to_be32(0); cac_tables->log2_PG_LKG_SCALE = 12; cac_tables->cac_temp = si_pi->powertune_data->operating_temp; cac_tables->lkge_lut_T0 = cpu_to_be32((u32)t0); cac_tables->lkge_lut_Tstep = cpu_to_be32((u32)t_step); ret = amdgpu_si_copy_bytes_to_smc(adev, si_pi->cac_table_start, (u8 *)cac_tables, sizeof(PP_SIslands_CacConfig), si_pi->sram_end); if (ret) goto done_free; ret = si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_ticks_per_us, ticks_per_us); done_free: if (ret) { ni_pi->enable_cac = false; ni_pi->enable_power_containment = false; } kfree(cac_tables); return ret; } static int si_program_cac_config_registers(struct amdgpu_device *adev, const struct si_cac_config_reg *cac_config_regs) { const struct si_cac_config_reg *config_regs = cac_config_regs; u32 data = 0, offset; if (!config_regs) return -EINVAL; while (config_regs->offset != 0xFFFFFFFF) { switch (config_regs->type) { case SISLANDS_CACCONFIG_CGIND: offset = SMC_CG_IND_START + config_regs->offset; if (offset < SMC_CG_IND_END) data = RREG32_SMC(offset); break; default: data = RREG32(config_regs->offset); break; } data &= ~config_regs->mask; data |= ((config_regs->value << config_regs->shift) & config_regs->mask); switch (config_regs->type) { case SISLANDS_CACCONFIG_CGIND: offset = SMC_CG_IND_START + config_regs->offset; if (offset < SMC_CG_IND_END) WREG32_SMC(offset, data); break; default: WREG32(config_regs->offset, data); break; } config_regs++; } return 0; } static int si_initialize_hardware_cac_manager(struct amdgpu_device *adev) { struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); int ret; if ((ni_pi->enable_cac == false) || (ni_pi->cac_configuration_required == false)) return 0; ret = si_program_cac_config_registers(adev, si_pi->lcac_config); if (ret) return ret; ret = si_program_cac_config_registers(adev, si_pi->cac_override); if (ret) return ret; ret = si_program_cac_config_registers(adev, si_pi->cac_weights); if (ret) return ret; return 0; } static int si_enable_smc_cac(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state, bool enable) { struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); PPSMC_Result smc_result; int ret = 0; if (ni_pi->enable_cac) { if (enable) { if (!si_should_disable_uvd_powertune(adev, amdgpu_new_state)) { if (ni_pi->support_cac_long_term_average) { smc_result = amdgpu_si_send_msg_to_smc(adev, PPSMC_CACLongTermAvgEnable); if (smc_result != PPSMC_Result_OK) ni_pi->support_cac_long_term_average = false; } smc_result = amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_EnableCac); if (smc_result != PPSMC_Result_OK) { ret = -EINVAL; ni_pi->cac_enabled = false; } else { ni_pi->cac_enabled = true; } if (si_pi->enable_dte) { smc_result = amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_EnableDTE); if (smc_result != PPSMC_Result_OK) ret = -EINVAL; } } } else if (ni_pi->cac_enabled) { if (si_pi->enable_dte) smc_result = amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_DisableDTE); smc_result = amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_DisableCac); ni_pi->cac_enabled = false; if (ni_pi->support_cac_long_term_average) smc_result = amdgpu_si_send_msg_to_smc(adev, PPSMC_CACLongTermAvgDisable); } } return ret; } static int si_init_smc_spll_table(struct amdgpu_device *adev) { struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); SMC_SISLANDS_SPLL_DIV_TABLE *spll_table; SISLANDS_SMC_SCLK_VALUE sclk_params; u32 fb_div, p_div; u32 clk_s, clk_v; u32 sclk = 0; int ret = 0; u32 tmp; int i; if (si_pi->spll_table_start == 0) return -EINVAL; spll_table = kzalloc(sizeof(SMC_SISLANDS_SPLL_DIV_TABLE), GFP_KERNEL); if (spll_table == NULL) return -ENOMEM; for (i = 0; i < 256; i++) { ret = si_calculate_sclk_params(adev, sclk, &sclk_params); if (ret) break; p_div = (sclk_params.vCG_SPLL_FUNC_CNTL & SPLL_PDIV_A_MASK) >> SPLL_PDIV_A_SHIFT; fb_div = (sclk_params.vCG_SPLL_FUNC_CNTL_3 & SPLL_FB_DIV_MASK) >> SPLL_FB_DIV_SHIFT; clk_s = (sclk_params.vCG_SPLL_SPREAD_SPECTRUM & CLK_S_MASK) >> CLK_S_SHIFT; clk_v = (sclk_params.vCG_SPLL_SPREAD_SPECTRUM_2 & CLK_V_MASK) >> CLK_V_SHIFT; fb_div &= ~0x00001FFF; fb_div >>= 1; clk_v >>= 6; if (p_div & ~(SMC_SISLANDS_SPLL_DIV_TABLE_PDIV_MASK >> SMC_SISLANDS_SPLL_DIV_TABLE_PDIV_SHIFT)) ret = -EINVAL; if (fb_div & ~(SMC_SISLANDS_SPLL_DIV_TABLE_FBDIV_MASK >> SMC_SISLANDS_SPLL_DIV_TABLE_FBDIV_SHIFT)) ret = -EINVAL; if (clk_s & ~(SMC_SISLANDS_SPLL_DIV_TABLE_CLKS_MASK >> SMC_SISLANDS_SPLL_DIV_TABLE_CLKS_SHIFT)) ret = -EINVAL; if (clk_v & ~(SMC_SISLANDS_SPLL_DIV_TABLE_CLKV_MASK >> SMC_SISLANDS_SPLL_DIV_TABLE_CLKV_SHIFT)) ret = -EINVAL; if (ret) break; tmp = ((fb_div << SMC_SISLANDS_SPLL_DIV_TABLE_FBDIV_SHIFT) & SMC_SISLANDS_SPLL_DIV_TABLE_FBDIV_MASK) | ((p_div << SMC_SISLANDS_SPLL_DIV_TABLE_PDIV_SHIFT) & SMC_SISLANDS_SPLL_DIV_TABLE_PDIV_MASK); spll_table->freq[i] = cpu_to_be32(tmp); tmp = ((clk_v << SMC_SISLANDS_SPLL_DIV_TABLE_CLKV_SHIFT) & SMC_SISLANDS_SPLL_DIV_TABLE_CLKV_MASK) | ((clk_s << SMC_SISLANDS_SPLL_DIV_TABLE_CLKS_SHIFT) & SMC_SISLANDS_SPLL_DIV_TABLE_CLKS_MASK); spll_table->ss[i] = cpu_to_be32(tmp); sclk += 512; } if (!ret) ret = amdgpu_si_copy_bytes_to_smc(adev, si_pi->spll_table_start, (u8 *)spll_table, sizeof(SMC_SISLANDS_SPLL_DIV_TABLE), si_pi->sram_end); if (ret) ni_pi->enable_power_containment = false; kfree(spll_table); return ret; } static u16 si_get_lower_of_leakage_and_vce_voltage(struct amdgpu_device *adev, u16 vce_voltage) { u16 highest_leakage = 0; struct si_power_info *si_pi = si_get_pi(adev); int i; for (i = 0; i < si_pi->leakage_voltage.count; i++){ if (highest_leakage < si_pi->leakage_voltage.entries[i].voltage) highest_leakage = si_pi->leakage_voltage.entries[i].voltage; } if (si_pi->leakage_voltage.count && (highest_leakage < vce_voltage)) return highest_leakage; return vce_voltage; } static int si_get_vce_clock_voltage(struct amdgpu_device *adev, u32 evclk, u32 ecclk, u16 *voltage) { u32 i; int ret = -EINVAL; struct amdgpu_vce_clock_voltage_dependency_table *table = &adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; if (((evclk == 0) && (ecclk == 0)) || (table && (table->count == 0))) { *voltage = 0; return 0; } for (i = 0; i < table->count; i++) { if ((evclk <= table->entries[i].evclk) && (ecclk <= table->entries[i].ecclk)) { *voltage = table->entries[i].v; ret = 0; break; } } /* if no match return the highest voltage */ if (ret) *voltage = table->entries[table->count - 1].v; *voltage = si_get_lower_of_leakage_and_vce_voltage(adev, *voltage); return ret; } static bool si_dpm_vblank_too_short(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 vblank_time = amdgpu_dpm_get_vblank_time(adev); /* we never hit the non-gddr5 limit so disable it */ u32 switch_limit = adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5 ? 450 : 0; if (vblank_time < switch_limit) return true; else return false; } static int ni_copy_and_switch_arb_sets(struct amdgpu_device *adev, u32 arb_freq_src, u32 arb_freq_dest) { u32 mc_arb_dram_timing; u32 mc_arb_dram_timing2; u32 burst_time; u32 mc_cg_config; switch (arb_freq_src) { case MC_CG_ARB_FREQ_F0: mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING); mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2); burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE0_MASK) >> STATE0_SHIFT; break; case MC_CG_ARB_FREQ_F1: mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_1); mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_1); burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE1_MASK) >> STATE1_SHIFT; break; case MC_CG_ARB_FREQ_F2: mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_2); mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_2); burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE2_MASK) >> STATE2_SHIFT; break; case MC_CG_ARB_FREQ_F3: mc_arb_dram_timing = RREG32(MC_ARB_DRAM_TIMING_3); mc_arb_dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2_3); burst_time = (RREG32(MC_ARB_BURST_TIME) & STATE3_MASK) >> STATE3_SHIFT; break; default: return -EINVAL; } switch (arb_freq_dest) { case MC_CG_ARB_FREQ_F0: WREG32(MC_ARB_DRAM_TIMING, mc_arb_dram_timing); WREG32(MC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); WREG32_P(MC_ARB_BURST_TIME, STATE0(burst_time), ~STATE0_MASK); break; case MC_CG_ARB_FREQ_F1: WREG32(MC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); WREG32(MC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); WREG32_P(MC_ARB_BURST_TIME, STATE1(burst_time), ~STATE1_MASK); break; case MC_CG_ARB_FREQ_F2: WREG32(MC_ARB_DRAM_TIMING_2, mc_arb_dram_timing); WREG32(MC_ARB_DRAM_TIMING2_2, mc_arb_dram_timing2); WREG32_P(MC_ARB_BURST_TIME, STATE2(burst_time), ~STATE2_MASK); break; case MC_CG_ARB_FREQ_F3: WREG32(MC_ARB_DRAM_TIMING_3, mc_arb_dram_timing); WREG32(MC_ARB_DRAM_TIMING2_3, mc_arb_dram_timing2); WREG32_P(MC_ARB_BURST_TIME, STATE3(burst_time), ~STATE3_MASK); break; default: return -EINVAL; } mc_cg_config = RREG32(MC_CG_CONFIG) | 0x0000000F; WREG32(MC_CG_CONFIG, mc_cg_config); WREG32_P(MC_ARB_CG, CG_ARB_REQ(arb_freq_dest), ~CG_ARB_REQ_MASK); return 0; } static void ni_update_current_ps(struct amdgpu_device *adev, struct amdgpu_ps *rps) { struct si_ps *new_ps = si_get_ps(rps); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct ni_power_info *ni_pi = ni_get_pi(adev); eg_pi->current_rps = *rps; ni_pi->current_ps = *new_ps; eg_pi->current_rps.ps_priv = &ni_pi->current_ps; adev->pm.dpm.current_ps = &eg_pi->current_rps; } static void ni_update_requested_ps(struct amdgpu_device *adev, struct amdgpu_ps *rps) { struct si_ps *new_ps = si_get_ps(rps); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct ni_power_info *ni_pi = ni_get_pi(adev); eg_pi->requested_rps = *rps; ni_pi->requested_ps = *new_ps; eg_pi->requested_rps.ps_priv = &ni_pi->requested_ps; adev->pm.dpm.requested_ps = &eg_pi->requested_rps; } static void ni_set_uvd_clock_before_set_eng_clock(struct amdgpu_device *adev, struct amdgpu_ps *new_ps, struct amdgpu_ps *old_ps) { struct si_ps *new_state = si_get_ps(new_ps); struct si_ps *current_state = si_get_ps(old_ps); if ((new_ps->vclk == old_ps->vclk) && (new_ps->dclk == old_ps->dclk)) return; if (new_state->performance_levels[new_state->performance_level_count - 1].sclk >= current_state->performance_levels[current_state->performance_level_count - 1].sclk) return; amdgpu_asic_set_uvd_clocks(adev, new_ps->vclk, new_ps->dclk); } static void ni_set_uvd_clock_after_set_eng_clock(struct amdgpu_device *adev, struct amdgpu_ps *new_ps, struct amdgpu_ps *old_ps) { struct si_ps *new_state = si_get_ps(new_ps); struct si_ps *current_state = si_get_ps(old_ps); if ((new_ps->vclk == old_ps->vclk) && (new_ps->dclk == old_ps->dclk)) return; if (new_state->performance_levels[new_state->performance_level_count - 1].sclk < current_state->performance_levels[current_state->performance_level_count - 1].sclk) return; amdgpu_asic_set_uvd_clocks(adev, new_ps->vclk, new_ps->dclk); } static u16 btc_find_voltage(struct atom_voltage_table *table, u16 voltage) { unsigned int i; for (i = 0; i < table->count; i++) if (voltage <= table->entries[i].value) return table->entries[i].value; return table->entries[table->count - 1].value; } static u32 btc_find_valid_clock(struct amdgpu_clock_array *clocks, u32 max_clock, u32 requested_clock) { unsigned int i; if ((clocks == NULL) || (clocks->count == 0)) return (requested_clock < max_clock) ? requested_clock : max_clock; for (i = 0; i < clocks->count; i++) { if (clocks->values[i] >= requested_clock) return (clocks->values[i] < max_clock) ? clocks->values[i] : max_clock; } return (clocks->values[clocks->count - 1] < max_clock) ? clocks->values[clocks->count - 1] : max_clock; } static u32 btc_get_valid_mclk(struct amdgpu_device *adev, u32 max_mclk, u32 requested_mclk) { return btc_find_valid_clock(&adev->pm.dpm.dyn_state.valid_mclk_values, max_mclk, requested_mclk); } static u32 btc_get_valid_sclk(struct amdgpu_device *adev, u32 max_sclk, u32 requested_sclk) { return btc_find_valid_clock(&adev->pm.dpm.dyn_state.valid_sclk_values, max_sclk, requested_sclk); } static void btc_get_max_clock_from_voltage_dependency_table(struct amdgpu_clock_voltage_dependency_table *table, u32 *max_clock) { u32 i, clock = 0; if ((table == NULL) || (table->count == 0)) { *max_clock = clock; return; } for (i = 0; i < table->count; i++) { if (clock < table->entries[i].clk) clock = table->entries[i].clk; } *max_clock = clock; } static void btc_apply_voltage_dependency_rules(struct amdgpu_clock_voltage_dependency_table *table, u32 clock, u16 max_voltage, u16 *voltage) { u32 i; if ((table == NULL) || (table->count == 0)) return; for (i= 0; i < table->count; i++) { if (clock <= table->entries[i].clk) { if (*voltage < table->entries[i].v) *voltage = (u16)((table->entries[i].v < max_voltage) ? table->entries[i].v : max_voltage); return; } } *voltage = (*voltage > max_voltage) ? *voltage : max_voltage; } static void btc_adjust_clock_combinations(struct amdgpu_device *adev, const struct amdgpu_clock_and_voltage_limits *max_limits, struct rv7xx_pl *pl) { if ((pl->mclk == 0) || (pl->sclk == 0)) return; if (pl->mclk == pl->sclk) return; if (pl->mclk > pl->sclk) { if (((pl->mclk + (pl->sclk - 1)) / pl->sclk) > adev->pm.dpm.dyn_state.mclk_sclk_ratio) pl->sclk = btc_get_valid_sclk(adev, max_limits->sclk, (pl->mclk + (adev->pm.dpm.dyn_state.mclk_sclk_ratio - 1)) / adev->pm.dpm.dyn_state.mclk_sclk_ratio); } else { if ((pl->sclk - pl->mclk) > adev->pm.dpm.dyn_state.sclk_mclk_delta) pl->mclk = btc_get_valid_mclk(adev, max_limits->mclk, pl->sclk - adev->pm.dpm.dyn_state.sclk_mclk_delta); } } static void btc_apply_voltage_delta_rules(struct amdgpu_device *adev, u16 max_vddc, u16 max_vddci, u16 *vddc, u16 *vddci) { struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); u16 new_voltage; if ((0 == *vddc) || (0 == *vddci)) return; if (*vddc > *vddci) { if ((*vddc - *vddci) > adev->pm.dpm.dyn_state.vddc_vddci_delta) { new_voltage = btc_find_voltage(&eg_pi->vddci_voltage_table, (*vddc - adev->pm.dpm.dyn_state.vddc_vddci_delta)); *vddci = (new_voltage < max_vddci) ? new_voltage : max_vddci; } } else { if ((*vddci - *vddc) > adev->pm.dpm.dyn_state.vddc_vddci_delta) { new_voltage = btc_find_voltage(&eg_pi->vddc_voltage_table, (*vddci - adev->pm.dpm.dyn_state.vddc_vddci_delta)); *vddc = (new_voltage < max_vddc) ? new_voltage : max_vddc; } } } static void r600_calculate_u_and_p(u32 i, u32 r_c, u32 p_b, u32 *p, u32 *u) { u32 b_c = 0; u32 i_c; u32 tmp; i_c = (i * r_c) / 100; tmp = i_c >> p_b; while (tmp) { b_c++; tmp >>= 1; } *u = (b_c + 1) / 2; *p = i_c / (1 << (2 * (*u))); } static int r600_calculate_at(u32 t, u32 h, u32 fh, u32 fl, u32 *tl, u32 *th) { u32 k, a, ah, al; u32 t1; if ((fl == 0) || (fh == 0) || (fl > fh)) return -EINVAL; k = (100 * fh) / fl; t1 = (t * (k - 100)); a = (1000 * (100 * h + t1)) / (10000 + (t1 / 100)); a = (a + 5) / 10; ah = ((a * t) + 5000) / 10000; al = a - ah; *th = t - ah; *tl = t + al; return 0; } static bool r600_is_uvd_state(u32 class, u32 class2) { if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) return true; if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) return true; if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) return true; if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) return true; if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) return true; return false; } static u8 rv770_get_memory_module_index(struct amdgpu_device *adev) { return (u8) ((RREG32(BIOS_SCRATCH_4) >> 16) & 0xff); } static void rv770_get_max_vddc(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = rv770_get_pi(adev); u16 vddc; if (amdgpu_atombios_get_max_vddc(adev, 0, 0, &vddc)) pi->max_vddc = 0; else pi->max_vddc = vddc; } static void rv770_get_engine_memory_ss(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct amdgpu_atom_ss ss; pi->sclk_ss = amdgpu_atombios_get_asic_ss_info(adev, &ss, ASIC_INTERNAL_ENGINE_SS, 0); pi->mclk_ss = amdgpu_atombios_get_asic_ss_info(adev, &ss, ASIC_INTERNAL_MEMORY_SS, 0); if (pi->sclk_ss || pi->mclk_ss) pi->dynamic_ss = true; else pi->dynamic_ss = false; } static void si_apply_state_adjust_rules(struct amdgpu_device *adev, struct amdgpu_ps *rps) { struct si_ps *ps = si_get_ps(rps); struct amdgpu_clock_and_voltage_limits *max_limits; bool disable_mclk_switching = false; bool disable_sclk_switching = false; u32 mclk, sclk; u16 vddc, vddci, min_vce_voltage = 0; u32 max_sclk_vddc, max_mclk_vddci, max_mclk_vddc; u32 max_sclk = 0, max_mclk = 0; int i; if (adev->asic_type == CHIP_HAINAN) { if ((adev->pdev->revision == 0x81) || (adev->pdev->revision == 0xC3) || (adev->pdev->device == 0x6664) || (adev->pdev->device == 0x6665) || (adev->pdev->device == 0x6667)) { max_sclk = 75000; } if ((adev->pdev->revision == 0xC3) || (adev->pdev->device == 0x6665)) { max_sclk = 60000; max_mclk = 80000; } } else if (adev->asic_type == CHIP_OLAND) { if ((adev->pdev->revision == 0xC7) || (adev->pdev->revision == 0x80) || (adev->pdev->revision == 0x81) || (adev->pdev->revision == 0x83) || (adev->pdev->revision == 0x87) || (adev->pdev->device == 0x6604) || (adev->pdev->device == 0x6605)) { max_sclk = 75000; } } if (rps->vce_active) { rps->evclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].evclk; rps->ecclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].ecclk; si_get_vce_clock_voltage(adev, rps->evclk, rps->ecclk, &min_vce_voltage); } else { rps->evclk = 0; rps->ecclk = 0; } if ((adev->pm.dpm.new_active_crtc_count > 1) || si_dpm_vblank_too_short(adev)) disable_mclk_switching = true; if (rps->vclk || rps->dclk) { disable_mclk_switching = true; disable_sclk_switching = true; } if (adev->pm.ac_power) max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_ac; else max_limits = &adev->pm.dpm.dyn_state.max_clock_voltage_on_dc; for (i = ps->performance_level_count - 2; i >= 0; i--) { if (ps->performance_levels[i].vddc > ps->performance_levels[i+1].vddc) ps->performance_levels[i].vddc = ps->performance_levels[i+1].vddc; } if (adev->pm.ac_power == false) { for (i = 0; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].mclk > max_limits->mclk) ps->performance_levels[i].mclk = max_limits->mclk; if (ps->performance_levels[i].sclk > max_limits->sclk) ps->performance_levels[i].sclk = max_limits->sclk; if (ps->performance_levels[i].vddc > max_limits->vddc) ps->performance_levels[i].vddc = max_limits->vddc; if (ps->performance_levels[i].vddci > max_limits->vddci) ps->performance_levels[i].vddci = max_limits->vddci; } } /* limit clocks to max supported clocks based on voltage dependency tables */ btc_get_max_clock_from_voltage_dependency_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk, &max_sclk_vddc); btc_get_max_clock_from_voltage_dependency_table(&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk, &max_mclk_vddci); btc_get_max_clock_from_voltage_dependency_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk, &max_mclk_vddc); for (i = 0; i < ps->performance_level_count; i++) { if (max_sclk_vddc) { if (ps->performance_levels[i].sclk > max_sclk_vddc) ps->performance_levels[i].sclk = max_sclk_vddc; } if (max_mclk_vddci) { if (ps->performance_levels[i].mclk > max_mclk_vddci) ps->performance_levels[i].mclk = max_mclk_vddci; } if (max_mclk_vddc) { if (ps->performance_levels[i].mclk > max_mclk_vddc) ps->performance_levels[i].mclk = max_mclk_vddc; } if (max_mclk) { if (ps->performance_levels[i].mclk > max_mclk) ps->performance_levels[i].mclk = max_mclk; } if (max_sclk) { if (ps->performance_levels[i].sclk > max_sclk) ps->performance_levels[i].sclk = max_sclk; } } /* XXX validate the min clocks required for display */ if (disable_mclk_switching) { mclk = ps->performance_levels[ps->performance_level_count - 1].mclk; vddci = ps->performance_levels[ps->performance_level_count - 1].vddci; } else { mclk = ps->performance_levels[0].mclk; vddci = ps->performance_levels[0].vddci; } if (disable_sclk_switching) { sclk = ps->performance_levels[ps->performance_level_count - 1].sclk; vddc = ps->performance_levels[ps->performance_level_count - 1].vddc; } else { sclk = ps->performance_levels[0].sclk; vddc = ps->performance_levels[0].vddc; } if (rps->vce_active) { if (sclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk) sclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].sclk; if (mclk < adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].mclk) mclk = adev->pm.dpm.vce_states[adev->pm.dpm.vce_level].mclk; } /* adjusted low state */ ps->performance_levels[0].sclk = sclk; ps->performance_levels[0].mclk = mclk; ps->performance_levels[0].vddc = vddc; ps->performance_levels[0].vddci = vddci; if (disable_sclk_switching) { sclk = ps->performance_levels[0].sclk; for (i = 1; i < ps->performance_level_count; i++) { if (sclk < ps->performance_levels[i].sclk) sclk = ps->performance_levels[i].sclk; } for (i = 0; i < ps->performance_level_count; i++) { ps->performance_levels[i].sclk = sclk; ps->performance_levels[i].vddc = vddc; } } else { for (i = 1; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].sclk < ps->performance_levels[i - 1].sclk) ps->performance_levels[i].sclk = ps->performance_levels[i - 1].sclk; if (ps->performance_levels[i].vddc < ps->performance_levels[i - 1].vddc) ps->performance_levels[i].vddc = ps->performance_levels[i - 1].vddc; } } if (disable_mclk_switching) { mclk = ps->performance_levels[0].mclk; for (i = 1; i < ps->performance_level_count; i++) { if (mclk < ps->performance_levels[i].mclk) mclk = ps->performance_levels[i].mclk; } for (i = 0; i < ps->performance_level_count; i++) { ps->performance_levels[i].mclk = mclk; ps->performance_levels[i].vddci = vddci; } } else { for (i = 1; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].mclk < ps->performance_levels[i - 1].mclk) ps->performance_levels[i].mclk = ps->performance_levels[i - 1].mclk; if (ps->performance_levels[i].vddci < ps->performance_levels[i - 1].vddci) ps->performance_levels[i].vddci = ps->performance_levels[i - 1].vddci; } } for (i = 0; i < ps->performance_level_count; i++) btc_adjust_clock_combinations(adev, max_limits, &ps->performance_levels[i]); for (i = 0; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].vddc < min_vce_voltage) ps->performance_levels[i].vddc = min_vce_voltage; btc_apply_voltage_dependency_rules(&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk, ps->performance_levels[i].sclk, max_limits->vddc, &ps->performance_levels[i].vddc); btc_apply_voltage_dependency_rules(&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk, ps->performance_levels[i].mclk, max_limits->vddci, &ps->performance_levels[i].vddci); btc_apply_voltage_dependency_rules(&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk, ps->performance_levels[i].mclk, max_limits->vddc, &ps->performance_levels[i].vddc); btc_apply_voltage_dependency_rules(&adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk, adev->clock.current_dispclk, max_limits->vddc, &ps->performance_levels[i].vddc); } for (i = 0; i < ps->performance_level_count; i++) { btc_apply_voltage_delta_rules(adev, max_limits->vddc, max_limits->vddci, &ps->performance_levels[i].vddc, &ps->performance_levels[i].vddci); } ps->dc_compatible = true; for (i = 0; i < ps->performance_level_count; i++) { if (ps->performance_levels[i].vddc > adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc) ps->dc_compatible = false; } } #if 0 static int si_read_smc_soft_register(struct amdgpu_device *adev, u16 reg_offset, u32 *value) { struct si_power_info *si_pi = si_get_pi(adev); return amdgpu_si_read_smc_sram_dword(adev, si_pi->soft_regs_start + reg_offset, value, si_pi->sram_end); } #endif static int si_write_smc_soft_register(struct amdgpu_device *adev, u16 reg_offset, u32 value) { struct si_power_info *si_pi = si_get_pi(adev); return amdgpu_si_write_smc_sram_dword(adev, si_pi->soft_regs_start + reg_offset, value, si_pi->sram_end); } static bool si_is_special_1gb_platform(struct amdgpu_device *adev) { bool ret = false; u32 tmp, width, row, column, bank, density; bool is_memory_gddr5, is_special; tmp = RREG32(MC_SEQ_MISC0); is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE == ((tmp & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT)); is_special = (MC_SEQ_MISC0_REV_ID_VALUE == ((tmp & MC_SEQ_MISC0_REV_ID_MASK) >> MC_SEQ_MISC0_REV_ID_SHIFT)) & (MC_SEQ_MISC0_VEN_ID_VALUE == ((tmp & MC_SEQ_MISC0_VEN_ID_MASK) >> MC_SEQ_MISC0_VEN_ID_SHIFT)); WREG32(MC_SEQ_IO_DEBUG_INDEX, 0xb); width = ((RREG32(MC_SEQ_IO_DEBUG_DATA) >> 1) & 1) ? 16 : 32; tmp = RREG32(MC_ARB_RAMCFG); row = ((tmp & NOOFROWS_MASK) >> NOOFROWS_SHIFT) + 10; column = ((tmp & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT) + 8; bank = ((tmp & NOOFBANK_MASK) >> NOOFBANK_SHIFT) + 2; density = (1 << (row + column - 20 + bank)) * width; if ((adev->pdev->device == 0x6819) && is_memory_gddr5 && is_special && (density == 0x400)) ret = true; return ret; } static void si_get_leakage_vddc(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); u16 vddc, count = 0; int i, ret; for (i = 0; i < SISLANDS_MAX_LEAKAGE_COUNT; i++) { ret = amdgpu_atombios_get_leakage_vddc_based_on_leakage_idx(adev, &vddc, SISLANDS_LEAKAGE_INDEX0 + i); if (!ret && (vddc > 0) && (vddc != (SISLANDS_LEAKAGE_INDEX0 + i))) { si_pi->leakage_voltage.entries[count].voltage = vddc; si_pi->leakage_voltage.entries[count].leakage_index = SISLANDS_LEAKAGE_INDEX0 + i; count++; } } si_pi->leakage_voltage.count = count; } static int si_get_leakage_voltage_from_leakage_index(struct amdgpu_device *adev, u32 index, u16 *leakage_voltage) { struct si_power_info *si_pi = si_get_pi(adev); int i; if (leakage_voltage == NULL) return -EINVAL; if ((index & 0xff00) != 0xff00) return -EINVAL; if ((index & 0xff) > SISLANDS_MAX_LEAKAGE_COUNT + 1) return -EINVAL; if (index < SISLANDS_LEAKAGE_INDEX0) return -EINVAL; for (i = 0; i < si_pi->leakage_voltage.count; i++) { if (si_pi->leakage_voltage.entries[i].leakage_index == index) { *leakage_voltage = si_pi->leakage_voltage.entries[i].voltage; return 0; } } return -EAGAIN; } static void si_set_dpm_event_sources(struct amdgpu_device *adev, u32 sources) { struct rv7xx_power_info *pi = rv770_get_pi(adev); bool want_thermal_protection; enum si_dpm_event_src dpm_event_src; switch (sources) { case 0: default: want_thermal_protection = false; break; case (1 << SI_DPM_AUTO_THROTTLE_SRC_THERMAL): want_thermal_protection = true; dpm_event_src = SI_DPM_EVENT_SRC_DIGITAL; break; case (1 << SI_DPM_AUTO_THROTTLE_SRC_EXTERNAL): want_thermal_protection = true; dpm_event_src = SI_DPM_EVENT_SRC_EXTERNAL; break; case ((1 << SI_DPM_AUTO_THROTTLE_SRC_EXTERNAL) | (1 << SI_DPM_AUTO_THROTTLE_SRC_THERMAL)): want_thermal_protection = true; dpm_event_src = SI_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL; break; } if (want_thermal_protection) { WREG32_P(CG_THERMAL_CTRL, DPM_EVENT_SRC(dpm_event_src), ~DPM_EVENT_SRC_MASK); if (pi->thermal_protection) WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS); } else { WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS); } } static void si_enable_auto_throttle_source(struct amdgpu_device *adev, enum si_dpm_auto_throttle_src source, bool enable) { struct rv7xx_power_info *pi = rv770_get_pi(adev); if (enable) { if (!(pi->active_auto_throttle_sources & (1 << source))) { pi->active_auto_throttle_sources |= 1 << source; si_set_dpm_event_sources(adev, pi->active_auto_throttle_sources); } } else { if (pi->active_auto_throttle_sources & (1 << source)) { pi->active_auto_throttle_sources &= ~(1 << source); si_set_dpm_event_sources(adev, pi->active_auto_throttle_sources); } } } static void si_start_dpm(struct amdgpu_device *adev) { WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN); } static void si_stop_dpm(struct amdgpu_device *adev) { WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN); } static void si_enable_sclk_control(struct amdgpu_device *adev, bool enable) { if (enable) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~SCLK_PWRMGT_OFF); else WREG32_P(SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, ~SCLK_PWRMGT_OFF); } #if 0 static int si_notify_hardware_of_thermal_state(struct amdgpu_device *adev, u32 thermal_level) { PPSMC_Result ret; if (thermal_level == 0) { ret = amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_EnableThermalInterrupt); if (ret == PPSMC_Result_OK) return 0; else return -EINVAL; } return 0; } static void si_notify_hardware_vpu_recovery_event(struct amdgpu_device *adev) { si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_tdr_is_about_to_happen, true); } #endif #if 0 static int si_notify_hw_of_powersource(struct amdgpu_device *adev, bool ac_power) { if (ac_power) return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_RunningOnAC) == PPSMC_Result_OK) ? 0 : -EINVAL; return 0; } #endif static PPSMC_Result si_send_msg_to_smc_with_parameter(struct amdgpu_device *adev, PPSMC_Msg msg, u32 parameter) { WREG32(SMC_SCRATCH0, parameter); return amdgpu_si_send_msg_to_smc(adev, msg); } static int si_restrict_performance_levels_before_switch(struct amdgpu_device *adev) { if (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_NoForcedLevel) != PPSMC_Result_OK) return -EINVAL; return (si_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SetEnabledLevels, 1) == PPSMC_Result_OK) ? 0 : -EINVAL; } static int si_dpm_force_performance_level(void *handle, enum amd_dpm_forced_level level) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ps *rps = adev->pm.dpm.current_ps; struct si_ps *ps = si_get_ps(rps); u32 levels = ps->performance_level_count; if (level == AMD_DPM_FORCED_LEVEL_HIGH) { if (si_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SetEnabledLevels, levels) != PPSMC_Result_OK) return -EINVAL; if (si_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SetForcedLevels, 1) != PPSMC_Result_OK) return -EINVAL; } else if (level == AMD_DPM_FORCED_LEVEL_LOW) { if (si_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SetForcedLevels, 0) != PPSMC_Result_OK) return -EINVAL; if (si_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SetEnabledLevels, 1) != PPSMC_Result_OK) return -EINVAL; } else if (level == AMD_DPM_FORCED_LEVEL_AUTO) { if (si_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SetForcedLevels, 0) != PPSMC_Result_OK) return -EINVAL; if (si_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_SetEnabledLevels, levels) != PPSMC_Result_OK) return -EINVAL; } adev->pm.dpm.forced_level = level; return 0; } #if 0 static int si_set_boot_state(struct amdgpu_device *adev) { return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_SwitchToInitialState) == PPSMC_Result_OK) ? 0 : -EINVAL; } #endif static int si_set_sw_state(struct amdgpu_device *adev) { return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_SwitchToSwState) == PPSMC_Result_OK) ? 0 : -EINVAL; } static int si_halt_smc(struct amdgpu_device *adev) { if (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_Halt) != PPSMC_Result_OK) return -EINVAL; return (amdgpu_si_wait_for_smc_inactive(adev) == PPSMC_Result_OK) ? 0 : -EINVAL; } static int si_resume_smc(struct amdgpu_device *adev) { if (amdgpu_si_send_msg_to_smc(adev, PPSMC_FlushDataCache) != PPSMC_Result_OK) return -EINVAL; return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_Resume) == PPSMC_Result_OK) ? 0 : -EINVAL; } static void si_dpm_start_smc(struct amdgpu_device *adev) { amdgpu_si_program_jump_on_start(adev); amdgpu_si_start_smc(adev); amdgpu_si_smc_clock(adev, true); } static void si_dpm_stop_smc(struct amdgpu_device *adev) { amdgpu_si_reset_smc(adev); amdgpu_si_smc_clock(adev, false); } static int si_process_firmware_header(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); u32 tmp; int ret; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_stateTable, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->state_table_start = tmp; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_softRegisters, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->soft_regs_start = tmp; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_mcRegisterTable, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->mc_reg_table_start = tmp; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_fanTable, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->fan_table_start = tmp; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_mcArbDramAutoRefreshTable, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->arb_table_start = tmp; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_CacConfigTable, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->cac_table_start = tmp; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_DteConfiguration, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->dte_table_start = tmp; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_spllTable, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->spll_table_start = tmp; ret = amdgpu_si_read_smc_sram_dword(adev, SISLANDS_SMC_FIRMWARE_HEADER_LOCATION + SISLANDS_SMC_FIRMWARE_HEADER_PAPMParameters, &tmp, si_pi->sram_end); if (ret) return ret; si_pi->papm_cfg_table_start = tmp; return ret; } static void si_read_clock_registers(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); si_pi->clock_registers.cg_spll_func_cntl = RREG32(CG_SPLL_FUNC_CNTL); si_pi->clock_registers.cg_spll_func_cntl_2 = RREG32(CG_SPLL_FUNC_CNTL_2); si_pi->clock_registers.cg_spll_func_cntl_3 = RREG32(CG_SPLL_FUNC_CNTL_3); si_pi->clock_registers.cg_spll_func_cntl_4 = RREG32(CG_SPLL_FUNC_CNTL_4); si_pi->clock_registers.cg_spll_spread_spectrum = RREG32(CG_SPLL_SPREAD_SPECTRUM); si_pi->clock_registers.cg_spll_spread_spectrum_2 = RREG32(CG_SPLL_SPREAD_SPECTRUM_2); si_pi->clock_registers.dll_cntl = RREG32(DLL_CNTL); si_pi->clock_registers.mclk_pwrmgt_cntl = RREG32(MCLK_PWRMGT_CNTL); si_pi->clock_registers.mpll_ad_func_cntl = RREG32(MPLL_AD_FUNC_CNTL); si_pi->clock_registers.mpll_dq_func_cntl = RREG32(MPLL_DQ_FUNC_CNTL); si_pi->clock_registers.mpll_func_cntl = RREG32(MPLL_FUNC_CNTL); si_pi->clock_registers.mpll_func_cntl_1 = RREG32(MPLL_FUNC_CNTL_1); si_pi->clock_registers.mpll_func_cntl_2 = RREG32(MPLL_FUNC_CNTL_2); si_pi->clock_registers.mpll_ss1 = RREG32(MPLL_SS1); si_pi->clock_registers.mpll_ss2 = RREG32(MPLL_SS2); } static void si_enable_thermal_protection(struct amdgpu_device *adev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS); else WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS); } static void si_enable_acpi_power_management(struct amdgpu_device *adev) { WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN); } #if 0 static int si_enter_ulp_state(struct amdgpu_device *adev) { WREG32(SMC_MESSAGE_0, PPSMC_MSG_SwitchToMinimumPower); udelay(25000); return 0; } static int si_exit_ulp_state(struct amdgpu_device *adev) { int i; WREG32(SMC_MESSAGE_0, PPSMC_MSG_ResumeFromMinimumPower); udelay(7000); for (i = 0; i < adev->usec_timeout; i++) { if (RREG32(SMC_RESP_0) == 1) break; udelay(1000); } return 0; } #endif static int si_notify_smc_display_change(struct amdgpu_device *adev, bool has_display) { PPSMC_Msg msg = has_display ? PPSMC_MSG_HasDisplay : PPSMC_MSG_NoDisplay; return (amdgpu_si_send_msg_to_smc(adev, msg) == PPSMC_Result_OK) ? 0 : -EINVAL; } static void si_program_response_times(struct amdgpu_device *adev) { u32 voltage_response_time, acpi_delay_time, vbi_time_out; u32 vddc_dly, acpi_dly, vbi_dly; u32 reference_clock; si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_mvdd_chg_time, 1); voltage_response_time = (u32)adev->pm.dpm.voltage_response_time; if (voltage_response_time == 0) voltage_response_time = 1000; acpi_delay_time = 15000; vbi_time_out = 100000; reference_clock = amdgpu_asic_get_xclk(adev); vddc_dly = (voltage_response_time * reference_clock) / 100; acpi_dly = (acpi_delay_time * reference_clock) / 100; vbi_dly = (vbi_time_out * reference_clock) / 100; si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_delay_vreg, vddc_dly); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_delay_acpi, acpi_dly); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_mclk_chg_timeout, vbi_dly); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_mc_block_delay, 0xAA); } static void si_program_ds_registers(struct amdgpu_device *adev) { struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); u32 tmp; /* DEEP_SLEEP_CLK_SEL field should be 0x10 on tahiti A0 */ if (adev->asic_type == CHIP_TAHITI && adev->rev_id == 0x0) tmp = 0x10; else tmp = 0x1; if (eg_pi->sclk_deep_sleep) { WREG32_P(MISC_CLK_CNTL, DEEP_SLEEP_CLK_SEL(tmp), ~DEEP_SLEEP_CLK_SEL_MASK); WREG32_P(CG_SPLL_AUTOSCALE_CNTL, AUTOSCALE_ON_SS_CLEAR, ~AUTOSCALE_ON_SS_CLEAR); } } static void si_program_display_gap(struct amdgpu_device *adev) { u32 tmp, pipe; int i; tmp = RREG32(CG_DISPLAY_GAP_CNTL) & ~(DISP1_GAP_MASK | DISP2_GAP_MASK); if (adev->pm.dpm.new_active_crtc_count > 0) tmp |= DISP1_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM); else tmp |= DISP1_GAP(R600_PM_DISPLAY_GAP_IGNORE); if (adev->pm.dpm.new_active_crtc_count > 1) tmp |= DISP2_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM); else tmp |= DISP2_GAP(R600_PM_DISPLAY_GAP_IGNORE); WREG32(CG_DISPLAY_GAP_CNTL, tmp); tmp = RREG32(DCCG_DISP_SLOW_SELECT_REG); pipe = (tmp & DCCG_DISP1_SLOW_SELECT_MASK) >> DCCG_DISP1_SLOW_SELECT_SHIFT; if ((adev->pm.dpm.new_active_crtc_count > 0) && (!(adev->pm.dpm.new_active_crtcs & (1 << pipe)))) { /* find the first active crtc */ for (i = 0; i < adev->mode_info.num_crtc; i++) { if (adev->pm.dpm.new_active_crtcs & (1 << i)) break; } if (i == adev->mode_info.num_crtc) pipe = 0; else pipe = i; tmp &= ~DCCG_DISP1_SLOW_SELECT_MASK; tmp |= DCCG_DISP1_SLOW_SELECT(pipe); WREG32(DCCG_DISP_SLOW_SELECT_REG, tmp); } /* Setting this to false forces the performance state to low if the crtcs are disabled. * This can be a problem on PowerXpress systems or if you want to use the card * for offscreen rendering or compute if there are no crtcs enabled. */ si_notify_smc_display_change(adev, adev->pm.dpm.new_active_crtc_count > 0); } static void si_enable_spread_spectrum(struct amdgpu_device *adev, bool enable) { struct rv7xx_power_info *pi = rv770_get_pi(adev); if (enable) { if (pi->sclk_ss) WREG32_P(GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, ~DYN_SPREAD_SPECTRUM_EN); } else { WREG32_P(CG_SPLL_SPREAD_SPECTRUM, 0, ~SSEN); WREG32_P(GENERAL_PWRMGT, 0, ~DYN_SPREAD_SPECTRUM_EN); } } static void si_setup_bsp(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = rv770_get_pi(adev); u32 xclk = amdgpu_asic_get_xclk(adev); r600_calculate_u_and_p(pi->asi, xclk, 16, &pi->bsp, &pi->bsu); r600_calculate_u_and_p(pi->pasi, xclk, 16, &pi->pbsp, &pi->pbsu); pi->dsp = BSP(pi->bsp) | BSU(pi->bsu); pi->psp = BSP(pi->pbsp) | BSU(pi->pbsu); WREG32(CG_BSP, pi->dsp); } static void si_program_git(struct amdgpu_device *adev) { WREG32_P(CG_GIT, CG_GICST(R600_GICST_DFLT), ~CG_GICST_MASK); } static void si_program_tp(struct amdgpu_device *adev) { int i; enum r600_td td = R600_TD_DFLT; for (i = 0; i < R600_PM_NUMBER_OF_TC; i++) WREG32(CG_FFCT_0 + i, (UTC_0(r600_utc[i]) | DTC_0(r600_dtc[i]))); if (td == R600_TD_AUTO) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL); else WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL); if (td == R600_TD_UP) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE); if (td == R600_TD_DOWN) WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE); } static void si_program_tpp(struct amdgpu_device *adev) { WREG32(CG_TPC, R600_TPC_DFLT); } static void si_program_sstp(struct amdgpu_device *adev) { WREG32(CG_SSP, (SSTU(R600_SSTU_DFLT) | SST(R600_SST_DFLT))); } static void si_enable_display_gap(struct amdgpu_device *adev) { u32 tmp = RREG32(CG_DISPLAY_GAP_CNTL); tmp &= ~(DISP1_GAP_MASK | DISP2_GAP_MASK); tmp |= (DISP1_GAP(R600_PM_DISPLAY_GAP_IGNORE) | DISP2_GAP(R600_PM_DISPLAY_GAP_IGNORE)); tmp &= ~(DISP1_GAP_MCHG_MASK | DISP2_GAP_MCHG_MASK); tmp |= (DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK) | DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE)); WREG32(CG_DISPLAY_GAP_CNTL, tmp); } static void si_program_vc(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = rv770_get_pi(adev); WREG32(CG_FTV, pi->vrc); } static void si_clear_vc(struct amdgpu_device *adev) { WREG32(CG_FTV, 0); } static u8 si_get_ddr3_mclk_frequency_ratio(u32 memory_clock) { u8 mc_para_index; if (memory_clock < 10000) mc_para_index = 0; else if (memory_clock >= 80000) mc_para_index = 0x0f; else mc_para_index = (u8)((memory_clock - 10000) / 5000 + 1); return mc_para_index; } static u8 si_get_mclk_frequency_ratio(u32 memory_clock, bool strobe_mode) { u8 mc_para_index; if (strobe_mode) { if (memory_clock < 12500) mc_para_index = 0x00; else if (memory_clock > 47500) mc_para_index = 0x0f; else mc_para_index = (u8)((memory_clock - 10000) / 2500); } else { if (memory_clock < 65000) mc_para_index = 0x00; else if (memory_clock > 135000) mc_para_index = 0x0f; else mc_para_index = (u8)((memory_clock - 60000) / 5000); } return mc_para_index; } static u8 si_get_strobe_mode_settings(struct amdgpu_device *adev, u32 mclk) { struct rv7xx_power_info *pi = rv770_get_pi(adev); bool strobe_mode = false; u8 result = 0; if (mclk <= pi->mclk_strobe_mode_threshold) strobe_mode = true; if (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5) result = si_get_mclk_frequency_ratio(mclk, strobe_mode); else result = si_get_ddr3_mclk_frequency_ratio(mclk); if (strobe_mode) result |= SISLANDS_SMC_STROBE_ENABLE; return result; } static int si_upload_firmware(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); amdgpu_si_reset_smc(adev); amdgpu_si_smc_clock(adev, false); return amdgpu_si_load_smc_ucode(adev, si_pi->sram_end); } static bool si_validate_phase_shedding_tables(struct amdgpu_device *adev, const struct atom_voltage_table *table, const struct amdgpu_phase_shedding_limits_table *limits) { u32 data, num_bits, num_levels; if ((table == NULL) || (limits == NULL)) return false; data = table->mask_low; num_bits = hweight32(data); if (num_bits == 0) return false; num_levels = (1 << num_bits); if (table->count != num_levels) return false; if (limits->count != (num_levels - 1)) return false; return true; } static void si_trim_voltage_table_to_fit_state_table(struct amdgpu_device *adev, u32 max_voltage_steps, struct atom_voltage_table *voltage_table) { unsigned int i, diff; if (voltage_table->count <= max_voltage_steps) return; diff = voltage_table->count - max_voltage_steps; for (i= 0; i < max_voltage_steps; i++) voltage_table->entries[i] = voltage_table->entries[i + diff]; voltage_table->count = max_voltage_steps; } static int si_get_svi2_voltage_table(struct amdgpu_device *adev, struct amdgpu_clock_voltage_dependency_table *voltage_dependency_table, struct atom_voltage_table *voltage_table) { u32 i; if (voltage_dependency_table == NULL) return -EINVAL; voltage_table->mask_low = 0; voltage_table->phase_delay = 0; voltage_table->count = voltage_dependency_table->count; for (i = 0; i < voltage_table->count; i++) { voltage_table->entries[i].value = voltage_dependency_table->entries[i].v; voltage_table->entries[i].smio_low = 0; } return 0; } static int si_construct_voltage_tables(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); int ret; if (pi->voltage_control) { ret = amdgpu_atombios_get_voltage_table(adev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT, &eg_pi->vddc_voltage_table); if (ret) return ret; if (eg_pi->vddc_voltage_table.count > SISLANDS_MAX_NO_VREG_STEPS) si_trim_voltage_table_to_fit_state_table(adev, SISLANDS_MAX_NO_VREG_STEPS, &eg_pi->vddc_voltage_table); } else if (si_pi->voltage_control_svi2) { ret = si_get_svi2_voltage_table(adev, &adev->pm.dpm.dyn_state.vddc_dependency_on_mclk, &eg_pi->vddc_voltage_table); if (ret) return ret; } else { return -EINVAL; } if (eg_pi->vddci_control) { ret = amdgpu_atombios_get_voltage_table(adev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &eg_pi->vddci_voltage_table); if (ret) return ret; if (eg_pi->vddci_voltage_table.count > SISLANDS_MAX_NO_VREG_STEPS) si_trim_voltage_table_to_fit_state_table(adev, SISLANDS_MAX_NO_VREG_STEPS, &eg_pi->vddci_voltage_table); } if (si_pi->vddci_control_svi2) { ret = si_get_svi2_voltage_table(adev, &adev->pm.dpm.dyn_state.vddci_dependency_on_mclk, &eg_pi->vddci_voltage_table); if (ret) return ret; } if (pi->mvdd_control) { ret = amdgpu_atombios_get_voltage_table(adev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &si_pi->mvdd_voltage_table); if (ret) { pi->mvdd_control = false; return ret; } if (si_pi->mvdd_voltage_table.count == 0) { pi->mvdd_control = false; return -EINVAL; } if (si_pi->mvdd_voltage_table.count > SISLANDS_MAX_NO_VREG_STEPS) si_trim_voltage_table_to_fit_state_table(adev, SISLANDS_MAX_NO_VREG_STEPS, &si_pi->mvdd_voltage_table); } if (si_pi->vddc_phase_shed_control) { ret = amdgpu_atombios_get_voltage_table(adev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_PHASE_LUT, &si_pi->vddc_phase_shed_table); if (ret) si_pi->vddc_phase_shed_control = false; if ((si_pi->vddc_phase_shed_table.count == 0) || (si_pi->vddc_phase_shed_table.count > SISLANDS_MAX_NO_VREG_STEPS)) si_pi->vddc_phase_shed_control = false; } return 0; } static void si_populate_smc_voltage_table(struct amdgpu_device *adev, const struct atom_voltage_table *voltage_table, SISLANDS_SMC_STATETABLE *table) { unsigned int i; for (i = 0; i < voltage_table->count; i++) table->lowSMIO[i] |= cpu_to_be32(voltage_table->entries[i].smio_low); } static int si_populate_smc_voltage_tables(struct amdgpu_device *adev, SISLANDS_SMC_STATETABLE *table) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); u8 i; if (si_pi->voltage_control_svi2) { si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_svi_rework_gpio_id_svc, si_pi->svc_gpio_id); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_svi_rework_gpio_id_svd, si_pi->svd_gpio_id); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_svi_rework_plat_type, 2); } else { if (eg_pi->vddc_voltage_table.count) { si_populate_smc_voltage_table(adev, &eg_pi->vddc_voltage_table, table); table->voltageMaskTable.lowMask[SISLANDS_SMC_VOLTAGEMASK_VDDC] = cpu_to_be32(eg_pi->vddc_voltage_table.mask_low); for (i = 0; i < eg_pi->vddc_voltage_table.count; i++) { if (pi->max_vddc_in_table <= eg_pi->vddc_voltage_table.entries[i].value) { table->maxVDDCIndexInPPTable = i; break; } } } if (eg_pi->vddci_voltage_table.count) { si_populate_smc_voltage_table(adev, &eg_pi->vddci_voltage_table, table); table->voltageMaskTable.lowMask[SISLANDS_SMC_VOLTAGEMASK_VDDCI] = cpu_to_be32(eg_pi->vddci_voltage_table.mask_low); } if (si_pi->mvdd_voltage_table.count) { si_populate_smc_voltage_table(adev, &si_pi->mvdd_voltage_table, table); table->voltageMaskTable.lowMask[SISLANDS_SMC_VOLTAGEMASK_MVDD] = cpu_to_be32(si_pi->mvdd_voltage_table.mask_low); } if (si_pi->vddc_phase_shed_control) { if (si_validate_phase_shedding_tables(adev, &si_pi->vddc_phase_shed_table, &adev->pm.dpm.dyn_state.phase_shedding_limits_table)) { si_populate_smc_voltage_table(adev, &si_pi->vddc_phase_shed_table, table); table->phaseMaskTable.lowMask[SISLANDS_SMC_VOLTAGEMASK_VDDC_PHASE_SHEDDING] = cpu_to_be32(si_pi->vddc_phase_shed_table.mask_low); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_phase_shedding_delay, (u32)si_pi->vddc_phase_shed_table.phase_delay); } else { si_pi->vddc_phase_shed_control = false; } } } return 0; } static int si_populate_voltage_value(struct amdgpu_device *adev, const struct atom_voltage_table *table, u16 value, SISLANDS_SMC_VOLTAGE_VALUE *voltage) { unsigned int i; for (i = 0; i < table->count; i++) { if (value <= table->entries[i].value) { voltage->index = (u8)i; voltage->value = cpu_to_be16(table->entries[i].value); break; } } if (i >= table->count) return -EINVAL; return 0; } static int si_populate_mvdd_value(struct amdgpu_device *adev, u32 mclk, SISLANDS_SMC_VOLTAGE_VALUE *voltage) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); if (pi->mvdd_control) { if (mclk <= pi->mvdd_split_frequency) voltage->index = 0; else voltage->index = (u8)(si_pi->mvdd_voltage_table.count) - 1; voltage->value = cpu_to_be16(si_pi->mvdd_voltage_table.entries[voltage->index].value); } return 0; } static int si_get_std_voltage_value(struct amdgpu_device *adev, SISLANDS_SMC_VOLTAGE_VALUE *voltage, u16 *std_voltage) { u16 v_index; bool voltage_found = false; *std_voltage = be16_to_cpu(voltage->value); if (adev->pm.dpm.dyn_state.cac_leakage_table.entries) { if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_NEW_CAC_VOLTAGE) { if (adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries == NULL) return -EINVAL; for (v_index = 0; (u32)v_index < adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) { if (be16_to_cpu(voltage->value) == (u16)adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) { voltage_found = true; if ((u32)v_index < adev->pm.dpm.dyn_state.cac_leakage_table.count) *std_voltage = adev->pm.dpm.dyn_state.cac_leakage_table.entries[v_index].vddc; else *std_voltage = adev->pm.dpm.dyn_state.cac_leakage_table.entries[adev->pm.dpm.dyn_state.cac_leakage_table.count-1].vddc; break; } } if (!voltage_found) { for (v_index = 0; (u32)v_index < adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) { if (be16_to_cpu(voltage->value) <= (u16)adev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) { voltage_found = true; if ((u32)v_index < adev->pm.dpm.dyn_state.cac_leakage_table.count) *std_voltage = adev->pm.dpm.dyn_state.cac_leakage_table.entries[v_index].vddc; else *std_voltage = adev->pm.dpm.dyn_state.cac_leakage_table.entries[adev->pm.dpm.dyn_state.cac_leakage_table.count-1].vddc; break; } } } } else { if ((u32)voltage->index < adev->pm.dpm.dyn_state.cac_leakage_table.count) *std_voltage = adev->pm.dpm.dyn_state.cac_leakage_table.entries[voltage->index].vddc; } } return 0; } static int si_populate_std_voltage_value(struct amdgpu_device *adev, u16 value, u8 index, SISLANDS_SMC_VOLTAGE_VALUE *voltage) { voltage->index = index; voltage->value = cpu_to_be16(value); return 0; } static int si_populate_phase_shedding_value(struct amdgpu_device *adev, const struct amdgpu_phase_shedding_limits_table *limits, u16 voltage, u32 sclk, u32 mclk, SISLANDS_SMC_VOLTAGE_VALUE *smc_voltage) { unsigned int i; for (i = 0; i < limits->count; i++) { if ((voltage <= limits->entries[i].voltage) && (sclk <= limits->entries[i].sclk) && (mclk <= limits->entries[i].mclk)) break; } smc_voltage->phase_settings = (u8)i; return 0; } static int si_init_arb_table_index(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); u32 tmp; int ret; ret = amdgpu_si_read_smc_sram_dword(adev, si_pi->arb_table_start, &tmp, si_pi->sram_end); if (ret) return ret; tmp &= 0x00FFFFFF; tmp |= MC_CG_ARB_FREQ_F1 << 24; return amdgpu_si_write_smc_sram_dword(adev, si_pi->arb_table_start, tmp, si_pi->sram_end); } static int si_initial_switch_from_arb_f0_to_f1(struct amdgpu_device *adev) { return ni_copy_and_switch_arb_sets(adev, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); } static int si_reset_to_default(struct amdgpu_device *adev) { return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_ResetToDefaults) == PPSMC_Result_OK) ? 0 : -EINVAL; } static int si_force_switch_to_arb_f0(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); u32 tmp; int ret; ret = amdgpu_si_read_smc_sram_dword(adev, si_pi->arb_table_start, &tmp, si_pi->sram_end); if (ret) return ret; tmp = (tmp >> 24) & 0xff; if (tmp == MC_CG_ARB_FREQ_F0) return 0; return ni_copy_and_switch_arb_sets(adev, tmp, MC_CG_ARB_FREQ_F0); } static u32 si_calculate_memory_refresh_rate(struct amdgpu_device *adev, u32 engine_clock) { u32 dram_rows; u32 dram_refresh_rate; u32 mc_arb_rfsh_rate; u32 tmp = (RREG32(MC_ARB_RAMCFG) & NOOFROWS_MASK) >> NOOFROWS_SHIFT; if (tmp >= 4) dram_rows = 16384; else dram_rows = 1 << (tmp + 10); dram_refresh_rate = 1 << ((RREG32(MC_SEQ_MISC0) & 0x3) + 3); mc_arb_rfsh_rate = ((engine_clock * 10) * dram_refresh_rate / dram_rows - 32) / 64; return mc_arb_rfsh_rate; } static int si_populate_memory_timing_parameters(struct amdgpu_device *adev, struct rv7xx_pl *pl, SMC_SIslands_MCArbDramTimingRegisterSet *arb_regs) { u32 dram_timing; u32 dram_timing2; u32 burst_time; arb_regs->mc_arb_rfsh_rate = (u8)si_calculate_memory_refresh_rate(adev, pl->sclk); amdgpu_atombios_set_engine_dram_timings(adev, pl->sclk, pl->mclk); dram_timing = RREG32(MC_ARB_DRAM_TIMING); dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2); burst_time = RREG32(MC_ARB_BURST_TIME) & STATE0_MASK; arb_regs->mc_arb_dram_timing = cpu_to_be32(dram_timing); arb_regs->mc_arb_dram_timing2 = cpu_to_be32(dram_timing2); arb_regs->mc_arb_burst_time = (u8)burst_time; return 0; } static int si_do_program_memory_timing_parameters(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state, unsigned int first_arb_set) { struct si_power_info *si_pi = si_get_pi(adev); struct si_ps *state = si_get_ps(amdgpu_state); SMC_SIslands_MCArbDramTimingRegisterSet arb_regs = { 0 }; int i, ret = 0; for (i = 0; i < state->performance_level_count; i++) { ret = si_populate_memory_timing_parameters(adev, &state->performance_levels[i], &arb_regs); if (ret) break; ret = amdgpu_si_copy_bytes_to_smc(adev, si_pi->arb_table_start + offsetof(SMC_SIslands_MCArbDramTimingRegisters, data) + sizeof(SMC_SIslands_MCArbDramTimingRegisterSet) * (first_arb_set + i), (u8 *)&arb_regs, sizeof(SMC_SIslands_MCArbDramTimingRegisterSet), si_pi->sram_end); if (ret) break; } return ret; } static int si_program_memory_timing_parameters(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state) { return si_do_program_memory_timing_parameters(adev, amdgpu_new_state, SISLANDS_DRIVER_STATE_ARB_INDEX); } static int si_populate_initial_mvdd_value(struct amdgpu_device *adev, struct SISLANDS_SMC_VOLTAGE_VALUE *voltage) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); if (pi->mvdd_control) return si_populate_voltage_value(adev, &si_pi->mvdd_voltage_table, si_pi->mvdd_bootup_value, voltage); return 0; } static int si_populate_smc_initial_state(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_initial_state, SISLANDS_SMC_STATETABLE *table) { struct si_ps *initial_state = si_get_ps(amdgpu_initial_state); struct rv7xx_power_info *pi = rv770_get_pi(adev); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); u32 reg; int ret; table->initialState.level.mclk.vDLL_CNTL = cpu_to_be32(si_pi->clock_registers.dll_cntl); table->initialState.level.mclk.vMCLK_PWRMGT_CNTL = cpu_to_be32(si_pi->clock_registers.mclk_pwrmgt_cntl); table->initialState.level.mclk.vMPLL_AD_FUNC_CNTL = cpu_to_be32(si_pi->clock_registers.mpll_ad_func_cntl); table->initialState.level.mclk.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(si_pi->clock_registers.mpll_dq_func_cntl); table->initialState.level.mclk.vMPLL_FUNC_CNTL = cpu_to_be32(si_pi->clock_registers.mpll_func_cntl); table->initialState.level.mclk.vMPLL_FUNC_CNTL_1 = cpu_to_be32(si_pi->clock_registers.mpll_func_cntl_1); table->initialState.level.mclk.vMPLL_FUNC_CNTL_2 = cpu_to_be32(si_pi->clock_registers.mpll_func_cntl_2); table->initialState.level.mclk.vMPLL_SS = cpu_to_be32(si_pi->clock_registers.mpll_ss1); table->initialState.level.mclk.vMPLL_SS2 = cpu_to_be32(si_pi->clock_registers.mpll_ss2); table->initialState.level.mclk.mclk_value = cpu_to_be32(initial_state->performance_levels[0].mclk); table->initialState.level.sclk.vCG_SPLL_FUNC_CNTL = cpu_to_be32(si_pi->clock_registers.cg_spll_func_cntl); table->initialState.level.sclk.vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(si_pi->clock_registers.cg_spll_func_cntl_2); table->initialState.level.sclk.vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(si_pi->clock_registers.cg_spll_func_cntl_3); table->initialState.level.sclk.vCG_SPLL_FUNC_CNTL_4 = cpu_to_be32(si_pi->clock_registers.cg_spll_func_cntl_4); table->initialState.level.sclk.vCG_SPLL_SPREAD_SPECTRUM = cpu_to_be32(si_pi->clock_registers.cg_spll_spread_spectrum); table->initialState.level.sclk.vCG_SPLL_SPREAD_SPECTRUM_2 = cpu_to_be32(si_pi->clock_registers.cg_spll_spread_spectrum_2); table->initialState.level.sclk.sclk_value = cpu_to_be32(initial_state->performance_levels[0].sclk); table->initialState.level.arbRefreshState = SISLANDS_INITIAL_STATE_ARB_INDEX; table->initialState.level.ACIndex = 0; ret = si_populate_voltage_value(adev, &eg_pi->vddc_voltage_table, initial_state->performance_levels[0].vddc, &table->initialState.level.vddc); if (!ret) { u16 std_vddc; ret = si_get_std_voltage_value(adev, &table->initialState.level.vddc, &std_vddc); if (!ret) si_populate_std_voltage_value(adev, std_vddc, table->initialState.level.vddc.index, &table->initialState.level.std_vddc); } if (eg_pi->vddci_control) si_populate_voltage_value(adev, &eg_pi->vddci_voltage_table, initial_state->performance_levels[0].vddci, &table->initialState.level.vddci); if (si_pi->vddc_phase_shed_control) si_populate_phase_shedding_value(adev, &adev->pm.dpm.dyn_state.phase_shedding_limits_table, initial_state->performance_levels[0].vddc, initial_state->performance_levels[0].sclk, initial_state->performance_levels[0].mclk, &table->initialState.level.vddc); si_populate_initial_mvdd_value(adev, &table->initialState.level.mvdd); reg = CG_R(0xffff) | CG_L(0); table->initialState.level.aT = cpu_to_be32(reg); table->initialState.level.bSP = cpu_to_be32(pi->dsp); table->initialState.level.gen2PCIE = (u8)si_pi->boot_pcie_gen; if (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5) { table->initialState.level.strobeMode = si_get_strobe_mode_settings(adev, initial_state->performance_levels[0].mclk); if (initial_state->performance_levels[0].mclk > pi->mclk_edc_enable_threshold) table->initialState.level.mcFlags = SISLANDS_SMC_MC_EDC_RD_FLAG | SISLANDS_SMC_MC_EDC_WR_FLAG; else table->initialState.level.mcFlags = 0; } table->initialState.levelCount = 1; table->initialState.flags |= PPSMC_SWSTATE_FLAG_DC; table->initialState.level.dpm2.MaxPS = 0; table->initialState.level.dpm2.NearTDPDec = 0; table->initialState.level.dpm2.AboveSafeInc = 0; table->initialState.level.dpm2.BelowSafeInc = 0; table->initialState.level.dpm2.PwrEfficiencyRatio = 0; reg = MIN_POWER_MASK | MAX_POWER_MASK; table->initialState.level.SQPowerThrottle = cpu_to_be32(reg); reg = MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK; table->initialState.level.SQPowerThrottle_2 = cpu_to_be32(reg); return 0; } static enum si_pcie_gen si_gen_pcie_gen_support(struct amdgpu_device *adev, u32 sys_mask, enum si_pcie_gen asic_gen, enum si_pcie_gen default_gen) { switch (asic_gen) { case SI_PCIE_GEN1: return SI_PCIE_GEN1; case SI_PCIE_GEN2: return SI_PCIE_GEN2; case SI_PCIE_GEN3: return SI_PCIE_GEN3; default: if ((sys_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) && (default_gen == SI_PCIE_GEN3)) return SI_PCIE_GEN3; else if ((sys_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) && (default_gen == SI_PCIE_GEN2)) return SI_PCIE_GEN2; else return SI_PCIE_GEN1; } return SI_PCIE_GEN1; } static int si_populate_smc_acpi_state(struct amdgpu_device *adev, SISLANDS_SMC_STATETABLE *table) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); u32 spll_func_cntl = si_pi->clock_registers.cg_spll_func_cntl; u32 spll_func_cntl_2 = si_pi->clock_registers.cg_spll_func_cntl_2; u32 spll_func_cntl_3 = si_pi->clock_registers.cg_spll_func_cntl_3; u32 spll_func_cntl_4 = si_pi->clock_registers.cg_spll_func_cntl_4; u32 dll_cntl = si_pi->clock_registers.dll_cntl; u32 mclk_pwrmgt_cntl = si_pi->clock_registers.mclk_pwrmgt_cntl; u32 mpll_ad_func_cntl = si_pi->clock_registers.mpll_ad_func_cntl; u32 mpll_dq_func_cntl = si_pi->clock_registers.mpll_dq_func_cntl; u32 mpll_func_cntl = si_pi->clock_registers.mpll_func_cntl; u32 mpll_func_cntl_1 = si_pi->clock_registers.mpll_func_cntl_1; u32 mpll_func_cntl_2 = si_pi->clock_registers.mpll_func_cntl_2; u32 reg; int ret; table->ACPIState = table->initialState; table->ACPIState.flags &= ~PPSMC_SWSTATE_FLAG_DC; if (pi->acpi_vddc) { ret = si_populate_voltage_value(adev, &eg_pi->vddc_voltage_table, pi->acpi_vddc, &table->ACPIState.level.vddc); if (!ret) { u16 std_vddc; ret = si_get_std_voltage_value(adev, &table->ACPIState.level.vddc, &std_vddc); if (!ret) si_populate_std_voltage_value(adev, std_vddc, table->ACPIState.level.vddc.index, &table->ACPIState.level.std_vddc); } table->ACPIState.level.gen2PCIE = si_pi->acpi_pcie_gen; if (si_pi->vddc_phase_shed_control) { si_populate_phase_shedding_value(adev, &adev->pm.dpm.dyn_state.phase_shedding_limits_table, pi->acpi_vddc, 0, 0, &table->ACPIState.level.vddc); } } else { ret = si_populate_voltage_value(adev, &eg_pi->vddc_voltage_table, pi->min_vddc_in_table, &table->ACPIState.level.vddc); if (!ret) { u16 std_vddc; ret = si_get_std_voltage_value(adev, &table->ACPIState.level.vddc, &std_vddc); if (!ret) si_populate_std_voltage_value(adev, std_vddc, table->ACPIState.level.vddc.index, &table->ACPIState.level.std_vddc); } table->ACPIState.level.gen2PCIE = (u8)si_gen_pcie_gen_support(adev, si_pi->sys_pcie_mask, si_pi->boot_pcie_gen, SI_PCIE_GEN1); if (si_pi->vddc_phase_shed_control) si_populate_phase_shedding_value(adev, &adev->pm.dpm.dyn_state.phase_shedding_limits_table, pi->min_vddc_in_table, 0, 0, &table->ACPIState.level.vddc); } if (pi->acpi_vddc) { if (eg_pi->acpi_vddci) si_populate_voltage_value(adev, &eg_pi->vddci_voltage_table, eg_pi->acpi_vddci, &table->ACPIState.level.vddci); } mclk_pwrmgt_cntl |= MRDCK0_RESET | MRDCK1_RESET; mclk_pwrmgt_cntl &= ~(MRDCK0_PDNB | MRDCK1_PDNB); dll_cntl &= ~(MRDCK0_BYPASS | MRDCK1_BYPASS); spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK; spll_func_cntl_2 |= SCLK_MUX_SEL(4); table->ACPIState.level.mclk.vDLL_CNTL = cpu_to_be32(dll_cntl); table->ACPIState.level.mclk.vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl); table->ACPIState.level.mclk.vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl); table->ACPIState.level.mclk.vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl); table->ACPIState.level.mclk.vMPLL_FUNC_CNTL = cpu_to_be32(mpll_func_cntl); table->ACPIState.level.mclk.vMPLL_FUNC_CNTL_1 = cpu_to_be32(mpll_func_cntl_1); table->ACPIState.level.mclk.vMPLL_FUNC_CNTL_2 = cpu_to_be32(mpll_func_cntl_2); table->ACPIState.level.mclk.vMPLL_SS = cpu_to_be32(si_pi->clock_registers.mpll_ss1); table->ACPIState.level.mclk.vMPLL_SS2 = cpu_to_be32(si_pi->clock_registers.mpll_ss2); table->ACPIState.level.sclk.vCG_SPLL_FUNC_CNTL = cpu_to_be32(spll_func_cntl); table->ACPIState.level.sclk.vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(spll_func_cntl_2); table->ACPIState.level.sclk.vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(spll_func_cntl_3); table->ACPIState.level.sclk.vCG_SPLL_FUNC_CNTL_4 = cpu_to_be32(spll_func_cntl_4); table->ACPIState.level.mclk.mclk_value = 0; table->ACPIState.level.sclk.sclk_value = 0; si_populate_mvdd_value(adev, 0, &table->ACPIState.level.mvdd); if (eg_pi->dynamic_ac_timing) table->ACPIState.level.ACIndex = 0; table->ACPIState.level.dpm2.MaxPS = 0; table->ACPIState.level.dpm2.NearTDPDec = 0; table->ACPIState.level.dpm2.AboveSafeInc = 0; table->ACPIState.level.dpm2.BelowSafeInc = 0; table->ACPIState.level.dpm2.PwrEfficiencyRatio = 0; reg = MIN_POWER_MASK | MAX_POWER_MASK; table->ACPIState.level.SQPowerThrottle = cpu_to_be32(reg); reg = MAX_POWER_DELTA_MASK | STI_SIZE_MASK | LTI_RATIO_MASK; table->ACPIState.level.SQPowerThrottle_2 = cpu_to_be32(reg); return 0; } static int si_populate_ulv_state(struct amdgpu_device *adev, struct SISLANDS_SMC_SWSTATE_SINGLE *state) { struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); struct si_ulv_param *ulv = &si_pi->ulv; u32 sclk_in_sr = 1350; /* ??? */ int ret; ret = si_convert_power_level_to_smc(adev, &ulv->pl, &state->level); if (!ret) { if (eg_pi->sclk_deep_sleep) { if (sclk_in_sr <= SCLK_MIN_DEEPSLEEP_FREQ) state->level.stateFlags |= PPSMC_STATEFLAG_DEEPSLEEP_BYPASS; else state->level.stateFlags |= PPSMC_STATEFLAG_DEEPSLEEP_THROTTLE; } if (ulv->one_pcie_lane_in_ulv) state->flags |= PPSMC_SWSTATE_FLAG_PCIE_X1; state->level.arbRefreshState = (u8)(SISLANDS_ULV_STATE_ARB_INDEX); state->level.ACIndex = 1; state->level.std_vddc = state->level.vddc; state->levelCount = 1; state->flags |= PPSMC_SWSTATE_FLAG_DC; } return ret; } static int si_program_ulv_memory_timing_parameters(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); struct si_ulv_param *ulv = &si_pi->ulv; SMC_SIslands_MCArbDramTimingRegisterSet arb_regs = { 0 }; int ret; ret = si_populate_memory_timing_parameters(adev, &ulv->pl, &arb_regs); if (ret) return ret; si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_ulv_volt_change_delay, ulv->volt_change_delay); ret = amdgpu_si_copy_bytes_to_smc(adev, si_pi->arb_table_start + offsetof(SMC_SIslands_MCArbDramTimingRegisters, data) + sizeof(SMC_SIslands_MCArbDramTimingRegisterSet) * SISLANDS_ULV_STATE_ARB_INDEX, (u8 *)&arb_regs, sizeof(SMC_SIslands_MCArbDramTimingRegisterSet), si_pi->sram_end); return ret; } static void si_get_mvdd_configuration(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = rv770_get_pi(adev); pi->mvdd_split_frequency = 30000; } static int si_init_smc_table(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); struct amdgpu_ps *amdgpu_boot_state = adev->pm.dpm.boot_ps; const struct si_ulv_param *ulv = &si_pi->ulv; SISLANDS_SMC_STATETABLE *table = &si_pi->smc_statetable; int ret; u32 lane_width; u32 vr_hot_gpio; si_populate_smc_voltage_tables(adev, table); switch (adev->pm.int_thermal_type) { case THERMAL_TYPE_SI: case THERMAL_TYPE_EMC2103_WITH_INTERNAL: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_INTERNAL; break; case THERMAL_TYPE_NONE: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_NONE; break; default: table->thermalProtectType = PPSMC_THERMAL_PROTECT_TYPE_EXTERNAL; break; } if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC) table->systemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT) { if ((adev->pdev->device != 0x6818) && (adev->pdev->device != 0x6819)) table->systemFlags |= PPSMC_SYSTEMFLAG_REGULATOR_HOT; } if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC) table->systemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5) table->systemFlags |= PPSMC_SYSTEMFLAG_GDDR5; if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_REVERT_GPIO5_POLARITY) table->extraFlags |= PPSMC_EXTRAFLAGS_AC2DC_GPIO5_POLARITY_HIGH; if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_VRHOT_GPIO_CONFIGURABLE) { table->systemFlags |= PPSMC_SYSTEMFLAG_REGULATOR_HOT_PROG_GPIO; vr_hot_gpio = adev->pm.dpm.backbias_response_time; si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_vr_hot_gpio, vr_hot_gpio); } ret = si_populate_smc_initial_state(adev, amdgpu_boot_state, table); if (ret) return ret; ret = si_populate_smc_acpi_state(adev, table); if (ret) return ret; table->driverState.flags = table->initialState.flags; table->driverState.levelCount = table->initialState.levelCount; table->driverState.levels[0] = table->initialState.level; ret = si_do_program_memory_timing_parameters(adev, amdgpu_boot_state, SISLANDS_INITIAL_STATE_ARB_INDEX); if (ret) return ret; if (ulv->supported && ulv->pl.vddc) { ret = si_populate_ulv_state(adev, &table->ULVState); if (ret) return ret; ret = si_program_ulv_memory_timing_parameters(adev); if (ret) return ret; WREG32(CG_ULV_CONTROL, ulv->cg_ulv_control); WREG32(CG_ULV_PARAMETER, ulv->cg_ulv_parameter); lane_width = amdgpu_get_pcie_lanes(adev); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_non_ulv_pcie_link_width, lane_width); } else { table->ULVState = table->initialState; } return amdgpu_si_copy_bytes_to_smc(adev, si_pi->state_table_start, (u8 *)table, sizeof(SISLANDS_SMC_STATETABLE), si_pi->sram_end); } static int si_calculate_sclk_params(struct amdgpu_device *adev, u32 engine_clock, SISLANDS_SMC_SCLK_VALUE *sclk) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); struct atom_clock_dividers dividers; u32 spll_func_cntl = si_pi->clock_registers.cg_spll_func_cntl; u32 spll_func_cntl_2 = si_pi->clock_registers.cg_spll_func_cntl_2; u32 spll_func_cntl_3 = si_pi->clock_registers.cg_spll_func_cntl_3; u32 spll_func_cntl_4 = si_pi->clock_registers.cg_spll_func_cntl_4; u32 cg_spll_spread_spectrum = si_pi->clock_registers.cg_spll_spread_spectrum; u32 cg_spll_spread_spectrum_2 = si_pi->clock_registers.cg_spll_spread_spectrum_2; u64 tmp; u32 reference_clock = adev->clock.spll.reference_freq; u32 reference_divider; u32 fbdiv; int ret; ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM, engine_clock, false, &dividers); if (ret) return ret; reference_divider = 1 + dividers.ref_div; tmp = (u64) engine_clock * reference_divider * dividers.post_div * 16384; do_div(tmp, reference_clock); fbdiv = (u32) tmp; spll_func_cntl &= ~(SPLL_PDIV_A_MASK | SPLL_REF_DIV_MASK); spll_func_cntl |= SPLL_REF_DIV(dividers.ref_div); spll_func_cntl |= SPLL_PDIV_A(dividers.post_div); spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK; spll_func_cntl_2 |= SCLK_MUX_SEL(2); spll_func_cntl_3 &= ~SPLL_FB_DIV_MASK; spll_func_cntl_3 |= SPLL_FB_DIV(fbdiv); spll_func_cntl_3 |= SPLL_DITHEN; if (pi->sclk_ss) { struct amdgpu_atom_ss ss; u32 vco_freq = engine_clock * dividers.post_div; if (amdgpu_atombios_get_asic_ss_info(adev, &ss, ASIC_INTERNAL_ENGINE_SS, vco_freq)) { u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate); u32 clk_v = 4 * ss.percentage * fbdiv / (clk_s * 10000); cg_spll_spread_spectrum &= ~CLK_S_MASK; cg_spll_spread_spectrum |= CLK_S(clk_s); cg_spll_spread_spectrum |= SSEN; cg_spll_spread_spectrum_2 &= ~CLK_V_MASK; cg_spll_spread_spectrum_2 |= CLK_V(clk_v); } } sclk->sclk_value = engine_clock; sclk->vCG_SPLL_FUNC_CNTL = spll_func_cntl; sclk->vCG_SPLL_FUNC_CNTL_2 = spll_func_cntl_2; sclk->vCG_SPLL_FUNC_CNTL_3 = spll_func_cntl_3; sclk->vCG_SPLL_FUNC_CNTL_4 = spll_func_cntl_4; sclk->vCG_SPLL_SPREAD_SPECTRUM = cg_spll_spread_spectrum; sclk->vCG_SPLL_SPREAD_SPECTRUM_2 = cg_spll_spread_spectrum_2; return 0; } static int si_populate_sclk_value(struct amdgpu_device *adev, u32 engine_clock, SISLANDS_SMC_SCLK_VALUE *sclk) { SISLANDS_SMC_SCLK_VALUE sclk_tmp; int ret; ret = si_calculate_sclk_params(adev, engine_clock, &sclk_tmp); if (!ret) { sclk->sclk_value = cpu_to_be32(sclk_tmp.sclk_value); sclk->vCG_SPLL_FUNC_CNTL = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL); sclk->vCG_SPLL_FUNC_CNTL_2 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_2); sclk->vCG_SPLL_FUNC_CNTL_3 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_3); sclk->vCG_SPLL_FUNC_CNTL_4 = cpu_to_be32(sclk_tmp.vCG_SPLL_FUNC_CNTL_4); sclk->vCG_SPLL_SPREAD_SPECTRUM = cpu_to_be32(sclk_tmp.vCG_SPLL_SPREAD_SPECTRUM); sclk->vCG_SPLL_SPREAD_SPECTRUM_2 = cpu_to_be32(sclk_tmp.vCG_SPLL_SPREAD_SPECTRUM_2); } return ret; } static int si_populate_mclk_value(struct amdgpu_device *adev, u32 engine_clock, u32 memory_clock, SISLANDS_SMC_MCLK_VALUE *mclk, bool strobe_mode, bool dll_state_on) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); u32 dll_cntl = si_pi->clock_registers.dll_cntl; u32 mclk_pwrmgt_cntl = si_pi->clock_registers.mclk_pwrmgt_cntl; u32 mpll_ad_func_cntl = si_pi->clock_registers.mpll_ad_func_cntl; u32 mpll_dq_func_cntl = si_pi->clock_registers.mpll_dq_func_cntl; u32 mpll_func_cntl = si_pi->clock_registers.mpll_func_cntl; u32 mpll_func_cntl_1 = si_pi->clock_registers.mpll_func_cntl_1; u32 mpll_func_cntl_2 = si_pi->clock_registers.mpll_func_cntl_2; u32 mpll_ss1 = si_pi->clock_registers.mpll_ss1; u32 mpll_ss2 = si_pi->clock_registers.mpll_ss2; struct atom_mpll_param mpll_param; int ret; ret = amdgpu_atombios_get_memory_pll_dividers(adev, memory_clock, strobe_mode, &mpll_param); if (ret) return ret; mpll_func_cntl &= ~BWCTRL_MASK; mpll_func_cntl |= BWCTRL(mpll_param.bwcntl); mpll_func_cntl_1 &= ~(CLKF_MASK | CLKFRAC_MASK | VCO_MODE_MASK); mpll_func_cntl_1 |= CLKF(mpll_param.clkf) | CLKFRAC(mpll_param.clkfrac) | VCO_MODE(mpll_param.vco_mode); mpll_ad_func_cntl &= ~YCLK_POST_DIV_MASK; mpll_ad_func_cntl |= YCLK_POST_DIV(mpll_param.post_div); if (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5) { mpll_dq_func_cntl &= ~(YCLK_SEL_MASK | YCLK_POST_DIV_MASK); mpll_dq_func_cntl |= YCLK_SEL(mpll_param.yclk_sel) | YCLK_POST_DIV(mpll_param.post_div); } if (pi->mclk_ss) { struct amdgpu_atom_ss ss; u32 freq_nom; u32 tmp; u32 reference_clock = adev->clock.mpll.reference_freq; if (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5) freq_nom = memory_clock * 4; else freq_nom = memory_clock * 2; tmp = freq_nom / reference_clock; tmp = tmp * tmp; if (amdgpu_atombios_get_asic_ss_info(adev, &ss, ASIC_INTERNAL_MEMORY_SS, freq_nom)) { u32 clks = reference_clock * 5 / ss.rate; u32 clkv = (u32)((((131 * ss.percentage * ss.rate) / 100) * tmp) / freq_nom); mpll_ss1 &= ~CLKV_MASK; mpll_ss1 |= CLKV(clkv); mpll_ss2 &= ~CLKS_MASK; mpll_ss2 |= CLKS(clks); } } mclk_pwrmgt_cntl &= ~DLL_SPEED_MASK; mclk_pwrmgt_cntl |= DLL_SPEED(mpll_param.dll_speed); if (dll_state_on) mclk_pwrmgt_cntl |= MRDCK0_PDNB | MRDCK1_PDNB; else mclk_pwrmgt_cntl &= ~(MRDCK0_PDNB | MRDCK1_PDNB); mclk->mclk_value = cpu_to_be32(memory_clock); mclk->vMPLL_FUNC_CNTL = cpu_to_be32(mpll_func_cntl); mclk->vMPLL_FUNC_CNTL_1 = cpu_to_be32(mpll_func_cntl_1); mclk->vMPLL_FUNC_CNTL_2 = cpu_to_be32(mpll_func_cntl_2); mclk->vMPLL_AD_FUNC_CNTL = cpu_to_be32(mpll_ad_func_cntl); mclk->vMPLL_DQ_FUNC_CNTL = cpu_to_be32(mpll_dq_func_cntl); mclk->vMCLK_PWRMGT_CNTL = cpu_to_be32(mclk_pwrmgt_cntl); mclk->vDLL_CNTL = cpu_to_be32(dll_cntl); mclk->vMPLL_SS = cpu_to_be32(mpll_ss1); mclk->vMPLL_SS2 = cpu_to_be32(mpll_ss2); return 0; } static void si_populate_smc_sp(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state, SISLANDS_SMC_SWSTATE *smc_state) { struct si_ps *ps = si_get_ps(amdgpu_state); struct rv7xx_power_info *pi = rv770_get_pi(adev); int i; for (i = 0; i < ps->performance_level_count - 1; i++) smc_state->levels[i].bSP = cpu_to_be32(pi->dsp); smc_state->levels[ps->performance_level_count - 1].bSP = cpu_to_be32(pi->psp); } static int si_convert_power_level_to_smc(struct amdgpu_device *adev, struct rv7xx_pl *pl, SISLANDS_SMC_HW_PERFORMANCE_LEVEL *level) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); int ret; bool dll_state_on; u16 std_vddc; bool gmc_pg = false; if (eg_pi->pcie_performance_request && (si_pi->force_pcie_gen != SI_PCIE_GEN_INVALID)) level->gen2PCIE = (u8)si_pi->force_pcie_gen; else level->gen2PCIE = (u8)pl->pcie_gen; ret = si_populate_sclk_value(adev, pl->sclk, &level->sclk); if (ret) return ret; level->mcFlags = 0; if (pi->mclk_stutter_mode_threshold && (pl->mclk <= pi->mclk_stutter_mode_threshold) && !eg_pi->uvd_enabled && (RREG32(DPG_PIPE_STUTTER_CONTROL) & STUTTER_ENABLE) && (adev->pm.dpm.new_active_crtc_count <= 2)) { level->mcFlags |= SISLANDS_SMC_MC_STUTTER_EN; if (gmc_pg) level->mcFlags |= SISLANDS_SMC_MC_PG_EN; } if (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5) { if (pl->mclk > pi->mclk_edc_enable_threshold) level->mcFlags |= SISLANDS_SMC_MC_EDC_RD_FLAG; if (pl->mclk > eg_pi->mclk_edc_wr_enable_threshold) level->mcFlags |= SISLANDS_SMC_MC_EDC_WR_FLAG; level->strobeMode = si_get_strobe_mode_settings(adev, pl->mclk); if (level->strobeMode & SISLANDS_SMC_STROBE_ENABLE) { if (si_get_mclk_frequency_ratio(pl->mclk, true) >= ((RREG32(MC_SEQ_MISC7) >> 16) & 0xf)) dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false; else dll_state_on = ((RREG32(MC_SEQ_MISC6) >> 1) & 0x1) ? true : false; } else { dll_state_on = false; } } else { level->strobeMode = si_get_strobe_mode_settings(adev, pl->mclk); dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false; } ret = si_populate_mclk_value(adev, pl->sclk, pl->mclk, &level->mclk, (level->strobeMode & SISLANDS_SMC_STROBE_ENABLE) != 0, dll_state_on); if (ret) return ret; ret = si_populate_voltage_value(adev, &eg_pi->vddc_voltage_table, pl->vddc, &level->vddc); if (ret) return ret; ret = si_get_std_voltage_value(adev, &level->vddc, &std_vddc); if (ret) return ret; ret = si_populate_std_voltage_value(adev, std_vddc, level->vddc.index, &level->std_vddc); if (ret) return ret; if (eg_pi->vddci_control) { ret = si_populate_voltage_value(adev, &eg_pi->vddci_voltage_table, pl->vddci, &level->vddci); if (ret) return ret; } if (si_pi->vddc_phase_shed_control) { ret = si_populate_phase_shedding_value(adev, &adev->pm.dpm.dyn_state.phase_shedding_limits_table, pl->vddc, pl->sclk, pl->mclk, &level->vddc); if (ret) return ret; } level->MaxPoweredUpCU = si_pi->max_cu; ret = si_populate_mvdd_value(adev, pl->mclk, &level->mvdd); return ret; } static int si_populate_smc_t(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state, SISLANDS_SMC_SWSTATE *smc_state) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct si_ps *state = si_get_ps(amdgpu_state); u32 a_t; u32 t_l, t_h; u32 high_bsp; int i, ret; if (state->performance_level_count >= 9) return -EINVAL; if (state->performance_level_count < 2) { a_t = CG_R(0xffff) | CG_L(0); smc_state->levels[0].aT = cpu_to_be32(a_t); return 0; } smc_state->levels[0].aT = cpu_to_be32(0); for (i = 0; i <= state->performance_level_count - 2; i++) { ret = r600_calculate_at( (50 / SISLANDS_MAX_HARDWARE_POWERLEVELS) * 100 * (i + 1), 100 * R600_AH_DFLT, state->performance_levels[i + 1].sclk, state->performance_levels[i].sclk, &t_l, &t_h); if (ret) { t_h = (i + 1) * 1000 - 50 * R600_AH_DFLT; t_l = (i + 1) * 1000 + 50 * R600_AH_DFLT; } a_t = be32_to_cpu(smc_state->levels[i].aT) & ~CG_R_MASK; a_t |= CG_R(t_l * pi->bsp / 20000); smc_state->levels[i].aT = cpu_to_be32(a_t); high_bsp = (i == state->performance_level_count - 2) ? pi->pbsp : pi->bsp; a_t = CG_R(0xffff) | CG_L(t_h * high_bsp / 20000); smc_state->levels[i + 1].aT = cpu_to_be32(a_t); } return 0; } static int si_disable_ulv(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); struct si_ulv_param *ulv = &si_pi->ulv; if (ulv->supported) return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_DisableULV) == PPSMC_Result_OK) ? 0 : -EINVAL; return 0; } static bool si_is_state_ulv_compatible(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state) { const struct si_power_info *si_pi = si_get_pi(adev); const struct si_ulv_param *ulv = &si_pi->ulv; const struct si_ps *state = si_get_ps(amdgpu_state); int i; if (state->performance_levels[0].mclk != ulv->pl.mclk) return false; /* XXX validate against display requirements! */ for (i = 0; i < adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.count; i++) { if (adev->clock.current_dispclk <= adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[i].clk) { if (ulv->pl.vddc < adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[i].v) return false; } } if ((amdgpu_state->vclk != 0) || (amdgpu_state->dclk != 0)) return false; return true; } static int si_set_power_state_conditionally_enable_ulv(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state) { const struct si_power_info *si_pi = si_get_pi(adev); const struct si_ulv_param *ulv = &si_pi->ulv; if (ulv->supported) { if (si_is_state_ulv_compatible(adev, amdgpu_new_state)) return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_EnableULV) == PPSMC_Result_OK) ? 0 : -EINVAL; } return 0; } static int si_convert_power_state_to_smc(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state, SISLANDS_SMC_SWSTATE *smc_state) { struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct ni_power_info *ni_pi = ni_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); struct si_ps *state = si_get_ps(amdgpu_state); int i, ret; u32 threshold; u32 sclk_in_sr = 1350; /* ??? */ if (state->performance_level_count > SISLANDS_MAX_HARDWARE_POWERLEVELS) return -EINVAL; threshold = state->performance_levels[state->performance_level_count-1].sclk * 100 / 100; if (amdgpu_state->vclk && amdgpu_state->dclk) { eg_pi->uvd_enabled = true; if (eg_pi->smu_uvd_hs) smc_state->flags |= PPSMC_SWSTATE_FLAG_UVD; } else { eg_pi->uvd_enabled = false; } if (state->dc_compatible) smc_state->flags |= PPSMC_SWSTATE_FLAG_DC; smc_state->levelCount = 0; for (i = 0; i < state->performance_level_count; i++) { if (eg_pi->sclk_deep_sleep) { if ((i == 0) || si_pi->sclk_deep_sleep_above_low) { if (sclk_in_sr <= SCLK_MIN_DEEPSLEEP_FREQ) smc_state->levels[i].stateFlags |= PPSMC_STATEFLAG_DEEPSLEEP_BYPASS; else smc_state->levels[i].stateFlags |= PPSMC_STATEFLAG_DEEPSLEEP_THROTTLE; } } ret = si_convert_power_level_to_smc(adev, &state->performance_levels[i], &smc_state->levels[i]); smc_state->levels[i].arbRefreshState = (u8)(SISLANDS_DRIVER_STATE_ARB_INDEX + i); if (ret) return ret; if (ni_pi->enable_power_containment) smc_state->levels[i].displayWatermark = (state->performance_levels[i].sclk < threshold) ? PPSMC_DISPLAY_WATERMARK_LOW : PPSMC_DISPLAY_WATERMARK_HIGH; else smc_state->levels[i].displayWatermark = (i < 2) ? PPSMC_DISPLAY_WATERMARK_LOW : PPSMC_DISPLAY_WATERMARK_HIGH; if (eg_pi->dynamic_ac_timing) smc_state->levels[i].ACIndex = SISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT + i; else smc_state->levels[i].ACIndex = 0; smc_state->levelCount++; } si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_watermark_threshold, threshold / 512); si_populate_smc_sp(adev, amdgpu_state, smc_state); ret = si_populate_power_containment_values(adev, amdgpu_state, smc_state); if (ret) ni_pi->enable_power_containment = false; ret = si_populate_sq_ramping_values(adev, amdgpu_state, smc_state); if (ret) ni_pi->enable_sq_ramping = false; return si_populate_smc_t(adev, amdgpu_state, smc_state); } static int si_upload_sw_state(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state) { struct si_power_info *si_pi = si_get_pi(adev); struct si_ps *new_state = si_get_ps(amdgpu_new_state); int ret; u32 address = si_pi->state_table_start + offsetof(SISLANDS_SMC_STATETABLE, driverState); SISLANDS_SMC_SWSTATE *smc_state = &si_pi->smc_statetable.driverState; size_t state_size = struct_size(smc_state, levels, new_state->performance_level_count); memset(smc_state, 0, state_size); ret = si_convert_power_state_to_smc(adev, amdgpu_new_state, smc_state); if (ret) return ret; return amdgpu_si_copy_bytes_to_smc(adev, address, (u8 *)smc_state, state_size, si_pi->sram_end); } static int si_upload_ulv_state(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); struct si_ulv_param *ulv = &si_pi->ulv; int ret = 0; if (ulv->supported && ulv->pl.vddc) { u32 address = si_pi->state_table_start + offsetof(SISLANDS_SMC_STATETABLE, ULVState); struct SISLANDS_SMC_SWSTATE_SINGLE *smc_state = &si_pi->smc_statetable.ULVState; u32 state_size = sizeof(struct SISLANDS_SMC_SWSTATE_SINGLE); memset(smc_state, 0, state_size); ret = si_populate_ulv_state(adev, smc_state); if (!ret) ret = amdgpu_si_copy_bytes_to_smc(adev, address, (u8 *)smc_state, state_size, si_pi->sram_end); } return ret; } static int si_upload_smc_data(struct amdgpu_device *adev) { struct amdgpu_crtc *amdgpu_crtc = NULL; int i; if (adev->pm.dpm.new_active_crtc_count == 0) return 0; for (i = 0; i < adev->mode_info.num_crtc; i++) { if (adev->pm.dpm.new_active_crtcs & (1 << i)) { amdgpu_crtc = adev->mode_info.crtcs[i]; break; } } if (amdgpu_crtc == NULL) return 0; if (amdgpu_crtc->line_time <= 0) return 0; if (si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_crtc_index, amdgpu_crtc->crtc_id) != PPSMC_Result_OK) return 0; if (si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_mclk_change_block_cp_min, amdgpu_crtc->wm_high / amdgpu_crtc->line_time) != PPSMC_Result_OK) return 0; if (si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_mclk_change_block_cp_max, amdgpu_crtc->wm_low / amdgpu_crtc->line_time) != PPSMC_Result_OK) return 0; return 0; } static int si_set_mc_special_registers(struct amdgpu_device *adev, struct si_mc_reg_table *table) { u8 i, j, k; u32 temp_reg; for (i = 0, j = table->last; i < table->last; i++) { if (j >= SMC_SISLANDS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; switch (table->mc_reg_address[i].s1) { case MC_SEQ_MISC1: temp_reg = RREG32(MC_PMG_CMD_EMRS); table->mc_reg_address[j].s1 = MC_PMG_CMD_EMRS; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_EMRS_LP; for (k = 0; k < table->num_entries; k++) table->mc_reg_table_entry[k].mc_data[j] = ((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); j++; if (j >= SMC_SISLANDS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; temp_reg = RREG32(MC_PMG_CMD_MRS); table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); if (adev->gmc.vram_type != AMDGPU_VRAM_TYPE_GDDR5) table->mc_reg_table_entry[k].mc_data[j] |= 0x100; } j++; if (adev->gmc.vram_type != AMDGPU_VRAM_TYPE_GDDR5) { if (j >= SMC_SISLANDS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; table->mc_reg_address[j].s1 = MC_PMG_AUTO_CMD; table->mc_reg_address[j].s0 = MC_PMG_AUTO_CMD; for (k = 0; k < table->num_entries; k++) table->mc_reg_table_entry[k].mc_data[j] = (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; j++; } break; case MC_SEQ_RESERVE_M: temp_reg = RREG32(MC_PMG_CMD_MRS1); table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS1; table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS1_LP; for(k = 0; k < table->num_entries; k++) table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); j++; break; default: break; } } table->last = j; return 0; } static bool si_check_s0_mc_reg_index(u16 in_reg, u16 *out_reg) { bool result = true; switch (in_reg) { case MC_SEQ_RAS_TIMING: *out_reg = MC_SEQ_RAS_TIMING_LP; break; case MC_SEQ_CAS_TIMING: *out_reg = MC_SEQ_CAS_TIMING_LP; break; case MC_SEQ_MISC_TIMING: *out_reg = MC_SEQ_MISC_TIMING_LP; break; case MC_SEQ_MISC_TIMING2: *out_reg = MC_SEQ_MISC_TIMING2_LP; break; case MC_SEQ_RD_CTL_D0: *out_reg = MC_SEQ_RD_CTL_D0_LP; break; case MC_SEQ_RD_CTL_D1: *out_reg = MC_SEQ_RD_CTL_D1_LP; break; case MC_SEQ_WR_CTL_D0: *out_reg = MC_SEQ_WR_CTL_D0_LP; break; case MC_SEQ_WR_CTL_D1: *out_reg = MC_SEQ_WR_CTL_D1_LP; break; case MC_PMG_CMD_EMRS: *out_reg = MC_SEQ_PMG_CMD_EMRS_LP; break; case MC_PMG_CMD_MRS: *out_reg = MC_SEQ_PMG_CMD_MRS_LP; break; case MC_PMG_CMD_MRS1: *out_reg = MC_SEQ_PMG_CMD_MRS1_LP; break; case MC_SEQ_PMG_TIMING: *out_reg = MC_SEQ_PMG_TIMING_LP; break; case MC_PMG_CMD_MRS2: *out_reg = MC_SEQ_PMG_CMD_MRS2_LP; break; case MC_SEQ_WR_CTL_2: *out_reg = MC_SEQ_WR_CTL_2_LP; break; default: result = false; break; } return result; } static void si_set_valid_flag(struct si_mc_reg_table *table) { u8 i, j; for (i = 0; i < table->last; i++) { for (j = 1; j < table->num_entries; j++) { if (table->mc_reg_table_entry[j-1].mc_data[i] != table->mc_reg_table_entry[j].mc_data[i]) { table->valid_flag |= 1 << i; break; } } } } static void si_set_s0_mc_reg_index(struct si_mc_reg_table *table) { u32 i; u16 address; for (i = 0; i < table->last; i++) table->mc_reg_address[i].s0 = si_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ? address : table->mc_reg_address[i].s1; } static int si_copy_vbios_mc_reg_table(struct atom_mc_reg_table *table, struct si_mc_reg_table *si_table) { u8 i, j; if (table->last > SMC_SISLANDS_MC_REGISTER_ARRAY_SIZE) return -EINVAL; if (table->num_entries > MAX_AC_TIMING_ENTRIES) return -EINVAL; for (i = 0; i < table->last; i++) si_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; si_table->last = table->last; for (i = 0; i < table->num_entries; i++) { si_table->mc_reg_table_entry[i].mclk_max = table->mc_reg_table_entry[i].mclk_max; for (j = 0; j < table->last; j++) { si_table->mc_reg_table_entry[i].mc_data[j] = table->mc_reg_table_entry[i].mc_data[j]; } } si_table->num_entries = table->num_entries; return 0; } static int si_initialize_mc_reg_table(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); struct atom_mc_reg_table *table; struct si_mc_reg_table *si_table = &si_pi->mc_reg_table; u8 module_index = rv770_get_memory_module_index(adev); int ret; table = kzalloc(sizeof(struct atom_mc_reg_table), GFP_KERNEL); if (!table) return -ENOMEM; WREG32(MC_SEQ_RAS_TIMING_LP, RREG32(MC_SEQ_RAS_TIMING)); WREG32(MC_SEQ_CAS_TIMING_LP, RREG32(MC_SEQ_CAS_TIMING)); WREG32(MC_SEQ_MISC_TIMING_LP, RREG32(MC_SEQ_MISC_TIMING)); WREG32(MC_SEQ_MISC_TIMING2_LP, RREG32(MC_SEQ_MISC_TIMING2)); WREG32(MC_SEQ_PMG_CMD_EMRS_LP, RREG32(MC_PMG_CMD_EMRS)); WREG32(MC_SEQ_PMG_CMD_MRS_LP, RREG32(MC_PMG_CMD_MRS)); WREG32(MC_SEQ_PMG_CMD_MRS1_LP, RREG32(MC_PMG_CMD_MRS1)); WREG32(MC_SEQ_WR_CTL_D0_LP, RREG32(MC_SEQ_WR_CTL_D0)); WREG32(MC_SEQ_WR_CTL_D1_LP, RREG32(MC_SEQ_WR_CTL_D1)); WREG32(MC_SEQ_RD_CTL_D0_LP, RREG32(MC_SEQ_RD_CTL_D0)); WREG32(MC_SEQ_RD_CTL_D1_LP, RREG32(MC_SEQ_RD_CTL_D1)); WREG32(MC_SEQ_PMG_TIMING_LP, RREG32(MC_SEQ_PMG_TIMING)); WREG32(MC_SEQ_PMG_CMD_MRS2_LP, RREG32(MC_PMG_CMD_MRS2)); WREG32(MC_SEQ_WR_CTL_2_LP, RREG32(MC_SEQ_WR_CTL_2)); ret = amdgpu_atombios_init_mc_reg_table(adev, module_index, table); if (ret) goto init_mc_done; ret = si_copy_vbios_mc_reg_table(table, si_table); if (ret) goto init_mc_done; si_set_s0_mc_reg_index(si_table); ret = si_set_mc_special_registers(adev, si_table); if (ret) goto init_mc_done; si_set_valid_flag(si_table); init_mc_done: kfree(table); return ret; } static void si_populate_mc_reg_addresses(struct amdgpu_device *adev, SMC_SIslands_MCRegisters *mc_reg_table) { struct si_power_info *si_pi = si_get_pi(adev); u32 i, j; for (i = 0, j = 0; j < si_pi->mc_reg_table.last; j++) { if (si_pi->mc_reg_table.valid_flag & (1 << j)) { if (i >= SMC_SISLANDS_MC_REGISTER_ARRAY_SIZE) break; mc_reg_table->address[i].s0 = cpu_to_be16(si_pi->mc_reg_table.mc_reg_address[j].s0); mc_reg_table->address[i].s1 = cpu_to_be16(si_pi->mc_reg_table.mc_reg_address[j].s1); i++; } } mc_reg_table->last = (u8)i; } static void si_convert_mc_registers(const struct si_mc_reg_entry *entry, SMC_SIslands_MCRegisterSet *data, u32 num_entries, u32 valid_flag) { u32 i, j; for(i = 0, j = 0; j < num_entries; j++) { if (valid_flag & (1 << j)) { data->value[i] = cpu_to_be32(entry->mc_data[j]); i++; } } } static void si_convert_mc_reg_table_entry_to_smc(struct amdgpu_device *adev, struct rv7xx_pl *pl, SMC_SIslands_MCRegisterSet *mc_reg_table_data) { struct si_power_info *si_pi = si_get_pi(adev); u32 i = 0; for (i = 0; i < si_pi->mc_reg_table.num_entries; i++) { if (pl->mclk <= si_pi->mc_reg_table.mc_reg_table_entry[i].mclk_max) break; } if ((i == si_pi->mc_reg_table.num_entries) && (i > 0)) --i; si_convert_mc_registers(&si_pi->mc_reg_table.mc_reg_table_entry[i], mc_reg_table_data, si_pi->mc_reg_table.last, si_pi->mc_reg_table.valid_flag); } static void si_convert_mc_reg_table_to_smc(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state, SMC_SIslands_MCRegisters *mc_reg_table) { struct si_ps *state = si_get_ps(amdgpu_state); int i; for (i = 0; i < state->performance_level_count; i++) { si_convert_mc_reg_table_entry_to_smc(adev, &state->performance_levels[i], &mc_reg_table->data[SISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT + i]); } } static int si_populate_mc_reg_table(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_boot_state) { struct si_ps *boot_state = si_get_ps(amdgpu_boot_state); struct si_power_info *si_pi = si_get_pi(adev); struct si_ulv_param *ulv = &si_pi->ulv; SMC_SIslands_MCRegisters *smc_mc_reg_table = &si_pi->smc_mc_reg_table; memset(smc_mc_reg_table, 0, sizeof(SMC_SIslands_MCRegisters)); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_seq_index, 1); si_populate_mc_reg_addresses(adev, smc_mc_reg_table); si_convert_mc_reg_table_entry_to_smc(adev, &boot_state->performance_levels[0], &smc_mc_reg_table->data[SISLANDS_MCREGISTERTABLE_INITIAL_SLOT]); si_convert_mc_registers(&si_pi->mc_reg_table.mc_reg_table_entry[0], &smc_mc_reg_table->data[SISLANDS_MCREGISTERTABLE_ACPI_SLOT], si_pi->mc_reg_table.last, si_pi->mc_reg_table.valid_flag); if (ulv->supported && ulv->pl.vddc != 0) si_convert_mc_reg_table_entry_to_smc(adev, &ulv->pl, &smc_mc_reg_table->data[SISLANDS_MCREGISTERTABLE_ULV_SLOT]); else si_convert_mc_registers(&si_pi->mc_reg_table.mc_reg_table_entry[0], &smc_mc_reg_table->data[SISLANDS_MCREGISTERTABLE_ULV_SLOT], si_pi->mc_reg_table.last, si_pi->mc_reg_table.valid_flag); si_convert_mc_reg_table_to_smc(adev, amdgpu_boot_state, smc_mc_reg_table); return amdgpu_si_copy_bytes_to_smc(adev, si_pi->mc_reg_table_start, (u8 *)smc_mc_reg_table, sizeof(SMC_SIslands_MCRegisters), si_pi->sram_end); } static int si_upload_mc_reg_table(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state) { struct si_ps *new_state = si_get_ps(amdgpu_new_state); struct si_power_info *si_pi = si_get_pi(adev); u32 address = si_pi->mc_reg_table_start + offsetof(SMC_SIslands_MCRegisters, data[SISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT]); SMC_SIslands_MCRegisters *smc_mc_reg_table = &si_pi->smc_mc_reg_table; memset(smc_mc_reg_table, 0, sizeof(SMC_SIslands_MCRegisters)); si_convert_mc_reg_table_to_smc(adev, amdgpu_new_state, smc_mc_reg_table); return amdgpu_si_copy_bytes_to_smc(adev, address, (u8 *)&smc_mc_reg_table->data[SISLANDS_MCREGISTERTABLE_FIRST_DRIVERSTATE_SLOT], sizeof(SMC_SIslands_MCRegisterSet) * new_state->performance_level_count, si_pi->sram_end); } static void si_enable_voltage_control(struct amdgpu_device *adev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, VOLT_PWRMGT_EN, ~VOLT_PWRMGT_EN); else WREG32_P(GENERAL_PWRMGT, 0, ~VOLT_PWRMGT_EN); } static enum si_pcie_gen si_get_maximum_link_speed(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_state) { struct si_ps *state = si_get_ps(amdgpu_state); int i; u16 pcie_speed, max_speed = 0; for (i = 0; i < state->performance_level_count; i++) { pcie_speed = state->performance_levels[i].pcie_gen; if (max_speed < pcie_speed) max_speed = pcie_speed; } return max_speed; } static u16 si_get_current_pcie_speed(struct amdgpu_device *adev) { u32 speed_cntl; speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & LC_CURRENT_DATA_RATE_MASK; speed_cntl >>= LC_CURRENT_DATA_RATE_SHIFT; return (u16)speed_cntl; } static void si_request_link_speed_change_before_state_change(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state, struct amdgpu_ps *amdgpu_current_state) { struct si_power_info *si_pi = si_get_pi(adev); enum si_pcie_gen target_link_speed = si_get_maximum_link_speed(adev, amdgpu_new_state); enum si_pcie_gen current_link_speed; if (si_pi->force_pcie_gen == SI_PCIE_GEN_INVALID) current_link_speed = si_get_maximum_link_speed(adev, amdgpu_current_state); else current_link_speed = si_pi->force_pcie_gen; si_pi->force_pcie_gen = SI_PCIE_GEN_INVALID; si_pi->pspp_notify_required = false; if (target_link_speed > current_link_speed) { switch (target_link_speed) { #if defined(CONFIG_ACPI) case SI_PCIE_GEN3: if (amdgpu_acpi_pcie_performance_request(adev, PCIE_PERF_REQ_PECI_GEN3, false) == 0) break; si_pi->force_pcie_gen = SI_PCIE_GEN2; if (current_link_speed == SI_PCIE_GEN2) break; fallthrough; case SI_PCIE_GEN2: if (amdgpu_acpi_pcie_performance_request(adev, PCIE_PERF_REQ_PECI_GEN2, false) == 0) break; fallthrough; #endif default: si_pi->force_pcie_gen = si_get_current_pcie_speed(adev); break; } } else { if (target_link_speed < current_link_speed) si_pi->pspp_notify_required = true; } } static void si_notify_link_speed_change_after_state_change(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state, struct amdgpu_ps *amdgpu_current_state) { struct si_power_info *si_pi = si_get_pi(adev); enum si_pcie_gen target_link_speed = si_get_maximum_link_speed(adev, amdgpu_new_state); u8 request; if (si_pi->pspp_notify_required) { if (target_link_speed == SI_PCIE_GEN3) request = PCIE_PERF_REQ_PECI_GEN3; else if (target_link_speed == SI_PCIE_GEN2) request = PCIE_PERF_REQ_PECI_GEN2; else request = PCIE_PERF_REQ_PECI_GEN1; if ((request == PCIE_PERF_REQ_PECI_GEN1) && (si_get_current_pcie_speed(adev) > 0)) return; #if defined(CONFIG_ACPI) amdgpu_acpi_pcie_performance_request(adev, request, false); #endif } } #if 0 static int si_ds_request(struct amdgpu_device *adev, bool ds_status_on, u32 count_write) { struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); if (eg_pi->sclk_deep_sleep) { if (ds_status_on) return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_CancelThrottleOVRDSCLKDS) == PPSMC_Result_OK) ? 