python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2015 - 2021 Intel Corporation */ #include <adf_accel_devices.h> #include <adf_common_drv.h> #include <adf_gen2_config.h> #include <adf_gen2_dc.h> #include <adf_gen2_hw_data.h> #include <adf_gen2_pfvf.h> #include <adf_pfvf_vf_msg.h> #include "adf_c62xvf_hw_data.h" static struct adf_hw_device_class c62xiov_class = { .name = ADF_C62XVF_DEVICE_NAME, .type = DEV_C62XVF, .instances = 0 }; static u32 get_accel_mask(struct adf_hw_device_data *self) { return ADF_C62XIOV_ACCELERATORS_MASK; } static u32 get_ae_mask(struct adf_hw_device_data *self) { return ADF_C62XIOV_ACCELENGINES_MASK; } static u32 get_num_accels(struct adf_hw_device_data *self) { return ADF_C62XIOV_MAX_ACCELERATORS; } static u32 get_num_aes(struct adf_hw_device_data *self) { return ADF_C62XIOV_MAX_ACCELENGINES; } static u32 get_misc_bar_id(struct adf_hw_device_data *self) { return ADF_C62XIOV_PMISC_BAR; } static u32 get_etr_bar_id(struct adf_hw_device_data *self) { return ADF_C62XIOV_ETR_BAR; } static enum dev_sku_info get_sku(struct adf_hw_device_data *self) { return DEV_SKU_VF; } static int adf_vf_int_noop(struct adf_accel_dev *accel_dev) { return 0; } static void adf_vf_void_noop(struct adf_accel_dev *accel_dev) { } void adf_init_hw_data_c62xiov(struct adf_hw_device_data *hw_data) { hw_data->dev_class = &c62xiov_class; hw_data->num_banks = ADF_C62XIOV_ETR_MAX_BANKS; hw_data->num_rings_per_bank = ADF_ETR_MAX_RINGS_PER_BANK; hw_data->num_accel = ADF_C62XIOV_MAX_ACCELERATORS; hw_data->num_logical_accel = 1; hw_data->num_engines = ADF_C62XIOV_MAX_ACCELENGINES; hw_data->tx_rx_gap = ADF_C62XIOV_RX_RINGS_OFFSET; hw_data->tx_rings_mask = ADF_C62XIOV_TX_RINGS_MASK; hw_data->ring_to_svc_map = ADF_GEN2_DEFAULT_RING_TO_SRV_MAP; hw_data->alloc_irq = adf_vf_isr_resource_alloc; hw_data->free_irq = adf_vf_isr_resource_free; hw_data->enable_error_correction = adf_vf_void_noop; hw_data->init_admin_comms = adf_vf_int_noop; hw_data->exit_admin_comms = adf_vf_void_noop; hw_data->send_admin_init = adf_vf2pf_notify_init; hw_data->init_arb = adf_vf_int_noop; hw_data->exit_arb = adf_vf_void_noop; hw_data->disable_iov = adf_vf2pf_notify_shutdown; hw_data->get_accel_mask = get_accel_mask; hw_data->get_ae_mask = get_ae_mask; hw_data->get_num_accels = get_num_accels; hw_data->get_num_aes = get_num_aes; hw_data->get_etr_bar_id = get_etr_bar_id; hw_data->get_misc_bar_id = get_misc_bar_id; hw_data->get_sku = get_sku; hw_data->enable_ints = adf_vf_void_noop; hw_data->dev_class->instances++; hw_data->dev_config = adf_gen2_dev_config; adf_devmgr_update_class_index(hw_data); adf_gen2_init_vf_pfvf_ops(&hw_data->pfvf_ops); adf_gen2_init_hw_csr_ops(&hw_data->csr_ops); adf_gen2_init_dc_ops(&hw_data->dc_ops); } void adf_clean_hw_data_c62xiov(struct adf_hw_device_data *hw_data) { hw_data->dev_class->instances--; adf_devmgr_update_class_index(hw_data); }
linux-master
drivers/crypto/intel/qat/qat_c62xvf/adf_c62xvf_hw_data.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <linux/io.h> #include <adf_accel_devices.h> #include <adf_common_drv.h> #include <adf_cfg.h> #include <adf_dbgfs.h> #include "adf_c62xvf_hw_data.h" static const struct pci_device_id adf_pci_tbl[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_QAT_C62X_VF), }, { } }; MODULE_DEVICE_TABLE(pci, adf_pci_tbl); static int adf_probe(struct pci_dev *dev, const struct pci_device_id *ent); static void adf_remove(struct pci_dev *dev); static struct pci_driver adf_driver = { .id_table = adf_pci_tbl, .name = ADF_C62XVF_DEVICE_NAME, .probe = adf_probe, .remove = adf_remove, }; static void adf_cleanup_pci_dev(struct adf_accel_dev *accel_dev) { pci_release_regions(accel_dev->accel_pci_dev.pci_dev); pci_disable_device(accel_dev->accel_pci_dev.pci_dev); } static void adf_cleanup_accel(struct adf_accel_dev *accel_dev) { struct adf_accel_pci *accel_pci_dev = &accel_dev->accel_pci_dev; struct adf_accel_dev *pf; int i; for (i = 0; i < ADF_PCI_MAX_BARS; i++) { struct adf_bar *bar = &accel_pci_dev->pci_bars[i]; if (bar->virt_addr) pci_iounmap(accel_pci_dev->pci_dev, bar->virt_addr); } if (accel_dev->hw_device) { switch (accel_pci_dev->pci_dev->device) { case PCI_DEVICE_ID_INTEL_QAT_C62X_VF: adf_clean_hw_data_c62xiov(accel_dev->hw_device); break; default: break; } kfree(accel_dev->hw_device); accel_dev->hw_device = NULL; } adf_dbgfs_exit(accel_dev); adf_cfg_dev_remove(accel_dev); pf = adf_devmgr_pci_to_accel_dev(accel_pci_dev->pci_dev->physfn); adf_devmgr_rm_dev(accel_dev, pf); } static int adf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct adf_accel_dev *accel_dev; struct adf_accel_dev *pf; struct adf_accel_pci *accel_pci_dev; struct adf_hw_device_data *hw_data; unsigned int i, bar_nr; unsigned long bar_mask; int ret; switch (ent->device) { case PCI_DEVICE_ID_INTEL_QAT_C62X_VF: break; default: dev_err(&pdev->dev, "Invalid device 0x%x.\n", ent->device); return -ENODEV; } accel_dev = kzalloc_node(sizeof(*accel_dev), GFP_KERNEL, dev_to_node(&pdev->dev)); if (!accel_dev) return -ENOMEM; accel_dev->is_vf = true; pf = adf_devmgr_pci_to_accel_dev(pdev->physfn); accel_pci_dev = &accel_dev->accel_pci_dev; accel_pci_dev->pci_dev = pdev; /* Add accel device to accel table */ if (adf_devmgr_add_dev(accel_dev, pf)) { dev_err(&pdev->dev, "Failed to add new accelerator device.\n"); kfree(accel_dev); return -EFAULT; } INIT_LIST_HEAD(&accel_dev->crypto_list); accel_dev->owner = THIS_MODULE; /* Allocate and configure device configuration structure */ hw_data = kzalloc_node(sizeof(*hw_data), GFP_KERNEL, dev_to_node(&pdev->dev)); if (!hw_data) { ret = -ENOMEM; goto out_err; } accel_dev->hw_device = hw_data; adf_init_hw_data_c62xiov(accel_dev->hw_device); /* Get Accelerators and Accelerators Engines masks */ hw_data->accel_mask = hw_data->get_accel_mask(hw_data); hw_data->ae_mask = hw_data->get_ae_mask(hw_data); accel_pci_dev->sku = hw_data->get_sku(hw_data); /* Create device configuration table */ ret = adf_cfg_dev_add(accel_dev); if (ret) goto out_err; /* enable PCI device */ if (pci_enable_device(pdev)) { ret = -EFAULT; goto out_err; } /* set dma identifier */ ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (ret) { dev_err(&pdev->dev, "No usable DMA configuration\n"); goto out_err_disable; } if (pci_request_regions(pdev, ADF_C62XVF_DEVICE_NAME)) { ret = -EFAULT; goto out_err_disable; } /* Find and map all the device's BARS */ i = 0; bar_mask = pci_select_bars(pdev, IORESOURCE_MEM); for_each_set_bit(bar_nr, &bar_mask, ADF_PCI_MAX_BARS * 2) { struct adf_bar *bar = &accel_pci_dev->pci_bars[i++]; bar->base_addr = pci_resource_start(pdev, bar_nr); if (!bar->base_addr) break; bar->size = pci_resource_len(pdev, bar_nr); bar->virt_addr = pci_iomap(accel_pci_dev->pci_dev, bar_nr, 0); if (!bar->virt_addr) { dev_err(&pdev->dev, "Failed to map BAR %d\n", bar_nr); ret = -EFAULT; goto out_err_free_reg; } } pci_set_master(pdev); /* Completion for VF2PF request/response message exchange */ init_completion(&accel_dev->vf.msg_received); adf_dbgfs_init(accel_dev); ret = adf_dev_up(accel_dev, false); if (ret) goto out_err_dev_stop; return ret; out_err_dev_stop: adf_dev_down(accel_dev, false); out_err_free_reg: pci_release_regions(accel_pci_dev->pci_dev); out_err_disable: pci_disable_device(accel_pci_dev->pci_dev); out_err: adf_cleanup_accel(accel_dev); kfree(accel_dev); return ret; } static void adf_remove(struct pci_dev *pdev) { struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev); if (!accel_dev) { pr_err("QAT: Driver removal failed\n"); return; } adf_flush_vf_wq(accel_dev); adf_dev_down(accel_dev, false); adf_cleanup_accel(accel_dev); adf_cleanup_pci_dev(accel_dev); kfree(accel_dev); } static int __init adfdrv_init(void) { request_module("intel_qat"); if (pci_register_driver(&adf_driver)) { pr_err("QAT: Driver initialization failed\n"); return -EFAULT; } return 0; } static void __exit adfdrv_release(void) { pci_unregister_driver(&adf_driver); adf_clean_vf_map(true); } module_init(adfdrv_init); module_exit(adfdrv_release); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel"); MODULE_DESCRIPTION("Intel(R) QuickAssist Technology"); MODULE_VERSION(ADF_DRV_VERSION);
linux-master
drivers/crypto/intel/qat/qat_c62xvf/adf_drv.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Intel Corporation */ #include <linux/container_of.h> #include <linux/dev_printk.h> #include <linux/export.h> #include <linux/jiffies.h> #include <linux/ktime.h> #include <linux/slab.h> #include <linux/workqueue.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_gen4_timer.h" #define ADF_GEN4_TIMER_PERIOD_MS 200 /* This periodic update is used to trigger HB, RL & TL fw events */ static void work_handler(struct work_struct *work) { struct adf_accel_dev *accel_dev; struct adf_timer *timer_ctx; u32 time_periods; timer_ctx = container_of(to_delayed_work(work), struct adf_timer, work_ctx); accel_dev = timer_ctx->accel_dev; adf_misc_wq_queue_delayed_work(&timer_ctx->work_ctx, msecs_to_jiffies(ADF_GEN4_TIMER_PERIOD_MS)); time_periods = div_u64(ktime_ms_delta(ktime_get_real(), timer_ctx->initial_ktime), ADF_GEN4_TIMER_PERIOD_MS); if (adf_send_admin_tim_sync(accel_dev, time_periods)) dev_err(&GET_DEV(accel_dev), "Failed to synchronize qat timer\n"); } int adf_gen4_timer_start(struct adf_accel_dev *accel_dev) { struct adf_timer *timer_ctx; timer_ctx = kzalloc(sizeof(*timer_ctx), GFP_KERNEL); if (!timer_ctx) return -ENOMEM; timer_ctx->accel_dev = accel_dev; accel_dev->timer = timer_ctx; timer_ctx->initial_ktime = ktime_get_real(); INIT_DELAYED_WORK(&timer_ctx->work_ctx, work_handler); adf_misc_wq_queue_delayed_work(&timer_ctx->work_ctx, msecs_to_jiffies(ADF_GEN4_TIMER_PERIOD_MS)); return 0; } EXPORT_SYMBOL_GPL(adf_gen4_timer_start); void adf_gen4_timer_stop(struct adf_accel_dev *accel_dev) { struct adf_timer *timer_ctx = accel_dev->timer; if (!timer_ctx) return; cancel_delayed_work_sync(&timer_ctx->work_ctx); kfree(timer_ctx); accel_dev->timer = NULL; } EXPORT_SYMBOL_GPL(adf_gen4_timer_stop);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen4_timer.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/mutex.h> #include <linux/list.h> #include "adf_cfg.h" #include "adf_common_drv.h" static LIST_HEAD(accel_table); static LIST_HEAD(vfs_table); static DEFINE_MUTEX(table_lock); static u32 num_devices; static u8 id_map[ADF_MAX_DEVICES]; struct vf_id_map { u32 bdf; u32 id; u32 fake_id; bool attached; struct list_head list; }; static int adf_get_vf_id(struct adf_accel_dev *vf) { return ((7 * (PCI_SLOT(accel_to_pci_dev(vf)->devfn) - 1)) + PCI_FUNC(accel_to_pci_dev(vf)->devfn) + (PCI_SLOT(accel_to_pci_dev(vf)->devfn) - 1)); } static int adf_get_vf_num(struct adf_accel_dev *vf) { return (accel_to_pci_dev(vf)->bus->number << 8) | adf_get_vf_id(vf); } static struct vf_id_map *adf_find_vf(u32 bdf) { struct list_head *itr; list_for_each(itr, &vfs_table) { struct vf_id_map *ptr = list_entry(itr, struct vf_id_map, list); if (ptr->bdf == bdf) return ptr; } return NULL; } static int adf_get_vf_real_id(u32 fake) { struct list_head *itr; list_for_each(itr, &vfs_table) { struct vf_id_map *ptr = list_entry(itr, struct vf_id_map, list); if (ptr->fake_id == fake) return ptr->id; } return -1; } /** * adf_clean_vf_map() - Cleans VF id mapings * * Function cleans internal ids for virtual functions. * @vf: flag indicating whether mappings is cleaned * for vfs only or for vfs and pfs */ void adf_clean_vf_map(bool vf) { struct vf_id_map *map; struct list_head *ptr, *tmp; mutex_lock(&table_lock); list_for_each_safe(ptr, tmp, &vfs_table) { map = list_entry(ptr, struct vf_id_map, list); if (map->bdf != -1) { id_map[map->id] = 0; num_devices--; } if (vf && map->bdf == -1) continue; list_del(ptr); kfree(map); } mutex_unlock(&table_lock); } EXPORT_SYMBOL_GPL(adf_clean_vf_map); /** * adf_devmgr_update_class_index() - Update internal index * @hw_data: Pointer to internal device data. * * Function updates internal dev index for VFs */ void adf_devmgr_update_class_index(struct adf_hw_device_data *hw_data) { struct adf_hw_device_class *class = hw_data->dev_class; struct list_head *itr; int i = 0; list_for_each(itr, &accel_table) { struct adf_accel_dev *ptr = list_entry(itr, struct adf_accel_dev, list); if (ptr->hw_device->dev_class == class) ptr->hw_device->instance_id = i++; if (i == class->instances) break; } } EXPORT_SYMBOL_GPL(adf_devmgr_update_class_index); static unsigned int adf_find_free_id(void) { unsigned int i; for (i = 0; i < ADF_MAX_DEVICES; i++) { if (!id_map[i]) { id_map[i] = 1; return i; } } return ADF_MAX_DEVICES + 1; } /** * adf_devmgr_add_dev() - Add accel_dev to the acceleration framework * @accel_dev: Pointer to acceleration device. * @pf: Corresponding PF if the accel_dev is a VF * * Function adds acceleration device to the acceleration framework. * To be used by QAT device specific drivers. * * Return: 0 on success, error code otherwise. */ int adf_devmgr_add_dev(struct adf_accel_dev *accel_dev, struct adf_accel_dev *pf) { struct list_head *itr; int ret = 0; if (num_devices == ADF_MAX_DEVICES) { dev_err(&GET_DEV(accel_dev), "Only support up to %d devices\n", ADF_MAX_DEVICES); return -EFAULT; } mutex_lock(&table_lock); atomic_set(&accel_dev->ref_count, 0); /* PF on host or VF on guest - optimized to remove redundant is_vf */ if (!accel_dev->is_vf || !pf) { struct vf_id_map *map; list_for_each(itr, &accel_table) { struct adf_accel_dev *ptr = list_entry(itr, struct adf_accel_dev, list); if (ptr == accel_dev) { ret = -EEXIST; goto unlock; } } list_add_tail(&accel_dev->list, &accel_table); accel_dev->accel_id = adf_find_free_id(); if (accel_dev->accel_id > ADF_MAX_DEVICES) { ret = -EFAULT; goto unlock; } num_devices++; map = kzalloc(sizeof(*map), GFP_KERNEL); if (!map) { ret = -ENOMEM; goto unlock; } map->bdf = ~0; map->id = accel_dev->accel_id; map->fake_id = map->id; map->attached = true; list_add_tail(&map->list, &vfs_table); } else if (accel_dev->is_vf && pf) { /* VF on host */ struct vf_id_map *map; map = adf_find_vf(adf_get_vf_num(accel_dev)); if (map) { struct vf_id_map *next; accel_dev->accel_id = map->id; list_add_tail(&accel_dev->list, &accel_table); map->fake_id++; map->attached = true; next = list_next_entry(map, list); while (next && &next->list != &vfs_table) { next->fake_id++; next = list_next_entry(next, list); } ret = 0; goto unlock; } map = kzalloc(sizeof(*map), GFP_KERNEL); if (!map) { ret = -ENOMEM; goto unlock; } accel_dev->accel_id = adf_find_free_id(); if (accel_dev->accel_id > ADF_MAX_DEVICES) { kfree(map); ret = -EFAULT; goto unlock; } num_devices++; list_add_tail(&accel_dev->list, &accel_table); map->bdf = adf_get_vf_num(accel_dev); map->id = accel_dev->accel_id; map->fake_id = map->id; map->attached = true; list_add_tail(&map->list, &vfs_table); } mutex_init(&accel_dev->state_lock); unlock: mutex_unlock(&table_lock); return ret; } EXPORT_SYMBOL_GPL(adf_devmgr_add_dev); struct list_head *adf_devmgr_get_head(void) { return &accel_table; } /** * adf_devmgr_rm_dev() - Remove accel_dev from the acceleration framework. * @accel_dev: Pointer to acceleration device. * @pf: Corresponding PF if the accel_dev is a VF * * Function removes acceleration device from the acceleration framework. * To be used by QAT device specific drivers. * * Return: void */ void adf_devmgr_rm_dev(struct adf_accel_dev *accel_dev, struct adf_accel_dev *pf) { mutex_lock(&table_lock); /* PF on host or VF on guest - optimized to remove redundant is_vf */ if (!accel_dev->is_vf || !pf) { id_map[accel_dev->accel_id] = 0; num_devices--; } else if (accel_dev->is_vf && pf) { struct vf_id_map *map, *next; map = adf_find_vf(adf_get_vf_num(accel_dev)); if (!map) { dev_err(&GET_DEV(accel_dev), "Failed to find VF map\n"); goto unlock; } map->fake_id--; map->attached = false; next = list_next_entry(map, list); while (next && &next->list != &vfs_table) { next->fake_id--; next = list_next_entry(next, list); } } unlock: mutex_destroy(&accel_dev->state_lock); list_del(&accel_dev->list); mutex_unlock(&table_lock); } EXPORT_SYMBOL_GPL(adf_devmgr_rm_dev); struct adf_accel_dev *adf_devmgr_get_first(void) { struct adf_accel_dev *dev = NULL; if (!list_empty(&accel_table)) dev = list_first_entry(&accel_table, struct adf_accel_dev, list); return dev; } /** * adf_devmgr_pci_to_accel_dev() - Get accel_dev associated with the pci_dev. * @pci_dev: Pointer to PCI device. * * Function returns acceleration device associated with the given PCI device. * To be used by QAT device specific drivers. * * Return: pointer to accel_dev or NULL if not found. */ struct adf_accel_dev *adf_devmgr_pci_to_accel_dev(struct pci_dev *pci_dev) { struct list_head *itr; mutex_lock(&table_lock); list_for_each(itr, &accel_table) { struct adf_accel_dev *ptr = list_entry(itr, struct adf_accel_dev, list); if (ptr->accel_pci_dev.pci_dev == pci_dev) { mutex_unlock(&table_lock); return ptr; } } mutex_unlock(&table_lock); return NULL; } EXPORT_SYMBOL_GPL(adf_devmgr_pci_to_accel_dev); struct adf_accel_dev *adf_devmgr_get_dev_by_id(u32 id) { struct list_head *itr; int real_id; mutex_lock(&table_lock); real_id = adf_get_vf_real_id(id); if (real_id < 0) goto unlock; id = real_id; list_for_each(itr, &accel_table) { struct adf_accel_dev *ptr = list_entry(itr, struct adf_accel_dev, list); if (ptr->accel_id == id) { mutex_unlock(&table_lock); return ptr; } } unlock: mutex_unlock(&table_lock); return NULL; } int adf_devmgr_verify_id(u32 id) { if (id == ADF_CFG_ALL_DEVICES) return 0; if (adf_devmgr_get_dev_by_id(id)) return 0; return -ENODEV; } static int adf_get_num_dettached_vfs(void) { struct list_head *itr; int vfs = 0; mutex_lock(&table_lock); list_for_each(itr, &vfs_table) { struct vf_id_map *ptr = list_entry(itr, struct vf_id_map, list); if (ptr->bdf != ~0 && !ptr->attached) vfs++; } mutex_unlock(&table_lock); return vfs; } void adf_devmgr_get_num_dev(u32 *num) { *num = num_devices - adf_get_num_dettached_vfs(); } /** * adf_dev_in_use() - Check whether accel_dev is currently in use * @accel_dev: Pointer to acceleration device. * * To be used by QAT device specific drivers. * * Return: 1 when device is in use, 0 otherwise. */ int adf_dev_in_use(struct adf_accel_dev *accel_dev) { return atomic_read(&accel_dev->ref_count) != 0; } EXPORT_SYMBOL_GPL(adf_dev_in_use); /** * adf_dev_get() - Increment accel_dev reference count * @accel_dev: Pointer to acceleration device. * * Increment the accel_dev refcount and if this is the first time * incrementing it during this period the accel_dev is in use, * increment the module refcount too. * To be used by QAT device specific drivers. * * Return: 0 when successful, EFAULT when fail to bump module refcount */ int adf_dev_get(struct adf_accel_dev *accel_dev) { if (atomic_add_return(1, &accel_dev->ref_count) == 1) if (!try_module_get(accel_dev->owner)) return -EFAULT; return 0; } EXPORT_SYMBOL_GPL(adf_dev_get); /** * adf_dev_put() - Decrement accel_dev reference count * @accel_dev: Pointer to acceleration device. * * Decrement the accel_dev refcount and if this is the last time * decrementing it during this period the accel_dev is in use, * decrement the module refcount too. * To be used by QAT device specific drivers. * * Return: void */ void adf_dev_put(struct adf_accel_dev *accel_dev) { if (atomic_sub_return(1, &accel_dev->ref_count) == 0) module_put(accel_dev->owner); } EXPORT_SYMBOL_GPL(adf_dev_put); /** * adf_devmgr_in_reset() - Check whether device is in reset * @accel_dev: Pointer to acceleration device. * * To be used by QAT device specific drivers. * * Return: 1 when the device is being reset, 0 otherwise. */ int adf_devmgr_in_reset(struct adf_accel_dev *accel_dev) { return test_bit(ADF_STATUS_RESTARTING, &accel_dev->status); } EXPORT_SYMBOL_GPL(adf_devmgr_in_reset); /** * adf_dev_started() - Check whether device has started * @accel_dev: Pointer to acceleration device. * * To be used by QAT device specific drivers. * * Return: 1 when the device has started, 0 otherwise */ int adf_dev_started(struct adf_accel_dev *accel_dev) { return test_bit(ADF_STATUS_STARTED, &accel_dev->status); } EXPORT_SYMBOL_GPL(adf_dev_started);
linux-master
drivers/crypto/intel/qat/qat_common/adf_dev_mgr.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/mutex.h> #include <linux/list.h> #include <linux/bitops.h> #include <linux/delay.h> #include "adf_accel_devices.h" #include "adf_cfg.h" #include "adf_common_drv.h" #include "adf_dbgfs.h" #include "adf_heartbeat.h" static LIST_HEAD(service_table); static DEFINE_MUTEX(service_lock); static void adf_service_add(struct service_hndl *service) { mutex_lock(&service_lock); list_add(&service->list, &service_table); mutex_unlock(&service_lock); } int adf_service_register(struct service_hndl *service) { memset(service->init_status, 0, sizeof(service->init_status)); memset(service->start_status, 0, sizeof(service->start_status)); adf_service_add(service); return 0; } static void adf_service_remove(struct service_hndl *service) { mutex_lock(&service_lock); list_del(&service->list); mutex_unlock(&service_lock); } int adf_service_unregister(struct service_hndl *service) { int i; for (i = 0; i < ARRAY_SIZE(service->init_status); i++) { if (service->init_status[i] || service->start_status[i]) { pr_err("QAT: Could not remove active service\n"); return -EFAULT; } } adf_service_remove(service); return 0; } /** * adf_dev_init() - Init data structures and services for the given accel device * @accel_dev: Pointer to acceleration device. * * Initialize the ring data structures and the admin comms and arbitration * services. * * Return: 0 on success, error code otherwise. */ static int adf_dev_init(struct adf_accel_dev *accel_dev) { struct service_hndl *service; struct list_head *list_itr; struct adf_hw_device_data *hw_data = accel_dev->hw_device; int ret; if (!hw_data) { dev_err(&GET_DEV(accel_dev), "Failed to init device - hw_data not set\n"); return -EFAULT; } if (!test_bit(ADF_STATUS_CONFIGURED, &accel_dev->status) && !accel_dev->is_vf) { dev_err(&GET_DEV(accel_dev), "Device not configured\n"); return -EFAULT; } if (adf_init_etr_data(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed initialize etr\n"); return -EFAULT; } if (hw_data->init_device && hw_data->init_device(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed to initialize device\n"); return -EFAULT; } if (hw_data->init_admin_comms && hw_data->init_admin_comms(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed initialize admin comms\n"); return -EFAULT; } if (hw_data->init_arb && hw_data->init_arb(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed initialize hw arbiter\n"); return -EFAULT; } if (adf_ae_init(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed to initialise Acceleration Engine\n"); return -EFAULT; } set_bit(ADF_STATUS_AE_INITIALISED, &accel_dev->status); if (adf_ae_fw_load(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed to load acceleration FW\n"); return -EFAULT; } set_bit(ADF_STATUS_AE_UCODE_LOADED, &accel_dev->status); if (hw_data->alloc_irq(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed to allocate interrupts\n"); return -EFAULT; } set_bit(ADF_STATUS_IRQ_ALLOCATED, &accel_dev->status); hw_data->enable_ints(accel_dev); hw_data->enable_error_correction(accel_dev); ret = hw_data->pfvf_ops.enable_comms(accel_dev); if (ret) return ret; if (!test_bit(ADF_STATUS_CONFIGURED, &accel_dev->status) && accel_dev->is_vf) { if (qat_crypto_vf_dev_config(accel_dev)) return -EFAULT; } adf_heartbeat_init(accel_dev); /* * Subservice initialisation is divided into two stages: init and start. * This is to facilitate any ordering dependencies between services * prior to starting any of the accelerators. */ list_for_each(list_itr, &service_table) { service = list_entry(list_itr, struct service_hndl, list); if (service->event_hld(accel_dev, ADF_EVENT_INIT)) { dev_err(&GET_DEV(accel_dev), "Failed to initialise service %s\n", service->name); return -EFAULT; } set_bit(accel_dev->accel_id, service->init_status); } return 0; } /** * adf_dev_start() - Start acceleration service for the given accel device * @accel_dev: Pointer to acceleration device. * * Function notifies all the registered services that the acceleration device * is ready to be used. * To be used by QAT device specific drivers. * * Return: 0 on success, error code otherwise. */ static int adf_dev_start(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct service_hndl *service; struct list_head *list_itr; int ret; set_bit(ADF_STATUS_STARTING, &accel_dev->status); if (adf_ae_start(accel_dev)) { dev_err(&GET_DEV(accel_dev), "AE Start Failed\n"); return -EFAULT; } set_bit(ADF_STATUS_AE_STARTED, &accel_dev->status); if (hw_data->send_admin_init(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed to send init message\n"); return -EFAULT; } if (hw_data->measure_clock) { ret = hw_data->measure_clock(accel_dev); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed measure device clock\n"); return ret; } } /* Set ssm watch dog timer */ if (hw_data->set_ssm_wdtimer) hw_data->set_ssm_wdtimer(accel_dev); /* Enable Power Management */ if (hw_data->enable_pm && hw_data->enable_pm(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed to configure Power Management\n"); return -EFAULT; } if (hw_data->start_timer) { ret = hw_data->start_timer(accel_dev); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed to start internal sync timer\n"); return ret; } } adf_heartbeat_start(accel_dev); list_for_each(list_itr, &service_table) { service = list_entry(list_itr, struct service_hndl, list); if (service->event_hld(accel_dev, ADF_EVENT_START)) { dev_err(&GET_DEV(accel_dev), "Failed to start service %s\n", service->name); return -EFAULT; } set_bit(accel_dev->accel_id, service->start_status); } clear_bit(ADF_STATUS_STARTING, &accel_dev->status); set_bit(ADF_STATUS_STARTED, &accel_dev->status); if (!list_empty(&accel_dev->crypto_list) && (qat_algs_register() || qat_asym_algs_register())) { dev_err(&GET_DEV(accel_dev), "Failed to register crypto algs\n"); set_bit(ADF_STATUS_STARTING, &accel_dev->status); clear_bit(ADF_STATUS_STARTED, &accel_dev->status); return -EFAULT; } if (!list_empty(&accel_dev->compression_list) && qat_comp_algs_register()) { dev_err(&GET_DEV(accel_dev), "Failed to register compression algs\n"); set_bit(ADF_STATUS_STARTING, &accel_dev->status); clear_bit(ADF_STATUS_STARTED, &accel_dev->status); return -EFAULT; } adf_dbgfs_add(accel_dev); return 0; } /** * adf_dev_stop() - Stop acceleration service for the given accel device * @accel_dev: Pointer to acceleration device. * * Function notifies all the registered services that the acceleration device * is shuting down. * To be used by QAT device specific drivers. * * Return: void */ static void adf_dev_stop(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct service_hndl *service; struct list_head *list_itr; bool wait = false; int ret; if (!adf_dev_started(accel_dev) && !test_bit(ADF_STATUS_STARTING, &accel_dev->status)) return; adf_dbgfs_rm(accel_dev); clear_bit(ADF_STATUS_STARTING, &accel_dev->status); clear_bit(ADF_STATUS_STARTED, &accel_dev->status); if (!list_empty(&accel_dev->crypto_list)) { qat_algs_unregister(); qat_asym_algs_unregister(); } if (!list_empty(&accel_dev->compression_list)) qat_comp_algs_unregister(); list_for_each(list_itr, &service_table) { service = list_entry(list_itr, struct service_hndl, list); if (!test_bit(accel_dev->accel_id, service->start_status)) continue; ret = service->event_hld(accel_dev, ADF_EVENT_STOP); if (!ret) { clear_bit(accel_dev->accel_id, service->start_status); } else if (ret == -EAGAIN) { wait = true; clear_bit(accel_dev->accel_id, service->start_status); } } if (hw_data->stop_timer) hw_data->stop_timer(accel_dev); if (wait) msleep(100); if (test_bit(ADF_STATUS_AE_STARTED, &accel_dev->status)) { if (adf_ae_stop(accel_dev)) dev_err(&GET_DEV(accel_dev), "failed to stop AE\n"); else clear_bit(ADF_STATUS_AE_STARTED, &accel_dev->status); } } /** * adf_dev_shutdown() - shutdown acceleration services and data strucutures * @accel_dev: Pointer to acceleration device * * Cleanup the ring data structures and the admin comms and arbitration * services. */ static void adf_dev_shutdown(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct service_hndl *service; struct list_head *list_itr; if (!hw_data) { dev_err(&GET_DEV(accel_dev), "QAT: Failed to shutdown device - hw_data not set\n"); return; } if (test_bit(ADF_STATUS_AE_UCODE_LOADED, &accel_dev->status)) { adf_ae_fw_release(accel_dev); clear_bit(ADF_STATUS_AE_UCODE_LOADED, &accel_dev->status); } if (test_bit(ADF_STATUS_AE_INITIALISED, &accel_dev->status)) { if (adf_ae_shutdown(accel_dev)) dev_err(&GET_DEV(accel_dev), "Failed to shutdown Accel Engine\n"); else clear_bit(ADF_STATUS_AE_INITIALISED, &accel_dev->status); } list_for_each(list_itr, &service_table) { service = list_entry(list_itr, struct service_hndl, list); if (!test_bit(accel_dev->accel_id, service->init_status)) continue; if (service->event_hld(accel_dev, ADF_EVENT_SHUTDOWN)) dev_err(&GET_DEV(accel_dev), "Failed to shutdown service %s\n", service->name); else clear_bit(accel_dev->accel_id, service->init_status); } adf_heartbeat_shutdown(accel_dev); hw_data->disable_iov(accel_dev); if (test_bit(ADF_STATUS_IRQ_ALLOCATED, &accel_dev->status)) { hw_data->free_irq(accel_dev); clear_bit(ADF_STATUS_IRQ_ALLOCATED, &accel_dev->status); } /* Delete configuration only if not restarting */ if (!test_bit(ADF_STATUS_RESTARTING, &accel_dev->status)) adf_cfg_del_all(accel_dev); if (hw_data->exit_arb) hw_data->exit_arb(accel_dev); if (hw_data->exit_admin_comms) hw_data->exit_admin_comms(accel_dev); adf_cleanup_etr_data(accel_dev); adf_dev_restore(accel_dev); } int adf_dev_restarting_notify(struct adf_accel_dev *accel_dev) { struct service_hndl *service; struct list_head *list_itr; list_for_each(list_itr, &service_table) { service = list_entry(list_itr, struct service_hndl, list); if (service->event_hld(accel_dev, ADF_EVENT_RESTARTING)) dev_err(&GET_DEV(accel_dev), "Failed to restart service %s.\n", service->name); } return 0; } int adf_dev_restarted_notify(struct adf_accel_dev *accel_dev) { struct service_hndl *service; struct list_head *list_itr; list_for_each(list_itr, &service_table) { service = list_entry(list_itr, struct service_hndl, list); if (service->event_hld(accel_dev, ADF_EVENT_RESTARTED)) dev_err(&GET_DEV(accel_dev), "Failed to restart service %s.\n", service->name); } return 0; } static int adf_dev_shutdown_cache_cfg(struct adf_accel_dev *accel_dev) { char services[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = {0}; int ret; ret = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC, ADF_SERVICES_ENABLED, services); adf_dev_stop(accel_dev); adf_dev_shutdown(accel_dev); if (!ret) { ret = adf_cfg_section_add(accel_dev, ADF_GENERAL_SEC); if (ret) return ret; ret = adf_cfg_add_key_value_param(accel_dev, ADF_GENERAL_SEC, ADF_SERVICES_ENABLED, services, ADF_STR); if (ret) return ret; } return 0; } int adf_dev_down(struct adf_accel_dev *accel_dev, bool reconfig) { int ret = 0; if (!accel_dev) return -EINVAL; mutex_lock(&accel_dev->state_lock); if (!adf_dev_started(accel_dev)) { dev_info(&GET_DEV(accel_dev), "Device qat_dev%d already down\n", accel_dev->accel_id); ret = -EINVAL; goto out; } if (reconfig) { ret = adf_dev_shutdown_cache_cfg(accel_dev); goto out; } adf_dev_stop(accel_dev); adf_dev_shutdown(accel_dev); out: mutex_unlock(&accel_dev->state_lock); return ret; } EXPORT_SYMBOL_GPL(adf_dev_down); int adf_dev_up(struct adf_accel_dev *accel_dev, bool config) { int ret = 0; if (!accel_dev) return -EINVAL; mutex_lock(&accel_dev->state_lock); if (adf_dev_started(accel_dev)) { dev_info(&GET_DEV(accel_dev), "Device qat_dev%d already up\n", accel_dev->accel_id); ret = -EALREADY; goto out; } if (config && GET_HW_DATA(accel_dev)->dev_config) { ret = GET_HW_DATA(accel_dev)->dev_config(accel_dev); if (unlikely(ret)) goto out; } ret = adf_dev_init(accel_dev); if (unlikely(ret)) goto out; ret = adf_dev_start(accel_dev); out: mutex_unlock(&accel_dev->state_lock); return ret; } EXPORT_SYMBOL_GPL(adf_dev_up); int adf_dev_restart(struct adf_accel_dev *accel_dev) { int ret = 0; if (!accel_dev) return -EFAULT; adf_dev_down(accel_dev, false); ret = adf_dev_up(accel_dev, false); /* if device is already up return success*/ if (ret == -EALREADY) return 0; return ret; } EXPORT_SYMBOL_GPL(adf_dev_restart);
linux-master
drivers/crypto/intel/qat/qat_common/adf_init.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2022 Intel Corporation */ #include <linux/device.h> #include <linux/errno.h> #include <linux/pci.h> #include "adf_accel_devices.h" #include "adf_cfg.h" #include "adf_common_drv.h" static const char * const state_operations[] = { [DEV_DOWN] = "down", [DEV_UP] = "up", }; static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adf_accel_dev *accel_dev; char *state; accel_dev = adf_devmgr_pci_to_accel_dev(to_pci_dev(dev)); if (!accel_dev) return -EINVAL; state = adf_dev_started(accel_dev) ? "up" : "down"; return sysfs_emit(buf, "%s\n", state); } static ssize_t state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adf_accel_dev *accel_dev; u32 accel_id; int ret; accel_dev = adf_devmgr_pci_to_accel_dev(to_pci_dev(dev)); if (!accel_dev) return -EINVAL; accel_id = accel_dev->accel_id; if (adf_devmgr_in_reset(accel_dev) || adf_dev_in_use(accel_dev)) { dev_info(dev, "Device qat_dev%d is busy\n", accel_id); return -EBUSY; } ret = sysfs_match_string(state_operations, buf); if (ret < 0) return ret; switch (ret) { case DEV_DOWN: dev_info(dev, "Stopping device qat_dev%d\n", accel_id); ret = adf_dev_down(accel_dev, true); if (ret < 0) return -EINVAL; break; case DEV_UP: dev_info(dev, "Starting device qat_dev%d\n", accel_id); ret = adf_dev_up(accel_dev, true); if (ret < 0) { dev_err(dev, "Failed to start device qat_dev%d\n", accel_id); adf_dev_down(accel_dev, true); return ret; } break; default: return -EINVAL; } return count; } static const char * const services_operations[] = { ADF_CFG_CY, ADF_CFG_DC, ADF_CFG_SYM, ADF_CFG_ASYM, ADF_CFG_ASYM_SYM, ADF_CFG_ASYM_DC, ADF_CFG_DC_ASYM, ADF_CFG_SYM_DC, ADF_CFG_DC_SYM, }; static ssize_t cfg_services_show(struct device *dev, struct device_attribute *attr, char *buf) { char services[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = {0}; struct adf_accel_dev *accel_dev; int ret; accel_dev = adf_devmgr_pci_to_accel_dev(to_pci_dev(dev)); if (!accel_dev) return -EINVAL; ret = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC, ADF_SERVICES_ENABLED, services); if (ret) return ret; return sysfs_emit(buf, "%s\n", services); } static int adf_sysfs_update_dev_config(struct adf_accel_dev *accel_dev, const char *services) { return adf_cfg_add_key_value_param(accel_dev, ADF_GENERAL_SEC, ADF_SERVICES_ENABLED, services, ADF_STR); } static ssize_t cfg_services_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adf_hw_device_data *hw_data; struct adf_accel_dev *accel_dev; int ret; ret = sysfs_match_string(services_operations, buf); if (ret < 0) return ret; accel_dev = adf_devmgr_pci_to_accel_dev(to_pci_dev(dev)); if (!accel_dev) return -EINVAL; if (adf_dev_started(accel_dev)) { dev_info(dev, "Device qat_dev%d must be down to reconfigure the service.\n", accel_dev->accel_id); return -EINVAL; } ret = adf_sysfs_update_dev_config(accel_dev, services_operations[ret]); if (ret < 0) return ret; hw_data = GET_HW_DATA(accel_dev); /* Update capabilities mask after change in configuration. * A call to this function is required as capabilities are, at the * moment, tied to configuration */ hw_data->accel_capabilities_mask = hw_data->get_accel_cap(accel_dev); if (!hw_data->accel_capabilities_mask) return -EINVAL; return count; } static ssize_t pm_idle_enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { char pm_idle_enabled[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = {}; struct adf_accel_dev *accel_dev; int ret; accel_dev = adf_devmgr_pci_to_accel_dev(to_pci_dev(dev)); if (!accel_dev) return -EINVAL; ret = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC, ADF_PM_IDLE_SUPPORT, pm_idle_enabled); if (ret) return sysfs_emit(buf, "1\n"); return sysfs_emit(buf, "%s\n", pm_idle_enabled); } static ssize_t pm_idle_enabled_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long pm_idle_enabled_cfg_val; struct adf_accel_dev *accel_dev; bool pm_idle_enabled; int ret; ret = kstrtobool(buf, &pm_idle_enabled); if (ret) return ret; pm_idle_enabled_cfg_val = pm_idle_enabled; accel_dev = adf_devmgr_pci_to_accel_dev(to_pci_dev(dev)); if (!accel_dev) return -EINVAL; if (adf_dev_started(accel_dev)) { dev_info(dev, "Device qat_dev%d must be down to set pm_idle_enabled.\n", accel_dev->accel_id); return -EINVAL; } ret = adf_cfg_add_key_value_param(accel_dev, ADF_GENERAL_SEC, ADF_PM_IDLE_SUPPORT, &pm_idle_enabled_cfg_val, ADF_DEC); if (ret) return ret; return count; } static DEVICE_ATTR_RW(pm_idle_enabled); static DEVICE_ATTR_RW(state); static DEVICE_ATTR_RW(cfg_services); static struct attribute *qat_attrs[] = { &dev_attr_state.attr, &dev_attr_cfg_services.attr, &dev_attr_pm_idle_enabled.attr, NULL, }; static struct attribute_group qat_group = { .attrs = qat_attrs, .name = "qat", }; int adf_sysfs_init(struct adf_accel_dev *accel_dev) { int ret; ret = devm_device_add_group(&GET_DEV(accel_dev), &qat_group); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed to create qat attribute group: %d\n", ret); } return ret; } EXPORT_SYMBOL_GPL(adf_sysfs_init);
linux-master
drivers/crypto/intel/qat/qat_common/adf_sysfs.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/interrupt.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_cfg.h" #include "adf_cfg_strings.h" #include "adf_cfg_common.h" #include "adf_transport_access_macros.h" #include "adf_transport_internal.h" #define ADF_MAX_NUM_VFS 32 static struct workqueue_struct *adf_misc_wq; static int adf_enable_msix(struct adf_accel_dev *accel_dev) { struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; u32 msix_num_entries = hw_data->num_banks + 1; int ret; if (hw_data->set_msix_rttable) hw_data->set_msix_rttable(accel_dev); ret = pci_alloc_irq_vectors(pci_dev_info->pci_dev, msix_num_entries, msix_num_entries, PCI_IRQ_MSIX); if (unlikely(ret < 0)) { dev_err(&GET_DEV(accel_dev), "Failed to allocate %d MSI-X vectors\n", msix_num_entries); return ret; } return 0; } static void adf_disable_msix(struct adf_accel_pci *pci_dev_info) { pci_free_irq_vectors(pci_dev_info->pci_dev); } static irqreturn_t adf_msix_isr_bundle(int irq, void *bank_ptr) { struct adf_etr_bank_data *bank = bank_ptr; struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev); csr_ops->write_csr_int_flag_and_col(bank->csr_addr, bank->bank_number, 0); tasklet_hi_schedule(&bank->resp_handler); return IRQ_HANDLED; } #ifdef CONFIG_PCI_IOV void adf_enable_vf2pf_interrupts(struct adf_accel_dev *accel_dev, u32 vf_mask) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); unsigned long flags; spin_lock_irqsave(&accel_dev->pf.vf2pf_ints_lock, flags); GET_PFVF_OPS(accel_dev)->enable_vf2pf_interrupts(pmisc_addr, vf_mask); spin_unlock_irqrestore(&accel_dev->pf.vf2pf_ints_lock, flags); } void adf_disable_all_vf2pf_interrupts(struct adf_accel_dev *accel_dev) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); unsigned long flags; spin_lock_irqsave(&accel_dev->pf.vf2pf_ints_lock, flags); GET_PFVF_OPS(accel_dev)->disable_all_vf2pf_interrupts(pmisc_addr); spin_unlock_irqrestore(&accel_dev->pf.vf2pf_ints_lock, flags); } static u32 adf_disable_pending_vf2pf_interrupts(struct adf_accel_dev *accel_dev) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u32 pending; spin_lock(&accel_dev->pf.vf2pf_ints_lock); pending = GET_PFVF_OPS(accel_dev)->disable_pending_vf2pf_interrupts(pmisc_addr); spin_unlock(&accel_dev->pf.vf2pf_ints_lock); return pending; } static bool adf_handle_vf2pf_int(struct adf_accel_dev *accel_dev) { bool irq_handled = false; unsigned long vf_mask; /* Get the interrupt sources triggered by VFs, except for those already disabled */ vf_mask = adf_disable_pending_vf2pf_interrupts(accel_dev); if (vf_mask) { struct adf_accel_vf_info *vf_info; int i; /* * Handle VF2PF interrupt unless the VF is malicious and * is attempting to flood the host OS with VF2PF interrupts. */ for_each_set_bit(i, &vf_mask, ADF_MAX_NUM_VFS) { vf_info = accel_dev->pf.vf_info + i; if (!__ratelimit(&vf_info->vf2pf_ratelimit)) { dev_info(&GET_DEV(accel_dev), "Too many ints from VF%d\n", vf_info->vf_nr); continue; } adf_schedule_vf2pf_handler(vf_info); irq_handled = true; } } return irq_handled; } #endif /* CONFIG_PCI_IOV */ static bool adf_handle_pm_int(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; if (hw_data->handle_pm_interrupt && hw_data->handle_pm_interrupt(accel_dev)) return true; return false; } static irqreturn_t adf_msix_isr_ae(int irq, void *dev_ptr) { struct adf_accel_dev *accel_dev = dev_ptr; #ifdef CONFIG_PCI_IOV /* If SR-IOV is enabled (vf_info is non-NULL), check for VF->PF ints */ if (accel_dev->pf.vf_info && adf_handle_vf2pf_int(accel_dev)) return IRQ_HANDLED; #endif /* CONFIG_PCI_IOV */ if (adf_handle_pm_int(accel_dev)) return IRQ_HANDLED; dev_dbg(&GET_DEV(accel_dev), "qat_dev%d spurious AE interrupt\n", accel_dev->accel_id); return IRQ_NONE; } static void adf_free_irqs(struct adf_accel_dev *accel_dev) { struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_irq *irqs = pci_dev_info->msix_entries.irqs; struct adf_etr_data *etr_data = accel_dev->transport; int clust_irq = hw_data->num_banks; int irq, i = 0; if (pci_dev_info->msix_entries.num_entries > 1) { for (i = 0; i < hw_data->num_banks; i++) { if (irqs[i].enabled) { irq = pci_irq_vector(pci_dev_info->pci_dev, i); irq_set_affinity_hint(irq, NULL); free_irq(irq, &etr_data->banks[i]); } } } if (irqs[i].enabled) { irq = pci_irq_vector(pci_dev_info->pci_dev, clust_irq); free_irq(irq, accel_dev); } } static int adf_request_irqs(struct adf_accel_dev *accel_dev) { struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_irq *irqs = pci_dev_info->msix_entries.irqs; struct adf_etr_data *etr_data = accel_dev->transport; int clust_irq = hw_data->num_banks; int ret, irq, i = 0; char *name; /* Request msix irq for all banks unless SR-IOV enabled */ if (!accel_dev->pf.vf_info) { for (i = 0; i < hw_data->num_banks; i++) { struct adf_etr_bank_data *bank = &etr_data->banks[i]; unsigned int cpu, cpus = num_online_cpus(); name = irqs[i].name; snprintf(name, ADF_MAX_MSIX_VECTOR_NAME, "qat%d-bundle%d", accel_dev->accel_id, i); irq = pci_irq_vector(pci_dev_info->pci_dev, i); if (unlikely(irq < 0)) { dev_err(&GET_DEV(accel_dev), "Failed to get IRQ number of device vector %d - %s\n", i, name); ret = irq; goto err; } ret = request_irq(irq, adf_msix_isr_bundle, 0, &name[0], bank); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed to allocate IRQ %d for %s\n", irq, name); goto err; } cpu = ((accel_dev->accel_id * hw_data->num_banks) + i) % cpus; irq_set_affinity_hint(irq, get_cpu_mask(cpu)); irqs[i].enabled = true; } } /* Request msix irq for AE */ name = irqs[i].name; snprintf(name, ADF_MAX_MSIX_VECTOR_NAME, "qat%d-ae-cluster", accel_dev->accel_id); irq = pci_irq_vector(pci_dev_info->pci_dev, clust_irq); if (unlikely(irq < 0)) { dev_err(&GET_DEV(accel_dev), "Failed to get IRQ number of device vector %d - %s\n", i, name); ret = irq; goto err; } ret = request_irq(irq, adf_msix_isr_ae, 0, &name[0], accel_dev); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed to allocate IRQ %d for %s\n", irq, name); goto err; } irqs[i].enabled = true; return ret; err: adf_free_irqs(accel_dev); return ret; } static int adf_isr_alloc_msix_vectors_data(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; u32 msix_num_entries = 1; struct adf_irq *irqs; /* If SR-IOV is disabled (vf_info is NULL), add entries for each bank */ if (!accel_dev->pf.vf_info) msix_num_entries += hw_data->num_banks; irqs = kzalloc_node(msix_num_entries * sizeof(*irqs), GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!irqs) return -ENOMEM; accel_dev->accel_pci_dev.msix_entries.num_entries = msix_num_entries; accel_dev->accel_pci_dev.msix_entries.irqs = irqs; return 0; } static void adf_isr_free_msix_vectors_data(struct adf_accel_dev *accel_dev) { kfree(accel_dev->accel_pci_dev.msix_entries.irqs); accel_dev->accel_pci_dev.msix_entries.irqs = NULL; } static int adf_setup_bh(struct adf_accel_dev *accel_dev) { struct adf_etr_data *priv_data = accel_dev->transport; struct adf_hw_device_data *hw_data = accel_dev->hw_device; int i; for (i = 0; i < hw_data->num_banks; i++) tasklet_init(&priv_data->banks[i].resp_handler, adf_response_handler, (unsigned long)&priv_data->banks[i]); return 0; } static void adf_cleanup_bh(struct adf_accel_dev *accel_dev) { struct adf_etr_data *priv_data = accel_dev->transport; struct adf_hw_device_data *hw_data = accel_dev->hw_device; int i; for (i = 0; i < hw_data->num_banks; i++) { tasklet_disable(&priv_data->banks[i].resp_handler); tasklet_kill(&priv_data->banks[i].resp_handler); } } /** * adf_isr_resource_free() - Free IRQ for acceleration device * @accel_dev: Pointer to acceleration device. * * Function frees interrupts for acceleration device. */ void adf_isr_resource_free(struct adf_accel_dev *accel_dev) { adf_free_irqs(accel_dev); adf_cleanup_bh(accel_dev); adf_disable_msix(&accel_dev->accel_pci_dev); adf_isr_free_msix_vectors_data(accel_dev); } EXPORT_SYMBOL_GPL(adf_isr_resource_free); /** * adf_isr_resource_alloc() - Allocate IRQ for acceleration device * @accel_dev: Pointer to acceleration device. * * Function allocates interrupts for acceleration device. * * Return: 0 on success, error code otherwise. */ int adf_isr_resource_alloc(struct adf_accel_dev *accel_dev) { int ret; ret = adf_isr_alloc_msix_vectors_data(accel_dev); if (ret) goto err_out; ret = adf_enable_msix(accel_dev); if (ret) goto err_free_msix_table; ret = adf_setup_bh(accel_dev); if (ret) goto err_disable_msix; ret = adf_request_irqs(accel_dev); if (ret) goto err_cleanup_bh; return 0; err_cleanup_bh: adf_cleanup_bh(accel_dev); err_disable_msix: adf_disable_msix(&accel_dev->accel_pci_dev); err_free_msix_table: adf_isr_free_msix_vectors_data(accel_dev); err_out: return ret; } EXPORT_SYMBOL_GPL(adf_isr_resource_alloc); /** * adf_init_misc_wq() - Init misc workqueue * * Function init workqueue 'qat_misc_wq' for general purpose. * * Return: 0 on success, error code otherwise. */ int __init adf_init_misc_wq(void) { adf_misc_wq = alloc_workqueue("qat_misc_wq", WQ_MEM_RECLAIM, 0); return !adf_misc_wq ? -ENOMEM : 0; } void adf_exit_misc_wq(void) { if (adf_misc_wq) destroy_workqueue(adf_misc_wq); adf_misc_wq = NULL; } bool adf_misc_wq_queue_work(struct work_struct *work) { return queue_work(adf_misc_wq, work); } bool adf_misc_wq_queue_delayed_work(struct delayed_work *work, unsigned long delay) { return queue_delayed_work(adf_misc_wq, work, delay); }
linux-master
drivers/crypto/intel/qat/qat_common/adf_isr.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Intel Corporation */ #include <linux/debugfs.h> #include "adf_accel_devices.h" #include "adf_cfg.h" #include "adf_common_drv.h" #include "adf_dbgfs.h" #include "adf_fw_counters.h" #include "adf_heartbeat_dbgfs.h" /** * adf_dbgfs_init() - add persistent debugfs entries * @accel_dev: Pointer to acceleration device. * * This function creates debugfs entries that are persistent through a device * state change (from up to down or vice versa). */ void adf_dbgfs_init(struct adf_accel_dev *accel_dev) { char name[ADF_DEVICE_NAME_LENGTH]; void *ret; /* Create dev top level debugfs entry */ snprintf(name, sizeof(name), "%s%s_%s", ADF_DEVICE_NAME_PREFIX, accel_dev->hw_device->dev_class->name, pci_name(accel_dev->accel_pci_dev.pci_dev)); ret = debugfs_create_dir(name, NULL); if (IS_ERR_OR_NULL(ret)) return; accel_dev->debugfs_dir = ret; adf_cfg_dev_dbgfs_add(accel_dev); } EXPORT_SYMBOL_GPL(adf_dbgfs_init); /** * adf_dbgfs_exit() - remove persistent debugfs entries * @accel_dev: Pointer to acceleration device. */ void adf_dbgfs_exit(struct adf_accel_dev *accel_dev) { adf_cfg_dev_dbgfs_rm(accel_dev); debugfs_remove(accel_dev->debugfs_dir); } EXPORT_SYMBOL_GPL(adf_dbgfs_exit); /** * adf_dbgfs_add() - add non-persistent debugfs entries * @accel_dev: Pointer to acceleration device. * * This function creates debugfs entries that are not persistent through * a device state change (from up to down or vice versa). */ void adf_dbgfs_add(struct adf_accel_dev *accel_dev) { if (!accel_dev->debugfs_dir) return; if (!accel_dev->is_vf) { adf_fw_counters_dbgfs_add(accel_dev); adf_heartbeat_dbgfs_add(accel_dev); } } /** * adf_dbgfs_rm() - remove non-persistent debugfs entries * @accel_dev: Pointer to acceleration device. */ void adf_dbgfs_rm(struct adf_accel_dev *accel_dev) { if (!accel_dev->debugfs_dir) return; if (!accel_dev->is_vf) { adf_heartbeat_dbgfs_rm(accel_dev); adf_fw_counters_dbgfs_rm(accel_dev); } }