0 : -EINVAL; else return (amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_ThrottleOVRDSCLKDS) == PPSMC_Result_OK) ? 0 : -EINVAL; } return 0; } #endif static void si_set_max_cu_value(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); if (adev->asic_type == CHIP_VERDE) { switch (adev->pdev->device) { case 0x6820: case 0x6825: case 0x6821: case 0x6823: case 0x6827: si_pi->max_cu = 10; break; case 0x682D: case 0x6824: case 0x682F: case 0x6826: si_pi->max_cu = 8; break; case 0x6828: case 0x6830: case 0x6831: case 0x6838: case 0x6839: case 0x683D: si_pi->max_cu = 10; break; case 0x683B: case 0x683F: case 0x6829: si_pi->max_cu = 8; break; default: si_pi->max_cu = 0; break; } } else { si_pi->max_cu = 0; } } static int si_patch_single_dependency_table_based_on_leakage(struct amdgpu_device *adev, struct amdgpu_clock_voltage_dependency_table *table) { u32 i; int j; u16 leakage_voltage; if (table) { for (i = 0; i < table->count; i++) { switch (si_get_leakage_voltage_from_leakage_index(adev, table->entries[i].v, &leakage_voltage)) { case 0: table->entries[i].v = leakage_voltage; break; case -EAGAIN: return -EINVAL; case -EINVAL: default: break; } } for (j = (table->count - 2); j >= 0; j--) { table->entries[j].v = (table->entries[j].v <= table->entries[j + 1].v) ? table->entries[j].v : table->entries[j + 1].v; } } return 0; } static int si_patch_dependency_tables_based_on_leakage(struct amdgpu_device *adev) { int ret = 0; ret = si_patch_single_dependency_table_based_on_leakage(adev, &adev->pm.dpm.dyn_state.vddc_dependency_on_sclk); if (ret) DRM_ERROR("Could not patch vddc_on_sclk leakage table\n"); ret = si_patch_single_dependency_table_based_on_leakage(adev, &adev->pm.dpm.dyn_state.vddc_dependency_on_mclk); if (ret) DRM_ERROR("Could not patch vddc_on_mclk leakage table\n"); ret = si_patch_single_dependency_table_based_on_leakage(adev, &adev->pm.dpm.dyn_state.vddci_dependency_on_mclk); if (ret) DRM_ERROR("Could not patch vddci_on_mclk leakage table\n"); return ret; } static void si_set_pcie_lane_width_in_smc(struct amdgpu_device *adev, struct amdgpu_ps *amdgpu_new_state, struct amdgpu_ps *amdgpu_current_state) { u32 lane_width; u32 new_lane_width = ((amdgpu_new_state->caps & ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >> ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1; u32 current_lane_width = ((amdgpu_current_state->caps & ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >> ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1; if (new_lane_width != current_lane_width) { amdgpu_set_pcie_lanes(adev, new_lane_width); lane_width = amdgpu_get_pcie_lanes(adev); si_write_smc_soft_register(adev, SI_SMC_SOFT_REGISTER_non_ulv_pcie_link_width, lane_width); } } static void si_dpm_setup_asic(struct amdgpu_device *adev) { si_read_clock_registers(adev); si_enable_acpi_power_management(adev); } static int si_thermal_enable_alert(struct amdgpu_device *adev, bool enable) { u32 thermal_int = RREG32(CG_THERMAL_INT); if (enable) { PPSMC_Result result; thermal_int &= ~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW); WREG32(CG_THERMAL_INT, thermal_int); result = amdgpu_si_send_msg_to_smc(adev, PPSMC_MSG_EnableThermalInterrupt); if (result != PPSMC_Result_OK) { DRM_DEBUG_KMS("Could not enable thermal interrupts.\n"); return -EINVAL; } } else { thermal_int |= THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW; WREG32(CG_THERMAL_INT, thermal_int); } return 0; } static int si_thermal_set_temperature_range(struct amdgpu_device *adev, int min_temp, int max_temp) { int low_temp = 0 * 1000; int high_temp = 255 * 1000; if (low_temp < min_temp) low_temp = min_temp; if (high_temp > max_temp) high_temp = max_temp; if (high_temp < low_temp) { DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); return -EINVAL; } WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK); WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK); WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK); adev->pm.dpm.thermal.min_temp = low_temp; adev->pm.dpm.thermal.max_temp = high_temp; return 0; } static void si_fan_ctrl_set_static_mode(struct amdgpu_device *adev, u32 mode) { struct si_power_info *si_pi = si_get_pi(adev); u32 tmp; if (si_pi->fan_ctrl_is_in_default_mode) { tmp = (RREG32(CG_FDO_CTRL2) & FDO_PWM_MODE_MASK) >> FDO_PWM_MODE_SHIFT; si_pi->fan_ctrl_default_mode = tmp; tmp = (RREG32(CG_FDO_CTRL2) & TMIN_MASK) >> TMIN_SHIFT; si_pi->t_min = tmp; si_pi->fan_ctrl_is_in_default_mode = false; } tmp = RREG32(CG_FDO_CTRL2) & ~TMIN_MASK; tmp |= TMIN(0); WREG32(CG_FDO_CTRL2, tmp); tmp = RREG32(CG_FDO_CTRL2) & ~FDO_PWM_MODE_MASK; tmp |= FDO_PWM_MODE(mode); WREG32(CG_FDO_CTRL2, tmp); } static int si_thermal_setup_fan_table(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); PP_SIslands_FanTable fan_table = { FDO_MODE_HARDWARE }; u32 duty100; u32 t_diff1, t_diff2, pwm_diff1, pwm_diff2; u16 fdo_min, slope1, slope2; u32 reference_clock, tmp; int ret; u64 tmp64; if (!si_pi->fan_table_start) { adev->pm.dpm.fan.ucode_fan_control = false; return 0; } duty100 = (RREG32(CG_FDO_CTRL1) & FMAX_DUTY100_MASK) >> FMAX_DUTY100_SHIFT; if (duty100 == 0) { adev->pm.dpm.fan.ucode_fan_control = false; return 0; } tmp64 = (u64)adev->pm.dpm.fan.pwm_min * duty100; do_div(tmp64, 10000); fdo_min = (u16)tmp64; t_diff1 = adev->pm.dpm.fan.t_med - adev->pm.dpm.fan.t_min; t_diff2 = adev->pm.dpm.fan.t_high - adev->pm.dpm.fan.t_med; pwm_diff1 = adev->pm.dpm.fan.pwm_med - adev->pm.dpm.fan.pwm_min; pwm_diff2 = adev->pm.dpm.fan.pwm_high - adev->pm.dpm.fan.pwm_med; slope1 = (u16)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); slope2 = (u16)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); fan_table.temp_min = cpu_to_be16((50 + adev->pm.dpm.fan.t_min) / 100); fan_table.temp_med = cpu_to_be16((50 + adev->pm.dpm.fan.t_med) / 100); fan_table.temp_max = cpu_to_be16((50 + adev->pm.dpm.fan.t_max) / 100); fan_table.slope1 = cpu_to_be16(slope1); fan_table.slope2 = cpu_to_be16(slope2); fan_table.fdo_min = cpu_to_be16(fdo_min); fan_table.hys_down = cpu_to_be16(adev->pm.dpm.fan.t_hyst); fan_table.hys_up = cpu_to_be16(1); fan_table.hys_slope = cpu_to_be16(1); fan_table.temp_resp_lim = cpu_to_be16(5); reference_clock = amdgpu_asic_get_xclk(adev); fan_table.refresh_period = cpu_to_be32((adev->pm.dpm.fan.cycle_delay * reference_clock) / 1600); fan_table.fdo_max = cpu_to_be16((u16)duty100); tmp = (RREG32(CG_MULT_THERMAL_CTRL) & TEMP_SEL_MASK) >> TEMP_SEL_SHIFT; fan_table.temp_src = (uint8_t)tmp; ret = amdgpu_si_copy_bytes_to_smc(adev, si_pi->fan_table_start, (u8 *)(&fan_table), sizeof(fan_table), si_pi->sram_end); if (ret) { DRM_ERROR("Failed to load fan table to the SMC."); adev->pm.dpm.fan.ucode_fan_control = false; } return ret; } static int si_fan_ctrl_start_smc_fan_control(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); PPSMC_Result ret; ret = amdgpu_si_send_msg_to_smc(adev, PPSMC_StartFanControl); if (ret == PPSMC_Result_OK) { si_pi->fan_is_controlled_by_smc = true; return 0; } else { return -EINVAL; } } static int si_fan_ctrl_stop_smc_fan_control(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); PPSMC_Result ret; ret = amdgpu_si_send_msg_to_smc(adev, PPSMC_StopFanControl); if (ret == PPSMC_Result_OK) { si_pi->fan_is_controlled_by_smc = false; return 0; } else { return -EINVAL; } } static int si_dpm_get_fan_speed_pwm(void *handle, u32 *speed) { u32 duty, duty100; u64 tmp64; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!speed) return -EINVAL; if (adev->pm.no_fan) return -ENOENT; duty100 = (RREG32(CG_FDO_CTRL1) & FMAX_DUTY100_MASK) >> FMAX_DUTY100_SHIFT; duty = (RREG32(CG_THERMAL_STATUS) & FDO_PWM_DUTY_MASK) >> FDO_PWM_DUTY_SHIFT; if (duty100 == 0) return -EINVAL; tmp64 = (u64)duty * 255; do_div(tmp64, duty100); *speed = MIN((u32)tmp64, 255); return 0; } static int si_dpm_set_fan_speed_pwm(void *handle, u32 speed) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct si_power_info *si_pi = si_get_pi(adev); u32 tmp; u32 duty, duty100; u64 tmp64; if (adev->pm.no_fan) return -ENOENT; if (si_pi->fan_is_controlled_by_smc) return -EINVAL; if (speed > 255) return -EINVAL; duty100 = (RREG32(CG_FDO_CTRL1) & FMAX_DUTY100_MASK) >> FMAX_DUTY100_SHIFT; if (duty100 == 0) return -EINVAL; tmp64 = (u64)speed * duty100; do_div(tmp64, 255); duty = (u32)tmp64; tmp = RREG32(CG_FDO_CTRL0) & ~FDO_STATIC_DUTY_MASK; tmp |= FDO_STATIC_DUTY(duty); WREG32(CG_FDO_CTRL0, tmp); return 0; } static int si_dpm_set_fan_control_mode(void *handle, u32 mode) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (mode == U32_MAX) return -EINVAL; if (mode) { /* stop auto-manage */ if (adev->pm.dpm.fan.ucode_fan_control) si_fan_ctrl_stop_smc_fan_control(adev); si_fan_ctrl_set_static_mode(adev, mode); } else { /* restart auto-manage */ if (adev->pm.dpm.fan.ucode_fan_control) si_thermal_start_smc_fan_control(adev); else si_fan_ctrl_set_default_mode(adev); } return 0; } static int si_dpm_get_fan_control_mode(void *handle, u32 *fan_mode) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct si_power_info *si_pi = si_get_pi(adev); u32 tmp; if (!fan_mode) return -EINVAL; if (si_pi->fan_is_controlled_by_smc) return 0; tmp = RREG32(CG_FDO_CTRL2) & FDO_PWM_MODE_MASK; *fan_mode = (tmp >> FDO_PWM_MODE_SHIFT); return 0; } #if 0 static int si_fan_ctrl_get_fan_speed_rpm(struct amdgpu_device *adev, u32 *speed) { u32 tach_period; u32 xclk = amdgpu_asic_get_xclk(adev); if (adev->pm.no_fan) return -ENOENT; if (adev->pm.fan_pulses_per_revolution == 0) return -ENOENT; tach_period = (RREG32(CG_TACH_STATUS) & TACH_PERIOD_MASK) >> TACH_PERIOD_SHIFT; if (tach_period == 0) return -ENOENT; *speed = 60 * xclk * 10000 / tach_period; return 0; } static int si_fan_ctrl_set_fan_speed_rpm(struct amdgpu_device *adev, u32 speed) { u32 tach_period, tmp; u32 xclk = amdgpu_asic_get_xclk(adev); if (adev->pm.no_fan) return -ENOENT; if (adev->pm.fan_pulses_per_revolution == 0) return -ENOENT; if ((speed < adev->pm.fan_min_rpm) || (speed > adev->pm.fan_max_rpm)) return -EINVAL; if (adev->pm.dpm.fan.ucode_fan_control) si_fan_ctrl_stop_smc_fan_control(adev); tach_period = 60 * xclk * 10000 / (8 * speed); tmp = RREG32(CG_TACH_CTRL) & ~TARGET_PERIOD_MASK; tmp |= TARGET_PERIOD(tach_period); WREG32(CG_TACH_CTRL, tmp); si_fan_ctrl_set_static_mode(adev, FDO_PWM_MODE_STATIC_RPM); return 0; } #endif static void si_fan_ctrl_set_default_mode(struct amdgpu_device *adev) { struct si_power_info *si_pi = si_get_pi(adev); u32 tmp; if (!si_pi->fan_ctrl_is_in_default_mode) { tmp = RREG32(CG_FDO_CTRL2) & ~FDO_PWM_MODE_MASK; tmp |= FDO_PWM_MODE(si_pi->fan_ctrl_default_mode); WREG32(CG_FDO_CTRL2, tmp); tmp = RREG32(CG_FDO_CTRL2) & ~TMIN_MASK; tmp |= TMIN(si_pi->t_min); WREG32(CG_FDO_CTRL2, tmp); si_pi->fan_ctrl_is_in_default_mode = true; } } static void si_thermal_start_smc_fan_control(struct amdgpu_device *adev) { if (adev->pm.dpm.fan.ucode_fan_control) { si_fan_ctrl_start_smc_fan_control(adev); si_fan_ctrl_set_static_mode(adev, FDO_PWM_MODE_STATIC); } } static void si_thermal_initialize(struct amdgpu_device *adev) { u32 tmp; if (adev->pm.fan_pulses_per_revolution) { tmp = RREG32(CG_TACH_CTRL) & ~EDGE_PER_REV_MASK; tmp |= EDGE_PER_REV(adev->pm.fan_pulses_per_revolution -1); WREG32(CG_TACH_CTRL, tmp); } tmp = RREG32(CG_FDO_CTRL2) & ~TACH_PWM_RESP_RATE_MASK; tmp |= TACH_PWM_RESP_RATE(0x28); WREG32(CG_FDO_CTRL2, tmp); } static int si_thermal_start_thermal_controller(struct amdgpu_device *adev) { int ret; si_thermal_initialize(adev); ret = si_thermal_set_temperature_range(adev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); if (ret) return ret; ret = si_thermal_enable_alert(adev, true); if (ret) return ret; if (adev->pm.dpm.fan.ucode_fan_control) { ret = si_halt_smc(adev); if (ret) return ret; ret = si_thermal_setup_fan_table(adev); if (ret) return ret; ret = si_resume_smc(adev); if (ret) return ret; si_thermal_start_smc_fan_control(adev); } return 0; } static void si_thermal_stop_thermal_controller(struct amdgpu_device *adev) { if (!adev->pm.no_fan) { si_fan_ctrl_set_default_mode(adev); si_fan_ctrl_stop_smc_fan_control(adev); } } static int si_dpm_enable(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); struct amdgpu_ps *boot_ps = adev->pm.dpm.boot_ps; int ret; if (amdgpu_si_is_smc_running(adev)) return -EINVAL; if (pi->voltage_control || si_pi->voltage_control_svi2) si_enable_voltage_control(adev, true); if (pi->mvdd_control) si_get_mvdd_configuration(adev); if (pi->voltage_control || si_pi->voltage_control_svi2) { ret = si_construct_voltage_tables(adev); if (ret) { DRM_ERROR("si_construct_voltage_tables failed\n"); return ret; } } if (eg_pi->dynamic_ac_timing) { ret = si_initialize_mc_reg_table(adev); if (ret) eg_pi->dynamic_ac_timing = false; } if (pi->dynamic_ss) si_enable_spread_spectrum(adev, true); if (pi->thermal_protection) si_enable_thermal_protection(adev, true); si_setup_bsp(adev); si_program_git(adev); si_program_tp(adev); si_program_tpp(adev); si_program_sstp(adev); si_enable_display_gap(adev); si_program_vc(adev); ret = si_upload_firmware(adev); if (ret) { DRM_ERROR("si_upload_firmware failed\n"); return ret; } ret = si_process_firmware_header(adev); if (ret) { DRM_ERROR("si_process_firmware_header failed\n"); return ret; } ret = si_initial_switch_from_arb_f0_to_f1(adev); if (ret) { DRM_ERROR("si_initial_switch_from_arb_f0_to_f1 failed\n"); return ret; } ret = si_init_smc_table(adev); if (ret) { DRM_ERROR("si_init_smc_table failed\n"); return ret; } ret = si_init_smc_spll_table(adev); if (ret) { DRM_ERROR("si_init_smc_spll_table failed\n"); return ret; } ret = si_init_arb_table_index(adev); if (ret) { DRM_ERROR("si_init_arb_table_index failed\n"); return ret; } if (eg_pi->dynamic_ac_timing) { ret = si_populate_mc_reg_table(adev, boot_ps); if (ret) { DRM_ERROR("si_populate_mc_reg_table failed\n"); return ret; } } ret = si_initialize_smc_cac_tables(adev); if (ret) { DRM_ERROR("si_initialize_smc_cac_tables failed\n"); return ret; } ret = si_initialize_hardware_cac_manager(adev); if (ret) { DRM_ERROR("si_initialize_hardware_cac_manager failed\n"); return ret; } ret = si_initialize_smc_dte_tables(adev); if (ret) { DRM_ERROR("si_initialize_smc_dte_tables failed\n"); return ret; } ret = si_populate_smc_tdp_limits(adev, boot_ps); if (ret) { DRM_ERROR("si_populate_smc_tdp_limits failed\n"); return ret; } ret = si_populate_smc_tdp_limits_2(adev, boot_ps); if (ret) { DRM_ERROR("si_populate_smc_tdp_limits_2 failed\n"); return ret; } si_program_response_times(adev); si_program_ds_registers(adev); si_dpm_start_smc(adev); ret = si_notify_smc_display_change(adev, false); if (ret) { DRM_ERROR("si_notify_smc_display_change failed\n"); return ret; } si_enable_sclk_control(adev, true); si_start_dpm(adev); si_enable_auto_throttle_source(adev, SI_DPM_AUTO_THROTTLE_SRC_THERMAL, true); si_thermal_start_thermal_controller(adev); ni_update_current_ps(adev, boot_ps); return 0; } static void si_dpm_disable(struct amdgpu_device *adev) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct amdgpu_ps *boot_ps = adev->pm.dpm.boot_ps; if (!amdgpu_si_is_smc_running(adev)) return; si_thermal_stop_thermal_controller(adev); si_disable_ulv(adev); si_clear_vc(adev); if (pi->thermal_protection) si_enable_thermal_protection(adev, false); si_enable_power_containment(adev, boot_ps, false); si_enable_smc_cac(adev, boot_ps, false); si_enable_spread_spectrum(adev, false); si_enable_auto_throttle_source(adev, SI_DPM_AUTO_THROTTLE_SRC_THERMAL, false); si_stop_dpm(adev); si_reset_to_default(adev); si_dpm_stop_smc(adev); si_force_switch_to_arb_f0(adev); ni_update_current_ps(adev, boot_ps); } static int si_dpm_pre_set_power_state(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps; struct amdgpu_ps *new_ps = &requested_ps; ni_update_requested_ps(adev, new_ps); si_apply_state_adjust_rules(adev, &eg_pi->requested_rps); return 0; } static int si_power_control_set_level(struct amdgpu_device *adev) { struct amdgpu_ps *new_ps = adev->pm.dpm.requested_ps; int ret; ret = si_restrict_performance_levels_before_switch(adev); if (ret) return ret; ret = si_halt_smc(adev); if (ret) return ret; ret = si_populate_smc_tdp_limits(adev, new_ps); if (ret) return ret; ret = si_populate_smc_tdp_limits_2(adev, new_ps); if (ret) return ret; ret = si_resume_smc(adev); if (ret) return ret; return si_set_sw_state(adev); } static void si_set_vce_clock(struct amdgpu_device *adev, struct amdgpu_ps *new_rps, struct amdgpu_ps *old_rps) { if ((old_rps->evclk != new_rps->evclk) || (old_rps->ecclk != new_rps->ecclk)) { /* Turn the clocks on when encoding, off otherwise */ if (new_rps->evclk || new_rps->ecclk) { /* Place holder for future VCE1.0 porting to amdgpu vce_v1_0_enable_mgcg(adev, false, false);*/ } else { /* Place holder for future VCE1.0 porting to amdgpu vce_v1_0_enable_mgcg(adev, true, false); amdgpu_asic_set_vce_clocks(adev, new_rps->evclk, new_rps->ecclk);*/ } } } static int si_dpm_set_power_state(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct amdgpu_ps *new_ps = &eg_pi->requested_rps; struct amdgpu_ps *old_ps = &eg_pi->current_rps; int ret; ret = si_disable_ulv(adev); if (ret) { DRM_ERROR("si_disable_ulv failed\n"); return ret; } ret = si_restrict_performance_levels_before_switch(adev); if (ret) { DRM_ERROR("si_restrict_performance_levels_before_switch failed\n"); return ret; } if (eg_pi->pcie_performance_request) si_request_link_speed_change_before_state_change(adev, new_ps, old_ps); ni_set_uvd_clock_before_set_eng_clock(adev, new_ps, old_ps); ret = si_enable_power_containment(adev, new_ps, false); if (ret) { DRM_ERROR("si_enable_power_containment failed\n"); return ret; } ret = si_enable_smc_cac(adev, new_ps, false); if (ret) { DRM_ERROR("si_enable_smc_cac failed\n"); return ret; } ret = si_halt_smc(adev); if (ret) { DRM_ERROR("si_halt_smc failed\n"); return ret; } ret = si_upload_sw_state(adev, new_ps); if (ret) { DRM_ERROR("si_upload_sw_state failed\n"); return ret; } ret = si_upload_smc_data(adev); if (ret) { DRM_ERROR("si_upload_smc_data failed\n"); return ret; } ret = si_upload_ulv_state(adev); if (ret) { DRM_ERROR("si_upload_ulv_state failed\n"); return ret; } if (eg_pi->dynamic_ac_timing) { ret = si_upload_mc_reg_table(adev, new_ps); if (ret) { DRM_ERROR("si_upload_mc_reg_table failed\n"); return ret; } } ret = si_program_memory_timing_parameters(adev, new_ps); if (ret) { DRM_ERROR("si_program_memory_timing_parameters failed\n"); return ret; } si_set_pcie_lane_width_in_smc(adev, new_ps, old_ps); ret = si_resume_smc(adev); if (ret) { DRM_ERROR("si_resume_smc failed\n"); return ret; } ret = si_set_sw_state(adev); if (ret) { DRM_ERROR("si_set_sw_state failed\n"); return ret; } ni_set_uvd_clock_after_set_eng_clock(adev, new_ps, old_ps); si_set_vce_clock(adev, new_ps, old_ps); if (eg_pi->pcie_performance_request) si_notify_link_speed_change_after_state_change(adev, new_ps, old_ps); ret = si_set_power_state_conditionally_enable_ulv(adev, new_ps); if (ret) { DRM_ERROR("si_set_power_state_conditionally_enable_ulv failed\n"); return ret; } ret = si_enable_smc_cac(adev, new_ps, true); if (ret) { DRM_ERROR("si_enable_smc_cac failed\n"); return ret; } ret = si_enable_power_containment(adev, new_ps, true); if (ret) { DRM_ERROR("si_enable_power_containment failed\n"); return ret; } ret = si_power_control_set_level(adev); if (ret) { DRM_ERROR("si_power_control_set_level failed\n"); return ret; } return 0; } static void si_dpm_post_set_power_state(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct amdgpu_ps *new_ps = &eg_pi->requested_rps; ni_update_current_ps(adev, new_ps); } #if 0 void si_dpm_reset_asic(struct amdgpu_device *adev) { si_restrict_performance_levels_before_switch(adev); si_disable_ulv(adev); si_set_boot_state(adev); } #endif static void si_dpm_display_configuration_changed(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; si_program_display_gap(adev); } static void si_parse_pplib_non_clock_info(struct amdgpu_device *adev, struct amdgpu_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, u8 table_rev) { rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); } else if (r600_is_uvd_state(rps->class, rps->class2)) { rps->vclk = RV770_DEFAULT_VCLK_FREQ; rps->dclk = RV770_DEFAULT_DCLK_FREQ; } else { rps->vclk = 0; rps->dclk = 0; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) adev->pm.dpm.boot_ps = rps; if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) adev->pm.dpm.uvd_ps = rps; } static void si_parse_pplib_clock_info(struct amdgpu_device *adev, struct amdgpu_ps *rps, int index, union pplib_clock_info *clock_info) { struct rv7xx_power_info *pi = rv770_get_pi(adev); struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_power_info *si_pi = si_get_pi(adev); struct si_ps *ps = si_get_ps(rps); u16 leakage_voltage; struct rv7xx_pl *pl = &ps->performance_levels[index]; int ret; ps->performance_level_count = index + 1; pl->sclk = le16_to_cpu(clock_info->si.usEngineClockLow); pl->sclk |= clock_info->si.ucEngineClockHigh << 16; pl->mclk = le16_to_cpu(clock_info->si.usMemoryClockLow); pl->mclk |= clock_info->si.ucMemoryClockHigh << 16; pl->vddc = le16_to_cpu(clock_info->si.usVDDC); pl->vddci = le16_to_cpu(clock_info->si.usVDDCI); pl->flags = le32_to_cpu(clock_info->si.ulFlags); pl->pcie_gen = si_gen_pcie_gen_support(adev, si_pi->sys_pcie_mask, si_pi->boot_pcie_gen, clock_info->si.ucPCIEGen); /* patch up vddc if necessary */ ret = si_get_leakage_voltage_from_leakage_index(adev, pl->vddc, &leakage_voltage); if (ret == 0) pl->vddc = leakage_voltage; if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) { pi->acpi_vddc = pl->vddc; eg_pi->acpi_vddci = pl->vddci; si_pi->acpi_pcie_gen = pl->pcie_gen; } if ((rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) && index == 0) { /* XXX disable for A0 tahiti */ si_pi->ulv.supported = false; si_pi->ulv.pl = *pl; si_pi->ulv.one_pcie_lane_in_ulv = false; si_pi->ulv.volt_change_delay = SISLANDS_ULVVOLTAGECHANGEDELAY_DFLT; si_pi->ulv.cg_ulv_parameter = SISLANDS_CGULVPARAMETER_DFLT; si_pi->ulv.cg_ulv_control = SISLANDS_CGULVCONTROL_DFLT; } if (pi->min_vddc_in_table > pl->vddc) pi->min_vddc_in_table = pl->vddc; if (pi->max_vddc_in_table < pl->vddc) pi->max_vddc_in_table = pl->vddc; /* patch up boot state */ if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { u16 vddc, vddci, mvdd; amdgpu_atombios_get_default_voltages(adev, &vddc, &vddci, &mvdd); pl->mclk = adev->clock.default_mclk; pl->sclk = adev->clock.default_sclk; pl->vddc = vddc; pl->vddci = vddci; si_pi->mvdd_bootup_value = mvdd; } if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) { adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk = pl->sclk; adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk = pl->mclk; adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc = pl->vddc; adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci = pl->vddci; } } union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static int si_parse_power_table(struct amdgpu_device *adev) { struct amdgpu_mode_info *mode_info = &adev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j, k, non_clock_array_index, clock_array_index; union pplib_clock_info *clock_info; struct _StateArray *state_array; struct _ClockInfoArray *clock_info_array; struct _NonClockInfoArray *non_clock_info_array; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; u8 *power_state_offset; struct si_ps *ps; if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); amdgpu_add_thermal_controller(adev); state_array = (struct _StateArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset)); clock_info_array = (struct _ClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset)); non_clock_info_array = (struct _NonClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset)); adev->pm.dpm.ps = kcalloc(state_array->ucNumEntries, sizeof(struct amdgpu_ps), GFP_KERNEL); if (!adev->pm.dpm.ps) return -ENOMEM; power_state_offset = (u8 *)state_array->states; for (adev->pm.dpm.num_ps = 0, i = 0; i < state_array->ucNumEntries; i++) { u8 *idx; power_state = (union pplib_power_state *)power_state_offset; non_clock_array_index = power_state->v2.nonClockInfoIndex; non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) &non_clock_info_array->nonClockInfo[non_clock_array_index]; ps = kzalloc(sizeof(struct si_ps), GFP_KERNEL); if (ps == NULL) return -ENOMEM; adev->pm.dpm.ps[i].ps_priv = ps; si_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i], non_clock_info, non_clock_info_array->ucEntrySize); k = 0; idx = (u8 *)&power_state->v2.clockInfoIndex[0]; for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { clock_array_index = idx[j]; if (clock_array_index >= clock_info_array->ucNumEntries) continue; if (k >= SISLANDS_MAX_HARDWARE_POWERLEVELS) break; clock_info = (union pplib_clock_info *) ((u8 *)&clock_info_array->clockInfo[0] + (clock_array_index * clock_info_array->ucEntrySize)); si_parse_pplib_clock_info(adev, &adev->pm.dpm.ps[i], k, clock_info); k++; } power_state_offset += 2 + power_state->v2.ucNumDPMLevels; adev->pm.dpm.num_ps++; } /* fill in the vce power states */ for (i = 0; i < adev->pm.dpm.num_of_vce_states; i++) { u32 sclk, mclk; clock_array_index = adev->pm.dpm.vce_states[i].clk_idx; clock_info = (union pplib_clock_info *) &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize]; sclk = le16_to_cpu(clock_info->si.usEngineClockLow); sclk |= clock_info->si.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->si.usMemoryClockLow); mclk |= clock_info->si.ucMemoryClockHigh << 16; adev->pm.dpm.vce_states[i].sclk = sclk; adev->pm.dpm.vce_states[i].mclk = mclk; } return 0; } static int si_dpm_init(struct amdgpu_device *adev) { struct rv7xx_power_info *pi; struct evergreen_power_info *eg_pi; struct ni_power_info *ni_pi; struct si_power_info *si_pi; struct atom_clock_dividers dividers; int ret; si_pi = kzalloc(sizeof(struct si_power_info), GFP_KERNEL); if (si_pi == NULL) return -ENOMEM; adev->pm.dpm.priv = si_pi; ni_pi = &si_pi->ni; eg_pi = &ni_pi->eg; pi = &eg_pi->rv7xx; si_pi->sys_pcie_mask = adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_MASK; si_pi->force_pcie_gen = SI_PCIE_GEN_INVALID; si_pi->boot_pcie_gen = si_get_current_pcie_speed(adev); si_set_max_cu_value(adev); rv770_get_max_vddc(adev); si_get_leakage_vddc(adev); si_patch_dependency_tables_based_on_leakage(adev); pi->acpi_vddc = 0; eg_pi->acpi_vddci = 0; pi->min_vddc_in_table = 0; pi->max_vddc_in_table = 0; ret = amdgpu_get_platform_caps(adev); if (ret) return ret; ret = amdgpu_parse_extended_power_table(adev); if (ret) return ret; ret = si_parse_power_table(adev); if (ret) return ret; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries = kcalloc(4, sizeof(struct amdgpu_clock_voltage_dependency_entry), GFP_KERNEL); if (!adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries) { amdgpu_free_extended_power_table(adev); return -ENOMEM; } adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.count = 4; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].clk = 0; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].v = 0; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].clk = 36000; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].v = 720; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].clk = 54000; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].v = 810; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].clk = 72000; adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].v = 900; if (adev->pm.dpm.voltage_response_time == 0) adev->pm.dpm.voltage_response_time = R600_VOLTAGERESPONSETIME_DFLT; if (adev->pm.dpm.backbias_response_time == 0) adev->pm.dpm.backbias_response_time = R600_BACKBIASRESPONSETIME_DFLT; ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_ENGINE_PLL_PARAM, 0, false, &dividers); if (ret) pi->ref_div = dividers.ref_div + 1; else pi->ref_div = R600_REFERENCEDIVIDER_DFLT; eg_pi->smu_uvd_hs = false; pi->mclk_strobe_mode_threshold = 40000; if (si_is_special_1gb_platform(adev)) pi->mclk_stutter_mode_threshold = 0; else pi->mclk_stutter_mode_threshold = pi->mclk_strobe_mode_threshold; pi->mclk_edc_enable_threshold = 40000; eg_pi->mclk_edc_wr_enable_threshold = 40000; ni_pi->mclk_rtt_mode_threshold = eg_pi->mclk_edc_wr_enable_threshold; pi->voltage_control = amdgpu_atombios_is_voltage_gpio(adev, SET_VOLTAGE_TYPE_ASIC_VDDC, VOLTAGE_OBJ_GPIO_LUT); if (!pi->voltage_control) { si_pi->voltage_control_svi2 = amdgpu_atombios_is_voltage_gpio(adev, SET_VOLTAGE_TYPE_ASIC_VDDC, VOLTAGE_OBJ_SVID2); if (si_pi->voltage_control_svi2) amdgpu_atombios_get_svi2_info(adev, SET_VOLTAGE_TYPE_ASIC_VDDC, &si_pi->svd_gpio_id, &si_pi->svc_gpio_id); } pi->mvdd_control = amdgpu_atombios_is_voltage_gpio(adev, SET_VOLTAGE_TYPE_ASIC_MVDDC, VOLTAGE_OBJ_GPIO_LUT); eg_pi->vddci_control = amdgpu_atombios_is_voltage_gpio(adev, SET_VOLTAGE_TYPE_ASIC_VDDCI, VOLTAGE_OBJ_GPIO_LUT); if (!eg_pi->vddci_control) si_pi->vddci_control_svi2 = amdgpu_atombios_is_voltage_gpio(adev, SET_VOLTAGE_TYPE_ASIC_VDDCI, VOLTAGE_OBJ_SVID2); si_pi->vddc_phase_shed_control = amdgpu_atombios_is_voltage_gpio(adev, SET_VOLTAGE_TYPE_ASIC_VDDC, VOLTAGE_OBJ_PHASE_LUT); rv770_get_engine_memory_ss(adev); pi->asi = RV770_ASI_DFLT; pi->pasi = CYPRESS_HASI_DFLT; pi->vrc = SISLANDS_VRC_DFLT; pi->gfx_clock_gating = true; eg_pi->sclk_deep_sleep = true; si_pi->sclk_deep_sleep_above_low = false; if (adev->pm.int_thermal_type != THERMAL_TYPE_NONE) pi->thermal_protection = true; else pi->thermal_protection = false; eg_pi->dynamic_ac_timing = true; eg_pi->light_sleep = true; #if defined(CONFIG_ACPI) eg_pi->pcie_performance_request = amdgpu_acpi_is_pcie_performance_request_supported(adev); #else eg_pi->pcie_performance_request = false; #endif si_pi->sram_end = SMC_RAM_END; adev->pm.dpm.dyn_state.mclk_sclk_ratio = 4; adev->pm.dpm.dyn_state.sclk_mclk_delta = 15000; adev->pm.dpm.dyn_state.vddc_vddci_delta = 200; adev->pm.dpm.dyn_state.valid_sclk_values.count = 0; adev->pm.dpm.dyn_state.valid_sclk_values.values = NULL; adev->pm.dpm.dyn_state.valid_mclk_values.count = 0; adev->pm.dpm.dyn_state.valid_mclk_values.values = NULL; si_initialize_powertune_defaults(adev); /* make sure dc limits are valid */ if ((adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk == 0) || (adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk == 0)) adev->pm.dpm.dyn_state.max_clock_voltage_on_dc = adev->pm.dpm.dyn_state.max_clock_voltage_on_ac; si_pi->fan_ctrl_is_in_default_mode = true; return 0; } static void si_dpm_fini(struct amdgpu_device *adev) { int i; if (adev->pm.dpm.ps) for (i = 0; i < adev->pm.dpm.num_ps; i++) kfree(adev->pm.dpm.ps[i].ps_priv); kfree(adev->pm.dpm.ps); kfree(adev->pm.dpm.priv); kfree(adev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries); amdgpu_free_extended_power_table(adev); } static void si_dpm_debugfs_print_current_performance_level(void *handle, struct seq_file *m) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct amdgpu_ps *rps = &eg_pi->current_rps; struct si_ps *ps = si_get_ps(rps); struct rv7xx_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_INDEX_MASK) >> CURRENT_STATE_INDEX_SHIFT; if (current_index >= ps->performance_level_count) { seq_printf(m, "invalid dpm profile %d\n", current_index); } else { pl = &ps->performance_levels[current_index]; seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); seq_printf(m, "power level %d sclk: %u mclk: %u vddc: %u vddci: %u pcie gen: %u\n", current_index, pl->sclk, pl->mclk, pl->vddc, pl->vddci, pl->pcie_gen + 1); } } static int si_dpm_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { u32 cg_thermal_int; switch (type) { case AMDGPU_THERMAL_IRQ_LOW_TO_HIGH: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cg_thermal_int = RREG32_SMC(CG_THERMAL_INT); cg_thermal_int |= THERM_INT_MASK_HIGH; WREG32_SMC(CG_THERMAL_INT, cg_thermal_int); break; case AMDGPU_IRQ_STATE_ENABLE: cg_thermal_int = RREG32_SMC(CG_THERMAL_INT); cg_thermal_int &= ~THERM_INT_MASK_HIGH; WREG32_SMC(CG_THERMAL_INT, cg_thermal_int); break; default: break; } break; case AMDGPU_THERMAL_IRQ_HIGH_TO_LOW: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cg_thermal_int = RREG32_SMC(CG_THERMAL_INT); cg_thermal_int |= THERM_INT_MASK_LOW; WREG32_SMC(CG_THERMAL_INT, cg_thermal_int); break; case AMDGPU_IRQ_STATE_ENABLE: cg_thermal_int = RREG32_SMC(CG_THERMAL_INT); cg_thermal_int &= ~THERM_INT_MASK_LOW; WREG32_SMC(CG_THERMAL_INT, cg_thermal_int); break; default: break; } break; default: break; } return 0; } static int si_dpm_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { bool queue_thermal = false; if (entry == NULL) return -EINVAL; switch (entry->src_id) { case 230: /* thermal low to high */ DRM_DEBUG("IH: thermal low to high\n"); adev->pm.dpm.thermal.high_to_low = false; queue_thermal = true; break; case 231: /* thermal high to low */ DRM_DEBUG("IH: thermal high to low\n"); adev->pm.dpm.thermal.high_to_low = true; queue_thermal = true; break; default: break; } if (queue_thermal) schedule_work(&adev->pm.dpm.thermal.work); return 0; } static int si_dpm_late_init(void *handle) { return 0; } /** * si_dpm_init_microcode - load ucode images from disk * * @adev: amdgpu_device pointer * * Use the firmware interface to load the ucode images into * the driver (not loaded into hw). * Returns 0 on success, error on failure. */ static int si_dpm_init_microcode(struct amdgpu_device *adev) { const char *chip_name; char fw_name[30]; int err; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_TAHITI: chip_name = "tahiti"; break; case CHIP_PITCAIRN: if ((adev->pdev->revision == 0x81) && ((adev->pdev->device == 0x6810) || (adev->pdev->device == 0x6811))) chip_name = "pitcairn_k"; else chip_name = "pitcairn"; break; case CHIP_VERDE: if (((adev->pdev->device == 0x6820) && ((adev->pdev->revision == 0x81) || (adev->pdev->revision == 0x83))) || ((adev->pdev->device == 0x6821) && ((adev->pdev->revision == 0x83) || (adev->pdev->revision == 0x87))) || ((adev->pdev->revision == 0x87) && ((adev->pdev->device == 0x6823) || (adev->pdev->device == 0x682b)))) chip_name = "verde_k"; else chip_name = "verde"; break; case CHIP_OLAND: if (((adev->pdev->revision == 0x81) && ((adev->pdev->device == 0x6600) || (adev->pdev->device == 0x6604) || (adev->pdev->device == 0x6605) || (adev->pdev->device == 0x6610))) || ((adev->pdev->revision == 0x83) && (adev->pdev->device == 0x6610))) chip_name = "oland_k"; else chip_name = "oland"; break; case CHIP_HAINAN: if (((adev->pdev->revision == 0x81) && (adev->pdev->device == 0x6660)) || ((adev->pdev->revision == 0x83) && ((adev->pdev->device == 0x6660) || (adev->pdev->device == 0x6663) || (adev->pdev->device == 0x6665) || (adev->pdev->device == 0x6667)))) chip_name = "hainan_k"; else if ((adev->pdev->revision == 0xc3) && (adev->pdev->device == 0x6665)) chip_name = "banks_k_2"; else chip_name = "hainan"; break; default: BUG(); } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name); err = amdgpu_ucode_request(adev, &adev->pm.fw, fw_name); if (err) { DRM_ERROR("si_smc: Failed to load firmware. err = %d\"%s\"\n", err, fw_name); amdgpu_ucode_release(&adev->pm.fw); } return err; } static int si_dpm_sw_init(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; ret = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 230, &adev->pm.dpm.thermal.irq); if (ret) return ret; ret = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 231, &adev->pm.dpm.thermal.irq); if (ret) return ret; /* default to balanced state */ adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED; adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED; adev->pm.dpm.forced_level = AMD_DPM_FORCED_LEVEL_AUTO; adev->pm.default_sclk = adev->clock.default_sclk; adev->pm.default_mclk = adev->clock.default_mclk; adev->pm.current_sclk = adev->clock.default_sclk; adev->pm.current_mclk = adev->clock.default_mclk; adev->pm.int_thermal_type = THERMAL_TYPE_NONE; if (amdgpu_dpm == 0) return 0; ret = si_dpm_init_microcode(adev); if (ret) return ret; INIT_WORK(&adev->pm.dpm.thermal.work, amdgpu_dpm_thermal_work_handler); ret = si_dpm_init(adev); if (ret) goto dpm_failed; adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps; if (amdgpu_dpm == 1) amdgpu_pm_print_power_states(adev); DRM_INFO("amdgpu: dpm initialized\n"); return 0; dpm_failed: si_dpm_fini(adev); DRM_ERROR("amdgpu: dpm initialization failed\n"); return ret; } static int si_dpm_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; flush_work(&adev->pm.dpm.thermal.work); si_dpm_fini(adev); return 0; } static int si_dpm_hw_init(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!amdgpu_dpm) return 0; si_dpm_setup_asic(adev); ret = si_dpm_enable(adev); if (ret) adev->pm.dpm_enabled = false; else adev->pm.dpm_enabled = true; amdgpu_legacy_dpm_compute_clocks(adev); return ret; } static int si_dpm_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->pm.dpm_enabled) si_dpm_disable(adev); return 0; } static int si_dpm_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->pm.dpm_enabled) { /* disable dpm */ si_dpm_disable(adev); /* reset the power state */ adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps; } return 0; } static int si_dpm_resume(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->pm.dpm_enabled) { /* asic init will reset to the boot state */ si_dpm_setup_asic(adev); ret = si_dpm_enable(adev); if (ret) adev->pm.dpm_enabled = false; else adev->pm.dpm_enabled = true; if (adev->pm.dpm_enabled) amdgpu_legacy_dpm_compute_clocks(adev); } return 0; } static bool si_dpm_is_idle(void *handle) { /* XXX */ return true; } static int si_dpm_wait_for_idle(void *handle) { /* XXX */ return 0; } static int si_dpm_soft_reset(void *handle) { return 0; } static int si_dpm_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int si_dpm_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } /* get temperature in millidegrees */ static int si_dpm_get_temp(void *handle) { u32 temp; int actual_temp = 0; struct amdgpu_device *adev = (struct amdgpu_device *)handle; temp = (RREG32(CG_MULT_THERMAL_STATUS) & CTF_TEMP_MASK) >> CTF_TEMP_SHIFT; if (temp & 0x200) actual_temp = 255; else actual_temp = temp & 0x1ff; actual_temp = (actual_temp * 1000); return actual_temp; } static u32 si_dpm_get_sclk(void *handle, bool low) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_ps *requested_state = si_get_ps(&eg_pi->requested_rps); if (low) return requested_state->performance_levels[0].sclk; else return requested_state->performance_levels[requested_state->performance_level_count - 1].sclk; } static u32 si_dpm_get_mclk(void *handle, bool low) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct si_ps *requested_state = si_get_ps(&eg_pi->requested_rps); if (low) return requested_state->performance_levels[0].mclk; else return requested_state->performance_levels[requested_state->performance_level_count - 1].mclk; } static void si_dpm_print_power_state(void *handle, void *current_ps) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ps *rps = (struct amdgpu_ps *)current_ps; struct si_ps *ps = si_get_ps(rps); struct rv7xx_pl *pl; int i; amdgpu_dpm_print_class_info(rps->class, rps->class2); amdgpu_dpm_print_cap_info(rps->caps); DRM_INFO("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); for (i = 0; i < ps->performance_level_count; i++) { pl = &ps->performance_levels[i]; if (adev->asic_type >= CHIP_TAHITI) DRM_INFO("\t\tpower level %d sclk: %u mclk: %u vddc: %u vddci: %u pcie gen: %u\n", i, pl->sclk, pl->mclk, pl->vddc, pl->vddci, pl->pcie_gen + 1); else DRM_INFO("\t\tpower level %d sclk: %u mclk: %u vddc: %u vddci: %u\n", i, pl->sclk, pl->mclk, pl->vddc, pl->vddci); } amdgpu_dpm_print_ps_status(adev, rps); } static int si_dpm_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->powerplay.pp_funcs = &si_dpm_funcs; adev->powerplay.pp_handle = adev; si_dpm_set_irq_funcs(adev); return 0; } static inline bool si_are_power_levels_equal(const struct rv7xx_pl *si_cpl1, const struct rv7xx_pl *si_cpl2) { return ((si_cpl1->mclk == si_cpl2->mclk) && (si_cpl1->sclk == si_cpl2->sclk) && (si_cpl1->pcie_gen == si_cpl2->pcie_gen) && (si_cpl1->vddc == si_cpl2->vddc) && (si_cpl1->vddci == si_cpl2->vddci)); } static int si_check_state_equal(void *handle, void *current_ps, void *request_ps, bool *equal) { struct si_ps *si_cps; struct si_ps *si_rps; int i; struct amdgpu_ps *cps = (struct amdgpu_ps *)current_ps; struct amdgpu_ps *rps = (struct amdgpu_ps *)request_ps; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev == NULL || cps == NULL || rps == NULL || equal == NULL) return -EINVAL; si_cps = si_get_ps((struct amdgpu_ps *)cps); si_rps = si_get_ps((struct amdgpu_ps *)rps); if (si_cps == NULL) { printk("si_cps is NULL\n"); *equal = false; return 0; } if (si_cps->performance_level_count != si_rps->performance_level_count) { *equal = false; return 0; } for (i = 0; i < si_cps->performance_level_count; i++) { if (!si_are_power_levels_equal(&(si_cps->performance_levels[i]), &(si_rps->performance_levels[i]))) { *equal = false; return 0; } } /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ *equal = ((cps->vclk == rps->vclk) && (cps->dclk == rps->dclk)); *equal &= ((cps->evclk == rps->evclk) && (cps->ecclk == rps->ecclk)); return 0; } static int si_dpm_read_sensor(void *handle, int idx, void *value, int *size) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct evergreen_power_info *eg_pi = evergreen_get_pi(adev); struct amdgpu_ps *rps = &eg_pi->current_rps; struct si_ps *ps = si_get_ps(rps); uint32_t sclk, mclk; u32 pl_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_STATE_INDEX_MASK) >> CURRENT_STATE_INDEX_SHIFT; /* size must be at least 4 bytes for all sensors */ if (*size < 4) return -EINVAL; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: if (pl_index < ps->performance_level_count) { sclk = ps->performance_levels[pl_index].sclk; *((uint32_t *)value) = sclk; *size = 4; return 0; } return -EINVAL; case AMDGPU_PP_SENSOR_GFX_MCLK: if (pl_index < ps->performance_level_count) { mclk = ps->performance_levels[pl_index].mclk; *((uint32_t *)value) = mclk; *size = 4; return 0; } return -EINVAL; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = si_dpm_get_temp(adev); *size = 4; return 0; default: return -EOPNOTSUPP; } } static const struct amd_ip_funcs si_dpm_ip_funcs = { .name = "si_dpm", .early_init = si_dpm_early_init, .late_init = si_dpm_late_init, .sw_init = si_dpm_sw_init, .sw_fini = si_dpm_sw_fini, .hw_init = si_dpm_hw_init, .hw_fini = si_dpm_hw_fini, .suspend = si_dpm_suspend, .resume = si_dpm_resume, .is_idle = si_dpm_is_idle, .wait_for_idle = si_dpm_wait_for_idle, .soft_reset = si_dpm_soft_reset, .set_clockgating_state = si_dpm_set_clockgating_state, .set_powergating_state = si_dpm_set_powergating_state, }; const struct amdgpu_ip_block_version si_smu_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 6, .minor = 0, .rev = 0, .funcs = &si_dpm_ip_funcs, }; static const struct amd_pm_funcs si_dpm_funcs = { .pre_set_power_state = &si_dpm_pre_set_power_state, .set_power_state = &si_dpm_set_power_state, .post_set_power_state = &si_dpm_post_set_power_state, .display_configuration_changed = &si_dpm_display_configuration_changed, .get_sclk = &si_dpm_get_sclk, .get_mclk = &si_dpm_get_mclk, .print_power_state = &si_dpm_print_power_state, .debugfs_print_current_performance_level = &si_dpm_debugfs_print_current_performance_level, .force_performance_level = &si_dpm_force_performance_level, .vblank_too_short = &si_dpm_vblank_too_short, .set_fan_control_mode = &si_dpm_set_fan_control_mode, .get_fan_control_mode = &si_dpm_get_fan_control_mode, .set_fan_speed_pwm = &si_dpm_set_fan_speed_pwm, .get_fan_speed_pwm = &si_dpm_get_fan_speed_pwm, .check_state_equal = &si_check_state_equal, .get_vce_clock_state = amdgpu_get_vce_clock_state, .read_sensor = &si_dpm_read_sensor, .pm_compute_clocks = amdgpu_legacy_dpm_compute_clocks, }; static const struct amdgpu_irq_src_funcs si_dpm_irq_funcs = { .set = si_dpm_set_interrupt_state, .process = si_dpm_process_interrupt, }; static void si_dpm_set_irq_funcs(struct amdgpu_device *adev) { adev->pm.dpm.thermal.irq.num_types = AMDGPU_THERMAL_IRQ_LAST; adev->pm.dpm.thermal.irq.funcs = &si_dpm_irq_funcs; }
linux-master
drivers/gpu/drm/amd/pm/legacy-dpm/si_dpm.c
/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include "amdgpu.h" #include "cikd.h" #include "kv_dpm.h" #include "smu/smu_7_0_0_d.h" #include "smu/smu_7_0_0_sh_mask.h" int amdgpu_kv_notify_message_to_smu(struct amdgpu_device *adev, u32 id) { u32 i; u32 tmp = 0; WREG32(mmSMC_MESSAGE_0, id & SMC_MESSAGE_0__SMC_MSG_MASK); for (i = 0; i < adev->usec_timeout; i++) { if ((RREG32(mmSMC_RESP_0) & SMC_RESP_0__SMC_RESP_MASK) != 0) break; udelay(1); } tmp = RREG32(mmSMC_RESP_0) & SMC_RESP_0__SMC_RESP_MASK; if (tmp != 1) { if (tmp == 0xFF) return -EINVAL; else if (tmp == 0xFE) return -EINVAL; } return 0; } int amdgpu_kv_dpm_get_enable_mask(struct amdgpu_device *adev, u32 *enable_mask) { int ret; ret = amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_SCLKDPM_GetEnabledMask); if (ret == 0) *enable_mask = RREG32_SMC(ixSMC_SYSCON_MSG_ARG_0); return ret; } int amdgpu_kv_send_msg_to_smc_with_parameter(struct amdgpu_device *adev, PPSMC_Msg msg, u32 parameter) { WREG32(mmSMC_MSG_ARG_0, parameter); return amdgpu_kv_notify_message_to_smu(adev, msg); } static int kv_set_smc_sram_address(struct amdgpu_device *adev, u32 smc_address, u32 limit) { if (smc_address & 3) return -EINVAL; if ((smc_address + 3) > limit) return -EINVAL; WREG32(mmSMC_IND_INDEX_0, smc_address); WREG32_P(mmSMC_IND_ACCESS_CNTL, 0, ~SMC_IND_ACCESS_CNTL__AUTO_INCREMENT_IND_0_MASK); return 0; } int amdgpu_kv_read_smc_sram_dword(struct amdgpu_device *adev, u32 smc_address, u32 *value, u32 limit) { int ret; ret = kv_set_smc_sram_address(adev, smc_address, limit); if (ret) return ret; *value = RREG32(mmSMC_IND_DATA_0); return 0; } int amdgpu_kv_smc_dpm_enable(struct amdgpu_device *adev, bool enable) { if (enable) return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_DPM_Enable); else return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_DPM_Disable); } int amdgpu_kv_smc_bapm_enable(struct amdgpu_device *adev, bool enable) { if (enable) return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_EnableBAPM); else return amdgpu_kv_notify_message_to_smu(adev, PPSMC_MSG_DisableBAPM); } int amdgpu_kv_copy_bytes_to_smc(struct amdgpu_device *adev, u32 smc_start_address, const u8 *src, u32 byte_count, u32 limit) { int ret; u32 data, original_data, addr, extra_shift, t_byte, count, mask; if ((smc_start_address + byte_count) > limit) return -EINVAL; addr = smc_start_address; t_byte = addr & 3; /* RMW for the initial bytes */ if (t_byte != 0) { addr -= t_byte; ret = kv_set_smc_sram_address(adev, addr, limit); if (ret) return ret; original_data = RREG32(mmSMC_IND_DATA_0); data = 0; mask = 0; count = 4; while (count > 0) { if (t_byte > 0) { mask = (mask << 8) | 0xff; t_byte--; } else if (byte_count > 0) { data = (data << 8) + *src++; byte_count--; mask <<= 8; } else { data <<= 8; mask = (mask << 8) | 0xff; } count--; } data |= original_data & mask; ret = kv_set_smc_sram_address(adev, addr, limit); if (ret) return ret; WREG32(mmSMC_IND_DATA_0, data); addr += 4; } while (byte_count >= 4) { /* SMC address space is BE */ data = (src[0] << 24) + (src[1] << 16) + (src[2] << 8) + src[3]; ret = kv_set_smc_sram_address(adev, addr, limit); if (ret) return ret; WREG32(mmSMC_IND_DATA_0, data); src += 4; byte_count -= 4; addr += 4; } /* RMW for the final bytes */ if (byte_count > 0) { data = 0; ret = kv_set_smc_sram_address(adev, addr, limit); if (ret) return ret; original_data = RREG32(mmSMC_IND_DATA_0); extra_shift = 8 * (4 - byte_count); while (byte_count > 0) { /* SMC address space is BE */ data = (data << 8) + *src++; byte_count--; } data <<= extra_shift; data |= (original_data & ~((~0UL) << extra_shift)); ret = kv_set_smc_sram_address(adev, addr, limit); if (ret) return ret; WREG32(mmSMC_IND_DATA_0, data); } return 0; }
linux-master
drivers/gpu/drm/amd/pm/legacy-dpm/kv_smc.c
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include <linux/types.h> #include <linux/kernel.h> #include <linux/gfp.h> #include <linux/slab.h> #include <linux/firmware.h> #include <linux/reboot.h> #include "amd_shared.h" #include "amd_powerplay.h" #include "power_state.h" #include "amdgpu.h" #include "hwmgr.h" #include "amdgpu_dpm_internal.h" #include "amdgpu_display.h" static const struct amd_pm_funcs pp_dpm_funcs; static int amd_powerplay_create(struct amdgpu_device *adev) { struct pp_hwmgr *hwmgr; if (adev == NULL) return -EINVAL; hwmgr = kzalloc(sizeof(struct pp_hwmgr), GFP_KERNEL); if (hwmgr == NULL) return -ENOMEM; hwmgr->adev = adev; hwmgr->not_vf = !amdgpu_sriov_vf(adev); hwmgr->device = amdgpu_cgs_create_device(adev); mutex_init(&hwmgr->msg_lock); hwmgr->chip_family = adev->family; hwmgr->chip_id = adev->asic_type; hwmgr->feature_mask = adev->pm.pp_feature; hwmgr->display_config = &adev->pm.pm_display_cfg; adev->powerplay.pp_handle = hwmgr; adev->powerplay.pp_funcs = &pp_dpm_funcs; return 0; } static void amd_powerplay_destroy(struct amdgpu_device *adev) { struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; mutex_destroy(&hwmgr->msg_lock); kfree(hwmgr->hardcode_pp_table); hwmgr->hardcode_pp_table = NULL; kfree(hwmgr); hwmgr = NULL; } static int pp_early_init(void *handle) { int ret; struct amdgpu_device *adev = handle; ret = amd_powerplay_create(adev); if (ret != 0) return ret; ret = hwmgr_early_init(adev->powerplay.pp_handle); if (ret) return -EINVAL; return 0; } static void pp_swctf_delayed_work_handler(struct work_struct *work) { struct pp_hwmgr *hwmgr = container_of(work, struct pp_hwmgr, swctf_delayed_work.work); struct amdgpu_device *adev = hwmgr->adev; struct amdgpu_dpm_thermal *range = &adev->pm.dpm.thermal; uint32_t gpu_temperature, size; int ret; /* * If the hotspot/edge temperature is confirmed as below SW CTF setting point * after the delay enforced, nothing will be done. * Otherwise, a graceful shutdown will be performed to prevent further damage. */ if (range->sw_ctf_threshold && hwmgr->hwmgr_func->read_sensor) { ret = hwmgr->hwmgr_func->read_sensor(hwmgr, AMDGPU_PP_SENSOR_HOTSPOT_TEMP, &gpu_temperature, &size); /* * For some legacy ASICs, hotspot temperature retrieving might be not * supported. Check the edge temperature instead then. */ if (ret == -EOPNOTSUPP) ret = hwmgr->hwmgr_func->read_sensor(hwmgr, AMDGPU_PP_SENSOR_EDGE_TEMP, &gpu_temperature, &size); if (!ret && gpu_temperature / 1000 < range->sw_ctf_threshold) return; } dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n"); dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n"); orderly_poweroff(true); } static int pp_sw_init(void *handle) { struct amdgpu_device *adev = handle; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; int ret = 0; ret = hwmgr_sw_init(hwmgr); pr_debug("powerplay sw init %s\n", ret ? "failed" : "successfully"); if (!ret) INIT_DELAYED_WORK(&hwmgr->swctf_delayed_work, pp_swctf_delayed_work_handler); return ret; } static int pp_sw_fini(void *handle) { struct amdgpu_device *adev = handle; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; hwmgr_sw_fini(hwmgr); amdgpu_ucode_release(&adev->pm.fw); return 0; } static int pp_hw_init(void *handle) { int ret = 0; struct amdgpu_device *adev = handle; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; ret = hwmgr_hw_init(hwmgr); if (ret) pr_err("powerplay hw init failed\n"); return ret; } static int pp_hw_fini(void *handle) { struct amdgpu_device *adev = handle; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; cancel_delayed_work_sync(&hwmgr->swctf_delayed_work); hwmgr_hw_fini(hwmgr); return 0; } static void pp_reserve_vram_for_smu(struct amdgpu_device *adev) { int r = -EINVAL; void *cpu_ptr = NULL; uint64_t gpu_addr; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; if (amdgpu_bo_create_kernel(adev, adev->pm.smu_prv_buffer_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->pm.smu_prv_buffer, &gpu_addr, &cpu_ptr)) { DRM_ERROR("amdgpu: failed to create smu prv buffer\n"); return; } if (hwmgr->hwmgr_func->notify_cac_buffer_info) r = hwmgr->hwmgr_func->notify_cac_buffer_info(hwmgr, lower_32_bits((unsigned long)cpu_ptr), upper_32_bits((unsigned long)cpu_ptr), lower_32_bits(gpu_addr), upper_32_bits(gpu_addr), adev->pm.smu_prv_buffer_size); if (r) { amdgpu_bo_free_kernel(&adev->pm.smu_prv_buffer, NULL, NULL); adev->pm.smu_prv_buffer = NULL; DRM_ERROR("amdgpu: failed to notify SMU buffer address\n"); } } static int pp_late_init(void *handle) { struct amdgpu_device *adev = handle; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; if (hwmgr && hwmgr->pm_en) hwmgr_handle_task(hwmgr, AMD_PP_TASK_COMPLETE_INIT, NULL); if (adev->pm.smu_prv_buffer_size != 0) pp_reserve_vram_for_smu(adev); return 0; } static void pp_late_fini(void *handle) { struct amdgpu_device *adev = handle; if (adev->pm.smu_prv_buffer) amdgpu_bo_free_kernel(&adev->pm.smu_prv_buffer, NULL, NULL); amd_powerplay_destroy(adev); } static bool pp_is_idle(void *handle) { return false; } static int pp_wait_for_idle(void *handle) { return 0; } static int pp_sw_reset(void *handle) { return 0; } static int pp_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static int pp_suspend(void *handle) { struct amdgpu_device *adev = handle; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; cancel_delayed_work_sync(&hwmgr->swctf_delayed_work); return hwmgr_suspend(hwmgr); } static int pp_resume(void *handle) { struct amdgpu_device *adev = handle; struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; return hwmgr_resume(hwmgr); } static int pp_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static const struct amd_ip_funcs pp_ip_funcs = { .name = "powerplay", .early_init = pp_early_init, .late_init = pp_late_init, .sw_init = pp_sw_init, .sw_fini = pp_sw_fini, .hw_init = pp_hw_init, .hw_fini = pp_hw_fini, .late_fini = pp_late_fini, .suspend = pp_suspend, .resume = pp_resume, .is_idle = pp_is_idle, .wait_for_idle = pp_wait_for_idle, .soft_reset = pp_sw_reset, .set_clockgating_state = pp_set_clockgating_state, .set_powergating_state = pp_set_powergating_state, }; const struct amdgpu_ip_block_version pp_smu_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 1, .minor = 0, .rev = 0, .funcs = &pp_ip_funcs, }; /* This interface only be supported On Vi, * because only smu7/8 can help to load gfx/sdma fw, * smu need to be enabled before load other ip's fw. * so call start smu to load smu7 fw and other ip's fw */ static int pp_dpm_load_fw(void *handle) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->smumgr_funcs || !hwmgr->smumgr_funcs->start_smu) return -EINVAL; if (hwmgr->smumgr_funcs->start_smu(hwmgr)) { pr_err("fw load failed\n"); return -EINVAL; } return 0; } static int pp_dpm_fw_loading_complete(void *handle) { return 0; } static int pp_set_clockgating_by_smu(void *handle, uint32_t msg_id) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->update_clock_gatings == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->update_clock_gatings(hwmgr, &msg_id); } static void pp_dpm_en_umd_pstate(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level *level) { uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; if (!(hwmgr->dpm_level & profile_mode_mask)) { /* enter umd pstate, save current level, disable gfx cg*/ if (*level & profile_mode_mask) { hwmgr->saved_dpm_level = hwmgr->dpm_level; hwmgr->en_umd_pstate = true; } } else { /* exit umd pstate, restore level, enable gfx cg*/ if (!(*level & profile_mode_mask)) { if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT) *level = hwmgr->saved_dpm_level; hwmgr->en_umd_pstate = false; } } } static int pp_dpm_force_performance_level(void *handle, enum amd_dpm_forced_level level) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (level == hwmgr->dpm_level) return 0; pp_dpm_en_umd_pstate(hwmgr, &level); hwmgr->request_dpm_level = level; hwmgr_handle_task(hwmgr, AMD_PP_TASK_READJUST_POWER_STATE, NULL); return 0; } static enum amd_dpm_forced_level pp_dpm_get_performance_level( void *handle) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; return hwmgr->dpm_level; } static uint32_t pp_dpm_get_sclk(void *handle, bool low) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return 0; if (hwmgr->hwmgr_func->get_sclk == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->get_sclk(hwmgr, low); } static uint32_t pp_dpm_get_mclk(void *handle, bool low) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return 0; if (hwmgr->hwmgr_func->get_mclk == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->get_mclk(hwmgr, low); } static void pp_dpm_powergate_vce(void *handle, bool gate) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return; if (hwmgr->hwmgr_func->powergate_vce == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return; } hwmgr->hwmgr_func->powergate_vce(hwmgr, gate); } static void pp_dpm_powergate_uvd(void *handle, bool gate) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return; if (hwmgr->hwmgr_func->powergate_uvd == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return; } hwmgr->hwmgr_func->powergate_uvd(hwmgr, gate); } static int pp_dpm_dispatch_tasks(void *handle, enum amd_pp_task task_id, enum amd_pm_state_type *user_state) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; return hwmgr_handle_task(hwmgr, task_id, user_state); } static enum amd_pm_state_type pp_dpm_get_current_power_state(void *handle) { struct pp_hwmgr *hwmgr = handle; struct pp_power_state *state; enum amd_pm_state_type pm_type; if (!hwmgr || !hwmgr->pm_en || !hwmgr->current_ps) return -EINVAL; state = hwmgr->current_ps; switch (state->classification.ui_label) { case PP_StateUILabel_Battery: pm_type = POWER_STATE_TYPE_BATTERY; break; case PP_StateUILabel_Balanced: pm_type = POWER_STATE_TYPE_BALANCED; break; case PP_StateUILabel_Performance: pm_type = POWER_STATE_TYPE_PERFORMANCE; break; default: if (state->classification.flags & PP_StateClassificationFlag_Boot) pm_type = POWER_STATE_TYPE_INTERNAL_BOOT; else pm_type = POWER_STATE_TYPE_DEFAULT; break; } return pm_type; } static int pp_dpm_set_fan_control_mode(void *handle, uint32_t mode) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EOPNOTSUPP; if (hwmgr->hwmgr_func->set_fan_control_mode == NULL) return -EOPNOTSUPP; if (mode == U32_MAX) return -EINVAL; hwmgr->hwmgr_func->set_fan_control_mode(hwmgr, mode); return 0; } static int pp_dpm_get_fan_control_mode(void *handle, uint32_t *fan_mode) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EOPNOTSUPP; if (hwmgr->hwmgr_func->get_fan_control_mode == NULL) return -EOPNOTSUPP; if (!fan_mode) return -EINVAL; *fan_mode = hwmgr->hwmgr_func->get_fan_control_mode(hwmgr); return 0; } static int pp_dpm_set_fan_speed_pwm(void *handle, uint32_t speed) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EOPNOTSUPP; if (hwmgr->hwmgr_func->set_fan_speed_pwm == NULL) return -EOPNOTSUPP; if (speed == U32_MAX) return -EINVAL; return hwmgr->hwmgr_func->set_fan_speed_pwm(hwmgr, speed); } static int pp_dpm_get_fan_speed_pwm(void *handle, uint32_t *speed) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EOPNOTSUPP; if (hwmgr->hwmgr_func->get_fan_speed_pwm == NULL) return -EOPNOTSUPP; if (!speed) return -EINVAL; return hwmgr->hwmgr_func->get_fan_speed_pwm(hwmgr, speed); } static int pp_dpm_get_fan_speed_rpm(void *handle, uint32_t *rpm) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EOPNOTSUPP; if (hwmgr->hwmgr_func->get_fan_speed_rpm == NULL) return -EOPNOTSUPP; if (!rpm) return -EINVAL; return hwmgr->hwmgr_func->get_fan_speed_rpm(hwmgr, rpm); } static int pp_dpm_set_fan_speed_rpm(void *handle, uint32_t rpm) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EOPNOTSUPP; if (hwmgr->hwmgr_func->set_fan_speed_rpm == NULL) return -EOPNOTSUPP; if (rpm == U32_MAX) return -EINVAL; return hwmgr->hwmgr_func->set_fan_speed_rpm(hwmgr, rpm); } static int pp_dpm_get_pp_num_states(void *handle, struct pp_states_info *data) { struct pp_hwmgr *hwmgr = handle; int i; memset(data, 0, sizeof(*data)); if (!hwmgr || !hwmgr->pm_en || !hwmgr->ps) return -EINVAL; data->nums = hwmgr->num_ps; for (i = 0; i < hwmgr->num_ps; i++) { struct pp_power_state *state = (struct pp_power_state *) ((unsigned long)hwmgr->ps + i * hwmgr->ps_size); switch (state->classification.ui_label) { case PP_StateUILabel_Battery: data->states[i] = POWER_STATE_TYPE_BATTERY; break; case PP_StateUILabel_Balanced: data->states[i] = POWER_STATE_TYPE_BALANCED; break; case PP_StateUILabel_Performance: data->states[i] = POWER_STATE_TYPE_PERFORMANCE; break; default: if (state->classification.flags & PP_StateClassificationFlag_Boot) data->states[i] = POWER_STATE_TYPE_INTERNAL_BOOT; else data->states[i] = POWER_STATE_TYPE_DEFAULT; } } return 0; } static int pp_dpm_get_pp_table(void *handle, char **table) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !hwmgr->soft_pp_table) return -EINVAL; *table = (char *)hwmgr->soft_pp_table; return hwmgr->soft_pp_table_size; } static int amd_powerplay_reset(void *handle) { struct pp_hwmgr *hwmgr = handle; int ret; ret = hwmgr_hw_fini(hwmgr); if (ret) return ret; ret = hwmgr_hw_init(hwmgr); if (ret) return ret; return hwmgr_handle_task(hwmgr, AMD_PP_TASK_COMPLETE_INIT, NULL); } static int pp_dpm_set_pp_table(void *handle, const char *buf, size_t size) { struct pp_hwmgr *hwmgr = handle; int ret = -ENOMEM; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (!hwmgr->hardcode_pp_table) { hwmgr->hardcode_pp_table = kmemdup(hwmgr->soft_pp_table, hwmgr->soft_pp_table_size, GFP_KERNEL); if (!hwmgr->hardcode_pp_table) return ret; } memcpy(hwmgr->hardcode_pp_table, buf, size); hwmgr->soft_pp_table = hwmgr->hardcode_pp_table; ret = amd_powerplay_reset(handle); if (ret) return ret; if (hwmgr->hwmgr_func->avfs_control) ret = hwmgr->hwmgr_func->avfs_control(hwmgr, false); return ret; } static int pp_dpm_force_clock_level(void *handle, enum pp_clock_type type, uint32_t mask) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->force_clock_level == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { pr_debug("force clock level is for dpm manual mode only.\n"); return -EINVAL; } return hwmgr->hwmgr_func->force_clock_level(hwmgr, type, mask); } static int pp_dpm_emit_clock_levels(void *handle, enum pp_clock_type type, char *buf, int *offset) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EOPNOTSUPP; if (!hwmgr->hwmgr_func->emit_clock_levels) return -ENOENT; return hwmgr->hwmgr_func->emit_clock_levels(hwmgr, type, buf, offset); } static int pp_dpm_print_clock_levels(void *handle, enum pp_clock_type type, char *buf) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->print_clock_levels == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->print_clock_levels(hwmgr, type, buf); } static int pp_dpm_get_sclk_od(void *handle) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->get_sclk_od == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->get_sclk_od(hwmgr); } static int pp_dpm_set_sclk_od(void *handle, uint32_t value) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_sclk_od == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->set_sclk_od(hwmgr, value); } static int pp_dpm_get_mclk_od(void *handle) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->get_mclk_od == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->get_mclk_od(hwmgr); } static int pp_dpm_set_mclk_od(void *handle, uint32_t value) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_mclk_od == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->set_mclk_od(hwmgr, value); } static int pp_dpm_read_sensor(void *handle, int idx, void *value, int *size) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !value) return -EINVAL; switch (idx) { case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK: *((uint32_t *)value) = hwmgr->pstate_sclk * 100; return 0; case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK: *((uint32_t *)value) = hwmgr->pstate_mclk * 100; return 0; case AMDGPU_PP_SENSOR_PEAK_PSTATE_SCLK: *((uint32_t *)value) = hwmgr->pstate_sclk_peak * 100; return 0; case AMDGPU_PP_SENSOR_PEAK_PSTATE_MCLK: *((uint32_t *)value) = hwmgr->pstate_mclk_peak * 100; return 0; case AMDGPU_PP_SENSOR_MIN_FAN_RPM: *((uint32_t *)value) = hwmgr->thermal_controller.fanInfo.ulMinRPM; return 0; case AMDGPU_PP_SENSOR_MAX_FAN_RPM: *((uint32_t *)value) = hwmgr->thermal_controller.fanInfo.ulMaxRPM; return 0; default: return hwmgr->hwmgr_func->read_sensor(hwmgr, idx, value, size); } } static struct amd_vce_state* pp_dpm_get_vce_clock_state(void *handle, unsigned idx) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return NULL; if (idx < hwmgr->num_vce_state_tables) return &hwmgr->vce_states[idx]; return NULL; } static int pp_get_power_profile_mode(void *handle, char *buf) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !hwmgr->hwmgr_func->get_power_profile_mode) return -EOPNOTSUPP; if (!buf) return -EINVAL; return hwmgr->hwmgr_func->get_power_profile_mode(hwmgr, buf); } static int pp_set_power_profile_mode(void *handle, long *input, uint32_t size) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !hwmgr->hwmgr_func->set_power_profile_mode) return -EOPNOTSUPP; if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { pr_debug("power profile setting is for manual dpm mode only.\n"); return -EINVAL; } return hwmgr->hwmgr_func->set_power_profile_mode(hwmgr, input, size); } static int pp_set_fine_grain_clk_vol(void *handle, uint32_t type, long *input, uint32_t size) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_fine_grain_clk_vol == NULL) return 0; return hwmgr->hwmgr_func->set_fine_grain_clk_vol(hwmgr, type, input, size); } static int pp_odn_edit_dpm_table(void *handle, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->odn_edit_dpm_table == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->odn_edit_dpm_table(hwmgr, type, input, size); } static int pp_dpm_set_mp1_state(void *handle, enum pp_mp1_state mp1_state) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr) return -EINVAL; if (!hwmgr->pm_en) return 0; if (hwmgr->hwmgr_func->set_mp1_state) return hwmgr->hwmgr_func->set_mp1_state(hwmgr, mp1_state); return 0; } static int pp_dpm_switch_power_profile(void *handle, enum PP_SMC_POWER_PROFILE type, bool en) { struct pp_hwmgr *hwmgr = handle; long workload; uint32_t index; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_power_profile_mode == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return -EINVAL; } if (!(type < PP_SMC_POWER_PROFILE_CUSTOM)) return -EINVAL; if (!en) { hwmgr->workload_mask &= ~(1 << hwmgr->workload_prority[type]); index = fls(hwmgr->workload_mask); index = index > 0 && index <= Workload_Policy_Max ? index - 1 : 0; workload = hwmgr->workload_setting[index]; } else { hwmgr->workload_mask |= (1 << hwmgr->workload_prority[type]); index = fls(hwmgr->workload_mask); index = index <= Workload_Policy_Max ? index - 1 : 0; workload = hwmgr->workload_setting[index]; } if (type == PP_SMC_POWER_PROFILE_COMPUTE && hwmgr->hwmgr_func->disable_power_features_for_compute_performance) { if (hwmgr->hwmgr_func->disable_power_features_for_compute_performance(hwmgr, en)) return -EINVAL; } if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) hwmgr->hwmgr_func->set_power_profile_mode(hwmgr, &workload, 0); return 0; } static int pp_set_power_limit(void *handle, uint32_t limit) { struct pp_hwmgr *hwmgr = handle; uint32_t max_power_limit; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_power_limit == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return -EINVAL; } if (limit == 0) limit = hwmgr->default_power_limit; max_power_limit = hwmgr->default_power_limit; if (hwmgr->od_enabled) { max_power_limit *= (100 + hwmgr->platform_descriptor.TDPODLimit); max_power_limit /= 100; } if (limit > max_power_limit) return -EINVAL; hwmgr->hwmgr_func->set_power_limit(hwmgr, limit); hwmgr->power_limit = limit; return 0; } static int pp_get_power_limit(void *handle, uint32_t *limit, enum pp_power_limit_level pp_limit_level, enum pp_power_type power_type) { struct pp_hwmgr *hwmgr = handle; int ret = 0; if (!hwmgr || !hwmgr->pm_en || !limit) return -EINVAL; if (power_type != PP_PWR_TYPE_SUSTAINED) return -EOPNOTSUPP; switch (pp_limit_level) { case PP_PWR_LIMIT_CURRENT: *limit = hwmgr->power_limit; break; case PP_PWR_LIMIT_DEFAULT: *limit = hwmgr->default_power_limit; break; case PP_PWR_LIMIT_MAX: *limit = hwmgr->default_power_limit; if (hwmgr->od_enabled) { *limit *= (100 + hwmgr->platform_descriptor.TDPODLimit); *limit /= 100; } break; default: ret = -EOPNOTSUPP; break; } return ret; } static int pp_display_configuration_change(void *handle, const struct amd_pp_display_configuration *display_config) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; phm_store_dal_configuration_data(hwmgr, display_config); return 0; } static int pp_get_display_power_level(void *handle, struct amd_pp_simple_clock_info *output) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !output) return -EINVAL; return phm_get_dal_power_level(hwmgr, output); } static int pp_get_current_clocks(void *handle, struct amd_pp_clock_info *clocks) { struct amd_pp_simple_clock_info simple_clocks = { 0 }; struct pp_clock_info hw_clocks; struct pp_hwmgr *hwmgr = handle; int ret = 0; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; phm_get_dal_power_level(hwmgr, &simple_clocks); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment)) ret = phm_get_clock_info(hwmgr, &hwmgr->current_ps->hardware, &hw_clocks, PHM_PerformanceLevelDesignation_PowerContainment); else ret = phm_get_clock_info(hwmgr, &hwmgr->current_ps->hardware, &hw_clocks, PHM_PerformanceLevelDesignation_Activity); if (ret) { pr_debug("Error in phm_get_clock_info \n"); return -EINVAL; } clocks->min_engine_clock = hw_clocks.min_eng_clk; clocks->max_engine_clock = hw_clocks.max_eng_clk; clocks->min_memory_clock = hw_clocks.min_mem_clk; clocks->max_memory_clock = hw_clocks.max_mem_clk; clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth; clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth; clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk; clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk; if (simple_clocks.level == 0) clocks->max_clocks_state = PP_DAL_POWERLEVEL_7; else clocks->max_clocks_state = simple_clocks.level; if (0 == phm_get_current_shallow_sleep_clocks(hwmgr, &hwmgr->current_ps->hardware, &hw_clocks)) { clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk; clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk; } return 0; } static int pp_get_clock_by_type(void *handle, enum amd_pp_clock_type type, struct amd_pp_clocks *clocks) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (clocks == NULL) return -EINVAL; return phm_get_clock_by_type(hwmgr, type, clocks); } static int pp_get_clock_by_type_with_latency(void *handle, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !clocks) return -EINVAL; return phm_get_clock_by_type_with_latency(hwmgr, type, clocks); } static int pp_get_clock_by_type_with_voltage(void *handle, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !clocks) return -EINVAL; return phm_get_clock_by_type_with_voltage(hwmgr, type, clocks); } static int pp_set_watermarks_for_clocks_ranges(void *handle, void *clock_ranges) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !clock_ranges) return -EINVAL; return phm_set_watermarks_for_clocks_ranges(hwmgr, clock_ranges); } static int pp_display_clock_voltage_request(void *handle, struct pp_display_clock_request *clock) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !clock) return -EINVAL; return phm_display_clock_voltage_request(hwmgr, clock); } static int pp_get_display_mode_validation_clocks(void *handle, struct amd_pp_simple_clock_info *clocks) { struct pp_hwmgr *hwmgr = handle; int ret = 0; if (!hwmgr || !hwmgr->pm_en || !clocks) return -EINVAL; clocks->level = PP_DAL_POWERLEVEL_7; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState)) ret = phm_get_max_high_clocks(hwmgr, clocks); return ret; } static int pp_dpm_powergate_mmhub(void *handle) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->powergate_mmhub == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->powergate_mmhub(hwmgr); } static int pp_dpm_powergate_gfx(void *handle, bool gate) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return 0; if (hwmgr->hwmgr_func->powergate_gfx == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return 0; } return hwmgr->hwmgr_func->powergate_gfx(hwmgr, gate); } static void pp_dpm_powergate_acp(void *handle, bool gate) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return; if (hwmgr->hwmgr_func->powergate_acp == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return; } hwmgr->hwmgr_func->powergate_acp(hwmgr, gate); } static void pp_dpm_powergate_sdma(void *handle, bool gate) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr) return; if (hwmgr->hwmgr_func->powergate_sdma == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return; } hwmgr->hwmgr_func->powergate_sdma(hwmgr, gate); } static int pp_set_powergating_by_smu(void *handle, uint32_t block_type, bool gate) { int ret = 0; switch (block_type) { case AMD_IP_BLOCK_TYPE_UVD: case AMD_IP_BLOCK_TYPE_VCN: pp_dpm_powergate_uvd(handle, gate); break; case AMD_IP_BLOCK_TYPE_VCE: pp_dpm_powergate_vce(handle, gate); break; case AMD_IP_BLOCK_TYPE_GMC: /* * For now, this is only used on PICASSO. * And only "gate" operation is supported. */ if (gate) pp_dpm_powergate_mmhub(handle); break; case AMD_IP_BLOCK_TYPE_GFX: ret = pp_dpm_powergate_gfx(handle, gate); break; case AMD_IP_BLOCK_TYPE_ACP: pp_dpm_powergate_acp(handle, gate); break; case AMD_IP_BLOCK_TYPE_SDMA: pp_dpm_powergate_sdma(handle, gate); break; default: break; } return ret; } static int pp_notify_smu_enable_pwe(void *handle) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->smus_notify_pwe == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return -EINVAL; } hwmgr->hwmgr_func->smus_notify_pwe(hwmgr); return 0; } static int pp_enable_mgpu_fan_boost(void *handle) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr) return -EINVAL; if (!hwmgr->pm_en || hwmgr->hwmgr_func->enable_mgpu_fan_boost == NULL) return 0; hwmgr->hwmgr_func->enable_mgpu_fan_boost(hwmgr); return 0; } static int pp_set_min_deep_sleep_dcefclk(void *handle, uint32_t clock) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_min_deep_sleep_dcefclk == NULL) { pr_debug("%s was not implemented.\n", __func__); return -EINVAL; } hwmgr->hwmgr_func->set_min_deep_sleep_dcefclk(hwmgr, clock); return 0; } static int pp_set_hard_min_dcefclk_by_freq(void *handle, uint32_t clock) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_hard_min_dcefclk_by_freq == NULL) { pr_debug("%s was not implemented.\n", __func__); return -EINVAL; } hwmgr->hwmgr_func->set_hard_min_dcefclk_by_freq(hwmgr, clock); return 0; } static int pp_set_hard_min_fclk_by_freq(void *handle, uint32_t clock) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_hard_min_fclk_by_freq == NULL) { pr_debug("%s was not implemented.\n", __func__); return -EINVAL; } hwmgr->hwmgr_func->set_hard_min_fclk_by_freq(hwmgr, clock); return 0; } static int pp_set_active_display_count(void *handle, uint32_t count) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; return phm_set_active_display_count(hwmgr, count); } static int pp_get_asic_baco_capability(void *handle, bool *cap) { struct pp_hwmgr *hwmgr = handle; *cap = false; if (!hwmgr) return -EINVAL; if (!(hwmgr->not_vf && amdgpu_dpm) || !hwmgr->hwmgr_func->get_asic_baco_capability) return 0; hwmgr->hwmgr_func->get_asic_baco_capability(hwmgr, cap); return 0; } static int pp_get_asic_baco_state(void *handle, int *state) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr) return -EINVAL; if (!hwmgr->pm_en || !hwmgr->hwmgr_func->get_asic_baco_state) return 0; hwmgr->hwmgr_func->get_asic_baco_state(hwmgr, (enum BACO_STATE *)state); return 0; } static int pp_set_asic_baco_state(void *handle, int state) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr) return -EINVAL; if (!(hwmgr->not_vf && amdgpu_dpm) || !hwmgr->hwmgr_func->set_asic_baco_state) return 0; hwmgr->hwmgr_func->set_asic_baco_state(hwmgr, (enum BACO_STATE)state); return 0; } static int pp_get_ppfeature_status(void *handle, char *buf) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en || !buf) return -EINVAL; if (hwmgr->hwmgr_func->get_ppfeature_status == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return -EINVAL; } return hwmgr->hwmgr_func->get_ppfeature_status(hwmgr, buf); } static int pp_set_ppfeature_status(void *handle, uint64_t ppfeature_masks) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->set_ppfeature_status == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return -EINVAL; } return hwmgr->hwmgr_func->set_ppfeature_status(hwmgr, ppfeature_masks); } static int pp_asic_reset_mode_2(void *handle) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->asic_reset == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return -EINVAL; } return hwmgr->hwmgr_func->asic_reset(hwmgr, SMU_ASIC_RESET_MODE_2); } static int pp_smu_i2c_bus_access(void *handle, bool acquire) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->smu_i2c_bus_access == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return -EINVAL; } return hwmgr->hwmgr_func->smu_i2c_bus_access(hwmgr, acquire); } static int pp_set_df_cstate(void *handle, enum pp_df_cstate state) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr) return -EINVAL; if (!hwmgr->pm_en || !hwmgr->hwmgr_func->set_df_cstate) return 0; hwmgr->hwmgr_func->set_df_cstate(hwmgr, state); return 0; } static int pp_set_xgmi_pstate(void *handle, uint32_t pstate) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr) return -EINVAL; if (!hwmgr->pm_en || !hwmgr->hwmgr_func->set_xgmi_pstate) return 0; hwmgr->hwmgr_func->set_xgmi_pstate(hwmgr, pstate); return 0; } static ssize_t pp_get_gpu_metrics(void *handle, void **table) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr) return -EINVAL; if (!hwmgr->pm_en || !hwmgr->hwmgr_func->get_gpu_metrics) return -EOPNOTSUPP; return hwmgr->hwmgr_func->get_gpu_metrics(hwmgr, table); } static int pp_gfx_state_change_set(void *handle, uint32_t state) { struct pp_hwmgr *hwmgr = handle; if (!hwmgr || !hwmgr->pm_en) return -EINVAL; if (hwmgr->hwmgr_func->gfx_state_change == NULL) { pr_info_ratelimited("%s was not implemented.\n", __func__); return -EINVAL; } hwmgr->hwmgr_func->gfx_state_change(hwmgr, state); return 0; } static int pp_get_prv_buffer_details(void *handle, void **addr, size_t *size) { struct pp_hwmgr *hwmgr = handle; struct amdgpu_device *adev = hwmgr->adev; int err; if (!addr || !size) return -EINVAL; *addr = NULL; *size = 0; if (adev->pm.smu_prv_buffer) { err = amdgpu_bo_kmap(adev->pm.smu_prv_buffer, addr); if (err) return err; *size = adev->pm.smu_prv_buffer_size; } return 0; } static void pp_pm_compute_clocks(void *handle) { struct pp_hwmgr *hwmgr = handle; struct amdgpu_device *adev = hwmgr->adev; if (!adev->dc_enabled) { amdgpu_dpm_get_active_displays(adev); adev->pm.pm_display_cfg.num_display = adev->pm.dpm.new_active_crtc_count; adev->pm.pm_display_cfg.vrefresh = amdgpu_dpm_get_vrefresh(adev); adev->pm.pm_display_cfg.min_vblank_time = amdgpu_dpm_get_vblank_time(adev); /* we have issues with mclk switching with * refresh rates over 120 hz on the non-DC code. */ if (adev->pm.pm_display_cfg.vrefresh > 120) adev->pm.pm_display_cfg.min_vblank_time = 0; pp_display_configuration_change(handle, &adev->pm.pm_display_cfg); } pp_dpm_dispatch_tasks(handle, AMD_PP_TASK_DISPLAY_CONFIG_CHANGE, NULL); } static const struct amd_pm_funcs pp_dpm_funcs = { .load_firmware = pp_dpm_load_fw, .wait_for_fw_loading_complete = pp_dpm_fw_loading_complete, .force_performance_level = pp_dpm_force_performance_level, .get_performance_level = pp_dpm_get_performance_level, .get_current_power_state = pp_dpm_get_current_power_state, .dispatch_tasks = pp_dpm_dispatch_tasks, .set_fan_control_mode = pp_dpm_set_fan_control_mode, .get_fan_control_mode = pp_dpm_get_fan_control_mode, .set_fan_speed_pwm = pp_dpm_set_fan_speed_pwm, .get_fan_speed_pwm = pp_dpm_get_fan_speed_pwm, .get_fan_speed_rpm = pp_dpm_get_fan_speed_rpm, .set_fan_speed_rpm = pp_dpm_set_fan_speed_rpm, .get_pp_num_states = pp_dpm_get_pp_num_states, .get_pp_table = pp_dpm_get_pp_table, .set_pp_table = pp_dpm_set_pp_table, .force_clock_level = pp_dpm_force_clock_level, .emit_clock_levels = pp_dpm_emit_clock_levels, .print_clock_levels = pp_dpm_print_clock_levels, .get_sclk_od = pp_dpm_get_sclk_od, .set_sclk_od = pp_dpm_set_sclk_od, .get_mclk_od = pp_dpm_get_mclk_od, .set_mclk_od = pp_dpm_set_mclk_od, .read_sensor = pp_dpm_read_sensor, .get_vce_clock_state = pp_dpm_get_vce_clock_state, .switch_power_profile = pp_dpm_switch_power_profile, .set_clockgating_by_smu = pp_set_clockgating_by_smu, .set_powergating_by_smu = pp_set_powergating_by_smu, .get_power_profile_mode = pp_get_power_profile_mode, .set_power_profile_mode = pp_set_power_profile_mode, .set_fine_grain_clk_vol = pp_set_fine_grain_clk_vol, .odn_edit_dpm_table = pp_odn_edit_dpm_table, .set_mp1_state = pp_dpm_set_mp1_state, .set_power_limit = pp_set_power_limit, .get_power_limit = pp_get_power_limit, /* export to DC */ .get_sclk = pp_dpm_get_sclk, .get_mclk = pp_dpm_get_mclk, .display_configuration_change = pp_display_configuration_change, .get_display_power_level = pp_get_display_power_level, .get_current_clocks = pp_get_current_clocks, .get_clock_by_type = pp_get_clock_by_type, .get_clock_by_type_with_latency = pp_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = pp_get_clock_by_type_with_voltage, .set_watermarks_for_clocks_ranges = pp_set_watermarks_for_clocks_ranges, .display_clock_voltage_request = pp_display_clock_voltage_request, .get_display_mode_validation_clocks = pp_get_display_mode_validation_clocks, .notify_smu_enable_pwe = pp_notify_smu_enable_pwe, .enable_mgpu_fan_boost = pp_enable_mgpu_fan_boost, .set_active_display_count = pp_set_active_display_count, .set_min_deep_sleep_dcefclk = pp_set_min_deep_sleep_dcefclk, .set_hard_min_dcefclk_by_freq = pp_set_hard_min_dcefclk_by_freq, .set_hard_min_fclk_by_freq = pp_set_hard_min_fclk_by_freq, .get_asic_baco_capability = pp_get_asic_baco_capability, .get_asic_baco_state = pp_get_asic_baco_state, .set_asic_baco_state = pp_set_asic_baco_state, .get_ppfeature_status = pp_get_ppfeature_status, .set_ppfeature_status = pp_set_ppfeature_status, .asic_reset_mode_2 = pp_asic_reset_mode_2, .smu_i2c_bus_access = pp_smu_i2c_bus_access, .set_df_cstate = pp_set_df_cstate, .set_xgmi_pstate = pp_set_xgmi_pstate, .get_gpu_metrics = pp_get_gpu_metrics, .gfx_state_change_set = pp_gfx_state_change_set, .get_smu_prv_buf_details = pp_get_prv_buffer_details, .pm_compute_clocks = pp_pm_compute_clocks, };
linux-master
drivers/gpu/drm/amd/pm/powerplay/amd_powerplay.c
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "ppatomfwctrl.h" #include "atomfirmware.h" #include "atom.h" #include "pp_debug.h" static const union atom_voltage_object_v4 *pp_atomfwctrl_lookup_voltage_type_v4( const struct atom_voltage_objects_info_v4_1 *voltage_object_info_table, uint8_t voltage_type, uint8_t voltage_mode) { unsigned int size = le16_to_cpu( voltage_object_info_table->table_header.structuresize); unsigned int offset = offsetof(struct atom_voltage_objects_info_v4_1, voltage_object[0]); unsigned long start = (unsigned long)voltage_object_info_table; while (offset < size) { const union atom_voltage_object_v4 *voltage_object = (const union atom_voltage_object_v4 *)(start + offset); if (voltage_type == voltage_object->gpio_voltage_obj.header.voltage_type && voltage_mode == voltage_object->gpio_voltage_obj.header.voltage_mode) return voltage_object; offset += le16_to_cpu(voltage_object->gpio_voltage_obj.header.object_size); } return NULL; } static struct atom_voltage_objects_info_v4_1 *pp_atomfwctrl_get_voltage_info_table( struct pp_hwmgr *hwmgr) { const void *table_address; uint16_t idx; idx = GetIndexIntoMasterDataTable(voltageobject_info); table_address = smu_atom_get_data_table(hwmgr->adev, idx, NULL, NULL, NULL); PP_ASSERT_WITH_CODE(table_address, "Error retrieving BIOS Table Address!", return NULL); return (struct atom_voltage_objects_info_v4_1 *)table_address; } /* * Returns TRUE if the given voltage type is controlled by GPIO pins. * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC, SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ. * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE */ bool pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode) { struct atom_voltage_objects_info_v4_1 *voltage_info = (struct atom_voltage_objects_info_v4_1 *) pp_atomfwctrl_get_voltage_info_table(hwmgr); bool ret; /* If we cannot find the table do NOT try to control this voltage. */ PP_ASSERT_WITH_CODE(voltage_info, "Could not find Voltage Table in BIOS.", return false); ret = (pp_atomfwctrl_lookup_voltage_type_v4(voltage_info, voltage_type, voltage_mode)) ? true : false; return ret; } int pp_atomfwctrl_get_voltage_table_v4(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, struct pp_atomfwctrl_voltage_table *voltage_table) { struct atom_voltage_objects_info_v4_1 *voltage_info = (struct atom_voltage_objects_info_v4_1 *) pp_atomfwctrl_get_voltage_info_table(hwmgr); const union atom_voltage_object_v4 *voltage_object; unsigned int i; int result = 0; PP_ASSERT_WITH_CODE(voltage_info, "Could not find Voltage Table in BIOS.", return -1); voltage_object = pp_atomfwctrl_lookup_voltage_type_v4(voltage_info, voltage_type, voltage_mode); if (!voltage_object) return -1; voltage_table->count = 0; if (voltage_mode == VOLTAGE_OBJ_GPIO_LUT) { PP_ASSERT_WITH_CODE( (voltage_object->gpio_voltage_obj.gpio_entry_num <= PP_ATOMFWCTRL_MAX_VOLTAGE_ENTRIES), "Too many voltage entries!", result = -1); if (!result) { for (i = 0; i < voltage_object->gpio_voltage_obj. gpio_entry_num; i++) { voltage_table->entries[i].value = le16_to_cpu(voltage_object->gpio_voltage_obj. voltage_gpio_lut[i].voltage_level_mv); voltage_table->entries[i].smio_low = le32_to_cpu(voltage_object->gpio_voltage_obj. voltage_gpio_lut[i].voltage_gpio_reg_val); } voltage_table->count = voltage_object->gpio_voltage_obj.gpio_entry_num; voltage_table->mask_low = le32_to_cpu( voltage_object->gpio_voltage_obj.gpio_mask_val); voltage_table->phase_delay = voltage_object->gpio_voltage_obj.phase_delay_us; } } else if (voltage_mode == VOLTAGE_OBJ_SVID2) { voltage_table->psi1_enable = (voltage_object->svid2_voltage_obj.loadline_psi1 & 0x20) >> 5; voltage_table->psi0_enable = voltage_object->svid2_voltage_obj.psi0_enable & 0x1; voltage_table->max_vid_step = voltage_object->svid2_voltage_obj.maxvstep; voltage_table->telemetry_offset = voltage_object->svid2_voltage_obj.telemetry_offset; voltage_table->telemetry_slope = voltage_object->svid2_voltage_obj.telemetry_gain; } else PP_ASSERT_WITH_CODE(false, "Unsupported Voltage Object Mode!", result = -1); return result; } static struct atom_gpio_pin_lut_v2_1 *pp_atomfwctrl_get_gpio_lookup_table( struct pp_hwmgr *hwmgr) { const void *table_address; uint16_t idx; idx = GetIndexIntoMasterDataTable(gpio_pin_lut); table_address = smu_atom_get_data_table(hwmgr->adev, idx, NULL, NULL, NULL); PP_ASSERT_WITH_CODE(table_address, "Error retrieving BIOS Table Address!", return NULL); return (struct atom_gpio_pin_lut_v2_1 *)table_address; } static bool pp_atomfwctrl_lookup_gpio_pin( struct atom_gpio_pin_lut_v2_1 *gpio_lookup_table, const uint32_t pin_id, struct pp_atomfwctrl_gpio_pin_assignment *gpio_pin_assignment) { unsigned int size = le16_to_cpu( gpio_lookup_table->table_header.structuresize); unsigned int offset = offsetof(struct atom_gpio_pin_lut_v2_1, gpio_pin[0]); unsigned long start = (unsigned long)gpio_lookup_table; while (offset < size) { const struct atom_gpio_pin_assignment *pin_assignment = (const struct atom_gpio_pin_assignment *)(start + offset); if (pin_id == pin_assignment->gpio_id) { gpio_pin_assignment->uc_gpio_pin_bit_shift = pin_assignment->gpio_bitshift; gpio_pin_assignment->us_gpio_pin_aindex = le16_to_cpu(pin_assignment->data_a_reg_index); return true; } offset += offsetof(struct atom_gpio_pin_assignment, gpio_id) + 1; } return false; } /* * Returns TRUE if the given pin id find in lookup table. */ bool pp_atomfwctrl_get_pp_assign_pin(struct pp_hwmgr *hwmgr, const uint32_t pin_id, struct pp_atomfwctrl_gpio_pin_assignment *gpio_pin_assignment) { bool ret = false; struct atom_gpio_pin_lut_v2_1 *gpio_lookup_table = pp_atomfwctrl_get_gpio_lookup_table(hwmgr); /* If we cannot find the table do NOT try to control this voltage. */ PP_ASSERT_WITH_CODE(gpio_lookup_table, "Could not find GPIO lookup Table in BIOS.", return false); ret = pp_atomfwctrl_lookup_gpio_pin(gpio_lookup_table, pin_id, gpio_pin_assignment); return ret; } /* * Enter to SelfRefresh mode. * @param hwmgr */ int pp_atomfwctrl_enter_self_refresh(struct pp_hwmgr *hwmgr) { /* 0 - no action * 1 - leave power to video memory always on */ return 0; } /** pp_atomfwctrl_get_gpu_pll_dividers_vega10(). * * @param hwmgr input parameter: pointer to HwMgr * @param clock_type input parameter: Clock type: 1 - GFXCLK, 2 - UCLK, 0 - All other clocks * @param clock_value input parameter: Clock * @param dividers output parameter:Clock dividers */ int pp_atomfwctrl_get_gpu_pll_dividers_vega10(struct pp_hwmgr *hwmgr, uint32_t clock_type, uint32_t clock_value, struct pp_atomfwctrl_clock_dividers_soc15 *dividers) { struct amdgpu_device *adev = hwmgr->adev; struct compute_gpu_clock_input_parameter_v1_8 pll_parameters; struct compute_gpu_clock_output_parameter_v1_8 *pll_output; uint32_t idx; pll_parameters.gpuclock_10khz = (uint32_t)clock_value; pll_parameters.gpu_clock_type = clock_type; idx = GetIndexIntoMasterCmdTable(computegpuclockparam); if (amdgpu_atom_execute_table( adev->mode_info.atom_context, idx, (uint32_t *)&pll_parameters)) return -EINVAL; pll_output = (struct compute_gpu_clock_output_parameter_v1_8 *) &pll_parameters; dividers->ulClock = le32_to_cpu(pll_output->gpuclock_10khz); dividers->ulDid = le32_to_cpu(pll_output->dfs_did); dividers->ulPll_fb_mult = le32_to_cpu(pll_output->pll_fb_mult); dividers->ulPll_ss_fbsmult = le32_to_cpu(pll_output->pll_ss_fbsmult); dividers->usPll_ss_slew_frac = le16_to_cpu(pll_output->pll_ss_slew_frac); dividers->ucPll_ss_enable = pll_output->pll_ss_enable; return 0; } int pp_atomfwctrl_get_avfs_information(struct pp_hwmgr *hwmgr, struct pp_atomfwctrl_avfs_parameters *param) { uint16_t idx; uint8_t format_revision, content_revision; struct atom_asic_profiling_info_v4_1 *profile; struct atom_asic_profiling_info_v4_2 *profile_v4_2; idx = GetIndexIntoMasterDataTable(asic_profiling_info); profile = (struct atom_asic_profiling_info_v4_1 *) smu_atom_get_data_table(hwmgr->adev, idx, NULL, NULL, NULL); if (!profile) return -1; format_revision = ((struct atom_common_table_header *)profile)->format_revision; content_revision = ((struct atom_common_table_header *)profile)->content_revision; if (format_revision == 4 && content_revision == 1) { param->ulMaxVddc = le32_to_cpu(profile->maxvddc); param->ulMinVddc = le32_to_cpu(profile->minvddc); param->ulMeanNsigmaAcontant0 = le32_to_cpu(profile->avfs_meannsigma_acontant0); param->ulMeanNsigmaAcontant1 = le32_to_cpu(profile->avfs_meannsigma_acontant1); param->ulMeanNsigmaAcontant2 = le32_to_cpu(profile->avfs_meannsigma_acontant2); param->usMeanNsigmaDcTolSigma = le16_to_cpu(profile->avfs_meannsigma_dc_tol_sigma); param->usMeanNsigmaPlatformMean = le16_to_cpu(profile->avfs_meannsigma_platform_mean); param->usMeanNsigmaPlatformSigma = le16_to_cpu(profile->avfs_meannsigma_platform_sigma); param->ulGbVdroopTableCksoffA0 = le32_to_cpu(profile->gb_vdroop_table_cksoff_a0); param->ulGbVdroopTableCksoffA1 = le32_to_cpu(profile->gb_vdroop_table_cksoff_a1); param->ulGbVdroopTableCksoffA2 = le32_to_cpu(profile->gb_vdroop_table_cksoff_a2); param->ulGbVdroopTableCksonA0 = le32_to_cpu(profile->gb_vdroop_table_ckson_a0); param->ulGbVdroopTableCksonA1 = le32_to_cpu(profile->gb_vdroop_table_ckson_a1); param->ulGbVdroopTableCksonA2 = le32_to_cpu(profile->gb_vdroop_table_ckson_a2); param->ulGbFuseTableCksoffM1 = le32_to_cpu(profile->avfsgb_fuse_table_cksoff_m1); param->ulGbFuseTableCksoffM2 = le32_to_cpu(profile->avfsgb_fuse_table_cksoff_m2); param->ulGbFuseTableCksoffB = le32_to_cpu(profile->avfsgb_fuse_table_cksoff_b); param->ulGbFuseTableCksonM1 = le32_to_cpu(profile->avfsgb_fuse_table_ckson_m1); param->ulGbFuseTableCksonM2 = le32_to_cpu(profile->avfsgb_fuse_table_ckson_m2); param->ulGbFuseTableCksonB = le32_to_cpu(profile->avfsgb_fuse_table_ckson_b); param->ucEnableGbVdroopTableCkson = profile->enable_gb_vdroop_table_ckson; param->ucEnableGbFuseTableCkson = profile->enable_gb_fuse_table_ckson; param->usPsmAgeComfactor = le16_to_cpu(profile->psm_age_comfactor); param->ulDispclk2GfxclkM1 = le32_to_cpu(profile->dispclk2gfxclk_a); param->ulDispclk2GfxclkM2 = le32_to_cpu(profile->dispclk2gfxclk_b); param->ulDispclk2GfxclkB = le32_to_cpu(profile->dispclk2gfxclk_c); param->ulDcefclk2GfxclkM1 = le32_to_cpu(profile->dcefclk2gfxclk_a); param->ulDcefclk2GfxclkM2 = le32_to_cpu(profile->dcefclk2gfxclk_b); param->ulDcefclk2GfxclkB = le32_to_cpu(profile->dcefclk2gfxclk_c); param->ulPixelclk2GfxclkM1 = le32_to_cpu(profile->pixclk2gfxclk_a); param->ulPixelclk2GfxclkM2 = le32_to_cpu(profile->pixclk2gfxclk_b); param->ulPixelclk2GfxclkB = le32_to_cpu(profile->pixclk2gfxclk_c); param->ulPhyclk2GfxclkM1 = le32_to_cpu(profile->phyclk2gfxclk_a); param->ulPhyclk2GfxclkM2 = le32_to_cpu(profile->phyclk2gfxclk_b); param->ulPhyclk2GfxclkB = le32_to_cpu(profile->phyclk2gfxclk_c); param->ulAcgGbVdroopTableA0 = 0; param->ulAcgGbVdroopTableA1 = 0; param->ulAcgGbVdroopTableA2 = 0; param->ulAcgGbFuseTableM1 = 0; param->ulAcgGbFuseTableM2 = 0; param->ulAcgGbFuseTableB = 0; param->ucAcgEnableGbVdroopTable = 0; param->ucAcgEnableGbFuseTable = 0; } else if (format_revision == 4 && content_revision == 2) { profile_v4_2 = (struct atom_asic_profiling_info_v4_2 *)profile; param->ulMaxVddc = le32_to_cpu(profile_v4_2->maxvddc); param->ulMinVddc = le32_to_cpu(profile_v4_2->minvddc); param->ulMeanNsigmaAcontant0 = le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant0); param->ulMeanNsigmaAcontant1 = le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant1); param->ulMeanNsigmaAcontant2 = le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant2); param->usMeanNsigmaDcTolSigma = le16_to_cpu(profile_v4_2->avfs_meannsigma_dc_tol_sigma); param->usMeanNsigmaPlatformMean = le16_to_cpu(profile_v4_2->avfs_meannsigma_platform_mean); param->usMeanNsigmaPlatformSigma = le16_to_cpu(profile_v4_2->avfs_meannsigma_platform_sigma); param->ulGbVdroopTableCksoffA0 = le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a0); param->ulGbVdroopTableCksoffA1 = le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a1); param->ulGbVdroopTableCksoffA2 = le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a2); param->ulGbVdroopTableCksonA0 = le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a0); param->ulGbVdroopTableCksonA1 = le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a1); param->ulGbVdroopTableCksonA2 = le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a2); param->ulGbFuseTableCksoffM1 = le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_m1); param->ulGbFuseTableCksoffM2 = le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_m2); param->ulGbFuseTableCksoffB = le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_b); param->ulGbFuseTableCksonM1 = le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_m1); param->ulGbFuseTableCksonM2 = le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_m2); param->ulGbFuseTableCksonB = le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_b); param->ucEnableGbVdroopTableCkson = profile_v4_2->enable_gb_vdroop_table_ckson; param->ucEnableGbFuseTableCkson = profile_v4_2->enable_gb_fuse_table_ckson; param->usPsmAgeComfactor = le16_to_cpu(profile_v4_2->psm_age_comfactor); param->ulDispclk2GfxclkM1 = le32_to_cpu(profile_v4_2->dispclk2gfxclk_a); param->ulDispclk2GfxclkM2 = le32_to_cpu(profile_v4_2->dispclk2gfxclk_b); param->ulDispclk2GfxclkB = le32_to_cpu(profile_v4_2->dispclk2gfxclk_c); param->ulDcefclk2GfxclkM1 = le32_to_cpu(profile_v4_2->dcefclk2gfxclk_a); param->ulDcefclk2GfxclkM2 = le32_to_cpu(profile_v4_2->dcefclk2gfxclk_b); param->ulDcefclk2GfxclkB = le32_to_cpu(profile_v4_2->dcefclk2gfxclk_c); param->ulPixelclk2GfxclkM1 = le32_to_cpu(profile_v4_2->pixclk2gfxclk_a); param->ulPixelclk2GfxclkM2 = le32_to_cpu(profile_v4_2->pixclk2gfxclk_b); param->ulPixelclk2GfxclkB = le32_to_cpu(profile_v4_2->pixclk2gfxclk_c); param->ulPhyclk2GfxclkM1 = le32_to_cpu(profile->phyclk2gfxclk_a); param->ulPhyclk2GfxclkM2 = le32_to_cpu(profile_v4_2->phyclk2gfxclk_b); param->ulPhyclk2GfxclkB = le32_to_cpu(profile_v4_2->phyclk2gfxclk_c); param->ulAcgGbVdroopTableA0 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a0); param->ulAcgGbVdroopTableA1 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a1); param->ulAcgGbVdroopTableA2 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a2); param->ulAcgGbFuseTableM1 = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_m1); param->ulAcgGbFuseTableM2 = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_m2); param->ulAcgGbFuseTableB = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_b); param->ucAcgEnableGbVdroopTable = le32_to_cpu(profile_v4_2->enable_acg_gb_vdroop_table); param->ucAcgEnableGbFuseTable = le32_to_cpu(profile_v4_2->enable_acg_gb_fuse_table); } else { pr_info("Invalid VBIOS AVFS ProfilingInfo Revision!\n"); return -EINVAL; } return 0; } int pp_atomfwctrl_get_gpio_information(struct pp_hwmgr *hwmgr, struct pp_atomfwctrl_gpio_parameters *param) { struct atom_smu_info_v3_1 *info; uint16_t idx; idx = GetIndexIntoMasterDataTable(smu_info); info = (struct atom_smu_info_v3_1 *) smu_atom_get_data_table(hwmgr->adev, idx, NULL, NULL, NULL); if (!info) { pr_info("Error retrieving BIOS smu_info Table Address!"); return -1; } param->ucAcDcGpio = info->ac_dc_gpio_bit; param->ucAcDcPolarity = info->ac_dc_polarity; param->ucVR0HotGpio = info->vr0hot_gpio_bit; param->ucVR0HotPolarity = info->vr0hot_polarity; param->ucVR1HotGpio = info->vr1hot_gpio_bit; param->ucVR1HotPolarity = info->vr1hot_polarity; param->ucFwCtfGpio = info->fw_ctf_gpio_bit; param->ucFwCtfPolarity = info->fw_ctf_polarity; return 0; } int pp_atomfwctrl_get_clk_information_by_clkid(struct pp_hwmgr *hwmgr, uint8_t clk_id, uint8_t syspll_id, uint32_t *frequency) { struct amdgpu_device *adev = hwmgr->adev; struct atom_get_smu_clock_info_parameters_v3_1 parameters; struct atom_get_smu_clock_info_output_parameters_v3_1 *output; uint32_t ix; parameters.clk_id = clk_id; parameters.syspll_id = syspll_id; parameters.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; parameters.dfsdid = 0; ix = GetIndexIntoMasterCmdTable(getsmuclockinfo); if (amdgpu_atom_execute_table( adev->mode_info.atom_context, ix, (uint32_t *)&parameters)) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&parameters; *frequency = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; return 0; } static void pp_atomfwctrl_copy_vbios_bootup_values_3_2(struct pp_hwmgr *hwmgr, struct pp_atomfwctrl_bios_boot_up_values *boot_values, struct atom_firmware_info_v3_2 *fw_info) { uint32_t frequency = 0; boot_values->ulRevision = fw_info->firmware_revision; boot_values->ulGfxClk = fw_info->bootup_sclk_in10khz; boot_values->ulUClk = fw_info->bootup_mclk_in10khz; boot_values->usVddc = fw_info->bootup_vddc_mv; boot_values->usVddci = fw_info->bootup_vddci_mv; boot_values->usMvddc = fw_info->bootup_mvddc_mv; boot_values->usVddGfx = fw_info->bootup_vddgfx_mv; boot_values->ucCoolingID = fw_info->coolingsolution_id; boot_values->ulSocClk = 0; boot_values->ulDCEFClk = 0; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU11_SYSPLL0_SOCCLK_ID, SMU11_SYSPLL0_ID, &frequency)) boot_values->ulSocClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU11_SYSPLL0_DCEFCLK_ID, SMU11_SYSPLL0_ID, &frequency)) boot_values->ulDCEFClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU11_SYSPLL0_ECLK_ID, SMU11_SYSPLL0_ID, &frequency)) boot_values->ulEClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU11_SYSPLL0_VCLK_ID, SMU11_SYSPLL0_ID, &frequency)) boot_values->ulVClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU11_SYSPLL0_DCLK_ID, SMU11_SYSPLL0_ID, &frequency)) boot_values->ulDClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU11_SYSPLL1_0_FCLK_ID, SMU11_SYSPLL1_2_ID, &frequency)) boot_values->ulFClk = frequency; } static void pp_atomfwctrl_copy_vbios_bootup_values_3_1(struct pp_hwmgr *hwmgr, struct pp_atomfwctrl_bios_boot_up_values *boot_values, struct atom_firmware_info_v3_1 *fw_info) { uint32_t frequency = 0; boot_values->ulRevision = fw_info->firmware_revision; boot_values->ulGfxClk = fw_info->bootup_sclk_in10khz; boot_values->ulUClk = fw_info->bootup_mclk_in10khz; boot_values->usVddc = fw_info->bootup_vddc_mv; boot_values->usVddci = fw_info->bootup_vddci_mv; boot_values->usMvddc = fw_info->bootup_mvddc_mv; boot_values->usVddGfx = fw_info->bootup_vddgfx_mv; boot_values->ucCoolingID = fw_info->coolingsolution_id; boot_values->ulSocClk = 0; boot_values->ulDCEFClk = 0; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_SOCCLK_ID, 0, &frequency)) boot_values->ulSocClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_DCEFCLK_ID, 0, &frequency)) boot_values->ulDCEFClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_ECLK_ID, 0, &frequency)) boot_values->ulEClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_VCLK_ID, 0, &frequency)) boot_values->ulVClk = frequency; if (!pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_DCLK_ID, 0, &frequency)) boot_values->ulDClk = frequency; } int pp_atomfwctrl_get_vbios_bootup_values(struct pp_hwmgr *hwmgr, struct pp_atomfwctrl_bios_boot_up_values *boot_values) { struct atom_firmware_info_v3_2 *fwinfo_3_2; struct atom_firmware_info_v3_1 *fwinfo_3_1; struct atom_common_table_header *info = NULL; uint16_t ix; ix = GetIndexIntoMasterDataTable(firmwareinfo); info = (struct atom_common_table_header *) smu_atom_get_data_table(hwmgr->adev, ix, NULL, NULL, NULL); if (!info) { pr_info("Error retrieving BIOS firmwareinfo!"); return -EINVAL; } if ((info->format_revision == 3) && (info->content_revision == 2)) { fwinfo_3_2 = (struct atom_firmware_info_v3_2 *)info; pp_atomfwctrl_copy_vbios_bootup_values_3_2(hwmgr, boot_values, fwinfo_3_2); } else if ((info->format_revision == 3) && (info->content_revision == 1)) { fwinfo_3_1 = (struct atom_firmware_info_v3_1 *)info; pp_atomfwctrl_copy_vbios_bootup_values_3_1(hwmgr, boot_values, fwinfo_3_1); } else { pr_info("Fw info table revision does not match!"); return -EINVAL; } return 0; } int pp_atomfwctrl_get_smc_dpm_information(struct pp_hwmgr *hwmgr, struct pp_atomfwctrl_smc_dpm_parameters *param) { struct atom_smc_dpm_info_v4_1 *info; uint16_t ix; ix = GetIndexIntoMasterDataTable(smc_dpm_info); info = (struct atom_smc_dpm_info_v4_1 *) smu_atom_get_data_table(hwmgr->adev, ix, NULL, NULL, NULL); if (!info) { pr_info("Error retrieving BIOS Table Address!"); return -EINVAL; } param->liquid1_i2c_address = info->liquid1_i2c_address; param->liquid2_i2c_address = info->liquid2_i2c_address; param->vr_i2c_address = info->vr_i2c_address; param->plx_i2c_address = info->plx_i2c_address; param->liquid_i2c_linescl = info->liquid_i2c_linescl; param->liquid_i2c_linesda = info->liquid_i2c_linesda; param->vr_i2c_linescl = info->vr_i2c_linescl; param->vr_i2c_linesda = info->vr_i2c_linesda; param->plx_i2c_linescl = info->plx_i2c_linescl; param->plx_i2c_linesda = info->plx_i2c_linesda; param->vrsensorpresent = info->vrsensorpresent; param->liquidsensorpresent = info->liquidsensorpresent; param->maxvoltagestepgfx = info->maxvoltagestepgfx; param->maxvoltagestepsoc = info->maxvoltagestepsoc; param->vddgfxvrmapping = info->vddgfxvrmapping; param->vddsocvrmapping = info->vddsocvrmapping; param->vddmem0vrmapping = info->vddmem0vrmapping; param->vddmem1vrmapping = info->vddmem1vrmapping; param->gfxulvphasesheddingmask = info->gfxulvphasesheddingmask; param->soculvphasesheddingmask = info->soculvphasesheddingmask; param->gfxmaxcurrent = info->gfxmaxcurrent; param->gfxoffset = info->gfxoffset; param->padding_telemetrygfx = info->padding_telemetrygfx; param->socmaxcurrent = info->socmaxcurrent; param->socoffset = info->socoffset; param->padding_telemetrysoc = info->padding_telemetrysoc; param->mem0maxcurrent = info->mem0maxcurrent; param->mem0offset = info->mem0offset; param->padding_telemetrymem0 = info->padding_telemetrymem0; param->mem1maxcurrent = info->mem1maxcurrent; param->mem1offset = info->mem1offset; param->padding_telemetrymem1 = info->padding_telemetrymem1; param->acdcgpio = info->acdcgpio; param->acdcpolarity = info->acdcpolarity; param->vr0hotgpio = info->vr0hotgpio; param->vr0hotpolarity = info->vr0hotpolarity; param->vr1hotgpio = info->vr1hotgpio; param->vr1hotpolarity = info->vr1hotpolarity; param->padding1 = info->padding1; param->padding2 = info->padding2; param->ledpin0 = info->ledpin0; param->ledpin1 = info->ledpin1; param->ledpin2 = info->ledpin2; param->pllgfxclkspreadenabled = info->pllgfxclkspreadenabled; param->pllgfxclkspreadpercent = info->pllgfxclkspreadpercent; param->pllgfxclkspreadfreq = info->pllgfxclkspreadfreq; param->uclkspreadenabled = info->uclkspreadenabled; param->uclkspreadpercent = info->uclkspreadpercent; param->uclkspreadfreq = info->uclkspreadfreq; param->socclkspreadenabled = info->socclkspreadenabled; param->socclkspreadpercent = info->socclkspreadpercent; param->socclkspreadfreq = info->socclkspreadfreq; param->acggfxclkspreadenabled = info->acggfxclkspreadenabled; param->acggfxclkspreadpercent = info->acggfxclkspreadpercent; param->acggfxclkspreadfreq = info->acggfxclkspreadfreq; param->Vr2_I2C_address = info->Vr2_I2C_address; return 0; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomfwctrl.c
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu.h" #include "soc15.h" #include "soc15_hw_ip.h" #include "vega10_ip_offset.h" #include "soc15_common.h" #include "vega10_inc.h" #include "smu9_baco.h" int smu9_baco_get_capability(struct pp_hwmgr *hwmgr, bool *cap) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); uint32_t reg, data; *cap = false; if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_BACO)) return 0; WREG32(0x12074, 0xFFF0003B); data = RREG32(0x12075); if (data == 0x1) { reg = RREG32_SOC15(NBIF, 0, mmRCC_BIF_STRAP0); if (reg & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) *cap = true; } return 0; } int smu9_baco_get_state(struct pp_hwmgr *hwmgr, enum BACO_STATE *state) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); uint32_t reg; reg = RREG32_SOC15(NBIF, 0, mmBACO_CNTL); if (reg & BACO_CNTL__BACO_MODE_MASK) /* gfx has already entered BACO state */ *state = BACO_STATE_IN; else *state = BACO_STATE_OUT; return 0; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu9_baco.c
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include "atom-types.h" #include "atombios.h" #include "processpptables.h" #include "cgs_common.h" #include "smu/smu_8_0_d.h" #include "smu8_fusion.h" #include "smu/smu_8_0_sh_mask.h" #include "smumgr.h" #include "hwmgr.h" #include "hardwaremanager.h" #include "cz_ppsmc.h" #include "smu8_hwmgr.h" #include "power_state.h" #include "pp_thermal.h" #define ixSMUSVI_NB_CURRENTVID 0xD8230044 #define CURRENT_NB_VID_MASK 0xff000000 #define CURRENT_NB_VID__SHIFT 24 #define ixSMUSVI_GFX_CURRENTVID 0xD8230048 #define CURRENT_GFX_VID_MASK 0xff000000 #define CURRENT_GFX_VID__SHIFT 24 static const unsigned long smu8_magic = (unsigned long) PHM_Cz_Magic; static struct smu8_power_state *cast_smu8_power_state(struct pp_hw_power_state *hw_ps) { if (smu8_magic != hw_ps->magic) return NULL; return (struct smu8_power_state *)hw_ps; } static const struct smu8_power_state *cast_const_smu8_power_state( const struct pp_hw_power_state *hw_ps) { if (smu8_magic != hw_ps->magic) return NULL; return (struct smu8_power_state *)hw_ps; } static uint32_t smu8_get_eclk_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_vce_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.vce_clock_voltage_dependency_table; switch (msg) { case PPSMC_MSG_SetEclkSoftMin: case PPSMC_MSG_SetEclkHardMin: for (i = 0; i < (int)ptable->count; i++) { if (clock <= ptable->entries[i].ecclk) break; } break; case PPSMC_MSG_SetEclkSoftMax: case PPSMC_MSG_SetEclkHardMax: for (i = ptable->count - 1; i >= 0; i--) { if (clock >= ptable->entries[i].ecclk) break; } break; default: break; } return i; } static uint32_t smu8_get_sclk_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; switch (msg) { case PPSMC_MSG_SetSclkSoftMin: case PPSMC_MSG_SetSclkHardMin: for (i = 0; i < (int)table->count; i++) { if (clock <= table->entries[i].clk) break; } break; case PPSMC_MSG_SetSclkSoftMax: case PPSMC_MSG_SetSclkHardMax: for (i = table->count - 1; i >= 0; i--) { if (clock >= table->entries[i].clk) break; } break; default: break; } return i; } static uint32_t smu8_get_uvd_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_uvd_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; switch (msg) { case PPSMC_MSG_SetUvdSoftMin: case PPSMC_MSG_SetUvdHardMin: for (i = 0; i < (int)ptable->count; i++) { if (clock <= ptable->entries[i].vclk) break; } break; case PPSMC_MSG_SetUvdSoftMax: case PPSMC_MSG_SetUvdHardMax: for (i = ptable->count - 1; i >= 0; i--) { if (clock >= ptable->entries[i].vclk) break; } break; default: break; } return i; } static uint32_t smu8_get_max_sclk_level(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; if (data->max_sclk_level == 0) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxSclkLevel, &data->max_sclk_level); data->max_sclk_level += 1; } return data->max_sclk_level; } static int smu8_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct amdgpu_device *adev = hwmgr->adev; data->gfx_ramp_step = 256*25/100; data->gfx_ramp_delay = 1; /* by default, we delay 1us */ data->mgcg_cgtt_local0 = 0x00000000; data->mgcg_cgtt_local1 = 0x00000000; data->clock_slow_down_freq = 25000; data->skip_clock_slow_down = 1; data->enable_nb_ps_policy = 1; /* disable until UNB is ready, Enabled */ data->voltage_drop_in_dce_power_gating = 0; /* disable until fully verified */ data->voting_rights_clients = 0x00C00033; data->static_screen_threshold = 8; data->ddi_power_gating_disabled = 0; data->bapm_enabled = 1; data->voltage_drop_threshold = 0; data->gfx_power_gating_threshold = 500; data->vce_slow_sclk_threshold = 20000; data->dce_slow_sclk_threshold = 30000; data->disable_driver_thermal_policy = 1; data->disable_nb_ps3_in_battery = 0; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ABM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_NonABMSupportInPPLib); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicM3Arbiter); data->override_dynamic_mgpg = 1; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState); data->thermal_auto_throttling_treshold = 0; data->tdr_clock = 0; data->disable_gfx_power_gating_in_uvd = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicUVDState); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEDPM); data->cc6_settings.cpu_cc6_disable = false; data->cc6_settings.cpu_pstate_disable = false; data->cc6_settings.nb_pstate_switch_disable = false; data->cc6_settings.cpu_pstate_separation_time = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableVoltageIsland); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); if (adev->pg_flags & AMD_PG_SUPPORT_UVD) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); if (adev->pg_flags & AMD_PG_SUPPORT_VCE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); return 0; } /* convert form 8bit vid to real voltage in mV*4 */ static uint32_t smu8_convert_8Bit_index_to_voltage( struct pp_hwmgr *hwmgr, uint16_t voltage) { return 6200 - (voltage * 25); } static int smu8_construct_max_power_limits_table(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *table) { struct smu8_hwmgr *data = hwmgr->backend; struct smu8_sys_info *sys_info = &data->sys_info; struct phm_clock_voltage_dependency_table *dep_table = hwmgr->dyn_state.vddc_dependency_on_sclk; if (dep_table->count > 0) { table->sclk = dep_table->entries[dep_table->count-1].clk; table->vddc = smu8_convert_8Bit_index_to_voltage(hwmgr, (uint16_t)dep_table->entries[dep_table->count-1].v); } table->mclk = sys_info->nbp_memory_clock[0]; return 0; } static int smu8_init_dynamic_state_adjustment_rule_settings( struct pp_hwmgr *hwmgr, ATOM_CLK_VOLT_CAPABILITY *disp_voltage_table) { struct phm_clock_voltage_dependency_table *table_clk_vlt; table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, 8), GFP_KERNEL); if (NULL == table_clk_vlt) { pr_err("Can not allocate memory!\n"); return -ENOMEM; } table_clk_vlt->count = 8; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0; table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1; table_clk_vlt->entries[1].v = 1; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2; table_clk_vlt->entries[2].v = 2; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3; table_clk_vlt->entries[3].v = 3; table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4; table_clk_vlt->entries[4].v = 4; table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5; table_clk_vlt->entries[5].v = 5; table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6; table_clk_vlt->entries[6].v = 6; table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7; table_clk_vlt->entries[7].v = 7; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; return 0; } static int smu8_get_system_info_data(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *info = NULL; uint32_t i; int result = 0; uint8_t frev, crev; uint16_t size; info = (ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *)smu_atom_get_data_table(hwmgr->adev, GetIndexIntoMasterTable(DATA, IntegratedSystemInfo), &size, &frev, &crev); if (info == NULL) { pr_err("Could not retrieve the Integrated System Info Table!\n"); return -EINVAL; } if (crev != 9) { pr_err("Unsupported IGP table: %d %d\n", frev, crev); return -EINVAL; } data->sys_info.bootup_uma_clock = le32_to_cpu(info->ulBootUpUMAClock); data->sys_info.bootup_engine_clock = le32_to_cpu(info->ulBootUpEngineClock); data->sys_info.dentist_vco_freq = le32_to_cpu(info->ulDentistVCOFreq); data->sys_info.system_config = le32_to_cpu(info->ulSystemConfig); data->sys_info.bootup_nb_voltage_index = le16_to_cpu(info->usBootUpNBVoltage); data->sys_info.htc_hyst_lmt = (info->ucHtcHystLmt == 0) ? 5 : info->ucHtcHystLmt; data->sys_info.htc_tmp_lmt = (info->ucHtcTmpLmt == 0) ? 203 : info->ucHtcTmpLmt; if (data->sys_info.htc_tmp_lmt <= data->sys_info.htc_hyst_lmt) { pr_err("The htcTmpLmt should be larger than htcHystLmt.\n"); return -EINVAL; } data->sys_info.nb_dpm_enable = data->enable_nb_ps_policy && (le32_to_cpu(info->ulSystemConfig) >> 3 & 0x1); for (i = 0; i < SMU8_NUM_NBPSTATES; i++) { if (i < SMU8_NUM_NBPMEMORYCLOCK) { data->sys_info.nbp_memory_clock[i] = le32_to_cpu(info->ulNbpStateMemclkFreq[i]); } data->sys_info.nbp_n_clock[i] = le32_to_cpu(info->ulNbpStateNClkFreq[i]); } for (i = 0; i < MAX_DISPLAY_CLOCK_LEVEL; i++) { data->sys_info.display_clock[i] = le32_to_cpu(info->sDispClkVoltageMapping[i].ulMaximumSupportedCLK); } /* Here use 4 levels, make sure not exceed */ for (i = 0; i < SMU8_NUM_NBPSTATES; i++) { data->sys_info.nbp_voltage_index[i] = le16_to_cpu(info->usNBPStateVoltage[i]); } if (!data->sys_info.nb_dpm_enable) { for (i = 1; i < SMU8_NUM_NBPSTATES; i++) { if (i < SMU8_NUM_NBPMEMORYCLOCK) { data->sys_info.nbp_memory_clock[i] = data->sys_info.nbp_memory_clock[0]; } data->sys_info.nbp_n_clock[i] = data->sys_info.nbp_n_clock[0]; data->sys_info.nbp_voltage_index[i] = data->sys_info.nbp_voltage_index[0]; } } if (le32_to_cpu(info->ulGPUCapInfo) & SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableDFSBypass); } data->sys_info.uma_channel_number = info->ucUMAChannelNumber; smu8_construct_max_power_limits_table (hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); smu8_init_dynamic_state_adjustment_rule_settings(hwmgr, &info->sDISPCLK_Voltage[0]); return result; } static int smu8_construct_boot_state(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->boot_power_level.engineClock = data->sys_info.bootup_engine_clock; data->boot_power_level.vddcIndex = (uint8_t)data->sys_info.bootup_nb_voltage_index; data->boot_power_level.dsDividerIndex = 0; data->boot_power_level.ssDividerIndex = 0; data->boot_power_level.allowGnbSlow = 1; data->boot_power_level.forceNBPstate = 0; data->boot_power_level.hysteresis_up = 0; data->boot_power_level.numSIMDToPowerDown = 0; data->boot_power_level.display_wm = 0; data->boot_power_level.vce_wm = 0; return 0; } static int smu8_upload_pptable_to_smu(struct pp_hwmgr *hwmgr) { struct SMU8_Fusion_ClkTable *clock_table; int ret; uint32_t i; void *table = NULL; pp_atomctrl_clock_dividers_kong dividers; struct phm_clock_voltage_dependency_table *vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_clock_voltage_dependency_table *vdd_gfx_table = hwmgr->dyn_state.vdd_gfx_dependency_on_sclk; struct phm_acp_clock_voltage_dependency_table *acp_table = hwmgr->dyn_state.acp_clock_voltage_dependency_table; struct phm_uvd_clock_voltage_dependency_table *uvd_table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; struct phm_vce_clock_voltage_dependency_table *vce_table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; if (!hwmgr->need_pp_table_upload) return 0; ret = smum_download_powerplay_table(hwmgr, &table); PP_ASSERT_WITH_CODE((0 == ret && NULL != table), "Fail to get clock table from SMU!", return -EINVAL;); clock_table = (struct SMU8_Fusion_ClkTable *)table; /* patch clock table */ PP_ASSERT_WITH_CODE((vddc_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((vdd_gfx_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((acp_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((uvd_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((vce_table->count <= SMU8_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); for (i = 0; i < SMU8_MAX_HARDWARE_POWERLEVELS; i++) { /* vddc_sclk */ clock_table->SclkBreakdownTable.ClkLevel[i].GnbVid = (i < vddc_table->count) ? (uint8_t)vddc_table->entries[i].v : 0; clock_table->SclkBreakdownTable.ClkLevel[i].Frequency = (i < vddc_table->count) ? vddc_table->entries[i].clk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->SclkBreakdownTable.ClkLevel[i].Frequency, &dividers); clock_table->SclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* vddgfx_sclk */ clock_table->SclkBreakdownTable.ClkLevel[i].GfxVid = (i < vdd_gfx_table->count) ? (uint8_t)vdd_gfx_table->entries[i].v : 0; /* acp breakdown */ clock_table->AclkBreakdownTable.ClkLevel[i].GfxVid = (i < acp_table->count) ? (uint8_t)acp_table->entries[i].v : 0; clock_table->AclkBreakdownTable.ClkLevel[i].Frequency = (i < acp_table->count) ? acp_table->entries[i].acpclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->AclkBreakdownTable.ClkLevel[i].Frequency, &dividers); clock_table->AclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* uvd breakdown */ clock_table->VclkBreakdownTable.ClkLevel[i].GfxVid = (i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0; clock_table->VclkBreakdownTable.ClkLevel[i].Frequency = (i < uvd_table->count) ? uvd_table->entries[i].vclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->VclkBreakdownTable.ClkLevel[i].Frequency, &dividers); clock_table->VclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; clock_table->DclkBreakdownTable.ClkLevel[i].GfxVid = (i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0; clock_table->DclkBreakdownTable.ClkLevel[i].Frequency = (i < uvd_table->count) ? uvd_table->entries[i].dclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->DclkBreakdownTable.ClkLevel[i].Frequency, &dividers); clock_table->DclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* vce breakdown */ clock_table->EclkBreakdownTable.ClkLevel[i].GfxVid = (i < vce_table->count) ? (uint8_t)vce_table->entries[i].v : 0; clock_table->EclkBreakdownTable.ClkLevel[i].Frequency = (i < vce_table->count) ? vce_table->entries[i].ecclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->EclkBreakdownTable.ClkLevel[i].Frequency, &dividers); clock_table->EclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; } ret = smum_upload_powerplay_table(hwmgr); return ret; } static int smu8_init_sclk_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; data->sclk_dpm.soft_min_clk = table->entries[0].clk; data->sclk_dpm.hard_min_clk = table->entries[0].clk; level = smu8_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clock = table->entries[level].clk; else clock = table->entries[table->count - 1].clk; data->sclk_dpm.soft_max_clk = clock; data->sclk_dpm.hard_max_clk = clock; return 0; } static int smu8_init_uvd_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_uvd_clock_voltage_dependency_table *table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; unsigned long clock = 0; uint32_t level; if (NULL == table || table->count <= 0) return -EINVAL; data->uvd_dpm.soft_min_clk = 0; data->uvd_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxUvdLevel, &level); if (level < table->count) clock = table->entries[level].vclk; else clock = table->entries[table->count - 1].vclk; data->uvd_dpm.soft_max_clk = clock; data->uvd_dpm.hard_max_clk = clock; return 0; } static int smu8_init_vce_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_vce_clock_voltage_dependency_table *table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; unsigned long clock = 0; uint32_t level; if (NULL == table || table->count <= 0) return -EINVAL; data->vce_dpm.soft_min_clk = 0; data->vce_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxEclkLevel, &level); if (level < table->count) clock = table->entries[level].ecclk; else clock = table->entries[table->count - 1].ecclk; data->vce_dpm.soft_max_clk = clock; data->vce_dpm.hard_max_clk = clock; return 0; } static int smu8_init_acp_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_acp_clock_voltage_dependency_table *table = hwmgr->dyn_state.acp_clock_voltage_dependency_table; unsigned long clock = 0; uint32_t level; if (NULL == table || table->count <= 0) return -EINVAL; data->acp_dpm.soft_min_clk = 0; data->acp_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxAclkLevel, &level); if (level < table->count) clock = table->entries[level].acpclk; else clock = table->entries[table->count - 1].acpclk; data->acp_dpm.soft_max_clk = clock; data->acp_dpm.hard_max_clk = clock; return 0; } static void smu8_init_power_gate_state(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->uvd_power_gated = false; data->vce_power_gated = false; data->samu_power_gated = false; #ifdef CONFIG_DRM_AMD_ACP data->acp_power_gated = false; #else smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ACPPowerOFF, NULL); data->acp_power_gated = true; #endif } static void smu8_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->low_sclk_interrupt_threshold = 0; } static int smu8_update_sclk_limit(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0; unsigned long level; unsigned long stable_pstate_sclk; unsigned long percentage; data->sclk_dpm.soft_min_clk = table->entries[0].clk; level = smu8_get_max_sclk_level(hwmgr) - 1; if (level < table->count) data->sclk_dpm.soft_max_clk = table->entries[level].clk; else data->sclk_dpm.soft_max_clk = table->entries[table->count - 1].clk; clock = hwmgr->display_config->min_core_set_clock; if (clock == 0) pr_debug("min_core_set_clock not set\n"); if (data->sclk_dpm.hard_min_clk != clock) { data->sclk_dpm.hard_min_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkHardMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.hard_min_clk, PPSMC_MSG_SetSclkHardMin), NULL); } clock = data->sclk_dpm.soft_min_clk; /* update minimum clocks for Stable P-State feature */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { percentage = 75; /*Sclk - calculate sclk value based on percentage and find FLOOR sclk from VddcDependencyOnSCLK table */ stable_pstate_sclk = (hwmgr->dyn_state.max_clock_voltage_on_ac.mclk * percentage) / 100; if (clock < stable_pstate_sclk) clock = stable_pstate_sclk; } if (data->sclk_dpm.soft_min_clk != clock) { data->sclk_dpm.soft_min_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin), NULL); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState) && data->sclk_dpm.soft_max_clk != clock) { data->sclk_dpm.soft_max_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax), NULL); } return 0; } static int smu8_set_deep_sleep_sclk_threshold(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { uint32_t clks = hwmgr->display_config->min_core_set_clock_in_sr; if (clks == 0) clks = SMU8_MIN_DEEP_SLEEP_SCLK; PP_DBG_LOG("Setting Deep Sleep Clock: %d\n", clks); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepSclk, clks, NULL); } return 0; } static int smu8_set_watermark_threshold(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWatermarkFrequency, data->sclk_dpm.soft_max_clk, NULL); return 0; } static int smu8_nbdpm_pstate_enable_disable(struct pp_hwmgr *hwmgr, bool enable, bool lock) { struct smu8_hwmgr *hw_data = hwmgr->backend; if (hw_data->is_nb_dpm_enabled) { if (enable) { PP_DBG_LOG("enable Low Memory PState.\n"); return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableLowMemoryPstate, (lock ? 1 : 0), NULL); } else { PP_DBG_LOG("disable Low Memory PState.\n"); return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DisableLowMemoryPstate, (lock ? 1 : 0), NULL); } } return 0; } static int smu8_disable_nb_dpm(struct pp_hwmgr *hwmgr) { int ret = 0; struct smu8_hwmgr *data = hwmgr->backend; unsigned long dpm_features = 0; if (data->is_nb_dpm_enabled) { smu8_nbdpm_pstate_enable_disable(hwmgr, true, true); dpm_features |= NB_DPM_MASK; ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_DisableAllSmuFeatures, dpm_features, NULL); if (ret == 0) data->is_nb_dpm_enabled = false; } return ret; } static int smu8_enable_nb_dpm(struct pp_hwmgr *hwmgr) { int ret = 0; struct smu8_hwmgr *data = hwmgr->backend; unsigned long dpm_features = 0; if (!data->is_nb_dpm_enabled) { PP_DBG_LOG("enabling ALL SMU features.\n"); dpm_features |= NB_DPM_MASK; ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_EnableAllSmuFeatures, dpm_features, NULL); if (ret == 0) data->is_nb_dpm_enabled = true; } return ret; } static int smu8_update_low_mem_pstate(struct pp_hwmgr *hwmgr, const void *input) { bool disable_switch; bool enable_low_mem_state; struct smu8_hwmgr *hw_data = hwmgr->backend; const struct phm_set_power_state_input *states = (struct phm_set_power_state_input *)input; const struct smu8_power_state *pnew_state = cast_const_smu8_power_state(states->pnew_state); if (hw_data->sys_info.nb_dpm_enable) { disable_switch = hw_data->cc6_settings.nb_pstate_switch_disable ? true : false; enable_low_mem_state = hw_data->cc6_settings.nb_pstate_switch_disable ? false : true; if (pnew_state->action == FORCE_HIGH) smu8_nbdpm_pstate_enable_disable(hwmgr, false, disable_switch); else if (pnew_state->action == CANCEL_FORCE_HIGH) smu8_nbdpm_pstate_enable_disable(hwmgr, true, disable_switch); else smu8_nbdpm_pstate_enable_disable(hwmgr, enable_low_mem_state, disable_switch); } return 0; } static int smu8_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { int ret = 0; smu8_update_sclk_limit(hwmgr); smu8_set_deep_sleep_sclk_threshold(hwmgr); smu8_set_watermark_threshold(hwmgr); ret = smu8_enable_nb_dpm(hwmgr); if (ret) return ret; smu8_update_low_mem_pstate(hwmgr, input); return 0; } static int smu8_setup_asic_task(struct pp_hwmgr *hwmgr) { int ret; ret = smu8_upload_pptable_to_smu(hwmgr); if (ret) return ret; ret = smu8_init_sclk_limit(hwmgr); if (ret) return ret; ret = smu8_init_uvd_limit(hwmgr); if (ret) return ret; ret = smu8_init_vce_limit(hwmgr); if (ret) return ret; ret = smu8_init_acp_limit(hwmgr); if (ret) return ret; smu8_init_power_gate_state(hwmgr); smu8_init_sclk_threshold(hwmgr); return 0; } static void smu8_power_up_display_clock_sys_pll(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *hw_data = hwmgr->backend; hw_data->disp_clk_bypass_pending = false; hw_data->disp_clk_bypass = false; } static void smu8_clear_nb_dpm_flag(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *hw_data = hwmgr->backend; hw_data->is_nb_dpm_enabled = false; } static void smu8_reset_cc6_data(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *hw_data = hwmgr->backend; hw_data->cc6_settings.cc6_setting_changed = false; hw_data->cc6_settings.cpu_pstate_separation_time = 0; hw_data->cc6_settings.cpu_cc6_disable = false; hw_data->cc6_settings.cpu_pstate_disable = false; } static void smu8_program_voting_clients(struct pp_hwmgr *hwmgr) { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_0, SMU8_VOTINGRIGHTSCLIENTS_DFLT0); } static void smu8_clear_voting_clients(struct pp_hwmgr *hwmgr) { cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_0, 0); } static int smu8_start_dpm(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->dpm_flags |= DPMFlags_SCLK_Enabled; return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableAllSmuFeatures, SCLK_DPM_MASK, NULL); } static int smu8_stop_dpm(struct pp_hwmgr *hwmgr) { int ret = 0; struct smu8_hwmgr *data = hwmgr->backend; unsigned long dpm_features = 0; if (data->dpm_flags & DPMFlags_SCLK_Enabled) { dpm_features |= SCLK_DPM_MASK; data->dpm_flags &= ~DPMFlags_SCLK_Enabled; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DisableAllSmuFeatures, dpm_features, NULL); } return ret; } static int smu8_program_bootup_state(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->sclk_dpm.soft_min_clk = data->sys_info.bootup_engine_clock; data->sclk_dpm.soft_max_clk = data->sys_info.bootup_engine_clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin), NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax), NULL); return 0; } static void smu8_reset_acp_boot_level(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; data->acp_boot_level = 0xff; } static void smu8_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr) { struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; hwmgr->pstate_sclk = table->entries[0].clk / 100; hwmgr->pstate_mclk = 0; hwmgr->pstate_sclk_peak = table->entries[table->count - 1].clk / 100; hwmgr->pstate_mclk_peak = 0; } static int smu8_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { smu8_program_voting_clients(hwmgr); if (smu8_start_dpm(hwmgr)) return -EINVAL; smu8_program_bootup_state(hwmgr); smu8_reset_acp_boot_level(hwmgr); smu8_populate_umdpstate_clocks(hwmgr); return 0; } static int smu8_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { smu8_disable_nb_dpm(hwmgr); smu8_clear_voting_clients(hwmgr); if (smu8_stop_dpm(hwmgr)) return -EINVAL; return 0; } static int smu8_power_off_asic(struct pp_hwmgr *hwmgr) { smu8_disable_dpm_tasks(hwmgr); smu8_power_up_display_clock_sys_pll(hwmgr); smu8_clear_nb_dpm_flag(hwmgr); smu8_reset_cc6_data(hwmgr); return 0; } static int smu8_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *prequest_ps, const struct pp_power_state *pcurrent_ps) { struct smu8_power_state *smu8_ps = cast_smu8_power_state(&prequest_ps->hardware); const struct smu8_power_state *smu8_current_ps = cast_const_smu8_power_state(&pcurrent_ps->hardware); struct smu8_hwmgr *data = hwmgr->backend; struct PP_Clocks clocks = {0, 0, 0, 0}; bool force_high; smu8_ps->need_dfs_bypass = true; data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label); clocks.memoryClock = hwmgr->display_config->min_mem_set_clock != 0 ? hwmgr->display_config->min_mem_set_clock : data->sys_info.nbp_memory_clock[1]; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) clocks.memoryClock = hwmgr->dyn_state.max_clock_voltage_on_ac.mclk; force_high = (clocks.memoryClock > data->sys_info.nbp_memory_clock[SMU8_NUM_NBPMEMORYCLOCK - 1]) || (hwmgr->display_config->num_display >= 3); smu8_ps->action = smu8_current_ps->action; if (hwmgr->request_dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) smu8_nbdpm_pstate_enable_disable(hwmgr, false, false); else if (hwmgr->request_dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) smu8_nbdpm_pstate_enable_disable(hwmgr, false, true); else if (!force_high && (smu8_ps->action == FORCE_HIGH)) smu8_ps->action = CANCEL_FORCE_HIGH; else if (force_high && (smu8_ps->action != FORCE_HIGH)) smu8_ps->action = FORCE_HIGH; else smu8_ps->action = DO_NOTHING; return 0; } static int smu8_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct smu8_hwmgr *data; data = kzalloc(sizeof(struct smu8_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; result = smu8_initialize_dpm_defaults(hwmgr); if (result != 0) { pr_err("smu8_initialize_dpm_defaults failed\n"); return result; } result = smu8_get_system_info_data(hwmgr); if (result != 0) { pr_err("smu8_get_system_info_data failed\n"); return result; } smu8_construct_boot_state(hwmgr); hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = SMU8_MAX_HARDWARE_POWERLEVELS; return result; } static int smu8_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { if (hwmgr != NULL) { kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; kfree(hwmgr->backend); hwmgr->backend = NULL; } return 0; } static int smu8_phm_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMin), NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax), NULL); return 0; } static int smu8_phm_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; data->sclk_dpm.soft_min_clk = table->entries[0].clk; data->sclk_dpm.hard_min_clk = table->entries[0].clk; level = smu8_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clock = table->entries[level].clk; else clock = table->entries[table->count - 1].clk; data->sclk_dpm.soft_max_clk = clock; data->sclk_dpm.hard_max_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin), NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax), NULL); return 0; } static int smu8_phm_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMax), NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, smu8_get_sclk_level(hwmgr, data->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin), NULL); return 0; } static int smu8_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = smu8_phm_force_dpm_highest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_LOW: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: ret = smu8_phm_force_dpm_lowest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = smu8_phm_unforce_dpm_levels(hwmgr); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } static int smu8_dpm_powerdown_uvd(struct pp_hwmgr *hwmgr) { if (PP_CAP(PHM_PlatformCaps_UVDPowerGating)) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UVDPowerOFF, NULL); return 0; } static int smu8_dpm_powerup_uvd(struct pp_hwmgr *hwmgr) { if (PP_CAP(PHM_PlatformCaps_UVDPowerGating)) { return smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_UVDPowerON, PP_CAP(PHM_PlatformCaps_UVDDynamicPowerGating) ? 1 : 0, NULL); } return 0; } static int smu8_dpm_update_vce_dpm(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_vce_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.vce_clock_voltage_dependency_table; /* Stable Pstate is enabled and we need to set the VCE DPM to highest level */ if (PP_CAP(PHM_PlatformCaps_StablePState) || hwmgr->en_umd_pstate) { data->vce_dpm.hard_min_clk = ptable->entries[ptable->count - 1].ecclk; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetEclkHardMin, smu8_get_eclk_level(hwmgr, data->vce_dpm.hard_min_clk, PPSMC_MSG_SetEclkHardMin), NULL); } else { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetEclkHardMin, 0, NULL); /* disable ECLK DPM 0. Otherwise VCE could hang if * switching SCLK from DPM 0 to 6/7 */ smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetEclkSoftMin, 1, NULL); } return 0; } static int smu8_dpm_powerdown_vce(struct pp_hwmgr *hwmgr) { if (PP_CAP(PHM_PlatformCaps_VCEPowerGating)) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_VCEPowerOFF, NULL); return 0; } static int smu8_dpm_powerup_vce(struct pp_hwmgr *hwmgr) { if (PP_CAP(PHM_PlatformCaps_VCEPowerGating)) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_VCEPowerON, NULL); return 0; } static uint32_t smu8_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct smu8_hwmgr *data = hwmgr->backend; return data->sys_info.bootup_uma_clock; } static uint32_t smu8_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct smu8_power_state *smu8_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; smu8_ps = cast_smu8_power_state(&ps->hardware); if (low) return smu8_ps->levels[0].engineClock; else return smu8_ps->levels[smu8_ps->level-1].engineClock; } static int smu8_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { struct smu8_hwmgr *data = hwmgr->backend; struct smu8_power_state *smu8_ps = cast_smu8_power_state(hw_ps); smu8_ps->level = 1; smu8_ps->nbps_flags = 0; smu8_ps->bapm_flags = 0; smu8_ps->levels[0] = data->boot_power_level; return 0; } static int smu8_dpm_get_pp_table_entry_callback( struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps, unsigned int index, const void *clock_info) { struct smu8_power_state *smu8_ps = cast_smu8_power_state(hw_ps); const ATOM_PPLIB_CZ_CLOCK_INFO *smu8_clock_info = clock_info; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; uint8_t clock_info_index = smu8_clock_info->index; if (clock_info_index > (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1)) clock_info_index = (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1); smu8_ps->levels[index].engineClock = table->entries[clock_info_index].clk; smu8_ps->levels[index].vddcIndex = (uint8_t)table->entries[clock_info_index].v; smu8_ps->level = index + 1; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { smu8_ps->levels[index].dsDividerIndex = 5; smu8_ps->levels[index].ssDividerIndex = 5; } return 0; } static int smu8_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr) { int result; unsigned long ret = 0; result = pp_tables_get_num_of_entries(hwmgr, &ret); return result ? 0 : ret; } static int smu8_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry, struct pp_power_state *ps) { int result; struct smu8_power_state *smu8_ps; ps->hardware.magic = smu8_magic; smu8_ps = cast_smu8_power_state(&(ps->hardware)); result = pp_tables_get_entry(hwmgr, entry, ps, smu8_dpm_get_pp_table_entry_callback); smu8_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK; smu8_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK; return result; } static int smu8_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct smu8_power_state); } static void smu8_hw_print_display_cfg( const struct cc6_settings *cc6_settings) { PP_DBG_LOG("New Display Configuration:\n"); PP_DBG_LOG(" cpu_cc6_disable: %d\n", cc6_settings->cpu_cc6_disable); PP_DBG_LOG(" cpu_pstate_disable: %d\n", cc6_settings->cpu_pstate_disable); PP_DBG_LOG(" nb_pstate_switch_disable: %d\n", cc6_settings->nb_pstate_switch_disable); PP_DBG_LOG(" cpu_pstate_separation_time: %d\n\n", cc6_settings->cpu_pstate_separation_time); } static int smu8_set_cpu_power_state(struct pp_hwmgr *hwmgr) { struct smu8_hwmgr *hw_data = hwmgr->backend; uint32_t data = 0; if (hw_data->cc6_settings.cc6_setting_changed) { hw_data->cc6_settings.cc6_setting_changed = false; smu8_hw_print_display_cfg(&hw_data->cc6_settings); data |= (hw_data->cc6_settings.cpu_pstate_separation_time & PWRMGT_SEPARATION_TIME_MASK) << PWRMGT_SEPARATION_TIME_SHIFT; data |= (hw_data->cc6_settings.cpu_cc6_disable ? 0x1 : 0x0) << PWRMGT_DISABLE_CPU_CSTATES_SHIFT; data |= (hw_data->cc6_settings.cpu_pstate_disable ? 0x1 : 0x0) << PWRMGT_DISABLE_CPU_PSTATES_SHIFT; PP_DBG_LOG("SetDisplaySizePowerParams data: 0x%X\n", data); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetDisplaySizePowerParams, data, NULL); } return 0; } static int smu8_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time, bool cc6_disable, bool pstate_disable, bool pstate_switch_disable) { struct smu8_hwmgr *hw_data = hwmgr->backend; if (separation_time != hw_data->cc6_settings.cpu_pstate_separation_time || cc6_disable != hw_data->cc6_settings.cpu_cc6_disable || pstate_disable != hw_data->cc6_settings.cpu_pstate_disable || pstate_switch_disable != hw_data->cc6_settings.nb_pstate_switch_disable) { hw_data->cc6_settings.cc6_setting_changed = true; hw_data->cc6_settings.cpu_pstate_separation_time = separation_time; hw_data->cc6_settings.cpu_cc6_disable = cc6_disable; hw_data->cc6_settings.cpu_pstate_disable = pstate_disable; hw_data->cc6_settings.nb_pstate_switch_disable = pstate_switch_disable; } return 0; } static int smu8_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { uint32_t i; const struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dep_on_dal_pwrl; const struct phm_clock_and_voltage_limits *limits = &hwmgr->dyn_state.max_clock_voltage_on_ac; info->engine_max_clock = limits->sclk; info->memory_max_clock = limits->mclk; for (i = table->count - 1; i > 0; i--) { if (limits->vddc >= table->entries[i].v) { info->level = table->entries[i].clk; return 0; } } return -EINVAL; } static int smu8_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { switch (type) { case PP_SCLK: smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMin, mask, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSclkSoftMax, mask, NULL); break; default: break; } return 0; } static int smu8_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; uint32_t i, now; int size = 0; switch (type) { case PP_SCLK: now = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX), TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX); for (i = 0; i < sclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, sclk_table->entries[i].clk / 100, (i == now) ? "*" : ""); break; case PP_MCLK: now = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX), TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX); for (i = SMU8_NUM_NBPMEMORYCLOCK; i > 0; i--) size += sprintf(buf + size, "%d: %uMhz %s\n", SMU8_NUM_NBPMEMORYCLOCK-i, data->sys_info.nbp_memory_clock[i-1] / 100, (SMU8_NUM_NBPMEMORYCLOCK-i == now) ? "*" : ""); break; default: break; } return size; } static int smu8_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { const struct smu8_power_state *ps; struct smu8_hwmgr *data; uint32_t level_index; uint32_t i; if (level == NULL || hwmgr == NULL || state == NULL) return -EINVAL; data = hwmgr->backend; ps = cast_const_smu8_power_state(state); level_index = index > ps->level - 1 ? ps->level - 1 : index; level->coreClock = ps->levels[level_index].engineClock; if (designation == PHM_PerformanceLevelDesignation_PowerContainment) { for (i = 1; i < ps->level; i++) { if (ps->levels[i].engineClock > data->dce_slow_sclk_threshold) { level->coreClock = ps->levels[i].engineClock; break; } } } if (level_index == 0) level->memory_clock = data->sys_info.nbp_memory_clock[SMU8_NUM_NBPMEMORYCLOCK - 1]; else level->memory_clock = data->sys_info.nbp_memory_clock[0]; level->vddc = (smu8_convert_8Bit_index_to_voltage(hwmgr, ps->levels[level_index].vddcIndex) + 2) / 4; level->nonLocalMemoryFreq = 0; level->nonLocalMemoryWidth = 0; return 0; } static int smu8_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, struct pp_clock_info *clock_info) { const struct smu8_power_state *ps = cast_const_smu8_power_state(state); clock_info->min_eng_clk = ps->levels[0].engineClock / (1 << (ps->levels[0].ssDividerIndex)); clock_info->max_eng_clk = ps->levels[ps->level - 1].engineClock / (1 << (ps->levels[ps->level - 1].ssDividerIndex)); return 0; } static int smu8_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct amd_pp_clocks *clocks) { struct smu8_hwmgr *data = hwmgr->backend; int i; struct phm_clock_voltage_dependency_table *table; clocks->count = smu8_get_max_sclk_level(hwmgr); switch (type) { case amd_pp_disp_clock: for (i = 0; i < clocks->count; i++) clocks->clock[i] = data->sys_info.display_clock[i] * 10; break; case amd_pp_sys_clock: table = hwmgr->dyn_state.vddc_dependency_on_sclk; for (i = 0; i < clocks->count; i++) clocks->clock[i] = table->entries[i].clk * 10; break; case amd_pp_mem_clock: clocks->count = SMU8_NUM_NBPMEMORYCLOCK; for (i = 0; i < clocks->count; i++) clocks->clock[i] = data->sys_info.nbp_memory_clock[clocks->count - 1 - i] * 10; break; default: return -1; } return 0; } static int smu8_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks) { struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long level; const struct phm_clock_and_voltage_limits *limits = &hwmgr->dyn_state.max_clock_voltage_on_ac; if ((NULL == table) || (table->count <= 0) || (clocks == NULL)) return -EINVAL; level = smu8_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clocks->engine_max_clock = table->entries[level].clk; else clocks->engine_max_clock = table->entries[table->count - 1].clk; clocks->memory_max_clock = limits->mclk; return 0; } static int smu8_thermal_get_temperature(struct pp_hwmgr *hwmgr) { int actual_temp = 0; uint32_t val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTHM_TCON_CUR_TMP); uint32_t temp = PHM_GET_FIELD(val, THM_TCON_CUR_TMP, CUR_TEMP); if (PHM_GET_FIELD(val, THM_TCON_CUR_TMP, CUR_TEMP_RANGE_SEL)) actual_temp = ((temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; else actual_temp = (temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return actual_temp; } static int smu8_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_vce_clock_voltage_dependency_table *vce_table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; struct phm_uvd_clock_voltage_dependency_table *uvd_table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; uint32_t sclk_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX), TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX); uint32_t uvd_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX_2), TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_UVD_INDEX); uint32_t vce_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX_2), TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_VCE_INDEX); uint32_t sclk, vclk, dclk, ecclk, tmp, activity_percent; uint16_t vddnb, vddgfx; int result; /* size must be at least 4 bytes for all sensors */ if (*size < 4) return -EINVAL; *size = 4; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: if (sclk_index < NUM_SCLK_LEVELS) { sclk = table->entries[sclk_index].clk; *((uint32_t *)value) = sclk; return 0; } return -EINVAL; case AMDGPU_PP_SENSOR_VDDNB: tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMUSVI_NB_CURRENTVID) & CURRENT_NB_VID_MASK) >> CURRENT_NB_VID__SHIFT; vddnb = smu8_convert_8Bit_index_to_voltage(hwmgr, tmp) / 4; *((uint32_t *)value) = vddnb; return 0; case AMDGPU_PP_SENSOR_VDDGFX: tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMUSVI_GFX_CURRENTVID) & CURRENT_GFX_VID_MASK) >> CURRENT_GFX_VID__SHIFT; vddgfx = smu8_convert_8Bit_index_to_voltage(hwmgr, (u16)tmp) / 4; *((uint32_t *)value) = vddgfx; return 0; case AMDGPU_PP_SENSOR_UVD_VCLK: if (!data->uvd_power_gated) { if (uvd_index >= SMU8_MAX_HARDWARE_POWERLEVELS) { return -EINVAL; } else { vclk = uvd_table->entries[uvd_index].vclk; *((uint32_t *)value) = vclk; return 0; } } *((uint32_t *)value) = 0; return 0; case AMDGPU_PP_SENSOR_UVD_DCLK: if (!data->uvd_power_gated) { if (uvd_index >= SMU8_MAX_HARDWARE_POWERLEVELS) { return -EINVAL; } else { dclk = uvd_table->entries[uvd_index].dclk; *((uint32_t *)value) = dclk; return 0; } } *((uint32_t *)value) = 0; return 0; case AMDGPU_PP_SENSOR_VCE_ECCLK: if (!data->vce_power_gated) { if (vce_index >= SMU8_MAX_HARDWARE_POWERLEVELS) { return -EINVAL; } else { ecclk = vce_table->entries[vce_index].ecclk; *((uint32_t *)value) = ecclk; return 0; } } *((uint32_t *)value) = 0; return 0; case AMDGPU_PP_SENSOR_GPU_LOAD: result = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGraphicsActivity, &activity_percent); if (0 == result) activity_percent = activity_percent > 100 ? 100 : activity_percent; else return -EIO; *((uint32_t *)value) = activity_percent; return 0; case AMDGPU_PP_SENSOR_UVD_POWER: *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; return 0; case AMDGPU_PP_SENSOR_VCE_POWER: *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; return 0; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = smu8_thermal_get_temperature(hwmgr); return 0; default: return -EOPNOTSUPP; } } static int smu8_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, uint32_t virtual_addr_low, uint32_t virtual_addr_hi, uint32_t mc_addr_low, uint32_t mc_addr_hi, uint32_t size) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramAddrHiVirtual, mc_addr_hi, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramAddrLoVirtual, mc_addr_low, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramAddrHiPhysical, virtual_addr_hi, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramAddrLoPhysical, virtual_addr_low, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramBufferSize, size, NULL); return 0; } static int smu8_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *thermal_data) { struct smu8_hwmgr *data = hwmgr->backend; memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange)); thermal_data->max = (data->thermal_auto_throttling_treshold + data->sys_info.htc_hyst_lmt) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int smu8_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct smu8_hwmgr *data = hwmgr->backend; uint32_t dpm_features = 0; if (enable && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM)) { data->dpm_flags |= DPMFlags_UVD_Enabled; dpm_features |= UVD_DPM_MASK; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableAllSmuFeatures, dpm_features, NULL); } else { dpm_features |= UVD_DPM_MASK; data->dpm_flags &= ~DPMFlags_UVD_Enabled; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DisableAllSmuFeatures, dpm_features, NULL); } return 0; } static int smu8_dpm_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate) { struct smu8_hwmgr *data = hwmgr->backend; struct phm_uvd_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; if (!bgate) { /* Stable Pstate is enabled and we need to set the UVD DPM to highest level */ if (PP_CAP(PHM_PlatformCaps_StablePState) || hwmgr->en_umd_pstate) { data->uvd_dpm.hard_min_clk = ptable->entries[ptable->count - 1].vclk; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetUvdHardMin, smu8_get_uvd_level(hwmgr, data->uvd_dpm.hard_min_clk, PPSMC_MSG_SetUvdHardMin), NULL); smu8_enable_disable_uvd_dpm(hwmgr, true); } else { smu8_enable_disable_uvd_dpm(hwmgr, true); } } else { smu8_enable_disable_uvd_dpm(hwmgr, false); } return 0; } static int smu8_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct smu8_hwmgr *data = hwmgr->backend; uint32_t dpm_features = 0; if (enable && phm_cap_enabled( hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEDPM)) { data->dpm_flags |= DPMFlags_VCE_Enabled; dpm_features |= VCE_DPM_MASK; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_EnableAllSmuFeatures, dpm_features, NULL); } else { dpm_features |= VCE_DPM_MASK; data->dpm_flags &= ~DPMFlags_VCE_Enabled; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DisableAllSmuFeatures, dpm_features, NULL); } return 0; } static void smu8_dpm_powergate_acp(struct pp_hwmgr *hwmgr, bool bgate) { struct smu8_hwmgr *data = hwmgr->backend; if (data->acp_power_gated == bgate) return; if (bgate) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ACPPowerOFF, NULL); else smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ACPPowerON, NULL); } #define WIDTH_4K 3840 static void smu8_dpm_powergate_uvd(struct pp_hwmgr *hwmgr, bool bgate) { struct smu8_hwmgr *data = hwmgr->backend; struct amdgpu_device *adev = hwmgr->adev; data->uvd_power_gated = bgate; if (bgate) { amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_UVD, AMD_PG_STATE_GATE); amdgpu_device_ip_set_clockgating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_UVD, AMD_CG_STATE_GATE); smu8_dpm_update_uvd_dpm(hwmgr, true); smu8_dpm_powerdown_uvd(hwmgr); } else { smu8_dpm_powerup_uvd(hwmgr); amdgpu_device_ip_set_clockgating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_UVD, AMD_CG_STATE_UNGATE); amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_UVD, AMD_PG_STATE_UNGATE); smu8_dpm_update_uvd_dpm(hwmgr, false); } /* enable/disable Low Memory PState for UVD (4k videos) */ if (adev->asic_type == CHIP_STONEY && adev->uvd.decode_image_width >= WIDTH_4K) smu8_nbdpm_pstate_enable_disable(hwmgr, bgate, true); } static void smu8_dpm_powergate_vce(struct pp_hwmgr *hwmgr, bool bgate) { struct smu8_hwmgr *data = hwmgr->backend; if (bgate) { amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_GATE); amdgpu_device_ip_set_clockgating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_GATE); smu8_enable_disable_vce_dpm(hwmgr, false); smu8_dpm_powerdown_vce(hwmgr); data->vce_power_gated = true; } else { smu8_dpm_powerup_vce(hwmgr); data->vce_power_gated = false; amdgpu_device_ip_set_clockgating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCE, AMD_CG_STATE_UNGATE); amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCE, AMD_PG_STATE_UNGATE); smu8_dpm_update_vce_dpm(hwmgr); smu8_enable_disable_vce_dpm(hwmgr, true); } } static const struct pp_hwmgr_func smu8_hwmgr_funcs = { .backend_init = smu8_hwmgr_backend_init, .backend_fini = smu8_hwmgr_backend_fini, .apply_state_adjust_rules = smu8_apply_state_adjust_rules, .force_dpm_level = smu8_dpm_force_dpm_level, .get_power_state_size = smu8_get_power_state_size, .powerdown_uvd = smu8_dpm_powerdown_uvd, .powergate_uvd = smu8_dpm_powergate_uvd, .powergate_vce = smu8_dpm_powergate_vce, .powergate_acp = smu8_dpm_powergate_acp, .get_mclk = smu8_dpm_get_mclk, .get_sclk = smu8_dpm_get_sclk, .patch_boot_state = smu8_dpm_patch_boot_state, .get_pp_table_entry = smu8_dpm_get_pp_table_entry, .get_num_of_pp_table_entries = smu8_dpm_get_num_of_pp_table_entries, .set_cpu_power_state = smu8_set_cpu_power_state, .store_cc6_data = smu8_store_cc6_data, .force_clock_level = smu8_force_clock_level, .print_clock_levels = smu8_print_clock_levels, .get_dal_power_level = smu8_get_dal_power_level, .get_performance_level = smu8_get_performance_level, .get_current_shallow_sleep_clocks = smu8_get_current_shallow_sleep_clocks, .get_clock_by_type = smu8_get_clock_by_type, .get_max_high_clocks = smu8_get_max_high_clocks, .read_sensor = smu8_read_sensor, .power_off_asic = smu8_power_off_asic, .asic_setup = smu8_setup_asic_task, .dynamic_state_management_enable = smu8_enable_dpm_tasks, .power_state_set = smu8_set_power_state_tasks, .dynamic_state_management_disable = smu8_disable_dpm_tasks, .notify_cac_buffer_info = smu8_notify_cac_buffer_info, .get_thermal_temperature_range = smu8_get_thermal_temperature_range, }; int smu8_init_function_pointers(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &smu8_hwmgr_funcs; hwmgr->pptable_func = &pptable_funcs; return 0; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu8_hwmgr.c
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu.h" #include "ci_baco.h" #include "gmc/gmc_7_1_d.h" #include "gmc/gmc_7_1_sh_mask.h" #include "bif/bif_4_1_d.h" #include "bif/bif_4_1_sh_mask.h" #include "dce/dce_8_0_d.h" #include "dce/dce_8_0_sh_mask.h" #include "smu/smu_7_0_1_d.h" #include "smu/smu_7_0_1_sh_mask.h" #include "gca/gfx_7_2_d.h" #include "gca/gfx_7_2_sh_mask.h" static const struct baco_cmd_entry gpio_tbl[] = { { CMD_WRITE, mmGPIOPAD_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_PD_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_PU_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_MASK, 0, 0, 0, 0xff77ffff }, { CMD_WRITE, mmDC_GPIO_DVODATA_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmDC_GPIO_DVODATA_MASK, 0, 0, 0, 0xffffffff }, { CMD_WRITE, mmDC_GPIO_GENERIC_EN, 0, 0, 0, 0x0 }, { CMD_READMODIFYWRITE, mmDC_GPIO_GENERIC_MASK, 0, 0, 0, 0x03333333 }, { CMD_WRITE, mmDC_GPIO_SYNCA_EN, 0, 0, 0, 0x0 }, { CMD_READMODIFYWRITE, mmDC_GPIO_SYNCA_MASK, 0, 0, 0, 0x00001111 } }; static const struct baco_cmd_entry enable_fb_req_rej_tbl[] = { { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, 0xC0300024 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, 0x1, 0x0, 0, 0x1 }, { CMD_WRITE, mmBIF_FB_EN, 0, 0, 0, 0x0 } }; static const struct baco_cmd_entry use_bclk_tbl[] = { { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK, CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL_2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL_2__SPLL_BYPASS_CHG_MASK, CG_SPLL_FUNC_CNTL_2__SPLL_BYPASS_CHG__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_STATUS }, { CMD_WAITFOR, mmGCK_SMC_IND_DATA, CG_SPLL_STATUS__SPLL_CHG_STATUS_MASK, 0, 0xffffffff, 0x2 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL_2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL_2__SPLL_BYPASS_CHG_MASK, CG_SPLL_FUNC_CNTL_2__SPLL_BYPASS_CHG__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL_2__SPLL_CTLREQ_CHG_MASK, CG_SPLL_FUNC_CNTL_2__SPLL_CTLREQ_CHG__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_STATUS }, { CMD_WAITFOR, mmGCK_SMC_IND_DATA, CG_SPLL_STATUS__SPLL_CHG_STATUS_MASK, 0, 0xffffffff, 0x2 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL_2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL_2__SPLL_CTLREQ_CHG_MASK, CG_SPLL_FUNC_CNTL_2__SPLL_CTLREQ_CHG__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, 0xC0500170 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, 0x4000000, 0x1a, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixMPLL_BYPASSCLK_SEL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MPLL_BYPASSCLK_SEL__MPLL_CLKOUT_SEL_MASK, MPLL_BYPASSCLK_SEL__MPLL_CLKOUT_SEL__SHIFT, 0, 0x2 }, { CMD_READMODIFYWRITE, mmMPLL_CNTL_MODE, MPLL_CNTL_MODE__MPLL_SW_DIR_CONTROL_MASK, MPLL_CNTL_MODE__MPLL_SW_DIR_CONTROL__SHIFT, 0, 0x1 }, { CMD_READMODIFYWRITE, mmMPLL_CNTL_MODE, MPLL_CNTL_MODE__MPLL_MCLK_SEL_MASK, MPLL_CNTL_MODE__MPLL_MCLK_SEL__SHIFT, 0, 0x0 } }; static const struct baco_cmd_entry turn_off_plls_tbl[] = { { CMD_READMODIFYWRITE, mmDISPPLL_BG_CNTL, DISPPLL_BG_CNTL__DISPPLL_BG_PDN_MASK, DISPPLL_BG_CNTL__DISPPLL_BG_PDN__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_CLKPIN_CNTL_DC }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_CLKPIN_CNTL_DC__OSC_EN_MASK, CG_CLKPIN_CNTL_DC__OSC_EN__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_CLKPIN_CNTL_DC__XTALIN_SEL_MASK, CG_CLKPIN_CNTL_DC__XTALIN_SEL__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmPLL_CNTL, PLL_CNTL__PLL_RESET_MASK, PLL_CNTL__PLL_RESET__SHIFT, 0, 0x1 }, { CMD_READMODIFYWRITE, mmPLL_CNTL, PLL_CNTL__PLL_POWER_DOWN_MASK, PLL_CNTL__PLL_POWER_DOWN__SHIFT, 0, 0x1 }, { CMD_READMODIFYWRITE, mmPLL_CNTL, PLL_CNTL__PLL_BYPASS_CAL_MASK, PLL_CNTL__PLL_BYPASS_CAL__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL__SPLL_RESET_MASK, CG_SPLL_FUNC_CNTL__SPLL_RESET__SHIFT, 0, 0x1 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL__SPLL_PWRON_MASK, CG_SPLL_FUNC_CNTL__SPLL_PWRON__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, 0xC0500170 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, 0x2000000, 0x19, 0, 0x1 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, 0x8000000, 0x1b, 0, 0x0 }, { CMD_READMODIFYWRITE, mmMPLL_CNTL_MODE, MPLL_CNTL_MODE__GLOBAL_MPLL_RESET_MASK, MPLL_CNTL_MODE__GLOBAL_MPLL_RESET__SHIFT, 0, 0x1 }, { CMD_WRITE, mmMPLL_CONTROL, 0, 0, 0, 0x00000006 }, { CMD_WRITE, mmMC_IO_RXCNTL_DPHY0_D0, 0, 0, 0, 0x00007740 }, { CMD_WRITE, mmMC_IO_RXCNTL_DPHY0_D1, 0, 0, 0, 0x00007740 }, { CMD_WRITE, mmMC_IO_RXCNTL_DPHY1_D0, 0, 0, 0, 0x00007740 }, { CMD_WRITE, mmMC_IO_RXCNTL_DPHY1_D1, 0, 0, 0, 0x00007740 }, { CMD_READMODIFYWRITE, mmMCLK_PWRMGT_CNTL, MCLK_PWRMGT_CNTL__MRDCK0_PDNB_MASK, MCLK_PWRMGT_CNTL__MRDCK0_PDNB__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmMCLK_PWRMGT_CNTL, MCLK_PWRMGT_CNTL__MRDCK1_PDNB_MASK, MCLK_PWRMGT_CNTL__MRDCK1_PDNB__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmMC_SEQ_CNTL_2, MC_SEQ_CNTL_2__DRST_PU_MASK, MC_SEQ_CNTL_2__DRST_PU__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmMC_SEQ_CNTL_2, MC_SEQ_CNTL_2__DRST_PD_MASK, MC_SEQ_CNTL_2__DRST_PD__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_CLKPIN_CNTL_2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_CLKPIN_CNTL_2__FORCE_BIF_REFCLK_EN_MASK, CG_CLKPIN_CNTL_2__FORCE_BIF_REFCLK_EN__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixMPLL_BYPASSCLK_SEL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MPLL_BYPASSCLK_SEL__MPLL_CLKOUT_SEL_MASK, MPLL_BYPASSCLK_SEL__MPLL_CLKOUT_SEL__SHIFT, 0, 0x4 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixMISC_CLK_CTRL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MISC_CLK_CTRL__DEEP_SLEEP_CLK_SEL_MASK, MISC_CLK_CTRL__DEEP_SLEEP_CLK_SEL__SHIFT, 0, 0x2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MISC_CLK_CTRL__ZCLK_SEL_MASK, MISC_CLK_CTRL__ZCLK_SEL__SHIFT, 0, 0x2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MISC_CLK_CTRL__DFT_SMS_PG_CLK_SEL_MASK, MISC_CLK_CTRL__DFT_SMS_PG_CLK_SEL__SHIFT, 0, 0x2 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixTHM_CLK_CNTL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, THM_CLK_CNTL__CMON_CLK_SEL_MASK, THM_CLK_CNTL__CMON_CLK_SEL__SHIFT, 0, 0x2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, THM_CLK_CNTL__TMON_CLK_SEL_MASK, THM_CLK_CNTL__TMON_CLK_SEL__SHIFT, 0, 0x2 } }; static const struct baco_cmd_entry enter_baco_tbl[] = { { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_EN_MASK, BACO_CNTL__BACO_EN__SHIFT, 0, 0x01 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_BCLK_OFF_MASK, BACO_CNTL__BACO_BCLK_OFF__SHIFT, 0, 0x01 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_BCLK_OFF_MASK, 0, 5, 0x02 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ISO_DIS_MASK, BACO_CNTL__BACO_ISO_DIS__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_ISO_DIS_MASK, 0, 5, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ANA_ISO_DIS_MASK, BACO_CNTL__BACO_ANA_ISO_DIS__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_ANA_ISO_DIS_MASK, 0, 5, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_POWER_OFF_MASK, BACO_CNTL__BACO_POWER_OFF__SHIFT, 0, 0x01 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_POWER_OFF_MASK, 0, 5, 0x08 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_MODE_MASK, 0, 0xffffffff, 0x40 } }; #define BACO_CNTL__PWRGOOD_MASK BACO_CNTL__PWRGOOD_GPIO_MASK+BACO_CNTL__PWRGOOD_MEM_MASK+BACO_CNTL__PWRGOOD_DVO_MASK static const struct baco_cmd_entry exit_baco_tbl[] = { { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_RESET_EN_MASK, BACO_CNTL__BACO_RESET_EN__SHIFT, 0, 0x01 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_BCLK_OFF_MASK, BACO_CNTL__BACO_BCLK_OFF__SHIFT, 0, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_POWER_OFF_MASK, BACO_CNTL__BACO_POWER_OFF__SHIFT, 0, 0x00 }, { CMD_DELAY_MS, 0, 0, 0, 20, 0 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__PWRGOOD_BF_MASK, 0, 0xffffffff, 0x200 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ISO_DIS_MASK, BACO_CNTL__BACO_ISO_DIS__SHIFT, 0, 0x01 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__PWRGOOD_MASK, 0, 5, 0x1c00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ANA_ISO_DIS_MASK, BACO_CNTL__BACO_ANA_ISO_DIS__SHIFT, 0, 0x01 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_RESET_EN_MASK, BACO_CNTL__BACO_RESET_EN__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__RCU_BIF_CONFIG_DONE_MASK, 0, 5, 0x100 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_EN_MASK, BACO_CNTL__BACO_EN__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_MODE_MASK, 0, 0xffffffff, 0x00 } }; static const struct baco_cmd_entry clean_baco_tbl[] = { { CMD_WRITE, mmBIOS_SCRATCH_6, 0, 0, 0, 0 }, { CMD_WRITE, mmBIOS_SCRATCH_7, 0, 0, 0, 0 }, { CMD_WRITE, mmCP_PFP_UCODE_ADDR, 0, 0, 0, 0 } }; int ci_baco_set_state(struct pp_hwmgr *hwmgr, enum BACO_STATE state) { enum BACO_STATE cur_state; smu7_baco_get_state(hwmgr, &cur_state); if (cur_state == state) /* aisc already in the target state */ return 0; if (state == BACO_STATE_IN) { baco_program_registers(hwmgr, gpio_tbl, ARRAY_SIZE(gpio_tbl)); baco_program_registers(hwmgr, enable_fb_req_rej_tbl, ARRAY_SIZE(enable_fb_req_rej_tbl)); baco_program_registers(hwmgr, use_bclk_tbl, ARRAY_SIZE(use_bclk_tbl)); baco_program_registers(hwmgr, turn_off_plls_tbl, ARRAY_SIZE(turn_off_plls_tbl)); if (baco_program_registers(hwmgr, enter_baco_tbl, ARRAY_SIZE(enter_baco_tbl))) return 0; } else if (state == BACO_STATE_OUT) { /* HW requires at least 20ms between regulator off and on */ msleep(20); /* Execute Hardware BACO exit sequence */ if (baco_program_registers(hwmgr, exit_baco_tbl, ARRAY_SIZE(exit_baco_tbl))) { if (baco_program_registers(hwmgr, clean_baco_tbl, ARRAY_SIZE(clean_baco_tbl))) return 0; } } return -EINVAL; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/ci_baco.c