linux-master
drivers/crypto/intel/qat/qat_common/adf_dbgfs.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2022 Intel Corporation */ #include <linux/bitfield.h> #include <linux/iopoll.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_gen4_pm.h" #include "adf_cfg_strings.h" #include "icp_qat_fw_init_admin.h" #include "adf_gen4_hw_data.h" #include "adf_cfg.h" enum qat_pm_host_msg { PM_NO_CHANGE = 0, PM_SET_MIN, }; struct adf_gen4_pm_data { struct work_struct pm_irq_work; struct adf_accel_dev *accel_dev; u32 pm_int_sts; }; static int send_host_msg(struct adf_accel_dev *accel_dev) { char pm_idle_support_cfg[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = {}; void __iomem *pmisc = adf_get_pmisc_base(accel_dev); bool pm_idle_support; u32 msg; int ret; msg = ADF_CSR_RD(pmisc, ADF_GEN4_PM_HOST_MSG); if (msg & ADF_GEN4_PM_MSG_PENDING) return -EBUSY; adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC, ADF_PM_IDLE_SUPPORT, pm_idle_support_cfg); ret = kstrtobool(pm_idle_support_cfg, &pm_idle_support); if (ret) pm_idle_support = true; /* Send HOST_MSG */ msg = FIELD_PREP(ADF_GEN4_PM_MSG_PAYLOAD_BIT_MASK, pm_idle_support ? PM_SET_MIN : PM_NO_CHANGE); msg |= ADF_GEN4_PM_MSG_PENDING; ADF_CSR_WR(pmisc, ADF_GEN4_PM_HOST_MSG, msg); /* Poll status register to make sure the HOST_MSG has been processed */ return read_poll_timeout(ADF_CSR_RD, msg, !(msg & ADF_GEN4_PM_MSG_PENDING), ADF_GEN4_PM_MSG_POLL_DELAY_US, ADF_GEN4_PM_POLL_TIMEOUT_US, true, pmisc, ADF_GEN4_PM_HOST_MSG); } static void pm_bh_handler(struct work_struct *work) { struct adf_gen4_pm_data *pm_data = container_of(work, struct adf_gen4_pm_data, pm_irq_work); struct adf_accel_dev *accel_dev = pm_data->accel_dev; void __iomem *pmisc = adf_get_pmisc_base(accel_dev); u32 pm_int_sts = pm_data->pm_int_sts; u32 val; /* PM Idle interrupt */ if (pm_int_sts & ADF_GEN4_PM_IDLE_STS) { /* Issue host message to FW */ if (send_host_msg(accel_dev)) dev_warn_ratelimited(&GET_DEV(accel_dev), "Failed to send host msg to FW\n"); } /* Clear interrupt status */ ADF_CSR_WR(pmisc, ADF_GEN4_PM_INTERRUPT, pm_int_sts); /* Reenable PM interrupt */ val = ADF_CSR_RD(pmisc, ADF_GEN4_ERRMSK2); val &= ~ADF_GEN4_PM_SOU; ADF_CSR_WR(pmisc, ADF_GEN4_ERRMSK2, val); kfree(pm_data); } bool adf_gen4_handle_pm_interrupt(struct adf_accel_dev *accel_dev) { void __iomem *pmisc = adf_get_pmisc_base(accel_dev); struct adf_gen4_pm_data *pm_data = NULL; u32 errsou2; u32 errmsk2; u32 val; /* Only handle the interrupt triggered by PM */ errmsk2 = ADF_CSR_RD(pmisc, ADF_GEN4_ERRMSK2); if (errmsk2 & ADF_GEN4_PM_SOU) return false; errsou2 = ADF_CSR_RD(pmisc, ADF_GEN4_ERRSOU2); if (!(errsou2 & ADF_GEN4_PM_SOU)) return false; /* Disable interrupt */ val = ADF_CSR_RD(pmisc, ADF_GEN4_ERRMSK2); val |= ADF_GEN4_PM_SOU; ADF_CSR_WR(pmisc, ADF_GEN4_ERRMSK2, val); val = ADF_CSR_RD(pmisc, ADF_GEN4_PM_INTERRUPT); pm_data = kzalloc(sizeof(*pm_data), GFP_ATOMIC); if (!pm_data) return false; pm_data->pm_int_sts = val; pm_data->accel_dev = accel_dev; INIT_WORK(&pm_data->pm_irq_work, pm_bh_handler); adf_misc_wq_queue_work(&pm_data->pm_irq_work); return true; } EXPORT_SYMBOL_GPL(adf_gen4_handle_pm_interrupt); int adf_gen4_enable_pm(struct adf_accel_dev *accel_dev) { void __iomem *pmisc = adf_get_pmisc_base(accel_dev); int ret; u32 val; ret = adf_init_admin_pm(accel_dev, ADF_GEN4_PM_DEFAULT_IDLE_FILTER); if (ret) return ret; /* Enable default PM interrupts: IDLE, THROTTLE */ val = ADF_CSR_RD(pmisc, ADF_GEN4_PM_INTERRUPT); val |= ADF_GEN4_PM_INT_EN_DEFAULT; /* Clear interrupt status */ val |= ADF_GEN4_PM_INT_STS_MASK; ADF_CSR_WR(pmisc, ADF_GEN4_PM_INTERRUPT, val); /* Unmask PM Interrupt */ val = ADF_CSR_RD(pmisc, ADF_GEN4_ERRMSK2); val &= ~ADF_GEN4_PM_SOU; ADF_CSR_WR(pmisc, ADF_GEN4_ERRMSK2, val); return 0; } EXPORT_SYMBOL_GPL(adf_gen4_enable_pm);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen4_pm.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Intel Corporation */ #include <linux/dev_printk.h> #include <linux/dma-mapping.h> #include <linux/export.h> #include <linux/kernel.h> #include <linux/kstrtox.h> #include <linux/overflow.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/types.h> #include <asm/errno.h> #include "adf_accel_devices.h" #include "adf_cfg.h" #include "adf_cfg_strings.h" #include "adf_clock.h" #include "adf_common_drv.h" #include "adf_heartbeat.h" #include "adf_transport_internal.h" #include "icp_qat_fw_init_admin.h" #define ADF_HB_EMPTY_SIG 0xA5A5A5A5 /* Heartbeat counter pair */ struct hb_cnt_pair { __u16 resp_heartbeat_cnt; __u16 req_heartbeat_cnt; }; static int adf_hb_check_polling_freq(struct adf_accel_dev *accel_dev) { u64 curr_time = adf_clock_get_current_time(); u64 polling_time = curr_time - accel_dev->heartbeat->last_hb_check_time; if (polling_time < accel_dev->heartbeat->hb_timer) { dev_warn(&GET_DEV(accel_dev), "HB polling too frequent. Configured HB timer %d ms\n", accel_dev->heartbeat->hb_timer); return -EINVAL; } accel_dev->heartbeat->last_hb_check_time = curr_time; return 0; } /** * validate_hb_ctrs_cnt() - checks if the number of heartbeat counters should * be updated by one to support the currently loaded firmware. * @accel_dev: Pointer to acceleration device. * * Return: * * true - hb_ctrs must increased by ADF_NUM_PKE_STRAND * * false - no changes needed */ static bool validate_hb_ctrs_cnt(struct adf_accel_dev *accel_dev) { const size_t hb_ctrs = accel_dev->hw_device->num_hb_ctrs; const size_t max_aes = accel_dev->hw_device->num_engines; const size_t hb_struct_size = sizeof(struct hb_cnt_pair); const size_t exp_diff_size = array3_size(ADF_NUM_PKE_STRAND, max_aes, hb_struct_size); const size_t dev_ctrs = size_mul(max_aes, hb_ctrs); const size_t stats_size = size_mul(dev_ctrs, hb_struct_size); const u32 exp_diff_cnt = exp_diff_size / sizeof(u32); const u32 stats_el_cnt = stats_size / sizeof(u32); struct hb_cnt_pair *hb_stats = accel_dev->heartbeat->dma.virt_addr; const u32 *mem_to_chk = (u32 *)(hb_stats + dev_ctrs); u32 el_diff_cnt = 0; int i; /* count how many bytes are different from pattern */ for (i = 0; i < stats_el_cnt; i++) { if (mem_to_chk[i] == ADF_HB_EMPTY_SIG) break; el_diff_cnt++; } return el_diff_cnt && el_diff_cnt == exp_diff_cnt; } void adf_heartbeat_check_ctrs(struct adf_accel_dev *accel_dev) { struct hb_cnt_pair *hb_stats = accel_dev->heartbeat->dma.virt_addr; const size_t hb_ctrs = accel_dev->hw_device->num_hb_ctrs; const size_t max_aes = accel_dev->hw_device->num_engines; const size_t dev_ctrs = size_mul(max_aes, hb_ctrs); const size_t stats_size = size_mul(dev_ctrs, sizeof(struct hb_cnt_pair)); const size_t mem_items_to_fill = size_mul(stats_size, 2) / sizeof(u32); /* fill hb stats memory with pattern */ memset32((uint32_t *)hb_stats, ADF_HB_EMPTY_SIG, mem_items_to_fill); accel_dev->heartbeat->ctrs_cnt_checked = false; } EXPORT_SYMBOL_GPL(adf_heartbeat_check_ctrs); static int get_timer_ticks(struct adf_accel_dev *accel_dev, unsigned int *value) { char timer_str[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = { }; u32 timer_ms = ADF_CFG_HB_TIMER_DEFAULT_MS; int cfg_read_status; u32 ticks; int ret; cfg_read_status = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC, ADF_HEARTBEAT_TIMER, timer_str); if (cfg_read_status == 0) { if (kstrtouint(timer_str, 10, &timer_ms)) dev_dbg(&GET_DEV(accel_dev), "kstrtouint failed to parse the %s, param value", ADF_HEARTBEAT_TIMER); } if (timer_ms < ADF_CFG_HB_TIMER_MIN_MS) { dev_err(&GET_DEV(accel_dev), "Timer cannot be less than %u\n", ADF_CFG_HB_TIMER_MIN_MS); return -EINVAL; } /* * On 4xxx devices adf_timer is responsible for HB updates and * its period is fixed to 200ms */ if (accel_dev->timer) timer_ms = ADF_CFG_HB_TIMER_MIN_MS; ret = adf_heartbeat_ms_to_ticks(accel_dev, timer_ms, &ticks); if (ret) return ret; adf_heartbeat_save_cfg_param(accel_dev, timer_ms); accel_dev->heartbeat->hb_timer = timer_ms; *value = ticks; return 0; } static int check_ae(struct hb_cnt_pair *curr, struct hb_cnt_pair *prev, u16 *count, const size_t hb_ctrs) { size_t thr; /* loop through all threads in AE */ for (thr = 0; thr < hb_ctrs; thr++) { u16 req = curr[thr].req_heartbeat_cnt; u16 resp = curr[thr].resp_heartbeat_cnt; u16 last = prev[thr].resp_heartbeat_cnt; if ((thr == ADF_AE_ADMIN_THREAD || req != resp) && resp == last) { u16 retry = ++count[thr]; if (retry >= ADF_CFG_HB_COUNT_THRESHOLD) return -EIO; } else { count[thr] = 0; } } return 0; } static int adf_hb_get_status(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_device = accel_dev->hw_device; struct hb_cnt_pair *live_stats, *last_stats, *curr_stats; const size_t hb_ctrs = hw_device->num_hb_ctrs; const unsigned long ae_mask = hw_device->ae_mask; const size_t max_aes = hw_device->num_engines; const size_t dev_ctrs = size_mul(max_aes, hb_ctrs); const size_t stats_size = size_mul(dev_ctrs, sizeof(*curr_stats)); struct hb_cnt_pair *ae_curr_p, *ae_prev_p; u16 *count_fails, *ae_count_p; size_t ae_offset; size_t ae = 0; int ret = 0; if (!accel_dev->heartbeat->ctrs_cnt_checked) { if (validate_hb_ctrs_cnt(accel_dev)) hw_device->num_hb_ctrs += ADF_NUM_PKE_STRAND; accel_dev->heartbeat->ctrs_cnt_checked = true; } live_stats = accel_dev->heartbeat->dma.virt_addr; last_stats = live_stats + dev_ctrs; count_fails = (u16 *)(last_stats + dev_ctrs); curr_stats = kmemdup(live_stats, stats_size, GFP_KERNEL); if (!curr_stats) return -ENOMEM; /* loop through active AEs */ for_each_set_bit(ae, &ae_mask, max_aes) { ae_offset = size_mul(ae, hb_ctrs); ae_curr_p = curr_stats + ae_offset; ae_prev_p = last_stats + ae_offset; ae_count_p = count_fails + ae_offset; ret = check_ae(ae_curr_p, ae_prev_p, ae_count_p, hb_ctrs); if (ret) break; } /* Copy current stats for the next iteration */ memcpy(last_stats, curr_stats, stats_size); kfree(curr_stats); return ret; } void adf_heartbeat_status(struct adf_accel_dev *accel_dev, enum adf_device_heartbeat_status *hb_status) { struct adf_heartbeat *hb; if (!adf_dev_started(accel_dev) || test_bit(ADF_STATUS_RESTARTING, &accel_dev->status)) { *hb_status = HB_DEV_UNRESPONSIVE; return; } if (adf_hb_check_polling_freq(accel_dev) == -EINVAL) { *hb_status = HB_DEV_UNSUPPORTED; return; } hb = accel_dev->heartbeat; hb->hb_sent_counter++; if (adf_hb_get_status(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Heartbeat ERROR: QAT is not responding.\n"); *hb_status = HB_DEV_UNRESPONSIVE; hb->hb_failed_counter++; return; } *hb_status = HB_DEV_ALIVE; } int adf_heartbeat_ms_to_ticks(struct adf_accel_dev *accel_dev, unsigned int time_ms, u32 *value) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; u32 clk_per_sec; /* HB clock may be different than AE clock */ if (!hw_data->get_hb_clock) return -EINVAL; clk_per_sec = hw_data->get_hb_clock(hw_data); *value = time_ms * (clk_per_sec / MSEC_PER_SEC); return 0; } int adf_heartbeat_save_cfg_param(struct adf_accel_dev *accel_dev, unsigned int timer_ms) { char timer_str[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; snprintf(timer_str, sizeof(timer_str), "%u", timer_ms); return adf_cfg_add_key_value_param(accel_dev, ADF_GENERAL_SEC, ADF_HEARTBEAT_TIMER, timer_str, ADF_STR); } EXPORT_SYMBOL_GPL(adf_heartbeat_save_cfg_param); int adf_heartbeat_init(struct adf_accel_dev *accel_dev) { struct adf_heartbeat *hb; hb = kzalloc(sizeof(*hb), GFP_KERNEL); if (!hb) goto err_ret; hb->dma.virt_addr = dma_alloc_coherent(&GET_DEV(accel_dev), PAGE_SIZE, &hb->dma.phy_addr, GFP_KERNEL); if (!hb->dma.virt_addr) goto err_free; /* * Default set this flag as true to avoid unnecessary checks, * it will be reset on platforms that need such a check */ hb->ctrs_cnt_checked = true; accel_dev->heartbeat = hb; return 0; err_free: kfree(hb); err_ret: return -ENOMEM; } int adf_heartbeat_start(struct adf_accel_dev *accel_dev) { unsigned int timer_ticks; int ret; if (!accel_dev->heartbeat) { dev_warn(&GET_DEV(accel_dev), "Heartbeat instance not found!"); return -EFAULT; } if (accel_dev->hw_device->check_hb_ctrs) accel_dev->hw_device->check_hb_ctrs(accel_dev); ret = get_timer_ticks(accel_dev, &timer_ticks); if (ret) return ret; ret = adf_send_admin_hb_timer(accel_dev, timer_ticks); if (ret) dev_warn(&GET_DEV(accel_dev), "Heartbeat not supported!"); return ret; } void adf_heartbeat_shutdown(struct adf_accel_dev *accel_dev) { struct adf_heartbeat *hb = accel_dev->heartbeat; if (!hb) return; if (hb->dma.virt_addr) dma_free_coherent(&GET_DEV(accel_dev), PAGE_SIZE, hb->dma.virt_addr, hb->dma.phy_addr); kfree(hb); accel_dev->heartbeat = NULL; }
linux-master
drivers/crypto/intel/qat/qat_common/adf_heartbeat.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/firmware.h> #include <linux/pci.h> #include "adf_cfg.h" #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "icp_qat_uclo.h" static int adf_ae_fw_load_images(struct adf_accel_dev *accel_dev, void *fw_addr, u32 fw_size) { struct adf_fw_loader_data *loader_data = accel_dev->fw_loader; struct adf_hw_device_data *hw_device = accel_dev->hw_device; struct icp_qat_fw_loader_handle *loader; const char *obj_name; u32 num_objs; u32 ae_mask; int i; loader = loader_data->fw_loader; num_objs = hw_device->uof_get_num_objs(); for (i = 0; i < num_objs; i++) { obj_name = hw_device->uof_get_name(accel_dev, i); ae_mask = hw_device->uof_get_ae_mask(accel_dev, i); if (!obj_name || !ae_mask) { dev_err(&GET_DEV(accel_dev), "Invalid UOF image\n"); goto out_err; } if (qat_uclo_set_cfg_ae_mask(loader, ae_mask)) { dev_err(&GET_DEV(accel_dev), "Invalid mask for UOF image\n"); goto out_err; } if (qat_uclo_map_obj(loader, fw_addr, fw_size, obj_name)) { dev_err(&GET_DEV(accel_dev), "Failed to map UOF firmware\n"); goto out_err; } if (qat_uclo_wr_all_uimage(loader)) { dev_err(&GET_DEV(accel_dev), "Failed to load UOF firmware\n"); goto out_err; } qat_uclo_del_obj(loader); } return 0; out_err: adf_ae_fw_release(accel_dev); return -EFAULT; } int adf_ae_fw_load(struct adf_accel_dev *accel_dev) { struct adf_fw_loader_data *loader_data = accel_dev->fw_loader; struct adf_hw_device_data *hw_device = accel_dev->hw_device; void *fw_addr, *mmp_addr; u32 fw_size, mmp_size; if (!hw_device->fw_name) return 0; if (request_firmware(&loader_data->mmp_fw, hw_device->fw_mmp_name, &accel_dev->accel_pci_dev.pci_dev->dev)) { dev_err(&GET_DEV(accel_dev), "Failed to load MMP firmware %s\n", hw_device->fw_mmp_name); return -EFAULT; } if (request_firmware(&loader_data->uof_fw, hw_device->fw_name, &accel_dev->accel_pci_dev.pci_dev->dev)) { dev_err(&GET_DEV(accel_dev), "Failed to load UOF firmware %s\n", hw_device->fw_name); goto out_err; } fw_size = loader_data->uof_fw->size; fw_addr = (void *)loader_data->uof_fw->data; mmp_size = loader_data->mmp_fw->size; mmp_addr = (void *)loader_data->mmp_fw->data; if (qat_uclo_wr_mimage(loader_data->fw_loader, mmp_addr, mmp_size)) { dev_err(&GET_DEV(accel_dev), "Failed to load MMP\n"); goto out_err; } if (hw_device->uof_get_num_objs) return adf_ae_fw_load_images(accel_dev, fw_addr, fw_size); if (qat_uclo_map_obj(loader_data->fw_loader, fw_addr, fw_size, NULL)) { dev_err(&GET_DEV(accel_dev), "Failed to map FW\n"); goto out_err; } if (qat_uclo_wr_all_uimage(loader_data->fw_loader)) { dev_err(&GET_DEV(accel_dev), "Failed to load UOF\n"); goto out_err; } return 0; out_err: adf_ae_fw_release(accel_dev); return -EFAULT; } void adf_ae_fw_release(struct adf_accel_dev *accel_dev) { struct adf_fw_loader_data *loader_data = accel_dev->fw_loader; struct adf_hw_device_data *hw_device = accel_dev->hw_device; if (!hw_device->fw_name) return; qat_uclo_del_obj(loader_data->fw_loader); qat_hal_deinit(loader_data->fw_loader); release_firmware(loader_data->uof_fw); release_firmware(loader_data->mmp_fw); loader_data->uof_fw = NULL; loader_data->mmp_fw = NULL; loader_data->fw_loader = NULL; } int adf_ae_start(struct adf_accel_dev *accel_dev) { struct adf_fw_loader_data *loader_data = accel_dev->fw_loader; struct adf_hw_device_data *hw_data = accel_dev->hw_device; u32 ae_ctr; if (!hw_data->fw_name) return 0; ae_ctr = qat_hal_start(loader_data->fw_loader); dev_info(&GET_DEV(accel_dev), "qat_dev%d started %d acceleration engines\n", accel_dev->accel_id, ae_ctr); return 0; } int adf_ae_stop(struct adf_accel_dev *accel_dev) { struct adf_fw_loader_data *loader_data = accel_dev->fw_loader; struct adf_hw_device_data *hw_data = accel_dev->hw_device; u32 ae_ctr, ae, max_aes = GET_MAX_ACCELENGINES(accel_dev); if (!hw_data->fw_name) return 0; for (ae = 0, ae_ctr = 0; ae < max_aes; ae++) { if (hw_data->ae_mask & (1 << ae)) { qat_hal_stop(loader_data->fw_loader, ae, 0xFF); ae_ctr++; } } dev_info(&GET_DEV(accel_dev), "qat_dev%d stopped %d acceleration engines\n", accel_dev->accel_id, ae_ctr); return 0; } static int adf_ae_reset(struct adf_accel_dev *accel_dev, int ae) { struct adf_fw_loader_data *loader_data = accel_dev->fw_loader; qat_hal_reset(loader_data->fw_loader); if (qat_hal_clr_reset(loader_data->fw_loader)) return -EFAULT; return 0; } int adf_ae_init(struct adf_accel_dev *accel_dev) { struct adf_fw_loader_data *loader_data; struct adf_hw_device_data *hw_device = accel_dev->hw_device; if (!hw_device->fw_name) return 0; loader_data = kzalloc(sizeof(*loader_data), GFP_KERNEL); if (!loader_data) return -ENOMEM; accel_dev->fw_loader = loader_data; if (qat_hal_init(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Failed to init the AEs\n"); kfree(loader_data); return -EFAULT; } if (adf_ae_reset(accel_dev, 0)) { dev_err(&GET_DEV(accel_dev), "Failed to reset the AEs\n"); qat_hal_deinit(loader_data->fw_loader); kfree(loader_data); return -EFAULT; } return 0; } int adf_ae_shutdown(struct adf_accel_dev *accel_dev) { struct adf_fw_loader_data *loader_data = accel_dev->fw_loader; struct adf_hw_device_data *hw_device = accel_dev->hw_device; if (!hw_device->fw_name) return 0; qat_hal_deinit(loader_data->fw_loader); kfree(accel_dev->fw_loader); accel_dev->fw_loader = NULL; return 0; }
linux-master
drivers/crypto/intel/qat/qat_common/adf_accel_engine.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/mutex.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/seq_file.h> #include "adf_accel_devices.h" #include "adf_cfg.h" #include "adf_common_drv.h" static DEFINE_MUTEX(qat_cfg_read_lock); static void *qat_dev_cfg_start(struct seq_file *sfile, loff_t *pos) { struct adf_cfg_device_data *dev_cfg = sfile->private; mutex_lock(&qat_cfg_read_lock); return seq_list_start(&dev_cfg->sec_list, *pos); } static int qat_dev_cfg_show(struct seq_file *sfile, void *v) { struct list_head *list; struct adf_cfg_section *sec = list_entry(v, struct adf_cfg_section, list); seq_printf(sfile, "[%s]\n", sec->name); list_for_each(list, &sec->param_head) { struct adf_cfg_key_val *ptr = list_entry(list, struct adf_cfg_key_val, list); seq_printf(sfile, "%s = %s\n", ptr->key, ptr->val); } return 0; } static void *qat_dev_cfg_next(struct seq_file *sfile, void *v, loff_t *pos) { struct adf_cfg_device_data *dev_cfg = sfile->private; return seq_list_next(v, &dev_cfg->sec_list, pos); } static void qat_dev_cfg_stop(struct seq_file *sfile, void *v) { mutex_unlock(&qat_cfg_read_lock); } static const struct seq_operations qat_dev_cfg_sops = { .start = qat_dev_cfg_start, .next = qat_dev_cfg_next, .stop = qat_dev_cfg_stop, .show = qat_dev_cfg_show }; DEFINE_SEQ_ATTRIBUTE(qat_dev_cfg); /** * adf_cfg_dev_add() - Create an acceleration device configuration table. * @accel_dev: Pointer to acceleration device. * * Function creates a configuration table for the given acceleration device. * The table stores device specific config values. * To be used by QAT device specific drivers. * * Return: 0 on success, error code otherwise. */ int adf_cfg_dev_add(struct adf_accel_dev *accel_dev) { struct adf_cfg_device_data *dev_cfg_data; dev_cfg_data = kzalloc(sizeof(*dev_cfg_data), GFP_KERNEL); if (!dev_cfg_data) return -ENOMEM; INIT_LIST_HEAD(&dev_cfg_data->sec_list); init_rwsem(&dev_cfg_data->lock); accel_dev->cfg = dev_cfg_data; return 0; } EXPORT_SYMBOL_GPL(adf_cfg_dev_add); void adf_cfg_dev_dbgfs_add(struct adf_accel_dev *accel_dev) { struct adf_cfg_device_data *dev_cfg_data = accel_dev->cfg; dev_cfg_data->debug = debugfs_create_file("dev_cfg", 0400, accel_dev->debugfs_dir, dev_cfg_data, &qat_dev_cfg_fops); } void adf_cfg_dev_dbgfs_rm(struct adf_accel_dev *accel_dev) { struct adf_cfg_device_data *dev_cfg_data = accel_dev->cfg; if (!dev_cfg_data) return; debugfs_remove(dev_cfg_data->debug); dev_cfg_data->debug = NULL; } static void adf_cfg_section_del_all(struct list_head *head); void adf_cfg_del_all(struct adf_accel_dev *accel_dev) { struct adf_cfg_device_data *dev_cfg_data = accel_dev->cfg; down_write(&dev_cfg_data->lock); adf_cfg_section_del_all(&dev_cfg_data->sec_list); up_write(&dev_cfg_data->lock); clear_bit(ADF_STATUS_CONFIGURED, &accel_dev->status); } /** * adf_cfg_dev_remove() - Clears acceleration device configuration table. * @accel_dev: Pointer to acceleration device. * * Function removes configuration table from the given acceleration device * and frees all allocated memory. * To be used by QAT device specific drivers. * * Return: void */ void adf_cfg_dev_remove(struct adf_accel_dev *accel_dev) { struct adf_cfg_device_data *dev_cfg_data = accel_dev->cfg; if (!dev_cfg_data) return; down_write(&dev_cfg_data->lock); adf_cfg_section_del_all(&dev_cfg_data->sec_list); up_write(&dev_cfg_data->lock); kfree(dev_cfg_data); accel_dev->cfg = NULL; } EXPORT_SYMBOL_GPL(adf_cfg_dev_remove); static void adf_cfg_keyval_add(struct adf_cfg_key_val *new, struct adf_cfg_section *sec) { list_add_tail(&new->list, &sec->param_head); } static void adf_cfg_keyval_remove(const char *key, struct adf_cfg_section *sec) { struct list_head *head = &sec->param_head; struct list_head *list_ptr, *tmp; list_for_each_prev_safe(list_ptr, tmp, head) { struct adf_cfg_key_val *ptr = list_entry(list_ptr, struct adf_cfg_key_val, list); if (strncmp(ptr->key, key, sizeof(ptr->key))) continue; list_del(list_ptr); kfree(ptr); break; } } static void adf_cfg_keyval_del_all(struct list_head *head) { struct list_head *list_ptr, *tmp; list_for_each_prev_safe(list_ptr, tmp, head) { struct adf_cfg_key_val *ptr = list_entry(list_ptr, struct adf_cfg_key_val, list); list_del(list_ptr); kfree(ptr); } } static void adf_cfg_section_del_all(struct list_head *head) { struct adf_cfg_section *ptr; struct list_head *list, *tmp; list_for_each_prev_safe(list, tmp, head) { ptr = list_entry(list, struct adf_cfg_section, list); adf_cfg_keyval_del_all(&ptr->param_head); list_del(list); kfree(ptr); } } static struct adf_cfg_key_val *adf_cfg_key_value_find(struct adf_cfg_section *s, const char *key) { struct list_head *list; list_for_each(list, &s->param_head) { struct adf_cfg_key_val *ptr = list_entry(list, struct adf_cfg_key_val, list); if (!strcmp(ptr->key, key)) return ptr; } return NULL; } static struct adf_cfg_section *adf_cfg_sec_find(struct adf_accel_dev *accel_dev, const char *sec_name) { struct adf_cfg_device_data *cfg = accel_dev->cfg; struct list_head *list; list_for_each(list, &cfg->sec_list) { struct adf_cfg_section *ptr = list_entry(list, struct adf_cfg_section, list); if (!strcmp(ptr->name, sec_name)) return ptr; } return NULL; } static int adf_cfg_key_val_get(struct adf_accel_dev *accel_dev, const char *sec_name, const char *key_name, char *val) { struct adf_cfg_section *sec = adf_cfg_sec_find(accel_dev, sec_name); struct adf_cfg_key_val *keyval = NULL; if (sec) keyval = adf_cfg_key_value_find(sec, key_name); if (keyval) { memcpy(val, keyval->val, ADF_CFG_MAX_VAL_LEN_IN_BYTES); return 0; } return -ENODATA; } /** * adf_cfg_add_key_value_param() - Add key-value config entry to config table. * @accel_dev: Pointer to acceleration device. * @section_name: Name of the section where the param will be added * @key: The key string * @val: Value pain for the given @key * @type: Type - string, int or address * * Function adds configuration key - value entry in the appropriate section * in the given acceleration device. If the key exists already, the value * is updated. * To be used by QAT device specific drivers. * * Return: 0 on success, error code otherwise. */ int adf_cfg_add_key_value_param(struct adf_accel_dev *accel_dev, const char *section_name, const char *key, const void *val, enum adf_cfg_val_type type) { struct adf_cfg_device_data *cfg = accel_dev->cfg; struct adf_cfg_key_val *key_val; struct adf_cfg_section *section = adf_cfg_sec_find(accel_dev, section_name); char temp_val[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; if (!section) return -EFAULT; key_val = kzalloc(sizeof(*key_val), GFP_KERNEL); if (!key_val) return -ENOMEM; INIT_LIST_HEAD(&key_val->list); strscpy(key_val->key, key, sizeof(key_val->key)); if (type == ADF_DEC) { snprintf(key_val->val, ADF_CFG_MAX_VAL_LEN_IN_BYTES, "%ld", (*((long *)val))); } else if (type == ADF_STR) { strscpy(key_val->val, (char *)val, sizeof(key_val->val)); } else if (type == ADF_HEX) { snprintf(key_val->val, ADF_CFG_MAX_VAL_LEN_IN_BYTES, "0x%lx", (unsigned long)val); } else { dev_err(&GET_DEV(accel_dev), "Unknown type given.\n"); kfree(key_val); return -EINVAL; } key_val->type = type; /* Add the key-value pair as below policy: * 1. if the key doesn't exist, add it; * 2. if the key already exists with a different value then update it * to the new value (the key is deleted and the newly created * key_val containing the new value is added to the database); * 3. if the key exists with the same value, then return without doing * anything (the newly created key_val is freed). */ if (!adf_cfg_key_val_get(accel_dev, section_name, key, temp_val)) { if (strncmp(temp_val, key_val->val, sizeof(temp_val))) { adf_cfg_keyval_remove(key, section); } else { kfree(key_val); return 0; } } down_write(&cfg->lock); adf_cfg_keyval_add(key_val, section); up_write(&cfg->lock); return 0; } EXPORT_SYMBOL_GPL(adf_cfg_add_key_value_param); /** * adf_cfg_section_add() - Add config section entry to config table. * @accel_dev: Pointer to acceleration device. * @name: Name of the section * * Function adds configuration section where key - value entries * will be stored. * To be used by QAT device specific drivers. * * Return: 0 on success, error code otherwise. */ int adf_cfg_section_add(struct adf_accel_dev *accel_dev, const char *name) { struct adf_cfg_device_data *cfg = accel_dev->cfg; struct adf_cfg_section *sec = adf_cfg_sec_find(accel_dev, name); if (sec) return 0; sec = kzalloc(sizeof(*sec), GFP_KERNEL); if (!sec) return -ENOMEM; strscpy(sec->name, name, sizeof(sec->name)); INIT_LIST_HEAD(&sec->param_head); down_write(&cfg->lock); list_add_tail(&sec->list, &cfg->sec_list); up_write(&cfg->lock); return 0; } EXPORT_SYMBOL_GPL(adf_cfg_section_add); int adf_cfg_get_param_value(struct adf_accel_dev *accel_dev, const char *section, const char *name, char *value) { struct adf_cfg_device_data *cfg = accel_dev->cfg; int ret; down_read(&cfg->lock); ret = adf_cfg_key_val_get(accel_dev, section, name, value); up_read(&cfg->lock); return ret; } EXPORT_SYMBOL_GPL(adf_cfg_get_param_value);
linux-master
drivers/crypto/intel/qat/qat_common/adf_cfg.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/slab.h> #include <linux/delay.h> #include <linux/pci_ids.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "icp_qat_hal.h" #include "icp_qat_uclo.h" #define BAD_REGADDR 0xffff #define MAX_RETRY_TIMES 10000 #define INIT_CTX_ARB_VALUE 0x0 #define INIT_CTX_ENABLE_VALUE 0x0 #define INIT_PC_VALUE 0x0 #define INIT_WAKEUP_EVENTS_VALUE 0x1 #define INIT_SIG_EVENTS_VALUE 0x1 #define INIT_CCENABLE_VALUE 0x2000 #define RST_CSR_QAT_LSB 20 #define RST_CSR_AE_LSB 0 #define MC_TIMESTAMP_ENABLE (0x1 << 7) #define IGNORE_W1C_MASK ((~(1 << CE_BREAKPOINT_BITPOS)) & \ (~(1 << CE_CNTL_STORE_PARITY_ERROR_BITPOS)) & \ (~(1 << CE_REG_PAR_ERR_BITPOS))) #define INSERT_IMMED_GPRA_CONST(inst, const_val) \ (inst = ((inst & 0xFFFF00C03FFull) | \ ((((const_val) << 12) & 0x0FF00000ull) | \ (((const_val) << 10) & 0x0003FC00ull)))) #define INSERT_IMMED_GPRB_CONST(inst, const_val) \ (inst = ((inst & 0xFFFF00FFF00ull) | \ ((((const_val) << 12) & 0x0FF00000ull) | \ (((const_val) << 0) & 0x000000FFull)))) #define AE(handle, ae) ((handle)->hal_handle->aes[ae]) static const u64 inst_4b[] = { 0x0F0400C0000ull, 0x0F4400C0000ull, 0x0F040000300ull, 0x0F440000300ull, 0x0FC066C0000ull, 0x0F0000C0300ull, 0x0F0000C0300ull, 0x0F0000C0300ull, 0x0A021000000ull }; static const u64 inst[] = { 0x0F0000C0000ull, 0x0F000000380ull, 0x0D805000011ull, 0x0FC082C0300ull, 0x0F0000C0300ull, 0x0F0000C0300ull, 0x0F0000C0300ull, 0x0F0000C0300ull, 0x0A0643C0000ull, 0x0BAC0000301ull, 0x0D802000101ull, 0x0F0000C0001ull, 0x0FC066C0001ull, 0x0F0000C0300ull, 0x0F0000C0300ull, 0x0F0000C0300ull, 0x0F000400300ull, 0x0A0610C0000ull, 0x0BAC0000301ull, 0x0D804400101ull, 0x0A0580C0000ull, 0x0A0581C0000ull, 0x0A0582C0000ull, 0x0A0583C0000ull, 0x0A0584C0000ull, 0x0A0585C0000ull, 0x0A0586C0000ull, 0x0A0587C0000ull, 0x0A0588C0000ull, 0x0A0589C0000ull, 0x0A058AC0000ull, 0x0A058BC0000ull, 0x0A058CC0000ull, 0x0A058DC0000ull, 0x0A058EC0000ull, 0x0A058FC0000ull, 0x0A05C0C0000ull, 0x0A05C1C0000ull, 0x0A05C2C0000ull, 0x0A05C3C0000ull, 0x0A05C4C0000ull, 0x0A05C5C0000ull, 0x0A05C6C0000ull, 0x0A05C7C0000ull, 0x0A05C8C0000ull, 0x0A05C9C0000ull, 0x0A05CAC0000ull, 0x0A05CBC0000ull, 0x0A05CCC0000ull, 0x0A05CDC0000ull, 0x0A05CEC0000ull, 0x0A05CFC0000ull, 0x0A0400C0000ull, 0x0B0400C0000ull, 0x0A0401C0000ull, 0x0B0401C0000ull, 0x0A0402C0000ull, 0x0B0402C0000ull, 0x0A0403C0000ull, 0x0B0403C0000ull, 0x0A0404C0000ull, 0x0B0404C0000ull, 0x0A0405C0000ull, 0x0B0405C0000ull, 0x0A0406C0000ull, 0x0B0406C0000ull, 0x0A0407C0000ull, 0x0B0407C0000ull, 0x0A0408C0000ull, 0x0B0408C0000ull, 0x0A0409C0000ull, 0x0B0409C0000ull, 0x0A040AC0000ull, 0x0B040AC0000ull, 0x0A040BC0000ull, 0x0B040BC0000ull, 0x0A040CC0000ull, 0x0B040CC0000ull, 0x0A040DC0000ull, 0x0B040DC0000ull, 0x0A040EC0000ull, 0x0B040EC0000ull, 0x0A040FC0000ull, 0x0B040FC0000ull, 0x0D81581C010ull, 0x0E000010000ull, 0x0E000010000ull, }; void qat_hal_set_live_ctx(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int ctx_mask) { AE(handle, ae).live_ctx_mask = ctx_mask; } #define CSR_RETRY_TIMES 500 static int qat_hal_rd_ae_csr(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int csr) { unsigned int iterations = CSR_RETRY_TIMES; int value; do { value = GET_AE_CSR(handle, ae, csr); if (!(GET_AE_CSR(handle, ae, LOCAL_CSR_STATUS) & LCS_STATUS)) return value; } while (iterations--); pr_err("QAT: Read CSR timeout\n"); return 0; } static int qat_hal_wr_ae_csr(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int csr, unsigned int value) { unsigned int iterations = CSR_RETRY_TIMES; do { SET_AE_CSR(handle, ae, csr, value); if (!(GET_AE_CSR(handle, ae, LOCAL_CSR_STATUS) & LCS_STATUS)) return 0; } while (iterations--); pr_err("QAT: Write CSR Timeout\n"); return -EFAULT; } static void qat_hal_get_wakeup_event(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, unsigned int *events) { unsigned int cur_ctx; cur_ctx = qat_hal_rd_ae_csr(handle, ae, CSR_CTX_POINTER); qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, ctx); *events = qat_hal_rd_ae_csr(handle, ae, CTX_WAKEUP_EVENTS_INDIRECT); qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, cur_ctx); } static int qat_hal_wait_cycles(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int cycles, int chk_inactive) { unsigned int base_cnt = 0, cur_cnt = 0; unsigned int csr = (1 << ACS_ABO_BITPOS); int times = MAX_RETRY_TIMES; int elapsed_cycles = 0; base_cnt = qat_hal_rd_ae_csr(handle, ae, PROFILE_COUNT); base_cnt &= 0xffff; while ((int)cycles > elapsed_cycles && times--) { if (chk_inactive) csr = qat_hal_rd_ae_csr(handle, ae, ACTIVE_CTX_STATUS); cur_cnt = qat_hal_rd_ae_csr(handle, ae, PROFILE_COUNT); cur_cnt &= 0xffff; elapsed_cycles = cur_cnt - base_cnt; if (elapsed_cycles < 0) elapsed_cycles += 0x10000; /* ensure at least 8 time cycles elapsed in wait_cycles */ if (elapsed_cycles >= 8 && !(csr & (1 << ACS_ABO_BITPOS))) return 0; } if (times < 0) { pr_err("QAT: wait_num_cycles time out\n"); return -EFAULT; } return 0; } #define CLR_BIT(wrd, bit) ((wrd) & ~(1 << (bit))) #define SET_BIT(wrd, bit) ((wrd) | 1 << (bit)) int qat_hal_set_ae_ctx_mode(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char mode) { unsigned int csr, new_csr; if (mode != 4 && mode != 8) { pr_err("QAT: bad ctx mode=%d\n", mode); return -EINVAL; } /* Sets the accelaration engine context mode to either four or eight */ csr = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); csr = IGNORE_W1C_MASK & csr; new_csr = (mode == 4) ? SET_BIT(csr, CE_INUSE_CONTEXTS_BITPOS) : CLR_BIT(csr, CE_INUSE_CONTEXTS_BITPOS); qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, new_csr); return 0; } int qat_hal_set_ae_nn_mode(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char mode) { unsigned int csr, new_csr; csr = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); csr &= IGNORE_W1C_MASK; new_csr = (mode) ? SET_BIT(csr, CE_NN_MODE_BITPOS) : CLR_BIT(csr, CE_NN_MODE_BITPOS); if (new_csr != csr) qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, new_csr); return 0; } int qat_hal_set_ae_lm_mode(struct icp_qat_fw_loader_handle *handle, unsigned char ae, enum icp_qat_uof_regtype lm_type, unsigned char mode) { unsigned int csr, new_csr; csr = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); csr &= IGNORE_W1C_MASK; switch (lm_type) { case ICP_LMEM0: new_csr = (mode) ? SET_BIT(csr, CE_LMADDR_0_GLOBAL_BITPOS) : CLR_BIT(csr, CE_LMADDR_0_GLOBAL_BITPOS); break; case ICP_LMEM1: new_csr = (mode) ? SET_BIT(csr, CE_LMADDR_1_GLOBAL_BITPOS) : CLR_BIT(csr, CE_LMADDR_1_GLOBAL_BITPOS); break; case ICP_LMEM2: new_csr = (mode) ? SET_BIT(csr, CE_LMADDR_2_GLOBAL_BITPOS) : CLR_BIT(csr, CE_LMADDR_2_GLOBAL_BITPOS); break; case ICP_LMEM3: new_csr = (mode) ? SET_BIT(csr, CE_LMADDR_3_GLOBAL_BITPOS) : CLR_BIT(csr, CE_LMADDR_3_GLOBAL_BITPOS); break; default: pr_err("QAT: lmType = 0x%x\n", lm_type); return -EINVAL; } if (new_csr != csr) qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, new_csr); return 0; } void qat_hal_set_ae_tindex_mode(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char mode) { unsigned int csr, new_csr; csr = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); csr &= IGNORE_W1C_MASK; new_csr = (mode) ? SET_BIT(csr, CE_T_INDEX_GLOBAL_BITPOS) : CLR_BIT(csr, CE_T_INDEX_GLOBAL_BITPOS); if (new_csr != csr) qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, new_csr); } static unsigned short qat_hal_get_reg_addr(unsigned int type, unsigned short reg_num) { unsigned short reg_addr; switch (type) { case ICP_GPA_ABS: case ICP_GPB_ABS: reg_addr = 0x80 | (reg_num & 0x7f); break; case ICP_GPA_REL: case ICP_GPB_REL: reg_addr = reg_num & 0x1f; break; case ICP_SR_RD_REL: case ICP_SR_WR_REL: case ICP_SR_REL: reg_addr = 0x180 | (reg_num & 0x1f); break; case ICP_SR_ABS: reg_addr = 0x140 | ((reg_num & 0x3) << 1); break; case ICP_DR_RD_REL: case ICP_DR_WR_REL: case ICP_DR_REL: reg_addr = 0x1c0 | (reg_num & 0x1f); break; case ICP_DR_ABS: reg_addr = 0x100 | ((reg_num & 0x3) << 1); break; case ICP_NEIGH_REL: reg_addr = 0x280 | (reg_num & 0x1f); break; case ICP_LMEM0: reg_addr = 0x200; break; case ICP_LMEM1: reg_addr = 0x220; break; case ICP_LMEM2: reg_addr = 0x2c0; break; case ICP_LMEM3: reg_addr = 0x2e0; break; case ICP_NO_DEST: reg_addr = 0x300 | (reg_num & 0xff); break; default: reg_addr = BAD_REGADDR; break; } return reg_addr; } void qat_hal_reset(struct icp_qat_fw_loader_handle *handle) { unsigned int reset_mask = handle->chip_info->icp_rst_mask; unsigned int reset_csr = handle->chip_info->icp_rst_csr; unsigned int csr_val; csr_val = GET_CAP_CSR(handle, reset_csr); csr_val |= reset_mask; SET_CAP_CSR(handle, reset_csr, csr_val); } static void qat_hal_wr_indr_csr(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int ctx_mask, unsigned int ae_csr, unsigned int csr_val) { unsigned int ctx, cur_ctx; cur_ctx = qat_hal_rd_ae_csr(handle, ae, CSR_CTX_POINTER); for (ctx = 0; ctx < ICP_QAT_UCLO_MAX_CTX; ctx++) { if (!(ctx_mask & (1 << ctx))) continue; qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, ctx); qat_hal_wr_ae_csr(handle, ae, ae_csr, csr_val); } qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, cur_ctx); } static unsigned int qat_hal_rd_indr_csr(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, unsigned int ae_csr) { unsigned int cur_ctx, csr_val; cur_ctx = qat_hal_rd_ae_csr(handle, ae, CSR_CTX_POINTER); qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, ctx); csr_val = qat_hal_rd_ae_csr(handle, ae, ae_csr); qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, cur_ctx); return csr_val; } static void qat_hal_put_sig_event(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int ctx_mask, unsigned int events) { unsigned int ctx, cur_ctx; cur_ctx = qat_hal_rd_ae_csr(handle, ae, CSR_CTX_POINTER); for (ctx = 0; ctx < ICP_QAT_UCLO_MAX_CTX; ctx++) { if (!(ctx_mask & (1 << ctx))) continue; qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, ctx); qat_hal_wr_ae_csr(handle, ae, CTX_SIG_EVENTS_INDIRECT, events); } qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, cur_ctx); } static void qat_hal_put_wakeup_event(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int ctx_mask, unsigned int events) { unsigned int ctx, cur_ctx; cur_ctx = qat_hal_rd_ae_csr(handle, ae, CSR_CTX_POINTER); for (ctx = 0; ctx < ICP_QAT_UCLO_MAX_CTX; ctx++) { if (!(ctx_mask & (1 << ctx))) continue; qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, ctx); qat_hal_wr_ae_csr(handle, ae, CTX_WAKEUP_EVENTS_INDIRECT, events); } qat_hal_wr_ae_csr(handle, ae, CSR_CTX_POINTER, cur_ctx); } static int qat_hal_check_ae_alive(struct icp_qat_fw_loader_handle *handle) { unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned int base_cnt, cur_cnt; unsigned char ae; int times = MAX_RETRY_TIMES; for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { base_cnt = qat_hal_rd_ae_csr(handle, ae, PROFILE_COUNT); base_cnt &= 0xffff; do { cur_cnt = qat_hal_rd_ae_csr(handle, ae, PROFILE_COUNT); cur_cnt &= 0xffff; } while (times-- && (cur_cnt == base_cnt)); if (times < 0) { pr_err("QAT: AE%d is inactive!!\n", ae); return -EFAULT; } } return 0; } int qat_hal_check_ae_active(struct icp_qat_fw_loader_handle *handle, unsigned int ae) { unsigned int enable = 0, active = 0; enable = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); active = qat_hal_rd_ae_csr(handle, ae, ACTIVE_CTX_STATUS); if ((enable & (0xff << CE_ENABLE_BITPOS)) || (active & (1 << ACS_ABO_BITPOS))) return 1; else return 0; } static void qat_hal_reset_timestamp(struct icp_qat_fw_loader_handle *handle) { unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned int misc_ctl_csr, misc_ctl; unsigned char ae; misc_ctl_csr = handle->chip_info->misc_ctl_csr; /* stop the timestamp timers */ misc_ctl = GET_CAP_CSR(handle, misc_ctl_csr); if (misc_ctl & MC_TIMESTAMP_ENABLE) SET_CAP_CSR(handle, misc_ctl_csr, misc_ctl & (~MC_TIMESTAMP_ENABLE)); for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { qat_hal_wr_ae_csr(handle, ae, TIMESTAMP_LOW, 0); qat_hal_wr_ae_csr(handle, ae, TIMESTAMP_HIGH, 0); } /* start timestamp timers */ SET_CAP_CSR(handle, misc_ctl_csr, misc_ctl | MC_TIMESTAMP_ENABLE); } #define ESRAM_AUTO_TINIT BIT(2) #define ESRAM_AUTO_TINIT_DONE BIT(3) #define ESRAM_AUTO_INIT_USED_CYCLES (1640) #define ESRAM_AUTO_INIT_CSR_OFFSET 0xC1C static int qat_hal_init_esram(struct icp_qat_fw_loader_handle *handle) { void __iomem *csr_addr = (void __iomem *)((uintptr_t)handle->hal_ep_csr_addr_v + ESRAM_AUTO_INIT_CSR_OFFSET); unsigned int csr_val; int times = 30; if (handle->pci_dev->device != PCI_DEVICE_ID_INTEL_QAT_DH895XCC) return 0; csr_val = ADF_CSR_RD(csr_addr, 0); if ((csr_val & ESRAM_AUTO_TINIT) && (csr_val & ESRAM_AUTO_TINIT_DONE)) return 0; csr_val = ADF_CSR_RD(csr_addr, 0); csr_val |= ESRAM_AUTO_TINIT; ADF_CSR_WR(csr_addr, 0, csr_val); do { qat_hal_wait_cycles(handle, 0, ESRAM_AUTO_INIT_USED_CYCLES, 0); csr_val = ADF_CSR_RD(csr_addr, 0); } while (!(csr_val & ESRAM_AUTO_TINIT_DONE) && times--); if (times < 0) { pr_err("QAT: Fail to init eSram!\n"); return -EFAULT; } return 0; } #define SHRAM_INIT_CYCLES 2060 int qat_hal_clr_reset(struct icp_qat_fw_loader_handle *handle) { unsigned int clk_csr = handle->chip_info->glb_clk_enable_csr; unsigned int reset_mask = handle->chip_info->icp_rst_mask; unsigned int reset_csr = handle->chip_info->icp_rst_csr; unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned char ae = 0; unsigned int times = 100; unsigned int csr_val; /* write to the reset csr */ csr_val = GET_CAP_CSR(handle, reset_csr); csr_val &= ~reset_mask; do { SET_CAP_CSR(handle, reset_csr, csr_val); if (!(times--)) goto out_err; csr_val = GET_CAP_CSR(handle, reset_csr); csr_val &= reset_mask; } while (csr_val); /* enable clock */ csr_val = GET_CAP_CSR(handle, clk_csr); csr_val |= reset_mask; SET_CAP_CSR(handle, clk_csr, csr_val); if (qat_hal_check_ae_alive(handle)) goto out_err; /* Set undefined power-up/reset states to reasonable default values */ for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, INIT_CTX_ENABLE_VALUE); qat_hal_wr_indr_csr(handle, ae, ICP_QAT_UCLO_AE_ALL_CTX, CTX_STS_INDIRECT, handle->hal_handle->upc_mask & INIT_PC_VALUE); qat_hal_wr_ae_csr(handle, ae, CTX_ARB_CNTL, INIT_CTX_ARB_VALUE); qat_hal_wr_ae_csr(handle, ae, CC_ENABLE, INIT_CCENABLE_VALUE); qat_hal_put_wakeup_event(handle, ae, ICP_QAT_UCLO_AE_ALL_CTX, INIT_WAKEUP_EVENTS_VALUE); qat_hal_put_sig_event(handle, ae, ICP_QAT_UCLO_AE_ALL_CTX, INIT_SIG_EVENTS_VALUE); } if (qat_hal_init_esram(handle)) goto out_err; if (qat_hal_wait_cycles(handle, 0, SHRAM_INIT_CYCLES, 0)) goto out_err; qat_hal_reset_timestamp(handle); return 0; out_err: pr_err("QAT: failed to get device out of reset\n"); return -EFAULT; } static void qat_hal_disable_ctx(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int ctx_mask) { unsigned int ctx; ctx = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); ctx &= IGNORE_W1C_MASK & (~((ctx_mask & ICP_QAT_UCLO_AE_ALL_CTX) << CE_ENABLE_BITPOS)); qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, ctx); } static u64 qat_hal_parity_64bit(u64 word) { word ^= word >> 1; word ^= word >> 2; word ^= word >> 4; word ^= word >> 8; word ^= word >> 16; word ^= word >> 32; return word & 1; } static u64 qat_hal_set_uword_ecc(u64 uword) { u64 bit0_mask = 0xff800007fffULL, bit1_mask = 0x1f801ff801fULL, bit2_mask = 0xe387e0781e1ULL, bit3_mask = 0x7cb8e388e22ULL, bit4_mask = 0xaf5b2c93244ULL, bit5_mask = 0xf56d5525488ULL, bit6_mask = 0xdaf69a46910ULL; /* clear the ecc bits */ uword &= ~(0x7fULL << 0x2C); uword |= qat_hal_parity_64bit(bit0_mask & uword) << 0x2C; uword |= qat_hal_parity_64bit(bit1_mask & uword) << 0x2D; uword |= qat_hal_parity_64bit(bit2_mask & uword) << 0x2E; uword |= qat_hal_parity_64bit(bit3_mask & uword) << 0x2F; uword |= qat_hal_parity_64bit(bit4_mask & uword) << 0x30; uword |= qat_hal_parity_64bit(bit5_mask & uword) << 0x31; uword |= qat_hal_parity_64bit(bit6_mask & uword) << 0x32; return uword; } void qat_hal_wr_uwords(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int uaddr, unsigned int words_num, u64 *uword) { unsigned int ustore_addr; unsigned int i; ustore_addr = qat_hal_rd_ae_csr(handle, ae, USTORE_ADDRESS); uaddr |= UA_ECS; qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, uaddr); for (i = 0; i < words_num; i++) { unsigned int uwrd_lo, uwrd_hi; u64 tmp; tmp = qat_hal_set_uword_ecc(uword[i]); uwrd_lo = (unsigned int)(tmp & 0xffffffff); uwrd_hi = (unsigned int)(tmp >> 0x20); qat_hal_wr_ae_csr(handle, ae, USTORE_DATA_LOWER, uwrd_lo); qat_hal_wr_ae_csr(handle, ae, USTORE_DATA_UPPER, uwrd_hi); } qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, ustore_addr); } static void qat_hal_enable_ctx(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int ctx_mask) { unsigned int ctx; ctx = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); ctx &= IGNORE_W1C_MASK; ctx_mask &= (ctx & CE_INUSE_CONTEXTS) ? 