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include "atom-types.h" #include "atombios.h" #include "processpptables.h" #include "cgs_common.h" #include "smumgr.h" #include "hwmgr.h" #include "hardwaremanager.h" #include "rv_ppsmc.h" #include "smu10_hwmgr.h" #include "power_state.h" #include "soc15_common.h" #include "smu10.h" #include "asic_reg/pwr/pwr_10_0_offset.h" #include "asic_reg/pwr/pwr_10_0_sh_mask.h" #define SMU10_MAX_DEEPSLEEP_DIVIDER_ID 5 #define SMU10_MINIMUM_ENGINE_CLOCK 800 /* 8Mhz, the low boundary of engine clock allowed on this chip */ #define SCLK_MIN_DIV_INTV_SHIFT 12 #define SMU10_DISPCLK_BYPASS_THRESHOLD 10000 /* 100Mhz */ #define SMC_RAM_END 0x40000 static const unsigned long SMU10_Magic = (unsigned long) PHM_Rv_Magic; static int smu10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); enum amd_pp_clock_type clk_type = clock_req->clock_type; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; PPSMC_Msg msg; switch (clk_type) { case amd_pp_dcf_clock: if (clk_freq == smu10_data->dcf_actual_hard_min_freq) return 0; msg = PPSMC_MSG_SetHardMinDcefclkByFreq; smu10_data->dcf_actual_hard_min_freq = clk_freq; break; case amd_pp_soc_clock: msg = PPSMC_MSG_SetHardMinSocclkByFreq; break; case amd_pp_f_clock: if (clk_freq == smu10_data->f_actual_hard_min_freq) return 0; smu10_data->f_actual_hard_min_freq = clk_freq; msg = PPSMC_MSG_SetHardMinFclkByFreq; break; default: pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); return -EINVAL; } smum_send_msg_to_smc_with_parameter(hwmgr, msg, clk_freq, NULL); return 0; } static struct smu10_power_state *cast_smu10_ps(struct pp_hw_power_state *hw_ps) { if (SMU10_Magic != hw_ps->magic) return NULL; return (struct smu10_power_state *)hw_ps; } static const struct smu10_power_state *cast_const_smu10_ps( const struct pp_hw_power_state *hw_ps) { if (SMU10_Magic != hw_ps->magic) return NULL; return (struct smu10_power_state *)hw_ps; } static int smu10_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); smu10_data->dce_slow_sclk_threshold = 30000; smu10_data->thermal_auto_throttling_treshold = 0; smu10_data->is_nb_dpm_enabled = 1; smu10_data->dpm_flags = 1; smu10_data->need_min_deep_sleep_dcefclk = true; smu10_data->num_active_display = 0; smu10_data->deep_sleep_dcefclk = 0; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerPlaySupport); return 0; } static int smu10_construct_max_power_limits_table(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *table) { return 0; } static int smu10_init_dynamic_state_adjustment_rule_settings( struct pp_hwmgr *hwmgr) { int count = 8; struct phm_clock_voltage_dependency_table *table_clk_vlt; table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, count), GFP_KERNEL); if (NULL == table_clk_vlt) { pr_err("Can not allocate memory!\n"); return -ENOMEM; } table_clk_vlt->count = count; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0; table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1; table_clk_vlt->entries[1].v = 1; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2; table_clk_vlt->entries[2].v = 2; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3; table_clk_vlt->entries[3].v = 3; table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4; table_clk_vlt->entries[4].v = 4; table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5; table_clk_vlt->entries[5].v = 5; table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6; table_clk_vlt->entries[6].v = 6; table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7; table_clk_vlt->entries[7].v = 7; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; return 0; } static int smu10_get_system_info_data(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)hwmgr->backend; smu10_data->sys_info.htc_hyst_lmt = 5; smu10_data->sys_info.htc_tmp_lmt = 203; if (smu10_data->thermal_auto_throttling_treshold == 0) smu10_data->thermal_auto_throttling_treshold = 203; smu10_construct_max_power_limits_table (hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); smu10_init_dynamic_state_adjustment_rule_settings(hwmgr); return 0; } static int smu10_construct_boot_state(struct pp_hwmgr *hwmgr) { return 0; } static int smu10_set_clock_limit(struct pp_hwmgr *hwmgr, const void *input) { struct PP_Clocks clocks = {0}; struct pp_display_clock_request clock_req; clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; clock_req.clock_type = amd_pp_dcf_clock; clock_req.clock_freq_in_khz = clocks.dcefClock * 10; PP_ASSERT_WITH_CODE(!smu10_display_clock_voltage_request(hwmgr, &clock_req), "Attempt to set DCF Clock Failed!", return -EINVAL); return 0; } static int smu10_set_min_deep_sleep_dcefclk(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->deep_sleep_dcefclk != clock) { smu10_data->deep_sleep_dcefclk = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, smu10_data->deep_sleep_dcefclk, NULL); } return 0; } static int smu10_set_hard_min_dcefclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->dcf_actual_hard_min_freq != clock) { smu10_data->dcf_actual_hard_min_freq = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinDcefclkByFreq, smu10_data->dcf_actual_hard_min_freq, NULL); } return 0; } static int smu10_set_hard_min_fclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->f_actual_hard_min_freq != clock) { smu10_data->f_actual_hard_min_freq = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, smu10_data->f_actual_hard_min_freq, NULL); } return 0; } static int smu10_set_hard_min_gfxclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->gfx_actual_soft_min_freq != clock) { smu10_data->gfx_actual_soft_min_freq = clock; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, clock, NULL); } return 0; } static int smu10_set_soft_max_gfxclk_by_freq(struct pp_hwmgr *hwmgr, uint32_t clock) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (clock && smu10_data->gfx_max_freq_limit != (clock * 100)) { smu10_data->gfx_max_freq_limit = clock * 100; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, clock, NULL); } return 0; } static int smu10_set_active_display_count(struct pp_hwmgr *hwmgr, uint32_t count) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (smu10_data->num_active_display != count) { smu10_data->num_active_display = count; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetDisplayCount, smu10_data->num_active_display, NULL); } return 0; } static int smu10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { return smu10_set_clock_limit(hwmgr, input); } static int smu10_init_power_gate_state(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; smu10_data->vcn_power_gated = true; smu10_data->isp_tileA_power_gated = true; smu10_data->isp_tileB_power_gated = true; if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetGfxCGPG, true, NULL); else return 0; } static int smu10_setup_asic_task(struct pp_hwmgr *hwmgr) { return smu10_init_power_gate_state(hwmgr); } static int smu10_reset_cc6_data(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); smu10_data->separation_time = 0; smu10_data->cc6_disable = false; smu10_data->pstate_disable = false; smu10_data->cc6_setting_changed = false; return 0; } static int smu10_power_off_asic(struct pp_hwmgr *hwmgr) { return smu10_reset_cc6_data(hwmgr); } static bool smu10_is_gfx_on(struct pp_hwmgr *hwmgr) { uint32_t reg; struct amdgpu_device *adev = hwmgr->adev; reg = RREG32_SOC15(PWR, 0, mmPWR_MISC_CNTL_STATUS); if ((reg & PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS_MASK) == (0x2 << PWR_MISC_CNTL_STATUS__PWR_GFXOFF_STATUS__SHIFT)) return true; return false; } static int smu10_disable_gfx_off(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; if (adev->pm.pp_feature & PP_GFXOFF_MASK) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableGfxOff, NULL); /* confirm gfx is back to "on" state */ while (!smu10_is_gfx_on(hwmgr)) msleep(1); } return 0; } static int smu10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { return 0; } static int smu10_enable_gfx_off(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; if (adev->pm.pp_feature & PP_GFXOFF_MASK) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableGfxOff, NULL); return 0; } static void smu10_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr) { hwmgr->pstate_sclk = SMU10_UMD_PSTATE_GFXCLK; hwmgr->pstate_mclk = SMU10_UMD_PSTATE_FCLK; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &hwmgr->pstate_sclk_peak); hwmgr->pstate_mclk_peak = SMU10_UMD_PSTATE_PEAK_FCLK; } static int smu10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); int ret = -EINVAL; if (adev->in_suspend) { pr_info("restore the fine grain parameters\n"); ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, smu10_data->gfx_actual_soft_min_freq, NULL); if (ret) return ret; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, smu10_data->gfx_actual_soft_max_freq, NULL); if (ret) return ret; } smu10_populate_umdpstate_clocks(hwmgr); return 0; } static int smu10_gfx_off_control(struct pp_hwmgr *hwmgr, bool enable) { if (enable) return smu10_enable_gfx_off(hwmgr); else return smu10_disable_gfx_off(hwmgr); } static int smu10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *prequest_ps, const struct pp_power_state *pcurrent_ps) { return 0; } /* temporary hardcoded clock voltage breakdown tables */ static const DpmClock_t VddDcfClk[] = { { 300, 2600}, { 600, 3200}, { 600, 3600}, }; static const DpmClock_t VddSocClk[] = { { 478, 2600}, { 722, 3200}, { 722, 3600}, }; static const DpmClock_t VddFClk[] = { { 400, 2600}, {1200, 3200}, {1200, 3600}, }; static const DpmClock_t VddDispClk[] = { { 435, 2600}, { 661, 3200}, {1086, 3600}, }; static const DpmClock_t VddDppClk[] = { { 435, 2600}, { 661, 3200}, { 661, 3600}, }; static const DpmClock_t VddPhyClk[] = { { 540, 2600}, { 810, 3200}, { 810, 3600}, }; static int smu10_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr, struct smu10_voltage_dependency_table **pptable, uint32_t num_entry, const DpmClock_t *pclk_dependency_table) { uint32_t i; struct smu10_voltage_dependency_table *ptable; ptable = kzalloc(struct_size(ptable, entries, num_entry), GFP_KERNEL); if (NULL == ptable) return -ENOMEM; ptable->count = num_entry; for (i = 0; i < ptable->count; i++) { ptable->entries[i].clk = pclk_dependency_table->Freq * 100; ptable->entries[i].vol = pclk_dependency_table->Vol; pclk_dependency_table++; } *pptable = ptable; return 0; } static int smu10_populate_clock_table(struct pp_hwmgr *hwmgr) { uint32_t result; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); DpmClocks_t *table = &(smu10_data->clock_table); struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info); result = smum_smc_table_manager(hwmgr, (uint8_t *)table, SMU10_CLOCKTABLE, true); PP_ASSERT_WITH_CODE((0 == result), "Attempt to copy clock table from smc failed", return result); if (0 == result && table->DcefClocks[0].Freq != 0) { smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk, NUM_DCEFCLK_DPM_LEVELS, &smu10_data->clock_table.DcefClocks[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk, NUM_SOCCLK_DPM_LEVELS, &smu10_data->clock_table.SocClocks[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk, NUM_FCLK_DPM_LEVELS, &smu10_data->clock_table.FClocks[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk, NUM_MEMCLK_DPM_LEVELS, &smu10_data->clock_table.MemClocks[0]); } else { smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk, ARRAY_SIZE(VddDcfClk), &VddDcfClk[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk, ARRAY_SIZE(VddSocClk), &VddSocClk[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk, ARRAY_SIZE(VddFClk), &VddFClk[0]); } smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk, ARRAY_SIZE(VddDispClk), &VddDispClk[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk, ARRAY_SIZE(VddDppClk), &VddDppClk[0]); smu10_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk, ARRAY_SIZE(VddPhyClk), &VddPhyClk[0]); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &result); smu10_data->gfx_min_freq_limit = result / 10 * 1000; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &result); smu10_data->gfx_max_freq_limit = result / 10 * 1000; return 0; } static int smu10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct smu10_hwmgr *data; data = kzalloc(sizeof(struct smu10_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; result = smu10_initialize_dpm_defaults(hwmgr); if (result != 0) { pr_err("smu10_initialize_dpm_defaults failed\n"); return result; } smu10_populate_clock_table(hwmgr); result = smu10_get_system_info_data(hwmgr); if (result != 0) { pr_err("smu10_get_system_info_data failed\n"); return result; } smu10_construct_boot_state(hwmgr); hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = SMU10_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = SMU10_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.vbiosInterruptId = 0; hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; /* enable the pp_od_clk_voltage sysfs file */ hwmgr->od_enabled = 1; /* disabled fine grain tuning function by default */ data->fine_grain_enabled = 0; return result; } static int smu10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info); kfree(pinfo->vdd_dep_on_dcefclk); pinfo->vdd_dep_on_dcefclk = NULL; kfree(pinfo->vdd_dep_on_socclk); pinfo->vdd_dep_on_socclk = NULL; kfree(pinfo->vdd_dep_on_fclk); pinfo->vdd_dep_on_fclk = NULL; kfree(pinfo->vdd_dep_on_dispclk); pinfo->vdd_dep_on_dispclk = NULL; kfree(pinfo->vdd_dep_on_dppclk); pinfo->vdd_dep_on_dppclk = NULL; kfree(pinfo->vdd_dep_on_phyclk); pinfo->vdd_dep_on_phyclk = NULL; kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int smu10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { struct smu10_hwmgr *data = hwmgr->backend; uint32_t min_sclk = hwmgr->display_config->min_core_set_clock; uint32_t min_mclk = hwmgr->display_config->min_mem_set_clock/100; uint32_t index_fclk = data->clock_vol_info.vdd_dep_on_fclk->count - 1; uint32_t index_socclk = data->clock_vol_info.vdd_dep_on_socclk->count - 1; uint32_t fine_grain_min_freq = 0, fine_grain_max_freq = 0; if (hwmgr->smu_version < 0x1E3700) { pr_info("smu firmware version too old, can not set dpm level\n"); return 0; } if (min_sclk < data->gfx_min_freq_limit) min_sclk = data->gfx_min_freq_limit; min_sclk /= 100; /* transfer 10KHz to MHz */ if (min_mclk < data->clock_table.FClocks[0].Freq) min_mclk = data->clock_table.FClocks[0].Freq; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, data->gfx_max_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, SMU10_UMD_PSTATE_PEAK_FCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinSocclkByFreq, SMU10_UMD_PSTATE_PEAK_SOCCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinVcn, SMU10_UMD_PSTATE_VCE, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, data->gfx_max_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, SMU10_UMD_PSTATE_PEAK_FCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxSocclkByFreq, SMU10_UMD_PSTATE_PEAK_SOCCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxVcn, SMU10_UMD_PSTATE_VCE, NULL); break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, min_sclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, min_sclk, NULL); break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, min_mclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, min_mclk, NULL); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, SMU10_UMD_PSTATE_GFXCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, SMU10_UMD_PSTATE_FCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinSocclkByFreq, SMU10_UMD_PSTATE_SOCCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinVcn, SMU10_UMD_PSTATE_PROFILE_VCE, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, SMU10_UMD_PSTATE_GFXCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, SMU10_UMD_PSTATE_FCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxSocclkByFreq, SMU10_UMD_PSTATE_SOCCLK, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxVcn, SMU10_UMD_PSTATE_PROFILE_VCE, NULL); break; case AMD_DPM_FORCED_LEVEL_AUTO: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, min_sclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, hwmgr->display_config->num_display > 3 ? (data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk / 100) : min_mclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinSocclkByFreq, data->clock_vol_info.vdd_dep_on_socclk->entries[0].clk / 100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinVcn, SMU10_UMD_PSTATE_MIN_VCE, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, data->gfx_max_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, data->clock_vol_info.vdd_dep_on_fclk->entries[index_fclk].clk / 100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxSocclkByFreq, data->clock_vol_info.vdd_dep_on_socclk->entries[index_socclk].clk / 100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxVcn, SMU10_UMD_PSTATE_VCE, NULL); break; case AMD_DPM_FORCED_LEVEL_LOW: data->fine_grain_enabled = 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &fine_grain_min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &fine_grain_max_freq); data->gfx_actual_soft_min_freq = fine_grain_min_freq; data->gfx_actual_soft_max_freq = fine_grain_max_freq; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, data->gfx_min_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, data->gfx_min_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, min_mclk, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, min_mclk, NULL); break; case AMD_DPM_FORCED_LEVEL_MANUAL: data->fine_grain_enabled = 1; break; case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return 0; } static uint32_t smu10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct smu10_hwmgr *data; if (hwmgr == NULL) return -EINVAL; data = (struct smu10_hwmgr *)(hwmgr->backend); if (low) return data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk; else return data->clock_vol_info.vdd_dep_on_fclk->entries[ data->clock_vol_info.vdd_dep_on_fclk->count - 1].clk; } static uint32_t smu10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct smu10_hwmgr *data; if (hwmgr == NULL) return -EINVAL; data = (struct smu10_hwmgr *)(hwmgr->backend); if (low) return data->gfx_min_freq_limit; else return data->gfx_max_freq_limit; } static int smu10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { return 0; } static int smu10_dpm_get_pp_table_entry_callback( struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps, unsigned int index, const void *clock_info) { struct smu10_power_state *smu10_ps = cast_smu10_ps(hw_ps); smu10_ps->levels[index].engine_clock = 0; smu10_ps->levels[index].vddc_index = 0; smu10_ps->level = index + 1; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { smu10_ps->levels[index].ds_divider_index = 5; smu10_ps->levels[index].ss_divider_index = 5; } return 0; } static int smu10_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr) { int result; unsigned long ret = 0; result = pp_tables_get_num_of_entries(hwmgr, &ret); return result ? 0 : ret; } static int smu10_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry, struct pp_power_state *ps) { int result; struct smu10_power_state *smu10_ps; ps->hardware.magic = SMU10_Magic; smu10_ps = cast_smu10_ps(&(ps->hardware)); result = pp_tables_get_entry(hwmgr, entry, ps, smu10_dpm_get_pp_table_entry_callback); smu10_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK; smu10_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK; return result; } static int smu10_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct smu10_power_state); } static int smu10_set_cpu_power_state(struct pp_hwmgr *hwmgr) { return 0; } static int smu10_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time, bool cc6_disable, bool pstate_disable, bool pstate_switch_disable) { struct smu10_hwmgr *data = (struct smu10_hwmgr *)(hwmgr->backend); if (separation_time != data->separation_time || cc6_disable != data->cc6_disable || pstate_disable != data->pstate_disable) { data->separation_time = separation_time; data->cc6_disable = cc6_disable; data->pstate_disable = pstate_disable; data->cc6_setting_changed = true; } return 0; } static int smu10_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { return -EINVAL; } static int smu10_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct smu10_hwmgr *data = hwmgr->backend; struct smu10_voltage_dependency_table *mclk_table = data->clock_vol_info.vdd_dep_on_fclk; uint32_t low, high; low = mask ? (ffs(mask) - 1) : 0; high = mask ? (fls(mask) - 1) : 0; switch (type) { case PP_SCLK: if (low > 2 || high > 2) { pr_info("Currently sclk only support 3 levels on RV\n"); return -EINVAL; } smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, low == 2 ? data->gfx_max_freq_limit/100 : low == 1 ? SMU10_UMD_PSTATE_GFXCLK : data->gfx_min_freq_limit/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, high == 0 ? data->gfx_min_freq_limit/100 : high == 1 ? SMU10_UMD_PSTATE_GFXCLK : data->gfx_max_freq_limit/100, NULL); break; case PP_MCLK: if (low > mclk_table->count - 1 || high > mclk_table->count - 1) return -EINVAL; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinFclkByFreq, mclk_table->entries[low].clk/100, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxFclkByFreq, mclk_table->entries[high].clk/100, NULL); break; case PP_PCIE: default: break; } return 0; } static int smu10_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct smu10_hwmgr *data = (struct smu10_hwmgr *)(hwmgr->backend); struct smu10_voltage_dependency_table *mclk_table = data->clock_vol_info.vdd_dep_on_fclk; uint32_t i, now, size = 0; uint32_t min_freq, max_freq = 0; uint32_t ret = 0; switch (type) { case PP_SCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxclkFrequency, &now); /* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */ if (now == data->gfx_max_freq_limit/100) i = 2; else if (now == data->gfx_min_freq_limit/100) i = 0; else i = 1; size += sprintf(buf + size, "0: %uMhz %s\n", data->gfx_min_freq_limit/100, i == 0 ? "*" : ""); size += sprintf(buf + size, "1: %uMhz %s\n", i == 1 ? now : SMU10_UMD_PSTATE_GFXCLK, i == 1 ? "*" : ""); size += sprintf(buf + size, "2: %uMhz %s\n", data->gfx_max_freq_limit/100, i == 2 ? "*" : ""); break; case PP_MCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetFclkFrequency, &now); for (i = 0; i < mclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, mclk_table->entries[i].clk / 100, ((mclk_table->entries[i].clk / 100) == now) ? "*" : ""); break; case OD_SCLK: if (hwmgr->od_enabled) { ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &min_freq); if (ret) return ret; ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &max_freq); if (ret) return ret; size += sprintf(buf + size, "%s:\n", "OD_SCLK"); size += sprintf(buf + size, "0: %10uMhz\n", (data->gfx_actual_soft_min_freq > 0) ? data->gfx_actual_soft_min_freq : min_freq); size += sprintf(buf + size, "1: %10uMhz\n", (data->gfx_actual_soft_max_freq > 0) ? data->gfx_actual_soft_max_freq : max_freq); } break; case OD_RANGE: if (hwmgr->od_enabled) { ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &min_freq); if (ret) return ret; ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &max_freq); if (ret) return ret; size += sprintf(buf + size, "%s:\n", "OD_RANGE"); size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", min_freq, max_freq); } break; default: break; } return size; } static int smu10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { struct smu10_hwmgr *data; if (level == NULL || hwmgr == NULL || state == NULL) return -EINVAL; data = (struct smu10_hwmgr *)(hwmgr->backend); if (index == 0) { level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk; level->coreClock = data->gfx_min_freq_limit; } else { level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[ data->clock_vol_info.vdd_dep_on_fclk->count - 1].clk; level->coreClock = data->gfx_max_freq_limit; } level->nonLocalMemoryFreq = 0; level->nonLocalMemoryWidth = 0; return 0; } static int smu10_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, struct pp_clock_info *clock_info) { const struct smu10_power_state *ps = cast_const_smu10_ps(state); clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index)); clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index)); return 0; } #define MEM_FREQ_LOW_LATENCY 25000 #define MEM_FREQ_HIGH_LATENCY 80000 #define MEM_LATENCY_HIGH 245 #define MEM_LATENCY_LOW 35 #define MEM_LATENCY_ERR 0xFFFF static uint32_t smu10_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clock) { if (clock >= MEM_FREQ_LOW_LATENCY && clock < MEM_FREQ_HIGH_LATENCY) return MEM_LATENCY_HIGH; else if (clock >= MEM_FREQ_HIGH_LATENCY) return MEM_LATENCY_LOW; else return MEM_LATENCY_ERR; } static int smu10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { uint32_t i; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info); struct smu10_voltage_dependency_table *pclk_vol_table; bool latency_required = false; if (pinfo == NULL) return -EINVAL; switch (type) { case amd_pp_mem_clock: pclk_vol_table = pinfo->vdd_dep_on_mclk; latency_required = true; break; case amd_pp_f_clock: pclk_vol_table = pinfo->vdd_dep_on_fclk; latency_required = true; break; case amd_pp_dcf_clock: pclk_vol_table = pinfo->vdd_dep_on_dcefclk; break; case amd_pp_disp_clock: pclk_vol_table = pinfo->vdd_dep_on_dispclk; break; case amd_pp_phy_clock: pclk_vol_table = pinfo->vdd_dep_on_phyclk; break; case amd_pp_dpp_clock: pclk_vol_table = pinfo->vdd_dep_on_dppclk; break; default: return -EINVAL; } if (pclk_vol_table == NULL || pclk_vol_table->count == 0) return -EINVAL; clocks->num_levels = 0; for (i = 0; i < pclk_vol_table->count; i++) { if (pclk_vol_table->entries[i].clk) { clocks->data[clocks->num_levels].clocks_in_khz = pclk_vol_table->entries[i].clk * 10; clocks->data[clocks->num_levels].latency_in_us = latency_required ? smu10_get_mem_latency(hwmgr, pclk_vol_table->entries[i].clk) : 0; clocks->num_levels++; } } return 0; } static int smu10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { uint32_t i; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct smu10_clock_voltage_information *pinfo = &(smu10_data->clock_vol_info); struct smu10_voltage_dependency_table *pclk_vol_table = NULL; if (pinfo == NULL) return -EINVAL; switch (type) { case amd_pp_mem_clock: pclk_vol_table = pinfo->vdd_dep_on_mclk; break; case amd_pp_f_clock: pclk_vol_table = pinfo->vdd_dep_on_fclk; break; case amd_pp_dcf_clock: pclk_vol_table = pinfo->vdd_dep_on_dcefclk; break; case amd_pp_soc_clock: pclk_vol_table = pinfo->vdd_dep_on_socclk; break; case amd_pp_disp_clock: pclk_vol_table = pinfo->vdd_dep_on_dispclk; break; case amd_pp_phy_clock: pclk_vol_table = pinfo->vdd_dep_on_phyclk; break; default: return -EINVAL; } if (pclk_vol_table == NULL || pclk_vol_table->count == 0) return -EINVAL; clocks->num_levels = 0; for (i = 0; i < pclk_vol_table->count; i++) { if (pclk_vol_table->entries[i].clk) { clocks->data[clocks->num_levels].clocks_in_khz = pclk_vol_table->entries[i].clk * 10; clocks->data[clocks->num_levels].voltage_in_mv = pclk_vol_table->entries[i].vol; clocks->num_levels++; } } return 0; } static int smu10_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks) { clocks->engine_max_clock = 80000; /* driver can't get engine clock, temp hard code to 800MHz */ return 0; } static int smu10_thermal_get_temperature(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; uint32_t reg_value = RREG32_SOC15(THM, 0, mmTHM_TCON_CUR_TMP); int cur_temp = (reg_value & THM_TCON_CUR_TMP__CUR_TEMP_MASK) >> THM_TCON_CUR_TMP__CUR_TEMP__SHIFT; if (cur_temp & THM_TCON_CUR_TMP__CUR_TEMP_RANGE_SEL_MASK) cur_temp = ((cur_temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; else cur_temp = (cur_temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return cur_temp; } static int smu10_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; uint32_t sclk, mclk, activity_percent; bool has_gfx_busy; int ret = 0; /* GetGfxBusy support was added on RV SMU FW 30.85.00 and PCO 4.30.59 */ if ((adev->apu_flags & AMD_APU_IS_PICASSO) && (hwmgr->smu_version >= 0x41e3b)) has_gfx_busy = true; else if ((adev->apu_flags & AMD_APU_IS_RAVEN) && (hwmgr->smu_version >= 0x1e5500)) has_gfx_busy = true; else has_gfx_busy = false; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxclkFrequency, &sclk); /* in units of 10KHZ */ *((uint32_t *)value) = sclk * 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetFclkFrequency, &mclk); /* in units of 10KHZ */ *((uint32_t *)value) = mclk * 100; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = smu10_thermal_get_temperature(hwmgr); break; case AMDGPU_PP_SENSOR_VCN_POWER_STATE: *(uint32_t *)value = smu10_data->vcn_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_LOAD: if (!has_gfx_busy) ret = -EOPNOTSUPP; else { ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetGfxBusy, &activity_percent); if (!ret) *((uint32_t *)value) = min(activity_percent, (u32)100); else ret = -EIO; } break; default: ret = -EOPNOTSUPP; break; } return ret; } static int smu10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, void *clock_ranges) { struct smu10_hwmgr *data = hwmgr->backend; struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges; Watermarks_t *table = &(data->water_marks_table); struct amdgpu_device *adev = hwmgr->adev; int i; smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); if (adev->apu_flags & AMD_APU_IS_RAVEN2) { for (i = 0; i < NUM_WM_RANGES; i++) table->WatermarkRow[WM_DCFCLK][i].WmType = (uint8_t)0; for (i = 0; i < NUM_WM_RANGES; i++) table->WatermarkRow[WM_SOCCLK][i].WmType = (uint8_t)0; } smum_smc_table_manager(hwmgr, (uint8_t *)table, (uint16_t)SMU10_WMTABLE, false); data->water_marks_exist = true; return 0; } static int smu10_smus_notify_pwe(struct pp_hwmgr *hwmgr) { return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SetRccPfcPmeRestoreRegister, NULL); } static int smu10_powergate_mmhub(struct pp_hwmgr *hwmgr) { return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerGateMmHub, NULL); } static int smu10_powergate_sdma(struct pp_hwmgr *hwmgr, bool gate) { if (gate) return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerDownSdma, NULL); else return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PowerUpSdma, NULL); } static void smu10_powergate_vcn(struct pp_hwmgr *hwmgr, bool bgate) { struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); if (bgate) { amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCN, AMD_PG_STATE_GATE); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PowerDownVcn, 0, NULL); smu10_data->vcn_power_gated = true; } else { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PowerUpVcn, 0, NULL); amdgpu_device_ip_set_powergating_state(hwmgr->adev, AMD_IP_BLOCK_TYPE_VCN, AMD_PG_STATE_UNGATE); smu10_data->vcn_power_gated = false; } } static int conv_power_profile_to_pplib_workload(int power_profile) { int pplib_workload = 0; switch (power_profile) { case PP_SMC_POWER_PROFILE_FULLSCREEN3D: pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT; break; case PP_SMC_POWER_PROFILE_VIDEO: pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT; break; case PP_SMC_POWER_PROFILE_VR: pplib_workload = WORKLOAD_PPLIB_VR_BIT; break; case PP_SMC_POWER_PROFILE_COMPUTE: pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT; break; case PP_SMC_POWER_PROFILE_CUSTOM: pplib_workload = WORKLOAD_PPLIB_CUSTOM_BIT; break; } return pplib_workload; } static int smu10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) { uint32_t i, size = 0; static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,}, {70, 60, 1, 3,}, {90, 60, 0, 0,}, {70, 60, 0, 0,}, {70, 90, 0, 0,}, {30, 60, 0, 6,}, }; static const char *title[6] = {"NUM", "MODE_NAME", "BUSY_SET_POINT", "FPS", "USE_RLC_BUSY", "MIN_ACTIVE_LEVEL"}; if (!buf) return -EINVAL; phm_get_sysfs_buf(&buf, &size); size += sysfs_emit_at(buf, size, "%s %16s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5]); for (i = 0; i <= PP_SMC_POWER_PROFILE_COMPUTE; i++) size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n", i, amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", profile_mode_setting[i][0], profile_mode_setting[i][1], profile_mode_setting[i][2], profile_mode_setting[i][3]); return size; } static bool smu10_is_raven1_refresh(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; if ((adev->apu_flags & AMD_APU_IS_RAVEN) && (hwmgr->smu_version >= 0x41e2b)) return true; else return false; } static int smu10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) { int workload_type = 0; int result = 0; if (input[size] > PP_SMC_POWER_PROFILE_COMPUTE) { pr_err("Invalid power profile mode %ld\n", input[size]); return -EINVAL; } if (hwmgr->power_profile_mode == input[size]) return 0; /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = conv_power_profile_to_pplib_workload(input[size]); if (workload_type && smu10_is_raven1_refresh(hwmgr) && !hwmgr->gfxoff_state_changed_by_workload) { smu10_gfx_off_control(hwmgr, false); hwmgr->gfxoff_state_changed_by_workload = true; } result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_ActiveProcessNotify, 1 << workload_type, NULL); if (!result) hwmgr->power_profile_mode = input[size]; if (workload_type && hwmgr->gfxoff_state_changed_by_workload) { smu10_gfx_off_control(hwmgr, true); hwmgr->gfxoff_state_changed_by_workload = false; } return 0; } static int smu10_asic_reset(struct pp_hwmgr *hwmgr, enum SMU_ASIC_RESET_MODE mode) { return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DeviceDriverReset, mode, NULL); } static int smu10_set_fine_grain_clk_vol(struct pp_hwmgr *hwmgr, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { uint32_t min_freq, max_freq = 0; struct smu10_hwmgr *smu10_data = (struct smu10_hwmgr *)(hwmgr->backend); int ret = 0; if (!hwmgr->od_enabled) { pr_err("Fine grain not support\n"); return -EINVAL; } if (!smu10_data->fine_grain_enabled) { pr_err("pp_od_clk_voltage is not accessible if power_dpm_force_performance_level is not in manual mode!\n"); return -EINVAL; } if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { if (size != 2) { pr_err("Input parameter number not correct\n"); return -EINVAL; } if (input[0] == 0) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &min_freq); if (input[1] < min_freq) { pr_err("Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n", input[1], min_freq); return -EINVAL; } smu10_data->gfx_actual_soft_min_freq = input[1]; } else if (input[0] == 1) { smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &max_freq); if (input[1] > max_freq) { pr_err("Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n", input[1], max_freq); return -EINVAL; } smu10_data->gfx_actual_soft_max_freq = input[1]; } else { return -EINVAL; } } else if (type == PP_OD_RESTORE_DEFAULT_TABLE) { if (size != 0) { pr_err("Input parameter number not correct\n"); return -EINVAL; } smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMinGfxclkFrequency, &min_freq); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetMaxGfxclkFrequency, &max_freq); smu10_data->gfx_actual_soft_min_freq = min_freq; smu10_data->gfx_actual_soft_max_freq = max_freq; } else if (type == PP_OD_COMMIT_DPM_TABLE) { if (size != 0) { pr_err("Input parameter number not correct\n"); return -EINVAL; } if (smu10_data->gfx_actual_soft_min_freq > smu10_data->gfx_actual_soft_max_freq) { pr_err("The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n", smu10_data->gfx_actual_soft_min_freq, smu10_data->gfx_actual_soft_max_freq); return -EINVAL; } ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinGfxClk, smu10_data->gfx_actual_soft_min_freq, NULL); if (ret) return ret; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxClk, smu10_data->gfx_actual_soft_max_freq, NULL); if (ret) return ret; } else { return -EINVAL; } return 0; } static int smu10_gfx_state_change(struct pp_hwmgr *hwmgr, uint32_t state) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GpuChangeState, state, NULL); return 0; } static const struct pp_hwmgr_func smu10_hwmgr_funcs = { .backend_init = smu10_hwmgr_backend_init, .backend_fini = smu10_hwmgr_backend_fini, .apply_state_adjust_rules = smu10_apply_state_adjust_rules, .force_dpm_level = smu10_dpm_force_dpm_level, .get_power_state_size = smu10_get_power_state_size, .powerdown_uvd = NULL, .powergate_uvd = smu10_powergate_vcn, .powergate_vce = NULL, .get_mclk = smu10_dpm_get_mclk, .get_sclk = smu10_dpm_get_sclk, .patch_boot_state = smu10_dpm_patch_boot_state, .get_pp_table_entry = smu10_dpm_get_pp_table_entry, .get_num_of_pp_table_entries = smu10_dpm_get_num_of_pp_table_entries, .set_cpu_power_state = smu10_set_cpu_power_state, .store_cc6_data = smu10_store_cc6_data, .force_clock_level = smu10_force_clock_level, .print_clock_levels = smu10_print_clock_levels, .get_dal_power_level = smu10_get_dal_power_level, .get_performance_level = smu10_get_performance_level, .get_current_shallow_sleep_clocks = smu10_get_current_shallow_sleep_clocks, .get_clock_by_type_with_latency = smu10_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = smu10_get_clock_by_type_with_voltage, .set_watermarks_for_clocks_ranges = smu10_set_watermarks_for_clocks_ranges, .get_max_high_clocks = smu10_get_max_high_clocks, .read_sensor = smu10_read_sensor, .set_active_display_count = smu10_set_active_display_count, .set_min_deep_sleep_dcefclk = smu10_set_min_deep_sleep_dcefclk, .dynamic_state_management_enable = smu10_enable_dpm_tasks, .power_off_asic = smu10_power_off_asic, .asic_setup = smu10_setup_asic_task, .power_state_set = smu10_set_power_state_tasks, .dynamic_state_management_disable = smu10_disable_dpm_tasks, .powergate_mmhub = smu10_powergate_mmhub, .smus_notify_pwe = smu10_smus_notify_pwe, .display_clock_voltage_request = smu10_display_clock_voltage_request, .powergate_gfx = smu10_gfx_off_control, .powergate_sdma = smu10_powergate_sdma, .set_hard_min_dcefclk_by_freq = smu10_set_hard_min_dcefclk_by_freq, .set_hard_min_fclk_by_freq = smu10_set_hard_min_fclk_by_freq, .set_hard_min_gfxclk_by_freq = smu10_set_hard_min_gfxclk_by_freq, .set_soft_max_gfxclk_by_freq = smu10_set_soft_max_gfxclk_by_freq, .get_power_profile_mode = smu10_get_power_profile_mode, .set_power_profile_mode = smu10_set_power_profile_mode, .asic_reset = smu10_asic_reset, .set_fine_grain_clk_vol = smu10_set_fine_grain_clk_vol, .gfx_state_change = smu10_gfx_state_change, }; int smu10_init_function_pointers(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &smu10_hwmgr_funcs; hwmgr->pptable_func = &pptable_funcs; return 0; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu10_hwmgr.c
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "vega20_thermal.h" #include "vega20_hwmgr.h" #include "vega20_smumgr.h" #include "vega20_ppsmc.h" #include "vega20_inc.h" #include "soc15_common.h" #include "pp_debug.h" static int vega20_disable_fan_control_feature(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = hwmgr->backend; int ret = 0; if (data->smu_features[GNLD_FAN_CONTROL].supported) { ret = vega20_enable_smc_features( hwmgr, false, data->smu_features[GNLD_FAN_CONTROL]. smu_feature_bitmap); PP_ASSERT_WITH_CODE(!ret, "Disable FAN CONTROL feature Failed!", return ret); data->smu_features[GNLD_FAN_CONTROL].enabled = false; } return ret; } int vega20_fan_ctrl_stop_smc_fan_control(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_FAN_CONTROL].supported) return vega20_disable_fan_control_feature(hwmgr); return 0; } static int vega20_enable_fan_control_feature(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = hwmgr->backend; int ret = 0; if (data->smu_features[GNLD_FAN_CONTROL].supported) { ret = vega20_enable_smc_features( hwmgr, true, data->smu_features[GNLD_FAN_CONTROL]. smu_feature_bitmap); PP_ASSERT_WITH_CODE(!ret, "Enable FAN CONTROL feature Failed!", return ret); data->smu_features[GNLD_FAN_CONTROL].enabled = true; } return ret; } int vega20_fan_ctrl_start_smc_fan_control(struct pp_hwmgr *hwmgr) { struct vega20_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_FAN_CONTROL].supported) return vega20_enable_fan_control_feature(hwmgr); return 0; } static int vega20_fan_ctrl_set_static_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { struct amdgpu_device *adev = hwmgr->adev; WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2), CG_FDO_CTRL2, TMIN, 0)); WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2), CG_FDO_CTRL2, FDO_PWM_MODE, mode)); return 0; } static int vega20_get_current_rpm(struct pp_hwmgr *hwmgr, uint32_t *current_rpm) { int ret = 0; PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentRpm, current_rpm)) == 0, "Attempt to get current RPM from SMC Failed!", return ret); return 0; } int vega20_fan_ctrl_get_fan_speed_pwm(struct pp_hwmgr *hwmgr, uint32_t *speed) { struct amdgpu_device *adev = hwmgr->adev; uint32_t duty100, duty; uint64_t tmp64; duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1), CG_FDO_CTRL1, FMAX_DUTY100); duty = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_THERMAL_STATUS), CG_THERMAL_STATUS, FDO_PWM_DUTY); if (!duty100) return -EINVAL; tmp64 = (uint64_t)duty * 255; do_div(tmp64, duty100); *speed = MIN((uint32_t)tmp64, 255); return 0; } int vega20_fan_ctrl_set_fan_speed_pwm(struct pp_hwmgr *hwmgr, uint32_t speed) { struct amdgpu_device *adev = hwmgr->adev; uint32_t duty100; uint32_t duty; uint64_t tmp64; speed = MIN(speed, 255); if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega20_fan_ctrl_stop_smc_fan_control(hwmgr); duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1), CG_FDO_CTRL1, FMAX_DUTY100); if (duty100 == 0) return -EINVAL; tmp64 = (uint64_t)speed * duty100; do_div(tmp64, 255); duty = (uint32_t)tmp64; WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0), CG_FDO_CTRL0, FDO_STATIC_DUTY, duty)); return vega20_fan_ctrl_set_static_mode(hwmgr, FDO_PWM_MODE_STATIC); } int vega20_fan_ctrl_get_fan_speed_info(struct pp_hwmgr *hwmgr, struct phm_fan_speed_info *fan_speed_info) { memset(fan_speed_info, 0, sizeof(*fan_speed_info)); fan_speed_info->supports_percent_read = true; fan_speed_info->supports_percent_write = true; fan_speed_info->supports_rpm_read = true; fan_speed_info->supports_rpm_write = true; return 0; } int vega20_fan_ctrl_get_fan_speed_rpm(struct pp_hwmgr *hwmgr, uint32_t *speed) { *speed = 0; return vega20_get_current_rpm(hwmgr, speed); } int vega20_fan_ctrl_set_fan_speed_rpm(struct pp_hwmgr *hwmgr, uint32_t speed) { struct amdgpu_device *adev = hwmgr->adev; uint32_t tach_period, crystal_clock_freq; int result = 0; if (!speed) return -EINVAL; if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) { result = vega20_fan_ctrl_stop_smc_fan_control(hwmgr); if (result) return result; } crystal_clock_freq = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed); WREG32_SOC15(THM, 0, mmCG_TACH_CTRL, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL), CG_TACH_CTRL, TARGET_PERIOD, tach_period)); return vega20_fan_ctrl_set_static_mode(hwmgr, FDO_PWM_MODE_STATIC_RPM); } /** * vega20_thermal_get_temperature - Reads the remote temperature from the SIslands thermal controller. * * @hwmgr: The address of the hardware manager. */ int vega20_thermal_get_temperature(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; int temp = 0; temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS); temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >> CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT; temp = temp & 0x1ff; temp *= PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return temp; } /** * vega20_thermal_set_temperature_range - Set the requested temperature range for high and low alert signals * * @hwmgr: The address of the hardware manager. * @range: Temperature range to be programmed for high and low alert signals * Exception: PP_Result_BadInput if the input data is not valid. */ static int vega20_thermal_set_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *range) { struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; struct amdgpu_device *adev = hwmgr->adev; int low = VEGA20_THERMAL_MINIMUM_ALERT_TEMP; int high = VEGA20_THERMAL_MAXIMUM_ALERT_TEMP; uint32_t val; /* compare them in unit celsius degree */ if (low < range->min / PP_TEMPERATURE_UNITS_PER_CENTIGRADES) low = range->min / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; if (high > pptable_information->us_software_shutdown_temp) high = pptable_information->us_software_shutdown_temp; if (low > high) return -EINVAL; val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL); val = CGS_REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5); val = CGS_REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1); val = CGS_REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, high); val = CGS_REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, low); val &= ~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK; val &= ~THM_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; val &= ~THM_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val); return 0; } /** * vega20_thermal_enable_alert - Enable thermal alerts on the RV770 thermal controller. * * @hwmgr: The address of the hardware manager. */ static int vega20_thermal_enable_alert(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; uint32_t val = 0; val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val); return 0; } /** * vega20_thermal_disable_alert - Disable thermal alerts on the RV770 thermal controller. * @hwmgr: The address of the hardware manager. */ int vega20_thermal_disable_alert(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0); return 0; } /** * vega20_thermal_stop_thermal_controller - Uninitialize the thermal controller. * Currently just disables alerts. * @hwmgr: The address of the hardware manager. */ int vega20_thermal_stop_thermal_controller(struct pp_hwmgr *hwmgr) { int result = vega20_thermal_disable_alert(hwmgr); return result; } /** * vega20_thermal_setup_fan_table - Set up the fan table to control the fan using the SMC. * @hwmgr: the address of the powerplay hardware manager. */ static int vega20_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) { int ret; struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); PPTable_t *table = &(data->smc_state_table.pp_table); ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFanTemperatureTarget, (uint32_t)table->FanTargetTemperature, NULL); return ret; } int vega20_start_thermal_controller(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *range) { int ret = 0; if (range == NULL) return -EINVAL; ret = vega20_thermal_set_temperature_range(hwmgr, range); if (ret) return ret; ret = vega20_thermal_enable_alert(hwmgr); if (ret) return ret; ret = vega20_thermal_setup_fan_table(hwmgr); return ret; };
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/vega20_thermal.c
/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/delay.h> #include <linux/module.h> #include <linux/slab.h> #include "hwmgr.h" #include "amd_powerplay.h" #include "vega12_smumgr.h" #include "hardwaremanager.h" #include "ppatomfwctrl.h" #include "atomfirmware.h" #include "cgs_common.h" #include "vega12_inc.h" #include "pppcielanes.h" #include "vega12_hwmgr.h" #include "vega12_processpptables.h" #include "vega12_pptable.h" #include "vega12_thermal.h" #include "vega12_ppsmc.h" #include "pp_debug.h" #include "amd_pcie_helpers.h" #include "ppinterrupt.h" #include "pp_overdriver.h" #include "pp_thermal.h" #include "vega12_baco.h" #define smnPCIE_LC_SPEED_CNTL 0x11140290 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 #define LINK_WIDTH_MAX 6 #define LINK_SPEED_MAX 3 static const int link_width[] = {0, 1, 2, 4, 8, 12, 16}; static const int link_speed[] = {25, 50, 80, 160}; static int vega12_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask); static int vega12_get_clock_ranges(struct pp_hwmgr *hwmgr, uint32_t *clock, PPCLK_e clock_select, bool max); static void vega12_set_default_registry_data(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); data->gfxclk_average_alpha = PPVEGA12_VEGA12GFXCLKAVERAGEALPHA_DFLT; data->socclk_average_alpha = PPVEGA12_VEGA12SOCCLKAVERAGEALPHA_DFLT; data->uclk_average_alpha = PPVEGA12_VEGA12UCLKCLKAVERAGEALPHA_DFLT; data->gfx_activity_average_alpha = PPVEGA12_VEGA12GFXACTIVITYAVERAGEALPHA_DFLT; data->lowest_uclk_reserved_for_ulv = PPVEGA12_VEGA12LOWESTUCLKRESERVEDFORULV_DFLT; data->display_voltage_mode = PPVEGA12_VEGA12DISPLAYVOLTAGEMODE_DFLT; data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->registry_data.disallowed_features = 0x0; data->registry_data.od_state_in_dc_support = 0; data->registry_data.thermal_support = 1; data->registry_data.skip_baco_hardware = 0; data->registry_data.log_avfs_param = 0; data->registry_data.sclk_throttle_low_notification = 1; data->registry_data.force_dpm_high = 0; data->registry_data.stable_pstate_sclk_dpm_percentage = 75; data->registry_data.didt_support = 0; if (data->registry_data.didt_support) { data->registry_data.didt_mode = 6; data->registry_data.sq_ramping_support = 1; data->registry_data.db_ramping_support = 0; data->registry_data.td_ramping_support = 0; data->registry_data.tcp_ramping_support = 0; data->registry_data.dbr_ramping_support = 0; data->registry_data.edc_didt_support = 1; data->registry_data.gc_didt_support = 0; data->registry_data.psm_didt_support = 0; } data->registry_data.pcie_lane_override = 0xff; data->registry_data.pcie_speed_override = 0xff; data->registry_data.pcie_clock_override = 0xffffffff; data->registry_data.regulator_hot_gpio_support = 1; data->registry_data.ac_dc_switch_gpio_support = 0; data->registry_data.quick_transition_support = 0; data->registry_data.zrpm_start_temp = 0xffff; data->registry_data.zrpm_stop_temp = 0xffff; data->registry_data.odn_feature_enable = 1; data->registry_data.disable_water_mark = 0; data->registry_data.disable_pp_tuning = 0; data->registry_data.disable_xlpp_tuning = 0; data->registry_data.disable_workload_policy = 0; data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F; data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919; data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A; data->registry_data.force_workload_policy_mask = 0; data->registry_data.disable_3d_fs_detection = 0; data->registry_data.fps_support = 1; data->registry_data.disable_auto_wattman = 1; data->registry_data.auto_wattman_debug = 0; data->registry_data.auto_wattman_sample_period = 100; data->registry_data.auto_wattman_threshold = 50; data->registry_data.pcie_dpm_key_disabled = !(hwmgr->feature_mask & PP_PCIE_DPM_MASK); } static int vega12_set_features_platform_caps(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; if (data->vddci_control == VEGA12_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TablelessHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableSMU7ThermalManagement); if (adev->pg_flags & AMD_PG_SUPPORT_UVD) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDynamicPowerGating); } if (adev->pg_flags & AMD_PG_SUPPORT_VCE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UnTabledHardwareInterface); if (data->registry_data.odn_feature_enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODNinACSupport); else { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6inACSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport); } phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ActivityReporting); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_FanSpeedInTableIsRPM); if (data->registry_data.od_state_in_dc_support) { if (data->registry_data.odn_feature_enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODNinDCSupport); else { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6inDCSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport); } } if (data->registry_data.thermal_support && data->registry_data.fuzzy_fan_control_support && hwmgr->thermal_controller.advanceFanControlParameters.usTMax) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODFuzzyFanControlSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPowerManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMC); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalPolicyDelay); if (data->registry_data.force_dpm_high) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ExclusiveModeAlwaysHigh); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicUVDState); if (data->registry_data.sclk_throttle_low_notification) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification); /* power tune caps */ /* assume disabled */ phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); if (data->registry_data.didt_support) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); if (data->registry_data.sq_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); if (data->registry_data.db_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); if (data->registry_data.td_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); if (data->registry_data.tcp_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); if (data->registry_data.dbr_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); if (data->registry_data.edc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); if (data->registry_data.gc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); if (data->registry_data.psm_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); } phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); if (data->registry_data.ac_dc_switch_gpio_support) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); } if (data->registry_data.quick_transition_support) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_Falcon_QuickTransition); } if (data->lowest_uclk_reserved_for_ulv != PPVEGA12_VEGA12LOWESTUCLKRESERVEDFORULV_DFLT) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_LowestUclkReservedForUlv); if (data->lowest_uclk_reserved_for_ulv == 1) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_LowestUclkReservedForUlv); } if (data->registry_data.custom_fan_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CustomFanControlSupport); return 0; } static void vega12_init_dpm_defaults(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; uint32_t top32, bottom32; int i; data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = FEATURE_DPM_PREFETCHER_BIT; data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = FEATURE_DPM_GFXCLK_BIT; data->smu_features[GNLD_DPM_UCLK].smu_feature_id = FEATURE_DPM_UCLK_BIT; data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = FEATURE_DPM_SOCCLK_BIT; data->smu_features[GNLD_DPM_UVD].smu_feature_id = FEATURE_DPM_UVD_BIT; data->smu_features[GNLD_DPM_VCE].smu_feature_id = FEATURE_DPM_VCE_BIT; data->smu_features[GNLD_ULV].smu_feature_id = FEATURE_ULV_BIT; data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = FEATURE_DPM_MP0CLK_BIT; data->smu_features[GNLD_DPM_LINK].smu_feature_id = FEATURE_DPM_LINK_BIT; data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = FEATURE_DPM_DCEFCLK_BIT; data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = FEATURE_DS_GFXCLK_BIT; data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = FEATURE_DS_SOCCLK_BIT; data->smu_features[GNLD_DS_LCLK].smu_feature_id = FEATURE_DS_LCLK_BIT; data->smu_features[GNLD_PPT].smu_feature_id = FEATURE_PPT_BIT; data->smu_features[GNLD_TDC].smu_feature_id = FEATURE_TDC_BIT; data->smu_features[GNLD_THERMAL].smu_feature_id = FEATURE_THERMAL_BIT; data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = FEATURE_GFX_PER_CU_CG_BIT; data->smu_features[GNLD_RM].smu_feature_id = FEATURE_RM_BIT; data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = FEATURE_DS_DCEFCLK_BIT; data->smu_features[GNLD_ACDC].smu_feature_id = FEATURE_ACDC_BIT; data->smu_features[GNLD_VR0HOT].smu_feature_id = FEATURE_VR0HOT_BIT; data->smu_features[GNLD_VR1HOT].smu_feature_id = FEATURE_VR1HOT_BIT; data->smu_features[GNLD_FW_CTF].smu_feature_id = FEATURE_FW_CTF_BIT; data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = FEATURE_LED_DISPLAY_BIT; data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = FEATURE_FAN_CONTROL_BIT; data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT; data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT; data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT; for (i = 0; i < GNLD_FEATURES_MAX; i++) { data->smu_features[i].smu_feature_bitmap = (uint64_t)(1ULL << data->smu_features[i].smu_feature_id); data->smu_features[i].allowed = ((data->registry_data.disallowed_features >> i) & 1) ? false : true; } /* Get the SN to turn into a Unique ID */ smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); adev->unique_id = ((uint64_t)bottom32 << 32) | top32; } static int vega12_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) { return 0; } static int vega12_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int vega12_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct vega12_hwmgr *data; struct amdgpu_device *adev = hwmgr->adev; data = kzalloc(sizeof(struct vega12_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; vega12_set_default_registry_data(hwmgr); data->disable_dpm_mask = 0xff; data->workload_mask = 0xff; /* need to set voltage control types before EVV patching */ data->vddc_control = VEGA12_VOLTAGE_CONTROL_NONE; data->mvdd_control = VEGA12_VOLTAGE_CONTROL_NONE; data->vddci_control = VEGA12_VOLTAGE_CONTROL_NONE; data->water_marks_bitmap = 0; data->avfs_exist = false; vega12_set_features_platform_caps(hwmgr); vega12_init_dpm_defaults(hwmgr); /* Parse pptable data read from VBIOS */ vega12_set_private_data_based_on_pptable(hwmgr); data->is_tlu_enabled = false; hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = VEGA12_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; data->total_active_cus = adev->gfx.cu_info.number; /* Setup default Overdrive Fan control settings */ data->odn_fan_table.target_fan_speed = hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; data->odn_fan_table.target_temperature = hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature; data->odn_fan_table.min_performance_clock = hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit; data->odn_fan_table.min_fan_limit = hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit * hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; if (hwmgr->feature_mask & PP_GFXOFF_MASK) data->gfxoff_controlled_by_driver = true; else data->gfxoff_controlled_by_driver = false; return result; } static int vega12_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); data->low_sclk_interrupt_threshold = 0; return 0; } static int vega12_setup_asic_task(struct pp_hwmgr *hwmgr) { PP_ASSERT_WITH_CODE(!vega12_init_sclk_threshold(hwmgr), "Failed to init sclk threshold!", return -EINVAL); return 0; } /* * @fn vega12_init_dpm_state * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. * * @param dpm_state - the address of the DPM Table to initiailize. * @return None. */ static void vega12_init_dpm_state(struct vega12_dpm_state *dpm_state) { dpm_state->soft_min_level = 0x0; dpm_state->soft_max_level = 0xffff; dpm_state->hard_min_level = 0x0; dpm_state->hard_max_level = 0xffff; } static int vega12_override_pcie_parameters(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t pcie_gen = 0, pcie_width = 0, smu_pcie_arg, pcie_gen_arg, pcie_width_arg; PPTable_t *pp_table = &(data->smc_state_table.pp_table); int i; int ret; if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) pcie_gen = 3; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) pcie_gen = 2; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) pcie_gen = 1; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) pcie_gen = 0; if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) pcie_width = 6; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) pcie_width = 5; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) pcie_width = 4; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) pcie_width = 3; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) pcie_width = 2; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) pcie_width = 1; /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32 */ for (i = 0; i < NUM_LINK_LEVELS; i++) { pcie_gen_arg = (pp_table->PcieGenSpeed[i] > pcie_gen) ? pcie_gen : pp_table->PcieGenSpeed[i]; pcie_width_arg = (pp_table->PcieLaneCount[i] > pcie_width) ? pcie_width : pp_table->PcieLaneCount[i]; if (pcie_gen_arg != pp_table->PcieGenSpeed[i] || pcie_width_arg != pp_table->PcieLaneCount[i]) { smu_pcie_arg = (i << 16) | (pcie_gen_arg << 8) | pcie_width_arg; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_OverridePcieParameters, smu_pcie_arg, NULL); PP_ASSERT_WITH_CODE(!ret, "[OverridePcieParameters] Attempt to override pcie params failed!", return ret); } /* update the pptable */ pp_table->PcieGenSpeed[i] = pcie_gen_arg; pp_table->PcieLaneCount[i] = pcie_width_arg; } /* override to the highest if it's disabled from ppfeaturmask */ if (data->registry_data.pcie_dpm_key_disabled) { for (i = 0; i < NUM_LINK_LEVELS; i++) { smu_pcie_arg = (i << 16) | (pcie_gen << 8) | pcie_width; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_OverridePcieParameters, smu_pcie_arg, NULL); PP_ASSERT_WITH_CODE(!ret, "[OverridePcieParameters] Attempt to override pcie params failed!", return ret); pp_table->PcieGenSpeed[i] = pcie_gen; pp_table->PcieLaneCount[i] = pcie_width; } ret = vega12_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap); PP_ASSERT_WITH_CODE(!ret, "Attempt to Disable DPM LINK Failed!", return ret); data->smu_features[GNLD_DPM_LINK].enabled = false; data->smu_features[GNLD_DPM_LINK].supported = false; } return 0; } static int vega12_get_number_of_dpm_level(struct pp_hwmgr *hwmgr, PPCLK_e clk_id, uint32_t *num_of_levels) { int ret = 0; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmFreqByIndex, (clk_id << 16 | 0xFF), num_of_levels); PP_ASSERT_WITH_CODE(!ret, "[GetNumOfDpmLevel] failed to get dpm levels!", return ret); return ret; } static int vega12_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr, PPCLK_e clkID, uint32_t index, uint32_t *clock) { /* *SMU expects the Clock ID to be in the top 16 bits. *Lower 16 bits specify the level */ PP_ASSERT_WITH_CODE(smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmFreqByIndex, (clkID << 16 | index), clock) == 0, "[GetDpmFrequencyByIndex] Failed to get dpm frequency from SMU!", return -EINVAL); return 0; } static int vega12_setup_single_dpm_table(struct pp_hwmgr *hwmgr, struct vega12_single_dpm_table *dpm_table, PPCLK_e clk_id) { int ret = 0; uint32_t i, num_of_levels, clk; ret = vega12_get_number_of_dpm_level(hwmgr, clk_id, &num_of_levels); PP_ASSERT_WITH_CODE(!ret, "[SetupSingleDpmTable] failed to get clk levels!", return ret); dpm_table->count = num_of_levels; for (i = 0; i < num_of_levels; i++) { ret = vega12_get_dpm_frequency_by_index(hwmgr, clk_id, i, &clk); PP_ASSERT_WITH_CODE(!ret, "[SetupSingleDpmTable] failed to get clk of specific level!", return ret); dpm_table->dpm_levels[i].value = clk; dpm_table->dpm_levels[i].enabled = true; } return ret; } /* * This function is to initialize all DPM state tables * for SMU based on the dependency table. * Dynamic state patching function will then trim these * state tables to the allowed range based * on the power policy or external client requests, * such as UVD request, etc. */ static int vega12_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *dpm_table; int ret = 0; memset(&data->dpm_table, 0, sizeof(data->dpm_table)); /* socclk */ dpm_table = &(data->dpm_table.soc_table); if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_SOCCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get socclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.soc_clock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* gfxclk */ dpm_table = &(data->dpm_table.gfx_table); if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_GFXCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get gfxclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.gfx_clock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* memclk */ dpm_table = &(data->dpm_table.mem_table); if (data->smu_features[GNLD_DPM_UCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_UCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get memclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.mem_clock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* eclk */ dpm_table = &(data->dpm_table.eclk_table); if (data->smu_features[GNLD_DPM_VCE].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_ECLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get eclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.eclock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* vclk */ dpm_table = &(data->dpm_table.vclk_table); if (data->smu_features[GNLD_DPM_UVD].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_VCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get vclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.vclock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* dclk */ dpm_table = &(data->dpm_table.dclk_table); if (data->smu_features[GNLD_DPM_UVD].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.dclock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* dcefclk */ dpm_table = &(data->dpm_table.dcef_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCEFCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dcefclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.dcef_clock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* pixclk */ dpm_table = &(data->dpm_table.pixel_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PIXCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get pixclk dpm levels!", return ret); } else dpm_table->count = 0; vega12_init_dpm_state(&(dpm_table->dpm_state)); /* dispclk */ dpm_table = &(data->dpm_table.display_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DISPCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dispclk dpm levels!", return ret); } else dpm_table->count = 0; vega12_init_dpm_state(&(dpm_table->dpm_state)); /* phyclk */ dpm_table = &(data->dpm_table.phy_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PHYCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get phyclk dpm levels!", return ret); } else dpm_table->count = 0; vega12_init_dpm_state(&(dpm_table->dpm_state)); /* save a copy of the default DPM table */ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct vega12_dpm_table)); return 0; } #if 0 static int vega12_save_default_power_profile(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); uint32_t min_level; hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE; hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE; /* Optimize compute power profile: Use only highest * 2 power levels (if more than 2 are available) */ if (dpm_table->count > 2) min_level = dpm_table->count - 2; else if (dpm_table->count == 2) min_level = 1; else min_level = 0; hwmgr->default_compute_power_profile.min_sclk = dpm_table->dpm_levels[min_level].value; hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile; hwmgr->compute_power_profile = hwmgr->default_compute_power_profile; return 0; } #endif /** * vega12_init_smc_table - Initializes the SMC table and uploads it * * @hwmgr: the address of the powerplay hardware manager. * return: always 0 */ static int vega12_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_bios_boot_up_values boot_up_values; struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); if (!result) { data->vbios_boot_state.vddc = boot_up_values.usVddc; data->vbios_boot_state.vddci = boot_up_values.usVddci; data->vbios_boot_state.mvddc = boot_up_values.usMvddc; data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID; data->vbios_boot_state.eclock = boot_up_values.ulEClk; data->vbios_boot_state.dclock = boot_up_values.ulDClk; data->vbios_boot_state.vclock = boot_up_values.ulVClk; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, (uint32_t)(data->vbios_boot_state.dcef_clock / 100), NULL); } memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t)); result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, TABLE_PPTABLE, false); PP_ASSERT_WITH_CODE(!result, "Failed to upload PPtable!", return result); return 0; } static int vega12_run_acg_btc(struct pp_hwmgr *hwmgr) { uint32_t result; PP_ASSERT_WITH_CODE( smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &result) == 0, "[Run_ACG_BTC] Attempt to run ACG BTC failed!", return -EINVAL); PP_ASSERT_WITH_CODE(result == 1, "Failed to run ACG BTC!", return -EINVAL); return 0; } static int vega12_set_allowed_featuresmask(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int i; uint32_t allowed_features_low = 0, allowed_features_high = 0; for (i = 0; i < GNLD_FEATURES_MAX; i++) if (data->smu_features[i].allowed) data->smu_features[i].smu_feature_id > 31 ? (allowed_features_high |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT) & 0xFFFFFFFF)) : (allowed_features_low |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT) & 0xFFFFFFFF)); PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high, NULL) == 0, "[SetAllowedFeaturesMask] Attempt to set allowed features mask (high) failed!", return -1); PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low, NULL) == 0, "[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!", return -1); return 0; } static void vega12_init_powergate_state(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); data->uvd_power_gated = true; data->vce_power_gated = true; if (data->smu_features[GNLD_DPM_UVD].enabled) data->uvd_power_gated = false; if (data->smu_features[GNLD_DPM_VCE].enabled) data->vce_power_gated = false; } static int vega12_enable_all_smu_features(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint64_t features_enabled; int i; bool enabled; PP_ASSERT_WITH_CODE( smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAllSmuFeatures, NULL) == 0, "[EnableAllSMUFeatures] Failed to enable all smu features!", return -1); if (vega12_get_enabled_smc_features(hwmgr, &features_enabled) == 0) { for (i = 0; i < GNLD_FEATURES_MAX; i++) { enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false; data->smu_features[i].enabled = enabled; data->smu_features[i].supported = enabled; } } vega12_init_powergate_state(hwmgr); return 0; } static int vega12_disable_all_smu_features(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint64_t features_enabled; int i; bool enabled; PP_ASSERT_WITH_CODE( smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableAllSmuFeatures, NULL) == 0, "[DisableAllSMUFeatures] Failed to disable all smu features!", return -1); if (vega12_get_enabled_smc_features(hwmgr, &features_enabled) == 0) { for (i = 0; i < GNLD_FEATURES_MAX; i++) { enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false; data->smu_features[i].enabled = enabled; data->smu_features[i].supported = enabled; } } return 0; } static int vega12_odn_initialize_default_settings( struct pp_hwmgr *hwmgr) { return 0; } static int vega12_set_overdrive_target_percentage(struct pp_hwmgr *hwmgr, uint32_t adjust_percent) { return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_OverDriveSetPercentage, adjust_percent, NULL); } static int vega12_power_control_set_level(struct pp_hwmgr *hwmgr) { int adjust_percent, result = 0; if (PP_CAP(PHM_PlatformCaps_PowerContainment)) { adjust_percent = hwmgr->platform_descriptor.TDPAdjustmentPolarity ? hwmgr->platform_descriptor.TDPAdjustment : (-1 * hwmgr->platform_descriptor.TDPAdjustment); result = vega12_set_overdrive_target_percentage(hwmgr, (uint32_t)adjust_percent); } return result; } static int vega12_get_all_clock_ranges_helper(struct pp_hwmgr *hwmgr, PPCLK_e clkid, struct vega12_clock_range *clock) { /* AC Max */ PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMaxDpmFreq, (clkid << 16), &(clock->ACMax)) == 0, "[GetClockRanges] Failed to get max ac clock from SMC!", return -EINVAL); /* AC Min */ PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMinDpmFreq, (clkid << 16), &(clock->ACMin)) == 0, "[GetClockRanges] Failed to get min ac clock from SMC!", return -EINVAL); /* DC Max */ PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDcModeMaxDpmFreq, (clkid << 16), &(clock->DCMax)) == 0, "[GetClockRanges] Failed to get max dc clock from SMC!", return -EINVAL); return 0; } static int vega12_get_all_clock_ranges(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t i; for (i = 0; i < PPCLK_COUNT; i++) PP_ASSERT_WITH_CODE(!vega12_get_all_clock_ranges_helper(hwmgr, i, &(data->clk_range[i])), "Failed to get clk range from SMC!", return -EINVAL); return 0; } static void vega12_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table); struct vega12_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table); if (gfx_dpm_table->count > VEGA12_UMD_PSTATE_GFXCLK_LEVEL && mem_dpm_table->count > VEGA12_UMD_PSTATE_MCLK_LEVEL) { hwmgr->pstate_sclk = gfx_dpm_table->dpm_levels[VEGA12_UMD_PSTATE_GFXCLK_LEVEL].value; hwmgr->pstate_mclk = mem_dpm_table->dpm_levels[VEGA12_UMD_PSTATE_MCLK_LEVEL].value; } else { hwmgr->pstate_sclk = gfx_dpm_table->dpm_levels[0].value; hwmgr->pstate_mclk = mem_dpm_table->dpm_levels[0].value; } hwmgr->pstate_sclk_peak = gfx_dpm_table->dpm_levels[gfx_dpm_table->count].value; hwmgr->pstate_mclk_peak = mem_dpm_table->dpm_levels[mem_dpm_table->count].value; } static int vega12_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0, NULL); result = vega12_set_allowed_featuresmask(hwmgr); PP_ASSERT_WITH_CODE(result == 0, "[EnableDPMTasks] Failed to set allowed featuresmask!\n", return result); tmp_result = vega12_init_smc_table(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to initialize SMC table!", result = tmp_result); tmp_result = vega12_run_acg_btc(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to run ACG BTC!", result = tmp_result); result = vega12_enable_all_smu_features(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to enable all smu features!", return result); result = vega12_override_pcie_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to override pcie parameters!", return result); tmp_result = vega12_power_control_set_level(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to power control set level!", result = tmp_result); result = vega12_get_all_clock_ranges(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to get all clock ranges!", return result); result = vega12_odn_initialize_default_settings(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to power control set level!", return result); result = vega12_setup_default_dpm_tables(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to setup default DPM tables!", return result); vega12_populate_umdpstate_clocks(hwmgr); return result; } static int vega12_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { return 0; } static uint32_t vega12_find_lowest_dpm_level( struct vega12_single_dpm_table *table) { uint32_t i; for (i = 0; i < table->count; i++) { if (table->dpm_levels[i].enabled) break; } if (i >= table->count) { i = 0; table->dpm_levels[i].enabled = true; } return i; } static uint32_t vega12_find_highest_dpm_level( struct vega12_single_dpm_table *table) { int32_t i = 0; PP_ASSERT_WITH_CODE(table->count <= MAX_REGULAR_DPM_NUMBER, "[FindHighestDPMLevel] DPM Table has too many entries!", return MAX_REGULAR_DPM_NUMBER - 1); for (i = table->count - 1; i >= 0; i--) { if (table->dpm_levels[i].enabled) break; } if (i < 0) { i = 0; table->dpm_levels[i].enabled = true; } return (uint32_t)i; } static int vega12_upload_dpm_min_level(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = hwmgr->backend; uint32_t min_freq; int ret = 0; if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { min_freq = data->dpm_table.gfx_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_GFXCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min gfxclk !", return ret); } if (data->smu_features[GNLD_DPM_UCLK].enabled) { min_freq = data->dpm_table.mem_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_UCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min memclk !", return ret); min_freq = data->dpm_table.mem_table.dpm_state.hard_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_UCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set hard min memclk !", return ret); } if (data->smu_features[GNLD_DPM_UVD].enabled) { min_freq = data->dpm_table.vclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_VCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min vclk!", return ret); min_freq = data->dpm_table.dclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_DCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min dclk!", return ret); } if (data->smu_features[GNLD_DPM_VCE].enabled) { min_freq = data->dpm_table.eclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_ECLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min eclk!", return ret); } if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { min_freq = data->dpm_table.soc_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_SOCCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min socclk!", return ret); } if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { min_freq = data->dpm_table.dcef_table.dpm_state.hard_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_DCEFCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set hard min dcefclk!", return ret); } return ret; } static int vega12_upload_dpm_max_level(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = hwmgr->backend; uint32_t max_freq; int ret = 0; if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { max_freq = data->dpm_table.gfx_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_GFXCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max gfxclk!", return ret); } if (data->smu_features[GNLD_DPM_UCLK].enabled) { max_freq = data->dpm_table.mem_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_UCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max memclk!", return ret); } if (data->smu_features[GNLD_DPM_UVD].enabled) { max_freq = data->dpm_table.vclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_VCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max vclk!", return ret); max_freq = data->dpm_table.dclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_DCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max dclk!", return ret); } if (data->smu_features[GNLD_DPM_VCE].enabled) { max_freq = data->dpm_table.eclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_ECLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max eclk!", return ret); } if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { max_freq = data->dpm_table.soc_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_SOCCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max socclk!", return ret); } return ret; } int vega12_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_VCE].supported) { PP_ASSERT_WITH_CODE(!vega12_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap), "Attempt to Enable/Disable DPM VCE Failed!", return -1); data->smu_features[GNLD_DPM_VCE].enabled = enable; } return 0; } static uint32_t vega12_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t gfx_clk; if (!data->smu_features[GNLD_DPM_GFXCLK].enabled) return -1; if (low) PP_ASSERT_WITH_CODE( vega12_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false) == 0, "[GetSclks]: fail to get min PPCLK_GFXCLK\n", return -1); else PP_ASSERT_WITH_CODE( vega12_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true) == 0, "[GetSclks]: fail to get max PPCLK_GFXCLK\n", return -1); return (gfx_clk * 100); } static uint32_t vega12_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t mem_clk; if (!data->smu_features[GNLD_DPM_UCLK].enabled) return -1; if (low) PP_ASSERT_WITH_CODE( vega12_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false) == 0, "[GetMclks]: fail to get min PPCLK_UCLK\n", return -1); else PP_ASSERT_WITH_CODE( vega12_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true) == 0, "[GetMclks]: fail to get max PPCLK_UCLK\n", return -1); return (mem_clk * 100); } static int vega12_get_metrics_table(struct pp_hwmgr *hwmgr, SmuMetrics_t *metrics_table, bool bypass_cache) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; if (bypass_cache || !data->metrics_time || time_after(jiffies, data->metrics_time + msecs_to_jiffies(1))) { ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&data->metrics_table), TABLE_SMU_METRICS, true); if (ret) { pr_info("Failed to export SMU metrics table!\n"); return ret; } data->metrics_time = jiffies; } if (metrics_table) memcpy(metrics_table, &data->metrics_table, sizeof(SmuMetrics_t)); return ret; } static int vega12_get_gpu_power(struct pp_hwmgr *hwmgr, uint32_t *query) { SmuMetrics_t metrics_table; int ret = 0; ret = vega12_get_metrics_table(hwmgr, &metrics_table, false); if (ret) return ret; *query = metrics_table.CurrSocketPower << 8; return ret; } static int vega12_get_current_gfx_clk_freq(struct pp_hwmgr *hwmgr, uint32_t *gfx_freq) { uint32_t gfx_clk = 0; *gfx_freq = 0; PP_ASSERT_WITH_CODE(smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_GFXCLK << 16), &gfx_clk) == 0, "[GetCurrentGfxClkFreq] Attempt to get Current GFXCLK Frequency Failed!", return -EINVAL); *gfx_freq = gfx_clk * 100; return 0; } static int vega12_get_current_mclk_freq(struct pp_hwmgr *hwmgr, uint32_t *mclk_freq) { uint32_t mem_clk = 0; *mclk_freq = 0; PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_UCLK << 16), &mem_clk) == 0, "[GetCurrentMClkFreq] Attempt to get Current MCLK Frequency Failed!", return -EINVAL); *mclk_freq = mem_clk * 100; return 0; } static int vega12_get_current_activity_percent( struct pp_hwmgr *hwmgr, int idx, uint32_t *activity_percent) { SmuMetrics_t metrics_table; int ret = 0; ret = vega12_get_metrics_table(hwmgr, &metrics_table, false); if (ret) return ret; switch (idx) { case AMDGPU_PP_SENSOR_GPU_LOAD: *activity_percent = metrics_table.AverageGfxActivity; break; case AMDGPU_PP_SENSOR_MEM_LOAD: *activity_percent = metrics_table.AverageUclkActivity; break; default: pr_err("Invalid index for retrieving clock activity\n"); return -EINVAL; } return ret; } static int vega12_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); SmuMetrics_t metrics_table; int ret = 0; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: ret = vega12_get_current_gfx_clk_freq(hwmgr, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = vega12_get_current_mclk_freq(hwmgr, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_GPU_LOAD: case AMDGPU_PP_SENSOR_MEM_LOAD: ret = vega12_get_current_activity_percent(hwmgr, idx, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = vega12_thermal_get_temperature(hwmgr); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = vega12_get_metrics_table(hwmgr, &metrics_table, false); if (ret) return ret; *((uint32_t *)value) = metrics_table.TemperatureHotspot * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = vega12_get_metrics_table(hwmgr, &metrics_table, false); if (ret) return ret; *((uint32_t *)value) = metrics_table.TemperatureHBM * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; *size = 4; break; case AMDGPU_PP_SENSOR_UVD_POWER: *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_INPUT_POWER: ret = vega12_get_gpu_power(hwmgr, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: ret = vega12_get_enabled_smc_features(hwmgr, (uint64_t *)value); if (!ret) *size = 8; break; default: ret = -EOPNOTSUPP; break; } return ret; } static int vega12_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_disp) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_UCLK].enabled) return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetUclkFastSwitch, has_disp ? 1 : 0, NULL); return 0; } static int vega12_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req) { int result = 0; struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); enum amd_pp_clock_type clk_type = clock_req->clock_type; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; PPCLK_e clk_select = 0; uint32_t clk_request = 0; if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { switch (clk_type) { case amd_pp_dcef_clock: clk_select = PPCLK_DCEFCLK; break; case amd_pp_disp_clock: clk_select = PPCLK_DISPCLK; break; case amd_pp_pixel_clock: clk_select = PPCLK_PIXCLK; break; case amd_pp_phy_clock: clk_select = PPCLK_PHYCLK; break; default: pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); result = -1; break; } if (!result) { clk_request = (clk_select << 16) | clk_freq; result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, clk_request, NULL); } } return result; } static int vega12_notify_smc_display_config_after_ps_adjustment( struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct PP_Clocks min_clocks = {0}; struct pp_display_clock_request clock_req; if ((hwmgr->display_config->num_display > 1) && !hwmgr->display_config->multi_monitor_in_sync && !hwmgr->display_config->nb_pstate_switch_disable) vega12_notify_smc_display_change(hwmgr, false); else vega12_notify_smc_display_change(hwmgr, true); min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; if (data->smu_features[GNLD_DPM_DCEFCLK].supported) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = min_clocks.dcefClock / 10; if (!vega12_display_clock_voltage_request(hwmgr, &clock_req)) { if (data->smu_features[GNLD_DS_DCEFCLK].supported) PP_ASSERT_WITH_CODE( !smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, min_clocks.dcefClockInSR / 100, NULL), "Attempt to set divider for DCEFCLK Failed!", return -1); } else { pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); } } return 0; } static int vega12_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t soft_level; soft_level = vega12_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_level].value; soft_level = vega12_find_highest_dpm_level(&(data->dpm_table.mem_table)); data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_level].value; PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr), "Failed to upload boot level to highest!", return -1); PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -1); return 0; } static int vega12_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t soft_level; soft_level = vega12_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_level].value; soft_level = vega12_find_lowest_dpm_level(&(data->dpm_table.mem_table)); data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_level].value; PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr), "Failed to upload boot level to highest!", return -1); PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -1); return 0; } static int vega12_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr), "Failed to upload DPM Bootup Levels!", return -1); PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr), "Failed to upload DPM Max Levels!", return -1); return 0; } static int vega12_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table); struct vega12_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table); struct vega12_single_dpm_table *soc_dpm_table = &(data->dpm_table.soc_table); *sclk_mask = 0; *mclk_mask = 0; *soc_mask = 0; if (gfx_dpm_table->count > VEGA12_UMD_PSTATE_GFXCLK_LEVEL && mem_dpm_table->count > VEGA12_UMD_PSTATE_MCLK_LEVEL && soc_dpm_table->count > VEGA12_UMD_PSTATE_SOCCLK_LEVEL) { *sclk_mask = VEGA12_UMD_PSTATE_GFXCLK_LEVEL; *mclk_mask = VEGA12_UMD_PSTATE_MCLK_LEVEL; *soc_mask = VEGA12_UMD_PSTATE_SOCCLK_LEVEL; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { *sclk_mask = gfx_dpm_table->count - 1; *mclk_mask = mem_dpm_table->count - 1; *soc_mask = soc_dpm_table->count - 1; } return 0; } static void vega12_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { switch (mode) { case AMD_FAN_CTRL_NONE: break; case AMD_FAN_CTRL_MANUAL: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega12_fan_ctrl_stop_smc_fan_control(hwmgr); break; case AMD_FAN_CTRL_AUTO: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega12_fan_ctrl_start_smc_fan_control(hwmgr); break; default: break; } } static int vega12_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask = 0; uint32_t mclk_mask = 0; uint32_t soc_mask = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = vega12_force_dpm_highest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = vega12_force_dpm_lowest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = vega12_unforce_dpm_levels(hwmgr); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = vega12_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); if (ret) return ret; vega12_force_clock_level(hwmgr, PP_SCLK, 1 << sclk_mask); vega12_force_clock_level(hwmgr, PP_MCLK, 1 << mclk_mask); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } static uint32_t vega12_get_fan_control_mode(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int vega12_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { #if 0 struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_clock_and_voltage_limits *max_limits = &table_info->max_clock_voltage_on_ac; info->engine_max_clock = max_limits->sclk; info->memory_max_clock = max_limits->mclk; #endif return 0; } static int vega12_get_clock_ranges(struct pp_hwmgr *hwmgr, uint32_t *clock, PPCLK_e clock_select, bool max) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (max) *clock = data->clk_range[clock_select].ACMax; else *clock = data->clk_range[clock_select].ACMin; return 0; } static int vega12_get_sclks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t ucount; int i; struct vega12_single_dpm_table *dpm_table; if (!data->smu_features[GNLD_DPM_GFXCLK].enabled) return -1; dpm_table = &(data->dpm_table.gfx_table); ucount = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; for (i = 0; i < ucount; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } clocks->num_levels = ucount; return 0; } static uint32_t vega12_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clock) { return 25; } static int vega12_get_memclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t ucount; int i; struct vega12_single_dpm_table *dpm_table; if (!data->smu_features[GNLD_DPM_UCLK].enabled) return -1; dpm_table = &(data->dpm_table.mem_table); ucount = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; for (i = 0; i < ucount; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; data->mclk_latency_table.entries[i].frequency = dpm_table->dpm_levels[i].value * 100; clocks->data[i].latency_in_us = data->mclk_latency_table.entries[i].latency = vega12_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value); } clocks->num_levels = data->mclk_latency_table.count = ucount; return 0; } static int vega12_get_dcefclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t ucount; int i; struct vega12_single_dpm_table *dpm_table; if (!data->smu_features[GNLD_DPM_DCEFCLK].enabled) return -1; dpm_table = &(data->dpm_table.dcef_table); ucount = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; for (i = 0; i < ucount; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } clocks->num_levels = ucount; return 0; } static int vega12_get_socclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t ucount; int i; struct vega12_single_dpm_table *dpm_table; if (!data->smu_features[GNLD_DPM_SOCCLK].enabled) return -1; dpm_table = &(data->dpm_table.soc_table); ucount = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; for (i = 0; i < ucount; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } clocks->num_levels = ucount; return 0; } static int vega12_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { int ret; switch (type) { case amd_pp_sys_clock: ret = vega12_get_sclks(hwmgr, clocks); break; case amd_pp_mem_clock: ret = vega12_get_memclocks(hwmgr, clocks); break; case amd_pp_dcef_clock: ret = vega12_get_dcefclocks(hwmgr, clocks); break; case amd_pp_soc_clock: ret = vega12_get_socclocks(hwmgr, clocks); break; default: return -EINVAL; } return ret; } static int vega12_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { clocks->num_levels = 0; return 0; } static int vega12_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, void *clock_ranges) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); Watermarks_t *table = &(data->smc_state_table.water_marks_table); struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges; if (!data->registry_data.disable_water_mark && data->smu_features[GNLD_DPM_DCEFCLK].supported && data->smu_features[GNLD_DPM_SOCCLK].supported) { smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); data->water_marks_bitmap |= WaterMarksExist; data->water_marks_bitmap &= ~WaterMarksLoaded; } return 0; } static int vega12_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t soft_min_level, soft_max_level, hard_min_level; int ret = 0; switch (type) { case PP_SCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_levels[soft_min_level].value; data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_max_level].value; ret = vega12_upload_dpm_min_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega12_upload_dpm_max_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_MCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_levels[soft_min_level].value; data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_max_level].value; ret = vega12_upload_dpm_min_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega12_upload_dpm_max_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_SOCCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; if (soft_max_level >= data->dpm_table.soc_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, data->dpm_table.soc_table.count - 1); return -EINVAL; } data->dpm_table.soc_table.dpm_state.soft_min_level = data->dpm_table.soc_table.dpm_levels[soft_min_level].value; data->dpm_table.soc_table.dpm_state.soft_max_level = data->dpm_table.soc_table.dpm_levels[soft_max_level].value; ret = vega12_upload_dpm_min_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega12_upload_dpm_max_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_DCEFCLK: hard_min_level = mask ? (ffs(mask) - 1) : 0; if (hard_min_level >= data->dpm_table.dcef_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", hard_min_level, data->dpm_table.dcef_table.count - 1); return -EINVAL; } data->dpm_table.dcef_table.dpm_state.hard_min_level = data->dpm_table.dcef_table.dpm_levels[hard_min_level].value; ret = vega12_upload_dpm_min_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); //TODO: Setting DCEFCLK max dpm level is not supported break; case PP_PCIE: break; default: break; } return 0; } static int vega12_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) { static const char *ppfeature_name[] = { "DPM_PREFETCHER", "GFXCLK_DPM", "UCLK_DPM", "SOCCLK_DPM", "UVD_DPM", "VCE_DPM", "ULV", "MP0CLK_DPM", "LINK_DPM", "DCEFCLK_DPM", "GFXCLK_DS", "SOCCLK_DS", "LCLK_DS", "PPT", "TDC", "THERMAL", "GFX_PER_CU_CG", "RM", "DCEFCLK_DS", "ACDC", "VR0HOT", "VR1HOT", "FW_CTF", "LED_DISPLAY", "FAN_CONTROL", "DIDT", "GFXOFF", "CG", "ACG"}; static const char *output_title[] = { "FEATURES", "BITMASK", "ENABLEMENT"}; uint64_t features_enabled; int i; int ret = 0; int size = 0; phm_get_sysfs_buf(&buf, &size); ret = vega12_get_enabled_smc_features(hwmgr, &features_enabled); PP_ASSERT_WITH_CODE(!ret, "[EnableAllSmuFeatures] Failed to get enabled smc features!", return ret); size += sysfs_emit_at(buf, size, "Current ppfeatures: 0x%016llx\n", features_enabled); size += sysfs_emit_at(buf, size, "%-19s %-22s %s\n", output_title[0], output_title[1], output_title[2]); for (i = 0; i < GNLD_FEATURES_MAX; i++) { size += sysfs_emit_at(buf, size, "%-19s 0x%016llx %6s\n", ppfeature_name[i], 1ULL << i, (features_enabled & (1ULL << i)) ? "Y" : "N"); } return size; } static int vega12_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) { uint64_t features_enabled; uint64_t features_to_enable; uint64_t features_to_disable; int ret = 0; if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) return -EINVAL; ret = vega12_get_enabled_smc_features(hwmgr, &features_enabled); if (ret) return ret; features_to_disable = features_enabled & ~new_ppfeature_masks; features_to_enable = ~features_enabled & new_ppfeature_masks; pr_debug("features_to_disable 0x%llx\n", features_to_disable); pr_debug("features_to_enable 0x%llx\n", features_to_enable); if (features_to_disable) { ret = vega12_enable_smc_features(hwmgr, false, features_to_disable); if (ret) return ret; } if (features_to_enable) { ret = vega12_enable_smc_features(hwmgr, true, features_to_enable); if (ret) return ret; } return 0; } static int vega12_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; } static int vega12_get_current_pcie_link_width(struct pp_hwmgr *hwmgr) { uint32_t width_level; width_level = vega12_get_current_pcie_link_width_level(hwmgr); if (width_level > LINK_WIDTH_MAX) width_level = 0; return link_width[width_level]; } static int vega12_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; } static int vega12_get_current_pcie_link_speed(struct pp_hwmgr *hwmgr) { uint32_t speed_level; speed_level = vega12_get_current_pcie_link_speed_level(hwmgr); if (speed_level > LINK_SPEED_MAX) speed_level = 0; return link_speed[speed_level]; } static int vega12_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { int i, now, size = 0; struct pp_clock_levels_with_latency clocks; switch (type) { case PP_SCLK: PP_ASSERT_WITH_CODE( vega12_get_current_gfx_clk_freq(hwmgr, &now) == 0, "Attempt to get current gfx clk Failed!", return -1); PP_ASSERT_WITH_CODE( vega12_get_sclks(hwmgr, &clocks) == 0, "Attempt to get gfx clk levels Failed!", return -1); for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz / 1000 == now / 100) ? "*" : ""); break; case PP_MCLK: PP_ASSERT_WITH_CODE( vega12_get_current_mclk_freq(hwmgr, &now) == 0, "Attempt to get current mclk freq Failed!", return -1); PP_ASSERT_WITH_CODE( vega12_get_memclocks(hwmgr, &clocks) == 0, "Attempt to get memory clk levels Failed!", return -1); for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz / 1000 == now / 100) ? "*" : ""); break; case PP_SOCCLK: PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_SOCCLK << 16), &now) == 0, "Attempt to get Current SOCCLK Frequency Failed!", return -EINVAL); PP_ASSERT_WITH_CODE( vega12_get_socclocks(hwmgr, &clocks) == 0, "Attempt to get soc clk levels Failed!", return -1); for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz / 1000 == now) ? "*" : ""); break; case PP_DCEFCLK: PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_DCEFCLK << 16), &now) == 0, "Attempt to get Current DCEFCLK Frequency Failed!", return -EINVAL); PP_ASSERT_WITH_CODE( vega12_get_dcefclocks(hwmgr, &clocks) == 0, "Attempt to get dcef clk levels Failed!", return -1); for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz / 1000 == now) ? "*" : ""); break; case PP_PCIE: break; default: break; } return size; } static int vega12_apply_clocks_adjust_rules(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *dpm_table; bool vblank_too_short = false; bool disable_mclk_switching; uint32_t i, latency; disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && !hwmgr->display_config->multi_monitor_in_sync) || vblank_too_short; latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; /* gfxclk */ dpm_table = &(data->dpm_table.gfx_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_GFXCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_GFXCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* memclk */ dpm_table = &(data->dpm_table.mem_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_MCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_MCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* honour DAL's UCLK Hardmin */ if (dpm_table->dpm_state.hard_min_level < (hwmgr->display_config->min_mem_set_clock / 100)) dpm_table->dpm_state.hard_min_level = hwmgr->display_config->min_mem_set_clock / 100; /* Hardmin is dependent on displayconfig */ if (disable_mclk_switching) { dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; for (i = 0; i < data->mclk_latency_table.count - 1; i++) { if (data->mclk_latency_table.entries[i].latency <= latency) { if (dpm_table->dpm_levels[i].value >= (hwmgr->display_config->min_mem_set_clock / 100)) { dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value; break; } } } } if (hwmgr->display_config->nb_pstate_switch_disable) dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; /* vclk */ dpm_table = &(data->dpm_table.vclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_UVDCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_UVDCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* dclk */ dpm_table = &(data->dpm_table.dclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_UVDCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_UVDCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* socclk */ dpm_table = &(data->dpm_table.soc_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_SOCCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_SOCCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* eclk */ dpm_table = &(data->dpm_table.eclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_VCEMCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_VCEMCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } return 0; } static int vega12_set_uclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr, struct vega12_single_dpm_table *dpm_table) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; if (data->smu_features[GNLD_DPM_UCLK].enabled) { PP_ASSERT_WITH_CODE(dpm_table->count > 0, "[SetUclkToHightestDpmLevel] Dpm table has no entry!", return -EINVAL); PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_UCLK_DPM_LEVELS, "[SetUclkToHightestDpmLevel] Dpm table has too many entries!", return -EINVAL); dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_UCLK << 16) | dpm_table->dpm_state.hard_min_level, NULL)), "[SetUclkToHightestDpmLevel] Set hard min uclk failed!", return ret); } return ret; } static int vega12_pre_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0, NULL); ret = vega12_set_uclk_to_highest_dpm_level(hwmgr, &data->dpm_table.mem_table); return ret; } static int vega12_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int result = 0; Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); if ((data->water_marks_bitmap & WaterMarksExist) && !(data->water_marks_bitmap & WaterMarksLoaded)) { result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, TABLE_WATERMARKS, false); PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL); data->water_marks_bitmap |= WaterMarksLoaded; } if ((data->water_marks_bitmap & WaterMarksExist) && data->smu_features[GNLD_DPM_DCEFCLK].supported && data->smu_features[GNLD_DPM_SOCCLK].supported) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display, NULL); return result; } static int vega12_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_UVD].supported) { PP_ASSERT_WITH_CODE(!vega12_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap), "Attempt to Enable/Disable DPM UVD Failed!", return -1); data->smu_features[GNLD_DPM_UVD].enabled = enable; } return 0; } static void vega12_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->vce_power_gated == bgate) return; data->vce_power_gated = bgate; vega12_enable_disable_vce_dpm(hwmgr, !bgate); } static void vega12_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->uvd_power_gated == bgate) return; data->uvd_power_gated = bgate; vega12_enable_disable_uvd_dpm(hwmgr, !bgate); } static bool vega12_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); bool is_update_required = false; if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) is_update_required = true; if (data->registry_data.gfx_clk_deep_sleep_support) { if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr) is_update_required = true; } return is_update_required; } static int vega12_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; tmp_result = vega12_disable_all_smu_features(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable all smu features!", result = tmp_result); return result; } static int vega12_power_off_asic(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int result; result = vega12_disable_dpm_tasks(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "[disable_dpm_tasks] Failed to disable DPM!", ); data->water_marks_bitmap &= ~(WaterMarksLoaded); return result; } #if 0 static void vega12_find_min_clock_index(struct pp_hwmgr *hwmgr, uint32_t *sclk_idx, uint32_t *mclk_idx, uint32_t min_sclk, uint32_t min_mclk) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_dpm_table *dpm_table = &(data->dpm_table); uint32_t i; for (i = 0; i < dpm_table->gfx_table.count; i++) { if (dpm_table->gfx_table.dpm_levels[i].enabled && dpm_table->gfx_table.dpm_levels[i].value >= min_sclk) { *sclk_idx = i; break; } } for (i = 0; i < dpm_table->mem_table.count; i++) { if (dpm_table->mem_table.dpm_levels[i].enabled && dpm_table->mem_table.dpm_levels[i].value >= min_mclk) { *mclk_idx = i; break; } } } #endif #if 0 static int vega12_set_power_profile_state(struct pp_hwmgr *hwmgr, struct amd_pp_profile *request) { return 0; } static int vega12_get_sclk_od(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); struct vega12_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.gfx_table); int value = sclk_table->dpm_levels[sclk_table->count - 1].value; int golden_value = golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value; value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega12_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { return 0; } static int vega12_get_mclk_od(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); struct vega12_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mem_table); int value = mclk_table->dpm_levels[mclk_table->count - 1].value; int golden_value = golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value; value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega12_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { return 0; } #endif static int vega12_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, uint32_t virtual_addr_low, uint32_t virtual_addr_hi, uint32_t mc_addr_low, uint32_t mc_addr_hi, uint32_t size) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSystemVirtualDramAddrHigh, virtual_addr_hi, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSystemVirtualDramAddrLow, virtual_addr_low, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramAddrHigh, mc_addr_hi, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramAddrLow, mc_addr_low, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramSize, size, NULL); return 0; } static int vega12_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *thermal_data) { struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); thermal_data->max = pp_table->TedgeLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->mem_crit_max = pp_table->ThbmLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->sw_ctf_threshold = pptable_information->us_software_shutdown_temp * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int vega12_enable_gfx_off(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; if (data->gfxoff_controlled_by_driver) ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_AllowGfxOff, NULL); return ret; } static int vega12_disable_gfx_off(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; if (data->gfxoff_controlled_by_driver) ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisallowGfxOff, NULL); return ret; } static int vega12_gfx_off_control(struct pp_hwmgr *hwmgr, bool enable) { if (enable) return vega12_enable_gfx_off(hwmgr); else return vega12_disable_gfx_off(hwmgr); } static int vega12_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { return 0; } static int vega12_set_mp1_state(struct pp_hwmgr *hwmgr, enum pp_mp1_state mp1_state) { uint16_t msg; int ret; switch (mp1_state) { case PP_MP1_STATE_UNLOAD: msg = PPSMC_MSG_PrepareMp1ForUnload; break; case PP_MP1_STATE_SHUTDOWN: case PP_MP1_STATE_RESET: case PP_MP1_STATE_NONE: default: return 0; } PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0, "[PrepareMp1] Failed!", return ret); return 0; } static void vega12_init_gpu_metrics_v1_0(struct gpu_metrics_v1_0 *gpu_metrics) { memset(gpu_metrics, 0xFF, sizeof(struct gpu_metrics_v1_0)); gpu_metrics->common_header.structure_size = sizeof(struct gpu_metrics_v1_0); gpu_metrics->common_header.format_revision = 1; gpu_metrics->common_header.content_revision = 0; gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); } static ssize_t vega12_get_gpu_metrics(struct pp_hwmgr *hwmgr, void **table) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct gpu_metrics_v1_0 *gpu_metrics = &data->gpu_metrics_table; SmuMetrics_t metrics; uint32_t fan_speed_rpm; int ret; ret = vega12_get_metrics_table(hwmgr, &metrics, true); if (ret) return ret; vega12_init_gpu_metrics_v1_0(gpu_metrics); gpu_metrics->temperature_edge = metrics.TemperatureEdge; gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot; gpu_metrics->temperature_mem = metrics.TemperatureHBM; gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx; gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem; gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity; gpu_metrics->average_umc_activity = metrics.AverageUclkActivity; gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency; gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK]; gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK]; gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; vega12_fan_ctrl_get_fan_speed_rpm(hwmgr, &fan_speed_rpm); gpu_metrics->current_fan_speed = (uint16_t)fan_speed_rpm; gpu_metrics->pcie_link_width = vega12_get_current_pcie_link_width(hwmgr); gpu_metrics->pcie_link_speed = vega12_get_current_pcie_link_speed(hwmgr); *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_0); } static const struct pp_hwmgr_func vega12_hwmgr_funcs = { .backend_init = vega12_hwmgr_backend_init, .backend_fini = vega12_hwmgr_backend_fini, .asic_setup = vega12_setup_asic_task, .dynamic_state_management_enable = vega12_enable_dpm_tasks, .dynamic_state_management_disable = vega12_disable_dpm_tasks, .patch_boot_state = vega12_patch_boot_state, .get_sclk = vega12_dpm_get_sclk, .get_mclk = vega12_dpm_get_mclk, .notify_smc_display_config_after_ps_adjustment = vega12_notify_smc_display_config_after_ps_adjustment, .force_dpm_level = vega12_dpm_force_dpm_level, .stop_thermal_controller = vega12_thermal_stop_thermal_controller, .get_fan_speed_info = vega12_fan_ctrl_get_fan_speed_info, .reset_fan_speed_to_default = vega12_fan_ctrl_reset_fan_speed_to_default, .get_fan_speed_rpm = vega12_fan_ctrl_get_fan_speed_rpm, .set_fan_control_mode = vega12_set_fan_control_mode, .get_fan_control_mode = vega12_get_fan_control_mode, .read_sensor = vega12_read_sensor, .get_dal_power_level = vega12_get_dal_power_level, .get_clock_by_type_with_latency = vega12_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = vega12_get_clock_by_type_with_voltage, .set_watermarks_for_clocks_ranges = vega12_set_watermarks_for_clocks_ranges, .display_clock_voltage_request = vega12_display_clock_voltage_request, .force_clock_level = vega12_force_clock_level, .print_clock_levels = vega12_print_clock_levels, .apply_clocks_adjust_rules = vega12_apply_clocks_adjust_rules, .pre_display_config_changed = vega12_pre_display_configuration_changed_task, .display_config_changed = vega12_display_configuration_changed_task, .powergate_uvd = vega12_power_gate_uvd, .powergate_vce = vega12_power_gate_vce, .check_smc_update_required_for_display_configuration = vega12_check_smc_update_required_for_display_configuration, .power_off_asic = vega12_power_off_asic, .disable_smc_firmware_ctf = vega12_thermal_disable_alert, #if 0 .set_power_profile_state = vega12_set_power_profile_state, .get_sclk_od = vega12_get_sclk_od, .set_sclk_od = vega12_set_sclk_od, .get_mclk_od = vega12_get_mclk_od, .set_mclk_od = vega12_set_mclk_od, #endif .notify_cac_buffer_info = vega12_notify_cac_buffer_info, .get_thermal_temperature_range = vega12_get_thermal_temperature_range, .register_irq_handlers = smu9_register_irq_handlers, .start_thermal_controller = vega12_start_thermal_controller, .powergate_gfx = vega12_gfx_off_control, .get_performance_level = vega12_get_performance_level, .get_asic_baco_capability = smu9_baco_get_capability, .get_asic_baco_state = smu9_baco_get_state, .set_asic_baco_state = vega12_baco_set_state, .get_ppfeature_status = vega12_get_ppfeature_status, .set_ppfeature_status = vega12_set_ppfeature_status, .set_mp1_state = vega12_set_mp1_state, .get_gpu_metrics = vega12_get_gpu_metrics, }; int vega12_hwmgr_init(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &vega12_hwmgr_funcs; hwmgr->pptable_func = &vega12_pptable_funcs; return 0; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/vega12_hwmgr.c
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "hwmgr.h" #include "vega20_hwmgr.h" #include "vega20_powertune.h" #include "vega20_smumgr.h" #include "vega20_ppsmc.h" #include "vega20_inc.h" #include "pp_debug.h" int vega20_set_power_limit(struct pp_hwmgr *hwmgr, uint32_t n) { struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_PPT].enabled) return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetPptLimit, n, NULL); return 0; } int vega20_validate_power_level_request(struct pp_hwmgr *hwmgr, uint32_t tdp_percentage_adjustment, uint32_t tdp_absolute_value_adjustment) { return (tdp_percentage_adjustment > hwmgr->platform_descriptor.TDPLimit) ? -1 : 0; } static int vega20_set_overdrive_target_percentage(struct pp_hwmgr *hwmgr, uint32_t adjust_percent) { return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_OverDriveSetPercentage, adjust_percent, NULL); } int vega20_power_control_set_level(struct pp_hwmgr *hwmgr) { int adjust_percent, result = 0; if (PP_CAP(PHM_PlatformCaps_PowerContainment)) { adjust_percent = hwmgr->platform_descriptor.TDPAdjustmentPolarity ? hwmgr->platform_descriptor.TDPAdjustment : (-1 * hwmgr->platform_descriptor.TDPAdjustment); result = vega20_set_overdrive_target_percentage(hwmgr, (uint32_t)adjust_percent); } return result; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/vega20_powertune.c
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/pci.h> #include <linux/reboot.h> #include "hwmgr.h" #include "pp_debug.h" #include "ppatomctrl.h" #include "ppsmc.h" #include "atom.h" #include "ivsrcid/thm/irqsrcs_thm_9_0.h" #include "ivsrcid/smuio/irqsrcs_smuio_9_0.h" #include "ivsrcid/ivsrcid_vislands30.h" uint8_t convert_to_vid(uint16_t vddc) { return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25); } uint16_t convert_to_vddc(uint8_t vid) { return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE); } int phm_copy_clock_limits_array( struct pp_hwmgr *hwmgr, uint32_t **pptable_info_array, const uint32_t *pptable_array, uint32_t power_saving_clock_count) { uint32_t array_size, i; uint32_t *table; array_size = sizeof(uint32_t) * power_saving_clock_count; table = kzalloc(array_size, GFP_KERNEL); if (NULL == table) return -ENOMEM; for (i = 0; i < power_saving_clock_count; i++) table[i] = le32_to_cpu(pptable_array[i]); *pptable_info_array = table; return 0; } int phm_copy_overdrive_settings_limits_array( struct pp_hwmgr *hwmgr, uint32_t **pptable_info_array, const uint32_t *pptable_array, uint32_t od_setting_count) { uint32_t array_size, i; uint32_t *table; array_size = sizeof(uint32_t) * od_setting_count; table = kzalloc(array_size, GFP_KERNEL); if (NULL == table) return -ENOMEM; for (i = 0; i < od_setting_count; i++) table[i] = le32_to_cpu(pptable_array[i]); *pptable_info_array = table; return 0; } uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size) { u32 mask = 0; u32 shift = 0; shift = (offset % 4) << 3; if (size == sizeof(uint8_t)) mask = 0xFF << shift; else if (size == sizeof(uint16_t)) mask = 0xFFFF << shift; original_data &= ~mask; original_data |= (field << shift); return original_data; } /* * Returns once the part of the register indicated by the mask has * reached the given value. */ int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index, uint32_t value, uint32_t mask) { uint32_t i; uint32_t cur_value; if (hwmgr == NULL || hwmgr->device == NULL) { pr_err("Invalid Hardware Manager!"); return -EINVAL; } for (i = 0; i < hwmgr->usec_timeout; i++) { cur_value = cgs_read_register(hwmgr->device, index); if ((cur_value & mask) == (value & mask)) break; udelay(1); } /* timeout means wrong logic*/ if (i == hwmgr->usec_timeout) return -1; return 0; } /* * Returns once the part of the register indicated by the mask has * reached the given value.The indirect space is described by giving * the memory-mapped index of the indirect index register. */ int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr, uint32_t indirect_port, uint32_t index, uint32_t value, uint32_t mask) { if (hwmgr == NULL || hwmgr->device == NULL) { pr_err("Invalid Hardware Manager!"); return -EINVAL; } cgs_write_register(hwmgr->device, indirect_port, index); return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value); } int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr, uint32_t index, uint32_t value, uint32_t mask) { uint32_t i; uint32_t cur_value; if (hwmgr == NULL || hwmgr->device == NULL) return -EINVAL; for (i = 0; i < hwmgr->usec_timeout; i++) { cur_value = cgs_read_register(hwmgr->device, index); if ((cur_value & mask) != (value & mask)) break; udelay(1); } /* timeout means wrong logic */ if (i == hwmgr->usec_timeout) return -ETIME; return 0; } int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr, uint32_t indirect_port, uint32_t index, uint32_t value, uint32_t mask) { if (hwmgr == NULL || hwmgr->device == NULL) return -EINVAL; cgs_write_register(hwmgr->device, indirect_port, index); return phm_wait_for_register_unequal(hwmgr, indirect_port + 1, value, mask); } bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr) { return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); } bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr) { return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); } int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table) { uint32_t i, j; uint16_t vvalue; bool found = false; struct pp_atomctrl_voltage_table *table; PP_ASSERT_WITH_CODE((NULL != vol_table), "Voltage Table empty.", return -EINVAL); table = kzalloc(sizeof(struct pp_atomctrl_voltage_table), GFP_KERNEL); if (NULL == table) return -EINVAL; table->mask_low = vol_table->mask_low; table->phase_delay = vol_table->phase_delay; for (i = 0; i < vol_table->count; i++) { vvalue = vol_table->entries[i].value; found = false; for (j = 0; j < table->count; j++) { if (vvalue == table->entries[j].value) { found = true; break; } } if (!found) { table->entries[table->count].value = vvalue; table->entries[table->count].smio_low = vol_table->entries[i].smio_low; table->count++; } } memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table)); kfree(table); table = NULL; return 0; } int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint32_t i; int result; PP_ASSERT_WITH_CODE((0 != dep_table->count), "Voltage Dependency Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].mvdd; vol_table->entries[i].smio_low = 0; } result = phm_trim_voltage_table(vol_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to trim MVDD table.", return result); return 0; } int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint32_t i; int result; PP_ASSERT_WITH_CODE((0 != dep_table->count), "Voltage Dependency Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].vddci; vol_table->entries[i].smio_low = 0; } result = phm_trim_voltage_table(vol_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to trim VDDCI table.", return result); return 0; } int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_voltage_lookup_table *lookup_table) { int i = 0; PP_ASSERT_WITH_CODE((0 != lookup_table->count), "Voltage Lookup Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = lookup_table->count; for (i = 0; i < vol_table->count; i++) { vol_table->entries[i].value = lookup_table->entries[i].us_vdd; vol_table->entries[i].smio_low = 0; } return 0; } void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table) { unsigned int i, diff; if (vol_table->count <= max_vol_steps) return; diff = vol_table->count - max_vol_steps; for (i = 0; i < max_vol_steps; i++) vol_table->entries[i] = vol_table->entries[i + diff]; vol_table->count = max_vol_steps; return; } int phm_reset_single_dpm_table(void *table, uint32_t count, int max) { int i; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; dpm_table->count = count > max ? max : count; for (i = 0; i < dpm_table->count; i++) dpm_table->dpm_level[i].enabled = false; return 0; } void phm_setup_pcie_table_entry( void *table, uint32_t index, uint32_t pcie_gen, uint32_t pcie_lanes) { struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; dpm_table->dpm_level[index].value = pcie_gen; dpm_table->dpm_level[index].param1 = pcie_lanes; dpm_table->dpm_level[index].enabled = 1; } int32_t phm_get_dpm_level_enable_mask_value(void *table) { int32_t i; int32_t mask = 0; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; for (i = dpm_table->count; i > 0; i--) { mask = mask << 1; if (dpm_table->dpm_level[i - 1].enabled) mask |= 0x1; else mask &= 0xFFFFFFFE; } return mask; } uint8_t phm_get_voltage_index( struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage) { uint8_t count = (uint8_t) (lookup_table->count); uint8_t i; PP_ASSERT_WITH_CODE((NULL != lookup_table), "Lookup Table empty.", return 0); PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0); for (i = 0; i < lookup_table->count; i++) { /* find first voltage equal or bigger than requested */ if (lookup_table->entries[i].us_vdd >= voltage) return i; } /* voltage is bigger than max voltage in the table */ return i - 1; } uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table, uint32_t voltage) { uint8_t count = (uint8_t) (voltage_table->count); uint8_t i = 0; PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return 0;); PP_ASSERT_WITH_CODE((0 != count), "Voltage Table empty.", return 0;); for (i = 0; i < count; i++) { /* find first voltage bigger than requested */ if (voltage_table->entries[i].value >= voltage) return i; } /* voltage is bigger than max voltage in the table */ return i - 1; } uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci) { uint32_t i; for (i = 0; i < vddci_table->count; i++) { if (vddci_table->entries[i].value >= vddci) return vddci_table->entries[i].value; } pr_debug("vddci is larger than max value in vddci_table\n"); return vddci_table->entries[i-1].value; } int phm_find_boot_level(void *table, uint32_t value, uint32_t *boot_level) { int result = -EINVAL; uint32_t i; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; for (i = 0; i < dpm_table->count; i++) { if (value == dpm_table->dpm_level[i].value) { *boot_level = i; result = 0; } } return result; } int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t virtual_voltage_id, int32_t *sclk) { uint8_t entry_id; uint8_t voltage_id; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL); /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */ for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd; if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) break; } if (entry_id >= table_info->vdd_dep_on_sclk->count) { pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n"); return -EINVAL; } *sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk; return 0; } /** * phm_initializa_dynamic_state_adjustment_rule_settings - Initialize Dynamic State Adjustment Rule Settings * * @hwmgr: the address of the powerplay hardware manager. */ int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr) { struct phm_clock_voltage_dependency_table *table_clk_vlt; struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); /* initialize vddc_dep_on_dal_pwrl table */ table_clk_vlt = kzalloc(struct_size(table_clk_vlt, entries, 4), GFP_KERNEL); if (NULL == table_clk_vlt) { pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n"); return -ENOMEM; } else { table_clk_vlt->count = 4; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW; if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) table_clk_vlt->entries[0].v = 700; else table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW; if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) table_clk_vlt->entries[1].v = 740; else table_clk_vlt->entries[1].v = 720; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL; if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) table_clk_vlt->entries[2].v = 800; else table_clk_vlt->entries[2].v = 810; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE; table_clk_vlt->entries[3].v = 900; if (pptable_info != NULL) pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; } return 0; } uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask) { uint32_t level = 0; while (0 == (mask & (1 << level))) level++; return level; } void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_clock_voltage_dependency_table *table = table_info->vddc_dep_on_dal_pwrl; struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table; enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level; uint32_t req_vddc = 0, req_volt, i; if (!table || table->count <= 0 || dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW || dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE) return; for (i = 0; i < table->count; i++) { if (dal_power_level == table->entries[i].clk) { req_vddc = table->entries[i].v; break; } } vddc_table = table_info->vdd_dep_on_sclk; for (i = 0; i < vddc_table->count; i++) { if (req_vddc <= vddc_table->entries[i].vddc) { req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VddC_Request, req_volt, NULL); return; } } pr_err("DAL requested level can not" " found a available voltage in VDDC DPM Table \n"); } int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t id, uint16_t *voltage) { uint32_t vol; int ret = 0; if (hwmgr->chip_id < CHIP_TONGA) { ret = atomctrl_get_voltage_evv(hwmgr, id, voltage); } else if (hwmgr->chip_id < CHIP_POLARIS10) { ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage); if (*voltage >= 2000 || *voltage == 0) *voltage = 1150; } else { ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol); *voltage = (uint16_t)(vol/100); } return ret; } int phm_irq_process(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; uint32_t client_id = entry->client_id; uint32_t src_id = entry->src_id; if (client_id == AMDGPU_IRQ_CLIENTID_LEGACY) { if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH) { schedule_delayed_work(&hwmgr->swctf_delayed_work, msecs_to_jiffies(AMDGPU_SWCTF_EXTRA_DELAY)); } else if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW) { dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n"); } else if (src_id == VISLANDS30_IV_SRCID_GPIO_19) { dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n"); /* * HW CTF just occurred. Shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n"); orderly_poweroff(true); } } else if (client_id == SOC15_IH_CLIENTID_THM) { if (src_id == 0) schedule_delayed_work(&hwmgr->swctf_delayed_work, msecs_to_jiffies(AMDGPU_SWCTF_EXTRA_DELAY)); else dev_emerg(adev->dev, "ERROR: GPU under temperature range detected!\n"); } else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) { dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n"); /* * HW CTF just occurred. Shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n"); orderly_poweroff(true); } return 0; } static const struct amdgpu_irq_src_funcs smu9_irq_funcs = { .process = phm_irq_process, }; int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr) { struct amdgpu_irq_src *source = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); if (!source) return -ENOMEM; source->funcs = &smu9_irq_funcs; amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), SOC15_IH_CLIENTID_THM, THM_9_0__SRCID__THM_DIG_THERM_L2H, source); amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), SOC15_IH_CLIENTID_THM, THM_9_0__SRCID__THM_DIG_THERM_H2L, source); /* Register CTF(GPIO_19) interrupt */ amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), SOC15_IH_CLIENTID_ROM_SMUIO, SMUIO_9_0__SRCID__SMUIO_GPIO19, source); return 0; } void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size, uint8_t *frev, uint8_t *crev) { struct amdgpu_device *adev = dev; uint16_t data_start; if (amdgpu_atom_parse_data_header( adev->mode_info.atom_context, table, size, frev, crev, &data_start)) return (uint8_t *)adev->mode_info.atom_context->bios + data_start; return NULL; } int smu_get_voltage_dependency_table_ppt_v1( const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table, struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint8_t i = 0; PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count), "Voltage Lookup Table empty", return -EINVAL); dep_table->count = allowed_dep_table->count; for (i = 0; i < dep_table->count; i++) { dep_table->entries[i].clk = allowed_dep_table->entries[i].clk; dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd; dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset; dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc; dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx; dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci; dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd; dep_table->entries[i].phases = allowed_dep_table->entries[i].phases; dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable; dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset; } return 0; } int smu_set_watermarks_for_clocks_ranges(void *wt_table, struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges) { uint32_t i; struct watermarks *table = wt_table; if (!table || !wm_with_clock_ranges) return -EINVAL; if (wm_with_clock_ranges->num_wm_dmif_sets > 4 || wm_with_clock_ranges->num_wm_mcif_sets > 4) return -EINVAL; for (i = 0; i < wm_with_clock_ranges->num_wm_dmif_sets; i++) { table->WatermarkRow[1][i].MinClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz / 1000)); table->WatermarkRow[1][i].MinUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].MaxUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[1][i].WmSetting = (uint8_t) wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; } for (i = 0; i < wm_with_clock_ranges->num_wm_mcif_sets; i++) { table->WatermarkRow[0][i].MinClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz / 1000)); table->WatermarkRow[0][i].MinUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].MaxUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz / 1000)); table->WatermarkRow[0][i].WmSetting = (uint8_t) wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; } return 0; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu_helper.c
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu.h" #include "smu7_baco.h" #include "tonga_baco.h" #include "fiji_baco.h" #include "polaris_baco.h" #include "ci_baco.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "smu/smu_7_1_2_d.h" #include "smu/smu_7_1_2_sh_mask.h" int smu7_baco_get_capability(struct pp_hwmgr *hwmgr, bool *cap) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); uint32_t reg; *cap = false; if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_BACO)) return 0; reg = RREG32(mmCC_BIF_BX_FUSESTRAP0); if (reg & CC_BIF_BX_FUSESTRAP0__STRAP_BIF_PX_CAPABLE_MASK) *cap = true; return 0; } int smu7_baco_get_state(struct pp_hwmgr *hwmgr, enum BACO_STATE *state) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); uint32_t reg; reg = RREG32(mmBACO_CNTL); if (reg & BACO_CNTL__BACO_MODE_MASK) /* gfx has already entered BACO state */ *state = BACO_STATE_IN; else *state = BACO_STATE_OUT; return 0; } int smu7_baco_set_state(struct pp_hwmgr *hwmgr, enum BACO_STATE state) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); switch (adev->asic_type) { case CHIP_TOPAZ: case CHIP_TONGA: return tonga_baco_set_state(hwmgr, state); case CHIP_FIJI: return fiji_baco_set_state(hwmgr, state); case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: return polaris_baco_set_state(hwmgr, state); #ifdef CONFIG_DRM_AMDGPU_CIK case CHIP_BONAIRE: case CHIP_HAWAII: return ci_baco_set_state(hwmgr, state); #endif default: return -EINVAL; } }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu7_baco.c
/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "vega12_thermal.h" #include "vega12_hwmgr.h" #include "vega12_smumgr.h" #include "vega12_ppsmc.h" #include "vega12_inc.h" #include "soc15_common.h" #include "pp_debug.h" static int vega12_get_current_rpm(struct pp_hwmgr *hwmgr, uint32_t *current_rpm) { PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentRpm, current_rpm), "Attempt to get current RPM from SMC Failed!", return -EINVAL); return 0; } int vega12_fan_ctrl_get_fan_speed_info(struct pp_hwmgr *hwmgr, struct phm_fan_speed_info *fan_speed_info) { memset(fan_speed_info, 0, sizeof(*fan_speed_info)); fan_speed_info->supports_percent_read = false; fan_speed_info->supports_percent_write = false; fan_speed_info->supports_rpm_read = true; fan_speed_info->supports_rpm_write = true; return 0; } int vega12_fan_ctrl_get_fan_speed_rpm(struct pp_hwmgr *hwmgr, uint32_t *speed) { *speed = 0; return vega12_get_current_rpm(hwmgr, speed); } /** * vega12_enable_fan_control_feature -Enables the SMC Fan Control Feature. * * @hwmgr: the address of the powerplay hardware manager. * Return: 0 on success. -1 otherwise. */ static int vega12_enable_fan_control_feature(struct pp_hwmgr *hwmgr) { #if 0 struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_FAN_CONTROL].supported) { PP_ASSERT_WITH_CODE(!vega12_enable_smc_features( hwmgr, true, data->smu_features[GNLD_FAN_CONTROL]. smu_feature_bitmap), "Attempt to Enable FAN CONTROL feature Failed!", return -1); data->smu_features[GNLD_FAN_CONTROL].enabled = true; } #endif return 0; } static int vega12_disable_fan_control_feature(struct pp_hwmgr *hwmgr) { #if 0 struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_FAN_CONTROL].supported) { PP_ASSERT_WITH_CODE(!vega12_enable_smc_features( hwmgr, false, data->smu_features[GNLD_FAN_CONTROL]. smu_feature_bitmap), "Attempt to Enable FAN CONTROL feature Failed!", return -1); data->smu_features[GNLD_FAN_CONTROL].enabled = false; } #endif return 0; } int vega12_fan_ctrl_start_smc_fan_control(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_FAN_CONTROL].supported) PP_ASSERT_WITH_CODE( !vega12_enable_fan_control_feature(hwmgr), "Attempt to Enable SMC FAN CONTROL Feature Failed!", return -1); return 0; } int vega12_fan_ctrl_stop_smc_fan_control(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_FAN_CONTROL].supported) PP_ASSERT_WITH_CODE(!vega12_disable_fan_control_feature(hwmgr), "Attempt to Disable SMC FAN CONTROL Feature Failed!", return -1); return 0; } /** * vega12_fan_ctrl_reset_fan_speed_to_default - Reset Fan Speed to default. * @hwmgr: the address of the powerplay hardware manager. * Exception Always succeeds. */ int vega12_fan_ctrl_reset_fan_speed_to_default(struct pp_hwmgr *hwmgr) { return vega12_fan_ctrl_start_smc_fan_control(hwmgr); } /** * vega12_thermal_get_temperature - Reads the remote temperature from the SIslands thermal controller. * * @hwmgr: The address of the hardware manager. */ int vega12_thermal_get_temperature(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; int temp = 0; temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS); temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >> CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT; temp = temp & 0x1ff; temp *= PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return temp; } /** * vega12_thermal_set_temperature_range - Set the requested temperature range * for high and low alert signals * * @hwmgr: The address of the hardware manager. * @range: Temperature range to be programmed for * high and low alert signals * Exception: PP_Result_BadInput if the input data is not valid. */ static int vega12_thermal_set_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *range) { struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; struct amdgpu_device *adev = hwmgr->adev; int low = VEGA12_THERMAL_MINIMUM_ALERT_TEMP; int high = VEGA12_THERMAL_MAXIMUM_ALERT_TEMP; uint32_t val; /* compare them in unit celsius degree */ if (low < range->min / PP_TEMPERATURE_UNITS_PER_CENTIGRADES) low = range->min / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; if (high > pptable_information->us_software_shutdown_temp) high = pptable_information->us_software_shutdown_temp; if (low > high) return -EINVAL; val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, high); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, low); val &= ~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK; val &= ~THM_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; val &= ~THM_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val); return 0; } /** * vega12_thermal_enable_alert - Enable thermal alerts on the RV770 thermal controller. * * @hwmgr: The address of the hardware manager. */ static int vega12_thermal_enable_alert(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; uint32_t val = 0; val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val); return 0; } /** * vega12_thermal_disable_alert - Disable thermal alerts on the RV770 thermal controller. * @hwmgr: The address of the hardware manager. */ int vega12_thermal_disable_alert(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0); return 0; } /** * vega12_thermal_stop_thermal_controller - Uninitialize the thermal controller. * Currently just disables alerts. * @hwmgr: The address of the hardware manager. */ int vega12_thermal_stop_thermal_controller(struct pp_hwmgr *hwmgr) { int result = vega12_thermal_disable_alert(hwmgr); return result; } /** * vega12_thermal_setup_fan_table - Set up the fan table to control the fan using the SMC. * @hwmgr: the address of the powerplay hardware manager. */ static int vega12_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) { int ret; struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); PPTable_t *table = &(data->smc_state_table.pp_table); ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFanTemperatureTarget, (uint32_t)table->FanTargetTemperature, NULL); return ret; } /** * vega12_thermal_start_smc_fan_control - Start the fan control on the SMC. * @hwmgr: the address of the powerplay hardware manager. * Return: result from set temperature range routine */ static int vega12_thermal_start_smc_fan_control(struct pp_hwmgr *hwmgr) { /* If the fantable setup has failed we could have disabled * PHM_PlatformCaps_MicrocodeFanControl even after * this function was included in the table. * Make sure that we still think controlling the fan is OK. */ if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega12_fan_ctrl_start_smc_fan_control(hwmgr); return 0; } int vega12_start_thermal_controller(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *range) { int ret = 0; if (range == NULL) return -EINVAL; ret = vega12_thermal_set_temperature_range(hwmgr, range); if (ret) return -EINVAL; vega12_thermal_enable_alert(hwmgr); /* We should restrict performance levels to low before we halt the SMC. * On the other hand we are still in boot state when we do this * so it would be pointless. * If this assumption changes we have to revisit this table. */ ret = vega12_thermal_setup_fan_table(hwmgr); if (ret) return -EINVAL; vega12_thermal_start_smc_fan_control(hwmgr); return 0; };
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/vega12_thermal.c
/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/delay.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include "hwmgr.h" #include "amd_powerplay.h" #include "hardwaremanager.h" #include "ppatomfwctrl.h" #include "atomfirmware.h" #include "cgs_common.h" #include "vega10_powertune.h" #include "smu9.h" #include "smu9_driver_if.h" #include "vega10_inc.h" #include "soc15_common.h" #include "pppcielanes.h" #include "vega10_hwmgr.h" #include "vega10_smumgr.h" #include "vega10_processpptables.h" #include "vega10_pptable.h" #include "vega10_thermal.h" #include "pp_debug.h" #include "amd_pcie_helpers.h" #include "ppinterrupt.h" #include "pp_overdriver.h" #include "pp_thermal.h" #include "vega10_baco.h" #include "smuio/smuio_9_0_offset.h" #include "smuio/smuio_9_0_sh_mask.h" #define smnPCIE_LC_SPEED_CNTL 0x11140290 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 #define HBM_MEMORY_CHANNEL_WIDTH 128 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2}; #define mmDF_CS_AON0_DramBaseAddress0 0x0044 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0 //DF_CS_AON0_DramBaseAddress0 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L typedef enum { CLK_SMNCLK = 0, CLK_SOCCLK, CLK_MP0CLK, CLK_MP1CLK, CLK_LCLK, CLK_DCEFCLK, CLK_VCLK, CLK_DCLK, CLK_ECLK, CLK_UCLK, CLK_GFXCLK, CLK_COUNT, } CLOCK_ID_e; static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic); static struct vega10_power_state *cast_phw_vega10_power_state( struct pp_hw_power_state *hw_ps) { PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL;); return (struct vega10_power_state *)hw_ps; } static const struct vega10_power_state *cast_const_phw_vega10_power_state( const struct pp_hw_power_state *hw_ps) { PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL;); return (const struct vega10_power_state *)hw_ps; } static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; data->registry_data.sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; data->registry_data.socclk_dpm_key_disabled = hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true; data->registry_data.mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; data->registry_data.pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; data->registry_data.dcefclk_dpm_key_disabled = hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true; if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) { data->registry_data.power_containment_support = 1; data->registry_data.enable_pkg_pwr_tracking_feature = 1; data->registry_data.enable_tdc_limit_feature = 1; } data->registry_data.clock_stretcher_support = hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false; data->registry_data.ulv_support = hwmgr->feature_mask & PP_ULV_MASK ? true : false; data->registry_data.sclk_deep_sleep_support = hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false; data->registry_data.disable_water_mark = 0; data->registry_data.fan_control_support = 1; data->registry_data.thermal_support = 1; data->registry_data.fw_ctf_enabled = 1; data->registry_data.avfs_support = hwmgr->feature_mask & PP_AVFS_MASK ? true : false; data->registry_data.led_dpm_enabled = 1; data->registry_data.vr0hot_enabled = 1; data->registry_data.vr1hot_enabled = 1; data->registry_data.regulator_hot_gpio_support = 1; data->registry_data.didt_support = 1; if (data->registry_data.didt_support) { data->registry_data.didt_mode = 6; data->registry_data.sq_ramping_support = 1; data->registry_data.db_ramping_support = 0; data->registry_data.td_ramping_support = 0; data->registry_data.tcp_ramping_support = 0; data->registry_data.dbr_ramping_support = 0; data->registry_data.edc_didt_support = 1; data->registry_data.gc_didt_support = 0; data->registry_data.psm_didt_support = 0; } data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT; data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT; data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT; data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT; data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT; } static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct amdgpu_device *adev = hwmgr->adev; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState); if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableSMU7ThermalManagement); if (adev->pg_flags & AMD_PG_SUPPORT_UVD) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); if (adev->pg_flags & AMD_PG_SUPPORT_VCE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UnTabledHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_FanSpeedInTableIsRPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODFuzzyFanControlSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPowerManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMC); /* power tune caps */ /* assume disabled */ phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); if (data->registry_data.didt_support) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); if (data->registry_data.sq_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); if (data->registry_data.db_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); if (data->registry_data.td_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); if (data->registry_data.tcp_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); if (data->registry_data.dbr_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); if (data->registry_data.edc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); if (data->registry_data.gc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); if (data->registry_data.psm_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); } if (data->registry_data.power_containment_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CAC); if (table_info->tdp_table->usClockStretchAmount && data->registry_data.clock_stretcher_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEDPM); return 0; } static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); struct vega10_odn_vddc_lookup_table *od_lookup_table; struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3]; struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3]; struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; uint32_t i; int result; result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); if (!result) { data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc; data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc; } od_lookup_table = &odn_table->vddc_lookup_table; vddc_lookup_table = table_info->vddc_lookup_table; for (i = 0; i < vddc_lookup_table->count; i++) od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd; od_lookup_table->count = vddc_lookup_table->count; dep_table[0] = table_info->vdd_dep_on_sclk; dep_table[1] = table_info->vdd_dep_on_mclk; dep_table[2] = table_info->vdd_dep_on_socclk; od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk; od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk; od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk; for (i = 0; i < 3; i++) smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]); if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000) odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc; if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000) odn_table->min_vddc = dep_table[0]->entries[0].vddc; i = od_table[2]->count - 1; od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ? hwmgr->platform_descriptor.overdriveLimit.memoryClock : od_table[2]->entries[i].clk; od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ? odn_table->max_vddc : od_table[2]->entries[i].vddc; return 0; } static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; int i; uint32_t sub_vendor_id, hw_revision; uint32_t top32, bottom32; struct amdgpu_device *adev = hwmgr->adev; vega10_initialize_power_tune_defaults(hwmgr); for (i = 0; i < GNLD_FEATURES_MAX; i++) { data->smu_features[i].smu_feature_id = 0xffff; data->smu_features[i].smu_feature_bitmap = 1 << i; data->smu_features[i].enabled = false; data->smu_features[i].supported = false; } data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = FEATURE_DPM_PREFETCHER_BIT; data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = FEATURE_DPM_GFXCLK_BIT; data->smu_features[GNLD_DPM_UCLK].smu_feature_id = FEATURE_DPM_UCLK_BIT; data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = FEATURE_DPM_SOCCLK_BIT; data->smu_features[GNLD_DPM_UVD].smu_feature_id = FEATURE_DPM_UVD_BIT; data->smu_features[GNLD_DPM_VCE].smu_feature_id = FEATURE_DPM_VCE_BIT; data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = FEATURE_DPM_MP0CLK_BIT; data->smu_features[GNLD_DPM_LINK].smu_feature_id = FEATURE_DPM_LINK_BIT; data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = FEATURE_DPM_DCEFCLK_BIT; data->smu_features[GNLD_ULV].smu_feature_id = FEATURE_ULV_BIT; data->smu_features[GNLD_AVFS].smu_feature_id = FEATURE_AVFS_BIT; data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = FEATURE_DS_GFXCLK_BIT; data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = FEATURE_DS_SOCCLK_BIT; data->smu_features[GNLD_DS_LCLK].smu_feature_id = FEATURE_DS_LCLK_BIT; data->smu_features[GNLD_PPT].smu_feature_id = FEATURE_PPT_BIT; data->smu_features[GNLD_TDC].smu_feature_id = FEATURE_TDC_BIT; data->smu_features[GNLD_THERMAL].smu_feature_id = FEATURE_THERMAL_BIT; data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = FEATURE_GFX_PER_CU_CG_BIT; data->smu_features[GNLD_RM].smu_feature_id = FEATURE_RM_BIT; data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = FEATURE_DS_DCEFCLK_BIT; data->smu_features[GNLD_ACDC].smu_feature_id = FEATURE_ACDC_BIT; data->smu_features[GNLD_VR0HOT].smu_feature_id = FEATURE_VR0HOT_BIT; data->smu_features[GNLD_VR1HOT].smu_feature_id = FEATURE_VR1HOT_BIT; data->smu_features[GNLD_FW_CTF].smu_feature_id = FEATURE_FW_CTF_BIT; data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = FEATURE_LED_DISPLAY_BIT; data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = FEATURE_FAN_CONTROL_BIT; data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT; data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT; if (!data->registry_data.prefetcher_dpm_key_disabled) data->smu_features[GNLD_DPM_PREFETCHER].supported = true; if (!data->registry_data.sclk_dpm_key_disabled) data->smu_features[GNLD_DPM_GFXCLK].supported = true; if (!data->registry_data.mclk_dpm_key_disabled) data->smu_features[GNLD_DPM_UCLK].supported = true; if (!data->registry_data.socclk_dpm_key_disabled) data->smu_features[GNLD_DPM_SOCCLK].supported = true; if (PP_CAP(PHM_PlatformCaps_UVDDPM)) data->smu_features[GNLD_DPM_UVD].supported = true; if (PP_CAP(PHM_PlatformCaps_VCEDPM)) data->smu_features[GNLD_DPM_VCE].supported = true; data->smu_features[GNLD_DPM_LINK].supported = true; if (!data->registry_data.dcefclk_dpm_key_disabled) data->smu_features[GNLD_DPM_DCEFCLK].supported = true; if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) && data->registry_data.sclk_deep_sleep_support) { data->smu_features[GNLD_DS_GFXCLK].supported = true; data->smu_features[GNLD_DS_SOCCLK].supported = true; data->smu_features[GNLD_DS_LCLK].supported = true; data->smu_features[GNLD_DS_DCEFCLK].supported = true; } if (data->registry_data.enable_pkg_pwr_tracking_feature) data->smu_features[GNLD_PPT].supported = true; if (data->registry_data.enable_tdc_limit_feature) data->smu_features[GNLD_TDC].supported = true; if (data->registry_data.thermal_support) data->smu_features[GNLD_THERMAL].supported = true; if (data->registry_data.fan_control_support) data->smu_features[GNLD_FAN_CONTROL].supported = true; if (data->registry_data.fw_ctf_enabled) data->smu_features[GNLD_FW_CTF].supported = true; if (data->registry_data.avfs_support) data->smu_features[GNLD_AVFS].supported = true; if (data->registry_data.led_dpm_enabled) data->smu_features[GNLD_LED_DISPLAY].supported = true; if (data->registry_data.vr1hot_enabled) data->smu_features[GNLD_VR1HOT].supported = true; if (data->registry_data.vr0hot_enabled) data->smu_features[GNLD_VR0HOT].supported = true; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion, &hwmgr->smu_version); /* ACG firmware has major version 5 */ if ((hwmgr->smu_version & 0xff000000) == 0x5000000) data->smu_features[GNLD_ACG].supported = true; if (data->registry_data.didt_support) data->smu_features[GNLD_DIDT].supported = true; hw_revision = adev->pdev->revision; sub_vendor_id = adev->pdev->subsystem_vendor; if ((hwmgr->chip_id == 0x6862 || hwmgr->chip_id == 0x6861 || hwmgr->chip_id == 0x6868) && (hw_revision == 0) && (sub_vendor_id != 0x1002)) data->smu_features[GNLD_PCC_LIMIT].supported = true; /* Get the SN to turn into a Unique ID */ smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); adev->unique_id = ((uint64_t)bottom32 << 32) | top32; } #ifdef PPLIB_VEGA10_EVV_SUPPORT static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t virtual_voltage_id, int32_t *socclk) { uint8_t entry_id; uint8_t voltage_id; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL); /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */ for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd; if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) break; } PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count, "Can't find requested voltage id in vdd_dep_on_socclk table!", return -EINVAL); *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk; return 0; } #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01 /** * vega10_get_evv_voltages - Get Leakage VDDC based on leakage ID. * * @hwmgr: the address of the powerplay hardware manager. * return: always 0. */ static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; uint16_t vv_id; uint32_t vddc = 0; uint16_t i, j; uint32_t sclk = 0; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table = table_info->vdd_dep_on_socclk; int result; for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) { vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; if (!vega10_get_socclk_for_voltage_evv(hwmgr, table_info->vddc_lookup_table, vv_id, &sclk)) { if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) { for (j = 1; j < socclk_table->count; j++) { if (socclk_table->entries[j].clk == sclk && socclk_table->entries[j].cks_enable == 0) { sclk += 5000; break; } } } PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc), "Error retrieving EVV voltage value!", continue); /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0), "Invalid VDDC value", result = -EINVAL;); /* the voltage should not be zero nor equal to leakage ID */ if (vddc != 0 && vddc != vv_id) { data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; data->vddc_leakage.count++; } } } return 0; } /** * vega10_patch_with_vdd_leakage - Change virtual leakage voltage to actual value. * * @hwmgr: the address of the powerplay hardware manager. * @voltage: pointer to changing voltage * @leakage_table: pointer to leakage table */ static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, uint16_t *voltage, struct vega10_leakage_voltage *leakage_table) { uint32_t index; /* search for leakage voltage ID 0xff01 ~ 0xff08 */ for (index = 0; index < leakage_table->count; index++) { /* if this voltage matches a leakage voltage ID */ /* patch with actual leakage voltage */ if (leakage_table->leakage_id[index] == *voltage) { *voltage = leakage_table->actual_voltage[index]; break; } } if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); } /** * vega10_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages. * * @hwmgr: the address of the powerplay hardware manager. * @lookup_table: pointer to voltage lookup table * @leakage_table: pointer to leakage table * return: always 0 */ static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, struct vega10_leakage_voltage *leakage_table) { uint32_t i; for (i = 0; i < lookup_table->count; i++) vega10_patch_with_vdd_leakage(hwmgr, &lookup_table->entries[i].us_vdd, leakage_table); return 0; } static int vega10_patch_clock_voltage_limits_with_vddc_leakage( struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table, uint16_t *vddc) { vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); return 0; } #endif static int vega10_patch_voltage_dependency_tables_with_lookup_table( struct pp_hwmgr *hwmgr) { uint8_t entry_id, voltage_id; unsigned i; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; for (i = 0; i < 6; i++) { struct phm_ppt_v1_clock_voltage_dependency_table *vdt; switch (i) { case 0: vdt = table_info->vdd_dep_on_socclk; break; case 1: vdt = table_info->vdd_dep_on_sclk; break; case 2: vdt = table_info->vdd_dep_on_dcefclk; break; case 3: vdt = table_info->vdd_dep_on_pixclk; break; case 4: vdt = table_info->vdd_dep_on_dispclk; break; case 5: vdt = table_info->vdd_dep_on_phyclk; break; } for (entry_id = 0; entry_id < vdt->count; entry_id++) { voltage_id = vdt->entries[entry_id].vddInd; vdt->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; } } for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { voltage_id = mm_table->entries[entry_id].vddcInd; mm_table->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; } for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { voltage_id = mclk_table->entries[entry_id].vddInd; mclk_table->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; voltage_id = mclk_table->entries[entry_id].vddciInd; mclk_table->entries[entry_id].vddci = table_info->vddci_lookup_table->entries[voltage_id].us_vdd; voltage_id = mclk_table->entries[entry_id].mvddInd; mclk_table->entries[entry_id].mvdd = table_info->vddmem_lookup_table->entries[voltage_id].us_vdd; } return 0; } static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_voltage_lookup_table *lookup_table) { uint32_t table_size, i, j; PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count, "Lookup table is empty", return -EINVAL); table_size = lookup_table->count; /* Sorting voltages */ for (i = 0; i < table_size - 1; i++) { for (j = i + 1; j > 0; j--) { if (lookup_table->entries[j].us_vdd < lookup_table->entries[j - 1].us_vdd) { swap(lookup_table->entries[j - 1], lookup_table->entries[j]); } } } return 0; } static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr) { int result = 0; int tmp_result; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); #ifdef PPLIB_VEGA10_EVV_SUPPORT struct vega10_hwmgr *data = hwmgr->backend; tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr, table_info->vddc_lookup_table, &(data->vddc_leakage)); if (tmp_result) result = tmp_result; tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); if (tmp_result) result = tmp_result; #endif tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr); if (tmp_result) result = tmp_result; tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); if (tmp_result) result = tmp_result; return result; } static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = table_info->vdd_dep_on_socclk; struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = table_info->vdd_dep_on_mclk; PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table, "VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, "VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table, "VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, "VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL); table_info->max_clock_voltage_on_ac.sclk = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; table_info->max_clock_voltage_on_ac.mclk = allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; table_info->max_clock_voltage_on_ac.vddc = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; table_info->max_clock_voltage_on_ac.vddci = allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci; return 0; } static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct vega10_hwmgr *data; uint32_t config_telemetry = 0; struct pp_atomfwctrl_voltage_table vol_table; struct amdgpu_device *adev = hwmgr->adev; data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; vega10_set_default_registry_data(hwmgr); data->disable_dpm_mask = 0xff; /* need to set voltage control types before EVV patching */ data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE; data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE; data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE; /* VDDCR_SOC */ if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, &vol_table)) { config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) | (vol_table.telemetry_offset & 0xff); data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; } } else { kfree(hwmgr->backend); hwmgr->backend = NULL; PP_ASSERT_WITH_CODE(false, "VDDCR_SOC is not SVID2!", return -1); } /* MVDDC */ if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) { if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2, &vol_table)) { config_telemetry |= ((vol_table.telemetry_slope << 24) & 0xff000000) | ((vol_table.telemetry_offset << 16) & 0xff0000); data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; } } /* VDDCI_MEM */ if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) { if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO; } data->config_telemetry = config_telemetry; vega10_set_features_platform_caps(hwmgr); vega10_init_dpm_defaults(hwmgr); #ifdef PPLIB_VEGA10_EVV_SUPPORT /* Get leakage voltage based on leakage ID. */ PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr), "Get EVV Voltage Failed. Abort Driver loading!", return -1); #endif /* Patch our voltage dependency table with actual leakage voltage * We need to perform leakage translation before it's used by other functions */ vega10_complete_dependency_tables(hwmgr); /* Parse pptable data read from VBIOS */ vega10_set_private_data_based_on_pptable(hwmgr); data->is_tlu_enabled = false; hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = VEGA10_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; data->total_active_cus = adev->gfx.cu_info.number; if (!hwmgr->not_vf) return result; /* Setup default Overdrive Fan control settings */ data->odn_fan_table.target_fan_speed = hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; data->odn_fan_table.target_temperature = hwmgr->thermal_controller. advanceFanControlParameters.ucTargetTemperature; data->odn_fan_table.min_performance_clock = hwmgr->thermal_controller.advanceFanControlParameters. ulMinFanSCLKAcousticLimit; data->odn_fan_table.min_fan_limit = hwmgr->thermal_controller. advanceFanControlParameters.usFanPWMMinLimit * hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) & DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >> DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT; PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number), "Mem Channel Index Exceeded maximum!", return -EINVAL); return result; } static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; data->low_sclk_interrupt_threshold = 0; return 0; } static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_voltage_table table; uint8_t i, j; uint32_t mask = 0; uint32_t tmp; int32_t ret = 0; ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT, &table); if (!ret) { tmp = table.mask_low; for (i = 0, j = 0; i < 32; i++) { if (tmp & 1) { mask |= (uint32_t)(i << (8 * j)); if (++j >= 3) break; } tmp >>= 1; } } pp_table->LedPin0 = (uint8_t)(mask & 0xff); pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff); pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff); return 0; } static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr) { if (!hwmgr->not_vf) return 0; PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr), "Failed to init sclk threshold!", return -EINVAL); PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr), "Failed to set up led dpm config!", return -EINVAL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0, NULL); return 0; } /** * vega10_trim_voltage_table - Remove repeated voltage values and create table with unique values. * * @hwmgr: the address of the powerplay hardware manager. * @vol_table: the pointer to changing voltage table * return: 0 in success */ static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr, struct pp_atomfwctrl_voltage_table *vol_table) { uint32_t i, j; uint16_t vvalue; bool found = false; struct pp_atomfwctrl_voltage_table *table; PP_ASSERT_WITH_CODE(vol_table, "Voltage Table empty.", return -EINVAL); table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table), GFP_KERNEL); if (!table) return -ENOMEM; table->mask_low = vol_table->mask_low; table->phase_delay = vol_table->phase_delay; for (i = 0; i < vol_table->count; i++) { vvalue = vol_table->entries[i].value; found = false; for (j = 0; j < table->count; j++) { if (vvalue == table->entries[j].value) { found = true; break; } } if (!found) { table->entries[table->count].value = vvalue; table->entries[table->count].smio_low = vol_table->entries[i].smio_low; table->count++; } } memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table)); kfree(table); return 0; } static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *dep_table, struct pp_atomfwctrl_voltage_table *vol_table) { int i; PP_ASSERT_WITH_CODE(dep_table->count, "Voltage Dependency Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < vol_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].mvdd; vol_table->entries[i].smio_low = 0; } PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table), "Failed to trim MVDD Table!", return -1); return 0; } static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *dep_table, struct pp_atomfwctrl_voltage_table *vol_table) { uint32_t i; PP_ASSERT_WITH_CODE(dep_table->count, "Voltage Dependency Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].vddci; vol_table->entries[i].smio_low = 0; } PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table), "Failed to trim VDDCI table.", return -1); return 0; } static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *dep_table, struct pp_atomfwctrl_voltage_table *vol_table) { int i; PP_ASSERT_WITH_CODE(dep_table->count, "Voltage Dependency Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < vol_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].vddc; vol_table->entries[i].smio_low = 0; } return 0; } /* ---- Voltage Tables ---- * If the voltage table would be bigger than * what will fit into the state table on * the SMC keep only the higher entries. */ static void vega10_trim_voltage_table_to_fit_state_table( struct pp_hwmgr *hwmgr, uint32_t max_vol_steps, struct pp_atomfwctrl_voltage_table *vol_table) { unsigned int i, diff; if (vol_table->count <= max_vol_steps) return; diff = vol_table->count - max_vol_steps; for (i = 0; i < max_vol_steps; i++) vol_table->entries[i] = vol_table->entries[i + diff]; vol_table->count = max_vol_steps; } /** * vega10_construct_voltage_tables - Create Voltage Tables. * * @hwmgr: the address of the powerplay hardware manager. * return: always 0 */ static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; int result; if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) { result = vega10_get_mvdd_voltage_table(hwmgr, table_info->vdd_dep_on_mclk, &(data->mvdd_voltage_table)); PP_ASSERT_WITH_CODE(!result, "Failed to retrieve MVDDC table!", return result); } if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) { result = vega10_get_vddci_voltage_table(hwmgr, table_info->vdd_dep_on_mclk, &(data->vddci_voltage_table)); PP_ASSERT_WITH_CODE(!result, "Failed to retrieve VDDCI_MEM table!", return result); } if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) { result = vega10_get_vdd_voltage_table(hwmgr, table_info->vdd_dep_on_sclk, &(data->vddc_voltage_table)); PP_ASSERT_WITH_CODE(!result, "Failed to retrieve VDDCR_SOC table!", return result); } PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16, "Too many voltage values for VDDC. Trimming to fit state table.", vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, &(data->vddc_voltage_table))); PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16, "Too many voltage values for VDDCI. Trimming to fit state table.", vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, &(data->vddci_voltage_table))); PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16, "Too many voltage values for MVDD. Trimming to fit state table.", vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, &(data->mvdd_voltage_table))); return 0; } /* * vega10_init_dpm_state * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. * * @dpm_state: - the address of the DPM Table to initiailize. * return: None. */ static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state) { dpm_state->soft_min_level = 0xff; dpm_state->soft_max_level = 0xff; dpm_state->hard_min_level = 0xff; dpm_state->hard_max_level = 0xff; } static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr, struct vega10_single_dpm_table *dpm_table, struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) { int i; dpm_table->count = 0; for (i = 0; i < dep_table->count; i++) { if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <= dep_table->entries[i].clk) { dpm_table->dpm_levels[dpm_table->count].value = dep_table->entries[i].clk; dpm_table->dpm_levels[dpm_table->count].enabled = true; dpm_table->count++; } } } static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *bios_pcie_table = table_info->pcie_table; uint32_t i; PP_ASSERT_WITH_CODE(bios_pcie_table->count, "Incorrect number of PCIE States from VBIOS!", return -1); for (i = 0; i < NUM_LINK_LEVELS; i++) { if (data->registry_data.pcieSpeedOverride) pcie_table->pcie_gen[i] = data->registry_data.pcieSpeedOverride; else pcie_table->pcie_gen[i] = bios_pcie_table->entries[i].gen_speed; if (data->registry_data.pcieLaneOverride) pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( data->registry_data.pcieLaneOverride); else pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( bios_pcie_table->entries[i].lane_width); if (data->registry_data.pcieClockOverride) pcie_table->lclk[i] = data->registry_data.pcieClockOverride; else pcie_table->lclk[i] = bios_pcie_table->entries[i].pcie_sclk; } pcie_table->count = NUM_LINK_LEVELS; return 0; } /* * This function is to initialize all DPM state tables * for SMU based on the dependency table. * Dynamic state patching function will then trim these * state tables to the allowed range based * on the power policy or external client requests, * such as UVD request, etc. */ static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct vega10_single_dpm_table *dpm_table; uint32_t i; struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table = table_info->vdd_dep_on_socclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table = table_info->vdd_dep_on_sclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = table_info->vdd_dep_on_mclk; struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table = table_info->mm_dep_table; struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table = table_info->vdd_dep_on_dcefclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table = table_info->vdd_dep_on_pixclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table = table_info->vdd_dep_on_dispclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table = table_info->vdd_dep_on_phyclk; PP_ASSERT_WITH_CODE(dep_soc_table, "SOCCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1, "SOCCLK dependency table is empty. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_gfx_table, "GFXCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1, "GFXCLK dependency table is empty. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_mclk_table, "MCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, "MCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); /* Initialize Sclk DPM table based on allow Sclk values */ dpm_table = &(data->dpm_table.soc_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_soc_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.gfx_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_gfx_table); if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) hwmgr->platform_descriptor.overdriveLimit.engineClock = dpm_table->dpm_levels[dpm_table->count-1].value; vega10_init_dpm_state(&(dpm_table->dpm_state)); /* Initialize Mclk DPM table based on allow Mclk values */ data->dpm_table.mem_table.count = 0; dpm_table = &(data->dpm_table.mem_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_mclk_table); if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) hwmgr->platform_descriptor.overdriveLimit.memoryClock = dpm_table->dpm_levels[dpm_table->count-1].value; vega10_init_dpm_state(&(dpm_table->dpm_state)); data->dpm_table.eclk_table.count = 0; dpm_table = &(data->dpm_table.eclk_table); for (i = 0; i < dep_mm_table->count; i++) { if (i == 0 || dpm_table->dpm_levels [dpm_table->count - 1].value <= dep_mm_table->entries[i].eclk) { dpm_table->dpm_levels[dpm_table->count].value = dep_mm_table->entries[i].eclk; dpm_table->dpm_levels[dpm_table->count].enabled = i == 0; dpm_table->count++; } } vega10_init_dpm_state(&(dpm_table->dpm_state)); data->dpm_table.vclk_table.count = 0; data->dpm_table.dclk_table.count = 0; dpm_table = &(data->dpm_table.vclk_table); for (i = 0; i < dep_mm_table->count; i++) { if (i == 0 || dpm_table->dpm_levels [dpm_table->count - 1].value <= dep_mm_table->entries[i].vclk) { dpm_table->dpm_levels[dpm_table->count].value = dep_mm_table->entries[i].vclk; dpm_table->dpm_levels[dpm_table->count].enabled = i == 0; dpm_table->count++; } } vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.dclk_table); for (i = 0; i < dep_mm_table->count; i++) { if (i == 0 || dpm_table->dpm_levels [dpm_table->count - 1].value <= dep_mm_table->entries[i].dclk) { dpm_table->dpm_levels[dpm_table->count].value = dep_mm_table->entries[i].dclk; dpm_table->dpm_levels[dpm_table->count].enabled = i == 0; dpm_table->count++; } } vega10_init_dpm_state(&(dpm_table->dpm_state)); /* Assume there is no headless Vega10 for now */ dpm_table = &(data->dpm_table.dcef_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_dcef_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.pixel_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_pix_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.display_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_disp_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.phy_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_phy_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); vega10_setup_default_pcie_table(hwmgr); /* Zero out the saved copy of the CUSTOM profile * This will be checked when trying to set the profile * and will require that new values be passed in */ data->custom_profile_mode[0] = 0; data->custom_profile_mode[1] = 0; data->custom_profile_mode[2] = 0; data->custom_profile_mode[3] = 0; /* save a copy of the default DPM table */ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct vega10_dpm_table)); return 0; } /* * vega10_populate_ulv_state * Function to provide parameters for Utral Low Voltage state to SMC. * * @hwmgr: - the address of the hardware manager. * return: Always 0. */ static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); data->smc_state_table.pp_table.UlvOffsetVid = (uint8_t)table_info->us_ulv_voltage_offset; data->smc_state_table.pp_table.UlvSmnclkDid = (uint8_t)(table_info->us_ulv_smnclk_did); data->smc_state_table.pp_table.UlvMp1clkDid = (uint8_t)(table_info->us_ulv_mp1clk_did); data->smc_state_table.pp_table.UlvGfxclkBypass = (uint8_t)(table_info->us_ulv_gfxclk_bypass); data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 = (uint8_t)(data->vddc_voltage_table.psi0_enable); data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 = (uint8_t)(data->vddc_voltage_table.psi1_enable); return 0; } static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr, uint32_t lclock, uint8_t *curr_lclk_did) { struct pp_atomfwctrl_clock_dividers_soc15 dividers; PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, lclock, &dividers), "Failed to get LCLK clock settings from VBIOS!", return -1); *curr_lclk_did = dividers.ulDid; return 0; } static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t pcie_gen = 0, pcie_width = 0; PPTable_t *pp_table = &(data->smc_state_table.pp_table); int i; if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) pcie_gen = 3; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) pcie_gen = 2; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) pcie_gen = 1; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) pcie_gen = 0; if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) pcie_width = 6; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) pcie_width = 5; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) pcie_width = 4; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) pcie_width = 3; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) pcie_width = 2; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) pcie_width = 1; for (i = 0; i < NUM_LINK_LEVELS; i++) { if (pp_table->PcieGenSpeed[i] > pcie_gen) pp_table->PcieGenSpeed[i] = pcie_gen; if (pp_table->PcieLaneCount[i] > pcie_width) pp_table->PcieLaneCount[i] = pcie_width; } if (data->registry_data.pcie_dpm_key_disabled) { for (i = 0; i < NUM_LINK_LEVELS; i++) { pp_table->PcieGenSpeed[i] = pcie_gen; pp_table->PcieLaneCount[i] = pcie_width; } } return 0; } static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr) { int result = -1; struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); uint32_t i, j; for (i = 0; i < pcie_table->count; i++) { pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i]; pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i]; result = vega10_populate_single_lclk_level(hwmgr, pcie_table->lclk[i], &(pp_table->LclkDid[i])); if (result) { pr_info("Populate LClock Level %d Failed!\n", i); return result; } } j = i - 1; while (i < NUM_LINK_LEVELS) { pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j]; pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j]; result = vega10_populate_single_lclk_level(hwmgr, pcie_table->lclk[j], &(pp_table->LclkDid[i])); if (result) { pr_info("Populate LClock Level %d Failed!\n", i); return result; } i++; } return result; } /** * vega10_populate_single_gfx_level - Populates single SMC GFXSCLK structure * using the provided engine clock * * @hwmgr: the address of the hardware manager * @gfx_clock: the GFX clock to use to populate the structure. * @current_gfxclk_level: location in PPTable for the SMC GFXCLK structure. * @acg_freq: ACG frequenty to return (MHz) */ static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr, uint32_t gfx_clock, PllSetting_t *current_gfxclk_level, uint32_t *acg_freq) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk; struct vega10_hwmgr *data = hwmgr->backend; struct pp_atomfwctrl_clock_dividers_soc15 dividers; uint32_t gfx_max_clock = hwmgr->platform_descriptor.overdriveLimit.engineClock; uint32_t i = 0; if (hwmgr->od_enabled) dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) &(data->odn_dpm_table.vdd_dep_on_sclk); else dep_on_sclk = table_info->vdd_dep_on_sclk; PP_ASSERT_WITH_CODE(dep_on_sclk, "Invalid SOC_VDD-GFX_CLK Dependency Table!", return -EINVAL); if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock; else { for (i = 0; i < dep_on_sclk->count; i++) { if (dep_on_sclk->entries[i].clk == gfx_clock) break; } PP_ASSERT_WITH_CODE(dep_on_sclk->count > i, "Cannot find gfx_clk in SOC_VDD-GFX_CLK!", return -EINVAL); } PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK, gfx_clock, &dividers), "Failed to get GFX Clock settings from VBIOS!", return -EINVAL); /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */ current_gfxclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult); /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */ current_gfxclk_level->SsOn = dividers.ucPll_ss_enable; current_gfxclk_level->SsFbMult = cpu_to_le32(dividers.ulPll_ss_fbsmult); current_gfxclk_level->SsSlewFrac = cpu_to_le16(dividers.usPll_ss_slew_frac); current_gfxclk_level->Did = (uint8_t)(dividers.ulDid); *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */ return 0; } /** * vega10_populate_single_soc_level - Populates single SMC SOCCLK structure * using the provided clock. * * @hwmgr: the address of the hardware manager. * @soc_clock: the SOC clock to use to populate the structure. * @current_soc_did: DFS divider to pass back to caller * @current_vol_index: index of current VDD to pass back to caller * return: 0 on success */ static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr, uint32_t soc_clock, uint8_t *current_soc_did, uint8_t *current_vol_index) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc; struct pp_atomfwctrl_clock_dividers_soc15 dividers; uint32_t i; if (hwmgr->od_enabled) { dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *) &data->odn_dpm_table.vdd_dep_on_socclk; for (i = 0; i < dep_on_soc->count; i++) { if (dep_on_soc->entries[i].clk >= soc_clock) break; } } else { dep_on_soc = table_info->vdd_dep_on_socclk; for (i = 0; i < dep_on_soc->count; i++) { if (dep_on_soc->entries[i].clk == soc_clock) break; } } PP_ASSERT_WITH_CODE(dep_on_soc->count > i, "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table", return -EINVAL); PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, soc_clock, &dividers), "Failed to get SOC Clock settings from VBIOS!", return -EINVAL); *current_soc_did = (uint8_t)dividers.ulDid; *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd); return 0; } /** * vega10_populate_all_graphic_levels - Populates all SMC SCLK levels' structure * based on the trimmed allowed dpm engine clock states * * @hwmgr: the address of the hardware manager */ static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); int result = 0; uint32_t i, j; for (i = 0; i < dpm_table->count; i++) { result = vega10_populate_single_gfx_level(hwmgr, dpm_table->dpm_levels[i].value, &(pp_table->GfxclkLevel[i]), &(pp_table->AcgFreqTable[i])); if (result) return result; } j = i - 1; while (i < NUM_GFXCLK_DPM_LEVELS) { result = vega10_populate_single_gfx_level(hwmgr, dpm_table->dpm_levels[j].value, &(pp_table->GfxclkLevel[i]), &(pp_table->AcgFreqTable[i])); if (result) return result; i++; } pp_table->GfxclkSlewRate = cpu_to_le16(table_info->us_gfxclk_slew_rate); dpm_table = &(data->dpm_table.soc_table); for (i = 0; i < dpm_table->count; i++) { result = vega10_populate_single_soc_level(hwmgr, dpm_table->dpm_levels[i].value, &(pp_table->SocclkDid[i]), &(pp_table->SocDpmVoltageIndex[i])); if (result) return result; } j = i - 1; while (i < NUM_SOCCLK_DPM_LEVELS) { result = vega10_populate_single_soc_level(hwmgr, dpm_table->dpm_levels[j].value, &(pp_table->SocclkDid[i]), &(pp_table->SocDpmVoltageIndex[i])); if (result) return result; i++; } return result; } static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct phm_ppt_v2_information *table_info = hwmgr->pptable; struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; uint8_t soc_vid = 0; uint32_t i, max_vddc_level; if (hwmgr->od_enabled) vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table; else vddc_lookup_table = table_info->vddc_lookup_table; max_vddc_level = vddc_lookup_table->count; for (i = 0; i < max_vddc_level; i++) { soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd); pp_table->SocVid[i] = soc_vid; } while (i < MAX_REGULAR_DPM_NUMBER) { pp_table->SocVid[i] = soc_vid; i++; } } /* * Populates single SMC GFXCLK structure using the provided clock. * * @hwmgr: the address of the hardware manager. * @mem_clock: the memory clock to use to populate the structure. * return: 0 on success.. */ static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr, uint32_t mem_clock, uint8_t *current_mem_vid, PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk; struct pp_atomfwctrl_clock_dividers_soc15 dividers; uint32_t mem_max_clock = hwmgr->platform_descriptor.overdriveLimit.memoryClock; uint32_t i = 0; if (hwmgr->od_enabled) dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) &data->odn_dpm_table.vdd_dep_on_mclk; else dep_on_mclk = table_info->vdd_dep_on_mclk; PP_ASSERT_WITH_CODE(dep_on_mclk, "Invalid SOC_VDD-UCLK Dependency Table!", return -EINVAL); if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock; } else { for (i = 0; i < dep_on_mclk->count; i++) { if (dep_on_mclk->entries[i].clk == mem_clock) break; } PP_ASSERT_WITH_CODE(dep_on_mclk->count > i, "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!", return -EINVAL); } PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers), "Failed to get UCLK settings from VBIOS!", return -1); *current_mem_vid = (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd)); *current_mem_soc_vind = (uint8_t)(dep_on_mclk->entries[i].vddInd); current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult); current_memclk_level->Did = (uint8_t)(dividers.ulDid); PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1, "Invalid Divider ID!", return -EINVAL); return 0; } /** * vega10_populate_all_memory_levels - Populates all SMC MCLK levels' structure * based on the trimmed allowed dpm memory clock states. * * @hwmgr: the address of the hardware manager. * return: PP_Result_OK on success. */ static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.mem_table); int result = 0; uint32_t i, j; for (i = 0; i < dpm_table->count; i++) { result = vega10_populate_single_memory_level(hwmgr, dpm_table->dpm_levels[i].value, &(pp_table->MemVid[i]), &(pp_table->UclkLevel[i]), &(pp_table->MemSocVoltageIndex[i])); if (result) return result; } j = i - 1; while (i < NUM_UCLK_DPM_LEVELS) { result = vega10_populate_single_memory_level(hwmgr, dpm_table->dpm_levels[j].value, &(pp_table->MemVid[i]), &(pp_table->UclkLevel[i]), &(pp_table->MemSocVoltageIndex[i])); if (result) return result; i++; } pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels); pp_table->MemoryChannelWidth = (uint16_t)(HBM_MEMORY_CHANNEL_WIDTH * channel_number[data->mem_channels]); pp_table->LowestUclkReservedForUlv = (uint8_t)(data->lowest_uclk_reserved_for_ulv); return result; } static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr, DSPCLK_e disp_clock) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *) (hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; uint32_t i; uint16_t clk = 0, vddc = 0; uint8_t vid = 0; switch (disp_clock) { case DSPCLK_DCEFCLK: dep_table = table_info->vdd_dep_on_dcefclk; break; case DSPCLK_DISPCLK: dep_table = table_info->vdd_dep_on_dispclk; break; case DSPCLK_PIXCLK: dep_table = table_info->vdd_dep_on_pixclk; break; case DSPCLK_PHYCLK: dep_table = table_info->vdd_dep_on_phyclk; break; default: return -1; } PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS, "Number Of Entries Exceeded maximum!", return -1); for (i = 0; i < dep_table->count; i++) { clk = (uint16_t)(dep_table->entries[i].clk / 100); vddc = table_info->vddc_lookup_table-> entries[dep_table->entries[i].vddInd].us_vdd; vid = (uint8_t)convert_to_vid(vddc); pp_table->DisplayClockTable[disp_clock][i].Freq = cpu_to_le16(clk); pp_table->DisplayClockTable[disp_clock][i].Vid = cpu_to_le16(vid); } while (i < NUM_DSPCLK_LEVELS) { pp_table->DisplayClockTable[disp_clock][i].Freq = cpu_to_le16(clk); pp_table->DisplayClockTable[disp_clock][i].Vid = cpu_to_le16(vid); i++; } return 0; } static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr) { uint32_t i; for (i = 0; i < DSPCLK_COUNT; i++) { PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i), "Failed to populate Clock in DisplayClockTable!", return -1); } return 0; } static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr, uint32_t eclock, uint8_t *current_eclk_did, uint8_t *current_soc_vol) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = table_info->mm_dep_table; struct pp_atomfwctrl_clock_dividers_soc15 dividers; uint32_t i; PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, eclock, &dividers), "Failed to get ECLK clock settings from VBIOS!", return -1); *current_eclk_did = (uint8_t)dividers.ulDid; for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].eclk == eclock) *current_soc_vol = dep_table->entries[i].vddcInd; } return 0; } static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table); int result = -EINVAL; uint32_t i, j; for (i = 0; i < dpm_table->count; i++) { result = vega10_populate_single_eclock_level(hwmgr, dpm_table->dpm_levels[i].value, &(pp_table->EclkDid[i]), &(pp_table->VceDpmVoltageIndex[i])); if (result) return result; } j = i - 1; while (i < NUM_VCE_DPM_LEVELS) { result = vega10_populate_single_eclock_level(hwmgr, dpm_table->dpm_levels[j].value, &(pp_table->EclkDid[i]), &(pp_table->VceDpmVoltageIndex[i])); if (result) return result; i++; } return result; } static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr, uint32_t vclock, uint8_t *current_vclk_did) { struct pp_atomfwctrl_clock_dividers_soc15 dividers; PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, vclock, &dividers), "Failed to get VCLK clock settings from VBIOS!", return -EINVAL); *current_vclk_did = (uint8_t)dividers.ulDid; return 0; } static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr, uint32_t dclock, uint8_t *current_dclk_did) { struct pp_atomfwctrl_clock_dividers_soc15 dividers; PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, dclock, &dividers), "Failed to get DCLK clock settings from VBIOS!", return -EINVAL); *current_dclk_did = (uint8_t)dividers.ulDid; return 0; } static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_single_dpm_table *vclk_dpm_table = &(data->dpm_table.vclk_table); struct vega10_single_dpm_table *dclk_dpm_table = &(data->dpm_table.dclk_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = table_info->mm_dep_table; int result = -EINVAL; uint32_t i, j; for (i = 0; i < vclk_dpm_table->count; i++) { result = vega10_populate_single_vclock_level(hwmgr, vclk_dpm_table->dpm_levels[i].value, &(pp_table->VclkDid[i])); if (result) return result; } j = i - 1; while (i < NUM_UVD_DPM_LEVELS) { result = vega10_populate_single_vclock_level(hwmgr, vclk_dpm_table->dpm_levels[j].value, &(pp_table->VclkDid[i])); if (result) return result; i++; } for (i = 0; i < dclk_dpm_table->count; i++) { result = vega10_populate_single_dclock_level(hwmgr, dclk_dpm_table->dpm_levels[i].value, &(pp_table->DclkDid[i])); if (result) return result; } j = i - 1; while (i < NUM_UVD_DPM_LEVELS) { result = vega10_populate_single_dclock_level(hwmgr, dclk_dpm_table->dpm_levels[j].value, &(pp_table->DclkDid[i])); if (result) return result; i++; } for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].vclk == vclk_dpm_table->dpm_levels[i].value && dep_table->entries[i].dclk == dclk_dpm_table->dpm_levels[i].value) pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[i].vddcInd; else return -1; } j = i - 1; while (i < NUM_UVD_DPM_LEVELS) { pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd; i++; } return 0; } static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_sclk; uint32_t i; for (i = 0; i < dep_table->count; i++) { pp_table->CksEnable[i] = dep_table->entries[i].cks_enable; pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); } return 0; } static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_sclk; struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; int result = 0; uint32_t i; pp_table->MinVoltageVid = (uint8_t)0xff; pp_table->MaxVoltageVid = (uint8_t)0; if (data->smu_features[GNLD_AVFS].supported) { result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); if (!result) { pp_table->MinVoltageVid = (uint8_t) convert_to_vid((uint16_t)(avfs_params.ulMinVddc)); pp_table->MaxVoltageVid = (uint8_t) convert_to_vid((uint16_t)(avfs_params.ulMaxVddc)); pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0); pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1); pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2); pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean); pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor); pp_table->BtcGbVdroopTableCksOff.a0 = cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0); pp_table->BtcGbVdroopTableCksOff.a0_shift = 20; pp_table->BtcGbVdroopTableCksOff.a1 = cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1); pp_table->BtcGbVdroopTableCksOff.a1_shift = 20; pp_table->BtcGbVdroopTableCksOff.a2 = cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2); pp_table->BtcGbVdroopTableCksOff.a2_shift = 20; pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson; pp_table->BtcGbVdroopTableCksOn.a0 = cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0); pp_table->BtcGbVdroopTableCksOn.a0_shift = 20; pp_table->BtcGbVdroopTableCksOn.a1 = cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1); pp_table->BtcGbVdroopTableCksOn.a1_shift = 20; pp_table->BtcGbVdroopTableCksOn.a2 = cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2); pp_table->BtcGbVdroopTableCksOn.a2_shift = 20; pp_table->AvfsGbCksOn.m1 = cpu_to_le32(avfs_params.ulGbFuseTableCksonM1); pp_table->AvfsGbCksOn.m2 = cpu_to_le32(avfs_params.ulGbFuseTableCksonM2); pp_table->AvfsGbCksOn.b = cpu_to_le32(avfs_params.ulGbFuseTableCksonB); pp_table->AvfsGbCksOn.m1_shift = 24; pp_table->AvfsGbCksOn.m2_shift = 12; pp_table->AvfsGbCksOn.b_shift = 0; pp_table->OverrideAvfsGbCksOn = avfs_params.ucEnableGbFuseTableCkson; pp_table->AvfsGbCksOff.m1 = cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1); pp_table->AvfsGbCksOff.m2 = cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2); pp_table->AvfsGbCksOff.b = cpu_to_le32(avfs_params.ulGbFuseTableCksoffB); pp_table->AvfsGbCksOff.m1_shift = 24; pp_table->AvfsGbCksOff.m2_shift = 12; pp_table->AvfsGbCksOff.b_shift = 0; for (i = 0; i < dep_table->count; i++) pp_table->StaticVoltageOffsetVid[i] = convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset)); if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->disp_clk_quad_eqn_a) && (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->disp_clk_quad_eqn_b)) { pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = (int32_t)data->disp_clk_quad_eqn_a; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = (int32_t)data->disp_clk_quad_eqn_b; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = (int32_t)data->disp_clk_quad_eqn_c; } else { pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = (int32_t)avfs_params.ulDispclk2GfxclkM1; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = (int32_t)avfs_params.ulDispclk2GfxclkM2; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = (int32_t)avfs_params.ulDispclk2GfxclkB; } pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12; if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->dcef_clk_quad_eqn_a) && (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->dcef_clk_quad_eqn_b)) { pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = (int32_t)data->dcef_clk_quad_eqn_a; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = (int32_t)data->dcef_clk_quad_eqn_b; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = (int32_t)data->dcef_clk_quad_eqn_c; } else { pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = (int32_t)avfs_params.ulDcefclk2GfxclkM1; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = (int32_t)avfs_params.ulDcefclk2GfxclkM2; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = (int32_t)avfs_params.ulDcefclk2GfxclkB; } pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12; if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->pixel_clk_quad_eqn_a) && (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->pixel_clk_quad_eqn_b)) { pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = (int32_t)data->pixel_clk_quad_eqn_a; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = (int32_t)data->pixel_clk_quad_eqn_b; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = (int32_t)data->pixel_clk_quad_eqn_c; } else { pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = (int32_t)avfs_params.ulPixelclk2GfxclkM1; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = (int32_t)avfs_params.ulPixelclk2GfxclkM2; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = (int32_t)avfs_params.ulPixelclk2GfxclkB; } pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12; if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->phy_clk_quad_eqn_a) && (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->phy_clk_quad_eqn_b)) { pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = (int32_t)data->phy_clk_quad_eqn_a; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = (int32_t)data->phy_clk_quad_eqn_b; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = (int32_t)data->phy_clk_quad_eqn_c; } else { pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = (int32_t)avfs_params.ulPhyclk2GfxclkM1; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = (int32_t)avfs_params.ulPhyclk2GfxclkM2; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = (int32_t)avfs_params.ulPhyclk2GfxclkB; } pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12; pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0; pp_table->AcgBtcGbVdroopTable.a0_shift = 20; pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1; pp_table->AcgBtcGbVdroopTable.a1_shift = 20; pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2; pp_table->AcgBtcGbVdroopTable.a2_shift = 20; pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1; pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2; pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB; pp_table->AcgAvfsGb.m1_shift = 24; pp_table->AcgAvfsGb.m2_shift = 12; pp_table->AcgAvfsGb.b_shift = 0; } else { data->smu_features[GNLD_AVFS].supported = false; } } return 0; } static int vega10_acg_enable(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; uint32_t agc_btc_response; if (data->smu_features[GNLD_ACG].supported) { if (0 == vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap)) data->smu_features[GNLD_DPM_PREFETCHER].enabled = true; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response); if (1 == agc_btc_response) { if (1 == data->acg_loop_state) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL); else if (2 == data->acg_loop_state) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL); if (0 == vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_ACG].smu_feature_bitmap)) data->smu_features[GNLD_ACG].enabled = true; } else { pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n"); data->smu_features[GNLD_ACG].enabled = false; } } return 0; } static int vega10_acg_disable(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_ACG].supported && data->smu_features[GNLD_ACG].enabled) if (!