0x55 : 0xFF; ctx |= (ctx_mask << CE_ENABLE_BITPOS); qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, ctx); } static void qat_hal_clear_xfer(struct icp_qat_fw_loader_handle *handle) { unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned char ae; unsigned short reg; for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { for (reg = 0; reg < ICP_QAT_UCLO_MAX_GPR_REG; reg++) { qat_hal_init_rd_xfer(handle, ae, 0, ICP_SR_RD_ABS, reg, 0); qat_hal_init_rd_xfer(handle, ae, 0, ICP_DR_RD_ABS, reg, 0); } } } static int qat_hal_clear_gpr(struct icp_qat_fw_loader_handle *handle) { unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned char ae; unsigned int ctx_mask = ICP_QAT_UCLO_AE_ALL_CTX; int times = MAX_RETRY_TIMES; unsigned int csr_val = 0; unsigned int savctx = 0; int ret = 0; for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { csr_val = qat_hal_rd_ae_csr(handle, ae, AE_MISC_CONTROL); csr_val &= ~(1 << MMC_SHARE_CS_BITPOS); qat_hal_wr_ae_csr(handle, ae, AE_MISC_CONTROL, csr_val); csr_val = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); csr_val &= IGNORE_W1C_MASK; if (handle->chip_info->nn) csr_val |= CE_NN_MODE; qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, csr_val); qat_hal_wr_uwords(handle, ae, 0, ARRAY_SIZE(inst), (u64 *)inst); qat_hal_wr_indr_csr(handle, ae, ctx_mask, CTX_STS_INDIRECT, handle->hal_handle->upc_mask & INIT_PC_VALUE); savctx = qat_hal_rd_ae_csr(handle, ae, ACTIVE_CTX_STATUS); qat_hal_wr_ae_csr(handle, ae, ACTIVE_CTX_STATUS, 0); qat_hal_put_wakeup_event(handle, ae, ctx_mask, XCWE_VOLUNTARY); qat_hal_wr_indr_csr(handle, ae, ctx_mask, CTX_SIG_EVENTS_INDIRECT, 0); qat_hal_wr_ae_csr(handle, ae, CTX_SIG_EVENTS_ACTIVE, 0); qat_hal_enable_ctx(handle, ae, ctx_mask); } for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { /* wait for AE to finish */ do { ret = qat_hal_wait_cycles(handle, ae, 20, 1); } while (ret && times--); if (times < 0) { pr_err("QAT: clear GPR of AE %d failed", ae); return -EINVAL; } qat_hal_disable_ctx(handle, ae, ctx_mask); qat_hal_wr_ae_csr(handle, ae, ACTIVE_CTX_STATUS, savctx & ACS_ACNO); qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, INIT_CTX_ENABLE_VALUE); qat_hal_wr_indr_csr(handle, ae, ctx_mask, CTX_STS_INDIRECT, handle->hal_handle->upc_mask & INIT_PC_VALUE); qat_hal_wr_ae_csr(handle, ae, CTX_ARB_CNTL, INIT_CTX_ARB_VALUE); qat_hal_wr_ae_csr(handle, ae, CC_ENABLE, INIT_CCENABLE_VALUE); qat_hal_put_wakeup_event(handle, ae, ctx_mask, INIT_WAKEUP_EVENTS_VALUE); qat_hal_put_sig_event(handle, ae, ctx_mask, INIT_SIG_EVENTS_VALUE); } return 0; } static int qat_hal_chip_init(struct icp_qat_fw_loader_handle *handle, struct adf_accel_dev *accel_dev) { struct adf_accel_pci *pci_info = &accel_dev->accel_pci_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); unsigned int max_en_ae_id = 0; struct adf_bar *sram_bar; unsigned int csr_val = 0; unsigned long ae_mask; unsigned char ae = 0; int ret = 0; handle->pci_dev = pci_info->pci_dev; switch (handle->pci_dev->device) { case ADF_4XXX_PCI_DEVICE_ID: case ADF_401XX_PCI_DEVICE_ID: case ADF_402XX_PCI_DEVICE_ID: handle->chip_info->mmp_sram_size = 0; handle->chip_info->nn = false; handle->chip_info->lm2lm3 = true; handle->chip_info->lm_size = ICP_QAT_UCLO_MAX_LMEM_REG_2X; handle->chip_info->icp_rst_csr = ICP_RESET_CPP0; handle->chip_info->icp_rst_mask = 0x100015; handle->chip_info->glb_clk_enable_csr = ICP_GLOBAL_CLK_ENABLE_CPP0; handle->chip_info->misc_ctl_csr = MISC_CONTROL_C4XXX; handle->chip_info->wakeup_event_val = 0x80000000; handle->chip_info->fw_auth = true; handle->chip_info->css_3k = true; handle->chip_info->tgroup_share_ustore = true; handle->chip_info->fcu_ctl_csr = FCU_CONTROL_4XXX; handle->chip_info->fcu_sts_csr = FCU_STATUS_4XXX; handle->chip_info->fcu_dram_addr_hi = FCU_DRAM_ADDR_HI_4XXX; handle->chip_info->fcu_dram_addr_lo = FCU_DRAM_ADDR_LO_4XXX; handle->chip_info->fcu_loaded_ae_csr = FCU_AE_LOADED_4XXX; handle->chip_info->fcu_loaded_ae_pos = 0; handle->hal_cap_g_ctl_csr_addr_v = pmisc_addr + ICP_QAT_CAP_OFFSET_4XXX; handle->hal_cap_ae_xfer_csr_addr_v = pmisc_addr + ICP_QAT_AE_OFFSET_4XXX; handle->hal_ep_csr_addr_v = pmisc_addr + ICP_QAT_EP_OFFSET_4XXX; handle->hal_cap_ae_local_csr_addr_v = (void __iomem *)((uintptr_t)handle->hal_cap_ae_xfer_csr_addr_v + LOCAL_TO_XFER_REG_OFFSET); break; case PCI_DEVICE_ID_INTEL_QAT_C62X: case PCI_DEVICE_ID_INTEL_QAT_C3XXX: handle->chip_info->mmp_sram_size = 0; handle->chip_info->nn = true; handle->chip_info->lm2lm3 = false; handle->chip_info->lm_size = ICP_QAT_UCLO_MAX_LMEM_REG; handle->chip_info->icp_rst_csr = ICP_RESET; handle->chip_info->icp_rst_mask = (hw_data->ae_mask << RST_CSR_AE_LSB) | (hw_data->accel_mask << RST_CSR_QAT_LSB); handle->chip_info->glb_clk_enable_csr = ICP_GLOBAL_CLK_ENABLE; handle->chip_info->misc_ctl_csr = MISC_CONTROL; handle->chip_info->wakeup_event_val = WAKEUP_EVENT; handle->chip_info->fw_auth = true; handle->chip_info->css_3k = false; handle->chip_info->tgroup_share_ustore = false; handle->chip_info->fcu_ctl_csr = FCU_CONTROL; handle->chip_info->fcu_sts_csr = FCU_STATUS; handle->chip_info->fcu_dram_addr_hi = FCU_DRAM_ADDR_HI; handle->chip_info->fcu_dram_addr_lo = FCU_DRAM_ADDR_LO; handle->chip_info->fcu_loaded_ae_csr = FCU_STATUS; handle->chip_info->fcu_loaded_ae_pos = FCU_LOADED_AE_POS; handle->hal_cap_g_ctl_csr_addr_v = pmisc_addr + ICP_QAT_CAP_OFFSET; handle->hal_cap_ae_xfer_csr_addr_v = pmisc_addr + ICP_QAT_AE_OFFSET; handle->hal_ep_csr_addr_v = pmisc_addr + ICP_QAT_EP_OFFSET; handle->hal_cap_ae_local_csr_addr_v = (void __iomem *)((uintptr_t)handle->hal_cap_ae_xfer_csr_addr_v + LOCAL_TO_XFER_REG_OFFSET); break; case PCI_DEVICE_ID_INTEL_QAT_DH895XCC: handle->chip_info->mmp_sram_size = 0x40000; handle->chip_info->nn = true; handle->chip_info->lm2lm3 = false; handle->chip_info->lm_size = ICP_QAT_UCLO_MAX_LMEM_REG; handle->chip_info->icp_rst_csr = ICP_RESET; handle->chip_info->icp_rst_mask = (hw_data->ae_mask << RST_CSR_AE_LSB) | (hw_data->accel_mask << RST_CSR_QAT_LSB); handle->chip_info->glb_clk_enable_csr = ICP_GLOBAL_CLK_ENABLE; handle->chip_info->misc_ctl_csr = MISC_CONTROL; handle->chip_info->wakeup_event_val = WAKEUP_EVENT; handle->chip_info->fw_auth = false; handle->chip_info->css_3k = false; handle->chip_info->tgroup_share_ustore = false; handle->chip_info->fcu_ctl_csr = 0; handle->chip_info->fcu_sts_csr = 0; handle->chip_info->fcu_dram_addr_hi = 0; handle->chip_info->fcu_dram_addr_lo = 0; handle->chip_info->fcu_loaded_ae_csr = 0; handle->chip_info->fcu_loaded_ae_pos = 0; handle->hal_cap_g_ctl_csr_addr_v = pmisc_addr + ICP_QAT_CAP_OFFSET; handle->hal_cap_ae_xfer_csr_addr_v = pmisc_addr + ICP_QAT_AE_OFFSET; handle->hal_ep_csr_addr_v = pmisc_addr + ICP_QAT_EP_OFFSET; handle->hal_cap_ae_local_csr_addr_v = (void __iomem *)((uintptr_t)handle->hal_cap_ae_xfer_csr_addr_v + LOCAL_TO_XFER_REG_OFFSET); break; default: ret = -EINVAL; goto out_err; } if (handle->chip_info->mmp_sram_size > 0) { sram_bar = &pci_info->pci_bars[hw_data->get_sram_bar_id(hw_data)]; handle->hal_sram_addr_v = sram_bar->virt_addr; } handle->hal_handle->revision_id = accel_dev->accel_pci_dev.revid; handle->hal_handle->ae_mask = hw_data->ae_mask; handle->hal_handle->admin_ae_mask = hw_data->admin_ae_mask; handle->hal_handle->slice_mask = hw_data->accel_mask; handle->cfg_ae_mask = ALL_AE_MASK; /* create AE objects */ handle->hal_handle->upc_mask = 0x1ffff; handle->hal_handle->max_ustore = 0x4000; ae_mask = handle->hal_handle->ae_mask; for_each_set_bit(ae, &ae_mask, ICP_QAT_UCLO_MAX_AE) { handle->hal_handle->aes[ae].free_addr = 0; handle->hal_handle->aes[ae].free_size = handle->hal_handle->max_ustore; handle->hal_handle->aes[ae].ustore_size = handle->hal_handle->max_ustore; handle->hal_handle->aes[ae].live_ctx_mask = ICP_QAT_UCLO_AE_ALL_CTX; max_en_ae_id = ae; } handle->hal_handle->ae_max_num = max_en_ae_id + 1; /* Set SIGNATURE_ENABLE[0] to 0x1 in order to enable ALU_OUT csr */ for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { csr_val = qat_hal_rd_ae_csr(handle, ae, SIGNATURE_ENABLE); csr_val |= 0x1; qat_hal_wr_ae_csr(handle, ae, SIGNATURE_ENABLE, csr_val); } out_err: return ret; } int qat_hal_init(struct adf_accel_dev *accel_dev) { struct icp_qat_fw_loader_handle *handle; int ret = 0; handle = kzalloc(sizeof(*handle), GFP_KERNEL); if (!handle) return -ENOMEM; handle->hal_handle = kzalloc(sizeof(*handle->hal_handle), GFP_KERNEL); if (!handle->hal_handle) { ret = -ENOMEM; goto out_hal_handle; } handle->chip_info = kzalloc(sizeof(*handle->chip_info), GFP_KERNEL); if (!handle->chip_info) { ret = -ENOMEM; goto out_chip_info; } ret = qat_hal_chip_init(handle, accel_dev); if (ret) { dev_err(&GET_DEV(accel_dev), "qat_hal_chip_init error\n"); goto out_err; } /* take all AEs out of reset */ ret = qat_hal_clr_reset(handle); if (ret) { dev_err(&GET_DEV(accel_dev), "qat_hal_clr_reset error\n"); goto out_err; } qat_hal_clear_xfer(handle); if (!handle->chip_info->fw_auth) { ret = qat_hal_clear_gpr(handle); if (ret) goto out_err; } accel_dev->fw_loader->fw_loader = handle; return 0; out_err: kfree(handle->chip_info); out_chip_info: kfree(handle->hal_handle); out_hal_handle: kfree(handle); return ret; } void qat_hal_deinit(struct icp_qat_fw_loader_handle *handle) { if (!handle) return; kfree(handle->chip_info); kfree(handle->hal_handle); kfree(handle); } int qat_hal_start(struct icp_qat_fw_loader_handle *handle) { unsigned long ae_mask = handle->hal_handle->ae_mask; u32 wakeup_val = handle->chip_info->wakeup_event_val; u32 fcu_ctl_csr, fcu_sts_csr; unsigned int fcu_sts; unsigned char ae; u32 ae_ctr = 0; int retry = 0; if (handle->chip_info->fw_auth) { fcu_ctl_csr = handle->chip_info->fcu_ctl_csr; fcu_sts_csr = handle->chip_info->fcu_sts_csr; ae_ctr = hweight32(ae_mask); SET_CAP_CSR(handle, fcu_ctl_csr, FCU_CTRL_CMD_START); do { msleep(FW_AUTH_WAIT_PERIOD); fcu_sts = GET_CAP_CSR(handle, fcu_sts_csr); if (((fcu_sts >> FCU_STS_DONE_POS) & 0x1)) return ae_ctr; } while (retry++ < FW_AUTH_MAX_RETRY); pr_err("QAT: start error (FCU_STS = 0x%x)\n", fcu_sts); return 0; } else { for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { qat_hal_put_wakeup_event(handle, ae, 0, wakeup_val); qat_hal_enable_ctx(handle, ae, ICP_QAT_UCLO_AE_ALL_CTX); ae_ctr++; } return ae_ctr; } } void qat_hal_stop(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int ctx_mask) { if (!handle->chip_info->fw_auth) qat_hal_disable_ctx(handle, ae, ctx_mask); } void qat_hal_set_pc(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int ctx_mask, unsigned int upc) { qat_hal_wr_indr_csr(handle, ae, ctx_mask, CTX_STS_INDIRECT, handle->hal_handle->upc_mask & upc); } static void qat_hal_get_uwords(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int uaddr, unsigned int words_num, u64 *uword) { unsigned int i, uwrd_lo, uwrd_hi; unsigned int ustore_addr, misc_control; misc_control = qat_hal_rd_ae_csr(handle, ae, AE_MISC_CONTROL); qat_hal_wr_ae_csr(handle, ae, AE_MISC_CONTROL, misc_control & 0xfffffffb); ustore_addr = qat_hal_rd_ae_csr(handle, ae, USTORE_ADDRESS); uaddr |= UA_ECS; for (i = 0; i < words_num; i++) { qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, uaddr); uaddr++; uwrd_lo = qat_hal_rd_ae_csr(handle, ae, USTORE_DATA_LOWER); uwrd_hi = qat_hal_rd_ae_csr(handle, ae, USTORE_DATA_UPPER); uword[i] = uwrd_hi; uword[i] = (uword[i] << 0x20) | uwrd_lo; } qat_hal_wr_ae_csr(handle, ae, AE_MISC_CONTROL, misc_control); qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, ustore_addr); } void qat_hal_wr_umem(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int uaddr, unsigned int words_num, unsigned int *data) { unsigned int i, ustore_addr; ustore_addr = qat_hal_rd_ae_csr(handle, ae, USTORE_ADDRESS); uaddr |= UA_ECS; qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, uaddr); for (i = 0; i < words_num; i++) { unsigned int uwrd_lo, uwrd_hi, tmp; uwrd_lo = ((data[i] & 0xfff0000) << 4) | (0x3 << 18) | ((data[i] & 0xff00) << 2) | (0x3 << 8) | (data[i] & 0xff); uwrd_hi = (0xf << 4) | ((data[i] & 0xf0000000) >> 28); uwrd_hi |= (hweight32(data[i] & 0xffff) & 0x1) << 8; tmp = ((data[i] >> 0x10) & 0xffff); uwrd_hi |= (hweight32(tmp) & 0x1) << 9; qat_hal_wr_ae_csr(handle, ae, USTORE_DATA_LOWER, uwrd_lo); qat_hal_wr_ae_csr(handle, ae, USTORE_DATA_UPPER, uwrd_hi); } qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, ustore_addr); } #define MAX_EXEC_INST 100 static int qat_hal_exec_micro_inst(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, u64 *micro_inst, unsigned int inst_num, int code_off, unsigned int max_cycle, unsigned int *endpc) { unsigned int ind_lm_addr_byte0 = 0, ind_lm_addr_byte1 = 0; unsigned int ind_lm_addr_byte2 = 0, ind_lm_addr_byte3 = 0; unsigned int ind_t_index = 0, ind_t_index_byte = 0; unsigned int ind_lm_addr0 = 0, ind_lm_addr1 = 0; unsigned int ind_lm_addr2 = 0, ind_lm_addr3 = 0; u64 savuwords[MAX_EXEC_INST]; unsigned int ind_cnt_sig; unsigned int ind_sig, act_sig; unsigned int csr_val = 0, newcsr_val; unsigned int savctx; unsigned int savcc, wakeup_events, savpc; unsigned int ctxarb_ctl, ctx_enables; if ((inst_num > handle->hal_handle->max_ustore) || !micro_inst) { pr_err("QAT: invalid instruction num %d\n", inst_num); return -EINVAL; } /* save current context */ ind_lm_addr0 = qat_hal_rd_indr_csr(handle, ae, ctx, LM_ADDR_0_INDIRECT); ind_lm_addr1 = qat_hal_rd_indr_csr(handle, ae, ctx, LM_ADDR_1_INDIRECT); ind_lm_addr_byte0 = qat_hal_rd_indr_csr(handle, ae, ctx, INDIRECT_LM_ADDR_0_BYTE_INDEX); ind_lm_addr_byte1 = qat_hal_rd_indr_csr(handle, ae, ctx, INDIRECT_LM_ADDR_1_BYTE_INDEX); if (handle->chip_info->lm2lm3) { ind_lm_addr2 = qat_hal_rd_indr_csr(handle, ae, ctx, LM_ADDR_2_INDIRECT); ind_lm_addr3 = qat_hal_rd_indr_csr(handle, ae, ctx, LM_ADDR_3_INDIRECT); ind_lm_addr_byte2 = qat_hal_rd_indr_csr(handle, ae, ctx, INDIRECT_LM_ADDR_2_BYTE_INDEX); ind_lm_addr_byte3 = qat_hal_rd_indr_csr(handle, ae, ctx, INDIRECT_LM_ADDR_3_BYTE_INDEX); ind_t_index = qat_hal_rd_indr_csr(handle, ae, ctx, INDIRECT_T_INDEX); ind_t_index_byte = qat_hal_rd_indr_csr(handle, ae, ctx, INDIRECT_T_INDEX_BYTE_INDEX); } if (inst_num <= MAX_EXEC_INST) qat_hal_get_uwords(handle, ae, 0, inst_num, savuwords); qat_hal_get_wakeup_event(handle, ae, ctx, &wakeup_events); savpc = qat_hal_rd_indr_csr(handle, ae, ctx, CTX_STS_INDIRECT); savpc = (savpc & handle->hal_handle->upc_mask) >> 0; ctx_enables = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); ctx_enables &= IGNORE_W1C_MASK; savcc = qat_hal_rd_ae_csr(handle, ae, CC_ENABLE); savctx = qat_hal_rd_ae_csr(handle, ae, ACTIVE_CTX_STATUS); ctxarb_ctl = qat_hal_rd_ae_csr(handle, ae, CTX_ARB_CNTL); ind_cnt_sig = qat_hal_rd_indr_csr(handle, ae, ctx, FUTURE_COUNT_SIGNAL_INDIRECT); ind_sig = qat_hal_rd_indr_csr(handle, ae, ctx, CTX_SIG_EVENTS_INDIRECT); act_sig = qat_hal_rd_ae_csr(handle, ae, CTX_SIG_EVENTS_ACTIVE); /* execute micro codes */ qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, ctx_enables); qat_hal_wr_uwords(handle, ae, 0, inst_num, micro_inst); qat_hal_wr_indr_csr(handle, ae, (1 << ctx), CTX_STS_INDIRECT, 0); qat_hal_wr_ae_csr(handle, ae, ACTIVE_CTX_STATUS, ctx & ACS_ACNO); if (code_off) qat_hal_wr_ae_csr(handle, ae, CC_ENABLE, savcc & 0xffffdfff); qat_hal_put_wakeup_event(handle, ae, (1 << ctx), XCWE_VOLUNTARY); qat_hal_wr_indr_csr(handle, ae, (1 << ctx), CTX_SIG_EVENTS_INDIRECT, 0); qat_hal_wr_ae_csr(handle, ae, CTX_SIG_EVENTS_ACTIVE, 0); qat_hal_enable_ctx(handle, ae, (1 << ctx)); /* wait for micro codes to finish */ if (qat_hal_wait_cycles(handle, ae, max_cycle, 1) != 0) return -EFAULT; if (endpc) { unsigned int ctx_status; ctx_status = qat_hal_rd_indr_csr(handle, ae, ctx, CTX_STS_INDIRECT); *endpc = ctx_status & handle->hal_handle->upc_mask; } /* retore to saved context */ qat_hal_disable_ctx(handle, ae, (1 << ctx)); if (inst_num <= MAX_EXEC_INST) qat_hal_wr_uwords(handle, ae, 0, inst_num, savuwords); qat_hal_put_wakeup_event(handle, ae, (1 << ctx), wakeup_events); qat_hal_wr_indr_csr(handle, ae, (1 << ctx), CTX_STS_INDIRECT, handle->hal_handle->upc_mask & savpc); csr_val = qat_hal_rd_ae_csr(handle, ae, AE_MISC_CONTROL); newcsr_val = CLR_BIT(csr_val, MMC_SHARE_CS_BITPOS); qat_hal_wr_ae_csr(handle, ae, AE_MISC_CONTROL, newcsr_val); qat_hal_wr_ae_csr(handle, ae, CC_ENABLE, savcc); qat_hal_wr_ae_csr(handle, ae, ACTIVE_CTX_STATUS, savctx & ACS_ACNO); qat_hal_wr_ae_csr(handle, ae, CTX_ARB_CNTL, ctxarb_ctl); qat_hal_wr_indr_csr(handle, ae, (1 << ctx), LM_ADDR_0_INDIRECT, ind_lm_addr0); qat_hal_wr_indr_csr(handle, ae, (1 << ctx), LM_ADDR_1_INDIRECT, ind_lm_addr1); qat_hal_wr_indr_csr(handle, ae, (1 << ctx), INDIRECT_LM_ADDR_0_BYTE_INDEX, ind_lm_addr_byte0); qat_hal_wr_indr_csr(handle, ae, (1 << ctx), INDIRECT_LM_ADDR_1_BYTE_INDEX, ind_lm_addr_byte1); if (handle->chip_info->lm2lm3) { qat_hal_wr_indr_csr(handle, ae, BIT(ctx), LM_ADDR_2_INDIRECT, ind_lm_addr2); qat_hal_wr_indr_csr(handle, ae, BIT(ctx), LM_ADDR_3_INDIRECT, ind_lm_addr3); qat_hal_wr_indr_csr(handle, ae, BIT(ctx), INDIRECT_LM_ADDR_2_BYTE_INDEX, ind_lm_addr_byte2); qat_hal_wr_indr_csr(handle, ae, BIT(ctx), INDIRECT_LM_ADDR_3_BYTE_INDEX, ind_lm_addr_byte3); qat_hal_wr_indr_csr(handle, ae, BIT(ctx), INDIRECT_T_INDEX, ind_t_index); qat_hal_wr_indr_csr(handle, ae, BIT(ctx), INDIRECT_T_INDEX_BYTE_INDEX, ind_t_index_byte); } qat_hal_wr_indr_csr(handle, ae, (1 << ctx), FUTURE_COUNT_SIGNAL_INDIRECT, ind_cnt_sig); qat_hal_wr_indr_csr(handle, ae, (1 << ctx), CTX_SIG_EVENTS_INDIRECT, ind_sig); qat_hal_wr_ae_csr(handle, ae, CTX_SIG_EVENTS_ACTIVE, act_sig); qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, ctx_enables); return 0; } static int qat_hal_rd_rel_reg(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, enum icp_qat_uof_regtype reg_type, unsigned short reg_num, unsigned int *data) { unsigned int savctx, uaddr, uwrd_lo, uwrd_hi; unsigned int ctxarb_cntl, ustore_addr, ctx_enables; unsigned short reg_addr; int status = 0; u64 insts, savuword; reg_addr = qat_hal_get_reg_addr(reg_type, reg_num); if (reg_addr == BAD_REGADDR) { pr_err("QAT: bad regaddr=0x%x\n", reg_addr); return -EINVAL; } switch (reg_type) { case ICP_GPA_REL: insts = 0xA070000000ull | (reg_addr & 0x3ff); break; default: insts = (u64)0xA030000000ull | ((reg_addr & 0x3ff) << 10); break; } savctx = qat_hal_rd_ae_csr(handle, ae, ACTIVE_CTX_STATUS); ctxarb_cntl = qat_hal_rd_ae_csr(handle, ae, CTX_ARB_CNTL); ctx_enables = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); ctx_enables &= IGNORE_W1C_MASK; if (ctx != (savctx & ACS_ACNO)) qat_hal_wr_ae_csr(handle, ae, ACTIVE_CTX_STATUS, ctx & ACS_ACNO); qat_hal_get_uwords(handle, ae, 0, 1, &savuword); qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, ctx_enables); ustore_addr = qat_hal_rd_ae_csr(handle, ae, USTORE_ADDRESS); uaddr = UA_ECS; qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, uaddr); insts = qat_hal_set_uword_ecc(insts); uwrd_lo = (unsigned int)(insts & 0xffffffff); uwrd_hi = (unsigned int)(insts >> 0x20); qat_hal_wr_ae_csr(handle, ae, USTORE_DATA_LOWER, uwrd_lo); qat_hal_wr_ae_csr(handle, ae, USTORE_DATA_UPPER, uwrd_hi); qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, uaddr); /* delay for at least 8 cycles */ qat_hal_wait_cycles(handle, ae, 0x8, 0); /* * read ALU output * the instruction should have been executed * prior to clearing the ECS in putUwords */ *data = qat_hal_rd_ae_csr(handle, ae, ALU_OUT); qat_hal_wr_ae_csr(handle, ae, USTORE_ADDRESS, ustore_addr); qat_hal_wr_uwords(handle, ae, 0, 1, &savuword); if (ctx != (savctx & ACS_ACNO)) qat_hal_wr_ae_csr(handle, ae, ACTIVE_CTX_STATUS, savctx & ACS_ACNO); qat_hal_wr_ae_csr(handle, ae, CTX_ARB_CNTL, ctxarb_cntl); qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, ctx_enables); return status; } static int qat_hal_wr_rel_reg(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, enum icp_qat_uof_regtype reg_type, unsigned short reg_num, unsigned int data) { unsigned short src_hiaddr, src_lowaddr, dest_addr, data16hi, data16lo; u64 insts[] = { 0x0F440000000ull, 0x0F040000000ull, 0x0F0000C0300ull, 0x0E000010000ull }; const int num_inst = ARRAY_SIZE(insts), code_off = 1; const int imm_w1 = 0, imm_w0 = 1; dest_addr = qat_hal_get_reg_addr(reg_type, reg_num); if (dest_addr == BAD_REGADDR) { pr_err("QAT: bad destAddr=0x%x\n", dest_addr); return -EINVAL; } data16lo = 0xffff & data; data16hi = 0xffff & (data >> 0x10); src_hiaddr = qat_hal_get_reg_addr(ICP_NO_DEST, (unsigned short) (0xff & data16hi)); src_lowaddr = qat_hal_get_reg_addr(ICP_NO_DEST, (unsigned short) (0xff & data16lo)); switch (reg_type) { case ICP_GPA_REL: insts[imm_w1] = insts[imm_w1] | ((data16hi >> 8) << 20) | ((src_hiaddr & 0x3ff) << 10) | (dest_addr & 0x3ff); insts[imm_w0] = insts[imm_w0] | ((data16lo >> 8) << 20) | ((src_lowaddr & 0x3ff) << 10) | (dest_addr & 0x3ff); break; default: insts[imm_w1] = insts[imm_w1] | ((data16hi >> 8) << 20) | ((dest_addr & 0x3ff) << 10) | (src_hiaddr & 0x3ff); insts[imm_w0] = insts[imm_w0] | ((data16lo >> 8) << 20) | ((dest_addr & 0x3ff) << 10) | (src_lowaddr & 0x3ff); break; } return qat_hal_exec_micro_inst(handle, ae, ctx, insts, num_inst, code_off, num_inst * 0x5, NULL); } int qat_hal_get_ins_num(void) { return ARRAY_SIZE(inst_4b); } static int qat_hal_concat_micro_code(u64 *micro_inst, unsigned int inst_num, unsigned int size, unsigned int addr, unsigned int *value) { int i; unsigned int cur_value; const u64 *inst_arr; int fixup_offset; int usize = 0; int orig_num; orig_num = inst_num; cur_value = value[0]; inst_arr = inst_4b; usize = ARRAY_SIZE(inst_4b); fixup_offset = inst_num; for (i = 0; i < usize; i++) micro_inst[inst_num++] = inst_arr[i]; INSERT_IMMED_GPRA_CONST(micro_inst[fixup_offset], (addr)); fixup_offset++; INSERT_IMMED_GPRA_CONST(micro_inst[fixup_offset], 0); fixup_offset++; INSERT_IMMED_GPRB_CONST(micro_inst[fixup_offset], (cur_value >> 0)); fixup_offset++; INSERT_IMMED_GPRB_CONST(micro_inst[fixup_offset], (cur_value >> 0x10)); return inst_num - orig_num; } static int qat_hal_exec_micro_init_lm(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, int *pfirst_exec, u64 *micro_inst, unsigned int inst_num) { int stat = 0; unsigned int gpra0 = 0, gpra1 = 0, gpra2 = 0; unsigned int gprb0 = 0, gprb1 = 0; if (*pfirst_exec) { qat_hal_rd_rel_reg(handle, ae, ctx, ICP_GPA_REL, 0, &gpra0); qat_hal_rd_rel_reg(handle, ae, ctx, ICP_GPA_REL, 0x1, &gpra1); qat_hal_rd_rel_reg(handle, ae, ctx, ICP_GPA_REL, 0x2, &gpra2); qat_hal_rd_rel_reg(handle, ae, ctx, ICP_GPB_REL, 0, &gprb0); qat_hal_rd_rel_reg(handle, ae, ctx, ICP_GPB_REL, 0x1, &gprb1); *pfirst_exec = 0; } stat = qat_hal_exec_micro_inst(handle, ae, ctx, micro_inst, inst_num, 1, inst_num * 0x5, NULL); if (stat != 0) return -EFAULT; qat_hal_wr_rel_reg(handle, ae, ctx, ICP_GPA_REL, 0, gpra0); qat_hal_wr_rel_reg(handle, ae, ctx, ICP_GPA_REL, 0x1, gpra1); qat_hal_wr_rel_reg(handle, ae, ctx, ICP_GPA_REL, 0x2, gpra2); qat_hal_wr_rel_reg(handle, ae, ctx, ICP_GPB_REL, 0, gprb0); qat_hal_wr_rel_reg(handle, ae, ctx, ICP_GPB_REL, 0x1, gprb1); return 0; } int qat_hal_batch_wr_lm(struct icp_qat_fw_loader_handle *handle, unsigned char ae, struct icp_qat_uof_batch_init *lm_init_header) { struct icp_qat_uof_batch_init *plm_init; u64 *micro_inst_arry; int micro_inst_num; int alloc_inst_size; int first_exec = 1; int stat = 0; plm_init = lm_init_header->next; alloc_inst_size = lm_init_header->size; if ((unsigned int)alloc_inst_size > handle->hal_handle->max_ustore) alloc_inst_size = handle->hal_handle->max_ustore; micro_inst_arry = kmalloc_array(alloc_inst_size, sizeof(u64), GFP_KERNEL); if (!micro_inst_arry) return -ENOMEM; micro_inst_num = 0; while (plm_init) { unsigned int addr, *value, size; ae = plm_init->ae; addr = plm_init->addr; value = plm_init->value; size = plm_init->size; micro_inst_num += qat_hal_concat_micro_code(micro_inst_arry, micro_inst_num, size, addr, value); plm_init = plm_init->next; } /* exec micro codes */ if (micro_inst_arry && micro_inst_num > 0) { micro_inst_arry[micro_inst_num++] = 0x0E000010000ull; stat = qat_hal_exec_micro_init_lm(handle, ae, 0, &first_exec, micro_inst_arry, micro_inst_num); } kfree(micro_inst_arry); return stat; } static int qat_hal_put_rel_rd_xfer(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, enum icp_qat_uof_regtype reg_type, unsigned short reg_num, unsigned int val) { int status = 0; unsigned int reg_addr; unsigned int ctx_enables; unsigned short mask; unsigned short dr_offset = 0x10; ctx_enables = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); if (CE_INUSE_CONTEXTS & ctx_enables) { if (ctx & 0x1) { pr_err("QAT: bad 4-ctx mode,ctx=0x%x\n", ctx); return -EINVAL; } mask = 0x1f; dr_offset = 0x20; } else { mask = 0x0f; } if (reg_num & ~mask) return -EINVAL; reg_addr = reg_num + (ctx << 0x5); switch (reg_type) { case ICP_SR_RD_REL: case ICP_SR_REL: SET_AE_XFER(handle, ae, reg_addr, val); break; case ICP_DR_RD_REL: case ICP_DR_REL: SET_AE_XFER(handle, ae, (reg_addr + dr_offset), val); break; default: status = -EINVAL; break; } return status; } static int qat_hal_put_rel_wr_xfer(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, enum icp_qat_uof_regtype reg_type, unsigned short reg_num, unsigned int data) { unsigned int gprval, ctx_enables; unsigned short src_hiaddr, src_lowaddr, gpr_addr, xfr_addr, data16hi, data16low; unsigned short reg_mask; int status = 0; u64 micro_inst[] = { 0x0F440000000ull, 0x0F040000000ull, 0x0A000000000ull, 0x0F0000C0300ull, 0x0E000010000ull }; const int num_inst = ARRAY_SIZE(micro_inst), code_off = 1; const unsigned short gprnum = 0, dly = num_inst * 0x5; ctx_enables = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); if (CE_INUSE_CONTEXTS & ctx_enables) { if (ctx & 0x1) { pr_err("QAT: 4-ctx mode,ctx=0x%x\n", ctx); return -EINVAL; } reg_mask = (unsigned short)~0x1f; } else { reg_mask = (unsigned short)~0xf; } if (reg_num & reg_mask) return -EINVAL; xfr_addr = qat_hal_get_reg_addr(reg_type, reg_num); if (xfr_addr == BAD_REGADDR) { pr_err("QAT: bad xfrAddr=0x%x\n", xfr_addr); return -EINVAL; } status = qat_hal_rd_rel_reg(handle, ae, ctx, ICP_GPB_REL, gprnum, &gprval); if (status) { pr_err("QAT: failed to read register"); return status; } gpr_addr = qat_hal_get_reg_addr(ICP_GPB_REL, gprnum); data16low = 0xffff & data; data16hi = 0xffff & (data >> 0x10); src_hiaddr = qat_hal_get_reg_addr(ICP_NO_DEST, (unsigned short)(0xff & data16hi)); src_lowaddr = qat_hal_get_reg_addr(ICP_NO_DEST, (unsigned short)(0xff & data16low)); micro_inst[0] = micro_inst[0x0] | ((data16hi >> 8) << 20) | ((gpr_addr & 0x3ff) << 10) | (src_hiaddr & 0x3ff); micro_inst[1] = micro_inst[0x1] | ((data16low >> 8) << 20) | ((gpr_addr & 0x3ff) << 10) | (src_lowaddr & 0x3ff); micro_inst[0x2] = micro_inst[0x2] | ((xfr_addr & 0x3ff) << 20) | ((gpr_addr & 0x3ff) << 10); status = qat_hal_exec_micro_inst(handle, ae, ctx, micro_inst, num_inst, code_off, dly, NULL); qat_hal_wr_rel_reg(handle, ae, ctx, ICP_GPB_REL, gprnum, gprval); return status; } static int qat_hal_put_rel_nn(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx, unsigned short nn, unsigned int val) { unsigned int ctx_enables; int stat = 0; ctx_enables = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); ctx_enables &= IGNORE_W1C_MASK; qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, ctx_enables | CE_NN_MODE); stat = qat_hal_put_rel_wr_xfer(handle, ae, ctx, ICP_NEIGH_REL, nn, val); qat_hal_wr_ae_csr(handle, ae, CTX_ENABLES, ctx_enables); return stat; } static int qat_hal_convert_abs_to_rel(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned short absreg_num, unsigned short *relreg, unsigned char *ctx) { unsigned int ctx_enables; ctx_enables = qat_hal_rd_ae_csr(handle, ae, CTX_ENABLES); if (ctx_enables & CE_INUSE_CONTEXTS) { /* 4-ctx mode */ *relreg = absreg_num & 0x1F; *ctx = (absreg_num >> 0x4) & 0x6; } else { /* 8-ctx mode */ *relreg = absreg_num & 0x0F; *ctx = (absreg_num >> 0x4) & 0x7; } return 0; } int qat_hal_init_gpr(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned long ctx_mask, enum icp_qat_uof_regtype reg_type, unsigned short reg_num, unsigned int regdata) { int stat = 0; unsigned short reg; unsigned char ctx = 0; enum icp_qat_uof_regtype type; if (reg_num >= ICP_QAT_UCLO_MAX_GPR_REG) return -EINVAL; do { if (ctx_mask == 0) { qat_hal_convert_abs_to_rel(handle, ae, reg_num, &reg, &ctx); type = reg_type - 1; } else { reg = reg_num; type = reg_type; if (!test_bit(ctx, &ctx_mask)) continue; } stat = qat_hal_wr_rel_reg(handle, ae, ctx, type, reg, regdata); if (stat) { pr_err("QAT: write gpr fail\n"); return -EINVAL; } } while (ctx_mask && (ctx++ < ICP_QAT_UCLO_MAX_CTX)); return 0; } int qat_hal_init_wr_xfer(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned long ctx_mask, enum icp_qat_uof_regtype reg_type, unsigned short reg_num, unsigned int regdata) { int stat = 0; unsigned short reg; unsigned char ctx = 0; enum icp_qat_uof_regtype type; if (reg_num >= ICP_QAT_UCLO_MAX_XFER_REG) return -EINVAL; do { if (ctx_mask == 0) { qat_hal_convert_abs_to_rel(handle, ae, reg_num, &reg, &ctx); type = reg_type - 3; } else { reg = reg_num; type = reg_type; if (!test_bit(ctx, &ctx_mask)) continue; } stat = qat_hal_put_rel_wr_xfer(handle, ae, ctx, type, reg, regdata); if (stat) { pr_err("QAT: write wr xfer fail\n"); return -EINVAL; } } while (ctx_mask && (ctx++ < ICP_QAT_UCLO_MAX_CTX)); return 0; } int qat_hal_init_rd_xfer(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned long ctx_mask, enum icp_qat_uof_regtype reg_type, unsigned short reg_num, unsigned int regdata) { int stat = 0; unsigned short reg; unsigned char ctx = 0; enum icp_qat_uof_regtype type; if (reg_num >= ICP_QAT_UCLO_MAX_XFER_REG) return -EINVAL; do { if (ctx_mask == 0) { qat_hal_convert_abs_to_rel(handle, ae, reg_num, &reg, &ctx); type = reg_type - 3; } else { reg = reg_num; type = reg_type; if (!test_bit(ctx, &ctx_mask)) continue; } stat = qat_hal_put_rel_rd_xfer(handle, ae, ctx, type, reg, regdata); if (stat) { pr_err("QAT: write rd xfer fail\n"); return -EINVAL; } } while (ctx_mask && (ctx++ < ICP_QAT_UCLO_MAX_CTX)); return 0; } int qat_hal_init_nn(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned long ctx_mask, unsigned short reg_num, unsigned int regdata) { int stat = 0; unsigned char ctx; if (!handle->chip_info->nn) { dev_err(&handle->pci_dev->dev, "QAT: No next neigh in 0x%x\n", handle->pci_dev->device); return -EINVAL; } if (ctx_mask == 0) return -EINVAL; for (ctx = 0; ctx < ICP_QAT_UCLO_MAX_CTX; ctx++) { if (!test_bit(ctx, &ctx_mask)) continue; stat = qat_hal_put_rel_nn(handle, ae, ctx, reg_num, regdata); if (stat) { pr_err("QAT: write neigh error\n"); return -EINVAL; } } return 0; }
linux-master
drivers/crypto/intel/qat/qat_common/qat_hal.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2022 Intel Corporation */ #include <crypto/algapi.h> #include "adf_transport.h" #include "qat_algs_send.h" #include "qat_crypto.h" #define ADF_MAX_RETRIES 20 static int qat_alg_send_message_retry(struct qat_alg_req *req) { int ret = 0, ctr = 0; do { ret = adf_send_message(req->tx_ring, req->fw_req); } while (ret == -EAGAIN && ctr++ < ADF_MAX_RETRIES); if (ret == -EAGAIN) return -ENOSPC; return -EINPROGRESS; } void qat_alg_send_backlog(struct qat_instance_backlog *backlog) { struct qat_alg_req *req, *tmp; spin_lock_bh(&backlog->lock); list_for_each_entry_safe(req, tmp, &backlog->list, list) { if (adf_send_message(req->tx_ring, req->fw_req)) { /* The HW ring is full. Do nothing. * qat_alg_send_backlog() will be invoked again by * another callback. */ break; } list_del(&req->list); crypto_request_complete(req->base, -EINPROGRESS); } spin_unlock_bh(&backlog->lock); } static void qat_alg_backlog_req(struct qat_alg_req *req, struct qat_instance_backlog *backlog) { INIT_LIST_HEAD(&req->list); spin_lock_bh(&backlog->lock); list_add_tail(&req->list, &backlog->list); spin_unlock_bh(&backlog->lock); } static int qat_alg_send_message_maybacklog(struct qat_alg_req *req) { struct qat_instance_backlog *backlog = req->backlog; struct adf_etr_ring_data *tx_ring = req->tx_ring; u32 *fw_req = req->fw_req; /* If any request is already backlogged, then add to backlog list */ if (!list_empty(&backlog->list)) goto enqueue; /* If ring is nearly full, then add to backlog list */ if (adf_ring_nearly_full(tx_ring)) goto enqueue; /* If adding request to HW ring fails, then add to backlog list */ if (adf_send_message(tx_ring, fw_req)) goto enqueue; return -EINPROGRESS; enqueue: qat_alg_backlog_req(req, backlog); return -EBUSY; } int qat_alg_send_message(struct qat_alg_req *req) { u32 flags = req->base->flags; if (flags & CRYPTO_TFM_REQ_MAY_BACKLOG) return qat_alg_send_message_maybacklog(req); else return qat_alg_send_message_retry(req); }
linux-master
drivers/crypto/intel/qat/qat_common/qat_algs_send.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/slab.h> #include <linux/ctype.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/pci_ids.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "icp_qat_uclo.h" #include "icp_qat_hal.h" #include "icp_qat_fw_loader_handle.h" #define UWORD_CPYBUF_SIZE 1024U #define INVLD_UWORD 0xffffffffffull #define PID_MINOR_REV 0xf #define PID_MAJOR_REV (0xf << 4) static int qat_uclo_init_ae_data(struct icp_qat_uclo_objhandle *obj_handle, unsigned int ae, unsigned int image_num) { struct icp_qat_uclo_aedata *ae_data; struct icp_qat_uclo_encapme *encap_image; struct icp_qat_uclo_page *page = NULL; struct icp_qat_uclo_aeslice *ae_slice = NULL; ae_data = &obj_handle->ae_data[ae]; encap_image = &obj_handle->ae_uimage[image_num]; ae_slice = &ae_data->ae_slices[ae_data->slice_num]; ae_slice->encap_image = encap_image; if (encap_image->img_ptr) { ae_slice->ctx_mask_assigned = encap_image->img_ptr->ctx_assigned; ae_data->eff_ustore_size = obj_handle->ustore_phy_size; } else { ae_slice->ctx_mask_assigned = 0; } ae_slice->region = kzalloc(sizeof(*ae_slice->region), GFP_KERNEL); if (!ae_slice->region) return -ENOMEM; ae_slice->page = kzalloc(sizeof(*ae_slice->page), GFP_KERNEL); if (!ae_slice->page) goto out_err; page = ae_slice->page; page->encap_page = encap_image->page; ae_slice->page->region = ae_slice->region; ae_data->slice_num++; return 0; out_err: kfree(ae_slice->region); ae_slice->region = NULL; return -ENOMEM; } static int qat_uclo_free_ae_data(struct icp_qat_uclo_aedata *ae_data) { unsigned int i; if (!ae_data) { pr_err("QAT: bad argument, ae_data is NULL\n "); return -EINVAL; } for (i = 0; i < ae_data->slice_num; i++) { kfree(ae_data->ae_slices[i].region); ae_data->ae_slices[i].region = NULL; kfree(ae_data->ae_slices[i].page); ae_data->ae_slices[i].page = NULL; } return 0; } static char *qat_uclo_get_string(struct icp_qat_uof_strtable *str_table, unsigned int str_offset) { if (!str_table->table_len || str_offset > str_table->table_len) return NULL; return (char *)(((uintptr_t)(str_table->strings)) + str_offset); } static int qat_uclo_check_uof_format(struct icp_qat_uof_filehdr *hdr) { int maj = hdr->maj_ver & 0xff; int min = hdr->min_ver & 0xff; if (hdr->file_id != ICP_QAT_UOF_FID) { pr_err("QAT: Invalid header 0x%x\n", hdr->file_id); return -EINVAL; } if (min != ICP_QAT_UOF_MINVER || maj != ICP_QAT_UOF_MAJVER) { pr_err("QAT: bad UOF version, major 0x%x, minor 0x%x\n", maj, min); return -EINVAL; } return 0; } static int qat_uclo_check_suof_format(struct icp_qat_suof_filehdr *suof_hdr) { int maj = suof_hdr->maj_ver & 0xff; int min = suof_hdr->min_ver & 0xff; if (suof_hdr->file_id != ICP_QAT_SUOF_FID) { pr_err("QAT: invalid header 0x%x\n", suof_hdr->file_id); return -EINVAL; } if (suof_hdr->fw_type != 0) { pr_err("QAT: unsupported firmware type\n"); return -EINVAL; } if (suof_hdr->num_chunks <= 0x1) { pr_err("QAT: SUOF chunk amount is incorrect\n"); return -EINVAL; } if (maj != ICP_QAT_SUOF_MAJVER || min != ICP_QAT_SUOF_MINVER) { pr_err("QAT: bad SUOF version, major 0x%x, minor 0x%x\n", maj, min); return -EINVAL; } return 0; } static void qat_uclo_wr_sram_by_words(struct icp_qat_fw_loader_handle *handle, unsigned int addr, unsigned int *val, unsigned int num_in_bytes) { unsigned int outval; unsigned char *ptr = (unsigned char *)val; while (num_in_bytes) { memcpy(&outval, ptr, 4); SRAM_WRITE(handle, addr, outval); num_in_bytes -= 4; ptr += 4; addr += 4; } } static void qat_uclo_wr_umem_by_words(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned int addr, unsigned int *val, unsigned int num_in_bytes) { unsigned int outval; unsigned char *ptr = (unsigned char *)val; addr >>= 0x2; /* convert to uword address */ while (num_in_bytes) { memcpy(&outval, ptr, 4); qat_hal_wr_umem(handle, ae, addr++, 1, &outval); num_in_bytes -= 4; ptr += 4; } } static void qat_uclo_batch_wr_umem(struct icp_qat_fw_loader_handle *handle, unsigned char ae, struct icp_qat_uof_batch_init *umem_init_header) { struct icp_qat_uof_batch_init *umem_init; if (!umem_init_header) return; umem_init = umem_init_header->next; while (umem_init) { unsigned int addr, *value, size; ae = umem_init->ae; addr = umem_init->addr; value = umem_init->value; size = umem_init->size; qat_uclo_wr_umem_by_words(handle, ae, addr, value, size); umem_init = umem_init->next; } } static void qat_uclo_cleanup_batch_init_list(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uof_batch_init **base) { struct icp_qat_uof_batch_init *umem_init; umem_init = *base; while (umem_init) { struct icp_qat_uof_batch_init *pre; pre = umem_init; umem_init = umem_init->next; kfree(pre); } *base = NULL; } static int qat_uclo_parse_num(char *str, unsigned int *num) { char buf[16] = {0}; unsigned long ae = 0; int i; strncpy(buf, str, 15); for (i = 0; i < 16; i++) { if (!isdigit(buf[i])) { buf[i] = '\0'; break; } } if ((kstrtoul(buf, 10, &ae))) return -EFAULT; *num = (unsigned int)ae; return 0; } static int qat_uclo_fetch_initmem_ae(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uof_initmem *init_mem, unsigned int size_range, unsigned int *ae) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; char *str; if ((init_mem->addr + init_mem->num_in_bytes) > (size_range << 0x2)) { pr_err("QAT: initmem is out of range"); return -EINVAL; } if (init_mem->scope != ICP_QAT_UOF_LOCAL_SCOPE) { pr_err("QAT: Memory scope for init_mem error\n"); return -EINVAL; } str = qat_uclo_get_string(&obj_handle->str_table, init_mem->sym_name); if (!str) { pr_err("QAT: AE name assigned in UOF init table is NULL\n"); return -EINVAL; } if (qat_uclo_parse_num(str, ae)) { pr_err("QAT: Parse num for AE number failed\n"); return -EINVAL; } if (*ae >= ICP_QAT_UCLO_MAX_AE) { pr_err("QAT: ae %d out of range\n", *ae); return -EINVAL; } return 0; } static int qat_uclo_create_batch_init_list(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uof_initmem *init_mem, unsigned int ae, struct icp_qat_uof_batch_init **init_tab_base) { struct icp_qat_uof_batch_init *init_header, *tail; struct icp_qat_uof_batch_init *mem_init, *tail_old; struct icp_qat_uof_memvar_attr *mem_val_attr; unsigned int i, flag = 0; mem_val_attr = (struct icp_qat_uof_memvar_attr *)((uintptr_t)init_mem + sizeof(struct icp_qat_uof_initmem)); init_header = *init_tab_base; if (!init_header) { init_header = kzalloc(sizeof(*init_header), GFP_KERNEL); if (!init_header) return -ENOMEM; init_header->size = 1; *init_tab_base = init_header; flag = 1; } tail_old = init_header; while (tail_old->next) tail_old = tail_old->next; tail = tail_old; for (i = 0; i < init_mem->val_attr_num; i++) { mem_init = kzalloc(sizeof(*mem_init), GFP_KERNEL); if (!mem_init) goto out_err; mem_init->ae = ae; mem_init->addr = init_mem->addr + mem_val_attr->offset_in_byte; mem_init->value = &mem_val_attr->value; mem_init->size = 4; mem_init->next = NULL; tail->next = mem_init; tail = mem_init; init_header->size += qat_hal_get_ins_num(); mem_val_attr++; } return 0; out_err: /* Do not free the list head unless we allocated it. */ tail_old = tail_old->next; if (flag) { kfree(*init_tab_base); *init_tab_base = NULL; } while (tail_old) { mem_init = tail_old->next; kfree(tail_old); tail_old = mem_init; } return -ENOMEM; } static int qat_uclo_init_lmem_seg(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uof_initmem *init_mem) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned int ae; if (qat_uclo_fetch_initmem_ae(handle, init_mem, handle->chip_info->lm_size, &ae)) return -EINVAL; if (qat_uclo_create_batch_init_list(handle, init_mem, ae, &obj_handle->lm_init_tab[ae])) return -EINVAL; return 0; } static int qat_uclo_init_umem_seg(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uof_initmem *init_mem) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned int ae, ustore_size, uaddr, i; struct icp_qat_uclo_aedata *aed; ustore_size = obj_handle->ustore_phy_size; if (qat_uclo_fetch_initmem_ae(handle, init_mem, ustore_size, &ae)) return -EINVAL; if (qat_uclo_create_batch_init_list(handle, init_mem, ae, &obj_handle->umem_init_tab[ae])) return -EINVAL; /* set the highest ustore address referenced */ uaddr = (init_mem->addr + init_mem->num_in_bytes) >> 0x2; aed = &obj_handle->ae_data[ae]; for (i = 0; i < aed->slice_num; i++) { if (aed->ae_slices[i].encap_image->uwords_num < uaddr) aed->ae_slices[i].encap_image->uwords_num = uaddr; } return 0; } static int qat_uclo_init_ae_memory(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uof_initmem *init_mem) { switch (init_mem->region) { case ICP_QAT_UOF_LMEM_REGION: if (qat_uclo_init_lmem_seg(handle, init_mem)) return -EINVAL; break; case ICP_QAT_UOF_UMEM_REGION: if (qat_uclo_init_umem_seg(handle, init_mem)) return -EINVAL; break; default: pr_err("QAT: initmem region error. region type=0x%x\n", init_mem->region); return -EINVAL; } return 0; } static int qat_uclo_init_ustore(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uclo_encapme *image) { unsigned int i; struct icp_qat_uclo_encap_page *page; struct icp_qat_uof_image *uof_image; unsigned char ae; unsigned int ustore_size; unsigned int patt_pos; struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned long cfg_ae_mask = handle->cfg_ae_mask; u64 *fill_data; uof_image = image->img_ptr; fill_data = kcalloc(ICP_QAT_UCLO_MAX_USTORE, sizeof(u64), GFP_KERNEL); if (!fill_data) return -ENOMEM; for (i = 0; i < ICP_QAT_UCLO_MAX_USTORE; i++) memcpy(&fill_data[i], &uof_image->fill_pattern, sizeof(u64)); page = image->page; for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { unsigned long ae_assigned = uof_image->ae_assigned; if (!test_bit(ae, &ae_assigned)) continue; if (!test_bit(ae, &cfg_ae_mask)) continue; ustore_size = obj_handle->ae_data[ae].eff_ustore_size; patt_pos = page->beg_addr_p + page->micro_words_num; qat_hal_wr_uwords(handle, (unsigned char)ae, 0, page->beg_addr_p, &fill_data[0]); qat_hal_wr_uwords(handle, (unsigned char)ae, patt_pos, ustore_size - patt_pos + 1, &fill_data[page->beg_addr_p]); } kfree(fill_data); return 0; } static int qat_uclo_init_memory(struct icp_qat_fw_loader_handle *handle) { int i, ae; struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; struct icp_qat_uof_initmem *initmem = obj_handle->init_mem_tab.init_mem; unsigned long ae_mask = handle->hal_handle->ae_mask; for (i = 0; i < obj_handle->init_mem_tab.entry_num; i++) { if (initmem->num_in_bytes) { if (qat_uclo_init_ae_memory(handle, initmem)) return -EINVAL; } initmem = (struct icp_qat_uof_initmem *)((uintptr_t)( (uintptr_t)initmem + sizeof(struct icp_qat_uof_initmem)) + (sizeof(struct icp_qat_uof_memvar_attr) * initmem->val_attr_num)); } for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { if (qat_hal_batch_wr_lm(handle, ae, obj_handle->lm_init_tab[ae])) { pr_err("QAT: fail to batch init lmem for AE %d\n", ae); return -EINVAL; } qat_uclo_cleanup_batch_init_list(handle, &obj_handle->lm_init_tab[ae]); qat_uclo_batch_wr_umem(handle, ae, obj_handle->umem_init_tab[ae]); qat_uclo_cleanup_batch_init_list(handle, &obj_handle-> umem_init_tab[ae]); } return 0; } static void *qat_uclo_find_chunk(struct icp_qat_uof_objhdr *obj_hdr, char *chunk_id, void *cur) { int i; struct icp_qat_uof_chunkhdr *chunk_hdr = (struct icp_qat_uof_chunkhdr *) ((uintptr_t)obj_hdr + sizeof(struct icp_qat_uof_objhdr)); for (i = 0; i < obj_hdr->num_chunks; i++) { if ((cur < (void *)&chunk_hdr[i]) && !strncmp(chunk_hdr[i].chunk_id, chunk_id, ICP_QAT_UOF_OBJID_LEN)) { return &chunk_hdr[i]; } } return NULL; } static unsigned int qat_uclo_calc_checksum(unsigned int reg, int ch) { int i; unsigned int topbit = 1 << 0xF; unsigned int inbyte = (unsigned int)((reg >> 0x18) ^ ch); reg ^= inbyte << 0x8; for (i = 0; i < 0x8; i++) { if (reg & topbit) reg = (reg << 1) ^ 0x1021; else reg <<= 1; } return reg & 0xFFFF; } static unsigned int qat_uclo_calc_str_checksum(char *ptr, int num) { unsigned int chksum = 0; if (ptr) while (num--) chksum = qat_uclo_calc_checksum(chksum, *ptr++); return chksum; } static struct icp_qat_uclo_objhdr * qat_uclo_map_chunk(char *buf, struct icp_qat_uof_filehdr *file_hdr, char *chunk_id) { struct icp_qat_uof_filechunkhdr *file_chunk; struct icp_qat_uclo_objhdr *obj_hdr; char *chunk; int i; file_chunk = (struct icp_qat_uof_filechunkhdr *) (buf + sizeof(struct icp_qat_uof_filehdr)); for (i = 0; i < file_hdr->num_chunks; i++) { if (!strncmp(file_chunk->chunk_id, chunk_id, ICP_QAT_UOF_OBJID_LEN)) { chunk = buf + file_chunk->offset; if (file_chunk->checksum != qat_uclo_calc_str_checksum( chunk, file_chunk->size)) break; obj_hdr = kzalloc(sizeof(*obj_hdr), GFP_KERNEL); if (!obj_hdr) break; obj_hdr->file_buff = chunk; obj_hdr->checksum = file_chunk->checksum; obj_hdr->size = file_chunk->size; return obj_hdr; } file_chunk++; } return NULL; } static int qat_uclo_check_image_compat(struct icp_qat_uof_encap_obj *encap_uof_obj, struct icp_qat_uof_image *image) { struct icp_qat_uof_objtable *uc_var_tab, *imp_var_tab, *imp_expr_tab; struct icp_qat_uof_objtable *neigh_reg_tab; struct icp_qat_uof_code_page *code_page; code_page = (struct icp_qat_uof_code_page *) ((char *)image + sizeof(struct icp_qat_uof_image)); uc_var_tab = (struct icp_qat_uof_objtable *)(encap_uof_obj->beg_uof + code_page->uc_var_tab_offset); imp_var_tab = (struct icp_qat_uof_objtable *)(encap_uof_obj->beg_uof + code_page->imp_var_tab_offset); imp_expr_tab = (struct icp_qat_uof_objtable *) (encap_uof_obj->beg_uof + code_page->imp_expr_tab_offset); if (uc_var_tab->entry_num || imp_var_tab->entry_num || imp_expr_tab->entry_num) { pr_err("QAT: UOF can't contain imported variable to be parsed\n"); return -EINVAL; } neigh_reg_tab = (struct icp_qat_uof_objtable *) (encap_uof_obj->beg_uof + code_page->neigh_reg_tab_offset); if (neigh_reg_tab->entry_num) { pr_err("QAT: UOF can't contain neighbor register table\n"); return -EINVAL; } if (image->numpages > 1) { pr_err("QAT: UOF can't contain multiple pages\n"); return -EINVAL; } if (ICP_QAT_SHARED_USTORE_MODE(image->ae_mode)) { pr_err("QAT: UOF can't use shared control store feature\n"); return -EFAULT; } if (RELOADABLE_CTX_SHARED_MODE(image->ae_mode)) { pr_err("QAT: UOF can't use reloadable feature\n"); return -EFAULT; } return 0; } static void qat_uclo_map_image_page(struct icp_qat_uof_encap_obj *encap_uof_obj, struct icp_qat_uof_image *img, struct icp_qat_uclo_encap_page *page) { struct icp_qat_uof_code_page *code_page; struct icp_qat_uof_code_area *code_area; struct icp_qat_uof_objtable *uword_block_tab; struct icp_qat_uof_uword_block *uwblock; int i; code_page = (struct icp_qat_uof_code_page *) ((char *)img + sizeof(struct icp_qat_uof_image)); page->def_page = code_page->def_page; page->page_region = code_page->page_region; page->beg_addr_v = code_page->beg_addr_v; page->beg_addr_p = code_page->beg_addr_p; code_area = (struct icp_qat_uof_code_area *)(encap_uof_obj->beg_uof + code_page->code_area_offset); page->micro_words_num = code_area->micro_words_num; uword_block_tab = (struct icp_qat_uof_objtable *) (encap_uof_obj->beg_uof + code_area->uword_block_tab); page->uwblock_num = uword_block_tab->entry_num; uwblock = (struct icp_qat_uof_uword_block *)((char *)uword_block_tab + sizeof(struct icp_qat_uof_objtable)); page->uwblock = (struct icp_qat_uclo_encap_uwblock *)uwblock; for (i = 0; i < uword_block_tab->entry_num; i++) page->uwblock[i].micro_words = (uintptr_t)encap_uof_obj->beg_uof + uwblock[i].uword_offset; } static int qat_uclo_map_uimage(struct icp_qat_uclo_objhandle *obj_handle, struct icp_qat_uclo_encapme *ae_uimage, int max_image) { int i, j; struct icp_qat_uof_chunkhdr *chunk_hdr = NULL; struct icp_qat_uof_image *image; struct icp_qat_uof_objtable *ae_regtab; struct icp_qat_uof_objtable *init_reg_sym_tab; struct icp_qat_uof_objtable *sbreak_tab; struct icp_qat_uof_encap_obj *encap_uof_obj = &obj_handle->encap_uof_obj; for (j = 0; j < max_image; j++) { chunk_hdr = qat_uclo_find_chunk(encap_uof_obj->obj_hdr, ICP_QAT_UOF_IMAG, chunk_hdr); if (!chunk_hdr) break; image = (struct icp_qat_uof_image *)(encap_uof_obj->beg_uof + chunk_hdr->offset); ae_regtab = (struct icp_qat_uof_objtable *) (image->reg_tab_offset + obj_handle->obj_hdr->file_buff); ae_uimage[j].ae_reg_num = ae_regtab->entry_num; ae_uimage[j].ae_reg = (struct icp_qat_uof_ae_reg *) (((char *)ae_regtab) + sizeof(struct icp_qat_uof_objtable)); init_reg_sym_tab = (struct icp_qat_uof_objtable *) (image->init_reg_sym_tab + obj_handle->obj_hdr->file_buff); ae_uimage[j].init_regsym_num = init_reg_sym_tab->entry_num; ae_uimage[j].init_regsym = (struct icp_qat_uof_init_regsym *) (((char *)init_reg_sym_tab) + sizeof(struct icp_qat_uof_objtable)); sbreak_tab = (struct icp_qat_uof_objtable *) (image->sbreak_tab + obj_handle->obj_hdr->file_buff); ae_uimage[j].sbreak_num = sbreak_tab->entry_num; ae_uimage[j].sbreak = (struct icp_qat_uof_sbreak *) (((char *)sbreak_tab) + sizeof(struct icp_qat_uof_objtable)); ae_uimage[j].img_ptr = image; if (qat_uclo_check_image_compat(encap_uof_obj, image)) goto out_err; ae_uimage[j].page = kzalloc(sizeof(struct icp_qat_uclo_encap_page), GFP_KERNEL); if (!ae_uimage[j].page) goto out_err; qat_uclo_map_image_page(encap_uof_obj, image, ae_uimage[j].page); } return j; out_err: for (i = 0; i < j; i++) kfree(ae_uimage[i].page); return 0; } static int qat_uclo_map_ae(struct icp_qat_fw_loader_handle *handle, int max_ae) { int i, ae; int mflag = 0; struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned long cfg_ae_mask = handle->cfg_ae_mask; for_each_set_bit(ae, &ae_mask, max_ae) { if (!test_bit(ae, &cfg_ae_mask)) continue; for (i = 0; i < obj_handle->uimage_num; i++) { unsigned long ae_assigned = obj_handle->ae_uimage[i].img_ptr->ae_assigned; if (!test_bit(ae, &ae_assigned)) continue; mflag = 1; if (qat_uclo_init_ae_data(obj_handle, ae, i)) return -EINVAL; } } if (!mflag) { pr_err("QAT: uimage uses AE not set\n"); return -EINVAL; } return 0; } static struct icp_qat_uof_strtable * qat_uclo_map_str_table(struct icp_qat_uclo_objhdr *obj_hdr, char *tab_name, struct icp_qat_uof_strtable *str_table) { struct icp_qat_uof_chunkhdr *chunk_hdr; chunk_hdr = qat_uclo_find_chunk((struct icp_qat_uof_objhdr *) obj_hdr->file_buff, tab_name, NULL); if (chunk_hdr) { int hdr_size; memcpy(&str_table->table_len, obj_hdr->file_buff + chunk_hdr->offset, sizeof(str_table->table_len)); hdr_size = (char *)&str_table->strings - (char *)str_table; str_table->strings = (uintptr_t)obj_hdr->file_buff + chunk_hdr->offset + hdr_size; return str_table; } return NULL; } static void qat_uclo_map_initmem_table(struct icp_qat_uof_encap_obj *encap_uof_obj, struct icp_qat_uclo_init_mem_table *init_mem_tab) { struct icp_qat_uof_chunkhdr *chunk_hdr; chunk_hdr = qat_uclo_find_chunk(encap_uof_obj->obj_hdr, ICP_QAT_UOF_IMEM, NULL); if (chunk_hdr) { memmove(&init_mem_tab->entry_num, encap_uof_obj->beg_uof + chunk_hdr->offset, sizeof(unsigned int)); init_mem_tab->init_mem = (struct icp_qat_uof_initmem *) (encap_uof_obj->beg_uof + chunk_hdr->offset + sizeof(unsigned int)); } } static unsigned int qat_uclo_get_dev_type(struct icp_qat_fw_loader_handle *handle) { switch (handle->pci_dev->device) { case PCI_DEVICE_ID_INTEL_QAT_DH895XCC: return ICP_QAT_AC_895XCC_DEV_TYPE; case PCI_DEVICE_ID_INTEL_QAT_C62X: return ICP_QAT_AC_C62X_DEV_TYPE; case PCI_DEVICE_ID_INTEL_QAT_C3XXX: return ICP_QAT_AC_C3XXX_DEV_TYPE; case ADF_4XXX_PCI_DEVICE_ID: case ADF_401XX_PCI_DEVICE_ID: case ADF_402XX_PCI_DEVICE_ID: return ICP_QAT_AC_4XXX_A_DEV_TYPE; default: pr_err("QAT: unsupported device 0x%x\n", handle->pci_dev->device); return 0; } } static int qat_uclo_check_uof_compat(struct icp_qat_uclo_objhandle *obj_handle) { unsigned int maj_ver, prod_type = obj_handle->prod_type; if (!