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_ACG].smu_feature_bitmap)) data->smu_features[GNLD_ACG].enabled = false; return 0; } static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_gpio_parameters gpio_params = {0}; int result; result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params); if (!result) { if (PP_CAP(PHM_PlatformCaps_RegulatorHot) && data->registry_data.regulator_hot_gpio_support) { pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio; pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity; pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio; pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity; } else { pp_table->VR0HotGpio = 0; pp_table->VR0HotPolarity = 0; pp_table->VR1HotGpio = 0; pp_table->VR1HotPolarity = 0; } if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) && data->registry_data.ac_dc_switch_gpio_support) { pp_table->AcDcGpio = gpio_params.ucAcDcGpio; pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity; } else { pp_table->AcDcGpio = 0; pp_table->AcDcPolarity = 0; } } return result; } static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_AVFS].supported) { /* Already enabled or disabled */ if (!(enable ^ data->smu_features[GNLD_AVFS].enabled)) return 0; if (enable) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_AVFS].smu_feature_bitmap), "[avfs_control] Attempt to Enable AVFS feature Failed!", return -1); data->smu_features[GNLD_AVFS].enabled = true; } else { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_AVFS].smu_feature_bitmap), "[avfs_control] Attempt to Disable AVFS feature Failed!", return -1); data->smu_features[GNLD_AVFS].enabled = false; } } return 0; } static int vega10_update_avfs(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { vega10_avfs_enable(hwmgr, false); } else if (data->need_update_dpm_table) { vega10_avfs_enable(hwmgr, false); vega10_avfs_enable(hwmgr, true); } else { vega10_avfs_enable(hwmgr, true); } return 0; } static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr) { int result = 0; uint64_t serial_number = 0; uint32_t top32, bottom32; struct phm_fuses_default fuse; struct vega10_hwmgr *data = hwmgr->backend; AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); serial_number = ((uint64_t)bottom32 << 32) | top32; if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) { avfs_fuse_table->VFT0_b = fuse.VFT0_b; avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1; avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2; avfs_fuse_table->VFT1_b = fuse.VFT1_b; avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1; avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2; avfs_fuse_table->VFT2_b = fuse.VFT2_b; avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1; avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2; result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table, AVFSFUSETABLE, false); PP_ASSERT_WITH_CODE(!result, "Failed to upload FuseOVerride!", ); } return result; } static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); struct phm_ppt_v2_information *table_info = hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; uint32_t i; dep_table = table_info->vdd_dep_on_mclk; odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk); for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; return; } } dep_table = table_info->vdd_dep_on_sclk; odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk); for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; return; } } } /** * vega10_init_smc_table - Initializes the SMC table and uploads it * * @hwmgr: the address of the powerplay hardware manager. * return: always 0 */ static int vega10_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_voltage_table voltage_table; struct pp_atomfwctrl_bios_boot_up_values boot_up_values; struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); result = vega10_setup_default_dpm_tables(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to setup default DPM tables!", return result); if (!hwmgr->not_vf) return 0; /* initialize ODN table */ if (hwmgr->od_enabled) { if (odn_table->max_vddc) { data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; vega10_check_dpm_table_updated(hwmgr); } else { vega10_odn_initial_default_setting(hwmgr); } } pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, &voltage_table); pp_table->MaxVidStep = voltage_table.max_vid_step; pp_table->GfxDpmVoltageMode = (uint8_t)(table_info->uc_gfx_dpm_voltage_mode); pp_table->SocDpmVoltageMode = (uint8_t)(table_info->uc_soc_dpm_voltage_mode); pp_table->UclkDpmVoltageMode = (uint8_t)(table_info->uc_uclk_dpm_voltage_mode); pp_table->UvdDpmVoltageMode = (uint8_t)(table_info->uc_uvd_dpm_voltage_mode); pp_table->VceDpmVoltageMode = (uint8_t)(table_info->uc_vce_dpm_voltage_mode); pp_table->Mp0DpmVoltageMode = (uint8_t)(table_info->uc_mp0_dpm_voltage_mode); pp_table->DisplayDpmVoltageMode = (uint8_t)(table_info->uc_dcef_dpm_voltage_mode); data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable; data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable; if (data->registry_data.ulv_support && table_info->us_ulv_voltage_offset) { result = vega10_populate_ulv_state(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize ULV state!", return result); } result = vega10_populate_smc_link_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Link Level!", return result); result = vega10_override_pcie_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to override pcie parameters!", return result); result = vega10_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Graphics Level!", return result); result = vega10_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Memory Level!", return result); vega10_populate_vddc_soc_levels(hwmgr); result = vega10_populate_all_display_clock_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Display Level!", return result); result = vega10_populate_smc_vce_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize VCE Level!", return result); result = vega10_populate_smc_uvd_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize UVD Level!", return result); if (data->registry_data.clock_stretcher_support) { result = vega10_populate_clock_stretcher_table(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate Clock Stretcher Table!", return result); } result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); if (!result) { data->vbios_boot_state.vddc = boot_up_values.usVddc; data->vbios_boot_state.vddci = boot_up_values.usVddci; data->vbios_boot_state.mvddc = boot_up_values.usMvddc; data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk); pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk); data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; if (0 != boot_up_values.usVddc) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFloorSocVoltage, (boot_up_values.usVddc * 4), NULL); data->vbios_boot_state.bsoc_vddc_lock = true; } else { data->vbios_boot_state.bsoc_vddc_lock = false; } smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, (uint32_t)(data->vbios_boot_state.dcef_clock / 100), NULL); } result = vega10_populate_avfs_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize AVFS Parameters!", return result); result = vega10_populate_gpio_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize GPIO Parameters!", return result); pp_table->GfxclkAverageAlpha = (uint8_t) (data->gfxclk_average_alpha); pp_table->SocclkAverageAlpha = (uint8_t) (data->socclk_average_alpha); pp_table->UclkAverageAlpha = (uint8_t) (data->uclk_average_alpha); pp_table->GfxActivityAverageAlpha = (uint8_t) (data->gfx_activity_average_alpha); vega10_populate_and_upload_avfs_fuse_override(hwmgr); result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); PP_ASSERT_WITH_CODE(!result, "Failed to upload PPtable!", return result); result = vega10_avfs_enable(hwmgr, true); PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!", return result); vega10_acg_enable(hwmgr); return 0; } static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_THERMAL].supported) { if (data->smu_features[GNLD_THERMAL].enabled) pr_info("THERMAL Feature Already enabled!"); PP_ASSERT_WITH_CODE( !vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_THERMAL].smu_feature_bitmap), "Enable THERMAL Feature Failed!", return -1); data->smu_features[GNLD_THERMAL].enabled = true; } return 0; } static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_THERMAL].supported) { if (!data->smu_features[GNLD_THERMAL].enabled) pr_info("THERMAL Feature Already disabled!"); PP_ASSERT_WITH_CODE( !vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_THERMAL].smu_feature_bitmap), "disable THERMAL Feature Failed!", return -1); data->smu_features[GNLD_THERMAL].enabled = false; } return 0; } static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) { if (data->smu_features[GNLD_VR0HOT].supported) { PP_ASSERT_WITH_CODE( !vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_VR0HOT].smu_feature_bitmap), "Attempt to Enable VR0 Hot feature Failed!", return -1); data->smu_features[GNLD_VR0HOT].enabled = true; } else { if (data->smu_features[GNLD_VR1HOT].supported) { PP_ASSERT_WITH_CODE( !vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_VR1HOT].smu_feature_bitmap), "Attempt to Enable VR0 Hot feature Failed!", return -1); data->smu_features[GNLD_VR1HOT].enabled = true; } } } return 0; } static int vega10_enable_ulv(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->registry_data.ulv_support) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_ULV].smu_feature_bitmap), "Enable ULV Feature Failed!", return -1); data->smu_features[GNLD_ULV].enabled = true; } return 0; } static int vega10_disable_ulv(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->registry_data.ulv_support) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_ULV].smu_feature_bitmap), "disable ULV Feature Failed!", return -EINVAL); data->smu_features[GNLD_ULV].enabled = false; } return 0; } static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_DS_GFXCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), "Attempt to Enable DS_GFXCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_GFXCLK].enabled = true; } if (data->smu_features[GNLD_DS_SOCCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), "Attempt to Enable DS_SOCCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_SOCCLK].enabled = true; } if (data->smu_features[GNLD_DS_LCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), "Attempt to Enable DS_LCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_LCLK].enabled = true; } if (data->smu_features[GNLD_DS_DCEFCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), "Attempt to Enable DS_DCEFCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_DCEFCLK].enabled = true; } return 0; } static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_DS_GFXCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), "Attempt to disable DS_GFXCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_GFXCLK].enabled = false; } if (data->smu_features[GNLD_DS_SOCCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), "Attempt to disable DS_ Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_SOCCLK].enabled = false; } if (data->smu_features[GNLD_DS_LCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), "Attempt to disable DS_LCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_LCLK].enabled = false; } if (data->smu_features[GNLD_DS_DCEFCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), "Attempt to disable DS_DCEFCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_DCEFCLK].enabled = false; } return 0; } static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) { struct vega10_hwmgr *data = hwmgr->backend; uint32_t i, feature_mask = 0; if (!hwmgr->not_vf) return 0; if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), "Attempt to disable LED DPM feature failed!", return -EINVAL); data->smu_features[GNLD_LED_DISPLAY].enabled = false; } for (i = 0; i < GNLD_DPM_MAX; i++) { if (data->smu_features[i].smu_feature_bitmap & bitmap) { if (data->smu_features[i].supported) { if (data->smu_features[i].enabled) { feature_mask |= data->smu_features[i]. smu_feature_bitmap; data->smu_features[i].enabled = false; } } } } vega10_enable_smc_features(hwmgr, false, feature_mask); return 0; } /** * vega10_start_dpm - Tell SMC to enabled the supported DPMs. * * @hwmgr: the address of the powerplay hardware manager. * @bitmap: bitmap for the features to enabled. * return: 0 on at least one DPM is successfully enabled. */ static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) { struct vega10_hwmgr *data = hwmgr->backend; uint32_t i, feature_mask = 0; for (i = 0; i < GNLD_DPM_MAX; i++) { if (data->smu_features[i].smu_feature_bitmap & bitmap) { if (data->smu_features[i].supported) { if (!data->smu_features[i].enabled) { feature_mask |= data->smu_features[i]. smu_feature_bitmap; data->smu_features[i].enabled = true; } } } } if (vega10_enable_smc_features(hwmgr, true, feature_mask)) { for (i = 0; i < GNLD_DPM_MAX; i++) { if (data->smu_features[i].smu_feature_bitmap & feature_mask) data->smu_features[i].enabled = false; } } if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), "Attempt to Enable LED DPM feature Failed!", return -EINVAL); data->smu_features[GNLD_LED_DISPLAY].enabled = true; } if (data->vbios_boot_state.bsoc_vddc_lock) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFloorSocVoltage, 0, NULL); data->vbios_boot_state.bsoc_vddc_lock = false; } if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) { if (data->smu_features[GNLD_ACDC].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_ACDC].smu_feature_bitmap), "Attempt to Enable DS_GFXCLK Feature Failed!", return -1); data->smu_features[GNLD_ACDC].enabled = true; } } if (data->registry_data.pcie_dpm_key_disabled) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap), "Attempt to Disable Link DPM feature Failed!", return -EINVAL); data->smu_features[GNLD_DPM_LINK].enabled = false; data->smu_features[GNLD_DPM_LINK].supported = false; } return 0; } static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_PCC_LIMIT].supported) { if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled) pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled"); PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap), "Attempt to Enable PCC Limit feature Failed!", return -EINVAL); data->smu_features[GNLD_PCC_LIMIT].enabled = enable; } return 0; } static void vega10_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL && table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) { hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk; hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk; } else { hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[0].clk; } hwmgr->pstate_sclk_peak = table_info->vdd_dep_on_sclk->entries[table_info->vdd_dep_on_sclk->count - 1].clk; hwmgr->pstate_mclk_peak = table_info->vdd_dep_on_mclk->entries[table_info->vdd_dep_on_mclk->count - 1].clk; /* make sure the output is in Mhz */ hwmgr->pstate_sclk /= 100; hwmgr->pstate_mclk /= 100; hwmgr->pstate_sclk_peak /= 100; hwmgr->pstate_mclk_peak /= 100; } static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; int tmp_result, result = 0; if (hwmgr->not_vf) { vega10_enable_disable_PCC_limit_feature(hwmgr, true); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_ConfigureTelemetry, data->config_telemetry, NULL); tmp_result = vega10_construct_voltage_tables(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to construct voltage tables!", result = tmp_result); } if (hwmgr->not_vf || hwmgr->pp_one_vf) { tmp_result = vega10_init_smc_table(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to initialize SMC table!", result = tmp_result); } if (hwmgr->not_vf) { if (PP_CAP(PHM_PlatformCaps_ThermalController)) { tmp_result = vega10_enable_thermal_protection(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable thermal protection!", result = tmp_result); } tmp_result = vega10_enable_vrhot_feature(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable VR hot feature!", result = tmp_result); tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable deep sleep master switch!", result = tmp_result); } if (hwmgr->not_vf) { tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to start DPM!", result = tmp_result); } if (hwmgr->not_vf) { /* enable didt, do not abort if failed didt */ tmp_result = vega10_enable_didt_config(hwmgr); PP_ASSERT(!tmp_result, "Failed to enable didt config!"); } tmp_result = vega10_enable_power_containment(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable power containment!", result = tmp_result); if (hwmgr->not_vf) { tmp_result = vega10_power_control_set_level(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to power control set level!", result = tmp_result); tmp_result = vega10_enable_ulv(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable ULV!", result = tmp_result); } vega10_populate_umdpstate_clocks(hwmgr); return result; } static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct vega10_power_state); } static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, void *state, struct pp_power_state *power_state, void *pp_table, uint32_t classification_flag) { ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2; struct vega10_power_state *vega10_ps = cast_phw_vega10_power_state(&(power_state->hardware)); struct vega10_performance_level *performance_level; ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state; ATOM_Vega10_POWERPLAYTABLE *powerplay_table = (ATOM_Vega10_POWERPLAYTABLE *)pp_table; ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table = (ATOM_Vega10_SOCCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset)); ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = (ATOM_Vega10_GFXCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)); ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table = (ATOM_Vega10_MCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); /* The following fields are not initialized here: * id orderedList allStatesList */ power_state->classification.ui_label = (le16_to_cpu(state_entry->usClassification) & ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; power_state->classification.flags = classification_flag; /* NOTE: There is a classification2 flag in BIOS * that is not being used right now */ power_state->classification.temporary_state = false; power_state->classification.to_be_deleted = false; power_state->validation.disallowOnDC = ((le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Vega10_DISALLOW_ON_DC) != 0); power_state->display.disableFrameModulation = false; power_state->display.limitRefreshrate = false; power_state->display.enableVariBright = ((le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Vega10_ENABLE_VARIBRIGHT) != 0); power_state->validation.supportedPowerLevels = 0; power_state->uvd_clocks.VCLK = 0; power_state->uvd_clocks.DCLK = 0; power_state->temperatures.min = 0; power_state->temperatures.max = 0; performance_level = &(vega10_ps->performance_levels [vega10_ps->performance_level_count++]); PP_ASSERT_WITH_CODE( (vega10_ps->performance_level_count < NUM_GFXCLK_DPM_LEVELS), "Performance levels exceeds SMC limit!", return -1); PP_ASSERT_WITH_CODE( (vega10_ps->performance_level_count < hwmgr->platform_descriptor. hardwareActivityPerformanceLevels), "Performance levels exceeds Driver limit!", return -1); /* Performance levels are arranged from low to high. */ performance_level->soc_clock = socclk_dep_table->entries [state_entry->ucSocClockIndexLow].ulClk; performance_level->gfx_clock = gfxclk_dep_table->entries [state_entry->ucGfxClockIndexLow].ulClk; performance_level->mem_clock = mclk_dep_table->entries [state_entry->ucMemClockIndexLow].ulMemClk; performance_level = &(vega10_ps->performance_levels [vega10_ps->performance_level_count++]); performance_level->soc_clock = socclk_dep_table->entries [state_entry->ucSocClockIndexHigh].ulClk; if (gfxclk_dep_table->ucRevId == 0) { /* under vega10 pp one vf mode, the gfx clk dpm need be lower * to level-4 due to the limited 110w-power */ if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) performance_level->gfx_clock = gfxclk_dep_table->entries[4].ulClk; else performance_level->gfx_clock = gfxclk_dep_table->entries [state_entry->ucGfxClockIndexHigh].ulClk; } else if (gfxclk_dep_table->ucRevId == 1) { patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries; if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) performance_level->gfx_clock = patom_record_V2[4].ulClk; else performance_level->gfx_clock = patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk; } performance_level->mem_clock = mclk_dep_table->entries [state_entry->ucMemClockIndexHigh].ulMemClk; return 0; } static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry_index, struct pp_power_state *state) { int result; struct vega10_power_state *vega10_ps; state->hardware.magic = PhwVega10_Magic; vega10_ps = cast_phw_vega10_power_state(&state->hardware); result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state, vega10_get_pp_table_entry_callback_func); if (result) return result; /* * This is the earliest time we have all the dependency table * and the VBIOS boot state */ /* set DC compatible flag if this state supports DC */ if (!state->validation.disallowOnDC) vega10_ps->dc_compatible = true; vega10_ps->uvd_clks.vclk = state->uvd_clocks.VCLK; vega10_ps->uvd_clks.dclk = state->uvd_clocks.DCLK; return 0; } static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { return 0; } static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *request_ps, const struct pp_power_state *current_ps) { struct amdgpu_device *adev = hwmgr->adev; struct vega10_power_state *vega10_ps = cast_phw_vega10_power_state(&request_ps->hardware); uint32_t sclk; uint32_t mclk; struct PP_Clocks minimum_clocks = {0}; bool disable_mclk_switching; bool disable_mclk_switching_for_frame_lock; bool disable_mclk_switching_for_vr; bool force_mclk_high; const struct phm_clock_and_voltage_limits *max_limits; uint32_t i; struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); int32_t count; uint32_t stable_pstate_sclk_dpm_percentage; uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; uint32_t latency; data->battery_state = (PP_StateUILabel_Battery == request_ps->classification.ui_label); if (vega10_ps->performance_level_count != 2) pr_info("VI should always have 2 performance levels"); max_limits = adev->pm.ac_power ? &(hwmgr->dyn_state.max_clock_voltage_on_ac) : &(hwmgr->dyn_state.max_clock_voltage_on_dc); /* Cap clock DPM tables at DC MAX if it is in DC. */ if (!adev->pm.ac_power) { for (i = 0; i < vega10_ps->performance_level_count; i++) { if (vega10_ps->performance_levels[i].mem_clock > max_limits->mclk) vega10_ps->performance_levels[i].mem_clock = max_limits->mclk; if (vega10_ps->performance_levels[i].gfx_clock > max_limits->sclk) vega10_ps->performance_levels[i].gfx_clock = max_limits->sclk; } } /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; if (PP_CAP(PHM_PlatformCaps_StablePState)) { stable_pstate_sclk_dpm_percentage = data->registry_data.stable_pstate_sclk_dpm_percentage; PP_ASSERT_WITH_CODE( data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && data->registry_data.stable_pstate_sclk_dpm_percentage <= 100, "percent sclk value must range from 1% to 100%, setting default value", stable_pstate_sclk_dpm_percentage = 75); max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); stable_pstate_sclk = (max_limits->sclk * stable_pstate_sclk_dpm_percentage) / 100; for (count = table_info->vdd_dep_on_sclk->count - 1; count >= 0; count--) { if (stable_pstate_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[count].clk; break; } } if (count < 0) stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; stable_pstate_mclk = max_limits->mclk; minimum_clocks.engineClock = stable_pstate_sclk; minimum_clocks.memoryClock = stable_pstate_mclk; } disable_mclk_switching_for_frame_lock = PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); disable_mclk_switching_for_vr = PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR); force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh); if (hwmgr->display_config->num_display == 0) disable_mclk_switching = false; else disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && !hwmgr->display_config->multi_monitor_in_sync) || disable_mclk_switching_for_frame_lock || disable_mclk_switching_for_vr || force_mclk_high; sclk = vega10_ps->performance_levels[0].gfx_clock; mclk = vega10_ps->performance_levels[0].mem_clock; if (sclk < minimum_clocks.engineClock) sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock; if (mclk < minimum_clocks.memoryClock) mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock; vega10_ps->performance_levels[0].gfx_clock = sclk; vega10_ps->performance_levels[0].mem_clock = mclk; if (vega10_ps->performance_levels[1].gfx_clock < vega10_ps->performance_levels[0].gfx_clock) vega10_ps->performance_levels[0].gfx_clock = vega10_ps->performance_levels[1].gfx_clock; if (disable_mclk_switching) { /* Set Mclk the max of level 0 and level 1 */ if (mclk < vega10_ps->performance_levels[1].mem_clock) mclk = vega10_ps->performance_levels[1].mem_clock; /* Find the lowest MCLK frequency that is within * the tolerable latency defined in DAL */ latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; for (i = 0; i < data->mclk_latency_table.count; i++) { if ((data->mclk_latency_table.entries[i].latency <= latency) && (data->mclk_latency_table.entries[i].frequency >= vega10_ps->performance_levels[0].mem_clock) && (data->mclk_latency_table.entries[i].frequency <= vega10_ps->performance_levels[1].mem_clock)) mclk = data->mclk_latency_table.entries[i].frequency; } vega10_ps->performance_levels[0].mem_clock = mclk; } else { if (vega10_ps->performance_levels[1].mem_clock < vega10_ps->performance_levels[0].mem_clock) vega10_ps->performance_levels[0].mem_clock = vega10_ps->performance_levels[1].mem_clock; } if (PP_CAP(PHM_PlatformCaps_StablePState)) { for (i = 0; i < vega10_ps->performance_level_count; i++) { vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk; vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk; } } return 0; } static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) { struct vega10_hwmgr *data = hwmgr->backend; const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct vega10_power_state *vega10_ps = cast_const_phw_vega10_power_state(states->pnew_state); struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); uint32_t sclk = vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock; struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); uint32_t mclk = vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock; uint32_t i; for (i = 0; i < sclk_table->count; i++) { if (sclk == sclk_table->dpm_levels[i].value) break; } if (i >= sclk_table->count) { if (sclk > sclk_table->dpm_levels[i-1].value) { data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; sclk_table->dpm_levels[i-1].value = sclk; } } for (i = 0; i < mclk_table->count; i++) { if (mclk == mclk_table->dpm_levels[i].value) break; } if (i >= mclk_table->count) { if (mclk > mclk_table->dpm_levels[i-1].value) { data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; mclk_table->dpm_levels[i-1].value = mclk; } } if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK; return 0; } static int vega10_populate_and_upload_sclk_mclk_dpm_levels( struct pp_hwmgr *hwmgr, const void *input) { int result = 0; struct vega10_hwmgr *data = hwmgr->backend; struct vega10_dpm_table *dpm_table = &data->dpm_table; struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table; struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk; int count; if (!data->need_update_dpm_table) return 0; if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { for (count = 0; count < dpm_table->gfx_table.count; count++) dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; } odn_clk_table = &odn_table->vdd_dep_on_mclk; if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { for (count = 0; count < dpm_table->mem_table.count; count++) dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; } if (data->need_update_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) { result = vega10_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", return result); } if (data->need_update_dpm_table & (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) { result = vega10_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", return result); } vega10_populate_vddc_soc_levels(hwmgr); return result; } static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr, struct vega10_single_dpm_table *dpm_table, uint32_t low_limit, uint32_t high_limit) { uint32_t i; for (i = 0; i < dpm_table->count; i++) { if ((dpm_table->dpm_levels[i].value < low_limit) || (dpm_table->dpm_levels[i].value > high_limit)) dpm_table->dpm_levels[i].enabled = false; else dpm_table->dpm_levels[i].enabled = true; } return 0; } static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr, struct vega10_single_dpm_table *dpm_table, uint32_t low_limit, uint32_t high_limit, uint32_t disable_dpm_mask) { uint32_t i; for (i = 0; i < dpm_table->count; i++) { if ((dpm_table->dpm_levels[i].value < low_limit) || (dpm_table->dpm_levels[i].value > high_limit)) dpm_table->dpm_levels[i].enabled = false; else if (!((1 << i) & disable_dpm_mask)) dpm_table->dpm_levels[i].enabled = false; else dpm_table->dpm_levels[i].enabled = true; } return 0; } static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct vega10_power_state *vega10_ps) { struct vega10_hwmgr *data = hwmgr->backend; uint32_t high_limit_count; PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1), "power state did not have any performance level", return -1); high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1; vega10_trim_single_dpm_states(hwmgr, &(data->dpm_table.soc_table), vega10_ps->performance_levels[0].soc_clock, vega10_ps->performance_levels[high_limit_count].soc_clock); vega10_trim_single_dpm_states_with_mask(hwmgr, &(data->dpm_table.gfx_table), vega10_ps->performance_levels[0].gfx_clock, vega10_ps->performance_levels[high_limit_count].gfx_clock, data->disable_dpm_mask); vega10_trim_single_dpm_states(hwmgr, &(data->dpm_table.mem_table), vega10_ps->performance_levels[0].mem_clock, vega10_ps->performance_levels[high_limit_count].mem_clock); return 0; } static uint32_t vega10_find_lowest_dpm_level( struct vega10_single_dpm_table *table) { uint32_t i; for (i = 0; i < table->count; i++) { if (table->dpm_levels[i].enabled) break; } return i; } static uint32_t vega10_find_highest_dpm_level( struct vega10_single_dpm_table *table) { uint32_t i = 0; if (table->count <= MAX_REGULAR_DPM_NUMBER) { for (i = table->count; i > 0; i--) { if (table->dpm_levels[i - 1].enabled) return i - 1; } } else { pr_info("DPM Table Has Too Many Entries!"); return MAX_REGULAR_DPM_NUMBER - 1; } return i; } static void vega10_apply_dal_minimum_voltage_request( struct pp_hwmgr *hwmgr) { return; } static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk; return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1; } static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; uint32_t socclk_idx; vega10_apply_dal_minimum_voltage_request(hwmgr); if (!data->registry_data.sclk_dpm_key_disabled) { if (data->smc_state_table.gfx_boot_level != data->dpm_table.gfx_table.dpm_state.soft_min_level) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinGfxclkByIndex, data->smc_state_table.gfx_boot_level, NULL); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->smc_state_table.gfx_boot_level; } } if (!data->registry_data.mclk_dpm_key_disabled) { if (data->smc_state_table.mem_boot_level != data->dpm_table.mem_table.dpm_state.soft_min_level) { if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1) && hwmgr->not_vf) { socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinSocclkByIndex, socclk_idx, NULL); } else { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, data->smc_state_table.mem_boot_level, NULL); } data->dpm_table.mem_table.dpm_state.soft_min_level = data->smc_state_table.mem_boot_level; } } if (!hwmgr->not_vf) return 0; if (!data->registry_data.socclk_dpm_key_disabled) { if (data->smc_state_table.soc_boot_level != data->dpm_table.soc_table.dpm_state.soft_min_level) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinSocclkByIndex, data->smc_state_table.soc_boot_level, NULL); data->dpm_table.soc_table.dpm_state.soft_min_level = data->smc_state_table.soc_boot_level; } } return 0; } static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; vega10_apply_dal_minimum_voltage_request(hwmgr); if (!data->registry_data.sclk_dpm_key_disabled) { if (data->smc_state_table.gfx_max_level != data->dpm_table.gfx_table.dpm_state.soft_max_level) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxGfxclkByIndex, data->smc_state_table.gfx_max_level, NULL); data->dpm_table.gfx_table.dpm_state.soft_max_level = data->smc_state_table.gfx_max_level; } } if (!data->registry_data.mclk_dpm_key_disabled) { if (data->smc_state_table.mem_max_level != data->dpm_table.mem_table.dpm_state.soft_max_level) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxUclkByIndex, data->smc_state_table.mem_max_level, NULL); data->dpm_table.mem_table.dpm_state.soft_max_level = data->smc_state_table.mem_max_level; } } if (!hwmgr->not_vf) return 0; if (!data->registry_data.socclk_dpm_key_disabled) { if (data->smc_state_table.soc_max_level != data->dpm_table.soc_table.dpm_state.soft_max_level) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMaxSocclkByIndex, data->smc_state_table.soc_max_level, NULL); data->dpm_table.soc_table.dpm_state.soft_max_level = data->smc_state_table.soc_max_level; } } return 0; } static int vega10_generate_dpm_level_enable_mask( struct pp_hwmgr *hwmgr, const void *input) { struct vega10_hwmgr *data = hwmgr->backend; const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct vega10_power_state *vega10_ps = cast_const_phw_vega10_power_state(states->pnew_state); int i; PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps), "Attempt to Trim DPM States Failed!", return -1); data->smc_state_table.gfx_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.gfx_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.mem_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); data->smc_state_table.mem_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); data->smc_state_table.soc_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table)); data->smc_state_table.soc_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.soc_table)); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Attempt to upload DPM Bootup Levels Failed!", return -1); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Attempt to upload DPM Max Levels Failed!", return -1); for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++) data->dpm_table.gfx_table.dpm_levels[i].enabled = true; for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++) data->dpm_table.mem_table.dpm_levels[i].enabled = true; for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++) data->dpm_table.soc_table.dpm_levels[i].enabled = true; return 0; } int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_DPM_VCE].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap), "Attempt to Enable/Disable DPM VCE Failed!", return -1); data->smu_features[GNLD_DPM_VCE].enabled = enable; } return 0; } static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; uint32_t low_sclk_interrupt_threshold = 0; if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) && (data->low_sclk_interrupt_threshold != 0)) { low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; data->smc_state_table.pp_table.LowGfxclkInterruptThreshold = cpu_to_le32(low_sclk_interrupt_threshold); /* This message will also enable SmcToHost Interrupt */ smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetLowGfxclkInterruptThreshold, (uint32_t)low_sclk_interrupt_threshold, NULL); } return 0; } static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { int tmp_result, result = 0; struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to find DPM states clocks in DPM table!", result = tmp_result); tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result); tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to generate DPM level enabled mask!", result = tmp_result); tmp_result = vega10_update_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to update SCLK threshold!", result = tmp_result); result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); PP_ASSERT_WITH_CODE(!result, "Failed to upload PPtable!", return result); /* * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. * That effectively disables AVFS feature. */ if(hwmgr->hardcode_pp_table != NULL) data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; vega10_update_avfs(hwmgr); /* * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC. * That will help to keep AVFS disabled. */ data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; return 0; } static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct vega10_power_state *vega10_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); if (low) return vega10_ps->performance_levels[0].gfx_clock; else return vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock; } static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct vega10_power_state *vega10_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); if (low) return vega10_ps->performance_levels[0].mem_clock; else return vega10_ps->performance_levels [vega10_ps->performance_level_count-1].mem_clock; } static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr, uint32_t *query) { uint32_t value; if (!query) return -EINVAL; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value); /* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */ *query = value << 8; return 0; } static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { struct amdgpu_device *adev = hwmgr->adev; uint32_t sclk_mhz, mclk_idx, activity_percent = 0; struct vega10_hwmgr *data = hwmgr->backend; struct vega10_dpm_table *dpm_table = &data->dpm_table; int ret = 0; uint32_t val_vid; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz); *((uint32_t *)value) = sclk_mhz * 100; break; case AMDGPU_PP_SENSOR_GFX_MCLK: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx); if (mclk_idx < dpm_table->mem_table.count) { *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value; *size = 4; } else { ret = -EINVAL; } break; case AMDGPU_PP_SENSOR_GPU_LOAD: smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0, &activity_percent); *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value); *((uint32_t *)value) = *((uint32_t *)value) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_TEMP: smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value); *((uint32_t *)value) = *((uint32_t *)value) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; *size = 4; break; case AMDGPU_PP_SENSOR_UVD_POWER: *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_INPUT_POWER: ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value); break; case AMDGPU_PP_SENSOR_VDDGFX: val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) & SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >> SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT; *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid); return 0; case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value); if (!ret) *size = 8; break; default: ret = -EOPNOTSUPP; break; } return ret; } static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_disp) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetUclkFastSwitch, has_disp ? 1 : 0, NULL); } static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req) { int result = 0; enum amd_pp_clock_type clk_type = clock_req->clock_type; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; DSPCLK_e clk_select = 0; uint32_t clk_request = 0; switch (clk_type) { case amd_pp_dcef_clock: clk_select = DSPCLK_DCEFCLK; break; case amd_pp_disp_clock: clk_select = DSPCLK_DISPCLK; break; case amd_pp_pixel_clock: clk_select = DSPCLK_PIXCLK; break; case amd_pp_phy_clock: clk_select = DSPCLK_PHYCLK; break; default: pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); result = -1; break; } if (!result) { clk_request = (clk_freq << 16) | clk_select; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_RequestDisplayClockByFreq, clk_request, NULL); } return result; } static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table, uint32_t frequency) { uint8_t count; uint8_t i; if (mclk_table == NULL || mclk_table->count == 0) return 0; count = (uint8_t)(mclk_table->count); for(i = 0; i < count; i++) { if(mclk_table->entries[i].clk >= frequency) return i; } return i-1; } static int vega10_notify_smc_display_config_after_ps_adjustment( struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_single_dpm_table *dpm_table = &data->dpm_table.dcef_table; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; uint32_t idx; struct PP_Clocks min_clocks = {0}; uint32_t i; struct pp_display_clock_request clock_req; if ((hwmgr->display_config->num_display > 1) && !hwmgr->display_config->multi_monitor_in_sync && !hwmgr->display_config->nb_pstate_switch_disable) vega10_notify_smc_display_change(hwmgr, false); else vega10_notify_smc_display_change(hwmgr, true); min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; for (i = 0; i < dpm_table->count; i++) { if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock) break; } if (i < dpm_table->count) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10; if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) { smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, min_clocks.dcefClockInSR / 100, NULL); } else { pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); } } else { pr_debug("Cannot find requested DCEFCLK!"); } if (min_clocks.memoryClock != 0) { idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx, NULL); data->dpm_table.mem_table.dpm_state.soft_min_level= idx; } return 0; } static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; data->smc_state_table.gfx_boot_level = data->smc_state_table.gfx_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.mem_boot_level = data->smc_state_table.mem_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to highest!", return -1); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -1); return 0; } static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; data->smc_state_table.gfx_boot_level = data->smc_state_table.gfx_max_level = vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.mem_boot_level = data->smc_state_table.mem_max_level = vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to highest!", return -1); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -1); return 0; } static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; data->smc_state_table.gfx_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.gfx_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.mem_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); data->smc_state_table.mem_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload DPM Bootup Levels!", return -1); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload DPM Max Levels!", return -1); return 0; } static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL && table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL && table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) { *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL; *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL; *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { /* under vega10 pp one vf mode, the gfx clk dpm need be lower * to level-4 due to the limited power */ if (hwmgr->pp_one_vf) *sclk_mask = 4; else *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; *soc_mask = table_info->vdd_dep_on_socclk->count - 1; *mclk_mask = table_info->vdd_dep_on_mclk->count - 1; } return 0; } static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { if (!hwmgr->not_vf) return; switch (mode) { case AMD_FAN_CTRL_NONE: vega10_fan_ctrl_set_fan_speed_pwm(hwmgr, 255); break; case AMD_FAN_CTRL_MANUAL: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega10_fan_ctrl_stop_smc_fan_control(hwmgr); break; case AMD_FAN_CTRL_AUTO: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega10_fan_ctrl_start_smc_fan_control(hwmgr); break; default: break; } } static int vega10_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct vega10_hwmgr *data = hwmgr->backend; switch (type) { case PP_SCLK: data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0; data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0; PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to lowest!", return -EINVAL); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -EINVAL); break; case PP_MCLK: data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0; data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0; PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to lowest!", return -EINVAL); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -EINVAL); break; case PP_SOCCLK: data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0; data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0; PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to lowest!", return -EINVAL); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -EINVAL); break; case PP_DCEFCLK: pr_info("Setting DCEFCLK min/max dpm level is not supported!\n"); break; case PP_PCIE: default: break; } return 0; } static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask = 0; uint32_t mclk_mask = 0; uint32_t soc_mask = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = vega10_force_dpm_highest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = vega10_force_dpm_lowest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = vega10_unforce_dpm_levels(hwmgr); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); if (ret) return ret; vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } if (!hwmgr->not_vf) return ret; if (!ret) { if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE); else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO); } return ret; } static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_clock_and_voltage_limits *max_limits = &table_info->max_clock_voltage_on_ac; info->engine_max_clock = max_limits->sclk; info->memory_max_clock = max_limits->mclk; return 0; } static void vega10_get_sclks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_sclk; uint32_t i; clocks->num_levels = 0; for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].clk) { clocks->data[clocks->num_levels].clocks_in_khz = dep_table->entries[i].clk * 10; clocks->num_levels++; } } } static void vega10_get_memclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_mclk; struct vega10_hwmgr *data = hwmgr->backend; uint32_t j = 0; uint32_t i; for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].clk) { clocks->data[j].clocks_in_khz = dep_table->entries[i].clk * 10; data->mclk_latency_table.entries[j].frequency = dep_table->entries[i].clk; clocks->data[j].latency_in_us = data->mclk_latency_table.entries[j].latency = 25; j++; } } clocks->num_levels = data->mclk_latency_table.count = j; } static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_dcefclk; uint32_t i; for (i = 0; i < dep_table->count; i++) { clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; clocks->data[i].latency_in_us = 0; clocks->num_levels++; } } static void vega10_get_socclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; uint32_t i; for (i = 0; i < dep_table->count; i++) { clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; clocks->data[i].latency_in_us = 0; clocks->num_levels++; } } static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { switch (type) { case amd_pp_sys_clock: vega10_get_sclks(hwmgr, clocks); break; case amd_pp_mem_clock: vega10_get_memclocks(hwmgr, clocks); break; case amd_pp_dcef_clock: vega10_get_dcefclocks(hwmgr, clocks); break; case amd_pp_soc_clock: vega10_get_socclocks(hwmgr, clocks); break; default: return -1; } return 0; } static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; uint32_t i; switch (type) { case amd_pp_mem_clock: dep_table = table_info->vdd_dep_on_mclk; break; case amd_pp_dcef_clock: dep_table = table_info->vdd_dep_on_dcefclk; break; case amd_pp_disp_clock: dep_table = table_info->vdd_dep_on_dispclk; break; case amd_pp_pixel_clock: dep_table = table_info->vdd_dep_on_pixclk; break; case amd_pp_phy_clock: dep_table = table_info->vdd_dep_on_phyclk; break; default: return -1; } for (i = 0; i < dep_table->count; i++) { clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table-> entries[dep_table->entries[i].vddInd].us_vdd); clocks->num_levels++; } if (i < dep_table->count) return -1; return 0; } static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, void *clock_range) { struct vega10_hwmgr *data = hwmgr->backend; struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range; Watermarks_t *table = &(data->smc_state_table.water_marks_table); if (!data->registry_data.disable_water_mark) { smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); data->water_marks_bitmap = WaterMarksExist; } return 0; } static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) { static const char *ppfeature_name[] = { "DPM_PREFETCHER", "GFXCLK_DPM", "UCLK_DPM", "SOCCLK_DPM", "UVD_DPM", "VCE_DPM", "ULV", "MP0CLK_DPM", "LINK_DPM", "DCEFCLK_DPM", "AVFS", "GFXCLK_DS", "SOCCLK_DS", "LCLK_DS", "PPT", "TDC", "THERMAL", "GFX_PER_CU_CG", "RM", "DCEFCLK_DS", "ACDC", "VR0HOT", "VR1HOT", "FW_CTF", "LED_DISPLAY", "FAN_CONTROL", "FAST_PPT", "DIDT", "ACG", "PCC_LIMIT"}; static const char *output_title[] = { "FEATURES", "BITMASK", "ENABLEMENT"}; uint64_t features_enabled; int i; int ret = 0; int size = 0; phm_get_sysfs_buf(&buf, &size); ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); PP_ASSERT_WITH_CODE(!ret, "[EnableAllSmuFeatures] Failed to get enabled smc features!", return ret); size += sysfs_emit_at(buf, size, "Current ppfeatures: 0x%016llx\n", features_enabled); size += sysfs_emit_at(buf, size, "%-19s %-22s %s\n", output_title[0], output_title[1], output_title[2]); for (i = 0; i < GNLD_FEATURES_MAX; i++) { size += sysfs_emit_at(buf, size, "%-19s 0x%016llx %6s\n", ppfeature_name[i], 1ULL << i, (features_enabled & (1ULL << i)) ? "Y" : "N"); } return size; } static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) { uint64_t features_enabled; uint64_t features_to_enable; uint64_t features_to_disable; int ret = 0; if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) return -EINVAL; ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); if (ret) return ret; features_to_disable = features_enabled & ~new_ppfeature_masks; features_to_enable = ~features_enabled & new_ppfeature_masks; pr_debug("features_to_disable 0x%llx\n", features_to_disable); pr_debug("features_to_enable 0x%llx\n", features_to_enable); if (features_to_disable) { ret = vega10_enable_smc_features(hwmgr, false, features_to_disable); if (ret) return ret; } if (features_to_enable) { ret = vega10_enable_smc_features(hwmgr, true, features_to_enable); if (ret) return ret; } return 0; } static int vega10_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; } static int vega10_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; } static int vega10_emit_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf, int *offset) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table); struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table); struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL; uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width; PPTable_t *pptable = &(data->smc_state_table.pp_table); uint32_t i, now, count = 0; int ret = 0; switch (type) { case PP_SCLK: if (data->registry_data.sclk_dpm_key_disabled) return -EOPNOTSUPP; ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now); if (unlikely(ret != 0)) return ret; if (hwmgr->pp_one_vf && (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) count = 5; else count = sclk_table->count; for (i = 0; i < count; i++) *offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n", i, sclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_MCLK: if (data->registry_data.mclk_dpm_key_disabled) return -EOPNOTSUPP; ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now); if (unlikely(ret != 0)) return ret; for (i = 0; i < mclk_table->count; i++) *offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n", i, mclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_SOCCLK: if (data->registry_data.socclk_dpm_key_disabled) return -EOPNOTSUPP; ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now); if (unlikely(ret != 0)) return ret; for (i = 0; i < soc_table->count; i++) *offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n", i, soc_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_DCEFCLK: if (data->registry_data.dcefclk_dpm_key_disabled) return -EOPNOTSUPP; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now); if (unlikely(ret != 0)) return ret; for (i = 0; i < dcef_table->count; i++) *offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n", i, dcef_table->dpm_levels[i].value / 100, (dcef_table->dpm_levels[i].value / 100 == now) ? "*" : ""); break; case PP_PCIE: current_gen_speed = vega10_get_current_pcie_link_speed_level(hwmgr); current_lane_width = vega10_get_current_pcie_link_width_level(hwmgr); for (i = 0; i < NUM_LINK_LEVELS; i++) { gen_speed = pptable->PcieGenSpeed[i]; lane_width = pptable->PcieLaneCount[i]; *offset += sysfs_emit_at(buf, *offset, "%d: %s %s %s\n", i, (gen_speed == 0) ? "2.5GT/s," : (gen_speed == 1) ? "5.0GT/s," : (gen_speed == 2) ? "8.0GT/s," : (gen_speed == 3) ? "16.0GT/s," : "", (lane_width == 1) ? "x1" : (lane_width == 2) ? "x2" : (lane_width == 3) ? "x4" : (lane_width == 4) ? "x8" : (lane_width == 5) ? "x12" : (lane_width == 6) ? "x16" : "", (current_gen_speed == gen_speed) && (current_lane_width == lane_width) ? "*" : ""); } break; case OD_SCLK: if (!hwmgr->od_enabled) return -EOPNOTSUPP; *offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_SCLK"); podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; for (i = 0; i < podn_vdd_dep->count; i++) *offset += sysfs_emit_at(buf, *offset, "%d: %10uMhz %10umV\n", i, podn_vdd_dep->entries[i].clk / 100, podn_vdd_dep->entries[i].vddc); break; case OD_MCLK: if (!hwmgr->od_enabled) return -EOPNOTSUPP; *offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_MCLK"); podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; for (i = 0; i < podn_vdd_dep->count; i++) *offset += sysfs_emit_at(buf, *offset, "%d: %10uMhz %10umV\n", i, podn_vdd_dep->entries[i].clk/100, podn_vdd_dep->entries[i].vddc); break; case OD_RANGE: if (!hwmgr->od_enabled) return -EOPNOTSUPP; *offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_RANGE"); *offset += sysfs_emit_at(buf, *offset, "SCLK: %7uMHz %10uMHz\n", data->golden_dpm_table.gfx_table.dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.engineClock/100); *offset += sysfs_emit_at(buf, *offset, "MCLK: %7uMHz %10uMHz\n", data->golden_dpm_table.mem_table.dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); *offset += sysfs_emit_at(buf, *offset, "VDDC: %7umV %11umV\n", data->odn_dpm_table.min_vddc, data->odn_dpm_table.max_vddc); break; default: ret = -ENOENT; break; } return ret; } static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table); struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table); struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL; uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width; PPTable_t *pptable = &(data->smc_state_table.pp_table); int i, now, size = 0, count = 0; switch (type) { case PP_SCLK: if (data->registry_data.sclk_dpm_key_disabled) break; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now); if (hwmgr->pp_one_vf && (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) count = 5; else count = sclk_table->count; for (i = 0; i < count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, sclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_MCLK: if (data->registry_data.mclk_dpm_key_disabled) break; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now); for (i = 0; i < mclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, mclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_SOCCLK: if (data->registry_data.socclk_dpm_key_disabled) break; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now); for (i = 0; i < soc_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, soc_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_DCEFCLK: if (data->registry_data.dcefclk_dpm_key_disabled) break; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now); for (i = 0; i < dcef_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, dcef_table->dpm_levels[i].value / 100, (dcef_table->dpm_levels[i].value / 100 == now) ? "*" : ""); break; case PP_PCIE: current_gen_speed = vega10_get_current_pcie_link_speed_level(hwmgr); current_lane_width = vega10_get_current_pcie_link_width_level(hwmgr); for (i = 0; i < NUM_LINK_LEVELS; i++) { gen_speed = pptable->PcieGenSpeed[i]; lane_width = pptable->PcieLaneCount[i]; size += sprintf(buf + size, "%d: %s %s %s\n", i, (gen_speed == 0) ? "2.5GT/s," : (gen_speed == 1) ? "5.0GT/s," : (gen_speed == 2) ? "8.0GT/s," : (gen_speed == 3) ? "16.0GT/s," : "", (lane_width == 1) ? "x1" : (lane_width == 2) ? "x2" : (lane_width == 3) ? "x4" : (lane_width == 4) ? "x8" : (lane_width == 5) ? "x12" : (lane_width == 6) ? "x16" : "", (current_gen_speed == gen_speed) && (current_lane_width == lane_width) ? "*" : ""); } break; case OD_SCLK: if (hwmgr->od_enabled) { size += sprintf(buf + size, "%s:\n", "OD_SCLK"); podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; for (i = 0; i < podn_vdd_dep->count; i++) size += sprintf(buf + size, "%d: %10uMhz %10umV\n", i, podn_vdd_dep->entries[i].clk / 100, podn_vdd_dep->entries[i].vddc); } break; case OD_MCLK: if (hwmgr->od_enabled) { size += sprintf(buf + size, "%s:\n", "OD_MCLK"); podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; for (i = 0; i < podn_vdd_dep->count; i++) size += sprintf(buf + size, "%d: %10uMhz %10umV\n", i, podn_vdd_dep->entries[i].clk/100, podn_vdd_dep->entries[i].vddc); } break; case OD_RANGE: if (hwmgr->od_enabled) { size += sprintf(buf + size, "%s:\n", "OD_RANGE"); size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", data->golden_dpm_table.gfx_table.dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.engineClock/100); size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", data->golden_dpm_table.mem_table.dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); size += sprintf(buf + size, "VDDC: %7umV %11umV\n", data->odn_dpm_table.min_vddc, data->odn_dpm_table.max_vddc); } break; default: break; } return size; } static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); int result = 0; if ((data->water_marks_bitmap & WaterMarksExist) && !(data->water_marks_bitmap & WaterMarksLoaded)) { result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false); PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL); data->water_marks_bitmap |= WaterMarksLoaded; } if (data->water_marks_bitmap & WaterMarksLoaded) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display, NULL); } return result; } static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega10_hwmgr *data = hwmgr->backend; if (data->smu_features[GNLD_DPM_UVD].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap), "Attempt to Enable/Disable DPM UVD Failed!", return -1); data->smu_features[GNLD_DPM_UVD].enabled = enable; } return 0; } static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) { struct vega10_hwmgr *data = hwmgr->backend; data->vce_power_gated = bgate; vega10_enable_disable_vce_dpm(hwmgr, !bgate); } static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) { struct vega10_hwmgr *data = hwmgr->backend; data->uvd_power_gated = bgate; vega10_enable_disable_uvd_dpm(hwmgr, !bgate); } static inline bool vega10_are_power_levels_equal( const struct vega10_performance_level *pl1, const struct vega10_performance_level *pl2) { return ((pl1->soc_clock == pl2->soc_clock) && (pl1->gfx_clock == pl2->gfx_clock) && (pl1->mem_clock == pl2->mem_clock)); } static int vega10_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) { const struct vega10_power_state *vega10_psa; const struct vega10_power_state *vega10_psb; int i; if (pstate1 == NULL || pstate2 == NULL || equal == NULL) return -EINVAL; vega10_psa = cast_const_phw_vega10_power_state(pstate1); vega10_psb = cast_const_phw_vega10_power_state(pstate2); /* If the two states don't even have the same number of performance levels * they cannot be the same state. */ if (vega10_psa->performance_level_count != vega10_psb->performance_level_count) { *equal = false; return 0; } for (i = 0; i < vega10_psa->performance_level_count; i++) { if (!vega10_are_power_levels_equal(&(vega10_psa->performance_levels[i]), &(vega10_psb->performance_levels[i]))) { /* If we have found even one performance level pair * that is different the states are different. */ *equal = false; return 0; } } /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ *equal = ((vega10_psa->uvd_clks.vclk == vega10_psb->uvd_clks.vclk) && (vega10_psa->uvd_clks.dclk == vega10_psb->uvd_clks.dclk)); *equal &= ((vega10_psa->vce_clks.evclk == vega10_psb->vce_clks.evclk) && (vega10_psa->vce_clks.ecclk == vega10_psb->vce_clks.ecclk)); *equal &= (vega10_psa->sclk_threshold == vega10_psb->sclk_threshold); return 0; } static bool vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; bool is_update_required = false; if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) is_update_required = true; if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) { if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr) is_update_required = true; } return is_update_required; } static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; if (!hwmgr->not_vf) return 0; if (PP_CAP(PHM_PlatformCaps_ThermalController)) vega10_disable_thermal_protection(hwmgr); tmp_result = vega10_disable_power_containment(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable power containment!", result = tmp_result); tmp_result = vega10_disable_didt_config(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable didt config!", result = tmp_result); tmp_result = vega10_avfs_enable(hwmgr, false); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable AVFS!", result = tmp_result); tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to stop DPM!", result = tmp_result); tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable deep sleep!", result = tmp_result); tmp_result = vega10_disable_ulv(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable ulv!", result = tmp_result); tmp_result = vega10_acg_disable(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable acg!", result = tmp_result); vega10_enable_disable_PCC_limit_feature(hwmgr, false); return result; } static int vega10_power_off_asic(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; int result; result = vega10_disable_dpm_tasks(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "[disable_dpm_tasks] Failed to disable DPM!", ); data->water_marks_bitmap &= ~(WaterMarksLoaded); return result; } static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); struct vega10_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.gfx_table); int value = sclk_table->dpm_levels[sclk_table->count - 1].value; int golden_value = golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value; value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.gfx_table); struct pp_power_state *ps; struct vega10_power_state *vega10_ps; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock = golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value * value / 100 + golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value; if (vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock > hwmgr->platform_descriptor.overdriveLimit.engineClock) { vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock = hwmgr->platform_descriptor.overdriveLimit.engineClock; pr_warn("max sclk supported by vbios is %d\n", hwmgr->platform_descriptor.overdriveLimit.engineClock); } return 0; } static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); struct vega10_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mem_table); int value = mclk_table->dpm_levels[mclk_table->count - 1].value; int golden_value = golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value; value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mem_table); struct pp_power_state *ps; struct vega10_power_state *vega10_ps; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock = golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value * value / 100 + golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value; if (vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock > hwmgr->platform_descriptor.overdriveLimit.memoryClock) { vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock = hwmgr->platform_descriptor.overdriveLimit.memoryClock; pr_warn("max mclk supported by vbios is %d\n", hwmgr->platform_descriptor.overdriveLimit.memoryClock); } return 0; } static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, uint32_t virtual_addr_low, uint32_t virtual_addr_hi, uint32_t mc_addr_low, uint32_t mc_addr_hi, uint32_t size) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSystemVirtualDramAddrHigh, virtual_addr_hi, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSystemVirtualDramAddrLow, virtual_addr_low, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramAddrHigh, mc_addr_hi, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramAddrLow, mc_addr_low, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramSize, size, NULL); return 0; } static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *thermal_data) { struct vega10_hwmgr *data = hwmgr->backend; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct phm_ppt_v2_information *pp_table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_tdp_table *tdp_table = pp_table_info->tdp_table; memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); thermal_data->max = pp_table->TedgeLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->mem_crit_max = pp_table->ThbmLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* PP_TEMPERATURE_UNITS_PER_CENTIGRADES; if (tdp_table->usSoftwareShutdownTemp > pp_table->ThotspotLimit && tdp_table->usSoftwareShutdownTemp < VEGA10_THERMAL_MAXIMUM_ALERT_TEMP) thermal_data->sw_ctf_threshold = tdp_table->usSoftwareShutdownTemp; else thermal_data->sw_ctf_threshold = VEGA10_THERMAL_MAXIMUM_ALERT_TEMP; thermal_data->sw_ctf_threshold *= PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) { struct vega10_hwmgr *data = hwmgr->backend; uint32_t i, size = 0; static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,}, {70, 60, 1, 3,}, {90, 60, 0, 0,}, {70, 60, 0, 0,}, {70, 90, 0, 0,}, {30, 60, 0, 6,}, }; static const char *title[6] = {"NUM", "MODE_NAME", "BUSY_SET_POINT", "FPS", "USE_RLC_BUSY", "MIN_ACTIVE_LEVEL"}; if (!buf) return -EINVAL; phm_get_sysfs_buf(&buf, &size); size += sysfs_emit_at(buf, size, "%s %16s %s %s %s %s\n",title[0], title[1], title[2], title[3], title[4], title[5]); for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++) size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n", i, amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", profile_mode_setting[i][0], profile_mode_setting[i][1], profile_mode_setting[i][2], profile_mode_setting[i][3]); size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n", i, amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", data->custom_profile_mode[0], data->custom_profile_mode[1], data->custom_profile_mode[2], data->custom_profile_mode[3]); return size; } static bool vega10_get_power_profile_mode_quirks(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; return (adev->pdev->device == 0x6860); } static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) { struct vega10_hwmgr *data = hwmgr->backend; uint8_t busy_set_point; uint8_t FPS; uint8_t use_rlc_busy; uint8_t min_active_level; uint32_t power_profile_mode = input[size]; if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { if (size != 0 && size != 4) return -EINVAL; /* If size = 0 and the CUSTOM profile has been set already * then just apply the profile. The copy stored in the hwmgr * is zeroed out on init */ if (size == 0) { if (data->custom_profile_mode[0] != 0) goto out; else return -EINVAL; } data->custom_profile_mode[0] = busy_set_point = input[0]; data->custom_profile_mode[1] = FPS = input[1]; data->custom_profile_mode[2] = use_rlc_busy = input[2]; data->custom_profile_mode[3] = min_active_level = input[3]; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetCustomGfxDpmParameters, busy_set_point | FPS<<8 | use_rlc_busy << 16 | min_active_level<<24, NULL); } out: if (vega10_get_power_profile_mode_quirks(hwmgr)) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, 1 << power_profile_mode, NULL); else smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, (!power_profile_mode) ? 0 : 1 << (power_profile_mode - 1), NULL); hwmgr->power_profile_mode = power_profile_mode; return 0; } static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, enum PP_OD_DPM_TABLE_COMMAND type, uint32_t clk, uint32_t voltage) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); struct vega10_single_dpm_table *golden_table; if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) { pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc); return false; } if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { golden_table = &(data->golden_dpm_table.gfx_table); if (golden_table->dpm_levels[0].value > clk || hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { pr_info("OD engine clock is out of range [%d - %d] MHz\n", golden_table->dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.engineClock/100); return false; } } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { golden_table = &(data->golden_dpm_table.mem_table); if (golden_table->dpm_levels[0].value > clk || hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { pr_info("OD memory clock is out of range [%d - %d] MHz\n", golden_table->dpm_levels[0].value/100, hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); return false; } } else { return false; } return true; } static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = hwmgr->backend; struct pp_power_state *ps = hwmgr->request_ps; struct vega10_power_state *vega10_ps; struct vega10_single_dpm_table *gfx_dpm_table = &data->dpm_table.gfx_table; struct vega10_single_dpm_table *soc_dpm_table = &data->dpm_table.soc_table; struct vega10_single_dpm_table *mem_dpm_table = &data->dpm_table.mem_table; int max_level; if (!ps) return; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); max_level = vega10_ps->performance_level_count - 1; if (vega10_ps->performance_levels[max_level].gfx_clock != gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) vega10_ps->performance_levels[max_level].gfx_clock = gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; if (vega10_ps->performance_levels[max_level].soc_clock != soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) vega10_ps->performance_levels[max_level].soc_clock = soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; if (vega10_ps->performance_levels[max_level].mem_clock != mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) vega10_ps->performance_levels[max_level].mem_clock = mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; if (!hwmgr->ps) return; ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1)); vega10_ps = cast_phw_vega10_power_state(&ps->hardware); max_level = vega10_ps->performance_level_count - 1; if (vega10_ps->performance_levels[max_level].gfx_clock != gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) vega10_ps->performance_levels[max_level].gfx_clock = gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; if (vega10_ps->performance_levels[max_level].soc_clock != soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) vega10_ps->performance_levels[max_level].soc_clock = soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; if (vega10_ps->performance_levels[max_level].mem_clock != mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) vega10_ps->performance_levels[max_level].mem_clock = mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; } static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr, enum PP_OD_DPM_TABLE_COMMAND type) { struct vega10_hwmgr *data = hwmgr->backend; struct phm_ppt_v2_information *table_info = hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table; struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk = &data->odn_dpm_table.vdd_dep_on_socclk; struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table; struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep; uint8_t i, j; if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; for (i = 0; i < podn_vdd_dep->count; i++) od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc; } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; for (i = 0; i < dpm_table->count; i++) { for (j = 0; j < od_vddc_lookup_table->count; j++) { if (od_vddc_lookup_table->entries[j].us_vdd > podn_vdd_dep->entries[i].vddc) break; } if (j == od_vddc_lookup_table->count) { j = od_vddc_lookup_table->count - 1; od_vddc_lookup_table->entries[j].us_vdd = podn_vdd_dep->entries[i].vddc; data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; } podn_vdd_dep->entries[i].vddInd = j; } dpm_table = &data->dpm_table.soc_table; for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd && dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) { data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; for (; (i < dep_table->count) && (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) { podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk; dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk; } break; } else { dpm_table->dpm_levels[i].value = dep_table->entries[i].clk; podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc; podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd; podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk; } } if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) { data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk = podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value = podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; } if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd < podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) { data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd = podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd; } } vega10_odn_update_power_state(hwmgr); } static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { struct vega10_hwmgr *data = hwmgr->backend; struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table; struct vega10_single_dpm_table *dpm_table; uint32_t input_clk; uint32_t input_vol; uint32_t input_level; uint32_t i; PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", return -EINVAL); if (!hwmgr->od_enabled) { pr_info("OverDrive feature not enabled\n"); return -EINVAL; } if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { dpm_table = &data->dpm_table.gfx_table; podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk; data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { dpm_table = &data->dpm_table.mem_table; podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk; data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table)); vega10_odn_initial_default_setting(hwmgr); vega10_odn_update_power_state(hwmgr); /* force to update all clock tables */ data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_MCLK | DPMTABLE_UPDATE_SOCCLK; return 0; } else if (PP_OD_COMMIT_DPM_TABLE == type) { vega10_check_dpm_table_updated(hwmgr); return 0; } else { return -EINVAL; } for (i = 0; i < size; i += 3) { if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) { pr_info("invalid clock voltage input\n"); return 0; } input_level = input[i]; input_clk = input[i+1] * 100; input_vol = input[i+2]; if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { dpm_table->dpm_levels[input_level].value = input_clk; podn_vdd_dep_table->entries[input_level].clk = input_clk; podn_vdd_dep_table->entries[input_level].vddc = input_vol; } else { return -EINVAL; } } vega10_odn_update_soc_table(hwmgr, type); return 0; } static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr, enum pp_mp1_state mp1_state) { uint16_t msg; int ret; switch (mp1_state) { case PP_MP1_STATE_UNLOAD: msg = PPSMC_MSG_PrepareMp1ForUnload; break; case PP_MP1_STATE_SHUTDOWN: case PP_MP1_STATE_RESET: case PP_MP1_STATE_NONE: default: return 0; } PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0, "[PrepareMp1] Failed!", return ret); return 0; } static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { const struct vega10_power_state *vega10_ps; uint32_t i; if (level == NULL || hwmgr == NULL || state == NULL) return -EINVAL; vega10_ps = cast_const_phw_vega10_power_state(state); i = index > vega10_ps->performance_level_count - 1 ? vega10_ps->performance_level_count - 1 : index; level->coreClock = vega10_ps->performance_levels[i].gfx_clock; level->memory_clock = vega10_ps->performance_levels[i].mem_clock; return 0; } static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable) { struct vega10_hwmgr *data = hwmgr->backend; uint32_t feature_mask = 0; if (disable) { feature_mask |= data->smu_features[GNLD_ULV].enabled ? data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ? data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ? data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ? data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ? data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; } else { feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ? data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ? data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ? data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ? data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ? data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; } if (feature_mask) PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, !disable, feature_mask), "enable/disable power features for compute performance Failed!", return -EINVAL); if (disable) { data->smu_features[GNLD_ULV].enabled = false; data->smu_features[GNLD_DS_GFXCLK].enabled = false; data->smu_features[GNLD_DS_SOCCLK].enabled = false; data->smu_features[GNLD_DS_LCLK].enabled = false; data->smu_features[GNLD_DS_DCEFCLK].enabled = false; } else { data->smu_features[GNLD_ULV].enabled = true; data->smu_features[GNLD_DS_GFXCLK].enabled = true; data->smu_features[GNLD_DS_SOCCLK].enabled = true; data->smu_features[GNLD_DS_LCLK].enabled = true; data->smu_features[GNLD_DS_DCEFCLK].enabled = true; } return 0; } static const struct pp_hwmgr_func vega10_hwmgr_funcs = { .backend_init = vega10_hwmgr_backend_init, .backend_fini = vega10_hwmgr_backend_fini, .asic_setup = vega10_setup_asic_task, .dynamic_state_management_enable = vega10_enable_dpm_tasks, .dynamic_state_management_disable = vega10_disable_dpm_tasks, .get_num_of_pp_table_entries = vega10_get_number_of_powerplay_table_entries, .get_power_state_size = vega10_get_power_state_size, .get_pp_table_entry = vega10_get_pp_table_entry, .patch_boot_state = vega10_patch_boot_state, .apply_state_adjust_rules = vega10_apply_state_adjust_rules, .power_state_set = vega10_set_power_state_tasks, .get_sclk = vega10_dpm_get_sclk, .get_mclk = vega10_dpm_get_mclk, .notify_smc_display_config_after_ps_adjustment = vega10_notify_smc_display_config_after_ps_adjustment, .force_dpm_level = vega10_dpm_force_dpm_level, .stop_thermal_controller = vega10_thermal_stop_thermal_controller, .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info, .get_fan_speed_pwm = vega10_fan_ctrl_get_fan_speed_pwm, .set_fan_speed_pwm = vega10_fan_ctrl_set_fan_speed_pwm, .reset_fan_speed_to_default = vega10_fan_ctrl_reset_fan_speed_to_default, .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm, .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm, .uninitialize_thermal_controller = vega10_thermal_ctrl_uninitialize_thermal_controller, .set_fan_control_mode = vega10_set_fan_control_mode, .get_fan_control_mode = vega10_get_fan_control_mode, .read_sensor = vega10_read_sensor, .get_dal_power_level = vega10_get_dal_power_level, .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage, .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges, .display_clock_voltage_request = vega10_display_clock_voltage_request, .force_clock_level = vega10_force_clock_level, .emit_clock_levels = vega10_emit_clock_levels, .print_clock_levels = vega10_print_clock_levels, .display_config_changed = vega10_display_configuration_changed_task, .powergate_uvd = vega10_power_gate_uvd, .powergate_vce = vega10_power_gate_vce, .check_states_equal = vega10_check_states_equal, .check_smc_update_required_for_display_configuration = vega10_check_smc_update_required_for_display_configuration, .power_off_asic = vega10_power_off_asic, .disable_smc_firmware_ctf = vega10_thermal_disable_alert, .get_sclk_od = vega10_get_sclk_od, .set_sclk_od = vega10_set_sclk_od, .get_mclk_od = vega10_get_mclk_od, .set_mclk_od = vega10_set_mclk_od, .avfs_control = vega10_avfs_enable, .notify_cac_buffer_info = vega10_notify_cac_buffer_info, .get_thermal_temperature_range = vega10_get_thermal_temperature_range, .register_irq_handlers = smu9_register_irq_handlers, .start_thermal_controller = vega10_start_thermal_controller, .get_power_profile_mode = vega10_get_power_profile_mode, .set_power_profile_mode = vega10_set_power_profile_mode, .set_power_limit = vega10_set_power_limit, .odn_edit_dpm_table = vega10_odn_edit_dpm_table, .get_performance_level = vega10_get_performance_level, .get_asic_baco_capability = smu9_baco_get_capability, .get_asic_baco_state = smu9_baco_get_state, .set_asic_baco_state = vega10_baco_set_state, .enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost, .get_ppfeature_status = vega10_get_ppfeature_status, .set_ppfeature_status = vega10_set_ppfeature_status, .set_mp1_state = vega10_set_mp1_state, .disable_power_features_for_compute_performance = vega10_disable_power_features_for_compute_performance, }; int vega10_hwmgr_init(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; hwmgr->hwmgr_func = &vega10_hwmgr_funcs; hwmgr->pptable_func = &vega10_pptable_funcs; if (amdgpu_passthrough(adev)) return vega10_baco_set_cap(hwmgr); return 0; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/vega10_hwmgr.c