(prod_type & obj_handle->encap_uof_obj.obj_hdr->ac_dev_type)) { pr_err("QAT: UOF type 0x%x doesn't match with platform 0x%x\n", obj_handle->encap_uof_obj.obj_hdr->ac_dev_type, prod_type); return -EINVAL; } maj_ver = obj_handle->prod_rev & 0xff; if (obj_handle->encap_uof_obj.obj_hdr->max_cpu_ver < maj_ver || obj_handle->encap_uof_obj.obj_hdr->min_cpu_ver > maj_ver) { pr_err("QAT: UOF majVer 0x%x out of range\n", maj_ver); return -EINVAL; } return 0; } static int qat_uclo_init_reg(struct icp_qat_fw_loader_handle *handle, unsigned char ae, unsigned char ctx_mask, enum icp_qat_uof_regtype reg_type, unsigned short reg_addr, unsigned int value) { switch (reg_type) { case ICP_GPA_ABS: case ICP_GPB_ABS: ctx_mask = 0; fallthrough; case ICP_GPA_REL: case ICP_GPB_REL: return qat_hal_init_gpr(handle, ae, ctx_mask, reg_type, reg_addr, value); case ICP_SR_ABS: case ICP_DR_ABS: case ICP_SR_RD_ABS: case ICP_DR_RD_ABS: ctx_mask = 0; fallthrough; case ICP_SR_REL: case ICP_DR_REL: case ICP_SR_RD_REL: case ICP_DR_RD_REL: return qat_hal_init_rd_xfer(handle, ae, ctx_mask, reg_type, reg_addr, value); case ICP_SR_WR_ABS: case ICP_DR_WR_ABS: ctx_mask = 0; fallthrough; case ICP_SR_WR_REL: case ICP_DR_WR_REL: return qat_hal_init_wr_xfer(handle, ae, ctx_mask, reg_type, reg_addr, value); case ICP_NEIGH_REL: return qat_hal_init_nn(handle, ae, ctx_mask, reg_addr, value); default: pr_err("QAT: UOF uses not supported reg type 0x%x\n", reg_type); return -EFAULT; } return 0; } static int qat_uclo_init_reg_sym(struct icp_qat_fw_loader_handle *handle, unsigned int ae, struct icp_qat_uclo_encapme *encap_ae) { unsigned int i; unsigned char ctx_mask; struct icp_qat_uof_init_regsym *init_regsym; if (ICP_QAT_CTX_MODE(encap_ae->img_ptr->ae_mode) == ICP_QAT_UCLO_MAX_CTX) ctx_mask = 0xff; else ctx_mask = 0x55; for (i = 0; i < encap_ae->init_regsym_num; i++) { unsigned int exp_res; init_regsym = &encap_ae->init_regsym[i]; exp_res = init_regsym->value; switch (init_regsym->init_type) { case ICP_QAT_UOF_INIT_REG: qat_uclo_init_reg(handle, ae, ctx_mask, (enum icp_qat_uof_regtype) init_regsym->reg_type, (unsigned short)init_regsym->reg_addr, exp_res); break; case ICP_QAT_UOF_INIT_REG_CTX: /* check if ctx is appropriate for the ctxMode */ if (!((1 << init_regsym->ctx) & ctx_mask)) { pr_err("QAT: invalid ctx num = 0x%x\n", init_regsym->ctx); return -EINVAL; } qat_uclo_init_reg(handle, ae, (unsigned char) (1 << init_regsym->ctx), (enum icp_qat_uof_regtype) init_regsym->reg_type, (unsigned short)init_regsym->reg_addr, exp_res); break; case ICP_QAT_UOF_INIT_EXPR: pr_err("QAT: INIT_EXPR feature not supported\n"); return -EINVAL; case ICP_QAT_UOF_INIT_EXPR_ENDIAN_SWAP: pr_err("QAT: INIT_EXPR_ENDIAN_SWAP feature not supported\n"); return -EINVAL; default: break; } } return 0; } static int qat_uclo_init_globals(struct icp_qat_fw_loader_handle *handle) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned long ae_mask = handle->hal_handle->ae_mask; struct icp_qat_uclo_aedata *aed; unsigned int s, ae; if (obj_handle->global_inited) return 0; if (obj_handle->init_mem_tab.entry_num) { if (qat_uclo_init_memory(handle)) { pr_err("QAT: initialize memory failed\n"); return -EINVAL; } } for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { aed = &obj_handle->ae_data[ae]; for (s = 0; s < aed->slice_num; s++) { if (!aed->ae_slices[s].encap_image) continue; if (qat_uclo_init_reg_sym(handle, ae, aed->ae_slices[s].encap_image)) return -EINVAL; } } obj_handle->global_inited = 1; return 0; } static int qat_hal_set_modes(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uclo_objhandle *obj_handle, unsigned char ae, struct icp_qat_uof_image *uof_image) { unsigned char mode; int ret; mode = ICP_QAT_CTX_MODE(uof_image->ae_mode); ret = qat_hal_set_ae_ctx_mode(handle, ae, mode); if (ret) { pr_err("QAT: qat_hal_set_ae_ctx_mode error\n"); return ret; } if (handle->chip_info->nn) { mode = ICP_QAT_NN_MODE(uof_image->ae_mode); ret = qat_hal_set_ae_nn_mode(handle, ae, mode); if (ret) { pr_err("QAT: qat_hal_set_ae_nn_mode error\n"); return ret; } } mode = ICP_QAT_LOC_MEM0_MODE(uof_image->ae_mode); ret = qat_hal_set_ae_lm_mode(handle, ae, ICP_LMEM0, mode); if (ret) { pr_err("QAT: qat_hal_set_ae_lm_mode LMEM0 error\n"); return ret; } mode = ICP_QAT_LOC_MEM1_MODE(uof_image->ae_mode); ret = qat_hal_set_ae_lm_mode(handle, ae, ICP_LMEM1, mode); if (ret) { pr_err("QAT: qat_hal_set_ae_lm_mode LMEM1 error\n"); return ret; } if (handle->chip_info->lm2lm3) { mode = ICP_QAT_LOC_MEM2_MODE(uof_image->ae_mode); ret = qat_hal_set_ae_lm_mode(handle, ae, ICP_LMEM2, mode); if (ret) { pr_err("QAT: qat_hal_set_ae_lm_mode LMEM2 error\n"); return ret; } mode = ICP_QAT_LOC_MEM3_MODE(uof_image->ae_mode); ret = qat_hal_set_ae_lm_mode(handle, ae, ICP_LMEM3, mode); if (ret) { pr_err("QAT: qat_hal_set_ae_lm_mode LMEM3 error\n"); return ret; } mode = ICP_QAT_LOC_TINDEX_MODE(uof_image->ae_mode); qat_hal_set_ae_tindex_mode(handle, ae, mode); } return 0; } static int qat_uclo_set_ae_mode(struct icp_qat_fw_loader_handle *handle) { struct icp_qat_uof_image *uof_image; struct icp_qat_uclo_aedata *ae_data; struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned long cfg_ae_mask = handle->cfg_ae_mask; unsigned char ae, s; int error; for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { if (!test_bit(ae, &cfg_ae_mask)) continue; ae_data = &obj_handle->ae_data[ae]; for (s = 0; s < min_t(unsigned int, ae_data->slice_num, ICP_QAT_UCLO_MAX_CTX); s++) { if (!obj_handle->ae_data[ae].ae_slices[s].encap_image) continue; uof_image = ae_data->ae_slices[s].encap_image->img_ptr; error = qat_hal_set_modes(handle, obj_handle, ae, uof_image); if (error) return error; } } return 0; } static void qat_uclo_init_uword_num(struct icp_qat_fw_loader_handle *handle) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; struct icp_qat_uclo_encapme *image; int a; for (a = 0; a < obj_handle->uimage_num; a++) { image = &obj_handle->ae_uimage[a]; image->uwords_num = image->page->beg_addr_p + image->page->micro_words_num; } } static int qat_uclo_parse_uof_obj(struct icp_qat_fw_loader_handle *handle) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned int ae; obj_handle->encap_uof_obj.beg_uof = obj_handle->obj_hdr->file_buff; obj_handle->encap_uof_obj.obj_hdr = (struct icp_qat_uof_objhdr *) obj_handle->obj_hdr->file_buff; obj_handle->uword_in_bytes = 6; obj_handle->prod_type = qat_uclo_get_dev_type(handle); obj_handle->prod_rev = PID_MAJOR_REV | (PID_MINOR_REV & handle->hal_handle->revision_id); if (qat_uclo_check_uof_compat(obj_handle)) { pr_err("QAT: UOF incompatible\n"); return -EINVAL; } obj_handle->uword_buf = kcalloc(UWORD_CPYBUF_SIZE, sizeof(u64), GFP_KERNEL); if (!obj_handle->uword_buf) return -ENOMEM; obj_handle->ustore_phy_size = ICP_QAT_UCLO_MAX_USTORE; if (!obj_handle->obj_hdr->file_buff || !qat_uclo_map_str_table(obj_handle->obj_hdr, ICP_QAT_UOF_STRT, &obj_handle->str_table)) { pr_err("QAT: UOF doesn't have effective images\n"); goto out_err; } obj_handle->uimage_num = qat_uclo_map_uimage(obj_handle, obj_handle->ae_uimage, ICP_QAT_UCLO_MAX_AE * ICP_QAT_UCLO_MAX_CTX); if (!obj_handle->uimage_num) goto out_err; if (qat_uclo_map_ae(handle, handle->hal_handle->ae_max_num)) { pr_err("QAT: Bad object\n"); goto out_check_uof_aemask_err; } qat_uclo_init_uword_num(handle); qat_uclo_map_initmem_table(&obj_handle->encap_uof_obj, &obj_handle->init_mem_tab); if (qat_uclo_set_ae_mode(handle)) goto out_check_uof_aemask_err; return 0; out_check_uof_aemask_err: for (ae = 0; ae < obj_handle->uimage_num; ae++) kfree(obj_handle->ae_uimage[ae].page); out_err: kfree(obj_handle->uword_buf); return -EFAULT; } static int qat_uclo_map_suof_file_hdr(struct icp_qat_fw_loader_handle *handle, struct icp_qat_suof_filehdr *suof_ptr, int suof_size) { unsigned int check_sum = 0; unsigned int min_ver_offset = 0; struct icp_qat_suof_handle *suof_handle = handle->sobj_handle; suof_handle->file_id = ICP_QAT_SUOF_FID; suof_handle->suof_buf = (char *)suof_ptr; suof_handle->suof_size = suof_size; min_ver_offset = suof_size - offsetof(struct icp_qat_suof_filehdr, min_ver); check_sum = qat_uclo_calc_str_checksum((char *)&suof_ptr->min_ver, min_ver_offset); if (check_sum != suof_ptr->check_sum) { pr_err("QAT: incorrect SUOF checksum\n"); return -EINVAL; } suof_handle->check_sum = suof_ptr->check_sum; suof_handle->min_ver = suof_ptr->min_ver; suof_handle->maj_ver = suof_ptr->maj_ver; suof_handle->fw_type = suof_ptr->fw_type; return 0; } static void qat_uclo_map_simg(struct icp_qat_fw_loader_handle *handle, struct icp_qat_suof_img_hdr *suof_img_hdr, struct icp_qat_suof_chunk_hdr *suof_chunk_hdr) { struct icp_qat_suof_handle *suof_handle = handle->sobj_handle; struct icp_qat_simg_ae_mode *ae_mode; struct icp_qat_suof_objhdr *suof_objhdr; suof_img_hdr->simg_buf = (suof_handle->suof_buf + suof_chunk_hdr->offset + sizeof(*suof_objhdr)); suof_img_hdr->simg_len = ((struct icp_qat_suof_objhdr *)(uintptr_t) (suof_handle->suof_buf + suof_chunk_hdr->offset))->img_length; suof_img_hdr->css_header = suof_img_hdr->simg_buf; suof_img_hdr->css_key = (suof_img_hdr->css_header + sizeof(struct icp_qat_css_hdr)); suof_img_hdr->css_signature = suof_img_hdr->css_key + ICP_QAT_CSS_FWSK_MODULUS_LEN(handle) + ICP_QAT_CSS_FWSK_EXPONENT_LEN(handle); suof_img_hdr->css_simg = suof_img_hdr->css_signature + ICP_QAT_CSS_SIGNATURE_LEN(handle); ae_mode = (struct icp_qat_simg_ae_mode *)(suof_img_hdr->css_simg); suof_img_hdr->ae_mask = ae_mode->ae_mask; suof_img_hdr->simg_name = (unsigned long)&ae_mode->simg_name; suof_img_hdr->appmeta_data = (unsigned long)&ae_mode->appmeta_data; suof_img_hdr->fw_type = ae_mode->fw_type; } static void qat_uclo_map_suof_symobjs(struct icp_qat_suof_handle *suof_handle, struct icp_qat_suof_chunk_hdr *suof_chunk_hdr) { char **sym_str = (char **)&suof_handle->sym_str; unsigned int *sym_size = &suof_handle->sym_size; struct icp_qat_suof_strtable *str_table_obj; *sym_size = *(unsigned int *)(uintptr_t) (suof_chunk_hdr->offset + suof_handle->suof_buf); *sym_str = (char *)(uintptr_t) (suof_handle->suof_buf + suof_chunk_hdr->offset + sizeof(str_table_obj->tab_length)); } static int qat_uclo_check_simg_compat(struct icp_qat_fw_loader_handle *handle, struct icp_qat_suof_img_hdr *img_hdr) { struct icp_qat_simg_ae_mode *img_ae_mode = NULL; unsigned int prod_rev, maj_ver, prod_type; prod_type = qat_uclo_get_dev_type(handle); img_ae_mode = (struct icp_qat_simg_ae_mode *)img_hdr->css_simg; prod_rev = PID_MAJOR_REV | (PID_MINOR_REV & handle->hal_handle->revision_id); if (img_ae_mode->dev_type != prod_type) { pr_err("QAT: incompatible product type %x\n", img_ae_mode->dev_type); return -EINVAL; } maj_ver = prod_rev & 0xff; if (maj_ver > img_ae_mode->devmax_ver || maj_ver < img_ae_mode->devmin_ver) { pr_err("QAT: incompatible device majver 0x%x\n", maj_ver); return -EINVAL; } return 0; } static void qat_uclo_del_suof(struct icp_qat_fw_loader_handle *handle) { struct icp_qat_suof_handle *sobj_handle = handle->sobj_handle; kfree(sobj_handle->img_table.simg_hdr); sobj_handle->img_table.simg_hdr = NULL; kfree(handle->sobj_handle); handle->sobj_handle = NULL; } static void qat_uclo_tail_img(struct icp_qat_suof_img_hdr *suof_img_hdr, unsigned int img_id, unsigned int num_simgs) { struct icp_qat_suof_img_hdr img_header; if (img_id != num_simgs - 1) { memcpy(&img_header, &suof_img_hdr[num_simgs - 1], sizeof(*suof_img_hdr)); memcpy(&suof_img_hdr[num_simgs - 1], &suof_img_hdr[img_id], sizeof(*suof_img_hdr)); memcpy(&suof_img_hdr[img_id], &img_header, sizeof(*suof_img_hdr)); } } static int qat_uclo_map_suof(struct icp_qat_fw_loader_handle *handle, struct icp_qat_suof_filehdr *suof_ptr, int suof_size) { struct icp_qat_suof_handle *suof_handle = handle->sobj_handle; struct icp_qat_suof_chunk_hdr *suof_chunk_hdr = NULL; struct icp_qat_suof_img_hdr *suof_img_hdr = NULL; int ret = 0, ae0_img = ICP_QAT_UCLO_MAX_AE; unsigned int i = 0; struct icp_qat_suof_img_hdr img_header; if (!suof_ptr || suof_size == 0) { pr_err("QAT: input parameter SUOF pointer/size is NULL\n"); return -EINVAL; } if (qat_uclo_check_suof_format(suof_ptr)) return -EINVAL; ret = qat_uclo_map_suof_file_hdr(handle, suof_ptr, suof_size); if (ret) return ret; suof_chunk_hdr = (struct icp_qat_suof_chunk_hdr *) ((uintptr_t)suof_ptr + sizeof(*suof_ptr)); qat_uclo_map_suof_symobjs(suof_handle, suof_chunk_hdr); suof_handle->img_table.num_simgs = suof_ptr->num_chunks - 1; if (suof_handle->img_table.num_simgs != 0) { suof_img_hdr = kcalloc(suof_handle->img_table.num_simgs, sizeof(img_header), GFP_KERNEL); if (!suof_img_hdr) return -ENOMEM; suof_handle->img_table.simg_hdr = suof_img_hdr; for (i = 0; i < suof_handle->img_table.num_simgs; i++) { qat_uclo_map_simg(handle, &suof_img_hdr[i], &suof_chunk_hdr[1 + i]); ret = qat_uclo_check_simg_compat(handle, &suof_img_hdr[i]); if (ret) return ret; suof_img_hdr[i].ae_mask &= handle->cfg_ae_mask; if ((suof_img_hdr[i].ae_mask & 0x1) != 0) ae0_img = i; } if (!handle->chip_info->tgroup_share_ustore) { qat_uclo_tail_img(suof_img_hdr, ae0_img, suof_handle->img_table.num_simgs); } } return 0; } #define ADD_ADDR(high, low) ((((u64)high) << 32) + low) #define BITS_IN_DWORD 32 static int qat_uclo_auth_fw(struct icp_qat_fw_loader_handle *handle, struct icp_qat_fw_auth_desc *desc) { u32 fcu_sts, retry = 0; u32 fcu_ctl_csr, fcu_sts_csr; u32 fcu_dram_hi_csr, fcu_dram_lo_csr; u64 bus_addr; bus_addr = ADD_ADDR(desc->css_hdr_high, desc->css_hdr_low) - sizeof(struct icp_qat_auth_chunk); fcu_ctl_csr = handle->chip_info->fcu_ctl_csr; fcu_sts_csr = handle->chip_info->fcu_sts_csr; fcu_dram_hi_csr = handle->chip_info->fcu_dram_addr_hi; fcu_dram_lo_csr = handle->chip_info->fcu_dram_addr_lo; SET_CAP_CSR(handle, fcu_dram_hi_csr, (bus_addr >> BITS_IN_DWORD)); SET_CAP_CSR(handle, fcu_dram_lo_csr, bus_addr); SET_CAP_CSR(handle, fcu_ctl_csr, FCU_CTRL_CMD_AUTH); do { msleep(FW_AUTH_WAIT_PERIOD); fcu_sts = GET_CAP_CSR(handle, fcu_sts_csr); if ((fcu_sts & FCU_AUTH_STS_MASK) == FCU_STS_VERI_FAIL) goto auth_fail; if (((fcu_sts >> FCU_STS_AUTHFWLD_POS) & 0x1)) if ((fcu_sts & FCU_AUTH_STS_MASK) == FCU_STS_VERI_DONE) return 0; } while (retry++ < FW_AUTH_MAX_RETRY); auth_fail: pr_err("QAT: authentication error (FCU_STATUS = 0x%x),retry = %d\n", fcu_sts & FCU_AUTH_STS_MASK, retry); return -EINVAL; } static bool qat_uclo_is_broadcast(struct icp_qat_fw_loader_handle *handle, int imgid) { struct icp_qat_suof_handle *sobj_handle; if (!handle->chip_info->tgroup_share_ustore) return false; sobj_handle = (struct icp_qat_suof_handle *)handle->sobj_handle; if (handle->hal_handle->admin_ae_mask & sobj_handle->img_table.simg_hdr[imgid].ae_mask) return false; return true; } static int qat_uclo_broadcast_load_fw(struct icp_qat_fw_loader_handle *handle, struct icp_qat_fw_auth_desc *desc) { unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned long desc_ae_mask = desc->ae_mask; u32 fcu_sts, ae_broadcast_mask = 0; u32 fcu_loaded_csr, ae_loaded; u32 fcu_sts_csr, fcu_ctl_csr; unsigned int ae, retry = 0; if (handle->chip_info->tgroup_share_ustore) { fcu_ctl_csr = handle->chip_info->fcu_ctl_csr; fcu_sts_csr = handle->chip_info->fcu_sts_csr; fcu_loaded_csr = handle->chip_info->fcu_loaded_ae_csr; } else { pr_err("Chip 0x%x doesn't support broadcast load\n", handle->pci_dev->device); return -EINVAL; } for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { if (qat_hal_check_ae_active(handle, (unsigned char)ae)) { pr_err("QAT: Broadcast load failed. AE is not enabled or active.\n"); return -EINVAL; } if (test_bit(ae, &desc_ae_mask)) ae_broadcast_mask |= 1 << ae; } if (ae_broadcast_mask) { SET_CAP_CSR(handle, FCU_ME_BROADCAST_MASK_TYPE, ae_broadcast_mask); SET_CAP_CSR(handle, fcu_ctl_csr, FCU_CTRL_CMD_LOAD); do { msleep(FW_AUTH_WAIT_PERIOD); fcu_sts = GET_CAP_CSR(handle, fcu_sts_csr); fcu_sts &= FCU_AUTH_STS_MASK; if (fcu_sts == FCU_STS_LOAD_FAIL) { pr_err("Broadcast load failed: 0x%x)\n", fcu_sts); return -EINVAL; } else if (fcu_sts == FCU_STS_LOAD_DONE) { ae_loaded = GET_CAP_CSR(handle, fcu_loaded_csr); ae_loaded >>= handle->chip_info->fcu_loaded_ae_pos; if ((ae_loaded & ae_broadcast_mask) == ae_broadcast_mask) break; } } while (retry++ < FW_AUTH_MAX_RETRY); if (retry > FW_AUTH_MAX_RETRY) { pr_err("QAT: broadcast load failed timeout %d\n", retry); return -EINVAL; } } return 0; } static int qat_uclo_simg_alloc(struct icp_qat_fw_loader_handle *handle, struct icp_firml_dram_desc *dram_desc, unsigned int size) { void *vptr; dma_addr_t ptr; vptr = dma_alloc_coherent(&handle->pci_dev->dev, size, &ptr, GFP_KERNEL); if (!vptr) return -ENOMEM; dram_desc->dram_base_addr_v = vptr; dram_desc->dram_bus_addr = ptr; dram_desc->dram_size = size; return 0; } static void qat_uclo_simg_free(struct icp_qat_fw_loader_handle *handle, struct icp_firml_dram_desc *dram_desc) { if (handle && dram_desc && dram_desc->dram_base_addr_v) { dma_free_coherent(&handle->pci_dev->dev, (size_t)(dram_desc->dram_size), dram_desc->dram_base_addr_v, dram_desc->dram_bus_addr); } if (dram_desc) memset(dram_desc, 0, sizeof(*dram_desc)); } static void qat_uclo_ummap_auth_fw(struct icp_qat_fw_loader_handle *handle, struct icp_qat_fw_auth_desc **desc) { struct icp_firml_dram_desc dram_desc; if (*desc) { dram_desc.dram_base_addr_v = *desc; dram_desc.dram_bus_addr = ((struct icp_qat_auth_chunk *) (*desc))->chunk_bus_addr; dram_desc.dram_size = ((struct icp_qat_auth_chunk *) (*desc))->chunk_size; qat_uclo_simg_free(handle, &dram_desc); } } static int qat_uclo_check_image(struct icp_qat_fw_loader_handle *handle, char *image, unsigned int size, unsigned int fw_type) { char *fw_type_name = fw_type ? "MMP" : "AE"; unsigned int css_dword_size = sizeof(u32); if (handle->chip_info->fw_auth) { struct icp_qat_css_hdr *css_hdr = (struct icp_qat_css_hdr *)image; unsigned int header_len = ICP_QAT_AE_IMG_OFFSET(handle); if ((css_hdr->header_len * css_dword_size) != header_len) goto err; if ((css_hdr->size * css_dword_size) != size) goto err; if (fw_type != css_hdr->fw_type) goto err; if (size <= header_len) goto err; size -= header_len; } if (fw_type == CSS_AE_FIRMWARE) { if (size < sizeof(struct icp_qat_simg_ae_mode *) + ICP_QAT_SIMG_AE_INIT_SEQ_LEN) goto err; if (size > ICP_QAT_CSS_RSA4K_MAX_IMAGE_LEN) goto err; } else if (fw_type == CSS_MMP_FIRMWARE) { if (size > ICP_QAT_CSS_RSA3K_MAX_IMAGE_LEN) goto err; } else { pr_err("QAT: Unsupported firmware type\n"); return -EINVAL; } return 0; err: pr_err("QAT: Invalid %s firmware image\n", fw_type_name); return -EINVAL; } static int qat_uclo_map_auth_fw(struct icp_qat_fw_loader_handle *handle, char *image, unsigned int size, struct icp_qat_fw_auth_desc **desc) { struct icp_qat_css_hdr *css_hdr = (struct icp_qat_css_hdr *)image; struct icp_qat_fw_auth_desc *auth_desc; struct icp_qat_auth_chunk *auth_chunk; u64 virt_addr, bus_addr, virt_base; unsigned int length, simg_offset = sizeof(*auth_chunk); struct icp_qat_simg_ae_mode *simg_ae_mode; struct icp_firml_dram_desc img_desc; if (size > (ICP_QAT_AE_IMG_OFFSET(handle) + ICP_QAT_CSS_RSA4K_MAX_IMAGE_LEN)) { pr_err("QAT: error, input image size overflow %d\n", size); return -EINVAL; } length = (css_hdr->fw_type == CSS_AE_FIRMWARE) ? ICP_QAT_CSS_AE_SIMG_LEN(handle) + simg_offset : size + ICP_QAT_CSS_FWSK_PAD_LEN(handle) + simg_offset; if (qat_uclo_simg_alloc(handle, &img_desc, length)) { pr_err("QAT: error, allocate continuous dram fail\n"); return -ENOMEM; } auth_chunk = img_desc.dram_base_addr_v; auth_chunk->chunk_size = img_desc.dram_size; auth_chunk->chunk_bus_addr = img_desc.dram_bus_addr; virt_base = (uintptr_t)img_desc.dram_base_addr_v + simg_offset; bus_addr = img_desc.dram_bus_addr + simg_offset; auth_desc = img_desc.dram_base_addr_v; auth_desc->css_hdr_high = (unsigned int)(bus_addr >> BITS_IN_DWORD); auth_desc->css_hdr_low = (unsigned int)bus_addr; virt_addr = virt_base; memcpy((void *)(uintptr_t)virt_addr, image, sizeof(*css_hdr)); /* pub key */ bus_addr = ADD_ADDR(auth_desc->css_hdr_high, auth_desc->css_hdr_low) + sizeof(*css_hdr); virt_addr = virt_addr + sizeof(*css_hdr); auth_desc->fwsk_pub_high = (unsigned int)(bus_addr >> BITS_IN_DWORD); auth_desc->fwsk_pub_low = (unsigned int)bus_addr; memcpy((void *)(uintptr_t)virt_addr, (void *)(image + sizeof(*css_hdr)), ICP_QAT_CSS_FWSK_MODULUS_LEN(handle)); /* padding */ memset((void *)(uintptr_t)(virt_addr + ICP_QAT_CSS_FWSK_MODULUS_LEN(handle)), 0, ICP_QAT_CSS_FWSK_PAD_LEN(handle)); /* exponent */ memcpy((void *)(uintptr_t)(virt_addr + ICP_QAT_CSS_FWSK_MODULUS_LEN(handle) + ICP_QAT_CSS_FWSK_PAD_LEN(handle)), (void *)(image + sizeof(*css_hdr) + ICP_QAT_CSS_FWSK_MODULUS_LEN(handle)), sizeof(unsigned int)); /* signature */ bus_addr = ADD_ADDR(auth_desc->fwsk_pub_high, auth_desc->fwsk_pub_low) + ICP_QAT_CSS_FWSK_PUB_LEN(handle); virt_addr = virt_addr + ICP_QAT_CSS_FWSK_PUB_LEN(handle); auth_desc->signature_high = (unsigned int)(bus_addr >> BITS_IN_DWORD); auth_desc->signature_low = (unsigned int)bus_addr; memcpy((void *)(uintptr_t)virt_addr, (void *)(image + sizeof(*css_hdr) + ICP_QAT_CSS_FWSK_MODULUS_LEN(handle) + ICP_QAT_CSS_FWSK_EXPONENT_LEN(handle)), ICP_QAT_CSS_SIGNATURE_LEN(handle)); bus_addr = ADD_ADDR(auth_desc->signature_high, auth_desc->signature_low) + ICP_QAT_CSS_SIGNATURE_LEN(handle); virt_addr += ICP_QAT_CSS_SIGNATURE_LEN(handle); auth_desc->img_high = (unsigned int)(bus_addr >> BITS_IN_DWORD); auth_desc->img_low = (unsigned int)bus_addr; auth_desc->img_len = size - ICP_QAT_AE_IMG_OFFSET(handle); memcpy((void *)(uintptr_t)virt_addr, (void *)(image + ICP_QAT_AE_IMG_OFFSET(handle)), auth_desc->img_len); virt_addr = virt_base; /* AE firmware */ if (((struct icp_qat_css_hdr *)(uintptr_t)virt_addr)->fw_type == CSS_AE_FIRMWARE) { auth_desc->img_ae_mode_data_high = auth_desc->img_high; auth_desc->img_ae_mode_data_low = auth_desc->img_low; bus_addr = ADD_ADDR(auth_desc->img_ae_mode_data_high, auth_desc->img_ae_mode_data_low) + sizeof(struct icp_qat_simg_ae_mode); auth_desc->img_ae_init_data_high = (unsigned int) (bus_addr >> BITS_IN_DWORD); auth_desc->img_ae_init_data_low = (unsigned int)bus_addr; bus_addr += ICP_QAT_SIMG_AE_INIT_SEQ_LEN; auth_desc->img_ae_insts_high = (unsigned int) (bus_addr >> BITS_IN_DWORD); auth_desc->img_ae_insts_low = (unsigned int)bus_addr; virt_addr += sizeof(struct icp_qat_css_hdr); virt_addr += ICP_QAT_CSS_FWSK_PUB_LEN(handle); virt_addr += ICP_QAT_CSS_SIGNATURE_LEN(handle); simg_ae_mode = (struct icp_qat_simg_ae_mode *)(uintptr_t)virt_addr; auth_desc->ae_mask = simg_ae_mode->ae_mask & handle->cfg_ae_mask; } else { auth_desc->img_ae_insts_high = auth_desc->img_high; auth_desc->img_ae_insts_low = auth_desc->img_low; } *desc = auth_desc; return 0; } static int qat_uclo_load_fw(struct icp_qat_fw_loader_handle *handle, struct icp_qat_fw_auth_desc *desc) { unsigned long ae_mask = handle->hal_handle->ae_mask; u32 fcu_sts_csr, fcu_ctl_csr; u32 loaded_aes, loaded_csr; unsigned int i; u32 fcu_sts; fcu_ctl_csr = handle->chip_info->fcu_ctl_csr; fcu_sts_csr = handle->chip_info->fcu_sts_csr; loaded_csr = handle->chip_info->fcu_loaded_ae_csr; for_each_set_bit(i, &ae_mask, handle->hal_handle->ae_max_num) { int retry = 0; if (!((desc->ae_mask >> i) & 0x1)) continue; if (qat_hal_check_ae_active(handle, i)) { pr_err("QAT: AE %d is active\n", i); return -EINVAL; } SET_CAP_CSR(handle, fcu_ctl_csr, (FCU_CTRL_CMD_LOAD | (1 << FCU_CTRL_BROADCAST_POS) | (i << FCU_CTRL_AE_POS))); do { msleep(FW_AUTH_WAIT_PERIOD); fcu_sts = GET_CAP_CSR(handle, fcu_sts_csr); if ((fcu_sts & FCU_AUTH_STS_MASK) == FCU_STS_LOAD_DONE) { loaded_aes = GET_CAP_CSR(handle, loaded_csr); loaded_aes >>= handle->chip_info->fcu_loaded_ae_pos; if (loaded_aes & (1 << i)) break; } } while (retry++ < FW_AUTH_MAX_RETRY); if (retry > FW_AUTH_MAX_RETRY) { pr_err("QAT: firmware load failed timeout %x\n", retry); return -EINVAL; } } return 0; } static int qat_uclo_map_suof_obj(struct icp_qat_fw_loader_handle *handle, void *addr_ptr, int mem_size) { struct icp_qat_suof_handle *suof_handle; suof_handle = kzalloc(sizeof(*suof_handle), GFP_KERNEL); if (!suof_handle) return -ENOMEM; handle->sobj_handle = suof_handle; if (qat_uclo_map_suof(handle, addr_ptr, mem_size)) { qat_uclo_del_suof(handle); pr_err("QAT: map SUOF failed\n"); return -EINVAL; } return 0; } int qat_uclo_wr_mimage(struct icp_qat_fw_loader_handle *handle, void *addr_ptr, int mem_size) { struct icp_qat_fw_auth_desc *desc = NULL; int status = 0; int ret; ret = qat_uclo_check_image(handle, addr_ptr, mem_size, CSS_MMP_FIRMWARE); if (ret) return ret; if (handle->chip_info->fw_auth) { status = qat_uclo_map_auth_fw(handle, addr_ptr, mem_size, &desc); if (!status) status = qat_uclo_auth_fw(handle, desc); qat_uclo_ummap_auth_fw(handle, &desc); } else { if (handle->chip_info->mmp_sram_size < mem_size) { pr_err("QAT: MMP size is too large: 0x%x\n", mem_size); return -EFBIG; } qat_uclo_wr_sram_by_words(handle, 0, addr_ptr, mem_size); } return status; } static int qat_uclo_map_uof_obj(struct icp_qat_fw_loader_handle *handle, void *addr_ptr, int mem_size) { struct icp_qat_uof_filehdr *filehdr; struct icp_qat_uclo_objhandle *objhdl; objhdl = kzalloc(sizeof(*objhdl), GFP_KERNEL); if (!objhdl) return -ENOMEM; objhdl->obj_buf = kmemdup(addr_ptr, mem_size, GFP_KERNEL); if (!objhdl->obj_buf) goto out_objbuf_err; filehdr = (struct icp_qat_uof_filehdr *)objhdl->obj_buf; if (qat_uclo_check_uof_format(filehdr)) goto out_objhdr_err; objhdl->obj_hdr = qat_uclo_map_chunk((char *)objhdl->obj_buf, filehdr, ICP_QAT_UOF_OBJS); if (!objhdl->obj_hdr) { pr_err("QAT: object file chunk is null\n"); goto out_objhdr_err; } handle->obj_handle = objhdl; if (qat_uclo_parse_uof_obj(handle)) goto out_overlay_obj_err; return 0; out_overlay_obj_err: handle->obj_handle = NULL; kfree(objhdl->obj_hdr); out_objhdr_err: kfree(objhdl->obj_buf); out_objbuf_err: kfree(objhdl); return -ENOMEM; } static int qat_uclo_map_mof_file_hdr(struct icp_qat_fw_loader_handle *handle, struct icp_qat_mof_file_hdr *mof_ptr, u32 mof_size) { struct icp_qat_mof_handle *mobj_handle = handle->mobj_handle; unsigned int min_ver_offset; unsigned int checksum; mobj_handle->file_id = ICP_QAT_MOF_FID; mobj_handle->mof_buf = (char *)mof_ptr; mobj_handle->mof_size = mof_size; min_ver_offset = mof_size - offsetof(struct icp_qat_mof_file_hdr, min_ver); checksum = qat_uclo_calc_str_checksum(&mof_ptr->min_ver, min_ver_offset); if (checksum != mof_ptr->checksum) { pr_err("QAT: incorrect MOF checksum\n"); return -EINVAL; } mobj_handle->checksum = mof_ptr->checksum; mobj_handle->min_ver = mof_ptr->min_ver; mobj_handle->maj_ver = mof_ptr->maj_ver; return 0; } static void qat_uclo_del_mof(struct icp_qat_fw_loader_handle *handle) { struct icp_qat_mof_handle *mobj_handle = handle->mobj_handle; kfree(mobj_handle->obj_table.obj_hdr); mobj_handle->obj_table.obj_hdr = NULL; kfree(handle->mobj_handle); handle->mobj_handle = NULL; } static int qat_uclo_seek_obj_inside_mof(struct icp_qat_mof_handle *mobj_handle, const char *obj_name, char **obj_ptr, unsigned int *obj_size) { struct icp_qat_mof_objhdr *obj_hdr = mobj_handle->obj_table.obj_hdr; unsigned int i; for (i = 0; i < mobj_handle->obj_table.num_objs; i++) { if (!strncmp(obj_hdr[i].obj_name, obj_name, ICP_QAT_SUOF_OBJ_NAME_LEN)) { *obj_ptr = obj_hdr[i].obj_buf; *obj_size = obj_hdr[i].obj_size; return 0; } } pr_err("QAT: object %s is not found inside MOF\n", obj_name); return -EINVAL; } static int qat_uclo_map_obj_from_mof(struct icp_qat_mof_handle *mobj_handle, struct icp_qat_mof_objhdr *mobj_hdr, struct icp_qat_mof_obj_chunkhdr *obj_chunkhdr) { u8 *obj; if (!strncmp(obj_chunkhdr->chunk_id, ICP_QAT_UOF_IMAG, ICP_QAT_MOF_OBJ_CHUNKID_LEN)) { obj = mobj_handle->uobjs_hdr + obj_chunkhdr->offset; } else if (!strncmp(obj_chunkhdr->chunk_id, ICP_QAT_SUOF_IMAG, ICP_QAT_MOF_OBJ_CHUNKID_LEN)) { obj = mobj_handle->sobjs_hdr + obj_chunkhdr->offset; } else { pr_err("QAT: unsupported chunk id\n"); return -EINVAL; } mobj_hdr->obj_buf = obj; mobj_hdr->obj_size = (unsigned int)obj_chunkhdr->size; mobj_hdr->obj_name = obj_chunkhdr->name + mobj_handle->sym_str; return 0; } static int qat_uclo_map_objs_from_mof(struct icp_qat_mof_handle *mobj_handle) { struct icp_qat_mof_obj_chunkhdr *uobj_chunkhdr; struct icp_qat_mof_obj_chunkhdr *sobj_chunkhdr; struct icp_qat_mof_obj_hdr *uobj_hdr; struct icp_qat_mof_obj_hdr *sobj_hdr; struct icp_qat_mof_objhdr *mobj_hdr; unsigned int uobj_chunk_num = 0; unsigned int sobj_chunk_num = 0; unsigned int *valid_chunk; int ret, i; uobj_hdr = (struct icp_qat_mof_obj_hdr *)mobj_handle->uobjs_hdr; sobj_hdr = (struct icp_qat_mof_obj_hdr *)mobj_handle->sobjs_hdr; if (uobj_hdr) uobj_chunk_num = uobj_hdr->num_chunks; if (sobj_hdr) sobj_chunk_num = sobj_hdr->num_chunks; mobj_hdr = kzalloc((uobj_chunk_num + sobj_chunk_num) * sizeof(*mobj_hdr), GFP_KERNEL); if (!mobj_hdr) return -ENOMEM; mobj_handle->obj_table.obj_hdr = mobj_hdr; valid_chunk = &mobj_handle->obj_table.num_objs; uobj_chunkhdr = (struct icp_qat_mof_obj_chunkhdr *) ((uintptr_t)uobj_hdr + sizeof(*uobj_hdr)); sobj_chunkhdr = (struct icp_qat_mof_obj_chunkhdr *) ((uintptr_t)sobj_hdr + sizeof(*sobj_hdr)); /* map uof objects */ for (i = 0; i < uobj_chunk_num; i++) { ret = qat_uclo_map_obj_from_mof(mobj_handle, &mobj_hdr[*valid_chunk], &uobj_chunkhdr[i]); if (ret) return ret; (*valid_chunk)++; } /* map suof objects */ for (i = 0; i < sobj_chunk_num; i++) { ret = qat_uclo_map_obj_from_mof(mobj_handle, &mobj_hdr[*valid_chunk], &sobj_chunkhdr[i]); if (ret) return ret; (*valid_chunk)++; } if ((uobj_chunk_num + sobj_chunk_num) != *valid_chunk) { pr_err("QAT: inconsistent UOF/SUOF chunk amount\n"); return -EINVAL; } return 0; } static void qat_uclo_map_mof_symobjs(struct icp_qat_mof_handle *mobj_handle, struct icp_qat_mof_chunkhdr *mof_chunkhdr) { char **sym_str = (char **)&mobj_handle->sym_str; unsigned int *sym_size = &mobj_handle->sym_size; struct icp_qat_mof_str_table *str_table_obj; *sym_size = *(unsigned int *)(uintptr_t) (mof_chunkhdr->offset + mobj_handle->mof_buf); *sym_str = (char *)(uintptr_t) (mobj_handle->mof_buf + mof_chunkhdr->offset + sizeof(str_table_obj->tab_len)); } static void qat_uclo_map_mof_chunk(struct icp_qat_mof_handle *mobj_handle, struct icp_qat_mof_chunkhdr *mof_chunkhdr) { char *chunk_id = mof_chunkhdr->chunk_id; if (!strncmp(chunk_id, ICP_QAT_MOF_SYM_OBJS, ICP_QAT_MOF_OBJ_ID_LEN)) qat_uclo_map_mof_symobjs(mobj_handle, mof_chunkhdr); else if (!strncmp(chunk_id, ICP_QAT_UOF_OBJS, ICP_QAT_MOF_OBJ_ID_LEN)) mobj_handle->uobjs_hdr = mobj_handle->mof_buf + mof_chunkhdr->offset; else if (!strncmp(chunk_id, ICP_QAT_SUOF_OBJS, ICP_QAT_MOF_OBJ_ID_LEN)) mobj_handle->sobjs_hdr = mobj_handle->mof_buf + mof_chunkhdr->offset; } static int qat_uclo_check_mof_format(struct icp_qat_mof_file_hdr *mof_hdr) { int maj = mof_hdr->maj_ver & 0xff; int min = mof_hdr->min_ver & 0xff; if (mof_hdr->file_id != ICP_QAT_MOF_FID) { pr_err("QAT: invalid header 0x%x\n", mof_hdr->file_id); return -EINVAL; } if (mof_hdr->num_chunks <= 0x1) { pr_err("QAT: MOF chunk amount is incorrect\n"); return -EINVAL; } if (maj != ICP_QAT_MOF_MAJVER || min != ICP_QAT_MOF_MINVER) { pr_err("QAT: bad MOF version, major 0x%x, minor 0x%x\n", maj, min); return -EINVAL; } return 0; } static int qat_uclo_map_mof_obj(struct icp_qat_fw_loader_handle *handle, struct icp_qat_mof_file_hdr *mof_ptr, u32 mof_size, const char *obj_name, char **obj_ptr, unsigned int *obj_size) { struct icp_qat_mof_chunkhdr *mof_chunkhdr; unsigned int file_id = mof_ptr->file_id; struct icp_qat_mof_handle *mobj_handle; unsigned short chunks_num; unsigned int i; int ret; if (file_id == ICP_QAT_UOF_FID || file_id == ICP_QAT_SUOF_FID) { if (obj_ptr) *obj_ptr = (char *)mof_ptr; if (obj_size) *obj_size = mof_size; return 0; } if (qat_uclo_check_mof_format(mof_ptr)) return -EINVAL; mobj_handle = kzalloc(sizeof(*mobj_handle), GFP_KERNEL); if (!mobj_handle) return -ENOMEM; handle->mobj_handle = mobj_handle; ret = qat_uclo_map_mof_file_hdr(handle, mof_ptr, mof_size); if (ret) return ret; mof_chunkhdr = (void *)mof_ptr + sizeof(*mof_ptr); chunks_num = mof_ptr->num_chunks; /* Parse MOF file chunks */ for (i = 0; i < chunks_num; i++) qat_uclo_map_mof_chunk(mobj_handle, &mof_chunkhdr[i]); /* All sym_objs uobjs and sobjs should be available */ if (!mobj_handle->sym_str || (!mobj_handle->uobjs_hdr && !mobj_handle->sobjs_hdr)) return -EINVAL; ret = qat_uclo_map_objs_from_mof(mobj_handle); if (ret) return ret; /* Seek specified uof object in MOF */ return qat_uclo_seek_obj_inside_mof(mobj_handle, obj_name, obj_ptr, obj_size); } int qat_uclo_map_obj(struct icp_qat_fw_loader_handle *handle, void *addr_ptr, u32 mem_size, const char *obj_name) { char *obj_addr; u32 obj_size; int ret; BUILD_BUG_ON(ICP_QAT_UCLO_MAX_AE >= (sizeof(handle->hal_handle->ae_mask) * 8)); if (!handle || !addr_ptr || mem_size < 24) return -EINVAL; if (obj_name) { ret = qat_uclo_map_mof_obj(handle, addr_ptr, mem_size, obj_name, &obj_addr, &obj_size); if (ret) return ret; } else { obj_addr = addr_ptr; obj_size = mem_size; } return (handle->chip_info->fw_auth) ? qat_uclo_map_suof_obj(handle, obj_addr, obj_size) : qat_uclo_map_uof_obj(handle, obj_addr, obj_size); } void qat_uclo_del_obj(struct icp_qat_fw_loader_handle *handle) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned int a; if (handle->mobj_handle) qat_uclo_del_mof(handle); if (handle->sobj_handle) qat_uclo_del_suof(handle); if (!obj_handle) return; kfree(obj_handle->uword_buf); for (a = 0; a < obj_handle->uimage_num; a++) kfree(obj_handle->ae_uimage[a].page); for (a = 0; a < handle->hal_handle->ae_max_num; a++) qat_uclo_free_ae_data(&obj_handle->ae_data[a]); kfree(obj_handle->obj_hdr); kfree(obj_handle->obj_buf); kfree(obj_handle); handle->obj_handle = NULL; } static void qat_uclo_fill_uwords(struct icp_qat_uclo_objhandle *obj_handle, struct icp_qat_uclo_encap_page *encap_page, u64 *uword, unsigned int addr_p, unsigned int raddr, u64 fill) { unsigned int i, addr; u64 uwrd = 0; if (!encap_page) { *uword = fill; return; } addr = (encap_page->page_region) ? raddr : addr_p; for (i = 0; i < encap_page->uwblock_num; i++) { if (addr >= encap_page->uwblock[i].start_addr && addr <= encap_page->uwblock[i].start_addr + encap_page->uwblock[i].words_num - 1) { addr -= encap_page->uwblock[i].start_addr; addr *= obj_handle->uword_in_bytes; memcpy(&uwrd, (void *)(((uintptr_t) encap_page->uwblock[i].micro_words) + addr), obj_handle->uword_in_bytes); uwrd = uwrd & GENMASK_ULL(43, 0); } } *uword = uwrd; if (*uword == INVLD_UWORD) *uword = fill; } static void qat_uclo_wr_uimage_raw_page(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uclo_encap_page *encap_page, unsigned int ae) { unsigned int uw_physical_addr, uw_relative_addr, i, words_num, cpylen; struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; u64 fill_pat; /* load the page starting at appropriate ustore address */ /* get fill-pattern from an image -- they are all the same */ memcpy(&fill_pat, obj_handle->ae_uimage[0].img_ptr->fill_pattern, sizeof(u64)); uw_physical_addr = encap_page->beg_addr_p; uw_relative_addr = 0; words_num = encap_page->micro_words_num; while (words_num) { cpylen = min(words_num, UWORD_CPYBUF_SIZE); /* load the buffer */ for (i = 0; i < cpylen; i++) qat_uclo_fill_uwords(obj_handle, encap_page, &obj_handle->uword_buf[i], uw_physical_addr + i, uw_relative_addr + i, fill_pat); /* copy the buffer to ustore */ qat_hal_wr_uwords(handle, (unsigned char)ae, uw_physical_addr, cpylen, obj_handle->uword_buf); uw_physical_addr += cpylen; uw_relative_addr += cpylen; words_num -= cpylen; } } static void qat_uclo_wr_uimage_page(struct icp_qat_fw_loader_handle *handle, struct icp_qat_uof_image *image) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned long ae_mask = handle->hal_handle->ae_mask; unsigned long cfg_ae_mask = handle->cfg_ae_mask; unsigned long ae_assigned = image->ae_assigned; struct icp_qat_uclo_aedata *aed; unsigned int ctx_mask, s; struct icp_qat_uclo_page *page; unsigned char ae; int ctx; if (ICP_QAT_CTX_MODE(image->ae_mode) == ICP_QAT_UCLO_MAX_CTX) ctx_mask = 0xff; else ctx_mask = 0x55; /* load the default page and set assigned CTX PC * to the entrypoint address */ for_each_set_bit(ae, &ae_mask, handle->hal_handle->ae_max_num) { if (!test_bit(ae, &cfg_ae_mask)) continue; if (!test_bit(ae, &ae_assigned)) continue; aed = &obj_handle->ae_data[ae]; /* find the slice to which this image is assigned */ for (s = 0; s < aed->slice_num; s++) { if (image->ctx_assigned & aed->ae_slices[s].ctx_mask_assigned) break; } if (s >= aed->slice_num) continue; page = aed->ae_slices[s].page; if (!page->encap_page->def_page) continue; qat_uclo_wr_uimage_raw_page(handle, page->encap_page, ae); page = aed->ae_slices[s].page; for (ctx = 0; ctx < ICP_QAT_UCLO_MAX_CTX; ctx++) aed->ae_slices[s].cur_page[ctx] = (ctx_mask & (1 << ctx)) ? page : NULL; qat_hal_set_live_ctx(handle, (unsigned char)ae, image->ctx_assigned); qat_hal_set_pc(handle, (unsigned char)ae, image->ctx_assigned, image->entry_address); } } static int qat_uclo_wr_suof_img(struct icp_qat_fw_loader_handle *handle) { unsigned int i; struct icp_qat_fw_auth_desc *desc = NULL; struct icp_qat_suof_handle *sobj_handle = handle->sobj_handle; struct icp_qat_suof_img_hdr *simg_hdr = sobj_handle->img_table.simg_hdr; int ret; for (i = 0; i < sobj_handle->img_table.num_simgs; i++) { ret = qat_uclo_check_image(handle, simg_hdr[i].simg_buf, simg_hdr[i].simg_len, CSS_AE_FIRMWARE); if (ret) return ret; if (qat_uclo_map_auth_fw(handle, (char *)simg_hdr[i].simg_buf, (unsigned int) simg_hdr[i].simg_len, &desc)) goto wr_err; if (qat_uclo_auth_fw(handle, desc)) goto wr_err; if (qat_uclo_is_broadcast(handle, i)) { if (qat_uclo_broadcast_load_fw(handle, desc)) goto wr_err; } else { if (qat_uclo_load_fw(handle, desc)) goto wr_err; } qat_uclo_ummap_auth_fw(handle, &desc); } return 0; wr_err: qat_uclo_ummap_auth_fw(handle, &desc); return -EINVAL; } static int qat_uclo_wr_uof_img(struct icp_qat_fw_loader_handle *handle) { struct icp_qat_uclo_objhandle *obj_handle = handle->obj_handle; unsigned int i; if (qat_uclo_init_globals(handle)) return -EINVAL; for (i = 0; i < obj_handle->uimage_num; i++) { if (!obj_handle->ae_uimage[i].img_ptr) return -EINVAL; if (qat_uclo_init_ustore(handle, &obj_handle->ae_uimage[i])) return -EINVAL; qat_uclo_wr_uimage_page(handle, obj_handle->ae_uimage[i].img_ptr); } return 0; } int qat_uclo_wr_all_uimage(struct icp_qat_fw_loader_handle *handle) { return (handle->chip_info->fw_auth) ? qat_uclo_wr_suof_img(handle) : qat_uclo_wr_uof_img(handle); } int qat_uclo_set_cfg_ae_mask(struct icp_qat_fw_loader_handle *handle, unsigned int cfg_ae_mask) { if (!cfg_ae_mask) return -EINVAL; handle->cfg_ae_mask = cfg_ae_mask; return 0; }
linux-master
drivers/crypto/intel/qat/qat_common/qat_uclo.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Intel Corporation */ #include <linux/delay.h> #include <linux/dev_printk.h> #include <linux/export.h> #include <linux/math.h> #include <linux/minmax.h> #include <linux/time64.h> #include <linux/types.h> #include <linux/units.h> #include <asm/errno.h> #include "adf_accel_devices.h" #include "adf_clock.h" #include "adf_common_drv.h" #define MEASURE_CLOCK_RETRIES 10 #define MEASURE_CLOCK_DELAY_US 10000 #define ME_CLK_DIVIDER 16 #define MEASURE_CLOCK_DELTA_THRESHOLD_US 100 static inline u64 timespec_to_us(const struct timespec64 *ts) { return (u64)DIV_ROUND_CLOSEST_ULL(timespec64_to_ns(ts), NSEC_PER_USEC); } static inline u64 timespec_to_ms(const struct timespec64 *ts) { return (u64)DIV_ROUND_CLOSEST_ULL(timespec64_to_ns(ts), NSEC_PER_MSEC); } u64 adf_clock_get_current_time(void) { struct timespec64 ts; ktime_get_real_ts64(&ts); return timespec_to_ms(&ts); } static int measure_clock(struct adf_accel_dev *accel_dev, u32 *frequency) { struct timespec64 ts1, ts2, ts3, ts4; u64 timestamp1, timestamp2, temp; u32 delta_us, tries; int ret; tries = MEASURE_CLOCK_RETRIES; do { ktime_get_real_ts64(&ts1); ret = adf_get_fw_timestamp(accel_dev, &timestamp1); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed to get fw timestamp\n"); return ret; } ktime_get_real_ts64(&ts2); delta_us = timespec_to_us(&ts2) - timespec_to_us(&ts1); } while (delta_us > MEASURE_CLOCK_DELTA_THRESHOLD_US && --tries); if (!tries) { dev_err(&GET_DEV(accel_dev), "Excessive clock measure delay\n"); return -ETIMEDOUT; } fsleep(MEASURE_CLOCK_DELAY_US); tries = MEASURE_CLOCK_RETRIES; do { ktime_get_real_ts64(&ts3); if (adf_get_fw_timestamp(accel_dev, &timestamp2)) { dev_err(&GET_DEV(accel_dev), "Failed to get fw timestamp\n"); return -EIO; } ktime_get_real_ts64(&ts4); delta_us = timespec_to_us(&ts4) - timespec_to_us(&ts3); } while (delta_us > MEASURE_CLOCK_DELTA_THRESHOLD_US && --tries); if (!tries) { dev_err(&GET_DEV(accel_dev), "Excessive clock measure delay\n"); return -ETIMEDOUT; } delta_us = timespec_to_us(&ts3) - timespec_to_us(&ts1); temp = (timestamp2 - timestamp1) * ME_CLK_DIVIDER * 10; temp = DIV_ROUND_CLOSEST_ULL(temp, delta_us); /* * Enclose the division to allow the preprocessor to precalculate it, * and avoid promoting r-value to 64-bit before division. */ *frequency = temp * (HZ_PER_MHZ / 10); return 0; } /** * adf_dev_measure_clock() - measures device clock frequency * @accel_dev: Pointer to acceleration device. * @frequency: Pointer to variable where result will be stored * @min: Minimal allowed frequency value * @max: Maximal allowed frequency value * * If the measurement result will go beyond the min/max thresholds the value * will take the value of the crossed threshold. * * This algorithm compares the device firmware timestamp with the kernel * timestamp. So we can't expect too high accuracy from this measurement. * * Return: * * 0 - measurement succeed * * -ETIMEDOUT - measurement failed */ int adf_dev_measure_clock(struct adf_accel_dev *accel_dev, u32 *frequency, u32 min, u32 max) { int ret; u32 freq; ret = measure_clock(accel_dev, &freq); if (ret) return ret; *frequency = clamp(freq, min, max); if (*frequency != freq) dev_warn(&GET_DEV(accel_dev), "Measured clock %d Hz is out of range, assuming %d\n", freq, *frequency); return 0; } EXPORT_SYMBOL_GPL(adf_dev_measure_clock);
linux-master
drivers/crypto/intel/qat/qat_common/adf_clock.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/module.h> #include <linux/slab.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_transport.h" #include "adf_cfg.h" #include "adf_cfg_strings.h" #include "adf_gen2_hw_data.h" #include "qat_crypto.h" #include "icp_qat_fw.h" #define SEC ADF_KERNEL_SEC static struct service_hndl qat_crypto; void qat_crypto_put_instance(struct qat_crypto_instance *inst) { atomic_dec(&inst->refctr); adf_dev_put(inst->accel_dev); } static int qat_crypto_free_instances(struct adf_accel_dev *accel_dev) { struct qat_crypto_instance *inst, *tmp; int i; list_for_each_entry_safe(inst, tmp, &accel_dev->crypto_list, list) { for (i = 0; i < atomic_read(&inst->refctr); i++) qat_crypto_put_instance(inst); if (inst->sym_tx) adf_remove_ring(inst->sym_tx); if (inst->sym_rx) adf_remove_ring(inst->sym_rx); if (inst->pke_tx) adf_remove_ring(inst->pke_tx); if (inst->pke_rx) adf_remove_ring(inst->pke_rx); list_del(&inst->list); kfree(inst); } return 0; } struct qat_crypto_instance *qat_crypto_get_instance_node(int node) { struct adf_accel_dev *accel_dev = NULL, *tmp_dev; struct qat_crypto_instance *inst = NULL, *tmp_inst; unsigned long best = ~0; list_for_each_entry(tmp_dev, adf_devmgr_get_head(), list) { unsigned long ctr; if ((node == dev_to_node(&GET_DEV(tmp_dev)) || dev_to_node(&GET_DEV(tmp_dev)) < 0) && adf_dev_started(tmp_dev) && !list_empty(&tmp_dev->crypto_list)) { ctr = atomic_read(&tmp_dev->ref_count); if (best > ctr) { accel_dev = tmp_dev; best = ctr; } } } if (!accel_dev) { pr_debug_ratelimited("QAT: Could not find a device on node %d\n", node); /* Get any started device */ list_for_each_entry(tmp_dev, adf_devmgr_get_head(), list) { if (adf_dev_started(tmp_dev) && !list_empty(&tmp_dev->crypto_list)) { accel_dev = tmp_dev; break; } } } if (!accel_dev) return NULL; best = ~0; list_for_each_entry(tmp_inst, &accel_dev->crypto_list, list) { unsigned long ctr; ctr = atomic_read(&tmp_inst->refctr); if (best > ctr) { inst = tmp_inst; best = ctr; } } if (inst) { if (adf_dev_get(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Could not increment dev refctr\n"); return NULL; } atomic_inc(&inst->refctr); } return inst; } /** * qat_crypto_vf_dev_config() * create dev config required to create crypto inst. * * @accel_dev: Pointer to acceleration device. * * Function creates device configuration required to create * asym, sym or, crypto instances * * Return: 0 on success, error code otherwise. */ int qat_crypto_vf_dev_config(struct adf_accel_dev *accel_dev) { u16 ring_to_svc_map = GET_HW_DATA(accel_dev)->ring_to_svc_map; if (ring_to_svc_map != ADF_GEN2_DEFAULT_RING_TO_SRV_MAP) { dev_err(&GET_DEV(accel_dev), "Unsupported ring/service mapping present on PF"); return -EFAULT; } return GET_HW_DATA(accel_dev)->dev_config(accel_dev); } static int qat_crypto_create_instances(struct adf_accel_dev *accel_dev) { unsigned long num_inst, num_msg_sym, num_msg_asym; char key[ADF_CFG_MAX_KEY_LEN_IN_BYTES]; char val[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; unsigned long sym_bank, asym_bank; struct qat_crypto_instance *inst; int msg_size; int ret; int i; INIT_LIST_HEAD(&accel_dev->crypto_list); ret = adf_cfg_get_param_value(accel_dev, SEC, ADF_NUM_CY, val); if (ret) return ret; ret = kstrtoul(val, 0, &num_inst); if (ret) return ret; for (i = 0; i < num_inst; i++) { inst = kzalloc_node(sizeof(*inst), GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!inst) { ret = -ENOMEM; goto err; } list_add_tail(&inst->list, &accel_dev->crypto_list); inst->id = i; atomic_set(&inst->refctr, 0); inst->accel_dev = accel_dev; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_BANK_NUM, i); ret = adf_cfg_get_param_value(accel_dev, SEC, key, val); if (ret) goto err; ret = kstrtoul(val, 10, &sym_bank); if (ret) goto err; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_BANK_NUM, i); ret = adf_cfg_get_param_value(accel_dev, SEC, key, val); if (ret) goto err; ret = kstrtoul(val, 10, &asym_bank); if (ret) goto err; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_SIZE, i); ret = adf_cfg_get_param_value(accel_dev, SEC, key, val); if (ret) goto err; ret = kstrtoul(val, 10, &num_msg_sym); if (ret) goto err; num_msg_sym = num_msg_sym >> 1; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_SIZE, i); ret = adf_cfg_get_param_value(accel_dev, SEC, key, val); if (ret) goto err; ret = kstrtoul(val, 10, &num_msg_asym); if (ret) goto err; num_msg_asym = num_msg_asym >> 1; msg_size = ICP_QAT_FW_REQ_DEFAULT_SZ; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_TX, i); ret = adf_create_ring(accel_dev, SEC, sym_bank, num_msg_sym, msg_size, key, NULL, 0, &inst->sym_tx); if (ret) goto err; msg_size = msg_size >> 1; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_TX, i); ret = adf_create_ring(accel_dev, SEC, asym_bank, num_msg_asym, msg_size, key, NULL, 0, &inst->pke_tx); if (ret) goto err; msg_size = ICP_QAT_FW_RESP_DEFAULT_SZ; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_RX, i); ret = adf_create_ring(accel_dev, SEC, sym_bank, num_msg_sym, msg_size, key, qat_alg_callback, 0, &inst->sym_rx); if (ret) goto err; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_RX, i); ret = adf_create_ring(accel_dev, SEC, asym_bank, num_msg_asym, msg_size, key, qat_alg_asym_callback, 0, &inst->pke_rx); if (ret) goto err; INIT_LIST_HEAD(&inst->backlog.list); spin_lock_init(&inst->backlog.lock); } return 0; err: qat_crypto_free_instances(accel_dev); return ret; } static int qat_crypto_init(struct adf_accel_dev *accel_dev) { if (qat_crypto_create_instances(accel_dev)) return -EFAULT; return 0; } static int qat_crypto_shutdown(struct adf_accel_dev *accel_dev) { return qat_crypto_free_instances(accel_dev); } static int qat_crypto_event_handler(struct adf_accel_dev *accel_dev, enum adf_event event) { int ret; switch (event) { case ADF_EVENT_INIT: ret = qat_crypto_init(accel_dev); break; case ADF_EVENT_SHUTDOWN: ret = qat_crypto_shutdown(accel_dev); break; case ADF_EVENT_RESTARTING: case ADF_EVENT_RESTARTED: case ADF_EVENT_START: case ADF_EVENT_STOP: default: ret = 0; } return ret; } int qat_crypto_register(void) { memset(&qat_crypto, 0, sizeof(qat_crypto)); qat_crypto.event_hld = qat_crypto_event_handler; qat_crypto.name = "qat_crypto"; return adf_service_register(&qat_crypto); } int qat_crypto_unregister(void) { return adf_service_unregister(&qat_crypto); }