/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_overdriver.h" #include <linux/errno.h> static const struct phm_fuses_default vega10_fuses_default[] = { { 0x0213EA94DE0E4964, 0x00003C96, 0xFFFFE226, 0x00000656, 0x00002203, 0xFFFFF201, 0x000003FF, 0x00002203, 0xFFFFF201, 0x000003FF }, { 0x0213EA94DE0A1884, 0x00003CC5, 0xFFFFE23A, 0x0000064E, 0x00002258, 0xFFFFF1F7, 0x000003FC, 0x00002258, 0xFFFFF1F7, 0x000003FC }, { 0x0213EA94DE0E31A4, 0x00003CAF, 0xFFFFE36E, 0x00000602, 0x00001E98, 0xFFFFF569, 0x00000357, 0x00001E98, 0xFFFFF569, 0x00000357 }, { 0x0213EA94DE2C1144, 0x0000391A, 0xFFFFE548, 0x000005C9, 0x00001B98, 0xFFFFF707, 0x00000324, 0x00001B98, 0xFFFFF707, 0x00000324 }, { 0x0213EA94DE2C18C4, 0x00003821, 0xFFFFE674, 0x00000597, 0x00002196, 0xFFFFF361, 0x000003C0, 0x00002196, 0xFFFFF361, 0x000003C0 }, { 0x0213EA94DE263884, 0x000044A2, 0xFFFFDCB7, 0x00000738, 0x0000325C, 0xFFFFE6A7, 0x000005E6, 0x0000325C, 0xFFFFE6A7, 0x000005E6 }, { 0x0213EA94DE082924, 0x00004057, 0xFFFFE1CF, 0x0000063C, 0x00002E2E, 0xFFFFEB62, 0x000004FD, 0x00002E2E, 0xFFFFEB62, 0x000004FD }, { 0x0213EA94DE284924, 0x00003FD0, 0xFFFFDF0F, 0x000006E5, 0x0000267C, 0xFFFFEE2D, 0x000004AB, 0x0000267C, 0xFFFFEE2D, 0x000004AB }, { 0x0213EA94DE280904, 0x00003F13, 0xFFFFE010, 0x000006AD, 0x000020E7, 0xFFFFF266, 0x000003EC, 0x000020E7, 0xFFFFF266, 0x000003EC }, { 0x0213EA94DE082044, 0x00004088, 0xFFFFDFAB, 0x000006B6, 0x0000252B, 0xFFFFEFDB, 0x00000458, 0x0000252B, 0xFFFFEFDB, 0x00000458 }, { 0x0213EA94DE283884, 0x00003EF6, 0xFFFFE017, 0x000006AA, 0x00001F67, 0xFFFFF369, 0x000003BE, 0x00001F67, 0xFFFFF369, 0x000003BE }, { 0x0213EA94DE2C2184, 0x00003CDD, 0xFFFFE2A7, 0x0000063C, 0x000026C6, 0xFFFFEF38, 0x00000478, 0x000026C6, 0xFFFFEF38, 0x00000478 }, { 0x0213EA94DE105124, 0x00003FA8, 0xFFFFDF02, 0x000006F0, 0x000027FE, 0xFFFFECF6, 0x000004EA, 0x000027FE, 0xFFFFECF6, 0x000004EA }, { 0x0213EA94DE2638C4, 0x00004670, 0xFFFFDC40, 0x00000742, 0x00003A7A, 0xFFFFE1A7, 0x000006B6, 0x00003A7A, 0xFFFFE1A7, 0x000006B6 }, { 0x0213EA94DE2C3024, 0x00003CDC, 0xFFFFE18C, 0x00000683, 0x00002A69, 0xFFFFEBE7, 0x00000515, 0x00002A69, 0xFFFFEBE7, 0x00000515 }, { 0x0213EA94DE0E38C4, 0x00003CEC, 0xFFFFE38E, 0x00000601, 0x00002752, 0xFFFFEFA7, 0x00000453, 0x00002752, 0xFFFFEFA7, 0x00000453 }, { 0x0213EA94DE2C1124, 0x000037D0, 0xFFFFE634, 0x000005A7, 0x00001CD2, 0xFFFFF644, 0x00000348, 0x00001CD2, 0xFFFFF644, 0x00000348 }, { 0x0213EA94DE283964, 0x00003DF5, 0xFFFFE0A5, 0x00000698, 0x00001FD5, 0xFFFFF30E, 0x000003D1, 0x00001FD5, 0xFFFFF30E, 0x000003D1 }, { 0x0213EA94DE0828C4, 0x00004201, 0xFFFFE03E, 0x00000688, 0x00003206, 0xFFFFE852, 0x0000058A, 0x00003206, 0xFFFFE852, 0x0000058A }, { 0x0213EA94DE2C1864, 0x00003BED, 0xFFFFE2F5, 0x00000638, 0x0000270D, 0xFFFFEED0, 0x0000048E, 0x0000270D, 0xFFFFEED0, 0x0000048E }, { 0x0213EA94DE0A1904, 0x00003E82, 0xFFFFE1BE, 0x00000654, 0x000025FB, 0xFFFFEFFA, 0x00000448, 0x000025FB, 0xFFFFEFFA, 0x00000448 }, { 0x0213EA94DE2C40C4, 0x00003962, 0xFFFFE4B9, 0x000005EF, 0x00002385, 0xFFFFF156, 0x00000423, 0x00002385, 0xFFFFF156, 0x00000423 }, { 0x0213EA94DE2C0944, 0x00003D88, 0xFFFFE21A, 0x00000655, 0x0000295A, 0xFFFFED68, 0x000004C4, 0x0000295A, 0xFFFFED68, 0x000004C4 }, { 0x0213EA94DE2C1104, 0x00003AA4, 0xFFFFE4A3, 0x000005E0, 0x000022EF, 0xFFFFF250, 0x000003EB, 0x000022EF, 0xFFFFF250, 0x000003EB }, { 0x0213EA94DE0E29A4, 0x00003D97, 0xFFFFE30D, 0x0000060D, 0x0000205D, 0xFFFFF45D, 0x00000380, 0x0000205D, 0xFFFFF45D, 0x00000380 }, { 0x0213EA94DE2C40A4, 0x000039B6, 0xFFFFE446, 0x00000605, 0x00002325, 0xFFFFF16C, 0x0000041F, 0x00002325, 0xFFFFF16C, 0x0000041F }, { 0x0213EA94DE263904, 0x0000457E, 0xFFFFDCF6, 0x00000722, 0x00003972, 0xFFFFE27B, 0x0000068E, 0x00003972, 0xFFFFE27B, 0x0000068E }, { 0x0213EA94DE0A1924, 0x00003FB8, 0xFFFFE101, 0x00000670, 0x00002787, 0xFFFFEEF5, 0x00000471, 0x00002787, 0xFFFFEEF5, 0x00000471 }, { 0x0213EA94DE0E38A4, 0x00003BB2, 0xFFFFE430, 0x000005EA, 0x000024A5, 0xFFFFF162, 0x00000409, 0x000024A5, 0xFFFFF162, 0x00000409 }, { 0x0213EA94DE082144, 0x00003EC5, 0xFFFFE1BD, 0x0000064F, 0x000022F0, 0xFFFFF227, 0x000003E8, 0x000022F0, 0xFFFFF227, 0x000003E8 }, { 0x0213EA94DE2C3164, 0x000038A7, 0xFFFFE59F, 0x000005C1, 0x000021CC, 0xFFFFF2DF, 0x000003D9, 0x000021CC, 0xFFFFF2DF, 0x000003D9 }, { 0x0213EA94DE324184, 0x00002995, 0xFFFFEF7A, 0x0000044C, 0x00001552, 0xFFFFFB5D, 0x00000292, 0x00001552, 0xFFFFFB5D, 0x00000292 }, { 0x0213EA94DE2C4064, 0x00003B26, 0xFFFFE2D3, 0x00000649, 0x000023B4, 0xFFFFF09B, 0x00000449, 0x000023B4, 0xFFFFF09B, 0x00000449 }, { 0x0213EA94DE081124, 0x000040D2, 0xFFFFE00A, 0x00000696, 0x000022DA, 0xFFFFF1E9, 0x000003F2, 0x000022DA, 0xFFFFF1E9, 0x000003F2 }, { 0x0213EA94DE2C3924, 0x00003C98, 0xFFFFE365, 0x00000618, 0x00002D5D, 0xFFFFEB3A, 0x0000051D, 0x00002D5D, 0xFFFFEB3A, 0x0000051D }, { 0x0213EA94DE2C10A4, 0x00003BBD, 0xFFFFE37E, 0x00000617, 0x0000252E, 0xFFFFF06E, 0x00000441, 0x0000252E, 0xFFFFF06E, 0x00000441 }, { 0x0213EA94DE262924, 0x00004363, 0xFFFFDF7A, 0x000006A0, 0x000031F5, 0xFFFFE880, 0x0000057B, 0x000031F5, 0xFFFFE880, 0x0000057B }, { 0x0213EA94DE0E3844, 0x00003CFC, 0xFFFFE2AF, 0x0000062E, 0x0000212A, 0xFFFFF335, 0x000003BF, 0x0000212A, 0xFFFFF335, 0x000003BF }, { 0x0213EA94DE1C4924, 0x0000252D, 0xFFFFF31B, 0x000003C3, 0x00001A1A, 0xFFFFF882, 0x00000325, 0x00001A1A, 0xFFFFF882, 0x00000325 }, { 0x0213EA94DE0A29A4, 0x00003FE2, 0xFFFFDFEF, 0x000006AC, 0x000025A2, 0xFFFFEF84, 0x00000462, 0x000025A2, 0xFFFFEF84, 0x00000462 }, { 0x0213EA94DE0820E4, 0x000040A5, 0xFFFFE13B, 0x0000065B, 0x00002C13, 0xFFFFEC75, 0x000004D7, 0x00002C13, 0xFFFFEC75, 0x000004D7 }, { 0x0213EA94DE0E48A4, 0x00003E42, 0xFFFFE1B3, 0x00000657, 0x0000221D, 0xFFFFF273, 0x000003DE, 0x0000221D, 0xFFFFF273, 0x000003DE }, { 0x0213EA94DE0A20E4, 0x00003E7F, 0xFFFFE255, 0x00000638, 0x00002D30, 0xFFFFEB8A, 0x00000503, 0x00002D30, 0xFFFFEB8A, 0x00000503 }, { 0x0213EA94DE2C29C4, 0x00003E56, 0xFFFFE16D, 0x00000670, 0x000028DC, 0xFFFFEDA0, 0x000004BA, 0x000028DC, 0xFFFFEDA0, 0x000004BA }, { 0x0213EA94DE2630A4, 0x000044AD, 0xFFFFDE24, 0x000006DD, 0x000031AD, 0xFFFFE850, 0x00000585, 0x000031AD, 0xFFFFE850, 0x00000585 }, { 0x0213EA94DE2C20E4, 0x00003AF3, 0xFFFFE5B0, 0x000005A6, 0x00002CF6, 0xFFFFEC75, 0x000004DD, 0x00002CF6, 0xFFFFEC75, 0x000004DD }, { 0x0213EA94DE0A2084, 0x00003E66, 0xFFFFE19E, 0x0000065B, 0x00002332, 0xFFFFF1B9, 0x000003FD, 0x00002332, 0xFFFFF1B9, 0x000003FD }, { 0x0213EA94DE082884, 0x00003FB4, 0xFFFFE0A5, 0x00000686, 0x0000253E, 0xFFFFF02E, 0x00000444, 0x0000253E, 0xFFFFF02E, 0x00000444 }, { 0x0213EA94DE2818A4, 0x00003E28, 0xFFFFE14D, 0x0000066E, 0x00001FE2, 0xFFFFF39A, 0x000003B1, 0x00001FE2, 0xFFFFF39A, 0x000003B1 }, { 0x0213EA94DE2C0904, 0x000039E6, 0xFFFFE44B, 0x000005FE, 0x0000210C, 0xFFFFF2F4, 0x000003DA, 0x0000210C, 0xFFFFF2F4, 0x000003DA }, { 0x0213EA94DE2C5104, 0x00003A4D, 0xFFFFE252, 0x0000067A, 0x000027E2, 0xFFFFECED, 0x000004FA, 0x000027E2, 0xFFFFECED, 0x000004FA }, { 0x0213EA94DE0A2964, 0x00004065, 0xFFFFE02F, 0x0000069B, 0x0000299D, 0xFFFFED38, 0x000004C2, 0x0000299D, 0xFFFFED38, 0x000004C2 }, { 0x0213EA94DE0E20A4, 0x000039EE, 0xFFFFE603, 0x00000594, 0x0000214F, 0xFFFFF429, 0x0000038E, 0x0000214F, 0xFFFFF429, 0x0000038E }, { 0x0213EA94DE0E48E4, 0x00003BD2, 0xFFFFE351, 0x00000618, 0x000020B8, 0xFFFFF377, 0x000003B4, 0x000020B8, 0xFFFFF377, 0x000003B4 }, { 0x0213EA94DE0A3124, 0x00003FAA, 0xFFFFE183, 0x0000065E, 0x000032AE, 0xFFFFE7C2, 0x000005A6, 0x000032AE, 0xFFFFE7C2, 0x000005A6 }, { 0x0213EA94DE2C2984, 0x00003AFB, 0xFFFFE3E4, 0x00000608, 0x00002293, 0xFFFFF21F, 0x000003FA, 0x00002293, 0xFFFFF21F, 0x000003FA }, { 0x0213EA94DE262064, 0x0000448B, 0xFFFFDD5D, 0x0000070D, 0x00002E4E, 0xFFFFE9DF, 0x00000551, 0x00002E4E, 0xFFFFE9DF, 0x00000551 }, { 0x0213EA94DE0E2184, 0x00003D46, 0xFFFFE39B, 0x000005F3, 0x0000218E, 0xFFFFF3CD, 0x00000398, 0x0000218E, 0xFFFFF3CD, 0x00000398 }, { 0x0213EA94DE0848E4, 0x00003F01, 0xFFFFDFD9, 0x000006BF, 0x000023AF, 0xFFFFF04E, 0x0000044C, 0x000023AF, 0xFFFFF04E, 0x0000044C }, { 0x0213EA94DE1029A4, 0x0000403D, 0xFFFFDF6B, 0x000006C9, 0x0000270D, 0xFFFFEE4B, 0x0000049E, 0x0000270D, 0xFFFFEE4B, 0x0000049E }, { 0x0213EA94DE0E3964, 0x00003C11, 0xFFFFE35C, 0x00000613, 0x000020F9, 0xFFFFF365, 0x000003B9, 0x000020F9, 0xFFFFF365, 0x000003B9 }, { 0x0213EA94DE2C3884, 0x00003B58, 0xFFFFE37D, 0x0000061F, 0x00002698, 0xFFFFEF46, 0x00000478, 0x00002698, 0xFFFFEF46, 0x00000478 }, { 0x0213EA94DE2841A4, 0x00003EBC, 0xFFFFDF7A, 0x000006D6, 0x0000212B, 0xFFFFF195, 0x0000041B, 0x0000212B, 0xFFFFF195, 0x0000041B }, { 0x0213EA94DE0848C4, 0x00004050, 0xFFFFDEB3, 0x000006FE, 0x00002D6C, 0xFFFFE961, 0x00000582, 0x00002D6C, 0xFFFFE961, 0x00000582 }, { 0x0213EA94DE262044, 0x000043F0, 0xFFFFDD9C, 0x00000702, 0x00002B31, 0xFFFFEBEA, 0x000004F7, 0x00002B31, 0xFFFFEBEA, 0x000004F7 }, { 0x0213EA94DE100924, 0x00003EFA, 0xFFFFE093, 0x00000696, 0x000026DB, 0xFFFFEEB3, 0x00000489, 0x000026DB, 0xFFFFEEB3, 0x00000489 }, { 0x0213EA94DE082064, 0x0000425D, 0xFFFFDE8D, 0x000006E6, 0x00002CA4, 0xFFFFEAD2, 0x00000531, 0x00002CA4, 0xFFFFEAD2, 0x00000531 }, { 0x0213EA94DE2639A4, 0x000043B0, 0xFFFFDD03, 0x00000728, 0x00002946, 0xFFFFECA6, 0x000004DE, 0x00002946, 0xFFFFECA6, 0x000004DE }, { 0x0213EA94DE282864, 0x00003F6A, 0xFFFFE03A, 0x0000069D, 0x00002208, 0xFFFFF1F8, 0x000003F6, 0x00002208, 0xFFFFF1F8, 0x000003F6 }, { 0x0213EA94DE2C2964, 0x00003A94, 0xFFFFE4A7, 0x000005E2, 0x000024D0, 0xFFFFF100, 0x00000426, 0x000024D0, 0xFFFFF100, 0x00000426 }, { 0x0213EA94DE2810C4, 0x00003F2F, 0xFFFFE0A3, 0x00000688, 0x00002198, 0xFFFFF271, 0x000003E2, 0x00002198, 0xFFFFF271, 0x000003E2 }, { 0x0213EA94DE1048E4, 0x00003EA5, 0xFFFFE032, 0x000006AE, 0x0000227C, 0xFFFFF130, 0x00000426, 0x0000227C, 0xFFFFF130, 0x00000426 }, { 0x0213EA94DE264144, 0x0000442F, 0xFFFFDBC4, 0x0000078B, 0x00003CD6, 0xFFFFDE6C, 0x0000076C, 0x00003CD6, 0xFFFFDE6C, 0x0000076C }, { 0x0213EA94DE282884, 0x00003DDE, 0xFFFFE174, 0x00000668, 0x00001FF4, 0xFFFFF38F, 0x000003B1, 0x00001FF4, 0xFFFFF38F, 0x000003B1 }, { 0x0213EA94DE0A3144, 0x000040B0, 0xFFFFE016, 0x000006A0, 0x00002DBB, 0xFFFFEA7F, 0x00000537, 0x00002DBB, 0xFFFFEA7F, 0x00000537 }, { 0x0213EA94DE2C3104, 0x00003429, 0xFFFFEA97, 0x000004DD, 0x000024D5, 0xFFFFF26F, 0x000003DF, 0x000024D5, 0xFFFFF26F, 0x000003DF }, { 0x0213EA94DE0E1904, 0x00003AEB, 0xFFFFE590, 0x000005A3, 0x000022CB, 0xFFFFF347, 0x000003B2, 0x000022CB, 0xFFFFF347, 0x000003B2 }, { 0x0213EA94DE283904, 0x00003B8E, 0xFFFFE2EF, 0x00000636, 0x00002351, 0xFFFFF143, 0x0000041C, 0x00002351, 0xFFFFF143, 0x0000041C }, { 0x0213EA94DE3240C4, 0x00002926, 0xFFFFF0B0, 0x00000410, 0x0000194E, 0xFFFFF94E, 0x000002E9, 0x0000194E, 0xFFFFF94E, 0x000002E9 }, { 0x0213EA94DE283184, 0x0000402B, 0xFFFFDF78, 0x000006C2, 0x00002273, 0xFFFFF16C, 0x00000414, 0x00002273, 0xFFFFF16C, 0x00000414 }, { 0x0213EA94DE0A10A4, 0x00003D6A, 0xFFFFE1D3, 0x00000659, 0x00002006, 0xFFFFF394, 0x000003B1, 0x00002006, 0xFFFFF394, 0x000003B1 }, { 0x0213EA94DE284064, 0x00004042, 0xFFFFDFD8, 0x000006A8, 0x00002135, 0xFFFFF29F, 0x000003D9, 0x00002135, 0xFFFFF29F, 0x000003D9 }, { 0x0213EA94DE0820A4, 0x0000405B, 0xFFFFE093, 0x00000682, 0x0000288F, 0xFFFFEE3A, 0x00000491, 0x0000288F, 0xFFFFEE3A, 0x00000491 }, { 0x0213EA94DE2C48A4, 0x00003A49, 0xFFFFE30C, 0x00000648, 0x000023F9, 0xFFFFF02D, 0x00000460, 0x000023F9, 0xFFFFF02D, 0x00000460 }, { 0x0213EA94DE282964, 0x00003D59, 0xFFFFE1CC, 0x0000065B, 0x00002013, 0xFFFFF37D, 0x000003B6, 0x00002013, 0xFFFFF37D, 0x000003B6 }, { 0x0213EA94DE2C3984, 0x000040C1, 0xFFFFDF8C, 0x000006CA, 0x00003271, 0xFFFFE6CA, 0x000005EA, 0x00003271, 0xFFFFE6CA, 0x000005EA }, { 0x0213EA94DE2620E4, 0x000042E9, 0xFFFFDFDC, 0x0000068C, 0x00002ED9, 0xFFFFEAAF, 0x0000051B, 0x00002ED9, 0xFFFFEAAF, 0x0000051B }, { 0x0213EA94DE083084, 0x000042ED, 0xFFFFDE50, 0x000006F0, 0x00002FCF, 0xFFFFE8BB, 0x0000058C, 0x00002FCF, 0xFFFFE8BB, 0x0000058C }, { 0x0213EA94DE0A4104, 0x00003EBD, 0xFFFFE099, 0x00000698, 0x00002709, 0xFFFFEE7B, 0x00000495, 0x00002709, 0xFFFFEE7B, 0x00000495 }, { 0x0213EA94DE284904, 0x00003F71, 0xFFFFDF82, 0x000006C9, 0x0000219B, 0xFFFFF1AD, 0x0000040F, 0x0000219B, 0xFFFFF1AD, 0x0000040F }, { 0x0213EA94DE2808E4, 0x00003E73, 0xFFFFE080, 0x0000069B, 0x000020E7, 0xFFFFF273, 0x000003E9, 0x000020E7, 0xFFFFF273, 0x000003E9 }, { 0x0213EA94DE0E3184, 0x00003E14, 0xFFFFE278, 0x0000062C, 0x00002275, 0xFFFFF2B3, 0x000003CE, 0x00002275, 0xFFFFF2B3, 0x000003CE }, { 0x0213EA94DE2C21A4, 0x00003ABB, 0xFFFFE3B9, 0x00000615, 0x00002192, 0xFFFFF28F, 0x000003EB, 0x00002192, 0xFFFFF28F, 0x000003EB }, { 0x0213EA94DE283124, 0x00003D53, 0xFFFFE255, 0x00000643, 0x0000275B, 0xFFFFEEED, 0x00000479, 0x0000275B, 0xFFFFEEED, 0x00000479 }, { 0x0213EA94DE262864, 0x000043E3, 0xFFFFDDC3, 0x000006FB, 0x00002B6B, 0xFFFFEBD6, 0x000004FA, 0x00002B6B, 0xFFFFEBD6, 0x000004FA }, { 0x0213EA94DE0E2144, 0x00003BDE, 0xFFFFE507, 0x000005B4, 0x000022CE, 0xFFFFF358, 0x000003AB, 0x000022CE, 0xFFFFF358, 0x000003AB }, { 0x0213EA94DE323164, 0x00002460, 0xFFFFF3B5, 0x000003A2, 0x000014E7, 0xFFFFFC32, 0x0000027C, 0x000014E7, 0xFFFFFC32, 0x0000027C }, { 0x0213EA94DE2820C4, 0x00003D20, 0xFFFFE298, 0x0000062F, 0x00002080, 0xFFFFF3AF, 0x000003A8, 0x00002080, 0xFFFFF3AF, 0x000003A8 }, { 0x0213EA94DE081904, 0x00003E14, 0xFFFFE221, 0x00000641, 0x000021BB, 0xFFFFF2EA, 0x000003CA, 0x000021BB, 0xFFFFF2EA, 0x000003CA }, { 0x0213EA94DE0A40C4, 0x00003DE1, 0xFFFFE14E, 0x00000677, 0x00002468, 0xFFFFF068, 0x00000440, 0x00002468, 0xFFFFF068, 0x00000440 }, { 0x0213EA94DE261084, 0x00004372, 0xFFFFDDF8, 0x000006F5, 0x00002B3F, 0xFFFFEBE8, 0x000004F8, 0x00002B3F, 0xFFFFEBE8, 0x000004F8 }, { 0x0213EA94DE0A28C4, 0x00003E4F, 0xFFFFE2A3, 0x0000062B, 0x00002F5A, 0xFFFFEA37, 0x0000053B, 0x00002F5A, 0xFFFFEA37, 0x0000053B }, { 0x0213EA94DE2850E4, 0x00003E07, 0xFFFFE02F, 0x000006B6, 0x0000216B, 0xFFFFF1A3, 0x00000416, 0x0000216B, 0xFFFFF1A3, 0x00000416 }, { 0x0213EA94DE2838A4, 0x00003DAB, 0xFFFFE128, 0x0000067F, 0x0000216F, 0xFFFFF236, 0x000003F3, 0x0000216F, 0xFFFFF236, 0x000003F3 }, { 0x0213EA94DE2C2924, 0x0000364B, 0xFFFFE8CB, 0x0000052A, 0x00002568, 0xFFFFF1B2, 0x00000400, 0x00002568, 0xFFFFF1B2, 0x00000400 }, { 0x0213EA94DE261064, 0x00004219, 0xFFFFDE87, 0x000006E8, 0x00002C59, 0xFFFFEAEE, 0x00000529, 0x00002C59, 0xFFFFEAEE, 0x00000529 }, { 0x0213EA94DE0E1944, 0x000039A8, 0xFFFFE602, 0x00000594, 0x00001D06, 0xFFFFF6F0, 0x00000316, 0x00001D06, 0xFFFFF6F0, 0x00000316 }, { 0x0213EA94DE2610E4, 0x00004052, 0xFFFFE01C, 0x00000698, 0x00002310, 0xFFFFF1A1, 0x000003FE, 0x00002310, 0xFFFFF1A1, 0x000003FE }, { 0x0213EA94DE0E2824, 0x00003C1C, 0xFFFFE3EB, 0x000005F1, 0x00002289, 0xFFFFF2CF, 0x000003C9, 0x00002289, 0xFFFFF2CF, 0x000003C9 }, { 0x0213EA94DE0E5124, 0x00003F19, 0xFFFFE085, 0x0000069E, 0x00002B94, 0xFFFFEB72, 0x0000051D, 0x00002B94, 0xFFFFEB72, 0x0000051D }, { 0x0213EA94DE0E41A4, 0x00003C51, 0xFFFFE2AD, 0x00000638, 0x0000206B, 0xFFFFF361, 0x000003BE, 0x0000206B, 0xFFFFF361, 0x000003BE }, { 0x0213EA94DE2610C4, 0x000040B9, 0xFFFFDFBB, 0x000006AB, 0x0000241F, 0xFFFFF0CC, 0x00000425, 0x0000241F, 0xFFFFF0CC, 0x00000425 }, { 0x0213EA94DE0A2064, 0x00003E62, 0xFFFFE12C, 0x00000678, 0x00002445, 0xFFFFF09E, 0x00000435, 0x00002445, 0xFFFFF09E, 0x00000435 }, { 0x0213EA94DE0E1984, 0x00003C97, 0xFFFFE399, 0x000005FB, 0x0000209D, 0xFFFFF41D, 0x0000038F, 0x0000209D, 0xFFFFF41D, 0x0000038F }, { 0x0213EA94DE0E3144, 0x00003FF9, 0xFFFFE1E9, 0x0000063E, 0x00002E96, 0xFFFFEAF5, 0x00000516, 0x00002E96, 0xFFFFEAF5, 0x00000516 }, { 0x0213EA94DE0A3084, 0x00003F04, 0xFFFFE109, 0x0000067A, 0x000026E1, 0xFFFFEF0B, 0x00000476, 0x000026E1, 0xFFFFEF0B, 0x00000476 }, { 0x0213EA94DE101124, 0x00003E3E, 0xFFFFE187, 0x00000660, 0x00002049, 0xFFFFF38D, 0x000003B0, 0x00002049, 0xFFFFF38D, 0x000003B0 }, { 0x0213EA94DE282944, 0x00003D58, 0xFFFFE253, 0x0000063D, 0x00002158, 0xFFFFF308, 0x000003C3, 0x00002158, 0xFFFFF308, 0x000003C3 }, { 0x0213EA94DE0840C4, 0x00004074, 0xFFFFDF8D, 0x000006C0, 0x00002799, 0xFFFFEE19, 0x000004A5, 0x00002799, 0xFFFFEE19, 0x000004A5 }, { 0x0213EA94DE281924, 0x00003DAF, 0xFFFFE1C9, 0x00000659, 0x000020E5, 0xFFFFF313, 0x000003C6, 0x000020E5, 0xFFFFF313, 0x000003C6 }, { 0x0213EA94DE0A3964, 0x000041DD, 0xFFFFDDFA, 0x0000071B, 0x0000348D, 0xFFFFE4B4, 0x0000064C, 0x0000348D, 0xFFFFE4B4, 0x0000064C }, { 0x0213EA94DE2C2884, 0x00003947, 0xFFFFE5AE, 0x000005B8, 0x000024A6, 0xFFFFF140, 0x0000041D, 0x000024A6, 0xFFFFF140, 0x0000041D }, { 0x0213EA94DE101844, 0x00003D35, 0xFFFFE197, 0x0000066E, 0x00002248, 0xFFFFF1BC, 0x00000408, 0x00002248, 0xFFFFF1BC, 0x00000408 }, { 0x0213EA94DE0A18E4, 0x00003F4F, 0xFFFFE13E, 0x0000066D, 0x00002AF0, 0xFFFFEC99, 0x000004DB, 0x00002AF0, 0xFFFFEC99, 0x000004DB }, { 0x0213EA94DE263944, 0x0000430F, 0xFFFFDDFB, 0x000006FC, 0x00002D4D, 0xFFFFEA55, 0x00000540, 0x00002D4D, 0xFFFFEA55, 0x00000540 }, { 0x0213EA94DE0E2944, 0x00003B22, 0xFFFFE543, 0x000005B1, 0x000022E1, 0xFFFFF31B, 0x000003B9, 0x000022E1, 0xFFFFF31B, 0x000003B9 }, { 0x0213EA94DE0E2084, 0x00003978, 0xFFFFE611, 0x00000592, 0x00001C36, 0xFFFFF771, 0x00000302, 0x00001C36, 0xFFFFF771, 0x00000302 }, { 0x0213EA94DE262164, 0x000044DF, 0xFFFFDDAB, 0x000006F2, 0x00002CEA, 0xFFFFEB47, 0x00000507, 0x00002CEA, 0xFFFFEB47, 0x00000507 }, { 0x0213EA94DE0A38C4, 0x00003E9B, 0xFFFFE12C, 0x0000067C, 0x00002B79, 0xFFFFEBD9, 0x00000503, 0x00002B79, 0xFFFFEBD9, 0x00000503 }, { 0x0213EA94DE263044, 0x00004464, 0xFFFFDCD3, 0x00000731, 0x00002D14, 0xFFFFEA2D, 0x0000054E, 0x00002D14, 0xFFFFEA2D, 0x0000054E }, { 0x0213EA94DE281124, 0x00003FB3, 0xFFFFE052, 0x00000693, 0x000020AC, 0xFFFFF311, 0x000003C6, 0x000020AC, 0xFFFFF311, 0x000003C6 }, { 0x0213EA94DE2C1084, 0x00003BDA, 0xFFFFE2FB, 0x00000636, 0x0000261E, 0xFFFFEF72, 0x00000471, 0x0000261E, 0xFFFFEF72, 0x00000471 }, { 0x0213EA94DE2C1964, 0x00003D72, 0xFFFFE28A, 0x0000063E, 0x000029D8, 0xFFFFED54, 0x000004C7, 0x000029D8, 0xFFFFED54, 0x000004C7 }, { 0x0213EA94DE2C2824, 0x00003E26, 0xFFFFE102, 0x00000694, 0x00002DD1, 0xFFFFE9CA, 0x0000056D, 0x00002DD1, 0xFFFFE9CA, 0x0000056D }, { 0x0213EA94DE104124, 0x000041CD, 0xFFFFDE97, 0x000006ED, 0x00002DE5, 0xFFFFE9B9, 0x00000565, 0x00002DE5, 0xFFFFE9B9, 0x00000565 }, { 0x0213EA94DE0A2984, 0x00003F30, 0xFFFFE06E, 0x00000698, 0x000024FF, 0xFFFFEFFC, 0x0000044F, 0x000024FF, 0xFFFFEFFC, 0x0000044F }, { 0x0213EA94DE2C38C4, 0x0000378B, 0xFFFFE6B4, 0x00000594, 0x000023A7, 0xFFFFF1DC, 0x00000407, 0x000023A7, 0xFFFFF1DC, 0x00000407 }, { 0x0213EA94DE0E4164, 0x00003CD7, 0xFFFFE28D, 0x00000636, 0x00002036, 0xFFFFF3B5, 0x000003AA, 0x00002036, 0xFFFFF3B5, 0x000003AA }, { 0x0213EA94DE0A3884, 0x00003EF9, 0xFFFFE0AA, 0x0000068D, 0x000024D3, 0xFFFFF02F, 0x00000445, 0x000024D3, 0xFFFFF02F, 0x00000445 }, { 0x0213EA94DE283944, 0x00003D08, 0xFFFFE1BB, 0x00000665, 0x00002159, 0xFFFFF26F, 0x000003E6, 0x00002159, 0xFFFFF26F, 0x000003E6 }, { 0x0213EA94DE2C20C4, 0x000038A9, 0xFFFFE6CA, 0x00000580, 0x000025D3, 0xFFFFF101, 0x00000421, 0x000025D3, 0xFFFFF101, 0x00000421 }, { 0x0213EA94DE0A20A4, 0x00003E45, 0xFFFFE1F8, 0x0000064D, 0x000027E3, 0xFFFFEEBB, 0x0000047F, 0x000027E3, 0xFFFFEEBB, 0x0000047F }, { 0x0213EA94DE0E3864, 0x00003F76, 0xFFFFE128, 0x0000066E, 0x0000286B, 0xFFFFEE4C, 0x00000493, 0x0000286B, 0xFFFFEE4C, 0x00000493 }, { 0x0213EA94DE264104, 0x0000440D, 0xFFFFDCA2, 0x0000074F, 0x00003817, 0xFFFFE256, 0x000006AF, 0x00003817, 0xFFFFE256, 0x000006AF }, { 0x0213EA94DE105104, 0x00003EE1, 0xFFFFDFA7, 0x000006D4, 0x000027EA, 0xFFFFED2B, 0x000004DE, 0x000027EA, 0xFFFFED2B, 0x000004DE }, { 0x0213EA94DE2C3864, 0x00003C62, 0xFFFFE285, 0x0000064A, 0x00002520, 0xFFFFF001, 0x0000045C, 0x00002520, 0xFFFFF001, 0x0000045C }, { 0x0213EA94DE323964, 0x0000272E, 0xFFFFF17A, 0x000003FA, 0x0000150B, 0xFFFFFBD5, 0x00000284, 0x0000150B, 0xFFFFFBD5, 0x00000284 }, { 0x0213EA94DE261924, 0x00004275, 0xFFFFDF69, 0x000006A5, 0x000025AA, 0xFFFFF05C, 0x0000042B, 0x000025AA, 0xFFFFF05C, 0x0000042B }, { 0x0213EA94DE0E40E4, 0x00003CAA, 0xFFFFE392, 0x000005FF, 0x000023A8, 0xFFFFF20E, 0x000003E9, 0x000023A8, 0xFFFFF20E, 0x000003E9 }, { 0x0213EA94DE2C50C4, 0x00003CF8, 0xFFFFE0FB, 0x000006A6, 0x00002CA7, 0xFFFFE9FF, 0x0000056E, 0x00002CA7, 0xFFFFE9FF, 0x0000056E }, { 0x0213EA94DE282124, 0x00003D00, 0xFFFFE296, 0x00000633, 0x000021C1, 0xFFFFF2C8, 0x000003CF, 0x000021C1, 0xFFFFF2C8, 0x000003CF }, { 0x0213EA94DE2838E4, 0x00003B46, 0xFFFFE301, 0x00000632, 0x0000204C, 0xFFFFF33B, 0x000003C8, 0x0000204C, 0xFFFFF33B, 0x000003C8 }, { 0x0213EA94DE204164, 0x00002026, 0xFFFFF5CE, 0x00000368, 0x00001598, 0xFFFFFB29, 0x000002C3, 0x00001598, 0xFFFFFB29, 0x000002C3 }, { 0x0213EA94DE283164, 0x00003DCA, 0xFFFFE178, 0x00000668, 0x00001FDB, 0xFFFFF39D, 0x000003AF, 0x00001FDB, 0xFFFFF39D, 0x000003AF }, { 0x0213EA94DE2C48C4, 0x00003A59, 0xFFFFE327, 0x00000642, 0x000024B9, 0xFFFFEFC4, 0x00000471, 0x000024B9, 0xFFFFEFC4, 0x00000471 }, { 0x0213EA94DE2C2944, 0x00003C26, 0xFFFFE440, 0x000005EB, 0x00002C0F, 0xFFFFEC88, 0x000004E0, 0x00002C0F, 0xFFFFEC88, 0x000004E0 }, { 0x0213EA94DE083884, 0x00004149, 0xFFFFDEB8, 0x000006E7, 0x0000280A, 0xFFFFED89, 0x000004C2, 0x0000280A, 0xFFFFED89, 0x000004C2 }, { 0x0213EA94DE0E4124, 0x00003EB4, 0xFFFFE1E5, 0x0000064D, 0x0000299F, 0xFFFFEDB3, 0x000004A9, 0x0000299F, 0xFFFFEDB3, 0x000004A9 }, { 0x0213EA94DE2C39A4, 0x00003BBF, 0xFFFFE268, 0x0000065A, 0x00002504, 0xFFFFEFB0, 0x00000470, 0x00002504, 0xFFFFEFB0, 0x00000470 }, { 0x0213EA94DE084904, 0x00004203, 0xFFFFDDC6, 0x00000720, 0x0000303B, 0xFFFFE78F, 0x000005D0, 0x0000303B, 0xFFFFE78F, 0x000005D0 }, { 0x0213EA94DE0E3984, 0x00003DA3, 0xFFFFE244, 0x0000063E, 0x000021B4, 0xFFFFF2DA, 0x000003CD, 0x000021B4, 0xFFFFF2DA, 0x000003CD }, { 0x0213EA94DE0A38E4, 0x00004035, 0xFFFFE065, 0x0000069B, 0x00003323, 0xFFFFE6D6, 0x000005D8, 0x00003323, 0xFFFFE6D6, 0x000005D8 }, { 0x0213EA94DE2C1164, 0x00003944, 0xFFFFE4E5, 0x000005E2, 0x00001F3C, 0xFFFFF456, 0x0000039D, 0x00001F3C, 0xFFFFF456, 0x0000039D }, { 0x0213EA94DE061904, 0x000032D8, 0xFFFFEAE8, 0x000004E6, 0x00001812, 0xFFFFFA1C, 0x000002BC, 0x00001812, 0xFFFFFA1C, 0x000002BC }, { 0x0213F0FD42D22944, 0x000041F6, 0xFFFFE025, 0x0000069A, 0x0000241E, 0xFFFFF1B4, 0x00000402, 0x0000241E, 0xFFFFF1B4, 0x00000402 }, { 0x0213F0FE990C30A4, 0x00003300, 0xFFFFEB60, 0x000004C1, 0x00001E15, 0xFFFFF6A6, 0x0000033B, 0x00001E15, 0xFFFFF6A6, 0x0000033B }, { 0x0213EA94DE0408A4, 0x000037F0, 0xFFFFE68F, 0x0000059B, 0x00001F8A, 0xFFFFF467, 0x000003A3, 0x00001F8A, 0xFFFFF467, 0x000003A3 }, { 0x0213F0FE99182984, 0x000025D8, 0xFFFFF2AA, 0x000003C3, 0x000018A8, 0xFFFFF9BE, 0x000002D2, 0x000018A8, 0xFFFFF9BE, 0x000002D2 }, { 0x0213F0FE990620C4, 0x0000364F, 0xFFFFE988, 0x000004FC, 0x00001E51, 0xFFFFF633, 0x0000034F, 0x00001E51, 0xFFFFF633, 0x0000034F }, { 0x0213EA94DE061144, 0x00002288, 0xFFFFF483, 0x0000036C, 0x0000280F, 0xFFFFEF39, 0x0000047B, 0x0000280F, 0xFFFFEF39, 0x0000047B }, { 0x0213F0FE99082084, 0x00003322, 0xFFFFEA7E, 0x000004ED, 0x00001DAD, 0xFFFFF62B, 0x00000355, 0x00001DAD, 0xFFFFF62B, 0x00000355 }, { 0x0213EA94DE0250E4, 0x00002B7B, 0xFFFFEE4F, 0x0000045B, 0x00001AA2, 0xFFFFF710, 0x0000033E, 0x00001AA2, 0xFFFFF710, 0x0000033E }, { 0x0213F0FE990420C4, 0x000034CC, 0xFFFFEA79, 0x000004E4, 0x00001B05, 0xFFFFF8B3, 0x000002EC, 0x00001B05, 0xFFFFF8B3, 0x000002EC }, { 0x0213F0FD42DC2864, 0x00003837, 0xFFFFE5ED, 0x000005C3, 0x00001ACB, 0xFFFFF7B2, 0x00000314, 0x00001ACB, 0xFFFFF7B2, 0x00000314 }, { 0x0213F0FE99044164, 0x0000352D, 0xFFFFE88F, 0x00000548, 0x000021E6, 0xFFFFF3B5, 0x000003AA, 0x000021E6, 0xFFFFF3B5, 0x000003AA }, { 0x0213F0FE990A4884, 0x00003300, 0xFFFFE835, 0x0000057B, 0x00001A85, 0xFFFFF715, 0x00000336, 0x00001A85, 0xFFFFF715, 0x00000336 }, { 0x0213EA94DE0448A4, 0x000033FA, 0xFFFFE851, 0x00000565, 0x00001A8E, 0xFFFFF727, 0x0000033B, 0x00001A8E, 0xFFFFF727, 0x0000033B }, { 0x0213F0FD42DA3924, 0x000039D3, 0xFFFFE5D3, 0x000005B0, 0x00001888, 0xFFFFF978, 0x000002C8, 0x00001888, 0xFFFFF978, 0x000002C8 }, { 0x0213F0FE990E4864, 0x00002F6B, 0xFFFFEC53, 0x000004B9, 0x00001C15, 0xFFFFF71B, 0x00000337, 0x00001C15, 0xFFFFF71B, 0x00000337 }, { 0x0213F0FE99064144, 0x0000384D, 0xFFFFE737, 0x00000569, 0x00001D2D, 0xFFFFF673, 0x00000343, 0x00001D2D, 0xFFFFF673, 0x00000343 }, { 0x0213F0FE990620A4, 0x00003A49, 0xFFFFE70B, 0x0000055F, 0x00001A63, 0xFFFFF8CD, 0x000002E2, 0x00001A63, 0xFFFFF8CD, 0x000002E2 }, { 0x0213F0FE99042984, 0x0000311E, 0xFFFFEB97, 0x000004C6, 0x00001EAE, 0xFFFFF5A9, 0x00000367, 0x00001EAE, 0xFFFFF5A9, 0x00000367 }, { 0x0213F0FE990E1124, 0x000027D3, 0xFFFFF075, 0x00000417, 0x00002001, 0xFFFFF44A, 0x000003A2, 0x00002001, 0xFFFFF44A, 0x000003A2 }, { 0x0213F0FE99064904, 0x00003B72, 0xFFFFE4BD, 0x000005DC, 0x00001D76, 0xFFFFF606, 0x0000035A, 0x00001D76, 0xFFFFF606, 0x0000035A }, { 0x0213F0FE99101124, 0x00002E0F, 0xFFFFECA7, 0x000004AE, 0x00001DC6, 0xFFFFF5BF, 0x0000036A, 0x00001DC6, 0xFFFFF5BF, 0x0000036A }, { 0x0213F0FE990238A4, 0x000032C7, 0xFFFFEA7A, 0x000004F0, 0x00001A7B, 0xFFFFF827, 0x00000301, 0x00001A7B, 0xFFFFF827, 0x00000301 }, { 0x0213EA94DE044884, 0x0000312D, 0xFFFFEA39, 0x00000515, 0x00001948, 0xFFFFF800, 0x00000318, 0x00001948, 0xFFFFF800, 0x00000318 }, { 0x0213EA94DE062084, 0x00003611, 0xFFFFE8D7, 0x00000533, 0x00001929, 0xFFFFF965, 0x000002D2, 0x00001929, 0xFFFFF965, 0x000002D2 }, { 0x0213F0FE992C30E4, 0x00002FE2, 0xFFFFED89, 0x00000470, 0x00001A3C, 0xFFFFF955, 0x000002D5, 0x00001A3C, 0xFFFFF955, 0x000002D5 }, { 0x0213EA94DE0208A4, 0x000035FF, 0xFFFFE884, 0x00000548, 0x0000182A, 0xFFFFF9AB, 0x000002CF, 0x0000182A, 0xFFFFF9AB, 0x000002CF }, { 0x0213F0FE990220E4, 0x00003597, 0xFFFFE904, 0x00000528, 0x00001A94, 0xFFFFF840, 0x00000300, 0x00001A94, 0xFFFFF840, 0x00000300 }, { 0x0213F0FE99181944, 0x000026CB, 0xFFFFF1FB, 0x000003E4, 0x000017CC, 0xFFFFFA25, 0x000002C8, 0x000017CC, 0xFFFFFA25, 0x000002C8 }, { 0x0213EA94DE0608C4, 0x00003274, 0xFFFFEA39, 0x0000050C, 0x00001B20, 0xFFFFF7C1, 0x00000314, 0x00001B20, 0xFFFFF7C1, 0x00000314 }, { 0x0213F0FD42D82924, 0x0000280B, 0xFFFFF283, 0x000003B5, 0x000018D0, 0xFFFFF992, 0x000002EC, 0x000018D0, 0xFFFFF992, 0x000002EC }, { 0x0213F0FE99062104, 0x000033AB, 0xFFFFEB1B, 0x000004C4, 0x00001FEE, 0xFFFFF53A, 0x00000378, 0x00001FEE, 0xFFFFF53A, 0x00000378 }, { 0x0213F0FE990A3964, 0x00002F79, 0xFFFFEB0C, 0x000004FA, 0x00001E57, 0xFFFFF4BF, 0x0000039B, 0x00001E57, 0xFFFFF4BF, 0x0000039B }, { 0x0213F0FE990448E4, 0x00003487, 0xFFFFE8F2, 0x00000539, 0x0000185B, 0xFFFFF9AE, 0x000002BA, 0x0000185B, 0xFFFFF9AE, 0x000002BA }, { 0x0213F0FE990A18A4, 0x00003500, 0xFFFFE793, 0x0000058A, 0x00001AA2, 0xFFFFF792, 0x0000031D, 0x00001AA2, 0xFFFFF792, 0x0000031D }, { 0x0213F0FE99081164, 0x00003943, 0xFFFFE54D, 0x000005D9, 0x00001BC8, 0xFFFFF6E0, 0x00000339, 0x00001BC8, 0xFFFFF6E0, 0x00000339 }, { 0x0213EA94DE0430A4, 0x0000306D, 0xFFFFEC5E, 0x000004A5, 0x00001A3A, 0xFFFFF85F, 0x00000304, 0x00001A3A, 0xFFFFF85F, 0x00000304 }, { 0x0213F0FD42D83084, 0x00002BA4, 0xFFFFEE8D, 0x0000046A, 0x0000198C, 0xFFFFF88E, 0x00000307, 0x0000198C, 0xFFFFF88E, 0x00000307 }, { 0x0213F0FD42D218E4, 0x00003D30, 0xFFFFE2F6, 0x0000062A, 0x000025DC, 0xFFFFF074, 0x00000435, 0x000025DC, 0xFFFFF074, 0x00000435 }, { 0x0213F0FD42D83964, 0x00002CD6, 0xFFFFED79, 0x0000049B, 0x000016D0, 0xFFFFFA53, 0x000002BB, 0x000016D0, 0xFFFFFA53, 0x000002BB }, { 0x0213F0FE99163164, 0x00002484, 0xFFFFF3BD, 0x000003A0, 0x000015B8, 0xFFFFFB6B, 0x000002A4, 0x000015B8, 0xFFFFFB6B, 0x000002A4 }, { 0x0213F0FE990E3944, 0x000038AE, 0xFFFFE6D1, 0x00000587, 0x00001A2A, 0xFFFFF8F1, 0x000002D4, 0x00001A2A, 0xFFFFF8F1, 0x000002D4 }, { 0x0213F0FE99044944, 0x000036FD, 0xFFFFE76C, 0x00000576, 0x00001EE4, 0xFFFFF58D, 0x00000361, 0x00001EE4, 0xFFFFF58D, 0x00000361 }, { 0x0213F0FD42D830A4, 0x00002BCF, 0xFFFFEF28, 0x00000448, 0x00001B93, 0xFFFFF7BA, 0x00000327, 0x00001B93, 0xFFFFF7BA, 0x00000327 }, { 0x0213F0FE99062884, 0x00003834, 0xFFFFE818, 0x0000053B, 0x00001AFE, 0xFFFFF85C, 0x000002F3, 0x00001AFE, 0xFFFFF85C, 0x000002F3 }, { 0x0213F0FE993231A4, 0x00002EF7, 0xFFFFEBFC, 0x000004CE, 0x00001897, 0xFFFFF8EF, 0x000002EC, 0x00001897, 0xFFFFF8EF, 0x000002EC }, { 0x0213F0FE992C18C4, 0x000035BD, 0xFFFFE8BB, 0x0000053B, 0x00001F22, 0xFFFFF561, 0x00000373, 0x00001F22, 0xFFFFF561, 0x00000373 }, { 0x0213F0FE99183984, 0x00002D42, 0xFFFFEE1D, 0x00000478, 0x000016F0, 0xFFFFFAAE, 0x000002B3, 0x000016F0, 0xFFFFFAAE, 0x000002B3 }, { 0x0213EA94DE045124, 0x00002F98, 0xFFFFEB3C, 0x000004F0, 0x00001903, 0xFFFFF818, 0x00000319, 0x00001903, 0xFFFFF818, 0x00000319 }, { 0x0213F0FD42D42144, 0x00004081, 0xFFFFDF13, 0x000006F3, 0x00002A6D, 0xFFFFEC1B, 0x00000509, 0x00002A6D, 0xFFFFEC1B, 0x00000509 }, { 0x0213EA94DE040904, 0x00002D68, 0xFFFFED21, 0x00000498, 0x00001FF6, 0xFFFFF427, 0x000003B0, 0x00001FF6, 0xFFFFF427, 0x000003B0 }, { 0x0213F0FE99023884, 0x00003243, 0xFFFFEA5C, 0x000004FD, 0x000020FB, 0xFFFFF39E, 0x000003C0, 0x000020FB, 0xFFFFF39E, 0x000003C0 }, { 0x0213F0FD42D848A4, 0x00002F20, 0xFFFFEC19, 0x000004C6, 0x00001748, 0xFFFFF99F, 0x000002DA, 0x00001748, 0xFFFFF99F, 0x000002DA }, { 0x0213F0FE99103984, 0x00002D68, 0xFFFFED21, 0x00000498, 0x00001A43, 0xFFFFF843, 0x000002F9, 0x00001A43, 0xFFFFF843, 0x000002F9 }, { 0x0213F0FE990220A4, 0x0000396E, 0xFFFFE616, 0x000005A9, 0x00001A51, 0xFFFFF850, 0x000002FA, 0x00001A51, 0xFFFFF850, 0x000002FA }, { 0x0213F0FE99043144, 0x0000305C, 0xFFFFED4B, 0x0000046C, 0x00001CF9, 0xFFFFF7BA, 0x00000304, 0x00001CF9, 0xFFFFF7BA, 0x00000304 }, { 0x0213F0FD42DA4164, 0x0000343C, 0xFFFFE869, 0x00000559, 0x00001CE2, 0xFFFFF614, 0x00000359, 0x00001CE2, 0xFFFFF614, 0x00000359 }, { 0x0213F0FE99183964, 0x00002782, 0xFFFFF1FE, 0x000003D9, 0x000015DC, 0xFFFFFB8B, 0x00000290, 0x000015DC, 0xFFFFFB8B, 0x00000290 }, { 0x0213F0FE991818C4, 0x00002B9C, 0xFFFFEF63, 0x00000443, 0x00001369, 0xFFFFFD51, 0x00000244, 0x00001369, 0xFFFFFD51, 0x00000244 }, { 0x0213F0FE990A2084, 0x000035F8, 0xFFFFE743, 0x00000592, 0x000018D8, 0xFFFFF8EE, 0x000002E4, 0x000018D8, 0xFFFFF8EE, 0x000002E4 }, { 0x0213EA94DE062844, 0x00002B72, 0xFFFFEF1E, 0x0000043C, 0x00002647, 0xFFFFF092, 0x0000043E, 0x00002647, 0xFFFFF092, 0x0000043E }, { 0x0213F0FE99102184, 0x00002EC9, 0xFFFFEC5F, 0x000004B8, 0x000018B6, 0xFFFFF936, 0x000002D8, 0x000018B6, 0xFFFFF936, 0x000002D8 }, { 0x0213F0FE99064084, 0x000038A7, 0xFFFFE6AC, 0x00000589, 0x00001C42, 0xFFFFF70B, 0x00000329, 0x00001C42, 0xFFFFF70B, 0x00000329 }, { 0x0213F0FE993008A4, 0x00002F6B, 0xFFFFEBF6, 0x000004CF, 0x000018AE, 0xFFFFF928, 0x000002E3, 0x000018AE, 0xFFFFF928, 0x000002E3 }, { 0x0213F0FD42DA5104, 0x000029CD, 0xFFFFEEE1, 0x00000459, 0x00001AB5, 0xFFFFF76F, 0x00000324, 0x00001AB5, 0xFFFFF76F, 0x00000324 }, { 0x0213EA94DE0638C4, 0x00003921, 0xFFFFE71D, 0x00000577, 0x00001646, 0xFFFFFB24, 0x00000293, 0x00001646, 0xFFFFFB24, 0x00000293 }, { 0x0213EA94DE044164, 0x00003940, 0xFFFFE521, 0x000005E8, 0x00001947, 0xFFFFF839, 0x0000030D, 0x00001947, 0xFFFFF839, 0x0000030D }, { 0x0213F0FD42D24164, 0x00003DCA, 0xFFFFE211, 0x00000659, 0x0000250E, 0xFFFFF072, 0x00000443, 0x0000250E, 0xFFFFF072, 0x00000443 }, { 0x0213F0FE990C0904, 0x00002E95, 0xFFFFEC20, 0x000004C9, 0x000015B4, 0xFFFFFAD3, 0x0000029D, 0x000015B4, 0xFFFFFAD3, 0x0000029D }, { 0x0213F0FE99041084, 0x00002C11, 0xFFFFEE6E, 0x00000468, 0x00001901, 0xFFFFF924, 0x000002E7, 0x00001901, 0xFFFFF924, 0x000002E7 }, { 0x0213EA94DE062104, 0x0000293F, 0xFFFFF158, 0x000003E6, 0x0000183F, 0xFFFFF9F6, 0x000002D2, 0x0000183F, 0xFFFFF9F6, 0x000002D2 }, { 0x0213F0FE990E1104, 0x00002A67, 0xFFFFEF34, 0x0000043E, 0x00001C6F, 0xFFFFF6F1, 0x0000032B, 0x00001C6F, 0xFFFFF6F1, 0x0000032B }, { 0x0213EA94DE065124, 0x00002F8D, 0xFFFFEB77, 0x000004DA, 0x00001C0D, 0xFFFFF627, 0x00000365, 0x00001C0D, 0xFFFFF627, 0x00000365 }, { 0x0213F0FE990C38C4, 0x00003476, 0xFFFFEA5B, 0x000004E7, 0x00001DBF, 0xFFFFF6C7, 0x00000333, 0x00001DBF, 0xFFFFF6C7, 0x00000333 }, { 0x0213F0FE990E0944, 0x00003336, 0xFFFFE92F, 0x00000546, 0x00001614, 0xFFFFFAE0, 0x00000296, 0x00001614, 0xFFFFFAE0, 0x00000296 }, { 0x0213F0FE99162164, 0x00002513, 0xFFFFF323, 0x000003BC, 0x000016DB, 0xFFFFFA79, 0x000002CD, 0x000016DB, 0xFFFFFA79, 0x000002CD }, { 0x0213F0FE990A2944, 0x000035A7, 0xFFFFE78E, 0x00000584, 0x00001B0D, 0xFFFFF77D, 0x0000031F, 0x00001B0D, 0xFFFFF77D, 0x0000031F }, { 0x0213F0FE993238E4, 0x00003171, 0xFFFFEB98, 0x000004C6, 0x00001C76, 0xFFFFF71F, 0x0000032F, 0x00001C76, 0xFFFFF71F, 0x0000032F }, { 0x0213F0FD42DA1084, 0x00002C52, 0xFFFFED2E, 0x000004A7, 0x00002182, 0xFFFFF2F4, 0x000003E4, 0x00002182, 0xFFFFF2F4, 0x000003E4 }, { 0x0213F0FE99102924, 0x000032E1, 0xFFFFEB39, 0x000004D0, 0x00001B55, 0xFFFFF859, 0x000002FA, 0x00001B55, 0xFFFFF859, 0x000002FA }, { 0x0213F0FE991848A4, 0x000029B6, 0xFFFFEFF7, 0x00000430, 0x0000151B, 0xFFFFFBC6, 0x0000027F, 0x0000151B, 0xFFFFFBC6, 0x0000027F }, { 0x0213F0FD42DA1964, 0x00002FF7, 0xFFFFEB67, 0x000004DA, 0x000020E9, 0xFFFFF363, 0x000003CE, 0x000020E9, 0xFFFFF363, 0x000003CE }, { 0x0213F0FD42DA5124, 0x00003CDD, 0xFFFFE2B2, 0x00000649, 0x00001B18, 0xFFFFF739, 0x00000329, 0x00001B18, 0xFFFFF739, 0x00000329 }, { 0x0213F0FE990628A4, 0x00003C82, 0xFFFFE5C6, 0x0000058E, 0x00001F3F, 0xFFFFF5AD, 0x00000361, 0x00001F3F, 0xFFFFF5AD, 0x00000361 }, { 0x0213F0FD42DC4084, 0x0000319B, 0xFFFFEA15, 0x0000051B, 0x00001CC9, 0xFFFFF62E, 0x00000358, 0x00001CC9, 0xFFFFF62E, 0x00000358 }, { 0x0213EA94DE0638E4, 0x000032B6, 0xFFFFEB2B, 0x000004D6, 0x000018E0, 0xFFFFF966, 0x000002DE, 0x000018E0, 0xFFFFF966, 0x000002DE }, { 0x0213EA94DE023984, 0x0000300A, 0xFFFFEBA6, 0x000004D1, 0x00001CFD, 0xFFFFF5F6, 0x0000036D, 0x00001CFD, 0xFFFFF5F6, 0x0000036D }, { 0x0213F0FD42D82984, 0x000026A9, 0xFFFFF15D, 0x00000400, 0x00001561, 0xFFFFFB1F, 0x000002A0, 0x00001561, 0xFFFFFB1F, 0x000002A0 }, { 0x0213F0FE990E5124, 0x00003123, 0xFFFFEAD2, 0x000004FA, 0x000018CB, 0xFFFFF8F5, 0x000002EC, 0x000018CB, 0xFFFFF8F5, 0x000002EC }, { 0x0213F0FE991840C4, 0x00003577, 0xFFFFE935, 0x00000533, 0x000016CD, 0xFFFFFB44, 0x00000289, 0x000016CD, 0xFFFFFB44, 0x00000289 }, { 0x0213F0FE99282184, 0x00002875, 0xFFFFF170, 0x000003F3, 0x00001567, 0xFFFFFBD5, 0x00000289, 0x00001567, 0xFFFFFBD5, 0x00000289 }, { 0x0213F0FE99084084, 0x00003AE2, 0xFFFFE538, 0x000005C1, 0x00001CB4, 0xFFFFF6A3, 0x0000033C, 0x00001CB4, 0xFFFFF6A3, 0x0000033C }, { 0x0213F0FE990C38E4, 0x000031DF, 0xFFFFEC2A, 0x000004A3, 0x00001EF0, 0xFFFFF626, 0x00000352, 0x00001EF0, 0xFFFFF626, 0x00000352 }, { 0x0213F0FD42D25144, 0x00004A6A, 0xFFFFDB15, 0x00000758, 0x000027F3, 0xFFFFEEEE, 0x00000479, 0x000027F3, 0xFFFFEEEE, 0x00000479 }, { 0x0213EA94DE063904, 0x00002BB9, 0xFFFFEF5D, 0x00000433, 0x00001589, 0xFFFFFB57, 0x00000295, 0x00001589, 0xFFFFFB57, 0x00000295 }, { 0x0213F0FE99042164, 0x000033A0, 0xFFFFE98F, 0x00000528, 0x00001CB4, 0xFFFFF706, 0x0000032D, 0x00001CB4, 0xFFFFF706, 0x0000032D }, { 0x0213F0FE99163064, 0x0000248E, 0xFFFFF380, 0x000003AC, 0x000016EA, 0xFFFFFA6C, 0x000002CE, 0x000016EA, 0xFFFFFA6C, 0x000002CE }, { 0x0213F0FE990221A4, 0x00002FE2, 0xFFFFEB2F, 0x000004E9, 0x00001D4E, 0xFFFFF56B, 0x00000380, 0x00001D4E, 0xFFFFF56B, 0x00000380 }, { 0x0213F0FE990A2884, 0x00003283, 0xFFFFE9E7, 0x0000051D, 0x00000694, 0xFFFFFD32, 0x000003C3, 0x00000694, 0xFFFFFD32, 0x000003C3 }, { 0x0213F0FD42D850C4, 0x00002EE4, 0xFFFFEBFD, 0x000004D3, 0x0000151A, 0xFFFFFAF6, 0x000002A4, 0x0000151A, 0xFFFFFAF6, 0x000002A4 }, { 0x0213F0FD42DC18E4, 0x0000302D, 0xFFFFEB7F, 0x000004DA, 0x00001E6D, 0xFFFFF54B, 0x00000380, 0x00001E6D, 0xFFFFF54B, 0x00000380 }, { 0x0213F0FD42DA50C4, 0x000033DA, 0xFFFFE7FB, 0x0000057F, 0x00001DED, 0xFFFFF50E, 0x0000038D, 0x00001DED, 0xFFFFF50E, 0x0000038D }, { 0x0213F0FE992C4084, 0x000030B5, 0xFFFFEBB8, 0x000004C4, 0x00001C3F, 0xFFFFF726, 0x0000032A, 0x00001C3F, 0xFFFFF726, 0x0000032A }, { 0x0213F0FE990831C4, 0x00003BBD, 0xFFFFE55C, 0x000005B8, 0x000019DB, 0xFFFFF8BB, 0x000002EF, 0x000019DB, 0xFFFFF8BB, 0x000002EF }, { 0x0213F0FE990E3884, 0x00002964, 0xFFFFF051, 0x0000040E, 0x000025CD, 0xFFFFF11B, 0x0000041F, 0x000025CD, 0xFFFFF11B, 0x0000041F }, { 0x0213F0FD42DC4884, 0x000033F5, 0xFFFFE863, 0x00000560, 0x00001BCE, 0xFFFFF689, 0x0000034B, 0x00001BCE, 0xFFFFF689, 0x0000034B }, { 0x0213F0FE990A2864, 0x00003294, 0xFFFFE924, 0x00000548, 0x00001D41, 0xFFFFF580, 0x0000037D, 0x00001D41, 0xFFFFF580, 0x0000037D }, { 0x0213F0FD42DC39A4, 0x000034FB, 0xFFFFE7FE, 0x0000056D, 0x00001CB1, 0xFFFFF635, 0x00000357, 0x00001CB1, 0xFFFFF635, 0x00000357 }, { 0x0213F0FE990A10A4, 0x00002E28, 0xFFFFEBB9, 0x000004E0, 0x00001B20, 0xFFFFF6E3, 0x0000033C, 0x00001B20, 0xFFFFF6E3, 0x0000033C }, { 0x0213F0FD42DA1904, 0x00002799, 0xFFFFF0F4, 0x000003FC, 0x00001C9D, 0xFFFFF6A1, 0x00000345, 0x00001C9D, 0xFFFFF6A1, 0x00000345 }, { 0x0213F0FE99064104, 0x00003AEA, 0xFFFFE5DB, 0x0000059D, 0x00001B61, 0xFFFFF7F0, 0x00000301, 0x00001B61, 0xFFFFF7F0, 0x00000301 }, { 0x0213EA94DE041984, 0x000031F6, 0xFFFFEAB8, 0x000004F3, 0x00001D90, 0xFFFFF622, 0x00000359, 0x00001D90, 0xFFFFF622, 0x00000359 }, { 0x0213F0FE990C4064, 0x000031B8, 0xFFFFEA61, 0x0000050F, 0x0000199D, 0xFFFFF87C, 0x000002FD, 0x0000199D, 0xFFFFF87C, 0x000002FD }, { 0x0213F0FD42D23144, 0x00004514, 0xFFFFDDFF, 0x000006F6, 0x000022CD, 0xFFFFF29F, 0x000003D9, 0x000022CD, 0xFFFFF29F, 0x000003D9 }, { 0x0213EA94DE043164, 0x00002F30, 0xFFFFECB8, 0x000004A0, 0x00001B07, 0xFFFFF7E2, 0x00000313, 0x00001B07, 0xFFFFF7E2, 0x00000313 }, { 0x0213F0FD42DC30A4, 0x0000383B, 0xFFFFE702, 0x00000581, 0x00001A08, 0xFFFFF8CA, 0x000002E2, 0x00001A08, 0xFFFFF8CA, 0x000002E2 }, { 0x0213F0FE99022164, 0x00002CC5, 0xFFFFEDF8, 0x00000465, 0x00001F47, 0xFFFFF4B2, 0x00000393, 0x00001F47, 0xFFFFF4B2, 0x00000393 }, { 0x0213F0FE991621C4, 0x00002304, 0xFFFFF453, 0x00000384, 0x0000170A, 0xFFFFFA3F, 0x000002CE, 0x0000170A, 0xFFFFFA3F, 0x000002CE }, { 0x0213F0FE990A5124, 0x0000337E, 0xFFFFE850, 0x0000056E, 0x00001BDD, 0xFFFFF668, 0x00000353, 0x00001BDD, 0xFFFFF668, 0x00000353 }, { 0x0213F0FE990E4924, 0x00002E2F, 0xFFFFEC9B, 0x000004AE, 0x00001C4D, 0xFFFFF6D3, 0x00000338, 0x00001C4D, 0xFFFFF6D3, 0x00000338 }, { 0x0213EA94DE061124, 0x00002DDD, 0xFFFFEDA4, 0x00000477, 0x00002010, 0xFFFFF4BB, 0x00000390, 0x00002010, 0xFFFFF4BB, 0x00000390 }, { 0x0213F0FD42DA48E4, 0x0000290C, 0xFFFFEF61, 0x00000445, 0x00002133, 0xFFFFF324, 0x000003D8, 0x00002133, 0xFFFFF324, 0x000003D8 }, { 0x0213F0FE99062924, 0x0000371E, 0xFFFFE8D5, 0x00000524, 0x00001C3A, 0xFFFFF7AE, 0x00000314, 0x00001C3A, 0xFFFFF7AE, 0x00000314 }, { 0x0213F0FD42D838E4, 0x00002A58, 0xFFFFF007, 0x00000429, 0x000018A6, 0xFFFFF98F, 0x000002E1, 0x000018A6, 0xFFFFF98F, 0x000002E1 }, { 0x0213F0FE99023084, 0x00002FED, 0xFFFFEC48, 0x000004AA, 0x00001E9D, 0xFFFFF584, 0x00000370, 0x00001E9D, 0xFFFFF584, 0x00000370 }, { 0x0213F0FE99181884, 0x00002829, 0xFFFFF15F, 0x000003F7, 0x0000157E, 0xFFFFFBD4, 0x00000282, 0x0000157E, 0xFFFFFBD4, 0x00000282 }, { 0x0213F0FE99101924, 0x000030CF, 0xFFFFEB8D, 0x000004CE, 0x00001A4C, 0xFFFFF868, 0x000002F7, 0x00001A4C, 0xFFFFF868, 0x000002F7 }, { 0x0213F0FD42DA2084, 0x00002C8F, 0xFFFFEDD2, 0x0000047D, 0x00001CCE, 0xFFFFF6A1, 0x00000343, 0x00001CCE, 0xFFFFF6A1, 0x00000343 }, { 0x0213F0FE99182164, 0x00002A84, 0xFFFFEFBA, 0x0000043E, 0x000015EF, 0xFFFFFB4B, 0x0000029E, 0x000015EF, 0xFFFFFB4B, 0x0000029E }, { 0x0213F0FE990C28A4, 0x000034CA, 0xFFFFEA08, 0x000004FF, 0x00001C19, 0xFFFFF7ED, 0x00000309, 0x00001C19, 0xFFFFF7ED, 0x00000309 }, { 0x0213F0FE991639A4, 0x00002187, 0xFFFFF4B0, 0x0000037E, 0x0000154A, 0xFFFFFB0C, 0x000002AE, 0x0000154A, 0xFFFFFB0C, 0x000002AE }, { 0x0213F0FD42DA3844, 0x00002F4F, 0xFFFFEB3C, 0x000004F8, 0x0000181F, 0xFFFFF92D, 0x000002DF, 0x0000181F, 0xFFFFF92D, 0x000002DF }, { 0x0213F0FE990410E4, 0x0000290C, 0xFFFFF0B1, 0x000003FC, 0x00001DB0, 0xFFFFF636, 0x00000355, 0x00001DB0, 0xFFFFF636, 0x00000355 }, { 0x0213F0FE990A1064, 0x000034C1, 0xFFFFE888, 0x0000055A, 0x000019BF, 0xFFFFF881, 0x000002FB, 0x000019BF, 0xFFFFF881, 0x000002FB }, { 0x0213F0FD42DC18C4, 0x00003139, 0xFFFFEA98, 0x00000504, 0x000019F2, 0xFFFFF820, 0x0000030B, 0x000019F2, 0xFFFFF820, 0x0000030B }, { 0x0213F0FD42D83144, 0x00002CAC, 0xFFFFEEB2, 0x00000458, 0x0000152C, 0xFFFFFBEF, 0x0000027B, 0x0000152C, 0xFFFFFBEF, 0x0000027B }, { 0x0213F0FE992C38E4, 0x00003577, 0xFFFFE99C, 0x0000050D, 0x00001E64, 0xFFFFF679, 0x0000033F, 0x00001E64, 0xFFFFF679, 0x0000033F }, { 0x0213F0FD42DA4104, 0x0000263A, 0xFFFFF1E4, 0x000003D4, 0x00001F68, 0xFFFFF4ED, 0x00000386, 0x00001F68, 0xFFFFF4ED, 0x00000386 }, { 0x0213F0FD42D81984, 0x00002CE9, 0xFFFFED63, 0x00000497, 0x00001810, 0xFFFFF94D, 0x000002E3, 0x00001810, 0xFFFFF94D, 0x000002E3 }, { 0x0213EA94DE044104, 0x0000318A, 0xFFFFEAC8, 0x000004F5, 0x0000195C, 0xFFFFF896, 0x000002FB, 0x0000195C, 0xFFFFF896, 0x000002FB }, { 0x0213F0FD42D83904, 0x00002C41, 0xFFFFEEC6, 0x0000045D, 0x000017DD, 0xFFFFFA16, 0x000002CB, 0x000017DD, 0xFFFFFA16, 0x000002CB }, { 0x0213F0FE990231A4, 0x00002DD4, 0xFFFFEC98, 0x000004AD, 0x00001BD7, 0xFFFFF69F, 0x00000347, 0x00001BD7, 0xFFFFF69F, 0x00000347 }, { 0x0213F0FD42DA3944, 0x00003351, 0xFFFFE9B2, 0x0000051A, 0x00001CA1, 0xFFFFF6A4, 0x00000341, 0x00001CA1, 0xFFFFF6A4, 0x00000341 }, { 0x0213F0FE99021104, 0x0000322D, 0xFFFFE9BE, 0x00000527, 0x00001CF9, 0xFFFFF5EB, 0x00000366, 0x00001CF9, 0xFFFFF5EB, 0x00000366 }, { 0x0213F0FE990C28C4, 0x00003678, 0xFFFFE9A8, 0x00000503, 0x00001AD4, 0xFFFFF8F6, 0x000002E3, 0x00001AD4, 0xFFFFF8F6, 0x000002E3 }, { 0x0213F0FE99161924, 0x0000260E, 0xFFFFF2C1, 0x000003CA, 0x00001139, 0xFFFFFE48, 0x00000236, 0x00001139, 0xFFFFFE48, 0x00000236 }, { 0x0213F0FE990A2164, 0x000033D3, 0xFFFFE872, 0x00000565, 0x00001B72, 0xFFFFF713, 0x00000332, 0x00001B72, 0xFFFFF713, 0x00000332 }, { 0x0213F0FE99323844, 0x0000309B, 0xFFFFEB42, 0x000004E4, 0x00001918, 0xFFFFF8C8, 0x000002F2, 0x00001918, 0xFFFFF8C8, 0x000002F2 }, { 0x0213F0FE99182864, 0x000028B8, 0xFFFFF105, 0x00000402, 0x000018BB, 0xFFFFF9BC, 0x000002D3, 0x000018BB, 0xFFFFF9BC, 0x000002D3 }, { 0x0213F0FE990A1884, 0x00003123, 0xFFFFE9D1, 0x00000534, 0x00001B19, 0xFFFFF6FE, 0x0000033C, 0x00001B19, 0xFFFFF6FE, 0x0000033C }, { 0x0213F0FE99022144, 0x00003216, 0xFFFFEA8E, 0x000004F6, 0x00001F72, 0xFFFFF4CE, 0x0000038B, 0x00001F72, 0xFFFFF4CE, 0x0000038B }, { 0x0213F0FE99162964, 0x00002564, 0xFFFFF32D, 0x000003B6, 0x00001685, 0xFFFFFADB, 0x000002BB, 0x00001685, 0xFFFFFADB, 0x000002BB }, { 0x0213F0FD42DA2924, 0x00002E60, 0xFFFFED13, 0x00000497, 0x00001CA5, 0xFFFFF6B9, 0x00000346, 0x00001CA5, 0xFFFFF6B9, 0x00000346 }, { 0x0213F0FE990E39A4, 0x0000336D, 0xFFFFE934, 0x0000053B, 0x00001B3E, 0xFFFFF763, 0x00000327, 0x00001B3E, 0xFFFFF763, 0x00000327 }, { 0x0213F0FE99101084, 0x0000274A, 0xFFFFF119, 0x000003FA, 0x00001D75, 0xFFFFF5CD, 0x0000036F, 0x00001D75, 0xFFFFF5CD, 0x0000036F }, { 0x0213F0FD42DA2164, 0x0000366B, 0xFFFFE70A, 0x0000059A, 0x00001ED8, 0xFFFFF501, 0x00000389, 0x00001ED8, 0xFFFFF501, 0x00000389 }, { 0x0213F0FE99223964, 0x00003164, 0xFFFFEAB4, 0x000004FA, 0x00001C52, 0xFFFFF6E0, 0x00000336, 0x00001C52, 0xFFFFF6E0, 0x00000336 }, { 0x0213F0FD42D23064, 0x00004224, 0xFFFFDF7F, 0x000006C1, 0x00002A52, 0xFFFFED5E, 0x000004BB, 0x00002A52, 0xFFFFED5E, 0x000004BB }, { 0x0213F0FE99102864, 0x000030E3, 0xFFFFEB07, 0x000004ED, 0x00001FD3, 0xFFFFF46D, 0x000003A1, 0x00001FD3, 0xFFFFF46D, 0x000003A1 }, { 0x0213F0FD42D82884, 0x00002AEB, 0xFFFFEF1B, 0x00000454, 0x00001829, 0xFFFFF995, 0x000002DD, 0x00001829, 0xFFFFF995, 0x000002DD }, { 0x0213F0FD42DC50E4, 0x0000346B, 0xFFFFE7A2, 0x0000058B, 0x000020C5, 0xFFFFF2E8, 0x000003EC, 0x000020C5, 0xFFFFF2E8, 0x000003EC }, { 0x0213F0FD42DC4164, 0x000039CF, 0xFFFFE5D7, 0x000005A9, 0x00001D66, 0xFFFFF5D6, 0x00000366, 0x00001D66, 0xFFFFF5D6, 0x00000366 }, { 0x0213F0FE990418E4, 0x000034AC, 0xFFFFE9AE, 0x00000515, 0x00001A28, 0xFFFFF904, 0x000002DC, 0x00001A28, 0xFFFFF904, 0x000002DC }, { 0x0213F0FD42DC2084, 0x00002D68, 0xFFFFED21, 0x00000498, 0x00001C6F, 0xFFFFF686, 0x0000034C, 0x00001C6F, 0xFFFFF686, 0x0000034C }, { 0x0213F0FE990820C4, 0x0000328B, 0xFFFFEBA1, 0x000004B4, 0x00001DA3, 0xFFFFF683, 0x00000349, 0x00001DA3, 0xFFFFF683, 0x00000349 }, { 0x0213F0FE991828C4, 0x000027DC, 0xFFFFF295, 0x000003BF, 0x000019C1, 0xFFFFF98E, 0x000002E8, 0x000019C1, 0xFFFFF98E, 0x000002E8 }, { 0x0213F0FE99184084, 0x00002756, 0xFFFFF1D7, 0x000003DF, 0x000015D9, 0xFFFFFB51, 0x00000298, 0x000015D9, 0xFFFFFB51, 0x00000298 }, { 0x0213F0FE99083884, 0x00003526, 0xFFFFE907, 0x00000526, 0x000017AB, 0xFFFFFA12, 0x000002AB, 0x000017AB, 0xFFFFFA12, 0x000002AB }, { 0x0213F0FD42DA18E4, 0x0000351B, 0xFFFFE8B7, 0x00000540, 0x00001A86, 0xFFFFF821, 0x00000303, 0x00001A86, 0xFFFFF821, 0x00000303 }, { 0x0213F0FE99164144, 0x000024B2, 0xFFFFF34E, 0x000003B1, 0x000018E2, 0xFFFFF926, 0x000002FC, 0x000018E2, 0xFFFFF926, 0x000002FC }, { 0x0213F0FD42D828A4, 0x00002F36, 0xFFFFED5D, 0x00000486, 0x0000157A, 0xFFFFFB85, 0x00000293, 0x0000157A, 0xFFFFFB85, 0x00000293 }, { 0x0213F0FD42DC50C4, 0x00003A6E, 0xFFFFE456, 0x000005FD, 0x00001F68, 0xFFFFF3D1, 0x000003C3, 0x00001F68, 0xFFFFF3D1, 0x000003C3 }, { 0x0213F0FE990A31A4, 0x00002BC3, 0xFFFFED2D, 0x000004A7, 0x00001C3F, 0xFFFFF609, 0x00000364, 0x00001C3F, 0xFFFFF609, 0x00000364 }, { 0x0213F0FE990E2084, 0x000032E1, 0xFFFFEA83, 0x000004F6, 0x00001B37, 0xFFFFF842, 0x000002F5, 0x00001B37, 0xFFFFF842, 0x000002F5 }, { 0x0213F0FD42D83184, 0x000028E3, 0xFFFFF07F, 0x00000412, 0x00001676, 0xFFFFFA68, 0x000002BE, 0x00001676, 0xFFFFFA68, 0x000002BE }, { 0x0213F0FD42D21104, 0x0000444C, 0xFFFFDDAD, 0x00000712, 0x00002634, 0xFFFFEF89, 0x0000046C, 0x00002634, 0xFFFFEF89, 0x0000046C }, { 0x0213F0FE990418C4, 0x00003121, 0xFFFFEBBB, 0x000004C6, 0x00001C98, 0xFFFFF72B, 0x0000032D, 0x00001C98, 0xFFFFF72B, 0x0000032D }, { 0x0213F0FD42D840A4, 0x00002C31, 0xFFFFEDC4, 0x00000490, 0x0000162D, 0xFFFFFA8E, 0x000002B4, 0x0000162D, 0xFFFFFA8E, 0x000002B4 }, { 0x0213F0FD42DA18C4, 0x00002749, 0xFFFFF112, 0x000003FC, 0x00001C85, 0xFFFFF6B8, 0x00000342, 0x00001C85, 0xFFFFF6B8, 0x00000342 }, { 0x0213F0FE99044104, 0x00003159, 0xFFFFEB99, 0x000004C2, 0x00001BD0, 0xFFFFF7CA, 0x00000307, 0x00001BD0, 0xFFFFF7CA, 0x00000307 }, { 0x0213F0FE99164164, 0x00002610, 0xFFFFF1FD, 0x000003EC, 0x000016BE, 0xFFFFFA53, 0x000002CB, 0x000016BE, 0xFFFFFA53, 0x000002CB }, { 0x0213F0FE99023184, 0x000037B5, 0xFFFFE63D, 0x000005B5, 0x00002285, 0xFFFFF25D, 0x000003F7, 0x00002285, 0xFFFFF25D, 0x000003F7 }, { 0x0213F0FE990A28A4, 0x00002FEE, 0xFFFFEB47, 0x000004EF, 0x00001CBE, 0xFFFFF64E, 0x00000358, 0x00001CBE, 0xFFFFF64E, 0x00000358 }, { 0x0213F0FE99105104, 0x00002E90, 0xFFFFEC48, 0x000004C0, 0x00001A47, 0xFFFFF7D1, 0x0000031A, 0x00001A47, 0xFFFFF7D1, 0x0000031A }, { 0x0213F0FD42DA4084, 0x000034AB, 0xFFFFE84A, 0x00000559, 0x00001A72, 0xFFFFF79A, 0x0000031C, 0x00001A72, 0xFFFFF79A, 0x0000031C }, { 0x0213F0FE99183884, 0x00002F7B, 0xFFFFECFC, 0x0000049C, 0x00001814, 0xFFFFFA22, 0x000002C2, 0x00001814, 0xFFFFFA22, 0x000002C2 }, { 0x0213F0FE99021964, 0x00003618, 0xFFFFE709, 0x00000596, 0x00001EBF, 0xFFFFF482, 0x000003A5, 0x00001EBF, 0xFFFFF482, 0x000003A5 }, { 0x0213EA94DE024904, 0x0000341B, 0xFFFFE8B2, 0x0000054F, 0x00001D26, 0xFFFFF578, 0x00000388, 0x00001D26, 0xFFFFF578, 0x00000388 }, { 0x0213F0FE99102144, 0x000030F6, 0xFFFFEB89, 0x000004CD, 0x000019C0, 0xFFFFF8CC, 0x000002E6, 0x000019C0, 0xFFFFF8CC, 0x000002E6 }, { 0x0213F0FE992841A4, 0x00002B76, 0xFFFFEF6C, 0x00000444, 0x00001563, 0xFFFFFBBE, 0x0000028D, 0x00001563, 0xFFFFFBBE, 0x0000028D }, { 0x0213F0FD42D81864, 0x00002BA2, 0xFFFFEE31, 0x0000047F, 0x00001A3D, 0xFFFFF7F3, 0x00000320, 0x00001A3D, 0xFFFFF7F3, 0x00000320 }, { 0x0213F0FE992C48E4, 0x00003545, 0xFFFFE87A, 0x0000054A, 0x00001B5A, 0xFFFFF7B0, 0x0000030C, 0x00001B5A, 0xFFFFF7B0, 0x0000030C }, { 0x0213EA94DE042944, 0x00003879, 0xFFFFE73F, 0x00000578, 0x00001649, 0xFFFFFB57, 0x00000283, 0x00001649, 0xFFFFFB57, 0x00000283 }, { 0x0213F0FD42D840C4, 0x00002772, 0xFFFFF0F1, 0x00000410, 0x0000142F, 0xFFFFFBCF, 0x00000287, 0x0000142F, 0xFFFFFBCF, 0x00000287 }, { 0x0213F0FD42DA3184, 0x00003228, 0xFFFFE98E, 0x00000535, 0x00001F48, 0xFFFFF495, 0x00000399, 0x00001F48, 0xFFFFF495, 0x00000399 }, { 0x0213F0FE990E40E4, 0x00002887, 0xFFFFF119, 0x000003E8, 0x000021AA, 0xFFFFF3F5, 0x000003A5, 0x000021AA, 0xFFFFF3F5, 0x000003A5 }, { 0x0213F0FD42DA28A4, 0x0000301F, 0xFFFFEBB2, 0x000004D2, 0x00001C02, 0xFFFFF736, 0x0000032B, 0x00001C02, 0xFFFFF736, 0x0000032B }, { 0x0213F0FE991820A4, 0x00002E13, 0xFFFFEE3F, 0x00000468, 0x000016AC, 0xFFFFFB32, 0x0000029E, 0x000016AC, 0xFFFFFB32, 0x0000029E }, { 0x0213F0FE99044924, 0x00003478, 0xFFFFE8F9, 0x00000538, 0x00001DAB, 0xFFFFF645, 0x00000345, 0x00001DAB, 0xFFFFF645, 0x00000345 }, { 0x0213F0FE990608C4, 0x000030C6, 0xFFFFEB6C, 0x000004D4, 0x0000184A, 0xFFFFF934, 0x000002E1, 0x0000184A, 0xFFFFF934, 0x000002E1 }, { 0x0213F0FE990A2044, 0x00002F1B, 0xFFFFEBD3, 0x000004D3, 0x000019E7, 0xFFFFF813, 0x0000030D, 0x000019E7, 0xFFFFF813, 0x0000030D }, { 0x0213F0FE99023904, 0x00003214, 0xFFFFEAE9, 0x000004E0, 0x0000178F, 0xFFFFFA1C, 0x000002B1, 0x0000178F, 0xFFFFFA1C, 0x000002B1 }, { 0x0213F0FD42DC3144, 0x0000399C, 0xFFFFE738, 0x0000055E, 0x00001EA1, 0xFFFFF5E7, 0x0000035A, 0x00001EA1, 0xFFFFF5E7, 0x0000035A }, { 0x0213F0FE990650C4, 0x00003A01, 0xFFFFE5B2, 0x000005B6, 0x00001D95, 0xFFFFF5D2, 0x0000036A, 0x00001D95, 0xFFFFF5D2, 0x0000036A }, { 0x0213F0FE99043884, 0x0000310D, 0xFFFFEB78, 0x000004D0, 0x00001C06, 0xFFFFF76E, 0x0000031A, 0x00001C06, 0xFFFFF76E, 0x0000031A }, { 0x0213F0FE99063864, 0x00003CD1, 0xFFFFE42F, 0x000005EB, 0x00001933, 0xFFFFF91F, 0x000002D4, 0x00001933, 0xFFFFF91F, 0x000002D4 }, { 0x0213F0FD42DA3164, 0x00003119, 0xFFFFEB1B, 0x000004E1, 0x00001FC7, 0xFFFFF46A, 0x000003A2, 0x00001FC7, 0xFFFFF46A, 0x000003A2 }, { 0x0213EA94DE0648A4, 0x0000390D, 0xFFFFE566, 0x000005D8, 0x00001EC6, 0xFFFFF4DC, 0x00000391, 0x00001EC6, 0xFFFFF4DC, 0x00000391 }, { 0x0213F0FD42DA10C4, 0x00003446, 0xFFFFE858, 0x00000561, 0x00001FDB, 0xFFFFF3FF, 0x000003B9, 0x00001FDB, 0xFFFFF3FF, 0x000003B9 }, { 0x0213F0FE99044904, 0x000032BA, 0xFFFFEA07, 0x00000511, 0x00001B25, 0xFFFFF7C9, 0x0000030D, 0x00001B25, 0xFFFFF7C9, 0x0000030D }, { 0x0213F0FE990E1864, 0x00002CCF, 0xFFFFEDE5, 0x00000478, 0x00001BC8, 0xFFFFF761, 0x00000326, 0x00001BC8, 0xFFFFF761, 0x00000326 }, { 0x0213F0FE99062984, 0x0000400E, 0xFFFFE1CB, 0x00000652, 0x00001AF8, 0xFFFFF7B9, 0x00000312, 0x00001AF8, 0xFFFFF7B9, 0x00000312 }, { 0x0213F0FE990408E4, 0x00002F24, 0xFFFFEC2A, 0x000004C7, 0x00001B94, 0xFFFFF748, 0x00000333, 0x00001B94, 0xFFFFF748, 0x00000333 }, { 0x0213F0FD42D21924, 0x00003FDA, 0xFFFFE1C1, 0x0000064B, 0x00002427, 0xFFFFF180, 0x0000040C, 0x00002427, 0xFFFFF180, 0x0000040C }, { 0x0213F0FE990A18C4, 0x00002F6B, 0xFFFFEBA7, 0x000004DD, 0x00001C25, 0xFFFFF6C1, 0x00000344, 0x00001C25, 0xFFFFF6C1, 0x00000344 }, { 0x0213F0FE99182104, 0x00002A53, 0xFFFFF0EE, 0x00000402, 0x000017C6, 0xFFFFFAA0, 0x000002BF, 0x000017C6, 0xFFFFFAA0, 0x000002BF }, { 0x0213F0FE99105144, 0x000031F4, 0xFFFFEA34, 0x00000517, 0x000016FF, 0xFFFFFA4E, 0x000002AC, 0x000016FF, 0xFFFFFA4E, 0x000002AC }, { 0x0213F0FE99322144, 0x00002E24, 0xFFFFED46, 0x00000489, 0x00001712, 0xFFFFFA5D, 0x000002AC, 0x00001712, 0xFFFFFA5D, 0x000002AC }, { 0x0213F0FE99182824, 0x000028CD, 0xFFFFF0E3, 0x0000040E, 0x00001606, 0xFFFFFB37, 0x000002A4, 0x00001606, 0xFFFFFB37, 0x000002A4 }, { 0x0213F0FE990220C4, 0x00003184, 0xFFFFEB88, 0x000004C3, 0x000018DA, 0xFFFFF939, 0x000002DB, 0x000018DA, 0xFFFFF939, 0x000002DB }, { 0x0213F0FE99162124, 0x0000239B, 0xFFFFF470, 0x00000386, 0x00001714, 0xFFFFFA9F, 0x000002C8, 0x00001714, 0xFFFFFA9F, 0x000002C8 }, { 0x0213F0FD42DC38E4, 0x00003641, 0xFFFFE92B, 0x00000515, 0x00001BE2, 0xFFFFF795, 0x0000031B, 0x00001BE2, 0xFFFFF795, 0x0000031B }, { 0x0213F0FE992C1144, 0x00003278, 0xFFFFEA17, 0x00000510, 0x00001B71, 0xFFFFF778, 0x0000031D, 0x00001B71, 0xFFFFF778, 0x0000031D }, { 0x0213F0FE99062844, 0x000035B9, 0xFFFFE8DA, 0x0000052D, 0x00001A6A, 0xFFFFF83B, 0x000002FF, 0x00001A6A, 0xFFFFF83B, 0x000002FF }, { 0x0213F0FE990E18C4, 0x00002E5E, 0xFFFFED32, 0x0000048B, 0x00001E7D, 0xFFFFF60E, 0x0000034E, 0x00001E7D, 0xFFFFF60E, 0x0000034E }, { 0x0213F0FE991019A4, 0x00003178, 0xFFFFEA52, 0x00000513, 0x00001AD0, 0xFFFFF793, 0x0000031F, 0x00001AD0, 0xFFFFF793, 0x0000031F }, { 0x0213F0FD42D44104, 0x00003A2C, 0xFFFFE346, 0x00000641, 0x000023D0, 0xFFFFF0CE, 0x00000433, 0x000023D0, 0xFFFFF0CE, 0x00000433 }, { 0x0213F0FD42D818C4, 0x000028FD, 0xFFFFF02A, 0x0000042B, 0x0000152B, 0xFFFFFB90, 0x00000289, 0x0000152B, 0xFFFFFB90, 0x00000289 }, { 0x0213F0FE990E3084, 0x000030DE, 0xFFFFEBDF, 0x000004BE, 0x00001CDC, 0xFFFFF747, 0x0000031C, 0x00001CDC, 0xFFFFF747, 0x0000031C }, { 0x0213F0FE99021944, 0x000036CB, 0xFFFFE6EE, 0x00000596, 0x00002096, 0xFFFFF3C2, 0x000003BB, 0x00002096, 0xFFFFF3C2, 0x000003BB }, { 0x0213F0FE990C48C4, 0x00003172, 0xFFFFEAC1, 0x000004F4, 0x00001C87, 0xFFFFF6CD, 0x00000337, 0x00001C87, 0xFFFFF6CD, 0x00000337 }, { 0x0213F0FD42D24864, 0x00004A18, 0xFFFFDB34, 0x00000758, 0x0000213C, 0xFFFFF3A2, 0x000003AC, 0x0000213C, 0xFFFFF3A2, 0x000003AC }, { 0x0213F0FE99022104, 0x000031F3, 0xFFFFEB73, 0x000004C6, 0x00001B23, 0xFFFFF7CB, 0x0000031A, 0x00001B23, 0xFFFFF7CB, 0x0000031A }, { 0x0213F0FE990A2924, 0x000031C0, 0xFFFFEABA, 0x000004F7, 0x00001A5A, 0xFFFFF845, 0x000002FF, 0x00001A5A, 0xFFFFF845, 0x000002FF }, { 0x0213F0FE99104944, 0x00003B77, 0xFFFFE3B3, 0x00000623, 0x00001BCA, 0xFFFFF6F8, 0x00000333, 0x00001BCA, 0xFFFFF6F8, 0x00000333 }, { 0x0213F0FE990A3944, 0x000035AF, 0xFFFFE76D, 0x00000588, 0x00001C16, 0xFFFFF6AB, 0x00000341, 0x00001C16, 0xFFFFF6AB, 0x00000341 }, { 0x0213EA94DE0438C4, 0x000032AD, 0xFFFFEA8E, 0x000004F8, 0x00001A3A, 0xFFFFF832, 0x0000030E, 0x00001A3A, 0xFFFFF832, 0x0000030E }, { 0x0213F0FE99104884, 0x00002E92, 0xFFFFEBD2, 0x000004DA, 0x00001E04, 0xFFFFF51E, 0x0000038A, 0x00001E04, 0xFFFFF51E, 0x0000038A }, { 0x0213F0FD42D440A4, 0x00003E57, 0xFFFFE0F7, 0x0000068F, 0x000021F1, 0xFFFFF1C6, 0x00000411, 0x000021F1, 0xFFFFF1C6, 0x00000411 }, { 0x0213F0FE990821A4, 0x00003598, 0xFFFFE8BB, 0x00000535, 0x00001B62, 0xFFFFF764, 0x00000326, 0x00001B62, 0xFFFFF764, 0x00000326 }, { 0x0213F0FE990A3884, 0x00002B15, 0xFFFFEDEC, 0x00000487, 0x00001E8B, 0xFFFFF4AB, 0x0000039F, 0x00001E8B, 0xFFFFF4AB, 0x0000039F }, { 0x0213EA94DE060904, 0x0000267E, 0xFFFFF1A7, 0x000003E1, 0x000021C1, 0xFFFFF2E9, 0x000003EA, 0x000021C1, 0xFFFFF2E9, 0x000003EA }, { 0x0213EA94DE0239A4, 0x00002ED7, 0xFFFFEC88, 0x000004A6, 0x00001DEC, 0xFFFFF57C, 0x00000378, 0x00001DEC, 0xFFFFF57C, 0x00000378 }, { 0x0213EA94DE0441A4, 0x00003365, 0xFFFFE946, 0x00000536, 0x000019E9, 0xFFFFF7E0, 0x0000031D, 0x000019E9, 0xFFFFF7E0, 0x0000031D }, { 0x0213F0FE991818E4, 0x000029A4, 0xFFFFF0FD, 0x000003FE, 0x0000163F, 0xFFFFFB68, 0x00000299, 0x0000163F, 0xFFFFFB68, 0x00000299 }, { 0x0213EA94DE021904, 0x0000348D, 0xFFFFE9F7, 0x00000509, 0x000017A0, 0xFFFFFA59, 0x000002B6, 0x000017A0, 0xFFFFFA59, 0x000002B6 }, { 0x0213F0FE990610C4, 0x00003144, 0xFFFFEB23, 0x000004D9, 0x00001C9B, 0xFFFFF664, 0x00000351, 0x00001C9B, 0xFFFFF664, 0x00000351 }, { 0x0213EA94DE0620E4, 0x00002E95, 0xFFFFEE1A, 0x00000463, 0x00001707, 0xFFFFFAB7, 0x000002B3, 0x00001707, 0xFFFFFAB7, 0x000002B3 }, { 0x0213F0FD42D41864, 0x0000489C, 0xFFFFDA43, 0x000007AC, 0x00002866, 0xFFFFED6B, 0x000004D0, 0x00002866, 0xFFFFED6B, 0x000004D0 }, { 0x0213F0FE99161844, 0x00002895, 0xFFFFF10A, 0x0000040A, 0x000013E9, 0xFFFFFC9F, 0x0000026E, 0x000013E9, 0xFFFFFC9F, 0x0000026E }, { 0x0213F0FE99061964, 0x000033A0, 0xFFFFE9B1, 0x00000510, 0x00001D96, 0xFFFFF5AE, 0x0000036F, 0x00001D96, 0xFFFFF5AE, 0x0000036F }, { 0x0213F0FE99083984, 0x0000327C, 0xFFFFEAEA, 0x000004DD, 0x00001D45, 0xFFFFF649, 0x00000356, 0x00001D45, 0xFFFFF649, 0x00000356 }, { 0x0213EA94DE0248A4, 0x000031DF, 0xFFFFE9AB, 0x0000052F, 0x000019C8, 0xFFFFF7B7, 0x00000321, 0x000019C8, 0xFFFFF7B7, 0x00000321 }, { 0x0213F0FE991640A4, 0x00002BCC, 0xFFFFEEF4, 0x0000045C, 0x000015CD, 0xFFFFFB58, 0x0000029E, 0x000015CD, 0xFFFFFB58, 0x0000029E }, { 0x0213F0FE990638E4, 0x00003534, 0xFFFFEA10, 0x000004EB, 0x00001BB6, 0xFFFFF7B9, 0x00000314, 0x00001BB6, 0xFFFFF7B9, 0x00000314 }, { 0x0213F0FE99041984, 0x00002F4F, 0xFFFFEC35, 0x000004B9, 0x0000205D, 0xFFFFF47F, 0x00000392, 0x0000205D, 0xFFFFF47F, 0x00000392 }, { 0x0213F0FE990C20A4, 0x00003295, 0xFFFFEB1C, 0x000004D6, 0x000019C1, 0xFFFFF931, 0x000002D5, 0x000019C1, 0xFFFFF931, 0x000002D5 }, { 0x0213F0FE99024144, 0x00003557, 0xFFFFE7F7, 0x00000568, 0x00002342, 0xFFFFF1F9, 0x00000405, 0x00002342, 0xFFFFF1F9, 0x00000405 }, { 0x0213F0FE990450C4, 0x00003487, 0xFFFFE872, 0x0000055D, 0x000019D7, 0xFFFFF823, 0x0000030C, 0x000019D7, 0xFFFFF823, 0x0000030C }, { 0x0213F0FE992C3944, 0x0000378F, 0xFFFFE7A6, 0x00000566, 0x00001875, 0xFFFFFA04, 0x000002AF, 0x00001875, 0xFFFFFA04, 0x000002AF }, { 0x0213EA94DE0230E4, 0x00002A67, 0xFFFFF157, 0x000003DD, 0x000017BD, 0xFFFFFA53, 0x000002D1, 0x000017BD, 0xFFFFFA53, 0x000002D1 }, { 0x0213F0FD42D220E4, 0x000030B5, 0xFFFFEB32, 0x000004D9, 0x00002129, 0xFFFFF38A, 0x000003BB, 0x00002129, 0xFFFFF38A, 0x000003BB }, { 0x0213F0FE990610A4, 0x00003786, 0xFFFFE703, 0x00000584, 0x00001D63, 0xFFFFF5DC, 0x00000367, 0x00001D63, 0xFFFFF5DC, 0x00000367 }, { 0x0213F0FD42DA20C4, 0x0000346A, 0xFFFFE93E, 0x0000052C, 0x00001B27, 0xFFFFF79D, 0x0000031F, 0x00001B27, 0xFFFFF79D, 0x0000031F }, { 0x0213F0FE990E3024, 0x0000294E, 0xFFFFF0A5, 0x00000409, 0x00001928, 0xFFFFF93B, 0x000002E6, 0x00001928, 0xFFFFF93B, 0x000002E6 }, { 0x0213F0FD42D410C4, 0x00003E09, 0xFFFFE0FF, 0x00000694, 0x000025A0, 0xFFFFEF0F, 0x0000048F, 0x000025A0, 0xFFFFEF0F, 0x0000048F }, { 0x0213F0FE990A2964, 0x00003197, 0xFFFFEA06, 0x00000520, 0x00001B42, 0xFFFFF73B, 0x0000032A, 0x00001B42, 0xFFFFF73B, 0x0000032A }, { 0x0213F0FE99161864, 0x000022CB, 0xFFFFF3FC, 0x000003A3, 0x00001449, 0xFFFFFBD0, 0x00000297, 0x00001449, 0xFFFFFBD0, 0x00000297 }, { 0x0213F0FD42D82944, 0x00002A79, 0xFFFFEFD2, 0x00000433, 0x00001585, 0xFFFFFB92, 0x0000028E, 0x00001585, 0xFFFFFB92, 0x0000028E }, { 0x0213F0FE990C4184, 0x00003249, 0xFFFFEA92, 0x000004F4, 0x000019CB, 0xFFFFF8CF, 0x000002E1, 0x000019CB, 0xFFFFF8CF, 0x000002E1 }, { 0x0213EA94DE0218A4, 0x00002CEA, 0xFFFFEE46, 0x00000463, 0x00001A5E, 0xFFFFF83C, 0x0000030D, 0x00001A5E, 0xFFFFF83C, 0x0000030D }, { 0x0213F0FD42DC5144, 0x00003AE2, 0xFFFFE422, 0x00000600, 0x00001C65, 0xFFFFF62F, 0x0000034B, 0x00001C65, 0xFFFFF62F, 0x0000034B }, { 0x0213F0FE99181184, 0x000026A0, 0xFFFFF1C2, 0x000003F8, 0x000010E5, 0xFFFFFE56, 0x0000022A, 0x000010E5, 0xFFFFFE56, 0x0000022A }, { 0x0213F0FE992829A4, 0x00002A7B, 0xFFFFF063, 0x00000417, 0x000016FC, 0xFFFFFAD7, 0x000002B1, 0x000016FC, 0xFFFFFAD7, 0x000002B1 }, { 0x0213F0FE993210C4, 0x00003092, 0xFFFFEAB9, 0x00000507, 0x00001AE3, 0xFFFFF783, 0x00000323, 0x00001AE3, 0xFFFFF783, 0x00000323 }, { 0x0213F0FE990438E4, 0x00003265, 0xFFFFEBE8, 0x000004AA, 0x00001D65, 0xFFFFF73F, 0x00000321, 0x00001D65, 0xFFFFF73F, 0x00000321 }, { 0x0213EA94DE023084, 0x00002F14, 0xFFFFECC2, 0x000004A4, 0x00001A8D, 0xFFFFF7F3, 0x0000031D, 0x00001A8D, 0xFFFFF7F3, 0x0000031D }, { 0x0213F0FD42DC10E4, 0x000035FB, 0xFFFFE6D3, 0x000005AC, 0x00001B19, 0xFFFFF712, 0x00000338, 0x00001B19, 0xFFFFF712, 0x00000338 }, { 0x0213F0FD42DA2124, 0x00003519, 0xFFFFE8CC, 0x0000053A, 0x00001A0F, 0xFFFFF86E, 0x000002F5, 0x00001A0F, 0xFFFFF86E, 0x000002F5 }, { 0x0213F0FE992C2144, 0x0000364C, 0xFFFFE879, 0x00000541, 0x00001A42, 0xFFFFF8BA, 0x000002E2, 0x00001A42, 0xFFFFF8BA, 0x000002E2 }, { 0x0213EA94DE0218C4, 0x000029BA, 0xFFFFF09A, 0x00000408, 0x00001986, 0xFFFFF8D9, 0x000002FE, 0x00001986, 0xFFFFF8D9, 0x000002FE }, { 0x0213F0FD42DA38E4, 0x00003507, 0xFFFFE961, 0x00000518, 0x00001B79, 0xFFFFF775, 0x00000325, 0x00001B79, 0xFFFFF775, 0x00000325 }, { 0x0213F0FD42DC3184, 0x00003AD5, 0xFFFFE415, 0x00000613, 0x00001CB4, 0xFFFFF66D, 0x00000348, 0x00001CB4, 0xFFFFF66D, 0x00000348 }, { 0x0213F0FE991640E4, 0x000023D1, 0xFFFFF42B, 0x0000038F, 0x00001546, 0xFFFFFBA0, 0x0000029F, 0x00001546, 0xFFFFFBA0, 0x0000029F }, { 0x0213F0FE990A1924, 0x0000399E, 0xFFFFE518, 0x000005E7, 0x00001990, 0xFFFFF871, 0x000002FB, 0x00001990, 0xFFFFF871, 0x000002FB }, { 0x0213F0FD42D82964, 0x00002EDE, 0xFFFFEC93, 0x000004B8, 0x0000152C, 0xFFFFFBB3, 0x0000027E, 0x0000152C, 0xFFFFFBB3, 0x0000027E }, { 0x0213EA94DE042964, 0x00003140, 0xFFFFEBC9, 0x000004BB, 0x000016BE, 0xFFFFFB0A, 0x00000288, 0x000016BE, 0xFFFFFB0A, 0x00000288 }, { 0x0213F0FE99064064, 0x000030F6, 0xFFFFEB89, 0x000004CD, 0x0000185D, 0xFFFFF95A, 0x000002D9, 0x0000185D, 0xFFFFF95A, 0x000002D9 }, { 0x0213F0FE99023844, 0x0000389C, 0xFFFFE65A, 0x000005A2, 0x0000195D, 0xFFFFF8C8, 0x000002E8, 0x0000195D, 0xFFFFF8C8, 0x000002E8 }, { 0x0213F0FE99042104, 0x0000362B, 0xFFFFE9EC, 0x000004F6, 0x00001605, 0xFFFFFC1C, 0x00000263, 0x00001605, 0xFFFFFC1C, 0x00000263 }, { 0x0213F0FE992A1964, 0x00002946, 0xFFFFF04F, 0x00000426, 0x000015BA, 0xFFFFFB2F, 0x000002A3, 0x000015BA, 0xFFFFFB2F, 0x000002A3 }, { 0x0213F0FE99082184, 0x0000368E, 0xFFFFE837, 0x0000054A, 0x000017D7, 0xFFFFF9EB, 0x000002BA, 0x000017D7, 0xFFFFF9EB, 0x000002BA }, { 0x0213F0FD42DA2844, 0x00002E74, 0xFFFFEBE8, 0x000004DA, 0x00001DD6, 0xFFFFF57E, 0x00000379, 0x00001DD6, 0xFFFFF57E, 0x00000379 }, { 0x0213F0FE99041944, 0x0000322D, 0xFFFFEAA8, 0x000004F5, 0x00001B55, 0xFFFFF7DD, 0x0000030B, 0x00001B55, 0xFFFFF7DD, 0x0000030B }, { 0x0213F0FE99181904, 0x00002A29, 0xFFFFF07B, 0x00000416, 0x00001671, 0xFFFFFB3E, 0x0000029F, 0x00001671, 0xFFFFFB3E, 0x0000029F }, { 0x0213F0FD42DA2104, 0x000030F6, 0xFFFFEB89, 0x000004CD, 0x00001815, 0xFFFFF9AE, 0x000002C9, 0x00001815, 0xFFFFF9AE, 0x000002C9 }, { 0x0213F0FE990E10E4, 0x0000265F, 0xFFFFF1CB, 0x000003D5, 0x00001ED2, 0xFFFFF539, 0x0000037A, 0x00001ED2, 0xFFFFF539, 0x0000037A }, { 0x0213F0FE99162184, 0x000027A8, 0xFFFFF10D, 0x00000413, 0x000014B5, 0xFFFFFBA1, 0x00000299, 0x000014B5, 0xFFFFFBA1, 0x00000299 }, { 0x0213F0FE99043064, 0x00002CEE, 0xFFFFEDF6, 0x00000476, 0x00001A99, 0xFFFFF83E, 0x00000305, 0x00001A99, 0xFFFFF83E, 0x00000305 }, { 0x0213F0FE990640C4, 0x0000346C, 0xFFFFEA17, 0x000004EF, 0x00001D38, 0xFFFFF69F, 0x0000033D, 0x00001D38, 0xFFFFF69F, 0x0000033D }, { 0x0213F0FD42DA2944, 0x00002DBB, 0xFFFFED35, 0x00000490, 0x000018C1, 0xFFFFF930, 0x000002DA, 0x000018C1, 0xFFFFF930, 0x000002DA }, { 0x0213F0FE99042924, 0x000038DF, 0xFFFFE8A7, 0x0000051E, 0x00001B59, 0xFFFFF915, 0x000002D3, 0x00001B59, 0xFFFFF915, 0x000002D3 }, { 0x0213F0FE99080944, 0x00003384, 0xFFFFE979, 0x00000524, 0x00001AF3, 0xFFFFF74C, 0x0000032F, 0x00001AF3, 0xFFFFF74C, 0x0000032F }, { 0x0213F0FE99181864, 0x0000258B, 0xFFFFF2AE, 0x000003CB, 0x0000190C, 0xFFFFF93E, 0x000002EF, 0x0000190C, 0xFFFFF93E, 0x000002EF }, { 0x0213F0FE99103884, 0x000034F1, 0xFFFFE84B, 0x0000055E, 0x00001CB8, 0xFFFFF670, 0x0000034A, 0x00001CB8, 0xFFFFF670, 0x0000034A }, { 0x0213F0FE990C2104, 0x000030FB, 0xFFFFECD2, 0x00000488, 0x00001BF4, 0xFFFFF821, 0x00000302, 0x00001BF4, 0xFFFFF821, 0x00000302 }, { 0x0213F0FE99063044, 0x000036A6, 0xFFFFE815, 0x00000556, 0x000018FD, 0xFFFFF925, 0x000002DF, 0x000018FD, 0xFFFFF925, 0x000002DF }, { 0x0213EA94DE023044, 0x0000302A, 0xFFFFEB79, 0x000004E0, 0x00001C11, 0xFFFFF694, 0x00000358, 0x00001C11, 0xFFFFF694, 0x00000358 }, { 0x0213F0FE99181124, 0x00002555, 0xFFFFF2C4, 0x000003CB, 0x000017E3, 0xFFFFFA1F, 0x000002CB, 0x000017E3, 0xFFFFFA1F, 0x000002CB }, { 0x0213F0FE990A3164, 0x000032A3, 0xFFFFE933, 0x00000544, 0x000019D3, 0xFFFFF81A, 0x00000306, 0x000019D3, 0xFFFFF81A, 0x00000306 }, { 0x0213F0FD42D85104, 0x00002B91, 0xFFFFED81, 0x000004A9, 0x0000158B, 0xFFFFFAB9, 0x000002AC, 0x0000158B, 0xFFFFFAB9, 0x000002AC }, { 0x0213F0FE990E20C4, 0x00003537, 0xFFFFE912, 0x0000052C, 0x00001C8A, 0xFFFFF754, 0x0000031B, 0x00001C8A, 0xFFFFF754, 0x0000031B }, { 0x0213EA94DE063184, 0x000032E1, 0xFFFFEA5A, 0x000004F9, 0x000017B4, 0xFFFFF9D9, 0x000002C2, 0x000017B4, 0xFFFFF9D9, 0x000002C2 }, { 0x0213F0FD42D210C4, 0x00003B76, 0xFFFFE330, 0x00000636, 0x000026FB, 0xFFFFEF06, 0x00000481, 0x000026FB, 0xFFFFEF06, 0x00000481 }, { 0x0213F0FE99042144, 0x0000320C, 0xFFFFEB84, 0x000004C3, 0x00001A3A, 0xFFFFF8E9, 0x000002DF, 0x00001A3A, 0xFFFFF8E9, 0x000002DF }, { 0x0213F0FE99023984, 0x0000317D, 0xFFFFEA1F, 0x00000515, 0x00002100, 0xFFFFF31B, 0x000003DD, 0x00002100, 0xFFFFF31B, 0x000003DD }, { 0x0213F0FD42D43164, 0x00003DCB, 0xFFFFE0B4, 0x000006B4, 0x00002160, 0xFFFFF269, 0x000003F0, 0x00002160, 0xFFFFF269, 0x000003F0 }, { 0x0213F0FE991618C4, 0x00002737, 0xFFFFF218, 0x000003E1, 0x000015B5, 0xFFFFFB8F, 0x0000029C, 0x000015B5, 0xFFFFFB8F, 0x0000029C }, { 0x0213EA94DE023184, 0x0000318F, 0xFFFFEB3F, 0x000004D8, 0x00001938, 0xFFFFF8E9, 0x000002EB, 0x00001938, 0xFFFFF8E9, 0x000002EB }, { 0x0213F0FE991048C4, 0x000031BD, 0xFFFFE9DE, 0x00000527, 0x000018A7, 0xFFFFF8CA, 0x000002ED, 0x000018A7, 0xFFFFF8CA, 0x000002ED }, { 0x0213F0FD42DA3884, 0x00002F77, 0xFFFFEC2F, 0x000004B4, 0x00001D25, 0xFFFFF61B, 0x0000035D, 0x00001D25, 0xFFFFF61B, 0x0000035D }, { 0x0213F0FE990E4904, 0x00002CCA, 0xFFFFEDB3, 0x0000047C, 0x00001FBD, 0xFFFFF4A7, 0x00000391, 0x00001FBD, 0xFFFFF4A7, 0x00000391 }, { 0x0213F0FD42D438A4, 0x00003FF6, 0xFFFFE058, 0x000006A2, 0x000024CD, 0xFFFFF026, 0x00000452, 0x000024CD, 0xFFFFF026, 0x00000452 }, { 0x0213F0FE990A38E4, 0x00003161, 0xFFFFEAC8, 0x000004F3, 0x00001BB6, 0xFFFFF72A, 0x0000032B, 0x00001BB6, 0xFFFFF72A, 0x0000032B }, { 0x0213F0FD42D838A4, 0x00002EA0, 0xFFFFECA6, 0x000004B7, 0x000018C2, 0xFFFFF94E, 0x000002E1, 0x000018C2, 0xFFFFF94E, 0x000002E1 }, { 0x0213F0FE99182184, 0x00002F62, 0xFFFFEC9E, 0x000004B8, 0x00001531, 0xFFFFFBCD, 0x00000285, 0x00001531, 0xFFFFFBCD, 0x00000285 }, { 0x0213F0FE990440A4, 0x00003013, 0xFFFFEBD6, 0x000004C2, 0x00001B01, 0xFFFFF802, 0x000002FF, 0x00001B01, 0xFFFFF802, 0x000002FF }, { 0x0213F0FE99183064, 0x00002972, 0xFFFFF08D, 0x00000417, 0x00001A32, 0xFFFFF8A4, 0x00000305, 0x00001A32, 0xFFFFF8A4, 0x00000305 }, { 0x0213F0FD42D820E4, 0x00002E95, 0xFFFFED94, 0x00000487, 0x00001529, 0xFFFFFC26, 0x00000271, 0x00001529, 0xFFFFFC26, 0x00000271 }, { 0x0213F0FE990A1084, 0x00002D6A, 0xFFFFEC79, 0x000004C1, 0x00001AE2, 0xFFFFF725, 0x00000337, 0x00001AE2, 0xFFFFF725, 0x00000337 }, { 0x0213F0FE99021884, 0x000036B4, 0xFFFFE704, 0x00000591, 0x00001E7E, 0xFFFFF51C, 0x00000383, 0x00001E7E, 0xFFFFF51C, 0x00000383 }, { 0x0213F0FE99041844, 0x00002A6F, 0xFFFFEF70, 0x00000443, 0x00001BAA, 0xFFFFF752, 0x00000336, 0x00001BAA, 0xFFFFF752, 0x00000336 }, { 0x0213F0FE99183944, 0x00002C66, 0xFFFFEF5F, 0x0000043A, 0x000019F7, 0xFFFFF931, 0x000002EC, 0x000019F7, 0xFFFFF931, 0x000002EC }, { 0x0213EA94DE0631C4, 0x00003852, 0xFFFFE6AB, 0x00000590, 0x000019C1, 0xFFFFF8B1, 0x000002E5, 0x000019C1, 0xFFFFF8B1, 0x000002E5 }, { 0x0213F0FD42DA3124, 0x00003521, 0xFFFFE932, 0x00000523, 0x000018A9, 0xFFFFF96B, 0x000002D0, 0x000018A9, 0xFFFFF96B, 0x000002D0 }, { 0x0213F0FE99062164, 0x000031B9, 0xFFFFEB36, 0x000004D0, 0x00001D65, 0xFFFFF612, 0x0000035D, 0x00001D65, 0xFFFFF612, 0x0000035D }, { 0x0213F0FD42D41064, 0x00003ED0, 0xFFFFE135, 0x00000679, 0x00002351, 0xFFFFF0FE, 0x00000433, 0x00002351, 0xFFFFF0FE, 0x00000433 }, { 0x0213F0FE990A20E4, 0x000033ED, 0xFFFFE91A, 0x00000541, 0x00001C93, 0xFFFFF6A0, 0x0000034A, 0x00001C93, 0xFFFFF6A0, 0x0000034A }, { 0x0213EA94DE021844, 0x0000356F, 0xFFFFE8F7, 0x00000530, 0x000016BF, 0xFFFFFA85, 0x000002AB, 0x000016BF, 0xFFFFFA85, 0x000002AB }, { 0x0213F0FE991840E4, 0x00002304, 0xFFFFF4F3, 0x00000364, 0x000017CC, 0xFFFFFA41, 0x000002CA, 0x000017CC, 0xFFFFFA41, 0x000002CA }, { 0x0213F0FE99161164, 0x00002887, 0xFFFFEFD7, 0x00000450, 0x00001474, 0xFFFFFB94, 0x00000299, 0x00001474, 0xFFFFFB94, 0x00000299 }, { 0x0213F0FE99063064, 0x00003D0B, 0xFFFFE416, 0x000005EF, 0x00001C7E, 0xFFFFF71D, 0x00000325, 0x00001C7E, 0xFFFFF71D, 0x00000325 }, { 0x0213F0FE990810E4, 0x00003185, 0xFFFFEAFA, 0x000004E4, 0x00001A12, 0xFFFFF83C, 0x00000303, 0x00001A12, 0xFFFFF83C, 0x00000303 }, { 0x0213F0FE990A1944, 0x00003032, 0xFFFFEAE6, 0x000004FC, 0x00001B2A, 0xFFFFF73F, 0x0000032B, 0x00001B2A, 0xFFFFF73F, 0x0000032B }, { 0x0213F0FD42D838C4, 0x00002691, 0xFFFFF22D, 0x000003D6, 0x00001700, 0xFFFFFA6E, 0x000002C0, 0x00001700, 0xFFFFFA6E, 0x000002C0 }, { 0x0213F0FE990218A4, 0x00002B2F, 0xFFFFEEC4, 0x0000044B, 0x0000215F, 0xFFFFF33F, 0x000003D2, 0x0000215F, 0xFFFFF33F, 0x000003D2 }, { 0x0213F0FE990A4184, 0x000034AA, 0xFFFFE706, 0x000005B1, 0x00001B28, 0xFFFFF6B5, 0x00000349, 0x00001B28, 0xFFFFF6B5, 0x00000349 }, { 0x0213F0FD42DA2964, 0x0000307E, 0xFFFFEB38, 0x000004E6, 0x00001A22, 0xFFFFF83F, 0x00000300, 0x00001A22, 0xFFFFF83F, 0x00000300 }, { 0x0213F0FE990618A4, 0x000038D6, 0xFFFFE6D8, 0x0000057C, 0x00001B24, 0xFFFFF7E4, 0x00000307, 0x00001B24, 0xFFFFF7E4, 0x00000307 }, { 0x0213F0FE99183044, 0x00002757, 0xFFFFF1E8, 0x000003DD, 0x000017F5, 0xFFFFFA15, 0x000002C8, 0x000017F5, 0xFFFFFA15, 0x000002C8 }, { 0x0213F0FE99083184, 0x000031FC, 0xFFFFEB3E, 0x000004CE, 0x00001B4C, 0xFFFFF7AD, 0x00000319, 0x00001B4C, 0xFFFFF7AD, 0x00000319 }, { 0x0213F0FE99301864, 0x00002933, 0xFFFFF073, 0x0000040E, 0x00001C3C, 0xFFFFF701, 0x0000033C, 0x00001C3C, 0xFFFFF701, 0x0000033C }, { 0x0213F0FD42D218A4, 0x000040BB, 0xFFFFE066, 0x0000069A, 0x0000257F, 0xFFFFF08A, 0x00000435, 0x0000257F, 0xFFFFF08A, 0x00000435 }, { 0x0213F0FE991010A4, 0x0000305B, 0xFFFFEB9B, 0x000004CB, 0x00001996, 0xFFFFF846, 0x00000308, 0x00001996, 0xFFFFF846, 0x00000308 }, { 0x0213F0FE99064884, 0x000039C0, 0xFFFFE5D3, 0x000005B0, 0x00001A8D, 0xFFFFF7DA, 0x00000313, 0x00001A8D, 0xFFFFF7DA, 0x00000313 }, { 0x0213EA94DE0210A4, 0x00002E23, 0xFFFFED3F, 0x0000048F, 0x0000189D, 0xFFFFF94C, 0x000002DE, 0x0000189D, 0xFFFFF94C, 0x000002DE }, { 0x0213EA94DE021984, 0x0000332B, 0xFFFFE9F1, 0x00000516, 0x000018E6, 0xFFFFF8FE, 0x000002EC, 0x000018E6, 0xFFFFF8FE, 0x000002EC }, { 0x0213F0FE990838C4, 0x000034A0, 0xFFFFEA44, 0x000004E4, 0x00001ECD, 0xFFFFF5B4, 0x00000364, 0x00001ECD, 0xFFFFF5B4, 0x00000364 }, { 0x0213F0FD42D24104, 0x0000448C, 0xFFFFDF34, 0x000006A8, 0x0000231C, 0xFFFFF286, 0x000003D9, 0x0000231C, 0xFFFFF286, 0x000003D9 }, { 0x0213EA94DE062144, 0x00002D8C, 0xFFFFEE65, 0x00000456, 0x000018B1, 0xFFFFF9C8, 0x000002C8, 0x000018B1, 0xFFFFF9C8, 0x000002C8 }, { 0x0213F0FE99061904, 0x00003527, 0xFFFFE9BF, 0x000004FD, 0x00001D23, 0xFFFFF69F, 0x00000342, 0x00001D23, 0xFFFFF69F, 0x00000342 }, { 0x0213F0FD42DC38A4, 0x00002C51, 0xFFFFEDC3, 0x00000483, 0x00001BE0, 0xFFFFF720, 0x0000032D, 0x00001BE0, 0xFFFFF720, 0x0000032D }, { 0x0213F0FE990A3044, 0x00002C6C, 0xFFFFECEB, 0x000004B7, 0x00001C86, 0xFFFFF5E7, 0x00000371, 0x00001C86, 0xFFFFF5E7, 0x00000371 }, { 0x0213F0FE99045144, 0x000037CF, 0xFFFFE6BE, 0x00000599, 0x000018CD, 0xFFFFF967, 0x000002C7, 0x000018CD, 0xFFFFF967, 0x000002C7 }, { 0x0213F0FE99103164, 0x00002E6F, 0xFFFFED1D, 0x0000048E, 0x00001ADC, 0xFFFFF7F4, 0x0000030E, 0x00001ADC, 0xFFFFF7F4, 0x0000030E }, { 0x0213F0FD42D42984, 0x00003FF3, 0xFFFFDF13, 0x000006F9, 0x000025BF, 0xFFFFEEEE, 0x00000497, 0x000025BF, 0xFFFFEEEE, 0x00000497 }, { 0x0213F0FD42DC5104, 0x00004135, 0xFFFFDF97, 0x000006CC, 0x00001D52, 0xFFFFF541, 0x00000383, 0x00001D52, 0xFFFFF541, 0x00000383 }, { 0x0213F0FD42DC20E4, 0x00002EA9, 0xFFFFEDDB, 0x0000045F, 0x0000197C, 0xFFFFF8E1, 0x000002F0, 0x0000197C, 0xFFFFF8E1, 0x000002F0 }, { 0x0213EA94DE043084, 0x0000345C, 0xFFFFE922, 0x00000532, 0x00001922, 0xFFFFF8C7, 0x000002F1, 0x00001922, 0xFFFFF8C7, 0x000002F1 }, { 0x0213F0FE99064124, 0x000035C4, 0xFFFFE8FE, 0x00000521, 0x00001C87, 0xFFFFF6F3, 0x00000330, 0x00001C87, 0xFFFFF6F3, 0x00000330 }, { 0x0213F0FD42D83164, 0x00002888, 0xFFFFF08A, 0x0000041E, 0x0000150F, 0xFFFFFB87, 0x00000291, 0x0000150F, 0xFFFFFB87, 0x00000291 }, { 0x0213F0FE990A1124, 0x000035E9, 0xFFFFE657, 0x000005CC, 0x00001BD6, 0xFFFFF664, 0x00000355, 0x00001BD6, 0xFFFFF664, 0x00000355 }, { 0x0213F0FE991648E4, 0x00002F94, 0xFFFFEBD0, 0x000004E5, 0x00001333, 0xFFFFFCA7, 0x00000266, 0x00001333, 0xFFFFFCA7, 0x00000266 }, { 0x0213F0FE99181964, 0x000029E7, 0xFFFFF009, 0x00000433, 0x0000144A, 0xFFFFFC37, 0x0000027D, 0x0000144A, 0xFFFFFC37, 0x0000027D }, { 0x0213F0FE992C1944, 0x00003418, 0xFFFFE979, 0x00000521, 0x00001D33, 0xFFFFF66B, 0x0000034A, 0x00001D33, 0xFFFFF66B, 0x0000034A }, { 0x0213EA94DE0440E4, 0x00003656, 0xFFFFE79D, 0x0000057A, 0x000017C2, 0xFFFFF992, 0x000002D4, 0x000017C2, 0xFFFFF992, 0x000002D4 }, { 0x0213F0FE990C40C4, 0x00002EB2, 0xFFFFECFE, 0x00000493, 0x00001F2A, 0xFFFFF543, 0x0000037B, 0x00001F2A, 0xFFFFF543, 0x0000037B }, { 0x0213F0FE99021124, 0x00002FC1, 0xFFFFEB3F, 0x000004E8, 0x00001CD0, 0xFFFFF5F7, 0x00000364, 0x00001CD0, 0xFFFFF5F7, 0x00000364 }, { 0x0213F0FE990C1124, 0x0000307B, 0xFFFFEB66, 0x000004DE, 0x00001953, 0xFFFFF8ED, 0x000002E4, 0x00001953, 0xFFFFF8ED, 0x000002E4 }, { 0x0213F0FD42DA1884, 0x00002CAA, 0xFFFFED07, 0x000004AC, 0x0000251C, 0xFFFFF086, 0x0000044D, 0x0000251C, 0xFFFFF086, 0x0000044D }, { 0x0213EA94DE043944, 0x00002C94, 0xFFFFEE5F, 0x0000045B, 0x000018D7, 0xFFFFF900, 0x000002EB, 0x000018D7, 0xFFFFF900, 0x000002EB }, { 0x0213F0FE99021864, 0x000031F1, 0xFFFFE9BE, 0x0000052E, 0x00001DDF, 0xFFFFF558, 0x00000380, 0x00001DDF, 0xFFFFF558, 0x00000380 }, { 0x0213F0FE990E50C4, 0x00002603, 0xFFFFF1E9, 0x000003DA, 0x00001B37, 0xFFFFF75A, 0x0000032F, 0x00001B37, 0xFFFFF75A, 0x0000032F }, { 0x0213F0FD42DA3044, 0x00003992, 0xFFFFE4F9, 0x000005EB, 0x00001775, 0xFFFFF9B8, 0x000002C2, 0x00001775, 0xFFFFF9B8, 0x000002C2 }, { 0x0213F0FE99184964, 0x000029DA, 0xFFFFF052, 0x0000041F, 0x000016E2, 0xFFFFFA99, 0x000002BB, 0x000016E2, 0xFFFFFA99, 0x000002BB }, { 0x0213F0FE99101064, 0x00002FF2, 0xFFFFEB8F, 0x000004DF, 0x00001AF6, 0xFFFFF7A1, 0x00000321, 0x00001AF6, 0xFFFFF7A1, 0x00000321 }, { 0x0213F0FE991608E4, 0x00002590, 0xFFFFF222, 0x000003EE, 0x0000130B, 0xFFFFFCC9, 0x00000268, 0x0000130B, 0xFFFFFCC9, 0x00000268 }, { 0x0213F0FE99024064, 0x000038A2, 0xFFFFE65F, 0x000005A2, 0x000018B1, 0xFFFFF917, 0x000002E1, 0x000018B1, 0xFFFFF917, 0x000002E1 }, { 0x0213F0FD42DC48E4, 0x000035FD, 0xFFFFE73C, 0x0000058D, 0x00001BB3, 0xFFFFF6E1, 0x00000337, 0x00001BB3, 0xFFFFF6E1, 0x00000337 }, { 0x0213F0FE991038C4, 0x00002AB7, 0xFFFFEF98, 0x00000429, 0x00001F35, 0xFFFFF539, 0x0000037C, 0x00001F35, 0xFFFFF539, 0x0000037C }, { 0x0213F0FE990A0944, 0x000034BA, 0xFFFFE73D, 0x000005A6, 0x000018A6, 0xFFFFF888, 0x000002FB, 0x000018A6, 0xFFFFF888, 0x000002FB }, { 0x0213F0FE99063844, 0x000032EA, 0xFFFFEA78, 0x000004F4, 0x00001AB6, 0xFFFFF812, 0x00000308, 0x00001AB6, 0xFFFFF812, 0x00000308 }, { 0x0213F0FE990C3044, 0x00002BE9, 0xFFFFEE9A, 0x00000457, 0x00001942, 0xFFFFF8D2, 0x000002F2, 0x00001942, 0xFFFFF8D2, 0x000002F2 }, { 0x0213F0FE99105124, 0x00002FAB, 0xFFFFEB76, 0x000004E1, 0x00001DCA, 0xFFFFF57D, 0x00000378, 0x00001DCA, 0xFFFFF57D, 0x00000378 }, { 0x0213F0FE992E2844, 0x0000330A, 0xFFFFE9E1, 0x0000051B, 0x00001CC4, 0xFFFFF6DF, 0x00000335, 0x00001CC4, 0xFFFFF6DF, 0x00000335 }, { 0x0213F0FE991828A4, 0x000027D8, 0xFFFFF276, 0x000003BF, 0x0000178A, 0xFFFFFABF, 0x000002B5, 0x0000178A, 0xFFFFFABF, 0x000002B5 }, { 0x0213F0FD42DC3864, 0x0000340A, 0xFFFFE86D, 0x00000562, 0x00001B85, 0xFFFFF719, 0x0000032F, 0x00001B85, 0xFFFFF719, 0x0000032F }, { 0x0213EA94DE063084, 0x00003879, 0xFFFFE73F, 0x00000578, 0x0000161C, 0xFFFFFB6B, 0x00000281, 0x0000161C, 0xFFFFFB6B, 0x00000281 }, { 0x0213F0FE99184064, 0x00002879, 0xFFFFF0F8, 0x0000040A, 0x00001749, 0xFFFFFA37, 0x000002CC, 0x00001749, 0xFFFFFA37, 0x000002CC }, { 0x0213F0FE99043964, 0x00002C3A, 0xFFFFEEA0, 0x0000044F, 0x00001D57, 0xFFFFF6C2, 0x00000332, 0x00001D57, 0xFFFFF6C2, 0x00000332 }, { 0x0213EA94DE021964, 0x000035BB, 0xFFFFE90D, 0x0000052A, 0x000017D9, 0xFFFFF9F5, 0x000002C3, 0x000017D9, 0xFFFFF9F5, 0x000002C3 }, { 0x0213EA94DE041124, 0x000031F1, 0xFFFFEAD4, 0x000004ED, 0x00001F10, 0xFFFFF539, 0x0000037D, 0x00001F10, 0xFFFFF539, 0x0000037D }, { 0x0213F0FE99102824, 0x00002A1A, 0xFFFFEFAD, 0x00000430, 0x00001D47, 0xFFFFF62F, 0x0000035E, 0x00001D47, 0xFFFFF62F, 0x0000035E }, { 0x0213F0FE99164924, 0x00002AF0, 0xFFFFEEDC, 0x00000465, 0x0000145F, 0xFFFFFBEB, 0x00000281, 0x0000145F, 0xFFFFFBEB, 0x00000281 }, { 0x0213F0FE99183164, 0x00002657, 0xFFFFF2E0, 0x000003B6, 0x00001664, 0xFFFFFB37, 0x000002A2, 0x00001664, 0xFFFFFB37, 0x000002A2 }, { 0x0213F0FD42D03864, 0x00003183, 0xFFFFE9F1, 0x0000052B, 0x00002020, 0xFFFFF3CE, 0x000003C1, 0x00002020, 0xFFFFF3CE, 0x000003C1 }, { 0x0213F0FD42C628E4, 0x00003240, 0xFFFFEB65, 0x000004C7, 0x00002425, 0xFFFFF245, 0x000003F3, 0x00002425, 0xFFFFF245, 0x000003F3 }, { 0x0213EA94DE321104, 0x000023D0, 0xFFFFF400, 0x00000397, 0x00001345, 0xFFFFFD6B, 0x00000241, 0x00001345, 0xFFFFFD6B, 0x00000241 }, { 0x0213F0FD42CE38A4, 0x00003440, 0xFFFFE872, 0x0000055B, 0x00002247, 0xFFFFF296, 0x000003E8, 0x00002247, 0xFFFFF296, 0x000003E8 }, { 0x0213F0FD42D04904, 0x00003275, 0xFFFFE970, 0x00000538, 0x00001F94, 0xFFFFF429, 0x000003AD, 0x00001F94, 0xFFFFF429, 0x000003AD }, { 0x0213F0FD42C640A4, 0x00003918, 0xFFFFE5DA, 0x000005B6, 0x000024FC, 0xFFFFF106, 0x00000426, 0x000024FC, 0xFFFFF106, 0x00000426 }, { 0x0213EA94DE062044, 0x0000334B, 0xFFFFEA39, 0x000004FD, 0x00001983, 0xFFFFF8F6, 0x000002E2, 0x00001983, 0xFFFFF8F6, 0x000002E2 }, { 0x0213F0FD42C64984, 0x00003B59, 0xFFFFE4D0, 0x000005DA, 0x00002605, 0xFFFFF090, 0x00000439, 0x00002605, 0xFFFFF090, 0x00000439 }, { 0x0213F0FD42D03124, 0x00003251, 0xFFFFEA46, 0x00000511, 0x00002781, 0xFFFFEF84, 0x00000470, 0x00002781, 0xFFFFEF84, 0x00000470 }, { 0x0213F0FD42CA3164, 0x00003304, 0xFFFFE926, 0x00000542, 0x00001EE9, 0xFFFFF4E4, 0x0000038B, 0x00001EE9, 0xFFFFF4E4, 0x0000038B }, { 0x0213F0FD42CC38C4, 0x00002F4C, 0xFFFFEC0C, 0x000004C4, 0x00001E49, 0xFFFFF578, 0x00000374, 0x00001E49, 0xFFFFF578, 0x00000374 }, { 0x0213EA94DE1C2164, 0x00002034, 0xFFFFF692, 0x0000034C, 0x000014B8, 0xFFFFFC5B, 0x00000294, 0x000014B8, 0xFFFFFC5B, 0x00000294 }, { 0x0213F0FD42CE4924, 0x0000385F, 0xFFFFE513, 0x000005F3, 0x000024E7, 0xFFFFF053, 0x00000450, 0x000024E7, 0xFFFFF053, 0x00000450 }, { 0x0213EA94DE1C40E4, 0x00001D70, 0xFFFFF821, 0x0000030F, 0x00001541, 0xFFFFFBB4, 0x000002B0, 0x00001541, 0xFFFFFBB4, 0x000002B0 }, { 0x0213F0FD42D02084, 0x000034EB, 0xFFFFE7FF, 0x00000575, 0x000019B4, 0xFFFFF836, 0x00000308, 0x000019B4, 0xFFFFF836, 0x00000308 }, { 0x0213F0FD42D050E4, 0x000037C9, 0xFFFFE5D4, 0x000005CD, 0x000026A1, 0xFFFFEF0C, 0x00000491, 0x000026A1, 0xFFFFEF0C, 0x00000491 }, { 0x0213EA94DE121944, 0x00002918, 0xFFFFF148, 0x000003E9, 0x00001A49, 0xFFFFF94C, 0x000002CF, 0x00001A49, 0xFFFFF94C, 0x000002CF }, { 0x0213F0FD42CA4064, 0x00002F90, 0xFFFFEAB5, 0x00000514, 0x00001707, 0xFFFFF9C7, 0x000002C4, 0x00001707, 0xFFFFF9C7, 0x000002C4 }, { 0x0213EA94DE062064, 0x0000327E, 0xFFFFEA99, 0x000004F4, 0x0000194F, 0xFFFFF929, 0x000002DC, 0x0000194F, 0xFFFFF929, 0x000002DC }, { 0x0213F0FD42C64084, 0x0000326F, 0xFFFFE9CF, 0x00000519, 0x00002240, 0xFFFFF299, 0x000003E7, 0x00002240, 0xFFFFF299, 0x000003E7 }, { 0x0213EA94DE321124, 0x000022FB, 0xFFFFF4C6, 0x00000371, 0x00001506, 0xFFFFFC73, 0x00000265, 0x00001506, 0xFFFFFC73, 0x00000265 }, { 0x0213F0FD42CA3924, 0x00003AD6, 0xFFFFE470, 0x000005FE, 0x00001F03, 0xFFFFF4F3, 0x00000387, 0x00001F03, 0xFFFFF4F3, 0x00000387 }, { 0x0213EA94DE201124, 0x00001F11, 0xFFFFF756, 0x00000332, 0x00001666, 0xFFFFFB8A, 0x000002B2, 0x00001666, 0xFFFFFB8A, 0x000002B2 }, { 0x0213EA94DE0238A4, 0x00002A5F, 0xFFFFEFA7, 0x00000430, 0x00001943, 0xFFFFF8C6, 0x000002F7, 0x00001943, 0xFFFFF8C6, 0x000002F7 }, { 0x0213EA94DE1650E4, 0x0000235E, 0xFFFFF3B4, 0x000003B3, 0x00001489, 0xFFFFFBCF, 0x0000029B, 0x00001489, 0xFFFFFBCF, 0x0000029B }, { 0x0213F0FD42CC38A4, 0x00003570, 0xFFFFE780, 0x0000058D, 0x00001B1D, 0xFFFFF767, 0x00000325, 0x00001B1D, 0xFFFFF767, 0x00000325 }, { 0x0213EA94DE042064, 0x00003678, 0xFFFFE7C3, 0x00000569, 0x00001831, 0xFFFFF98E, 0x000002C8, 0x00001831, 0xFFFFF98E, 0x000002C8 }, { 0x0213EA94DE201864, 0x000020B9, 0xFFFFF625, 0x0000035A, 0x000015C5, 0xFFFFFB8A, 0x000002B5, 0x000015C5, 0xFFFFFB8A, 0x000002B5 }, { 0x0213F0FD42C63184, 0x00003985, 0xFFFFE529, 0x000005DD, 0x00002165, 0xFFFFF351, 0x000003C5, 0x00002165, 0xFFFFF351, 0x000003C5 }, { 0x0213F0FD42D02064, 0x0000322A, 0xFFFFE99D, 0x00000535, 0x000019A1, 0xFFFFF844, 0x00000305, 0x000019A1, 0xFFFFF844, 0x00000305 }, { 0x0213F0FD42D05104, 0x000033ED, 0xFFFFE834, 0x00000571, 0x00002094, 0xFFFFF33A, 0x000003DB, 0x00002094, 0xFFFFF33A, 0x000003DB }, { 0x0213EA94DE2040C4, 0x00001D10, 0xFFFFF84D, 0x0000030B, 0x00001659, 0xFFFFFB0A, 0x000002CB, 0x00001659, 0xFFFFFB0A, 0x000002CB }, { 0x0213EA94DE1C1124, 0x0000210F, 0xFFFFF644, 0x00000355, 0x00001A4A, 0xFFFFF90F, 0x00000310, 0x00001A4A, 0xFFFFF90F, 0x00000310 }, { 0x0213EA94DE164164, 0x00001CA8, 0xFFFFF813, 0x00000316, 0x00001440, 0xFFFFFC1C, 0x0000029D, 0x00001440, 0xFFFFFC1C, 0x0000029D }, { 0x0213EA94DE3210C4, 0x00002864, 0xFFFFF15A, 0x000003FA, 0x0000137F, 0xFFFFFD43, 0x00000248, 0x0000137F, 0xFFFFFD43, 0x00000248 }, { 0x0213F0FD42D04184, 0x00002CDB, 0xFFFFECFD, 0x000004A7, 0x00002472, 0xFFFFF0E1, 0x00000437, 0x00002472, 0xFFFFF0E1, 0x00000437 }, { 0x0213F0FD42CC5104, 0x00003348, 0xFFFFE8CA, 0x00000554, 0x00001E91, 0xFFFFF4D4, 0x00000392, 0x00001E91, 0xFFFFF4D4, 0x00000392 }, { 0x0213F0FD42C64944, 0x00003989, 0xFFFFE4BB, 0x000005F8, 0x00001ACB, 0xFFFFF780, 0x00000319, 0x00001ACB, 0xFFFFF780, 0x00000319 }, { 0x0213F0FD42CA2104, 0x00003238, 0xFFFFEA09, 0x0000051E, 0x00001F08, 0xFFFFF4F4, 0x0000038C, 0x00001F08, 0xFFFFF4F4, 0x0000038C }, { 0x0213EA94DE120904, 0x00002453, 0xFFFFF3B0, 0x0000038D, 0x00001AED, 0xFFFFF8A2, 0x000002EA, 0x00001AED, 0xFFFFF8A2, 0x000002EA }, { 0x0213EA94DE1C3024, 0x00002459, 0xFFFFF409, 0x000003A8, 0x000017B5, 0xFFFFFA53, 0x000002E1, 0x000017B5, 0xFFFFFA53, 0x000002E1 }, { 0x0213EA94DE021184, 0x0000310D, 0xFFFFEB78, 0x000004D0, 0x00001DC9, 0xFFFFF5D5, 0x00000368, 0x00001DC9, 0xFFFFF5D5, 0x00000368 }, { 0x0213EA94DE023104, 0x000031BF, 0xFFFFECA3, 0x00000498, 0x00001DC9, 0xFFFFF717, 0x00000336, 0x00001DC9, 0xFFFFF717, 0x00000336 }, { 0x0213F0FD42CE2104, 0x00003896, 0xFFFFE5DD, 0x000005C5, 0x000023E2, 0xFFFFF1A1, 0x00000416, 0x000023E2, 0xFFFFF1A1, 0x00000416 }, { 0x0213EA94DE323904, 0x000023CB, 0xFFFFF4C8, 0x00000372, 0x00001C33, 0xFFFFF7D5, 0x0000032A, 0x00001C33, 0xFFFFF7D5, 0x0000032A }, { 0x0213F0FD42D020C4, 0x00002F6B, 0xFFFFEBF0, 0x000004CE, 0x00001C89, 0xFFFFF689, 0x0000034D, 0x00001C89, 0xFFFFF689, 0x0000034D }, { 0x0213F0FD42CE3904, 0x00003E72, 0xFFFFE211, 0x0000065D, 0x0000218D, 0xFFFFF309, 0x000003DC, 0x0000218D, 0xFFFFF309, 0x000003DC }, { 0x0213EA94DE022084, 0x00002612, 0xFFFFF2C3, 0x000003AD, 0x000019F7, 0xFFFFF891, 0x000002FE, 0x000019F7, 0xFFFFF891, 0x000002FE }, { 0x0213EA94DE164184, 0x0000205D, 0xFFFFF59F, 0x00000372, 0x000012E6, 0xFFFFFD0A, 0x00000270, 0x000012E6, 0xFFFFFD0A, 0x00000270 }, { 0x0213F0FD42CA2124, 0x00002ECB, 0xFFFFEC47, 0x000004BD, 0x00001936, 0xFFFFF8D9, 0x000002E4, 0x00001936, 0xFFFFF8D9, 0x000002E4 }, { 0x0213EA94DE064904, 0x00002BDB, 0xFFFFEE6D, 0x00000458, 0x00001852, 0xFFFFF943, 0x000002D9, 0x00001852, 0xFFFFF943, 0x000002D9 }, { 0x0213EA94DE124904, 0x00003387, 0xFFFFE958, 0x00000534, 0x00001932, 0xFFFFF8FA, 0x000002E4, 0x00001932, 0xFFFFF8FA, 0x000002E4 }, { 0x0213EA94DE0208C4, 0x00002E3C, 0xFFFFED26, 0x00000495, 0x00001858, 0xFFFFF990, 0x000002D1, 0x00001858, 0xFFFFF990, 0x000002D1 }, { 0x0213EA94DE022964, 0x000033B8, 0xFFFFEA5C, 0x000004F9, 0x00001BD1, 0xFFFFF76A, 0x0000032E, 0x00001BD1, 0xFFFFF76A, 0x0000032E }, { 0x0213EA94DE062984, 0x00002BCE, 0xFFFFEEE9, 0x00000443, 0x00001982, 0xFFFFF90D, 0x000002DF, 0x00001982, 0xFFFFF90D, 0x000002DF }, { 0x0213F0FD42D048E4, 0x00003495, 0xFFFFE7D9, 0x0000057B, 0x00001D2A, 0xFFFFF5A5, 0x00000372, 0x00001D2A, 0xFFFFF5A5, 0x00000372 }, { 0x0213F0FD42CA38E4, 0x000034B1, 0xFFFFE88D, 0x00000556, 0x00002014, 0xFFFFF43A, 0x000003AA, 0x00002014, 0xFFFFF43A, 0x000003AA }, { 0x0213F0FD42CC3124, 0x00002F96, 0xFFFFEC84, 0x000004AD, 0x000024A2, 0xFFFFF1CE, 0x0000040A, 0x000024A2, 0xFFFFF1CE, 0x0000040A }, { 0x0213EA94DE161064, 0x0000203B, 0xFFFFF640, 0x00000359, 0x000014EC, 0xFFFFFC14, 0x0000029C, 0x000014EC, 0xFFFFFC14, 0x0000029C }, { 0x0213F0FD42D02984, 0x000034E2, 0xFFFFE7B8, 0x00000582, 0x00001938, 0xFFFFF872, 0x000002FA, 0x00001938, 0xFFFFF872, 0x000002FA }, { 0x0213EA94DE063124, 0x00002AC7, 0xFFFFF0C1, 0x000003F5, 0x00002268, 0xFFFFF39C, 0x000003C9, 0x00002268, 0xFFFFF39C, 0x000003C9 }, { 0x0213F0FD42C63144, 0x000036F6, 0xFFFFE77F, 0x00000571, 0x000027D9, 0xFFFFEF6F, 0x00000461, 0x000027D9, 0xFFFFEF6F, 0x00000461 }, { 0x0213EA94DE123124, 0x00002BAB, 0xFFFFF018, 0x00000419, 0x00002126, 0xFFFFF4E2, 0x0000038F, 0x00002126, 0xFFFFF4E2, 0x0000038F }, { 0x0213EA94DE323924, 0x000028C4, 0xFFFFF161, 0x000003F8, 0x0000180C, 0xFFFFFA4B, 0x000002C8, 0x0000180C, 0xFFFFFA4B, 0x000002C8 }, { 0x0213F0FD42CA2864, 0x00002F48, 0xFFFFEB62, 0x000004EE, 0x00001912, 0xFFFFF8C8, 0x000002EA, 0x00001912, 0xFFFFF8C8, 0x000002EA }, { 0x0213F0FD42CE2864, 0x000032DF, 0xFFFFE911, 0x00000545, 0x00001F06, 0xFFFFF485, 0x0000039C, 0x00001F06, 0xFFFFF485, 0x0000039C }, { 0x0213F0FD42D04144, 0x000035B8, 0xFFFFE74F, 0x00000590, 0x00001FD7, 0xFFFFF410, 0x000003AF, 0x00001FD7, 0xFFFFF410, 0x000003AF }, { 0x0213F0FD42D050C4, 0x00003608, 0xFFFFE6D7, 0x000005A9, 0x000024A6, 0xFFFFF075, 0x00000450, 0x000024A6, 0xFFFFF075, 0x00000450 }, { 0x0213F0FD42CA3884, 0x000030AB, 0xFFFFEAED, 0x000004F5, 0x000019EE, 0xFFFFF84E, 0x000002FC, 0x000019EE, 0xFFFFF84E, 0x000002FC }, { 0x0213EA94DE0620C4, 0x000030C6, 0xFFFFEC92, 0x0000049E, 0x000019BB, 0xFFFFF8F1, 0x000002F3, 0x000019BB, 0xFFFFF8F1, 0x000002F3 }, { 0x0213F0FD42C630A4, 0x00003B27, 0xFFFFE544, 0x000005C1, 0x00002697, 0xFFFFF072, 0x00000438, 0x00002697, 0xFFFFF072, 0x00000438 }, { 0x0213EA94DE1248E4, 0x00002F23, 0xFFFFEC48, 0x000004B9, 0x0000199A, 0xFFFFF8CF, 0x000002E9, 0x0000199A, 0xFFFFF8CF, 0x000002E9 }, { 0x0213EA94DE0629A4, 0x00002BD7, 0xFFFFEEAC, 0x00000450, 0x00001991, 0xFFFFF8F4, 0x000002E2, 0x00001991, 0xFFFFF8F4, 0x000002E2 }, { 0x0213EA94DE022024, 0x00003210, 0xFFFFEB24, 0x000004DE, 0x00001BDF, 0xFFFFF744, 0x00000333, 0x00001BDF, 0xFFFFF744, 0x00000333 }, { 0x0213EA94DE244144, 0x00002DDC, 0xFFFFED0D, 0x000004AC, 0x000019D0, 0xFFFFF869, 0x0000030F, 0x000019D0, 0xFFFFF869, 0x0000030F }, { 0x0213EA94DE203964, 0x000023E6, 0xFFFFF40C, 0x000003A9, 0x000014EB, 0xFFFFFBC4, 0x000002AF, 0x000014EB, 0xFFFFFBC4, 0x000002AF }, { 0x0213F0FD42CA29A4, 0x000030CE, 0xFFFFE9A5, 0x0000053C, 0x00001C45, 0xFFFFF60E, 0x0000035D, 0x00001C45, 0xFFFFF60E, 0x0000035D }, { 0x0213EA94DE161084, 0x00001E89, 0xFFFFF73A, 0x00000337, 0x0000157C, 0xFFFFFBC0, 0x000002AA, 0x0000157C, 0xFFFFFBC0, 0x000002AA }, { 0x0213F0FD42D04124, 0x000036C6, 0xFFFFE6CF, 0x000005A1, 0x00002457, 0xFFFFF11D, 0x0000042D, 0x00002457, 0xFFFFF11D, 0x0000042D }, { 0x0213EA94DE321944, 0x00002815, 0xFFFFF19A, 0x000003F2, 0x000016D2, 0xFFFFFB40, 0x00000299, 0x000016D2, 0xFFFFFB40, 0x00000299 }, { 0x0213EA94DE1C19A4, 0x00001FE2, 0xFFFFF660, 0x00000354, 0x000015A7, 0xFFFFFB47, 0x000002C1, 0x000015A7, 0xFFFFFB47, 0x000002C1 }, { 0x0213EA94DE161964, 0x00002114, 0xFFFFF634, 0x00000356, 0x000016C1, 0xFFFFFB43, 0x000002B8, 0x000016C1, 0xFFFFFB43, 0x000002B8 }, { 0x0213F0FD42CC28C4, 0x000028E3, 0xFFFFF075, 0x00000414, 0x0000203C, 0xFFFFF438, 0x000003B3, 0x0000203C, 0xFFFFF438, 0x000003B3 }, { 0x0213EA94DE1C3924, 0x00001EEB, 0xFFFFF7BB, 0x0000031A, 0x00001580, 0xFFFFFBD7, 0x000002AD, 0x00001580, 0xFFFFFBD7, 0x000002AD }, { 0x0213EA94DE2408C4, 0x00002BB2, 0xFFFFEE72, 0x00000470, 0x0000192C, 0xFFFFF91E, 0x000002E7, 0x0000192C, 0xFFFFF91E, 0x000002E7 }, { 0x0213EA94DE0650E4, 0x00003A3D, 0xFFFFE49D, 0x000005F5, 0x00001A3B, 0xFFFFF7B1, 0x00000320, 0x00001A3B, 0xFFFFF7B1, 0x00000320 }, { 0x0213F0FD42CE3164, 0x00002E93, 0xFFFFEC5A, 0x000004B4, 0x000025EB, 0xFFFFF03C, 0x0000044A, 0x000025EB, 0xFFFFF03C, 0x0000044A }, { 0x0213F0FD42CA20C4, 0x0000331F, 0xFFFFE97A, 0x00000531, 0x00001A06, 0xFFFFF850, 0x000002FD, 0x00001A06, 0xFFFFF850, 0x000002FD }, { 0x0213F0FD42C63964, 0x00003937, 0xFFFFE5A0, 0x000005C7, 0x0000235E, 0xFFFFF234, 0x000003F2, 0x0000235E, 0xFFFFF234, 0x000003F2 }, { 0x0213EA94DE1E3924, 0x00001DD0, 0xFFFFF80E, 0x00000319, 0x000015C7, 0xFFFFFB91, 0x000002BC, 0x000015C7, 0xFFFFFB91, 0x000002BC }, { 0x0213F0FD42D03964, 0x00003328, 0xFFFFE905, 0x0000054A, 0x00002054, 0xFFFFF3BF, 0x000003C0, 0x00002054, 0xFFFFF3BF, 0x000003C0 }, { 0x0213F0FD42CC1104, 0x00002FE5, 0xFFFFEA65, 0x00000520, 0x0000188B, 0xFFFFF8A7, 0x000002F5, 0x0000188B, 0xFFFFF8A7, 0x000002F5 }, { 0x0213F0FD42CA38A4, 0x00002ED3, 0xFFFFEC51, 0x000004B9, 0x00001888, 0xFFFFF96A, 0x000002CA, 0x00001888, 0xFFFFF96A, 0x000002CA }, { 0x0213F0FD42D03084, 0x00002FCC, 0xFFFFEB60, 0x000004EA, 0x00001F8D, 0xFFFFF436, 0x000003B4, 0x00001F8D, 0xFFFFF436, 0x000003B4 }, { 0x0213F0FD42CE4084, 0x0000329F, 0xFFFFE8F7, 0x0000054F, 