linux-master
drivers/crypto/intel/qat/qat_common/qat_crypto.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/types.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/iopoll.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_heartbeat.h" #include "icp_qat_fw_init_admin.h" #define ADF_ADMIN_MAILBOX_STRIDE 0x1000 #define ADF_ADMINMSG_LEN 32 #define ADF_CONST_TABLE_SIZE 1024 #define ADF_ADMIN_POLL_DELAY_US 20 #define ADF_ADMIN_POLL_TIMEOUT_US (5 * USEC_PER_SEC) #define ADF_ONE_AE 1 static const u8 const_tab[1024] __aligned(1024) = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x67, 0x45, 0x23, 0x01, 0xef, 0xcd, 0xab, 0x89, 0x98, 0xba, 0xdc, 0xfe, 0x10, 0x32, 0x54, 0x76, 0xc3, 0xd2, 0xe1, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc1, 0x05, 0x9e, 0xd8, 0x36, 0x7c, 0xd5, 0x07, 0x30, 0x70, 0xdd, 0x17, 0xf7, 0x0e, 0x59, 0x39, 0xff, 0xc0, 0x0b, 0x31, 0x68, 0x58, 0x15, 0x11, 0x64, 0xf9, 0x8f, 0xa7, 0xbe, 0xfa, 0x4f, 0xa4, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6a, 0x09, 0xe6, 0x67, 0xbb, 0x67, 0xae, 0x85, 0x3c, 0x6e, 0xf3, 0x72, 0xa5, 0x4f, 0xf5, 0x3a, 0x51, 0x0e, 0x52, 0x7f, 0x9b, 0x05, 0x68, 0x8c, 0x1f, 0x83, 0xd9, 0xab, 0x5b, 0xe0, 0xcd, 0x19, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xcb, 0xbb, 0x9d, 0x5d, 0xc1, 0x05, 0x9e, 0xd8, 0x62, 0x9a, 0x29, 0x2a, 0x36, 0x7c, 0xd5, 0x07, 0x91, 0x59, 0x01, 0x5a, 0x30, 0x70, 0xdd, 0x17, 0x15, 0x2f, 0xec, 0xd8, 0xf7, 0x0e, 0x59, 0x39, 0x67, 0x33, 0x26, 0x67, 0xff, 0xc0, 0x0b, 0x31, 0x8e, 0xb4, 0x4a, 0x87, 0x68, 0x58, 0x15, 0x11, 0xdb, 0x0c, 0x2e, 0x0d, 0x64, 0xf9, 0x8f, 0xa7, 0x47, 0xb5, 0x48, 0x1d, 0xbe, 0xfa, 0x4f, 0xa4, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6a, 0x09, 0xe6, 0x67, 0xf3, 0xbc, 0xc9, 0x08, 0xbb, 0x67, 0xae, 0x85, 0x84, 0xca, 0xa7, 0x3b, 0x3c, 0x6e, 0xf3, 0x72, 0xfe, 0x94, 0xf8, 0x2b, 0xa5, 0x4f, 0xf5, 0x3a, 0x5f, 0x1d, 0x36, 0xf1, 0x51, 0x0e, 0x52, 0x7f, 0xad, 0xe6, 0x82, 0xd1, 0x9b, 0x05, 0x68, 0x8c, 0x2b, 0x3e, 0x6c, 0x1f, 0x1f, 0x83, 0xd9, 0xab, 0xfb, 0x41, 0xbd, 0x6b, 0x5b, 0xe0, 0xcd, 0x19, 0x13, 0x7e, 0x21, 0x79, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x15, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x15, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x15, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x25, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x43, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x45, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2B, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x17, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; struct adf_admin_comms { dma_addr_t phy_addr; dma_addr_t const_tbl_addr; void *virt_addr; void *virt_tbl_addr; void __iomem *mailbox_addr; struct mutex lock; /* protects adf_admin_comms struct */ }; static int adf_put_admin_msg_sync(struct adf_accel_dev *accel_dev, u32 ae, void *in, void *out) { int ret; u32 status; struct adf_admin_comms *admin = accel_dev->admin; int offset = ae * ADF_ADMINMSG_LEN * 2; void __iomem *mailbox = admin->mailbox_addr; int mb_offset = ae * ADF_ADMIN_MAILBOX_STRIDE; struct icp_qat_fw_init_admin_req *request = in; mutex_lock(&admin->lock); if (ADF_CSR_RD(mailbox, mb_offset) == 1) { mutex_unlock(&admin->lock); return -EAGAIN; } memcpy(admin->virt_addr + offset, in, ADF_ADMINMSG_LEN); ADF_CSR_WR(mailbox, mb_offset, 1); ret = read_poll_timeout(ADF_CSR_RD, status, status == 0, ADF_ADMIN_POLL_DELAY_US, ADF_ADMIN_POLL_TIMEOUT_US, true, mailbox, mb_offset); if (ret < 0) { /* Response timeout */ dev_err(&GET_DEV(accel_dev), "Failed to send admin msg %d to accelerator %d\n", request->cmd_id, ae); } else { /* Response received from admin message, we can now * make response data available in "out" parameter. */ memcpy(out, admin->virt_addr + offset + ADF_ADMINMSG_LEN, ADF_ADMINMSG_LEN); } mutex_unlock(&admin->lock); return ret; } static int adf_send_admin(struct adf_accel_dev *accel_dev, struct icp_qat_fw_init_admin_req *req, struct icp_qat_fw_init_admin_resp *resp, const unsigned long ae_mask) { u32 ae; for_each_set_bit(ae, &ae_mask, ICP_QAT_HW_AE_DELIMITER) if (adf_put_admin_msg_sync(accel_dev, ae, req, resp) || resp->status) return -EFAULT; return 0; } static int adf_init_ae(struct adf_accel_dev *accel_dev) { struct icp_qat_fw_init_admin_req req; struct icp_qat_fw_init_admin_resp resp; struct adf_hw_device_data *hw_device = accel_dev->hw_device; u32 ae_mask = hw_device->ae_mask; memset(&req, 0, sizeof(req)); memset(&resp, 0, sizeof(resp)); req.cmd_id = ICP_QAT_FW_INIT_AE; return adf_send_admin(accel_dev, &req, &resp, ae_mask); } static int adf_set_fw_constants(struct adf_accel_dev *accel_dev) { struct icp_qat_fw_init_admin_req req; struct icp_qat_fw_init_admin_resp resp; struct adf_hw_device_data *hw_device = accel_dev->hw_device; u32 ae_mask = hw_device->admin_ae_mask ?: hw_device->ae_mask; memset(&req, 0, sizeof(req)); memset(&resp, 0, sizeof(resp)); req.cmd_id = ICP_QAT_FW_CONSTANTS_CFG; req.init_cfg_sz = ADF_CONST_TABLE_SIZE; req.init_cfg_ptr = accel_dev->admin->const_tbl_addr; return adf_send_admin(accel_dev, &req, &resp, ae_mask); } int adf_get_fw_timestamp(struct adf_accel_dev *accel_dev, u64 *timestamp) { struct icp_qat_fw_init_admin_req req = { }; struct icp_qat_fw_init_admin_resp resp; unsigned int ae_mask = ADF_ONE_AE; int ret; req.cmd_id = ICP_QAT_FW_TIMER_GET; ret = adf_send_admin(accel_dev, &req, &resp, ae_mask); if (ret) return ret; *timestamp = resp.timestamp; return 0; } static int adf_get_dc_capabilities(struct adf_accel_dev *accel_dev, u32 *capabilities) { struct adf_hw_device_data *hw_device = accel_dev->hw_device; struct icp_qat_fw_init_admin_resp resp; struct icp_qat_fw_init_admin_req req; unsigned long ae_mask; unsigned long ae; int ret; /* Target only service accelerator engines */ ae_mask = hw_device->ae_mask & ~hw_device->admin_ae_mask; memset(&req, 0, sizeof(req)); memset(&resp, 0, sizeof(resp)); req.cmd_id = ICP_QAT_FW_COMP_CAPABILITY_GET; *capabilities = 0; for_each_set_bit(ae, &ae_mask, GET_MAX_ACCELENGINES(accel_dev)) { ret = adf_send_admin(accel_dev, &req, &resp, 1ULL << ae); if (ret) return ret; *capabilities |= resp.extended_features; } return 0; } int adf_get_ae_fw_counters(struct adf_accel_dev *accel_dev, u16 ae, u64 *reqs, u64 *resps) { struct icp_qat_fw_init_admin_resp resp = { }; struct icp_qat_fw_init_admin_req req = { }; int ret; req.cmd_id = ICP_QAT_FW_COUNTERS_GET; ret = adf_put_admin_msg_sync(accel_dev, ae, &req, &resp); if (ret || resp.status) return -EFAULT; *reqs = resp.req_rec_count; *resps = resp.resp_sent_count; return 0; } int adf_send_admin_tim_sync(struct adf_accel_dev *accel_dev, u32 cnt) { u32 ae_mask = accel_dev->hw_device->ae_mask; struct icp_qat_fw_init_admin_req req = { }; struct icp_qat_fw_init_admin_resp resp = { }; req.cmd_id = ICP_QAT_FW_SYNC; req.int_timer_ticks = cnt; return adf_send_admin(accel_dev, &req, &resp, ae_mask); } int adf_send_admin_hb_timer(struct adf_accel_dev *accel_dev, uint32_t ticks) { u32 ae_mask = accel_dev->hw_device->ae_mask; struct icp_qat_fw_init_admin_req req = { }; struct icp_qat_fw_init_admin_resp resp; req.cmd_id = ICP_QAT_FW_HEARTBEAT_TIMER_SET; req.init_cfg_ptr = accel_dev->heartbeat->dma.phy_addr; req.heartbeat_ticks = ticks; return adf_send_admin(accel_dev, &req, &resp, ae_mask); } /** * adf_send_admin_init() - Function sends init message to FW * @accel_dev: Pointer to acceleration device. * * Function sends admin init message to the FW * * Return: 0 on success, error code otherwise. */ int adf_send_admin_init(struct adf_accel_dev *accel_dev) { u32 dc_capabilities = 0; int ret; ret = adf_get_dc_capabilities(accel_dev, &dc_capabilities); if (ret) { dev_err(&GET_DEV(accel_dev), "Cannot get dc capabilities\n"); return ret; } accel_dev->hw_device->extended_dc_capabilities = dc_capabilities; ret = adf_set_fw_constants(accel_dev); if (ret) return ret; return adf_init_ae(accel_dev); } EXPORT_SYMBOL_GPL(adf_send_admin_init); /** * adf_init_admin_pm() - Function sends PM init message to FW * @accel_dev: Pointer to acceleration device. * @idle_delay: QAT HW idle time before power gating is initiated. * 000 - 64us * 001 - 128us * 010 - 256us * 011 - 512us * 100 - 1ms * 101 - 2ms * 110 - 4ms * 111 - 8ms * * Function sends to the FW the admin init message for the PM state * configuration. * * Return: 0 on success, error code otherwise. */ int adf_init_admin_pm(struct adf_accel_dev *accel_dev, u32 idle_delay) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct icp_qat_fw_init_admin_resp resp = {0}; struct icp_qat_fw_init_admin_req req = {0}; u32 ae_mask = hw_data->admin_ae_mask; if (!accel_dev->admin) { dev_err(&GET_DEV(accel_dev), "adf_admin is not available\n"); return -EFAULT; } req.cmd_id = ICP_QAT_FW_PM_STATE_CONFIG; req.idle_filter = idle_delay; return adf_send_admin(accel_dev, &req, &resp, ae_mask); } int adf_init_admin_comms(struct adf_accel_dev *accel_dev) { struct adf_admin_comms *admin; struct adf_hw_device_data *hw_data = accel_dev->hw_device; void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); struct admin_info admin_csrs_info; u32 mailbox_offset, adminmsg_u, adminmsg_l; void __iomem *mailbox; u64 reg_val; admin = kzalloc_node(sizeof(*accel_dev->admin), GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!admin) return -ENOMEM; admin->virt_addr = dma_alloc_coherent(&GET_DEV(accel_dev), PAGE_SIZE, &admin->phy_addr, GFP_KERNEL); if (!admin->virt_addr) { dev_err(&GET_DEV(accel_dev), "Failed to allocate dma buff\n"); kfree(admin); return -ENOMEM; } admin->virt_tbl_addr = dma_alloc_coherent(&GET_DEV(accel_dev), PAGE_SIZE, &admin->const_tbl_addr, GFP_KERNEL); if (!admin->virt_tbl_addr) { dev_err(&GET_DEV(accel_dev), "Failed to allocate const_tbl\n"); dma_free_coherent(&GET_DEV(accel_dev), PAGE_SIZE, admin->virt_addr, admin->phy_addr); kfree(admin); return -ENOMEM; } memcpy(admin->virt_tbl_addr, const_tab, sizeof(const_tab)); hw_data->get_admin_info(&admin_csrs_info); mailbox_offset = admin_csrs_info.mailbox_offset; mailbox = pmisc_addr + mailbox_offset; adminmsg_u = admin_csrs_info.admin_msg_ur; adminmsg_l = admin_csrs_info.admin_msg_lr; reg_val = (u64)admin->phy_addr; ADF_CSR_WR(pmisc_addr, adminmsg_u, upper_32_bits(reg_val)); ADF_CSR_WR(pmisc_addr, adminmsg_l, lower_32_bits(reg_val)); mutex_init(&admin->lock); admin->mailbox_addr = mailbox; accel_dev->admin = admin; return 0; } EXPORT_SYMBOL_GPL(adf_init_admin_comms); void adf_exit_admin_comms(struct adf_accel_dev *accel_dev) { struct adf_admin_comms *admin = accel_dev->admin; if (!admin) return; if (admin->virt_addr) dma_free_coherent(&GET_DEV(accel_dev), PAGE_SIZE, admin->virt_addr, admin->phy_addr); if (admin->virt_tbl_addr) dma_free_coherent(&GET_DEV(accel_dev), PAGE_SIZE, admin->virt_tbl_addr, admin->const_tbl_addr); mutex_destroy(&admin->lock); kfree(admin); accel_dev->admin = NULL; } EXPORT_SYMBOL_GPL(adf_exit_admin_comms);
linux-master
drivers/crypto/intel/qat/qat_common/adf_admin.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <crypto/algapi.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/bitops.h> #include <linux/pci.h> #include <linux/cdev.h> #include <linux/uaccess.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_cfg.h" #include "adf_cfg_common.h" #include "adf_cfg_user.h" #define ADF_CFG_MAX_SECTION 512 #define ADF_CFG_MAX_KEY_VAL 256 #define DEVICE_NAME "qat_adf_ctl" static DEFINE_MUTEX(adf_ctl_lock); static long adf_ctl_ioctl(struct file *fp, unsigned int cmd, unsigned long arg); static const struct file_operations adf_ctl_ops = { .owner = THIS_MODULE, .unlocked_ioctl = adf_ctl_ioctl, .compat_ioctl = compat_ptr_ioctl, }; struct adf_ctl_drv_info { unsigned int major; struct cdev drv_cdev; struct class *drv_class; }; static struct adf_ctl_drv_info adf_ctl_drv; static void adf_chr_drv_destroy(void) { device_destroy(adf_ctl_drv.drv_class, MKDEV(adf_ctl_drv.major, 0)); cdev_del(&adf_ctl_drv.drv_cdev); class_destroy(adf_ctl_drv.drv_class); unregister_chrdev_region(MKDEV(adf_ctl_drv.major, 0), 1); } static int adf_chr_drv_create(void) { dev_t dev_id; struct device *drv_device; if (alloc_chrdev_region(&dev_id, 0, 1, DEVICE_NAME)) { pr_err("QAT: unable to allocate chrdev region\n"); return -EFAULT; } adf_ctl_drv.drv_class = class_create(DEVICE_NAME); if (IS_ERR(adf_ctl_drv.drv_class)) { pr_err("QAT: class_create failed for adf_ctl\n"); goto err_chrdev_unreg; } adf_ctl_drv.major = MAJOR(dev_id); cdev_init(&adf_ctl_drv.drv_cdev, &adf_ctl_ops); if (cdev_add(&adf_ctl_drv.drv_cdev, dev_id, 1)) { pr_err("QAT: cdev add failed\n"); goto err_class_destr; } drv_device = device_create(adf_ctl_drv.drv_class, NULL, MKDEV(adf_ctl_drv.major, 0), NULL, DEVICE_NAME); if (IS_ERR(drv_device)) { pr_err("QAT: failed to create device\n"); goto err_cdev_del; } return 0; err_cdev_del: cdev_del(&adf_ctl_drv.drv_cdev); err_class_destr: class_destroy(adf_ctl_drv.drv_class); err_chrdev_unreg: unregister_chrdev_region(dev_id, 1); return -EFAULT; } static int adf_ctl_alloc_resources(struct adf_user_cfg_ctl_data **ctl_data, unsigned long arg) { struct adf_user_cfg_ctl_data *cfg_data; cfg_data = kzalloc(sizeof(*cfg_data), GFP_KERNEL); if (!cfg_data) return -ENOMEM; /* Initialize device id to NO DEVICE as 0 is a valid device id */ cfg_data->device_id = ADF_CFG_NO_DEVICE; if (copy_from_user(cfg_data, (void __user *)arg, sizeof(*cfg_data))) { pr_err("QAT: failed to copy from user cfg_data.\n"); kfree(cfg_data); return -EIO; } *ctl_data = cfg_data; return 0; } static int adf_add_key_value_data(struct adf_accel_dev *accel_dev, const char *section, const struct adf_user_cfg_key_val *key_val) { if (key_val->type == ADF_HEX) { long *ptr = (long *)key_val->val; long val = *ptr; if (adf_cfg_add_key_value_param(accel_dev, section, key_val->key, (void *)val, key_val->type)) { dev_err(&GET_DEV(accel_dev), "failed to add hex keyvalue.\n"); return -EFAULT; } } else { if (adf_cfg_add_key_value_param(accel_dev, section, key_val->key, key_val->val, key_val->type)) { dev_err(&GET_DEV(accel_dev), "failed to add keyvalue.\n"); return -EFAULT; } } return 0; } static int adf_copy_key_value_data(struct adf_accel_dev *accel_dev, struct adf_user_cfg_ctl_data *ctl_data) { struct adf_user_cfg_key_val key_val; struct adf_user_cfg_key_val *params_head; struct adf_user_cfg_section section, *section_head; int i, j; section_head = ctl_data->config_section; for (i = 0; section_head && i < ADF_CFG_MAX_SECTION; i++) { if (copy_from_user(&section, (void __user *)section_head, sizeof(*section_head))) { dev_err(&GET_DEV(accel_dev), "failed to copy section info\n"); goto out_err; } if (adf_cfg_section_add(accel_dev, section.name)) { dev_err(&GET_DEV(accel_dev), "failed to add section.\n"); goto out_err; } params_head = section.params; for (j = 0; params_head && j < ADF_CFG_MAX_KEY_VAL; j++) { if (copy_from_user(&key_val, (void __user *)params_head, sizeof(key_val))) { dev_err(&GET_DEV(accel_dev), "Failed to copy keyvalue.\n"); goto out_err; } if (adf_add_key_value_data(accel_dev, section.name, &key_val)) { goto out_err; } params_head = key_val.next; } section_head = section.next; } return 0; out_err: adf_cfg_del_all(accel_dev); return -EFAULT; } static int adf_ctl_ioctl_dev_config(struct file *fp, unsigned int cmd, unsigned long arg) { int ret; struct adf_user_cfg_ctl_data *ctl_data; struct adf_accel_dev *accel_dev; ret = adf_ctl_alloc_resources(&ctl_data, arg); if (ret) return ret; accel_dev = adf_devmgr_get_dev_by_id(ctl_data->device_id); if (!accel_dev) { ret = -EFAULT; goto out; } if (adf_dev_started(accel_dev)) { ret = -EFAULT; goto out; } if (adf_copy_key_value_data(accel_dev, ctl_data)) { ret = -EFAULT; goto out; } set_bit(ADF_STATUS_CONFIGURED, &accel_dev->status); out: kfree(ctl_data); return ret; } static int adf_ctl_is_device_in_use(int id) { struct adf_accel_dev *dev; list_for_each_entry(dev, adf_devmgr_get_head(), list) { if (id == dev->accel_id || id == ADF_CFG_ALL_DEVICES) { if (adf_devmgr_in_reset(dev) || adf_dev_in_use(dev)) { dev_info(&GET_DEV(dev), "device qat_dev%d is busy\n", dev->accel_id); return -EBUSY; } } } return 0; } static void adf_ctl_stop_devices(u32 id) { struct adf_accel_dev *accel_dev; list_for_each_entry(accel_dev, adf_devmgr_get_head(), list) { if (id == accel_dev->accel_id || id == ADF_CFG_ALL_DEVICES) { if (!adf_dev_started(accel_dev)) continue; /* First stop all VFs */ if (!accel_dev->is_vf) continue; adf_dev_down(accel_dev, false); } } list_for_each_entry(accel_dev, adf_devmgr_get_head(), list) { if (id == accel_dev->accel_id || id == ADF_CFG_ALL_DEVICES) { if (!adf_dev_started(accel_dev)) continue; adf_dev_down(accel_dev, false); } } } static int adf_ctl_ioctl_dev_stop(struct file *fp, unsigned int cmd, unsigned long arg) { int ret; struct adf_user_cfg_ctl_data *ctl_data; ret = adf_ctl_alloc_resources(&ctl_data, arg); if (ret) return ret; if (adf_devmgr_verify_id(ctl_data->device_id)) { pr_err("QAT: Device %d not found\n", ctl_data->device_id); ret = -ENODEV; goto out; } ret = adf_ctl_is_device_in_use(ctl_data->device_id); if (ret) goto out; if (ctl_data->device_id == ADF_CFG_ALL_DEVICES) pr_info("QAT: Stopping all acceleration devices.\n"); else pr_info("QAT: Stopping acceleration device qat_dev%d.\n", ctl_data->device_id); adf_ctl_stop_devices(ctl_data->device_id); out: kfree(ctl_data); return ret; } static int adf_ctl_ioctl_dev_start(struct file *fp, unsigned int cmd, unsigned long arg) { int ret; struct adf_user_cfg_ctl_data *ctl_data; struct adf_accel_dev *accel_dev; ret = adf_ctl_alloc_resources(&ctl_data, arg); if (ret) return ret; ret = -ENODEV; accel_dev = adf_devmgr_get_dev_by_id(ctl_data->device_id); if (!accel_dev) goto out; dev_info(&GET_DEV(accel_dev), "Starting acceleration device qat_dev%d.\n", ctl_data->device_id); ret = adf_dev_up(accel_dev, false); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed to start qat_dev%d\n", ctl_data->device_id); adf_dev_down(accel_dev, false); } out: kfree(ctl_data); return ret; } static int adf_ctl_ioctl_get_num_devices(struct file *fp, unsigned int cmd, unsigned long arg) { u32 num_devices = 0; adf_devmgr_get_num_dev(&num_devices); if (copy_to_user((void __user *)arg, &num_devices, sizeof(num_devices))) return -EFAULT; return 0; } static int adf_ctl_ioctl_get_status(struct file *fp, unsigned int cmd, unsigned long arg) { struct adf_hw_device_data *hw_data; struct adf_dev_status_info dev_info; struct adf_accel_dev *accel_dev; if (copy_from_user(&dev_info, (void __user *)arg, sizeof(struct adf_dev_status_info))) { pr_err("QAT: failed to copy from user.\n"); return -EFAULT; } accel_dev = adf_devmgr_get_dev_by_id(dev_info.accel_id); if (!accel_dev) return -ENODEV; hw_data = accel_dev->hw_device; dev_info.state = adf_dev_started(accel_dev) ? DEV_UP : DEV_DOWN; dev_info.num_ae = hw_data->get_num_aes(hw_data); dev_info.num_accel = hw_data->get_num_accels(hw_data); dev_info.num_logical_accel = hw_data->num_logical_accel; dev_info.banks_per_accel = hw_data->num_banks / hw_data->num_logical_accel; strscpy(dev_info.name, hw_data->dev_class->name, sizeof(dev_info.name)); dev_info.instance_id = hw_data->instance_id; dev_info.type = hw_data->dev_class->type; dev_info.bus = accel_to_pci_dev(accel_dev)->bus->number; dev_info.dev = PCI_SLOT(accel_to_pci_dev(accel_dev)->devfn); dev_info.fun = PCI_FUNC(accel_to_pci_dev(accel_dev)->devfn); if (copy_to_user((void __user *)arg, &dev_info, sizeof(struct adf_dev_status_info))) { dev_err(&GET_DEV(accel_dev), "failed to copy status.\n"); return -EFAULT; } return 0; } static long adf_ctl_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { int ret; if (mutex_lock_interruptible(&adf_ctl_lock)) return -EFAULT; switch (cmd) { case IOCTL_CONFIG_SYS_RESOURCE_PARAMETERS: ret = adf_ctl_ioctl_dev_config(fp, cmd, arg); break; case IOCTL_STOP_ACCEL_DEV: ret = adf_ctl_ioctl_dev_stop(fp, cmd, arg); break; case IOCTL_START_ACCEL_DEV: ret = adf_ctl_ioctl_dev_start(fp, cmd, arg); break; case IOCTL_GET_NUM_DEVICES: ret = adf_ctl_ioctl_get_num_devices(fp, cmd, arg); break; case IOCTL_STATUS_ACCEL_DEV: ret = adf_ctl_ioctl_get_status(fp, cmd, arg); break; default: pr_err_ratelimited("QAT: Invalid ioctl %d\n", cmd); ret = -EFAULT; break; } mutex_unlock(&adf_ctl_lock); return ret; } static int __init adf_register_ctl_device_driver(void) { if (adf_chr_drv_create()) goto err_chr_dev; if (adf_init_misc_wq()) goto err_misc_wq; if (adf_init_aer()) goto err_aer; if (adf_init_pf_wq()) goto err_pf_wq; if (adf_init_vf_wq()) goto err_vf_wq; if (qat_crypto_register()) goto err_crypto_register; if (qat_compression_register()) goto err_compression_register; return 0; err_compression_register: qat_crypto_unregister(); err_crypto_register: adf_exit_vf_wq(); err_vf_wq: adf_exit_pf_wq(); err_pf_wq: adf_exit_aer(); err_aer: adf_exit_misc_wq(); err_misc_wq: adf_chr_drv_destroy(); err_chr_dev: mutex_destroy(&adf_ctl_lock); return -EFAULT; } static void __exit adf_unregister_ctl_device_driver(void) { adf_chr_drv_destroy(); adf_exit_misc_wq(); adf_exit_aer(); adf_exit_vf_wq(); adf_exit_pf_wq(); qat_crypto_unregister(); qat_compression_unregister(); adf_clean_vf_map(false); mutex_destroy(&adf_ctl_lock); } module_init(adf_register_ctl_device_driver); module_exit(adf_unregister_ctl_device_driver); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel"); MODULE_DESCRIPTION("Intel(R) QuickAssist Technology"); MODULE_ALIAS_CRYPTO("intel_qat"); MODULE_VERSION(ADF_DRV_VERSION); MODULE_IMPORT_NS(CRYPTO_INTERNAL);
linux-master
drivers/crypto/intel/qat/qat_common/adf_ctl_drv.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/mutex.h> #include <linux/slab.h> #include <linux/seq_file.h> #include "adf_accel_devices.h" #include "adf_transport_internal.h" #include "adf_transport_access_macros.h" static DEFINE_MUTEX(ring_read_lock); static DEFINE_MUTEX(bank_read_lock); static void *adf_ring_start(struct seq_file *sfile, loff_t *pos) { struct adf_etr_ring_data *ring = sfile->private; mutex_lock(&ring_read_lock); if (*pos == 0) return SEQ_START_TOKEN; if (*pos >= (ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size) / ADF_MSG_SIZE_TO_BYTES(ring->msg_size))) return NULL; return ring->base_addr + (ADF_MSG_SIZE_TO_BYTES(ring->msg_size) * (*pos)++); } static void *adf_ring_next(struct seq_file *sfile, void *v, loff_t *pos) { struct adf_etr_ring_data *ring = sfile->private; if (*pos >= (ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size) / ADF_MSG_SIZE_TO_BYTES(ring->msg_size))) return NULL; return ring->base_addr + (ADF_MSG_SIZE_TO_BYTES(ring->msg_size) * (*pos)++); } static int adf_ring_show(struct seq_file *sfile, void *v) { struct adf_etr_ring_data *ring = sfile->private; struct adf_etr_bank_data *bank = ring->bank; struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev); void __iomem *csr = ring->bank->csr_addr; if (v == SEQ_START_TOKEN) { int head, tail, empty; head = csr_ops->read_csr_ring_head(csr, bank->bank_number, ring->ring_number); tail = csr_ops->read_csr_ring_tail(csr, bank->bank_number, ring->ring_number); empty = csr_ops->read_csr_e_stat(csr, bank->bank_number); seq_puts(sfile, "------- Ring configuration -------\n"); seq_printf(sfile, "ring name: %s\n", ring->ring_debug->ring_name); seq_printf(sfile, "ring num %d, bank num %d\n", ring->ring_number, ring->bank->bank_number); seq_printf(sfile, "head %x, tail %x, empty: %d\n", head, tail, (empty & 1 << ring->ring_number) >> ring->ring_number); seq_printf(sfile, "ring size %lld, msg size %d\n", (long long)ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size), ADF_MSG_SIZE_TO_BYTES(ring->msg_size)); seq_puts(sfile, "----------- Ring data ------------\n"); return 0; } seq_hex_dump(sfile, "", DUMP_PREFIX_ADDRESS, 32, 4, v, ADF_MSG_SIZE_TO_BYTES(ring->msg_size), false); return 0; } static void adf_ring_stop(struct seq_file *sfile, void *v) { mutex_unlock(&ring_read_lock); } static const struct seq_operations adf_ring_debug_sops = { .start = adf_ring_start, .next = adf_ring_next, .stop = adf_ring_stop, .show = adf_ring_show }; DEFINE_SEQ_ATTRIBUTE(adf_ring_debug); int adf_ring_debugfs_add(struct adf_etr_ring_data *ring, const char *name) { struct adf_etr_ring_debug_entry *ring_debug; char entry_name[8]; ring_debug = kzalloc(sizeof(*ring_debug), GFP_KERNEL); if (!ring_debug) return -ENOMEM; strscpy(ring_debug->ring_name, name, sizeof(ring_debug->ring_name)); snprintf(entry_name, sizeof(entry_name), "ring_%02d", ring->ring_number); ring_debug->debug = debugfs_create_file(entry_name, S_IRUSR, ring->bank->bank_debug_dir, ring, &adf_ring_debug_fops); ring->ring_debug = ring_debug; return 0; } void adf_ring_debugfs_rm(struct adf_etr_ring_data *ring) { if (ring->ring_debug) { debugfs_remove(ring->ring_debug->debug); kfree(ring->ring_debug); ring->ring_debug = NULL; } } static void *adf_bank_start(struct seq_file *sfile, loff_t *pos) { struct adf_etr_bank_data *bank = sfile->private; u8 num_rings_per_bank = GET_NUM_RINGS_PER_BANK(bank->accel_dev); mutex_lock(&bank_read_lock); if (*pos == 0) return SEQ_START_TOKEN; if (*pos >= num_rings_per_bank) return NULL; return pos; } static void *adf_bank_next(struct seq_file *sfile, void *v, loff_t *pos) { struct adf_etr_bank_data *bank = sfile->private; u8 num_rings_per_bank = GET_NUM_RINGS_PER_BANK(bank->accel_dev); if (++(*pos) >= num_rings_per_bank) return NULL; return pos; } static int adf_bank_show(struct seq_file *sfile, void *v) { struct adf_etr_bank_data *bank = sfile->private; struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev); if (v == SEQ_START_TOKEN) { seq_printf(sfile, "------- Bank %d configuration -------\n", bank->bank_number); } else { int ring_id = *((int *)v) - 1; struct adf_etr_ring_data *ring = &bank->rings[ring_id]; void __iomem *csr = bank->csr_addr; int head, tail, empty; if (!(bank->ring_mask & 1 << ring_id)) return 0; head = csr_ops->read_csr_ring_head(csr, bank->bank_number, ring->ring_number); tail = csr_ops->read_csr_ring_tail(csr, bank->bank_number, ring->ring_number); empty = csr_ops->read_csr_e_stat(csr, bank->bank_number); seq_printf(sfile, "ring num %02d, head %04x, tail %04x, empty: %d\n", ring->ring_number, head, tail, (empty & 1 << ring->ring_number) >> ring->ring_number); } return 0; } static void adf_bank_stop(struct seq_file *sfile, void *v) { mutex_unlock(&bank_read_lock); } static const struct seq_operations adf_bank_debug_sops = { .start = adf_bank_start, .next = adf_bank_next, .stop = adf_bank_stop, .show = adf_bank_show }; DEFINE_SEQ_ATTRIBUTE(adf_bank_debug); int adf_bank_debugfs_add(struct adf_etr_bank_data *bank) { struct adf_accel_dev *accel_dev = bank->accel_dev; struct dentry *parent = accel_dev->transport->debug; char name[8]; snprintf(name, sizeof(name), "bank_%02d", bank->bank_number); bank->bank_debug_dir = debugfs_create_dir(name, parent); bank->bank_debug_cfg = debugfs_create_file("config", S_IRUSR, bank->bank_debug_dir, bank, &adf_bank_debug_fops); return 0; } void adf_bank_debugfs_rm(struct adf_etr_bank_data *bank) { debugfs_remove(bank->bank_debug_cfg); debugfs_remove(bank->bank_debug_dir); }
linux-master
drivers/crypto/intel/qat/qat_common/adf_transport_debug.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation */ #include <linux/crypto.h> #include <crypto/acompress.h> #include <crypto/internal/acompress.h> #include <crypto/scatterwalk.h> #include <linux/dma-mapping.h> #include <linux/workqueue.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "qat_bl.h" #include "qat_comp_req.h" #include "qat_compression.h" #include "qat_algs_send.h" #define QAT_RFC_1950_HDR_SIZE 2 #define QAT_RFC_1950_FOOTER_SIZE 4 #define QAT_RFC_1950_CM_DEFLATE 8 #define QAT_RFC_1950_CM_DEFLATE_CINFO_32K 7 #define QAT_RFC_1950_CM_MASK 0x0f #define QAT_RFC_1950_CM_OFFSET 4 #define QAT_RFC_1950_DICT_MASK 0x20 #define QAT_RFC_1950_COMP_HDR 0x785e static DEFINE_MUTEX(algs_lock); static unsigned int active_devs; enum direction { DECOMPRESSION = 0, COMPRESSION = 1, }; struct qat_compression_req; struct qat_compression_ctx { u8 comp_ctx[QAT_COMP_CTX_SIZE]; struct qat_compression_instance *inst; int (*qat_comp_callback)(struct qat_compression_req *qat_req, void *resp); }; struct qat_dst { bool is_null; int resubmitted; }; struct qat_compression_req { u8 req[QAT_COMP_REQ_SIZE]; struct qat_compression_ctx *qat_compression_ctx; struct acomp_req *acompress_req; struct qat_request_buffs buf; enum direction dir; int actual_dlen; struct qat_alg_req alg_req; struct work_struct resubmit; struct qat_dst dst; }; static int qat_alg_send_dc_message(struct qat_compression_req *qat_req, struct qat_compression_instance *inst, struct crypto_async_request *base) { struct qat_alg_req *alg_req = &qat_req->alg_req; alg_req->fw_req = (u32 *)&qat_req->req; alg_req->tx_ring = inst->dc_tx; alg_req->base = base; alg_req->backlog = &inst->backlog; return qat_alg_send_message(alg_req); } static void qat_comp_resubmit(struct work_struct *work) { struct qat_compression_req *qat_req = container_of(work, struct qat_compression_req, resubmit); struct qat_compression_ctx *ctx = qat_req->qat_compression_ctx; struct adf_accel_dev *accel_dev = ctx->inst->accel_dev; struct qat_request_buffs *qat_bufs = &qat_req->buf; struct qat_compression_instance *inst = ctx->inst; struct acomp_req *areq = qat_req->acompress_req; struct crypto_acomp *tfm = crypto_acomp_reqtfm(areq); unsigned int dlen = CRYPTO_ACOMP_DST_MAX; u8 *req = qat_req->req; dma_addr_t dfbuf; int ret; areq->dlen = dlen; dev_dbg(&GET_DEV(accel_dev), "[%s][%s] retry NULL dst request - dlen = %d\n", crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm)), qat_req->dir == COMPRESSION ? "comp" : "decomp", dlen); ret = qat_bl_realloc_map_new_dst(accel_dev, &areq->dst, dlen, qat_bufs, qat_algs_alloc_flags(&areq->base)); if (ret) goto err; qat_req->dst.resubmitted = true; dfbuf = qat_req->buf.bloutp; qat_comp_override_dst(req, dfbuf, dlen); ret = qat_alg_send_dc_message(qat_req, inst, &areq->base); if (ret != -ENOSPC) return; err: qat_bl_free_bufl(accel_dev, qat_bufs); acomp_request_complete(areq, ret); } static int parse_zlib_header(u16 zlib_h) { int ret = -EINVAL; __be16 header; u8 *header_p; u8 cmf, flg; header = cpu_to_be16(zlib_h); header_p = (u8 *)&header; flg = header_p[0]; cmf = header_p[1]; if (cmf >> QAT_RFC_1950_CM_OFFSET > QAT_RFC_1950_CM_DEFLATE_CINFO_32K) return ret; if ((cmf & QAT_RFC_1950_CM_MASK) != QAT_RFC_1950_CM_DEFLATE) return ret; if (flg & QAT_RFC_1950_DICT_MASK) return ret; return 0; } static int qat_comp_rfc1950_callback(struct qat_compression_req *qat_req, void *resp) { struct acomp_req *areq = qat_req->acompress_req; enum direction dir = qat_req->dir; __be32 qat_produced_adler; qat_produced_adler = cpu_to_be32(qat_comp_get_produced_adler32(resp)); if (dir == COMPRESSION) { __be16 zlib_header; zlib_header = cpu_to_be16(QAT_RFC_1950_COMP_HDR); scatterwalk_map_and_copy(&zlib_header, areq->dst, 0, QAT_RFC_1950_HDR_SIZE, 1); areq->dlen += QAT_RFC_1950_HDR_SIZE; scatterwalk_map_and_copy(&qat_produced_adler, areq->dst, areq->dlen, QAT_RFC_1950_FOOTER_SIZE, 1); areq->dlen += QAT_RFC_1950_FOOTER_SIZE; } else { __be32 decomp_adler; int footer_offset; int consumed; consumed = qat_comp_get_consumed_ctr(resp); footer_offset = consumed + QAT_RFC_1950_HDR_SIZE; if (footer_offset + QAT_RFC_1950_FOOTER_SIZE > areq->slen) return -EBADMSG; scatterwalk_map_and_copy(&decomp_adler, areq->src, footer_offset, QAT_RFC_1950_FOOTER_SIZE, 0); if (qat_produced_adler != decomp_adler) return -EBADMSG; } return 0; } static void qat_comp_generic_callback(struct qat_compression_req *qat_req, void *resp) { struct acomp_req *areq = qat_req->acompress_req; struct qat_compression_ctx *ctx = qat_req->qat_compression_ctx; struct adf_accel_dev *accel_dev = ctx->inst->accel_dev; struct crypto_acomp *tfm = crypto_acomp_reqtfm(areq); struct qat_compression_instance *inst = ctx->inst; int consumed, produced; s8 cmp_err, xlt_err; int res = -EBADMSG; int status; u8 cnv; status = qat_comp_get_cmp_status(resp); status |= qat_comp_get_xlt_status(resp); cmp_err = qat_comp_get_cmp_err(resp); xlt_err = qat_comp_get_xlt_err(resp); consumed = qat_comp_get_consumed_ctr(resp); produced = qat_comp_get_produced_ctr(resp); dev_dbg(&GET_DEV(accel_dev), "[%s][%s][%s] slen = %8d dlen = %8d consumed = %8d produced = %8d cmp_err = %3d xlt_err = %3d", crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm)), qat_req->dir == COMPRESSION ? "comp " : "decomp", status ? "ERR" : "OK ", areq->slen, areq->dlen, consumed, produced, cmp_err, xlt_err); areq->dlen = 0; if (qat_req->dir == DECOMPRESSION && qat_req->dst.is_null) { if (cmp_err == ERR_CODE_OVERFLOW_ERROR) { if (qat_req->dst.resubmitted) { dev_dbg(&GET_DEV(accel_dev), "Output does not fit destination buffer\n"); res = -EOVERFLOW; goto end; } INIT_WORK(&qat_req->resubmit, qat_comp_resubmit); adf_misc_wq_queue_work(&qat_req->resubmit); return; } } if (unlikely(status != ICP_QAT_FW_COMN_STATUS_FLAG_OK)) goto end; if (qat_req->dir == COMPRESSION) { cnv = qat_comp_get_cmp_cnv_flag(resp); if (unlikely(!cnv)) { dev_err(&GET_DEV(accel_dev), "Verified compression not supported\n"); goto end; } if (unlikely(produced > qat_req->actual_dlen)) { memset(inst->dc_data->ovf_buff, 0, inst->dc_data->ovf_buff_sz); dev_dbg(&GET_DEV(accel_dev), "Actual buffer overflow: produced=%d, dlen=%d\n", produced, qat_req->actual_dlen); goto end; } } res = 0; areq->dlen = produced; if (ctx->qat_comp_callback) res = ctx->qat_comp_callback(qat_req, resp); end: qat_bl_free_bufl(accel_dev, &qat_req->buf); acomp_request_complete(areq, res); } void qat_comp_alg_callback(void *resp) { struct qat_compression_req *qat_req = (void *)(__force long)qat_comp_get_opaque(resp); struct qat_instance_backlog *backlog = qat_req->alg_req.backlog; qat_comp_generic_callback(qat_req, resp); qat_alg_send_backlog(backlog); } static int qat_comp_alg_init_tfm(struct crypto_acomp *acomp_tfm) { struct crypto_tfm *tfm = crypto_acomp_tfm(acomp_tfm); struct qat_compression_ctx *ctx = crypto_tfm_ctx(tfm); struct qat_compression_instance *inst; int node; if (tfm->node == NUMA_NO_NODE) node = numa_node_id(); else node = tfm->node; memset(ctx, 0, sizeof(*ctx)); inst = qat_compression_get_instance_node(node); if (!inst) return -EINVAL; ctx->inst = inst; ctx->inst->build_deflate_ctx(ctx->comp_ctx); return 0; } static void qat_comp_alg_exit_tfm(struct crypto_acomp *acomp_tfm) { struct crypto_tfm *tfm = crypto_acomp_tfm(acomp_tfm); struct qat_compression_ctx *ctx = crypto_tfm_ctx(tfm); qat_compression_put_instance(ctx->inst); memset(ctx, 0, sizeof(*ctx)); } static int qat_comp_alg_rfc1950_init_tfm(struct crypto_acomp *acomp_tfm) { struct crypto_tfm *tfm = crypto_acomp_tfm(acomp_tfm); struct qat_compression_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = qat_comp_alg_init_tfm(acomp_tfm); ctx->qat_comp_callback = &qat_comp_rfc1950_callback; return ret; } static int qat_comp_alg_compress_decompress(struct acomp_req *areq, enum direction dir, unsigned int shdr, unsigned int sftr, unsigned int dhdr, unsigned int dftr) { struct qat_compression_req *qat_req = acomp_request_ctx(areq); struct crypto_acomp *acomp_tfm = crypto_acomp_reqtfm(areq); struct crypto_tfm *tfm = crypto_acomp_tfm(acomp_tfm); struct qat_compression_ctx *ctx = crypto_tfm_ctx(tfm); struct qat_compression_instance *inst = ctx->inst; gfp_t f = qat_algs_alloc_flags(&areq->base); struct qat_sgl_to_bufl_params params = {0}; int slen = areq->slen - shdr - sftr; int dlen = areq->dlen - dhdr - dftr; dma_addr_t sfbuf, dfbuf; u8 *req = qat_req->req; size_t ovf_buff_sz; int ret; params.sskip = shdr; params.dskip = dhdr; if (!areq->src || !slen) return -EINVAL; if (areq->dst && !dlen) return -EINVAL; qat_req->dst.is_null = false; /* Handle acomp requests that require the allocation of a destination * buffer. The size of the destination buffer is double the source * buffer (rounded up to the size of a page) to fit the decompressed * output or an expansion on the data for compression. */ if (!areq->dst) { qat_req->dst.is_null = true; dlen = round_up(2 * slen, PAGE_SIZE); areq->dst = sgl_alloc(dlen, f, NULL); if (!areq->dst) return -ENOMEM; dlen -= dhdr + dftr; areq->dlen = dlen; qat_req->dst.resubmitted = false; } if (dir == COMPRESSION) { params.extra_dst_buff = inst->dc_data->ovf_buff_p; ovf_buff_sz = inst->dc_data->ovf_buff_sz; params.sz_extra_dst_buff = ovf_buff_sz; } ret = qat_bl_sgl_to_bufl(ctx->inst->accel_dev, areq->src, areq->dst, &qat_req->buf, &params, f); if (unlikely(ret)) return ret; sfbuf = qat_req->buf.blp; dfbuf = qat_req->buf.bloutp; qat_req->qat_compression_ctx = ctx; qat_req->acompress_req = areq; qat_req->dir = dir; if (dir == COMPRESSION) { qat_req->actual_dlen = dlen; dlen += ovf_buff_sz; qat_comp_create_compression_req(ctx->comp_ctx, req, (u64)(__force long)sfbuf, slen, (u64)(__force long)dfbuf, dlen, (u64)(__force long)qat_req); } else { qat_comp_create_decompression_req(ctx->comp_ctx, req, (u64)(__force long)sfbuf, slen, (u64)(__force long)dfbuf, dlen, (u64)(__force long)qat_req); } ret = qat_alg_send_dc_message(qat_req, inst, &areq->base); if (ret == -ENOSPC) qat_bl_free_bufl(inst->accel_dev, &qat_req->buf); return ret; } static int qat_comp_alg_compress(struct acomp_req *req) { return qat_comp_alg_compress_decompress(req, COMPRESSION, 0, 0, 0, 0); } static int qat_comp_alg_decompress(struct acomp_req *req) { return qat_comp_alg_compress_decompress(req, DECOMPRESSION, 0, 0, 0, 0); } static int qat_comp_alg_rfc1950_compress(struct acomp_req *req) { if (!req->dst && req->dlen != 0) return -EINVAL; if (req->dst && req->dlen <= QAT_RFC_1950_HDR_SIZE + QAT_RFC_1950_FOOTER_SIZE) return -EINVAL; return qat_comp_alg_compress_decompress(req, COMPRESSION, 0, 0, QAT_RFC_1950_HDR_SIZE, QAT_RFC_1950_FOOTER_SIZE); } static int qat_comp_alg_rfc1950_decompress(struct acomp_req *req) { struct crypto_acomp *acomp_tfm = crypto_acomp_reqtfm(req); struct crypto_tfm *tfm = crypto_acomp_tfm(acomp_tfm); struct qat_compression_ctx *ctx = crypto_tfm_ctx(tfm); struct adf_accel_dev *accel_dev = ctx->inst->accel_dev; u16 zlib_header; int ret; if (req->slen <= QAT_RFC_1950_HDR_SIZE + QAT_RFC_1950_FOOTER_SIZE) return -EBADMSG; scatterwalk_map_and_copy(&zlib_header, req->src, 0, QAT_RFC_1950_HDR_SIZE, 0); ret = parse_zlib_header(zlib_header); if (ret) { dev_dbg(&GET_DEV(accel_dev), "Error parsing zlib header\n"); return ret; } return qat_comp_alg_compress_decompress(req, DECOMPRESSION, QAT_RFC_1950_HDR_SIZE, QAT_RFC_1950_FOOTER_SIZE, 0, 0); } static struct acomp_alg qat_acomp[] = { { .base = { .cra_name = "deflate", .cra_driver_name = "qat_deflate", .cra_priority = 4001, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct qat_compression_ctx), .cra_module = THIS_MODULE, }, .init = qat_comp_alg_init_tfm, .exit = qat_comp_alg_exit_tfm, .compress = qat_comp_alg_compress, .decompress = qat_comp_alg_decompress, .dst_free = sgl_free, .reqsize = sizeof(struct qat_compression_req), }, { .base = { .cra_name = "zlib-deflate", .cra_driver_name = "qat_zlib_deflate", .cra_priority = 4001, .cra_flags = CRYPTO_ALG_ASYNC, .cra_ctxsize = sizeof(struct qat_compression_ctx), .cra_module = THIS_MODULE, }, .init = qat_comp_alg_rfc1950_init_tfm, .exit = qat_comp_alg_exit_tfm, .compress = qat_comp_alg_rfc1950_compress, .decompress = qat_comp_alg_rfc1950_decompress, .dst_free = sgl_free, .reqsize = sizeof(struct qat_compression_req), } }; int qat_comp_algs_register(void) { int ret = 0; mutex_lock(&algs_lock); if (++active_devs == 1) ret = crypto_register_acomps(qat_acomp, ARRAY_SIZE(qat_acomp)); mutex_unlock(&algs_lock); return ret; } void qat_comp_algs_unregister(void) { mutex_lock(&algs_lock); if (--active_devs == 0) crypto_unregister_acomps(qat_acomp, ARRAY_SIZE(qat_acomp)); mutex_unlock(&algs_lock); }
linux-master
drivers/crypto/intel/qat/qat_common/qat_comp_algs.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/workqueue.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_cfg.h" #include "adf_cfg_strings.h" #include "adf_cfg_common.h" #include "adf_transport_access_macros.h" #include "adf_transport_internal.h" #define ADF_VINTSOU_OFFSET 0x204 #define ADF_VINTMSK_OFFSET 0x208 #define ADF_VINTSOU_BUN BIT(0) #define ADF_VINTSOU_PF2VF BIT(1) static struct workqueue_struct *adf_vf_stop_wq; struct adf_vf_stop_data { struct adf_accel_dev *accel_dev; struct work_struct work; }; void adf_enable_pf2vf_interrupts(struct adf_accel_dev *accel_dev) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); ADF_CSR_WR(pmisc_addr, ADF_VINTMSK_OFFSET, 0x0); } void adf_disable_pf2vf_interrupts(struct adf_accel_dev *accel_dev) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); ADF_CSR_WR(pmisc_addr, ADF_VINTMSK_OFFSET, 0x2); } EXPORT_SYMBOL_GPL(adf_disable_pf2vf_interrupts); static int adf_enable_msi(struct adf_accel_dev *accel_dev) { struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev; int stat = pci_alloc_irq_vectors(pci_dev_info->pci_dev, 1, 1, PCI_IRQ_MSI); if (unlikely(stat < 0)) { dev_err(&GET_DEV(accel_dev), "Failed to enable MSI interrupt: %d\n", stat); return stat; } return 0; } static void adf_disable_msi(struct adf_accel_dev *accel_dev) { struct pci_dev *pdev = accel_to_pci_dev(accel_dev); pci_free_irq_vectors(pdev); } static void adf_dev_stop_async(struct work_struct *work) { struct adf_vf_stop_data *stop_data = container_of(work, struct adf_vf_stop_data, work); struct adf_accel_dev *accel_dev = stop_data->accel_dev; adf_dev_restarting_notify(accel_dev); adf_dev_down(accel_dev, false); /* Re-enable PF2VF interrupts */ adf_enable_pf2vf_interrupts(accel_dev); kfree(stop_data); } int adf_pf2vf_handle_pf_restarting(struct adf_accel_dev *accel_dev) { struct adf_vf_stop_data *stop_data; clear_bit(ADF_STATUS_PF_RUNNING, &accel_dev->status); stop_data = kzalloc(sizeof(*stop_data), GFP_ATOMIC); if (!stop_data) { dev_err(&GET_DEV(accel_dev), "Couldn't schedule stop for vf_%d\n", accel_dev->accel_id); return -ENOMEM; } stop_data->accel_dev = accel_dev; INIT_WORK(&stop_data->work, adf_dev_stop_async); queue_work(adf_vf_stop_wq, &stop_data->work); return 0; } static void adf_pf2vf_bh_handler(void *data) { struct adf_accel_dev *accel_dev = data; bool ret; ret = adf_recv_and_handle_pf2vf_msg(accel_dev); if (ret) /* Re-enable PF2VF interrupts */ adf_enable_pf2vf_interrupts(accel_dev); return; } static int adf_setup_pf2vf_bh(struct adf_accel_dev *accel_dev) { tasklet_init(&accel_dev->vf.pf2vf_bh_tasklet, (void *)adf_pf2vf_bh_handler, (unsigned long)accel_dev); mutex_init(&accel_dev->vf.vf2pf_lock); return 0; } static void adf_cleanup_pf2vf_bh(struct adf_accel_dev *accel_dev) { tasklet_disable(&accel_dev->vf.pf2vf_bh_tasklet); tasklet_kill(&accel_dev->vf.pf2vf_bh_tasklet); mutex_destroy(&accel_dev->vf.vf2pf_lock); } static irqreturn_t adf_isr(int irq, void *privdata) { struct adf_accel_dev *accel_dev = privdata; struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_hw_csr_ops *csr_ops = &hw_data->csr_ops; struct adf_bar *pmisc = &GET_BARS(accel_dev)[hw_data->get_misc_bar_id(hw_data)]; void __iomem *pmisc_bar_addr = pmisc->virt_addr; bool handled = false; u32 v_int, v_mask; /* Read VF INT source CSR to determine the source of VF interrupt */ v_int = ADF_CSR_RD(pmisc_bar_addr, ADF_VINTSOU_OFFSET); /* Read VF INT mask CSR to determine which sources are masked */ v_mask = ADF_CSR_RD(pmisc_bar_addr, ADF_VINTMSK_OFFSET); /* * Recompute v_int ignoring sources that are masked. This is to * avoid rescheduling the tasklet for interrupts already handled */ v_int &= ~v_mask; /* Check for PF2VF interrupt */ if (v_int & ADF_VINTSOU_PF2VF) { /* Disable PF to VF interrupt */ adf_disable_pf2vf_interrupts(accel_dev); /* Schedule tasklet to handle interrupt BH */ tasklet_hi_schedule(&accel_dev->vf.pf2vf_bh_tasklet); handled = true; } /* Check bundle interrupt */ if (v_int & ADF_VINTSOU_BUN) { struct adf_etr_data *etr_data = accel_dev->transport; struct adf_etr_bank_data *bank = &etr_data->banks[0]; /* Disable Flag and Coalesce Ring Interrupts */ csr_ops->write_csr_int_flag_and_col(bank->csr_addr, bank->bank_number, 0); tasklet_hi_schedule(&bank->resp_handler); handled = true; } return handled ? IRQ_HANDLED : IRQ_NONE; } static int adf_request_msi_irq(struct adf_accel_dev *accel_dev) { struct pci_dev *pdev = accel_to_pci_dev(accel_dev); unsigned int cpu; int ret; snprintf(accel_dev->vf.irq_name, ADF_MAX_MSIX_VECTOR_NAME, "qat_%02x:%02d.%02d", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); ret = request_irq(pdev->irq, adf_isr, 0, accel_dev->vf.irq_name, (void *)accel_dev); if (ret) { dev_err(&GET_DEV(accel_dev), "failed to enable irq for %s\n", accel_dev->vf.irq_name); return ret; } cpu = accel_dev->accel_id % num_online_cpus(); irq_set_affinity_hint(pdev->irq, get_cpu_mask(cpu)); accel_dev->vf.irq_enabled = true; return ret; } static int adf_setup_bh(struct adf_accel_dev *accel_dev) { struct adf_etr_data *priv_data = accel_dev->transport; tasklet_init(&priv_data->banks[0].resp_handler, adf_response_handler, (unsigned long)priv_data->banks); return 0; } static void adf_cleanup_bh(struct adf_accel_dev *accel_dev) { struct adf_etr_data *priv_data = accel_dev->transport; tasklet_disable(&priv_data->banks[0].resp_handler); tasklet_kill(&priv_data->banks[0].resp_handler); } /** * adf_vf_isr_resource_free() - Free IRQ for acceleration device * @accel_dev: Pointer to acceleration device. * * Function frees interrupts for acceleration device virtual function. */ void adf_vf_isr_resource_free(struct adf_accel_dev *accel_dev) { struct pci_dev *pdev = accel_to_pci_dev(accel_dev); if (accel_dev->vf.irq_enabled) { irq_set_affinity_hint(pdev->irq, NULL); free_irq(pdev->irq, accel_dev); } adf_cleanup_bh(accel_dev); adf_cleanup_pf2vf_bh(accel_dev); adf_disable_msi(accel_dev); } EXPORT_SYMBOL_GPL(adf_vf_isr_resource_free); /** * adf_vf_isr_resource_alloc() - Allocate IRQ for acceleration device * @accel_dev: Pointer to acceleration device. * * Function allocates interrupts for acceleration device virtual function. * * Return: 0 on success, error code otherwise. */ int adf_vf_isr_resource_alloc(struct adf_accel_dev *accel_dev) { if (adf_enable_msi(accel_dev)) goto err_out; if (adf_setup_pf2vf_bh(accel_dev)) goto err_disable_msi; if (adf_setup_bh(accel_dev)) goto err_cleanup_pf2vf_bh; if (adf_request_msi_irq(accel_dev)) goto err_cleanup_bh; return 0; err_cleanup_bh: adf_cleanup_bh(accel_dev); err_cleanup_pf2vf_bh: adf_cleanup_pf2vf_bh(accel_dev); err_disable_msi: adf_disable_msi(accel_dev); err_out: return -EFAULT; } EXPORT_SYMBOL_GPL(adf_vf_isr_resource_alloc); /** * adf_flush_vf_wq() - Flush workqueue for VF * @accel_dev: Pointer to acceleration device. * * Function disables the PF/VF interrupts on the VF so that no new messages * are received and flushes the workqueue 'adf_vf_stop_wq'. * * Return: void. */ void adf_flush_vf_wq(struct adf_accel_dev *accel_dev) { adf_disable_pf2vf_interrupts(accel_dev); flush_workqueue(adf_vf_stop_wq); } EXPORT_SYMBOL_GPL(adf_flush_vf_wq); /** * adf_init_vf_wq() - Init workqueue for VF * * Function init workqueue 'adf_vf_stop_wq' for VF. * * Return: 0 on success, error code otherwise. */ int __init adf_init_vf_wq(void) { adf_vf_stop_wq = alloc_workqueue("adf_vf_stop_wq", WQ_MEM_RECLAIM, 0); return !adf_vf_stop_wq ? -EFAULT : 0; } void adf_exit_vf_wq(void) { if (adf_vf_stop_wq) destroy_workqueue(adf_vf_stop_wq); adf_vf_stop_wq = NULL; }
linux-master