0x000023DB, 0xFFFFF0EE, 0x0000043A, 0x000023DB, 0xFFFFF0EE, 0x0000043A }, { 0x0213EA94DE0438A4, 0x000030B5, 0xFFFFEBB8, 0x000004C4, 0x00001AFD, 0xFFFFF781, 0x00000329, 0x00001AFD, 0xFFFFF781, 0x00000329 }, { 0x0213EA94DE1E19A4, 0x00001BBF, 0xFFFFF8E2, 0x000002F7, 0x00001722, 0xFFFFFA85, 0x000002DB, 0x00001722, 0xFFFFFA85, 0x000002DB }, { 0x0213EA94DE022044, 0x000030E4, 0xFFFFEBE6, 0x000004BB, 0x00001C80, 0xFFFFF6E1, 0x0000033E, 0x00001C80, 0xFFFFF6E1, 0x0000033E }, { 0x0213EA94DE122944, 0x000030E2, 0xFFFFECD0, 0x00000492, 0x00001CE0, 0xFFFFF753, 0x0000032F, 0x00001CE0, 0xFFFFF753, 0x0000032F }, { 0x0213EA94DE322864, 0x00002513, 0xFFFFF323, 0x000003BC, 0x00001965, 0xFFFFF93C, 0x000002F0, 0x00001965, 0xFFFFF93C, 0x000002F0 }, { 0x0213EA94DE1610A4, 0x00002147, 0xFFFFF585, 0x0000037A, 0x000014CC, 0xFFFFFC3B, 0x00000296, 0x000014CC, 0xFFFFFC3B, 0x00000296 }, { 0x0213EA94DE322124, 0x00002507, 0xFFFFF432, 0x0000038A, 0x00001890, 0xFFFFFA61, 0x000002C6, 0x00001890, 0xFFFFFA61, 0x000002C6 }, { 0x0213EA94DE0638A4, 0x0000339B, 0xFFFFEA7D, 0x000004F0, 0x0000191E, 0xFFFFF944, 0x000002DF, 0x0000191E, 0xFFFFF944, 0x000002DF }, { 0x0213F0FD42CC28A4, 0x00002842, 0xFFFFF043, 0x00000427, 0x00001988, 0xFFFFF892, 0x000002F7, 0x00001988, 0xFFFFF892, 0x000002F7 }, { 0x0213F0FD42C618A4, 0x0000389D, 0xFFFFE5D8, 0x000005BF, 0x00001EE1, 0xFFFFF4EF, 0x00000387, 0x00001EE1, 0xFFFFF4EF, 0x00000387 }, { 0x0213F0FD42CE3184, 0x0000396D, 0xFFFFE4D7, 0x000005F2, 0x000020DA, 0xFFFFF34E, 0x000003CD, 0x000020DA, 0xFFFFF34E, 0x000003CD }, { 0x0213F0FD42CA3104, 0x0000355F, 0xFFFFE85A, 0x0000055F, 0x0000281F, 0xFFFFEF28, 0x0000047D, 0x0000281F, 0xFFFFEF28, 0x0000047D }, { 0x0213EA94DE1C50E4, 0x00002284, 0xFFFFF46E, 0x00000399, 0x00001498, 0xFFFFFBE3, 0x0000029C, 0x00001498, 0xFFFFFBE3, 0x0000029C }, { 0x0213EA94DE023944, 0x000031B6, 0xFFFFEB42, 0x000004D9, 0x00001F54, 0xFFFFF4D2, 0x00000399, 0x00001F54, 0xFFFFF4D2, 0x00000399 }, { 0x0213F0FD42C63064, 0x000035CE, 0xFFFFE79D, 0x00000578, 0x00001C78, 0xFFFFF68C, 0x00000344, 0x00001C78, 0xFFFFF68C, 0x00000344 }, { 0x0213EA94DE1E4964, 0x00001C0A, 0xFFFFF81B, 0x00000318, 0x00001492, 0xFFFFFBCC, 0x000002A5, 0x00001492, 0xFFFFFBCC, 0x000002A5 }, { 0x0213EA94DE022184, 0x00003492, 0xFFFFE95C, 0x00000526, 0x00001A97, 0xFFFFF81B, 0x0000030B, 0x00001A97, 0xFFFFF81B, 0x0000030B }, { 0x0213EA94DE163164, 0x00001E89, 0xFFFFF7D0, 0x0000031A, 0x000017A5, 0xFFFFFA99, 0x000002D9, 0x000017A5, 0xFFFFFA99, 0x000002D9 }, { 0x0213F0FD42CA48C4, 0x00002DCC, 0xFFFFEBE0, 0x000004DE, 0x000019BA, 0xFFFFF7F5, 0x0000030D, 0x000019BA, 0xFFFFF7F5, 0x0000030D }, { 0x0213EA94DE042984, 0x000030EF, 0xFFFFEBC1, 0x000004C0, 0x00001AA9, 0xFFFFF814, 0x0000030A, 0x00001AA9, 0xFFFFF814, 0x0000030A }, { 0x0213EA94DE245124, 0x00002EA3, 0xFFFFEBF6, 0x000004D8, 0x00001DCF, 0xFFFFF521, 0x00000399, 0x00001DCF, 0xFFFFF521, 0x00000399 }, { 0x0213EA94DE324164, 0x00002B5F, 0xFFFFEEA1, 0x0000046C, 0x000017EB, 0xFFFFF9C9, 0x000002D4, 0x000017EB, 0xFFFFF9C9, 0x000002D4 }, { 0x0213EA94DE024104, 0x00002C63, 0xFFFFEE82, 0x00000455, 0x00002268, 0xFFFFF29D, 0x000003F6, 0x00002268, 0xFFFFF29D, 0x000003F6 }, { 0x0213EA94DE121904, 0x00002B1A, 0xFFFFF016, 0x0000041C, 0x000019AA, 0xFFFFF988, 0x000002D2, 0x000019AA, 0xFFFFF988, 0x000002D2 }, { 0x0213F0FD42CA2964, 0x0000332F, 0xFFFFE934, 0x0000053B, 0x00001E47, 0xFFFFF566, 0x00000374, 0x00001E47, 0xFFFFF566, 0x00000374 }, { 0x0213F0FD42CA48E4, 0x00002995, 0xFFFFEEC1, 0x00000465, 0x0000178F, 0xFFFFF995, 0x000002C5, 0x0000178F, 0xFFFFF995, 0x000002C5 }, { 0x0213EA94DE201884, 0x00001C2E, 0xFFFFF932, 0x000002E9, 0x000015C2, 0xFFFFFBC5, 0x000002AD, 0x000015C2, 0xFFFFFBC5, 0x000002AD }, { 0x0213F0FD42C640E4, 0x00003B08, 0xFFFFE4E8, 0x000005D8, 0x0000209D, 0xFFFFF444, 0x00000398, 0x0000209D, 0xFFFFF444, 0x00000398 }, { 0x0213EA94DE0450E4, 0x00002F1F, 0xFFFFEB74, 0x000004EB, 0x00001F4C, 0xFFFFF3D4, 0x000003CE, 0x00001F4C, 0xFFFFF3D4, 0x000003CE }, { 0x0213EA94DE043884, 0x00003415, 0xFFFFE89F, 0x00000553, 0x0000186B, 0xFFFFF8E1, 0x000002EF, 0x0000186B, 0xFFFFF8E1, 0x000002EF }, { 0x0213F0FD42CC10C4, 0x00003441, 0xFFFFE779, 0x0000059D, 0x000019EA, 0xFFFFF7B2, 0x0000031F, 0x000019EA, 0xFFFFF7B2, 0x0000031F }, { 0x0213EA94DE164064, 0x00002174, 0xFFFFF546, 0x00000378, 0x00001456, 0xFFFFFC5F, 0x00000284, 0x00001456, 0xFFFFFC5F, 0x00000284 }, { 0x0213F0FD42CE40C4, 0x00003788, 0xFFFFE61E, 0x000005BF, 0x00001DF4, 0xFFFFF562, 0x00000374, 0x00001DF4, 0xFFFFF562, 0x00000374 }, { 0x0213EA94DE1E1844, 0x00001C41, 0xFFFFF8C1, 0x000002FC, 0x0000171E, 0xFFFFFA93, 0x000002DE, 0x0000171E, 0xFFFFFA93, 0x000002DE }, { 0x0213F0FD42CA3864, 0x00002B15, 0xFFFFEDEC, 0x00000487, 0x000017E4, 0xFFFFF934, 0x000002DF, 0x000017E4, 0xFFFFF934, 0x000002DF }, { 0x0213F0FD42CC3144, 0x0000327A, 0xFFFFEA71, 0x000004FF, 0x00001D96, 0xFFFFF63B, 0x00000351, 0x00001D96, 0xFFFFF63B, 0x00000351 }, { 0x0213EA94DE1E4064, 0x000023C6, 0xFFFFF3E5, 0x000003B6, 0x000014DE, 0xFFFFFC29, 0x00000294, 0x000014DE, 0xFFFFFC29, 0x00000294 }, { 0x0213EA94DE164944, 0x00001F96, 0xFFFFF5FA, 0x00000364, 0x00001397, 0xFFFFFC9D, 0x0000027D, 0x00001397, 0xFFFFFC9D, 0x0000027D }, { 0x0213EA94DE063144, 0x00002B51, 0xFFFFEFB5, 0x00000420, 0x00001ACA, 0xFFFFF824, 0x0000030D, 0x00001ACA, 0xFFFFF824, 0x0000030D }, { 0x0213EA94DE1E4944, 0x000020DB, 0xFFFFF55B, 0x0000037C, 0x0000153D, 0xFFFFFB5F, 0x000002BA, 0x0000153D, 0xFFFFFB5F, 0x000002BA }, { 0x0213EA94DE0221A4, 0x000030BB, 0xFFFFEBDA, 0x000004BC, 0x00001B0E, 0xFFFFF7A8, 0x0000031E, 0x00001B0E, 0xFFFFF7A8, 0x0000031E }, { 0x0213F0FD42C62904, 0x000033C4, 0xFFFFEA41, 0x000004FA, 0x000022C6, 0xFFFFF363, 0x000003BC, 0x000022C6, 0xFFFFF363, 0x000003BC }, { 0x0213EA94DE240924, 0x00002D47, 0xFFFFEE01, 0x00000477, 0x000021CD, 0xFFFFF36E, 0x000003D6, 0x000021CD, 0xFFFFF36E, 0x000003D6 }, { 0x0213EA94DE1E31A4, 0x00001E7B, 0xFFFFF733, 0x00000339, 0x00001668, 0xFFFFFB29, 0x000002BF, 0x00001668, 0xFFFFFB29, 0x000002BF }, { 0x0213F0FD42CA2984, 0x00002F7E, 0xFFFFEAFF, 0x000004FC, 0x000018D4, 0xFFFFF8BE, 0x000002E8, 0x000018D4, 0xFFFFF8BE, 0x000002E8 }, { 0x0213EA94DE3238A4, 0x00002635, 0xFFFFF2E1, 0x000003BC, 0x000017A4, 0xFFFFFA67, 0x000002C3, 0x000017A4, 0xFFFFFA67, 0x000002C3 }, { 0x0213EA94DE1230A4, 0x000026CA, 0xFFFFF2C1, 0x000003B2, 0x00001C3E, 0xFFFFF7AE, 0x0000031F, 0x00001C3E, 0xFFFFF7AE, 0x0000031F }, { 0x0213EA94DE1C1064, 0x00002550, 0xFFFFF380, 0x000003B5, 0x000019F5, 0xFFFFF8E7, 0x00000313, 0x000019F5, 0xFFFFF8E7, 0x00000313 }, { 0x0213F0FD42CA4904, 0x00002FBC, 0xFFFFEAF8, 0x000004FA, 0x000018CC, 0xFFFFF8C6, 0x000002E8, 0x000018CC, 0xFFFFF8C6, 0x000002E8 }, { 0x0213F0FD42D018E4, 0x00002FCC, 0xFFFFEB60, 0x000004EA, 0x00001EFF, 0xFFFFF4DA, 0x0000038F, 0x00001EFF, 0xFFFFF4DA, 0x0000038F }, { 0x0213EA94DE164084, 0x000023E6, 0xFFFFF413, 0x000003A1, 0x00001544, 0xFFFFFC16, 0x0000028B, 0x00001544, 0xFFFFFC16, 0x0000028B }, { 0x0213F0FD42CE3024, 0x00003251, 0xFFFFEAA2, 0x000004F5, 0x000025B0, 0xFFFFF0DF, 0x00000431, 0x000025B0, 0xFFFFF0DF, 0x00000431 }, { 0x0213F0FD42D03984, 0x00002F6F, 0xFFFFEB67, 0x000004E6, 0x00002275, 0xFFFFF249, 0x000003FB, 0x00002275, 0xFFFFF249, 0x000003FB }, { 0x0213EA94DE322964, 0x00002597, 0xFFFFF34A, 0x000003B1, 0x00001BCC, 0xFFFFF822, 0x0000031A, 0x00001BCC, 0xFFFFF822, 0x0000031A }, { 0x0213F0FD42C63864, 0x00003B1D, 0xFFFFE40E, 0x0000060D, 0x00001F61, 0xFFFFF470, 0x0000039F, 0x00001F61, 0xFFFFF470, 0x0000039F }, { 0x0213F0FD42C64144, 0x0000379F, 0xFFFFE6DB, 0x0000058C, 0x00002460, 0xFFFFF170, 0x00000415, 0x00002460, 0xFFFFF170, 0x00000415 }, { 0x0213EA94DE165144, 0x00002442, 0xFFFFF2FB, 0x000003D9, 0x00001414, 0xFFFFFBDC, 0x000002A2, 0x00001414, 0xFFFFFBDC, 0x000002A2 }, { 0x0213EA94DE0240C4, 0x00003270, 0xFFFFEA0D, 0x0000051C, 0x00001AFD, 0xFFFFF783, 0x00000328, 0x00001AFD, 0xFFFFF783, 0x00000328 }, { 0x0213EA94DE161104, 0x00001B23, 0xFFFFF94B, 0x000002EB, 0x000015F1, 0xFFFFFB82, 0x000002B4, 0x000015F1, 0xFFFFFB82, 0x000002B4 }, { 0x0213EA94DE323844, 0x000026AE, 0xFFFFF21A, 0x000003DB, 0x00001827, 0xFFFFFA10, 0x000002C8, 0x00001827, 0xFFFFFA10, 0x000002C8 }, { 0x0213F0FD42CA4884, 0x00002DCF, 0xFFFFEBD8, 0x000004DB, 0x00001A75, 0xFFFFF719, 0x0000033A, 0x00001A75, 0xFFFFF719, 0x0000033A }, { 0x0213F0FD42CE40E4, 0x00003983, 0xFFFFE500, 0x000005EA, 0x000022A6, 0xFFFFF25F, 0x000003F1, 0x000022A6, 0xFFFFF25F, 0x000003F1 }, { 0x0213EA94DE1218C4, 0x00002AD5, 0xFFFFF07A, 0x00000406, 0x000019FB, 0xFFFFF961, 0x000002D8, 0x000019FB, 0xFFFFF961, 0x000002D8 }, { 0x0213F0FD42CA39A4, 0x00002A43, 0xFFFFEE43, 0x00000474, 0x00001D65, 0xFFFFF538, 0x00000387, 0x00001D65, 0xFFFFF538, 0x00000387 }, { 0x0213F0FD42C62084, 0x0000311E, 0xFFFFEAF8, 0x000004E8, 0x00001959, 0xFFFFF8E4, 0x000002DC, 0x00001959, 0xFFFFF8E4, 0x000002DC }, { 0x0213F0FD42D031A4, 0x0000339A, 0xFFFFE8A7, 0x00000559, 0x00001A04, 0xFFFFF7E5, 0x00000311, 0x00001A04, 0xFFFFF7E5, 0x00000311 }, { 0x0213EA94DE204144, 0x000021B3, 0xFFFFF50F, 0x00000389, 0x00001470, 0xFFFFFBF7, 0x000002A5, 0x00001470, 0xFFFFFBF7, 0x000002A5 }, { 0x0213EA94DE021884, 0x00003417, 0xFFFFE9A6, 0x0000051D, 0x000018A4, 0xFFFFF984, 0x000002CF, 0x000018A4, 0xFFFFF984, 0x000002CF }, { 0x0213EA94DE202984, 0x00001FED, 0xFFFFF6A2, 0x00000347, 0x00001639, 0xFFFFFB59, 0x000002BB, 0x00001639, 0xFFFFFB59, 0x000002BB }, { 0x0213EA94DE1218A4, 0x000032D2, 0xFFFFEB18, 0x000004DC, 0x00001A01, 0xFFFFF95E, 0x000002CF, 0x00001A01, 0xFFFFF95E, 0x000002CF }, { 0x0213F0FD42D04084, 0x00003147, 0xFFFFEA3B, 0x00000518, 0x0000241D, 0xFFFFF11C, 0x00000431, 0x0000241D, 0xFFFFF11C, 0x00000431 }, { 0x0213EA94DE1C0904, 0x00001D44, 0xFFFFF7E7, 0x0000031A, 0x0000153F, 0xFFFFFBBC, 0x000002A9, 0x0000153F, 0xFFFFFBBC, 0x000002A9 }, { 0x0213F0FD42CC4104, 0x00003690, 0xFFFFE6E3, 0x000005A4, 0x000018DE, 0xFFFFF908, 0x000002DD, 0x000018DE, 0xFFFFF908, 0x000002DD }, { 0x0213F0FD42CC2184, 0x00003561, 0xFFFFE6F8, 0x000005AB, 0x000018B5, 0xFFFFF8A0, 0x000002F3, 0x000018B5, 0xFFFFF8A0, 0x000002F3 }, { 0x0213EA94DE323124, 0x000028F4, 0xFFFFF23A, 0x000003CE, 0x00001BC6, 0xFFFFF881, 0x00000311, 0x00001BC6, 0xFFFFF881, 0x00000311 }, { 0x0213F0FD42D03184, 0x000035D7, 0xFFFFE71C, 0x0000059B, 0x00001D49, 0xFFFFF5C8, 0x00000368, 0x00001D49, 0xFFFFF5C8, 0x00000368 }, { 0x0213F0FD42CE18A4, 0x0000397E, 0xFFFFE4CB, 0x000005F4, 0x00001989, 0xFFFFF844, 0x000002FD, 0x00001989, 0xFFFFF844, 0x000002FD }, { 0x0213F0FD42C62064, 0x00003BAB, 0xFFFFE332, 0x0000063F, 0x00001A69, 0xFFFFF7B9, 0x00000312, 0x00001A69, 0xFFFFF7B9, 0x00000312 }, { 0x0213F0FD42D03064, 0x00002F26, 0xFFFFEB82, 0x000004E8, 0x00001D7D, 0xFFFFF590, 0x00000379, 0x00001D7D, 0xFFFFF590, 0x00000379 }, { 0x0213EA94DE0631A4, 0x00002FDC, 0xFFFFEBE0, 0x000004C3, 0x00001940, 0xFFFFF8CC, 0x000002EE, 0x00001940, 0xFFFFF8CC, 0x000002EE }, { 0x0213EA94DE1C08E4, 0x000021B2, 0xFFFFF558, 0x00000379, 0x00001643, 0xFFFFFB1C, 0x000002C3, 0x00001643, 0xFFFFFB1C, 0x000002C3 }, { 0x0213EA94DE321904, 0x00002897, 0xFFFFF181, 0x000003F7, 0x00001990, 0xFFFFF994, 0x000002E2, 0x00001990, 0xFFFFF994, 0x000002E2 }, { 0x0213EA94DE1E0924, 0x00001D19, 0xFFFFF829, 0x0000031A, 0x00001558, 0xFFFFFBCA, 0x000002AF, 0x00001558, 0xFFFFFBCA, 0x000002AF }, { 0x0213EA94DE043144, 0x00003311, 0xFFFFEAD9, 0x000004E1, 0x00001BDC, 0xFFFFF79E, 0x0000031D, 0x00001BDC, 0xFFFFF79E, 0x0000031D }, { 0x0213EA94DE1E29C4, 0x00001E54, 0xFFFFF740, 0x00000333, 0x000016A1, 0xFFFFFAF0, 0x000002C4, 0x000016A1, 0xFFFFFAF0, 0x000002C4 }, { 0x0213F0FD42CE3964, 0x00003266, 0xFFFFE9A8, 0x00000527, 0x00002307, 0xFFFFF219, 0x000003FC, 0x00002307, 0xFFFFF219, 0x000003FC }, { 0x0213EA94DE321144, 0x00001D1F, 0xFFFFF82B, 0x000002F0, 0x000013F0, 0xFFFFFD0B, 0x0000024E, 0x000013F0, 0xFFFFFD0B, 0x0000024E }, { 0x0213F0FD42C648A4, 0x0000312E, 0xFFFFEA67, 0x00000502, 0x0000222A, 0xFFFFF253, 0x000003F9, 0x0000222A, 0xFFFFF253, 0x000003F9 }, { 0x0213F0FD42CA4124, 0x000032B2, 0xFFFFE9AD, 0x00000523, 0x00001E97, 0xFFFFF527, 0x0000037F, 0x00001E97, 0xFFFFF527, 0x0000037F }, { 0x0213EA94DE1640E4, 0x00001F6A, 0xFFFFF6FC, 0x00000338, 0x0000164B, 0xFFFFFB2C, 0x000002C2, 0x0000164B, 0xFFFFFB2C, 0x000002C2 }, { 0x0213EA94DE0228C4, 0x00002603, 0xFFFFF386, 0x00000392, 0x00001EE0, 0xFFFFF601, 0x00000369, 0x00001EE0, 0xFFFFF601, 0x00000369 }, { 0x0213EA94DE201164, 0x00001D0C, 0xFFFFF803, 0x00000317, 0x00001345, 0xFFFFFD52, 0x00000260, 0x00001345, 0xFFFFFD52, 0x00000260 }, { 0x0213F0FD42CC1884, 0x0000327A, 0xFFFFE8E5, 0x0000055C, 0x00001680, 0xFFFFFA2D, 0x000002B2, 0x00001680, 0xFFFFFA2D, 0x000002B2 }, { 0x0213F0FD42CA3964, 0x000032B8, 0xFFFFE91A, 0x0000054A, 0x00001BAB, 0xFFFFF6EC, 0x00000338, 0x00001BAB, 0xFFFFF6EC, 0x00000338 }, { 0x0213F0FD42CC3044, 0x00002F79, 0xFFFFEB63, 0x000004EF, 0x000017BB, 0xFFFFF9B1, 0x000002CA, 0x000017BB, 0xFFFFF9B1, 0x000002CA }, { 0x0213EA94DE0438E4, 0x00002AE5, 0xFFFFEFCB, 0x0000041D, 0x0000214A, 0xFFFFF3A7, 0x000003C7, 0x0000214A, 0xFFFFF3A7, 0x000003C7 }, { 0x0213EA94DE322064, 0x0000212C, 0xFFFFF5BC, 0x0000034F, 0x000017ED, 0xFFFFFA4C, 0x000002C1, 0x000017ED, 0xFFFFFA4C, 0x000002C1 }, { 0x0213EA94DE121124, 0x00002BE7, 0xFFFFEF40, 0x0000043C, 0x00001AE2, 0xFFFFF8CF, 0x000002E3, 0x00001AE2, 0xFFFFF8CF, 0x000002E3 }, { 0x0213F0FD42D05144, 0x000032DC, 0xFFFFE90F, 0x00000549, 0x00002A2D, 0xFFFFECC9, 0x000004ED, 0x00002A2D, 0xFFFFECC9, 0x000004ED }, { 0x0213EA94DE1618A4, 0x00001DE3, 0xFFFFF80D, 0x00000319, 0x000016FA, 0xFFFFFB42, 0x000002BC, 0x000016FA, 0xFFFFFB42, 0x000002BC }, { 0x0213EA94DE1E2844, 0x00001F1B, 0xFFFFF6DE, 0x00000346, 0x00001502, 0xFFFFFC23, 0x00000298, 0x00001502, 0xFFFFFC23, 0x00000298 }, { 0x0213EA94DE061864, 0x00003203, 0xFFFFEA87, 0x000004FE, 0x0000194E, 0xFFFFF8E3, 0x000002EC, 0x0000194E, 0xFFFFF8E3, 0x000002EC }, { 0x0213F0FD42D02144, 0x0000337A, 0xFFFFE8DD, 0x00000551, 0x00001E3C, 0xFFFFF534, 0x00000385, 0x00001E3C, 0xFFFFF534, 0x00000385 }, { 0x0213F0FD42CA4864, 0x000036F6, 0xFFFFE62A, 0x000005C5, 0x000023C0, 0xFFFFF117, 0x00000435, 0x000023C0, 0xFFFFF117, 0x00000435 }, { 0x0213F0FD42CC2144, 0x00003125, 0xFFFFEA4E, 0x0000051A, 0x00001E6C, 0xFFFFF503, 0x0000038E, 0x00001E6C, 0xFFFFF503, 0x0000038E }, { 0x0213EA94DE1C08A4, 0x00001CD4, 0xFFFFF82D, 0x0000030E, 0x0000156D, 0xFFFFFB64, 0x000002B8, 0x0000156D, 0xFFFFFB64, 0x000002B8 }, { 0x0213EA94DE0240A4, 0x00002F14, 0xFFFFEC46, 0x000004B8, 0x000017F1, 0xFFFFF977, 0x000002D2, 0x000017F1, 0xFFFFF977, 0x000002D2 }, { 0x0213EA94DE0640A4, 0x000031F1, 0xFFFFEAD4, 0x000004ED, 0x0000184C, 0xFFFFF983, 0x000002D4, 0x0000184C, 0xFFFFF983, 0x000002D4 }, { 0x0213F0FD42D04984, 0x00002EA9, 0xFFFFEBD7, 0x000004D5, 0x0000288D, 0xFFFFEDDB, 0x000004C0, 0x0000288D, 0xFFFFEDDB, 0x000004C0 }, { 0x0213F0FD42CA3984, 0x0000335F, 0xFFFFE82C, 0x00000579, 0x00001DBF, 0xFFFFF512, 0x0000038C, 0x00001DBF, 0xFFFFF512, 0x0000038C }, { 0x0213EA94DE201184, 0x0000224F, 0xFFFFF4B5, 0x00000391, 0x0000138C, 0xFFFFFCC3, 0x0000027A, 0x0000138C, 0xFFFFFCC3, 0x0000027A }, { 0x0213EA94DE1240A4, 0x0000320D, 0xFFFFEACD, 0x000004F5, 0x00001976, 0xFFFFF913, 0x000002E2, 0x00001976, 0xFFFFF913, 0x000002E2 }, { 0x0213EA94DE202104, 0x00001BEB, 0xFFFFF99C, 0x000002E4, 0x000016A4, 0xFFFFFB77, 0x000002C3, 0x000016A4, 0xFFFFFB77, 0x000002C3 }, { 0x0213EA94DE063044, 0x0000396E, 0xFFFFE616, 0x000005A9, 0x000018F4, 0xFFFFF91A, 0x000002E3, 0x000018F4, 0xFFFFF91A, 0x000002E3 }, { 0x0213EA94DE022864, 0x00003251, 0xFFFFEA8E, 0x000004FA, 0x000018EF, 0xFFFFF910, 0x000002E4, 0x000018EF, 0xFFFFF910, 0x000002E4 }, { 0x0213EA94DE1C1924, 0x00001DAF, 0xFFFFF857, 0x0000030D, 0x00001915, 0xFFFFF9D8, 0x000002F7, 0x00001915, 0xFFFFF9D8, 0x000002F7 }, { 0x0213EA94DE2041A4, 0x000025B6, 0xFFFFF26B, 0x000003E5, 0x00001531, 0xFFFFFB68, 0x000002AF, 0x00001531, 0xFFFFFB68, 0x000002AF }, { 0x0213EA94DE061884, 0x00002B2E, 0xFFFFEF2E, 0x00000440, 0x00001968, 0xFFFFF91A, 0x000002DF, 0x00001968, 0xFFFFF91A, 0x000002DF }, { 0x0213EA94DE1C2064, 0x00002305, 0xFFFFF528, 0x00000377, 0x000018A4, 0xFFFFF9EB, 0x000002F0, 0x000018A4, 0xFFFFF9EB, 0x000002F0 }, { 0x0213F0FD42CA40C4, 0x000032A1, 0xFFFFE992, 0x0000052E, 0x00001A55, 0xFFFFF826, 0x000002FE, 0x00001A55, 0xFFFFF826, 0x000002FE }, { 0x0213EA94DE042184, 0x00002CCD, 0xFFFFEE35, 0x00000462, 0x00001B09, 0xFFFFF7E6, 0x0000030F, 0x00001B09, 0xFFFFF7E6, 0x0000030F }, { 0x0213EA94DE323084, 0x00002602, 0xFFFFF2CF, 0x000003C5, 0x000016EE, 0xFFFFFAD4, 0x000002B4, 0x000016EE, 0xFFFFFAD4, 0x000002B4 }, { 0x0213F0FD42D01964, 0x00003370, 0xFFFFE891, 0x00000560, 0x000017F0, 0xFFFFF930, 0x000002DF, 0x000017F0, 0xFFFFF930, 0x000002DF }, { 0x0213F0FD42CA1884, 0x00002EDC, 0xFFFFEB6D, 0x000004EC, 0x000016E6, 0xFFFFF9ED, 0x000002BC, 0x000016E6, 0xFFFFF9ED, 0x000002BC }, { 0x0213EA94DE1228C4, 0x00002A05, 0xFFFFF13D, 0x000003F0, 0x00002065, 0xFFFFF57B, 0x00000378, 0x00002065, 0xFFFFF57B, 0x00000378 }, { 0x0213F0FD42CE2044, 0x00002F8A, 0xFFFFEB6E, 0x000004E4, 0x00001E3E, 0xFFFFF50E, 0x0000038D, 0x00001E3E, 0xFFFFF50E, 0x0000038D }, { 0x0213F0FD42CA3044, 0x00002BB5, 0xFFFFED6A, 0x000004A1, 0x000017BF, 0xFFFFF937, 0x000002E5, 0x000017BF, 0xFFFFF937, 0x000002E5 }, { 0x0213EA94DE201964, 0x0000202C, 0xFFFFF6CE, 0x0000033F, 0x000015EE, 0xFFFFFB83, 0x000002B9, 0x000015EE, 0xFFFFFB83, 0x000002B9 }, { 0x0213EA94DE022884, 0x00002C0C, 0xFFFFEF10, 0x0000043F, 0x00001A73, 0xFFFFF83E, 0x0000030C, 0x00001A73, 0xFFFFF83E, 0x0000030C }, { 0x0213EA94DE324104, 0x0000234F, 0xFFFFF460, 0x00000385, 0x000018C3, 0xFFFFF9A5, 0x000002DD, 0x000018C3, 0xFFFFF9A5, 0x000002DD }, { 0x0213F0FD42CE1904, 0x00003679, 0xFFFFE704, 0x00000595, 0x00002177, 0xFFFFF31A, 0x000003D7, 0x00002177, 0xFFFFF31A, 0x000003D7 }, { 0x0213F0FD42CA2924, 0x00003008, 0xFFFFEBB8, 0x000004D5, 0x000024FF, 0xFFFFF112, 0x00000430, 0x000024FF, 0xFFFFF112, 0x00000430 }, { 0x0213F0FD42C641A4, 0x00003848, 0xFFFFE6A3, 0x00000594, 0x00002958, 0xFFFFEE37, 0x000004A0, 0x00002958, 0xFFFFEE37, 0x000004A0 }, { 0x0213F0FD42CC1924, 0x00002FDF, 0xFFFFEB08, 0x000004FD, 0x00001D77, 0xFFFFF58B, 0x0000037A, 0x00001D77, 0xFFFFF58B, 0x0000037A }, { 0x0213EA94DE063064, 0x00002EC8, 0xFFFFED41, 0x00000481, 0x00001949, 0xFFFFF91C, 0x000002DF, 0x00001949, 0xFFFFF91C, 0x000002DF }, { 0x0213F0FD42D041A4, 0x000037C1, 0xFFFFE5BA, 0x000005D7, 0x0000252C, 0xFFFFF023, 0x00000460, 0x0000252C, 0xFFFFF023, 0x00000460 }, { 0x0213F0FD42CE2944, 0x00003716, 0xFFFFE70C, 0x0000058A, 0x000028CC, 0xFFFFEE57, 0x0000049D, 0x000028CC, 0xFFFFEE57, 0x0000049D }, { 0x0213F0FD42CA40E4, 0x000033D1, 0xFFFFE8E8, 0x00000547, 0x00001AB1, 0xFFFFF7E5, 0x00000309, 0x00001AB1, 0xFFFFF7E5, 0x00000309 }, { 0x0213F0FD42CC2944, 0x00002D72, 0xFFFFED65, 0x0000048E, 0x00001E0D, 0xFFFFF5A7, 0x00000370, 0x00001E0D, 0xFFFFF5A7, 0x00000370 }, { 0x0213EA94DE1C39A4, 0x00002292, 0xFFFFF49F, 0x00000393, 0x000017F4, 0xFFFFF9CD, 0x000002F5, 0x000017F4, 0xFFFFF9CD, 0x000002F5 }, { 0x0213EA94DE243044, 0x000026EE, 0xFFFFF18C, 0x000003F7, 0x000018A7, 0xFFFFF95A, 0x000002E5, 0x000018A7, 0xFFFFF95A, 0x000002E5 }, { 0x0213EA94DE042164, 0x00002F62, 0xFFFFEC9B, 0x000004A4, 0x0000194E, 0xFFFFF932, 0x000002D9, 0x0000194E, 0xFFFFF932, 0x000002D9 }, { 0x0213EA94DE1E3984, 0x00001CE8, 0xFFFFF7FA, 0x0000031C, 0x000014CE, 0xFFFFFBD4, 0x000002AB, 0x000014CE, 0xFFFFFBD4, 0x000002AB }, { 0x0213EA94DE1210E4, 0x00002E5A, 0xFFFFEDAB, 0x0000047C, 0x00001A82, 0xFFFFF8F7, 0x000002DE, 0x00001A82, 0xFFFFF8F7, 0x000002DE }, { 0x0213F0FD42CC30E4, 0x00003057, 0xFFFFEC34, 0x000004B9, 0x00002296, 0xFFFFF342, 0x000003D0, 0x00002296, 0xFFFFF342, 0x000003D0 }, { 0x0213EA94DE0418A4, 0x00002B0F, 0xFFFFEF58, 0x00000434, 0x00001BFD, 0xFFFFF721, 0x00000330, 0x00001BFD, 0xFFFFF721, 0x00000330 }, { 0x0213EA94DE2010A4, 0x00001F01, 0xFFFFF751, 0x0000032F, 0x00001502, 0xFFFFFC3E, 0x00000296, 0x00001502, 0xFFFFFC3E, 0x00000296 }, { 0x0213F0FD42CA3064, 0x00002FF4, 0xFFFFEAE2, 0x00000503, 0x00001B36, 0xFFFFF736, 0x00000330, 0x00001B36, 0xFFFFF736, 0x00000330 }, { 0x0213F0FD42CE2064, 0x00003762, 0xFFFFE5AB, 0x000005DE, 0x000018CB, 0xFFFFF896, 0x000002F4, 0x000018CB, 0xFFFFF896, 0x000002F4 }, { 0x0213F0FD42CC2064, 0x00002890, 0xFFFFEF92, 0x00000445, 0x0000191D, 0xFFFFF86F, 0x00000302, 0x0000191D, 0xFFFFF86F, 0x00000302 }, { 0x0213EA94DE043064, 0x00002F76, 0xFFFFEC0E, 0x000004BF, 0x00001F7D, 0xFFFFF41A, 0x000003C0, 0x00001F7D, 0xFFFFF41A, 0x000003C0 }, { 0x0213EA94DE1E08A4, 0x00001D55, 0xFFFFF7F8, 0x0000031E, 0x000015DF, 0xFFFFFB79, 0x000002B7, 0x000015DF, 0xFFFFFB79, 0x000002B7 }, { 0x0213EA94DE204924, 0x00001FE9, 0xFFFFF64A, 0x00000353, 0x000019E8, 0xFFFFF882, 0x0000032A, 0x000019E8, 0xFFFFF882, 0x0000032A }, { 0x0213EA94DE063964, 0x000030B5, 0xFFFFEBB8, 0x000004C4, 0x00001857, 0xFFFFF968, 0x000002D8, 0x00001857, 0xFFFFF968, 0x000002D8 }, { 0x0213F0FD42CA28C4, 0x00003398, 0xFFFFE9A3, 0x00000524, 0x00001FF9, 0xFFFFF458, 0x000003AD, 0x00001FF9, 0xFFFFF458, 0x000003AD }, { 0x0213F0FD42CE2964, 0x00003897, 0xFFFFE5BD, 0x000005C8, 0x00002519, 0xFFFFF0BA, 0x00000438, 0x00002519, 0xFFFFF0BA, 0x00000438 }, { 0x0213F0FD42D04064, 0x00003234, 0xFFFFE9B1, 0x00000530, 0x000022CC, 0xFFFFF20E, 0x00000409, 0x000022CC, 0xFFFFF20E, 0x00000409 }, { 0x0213EA94DE205104, 0x00001FD2, 0xFFFFF641, 0x00000354, 0x000017C9, 0xFFFFF9C0, 0x000002FB, 0x000017C9, 0xFFFFF9C0, 0x000002FB }, { 0x0213F0FD42CE48E4, 0x00003234, 0xFFFFE946, 0x0000053D, 0x00002267, 0xFFFFF1F5, 0x0000040D, 0x00002267, 0xFFFFF1F5, 0x0000040D }, { 0x0213EA94DE2029A4, 0x00002330, 0xFFFFF474, 0x00000399, 0x00001490, 0xFFFFFC67, 0x00000288, 0x00001490, 0xFFFFFC67, 0x00000288 }, { 0x0213F0FD42D03924, 0x000032A3, 0xFFFFE9EB, 0x0000051B, 0x0000234D, 0xFFFFF23C, 0x000003F7, 0x0000234D, 0xFFFFF23C, 0x000003F7 }, { 0x0213EA94DE200904, 0x0000217E, 0xFFFFF53A, 0x00000384, 0x00001511, 0xFFFFFBF5, 0x0000029E, 0x00001511, 0xFFFFFBF5, 0x0000029E }, { 0x0213F0FD42CE50E4, 0x0000384F, 0xFFFFE562, 0x000005E2, 0x0000295A, 0xFFFFED53, 0x000004D3, 0x0000295A, 0xFFFFED53, 0x000004D3 }, { 0x0213F0FD42D05124, 0x00003315, 0xFFFFE8D1, 0x00000552, 0x000025D1, 0xFFFFEFAF, 0x00000471, 0x000025D1, 0xFFFFEFAF, 0x00000471 }, { 0x0213F0FD42C64924, 0x00004183, 0xFFFFDF61, 0x000006DA, 0x0000193C, 0xFFFFF88F, 0x000002EC, 0x0000193C, 0xFFFFF88F, 0x000002EC }, { 0x0213EA94DE242164, 0x00002DFC, 0xFFFFEDF2, 0x0000047A, 0x00001755, 0xFFFFFAC2, 0x000002AC, 0x00001755, 0xFFFFFAC2, 0x000002AC }, { 0x0213F0FD42CA31A4, 0x000033FE, 0xFFFFE774, 0x0000059F, 0x00001E70, 0xFFFFF492, 0x000003A0, 0x00001E70, 0xFFFFF492, 0x000003A0 }, { 0x0213F0FD42C629A4, 0x000040D7, 0xFFFFDFB8, 0x000006CE, 0x00001AC8, 0xFFFFF773, 0x0000031D, 0x00001AC8, 0xFFFFF773, 0x0000031D }, { 0x0213EA94DE1E1164, 0x00001D02, 0xFFFFF803, 0x00000322, 0x000015FE, 0xFFFFFB71, 0x000002BB, 0x000015FE, 0xFFFFFB71, 0x000002BB }, { 0x0213F0FD42D02884, 0x00002EB0, 0xFFFFEC31, 0x000004C4, 0x00001B3C, 0xFFFFF73B, 0x00000330, 0x00001B3C, 0xFFFFF73B, 0x00000330 }, { 0x0213F0FD42CA4984, 0x00002D9F, 0xFFFFECBF, 0x000004A8, 0x000022B0, 0xFFFFF23C, 0x000003F9, 0x000022B0, 0xFFFFF23C, 0x000003F9 }, { 0x0213F0FD42CC18E4, 0x00002C6A, 0xFFFFEDAC, 0x00000488, 0x00002419, 0xFFFFF159, 0x00000427, 0x00002419, 0xFFFFF159, 0x00000427 }, { 0x0213EA94DE1210A4, 0x00002991, 0xFFFFF06C, 0x0000040E, 0x00001AA9, 0xFFFFF8D0, 0x000002E1, 0x00001AA9, 0xFFFFF8D0, 0x000002E1 }, { 0x0213EA94DE123904, 0x00002F8E, 0xFFFFED1B, 0x00000493, 0x00001DE4, 0xFFFFF69C, 0x00000347, 0x00001DE4, 0xFFFFF69C, 0x00000347 }, { 0x0213EA94DE204184, 0x00002136, 0xFFFFF540, 0x0000037C, 0x000014FF, 0xFFFFFB83, 0x000002B2, 0x000014FF, 0xFFFFFB83, 0x000002B2 }, { 0x0213EA94DE0618E4, 0x0000354C, 0xFFFFE97D, 0x0000051A, 0x00001906, 0xFFFFF965, 0x000002DD, 0x00001906, 0xFFFFF965, 0x000002DD }, { 0x0213F0FD42C620C4, 0x0000348B, 0xFFFFE94D, 0x0000051F, 0x0000285B, 0xFFFFEF1A, 0x00000473, 0x0000285B, 0xFFFFEF1A, 0x00000473 }, { 0x0213EA94DE3218A4, 0x000026E6, 0xFFFFF24E, 0x000003D6, 0x0000141F, 0xFFFFFCCE, 0x00000260, 0x0000141F, 0xFFFFFCCE, 0x00000260 }, { 0x0213F0FD42C64164, 0x00003CED, 0xFFFFE2A5, 0x0000064E, 0x00002060, 0xFFFFF3E0, 0x000003B0, 0x00002060, 0xFFFFF3E0, 0x000003B0 }, { 0x0213EA94DE021084, 0x000029D4, 0xFFFFEFF7, 0x00000426, 0x00001976, 0xFFFFF8E1, 0x000002EE, 0x00001976, 0xFFFFF8E1, 0x000002EE }, { 0x0213F0FD42CA40A4, 0x00003767, 0xFFFFE601, 0x000005CC, 0x00001D22, 0xFFFFF5F4, 0x00000361, 0x00001D22, 0xFFFFF5F4, 0x00000361 }, { 0x0213F0FD42C650C4, 0x00003CE8, 0xFFFFE2E8, 0x00000637, 0x0000232C, 0xFFFFF1E7, 0x00000405, 0x0000232C, 0xFFFFF1E7, 0x00000405 }, { 0x0213EA94DE201064, 0x000023A8, 0xFFFFF4CD, 0x00000386, 0x00001944, 0xFFFFF983, 0x00000300, 0x00001944, 0xFFFFF983, 0x00000300 }, { 0x0213F0FD42CC30A4, 0x00003451, 0xFFFFE8B9, 0x00000551, 0x00001AD7, 0xFFFFF7BF, 0x00000318, 0x00001AD7, 0xFFFFF7BF, 0x00000318 }, { 0x0213F0FD42CE2984, 0x0000381B, 0xFFFFE5A0, 0x000005D0, 0x00001E0F, 0xFFFFF521, 0x00000382, 0x00001E0F, 0xFFFFF521, 0x00000382 }, { 0x0213EA94DE2038C4, 0x000023A4, 0xFFFFF4A6, 0x00000394, 0x0000171F, 0xFFFFFABB, 0x000002D9, 0x0000171F, 0xFFFFFABB, 0x000002D9 }, { 0x0213F0FD42C620A4, 0x00003C2B, 0xFFFFE447, 0x000005F0, 0x0000207F, 0xFFFFF44E, 0x0000039A, 0x0000207F, 0xFFFFF44E, 0x0000039A }, { 0x0213F0FD42CC3984, 0x00002F07, 0xFFFFEB70, 0x000004E9, 0x00001765, 0xFFFFF9A5, 0x000002C6, 0x00001765, 0xFFFFF9A5, 0x000002C6 }, { 0x0213F0FD42C62984, 0x00003A01, 0xFFFFE4E0, 0x000005E7, 0x0000227A, 0xFFFFF292, 0x000003E5, 0x0000227A, 0xFFFFF292, 0x000003E5 }, { 0x0213F0FD42CE20A4, 0x0000376E, 0xFFFFE686, 0x000005A6, 0x00001FCF, 0xFFFFF43B, 0x000003A8, 0x00001FCF, 0xFFFFF43B, 0x000003A8 }, { 0x0213F0FFEF5A4984, 0x0000485F, 0xFFFFDCC1, 0x00000713, 0x00002CF8, 0xFFFFEC45, 0x000004DA, 0x00002CF8, 0xFFFFEC45, 0x000004DA }, { 0x0213F0FFEF5C3184, 0x0000331C, 0xFFFFE8FF, 0x00000541, 0x00002366, 0xFFFFF19D, 0x00000411, 0x00002366, 0xFFFFF19D, 0x00000411 }, { 0x0213F0FFEF643864, 0x00003CF3, 0xFFFFE15A, 0x00000694, 0x00002FB3, 0xFFFFE827, 0x000005B9, 0x00002FB3, 0xFFFFE827, 0x000005B9 }, { 0x0213EA94DE321104, 0x000023F3, 0xFFFFF3EA, 0x0000039A, 0x00001345, 0xFFFFFD6B, 0x00000241, 0x00001345, 0xFFFFFD6B, 0x00000241 }, { 0x0213F0FFEF5C28A4, 0x000038C0, 0xFFFFE58A, 0x000005CC, 0x000023CA, 0xFFFFF1AA, 0x00000408, 0x000023CA, 0xFFFFF1AA, 0x00000408 }, { 0x0213F0FFEF662944, 0x00004976, 0xFFFFDD6A, 0x000006D7, 0x000033C6, 0xFFFFE8EB, 0x0000054D, 0x000033C6, 0xFFFFE8EB, 0x0000054D }, { 0x0213F0FFEF644904, 0x00004049, 0xFFFFDF6D, 0x000006D8, 0x00003129, 0xFFFFE716, 0x000005E9, 0x00003129, 0xFFFFE716, 0x000005E9 }, { 0x0213F0FFEF661164, 0x000046C2, 0xFFFFDCEB, 0x0000071C, 0x00002E6D, 0xFFFFEA8F, 0x0000052E, 0x00002E6D, 0xFFFFEA8F, 0x0000052E }, { 0x0213F0FFEF6238A4, 0x00004080, 0xFFFFE1E1, 0x0000063A, 0x0000396D, 0xFFFFE40A, 0x0000062C, 0x0000396D, 0xFFFFE40A, 0x0000062C }, { 0x0213F0FFEF5E2124, 0x00003DE0, 0xFFFFE358, 0x0000060C, 0x00002AA2, 0xFFFFEDBF, 0x000004A0, 0x00002AA2, 0xFFFFEDBF, 0x000004A0 }, { 0x0213F0FFEF5E3144, 0x00003FC0, 0xFFFFE2A1, 0x0000061A, 0x000027D8, 0xFFFFEFEC, 0x0000043A, 0x000027D8, 0xFFFFEFEC, 0x0000043A }, { 0x0213F0FFEF661924, 0x00003FBF, 0xFFFFE2F5, 0x00000603, 0x000032D7, 0xFFFFE900, 0x00000552, 0x000032D7, 0xFFFFE900, 0x00000552 }, { 0x0213F0FFEF5C10E4, 0x000035EE, 0xFFFFE6CA, 0x000005A2, 0x0000247C, 0xFFFFF088, 0x00000446, 0x0000247C, 0xFFFFF088, 0x00000446 }, { 0x0213F0FFEF643884, 0x000039C8, 0xFFFFE3AE, 0x0000062A, 0x000028AF, 0xFFFFED24, 0x000004DF, 0x000028AF, 0xFFFFED24, 0x000004DF }, { 0x0213F0FFEF5C2884, 0x00003BDE, 0xFFFFE33B, 0x00000632, 0x00001B6C, 0xFFFFF720, 0x00000326, 0x00001B6C, 0xFFFFF720, 0x00000326 }, { 0x0213F0FFEF7210A4, 0x00003818, 0xFFFFE57D, 0x000005D4, 0x000020EF, 0xFFFFF327, 0x000003CE, 0x000020EF, 0xFFFFF327, 0x000003CE }, { 0x0213F0FFEF5E19A4, 0x000038DA, 0xFFFFE561, 0x000005D3, 0x0000297D, 0xFFFFED6D, 0x000004C5, 0x0000297D, 0xFFFFED6D, 0x000004C5 }, { 0x0213F0FFEF684884, 0x000027AC, 0xFFFFF0CE, 0x00000417, 0x00001F5F, 0xFFFFF484, 0x000003B2, 0x00001F5F, 0xFFFFF484, 0x000003B2 }, { 0x0213F0FFEF6648A4, 0x00003F02, 0xFFFFE222, 0x00000643, 0x000026D4, 0xFFFFF000, 0x00000443, 0x000026D4, 0xFFFFF000, 0x00000443 }, { 0x0213F0FFEF624164, 0x00004303, 0xFFFFDFE3, 0x00000690, 0x0000312C, 0xFFFFE912, 0x00000561, 0x0000312C, 0xFFFFE912, 0x00000561 }, { 0x0213F0FFEF600904, 0x000039E5, 0xFFFFE31F, 0x00000657, 0x00001D23, 0xFFFFF51F, 0x00000386, 0x00001D23, 0xFFFFF51F, 0x00000386 }, { 0x0213F0FFEF661144, 0x000041FA, 0xFFFFE01B, 0x00000697, 0x00002767, 0xFFFFEF90, 0x00000455, 0x00002767, 0xFFFFEF90, 0x00000455 }, { 0x0213F0FFEF6830A4, 0x00002888, 0xFFFFF11C, 0x00000403, 0x00001864, 0xFFFFF9D8, 0x000002D3, 0x00001864, 0xFFFFF9D8, 0x000002D3 }, { 0x0213EA94DE201864, 0x0000215C, 0xFFFFF5B6, 0x0000036D, 0x000015C5, 0xFFFFFB8A, 0x000002B5, 0x000015C5, 0xFFFFFB8A, 0x000002B5 }, { 0x0213F0FFEF683984, 0x00002FAF, 0xFFFFEC27, 0x000004CA, 0x00002184, 0xFFFFF39C, 0x000003CD, 0x00002184, 0xFFFFF39C, 0x000003CD }, { 0x0213F0FFEF5E10C4, 0x00004ACE, 0xFFFFD9A3, 0x000007BC, 0x00001A5D, 0xFFFFF7F6, 0x000002FC, 0x00001A5D, 0xFFFFF7F6, 0x000002FC }, { 0x0213F0FFEF5A3044, 0x00003763, 0xFFFFE797, 0x0000055F, 0x000029B5, 0xFFFFEEA1, 0x00000474, 0x000029B5, 0xFFFFEEA1, 0x00000474 }, { 0x0213F0FFEF5E3164, 0x00003832, 0xFFFFE6F9, 0x00000575, 0x00002C99, 0xFFFFEC42, 0x000004E3, 0x00002C99, 0xFFFFEC42, 0x000004E3 }, { 0x0213F0FFEF604164, 0x000041C9, 0xFFFFDE33, 0x0000071E, 0x0000199D, 0xFFFFF808, 0x000002F9, 0x0000199D, 0xFFFFF808, 0x000002F9 }, { 0x0213F0FFEF641164, 0x0000474A, 0xFFFFD96E, 0x00000802, 0x00002A30, 0xFFFFEB57, 0x0000053F, 0x00002A30, 0xFFFFEB57, 0x0000053F }, { 0x0213F0FFEF5C31C4, 0x0000312F, 0xFFFFEA6A, 0x00000508, 0x000029D3, 0xFFFFED38, 0x000004D3, 0x000029D3, 0xFFFFED38, 0x000004D3 }, { 0x0213F0FFEF7210C4, 0x00003BD6, 0xFFFFE2E7, 0x00000644, 0x00002093, 0xFFFFF37B, 0x000003BD, 0x00002093, 0xFFFFF37B, 0x000003BD }, { 0x0213F0FFEF6840E4, 0x00002F94, 0xFFFFECD4, 0x000004A3, 0x00002196, 0xFFFFF40B, 0x000003B5, 0x00002196, 0xFFFFF40B, 0x000003B5 }, { 0x0213F0FFEF5E1944, 0x0000369B, 0xFFFFE762, 0x00000571, 0x00002726, 0xFFFFEF99, 0x00000459, 0x00002726, 0xFFFFEF99, 0x00000459 }, { 0x0213F0FFEF642064, 0x00003F57, 0xFFFFDF47, 0x000006F4, 0x00002E5F, 0xFFFFE8AE, 0x000005AB, 0x00002E5F, 0xFFFFE8AE, 0x000005AB }, { 0x0213EA94DE0A40C4, 0x00004313, 0xFFFFDD81, 0x0000072D, 0x00002468, 0xFFFFF068, 0x00000440, 0x00002468, 0xFFFFF068, 0x00000440 }, { 0x0213F0FFEF683044, 0x00002A35, 0xFFFFEFA8, 0x00000441, 0x00001F3F, 0xFFFFF4F3, 0x000003A0, 0x00001F3F, 0xFFFFF4F3, 0x000003A0 }, { 0x0213F0FFEF6630A4, 0x00003E33, 0xFFFFE4B0, 0x000005AF, 0x00002802, 0xFFFFF092, 0x00000412, 0x00002802, 0xFFFFF092, 0x00000412 }, { 0x0213EA94DE323904, 0x00002815, 0xFFFFF20E, 0x000003DD, 0x00001C33, 0xFFFFF7D5, 0x0000032A, 0x00001C33, 0xFFFFF7D5, 0x0000032A }, { 0x0213F0FFEF5A2184, 0x00003CC2, 0xFFFFE43E, 0x000005DE, 0x00002C16, 0xFFFFECED, 0x000004BA, 0x00002C16, 0xFFFFECED, 0x000004BA }, { 0x0213F0FFEF5C4084, 0x00003CFA, 0xFFFFE1EE, 0x00000673, 0x00001F7D, 0xFFFFF402, 0x000003AE, 0x00001F7D, 0xFFFFF402, 0x000003AE }, { 0x0213F0FFEF622104, 0x0000486E, 0xFFFFDD43, 0x000006EE, 0x000036F0, 0xFFFFE609, 0x000005D5, 0x000036F0, 0xFFFFE609, 0x000005D5 }, { 0x0213F0FFEF5C4964, 0x000039FE, 0xFFFFE41F, 0x00000613, 0x0000266C, 0xFFFFEF35, 0x0000047D, 0x0000266C, 0xFFFFEF35, 0x0000047D }, { 0x0213EA94DE123124, 0x00002EA4, 0xFFFFEE3B, 0x00000462, 0x00002126, 0xFFFFF4E2, 0x0000038F, 0x00002126, 0xFFFFF4E2, 0x0000038F }, { 0x0213F0FFEF683944, 0x00002D2E, 0xFFFFEE7B, 0x00000462, 0x0000229D, 0xFFFFF363, 0x000003D4, 0x0000229D, 0xFFFFF363, 0x000003D4 }, { 0x0213F0FFEF5E2844, 0x0000375C, 0xFFFFE695, 0x0000059D, 0x00002319, 0xFFFFF237, 0x000003EE, 0x00002319, 0xFFFFF237, 0x000003EE }, { 0x0213F0FFEF7250C4, 0x00004522, 0xFFFFDC71, 0x0000075E, 0x0000247E, 0xFFFFF0A0, 0x0000043C, 0x0000247E, 0xFFFFF0A0, 0x0000043C }, { 0x0213EA94DE1248E4, 0x00002E58, 0xFFFFECB9, 0x000004A9, 0x0000199A, 0xFFFFF8CF, 0x000002E9, 0x0000199A, 0xFFFFF8CF, 0x000002E9 }, { 0x0213F0FFEF6438E4, 0x00003791, 0xFFFFE5FE, 0x000005B6, 0x000029F5, 0xFFFFED0D, 0x000004CD, 0x000029F5, 0xFFFFED0D, 0x000004CD }, { 0x0213EA94DE244144, 0x00002E9E, 0xFFFFEC8D, 0x000004C1, 0x000019D0, 0xFFFFF869, 0x0000030F, 0x000019D0, 0xFFFFF869, 0x0000030F }, { 0x0213EA94DE203964, 0x0000237C, 0xFFFFF435, 0x000003A6, 0x000014EB, 0xFFFFFBC4, 0x000002AF, 0x000014EB, 0xFFFFFBC4, 0x000002AF }, { 0x0213F0FFEF662924, 0x00003FE5, 0xFFFFE4A2, 0x000005A0, 0x00003416, 0xFFFFE995, 0x00000523, 0x00003416, 0xFFFFE995, 0x00000523 }, { 0x0213F0FFEF5C0924, 0x00002B27, 0xFFFFED51, 0x000004A5, 0x000025D1, 0xFFFFEF18, 0x00000492, 0x000025D1, 0xFFFFEF18, 0x00000492 }, { 0x0213F0FFEF684904, 0x00002D77, 0xFFFFED79, 0x00000494, 0x00002196, 0xFFFFF352, 0x000003DE, 0x00002196, 0xFFFFF352, 0x000003DE }, { 0x0213F0FFEF5C20C4, 0x00003750, 0xFFFFE6AC, 0x00000596, 0x00002524, 0xFFFFF0B5, 0x00000431, 0x00002524, 0xFFFFF0B5, 0x00000431 }, { 0x0213EA94DE122944, 0x00002896, 0xFFFFF1BB, 0x000003D9, 0x00001CE0, 0xFFFFF753, 0x0000032F, 0x00001CE0, 0xFFFFF753, 0x0000032F }, { 0x0213F0FFEF641984, 0x00003CA7, 0xFFFFE0F7, 0x000006B1, 0x00002CB8, 0xFFFFE9AB, 0x00000587, 0x00002CB8, 0xFFFFE9AB, 0x00000587 }, { 0x0213EA94DE322864, 0x00002513, 0xFFFFF323, 0x000003BC, 0x00001965, 0xFFFFF93C, 0x000002F0, 0x00001965, 0xFFFFF93C, 0x000002F0 }, { 0x0213F0FFEF662164, 0x00003914, 0xFFFFE683, 0x00000586, 0x00003120, 0xFFFFE9A6, 0x00000543, 0x00003120, 0xFFFFE9A6, 0x00000543 }, { 0x0213F0FFEF643904, 0x000040D0, 0xFFFFE007, 0x000006AC, 0x00002B9E, 0xFFFFEBF5, 0x000004FB, 0x00002B9E, 0xFFFFEBF5, 0x000004FB }, { 0x0213F0FFEF5A4884, 0x00004412, 0xFFFFDF5F, 0x000006A9, 0x00002A9E, 0xFFFFEDCE, 0x00000498, 0x00002A9E, 0xFFFFEDCE, 0x00000498 }, { 0x0213F0FFEF624884, 0x000042A6, 0xFFFFDFEF, 0x00000696, 0x00002E65, 0xFFFFEAAE, 0x00000529, 0x00002E65, 0xFFFFEAAE, 0x00000529 }, { 0x0213EA94DE322124, 0x000022E8, 0xFFFFF565, 0x0000035F, 0x00001890, 0xFFFFFA61, 0x000002C6, 0x00001890, 0xFFFFFA61, 0x000002C6 }, { 0x0213F0FFEF6239A4, 0x00004637, 0xFFFFDDD8, 0x000006E9, 0x0000349D, 0xFFFFE6C8, 0x000005C7, 0x0000349D, 0xFFFFE6C8, 0x000005C7 }, { 0x0213EA94DE263904, 0x00004686, 0xFFFFDC58, 0x0000073D, 0x00003972, 0xFFFFE27B, 0x0000068E, 0x00003972, 0xFFFFE27B, 0x0000068E }, { 0x0213F0FFEF6808E4, 0x00002B35, 0xFFFFEE9C, 0x0000046C, 0x00001F5B, 0xFFFFF4A3, 0x000003A9, 0x00001F5B, 0xFFFFF4A3, 0x000003A9 }, { 0x0213F0FFEF724144, 0x00003AC9, 0xFFFFE3B2, 0x0000061B, 0x000023A1, 0xFFFFF170, 0x0000040F, 0x000023A1, 0xFFFFF170, 0x0000040F }, { 0x0213F0FFEF5E1884, 0x00003C50, 0xFFFFE37E, 0x00000617, 0x0000218F, 0xFFFFF339, 0x000003C4, 0x0000218F, 0xFFFFF339, 0x000003C4 }, { 0x0213F0FFEF663044, 0x00003793, 0xFFFFE761, 0x0000055D, 0x000029C7, 0xFFFFEE03, 0x00000496, 0x000029C7, 0xFFFFEE03, 0x00000496 }, { 0x0213F0FFEF6438A4, 0x000040B5, 0xFFFFDF78, 0x000006DA, 0x00002DED, 0xFFFFEA20, 0x00000551, 0x00002DED, 0xFFFFEA20, 0x00000551 }, { 0x0213F0FFEF601144, 0x000039D6, 0xFFFFE37D, 0x0000063C, 0x00001AED, 0xFFFFF6E2, 0x00000331, 0x00001AED, 0xFFFFF6E2, 0x00000331 }, { 0x0213F0FFEF662144, 0x0000431F, 0xFFFFE09B, 0x0000066A, 0x00002BDF, 0xFFFFED93, 0x00000496, 0x00002BDF, 0xFFFFED93, 0x00000496 }, { 0x0213F0FFEF623864, 0x00004887, 0xFFFFDC65, 0x00000721, 0x00003669, 0xFFFFE5C4, 0x000005E9, 0x00003669, 0xFFFFE5C4, 0x000005E9 }, { 0x0213F0FFEF640924, 0x00004120, 0xFFFFDDAE, 0x00000748, 0x0000303B, 0xFFFFE70D, 0x000005FC, 0x0000303B, 0xFFFFE70D, 0x000005FC }, { 0x0213F0FFEF5E28A4, 0x0000415D, 0xFFFFE0BE, 0x0000067B, 0x00002FA7, 0xFFFFEA28, 0x00000538, 0x00002FA7, 0xFFFFEA28, 0x00000538 }, { 0x0213F0FFEF681904, 0x00002B12, 0xFFFFEFF9, 0x00000428, 0x00001DDA, 0xFFFFF693, 0x00000356, 0x00001DDA, 0xFFFFF693, 0x00000356 }, { 0x0213F0FFEF5E3184, 0x00003ED3, 0xFFFFE28D, 0x0000062D, 0x00002B00, 0xFFFFED4E, 0x000004B3, 0x00002B00, 0xFFFFED4E, 0x000004B3 }, { 0x0213F0FFEF6250A4, 0x00004218, 0xFFFFE039, 0x0000068F, 0x00002F84, 0xFFFFEA0C, 0x00000541, 0x00002F84, 0xFFFFEA0C, 0x00000541 }, { 0x0213F0FFEF5A3844, 0x00003FF5, 0xFFFFE2A3, 0x00000617, 0x00003017, 0xFFFFEA7A, 0x00000520, 0x00003017, 0xFFFFEA7A, 0x00000520 }, { 0x0213F0FFEF5A08A4, 0x00004304, 0xFFFFDFCC, 0x0000069E, 0x00002E0C, 0xFFFFEB51, 0x00000505, 0x00002E0C, 0xFFFFEB51, 0x00000505 }, { 0x0213F0FFEF641944, 0x00003D3A, 0xFFFFE17F, 0x00000687, 0x0000284C, 0xFFFFED83, 0x000004CD, 0x0000284C, 0xFFFFED83, 0x000004CD }, { 0x0213F0FFEF5E40A4, 0x000042F5, 0xFFFFDF76, 0x000006B2, 0x000027B6, 0xFFFFEF72, 0x00000455, 0x000027B6, 0xFFFFEF72, 0x00000455 }, { 0x0213F0FFEF5C38C4, 0x00004267, 0xFFFFDF29, 0x000006D5, 0x0000298F, 0xFFFFEDBD, 0x000004AC, 0x0000298F, 0xFFFFEDBD, 0x000004AC }, { 0x0213EA94DE240924, 0x0000303E, 0xFFFFEC00, 0x000004CB, 0x000021CD, 0xFFFFF36E, 0x000003D6, 0x000021CD, 0xFFFFF36E, 0x000003D6 }, { 0x0213F0FFEF5E28C4, 0x00003127, 0xFFFFEBDB, 0x000004A6, 0x00002E95, 0xFFFFEB78, 0x000004F3, 0x00002E95, 0xFFFFEB78, 0x000004F3 }, { 0x0213EA94DE1C1064, 0x00002655, 0xFFFFF2D9, 0x000003CF, 0x000019F5, 0xFFFFF8E7, 0x00000313, 0x000019F5, 0xFFFFF8E7, 0x00000313 }, { 0x0213EA94DE164084, 0x00002372, 0xFFFFF449, 0x0000039B, 0x00001544, 0xFFFFFC16, 0x0000028B, 0x00001544, 0xFFFFFC16, 0x0000028B }, { 0x0213F0FFEF6628C4, 0x0000348E, 0xFFFFEB20, 0x000004B2, 0x00002BE8, 0xFFFFEE80, 0x00000467, 0x00002BE8, 0xFFFFEE80, 0x00000467 }, { 0x0213F0FFEF5E1104, 0x00004092, 0xFFFFE073, 0x0000069B, 0x00002061, 0xFFFFF403, 0x000003A0, 0x00002061, 0xFFFFF403, 0x000003A0 }, { 0x0213F0FFEF7220E4, 0x000039D1, 0xFFFFE55D, 0x000005CC, 0x000025CB, 0xFFFFF0C0, 0x00000428, 0x000025CB, 0xFFFFF0C0, 0x00000428 }, { 0x0213F0FFEF5E4884, 0x000042AA, 0xFFFFDF68, 0x000006C2, 0x0000290B, 0xFFFFEE78, 0x00000485, 0x0000290B, 0xFFFFEE78, 0x00000485 }, { 0x0213F0FFEF7218C4, 0x0000356F, 0xFFFFE7AC, 0x0000056E, 0x00001BE8, 0xFFFFF6E3, 0x0000032A, 0x00001BE8, 0xFFFFF6E3, 0x0000032A }, { 0x0213F0FFEF5E1144, 0x00003525, 0xFFFFE7FF, 0x0000055D, 0x0000242C, 0xFFFFF12E, 0x0000041D, 0x0000242C, 0xFFFFF12E, 0x0000041D }, { 0x0213F0FFEF5C48C4, 0x00003360, 0xFFFFE895, 0x00000550, 0x00002175, 0xFFFFF29E, 0x000003E9, 0x00002175, 0xFFFFF29E, 0x000003E9 }, { 0x0213F0FFEF6440A4, 0x00003C94, 0xFFFFE1C4, 0x0000067E, 0x00002E28, 0xFFFFE964, 0x0000057F, 0x00002E28, 0xFFFFE964, 0x0000057F }, { 0x0213F0FFEF724124, 0x0000431C, 0xFFFFDE4B, 0x000006FF, 0x00002270, 0xFFFFF268, 0x000003E5, 0x00002270, 0xFFFFF268, 0x000003E5 }, { 0x0213EA94DE1218C4, 0x00002B67, 0xFFFFF01D, 0x00000414, 0x000019FB, 0xFFFFF961, 0x000002D8, 0x000019FB, 0xFFFFF961, 0x000002D8 }, { 0x0213F0FFEF5E3984, 0x0000400B, 0xFFFFE13D, 0x0000066F, 0x000024F3, 0xFFFFF125, 0x00000417, 0x000024F3, 0xFFFFF125, 0x00000417 }, { 0x0213F0FFEF5A20A4, 0x00004460, 0xFFFFE00E, 0x0000067B, 0x000023DF, 0xFFFFF2E6, 0x000003BB, 0x000023DF, 0xFFFFF2E6, 0x000003BB }, { 0x0213F0FFEF641864, 0x00003AFB, 0xFFFFE2C5, 0x00000650, 0x00002D46, 0xFFFFE9C4, 0x00000571, 0x00002D46, 0xFFFFE9C4, 0x00000571 }, { 0x0213F0FFEF622924, 0x00005482, 0xFFFFD5BC, 0x0000081A, 0x00003250, 0xFFFFE961, 0x00000541, 0x00003250, 0xFFFFE961, 0x00000541 }, { 0x0213F0FFEF5C2944, 0x00003D27, 0xFFFFE2FA, 0x00000632, 0x00002A4D, 0xFFFFED6A, 0x000004BB, 0x00002A4D, 0xFFFFED6A, 0x000004BB }, { 0x0213F0FFEF6018A4, 0x00003E03, 0xFFFFE142, 0x00000690, 0x00001E08, 0xFFFFF555, 0x0000036C, 0x00001E08, 0xFFFFF555, 0x0000036C }, { 0x0213F0FFEF5C2064, 0x000031B5, 0xFFFFE97D, 0x00000535, 0x0000232E, 0xFFFFF166, 0x00000422, 0x0000232E, 0xFFFFF166, 0x00000422 }, { 0x0213F0FFEF5E18E4, 0x00003753, 0xFFFFE724, 0x00000575, 0x0000281A, 0xFFFFEF1A, 0x0000046B, 0x0000281A, 0xFFFFEF1A, 0x0000046B }, { 0x0213EA94DE204144, 0x00002071, 0xFFFFF5C9, 0x0000036F, 0x00001470, 0xFFFFFBF7, 0x000002A5, 0x00001470, 0xFFFFFBF7, 0x000002A5 }, { 0x0213F0FFEF683144, 0x00002799, 0xFFFFF223, 0x000003CF, 0x00001CD3, 0xFFFFF74A, 0x00000333, 0x00001CD3, 0xFFFFF74A, 0x00000333 }, { 0x0213F0FFEF6610C4, 0x000040DF, 0xFFFFE11C, 0x00000664, 0x000031D4, 0xFFFFE8BC, 0x0000056F, 0x000031D4, 0xFFFFE8BC, 0x0000056F }, { 0x0213F0FFEF6440C4, 0x00003A4D, 0xFFFFE3A6, 0x00000627, 0x00002871, 0xFFFFEDA0, 0x000004C0, 0x00002871, 0xFFFFEDA0, 0x000004C0 }, { 0x0213F0FFEF681984, 0x00002AF9, 0xFFFFEED7, 0x00000464, 0x0000219B, 0xFFFFF368, 0x000003D6, 0x0000219B, 0xFFFFF368, 0x000003D6 }, { 0x0213EA94DE323124, 0x000026D5, 0xFFFFF36C, 0x000003A3, 0x00001BC6, 0xFFFFF881, 0x00000311, 0x00001BC6, 0xFFFFF881, 0x00000311 }, { 0x0213F0FFEF5E2044, 0x0000325D, 0xFFFFEA07, 0x0000050B, 0x000026D1, 0xFFFFEFB3, 0x0000045A, 0x000026D1, 0xFFFFEFB3, 0x0000045A }, { 0x0213F0FFEF682864, 0x00002F75, 0xFFFFEC64, 0x000004BE, 0x00001EEB, 0xFFFFF559, 0x00000386, 0x00001EEB, 0xFFFFF559, 0x00000386 }, { 0x0213F0FFEF5A38A4, 0x00003C2F, 0xFFFFE541, 0x000005A3, 0x000025B6, 0xFFFFF16F, 0x000003FA, 0x000025B6, 0xFFFFF16F, 0x000003FA }, { 0x0213F0FFEF684924, 0x00002BC2, 0xFFFFEE89, 0x0000046A, 0x00001D04, 0xFFFFF651, 0x00000361, 0x00001D04, 0xFFFFF651, 0x00000361 }, { 0x0213F0FFEF6829A4, 0x00002DD0, 0xFFFFED40, 0x0000049F, 0x00001C8C, 0xFFFFF6B3, 0x00000353, 0x00001C8C, 0xFFFFF6B3, 0x00000353 }, { 0x0213EA94DE1C08E4, 0x000021ED, 0xFFFFF530, 0x00000380, 0x00001643, 0xFFFFFB1C, 0x000002C3, 0x00001643, 0xFFFFFB1C, 0x000002C3 }, { 0x0213EA94DE321904, 0x000028C7, 0xFFFFF160, 0x000003FD, 0x00001990, 0xFFFFF994, 0x000002E2, 0x00001990, 0xFFFFF994, 0x000002E2 }, { 0x0213F0FFEF6610A4, 0x0000431C, 0xFFFFDF9D, 0x000006A3, 0x000034A6, 0xFFFFE6B0, 0x000005C9, 0x000034A6, 0xFFFFE6B0, 0x000005C9 }, { 0x0213EA94DE2630A4, 0x00004115, 0xFFFFE0D6, 0x00000667, 0x000031AD, 0xFFFFE850, 0x00000585, 0x000031AD, 0xFFFFE850, 0x00000585 }, { 0x0213F0FFEF643924, 0x0000424A, 0xFFFFDEEC, 0x000006E1, 0x0000346A, 0xFFFFE5EA, 0x00000602, 0x0000346A, 0xFFFFE5EA, 0x00000602 }, { 0x0213F0FFEF661984, 0x00004990, 0xFFFFDAFA, 0x00000771, 0x00002A9C, 0xFFFFED37, 0x000004BC, 0x00002A9C, 0xFFFFED37, 0x000004BC }, { 0x0213F0FFEF6428A4, 0x00003858, 0xFFFFE568, 0x000005D2, 0x00003030, 0xFFFFE8B0, 0x0000058E, 0x00003030, 0xFFFFE8B0, 0x0000058E }, { 0x0213F0FFEF684164, 0x00001EDC, 0xFFFFF6CD, 0x00000322, 0x00001FCA, 0xFFFFF4BD, 0x0000039E, 0x00001FCA, 0xFFFFF4BD, 0x0000039E }, { 0x0213F0FFEF662124, 0x00004C88, 0xFFFFDBA3, 0x0000071B, 0x000030C4, 0xFFFFEAFD, 0x000004F7, 0x000030C4, 0xFFFFEAFD, 0x000004F7 }, { 0x0213F0FFEF680904, 0x00002B9A, 0xFFFFEE41, 0x0000047D, 0x00002131, 0xFFFFF344, 0x000003E5, 0x00002131, 0xFFFFF344, 0x000003E5 }, { 0x0213F0FFEF623984, 0x00003E4B, 0xFFFFE33C, 0x000005FA, 0x00003877, 0xFFFFE437, 0x0000062E, 0x00003877, 0xFFFFE437, 0x0000062E }, { 0x0213EA94DE322064, 0x00002376, 0xFFFFF444, 0x0000038A, 0x000017ED, 0xFFFFFA4C, 0x000002C1, 0x000017ED, 0xFFFFFA4C, 0x000002C1 }, { 0x0213F0FFEF661084, 0x00004517, 0xFFFFDDF4, 0x000006F2, 0x000030DC, 0xFFFFE8EF, 0x00000571, 0x000030DC, 0xFFFFE8EF, 0x00000571 }, { 0x0213F0FFEF681944, 0x0000270C, 0xFFFFF1F3, 0x000003DF, 0x0000207B, 0xFFFFF474, 0x000003AD, 0x0000207B, 0xFFFFF474, 0x000003AD }, { 0x0213F0FFEF645144, 0x00004086, 0xFFFFDF39, 0x000006E3, 0x00002A24, 0xFFFFEC2B, 0x000004FF, 0x00002A24, 0xFFFFEC2B, 0x000004FF }, { 0x0213F0FFEF5C3124, 0x00003BDE, 0xFFFFE45E, 0x000005EB, 0x00002CD5, 0xFFFFEC45, 0x000004DD, 0x00002CD5, 0xFFFFEC45, 0x000004DD }, { 0x0213F0FFEF7230E4, 0x00003803, 0xFFFFE714, 0x00000579, 0x0000288A, 0xFFFFEF21, 0x0000046B, 0x0000288A, 0xFFFFEF21, 0x0000046B }, { 0x0213F0FFEF601104, 0x00003F50, 0xFFFFE002, 0x000006CD, 0x00001AD4, 0xFFFFF72E, 0x0000031F, 0x00001AD4, 0xFFFFF72E, 0x0000031F }, { 0x0213F0FFEF6820E4, 0x00002968, 0xFFFFF100, 0x00000402, 0x00001FB5, 0xFFFFF57C, 0x0000037F, 0x00001FB5, 0xFFFFF57C, 0x0000037F }, { 0x0213F0FFEF662104, 0x00004283, 0xFFFFE2A7, 0x000005F5, 0x00003165, 0xFFFFEB0C, 0x000004EC, 0x00003165, 0xFFFFEB0C, 0x000004EC }, { 0x0213F0FFEF6431A4, 0x00004253, 0xFFFFDDA8, 0x00000732, 0x00002E5C, 0xFFFFE90A, 0x00000593, 0x00002E5C, 0xFFFFE90A, 0x00000593 }, { 0x0213F0FFEF5C50A4, 0x00003551, 0xFFFFE756, 0x0000058D, 0x000029A7, 0xFFFFED0C, 0x000004DE, 0x000029A7, 0xFFFFED0C, 0x000004DE }, { 0x0213F0FFEF6428C4, 0x00003728, 0xFFFFE604, 0x000005C4, 0x00002832, 0xFFFFEE64, 0x00000493, 0x00002832, 0xFFFFEE64, 0x00000493 }, { 0x0213F0FFEF623964, 0x00004796, 0xFFFFDCC8, 0x00000715, 0x000032AB, 0xFFFFE848, 0x0000057C, 0x000032AB, 0xFFFFE848, 0x0000057C }, { 0x0213F0FFEF6210C4, 0x000049DF, 0xFFFFDB24, 0x0000075F, 0x00003076, 0xFFFFE967, 0x0000055C, 0x00003076, 0xFFFFE967, 0x0000055C }, { 0x0213F0FFEF721104, 0x00003F13, 0xFFFFE099, 0x000006A8, 0x00002279, 0xFFFFF226, 0x000003F3, 0x00002279, 0xFFFFF226, 0x000003F3 }, { 0x0213F0FFEF6430A4, 0x00003E03, 0xFFFFE19F, 0x00000674, 0x00002D66, 0xFFFFEAA7, 0x00000537, 0x00002D66, 0xFFFFEAA7, 0x00000537 }, { 0x0213F0FFEF5C4104, 0x000037DA, 0xFFFFE63F, 0x000005A7, 0x00002543, 0xFFFFF0A0, 0x00000431, 0x00002543, 0xFFFFF0A0, 0x00000431 }, { 0x0213F0FFEF624944, 0x00003D82, 0xFFFFE3F5, 0x000005D9, 0x0000332F, 0xFFFFE834, 0x00000577, 0x0000332F, 0xFFFFE834, 0x00000577 }, { 0x0213EA94DE1228C4, 0x00002915, 0xFFFFF1E0, 0x000003D4, 0x00002065, 0xFFFFF57B, 0x00000378, 0x00002065, 0xFFFFF57B, 0x00000378 }, { 0x0213F0FFEF5E4904, 0x000036FC, 0xFFFFE72D, 0x00000577, 0x00002811, 0xFFFFEF30, 0x00000464, 0x00002811, 0xFFFFEF30, 0x00000464 }, { 0x0213F0FFEF623184, 0x00004767, 0xFFFFDD30, 0x000006FD, 0x00003703, 0xFFFFE564, 0x000005F8, 0x00003703, 0xFFFFE564, 0x000005F8 }, { 0x0213F0FFEF603184, 0x00003094, 0xFFFFEAA9, 0x000004F5, 0x000022E7, 0xFFFFF200, 0x000003FB, 0x000022E7, 0xFFFFF200, 0x000003FB }, { 0x0213F0FFEF641144, 0x00003EF0, 0xFFFFDF83, 0x000006ED, 0x00002A27, 0xFFFFEB7C, 0x00000537, 0x00002A27, 0xFFFFEB7C, 0x00000537 }, { 0x0213F0FFEF681124, 0x0000243C, 0xFFFFF358, 0x000003AC, 0x00001DC4, 0xFFFFF5E9, 0x00000372, 0x00001DC4, 0xFFFFF5E9, 0x00000372 }, { 0x0213F0FFEF722144, 0x0000284B, 0xFFFFF036, 0x0000040F, 0x00001FCD, 0xFFFFF445, 0x00000395, 0x00001FCD, 0xFFFFF445, 0x00000395 }, { 0x0213F0FFEF6840C4, 0x00002611, 0xFFFFF285, 0x000003C7, 0x00001CFE, 0xFFFFF6A0, 0x00000355, 0x00001CFE, 0xFFFFF6A0, 0x00000355 }, { 0x0213EA94DE1C39A4, 0x00002292, 0xFFFFF49F, 0x00000393, 0x000017F4, 0xFFFFF9CD, 0x000002F5, 0x000017F4, 0xFFFFF9CD, 0x000002F5 }, { 0x0213F0FFEF5E38A4, 0x000037F3, 0xFFFFE68D, 0x00000590, 0x00002443, 0xFFFFF1AD, 0x000003FA, 0x00002443, 0xFFFFF1AD, 0x000003FA }, { 0x0213F0FFEF682144, 0x00002C01, 0xFFFFEF3F, 0x00000444, 0x0000210A, 0xFFFFF475, 0x000003A7, 0x0000210A, 0xFFFFF475, 0x000003A7 }, { 0x0213EA94DE1210E4, 0x00002C0E, 0xFFFFEF0F, 0x00000446, 0x00001A82, 0xFFFFF8F7, 0x000002DE, 0x00001A82, 0xFFFFF8F7, 0x000002DE }, { 0x0213F0FFEF5E20C4, 0x00003FA6, 0xFFFFE20A, 0x0000063F, 0x00002E29, 0xFFFFEB21, 0x00000510, 0x00002E29, 0xFFFFEB21, 0x00000510 }, { 0x0213F0FFEF5C2164, 0x00003BCD, 0xFFFFE31B, 0x0000063C, 0x000019AF, 0xFFFFF83D, 0x000002F8, 0x000019AF, 0xFFFFF83D, 0x000002F8 }, { 0x0213F0FFEF664164, 0x000044C8, 0xFFFFDF08, 0x000006B0, 0x00002E2E, 0xFFFFEB62, 0x000004FD, 0x00002E2E, 0xFFFFEB62, 0x000004FD }, { 0x0213F0FFEF5C1884, 0x00003790, 0xFFFFE571, 0x000005E3, 0x00002042, 0xFFFFF35D, 0x000003CF, 0x00002042, 0xFFFFF35D, 0x000003CF }, { 0x0213F0FFEF6050E4, 0x000038AC, 0xFFFFE46C, 0x00000609, 0x0000215E, 0xFFFFF22D, 0x00000403, 0x0000215E, 0xFFFFF22D, 0x00000403 }, { 0x0213F0FFEF5E29A4, 0x00003A1E, 0xFFFFE536, 0x000005C9, 0x000024F3, 0xFFFFF11A, 0x0000041B, 0x000024F3, 0xFFFFF11A, 0x0000041B }, { 0x0213F0FFEF6650E4, 0x0000431A, 0xFFFFDF1B, 0x000006C5, 0x00002F34, 0xFFFFEA02, 0x00000545, 0x00002F34, 0xFFFFEA02, 0x00000545 }, { 0x0213F0FFEF641904, 0x000042DC, 0xFFFFDE28, 0x0000070C, 0x00003B53, 0xFFFFE0EA, 0x000006E2, 0x00003B53, 0xFFFFE0EA, 0x000006E2 }, { 0x0213F0FFEF683164, 0x0000264B, 0xFFFFF29A, 0x000003C4, 0x000021D0, 0xFFFFF3CE, 0x000003C4, 0x000021D0, 0xFFFFF3CE, 0x000003C4 }, { 0x0213F0FFEF5A4064, 0x00004225, 0xFFFFE0E8, 0x00000665, 0x00002B53, 0xFFFFED89, 0x0000049F, 0x00002B53, 0xFFFFED89, 0x0000049F }, { 0x0213EA94DE204924, 0x00001FCC, 0xFFFFF63F, 0x00000358, 0x000019E8, 0xFFFFF882, 0x0000032A, 0x000019E8, 0xFFFFF882, 0x0000032A }, { 0x0213F0FFEF6240A4, 0x000045E0, 0xFFFFDDD0, 0x000006ED, 0x00003193, 0xFFFFE8BD, 0x00000572, 0x00003193, 0xFFFFE8BD, 0x00000572 }, { 0x0213F0FFEF683924, 0x000024FC, 0xFFFFF366, 0x000003A6, 0x00001FE8, 0xFFFFF509, 0x00000394, 0x00001FE8, 0xFFFFF509, 0x00000394 }, { 0x0213F0FFEF5C4884, 0x0000378F, 0xFFFFE54B, 0x000005F1, 0x00001C9B, 0xFFFFF5C7, 0x00000368, 0x00001C9B, 0xFFFFF5C7, 0x00000368 }, { 0x0213F0FFEF6418A4, 0x00003CF3, 0xFFFFE15A, 0x00000694, 0x00002CDD, 0xFFFFEA44, 0x00000557, 0x00002CDD, 0xFFFFEA44, 0x00000557 }, { 0x0213EA94DE200904, 0x000021EC, 0xFFFFF4F4, 0x0000038F, 0x00001511, 0xFFFFFBF5, 0x0000029E, 0x00001511, 0xFFFFFBF5, 0x0000029E }, { 0x0213F0FFEF6010A4, 0x00003C8A, 0xFFFFE1C1, 0x00000685, 0x000019C7, 0xFFFFF7E2, 0x00000301, 0x000019C7, 0xFFFFF7E2, 0x00000301 }, { 0x0213F0FFEF5E2064, 0x00003908, 0xFFFFE5C7, 0x000005B3, 0x00002793, 0xFFFFEF46, 0x00000465, 0x00002793, 0xFFFFEF46, 0x00000465 }, { 0x0213F0FFEF605104, 0x000040A3, 0xFFFFDE61, 0x00000725, 0x00002077, 0xFFFFF2CE, 0x000003E8, 0x00002077, 0xFFFFF2CE, 0x000003E8 }, { 0x0213F0FFEF664144, 0x00003DCA, 0xFFFFE34D, 0x00000608, 0x00002D66, 0xFFFFEBDF, 0x000004E8, 0x00002D66, 0xFFFFEBDF, 0x000004E8 }, { 0x0213F0FFEF5E50C4, 0x00003085, 0xFFFFEB70, 0x000004C8, 0x000029B1, 0xFFFFEDD9, 0x000004A5, 0x000029B1, 0xFFFFEDD9, 0x000004A5 }, { 0x0213EA94DE083884, 0x00004C73, 0xFFFFD676, 0x0000086C, 0x0000280A, 0xFFFFED89, 0x000004C2, 0x0000280A, 0xFFFFED89, 0x000004C2 }, { 0x0213EA94DE242164, 0x00002CE5, 0xFFFFEE8C, 0x00000466, 0x00001755, 0xFFFFFAC2, 0x000002AC, 0x00001755, 0xFFFFFAC2, 0x000002AC }, { 0x0213F0FFEF621124, 0x0000489F, 0xFFFFDBF1, 0x0000073E, 0x0000332D, 0xFFFFE786, 0x000005AD, 0x0000332D, 0xFFFFE786, 0x000005AD }, { 0x0213F0FFEF602864, 0x00003D09, 0xFFFFE193, 0x00000689, 0x00001E82, 0xFFFFF4C0, 0x00000386, 0x00001E82, 0xFFFFF4C0, 0x00000386 }, { 0x0213F0FFEF644104, 0x00003E4C, 0xFFFFE131, 0x00000689, 0x00002F4E, 0xFFFFE925, 0x0000057B, 0x00002F4E, 0xFFFFE925, 0x0000057B }, { 0x0213F0FFEF5A4084, 0x00003B31, 0xFFFFE53F, 0x000005B3, 0x0000248A, 0xFFFFF211, 0x000003DF, 0x0000248A, 0xFFFFF211, 0x000003DF }, { 0x0213F0FFEF644124, 0x000038DD, 0xFFFFE54A, 0x000005C9, 0x00002B6D, 0xFFFFEBDF, 0x00000502, 0x00002B6D, 0xFFFFEBDF, 0x00000502 }, { 0x0213F0FFEF684064, 0x00002698, 0xFFFFF1A8, 0x000003F2, 0x00002163, 0xFFFFF34B, 0x000003E3, 0x00002163, 0xFFFFF34B, 0x000003E3 }, { 0x0213EA94DE201064, 0x000023A8, 0xFFFFF4CD, 0x00000386, 0x00001944, 0xFFFFF983, 0x00000300, 0x00001944, 0xFFFFF983, 0x00000300 }, { 0x0213F0FFEF6418C4, 0x00003EAF, 0xFFFFE0C3, 0x000006A0, 0x000030AB, 0xFFFFE829, 0x000005A6, 0x000030AB, 0xFFFFE829, 0x000005A6 }, { 0x0213F0FFEF684944, 0x00002E89, 0xFFFFECA6, 0x000004B6, 0x00001FA0, 0xFFFFF4A8, 0x000003A3, 0x00001FA0, 0xFFFFF4A8, 0x000003A3 }, { 0x0213F0FFEF6828A4, 0x000028A4, 0xFFFFF112, 0x00000402, 0x00001F7C, 0xFFFFF545, 0x0000038A, 0x00001F7C, 0xFFFFF545, 0x0000038A }, { 0x0213F0FFEF6650A4, 0x00004135, 0xFFFFDFA2, 0x000006C5, 0x0000324C, 0xFFFFE7AA, 0x000005AF, 0x0000324C, 0xFFFFE7AA, 0x000005AF }, { 0x0213EA94DE2038C4, 0x00002012, 0xFFFFF693, 0x00000352, 0x0000171F, 0xFFFFFABB, 0x000002D9, 0x0000171F, 0xFFFFFABB, 0x000002D9 }, { 0x0213F0FFEF643084, 0x00003D7C, 0xFFFFE1BC, 0x00000671, 0x00002A45, 0xFFFFEC84, 0x000004EC, 0x00002A45, 0xFFFFEC84, 0x000004EC }, { 0x0213F0FFEF723064, 0x00004172, 0xFFFFDF58, 0x000006DA, 0x00002504, 0xFFFFF0A6, 0x00000431, 0x00002504, 0xFFFFF0A6, 0x00000431 }, { 0x0213F0FE99281944, 0x000029C7, 0xFFFFF087, 0x00000414, 0x00001DCB, 0xFFFFF675, 0x0000035F, 0x00001DCB, 0xFFFFF675, 0x0000035F }, { 0x0213F0FE992A29A4, 0x000027F0, 0xFFFFF05A, 0x00000432, 0x00001707, 0xFFFFFA0E, 0x000002D1, 0x00001707, 0xFFFFFA0E, 0x000002D1 }, { 0x0213F0FE99222144, 0x00003279, 0xFFFFE9F7, 0x00000511, 0x00001B5E, 0xFFFFF787, 0x00000317, 0x00001B5E, 0xFFFFF787, 0x00000317 }, { 0x0213F0FE99322184, 0x000030A5, 0xFFFFEABC, 0x000004FF, 0x000019D1, 0xFFFFF83C, 0x00000304, 0x000019D1, 0xFFFFF83C, 0x00000304 }, { 0x0213F0FE99282844, 0x0000283B, 0xFFFFF122, 0x00000402, 0x000019C2, 0xFFFFF8E9, 0x000002FB, 0x000019C2, 0xFFFFF8E9, 0x000002FB }, { 0x0213F0FE992C2084, 0x00003376, 0xFFFFE9E1, 0x00000510, 0x000021A7, 0xFFFFF39F, 0x000003BF, 0x000021A7, 0xFFFFF39F, 0x000003BF }, { 0x0213F0FE993218C4, 0x000031D2, 0xFFFFEA9C, 0x000004FC, 0x00001F66, 0xFFFFF4E4, 0x00000390, 0x00001F66, 0xFFFFF4E4, 0x00000390 }, { 0x0213F0FE991A3864, 0x00003006, 0xFFFFEB18, 0x000004F2, 0x000019B3, 0xFFFFF84E, 0x00000301, 0x000019B3, 0xFFFFF84E, 0x00000301 }, { 0x0213F0FE993039A4, 0x0000364F, 0xFFFFE81F, 0x00000556, 0x00002AC9, 0xFFFFED87, 0x000004BD, 0x00002AC9, 0xFFFFED87, 0x000004BD }, { 0x0213F0FE992E3844, 0x00003043, 0xFFFFEBAE, 0x000004CD, 0x00001B0C, 0xFFFFF7ED, 0x0000030C, 0x00001B0C, 0xFFFFF7ED, 0x0000030C }, { 0x0213F0FE993048A4, 0x000037CE, 0xFFFFE69E, 0x00000596, 0x0000276B, 0xFFFFEF65, 0x0000046E, 0x0000276B, 0xFFFFEF65, 0x0000046E }, { 0x0213F0FE992C3104, 0x00003063, 0xFFFFED5E, 0x0000046F, 0x000024AE, 0xFFFFF2C4, 0x000003D8, 0x000024AE, 0xFFFFF2C4, 0x000003D8 }, { 0x0213F0FE992E08A4, 0x00002F5D, 0xFFFFEBDC, 0x000004D3, 0x00001EDB, 0xFFFFF50F, 0x0000038E, 0x00001EDB, 0xFFFFF50F, 0x0000038E }, { 0x0213F0FE992E48A4, 0x00003148, 0xFFFFEA9A, 0x000004FB, 0x0000192D, 0xFFFFF8E9, 0x000002DF, 0x0000192D, 0xFFFFF8E9, 0x000002DF }, { 0x0213F0FE992C2064, 0x00003682, 0xFFFFE7E4, 0x0000055C, 0x0000250E, 0xFFFFF150, 0x0000041A, 0x0000250E, 0xFFFFF150, 0x0000041A }, { 0x0213F0FE992A2084, 0x0000284E, 0xFFFFF15A, 0x000003F8, 0x00001CE2, 0xFFFFF6F9, 0x0000034F, 0x00001CE2, 0xFFFFF6F9, 0x0000034F }, { 0x0213F0FE993018A4, 0x00003171, 0xFFFFEAE9, 0x000004ED, 0x00001F40, 0xFFFFF513, 0x00000384, 0x00001F40, 0xFFFFF513, 0x00000384 }, { 0x0213F0FE99323044, 0x000031BD, 0xFFFFEA64, 0x0000050A, 0x00001EFD, 0xFFFFF4F7, 0x00000390, 0x00001EFD, 0xFFFFF4F7, 0x00000390 }, { 0x0213F0FE992E50E4, 0x00003050, 0xFFFFEB29, 0x000004EA, 0x000019B3, 0xFFFFF878, 0x000002F9, 0x000019B3, 0xFFFFF878, 0x000002F9 }, { 0x0213F0FE992C1904, 0x00003400, 0xFFFFE9A0, 0x0000051A, 0x00002460, 0xFFFFF1DA, 0x00000409, 0x00002460, 0xFFFFF1DA, 0x00000409 }, { 0x0213F0FE992C4884, 0x000034A1, 0xFFFFE86F, 0x00000558, 0x0000255D, 0xFFFFF09E, 0x00000443, 0x0000255D, 0xFFFFF09E, 0x00000443 }, { 0x0213F0FE992E48E4, 0x00003103, 0xFFFFEAD7, 0x000004F0, 0x00001896, 0xFFFFF95A, 0x000002CC, 0x00001896, 0xFFFFF95A, 0x000002CC }, { 0x0213F0FE993018E4, 0x00003120, 0xFFFFEB9E, 0x000004CB, 0x000021E8, 0xFFFFF3A2, 0x000003C1, 0x000021E8, 0xFFFFF3A2, 0x000003C1 }, { 0x0213F0FE991C50E4, 0x00003558, 0xFFFFE812, 0x00000565, 0x0000256E, 0xFFFFF097, 0x00000447, 0x0000256E, 0xFFFFF097, 0x00000447 }, { 0x0213F0FE991A2844, 0x00002DA8, 0xFFFFECA8, 0x000004B7, 0x0000180B, 0xFFFFF96D, 0x000002D8, 0x0000180B, 0xFFFFF96D, 0x000002D8 }, { 0x0213F0FE992E3064, 0x00003232, 0xFFFFEA66, 0x000004FF, 0x00001DDE, 0xFFFFF5FE, 0x0000035A, 0x00001DDE, 0xFFFFF5FE, 0x0000035A }, { 0x0213F0FE993050E4, 0x000034D2, 0xFFFFE89F, 0x00000548, 0x0000246C, 0xFFFFF17F, 0x00000418, 0x0000246C, 0xFFFFF17F, 0x00000418 }, { 0x0213F0FE99304904, 0x000033EC, 0xFFFFE954, 0x0000052A, 0x00002323, 0xFFFFF279, 0x000003EE, 0x00002323, 0xFFFFF279, 0x000003EE }, { 0x0213F0FE99303884, 0x000033AA, 0xFFFFE955, 0x0000052D, 0x0000229F, 0xFFFFF2B2, 0x000003E7, 0x0000229F, 0xFFFFF2B2, 0x000003E7 }, { 0x0213F0FE99324964, 0x00003258, 0xFFFFE9AA, 0x0000052A, 0x00001D5F, 0xFFFFF5D1, 0x0000036B, 0x00001D5F, 0xFFFFF5D1, 0x0000036B }, { 0x0213F0FE993029A4, 0x0000323A, 0xFFFFEA5F, 0x00000504, 0x00002108, 0xFFFFF3D5, 0x000003BA, 0x00002108, 0xFFFFF3D5, 0x000003BA }, { 0x0213F0FE992C2184, 0x00003216, 0xFFFFEA6B, 0x000004FF, 0x00001D6E, 0xFFFFF640, 0x00000350, 0x00001D6E, 0xFFFFF640, 0x00000350 }, { 0x0213F0FE993210E4, 0x000030C5, 0xFFFFEAC4, 0x000004FC, 0x00001924, 0xFFFFF8C2, 0x000002EE, 0x00001924, 0xFFFFF8C2, 0x000002EE }, { 0x0213F0FE99305104, 0x000032BB, 0xFFFFE9F1, 0x00000515, 0x00002211, 0xFFFFF31B, 0x000003D5, 0x00002211, 0xFFFFF31B, 0x000003D5 }, { 0x0213F0FE993048C4, 0x0000352C, 0xFFFFE85B, 0x00000553, 0x00002410, 0xFFFFF1B4, 0x0000040F, 0x00002410, 0xFFFFF1B4, 0x0000040F }, { 0x0213F0FE992238C4, 0x000036A0, 0xFFFFE7E8, 0x0000055D, 0x00002901, 0xFFFFEEB8, 0x00000489, 0x00002901, 0xFFFFEEB8, 0x00000489 }, { 0x0213F0FE992C3044, 0x00003340, 0xFFFFE9D9, 0x00000516, 0x00002332, 0xFFFFF27A, 0x000003F0, 0x00002332, 0xFFFFF27A, 0x000003F0 }, { 0x0213F0FE991A38A4, 0x00003564, 0xFFFFE86D, 0x0000054E, 0x00002613, 0xFFFFF07C, 0x00000444, 0x00002613, 0xFFFFF07C, 0x00000444 }, { 0x0213F0FE99280904, 0x00002AD1, 0xFFFFEF0B, 0x0000045C, 0x00001DEA, 0xFFFFF5C8, 0x00000381, 0x00001DEA, 0xFFFFF5C8, 0x00000381 }, { 0x0213F0FE992220E4, 0x000035B0, 0xFFFFE846, 0x00000555, 0x000027BE, 0xFFFFEF5D, 0x00000474, 0x000027BE, 0xFFFFEF5D, 0x00000474 }, { 0x0213F0FE992238A4, 0x000032C4, 0xFFFFEA48, 0x00000502, 0x000022C6, 0xFFFFF2DF, 0x000003DE, 0x000022C6, 0xFFFFF2DF, 0x000003DE }, { 0x0213F0FE993008C4, 0x00003036, 0xFFFFEB0D, 0x000004F9, 0x00001FE8, 0xFFFFF41A, 0x000003BC, 0x00001FE8, 0xFFFFF41A, 0x000003BC }, { 0x0213F0FE991A0904, 0x000030F8, 0xFFFFEA13, 0x00000524, 0x00001B6A, 0xFFFFF6C9, 0x0000034A, 0x00001B6A, 0xFFFFF6C9, 0x0000034A }, { 0x0213F0FE993010A4, 0x00002EE2, 0xFFFFEC0C, 0x000004CB, 0x00001A39, 0xFFFFF814, 0x0000030F, 0x00001A39, 0xFFFFF814, 0x0000030F }, { 0x0213F0FE991C3184, 0x00003457, 0xFFFFE924, 0x0000052A, 0x00001E9D, 0xFFFFF59C, 0x00000363, 0x00001E9D, 0xFFFFF59C, 0x00000363 }, { 0x0213F0FE99322844, 0x000030BF, 0xFFFFEB18, 0x000004ED, 0x00001D37, 0xFFFFF636, 0x0000035C, 0x00001D37, 0xFFFFF636, 0x0000035C }, { 0x0213F0FE992E4084, 0x000031AF, 0xFFFFEA75, 0x000004FE, 0x000019F2, 0xFFFFF87A, 0x000002F0, 0x000019F2, 0xFFFFF87A, 0x000002F0 }, { 0x0213F0FE99302884, 0x00003642, 0xFFFFE85B, 0x00000547, 0x00002975, 0xFFFFEE98, 0x0000048B, 0x00002975, 0xFFFFEE98, 0x0000048B }, { 0x0213F0FE992E2884, 0x00002E8B, 0xFFFFED1E, 0x0000048E, 0x000019C1, 0xFFFFF917, 0x000002D6, 0x000019C1, 0xFFFFF917, 0x000002D6 }, { 0x0213F0FE993241A4, 0x000033D9, 0xFFFFE8E1, 0x00000548, 0x0000224B, 0xFFFFF298, 0x000003F4, 0x0000224B, 0xFFFFF298, 0x000003F4 }, { 0x0213F0FE992E28C4, 0x000032BC, 0xFFFFEB0F, 0x000004D6, 0x00002488, 0xFFFFF240, 0x000003F2, 0x00002488, 0xFFFFF240, 0x000003F2 }, { 0x0213F0FE99304944, 0x000035FD, 0xFFFFE838, 0x00000553, 0x00002762, 0xFFFFEFBC, 0x00000460, 0x00002762, 0xFFFFEFBC, 0x00000460 }, { 0x0213F0FE992818A4, 0x0000268B, 0xFFFFF263, 0x000003D1, 0x00001914, 0xFFFFF977, 0x000002E8, 0x00001914, 0xFFFFF977, 0x000002E8 }, { 0x0213F0FE992C3184, 0x0000330B, 0xFFFFEA1E, 0x00000505, 0x000020B1, 0xFFFFF44D, 0x0000039E, 0x000020B1, 0xFFFFF44D, 0x0000039E }, { 0x0213F0FE99222084, 0x0000326E, 0xFFFFEA26, 0x00000508, 0x00001C17, 0xFFFFF722, 0x00000328, 0x00001C17, 0xFFFFF722, 0x00000328 }, { 0x0213F0FE992A31A4, 0x00002A3F, 0xFFFFEEE8, 0x0000046D, 0x00001B2B, 0xFFFFF737, 0x0000034D, 0x00001B2B, 0xFFFFF737, 0x0000034D }, { 0x0213F0FE992C4064, 0x00003732, 0xFFFFE765, 0x00000574, 0x00002A6D, 0xFFFFEDA8, 0x000004B7, 0x00002A6D, 0xFFFFEDA8, 0x000004B7 }, { 0x0213F0FE99300924, 0x000034D3, 0xFFFFE827, 0x00000569, 0x000027AA, 0xFFFFEEE7, 0x00000492, 0x000027AA, 0xFFFFEEE7, 0x00000492 }, { 0x0213F0FE992E40C4, 0x00003306, 0xFFFFEA39, 0x000004FC, 0x00001DCC, 0xFFFFF655, 0x00000344, 0x00001DCC, 0xFFFFF655, 0x00000344 }, { 0x0213F0FE99282044, 0x00002A48, 0xFFFFEFCA, 0x00000439, 0x00001DED, 0xFFFFF60D, 0x00000375, 0x00001DED, 0xFFFFF60D, 0x00000375 }, { 0x0213F0FE993038C4, 0x000033A3, 0xFFFFEA36, 0x000004F9, 0x0000247C, 0xFFFFF21F, 0x000003F4, 0x0000247C, 0xFFFFF21F, 0x000003F4 }, { 0x0213F0FE992C3164, 0x0000311B, 0xFFFFEB76, 0x000004D1, 0x00001EB1, 0xFFFFF5B6, 0x00000366, 0x00001EB1, 0xFFFFF5B6, 0x00000366 }, { 0x0213F0FE99324164, 0x00003307, 0xFFFFE97F, 0x0000052A, 0x00001E76, 0xFFFFF54D, 0x0000037C, 0x00001E76, 0xFFFFF54D, 0x0000037C }, { 0x0213F0FE991C2144, 0x0000344B, 0xFFFFE9C5, 0x00000509, 0x000020D6, 0xFFFFF486, 0x0000038F, 0x000020D6, 0xFFFFF486, 0x0000038F }, { 0x0213F0FE992C3144, 0x000034B9, 0xFFFFEA0B, 0x000004F7, 0x000027B3, 0xFFFFF057, 0x0000043A, 0x000027B3, 0xFFFFF057, 0x0000043A }, { 0x0213F0FE99301964, 0x00003360, 0xFFFFE984, 0x00000527, 0x00002238, 0xFFFFF2EE, 0x000003E0, 0x00002238, 0xFFFFF2EE, 0x000003E0 }, { 0x0213F0FE99302124, 0x0000315C, 0xFFFFEC05, 0x000004B1, 0x000023C8, 0xFFFFF2CC, 0x000003DE, 0x000023C8, 0xFFFFF2CC, 0x000003DE }, { 0x0213F0FE992C2864, 0x0000389B, 0xFFFFE6D5, 0x00000582, 0x00002C6C, 0xFFFFEC92, 0x000004DE, 0x00002C6C, 0xFFFFEC92, 0x000004DE }, { 0x0213F0FE992E1124, 0x00003058, 0xFFFFEB30, 0x000004E6, 0x000019B5, 0xFFFFF88B, 0x000002F1, 0x000019B5, 0xFFFFF88B, 0x000002F1 }, { 0x0213F0FE992E0904, 0x00002F69, 0xFFFFEB4A, 0x000004F1, 0x00001B82, 0xFFFFF6EC, 0x00000341, 0x00001B82, 0xFFFFF6EC, 0x00000341 }, { 0x0213F0FE991A18E4, 0x000031EB, 0xFFFFEA64, 0x00000508, 0x00002059, 0xFFFFF427, 0x000003B0, 0x00002059, 0xFFFFF427, 0x000003B0 }, { 0x0213F0FE99224124, 0x000033E2, 0xFFFFE94D, 0x0000052A, 0x000020BF, 0xFFFFF40B, 0x000003AB, 0x000020BF, 0xFFFFF40B, 0x000003AB }, { 0x0213F0FE99283184, 0x00002AF9, 0xFFFFEFE9, 0x00000427, 0x00001F72, 0xFFFFF57A, 0x00000383, 0x00001F72, 0xFFFFF57A, 0x00000383 }, { 0x0213F0FE992C2824, 0x00003282, 0xFFFFEA88, 0x000004FA, 0x00002561, 0xFFFFF126, 0x0000042B, 0x00002561, 0xFFFFF126, 0x0000042B }, { 0x0213F0FE993010E4, 0x0000308A, 0xFFFFEB5D, 0x000004E0, 0x00001E83, 0xFFFFF577, 0x00000378, 0x00001E83, 0xFFFFF577, 0x00000378 }, { 0x0213F0FE99324884, 0x0000336E, 0xFFFFE8C8, 0x00000553, 0x0000217C, 0xFFFFF2E1, 0x000003EB, 0x0000217C, 0xFFFFF2E1, 0x000003EB }, { 0x0213F0FE991A2164, 0x000034A9, 0xFFFFE838, 0x00000561, 0x000020CE, 0xFFFFF38A, 0x000003C7, 0x000020CE, 0xFFFFF38A, 0x000003C7 }, { 0x0213F0FE99222184, 0x00003152, 0xFFFFE9EB, 0x00000522, 0x00001755, 0xFFFFF9A9, 0x000002C6, 0x00001755, 0xFFFFF9A9, 0x000002C6 }, { 0x0213F0FE99281884, 0x0000286E, 0xFFFFF136, 0x000003FD, 0x00001BAB, 0xFFFFF7C3, 0x0000032C, 0x00001BAB, 0xFFFFF7C3, 0x0000032C }, { 0x0213F0FE99300944, 0x0000316B, 0xFFFFEA02, 0x00000528, 0x00002247, 0xFFFFF24E, 0x00000408, 0x00002247, 0xFFFFF24E, 0x00000408 }, { 0x0213F0FE992C08E4, 0x000034CF, 0xFFFFE83D, 0x00000562, 0x00002458, 0xFFFFF130, 0x00000430, 0x00002458, 0xFFFFF130, 0x00000430 }, { 0x0213F0FE992C2984, 0x00003352, 0xFFFFE9D1, 0x00000515, 0x0000212A, 0xFFFFF3DC, 0x000003B4, 0x0000212A, 0xFFFFF3DC, 0x000003B4 }, { 0x0213F0FE992840A4, 0x00002946, 0xFFFFF09B, 0x00000415, 0x00001DC9, 0xFFFFF650, 0x00000366, 0x00001DC9, 0xFFFFF650, 0x00000366 }, { 0x0213F0FE99301124, 0x00003080, 0xFFFFEB47, 0x000004E1, 0x00001BD5, 0xFFFFF73B, 0x00000329, 0x00001BD5, 0xFFFFF73B, 0x00000329 }, { 0x0213F0FE991A1884, 0x00002FBD, 0xFFFFEB7B, 0x000004DD, 0x000017FC, 0xFFFFF99E, 0x000002C7, 0x000017FC, 0xFFFFF99E, 0x000002C7 }, { 0x0213F0FE99281124, 0x00002A28, 0xFFFFF032, 0x0000041F, 0x00001B19, 0xFFFFF83A, 0x00000312, 0x00001B19, 0xFFFFF83A, 0x00000312 }, { 0x0213F0FE992240C4, 0x00003420, 0xFFFFE936, 0x00000530, 0x000023C2, 0xFFFFF203, 0x00000406, 0x000023C2, 0xFFFFF203, 0x00000406 }, { 0x0213F0FE99301144, 0x00002F7C, 0xFFFFEBBA, 0x000004D1, 0x0000185D, 0xFFFFF975, 0x000002CA, 0x0000185D, 0xFFFFF975, 0x000002CA }, { 0x0213F0FE992E2044, 0x00002C51, 0xFFFFEE3B, 0x0000046F, 0x000019AA, 0xFFFFF8DD, 0x000002ED, 0x000019AA, 0xFFFFF8DD, 0x000002ED }, { 0x0213F0FE991A4144, 0x000033D6, 0xFFFFE8F2, 0x0000053D, 0x00001D73, 0xFFFFF5FB, 0x0000035B, 0x00001D73, 0xFFFFF5FB, 0x0000035B }, { 0x0213F0FE99323084, 0x000031D9, 0xFFFFEAF7, 0x000004E4, 0x00001EBD, 0xFFFFF5A6, 0x00000368, 0x00001EBD, 0xFFFFF5A6, 0x00000368 }, { 0x0213F0FE991A20A4, 0x00003386, 0xFFFFE9CE, 0x00000515, 0x00002422, 0xFFFFF1F3, 0x00000405, 0x00002422, 0xFFFFF1F3, 0x00000405 }, { 0x0213F0FE992C50E4, 0x000032FB, 0xFFFFE9BC, 0x00000520, 0x00002301, 0xFFFFF267, 0x000003F7, 0x00002301, 0xFFFFF267, 0x000003F7 }, { 0x0213F0FE99322924, 0x000032C2, 0xFFFFEAC0, 0x000004EA, 0x0000250F, 0xFFFFF1A2, 0x00000413, 0x0000250F, 0xFFFFF1A2, 0x00000413 }, { 0x0213F0FE991C2944, 0x00003722, 0xFFFFE8A6, 0x00000527, 0x000026E4, 0xFFFFF0F5, 0x0000041C, 0x000026E4, 0xFFFFF0F5, 0x0000041C }, { 0x0213F0FE992C48C4, 0x000035A4, 0xFFFFE822, 0x00000558, 0x000022F2, 0xFFFFF288, 0x000003E8, 0x000022F2, 0xFFFFF288, 0x000003E8 }, { 0x0213F0FE99280924, 0x00002CD1, 0xFFFFEDC6, 0x0000048C, 0x00001EAF, 0xFFFFF53D, 0x00000396, 0x00001EAF, 0xFFFFF53D, 0x00000396 }, { 0x0213F0FE99301164, 0x00003156, 0xFFFFEA60, 0x0000050B, 0x00001BBC, 0xFFFFF704, 0x00000335, 0x00001BBC, 0xFFFFF704, 0x00000335 }, { 0x0213F0FE992C5104, 0x000034A1, 0xFFFFE8C0, 0x00000544, 0x00002528, 0xFFFFF105, 0x0000042C, 0x00002528, 0xFFFFF105, 0x0000042C }, { 0x0213F0FE99323064, 0x000032CE, 0xFFFFE9D3, 0x00000520, 0x000021FF, 0xFFFFF2FD, 0x000003E4, 0x000021FF, 0xFFFFF2FD, 0x000003E4 }, { 0x0213F0FE991A50A4, 0x000034A0, 0xFFFFE823, 0x0000056D, 0x0000256F, 0xFFFFF047, 0x0000045A, 0x0000256F, 0xFFFFF047, 0x0000045A }, { 0x0213F0FE99303944, 0x00003109, 0xFFFFEBD6, 0x000004BF, 0x000022D4, 0xFFFFF32D, 0x000003D0, 0x000022D4, 0xFFFFF32D, 0x000003D0 }, { 0x0213F0FE992C1164, 0x000030B7, 0xFFFFEAF0, 0x000004F3, 0x00001AEC, 0xFFFFF7A9, 0x0000031B, 0x00001AEC, 0xFFFFF7A9, 0x0000031B }, { 0x0213F0FE992C39A4, 0x00003078, 0xFFFFEBA4, 0x000004CF, 0x00001E7A, 0xFFFFF5AF, 0x0000036B, 0x00001E7A, 0xFFFFF5AF, 0x0000036B }, { 0x0213F0FE99304124, 0x00003442, 0xFFFFE998, 0x00000518, 0x000025EA, 0xFFFFF0F3, 0x0000042B, 0x000025EA, 0xFFFFF0F3, 0x0000042B }, { 0x0213F0FE993021A4, 0x000031CB, 0xFFFFEA80, 0x00000501, 0x000020A3, 0xFFFFF403, 0x000003B2, 0x000020A3, 0xFFFFF403, 0x000003B2 }, { 0x0213F0FE992A2984, 0x00002947, 0xFFFFF018, 0x00000433, 0x00001BA5, 0xFFFFF75C, 0x00000340, 0x00001BA5, 0xFFFFF75C, 0x00000340 }, { 0x0213F0FE992C3984, 0x000033F9, 0xFFFFE99D, 0x00000518, 0x00002231, 0xFFFFF358, 0x000003C5, 0x00002231, 0xFFFFF358, 0x000003C5 }, { 0x0213F0FE99321124, 0x00003131, 0xFFFFEA45, 0x00000513, 0x00001973, 0xFFFFF85E, 0x00000301, 0x00001973, 0xFFFFF85E, 0x00000301 }, { 0x0213F0FE991C29A4, 0x00003571, 0xFFFFE8AC, 0x00000539, 0x00002049, 0xFFFFF49C, 0x0000038D, 0x00002049, 0xFFFFF49C, 0x0000038D }, { 0x0213F0FE992E3864, 0x0000309E, 0xFFFFEB1D, 0x000004E8, 0x000019ED, 0xFFFFF86E, 0x000002F8, 0x000019ED, 0xFFFFF86E, 0x000002F8 }, { 0x0213F0FE99302984, 0x00003091, 0xFFFFEB9B, 0x000004CC, 0x00001D2C, 0xFFFFF6A2, 0x0000033D, 0x00001D2C, 0xFFFFF6A2, 0x0000033D }, { 0x0213F0FE993008E4, 0x00003069, 0xFFFFEAFD, 0x000004F8, 0x00001E82, 0xFFFFF51C, 0x0000038D, 0x00001E82, 0xFFFFF51C, 0x0000038D }, { 0x0213F0FE992210A4, 0x00003459, 0xFFFFE7F2, 0x00000572, 0x00001DA7, 0xFFFFF552, 0x0000037F, 0x00001DA7, 0xFFFFF552, 0x0000037F }, { 0x0213F0FE99321104, 0x0000304B, 0xFFFFEAFB, 0x000004F4, 0x0000191E, 0xFFFFF8BD, 0x000002EE, 0x0000191E, 0xFFFFF8BD, 0x000002EE }, { 0x0213F0FE993020C4, 0x0000346E, 0xFFFFEA07, 0x000004FD, 0x00002767, 0xFFFFF058, 0x00000440, 0x00002767, 0xFFFFF058, 0x00000440 }, { 0x0213F0FE992E3084, 0x000030B5, 0xFFFFEBC1, 0x000004C1, 0x00001B3C, 0xFFFFF818, 0x000002FD, 0x00001B3C, 0xFFFFF818, 0x000002FD }, { 0x0213F0FE99300904, 0x0000321F, 0xFFFFE9EA, 0x00000524, 0x00002380, 0xFFFFF1C2, 0x0000041A, 0x00002380, 0xFFFFF1C2, 0x0000041A }, { 0x0213F0FE992E3044, 0x000030DF, 0xFFFFEB37, 0x000004E2, 0x00001E3C, 0xFFFFF5BB, 0x00000369, 0x00001E3C, 0xFFFFF5BB, 0x00000369 }, { 0x0213F0FE992848A4, 0x000027E0, 0xFFFFF0E2, 0x00000416, 0x00001A6A, 0xFFFFF820, 0x00000321, 0x00001A6A, 0xFFFFF820, 0x00000321 }, { 0x0213F0FE991A1084, 0x00002FA1, 0xFFFFEB63, 0x000004E7, 0x0000196B, 0xFFFFF880, 0x000002FB, 0x0000196B, 0xFFFFF880, 0x000002FB }, { 0x0213F0FE991C1084, 0x0000310C, 0xFFFFEAAF, 0x000004FC, 0x000019EF, 0xFFFFF850, 0x000002FD, 0x000019EF, 0xFFFFF850, 0x000002FD }, { 0x0213F0FE99323904, 0x0000334A, 0xFFFFEA07, 0x0000050B, 0x00002380, 0xFFFFF26F, 0x000003F0, 0x00002380, 0xFFFFF26F, 0x000003F0 }, { 0x0213F0FE99302944, 0x00002FF9, 0xFFFFECDC, 0x00000492, 0x00002297, 0xFFFFF394, 0x000003BF, 0x00002297, 0xFFFFF394, 0x000003BF }, { 0x0213F0FE992C2164, 0x0000354B, 0xFFFFE894, 0x00000546, 0x000024C4, 0xFFFFF16C, 0x0000041B, 0x000024C4, 0xFFFFF16C, 0x0000041B }, { 0x0213F0FE99220924, 0x00003245, 0xFFFFE92F, 0x00000544, 0x00001829, 0xFFFFF8F1, 0x000002EA, 0x00001829, 0xFFFFF8F1, 0x000002EA }, { 0x0213F0FE992E4884, 0x0000302F, 0xFFFFEB51, 0x000004E3, 0x0000199F, 0xFFFFF894, 0x000002F4, 0x0000199F, 0xFFFFF894, 0x000002F4 }, { 0x0213F0FE992E18C4, 0x00002F54, 0xFFFFEC86, 0x000004A6, 0x00001A6F, 0xFFFFF891, 0x000002EC, 0x00001A6F, 0xFFFFF891, 0x000002EC }, { 0x0213F0FE99284164, 0x00002908, 0xFFFFF0D8, 0x0000040A, 0x00001C9B, 0xFFFFF729, 0x00000342, 0x00001C9B, 0xFFFFF729, 0x00000342 }, { 0x0213F0FE99302964, 0x000031D9, 0xFFFFEB40, 0x000004D7, 0x000023F5, 0xFFFFF259, 0x000003F4, 0x000023F5, 0xFFFFF259, 0x000003F4 }, { 0x0213F0FE993048E4, 0x000034C8, 0xFFFFE8C6, 0x0000053F, 0x00002313, 0xFFFFF280, 0x000003EC, 0x00002313, 0xFFFFF280, 0x000003EC }, { 0x0213F0FE993050C4, 0x000037D1, 0xFFFFE6A1, 0x0000059C, 0x00002C6A, 0xFFFFEBFF, 0x00000504, 0x00002C6A, 0xFFFFEBFF, 0x00000504 }, { 0x0213F0FE99321964, 0x000030E9, 0xFFFFEA6B, 0x0000050F, 0x00001A2D, 0xFFFFF7DF, 0x00000316, 0x00001A2D, 0xFFFFF7DF, 0x00000316 }, { 0x0213F0FE99302084, 0x0000323D, 0xFFFFEA95, 0x000004F4, 0x00001ED2, 0xFFFFF584, 0x0000036C, 0x00001ED2, 0xFFFFF584, 0x0000036C }, { 0x0213F0FE992C3024, 0x000033D6, 0xFFFFE9DB, 0x00000510, 0x000027A7, 0xFFFFEFC7, 0x0000045E, 0x000027A7, 0xFFFFEFC7, 0x0000045E }, { 0x0213F0FE991C3164, 0x00003444, 0xFFFFE98A, 0x00000517, 0x000020FD, 0xFFFFF43F, 0x0000039D, 0x000020FD, 0xFFFFF43F, 0x0000039D }, { 0x0213F0FE992808E4, 0x00002987, 0xFFFFEFA1, 0x0000044B, 0x00001B06, 0xFFFFF788, 0x0000033C, 0x00001B06, 0xFFFFF788, 0x0000033C }, { 0x0213F0FE992C28E4, 0x0000311D, 0xFFFFED20, 0x00000474, 0x000025DA, 0xFFFFF223, 0x000003F0, 0x000025DA, 0xFFFFF223, 0x000003F0 }, { 0x0213F0FE992C1124, 0x000032A2, 0xFFFFEA0A, 0x0000050D, 0x00001D48, 0xFFFFF659, 0x0000034A, 0x00001D48, 0xFFFFF659, 0x0000034A }, { 0x0213F0FE992208E4, 0x00003110, 0xFFFFE9EA, 0x00000529, 0x00001786, 0xFFFFF958, 0x000002DB, 0x00001786, 0xFFFFF958, 0x000002DB }, { 0x0213F0FE992821A4, 0x000027F2, 0xFFFFF174, 0x000003F7, 0x00001C7A, 0xFFFFF72A, 0x00000348, 0x00001C7A, 0xFFFFF72A, 0x00000348 }, { 0x0213F0FE991C10E4, 0x000031DB, 0xFFFFEA7D, 0x000004FB, 0x000019C4, 0xFFFFF8B1, 0x000002E6, 0x000019C4, 0xFFFFF8B1, 0x000002E6 }, { 0x0213F0FE992C1104, 0x00003158, 0xFFFFEAAC, 0x000004FA, 0x00001BC1, 0xFFFFF737, 0x0000032B, 0x00001BC1, 0xFFFFF737, 0x0000032B }, { 0x0213F0FE993010C4, 0x00002F36, 0xFFFFEBF9, 0x000004CA, 0x00001A2A, 0xFFFFF83F, 0x00000303, 0x00001A2A, 0xFFFFF83F, 0x00000303 }, { 0x0213F0FE993238A4, 0x000032B4, 0xFFFFEA72, 0x000004FA, 0x000021FF, 0xFFFFF378, 0x000003C5, 0x000021FF, 0xFFFFF378, 0x000003C5 }, { 0x0213F0FE99303164, 0x00003262, 0xFFFFEAFA, 0x000004DF, 0x00002441, 0xFFFFF237, 0x000003F6, 0x00002441, 0xFFFFF237, 0x000003F6 }, { 0x0213F0FE99303924, 0x0000336A, 0xFFFFEAFB, 0x000004D1, 0x00002746, 0xFFFFF0B8, 0x0000042B, 0x00002746, 0xFFFFF0B8, 0x0000042B }, { 0x0213F0FE991A4084, 0x000032E5, 0xFFFFE923, 0x00000541, 0x00001DF0, 0xFFFFF552, 0x00000380, 0x00001DF0, 0xFFFFF552, 0x00000380 }, { 0x0213F0FE99304064, 0x000035D1, 0xFFFFE80B, 0x0000055F, 0x00002780, 0xFFFFEF74, 0x0000046F, 0x00002780, 0xFFFFEF74, 0x0000046F }, { 0x0213F0FE993028A4, 0x000033EC, 0xFFFFEA48, 0x000004F4, 0x0000269F, 0xFFFFF0D8, 0x0000042A, 0x0000269F, 0xFFFFF0D8, 0x0000042A }, { 0x0213F0FE99323884, 0x000030C4, 0xFFFFEB39, 0x000004E2, 0x00001B44, 0xFFFFF7AA, 0x00000318, 0x00001B44, 0xFFFFF7AA, 0x00000318 }, { 0x0213F0FE99281144, 0x00002926, 0xFFFFF0AF, 0x0000040E, 0x0000194E, 0xFFFFF959, 0x000002E2, 0x0000194E, 0xFFFFF959, 0x000002E2 }, { 0x0213F0FE992C10C4, 0x00003141, 0xFFFFEAAF, 0x000004F6, 0x00001864, 0xFFFFF97C, 0x000002C6, 0x00001864, 0xFFFFF97C, 0x000002C6 }, { 0x0213F0FE99301064, 0x000030B2, 0xFFFFEB7C, 0x000004DB, 0x000022CE, 0xFFFFF2B5, 0x000003F0, 0x000022CE, 0xFFFFF2B5, 0x000003F0 }, { 0x0213F0FE99301944, 0x0000318C, 0xFFFFEAC7, 0x000004F6, 0x00002113, 0xFFFFF3CA, 0x000003BD, 0x00002113, 0xFFFFF3CA, 0x000003BD }, { 0x0213F0FE992E1104, 0x00002FD2, 0xFFFFEB8F, 0x000004D9, 0x00001996, 0xFFFFF89F, 0x000002F1, 0x00001996, 0xFFFFF89F, 0x000002F1 }, { 0x0213F0FE991A28A4, 0x0000310D, 0xFFFFEB25, 0x000004E7, 0x00001F67, 0xFFFFF4EF, 0x0000038E, 0x00001F67, 0xFFFFF4EF, 0x0000038E }, { 0x0213F0FE992A4964, 0x00002BBC, 0xFFFFEE68, 0x00000477, 0x00002050, 0xFFFFF41D, 0x000003C8, 0x00002050, 0xFFFFF41D, 0x000003C8 }, { 0x0213F0FE99302104, 0x00003096, 0xFFFFECED, 0x00000486, 0x000024C9, 0xFFFFF278, 0x000003E7, 0x000024C9, 0xFFFFF278, 0x000003E7 }, { 0x0213F0FE992C10A4, 0x00003401, 0xFFFFE8F1, 0x0000053C, 0x00001E75, 0xFFFFF55C, 0x00000376, 0x00001E75, 0xFFFFF55C, 0x00000376 }, { 0x0213F0FE99302844, 0x0000319E, 0xFFFFEAB1, 0x000004F8, 0x00001EA3, 0xFFFFF567, 0x00000378, 0x00001EA3, 0xFFFFF567, 0x00000378 }, { 0x0213F0FE99322964, 0x000030FD, 0xFFFFEB4C, 0x000004DB, 0x00001CA6, 0xFFFFF6E8, 0x00000335, 0x00001CA6, 0xFFFFF6E8, 0x00000335 }, { 0x0213F0FE992E40A4, 0x000030D6, 0xFFFFEB1A, 0x000004E4, 0x00001A0D, 0xFFFFF87D, 0x000002EF, 0x00001A0D, 0xFFFFF87D, 0x000002EF }, { 0x0213F0FE992C2124, 0x0000324B, 0xFFFFEB17, 0x000004D9, 0x00002225, 0xFFFFF3A8, 0x000003BA, 0x00002225, 0xFFFFF3A8, 0x000003BA }, { 0x0213F0FE99284084, 0x00002A00, 0xFFFFF02E, 0x00000424, 0x00001E21, 0xFFFFF61D, 0x0000036C, 0x00001E21, 0xFFFFF61D, 0x0000036C }, { 0x0213F0FE992A48A4, 0x000029CF, 0xFFFFEF53, 0x00000457, 0x00001B11, 0xFFFFF772, 0x0000033D, 0x00001B11, 0xFFFFF772, 0x0000033D }, { 0x0213F0FE991A30A4, 0x000032A1, 0xFFFFEA63, 0x000004FB, 0x00001F83, 0xFFFFF516, 0x0000037E, 0x00001F83, 0xFFFFF516, 0x0000037E }, { 0x0213F0FE992E20C4, 0x0000305C, 0xFFFFEC14, 0x000004B5, 0x00001D0B, 0xFFFFF6ED, 0x00000332, 0x00001D0B, 0xFFFFF6ED, 0x00000332 }, { 0x0213F0FE992C1064, 0x00003467, 0xFFFFE8D5, 0x00000543, 0x0000243F, 0xFFFFF190, 0x00000418, 0x0000243F, 0xFFFFF190, 0x00000418 }, { 0x0213F0FE992A2064, 0x00002796, 0xFFFFF133, 0x00000409, 0x00001903, 0xFFFFF91C, 0x000002FC, 0x00001903, 0xFFFFF91C, 0x000002FC }, { 0x0213F0FE99302164, 0x000031F6, 0xFFFFEAB7, 0x000004F5, 0x000022B9, 0xFFFFF2D0, 0x000003E6, 0x000022B9, 0xFFFFF2D0, 0x000003E6 }, { 0x0213F0FE992E5104, 0x00003196, 0xFFFFEA76, 0x00000503, 0x00001CC5, 0xFFFFF67D, 0x0000034A, 0x00001CC5, 0xFFFFF67D, 0x0000034A }, { 0x0213F0FE99321144, 0x00002F9E, 0xFFFFEAD9, 0x00000505, 0x000017C1, 0xFFFFF93D, 0x000002DF, 0x000017C1, 0xFFFFF93D, 0x000002DF }, { 0x0213F0FE992E2124, 0x00002FBC, 0xFFFFEC75, 0x000004A8, 0x00001D6D, 0xFFFFF6AC, 0x0000033D, 0x00001D6D, 0xFFFFF6AC, 0x0000033D }, { 0x0213F0FE992C38A4, 0x00003541, 0xFFFFE921, 0x00000524, 0x00002662, 0xFFFFF0CB, 0x0000042B, 0x00002662, 0xFFFFF0CB, 0x0000042B }, { 0x0213F0FE992A21A4, 0x00002953, 0xFFFFEF76, 0x00000459, 0x00001C05, 0xFFFFF6A0, 0x00000368, 0x00001C05, 0xFFFFF6A0, 0x00000368 }, { 0x0213F0FE992C4924, 0x000034BC, 0xFFFFE8DD, 0x00000536, 0x0000210E, 0xFFFFF3F4, 0x000003A8, 0x0000210E, 0xFFFFF3F4, 0x000003A8 }, { 0x0213F0FE992C29A4, 0x000034BE, 0xFFFFE916, 0x0000052F, 0x000024A1, 0xFFFFF1A6, 0x00000410, 0x000024A1, 0xFFFFF1A6, 0x00000410 }, { 0x0213F0FE99304964, 0x000037B5, 0xFFFFE7A9, 0x0000055B, 0x000028A1, 0xFFFFEF51, 0x00000467, 0x000028A1, 0xFFFFEF51, 0x00000467 }, { 0x0213F0FE99301104, 0x00002FC5, 0xFFFFEBBE, 0x000004D1, 0x00001BA5, 0xFFFFF757, 0x00000328, 0x00001BA5, 0xFFFFF757, 0x00000328 }, { 0x0213F0FE993040A4, 0x000033CB, 0xFFFFE944, 0x0000052B, 0x00001FBE, 0xFFFFF4B1, 0x0000038C, 0x00001FBE, 0xFFFFF4B1, 0x0000038C }, { 0x0213F0FE99301844, 0x000030AE, 0xFFFFEBA0, 0x000004D3, 0x00002268, 0xFFFFF316, 0x000003DD, 0x00002268, 0xFFFFF316, 0x000003DD }, { 0x0213F0FE992C20A4, 0x00002F90, 0xFFFFEC5A, 0x000004B0, 0x00001C3A, 0xFFFFF752, 0x00000323, 0x00001C3A, 0xFFFFF752, 0x00000323 }, { 0x0213F0FE992E38E4, 0x00003113, 0xFFFFEB91, 0x000004C8, 0x00001E3C, 0xFFFFF623, 0x0000034E, 0x00001E3C, 0xFFFFF623, 0x0000034E }, { 0x0213F0FE99323984, 0x0000330B, 0xFFFFE94B, 0x00000539, 0x000020E7, 0xFFFFF37E, 0x000003CD, 0x000020E7, 0xFFFFF37E, 0x000003CD }, { 0x0213F0FE992E2864, 0x000031D1, 0xFFFFEACB, 0x000004ED, 0x00001E82, 0xFFFFF5B2, 0x00000365, 0x00001E82, 0xFFFFF5B2, 0x00000365 }, { 0x0213F0FE992A3984, 0x00002CD5, 0xFFFFEDC1, 0x0000048D, 0x000020F8, 0xFFFFF3C1, 0x000003D1, 0x000020F8, 0xFFFFF3C1, 0x000003D1 }, { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 } }; int pp_override_get_default_fuse_value(uint64_t key, struct phm_fuses_default *result) { const struct phm_fuses_default *list = vega10_fuses_default; uint32_t i; for (i = 0; list[i].key != 0; i++) { if (key == list[i].key) { result->key = list[i].key; result->VFT2_m1 = list[i].VFT2_m1; result->VFT2_m2 = list[i].VFT2_m2; result->VFT2_b = list[i].VFT2_b; result->VFT1_m1 = list[i].VFT1_m1; result->VFT1_m2 = list[i].VFT1_m2; result->VFT1_b = list[i].VFT1_b; result->VFT0_m1 = list[i].VFT0_m1; result->VFT0_m2 = list[i].VFT0_m2; result->VFT0_b = list[i].VFT0_b; return 0; } } return -EINVAL; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/pp_overdriver.c
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu.h" #include "tonga_baco.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "dce/dce_10_0_d.h" #include "dce/dce_10_0_sh_mask.h" #include "smu/smu_7_1_2_d.h" #include "smu/smu_7_1_2_sh_mask.h" static const struct baco_cmd_entry gpio_tbl[] = { { CMD_WRITE, mmGPIOPAD_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_PD_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_PU_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_MASK, 0, 0, 0, 0xff77ffff }, { CMD_WRITE, mmDC_GPIO_DVODATA_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmDC_GPIO_DVODATA_MASK, 0, 0, 0, 0xffffffff }, { CMD_WRITE, mmDC_GPIO_GENERIC_EN, 0, 0, 0, 0x0 }, { CMD_READMODIFYWRITE, mmDC_GPIO_GENERIC_MASK, 0, 0, 0, 0x03333333 }, { CMD_WRITE, mmDC_GPIO_SYNCA_EN, 0, 0, 0, 0x0 }, { CMD_READMODIFYWRITE, mmDC_GPIO_SYNCA_MASK, 0, 0, 0, 0x00001111 } }; static const struct baco_cmd_entry enable_fb_req_rej_tbl[] = { { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, 0xC0300024 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, 0x1, 0x0, 0, 0x1 }, { CMD_WRITE, mmBIF_FB_EN, 0, 0, 0, 0x0 } }; static const struct baco_cmd_entry use_bclk_tbl[] = { { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK, CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL_2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL_2__SPLL_BYPASS_CHG_MASK, CG_SPLL_FUNC_CNTL_2__SPLL_BYPASS_CHG__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_STATUS }, { CMD_WAITFOR, mmGCK_SMC_IND_DATA, CG_SPLL_STATUS__SPLL_CHG_STATUS_MASK, 0, 0xffffffff, 0x2 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL_2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL_2__SPLL_BYPASS_CHG_MASK, CG_SPLL_FUNC_CNTL_2__SPLL_BYPASS_CHG__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL_2__SPLL_CTLREQ_CHG_MASK, CG_SPLL_FUNC_CNTL_2__SPLL_CTLREQ_CHG__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_STATUS }, { CMD_WAITFOR, mmGCK_SMC_IND_DATA, CG_SPLL_STATUS__SPLL_CHG_STATUS_MASK, 0, 0xffffffff, 0x2 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL_2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL_2__SPLL_CTLREQ_CHG_MASK, CG_SPLL_FUNC_CNTL_2__SPLL_CTLREQ_CHG__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, 0xC0500170 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, 0x4000000, 0x1a, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixMPLL_BYPASSCLK_SEL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MPLL_BYPASSCLK_SEL__MPLL_CLKOUT_SEL_MASK, MPLL_BYPASSCLK_SEL__MPLL_CLKOUT_SEL__SHIFT, 0, 0x2 }, { CMD_READMODIFYWRITE, mmMPLL_CNTL_MODE, MPLL_CNTL_MODE__MPLL_SW_DIR_CONTROL_MASK, MPLL_CNTL_MODE__MPLL_SW_DIR_CONTROL__SHIFT, 0, 0x1 }, { CMD_READMODIFYWRITE, mmMPLL_CNTL_MODE, MPLL_CNTL_MODE__MPLL_MCLK_SEL_MASK, MPLL_CNTL_MODE__MPLL_MCLK_SEL__SHIFT, 0, 0x0 } }; static const struct baco_cmd_entry turn_off_plls_tbl[] = { { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_SPLL_FUNC_CNTL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL__SPLL_RESET_MASK, CG_SPLL_FUNC_CNTL__SPLL_RESET__SHIFT, 0, 0x1 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_SPLL_FUNC_CNTL__SPLL_PWRON_MASK, CG_SPLL_FUNC_CNTL__SPLL_PWRON__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, 0xC0500170 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, 0x2000000, 0x19, 0, 0x1 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, 0x8000000, 0x1b, 0, 0x0 }, { CMD_READMODIFYWRITE, mmMPLL_CNTL_MODE, MPLL_CNTL_MODE__GLOBAL_MPLL_RESET_MASK, MPLL_CNTL_MODE__GLOBAL_MPLL_RESET__SHIFT, 0, 0x1 }, { CMD_WRITE, mmMPLL_CONTROL, 0, 0, 0, 0x00000006 }, { CMD_WRITE, mmMC_IO_RXCNTL_DPHY0_D0, 0, 0, 0, 0x00007740 }, { CMD_WRITE, mmMC_IO_RXCNTL_DPHY0_D1, 0, 0, 0, 0x00007740 }, { CMD_WRITE, mmMC_IO_RXCNTL_DPHY1_D0, 0, 0, 0, 0x00007740 }, { CMD_WRITE, mmMC_IO_RXCNTL_DPHY1_D1, 0, 0, 0, 0x00007740 }, { CMD_READMODIFYWRITE, mmMCLK_PWRMGT_CNTL, MCLK_PWRMGT_CNTL__MRDCK0_PDNB_MASK, MCLK_PWRMGT_CNTL__MRDCK0_PDNB__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmMCLK_PWRMGT_CNTL, MCLK_PWRMGT_CNTL__MRDCK1_PDNB_MASK, MCLK_PWRMGT_CNTL__MRDCK1_PDNB__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmMC_SEQ_CNTL_2, MC_SEQ_CNTL_2__DRST_PU_MASK, MC_SEQ_CNTL_2__DRST_PU__SHIFT, 0, 0x0 }, { CMD_READMODIFYWRITE, mmMC_SEQ_CNTL_2, MC_SEQ_CNTL_2__DRST_PD_MASK, MC_SEQ_CNTL_2__DRST_PD__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_CLKPIN_CNTL_2 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_CLKPIN_CNTL_2__FORCE_BIF_REFCLK_EN_MASK, CG_CLKPIN_CNTL_2__FORCE_BIF_REFCLK_EN__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixMPLL_BYPASSCLK_SEL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MPLL_BYPASSCLK_SEL__MPLL_CLKOUT_SEL_MASK, MPLL_BYPASSCLK_SEL__MPLL_CLKOUT_SEL__SHIFT, 0, 0x4 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixMISC_CLK_CTRL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MISC_CLK_CTRL__DEEP_SLEEP_CLK_SEL_MASK, MISC_CLK_CTRL__DEEP_SLEEP_CLK_SEL__SHIFT, 0, 0x1 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, MISC_CLK_CTRL__ZCLK_SEL_MASK, MISC_CLK_CTRL__ZCLK_SEL__SHIFT, 0, 0x1 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixCG_CLKPIN_CNTL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, CG_CLKPIN_CNTL__BCLK_AS_XCLK_MASK, CG_CLKPIN_CNTL__BCLK_AS_XCLK__SHIFT, 0, 0x0 }, { CMD_WRITE, mmGCK_SMC_IND_INDEX, 0, 0, 0, ixTHM_CLK_CNTL }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, THM_CLK_CNTL__CMON_CLK_SEL_MASK, THM_CLK_CNTL__CMON_CLK_SEL__SHIFT, 0, 0x1 }, { CMD_READMODIFYWRITE, mmGCK_SMC_IND_DATA, THM_CLK_CNTL__TMON_CLK_SEL_MASK, THM_CLK_CNTL__TMON_CLK_SEL__SHIFT, 0, 0x1 } }; static const struct baco_cmd_entry enter_baco_tbl[] = { { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_EN_MASK, BACO_CNTL__BACO_EN__SHIFT, 0, 0x01 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_BIF_SCLK_SWITCH_MASK, BACO_CNTL__BACO_BIF_SCLK_SWITCH__SHIFT, 0, 0x01 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_BIF_SCLK_SWITCH_MASK, 0, 5, 0x40000 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_BCLK_OFF_MASK, BACO_CNTL__BACO_BCLK_OFF__SHIFT, 0, 0x01 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_BCLK_OFF_MASK, 0, 5, 0x02 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ISO_DIS_MASK, BACO_CNTL__BACO_ISO_DIS__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_ISO_DIS_MASK, 0, 5, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ANA_ISO_DIS_MASK, BACO_CNTL__BACO_ANA_ISO_DIS__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_ANA_ISO_DIS_MASK, 0, 5, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_POWER_OFF_MASK, BACO_CNTL__BACO_POWER_OFF__SHIFT, 0, 0x01 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_POWER_OFF_MASK, 0, 5, 0x08 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_MODE_MASK, 0, 0xffffffff, 0x40 } }; #define BACO_CNTL__PWRGOOD_MASK BACO_CNTL__PWRGOOD_GPIO_MASK+BACO_CNTL__PWRGOOD_MEM_MASK+BACO_CNTL__PWRGOOD_DVO_MASK static const struct baco_cmd_entry exit_baco_tbl[] = { { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_RESET_EN_MASK, BACO_CNTL__BACO_RESET_EN__SHIFT, 0, 0x01 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_BCLK_OFF_MASK, BACO_CNTL__BACO_BCLK_OFF__SHIFT, 0, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_POWER_OFF_MASK, BACO_CNTL__BACO_POWER_OFF__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__PWRGOOD_BF_MASK, 0, 0xffffffff, 0x200 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ISO_DIS_MASK, BACO_CNTL__BACO_ISO_DIS__SHIFT, 0, 0x01 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__PWRGOOD_MASK, 0, 5, 0x1c00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ANA_ISO_DIS_MASK, BACO_CNTL__BACO_ANA_ISO_DIS__SHIFT, 0, 0x01 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_BIF_SCLK_SWITCH_MASK, BACO_CNTL__BACO_BIF_SCLK_SWITCH__SHIFT, 0, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_RESET_EN_MASK, BACO_CNTL__BACO_RESET_EN__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__RCU_BIF_CONFIG_DONE_MASK, 0, 5, 0x100 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_EN_MASK, BACO_CNTL__BACO_EN__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_MODE_MASK, 0, 0xffffffff, 0x00 } }; static const struct baco_cmd_entry clean_baco_tbl[] = { { CMD_WRITE, mmBIOS_SCRATCH_6, 0, 0, 0, 0 }, { CMD_WRITE, mmBIOS_SCRATCH_7, 0, 0, 0, 0 } }; static const struct baco_cmd_entry gpio_tbl_iceland[] = { { CMD_WRITE, mmGPIOPAD_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_PD_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_PU_EN, 0, 0, 0, 0x0 }, { CMD_WRITE, mmGPIOPAD_MASK, 0, 0, 0, 0xff77ffff } }; static const struct baco_cmd_entry exit_baco_tbl_iceland[] = { { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_RESET_EN_MASK, BACO_CNTL__BACO_RESET_EN__SHIFT, 0, 0x01 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_BCLK_OFF_MASK, BACO_CNTL__BACO_BCLK_OFF__SHIFT, 0, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_POWER_OFF_MASK, BACO_CNTL__BACO_POWER_OFF__SHIFT, 0, 0x00 }, { CMD_DELAY_MS, 0, 0, 0, 20, 0 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__PWRGOOD_BF_MASK, 0, 0xffffffff, 0x200 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ISO_DIS_MASK, BACO_CNTL__BACO_ISO_DIS__SHIFT, 0, 0x01 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__PWRGOOD_MASK, 0, 5, 0x1c00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_ANA_ISO_DIS_MASK, BACO_CNTL__BACO_ANA_ISO_DIS__SHIFT, 0, 0x01 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_BIF_SCLK_SWITCH_MASK, BACO_CNTL__BACO_BIF_SCLK_SWITCH__SHIFT, 0, 0x00 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_RESET_EN_MASK, BACO_CNTL__BACO_RESET_EN__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__RCU_BIF_CONFIG_DONE_MASK, 0, 5, 0x100 }, { CMD_READMODIFYWRITE, mmBACO_CNTL, BACO_CNTL__BACO_EN_MASK, BACO_CNTL__BACO_EN__SHIFT, 0, 0x00 }, { CMD_WAITFOR, mmBACO_CNTL, BACO_CNTL__BACO_MODE_MASK, 0, 0xffffffff, 0x00 } }; static const struct baco_cmd_entry clean_baco_tbl_iceland[] = { { CMD_WRITE, mmBIOS_SCRATCH_7, 0, 0, 0, 0 } }; int tonga_baco_set_state(struct pp_hwmgr *hwmgr, enum BACO_STATE state) { enum BACO_STATE cur_state; smu7_baco_get_state(hwmgr, &cur_state); if (cur_state == state) /* aisc already in the target state */ return 0; if (state == BACO_STATE_IN) { if (hwmgr->chip_id == CHIP_TOPAZ) baco_program_registers(hwmgr, gpio_tbl_iceland, ARRAY_SIZE(gpio_tbl_iceland)); else baco_program_registers(hwmgr, gpio_tbl, ARRAY_SIZE(gpio_tbl)); baco_program_registers(hwmgr, enable_fb_req_rej_tbl, ARRAY_SIZE(enable_fb_req_rej_tbl)); baco_program_registers(hwmgr, use_bclk_tbl, ARRAY_SIZE(use_bclk_tbl)); baco_program_registers(hwmgr, turn_off_plls_tbl, ARRAY_SIZE(turn_off_plls_tbl)); if (baco_program_registers(hwmgr, enter_baco_tbl, ARRAY_SIZE(enter_baco_tbl))) return 0; } else if (state == BACO_STATE_OUT) { /* HW requires at least 20ms between regulator off and on */ msleep(20); /* Execute Hardware BACO exit sequence */ if (hwmgr->chip_id == CHIP_TOPAZ) { if (baco_program_registers(hwmgr, exit_baco_tbl_iceland, ARRAY_SIZE(exit_baco_tbl_iceland))) { if (baco_program_registers(hwmgr, clean_baco_tbl_iceland, ARRAY_SIZE(clean_baco_tbl_iceland))) return 0; } } else { if (baco_program_registers(hwmgr, exit_baco_tbl, ARRAY_SIZE(exit_baco_tbl))) { if (baco_program_registers(hwmgr, clean_baco_tbl, ARRAY_SIZE(clean_baco_tbl))) return 0; } } } return -EINVAL; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/tonga_baco.c
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "common_baco.h" static bool baco_wait_register(struct pp_hwmgr *hwmgr, u32 reg, u32 mask, u32 value) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); u32 timeout = 5000, data; do { msleep(1); data = RREG32(reg); timeout--; } while (value != (data & mask) && (timeout != 0)); if (timeout == 0) return false; return true; } static bool baco_cmd_handler(struct pp_hwmgr *hwmgr, u32 command, u32 reg, u32 mask, u32 shift, u32 value, u32 timeout) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); u32 data; bool ret = true; switch (command) { case CMD_WRITE: WREG32(reg, value << shift); break; case CMD_READMODIFYWRITE: data = RREG32(reg); data = (data & (~mask)) | (value << shift); WREG32(reg, data); break; case CMD_WAITFOR: ret = baco_wait_register(hwmgr, reg, mask, value); break; case CMD_DELAY_MS: if (timeout) /* Delay in milli Seconds */ msleep(timeout); break; case CMD_DELAY_US: if (timeout) /* Delay in micro Seconds */ udelay(timeout); break; default: dev_warn(adev->dev, "Invalid BACO command.\n"); ret = false; } return ret; } bool baco_program_registers(struct pp_hwmgr *hwmgr, const struct baco_cmd_entry *entry, const u32 array_size) { u32 i, reg = 0; for (i = 0; i < array_size; i++) { if ((entry[i].cmd == CMD_WRITE) || (entry[i].cmd == CMD_READMODIFYWRITE) || (entry[i].cmd == CMD_WAITFOR)) reg = entry[i].reg_offset; if (!baco_cmd_handler(hwmgr, entry[i].cmd, reg, entry[i].mask, entry[i].shift, entry[i].val, entry[i].timeout)) return false; } return true; } bool soc15_baco_program_registers(struct pp_hwmgr *hwmgr, const struct soc15_baco_cmd_entry *entry, const u32 array_size) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); u32 i, reg = 0; for (i = 0; i < array_size; i++) { if ((entry[i].cmd == CMD_WRITE) || (entry[i].cmd == CMD_READMODIFYWRITE) || (entry[i].cmd == CMD_WAITFOR)) reg = adev->reg_offset[entry[i].hwip][entry[i].inst][entry[i].seg] + entry[i].reg_offset; if (!baco_cmd_handler(hwmgr, entry[i].cmd, reg, entry[i].mask, entry[i].shift, entry[i].val, entry[i].timeout)) return false; } return true; }
linux-master
drivers/gpu/drm/amd/pm/powerplay/hwmgr/common_baco.c