drivers/crypto/intel/qat/qat_common/adf_vf_isr.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation */ #include <linux/module.h> #include <linux/slab.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_transport.h" #include "adf_transport_access_macros.h" #include "adf_cfg.h" #include "adf_cfg_strings.h" #include "qat_compression.h" #include "icp_qat_fw.h" #define SEC ADF_KERNEL_SEC static struct service_hndl qat_compression; void qat_compression_put_instance(struct qat_compression_instance *inst) { atomic_dec(&inst->refctr); adf_dev_put(inst->accel_dev); } static int qat_compression_free_instances(struct adf_accel_dev *accel_dev) { struct qat_compression_instance *inst; struct list_head *list_ptr, *tmp; int i; list_for_each_safe(list_ptr, tmp, &accel_dev->compression_list) { inst = list_entry(list_ptr, struct qat_compression_instance, list); for (i = 0; i < atomic_read(&inst->refctr); i++) qat_compression_put_instance(inst); if (inst->dc_tx) adf_remove_ring(inst->dc_tx); if (inst->dc_rx) adf_remove_ring(inst->dc_rx); list_del(list_ptr); kfree(inst); } return 0; } struct qat_compression_instance *qat_compression_get_instance_node(int node) { struct qat_compression_instance *inst = NULL; struct adf_accel_dev *accel_dev = NULL; unsigned long best = ~0; struct list_head *itr; list_for_each(itr, adf_devmgr_get_head()) { struct adf_accel_dev *tmp_dev; unsigned long ctr; int tmp_dev_node; tmp_dev = list_entry(itr, struct adf_accel_dev, list); tmp_dev_node = dev_to_node(&GET_DEV(tmp_dev)); if ((node == tmp_dev_node || tmp_dev_node < 0) && adf_dev_started(tmp_dev) && !list_empty(&tmp_dev->compression_list)) { ctr = atomic_read(&tmp_dev->ref_count); if (best > ctr) { accel_dev = tmp_dev; best = ctr; } } } if (!accel_dev) { pr_debug_ratelimited("QAT: Could not find a device on node %d\n", node); /* Get any started device */ list_for_each(itr, adf_devmgr_get_head()) { struct adf_accel_dev *tmp_dev; tmp_dev = list_entry(itr, struct adf_accel_dev, list); if (adf_dev_started(tmp_dev) && !list_empty(&tmp_dev->compression_list)) { accel_dev = tmp_dev; break; } } } if (!accel_dev) return NULL; best = ~0; list_for_each(itr, &accel_dev->compression_list) { struct qat_compression_instance *tmp_inst; unsigned long ctr; tmp_inst = list_entry(itr, struct qat_compression_instance, list); ctr = atomic_read(&tmp_inst->refctr); if (best > ctr) { inst = tmp_inst; best = ctr; } } if (inst) { if (adf_dev_get(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Could not increment dev refctr\n"); return NULL; } atomic_inc(&inst->refctr); } return inst; } static int qat_compression_create_instances(struct adf_accel_dev *accel_dev) { struct qat_compression_instance *inst; char key[ADF_CFG_MAX_KEY_LEN_IN_BYTES]; char val[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; unsigned long num_inst, num_msg_dc; unsigned long bank; int msg_size; int ret; int i; INIT_LIST_HEAD(&accel_dev->compression_list); strscpy(key, ADF_NUM_DC, sizeof(key)); ret = adf_cfg_get_param_value(accel_dev, SEC, key, val); if (ret) return ret; ret = kstrtoul(val, 10, &num_inst); if (ret) return ret; for (i = 0; i < num_inst; i++) { inst = kzalloc_node(sizeof(*inst), GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!inst) { ret = -ENOMEM; goto err; } list_add_tail(&inst->list, &accel_dev->compression_list); inst->id = i; atomic_set(&inst->refctr, 0); inst->accel_dev = accel_dev; inst->build_deflate_ctx = GET_DC_OPS(accel_dev)->build_deflate_ctx; snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_BANK_NUM, i); ret = adf_cfg_get_param_value(accel_dev, SEC, key, val); if (ret) return ret; ret = kstrtoul(val, 10, &bank); if (ret) return ret; snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_SIZE, i); ret = adf_cfg_get_param_value(accel_dev, SEC, key, val); if (ret) return ret; ret = kstrtoul(val, 10, &num_msg_dc); if (ret) return ret; msg_size = ICP_QAT_FW_REQ_DEFAULT_SZ; snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_TX, i); ret = adf_create_ring(accel_dev, SEC, bank, num_msg_dc, msg_size, key, NULL, 0, &inst->dc_tx); if (ret) return ret; msg_size = ICP_QAT_FW_RESP_DEFAULT_SZ; snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_RX, i); ret = adf_create_ring(accel_dev, SEC, bank, num_msg_dc, msg_size, key, qat_comp_alg_callback, 0, &inst->dc_rx); if (ret) return ret; inst->dc_data = accel_dev->dc_data; INIT_LIST_HEAD(&inst->backlog.list); spin_lock_init(&inst->backlog.lock); } return 0; err: qat_compression_free_instances(accel_dev); return ret; } static int qat_compression_alloc_dc_data(struct adf_accel_dev *accel_dev) { struct device *dev = &GET_DEV(accel_dev); dma_addr_t obuff_p = DMA_MAPPING_ERROR; size_t ovf_buff_sz = QAT_COMP_MAX_SKID; struct adf_dc_data *dc_data = NULL; u8 *obuff = NULL; dc_data = devm_kzalloc(dev, sizeof(*dc_data), GFP_KERNEL); if (!dc_data) goto err; obuff = kzalloc_node(ovf_buff_sz, GFP_KERNEL, dev_to_node(dev)); if (!obuff) goto err; obuff_p = dma_map_single(dev, obuff, ovf_buff_sz, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, obuff_p))) goto err; dc_data->ovf_buff = obuff; dc_data->ovf_buff_p = obuff_p; dc_data->ovf_buff_sz = ovf_buff_sz; accel_dev->dc_data = dc_data; return 0; err: accel_dev->dc_data = NULL; kfree(obuff); devm_kfree(dev, dc_data); return -ENOMEM; } static void qat_free_dc_data(struct adf_accel_dev *accel_dev) { struct adf_dc_data *dc_data = accel_dev->dc_data; struct device *dev = &GET_DEV(accel_dev); if (!dc_data) return; dma_unmap_single(dev, dc_data->ovf_buff_p, dc_data->ovf_buff_sz, DMA_FROM_DEVICE); kfree_sensitive(dc_data->ovf_buff); devm_kfree(dev, dc_data); accel_dev->dc_data = NULL; } static int qat_compression_init(struct adf_accel_dev *accel_dev) { int ret; ret = qat_compression_alloc_dc_data(accel_dev); if (ret) return ret; ret = qat_compression_create_instances(accel_dev); if (ret) qat_free_dc_data(accel_dev); return ret; } static int qat_compression_shutdown(struct adf_accel_dev *accel_dev) { qat_free_dc_data(accel_dev); return qat_compression_free_instances(accel_dev); } static int qat_compression_event_handler(struct adf_accel_dev *accel_dev, enum adf_event event) { int ret; switch (event) { case ADF_EVENT_INIT: ret = qat_compression_init(accel_dev); break; case ADF_EVENT_SHUTDOWN: ret = qat_compression_shutdown(accel_dev); break; case ADF_EVENT_RESTARTING: case ADF_EVENT_RESTARTED: case ADF_EVENT_START: case ADF_EVENT_STOP: default: ret = 0; } return ret; } int qat_compression_register(void) { memset(&qat_compression, 0, sizeof(qat_compression)); qat_compression.event_hld = qat_compression_event_handler; qat_compression.name = "qat_compression"; return adf_service_register(&qat_compression); } int qat_compression_unregister(void) { return adf_service_unregister(&qat_compression); }
linux-master
drivers/crypto/intel/qat/qat_common/qat_compression.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2015 - 2021 Intel Corporation */ #include <linux/bitfield.h> #include <linux/spinlock.h> #include <linux/types.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_pfvf_msg.h" #include "adf_pfvf_pf_msg.h" #include "adf_pfvf_pf_proto.h" #include "adf_pfvf_utils.h" typedef u8 (*pf2vf_blkmsg_data_getter_fn)(u8 const *blkmsg, u8 byte); static const adf_pf2vf_blkmsg_provider pf2vf_blkmsg_providers[] = { NULL, /* no message type defined for value 0 */ NULL, /* no message type defined for value 1 */ adf_pf_capabilities_msg_provider, /* ADF_VF2PF_BLKMSG_REQ_CAP_SUMMARY */ adf_pf_ring_to_svc_msg_provider, /* ADF_VF2PF_BLKMSG_REQ_RING_SVC_MAP */ }; /** * adf_send_pf2vf_msg() - send PF to VF message * @accel_dev: Pointer to acceleration device * @vf_nr: VF number to which the message will be sent * @msg: Message to send * * This function allows the PF to send a message to a specific VF. * * Return: 0 on success, error code otherwise. */ int adf_send_pf2vf_msg(struct adf_accel_dev *accel_dev, u8 vf_nr, struct pfvf_message msg) { struct adf_pfvf_ops *pfvf_ops = GET_PFVF_OPS(accel_dev); u32 pfvf_offset = pfvf_ops->get_pf2vf_offset(vf_nr); return pfvf_ops->send_msg(accel_dev, msg, pfvf_offset, &accel_dev->pf.vf_info[vf_nr].pf2vf_lock); } /** * adf_recv_vf2pf_msg() - receive a VF to PF message * @accel_dev: Pointer to acceleration device * @vf_nr: Number of the VF from where the message will be received * * This function allows the PF to receive a message from a specific VF. * * Return: a valid message on success, zero otherwise. */ static struct pfvf_message adf_recv_vf2pf_msg(struct adf_accel_dev *accel_dev, u8 vf_nr) { struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr]; struct adf_pfvf_ops *pfvf_ops = GET_PFVF_OPS(accel_dev); u32 pfvf_offset = pfvf_ops->get_vf2pf_offset(vf_nr); return pfvf_ops->recv_msg(accel_dev, pfvf_offset, vf_info->vf_compat_ver); } static adf_pf2vf_blkmsg_provider get_blkmsg_response_provider(u8 type) { if (type >= ARRAY_SIZE(pf2vf_blkmsg_providers)) return NULL; return pf2vf_blkmsg_providers[type]; } /* Byte pf2vf_blkmsg_data_getter_fn callback */ static u8 adf_pf2vf_blkmsg_get_byte(u8 const *blkmsg, u8 index) { return blkmsg[index]; } /* CRC pf2vf_blkmsg_data_getter_fn callback */ static u8 adf_pf2vf_blkmsg_get_crc(u8 const *blkmsg, u8 count) { /* count is 0-based, turn it into a length */ return adf_pfvf_calc_blkmsg_crc(blkmsg, count + 1); } static int adf_pf2vf_blkmsg_get_data(struct adf_accel_vf_info *vf_info, u8 type, u8 byte, u8 max_size, u8 *data, pf2vf_blkmsg_data_getter_fn data_getter) { u8 blkmsg[ADF_PFVF_BLKMSG_MSG_MAX_SIZE] = { 0 }; struct adf_accel_dev *accel_dev = vf_info->accel_dev; adf_pf2vf_blkmsg_provider provider; u8 msg_size; provider = get_blkmsg_response_provider(type); if (unlikely(!provider)) { pr_err("QAT: No registered provider for message %d\n", type); *data = ADF_PF2VF_INVALID_BLOCK_TYPE; return -EINVAL; } if (unlikely((*provider)(accel_dev, blkmsg, vf_info->vf_compat_ver))) { pr_err("QAT: unknown error from provider for message %d\n", type); *data = ADF_PF2VF_UNSPECIFIED_ERROR; return -EINVAL; } msg_size = ADF_PFVF_BLKMSG_HEADER_SIZE + blkmsg[ADF_PFVF_BLKMSG_LEN_BYTE]; if (unlikely(msg_size >= max_size)) { pr_err("QAT: Invalid size %d provided for message type %d\n", msg_size, type); *data = ADF_PF2VF_PAYLOAD_TRUNCATED; return -EINVAL; } if (unlikely(byte >= msg_size)) { pr_err("QAT: Out-of-bound byte number %d (msg size %d)\n", byte, msg_size); *data = ADF_PF2VF_INVALID_BYTE_NUM_REQ; return -EINVAL; } *data = data_getter(blkmsg, byte); return 0; } static struct pfvf_message handle_blkmsg_req(struct adf_accel_vf_info *vf_info, struct pfvf_message req) { u8 resp_type = ADF_PF2VF_BLKMSG_RESP_TYPE_ERROR; struct pfvf_message resp = { 0 }; u8 resp_data = 0; u8 blk_type; u8 blk_byte; u8 byte_max; switch (req.type) { case ADF_VF2PF_MSGTYPE_LARGE_BLOCK_REQ: blk_type = FIELD_GET(ADF_VF2PF_LARGE_BLOCK_TYPE_MASK, req.data) + ADF_VF2PF_MEDIUM_BLOCK_TYPE_MAX + 1; blk_byte = FIELD_GET(ADF_VF2PF_LARGE_BLOCK_BYTE_MASK, req.data); byte_max = ADF_VF2PF_LARGE_BLOCK_BYTE_MAX; break; case ADF_VF2PF_MSGTYPE_MEDIUM_BLOCK_REQ: blk_type = FIELD_GET(ADF_VF2PF_MEDIUM_BLOCK_TYPE_MASK, req.data) + ADF_VF2PF_SMALL_BLOCK_TYPE_MAX + 1; blk_byte = FIELD_GET(ADF_VF2PF_MEDIUM_BLOCK_BYTE_MASK, req.data); byte_max = ADF_VF2PF_MEDIUM_BLOCK_BYTE_MAX; break; case ADF_VF2PF_MSGTYPE_SMALL_BLOCK_REQ: blk_type = FIELD_GET(ADF_VF2PF_SMALL_BLOCK_TYPE_MASK, req.data); blk_byte = FIELD_GET(ADF_VF2PF_SMALL_BLOCK_BYTE_MASK, req.data); byte_max = ADF_VF2PF_SMALL_BLOCK_BYTE_MAX; break; } /* Is this a request for CRC or data? */ if (FIELD_GET(ADF_VF2PF_BLOCK_CRC_REQ_MASK, req.data)) { dev_dbg(&GET_DEV(vf_info->accel_dev), "BlockMsg of type %d for CRC over %d bytes received from VF%d\n", blk_type, blk_byte + 1, vf_info->vf_nr); if (!adf_pf2vf_blkmsg_get_data(vf_info, blk_type, blk_byte, byte_max, &resp_data, adf_pf2vf_blkmsg_get_crc)) resp_type = ADF_PF2VF_BLKMSG_RESP_TYPE_CRC; } else { dev_dbg(&GET_DEV(vf_info->accel_dev), "BlockMsg of type %d for data byte %d received from VF%d\n", blk_type, blk_byte, vf_info->vf_nr); if (!adf_pf2vf_blkmsg_get_data(vf_info, blk_type, blk_byte, byte_max, &resp_data, adf_pf2vf_blkmsg_get_byte)) resp_type = ADF_PF2VF_BLKMSG_RESP_TYPE_DATA; } resp.type = ADF_PF2VF_MSGTYPE_BLKMSG_RESP; resp.data = FIELD_PREP(ADF_PF2VF_BLKMSG_RESP_TYPE_MASK, resp_type) | FIELD_PREP(ADF_PF2VF_BLKMSG_RESP_DATA_MASK, resp_data); return resp; } static struct pfvf_message handle_rp_reset_req(struct adf_accel_dev *accel_dev, u8 vf_nr, struct pfvf_message req) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct pfvf_message resp = { .type = ADF_PF2VF_MSGTYPE_RP_RESET_RESP, .data = RPRESET_SUCCESS }; u32 bank_number; u32 rsvd_field; bank_number = FIELD_GET(ADF_VF2PF_RNG_RESET_RP_MASK, req.data); rsvd_field = FIELD_GET(ADF_VF2PF_RNG_RESET_RSVD_MASK, req.data); dev_dbg(&GET_DEV(accel_dev), "Ring Pair Reset Message received from VF%d for bank 0x%x\n", vf_nr, bank_number); if (!hw_data->ring_pair_reset || rsvd_field) { dev_dbg(&GET_DEV(accel_dev), "Ring Pair Reset for VF%d is not supported\n", vf_nr); resp.data = RPRESET_NOT_SUPPORTED; goto out; } if (bank_number >= hw_data->num_banks_per_vf) { dev_err(&GET_DEV(accel_dev), "Invalid bank number (0x%x) from VF%d for Ring Reset\n", bank_number, vf_nr); resp.data = RPRESET_INVAL_BANK; goto out; } /* Convert the VF provided value to PF bank number */ bank_number = vf_nr * hw_data->num_banks_per_vf + bank_number; if (hw_data->ring_pair_reset(accel_dev, bank_number)) { dev_dbg(&GET_DEV(accel_dev), "Ring pair reset for VF%d failure\n", vf_nr); resp.data = RPRESET_TIMEOUT; goto out; } dev_dbg(&GET_DEV(accel_dev), "Ring pair reset for VF%d successfully\n", vf_nr); out: return resp; } static int adf_handle_vf2pf_msg(struct adf_accel_dev *accel_dev, u8 vf_nr, struct pfvf_message msg, struct pfvf_message *resp) { struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr]; switch (msg.type) { case ADF_VF2PF_MSGTYPE_COMPAT_VER_REQ: { u8 vf_compat_ver = msg.data; u8 compat; dev_dbg(&GET_DEV(accel_dev), "VersionRequest received from VF%d (vers %d) to PF (vers %d)\n", vf_nr, vf_compat_ver, ADF_PFVF_COMPAT_THIS_VERSION); if (vf_compat_ver == 0) compat = ADF_PF2VF_VF_INCOMPATIBLE; else if (vf_compat_ver <= ADF_PFVF_COMPAT_THIS_VERSION) compat = ADF_PF2VF_VF_COMPATIBLE; else compat = ADF_PF2VF_VF_COMPAT_UNKNOWN; vf_info->vf_compat_ver = vf_compat_ver; resp->type = ADF_PF2VF_MSGTYPE_VERSION_RESP; resp->data = FIELD_PREP(ADF_PF2VF_VERSION_RESP_VERS_MASK, ADF_PFVF_COMPAT_THIS_VERSION) | FIELD_PREP(ADF_PF2VF_VERSION_RESP_RESULT_MASK, compat); } break; case ADF_VF2PF_MSGTYPE_VERSION_REQ: { u8 compat; dev_dbg(&GET_DEV(accel_dev), "Legacy VersionRequest received from VF%d to PF (vers 1.1)\n", vf_nr); /* legacy driver, VF compat_ver is 0 */ vf_info->vf_compat_ver = 0; /* PF always newer than legacy VF */ compat = ADF_PF2VF_VF_COMPATIBLE; /* Set legacy major and minor version to the latest, 1.1 */ resp->type = ADF_PF2VF_MSGTYPE_VERSION_RESP; resp->data = FIELD_PREP(ADF_PF2VF_VERSION_RESP_VERS_MASK, 0x11) | FIELD_PREP(ADF_PF2VF_VERSION_RESP_RESULT_MASK, compat); } break; case ADF_VF2PF_MSGTYPE_INIT: { dev_dbg(&GET_DEV(accel_dev), "Init message received from VF%d\n", vf_nr); vf_info->init = true; } break; case ADF_VF2PF_MSGTYPE_SHUTDOWN: { dev_dbg(&GET_DEV(accel_dev), "Shutdown message received from VF%d\n", vf_nr); vf_info->init = false; } break; case ADF_VF2PF_MSGTYPE_LARGE_BLOCK_REQ: case ADF_VF2PF_MSGTYPE_MEDIUM_BLOCK_REQ: case ADF_VF2PF_MSGTYPE_SMALL_BLOCK_REQ: *resp = handle_blkmsg_req(vf_info, msg); break; case ADF_VF2PF_MSGTYPE_RP_RESET: *resp = handle_rp_reset_req(accel_dev, vf_nr, msg); break; default: dev_dbg(&GET_DEV(accel_dev), "Unknown message from VF%d (type 0x%.4x, data: 0x%.4x)\n", vf_nr, msg.type, msg.data); return -ENOMSG; } return 0; } bool adf_recv_and_handle_vf2pf_msg(struct adf_accel_dev *accel_dev, u32 vf_nr) { struct pfvf_message req; struct pfvf_message resp = {0}; req = adf_recv_vf2pf_msg(accel_dev, vf_nr); if (!req.type) /* Legacy or no message */ return true; if (adf_handle_vf2pf_msg(accel_dev, vf_nr, req, &resp)) return false; if (resp.type && adf_send_pf2vf_msg(accel_dev, vf_nr, resp)) dev_err(&GET_DEV(accel_dev), "Failed to send response to VF%d\n", vf_nr); return true; } /** * adf_enable_pf2vf_comms() - Function enables communication from pf to vf * * @accel_dev: Pointer to acceleration device virtual function. * * This function carries out the necessary steps to setup and start the PFVF * communication channel, if any. * * Return: 0 on success, error code otherwise. */ int adf_enable_pf2vf_comms(struct adf_accel_dev *accel_dev) { adf_pfvf_crc_init(); spin_lock_init(&accel_dev->pf.vf2pf_ints_lock); return 0; } EXPORT_SYMBOL_GPL(adf_enable_pf2vf_comms);
linux-master
drivers/crypto/intel/qat/qat_common/adf_pfvf_pf_proto.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation */ #include "adf_accel_devices.h" #include "adf_cfg.h" #include "adf_cfg_strings.h" #include "adf_gen2_config.h" #include "adf_common_drv.h" #include "qat_crypto.h" #include "qat_compression.h" #include "adf_heartbeat.h" #include "adf_transport_access_macros.h" static int adf_gen2_crypto_dev_config(struct adf_accel_dev *accel_dev) { char key[ADF_CFG_MAX_KEY_LEN_IN_BYTES]; int banks = GET_MAX_BANKS(accel_dev); int cpus = num_online_cpus(); unsigned long val; int instances; int ret; int i; if (adf_hw_dev_has_crypto(accel_dev)) instances = min(cpus, banks); else instances = 0; for (i = 0; i < instances; i++) { val = i; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_BANK_NUM, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_BANK_NUM, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; snprintf(key, sizeof(key), ADF_CY "%d" ADF_ETRMGR_CORE_AFFINITY, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_SIZE, i); val = 128; ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = 512; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_SIZE, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = 0; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_TX, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = 2; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_TX, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = 8; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_RX, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = 10; snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_RX, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = ADF_COALESCING_DEF_TIME; snprintf(key, sizeof(key), ADF_ETRMGR_COALESCE_TIMER_FORMAT, i); ret = adf_cfg_add_key_value_param(accel_dev, "Accelerator0", key, &val, ADF_DEC); if (ret) goto err; } val = i; ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_CY, &val, ADF_DEC); if (ret) goto err; return ret; err: dev_err(&GET_DEV(accel_dev), "Failed to add configuration for crypto\n"); return ret; } static int adf_gen2_comp_dev_config(struct adf_accel_dev *accel_dev) { char key[ADF_CFG_MAX_KEY_LEN_IN_BYTES]; int banks = GET_MAX_BANKS(accel_dev); int cpus = num_online_cpus(); unsigned long val; int instances; int ret; int i; if (adf_hw_dev_has_compression(accel_dev)) instances = min(cpus, banks); else instances = 0; for (i = 0; i < instances; i++) { val = i; snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_BANK_NUM, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = 512; snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_SIZE, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = 6; snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_TX, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; val = 14; snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_RX, i); ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, key, &val, ADF_DEC); if (ret) goto err; } val = i; ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_DC, &val, ADF_DEC); if (ret) return ret; return ret; err: dev_err(&GET_DEV(accel_dev), "Failed to add configuration for compression\n"); return ret; } /** * adf_gen2_dev_config() - create dev config required to create instances * * @accel_dev: Pointer to acceleration device. * * Function creates device configuration required to create instances * * Return: 0 on success, error code otherwise. */ int adf_gen2_dev_config(struct adf_accel_dev *accel_dev) { int ret; ret = adf_cfg_section_add(accel_dev, ADF_KERNEL_SEC); if (ret) goto err; ret = adf_cfg_section_add(accel_dev, "Accelerator0"); if (ret) goto err; ret = adf_gen2_crypto_dev_config(accel_dev); if (ret) goto err; ret = adf_gen2_comp_dev_config(accel_dev); if (ret) goto err; ret = adf_cfg_section_add(accel_dev, ADF_GENERAL_SEC); if (ret) goto err; adf_heartbeat_save_cfg_param(accel_dev, ADF_CFG_HB_TIMER_DEFAULT_MS); set_bit(ADF_STATUS_CONFIGURED, &accel_dev->status); return ret; err: dev_err(&GET_DEV(accel_dev), "Failed to configure QAT driver\n"); return ret; } EXPORT_SYMBOL_GPL(adf_gen2_dev_config);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen2_config.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Intel Corporation */ #include <linux/debugfs.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/kstrtox.h> #include <linux/types.h> #include "adf_cfg.h" #include "adf_common_drv.h" #include "adf_heartbeat.h" #include "adf_heartbeat_dbgfs.h" #define HB_OK 0 #define HB_ERROR -1 #define HB_STATUS_MAX_STRLEN 4 #define HB_STATS_MAX_STRLEN 16 static ssize_t adf_hb_stats_read(struct file *file, char __user *user_buffer, size_t count, loff_t *ppos) { char buf[HB_STATS_MAX_STRLEN]; unsigned int *value; int len; if (*ppos > 0) return 0; value = file->private_data; len = scnprintf(buf, sizeof(buf), "%u\n", *value); return simple_read_from_buffer(user_buffer, count, ppos, buf, len + 1); } static const struct file_operations adf_hb_stats_fops = { .owner = THIS_MODULE, .open = simple_open, .read = adf_hb_stats_read, }; static ssize_t adf_hb_status_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { enum adf_device_heartbeat_status hb_status; char ret_str[HB_STATUS_MAX_STRLEN]; struct adf_accel_dev *accel_dev; int ret_code; size_t len; if (*ppos > 0) return 0; accel_dev = file->private_data; ret_code = HB_OK; adf_heartbeat_status(accel_dev, &hb_status); if (hb_status != HB_DEV_ALIVE) ret_code = HB_ERROR; len = scnprintf(ret_str, sizeof(ret_str), "%d\n", ret_code); return simple_read_from_buffer(user_buf, count, ppos, ret_str, len + 1); } static const struct file_operations adf_hb_status_fops = { .owner = THIS_MODULE, .open = simple_open, .read = adf_hb_status_read, }; static ssize_t adf_hb_cfg_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char timer_str[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; struct adf_accel_dev *accel_dev; unsigned int timer_ms; int len; if (*ppos > 0) return 0; accel_dev = file->private_data; timer_ms = accel_dev->heartbeat->hb_timer; len = scnprintf(timer_str, sizeof(timer_str), "%u\n", timer_ms); return simple_read_from_buffer(user_buf, count, ppos, timer_str, len + 1); } static ssize_t adf_hb_cfg_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char input_str[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = { }; struct adf_accel_dev *accel_dev; int ret, written_chars; unsigned int timer_ms; u32 ticks; accel_dev = file->private_data; timer_ms = ADF_CFG_HB_TIMER_DEFAULT_MS; /* last byte left as string termination */ if (count > sizeof(input_str) - 1) return -EINVAL; written_chars = simple_write_to_buffer(input_str, sizeof(input_str) - 1, ppos, user_buf, count); if (written_chars > 0) { ret = kstrtouint(input_str, 10, &timer_ms); if (ret) { dev_err(&GET_DEV(accel_dev), "heartbeat_cfg: Invalid value\n"); return ret; } if (timer_ms < ADF_CFG_HB_TIMER_MIN_MS) { dev_err(&GET_DEV(accel_dev), "heartbeat_cfg: Invalid value\n"); return -EINVAL; } /* * On 4xxx devices adf_timer is responsible for HB updates and * its period is fixed to 200ms */ if (accel_dev->timer) timer_ms = ADF_CFG_HB_TIMER_MIN_MS; ret = adf_heartbeat_save_cfg_param(accel_dev, timer_ms); if (ret) return ret; ret = adf_heartbeat_ms_to_ticks(accel_dev, timer_ms, &ticks); if (ret) return ret; ret = adf_send_admin_hb_timer(accel_dev, ticks); if (ret) return ret; accel_dev->heartbeat->hb_timer = timer_ms; } return written_chars; } static const struct file_operations adf_hb_cfg_fops = { .owner = THIS_MODULE, .open = simple_open, .read = adf_hb_cfg_read, .write = adf_hb_cfg_write, }; void adf_heartbeat_dbgfs_add(struct adf_accel_dev *accel_dev) { struct adf_heartbeat *hb = accel_dev->heartbeat; if (!hb) return; hb->dbgfs.base_dir = debugfs_create_dir("heartbeat", accel_dev->debugfs_dir); hb->dbgfs.status = debugfs_create_file("status", 0400, hb->dbgfs.base_dir, accel_dev, &adf_hb_status_fops); hb->dbgfs.sent = debugfs_create_file("queries_sent", 0400, hb->dbgfs.base_dir, &hb->hb_sent_counter, &adf_hb_stats_fops); hb->dbgfs.failed = debugfs_create_file("queries_failed", 0400, hb->dbgfs.base_dir, &hb->hb_failed_counter, &adf_hb_stats_fops); hb->dbgfs.cfg = debugfs_create_file("config", 0600, hb->dbgfs.base_dir, accel_dev, &adf_hb_cfg_fops); } EXPORT_SYMBOL_GPL(adf_heartbeat_dbgfs_add); void adf_heartbeat_dbgfs_rm(struct adf_accel_dev *accel_dev) { struct adf_heartbeat *hb = accel_dev->heartbeat; if (!hb) return; debugfs_remove(hb->dbgfs.status); hb->dbgfs.status = NULL; debugfs_remove(hb->dbgfs.sent); hb->dbgfs.sent = NULL; debugfs_remove(hb->dbgfs.failed); hb->dbgfs.failed = NULL; debugfs_remove(hb->dbgfs.cfg); hb->dbgfs.cfg = NULL; debugfs_remove(hb->dbgfs.base_dir); hb->dbgfs.base_dir = NULL; } EXPORT_SYMBOL_GPL(adf_heartbeat_dbgfs_rm);
linux-master
drivers/crypto/intel/qat/qat_common/adf_heartbeat_dbgfs.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2020 Intel Corporation */ #include "adf_common_drv.h" #include "adf_gen2_hw_data.h" #include "icp_qat_hw.h" #include <linux/pci.h> u32 adf_gen2_get_num_accels(struct adf_hw_device_data *self) { if (!self || !self->accel_mask) return 0; return hweight16(self->accel_mask); } EXPORT_SYMBOL_GPL(adf_gen2_get_num_accels); u32 adf_gen2_get_num_aes(struct adf_hw_device_data *self) { if (!self || !self->ae_mask) return 0; return hweight32(self->ae_mask); } EXPORT_SYMBOL_GPL(adf_gen2_get_num_aes); void adf_gen2_enable_error_correction(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); unsigned long accel_mask = hw_data->accel_mask; unsigned long ae_mask = hw_data->ae_mask; unsigned int val, i; /* Enable Accel Engine error detection & correction */ for_each_set_bit(i, &ae_mask, hw_data->num_engines) { val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_AE_CTX_ENABLES(i)); val |= ADF_GEN2_ENABLE_AE_ECC_ERR; ADF_CSR_WR(pmisc_addr, ADF_GEN2_AE_CTX_ENABLES(i), val); val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_AE_MISC_CONTROL(i)); val |= ADF_GEN2_ENABLE_AE_ECC_PARITY_CORR; ADF_CSR_WR(pmisc_addr, ADF_GEN2_AE_MISC_CONTROL(i), val); } /* Enable shared memory error detection & correction */ for_each_set_bit(i, &accel_mask, hw_data->num_accel) { val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_UERRSSMSH(i)); val |= ADF_GEN2_ERRSSMSH_EN; ADF_CSR_WR(pmisc_addr, ADF_GEN2_UERRSSMSH(i), val); val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_CERRSSMSH(i)); val |= ADF_GEN2_ERRSSMSH_EN; ADF_CSR_WR(pmisc_addr, ADF_GEN2_CERRSSMSH(i), val); } } EXPORT_SYMBOL_GPL(adf_gen2_enable_error_correction); void adf_gen2_cfg_iov_thds(struct adf_accel_dev *accel_dev, bool enable, int num_a_regs, int num_b_regs) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u32 reg; int i; /* Set/Unset Valid bit in AE Thread to PCIe Function Mapping Group A */ for (i = 0; i < num_a_regs; i++) { reg = READ_CSR_AE2FUNCTION_MAP_A(pmisc_addr, i); if (enable) reg |= AE2FUNCTION_MAP_VALID; else reg &= ~AE2FUNCTION_MAP_VALID; WRITE_CSR_AE2FUNCTION_MAP_A(pmisc_addr, i, reg); } /* Set/Unset Valid bit in AE Thread to PCIe Function Mapping Group B */ for (i = 0; i < num_b_regs; i++) { reg = READ_CSR_AE2FUNCTION_MAP_B(pmisc_addr, i); if (enable) reg |= AE2FUNCTION_MAP_VALID; else reg &= ~AE2FUNCTION_MAP_VALID; WRITE_CSR_AE2FUNCTION_MAP_B(pmisc_addr, i, reg); } } EXPORT_SYMBOL_GPL(adf_gen2_cfg_iov_thds); void adf_gen2_get_admin_info(struct admin_info *admin_csrs_info) { admin_csrs_info->mailbox_offset = ADF_MAILBOX_BASE_OFFSET; admin_csrs_info->admin_msg_ur = ADF_ADMINMSGUR_OFFSET; admin_csrs_info->admin_msg_lr = ADF_ADMINMSGLR_OFFSET; } EXPORT_SYMBOL_GPL(adf_gen2_get_admin_info); void adf_gen2_get_arb_info(struct arb_info *arb_info) { arb_info->arb_cfg = ADF_ARB_CONFIG; arb_info->arb_offset = ADF_ARB_OFFSET; arb_info->wt2sam_offset = ADF_ARB_WRK_2_SER_MAP_OFFSET; } EXPORT_SYMBOL_GPL(adf_gen2_get_arb_info); void adf_gen2_enable_ints(struct adf_accel_dev *accel_dev) { void __iomem *addr = adf_get_pmisc_base(accel_dev); u32 val; val = accel_dev->pf.vf_info ? 0 : BIT_ULL(GET_MAX_BANKS(accel_dev)) - 1; /* Enable bundle and misc interrupts */ ADF_CSR_WR(addr, ADF_GEN2_SMIAPF0_MASK_OFFSET, val); ADF_CSR_WR(addr, ADF_GEN2_SMIAPF1_MASK_OFFSET, ADF_GEN2_SMIA1_MASK); } EXPORT_SYMBOL_GPL(adf_gen2_enable_ints); static u64 build_csr_ring_base_addr(dma_addr_t addr, u32 size) { return BUILD_RING_BASE_ADDR(addr, size); } static u32 read_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring) { return READ_CSR_RING_HEAD(csr_base_addr, bank, ring); } static void write_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring, u32 value) { WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value); } static u32 read_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring) { return READ_CSR_RING_TAIL(csr_base_addr, bank, ring); } static void write_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring, u32 value) { WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value); } static u32 read_csr_e_stat(void __iomem *csr_base_addr, u32 bank) { return READ_CSR_E_STAT(csr_base_addr, bank); } static void write_csr_ring_config(void __iomem *csr_base_addr, u32 bank, u32 ring, u32 value) { WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value); } static void write_csr_ring_base(void __iomem *csr_base_addr, u32 bank, u32 ring, dma_addr_t addr) { WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, addr); } static void write_csr_int_flag(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_INT_FLAG(csr_base_addr, bank, value); } static void write_csr_int_srcsel(void __iomem *csr_base_addr, u32 bank) { WRITE_CSR_INT_SRCSEL(csr_base_addr, bank); } static void write_csr_int_col_en(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value); } static void write_csr_int_col_ctl(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value); } static void write_csr_int_flag_and_col(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value); } static void write_csr_ring_srv_arb_en(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value); } void adf_gen2_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops) { csr_ops->build_csr_ring_base_addr = build_csr_ring_base_addr; csr_ops->read_csr_ring_head = read_csr_ring_head; csr_ops->write_csr_ring_head = write_csr_ring_head; csr_ops->read_csr_ring_tail = read_csr_ring_tail; csr_ops->write_csr_ring_tail = write_csr_ring_tail; csr_ops->read_csr_e_stat = read_csr_e_stat; csr_ops->write_csr_ring_config = write_csr_ring_config; csr_ops->write_csr_ring_base = write_csr_ring_base; csr_ops->write_csr_int_flag = write_csr_int_flag; csr_ops->write_csr_int_srcsel = write_csr_int_srcsel; csr_ops->write_csr_int_col_en = write_csr_int_col_en; csr_ops->write_csr_int_col_ctl = write_csr_int_col_ctl; csr_ops->write_csr_int_flag_and_col = write_csr_int_flag_and_col; csr_ops->write_csr_ring_srv_arb_en = write_csr_ring_srv_arb_en; } EXPORT_SYMBOL_GPL(adf_gen2_init_hw_csr_ops); u32 adf_gen2_get_accel_cap(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct pci_dev *pdev = accel_dev->accel_pci_dev.pci_dev; u32 straps = hw_data->straps; u32 fuses = hw_data->fuses; u32 legfuses; u32 capabilities = ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC | ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC | ICP_ACCEL_CAPABILITIES_AUTHENTICATION | ICP_ACCEL_CAPABILITIES_CIPHER | ICP_ACCEL_CAPABILITIES_COMPRESSION; /* Read accelerator capabilities mask */ pci_read_config_dword(pdev, ADF_DEVICE_LEGFUSE_OFFSET, &legfuses); /* A set bit in legfuses means the feature is OFF in this SKU */ if (legfuses & ICP_ACCEL_MASK_CIPHER_SLICE) { capabilities &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC; capabilities &= ~ICP_ACCEL_CAPABILITIES_CIPHER; } if (legfuses & ICP_ACCEL_MASK_PKE_SLICE) capabilities &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC; if (legfuses & ICP_ACCEL_MASK_AUTH_SLICE) { capabilities &= ~ICP_ACCEL_CAPABILITIES_AUTHENTICATION; capabilities &= ~ICP_ACCEL_CAPABILITIES_CIPHER; } if (legfuses & ICP_ACCEL_MASK_COMPRESS_SLICE) capabilities &= ~ICP_ACCEL_CAPABILITIES_COMPRESSION; if ((straps | fuses) & ADF_POWERGATE_PKE) capabilities &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC; if ((straps | fuses) & ADF_POWERGATE_DC) capabilities &= ~ICP_ACCEL_CAPABILITIES_COMPRESSION; return capabilities; } EXPORT_SYMBOL_GPL(adf_gen2_get_accel_cap); void adf_gen2_set_ssm_wdtimer(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u32 timer_val_pke = ADF_SSM_WDT_PKE_DEFAULT_VALUE; u32 timer_val = ADF_SSM_WDT_DEFAULT_VALUE; unsigned long accel_mask = hw_data->accel_mask; u32 i = 0; /* Configures WDT timers */ for_each_set_bit(i, &accel_mask, hw_data->num_accel) { /* Enable WDT for sym and dc */ ADF_CSR_WR(pmisc_addr, ADF_SSMWDT(i), timer_val); /* Enable WDT for pke */ ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKE(i), timer_val_pke); } } EXPORT_SYMBOL_GPL(adf_gen2_set_ssm_wdtimer);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen2_hw_data.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/module.h> #include <crypto/internal/rsa.h> #include <crypto/internal/akcipher.h> #include <crypto/akcipher.h> #include <crypto/kpp.h> #include <crypto/internal/kpp.h> #include <crypto/dh.h> #include <linux/dma-mapping.h> #include <linux/fips.h> #include <crypto/scatterwalk.h> #include "icp_qat_fw_pke.h" #include "adf_accel_devices.h" #include "qat_algs_send.h" #include "adf_transport.h" #include "adf_common_drv.h" #include "qat_crypto.h" static DEFINE_MUTEX(algs_lock); static unsigned int active_devs; struct qat_rsa_input_params { union { struct { dma_addr_t m; dma_addr_t e; dma_addr_t n; } enc; struct { dma_addr_t c; dma_addr_t d; dma_addr_t n; } dec; struct { dma_addr_t c; dma_addr_t p; dma_addr_t q; dma_addr_t dp; dma_addr_t dq; dma_addr_t qinv; } dec_crt; u64 in_tab[8]; }; } __packed __aligned(64); struct qat_rsa_output_params { union { struct { dma_addr_t c; } enc; struct { dma_addr_t m; } dec; u64 out_tab[8]; }; } __packed __aligned(64); struct qat_rsa_ctx { char *n; char *e; char *d; char *p; char *q; char *dp; char *dq; char *qinv; dma_addr_t dma_n; dma_addr_t dma_e; dma_addr_t dma_d; dma_addr_t dma_p; dma_addr_t dma_q; dma_addr_t dma_dp; dma_addr_t dma_dq; dma_addr_t dma_qinv; unsigned int key_sz; bool crt_mode; struct qat_crypto_instance *inst; } __packed __aligned(64); struct qat_dh_input_params { union { struct { dma_addr_t b; dma_addr_t xa; dma_addr_t p; } in; struct { dma_addr_t xa; dma_addr_t p; } in_g2; u64 in_tab[8]; }; } __packed __aligned(64); struct qat_dh_output_params { union { dma_addr_t r; u64 out_tab[8]; }; } __packed __aligned(64); struct qat_dh_ctx { char *g; char *xa; char *p; dma_addr_t dma_g; dma_addr_t dma_xa; dma_addr_t dma_p; unsigned int p_size; bool g2; struct qat_crypto_instance *inst; } __packed __aligned(64); struct qat_asym_request { union { struct qat_rsa_input_params rsa; struct qat_dh_input_params dh; } in; union { struct qat_rsa_output_params rsa; struct qat_dh_output_params dh; } out; dma_addr_t phy_in; dma_addr_t phy_out; char *src_align; char *dst_align; struct icp_qat_fw_pke_request req; union { struct qat_rsa_ctx *rsa; struct qat_dh_ctx *dh; } ctx; union { struct akcipher_request *rsa; struct kpp_request *dh; } areq; int err; void (*cb)(struct icp_qat_fw_pke_resp *resp); struct qat_alg_req alg_req; } __aligned(64); static int qat_alg_send_asym_message(struct qat_asym_request *qat_req, struct qat_crypto_instance *inst, struct crypto_async_request *base) { struct qat_alg_req *alg_req = &qat_req->alg_req; alg_req->fw_req = (u32 *)&qat_req->req; alg_req->tx_ring = inst->pke_tx; alg_req->base = base; alg_req->backlog = &inst->backlog; return qat_alg_send_message(alg_req); } static void qat_dh_cb(struct icp_qat_fw_pke_resp *resp) { struct qat_asym_request *req = (void *)(__force long)resp->opaque; struct kpp_request *areq = req->areq.dh; struct device *dev = &GET_DEV(req->ctx.dh->inst->accel_dev); int err = ICP_QAT_FW_PKE_RESP_PKE_STAT_GET( resp->pke_resp_hdr.comn_resp_flags); err = (err == ICP_QAT_FW_COMN_STATUS_FLAG_OK) ? 0 : -EINVAL; if (areq->src) { dma_unmap_single(dev, req->in.dh.in.b, req->ctx.dh->p_size, DMA_TO_DEVICE); kfree_sensitive(req->src_align); } areq->dst_len = req->ctx.dh->p_size; dma_unmap_single(dev, req->out.dh.r, req->ctx.dh->p_size, DMA_FROM_DEVICE); if (req->dst_align) { scatterwalk_map_and_copy(req->dst_align, areq->dst, 0, areq->dst_len, 1); kfree_sensitive(req->dst_align); } dma_unmap_single(dev, req->phy_in, sizeof(struct qat_dh_input_params), DMA_TO_DEVICE); dma_unmap_single(dev, req->phy_out, sizeof(struct qat_dh_output_params), DMA_TO_DEVICE); kpp_request_complete(areq, err); } #define PKE_DH_1536 0x390c1a49 #define PKE_DH_G2_1536 0x2e0b1a3e #define PKE_DH_2048 0x4d0c1a60 #define PKE_DH_G2_2048 0x3e0b1a55 #define PKE_DH_3072 0x510c1a77 #define PKE_DH_G2_3072 0x3a0b1a6c #define PKE_DH_4096 0x690c1a8e #define PKE_DH_G2_4096 0x4a0b1a83 static unsigned long qat_dh_fn_id(unsigned int len, bool g2) { unsigned int bitslen = len << 3; switch (bitslen) { case 1536: return g2 ? PKE_DH_G2_1536 : PKE_DH_1536; case 2048: return g2 ? PKE_DH_G2_2048 : PKE_DH_2048; case 3072: return g2 ? PKE_DH_G2_3072 : PKE_DH_3072; case 4096: return g2 ? PKE_DH_G2_4096 : PKE_DH_4096; default: return 0; } } static int qat_dh_compute_value(struct kpp_request *req) { struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); struct qat_dh_ctx *ctx = kpp_tfm_ctx(tfm); struct qat_crypto_instance *inst = ctx->inst; struct device *dev = &GET_DEV(inst->accel_dev); struct qat_asym_request *qat_req = PTR_ALIGN(kpp_request_ctx(req), 64); struct icp_qat_fw_pke_request *msg = &qat_req->req; gfp_t flags = qat_algs_alloc_flags(&req->base); int n_input_params = 0; u8 *vaddr; int ret; if (unlikely(!ctx->xa)) return -EINVAL; if (req->dst_len < ctx->p_size) { req->dst_len = ctx->p_size; return -EOVERFLOW; } if (req->src_len > ctx->p_size) return -EINVAL; memset(msg, '\0', sizeof(*msg)); ICP_QAT_FW_PKE_HDR_VALID_FLAG_SET(msg->pke_hdr, ICP_QAT_FW_COMN_REQ_FLAG_SET); msg->pke_hdr.cd_pars.func_id = qat_dh_fn_id(ctx->p_size, !req->src && ctx->g2); if (unlikely(!msg->pke_hdr.cd_pars.func_id)) return -EINVAL; qat_req->cb = qat_dh_cb; qat_req->ctx.dh = ctx; qat_req->areq.dh = req; msg->pke_hdr.service_type = ICP_QAT_FW_COMN_REQ_CPM_FW_PKE; msg->pke_hdr.comn_req_flags = ICP_QAT_FW_COMN_FLAGS_BUILD(QAT_COMN_PTR_TYPE_FLAT, QAT_COMN_CD_FLD_TYPE_64BIT_ADR); /* * If no source is provided use g as base */ if (req->src) { qat_req->in.dh.in.xa = ctx->dma_xa; qat_req->in.dh.in.p = ctx->dma_p; n_input_params = 3; } else { if (ctx->g2) { qat_req->in.dh.in_g2.xa = ctx->dma_xa; qat_req->in.dh.in_g2.p = ctx->dma_p; n_input_params = 2; } else { qat_req->in.dh.in.b = ctx->dma_g; qat_req->in.dh.in.xa = ctx->dma_xa; qat_req->in.dh.in.p = ctx->dma_p; n_input_params = 3; } } ret = -ENOMEM; if (req->src) { /* * src can be of any size in valid range, but HW expects it to * be the same as modulo p so in case it is different we need * to allocate a new buf and copy src data. * In other case we just need to map the user provided buffer. * Also need to make sure that it is in contiguous buffer. */ if (sg_is_last(req->src) && req->src_len == ctx->p_size) { qat_req->src_align = NULL; vaddr = sg_virt(req->src); } else { int shift = ctx->p_size - req->src_len; qat_req->src_align = kzalloc(ctx->p_size, flags); if (unlikely(!qat_req->src_align)) return ret; scatterwalk_map_and_copy(qat_req->src_align + shift, req->src, 0, req->src_len, 0); vaddr = qat_req->src_align; } qat_req->in.dh.in.b = dma_map_single(dev, vaddr, ctx->p_size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->in.dh.in.b))) goto unmap_src; } /* * dst can be of any size in valid range, but HW expects it to be the * same as modulo m so in case it is different we need to allocate a * new buf and copy src data. * In other case we just need to map the user provided buffer. * Also need to make sure that it is in contiguous buffer. */ if (sg_is_last(req->dst) && req->dst_len == ctx->p_size) { qat_req->dst_align = NULL; vaddr = sg_virt(req->dst); } else { qat_req->dst_align = kzalloc(ctx->p_size, flags); if (unlikely(!qat_req->dst_align)) goto unmap_src; vaddr = qat_req->dst_align; } qat_req->out.dh.r = dma_map_single(dev, vaddr, ctx->p_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->out.dh.r))) goto unmap_dst; qat_req->in.dh.in_tab[n_input_params] = 0; qat_req->out.dh.out_tab[1] = 0; /* Mapping in.in.b or in.in_g2.xa is the same */ qat_req->phy_in = dma_map_single(dev, &qat_req->in.dh, sizeof(struct qat_dh_input_params), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->phy_in))) goto unmap_dst; qat_req->phy_out = dma_map_single(dev, &qat_req->out.dh, sizeof(struct qat_dh_output_params), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->phy_out))) goto unmap_in_params; msg->pke_mid.src_data_addr = qat_req->phy_in; msg->pke_mid.dest_data_addr = qat_req->phy_out; msg->pke_mid.opaque = (u64)(__force long)qat_req; msg->input_param_count = n_input_params; msg->output_param_count = 1; ret = qat_alg_send_asym_message(qat_req, inst, &req->base); if (ret == -ENOSPC) goto unmap_all; return ret; unmap_all: if (!dma_mapping_error(dev, qat_req->phy_out)) dma_unmap_single(dev, qat_req->phy_out, sizeof(struct qat_dh_output_params), DMA_TO_DEVICE); unmap_in_params: if (!dma_mapping_error(dev, qat_req->phy_in)) dma_unmap_single(dev, qat_req->phy_in, sizeof(struct qat_dh_input_params), DMA_TO_DEVICE); unmap_dst: if (!dma_mapping_error(dev, qat_req->out.dh.r)) dma_unmap_single(dev, qat_req->out.dh.r, ctx->p_size, DMA_FROM_DEVICE); kfree_sensitive(qat_req->dst_align); unmap_src: if (req->src) { if (!dma_mapping_error(dev, qat_req->in.dh.in.b)) dma_unmap_single(dev, qat_req->in.dh.in.b, ctx->p_size, DMA_TO_DEVICE); kfree_sensitive(qat_req->src_align); } return ret; } static int qat_dh_check_params_length(unsigned int p_len) { switch (p_len) { case 1536: case 2048: case 3072: case 4096: return 0; } return -EINVAL; } static int qat_dh_set_params(struct qat_dh_ctx *ctx, struct dh *params) { struct qat_crypto_instance *inst = ctx->inst; struct device *dev = &GET_DEV(inst->accel_dev); if (qat_dh_check_params_length(params->p_size << 3)) return -EINVAL; ctx->p_size = params->p_size; ctx->p = dma_alloc_coherent(dev, ctx->p_size, &ctx->dma_p, GFP_KERNEL); if (!ctx->p) return -ENOMEM; memcpy(ctx->p, params->p, ctx->p_size); /* If g equals 2 don't copy it */ if (params->g_size == 1 && *(char *)params->g == 0x02) { ctx->g2 = true; return 0; } ctx->g = dma_alloc_coherent(dev, ctx->p_size, &ctx->dma_g, GFP_KERNEL); if (!ctx->g) return -ENOMEM; memcpy(ctx->g + (ctx->p_size - params->g_size), params->g, params->g_size); return 0; } static void qat_dh_clear_ctx(struct device *dev, struct qat_dh_ctx *ctx) { if (ctx->g) { memset(ctx->g, 0, ctx->p_size); dma_free_coherent(dev, ctx->p_size, ctx->g, ctx->dma_g); ctx->g = NULL; } if (ctx->xa) { memset(ctx->xa, 0, ctx->p_size); dma_free_coherent(dev, ctx->p_size, ctx->xa, ctx->dma_xa); ctx->xa = NULL; } if (ctx->p) { memset(ctx->p, 0, ctx->p_size); dma_free_coherent(dev, ctx->p_size, ctx->p, ctx->dma_p); ctx->p = NULL; } ctx->p_size = 0; ctx->g2 = false; } static int qat_dh_set_secret(struct crypto_kpp *tfm, const void *buf, unsigned int len) { struct qat_dh_ctx *ctx = kpp_tfm_ctx(tfm); struct device *dev = &GET_DEV(ctx->inst->accel_dev); struct dh params; int ret; if (crypto_dh_decode_key(buf, len, &params) < 0) return -EINVAL; /* Free old secret if any */ qat_dh_clear_ctx(dev, ctx); ret = qat_dh_set_params(ctx, &params); if (ret < 0) goto err_clear_ctx; ctx->xa = dma_alloc_coherent(dev, ctx->p_size, &ctx->dma_xa, GFP_KERNEL); if (!ctx->xa) { ret = -ENOMEM; goto err_clear_ctx; } memcpy(ctx->xa + (ctx->p_size - params.key_size), params.key, params.key_size); return 0; err_clear_ctx: qat_dh_clear_ctx(dev, ctx); return ret; } static unsigned int qat_dh_max_size(struct crypto_kpp *tfm) { struct qat_dh_ctx *ctx = kpp_tfm_ctx(tfm); return ctx->p_size; } static int qat_dh_init_tfm(struct crypto_kpp *tfm) { struct qat_dh_ctx *ctx = kpp_tfm_ctx(tfm); struct qat_crypto_instance *inst = qat_crypto_get_instance_node(numa_node_id()); if (!inst) return -EINVAL; kpp_set_reqsize(tfm, sizeof(struct qat_asym_request) + 64); ctx->p_size = 0; ctx->g2 = false; ctx->inst = inst; return 0; } static void qat_dh_exit_tfm(struct crypto_kpp *tfm) { struct qat_dh_ctx *ctx = kpp_tfm_ctx(tfm); struct device *dev = &GET_DEV(ctx->inst->accel_dev); qat_dh_clear_ctx(dev, ctx); qat_crypto_put_instance(ctx->inst); } static void qat_rsa_cb(struct icp_qat_fw_pke_resp *resp) { struct qat_asym_request *req = (void *)(__force long)resp->opaque; struct akcipher_request *areq = req->areq.rsa; struct device *dev = &GET_DEV(req->ctx.rsa->inst->accel_dev); int err = ICP_QAT_FW_PKE_RESP_PKE_STAT_GET( resp->pke_resp_hdr.comn_resp_flags); err = (err == ICP_QAT_FW_COMN_STATUS_FLAG_OK) ? 0 : -EINVAL; dma_unmap_single(dev, req->in.rsa.enc.m, req->ctx.rsa->key_sz, DMA_TO_DEVICE); kfree_sensitive(req->src_align); areq->dst_len = req->ctx.rsa->key_sz; dma_unmap_single(dev, req->out.rsa.enc.c, req->ctx.rsa->key_sz, DMA_FROM_DEVICE); if (req->dst_align) { scatterwalk_map_and_copy(req->dst_align, areq->dst, 0, areq->dst_len, 1); kfree_sensitive(req->dst_align); } dma_unmap_single(dev, req->phy_in, sizeof(struct qat_rsa_input_params), DMA_TO_DEVICE); dma_unmap_single(dev, req->phy_out, sizeof(struct qat_rsa_output_params), DMA_TO_DEVICE); akcipher_request_complete(areq, err); } void qat_alg_asym_callback(void *_resp) { struct icp_qat_fw_pke_resp *resp = _resp; struct qat_asym_request *areq = (void *)(__force long)resp->opaque; struct qat_instance_backlog *backlog = areq->alg_req.backlog; areq->cb(resp); qat_alg_send_backlog(backlog); } #define PKE_RSA_EP_512 0x1c161b21 #define PKE_RSA_EP_1024 0x35111bf7 #define PKE_RSA_EP_1536 0x4d111cdc #define PKE_RSA_EP_2048 0x6e111dba #define PKE_RSA_EP_3072 0x7d111ea3 #define PKE_RSA_EP_4096 0xa5101f7e static unsigned long qat_rsa_enc_fn_id(unsigned int len) { unsigned int bitslen = len << 3; switch (bitslen) { case 512: return PKE_RSA_EP_512; case 1024: return PKE_RSA_EP_1024; case 1536: return PKE_RSA_EP_1536; case 2048: return PKE_RSA_EP_2048; case 3072: return PKE_RSA_EP_3072; case 4096: return PKE_RSA_EP_4096; default: return 0; } } #define PKE_RSA_DP1_512 0x1c161b3c #define PKE_RSA_DP1_1024 0x35111c12 #define PKE_RSA_DP1_1536 0x4d111cf7 #define PKE_RSA_DP1_2048 0x6e111dda #define PKE_RSA_DP1_3072 0x7d111ebe #define PKE_RSA_DP1_4096 0xa5101f98 static unsigned long qat_rsa_dec_fn_id(unsigned int len) { unsigned int bitslen = len << 3; switch (bitslen) { case 512: return PKE_RSA_DP1_512; case 1024: return PKE_RSA_DP1_1024; case 1536: return PKE_RSA_DP1_1536; case 2048: return PKE_RSA_DP1_2048; case 3072: return PKE_RSA_DP1_3072; case 4096: return PKE_RSA_DP1_4096; default: return 0; } } #define PKE_RSA_DP2_512 0x1c131b57 #define PKE_RSA_DP2_1024 0x26131c2d #define PKE_RSA_DP2_1536 0x45111d12 #define PKE_RSA_DP2_2048 0x59121dfa #define PKE_RSA_DP2_3072 0x81121ed9 #define PKE_RSA_DP2_4096 0xb1111fb2 static unsigned long qat_rsa_dec_fn_id_crt(unsigned int len) { unsigned int bitslen = len << 3; switch (bitslen) { case 512: return PKE_RSA_DP2_512; case 1024: return PKE_RSA_DP2_1024; case 1536: return PKE_RSA_DP2_1536; case 2048: return PKE_RSA_DP2_2048; case 3072: return PKE_RSA_DP2_3072; case 4096: return PKE_RSA_DP2_4096; default: return 0; } } static int qat_rsa_enc(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct qat_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); struct qat_crypto_instance *inst = ctx->inst; struct device *dev = &GET_DEV(inst->accel_dev); struct qat_asym_request *qat_req = PTR_ALIGN(akcipher_request_ctx(req), 64); struct icp_qat_fw_pke_request *msg = &qat_req->req; gfp_t flags = qat_algs_alloc_flags(&req->base); u8 *vaddr; int ret; if (unlikely(!ctx->n || !ctx->e)) return -EINVAL; if (req->dst_len < ctx->key_sz) { req->dst_len = ctx->key_sz; return -EOVERFLOW; } if (req->src_len > ctx->key_sz) return -EINVAL; memset(msg, '\0', sizeof(*msg)); ICP_QAT_FW_PKE_HDR_VALID_FLAG_SET(msg->pke_hdr, ICP_QAT_FW_COMN_REQ_FLAG_SET); msg->pke_hdr.cd_pars.func_id = qat_rsa_enc_fn_id(ctx->key_sz); if (unlikely(!msg->pke_hdr.cd_pars.func_id)) return -EINVAL; qat_req->cb = qat_rsa_cb; qat_req->ctx.rsa = ctx; qat_req->areq.rsa = req; msg->pke_hdr.service_type = ICP_QAT_FW_COMN_REQ_CPM_FW_PKE; msg->pke_hdr.comn_req_flags = ICP_QAT_FW_COMN_FLAGS_BUILD(QAT_COMN_PTR_TYPE_FLAT, QAT_COMN_CD_FLD_TYPE_64BIT_ADR); qat_req->in.rsa.enc.e = ctx->dma_e; qat_req->in.rsa.enc.n = ctx->dma_n; ret = -ENOMEM; /* * src can be of any size in valid range, but HW expects it to be the * same as modulo n so in case it is different we need to allocate a * new buf and copy src data. * In other case we just need to map the user provided buffer. * Also need to make sure that it is in contiguous buffer. */ if (sg_is_last(req->src) && req->src_len == ctx->key_sz) { qat_req->src_align = NULL; vaddr = sg_virt(req->src); } else { int shift = ctx->key_sz - req->src_len; qat_req->src_align = kzalloc(ctx->key_sz, flags); if (unlikely(!qat_req->src_align)) return ret; scatterwalk_map_and_copy(qat_req->src_align + shift, req->src, 0, req->src_len, 0); vaddr = qat_req->src_align; } qat_req->in.rsa.enc.m = dma_map_single(dev, vaddr, ctx->key_sz, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->in.rsa.enc.m))) goto unmap_src; if (sg_is_last(req->dst) && req->dst_len == ctx->key_sz) { qat_req->dst_align = NULL; vaddr = sg_virt(req->dst); } else { qat_req->dst_align = kzalloc(ctx->key_sz, flags); if (unlikely(!qat_req->dst_align)) goto unmap_src; vaddr = qat_req->dst_align; } qat_req->out.rsa.enc.c = dma_map_single(dev, vaddr, ctx->key_sz, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->out.rsa.enc.c))) goto unmap_dst; qat_req->in.rsa.in_tab[3] = 0; qat_req->out.rsa.out_tab[1] = 0; qat_req->phy_in = dma_map_single(dev, &qat_req->in.rsa, sizeof(struct qat_rsa_input_params), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->phy_in))) goto unmap_dst; qat_req->phy_out = dma_map_single(dev, &qat_req->out.rsa, sizeof(struct qat_rsa_output_params), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->phy_out))) goto unmap_in_params; msg->pke_mid.src_data_addr = qat_req->phy_in; msg->pke_mid.dest_data_addr = qat_req->phy_out; msg->pke_mid.opaque = (u64)(__force long)qat_req; msg->input_param_count = 3; msg->output_param_count = 1; ret = qat_alg_send_asym_message(qat_req, inst, &req->base); if (ret == -ENOSPC) goto unmap_all; return ret; unmap_all: if (!dma_mapping_error(dev, qat_req->phy_out)) dma_unmap_single(dev, qat_req->phy_out, sizeof(struct qat_rsa_output_params), DMA_TO_DEVICE); unmap_in_params: if (!dma_mapping_error(dev, qat_req->phy_in)) dma_unmap_single(dev, qat_req->phy_in, sizeof(struct qat_rsa_input_params), DMA_TO_DEVICE); unmap_dst: if (!dma_mapping_error(dev, qat_req->out.rsa.enc.c)) dma_unmap_single(dev, qat_req->out.rsa.enc.c, ctx->key_sz, DMA_FROM_DEVICE); kfree_sensitive(qat_req->dst_align); unmap_src: if (!dma_mapping_error(dev, qat_req->in.rsa.enc.m)) dma_unmap_single(dev, qat_req->in.rsa.enc.m, ctx->key_sz, DMA_TO_DEVICE); kfree_sensitive(qat_req->src_align); return ret; } static int qat_rsa_dec(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct qat_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); struct qat_crypto_instance *inst = ctx->inst; struct device *dev = &GET_DEV(inst->accel_dev); struct qat_asym_request *qat_req = PTR_ALIGN(akcipher_request_ctx(req), 64); struct icp_qat_fw_pke_request *msg = &qat_req->req; gfp_t flags = qat_algs_alloc_flags(&req->base); u8 *vaddr; int ret; if (unlikely(!ctx->n || !ctx->d)) return -EINVAL; if (req->dst_len < ctx->key_sz) { req->dst_len = ctx->key_sz; return -EOVERFLOW; } if (req->src_len > ctx->key_sz) return -EINVAL; memset(msg, '\0', sizeof(*msg)); ICP_QAT_FW_PKE_HDR_VALID_FLAG_SET(msg->pke_hdr, ICP_QAT_FW_COMN_REQ_FLAG_SET); msg->pke_hdr.cd_pars.func_id = ctx->crt_mode ? qat_rsa_dec_fn_id_crt(ctx->key_sz) : qat_rsa_dec_fn_id(ctx->key_sz); if (unlikely(!msg->pke_hdr.cd_pars.func_id)) return -EINVAL; qat_req->cb = qat_rsa_cb; qat_req->ctx.rsa = ctx; qat_req->areq.rsa = req; msg->pke_hdr.service_type = ICP_QAT_FW_COMN_REQ_CPM_FW_PKE; msg->pke_hdr.comn_req_flags = ICP_QAT_FW_COMN_FLAGS_BUILD(QAT_COMN_PTR_TYPE_FLAT, QAT_COMN_CD_FLD_TYPE_64BIT_ADR); if (ctx->crt_mode) { qat_req->in.rsa.dec_crt.p = ctx->dma_p; qat_req->in.rsa.dec_crt.q = ctx->dma_q; qat_req->in.rsa.dec_crt.dp = ctx->dma_dp; qat_req->in.rsa.dec_crt.dq = ctx->dma_dq; qat_req->in.rsa.dec_crt.qinv = ctx->dma_qinv; } else { qat_req->in.rsa.dec.d = ctx->dma_d; qat_req->in.rsa.dec.n = ctx->dma_n; } ret = -ENOMEM; /* * src can be of any size in valid range, but HW expects it to be the * same as modulo n so in case it is different we need to allocate a * new buf and copy src data. * In other case we just need to map the user provided buffer. * Also need to make sure that it is in contiguous buffer. */ if (sg_is_last(req->src) && req->src_len == ctx->key_sz) { qat_req->src_align = NULL; vaddr = sg_virt(req->src); } else { int shift = ctx->key_sz - req->src_len; qat_req->src_align = kzalloc(ctx->key_sz, flags); if (unlikely(!qat_req->src_align)) return ret; scatterwalk_map_and_copy(qat_req->src_align + shift, req->src, 0, req->src_len, 0); vaddr = qat_req->src_align; } qat_req->in.rsa.dec.c = dma_map_single(dev, vaddr, ctx->key_sz, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->in.rsa.dec.c))) goto unmap_src; if (sg_is_last(req->dst) && req->dst_len == ctx->key_sz) { qat_req->dst_align = NULL; vaddr = sg_virt(req->dst); } else { qat_req->dst_align = kzalloc(ctx->key_sz, flags); if (unlikely(!qat_req->dst_align)) goto unmap_src; vaddr = qat_req->dst_align; } qat_req->out.rsa.dec.m = dma_map_single(dev, vaddr, ctx->key_sz, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->out.rsa.dec.m))) goto unmap_dst; if (ctx->crt_mode) qat_req->in.rsa.in_tab[6] = 0; else qat_req->in.rsa.in_tab[3] = 0; qat_req->out.rsa.out_tab[1] = 0; qat_req->phy_in = dma_map_single(dev, &qat_req->in.rsa, sizeof(struct qat_rsa_input_params), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->phy_in))) goto unmap_dst; qat_req->phy_out = dma_map_single(dev, &qat_req->out.rsa, sizeof(struct qat_rsa_output_params), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, qat_req->phy_out))) goto unmap_in_params; msg->pke_mid.src_data_addr = qat_req->phy_in; msg->pke_mid.dest_data_addr = qat_req->phy_out; msg->pke_mid.opaque = (u64)(__force long)qat_req; if (ctx->crt_mode) msg->input_param_count = 6; else msg->input_param_count = 3; msg->output_param_count = 1; ret = qat_alg_send_asym_message(qat_req, inst, &req->base); if (ret == -ENOSPC) goto unmap_all; return ret; unmap_all: if (!dma_mapping_error(dev, qat_req->phy_out)) dma_unmap_single(dev, qat_req->phy_out, sizeof(struct qat_rsa_output_params), DMA_TO_DEVICE); unmap_in_params: if (!dma_mapping_error(dev, qat_req->phy_in)) dma_unmap_single(dev, qat_req->phy_in, sizeof(struct qat_rsa_input_params), DMA_TO_DEVICE); unmap_dst: if (!dma_mapping_error(dev, qat_req->out.rsa.dec.m)) dma_unmap_single(dev, qat_req->out.rsa.dec.m, ctx->key_sz, DMA_FROM_DEVICE); kfree_sensitive(qat_req->dst_align); unmap_src: if (!dma_mapping_error(dev, qat_req->in.rsa.dec.c)) dma_unmap_single(dev, qat_req->in.rsa.dec.c, ctx->key_sz, DMA_TO_DEVICE); kfree_sensitive(qat_req->src_align); return ret; } static int qat_rsa_set_n(struct qat_rsa_ctx *ctx, const char *value, size_t vlen) { struct qat_crypto_instance *inst = ctx->inst; struct device *dev = &GET_DEV(inst->accel_dev); const char *ptr = value; int ret; while (!*ptr && vlen) { ptr++; vlen--; } ctx->key_sz = vlen; ret = -EINVAL; /* invalid key size provided */ if (!qat_rsa_enc_fn_id(ctx->key_sz)) goto err; ret = -ENOMEM; ctx->n = dma_alloc_coherent(dev, ctx->key_sz, &ctx->dma_n, GFP_KERNEL); if (!ctx->n) goto err; memcpy(ctx->n, ptr, ctx->key_sz); return 0; err: ctx->key_sz = 0; ctx->n = NULL; return ret; } static int qat_rsa_set_e(struct qat_rsa_ctx *ctx, const char *value, size_t vlen) { struct qat_crypto_instance *inst = ctx->inst; struct device *dev = &GET_DEV(inst->accel_dev); const char *ptr = value; while (!*ptr && vlen) { ptr++; vlen--; } if (!ctx->key_sz || !vlen || vlen > ctx->key_sz) { ctx->e = NULL; return -EINVAL; } ctx->e = dma_alloc_coherent(dev, ctx->key_sz, &ctx->dma_e, GFP_KERNEL); if (!ctx->e) return -ENOMEM; memcpy(ctx->e + (ctx->key_sz - vlen), ptr, vlen); return 0; } static int qat_rsa_set_d(struct qat_rsa_ctx *ctx, const char *value, size_t vlen) { struct qat_crypto_instance *inst = ctx->inst; struct device *dev = &GET_DEV(inst->accel_dev); const char *ptr = value; int ret; while (!*ptr && vlen) { ptr++; vlen--; } ret = -EINVAL; if (!ctx->key_sz || !vlen || vlen > ctx->key_sz) goto err; ret = -ENOMEM; ctx->d = dma_alloc_coherent(dev, ctx->key_sz, &ctx->dma_d, GFP_KERNEL); if (!ctx->d) goto err; memcpy(ctx->d + (ctx->key_sz - vlen), ptr, vlen); return 0; err: ctx->d = NULL; return ret; } static void qat_rsa_drop_leading_zeros(const char **ptr, unsigned int *len) { while (!**ptr && *len) { (*ptr)++; (*len)--; } } static void qat_rsa_setkey_crt(struct qat_rsa_ctx *ctx, struct rsa_key *rsa_key) { struct qat_crypto_instance *inst = ctx->inst; struct device *dev = &GET_DEV(inst->accel_dev); const char *ptr; unsigned int len; unsigned int half_key_sz = ctx->key_sz / 2; /* p */ ptr = rsa_key->p; len = rsa_key->p_sz; qat_rsa_drop_leading_zeros(&ptr, &len); if (!len) goto err; ctx->p = dma_alloc_coherent(dev, half_key_sz, &ctx->dma_p, GFP_KERNEL); if (!ctx->p) goto err; memcpy(ctx->p + (half_key_sz - len), ptr, len); /* q */ ptr = rsa_key->q; len = rsa_key->q_sz; qat_rsa_drop_leading_zeros(&ptr, &len); if (!len) goto free_p; ctx->q = dma_alloc_coherent(dev, half_key_sz, &ctx->dma_q, GFP_KERNEL); if (!ctx->q) goto free_p; memcpy(ctx->q + (half_key_sz - len), ptr, len); /* dp */ ptr = rsa_key->dp; len = rsa_key->dp_sz; qat_rsa_drop_leading_zeros(&ptr, &len); if (!len) goto free_q; ctx->dp = dma_alloc_coherent(dev, half_key_sz, &ctx->dma_dp, GFP_KERNEL); if (!ctx->dp) goto free_q; memcpy(ctx->dp + (half_key_sz - len), ptr, len); /* dq */ ptr = rsa_key->dq; len = rsa_key->dq_sz; qat_rsa_drop_leading_zeros(&ptr, &len); if (!len) goto free_dp; ctx->dq = dma_alloc_coherent(dev, half_key_sz, &ctx->dma_dq, GFP_KERNEL); if (!ctx->dq) goto free_dp; memcpy(ctx->dq + (half_key_sz - len), ptr, len); /* qinv */ ptr = rsa_key->qinv; len = rsa_key->qinv_sz; qat_rsa_drop_leading_zeros(&ptr, &len); if (!len) goto free_dq; ctx->qinv = dma_alloc_coherent(dev, half_key_sz, &ctx->dma_qinv, GFP_KERNEL); if (!ctx->qinv) goto free_dq; memcpy(ctx->qinv + (half_key_sz - len), ptr, len); ctx->crt_mode = true; return; free_dq: memset(ctx->dq, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->dq, ctx->dma_dq); ctx->dq = NULL; free_dp: memset(ctx->dp, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->dp, ctx->dma_dp); ctx->dp = NULL; free_q: memset(ctx->q, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->q, ctx->dma_q); ctx->q = NULL; free_p: memset(ctx->p, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->p, ctx->dma_p); ctx->p = NULL; err: ctx->crt_mode = false; } static void qat_rsa_clear_ctx(struct device *dev, struct qat_rsa_ctx *ctx) { unsigned int half_key_sz = ctx->key_sz / 2; /* Free the old key if any */ if (ctx->n) dma_free_coherent(dev, ctx->key_sz, ctx->n, ctx->dma_n); if (ctx->e) dma_free_coherent(dev, ctx->key_sz, ctx->e, ctx->dma_e); if (ctx->d) { memset(ctx->d, '\0', ctx->key_sz); dma_free_coherent(dev, ctx->key_sz, ctx->d, ctx->dma_d); } if (ctx->p) { memset(ctx->p, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->p, ctx->dma_p); } if (ctx->q) { memset(ctx->q, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->q, ctx->dma_q); } if (ctx->dp) { memset(ctx->dp, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->dp, ctx->dma_dp); } if (ctx->dq) { memset(ctx->dq, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->dq, ctx->dma_dq); } if (ctx->qinv) { memset(ctx->qinv, '\0', half_key_sz); dma_free_coherent(dev, half_key_sz, ctx->qinv, ctx->dma_qinv); } ctx->n = NULL; ctx->e = NULL; ctx->d = NULL; ctx->p = NULL; ctx->q = NULL; ctx->dp = NULL; ctx->dq = NULL; ctx->qinv = NULL; ctx->crt_mode = false; ctx->key_sz = 0; } static int qat_rsa_setkey(struct crypto_akcipher *tfm, const void *key, unsigned int keylen, bool private) { struct qat_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); struct device *dev = &GET_DEV(ctx->inst->accel_dev); struct rsa_key rsa_key; int ret; qat_rsa_clear_ctx(dev, ctx); if (private) ret = rsa_parse_priv_key(&rsa_key, key, keylen); else ret = rsa_parse_pub_key(&rsa_key, key, keylen); if (ret < 0) goto free; ret = qat_rsa_set_n(ctx, rsa_key.n, rsa_key.n_sz); if (ret < 0) goto free; ret = qat_rsa_set_e(ctx, rsa_key.e, rsa_key.e_sz); if (ret < 0) goto free; if (private) { ret = qat_rsa_set_d(ctx, rsa_key.d, rsa_key.d_sz); if (ret < 0) goto free; qat_rsa_setkey_crt(ctx, &rsa_key); } if (!ctx->n || !ctx->e) { /* invalid key provided */ ret = -EINVAL; goto free; } if (private && !ctx->d) { /* invalid private key provided */ ret = -EINVAL; goto free; } return 0; free: qat_rsa_clear_ctx(dev, ctx); return ret; } static int qat_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { return qat_rsa_setkey(tfm, key, keylen, false); } static int qat_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { return qat_rsa_setkey(tfm, key, keylen, true); } static unsigned int qat_rsa_max_size(struct crypto_akcipher *tfm) { struct qat_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); return ctx->key_sz; } static int qat_rsa_init_tfm(struct crypto_akcipher *tfm) { struct qat_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); struct qat_crypto_instance *inst = qat_crypto_get_instance_node(numa_node_id()); if (!inst) return -EINVAL; akcipher_set_reqsize(tfm, sizeof(struct qat_asym_request) + 64); ctx->key_sz = 0; ctx->inst = inst; return 0; } static void qat_rsa_exit_tfm(struct crypto_akcipher *tfm) { struct qat_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); struct device *dev = &GET_DEV(ctx->inst->accel_dev); qat_rsa_clear_ctx(dev, ctx); qat_crypto_put_instance(ctx->inst); } static struct akcipher_alg rsa = { .encrypt = qat_rsa_enc, .decrypt = qat_rsa_dec, .set_pub_key = qat_rsa_setpubkey, .set_priv_key = qat_rsa_setprivkey, .max_size = qat_rsa_max_size, .init = qat_rsa_init_tfm, .exit = qat_rsa_exit_tfm, .base = { .cra_name = "rsa", .cra_driver_name = "qat-rsa", .cra_priority = 1000, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct qat_rsa_ctx), }, }; static struct kpp_alg dh = { .set_secret = qat_dh_set_secret, .generate_public_key = qat_dh_compute_value, .compute_shared_secret = qat_dh_compute_value, .max_size = qat_dh_max_size, .init = qat_dh_init_tfm, .exit = qat_dh_exit_tfm, .base = { .cra_name = "dh", .cra_driver_name = "qat-dh", .cra_priority = 1000, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct qat_dh_ctx), }, }; int qat_asym_algs_register(void) { int ret = 0; mutex_lock(&algs_lock); if (++active_devs == 1) { rsa.base.cra_flags = 0; ret = crypto_register_akcipher(&rsa); if (ret) goto unlock; ret = crypto_register_kpp(&dh); } unlock: mutex_unlock(&algs_lock); return ret; } void qat_asym_algs_unregister(void) { mutex_lock(&algs_lock); if (--active_devs == 0) { crypto_unregister_akcipher(&rsa); crypto_unregister_kpp(&dh); } mutex_unlock(&algs_lock); }
linux-master
drivers/crypto/intel/qat/qat_common/qat_asym_algs.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2015 - 2021 Intel Corporation */ #include <linux/bitfield.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_pfvf_msg.h" #include "adf_pfvf_vf_msg.h" #include "adf_pfvf_vf_proto.h" /** * adf_vf2pf_notify_init() - send init msg to PF * @accel_dev: Pointer to acceleration VF device. * * Function sends an init message from the VF to a PF * * Return: 0 on success, error code otherwise. */ int adf_vf2pf_notify_init(struct adf_accel_dev *accel_dev) { struct pfvf_message msg = { .type = ADF_VF2PF_MSGTYPE_INIT }; if (adf_send_vf2pf_msg(accel_dev, msg)) { dev_err(&GET_DEV(accel_dev), "Failed to send Init event to PF\n"); return -EFAULT; } set_bit(ADF_STATUS_PF_RUNNING, &accel_dev->status); return 0; } EXPORT_SYMBOL_GPL(adf_vf2pf_notify_init); /** * adf_vf2pf_notify_shutdown() - send shutdown msg to PF * @accel_dev: Pointer to acceleration VF device. * * Function sends a shutdown message from the VF to a PF * * Return: void */ void adf_vf2pf_notify_shutdown(struct adf_accel_dev *accel_dev) { struct pfvf_message msg = { .type = ADF_VF2PF_MSGTYPE_SHUTDOWN }; if (test_bit(ADF_STATUS_PF_RUNNING, &accel_dev->status)) if (adf_send_vf2pf_msg(accel_dev, msg)) dev_err(&GET_DEV(accel_dev), "Failed to send Shutdown event to PF\n"); } EXPORT_SYMBOL_GPL(adf_vf2pf_notify_shutdown); int adf_vf2pf_request_version(struct adf_accel_dev *accel_dev) { u8 pf_version; int compat; int ret; struct pfvf_message resp; struct pfvf_message msg = { .type = ADF_VF2PF_MSGTYPE_COMPAT_VER_REQ, .data = ADF_PFVF_COMPAT_THIS_VERSION, }; BUILD_BUG_ON(ADF_PFVF_COMPAT_THIS_VERSION > 255); ret = adf_send_vf2pf_req(accel_dev, msg, &resp); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed to send Compatibility Version Request.\n"); return ret; } pf_version = FIELD_GET(ADF_PF2VF_VERSION_RESP_VERS_MASK, resp.data); compat = FIELD_GET(ADF_PF2VF_VERSION_RESP_RESULT_MASK, resp.data); /* Response from PF received, check compatibility */ switch (compat) { case ADF_PF2VF_VF_COMPATIBLE: break; case ADF_PF2VF_VF_COMPAT_UNKNOWN: /* VF is newer than PF - compatible for now */ break; case ADF_PF2VF_VF_INCOMPATIBLE: dev_err(&GET_DEV(accel_dev), "PF (vers %d) and VF (vers %d) are not compatible\n", pf_version, ADF_PFVF_COMPAT_THIS_VERSION); return -EINVAL; default: dev_err(&GET_DEV(accel_dev), "Invalid response from PF; assume not compatible\n"); return -EINVAL; } accel_dev->vf.pf_compat_ver = pf_version; return 0; } int adf_vf2pf_get_capabilities(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct capabilities_v3 cap_msg = { 0 }; unsigned int len = sizeof(cap_msg); if (accel_dev->vf.pf_compat_ver < ADF_PFVF_COMPAT_CAPABILITIES) /* The PF is too old to support the extended capabilities */ return 0; if (adf_send_vf2pf_blkmsg_req(accel_dev, ADF_VF2PF_BLKMSG_REQ_CAP_SUMMARY, (u8 *)&cap_msg, &len)) { dev_err(&GET_DEV(accel_dev), "QAT: Failed to get block message response\n"); return -EFAULT; } switch (cap_msg.hdr.version) { default: /* Newer version received, handle only the know parts */ fallthrough; case ADF_PFVF_CAPABILITIES_V3_VERSION: if (likely(len >= sizeof(struct capabilities_v3))) hw_data->clock_frequency = cap_msg.frequency; else dev_info(&GET_DEV(accel_dev), "Could not get frequency"); fallthrough; case ADF_PFVF_CAPABILITIES_V2_VERSION: if (likely(len >= sizeof(struct capabilities_v2))) hw_data->accel_capabilities_mask = cap_msg.capabilities; else dev_info(&GET_DEV(accel_dev), "Could not get capabilities"); fallthrough; case ADF_PFVF_CAPABILITIES_V1_VERSION: if (likely(len >= sizeof(struct capabilities_v1))) { hw_data->extended_dc_capabilities = cap_msg.ext_dc_caps; } else { dev_err(&GET_DEV(accel_dev), "Capabilities message truncated to %d bytes\n", len); return -EFAULT; } } return 0; } int adf_vf2pf_get_ring_to_svc(struct adf_accel_dev *accel_dev) { struct ring_to_svc_map_v1 rts_map_msg = { 0 }; unsigned int len = sizeof(rts_map_msg); if (accel_dev->vf.pf_compat_ver < ADF_PFVF_COMPAT_RING_TO_SVC_MAP) /* Use already set default mappings */ return 0; if (adf_send_vf2pf_blkmsg_req(accel_dev, ADF_VF2PF_BLKMSG_REQ_RING_SVC_MAP, (u8 *)&rts_map_msg, &len)) { dev_err(&GET_DEV(accel_dev), "QAT: Failed to get block message response\n"); return -EFAULT; } if (unlikely(len < sizeof(struct ring_to_svc_map_v1))) { dev_err(&GET_DEV(accel_dev), "RING_TO_SVC message truncated to %d bytes\n", len); return -EFAULT; } /* Only v1 at present */ accel_dev->hw_device->ring_to_svc_map = rts_map_msg.map; return 0; }
linux-master
drivers/crypto/intel/qat/qat_common/adf_pfvf_vf_msg.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2020 Intel Corporation */ #include <linux/iopoll.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_gen4_hw_data.h" static u64 build_csr_ring_base_addr(dma_addr_t addr, u32 size) { return BUILD_RING_BASE_ADDR(addr, size); } static u32 read_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring) { return READ_CSR_RING_HEAD(csr_base_addr, bank, ring); } static void write_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring, u32 value) { WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value); } static u32 read_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring) { return READ_CSR_RING_TAIL(csr_base_addr, bank, ring); } static void write_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring, u32 value) { WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value); } static u32 read_csr_e_stat(void __iomem *csr_base_addr, u32 bank) { return READ_CSR_E_STAT(csr_base_addr, bank); } static void write_csr_ring_config(void __iomem *csr_base_addr, u32 bank, u32 ring, u32 value) { WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value); } static void write_csr_ring_base(void __iomem *csr_base_addr, u32 bank, u32 ring, dma_addr_t addr) { WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, addr); } static void write_csr_int_flag(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_INT_FLAG(csr_base_addr, bank, value); } static void write_csr_int_srcsel(void __iomem *csr_base_addr, u32 bank) { WRITE_CSR_INT_SRCSEL(csr_base_addr, bank); } static void write_csr_int_col_en(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value); } static void write_csr_int_col_ctl(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value); } static void write_csr_int_flag_and_col(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value); } static void write_csr_ring_srv_arb_en(void __iomem *csr_base_addr, u32 bank, u32 value) { WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value); } void adf_gen4_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops) { csr_ops->build_csr_ring_base_addr = build_csr_ring_base_addr; csr_ops->read_csr_ring_head = read_csr_ring_head; csr_ops->write_csr_ring_head = write_csr_ring_head; csr_ops->read_csr_ring_tail = read_csr_ring_tail; csr_ops->write_csr_ring_tail = write_csr_ring_tail; csr_ops->read_csr_e_stat = read_csr_e_stat; csr_ops->write_csr_ring_config = write_csr_ring_config; csr_ops->write_csr_ring_base = write_csr_ring_base; csr_ops->write_csr_int_flag = write_csr_int_flag; csr_ops->write_csr_int_srcsel = write_csr_int_srcsel; csr_ops->write_csr_int_col_en = write_csr_int_col_en; csr_ops->write_csr_int_col_ctl = write_csr_int_col_ctl; csr_ops->write_csr_int_flag_and_col = write_csr_int_flag_and_col; csr_ops->write_csr_ring_srv_arb_en = write_csr_ring_srv_arb_en; } EXPORT_SYMBOL_GPL(adf_gen4_init_hw_csr_ops); static inline void adf_gen4_unpack_ssm_wdtimer(u64 value, u32 *upper, u32 *lower) { *lower = lower_32_bits(value); *upper = upper_32_bits(value); } void adf_gen4_set_ssm_wdtimer(struct adf_accel_dev *accel_dev) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u64 timer_val_pke = ADF_SSM_WDT_PKE_DEFAULT_VALUE; u64 timer_val = ADF_SSM_WDT_DEFAULT_VALUE; u32 ssm_wdt_pke_high = 0; u32 ssm_wdt_pke_low = 0; u32 ssm_wdt_high = 0; u32 ssm_wdt_low = 0; /* Convert 64bit WDT timer value into 32bit values for * mmio write to 32bit CSRs. */ adf_gen4_unpack_ssm_wdtimer(timer_val, &ssm_wdt_high, &ssm_wdt_low); adf_gen4_unpack_ssm_wdtimer(timer_val_pke, &ssm_wdt_pke_high, &ssm_wdt_pke_low); /* Enable WDT for sym and dc */ ADF_CSR_WR(pmisc_addr, ADF_SSMWDTL_OFFSET, ssm_wdt_low); ADF_CSR_WR(pmisc_addr, ADF_SSMWDTH_OFFSET, ssm_wdt_high); /* Enable WDT for pke */ ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKEL_OFFSET, ssm_wdt_pke_low); ADF_CSR_WR(pmisc_addr, ADF_SSMWDTPKEH_OFFSET, ssm_wdt_pke_high); } EXPORT_SYMBOL_GPL(adf_gen4_set_ssm_wdtimer); int adf_pfvf_comms_disabled(struct adf_accel_dev *accel_dev) { return 0; } EXPORT_SYMBOL_GPL(adf_pfvf_comms_disabled); static int reset_ring_pair(void __iomem *csr, u32 bank_number) { u32 status; int ret; /* Write rpresetctl register BIT(0) as 1 * Since rpresetctl registers have no RW fields, no need to preserve * values for other bits. Just write directly. */ ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETCTL(bank_number), ADF_WQM_CSR_RPRESETCTL_RESET); /* Read rpresetsts register and wait for rp reset to complete */ ret = read_poll_timeout(ADF_CSR_RD, status, status & ADF_WQM_CSR_RPRESETSTS_STATUS, ADF_RPRESET_POLL_DELAY_US, ADF_RPRESET_POLL_TIMEOUT_US, true, csr, ADF_WQM_CSR_RPRESETSTS(bank_number)); if (!ret) { /* When rp reset is done, clear rpresetsts */ ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETSTS(bank_number), ADF_WQM_CSR_RPRESETSTS_STATUS); } return ret; } int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; u32 etr_bar_id = hw_data->get_etr_bar_id(hw_data); void __iomem *csr; int ret; if (bank_number >= hw_data->num_banks) return -EINVAL; dev_dbg(&GET_DEV(accel_dev), "ring pair reset for bank:%d\n", bank_number); csr = (&GET_BARS(accel_dev)[etr_bar_id])->virt_addr; ret = reset_ring_pair(csr, bank_number); if (ret) dev_err(&GET_DEV(accel_dev), "ring pair reset failed (timeout)\n"); else dev_dbg(&GET_DEV(accel_dev), "ring pair reset successful\n"); return ret; } EXPORT_SYMBOL_GPL(adf_gen4_ring_pair_reset);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen4_hw_data.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/completion.h> #include <linux/workqueue.h> #include <linux/delay.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" static struct workqueue_struct *device_reset_wq; static pci_ers_result_t adf_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev); dev_info(&pdev->dev, "Acceleration driver hardware error detected.\n"); if (!accel_dev) { dev_err(&pdev->dev, "Can't find acceleration device\n"); return PCI_ERS_RESULT_DISCONNECT; } if (state == pci_channel_io_perm_failure) { dev_err(&pdev->dev, "Can't recover from device error\n"); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_NEED_RESET; } /* reset dev data */ struct adf_reset_dev_data { int mode; struct adf_accel_dev *accel_dev; struct completion compl; struct work_struct reset_work; }; void adf_reset_sbr(struct adf_accel_dev *accel_dev) { struct pci_dev *pdev = accel_to_pci_dev(accel_dev); struct pci_dev *parent = pdev->bus->self; u16 bridge_ctl = 0; if (!parent) parent = pdev; if (!pci_wait_for_pending_transaction(pdev)) dev_info(&GET_DEV(accel_dev), "Transaction still in progress. Proceeding\n"); dev_info(&GET_DEV(accel_dev), "Secondary bus reset\n"); pci_read_config_word(parent, PCI_BRIDGE_CONTROL, &bridge_ctl); bridge_ctl |= PCI_BRIDGE_CTL_BUS_RESET; pci_write_config_word(parent, PCI_BRIDGE_CONTROL, bridge_ctl); msleep(100); bridge_ctl &= ~PCI_BRIDGE_CTL_BUS_RESET; pci_write_config_word(parent, PCI_BRIDGE_CONTROL, bridge_ctl); msleep(100); } EXPORT_SYMBOL_GPL(adf_reset_sbr); void adf_reset_flr(struct adf_accel_dev *accel_dev) { pcie_flr(accel_to_pci_dev(accel_dev)); } EXPORT_SYMBOL_GPL(adf_reset_flr); void adf_dev_restore(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_device = accel_dev->hw_device; struct pci_dev *pdev = accel_to_pci_dev(accel_dev); if (hw_device->reset_device) { dev_info(&GET_DEV(accel_dev), "Resetting device qat_dev%d\n", accel_dev->accel_id); hw_device->reset_device(accel_dev); pci_restore_state(pdev); pci_save_state(pdev); } } static void adf_device_reset_worker(struct work_struct *work) { struct adf_reset_dev_data *reset_data = container_of(work, struct adf_reset_dev_data, reset_work); struct adf_accel_dev *accel_dev = reset_data->accel_dev; adf_dev_restarting_notify(accel_dev); if (adf_dev_restart(accel_dev)) { /* The device hanged and we can't restart it so stop here */ dev_err(&GET_DEV(accel_dev), "Restart device failed\n"); kfree(reset_data); WARN(1, "QAT: device restart failed. Device is unusable\n"); return; } adf_dev_restarted_notify(accel_dev); clear_bit(ADF_STATUS_RESTARTING, &accel_dev->status); /* The dev is back alive. Notify the caller if in sync mode */ if (reset_data->mode == ADF_DEV_RESET_SYNC) complete(&reset_data->compl); else kfree(reset_data); } static int adf_dev_aer_schedule_reset(struct adf_accel_dev *accel_dev, enum adf_dev_reset_mode mode) { struct adf_reset_dev_data *reset_data; if (!adf_dev_started(accel_dev) || test_bit(ADF_STATUS_RESTARTING, &accel_dev->status)) return 0; set_bit(ADF_STATUS_RESTARTING, &accel_dev->status); reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL); if (!reset_data) return -ENOMEM; reset_data->accel_dev = accel_dev; init_completion(&reset_data->compl); reset_data->mode = mode; INIT_WORK(&reset_data->reset_work, adf_device_reset_worker); queue_work(device_reset_wq, &reset_data->reset_work); /* If in sync mode wait for the result */ if (mode == ADF_DEV_RESET_SYNC) { int ret = 0; /* Maximum device reset time is 10 seconds */ unsigned long wait_jiffies = msecs_to_jiffies(10000); unsigned long timeout = wait_for_completion_timeout( &reset_data->compl, wait_jiffies); if (!timeout) { dev_err(&GET_DEV(accel_dev), "Reset device timeout expired\n"); ret = -EFAULT; } kfree(reset_data); return ret; } return 0; } static pci_ers_result_t adf_slot_reset(struct pci_dev *pdev) { struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev); if (!accel_dev) { pr_err("QAT: Can't find acceleration device\n"); return PCI_ERS_RESULT_DISCONNECT; } if (adf_dev_aer_schedule_reset(accel_dev, ADF_DEV_RESET_SYNC)) return PCI_ERS_RESULT_DISCONNECT; return PCI_ERS_RESULT_RECOVERED; } static void adf_resume(struct pci_dev *pdev) { dev_info(&pdev->dev, "Acceleration driver reset completed\n"); dev_info(&pdev->dev, "Device is up and running\n"); } const struct pci_error_handlers adf_err_handler = { .error_detected = adf_error_detected, .slot_reset = adf_slot_reset, .resume = adf_resume, }; EXPORT_SYMBOL_GPL(adf_err_handler); int adf_init_aer(void) { device_reset_wq = alloc_workqueue("qat_device_reset_wq", WQ_MEM_RECLAIM, 0); return !device_reset_wq ? -EFAULT : 0; } void adf_exit_aer(void) { if (device_reset_wq) destroy_workqueue(device_reset_wq); device_reset_wq = NULL; }
linux-master
drivers/crypto/intel/qat/qat_common/adf_aer.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation */ #include "adf_accel_devices.h" #include "icp_qat_fw_comp.h" #include "icp_qat_hw_20_comp.h" #include "adf_gen4_dc.h" static void qat_comp_build_deflate(void *ctx) { struct icp_qat_fw_comp_req *req_tmpl = (struct icp_qat_fw_comp_req *)ctx; struct icp_qat_fw_comn_req_hdr *header = &req_tmpl->comn_hdr; struct icp_qat_fw_comp_req_hdr_cd_pars *cd_pars = &req_tmpl->cd_pars; struct icp_qat_fw_comp_req_params *req_pars = &req_tmpl->comp_pars; struct icp_qat_hw_comp_20_config_csr_upper hw_comp_upper_csr = {0}; struct icp_qat_hw_comp_20_config_csr_lower hw_comp_lower_csr = {0}; struct icp_qat_hw_decomp_20_config_csr_lower hw_decomp_lower_csr = {0}; u32 upper_val; u32 lower_val; memset(req_tmpl, 0, sizeof(*req_tmpl)); header->hdr_flags = ICP_QAT_FW_COMN_HDR_FLAGS_BUILD(ICP_QAT_FW_COMN_REQ_FLAG_SET); header->service_type = ICP_QAT_FW_COMN_REQ_CPM_FW_COMP; header->service_cmd_id = ICP_QAT_FW_COMP_CMD_STATIC; header->comn_req_flags = ICP_QAT_FW_COMN_FLAGS_BUILD(QAT_COMN_CD_FLD_TYPE_16BYTE_DATA, QAT_COMN_PTR_TYPE_SGL); header->serv_specif_flags = ICP_QAT_FW_COMP_FLAGS_BUILD(ICP_QAT_FW_COMP_STATELESS_SESSION, ICP_QAT_FW_COMP_AUTO_SELECT_BEST, ICP_QAT_FW_COMP_NOT_ENH_AUTO_SELECT_BEST, ICP_QAT_FW_COMP_NOT_DISABLE_TYPE0_ENH_AUTO_SELECT_BEST, ICP_QAT_FW_COMP_ENABLE_SECURE_RAM_USED_AS_INTMD_BUF); hw_comp_lower_csr.skip_ctrl = ICP_QAT_HW_COMP_20_BYTE_SKIP_3BYTE_LITERAL; hw_comp_lower_csr.algo = ICP_QAT_HW_COMP_20_HW_COMP_FORMAT_ILZ77; hw_comp_lower_csr.lllbd = ICP_QAT_HW_COMP_20_LLLBD_CTRL_LLLBD_ENABLED; hw_comp_lower_csr.sd = ICP_QAT_HW_COMP_20_SEARCH_DEPTH_LEVEL_1; hw_comp_lower_csr.hash_update = ICP_QAT_HW_COMP_20_SKIP_HASH_UPDATE_DONT_ALLOW; hw_comp_lower_csr.edmm = ICP_QAT_HW_COMP_20_EXTENDED_DELAY_MATCH_MODE_EDMM_ENABLED; hw_comp_upper_csr.nice = ICP_QAT_HW_COMP_20_CONFIG_CSR_NICE_PARAM_DEFAULT_VAL; hw_comp_upper_csr.lazy = ICP_QAT_HW_COMP_20_CONFIG_CSR_LAZY_PARAM_DEFAULT_VAL; upper_val = ICP_QAT_FW_COMP_20_BUILD_CONFIG_UPPER(hw_comp_upper_csr); lower_val = ICP_QAT_FW_COMP_20_BUILD_CONFIG_LOWER(hw_comp_lower_csr); cd_pars->u.sl.comp_slice_cfg_word[0] = lower_val; cd_pars->u.sl.comp_slice_cfg_word[1] = upper_val; req_pars->crc.legacy.initial_adler = COMP_CPR_INITIAL_ADLER; req_pars->crc.legacy.initial_crc32 = COMP_CPR_INITIAL_CRC; req_pars->req_par_flags = ICP_QAT_FW_COMP_REQ_PARAM_FLAGS_BUILD(ICP_QAT_FW_COMP_SOP, ICP_QAT_FW_COMP_EOP, ICP_QAT_FW_COMP_BFINAL, ICP_QAT_FW_COMP_CNV, ICP_QAT_FW_COMP_CNV_RECOVERY, ICP_QAT_FW_COMP_NO_CNV_DFX, ICP_QAT_FW_COMP_CRC_MODE_LEGACY, ICP_QAT_FW_COMP_NO_XXHASH_ACC, ICP_QAT_FW_COMP_CNV_ERROR_NONE, ICP_QAT_FW_COMP_NO_APPEND_CRC, ICP_QAT_FW_COMP_NO_DROP_DATA); /* Fill second half of the template for decompression */ memcpy(req_tmpl + 1, req_tmpl, sizeof(*req_tmpl)); req_tmpl++; header = &req_tmpl->comn_hdr; header->service_cmd_id = ICP_QAT_FW_COMP_CMD_DECOMPRESS; cd_pars = &req_tmpl->cd_pars; hw_decomp_lower_csr.algo = ICP_QAT_HW_DECOMP_20_HW_DECOMP_FORMAT_DEFLATE; lower_val = ICP_QAT_FW_DECOMP_20_BUILD_CONFIG_LOWER(hw_decomp_lower_csr); cd_pars->u.sl.comp_slice_cfg_word[0] = lower_val; cd_pars->u.sl.comp_slice_cfg_word[1] = 0; } void adf_gen4_init_dc_ops(struct adf_dc_ops *dc_ops) { dc_ops->build_deflate_ctx = qat_comp_build_deflate; } EXPORT_SYMBOL_GPL(adf_gen4_init_dc_ops);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen4_dc.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2021 Intel Corporation */ #include <linux/iopoll.h> #include <linux/mutex.h> #include <linux/types.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_gen4_pfvf.h" #include "adf_pfvf_pf_proto.h" #include "adf_pfvf_utils.h" #define ADF_4XXX_PF2VM_OFFSET(i) (0x40B010 + ((i) * 0x20)) #define ADF_4XXX_VM2PF_OFFSET(i) (0x40B014 + ((i) * 0x20)) /* VF2PF interrupt source registers */ #define ADF_4XXX_VM2PF_SOU 0x41A180 #define ADF_4XXX_VM2PF_MSK 0x41A1C0 #define ADF_GEN4_VF_MSK 0xFFFF #define ADF_PFVF_GEN4_MSGTYPE_SHIFT 2 #define ADF_PFVF_GEN4_MSGTYPE_MASK 0x3F #define ADF_PFVF_GEN4_MSGDATA_SHIFT 8 #define ADF_PFVF_GEN4_MSGDATA_MASK 0xFFFFFF static const struct pfvf_csr_format csr_gen4_fmt = { { ADF_PFVF_GEN4_MSGTYPE_SHIFT, ADF_PFVF_GEN4_MSGTYPE_MASK }, { ADF_PFVF_GEN4_MSGDATA_SHIFT, ADF_PFVF_GEN4_MSGDATA_MASK }, }; static u32 adf_gen4_pf_get_pf2vf_offset(u32 i) { return ADF_4XXX_PF2VM_OFFSET(i); } static u32 adf_gen4_pf_get_vf2pf_offset(u32 i) { return ADF_4XXX_VM2PF_OFFSET(i); } static void adf_gen4_enable_vf2pf_interrupts(void __iomem *pmisc_addr, u32 vf_mask) { u32 val; val = ADF_CSR_RD(pmisc_addr, ADF_4XXX_VM2PF_MSK) & ~vf_mask; ADF_CSR_WR(pmisc_addr, ADF_4XXX_VM2PF_MSK, val); } static void adf_gen4_disable_all_vf2pf_interrupts(void __iomem *pmisc_addr) { ADF_CSR_WR(pmisc_addr, ADF_4XXX_VM2PF_MSK, ADF_GEN4_VF_MSK); } static u32 adf_gen4_disable_pending_vf2pf_interrupts(void __iomem *pmisc_addr) { u32 sources, disabled, pending; /* Get the interrupt sources triggered by VFs */ sources = ADF_CSR_RD(pmisc_addr, ADF_4XXX_VM2PF_SOU); if (!sources) return 0; /* Get the already disabled interrupts */ disabled = ADF_CSR_RD(pmisc_addr, ADF_4XXX_VM2PF_MSK); pending = sources & ~disabled; if (!pending) return 0; /* Due to HW limitations, when disabling the interrupts, we can't * just disable the requested sources, as this would lead to missed * interrupts if VM2PF_SOU changes just before writing to VM2PF_MSK. * To work around it, disable all and re-enable only the sources that * are not in vf_mask and were not already disabled. Re-enabling will * trigger a new interrupt for the sources that have changed in the * meantime, if any. */ ADF_CSR_WR(pmisc_addr, ADF_4XXX_VM2PF_MSK, ADF_GEN4_VF_MSK); ADF_CSR_WR(pmisc_addr, ADF_4XXX_VM2PF_MSK, disabled | sources); /* Return the sources of the (new) interrupt(s) */ return pending; } static int adf_gen4_pfvf_send(struct adf_accel_dev *accel_dev, struct pfvf_message msg, u32 pfvf_offset, struct mutex *csr_lock) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); u32 csr_val; int ret; csr_val = adf_pfvf_csr_msg_of(accel_dev, msg, &csr_gen4_fmt); if (unlikely(!csr_val)) return -EINVAL; mutex_lock(csr_lock); ADF_CSR_WR(pmisc_addr, pfvf_offset, csr_val | ADF_PFVF_INT); /* Wait for confirmation from remote that it received the message */ ret = read_poll_timeout(ADF_CSR_RD, csr_val, !(csr_val & ADF_PFVF_INT), ADF_PFVF_MSG_ACK_DELAY_US, ADF_PFVF_MSG_ACK_MAX_DELAY_US, true, pmisc_addr, pfvf_offset); if (ret < 0) dev_dbg(&GET_DEV(accel_dev), "ACK not received from remote\n"); mutex_unlock(csr_lock); return ret; } static struct pfvf_message adf_gen4_pfvf_recv(struct adf_accel_dev *accel_dev, u32 pfvf_offset, u8 compat_ver) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); struct pfvf_message msg = { 0 }; u32 csr_val; /* Read message from the CSR */ csr_val = ADF_CSR_RD(pmisc_addr, pfvf_offset); if (!(csr_val & ADF_PFVF_INT)) { dev_info(&GET_DEV(accel_dev), "Spurious PFVF interrupt, msg 0x%.8x. Ignored\n", csr_val); return msg; } /* We can now acknowledge the message reception by clearing the * interrupt bit */ ADF_CSR_WR(pmisc_addr, pfvf_offset, csr_val & ~ADF_PFVF_INT); /* Return the pfvf_message format */ return adf_pfvf_message_of(accel_dev, csr_val, &csr_gen4_fmt); } void adf_gen4_init_pf_pfvf_ops(struct adf_pfvf_ops *pfvf_ops) { pfvf_ops->enable_comms = adf_enable_pf2vf_comms; pfvf_ops->get_pf2vf_offset = adf_gen4_pf_get_pf2vf_offset; pfvf_ops->get_vf2pf_offset = adf_gen4_pf_get_vf2pf_offset; pfvf_ops->enable_vf2pf_interrupts = adf_gen4_enable_vf2pf_interrupts; pfvf_ops->disable_all_vf2pf_interrupts = adf_gen4_disable_all_vf2pf_interrupts; pfvf_ops->disable_pending_vf2pf_interrupts = adf_gen4_disable_pending_vf2pf_interrupts; pfvf_ops->send_msg = adf_gen4_pfvf_send; pfvf_ops->recv_msg = adf_gen4_pfvf_recv; } EXPORT_SYMBOL_GPL(adf_gen4_init_pf_pfvf_ops);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen4_pfvf.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/delay.h> #include <linux/nospec.h> #include "adf_accel_devices.h" #include "adf_transport_internal.h" #include "adf_transport_access_macros.h" #include "adf_cfg.h" #include "adf_common_drv.h" #define ADF_MAX_RING_THRESHOLD 80 #define ADF_PERCENT(tot, percent) (((tot) * (percent)) / 100) static inline u32 adf_modulo(u32 data, u32 shift) { u32 div = data >> shift; u32 mult = div << shift; return data - mult; } static inline int adf_check_ring_alignment(u64 addr, u64 size) { if (((size - 1) & addr) != 0) return -EFAULT; return 0; } static int adf_verify_ring_size(u32 msg_size, u32 msg_num) { int i = ADF_MIN_RING_SIZE; for (; i <= ADF_MAX_RING_SIZE; i++) if ((msg_size * msg_num) == ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) return i; return ADF_DEFAULT_RING_SIZE; } static int adf_reserve_ring(struct adf_etr_bank_data *bank, u32 ring) { spin_lock(&bank->lock); if (bank->ring_mask & (1 << ring)) { spin_unlock(&bank->lock); return -EFAULT; } bank->ring_mask |= (1 << ring); spin_unlock(&bank->lock); return 0; } static void adf_unreserve_ring(struct adf_etr_bank_data *bank, u32 ring) { spin_lock(&bank->lock); bank->ring_mask &= ~(1 << ring); spin_unlock(&bank->lock); } static void adf_enable_ring_irq(struct adf_etr_bank_data *bank, u32 ring) { struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev); spin_lock_bh(&bank->lock); bank->irq_mask |= (1 << ring); spin_unlock_bh(&bank->lock); csr_ops->write_csr_int_col_en(bank->csr_addr, bank->bank_number, bank->irq_mask); csr_ops->write_csr_int_col_ctl(bank->csr_addr, bank->bank_number, bank->irq_coalesc_timer); } static void adf_disable_ring_irq(struct adf_etr_bank_data *bank, u32 ring) { struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev); spin_lock_bh(&bank->lock); bank->irq_mask &= ~(1 << ring); spin_unlock_bh(&bank->lock); csr_ops->write_csr_int_col_en(bank->csr_addr, bank->bank_number, bank->irq_mask); } bool adf_ring_nearly_full(struct adf_etr_ring_data *ring) { return atomic_read(ring->inflights) > ring->threshold; } int adf_send_message(struct adf_etr_ring_data *ring, u32 *msg) { struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(ring->bank->accel_dev); if (atomic_add_return(1, ring->inflights) > ADF_MAX_INFLIGHTS(ring->ring_size, ring->msg_size)) { atomic_dec(ring->inflights); return -EAGAIN; } spin_lock_bh(&ring->lock); memcpy((void *)((uintptr_t)ring->base_addr + ring->tail), msg, ADF_MSG_SIZE_TO_BYTES(ring->msg_size)); ring->tail = adf_modulo(ring->tail + ADF_MSG_SIZE_TO_BYTES(ring->msg_size), ADF_RING_SIZE_MODULO(ring->ring_size)); csr_ops->write_csr_ring_tail(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring->tail); spin_unlock_bh(&ring->lock); return 0; } static int adf_handle_response(struct adf_etr_ring_data *ring) { struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(ring->bank->accel_dev); u32 msg_counter = 0; u32 *msg = (u32 *)((uintptr_t)ring->base_addr + ring->head); while (*msg != ADF_RING_EMPTY_SIG) { ring->callback((u32 *)msg); atomic_dec(ring->inflights); *msg = ADF_RING_EMPTY_SIG; ring->head = adf_modulo(ring->head + ADF_MSG_SIZE_TO_BYTES(ring->msg_size), ADF_RING_SIZE_MODULO(ring->ring_size)); msg_counter++; msg = (u32 *)((uintptr_t)ring->base_addr + ring->head); } if (msg_counter > 0) { csr_ops->write_csr_ring_head(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring->head); } return 0; } static void adf_configure_tx_ring(struct adf_etr_ring_data *ring) { struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(ring->bank->accel_dev); u32 ring_config = BUILD_RING_CONFIG(ring->ring_size); csr_ops->write_csr_ring_config(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_config); } static void adf_configure_rx_ring(struct adf_etr_ring_data *ring) { struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(ring->bank->accel_dev); u32 ring_config = BUILD_RESP_RING_CONFIG(ring->ring_size, ADF_RING_NEAR_WATERMARK_512, ADF_RING_NEAR_WATERMARK_0); csr_ops->write_csr_ring_config(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_config); } static int adf_init_ring(struct adf_etr_ring_data *ring) { struct adf_etr_bank_data *bank = ring->bank; struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev); u64 ring_base; u32 ring_size_bytes = ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size); ring_size_bytes = ADF_RING_SIZE_BYTES_MIN(ring_size_bytes); ring->base_addr = dma_alloc_coherent(&GET_DEV(accel_dev), ring_size_bytes, &ring->dma_addr, GFP_KERNEL); if (!ring->base_addr) return -ENOMEM; memset(ring->base_addr, 0x7F, ring_size_bytes); /* The base_addr has to be aligned to the size of the buffer */ if (adf_check_ring_alignment(ring->dma_addr, ring_size_bytes)) { dev_err(&GET_DEV(accel_dev), "Ring address not aligned\n"); dma_free_coherent(&GET_DEV(accel_dev), ring_size_bytes, ring->base_addr, ring->dma_addr); ring->base_addr = NULL; return -EFAULT; } if (hw_data->tx_rings_mask & (1 << ring->ring_number)) adf_configure_tx_ring(ring); else adf_configure_rx_ring(ring); ring_base = csr_ops->build_csr_ring_base_addr(ring->dma_addr, ring->ring_size); csr_ops->write_csr_ring_base(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_base); spin_lock_init(&ring->lock); return 0; } static void adf_cleanup_ring(struct adf_etr_ring_data *ring) { u32 ring_size_bytes = ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size); ring_size_bytes = ADF_RING_SIZE_BYTES_MIN(ring_size_bytes); if (ring->base_addr) { memset(ring->base_addr, 0x7F, ring_size_bytes); dma_free_coherent(&GET_DEV(ring->bank->accel_dev), ring_size_bytes, ring->base_addr, ring->dma_addr); } } int adf_create_ring(struct adf_accel_dev *accel_dev, const char *section, u32 bank_num, u32 num_msgs, u32 msg_size, const char *ring_name, adf_callback_fn callback, int poll_mode, struct adf_etr_ring_data **ring_ptr) { struct adf_etr_data *transport_data = accel_dev->transport; u8 num_rings_per_bank = GET_NUM_RINGS_PER_BANK(accel_dev); struct adf_etr_bank_data *bank; struct adf_etr_ring_data *ring; char val[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; int max_inflights; u32 ring_num; int ret; if (bank_num >= GET_MAX_BANKS(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Invalid bank number\n"); return -EFAULT; } if (msg_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) { dev_err(&GET_DEV(accel_dev), "Invalid msg size\n"); return -EFAULT; } if (ADF_MAX_INFLIGHTS(adf_verify_ring_size(msg_size, num_msgs), ADF_BYTES_TO_MSG_SIZE(msg_size)) < 2) { dev_err(&GET_DEV(accel_dev), "Invalid ring size for given msg size\n"); return -EFAULT; } if (adf_cfg_get_param_value(accel_dev, section, ring_name, val)) { dev_err(&GET_DEV(accel_dev), "Section %s, no such entry : %s\n", section, ring_name); return -EFAULT; } if (kstrtouint(val, 10, &ring_num)) { dev_err(&GET_DEV(accel_dev), "Can't get ring number\n"); return -EFAULT; } if (ring_num >= num_rings_per_bank) { dev_err(&GET_DEV(accel_dev), "Invalid ring number\n"); return -EFAULT; } ring_num = array_index_nospec(ring_num, num_rings_per_bank); bank = &transport_data->banks[bank_num]; if (adf_reserve_ring(bank, ring_num)) { dev_err(&GET_DEV(accel_dev), "Ring %d, %s already exists.\n", ring_num, ring_name); return -EFAULT; } ring = &bank->rings[ring_num]; ring->ring_number = ring_num; ring->bank = bank; ring->callback = callback; ring->msg_size = ADF_BYTES_TO_MSG_SIZE(msg_size); ring->ring_size = adf_verify_ring_size(msg_size, num_msgs); ring->head = 0; ring->tail = 0; max_inflights = ADF_MAX_INFLIGHTS(ring->ring_size, ring->msg_size); ring->threshold = ADF_PERCENT(max_inflights, ADF_MAX_RING_THRESHOLD); atomic_set(ring->inflights, 0); ret = adf_init_ring(ring); if (ret) goto err; /* Enable HW arbitration for the given ring */ adf_update_ring_arb(ring); if (adf_ring_debugfs_add(ring, ring_name)) { dev_err(&GET_DEV(accel_dev), "Couldn't add ring debugfs entry\n"); ret = -EFAULT; goto err; } /* Enable interrupts if needed */ if (callback && (!poll_mode)) adf_enable_ring_irq(bank, ring->ring_number); *ring_ptr = ring; return 0; err: adf_cleanup_ring(ring); adf_unreserve_ring(bank, ring_num); adf_update_ring_arb(ring); return ret; } void adf_remove_ring(struct adf_etr_ring_data *ring) { struct adf_etr_bank_data *bank = ring->bank; struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev); /* Disable interrupts for the given ring */ adf_disable_ring_irq(bank, ring->ring_number); /* Clear PCI config space */ csr_ops->write_csr_ring_config(bank->csr_addr, bank->bank_number, ring->ring_number, 0); csr_ops->write_csr_ring_base(bank->csr_addr, bank->bank_number, ring->ring_number, 0); adf_ring_debugfs_rm(ring); adf_unreserve_ring(bank, ring->ring_number); /* Disable HW arbitration for the given ring */ adf_update_ring_arb(ring); adf_cleanup_ring(ring); } static void adf_ring_response_handler(struct adf_etr_bank_data *bank) { struct adf_accel_dev *accel_dev = bank->accel_dev; u8 num_rings_per_bank = GET_NUM_RINGS_PER_BANK(accel_dev); struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev); unsigned long empty_rings; int i; empty_rings = csr_ops->read_csr_e_stat(bank->csr_addr, bank->bank_number); empty_rings = ~empty_rings & bank->irq_mask; for_each_set_bit(i, &empty_rings, num_rings_per_bank) adf_handle_response(&bank->rings[i]); } void adf_response_handler(uintptr_t bank_addr) { struct adf_etr_bank_data *bank = (void *)bank_addr; struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev); /* Handle all the responses and reenable IRQs */ adf_ring_response_handler(bank); csr_ops->write_csr_int_flag_and_col(bank->csr_addr, bank->bank_number, bank->irq_mask); } static inline int adf_get_cfg_int(struct adf_accel_dev *accel_dev, const char *section, const char *format, u32 key, u32 *value) { char key_buf[ADF_CFG_MAX_KEY_LEN_IN_BYTES]; char val_buf[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; snprintf(key_buf, ADF_CFG_MAX_KEY_LEN_IN_BYTES, format, key); if (adf_cfg_get_param_value(accel_dev, section, key_buf, val_buf)) return -EFAULT; if (kstrtouint(val_buf, 10, value)) return -EFAULT; return 0; } static void adf_get_coalesc_timer(struct adf_etr_bank_data *bank, const char *section, u32 bank_num_in_accel) { if (adf_get_cfg_int(bank->accel_dev, section, ADF_ETRMGR_COALESCE_TIMER_FORMAT, bank_num_in_accel, &bank->irq_coalesc_timer)) bank->irq_coalesc_timer = ADF_COALESCING_DEF_TIME; if (ADF_COALESCING_MAX_TIME < bank->irq_coalesc_timer || ADF_COALESCING_MIN_TIME > bank->irq_coalesc_timer) bank->irq_coalesc_timer = ADF_COALESCING_DEF_TIME; } static int adf_init_bank(struct adf_accel_dev *accel_dev, struct adf_etr_bank_data *bank, u32 bank_num, void __iomem *csr_addr) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; u8 num_rings_per_bank = hw_data->num_rings_per_bank; struct adf_hw_csr_ops *csr_ops = &hw_data->csr_ops; u32 irq_mask = BIT(num_rings_per_bank) - 1; struct adf_etr_ring_data *ring; struct adf_etr_ring_data *tx_ring; u32 i, coalesc_enabled = 0; unsigned long ring_mask; int size; memset(bank, 0, sizeof(*bank)); bank->bank_number = bank_num; bank->csr_addr = csr_addr; bank->accel_dev = accel_dev; spin_lock_init(&bank->lock); /* Allocate the rings in the bank */ size = num_rings_per_bank * sizeof(struct adf_etr_ring_data); bank->rings = kzalloc_node(size, GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!bank->rings) return -ENOMEM; /* Enable IRQ coalescing always. This will allow to use * the optimised flag and coalesc register. * If it is disabled in the config file just use min time value */ if ((adf_get_cfg_int(accel_dev, "Accelerator0", ADF_ETRMGR_COALESCING_ENABLED_FORMAT, bank_num, &coalesc_enabled) == 0) && coalesc_enabled) adf_get_coalesc_timer(bank, "Accelerator0", bank_num); else bank->irq_coalesc_timer = ADF_COALESCING_MIN_TIME; for (i = 0; i < num_rings_per_bank; i++) { csr_ops->write_csr_ring_config(csr_addr, bank_num, i, 0); csr_ops->write_csr_ring_base(csr_addr, bank_num, i, 0); ring = &bank->rings[i]; if (hw_data->tx_rings_mask & (1 << i)) { ring->inflights = kzalloc_node(sizeof(atomic_t), GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!ring->inflights) goto err; } else { if (i < hw_data->tx_rx_gap) { dev_err(&GET_DEV(accel_dev), "Invalid tx rings mask config\n"); goto err; } tx_ring = &bank->rings[i - hw_data->tx_rx_gap]; ring->inflights = tx_ring->inflights; } } if (adf_bank_debugfs_add(bank)) { dev_err(&GET_DEV(accel_dev), "Failed to add bank debugfs entry\n"); goto err; } csr_ops->write_csr_int_flag(csr_addr, bank_num, irq_mask); csr_ops->write_csr_int_srcsel(csr_addr, bank_num); return 0; err: ring_mask = hw_data->tx_rings_mask; for_each_set_bit(i, &ring_mask, num_rings_per_bank) { ring = &bank->rings[i]; kfree(ring->inflights); ring->inflights = NULL; } kfree(bank->rings); return -ENOMEM; } /** * adf_init_etr_data() - Initialize transport rings for acceleration device * @accel_dev: Pointer to acceleration device. * * Function is the initializes the communications channels (rings) to the * acceleration device accel_dev. * To be used by QAT device specific drivers. * * Return: 0 on success, error code otherwise. */ int adf_init_etr_data(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data; struct adf_hw_device_data *hw_data = accel_dev->hw_device; void __iomem *csr_addr; u32 size; u32 num_banks = 0; int i, ret; etr_data = kzalloc_node(sizeof(*etr_data), GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!etr_data) return -ENOMEM; num_banks = GET_MAX_BANKS(accel_dev); size = num_banks * sizeof(struct adf_etr_bank_data); etr_data->banks = kzalloc_node(size, GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!etr_data->banks) { ret = -ENOMEM; goto err_bank; } accel_dev->transport = etr_data; i = hw_data->get_etr_bar_id(hw_data); csr_addr = accel_dev->accel_pci_dev.pci_bars[i].virt_addr; /* accel_dev->debugfs_dir should always be non-NULL here */ etr_data->debug = debugfs_create_dir("transport", accel_dev->debugfs_dir); for (i = 0; i < num_banks; i++) { ret = adf_init_bank(accel_dev, &etr_data->banks[i], i, csr_addr); if (ret) goto err_bank_all; } return 0; err_bank_all: debugfs_remove(etr_data->debug); kfree(etr_data->banks); err_bank: kfree(etr_data); accel_dev->transport = NULL; return ret; } EXPORT_SYMBOL_GPL(adf_init_etr_data); static void cleanup_bank(struct adf_etr_bank_data *bank) { struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; u8 num_rings_per_bank = hw_data->num_rings_per_bank; u32 i; for (i = 0; i < num_rings_per_bank; i++) { struct adf_etr_ring_data *ring = &bank->rings[i]; if (bank->ring_mask & (1 << i)) adf_cleanup_ring(ring); if (hw_data->tx_rings_mask & (1 << i)) kfree(ring->inflights); } kfree(bank->rings); adf_bank_debugfs_rm(bank); memset(bank, 0, sizeof(*bank)); } static void adf_cleanup_etr_handles(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data = accel_dev->transport; u32 i, num_banks = GET_MAX_BANKS(accel_dev); for (i = 0; i < num_banks; i++) cleanup_bank(&etr_data->banks[i]); } /** * adf_cleanup_etr_data() - Clear transport rings for acceleration device * @accel_dev: Pointer to acceleration device. * * Function is the clears the communications channels (rings) of the * acceleration device accel_dev. * To be used by QAT device specific drivers. * * Return: void */ void adf_cleanup_etr_data(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data = accel_dev->transport; if (etr_data) { adf_cleanup_etr_handles(accel_dev); debugfs_remove(etr_data->debug); kfree(etr_data->banks->rings); kfree(etr_data->banks); kfree(etr_data); accel_dev->transport = NULL; } } EXPORT_SYMBOL_GPL(adf_cleanup_etr_data);
linux-master
drivers/crypto/intel/qat/qat_common/adf_transport.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/module.h> #include <linux/slab.h> #include <linux/crypto.h> #include <crypto/internal/aead.h> #include <crypto/internal/cipher.h> #include <crypto/internal/skcipher.h> #include <crypto/aes.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/hash.h> #include <crypto/hmac.h> #include <crypto/algapi.h> #include <crypto/authenc.h> #include <crypto/scatterwalk.h> #include <crypto/xts.h> #include <linux/dma-mapping.h> #include "adf_accel_devices.h" #include "qat_algs_send.h" #include "adf_common_drv.h" #include "qat_crypto.h" #include "icp_qat_hw.h" #include "icp_qat_fw.h" #include "icp_qat_fw_la.h" #include "qat_bl.h" #define QAT_AES_HW_CONFIG_ENC(alg, mode) \ ICP_QAT_HW_CIPHER_CONFIG_BUILD(mode, alg, \ ICP_QAT_HW_CIPHER_NO_CONVERT, \ ICP_QAT_HW_CIPHER_ENCRYPT) #define QAT_AES_HW_CONFIG_DEC(alg, mode) \ ICP_QAT_HW_CIPHER_CONFIG_BUILD(mode, alg, \ ICP_QAT_HW_CIPHER_KEY_CONVERT, \ ICP_QAT_HW_CIPHER_DECRYPT) #define QAT_AES_HW_CONFIG_DEC_NO_CONV(alg, mode) \ ICP_QAT_HW_CIPHER_CONFIG_BUILD(mode, alg, \ ICP_QAT_HW_CIPHER_NO_CONVERT, \ ICP_QAT_HW_CIPHER_DECRYPT) #define HW_CAP_AES_V2(accel_dev) \ (GET_HW_DATA(accel_dev)->accel_capabilities_mask & \ ICP_ACCEL_CAPABILITIES_AES_V2) static DEFINE_MUTEX(algs_lock); static unsigned int active_devs; /* Common content descriptor */ struct qat_alg_cd { union { struct qat_enc { /* Encrypt content desc */ struct icp_qat_hw_cipher_algo_blk cipher; struct icp_qat_hw_auth_algo_blk hash; } qat_enc_cd; struct qat_dec { /* Decrypt content desc */ struct icp_qat_hw_auth_algo_blk hash; struct icp_qat_hw_cipher_algo_blk cipher; } qat_dec_cd; }; } __aligned(64); struct qat_alg_aead_ctx { struct qat_alg_cd *enc_cd; struct qat_alg_cd *dec_cd; dma_addr_t enc_cd_paddr; dma_addr_t dec_cd_paddr; struct icp_qat_fw_la_bulk_req enc_fw_req; struct icp_qat_fw_la_bulk_req dec_fw_req; struct crypto_shash *hash_tfm; enum icp_qat_hw_auth_algo qat_hash_alg; struct qat_crypto_instance *inst; union { struct sha1_state sha1; struct sha256_state sha256; struct sha512_state sha512; }; char ipad[SHA512_BLOCK_SIZE]; /* sufficient for SHA-1/SHA-256 as well */ char opad[SHA512_BLOCK_SIZE]; }; struct qat_alg_skcipher_ctx { struct icp_qat_hw_cipher_algo_blk *enc_cd; struct icp_qat_hw_cipher_algo_blk *dec_cd; dma_addr_t enc_cd_paddr; dma_addr_t dec_cd_paddr; struct icp_qat_fw_la_bulk_req enc_fw_req; struct icp_qat_fw_la_bulk_req dec_fw_req; struct qat_crypto_instance *inst; struct crypto_skcipher *ftfm; struct crypto_cipher *tweak; bool fallback; int mode; }; static int qat_get_inter_state_size(enum icp_qat_hw_auth_algo qat_hash_alg) { switch (qat_hash_alg) { case ICP_QAT_HW_AUTH_ALGO_SHA1: return ICP_QAT_HW_SHA1_STATE1_SZ; case ICP_QAT_HW_AUTH_ALGO_SHA256: return ICP_QAT_HW_SHA256_STATE1_SZ; case ICP_QAT_HW_AUTH_ALGO_SHA512: return ICP_QAT_HW_SHA512_STATE1_SZ; default: return -EFAULT; } } static int qat_alg_do_precomputes(struct icp_qat_hw_auth_algo_blk *hash, struct qat_alg_aead_ctx *ctx, const u8 *auth_key, unsigned int auth_keylen) { SHASH_DESC_ON_STACK(shash, ctx->hash_tfm); int block_size = crypto_shash_blocksize(ctx->hash_tfm); int digest_size = crypto_shash_digestsize(ctx->hash_tfm); __be32 *hash_state_out; __be64 *hash512_state_out; int i, offset; memset(ctx->ipad, 0, block_size); memset(ctx->opad, 0, block_size); shash->tfm = ctx->hash_tfm; if (auth_keylen > block_size) { int ret = crypto_shash_digest(shash, auth_key, auth_keylen, ctx->ipad); if (ret) return ret; memcpy(ctx->opad, ctx->ipad, digest_size); } else { memcpy(ctx->ipad, auth_key, auth_keylen); memcpy(ctx->opad, auth_key, auth_keylen); } for (i = 0; i < block_size; i++) { char *ipad_ptr = ctx->ipad + i; char *opad_ptr = ctx->opad + i; *ipad_ptr ^= HMAC_IPAD_VALUE; *opad_ptr ^= HMAC_OPAD_VALUE; } if (crypto_shash_init(shash)) return -EFAULT; if (crypto_shash_update(shash, ctx->ipad, block_size)) return -EFAULT; hash_state_out = (__be32 *)hash->sha.state1; hash512_state_out = (__be64 *)hash_state_out; switch (ctx->qat_hash_alg) { case ICP_QAT_HW_AUTH_ALGO_SHA1: if (crypto_shash_export(shash, &ctx->sha1)) return -EFAULT; for (i = 0; i < digest_size >> 2; i++, hash_state_out++) *hash_state_out = cpu_to_be32(ctx->sha1.state[i]); break; case ICP_QAT_HW_AUTH_ALGO_SHA256: if (crypto_shash_export(shash, &ctx->sha256)) return -EFAULT; for (i = 0; i < digest_size >> 2; i++, hash_state_out++) *hash_state_out = cpu_to_be32(ctx->sha256.state[i]); break; case ICP_QAT_HW_AUTH_ALGO_SHA512: if (crypto_shash_export(shash, &ctx->sha512)) return -EFAULT; for (i = 0; i < digest_size >> 3; i++, hash512_state_out++) *hash512_state_out = cpu_to_be64(ctx->sha512.state[i]); break; default: return -EFAULT; } if (crypto_shash_init(shash)) return -EFAULT; if (crypto_shash_update(shash, ctx->opad, block_size)) return -EFAULT; offset = round_up(qat_get_inter_state_size(ctx->qat_hash_alg), 8); if (offset < 0) return -EFAULT; hash_state_out = (__be32 *)(hash->sha.state1 + offset); hash512_state_out = (__be64 *)hash_state_out; switch (ctx->qat_hash_alg) { case ICP_QAT_HW_AUTH_ALGO_SHA1: if (crypto_shash_export(shash, &ctx->sha1)) return -EFAULT; for (i = 0; i < digest_size >> 2; i++, hash_state_out++) *hash_state_out = cpu_to_be32(ctx->sha1.state[i]); break; case ICP_QAT_HW_AUTH_ALGO_SHA256: if (crypto_shash_export(shash, &ctx->sha256)) return -EFAULT; for (i = 0; i < digest_size >> 2; i++, hash_state_out++) *hash_state_out = cpu_to_be32(ctx->sha256.state[i]); break; case ICP_QAT_HW_AUTH_ALGO_SHA512: if (crypto_shash_export(shash, &ctx->sha512)) return -EFAULT; for (i = 0; i < digest_size >> 3; i++, hash512_state_out++) *hash512_state_out = cpu_to_be64(ctx->sha512.state[i]); break; default: return -EFAULT; } memzero_explicit(ctx->ipad, block_size); memzero_explicit(ctx->opad, block_size); return 0; } static void qat_alg_init_common_hdr(struct icp_qat_fw_comn_req_hdr *header) { header->hdr_flags = ICP_QAT_FW_COMN_HDR_FLAGS_BUILD(ICP_QAT_FW_COMN_REQ_FLAG_SET); header->service_type = ICP_QAT_FW_COMN_REQ_CPM_FW_LA; header->comn_req_flags = ICP_QAT_FW_COMN_FLAGS_BUILD(QAT_COMN_CD_FLD_TYPE_64BIT_ADR, QAT_COMN_PTR_TYPE_SGL); ICP_QAT_FW_LA_PARTIAL_SET(header->serv_specif_flags, ICP_QAT_FW_LA_PARTIAL_NONE); ICP_QAT_FW_LA_CIPH_IV_FLD_FLAG_SET(header->serv_specif_flags, ICP_QAT_FW_CIPH_IV_16BYTE_DATA); ICP_QAT_FW_LA_PROTO_SET(header->serv_specif_flags, ICP_QAT_FW_LA_NO_PROTO); ICP_QAT_FW_LA_UPDATE_STATE_SET(header->serv_specif_flags, ICP_QAT_FW_LA_NO_UPDATE_STATE); } static int qat_alg_aead_init_enc_session(struct crypto_aead *aead_tfm, int alg, struct crypto_authenc_keys *keys, int mode) { struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(aead_tfm); unsigned int digestsize = crypto_aead_authsize(aead_tfm); struct qat_enc *enc_ctx = &ctx->enc_cd->qat_enc_cd; struct icp_qat_hw_cipher_algo_blk *cipher = &enc_ctx->cipher; struct icp_qat_hw_auth_algo_blk *hash = (struct icp_qat_hw_auth_algo_blk *)((char *)enc_ctx + sizeof(struct icp_qat_hw_auth_setup) + keys->enckeylen); struct icp_qat_fw_la_bulk_req *req_tmpl = &ctx->enc_fw_req; struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req_tmpl->cd_pars; struct icp_qat_fw_comn_req_hdr *header = &req_tmpl->comn_hdr; void *ptr = &req_tmpl->cd_ctrl; struct icp_qat_fw_cipher_cd_ctrl_hdr *cipher_cd_ctrl = ptr; struct icp_qat_fw_auth_cd_ctrl_hdr *hash_cd_ctrl = ptr; /* CD setup */ cipher->aes.cipher_config.val = QAT_AES_HW_CONFIG_ENC(alg, mode); memcpy(cipher->aes.key, keys->enckey, keys->enckeylen); hash->sha.inner_setup.auth_config.config = ICP_QAT_HW_AUTH_CONFIG_BUILD(ICP_QAT_HW_AUTH_MODE1, ctx->qat_hash_alg, digestsize); hash->sha.inner_setup.auth_counter.counter = cpu_to_be32(crypto_shash_blocksize(ctx->hash_tfm)); if (qat_alg_do_precomputes(hash, ctx, keys->authkey, keys->authkeylen)) return -EFAULT; /* Request setup */ qat_alg_init_common_hdr(header); header->service_cmd_id = ICP_QAT_FW_LA_CMD_CIPHER_HASH; ICP_QAT_FW_LA_DIGEST_IN_BUFFER_SET(header->serv_specif_flags, ICP_QAT_FW_LA_DIGEST_IN_BUFFER); ICP_QAT_FW_LA_RET_AUTH_SET(header->serv_specif_flags, ICP_QAT_FW_LA_RET_AUTH_RES); ICP_QAT_FW_LA_CMP_AUTH_SET(header->serv_specif_flags, ICP_QAT_FW_LA_NO_CMP_AUTH_RES); cd_pars->u.s.content_desc_addr = ctx->enc_cd_paddr; cd_pars->u.s.content_desc_params_sz = sizeof(struct qat_alg_cd) >> 3; /* Cipher CD config setup */ cipher_cd_ctrl->cipher_key_sz = keys->enckeylen >> 3; cipher_cd_ctrl->cipher_state_sz = AES_BLOCK_SIZE >> 3; cipher_cd_ctrl->cipher_cfg_offset = 0; ICP_QAT_FW_COMN_CURR_ID_SET(cipher_cd_ctrl, ICP_QAT_FW_SLICE_CIPHER); ICP_QAT_FW_COMN_NEXT_ID_SET(cipher_cd_ctrl, ICP_QAT_FW_SLICE_AUTH); /* Auth CD config setup */ hash_cd_ctrl->hash_cfg_offset = ((char *)hash - (char *)cipher) >> 3; hash_cd_ctrl->hash_flags = ICP_QAT_FW_AUTH_HDR_FLAG_NO_NESTED; hash_cd_ctrl->inner_res_sz = digestsize; hash_cd_ctrl->final_sz = digestsize; switch (ctx->qat_hash_alg) { case ICP_QAT_HW_AUTH_ALGO_SHA1: hash_cd_ctrl->inner_state1_sz = round_up(ICP_QAT_HW_SHA1_STATE1_SZ, 8); hash_cd_ctrl->inner_state2_sz = round_up(ICP_QAT_HW_SHA1_STATE2_SZ, 8); break; case ICP_QAT_HW_AUTH_ALGO_SHA256: hash_cd_ctrl->inner_state1_sz = ICP_QAT_HW_SHA256_STATE1_SZ; hash_cd_ctrl->inner_state2_sz = ICP_QAT_HW_SHA256_STATE2_SZ; break; case ICP_QAT_HW_AUTH_ALGO_SHA512: hash_cd_ctrl->inner_state1_sz = ICP_QAT_HW_SHA512_STATE1_SZ; hash_cd_ctrl->inner_state2_sz = ICP_QAT_HW_SHA512_STATE2_SZ; break; default: break; } hash_cd_ctrl->inner_state2_offset = hash_cd_ctrl->hash_cfg_offset + ((sizeof(struct icp_qat_hw_auth_setup) + round_up(hash_cd_ctrl->inner_state1_sz, 8)) >> 3); ICP_QAT_FW_COMN_CURR_ID_SET(hash_cd_ctrl, ICP_QAT_FW_SLICE_AUTH); ICP_QAT_FW_COMN_NEXT_ID_SET(hash_cd_ctrl, ICP_QAT_FW_SLICE_DRAM_WR); return 0; } static int qat_alg_aead_init_dec_session(struct crypto_aead *aead_tfm, int alg, struct crypto_authenc_keys *keys, int mode) { struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(aead_tfm); unsigned int digestsize = crypto_aead_authsize(aead_tfm); struct qat_dec *dec_ctx = &ctx->dec_cd->qat_dec_cd; struct icp_qat_hw_auth_algo_blk *hash = &dec_ctx->hash; struct icp_qat_hw_cipher_algo_blk *cipher = (struct icp_qat_hw_cipher_algo_blk *)((char *)dec_ctx + sizeof(struct icp_qat_hw_auth_setup) + roundup(crypto_shash_digestsize(ctx->hash_tfm), 8) * 2); struct icp_qat_fw_la_bulk_req *req_tmpl = &ctx->dec_fw_req; struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req_tmpl->cd_pars; struct icp_qat_fw_comn_req_hdr *header = &req_tmpl->comn_hdr; void *ptr = &req_tmpl->cd_ctrl; struct icp_qat_fw_cipher_cd_ctrl_hdr *cipher_cd_ctrl = ptr; struct icp_qat_fw_auth_cd_ctrl_hdr *hash_cd_ctrl = ptr; struct icp_qat_fw_la_auth_req_params *auth_param = (struct icp_qat_fw_la_auth_req_params *) ((char *)&req_tmpl->serv_specif_rqpars + sizeof(struct icp_qat_fw_la_cipher_req_params)); /* CD setup */ cipher->aes.cipher_config.val = QAT_AES_HW_CONFIG_DEC(alg, mode); memcpy(cipher->aes.key, keys->enckey, keys->enckeylen); hash->sha.inner_setup.auth_config.config = ICP_QAT_HW_AUTH_CONFIG_BUILD(ICP_QAT_HW_AUTH_MODE1, ctx->qat_hash_alg, digestsize); hash->sha.inner_setup.auth_counter.counter = cpu_to_be32(crypto_shash_blocksize(ctx->hash_tfm)); if (qat_alg_do_precomputes(hash, ctx, keys->authkey, keys->authkeylen)) return -EFAULT; /* Request setup */ qat_alg_init_common_hdr(header); header->service_cmd_id = ICP_QAT_FW_LA_CMD_HASH_CIPHER; ICP_QAT_FW_LA_DIGEST_IN_BUFFER_SET(header->serv_specif_flags, ICP_QAT_FW_LA_DIGEST_IN_BUFFER); ICP_QAT_FW_LA_RET_AUTH_SET(header->serv_specif_flags, ICP_QAT_FW_LA_NO_RET_AUTH_RES); ICP_QAT_FW_LA_CMP_AUTH_SET(header->serv_specif_flags, ICP_QAT_FW_LA_CMP_AUTH_RES); cd_pars->u.s.content_desc_addr = ctx->dec_cd_paddr; cd_pars->u.s.content_desc_params_sz = sizeof(struct qat_alg_cd) >> 3; /* Cipher CD config setup */ cipher_cd_ctrl->cipher_key_sz = keys->enckeylen >> 3; cipher_cd_ctrl->cipher_state_sz = AES_BLOCK_SIZE >> 3; cipher_cd_ctrl->cipher_cfg_offset = (sizeof(struct icp_qat_hw_auth_setup) + roundup(crypto_shash_digestsize(ctx->hash_tfm), 8) * 2) >> 3; ICP_QAT_FW_COMN_CURR_ID_SET(cipher_cd_ctrl, ICP_QAT_FW_SLICE_CIPHER); ICP_QAT_FW_COMN_NEXT_ID_SET(cipher_cd_ctrl, ICP_QAT_FW_SLICE_DRAM_WR); /* Auth CD config setup */ hash_cd_ctrl->hash_cfg_offset = 0; hash_cd_ctrl->hash_flags = ICP_QAT_FW_AUTH_HDR_FLAG_NO_NESTED; hash_cd_ctrl->inner_res_sz = digestsize; hash_cd_ctrl->final_sz = digestsize; switch (ctx->qat_hash_alg) { case ICP_QAT_HW_AUTH_ALGO_SHA1: hash_cd_ctrl->inner_state1_sz = round_up(ICP_QAT_HW_SHA1_STATE1_SZ, 8); hash_cd_ctrl->inner_state2_sz = round_up(ICP_QAT_HW_SHA1_STATE2_SZ, 8); break; case ICP_QAT_HW_AUTH_ALGO_SHA256: hash_cd_ctrl->inner_state1_sz = ICP_QAT_HW_SHA256_STATE1_SZ; hash_cd_ctrl->inner_state2_sz = ICP_QAT_HW_SHA256_STATE2_SZ; break; case ICP_QAT_HW_AUTH_ALGO_SHA512: hash_cd_ctrl->inner_state1_sz = ICP_QAT_HW_SHA512_STATE1_SZ; hash_cd_ctrl->inner_state2_sz = ICP_QAT_HW_SHA512_STATE2_SZ; break; default: break; } hash_cd_ctrl->inner_state2_offset = hash_cd_ctrl->hash_cfg_offset + ((sizeof(struct icp_qat_hw_auth_setup) + round_up(hash_cd_ctrl->inner_state1_sz, 8)) >> 3); auth_param->auth_res_sz = digestsize; ICP_QAT_FW_COMN_CURR_ID_SET(hash_cd_ctrl, ICP_QAT_FW_SLICE_AUTH); ICP_QAT_FW_COMN_NEXT_ID_SET(hash_cd_ctrl, ICP_QAT_FW_SLICE_CIPHER); return 0; } static void qat_alg_skcipher_init_com(struct qat_alg_skcipher_ctx *ctx, struct icp_qat_fw_la_bulk_req *req, struct icp_qat_hw_cipher_algo_blk *cd, const u8 *key, unsigned int keylen) { struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req->cd_pars; struct icp_qat_fw_comn_req_hdr *header = &req->comn_hdr; struct icp_qat_fw_cipher_cd_ctrl_hdr *cd_ctrl = (void *)&req->cd_ctrl; bool aes_v2_capable = HW_CAP_AES_V2(ctx->inst->accel_dev); int mode = ctx->mode; qat_alg_init_common_hdr(header); header->service_cmd_id = ICP_QAT_FW_LA_CMD_CIPHER; cd_pars->u.s.content_desc_params_sz = sizeof(struct icp_qat_hw_cipher_algo_blk) >> 3; if (aes_v2_capable && mode == ICP_QAT_HW_CIPHER_XTS_MODE) { ICP_QAT_FW_LA_SLICE_TYPE_SET(header->serv_specif_flags, ICP_QAT_FW_LA_USE_UCS_SLICE_TYPE); /* Store both XTS keys in CD, only the first key is sent * to the HW, the second key is used for tweak calculation */ memcpy(cd->ucs_aes.key, key, keylen); keylen = keylen / 2; } else if (aes_v2_capable && mode == ICP_QAT_HW_CIPHER_CTR_MODE) { ICP_QAT_FW_LA_SLICE_TYPE_SET(header->serv_specif_flags, ICP_QAT_FW_LA_USE_UCS_SLICE_TYPE); memcpy(cd->ucs_aes.key, key, keylen); keylen = round_up(keylen, 16); } else { memcpy(cd->aes.key, key, keylen); } /* Cipher CD config setup */ cd_ctrl->cipher_key_sz = keylen >> 3; cd_ctrl->cipher_state_sz = AES_BLOCK_SIZE >> 3; cd_ctrl->cipher_cfg_offset = 0; ICP_QAT_FW_COMN_CURR_ID_SET(cd_ctrl, ICP_QAT_FW_SLICE_CIPHER); ICP_QAT_FW_COMN_NEXT_ID_SET(cd_ctrl, ICP_QAT_FW_SLICE_DRAM_WR); } static void qat_alg_skcipher_init_enc(struct qat_alg_skcipher_ctx *ctx, int alg, const u8 *key, unsigned int keylen, int mode) { struct icp_qat_hw_cipher_algo_blk *enc_cd = ctx->enc_cd; struct icp_qat_fw_la_bulk_req *req = &ctx->enc_fw_req; struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req->cd_pars; qat_alg_skcipher_init_com(ctx, req, enc_cd, key, keylen); cd_pars->u.s.content_desc_addr = ctx->enc_cd_paddr; enc_cd->aes.cipher_config.val = QAT_AES_HW_CONFIG_ENC(alg, mode); } static void qat_alg_xts_reverse_key(const u8 *key_forward, unsigned int keylen, u8 *key_reverse) { struct crypto_aes_ctx aes_expanded; int nrounds; u8 *key; aes_expandkey(&aes_expanded, key_forward, keylen); if (keylen == AES_KEYSIZE_128) { nrounds = 10; key = (u8 *)aes_expanded.key_enc + (AES_BLOCK_SIZE * nrounds); memcpy(key_reverse, key, AES_BLOCK_SIZE); } else { /* AES_KEYSIZE_256 */ nrounds = 14; key = (u8 *)aes_expanded.key_enc + (AES_BLOCK_SIZE * nrounds); memcpy(key_reverse, key, AES_BLOCK_SIZE); memcpy(key_reverse + AES_BLOCK_SIZE, key - AES_BLOCK_SIZE, AES_BLOCK_SIZE); } } static void qat_alg_skcipher_init_dec(struct qat_alg_skcipher_ctx *ctx, int alg, const u8 *key, unsigned int keylen, int mode) { struct icp_qat_hw_cipher_algo_blk *dec_cd = ctx->dec_cd; struct icp_qat_fw_la_bulk_req *req = &ctx->dec_fw_req; struct icp_qat_fw_comn_req_hdr_cd_pars *cd_pars = &req->cd_pars; bool aes_v2_capable = HW_CAP_AES_V2(ctx->inst->accel_dev); qat_alg_skcipher_init_com(ctx, req, dec_cd, key, keylen); cd_pars->u.s.content_desc_addr = ctx->dec_cd_paddr; if (aes_v2_capable && mode == ICP_QAT_HW_CIPHER_XTS_MODE) { /* Key reversing not supported, set no convert */ dec_cd->aes.cipher_config.val = QAT_AES_HW_CONFIG_DEC_NO_CONV(alg, mode); /* In-place key reversal */ qat_alg_xts_reverse_key(dec_cd->ucs_aes.key, keylen / 2, dec_cd->ucs_aes.key); } else if (mode != ICP_QAT_HW_CIPHER_CTR_MODE) { dec_cd->aes.cipher_config.val = QAT_AES_HW_CONFIG_DEC(alg, mode); } else { dec_cd->aes.cipher_config.val = QAT_AES_HW_CONFIG_ENC(alg, mode); } } static int qat_alg_validate_key(int key_len, int *alg, int mode) { if (mode != ICP_QAT_HW_CIPHER_XTS_MODE) { switch (key_len) { case AES_KEYSIZE_128: *alg = ICP_QAT_HW_CIPHER_ALGO_AES128; break; case AES_KEYSIZE_192: *alg = ICP_QAT_HW_CIPHER_ALGO_AES192; break; case AES_KEYSIZE_256: *alg = ICP_QAT_HW_CIPHER_ALGO_AES256; break; default: return -EINVAL; } } else { switch (key_len) { case AES_KEYSIZE_128 << 1: *alg = ICP_QAT_HW_CIPHER_ALGO_AES128; break; case AES_KEYSIZE_256 << 1: *alg = ICP_QAT_HW_CIPHER_ALGO_AES256; break; default: return -EINVAL; } } return 0; } static int qat_alg_aead_init_sessions(struct crypto_aead *tfm, const u8 *key, unsigned int keylen, int mode) { struct crypto_authenc_keys keys; int alg; if (crypto_authenc_extractkeys(&keys, key, keylen)) goto bad_key; if (qat_alg_validate_key(keys.enckeylen, &alg, mode)) goto bad_key; if (qat_alg_aead_init_enc_session(tfm, alg, &keys, mode)) goto error; if (qat_alg_aead_init_dec_session(tfm, alg, &keys, mode)) goto error; memzero_explicit(&keys, sizeof(keys)); return 0; bad_key: memzero_explicit(&keys, sizeof(keys)); return -EINVAL; error: memzero_explicit(&keys, sizeof(keys)); return -EFAULT; } static int qat_alg_skcipher_init_sessions(struct qat_alg_skcipher_ctx *ctx, const u8 *key, unsigned int keylen, int mode) { int alg; if (qat_alg_validate_key(keylen, &alg, mode)) return -EINVAL; qat_alg_skcipher_init_enc(ctx, alg, key, keylen, mode); qat_alg_skcipher_init_dec(ctx, alg, key, keylen, mode); return 0; } static int qat_alg_aead_rekey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm); memset(ctx->enc_cd, 0, sizeof(*ctx->enc_cd)); memset(ctx->dec_cd, 0, sizeof(*ctx->dec_cd)); memset(&ctx->enc_fw_req, 0, sizeof(ctx->enc_fw_req)); memset(&ctx->dec_fw_req, 0, sizeof(ctx->dec_fw_req)); return qat_alg_aead_init_sessions(tfm, key, keylen, ICP_QAT_HW_CIPHER_CBC_MODE); } static int qat_alg_aead_newkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm); struct qat_crypto_instance *inst = NULL; int node = numa_node_id(); struct device *dev; int ret; inst = qat_crypto_get_instance_node(node); if (!inst) return -EINVAL; dev = &GET_DEV(inst->accel_dev); ctx->inst = inst; ctx->enc_cd = dma_alloc_coherent(dev, sizeof(*ctx->enc_cd), &ctx->enc_cd_paddr, GFP_ATOMIC); if (!ctx->enc_cd) { ret = -ENOMEM; goto out_free_inst; } ctx->dec_cd = dma_alloc_coherent(dev, sizeof(*ctx->dec_cd), &ctx->dec_cd_paddr, GFP_ATOMIC); if (!ctx->dec_cd) { ret = -ENOMEM; goto out_free_enc; } ret = qat_alg_aead_init_sessions(tfm, key, keylen, ICP_QAT_HW_CIPHER_CBC_MODE); if (ret) goto out_free_all; return 0; out_free_all: memset(ctx->dec_cd, 0, sizeof(struct qat_alg_cd)); dma_free_coherent(dev, sizeof(struct qat_alg_cd), ctx->dec_cd, ctx->dec_cd_paddr); ctx->dec_cd = NULL; out_free_enc: memset(ctx->enc_cd, 0, sizeof(struct qat_alg_cd)); dma_free_coherent(dev, sizeof(struct qat_alg_cd), ctx->enc_cd, ctx->enc_cd_paddr); ctx->enc_cd = NULL; out_free_inst: ctx->inst = NULL; qat_crypto_put_instance(inst); return ret; } static int qat_alg_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm); if (ctx->enc_cd) return qat_alg_aead_rekey(tfm, key, keylen); else return qat_alg_aead_newkey(tfm, key, keylen); } static void qat_aead_alg_callback(struct icp_qat_fw_la_resp *qat_resp, struct qat_crypto_request *qat_req) { struct qat_alg_aead_ctx *ctx = qat_req->aead_ctx; struct qat_crypto_instance *inst = ctx->inst; struct aead_request *areq = qat_req->aead_req; u8 stat_filed = qat_resp->comn_resp.comn_status; int res = 0, qat_res = ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(stat_filed); qat_bl_free_bufl(inst->accel_dev, &qat_req->buf); if (unlikely(qat_res != ICP_QAT_FW_COMN_STATUS_FLAG_OK)) res = -EBADMSG; aead_request_complete(areq, res); } static void qat_alg_update_iv_ctr_mode(struct qat_crypto_request *qat_req) { struct skcipher_request *sreq = qat_req->skcipher_req; u64 iv_lo_prev; u64 iv_lo; u64 iv_hi; memcpy(qat_req->iv, sreq->iv, AES_BLOCK_SIZE); iv_lo = be64_to_cpu(qat_req->iv_lo); iv_hi = be64_to_cpu(qat_req->iv_hi); iv_lo_prev = iv_lo; iv_lo += DIV_ROUND_UP(sreq->cryptlen, AES_BLOCK_SIZE); if (iv_lo < iv_lo_prev) iv_hi++; qat_req->iv_lo = cpu_to_be64(iv_lo); qat_req->iv_hi = cpu_to_be64(iv_hi); } static void qat_alg_update_iv_cbc_mode(struct qat_crypto_request *qat_req) { struct skcipher_request *sreq = qat_req->skcipher_req; int offset = sreq->cryptlen - AES_BLOCK_SIZE; struct scatterlist *sgl; if (qat_req->encryption) sgl = sreq->dst; else sgl = sreq->src; scatterwalk_map_and_copy(qat_req->iv, sgl, offset, AES_BLOCK_SIZE, 0); } static void qat_alg_update_iv(struct qat_crypto_request *qat_req) { struct qat_alg_skcipher_ctx *ctx = qat_req->skcipher_ctx; struct device *dev = &GET_DEV(ctx->inst->accel_dev); switch (ctx->mode) { case ICP_QAT_HW_CIPHER_CTR_MODE: qat_alg_update_iv_ctr_mode(qat_req); break; case ICP_QAT_HW_CIPHER_CBC_MODE: qat_alg_update_iv_cbc_mode(qat_req); break; case ICP_QAT_HW_CIPHER_XTS_MODE: break; default: dev_warn(dev, "Unsupported IV update for cipher mode %d\n", ctx->mode); } } static void qat_skcipher_alg_callback(struct icp_qat_fw_la_resp *qat_resp, struct qat_crypto_request *qat_req) { struct qat_alg_skcipher_ctx *ctx = qat_req->skcipher_ctx; struct qat_crypto_instance *inst = ctx->inst; struct skcipher_request *sreq = qat_req->skcipher_req; u8 stat_filed = qat_resp->comn_resp.comn_status; int res = 0, qat_res = ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(stat_filed); qat_bl_free_bufl(inst->accel_dev, &qat_req->buf); if (unlikely(qat_res != ICP_QAT_FW_COMN_STATUS_FLAG_OK)) res = -EINVAL; if (qat_req->encryption) qat_alg_update_iv(qat_req); memcpy(sreq->iv, qat_req->iv, AES_BLOCK_SIZE); skcipher_request_complete(sreq, res); } void qat_alg_callback(void *resp) { struct icp_qat_fw_la_resp *qat_resp = resp; struct qat_crypto_request *qat_req = (void *)(__force long)qat_resp->opaque_data; struct qat_instance_backlog *backlog = qat_req->alg_req.backlog; qat_req->cb(qat_resp, qat_req); qat_alg_send_backlog(backlog); } static int qat_alg_send_sym_message(struct qat_crypto_request *qat_req, struct qat_crypto_instance *inst, struct crypto_async_request *base) { struct qat_alg_req *alg_req = &qat_req->alg_req; alg_req->fw_req = (u32 *)&qat_req->req; alg_req->tx_ring = inst->sym_tx; alg_req->base = base; alg_req->backlog = &inst->backlog; return qat_alg_send_message(alg_req); } static int qat_alg_aead_dec(struct aead_request *areq) { struct crypto_aead *aead_tfm = crypto_aead_reqtfm(areq); struct crypto_tfm *tfm = crypto_aead_tfm(aead_tfm); struct qat_alg_aead_ctx *ctx = crypto_tfm_ctx(tfm); struct qat_crypto_request *qat_req = aead_request_ctx(areq); struct icp_qat_fw_la_cipher_req_params *cipher_param; struct icp_qat_fw_la_auth_req_params *auth_param; struct icp_qat_fw_la_bulk_req *msg; int digst_size = crypto_aead_authsize(aead_tfm); gfp_t f = qat_algs_alloc_flags(&areq->base); int ret; u32 cipher_len; cipher_len = areq->cryptlen - digst_size; if (cipher_len % AES_BLOCK_SIZE != 0) return -EINVAL; ret = qat_bl_sgl_to_bufl(ctx->inst->accel_dev, areq->src, areq->dst, &qat_req->buf, NULL, f); if (unlikely(ret)) return ret; msg = &qat_req->req; *msg = ctx->dec_fw_req; qat_req->aead_ctx = ctx; qat_req->aead_req = areq; qat_req->cb = qat_aead_alg_callback; qat_req->req.comn_mid.opaque_data = (u64)(__force long)qat_req; qat_req->req.comn_mid.src_data_addr = qat_req->buf.blp; qat_req->req.comn_mid.dest_data_addr = qat_req->buf.bloutp; cipher_param = (void *)&qat_req->req.serv_specif_rqpars; cipher_param->cipher_length = cipher_len; cipher_param->cipher_offset = areq->assoclen; memcpy(cipher_param->u.cipher_IV_array, areq->iv, AES_BLOCK_SIZE); auth_param = (void *)((u8 *)cipher_param + sizeof(*cipher_param)); auth_param->auth_off = 0; auth_param->auth_len = areq->assoclen + cipher_param->cipher_length; ret = qat_alg_send_sym_message(qat_req, ctx->inst, &areq->base); if (ret == -ENOSPC) qat_bl_free_bufl(ctx->inst->accel_dev, &qat_req->buf); return ret; } static int qat_alg_aead_enc(struct aead_request *areq) { struct crypto_aead *aead_tfm = crypto_aead_reqtfm(areq); struct crypto_tfm *tfm = crypto_aead_tfm(aead_tfm); struct qat_alg_aead_ctx *ctx = crypto_tfm_ctx(tfm); struct qat_crypto_request *qat_req = aead_request_ctx(areq); struct icp_qat_fw_la_cipher_req_params *cipher_param; struct icp_qat_fw_la_auth_req_params *auth_param; gfp_t f = qat_algs_alloc_flags(&areq->base); struct icp_qat_fw_la_bulk_req *msg; u8 *iv = areq->iv; int ret; if (areq->cryptlen % AES_BLOCK_SIZE != 0) return -EINVAL; ret = qat_bl_sgl_to_bufl(ctx->inst->accel_dev, areq->src, areq->dst, &qat_req->buf, NULL, f); if (unlikely(ret)) return ret; msg = &qat_req->req; *msg = ctx->enc_fw_req; qat_req->aead_ctx = ctx; qat_req->aead_req = areq; qat_req->cb = qat_aead_alg_callback; qat_req->req.comn_mid.opaque_data = (u64)(__force long)qat_req; qat_req->req.comn_mid.src_data_addr = qat_req->buf.blp; qat_req->req.comn_mid.dest_data_addr = qat_req->buf.bloutp; cipher_param = (void *)&qat_req->req.serv_specif_rqpars; auth_param = (void *)((u8 *)cipher_param + sizeof(*cipher_param)); memcpy(cipher_param->u.cipher_IV_array, iv, AES_BLOCK_SIZE); cipher_param->cipher_length = areq->cryptlen; cipher_param->cipher_offset = areq->assoclen; auth_param->auth_off = 0; auth_param->auth_len = areq->assoclen + areq->cryptlen; ret = qat_alg_send_sym_message(qat_req, ctx->inst, &areq->base); if (ret == -ENOSPC) qat_bl_free_bufl(ctx->inst->accel_dev, &qat_req->buf); return ret; } static int qat_alg_skcipher_rekey(struct qat_alg_skcipher_ctx *ctx, const u8 *key, unsigned int keylen, int mode) { memset(ctx->enc_cd, 0, sizeof(*ctx->enc_cd)); memset(ctx->dec_cd, 0, sizeof(*ctx->dec_cd)); memset(&ctx->enc_fw_req, 0, sizeof(ctx->enc_fw_req)); memset(&ctx->dec_fw_req, 0, sizeof(ctx->dec_fw_req)); return qat_alg_skcipher_init_sessions(ctx, key, keylen, mode); } static int qat_alg_skcipher_newkey(struct qat_alg_skcipher_ctx *ctx, const u8 *key, unsigned int keylen, int mode) { struct qat_crypto_instance *inst = NULL; struct device *dev; int node = numa_node_id(); int ret; inst = qat_crypto_get_instance_node(node); if (!inst) return -EINVAL; dev = &GET_DEV(inst->accel_dev); ctx->inst = inst; ctx->enc_cd = dma_alloc_coherent(dev, sizeof(*ctx->enc_cd), &ctx->enc_cd_paddr, GFP_ATOMIC); if (!ctx->enc_cd) { ret = -ENOMEM; goto out_free_instance; } ctx->dec_cd = dma_alloc_coherent(dev, sizeof(*ctx->dec_cd), &ctx->dec_cd_paddr, GFP_ATOMIC); if (!ctx->dec_cd) { ret = -ENOMEM; goto out_free_enc; } ret = qat_alg_skcipher_init_sessions(ctx, key, keylen, mode); if (ret) goto out_free_all; return 0; out_free_all: memset(ctx->dec_cd, 0, sizeof(*ctx->dec_cd)); dma_free_coherent(dev, sizeof(*ctx->dec_cd), ctx->dec_cd, ctx->dec_cd_paddr); ctx->dec_cd = NULL; out_free_enc: memset(ctx->enc_cd, 0, sizeof(*ctx->enc_cd)); dma_free_coherent(dev, sizeof(*ctx->enc_cd), ctx->enc_cd, ctx->enc_cd_paddr); ctx->enc_cd = NULL; out_free_instance: ctx->inst = NULL; qat_crypto_put_instance(inst); return ret; } static int qat_alg_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen, int mode) { struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); ctx->mode = mode; if (ctx->enc_cd) return qat_alg_skcipher_rekey(ctx, key, keylen, mode); else return qat_alg_skcipher_newkey(ctx, key, keylen, mode); } static int qat_alg_skcipher_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { return qat_alg_skcipher_setkey(tfm, key, keylen, ICP_QAT_HW_CIPHER_CBC_MODE); } static int qat_alg_skcipher_ctr_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { return qat_alg_skcipher_setkey(tfm, key, keylen, ICP_QAT_HW_CIPHER_CTR_MODE); } static int qat_alg_skcipher_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; ret = xts_verify_key(tfm, key, keylen); if (ret) return ret; if (keylen >> 1 == AES_KEYSIZE_192) { ret = crypto_skcipher_setkey(ctx->ftfm, key, keylen); if (ret) return ret; ctx->fallback = true; return 0; } ctx->fallback = false; ret = qat_alg_skcipher_setkey(tfm, key, keylen, ICP_QAT_HW_CIPHER_XTS_MODE); if (ret) return ret; if (HW_CAP_AES_V2(ctx->inst->accel_dev)) ret = crypto_cipher_setkey(ctx->tweak, key + (keylen / 2), keylen / 2); return ret; } static void qat_alg_set_req_iv(struct qat_crypto_request *qat_req) { struct icp_qat_fw_la_cipher_req_params *cipher_param; struct qat_alg_skcipher_ctx *ctx = qat_req->skcipher_ctx; bool aes_v2_capable = HW_CAP_AES_V2(ctx->inst->accel_dev); u8 *iv = qat_req->skcipher_req->iv; cipher_param = (void *)&qat_req->req.serv_specif_rqpars; if (aes_v2_capable && ctx->mode == ICP_QAT_HW_CIPHER_XTS_MODE) crypto_cipher_encrypt_one(ctx->tweak, (u8 *)cipher_param->u.cipher_IV_array, iv); else memcpy(cipher_param->u.cipher_IV_array, iv, AES_BLOCK_SIZE); } static int qat_alg_skcipher_encrypt(struct skcipher_request *req) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm); struct qat_alg_skcipher_ctx *ctx = crypto_tfm_ctx(tfm); struct qat_crypto_request *qat_req = skcipher_request_ctx(req); struct icp_qat_fw_la_cipher_req_params *cipher_param; gfp_t f = qat_algs_alloc_flags(&req->base); struct icp_qat_fw_la_bulk_req *msg; int ret; if (req->cryptlen == 0) return 0; ret = qat_bl_sgl_to_bufl(ctx->inst->accel_dev, req->src, req->dst, &qat_req->buf, NULL, f); if (unlikely(ret)) return ret; msg = &qat_req->req; *msg = ctx->enc_fw_req; qat_req->skcipher_ctx = ctx; qat_req->skcipher_req = req; qat_req->cb = qat_skcipher_alg_callback; qat_req->req.comn_mid.opaque_data = (u64)(__force long)qat_req; qat_req->req.comn_mid.src_data_addr = qat_req->buf.blp; qat_req->req.comn_mid.dest_data_addr = qat_req->buf.bloutp; qat_req->encryption = true; cipher_param = (void *)&qat_req->req.serv_specif_rqpars; cipher_param->cipher_length = req->cryptlen; cipher_param->cipher_offset = 0; qat_alg_set_req_iv(qat_req); ret = qat_alg_send_sym_message(qat_req, ctx->inst, &req->base); if (ret == -ENOSPC) qat_bl_free_bufl(ctx->inst->accel_dev, &qat_req->buf); return ret; } static int qat_alg_skcipher_blk_encrypt(struct skcipher_request *req) { if (req->cryptlen % AES_BLOCK_SIZE != 0) return -EINVAL; return qat_alg_skcipher_encrypt(req); } static int qat_alg_skcipher_xts_encrypt(struct skcipher_request *req) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(stfm); struct skcipher_request *nreq = skcipher_request_ctx(req); if (req->cryptlen < XTS_BLOCK_SIZE) return -EINVAL; if (ctx->fallback) { memcpy(nreq, req, sizeof(*req)); skcipher_request_set_tfm(nreq, ctx->ftfm); return crypto_skcipher_encrypt(nreq); } return qat_alg_skcipher_encrypt(req); } static int qat_alg_skcipher_decrypt(struct skcipher_request *req) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm); struct qat_alg_skcipher_ctx *ctx = crypto_tfm_ctx(tfm); struct qat_crypto_request *qat_req = skcipher_request_ctx(req); struct icp_qat_fw_la_cipher_req_params *cipher_param; gfp_t f = qat_algs_alloc_flags(&req->base); struct icp_qat_fw_la_bulk_req *msg; int ret; if (req->cryptlen == 0) return 0; ret = qat_bl_sgl_to_bufl(ctx->inst->accel_dev, req->src, req->dst, &qat_req->buf, NULL, f); if (unlikely(ret)) return ret; msg = &qat_req->req; *msg = ctx->dec_fw_req; qat_req->skcipher_ctx = ctx; qat_req->skcipher_req = req; qat_req->cb = qat_skcipher_alg_callback; qat_req->req.comn_mid.opaque_data = (u64)(__force long)qat_req; qat_req->req.comn_mid.src_data_addr = qat_req->buf.blp; qat_req->req.comn_mid.dest_data_addr = qat_req->buf.bloutp; qat_req->encryption = false; cipher_param = (void *)&qat_req->req.serv_specif_rqpars; cipher_param->cipher_length = req->cryptlen; cipher_param->cipher_offset = 0; qat_alg_set_req_iv(qat_req); qat_alg_update_iv(qat_req); ret = qat_alg_send_sym_message(qat_req, ctx->inst, &req->base); if (ret == -ENOSPC) qat_bl_free_bufl(ctx->inst->accel_dev, &qat_req->buf); return ret; } static int qat_alg_skcipher_blk_decrypt(struct skcipher_request *req) { if (req->cryptlen % AES_BLOCK_SIZE != 0) return -EINVAL; return qat_alg_skcipher_decrypt(req); } static int qat_alg_skcipher_xts_decrypt(struct skcipher_request *req) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(stfm); struct skcipher_request *nreq = skcipher_request_ctx(req); if (req->cryptlen < XTS_BLOCK_SIZE) return -EINVAL; if (ctx->fallback) { memcpy(nreq, req, sizeof(*req)); skcipher_request_set_tfm(nreq, ctx->ftfm); return crypto_skcipher_decrypt(nreq); } return qat_alg_skcipher_decrypt(req); } static int qat_alg_aead_init(struct crypto_aead *tfm, enum icp_qat_hw_auth_algo hash, const char *hash_name) { struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm); ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0); if (IS_ERR(ctx->hash_tfm)) return PTR_ERR(ctx->hash_tfm); ctx->qat_hash_alg = hash; crypto_aead_set_reqsize(tfm, sizeof(struct qat_crypto_request)); return 0; } static int qat_alg_aead_sha1_init(struct crypto_aead *tfm) { return qat_alg_aead_init(tfm, ICP_QAT_HW_AUTH_ALGO_SHA1, "sha1"); } static int qat_alg_aead_sha256_init(struct crypto_aead *tfm) { return qat_alg_aead_init(tfm, ICP_QAT_HW_AUTH_ALGO_SHA256, "sha256"); } static int qat_alg_aead_sha512_init(struct crypto_aead *tfm) { return qat_alg_aead_init(tfm, ICP_QAT_HW_AUTH_ALGO_SHA512, "sha512"); } static void qat_alg_aead_exit(struct crypto_aead *tfm) { struct qat_alg_aead_ctx *ctx = crypto_aead_ctx(tfm); struct qat_crypto_instance *inst = ctx->inst; struct device *dev; crypto_free_shash(ctx->hash_tfm); if (!inst) return; dev = &GET_DEV(inst->accel_dev); if (ctx->enc_cd) { memset(ctx->enc_cd, 0, sizeof(struct qat_alg_cd)); dma_free_coherent(dev, sizeof(struct qat_alg_cd), ctx->enc_cd, ctx->enc_cd_paddr); } if (ctx->dec_cd) { memset(ctx->dec_cd, 0, sizeof(struct qat_alg_cd)); dma_free_coherent(dev, sizeof(struct qat_alg_cd), ctx->dec_cd, ctx->dec_cd_paddr); } qat_crypto_put_instance(inst); } static int qat_alg_skcipher_init_tfm(struct crypto_skcipher *tfm) { crypto_skcipher_set_reqsize(tfm, sizeof(struct qat_crypto_request)); return 0; } static int qat_alg_skcipher_init_xts_tfm(struct crypto_skcipher *tfm) { struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); int reqsize; ctx->ftfm = crypto_alloc_skcipher("xts(aes)", 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->ftfm)) return PTR_ERR(ctx->ftfm); ctx->tweak = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(ctx->tweak)) { crypto_free_skcipher(ctx->ftfm); return PTR_ERR(ctx->tweak); } reqsize = max(sizeof(struct qat_crypto_request), sizeof(struct skcipher_request) + crypto_skcipher_reqsize(ctx->ftfm)); crypto_skcipher_set_reqsize(tfm, reqsize); return 0; } static void qat_alg_skcipher_exit_tfm(struct crypto_skcipher *tfm) { struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct qat_crypto_instance *inst = ctx->inst; struct device *dev; if (!inst) return; dev = &GET_DEV(inst->accel_dev); if (ctx->enc_cd) { memset(ctx->enc_cd, 0, sizeof(struct icp_qat_hw_cipher_algo_blk)); dma_free_coherent(dev, sizeof(struct icp_qat_hw_cipher_algo_blk), ctx->enc_cd, ctx->enc_cd_paddr); } if (ctx->dec_cd) { memset(ctx->dec_cd, 0, sizeof(struct icp_qat_hw_cipher_algo_blk)); dma_free_coherent(dev, sizeof(struct icp_qat_hw_cipher_algo_blk), ctx->dec_cd, ctx->dec_cd_paddr); } qat_crypto_put_instance(inst); } static void qat_alg_skcipher_exit_xts_tfm(struct crypto_skcipher *tfm) { struct qat_alg_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); if (ctx->ftfm) crypto_free_skcipher(ctx->ftfm); if (ctx->tweak) crypto_free_cipher(ctx->tweak); qat_alg_skcipher_exit_tfm(tfm); } static struct aead_alg qat_aeads[] = { { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "qat_aes_cbc_hmac_sha1", .cra_priority = 4001, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qat_alg_aead_ctx), .cra_module = THIS_MODULE, }, .init = qat_alg_aead_sha1_init, .exit = qat_alg_aead_exit, .setkey = qat_alg_aead_setkey, .decrypt = qat_alg_aead_dec, .encrypt = qat_alg_aead_enc, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "qat_aes_cbc_hmac_sha256", .cra_priority = 4001, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qat_alg_aead_ctx), .cra_module = THIS_MODULE, }, .init = qat_alg_aead_sha256_init, .exit = qat_alg_aead_exit, .setkey = qat_alg_aead_setkey, .decrypt = qat_alg_aead_dec, .encrypt = qat_alg_aead_enc, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "qat_aes_cbc_hmac_sha512", .cra_priority = 4001, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct qat_alg_aead_ctx), .cra_module = THIS_MODULE, }, .init = qat_alg_aead_sha512_init, .exit = qat_alg_aead_exit, .setkey = qat_alg_aead_setkey, .decrypt = qat_alg_aead_dec, .encrypt = qat_alg_aead_enc, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, } }; static struct skcipher_alg qat_skciphers[] = { { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "qat_aes_cbc", .base.cra_priority = 4001, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct qat_alg_skcipher_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = qat_alg_skcipher_init_tfm, .exit = qat_alg_skcipher_exit_tfm, .setkey = qat_alg_skcipher_cbc_setkey, .decrypt = qat_alg_skcipher_blk_decrypt, .encrypt = qat_alg_skcipher_blk_encrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "qat_aes_ctr", .base.cra_priority = 4001, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct qat_alg_skcipher_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = qat_alg_skcipher_init_tfm, .exit = qat_alg_skcipher_exit_tfm, .setkey = qat_alg_skcipher_ctr_setkey, .decrypt = qat_alg_skcipher_decrypt, .encrypt = qat_alg_skcipher_encrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, { .base.cra_name = "xts(aes)", .base.cra_driver_name = "qat_aes_xts", .base.cra_priority = 4001, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct qat_alg_skcipher_ctx), .base.cra_alignmask = 0, .base.cra_module = THIS_MODULE, .init = qat_alg_skcipher_init_xts_tfm, .exit = qat_alg_skcipher_exit_xts_tfm, .setkey = qat_alg_skcipher_xts_setkey, .decrypt = qat_alg_skcipher_xts_decrypt, .encrypt = qat_alg_skcipher_xts_encrypt, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, } }; int qat_algs_register(void) { int ret = 0; mutex_lock(&algs_lock); if (++active_devs != 1) goto unlock; ret = crypto_register_skciphers(qat_skciphers, ARRAY_SIZE(qat_skciphers)); if (ret) goto unlock; ret = crypto_register_aeads(qat_aeads, ARRAY_SIZE(qat_aeads)); if (ret) goto unreg_algs; unlock: mutex_unlock(&algs_lock); return ret; unreg_algs: crypto_unregister_skciphers(qat_skciphers, ARRAY_SIZE(qat_skciphers)); goto unlock; } void qat_algs_unregister(void) { mutex_lock(&algs_lock); if (--active_devs != 0) goto unlock; crypto_unregister_aeads(qat_aeads, ARRAY_SIZE(qat_aeads)); crypto_unregister_skciphers(qat_skciphers, ARRAY_SIZE(qat_skciphers)); unlock: mutex_unlock(&algs_lock); }
linux-master
drivers/crypto/intel/qat/qat_common/qat_algs.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_transport_internal.h" #define ADF_ARB_NUM 4 #define ADF_ARB_REG_SIZE 0x4 #define WRITE_CSR_ARB_SARCONFIG(csr_addr, arb_offset, index, value) \ ADF_CSR_WR(csr_addr, (arb_offset) + \ (ADF_ARB_REG_SIZE * (index)), value) #define WRITE_CSR_ARB_WT2SAM(csr_addr, arb_offset, wt_offset, index, value) \ ADF_CSR_WR(csr_addr, ((arb_offset) + (wt_offset)) + \ (ADF_ARB_REG_SIZE * (index)), value) int adf_init_arb(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; void __iomem *csr = accel_dev->transport->banks[0].csr_addr; unsigned long ae_mask = hw_data->ae_mask; u32 arb_off, wt_off, arb_cfg; const u32 *thd_2_arb_cfg; struct arb_info info; int arb, i; hw_data->get_arb_info(&info); arb_cfg = info.arb_cfg; arb_off = info.arb_offset; wt_off = info.wt2sam_offset; /* Service arb configured for 32 bytes responses and * ring flow control check enabled. */ for (arb = 0; arb < ADF_ARB_NUM; arb++) WRITE_CSR_ARB_SARCONFIG(csr, arb_off, arb, arb_cfg); /* Map worker threads to service arbiters */ thd_2_arb_cfg = hw_data->get_arb_mapping(accel_dev); for_each_set_bit(i, &ae_mask, hw_data->num_engines) WRITE_CSR_ARB_WT2SAM(csr, arb_off, wt_off, i, thd_2_arb_cfg[i]); return 0; } EXPORT_SYMBOL_GPL(adf_init_arb); void adf_update_ring_arb(struct adf_etr_ring_data *ring) { struct adf_accel_dev *accel_dev = ring->bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev); u32 tx_ring_mask = hw_data->tx_rings_mask; u32 shift = hw_data->tx_rx_gap; u32 arben, arben_tx, arben_rx; u32 rx_ring_mask; /* * Enable arbitration on a ring only if the TX half of the ring mask * matches the RX part. This results in writes to CSR on both TX and * RX update - only one is necessary, but both are done for * simplicity. */ rx_ring_mask = tx_ring_mask << shift; arben_tx = (ring->bank->ring_mask & tx_ring_mask) >> 0; arben_rx = (ring->bank->ring_mask & rx_ring_mask) >> shift; arben = arben_tx & arben_rx; csr_ops->write_csr_ring_srv_arb_en(ring->bank->csr_addr, ring->bank->bank_number, arben); } void adf_exit_arb(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev); u32 arb_off, wt_off; struct arb_info info; void __iomem *csr; unsigned int i; hw_data->get_arb_info(&info); arb_off = info.arb_offset; wt_off = info.wt2sam_offset; if (!accel_dev->transport) return; csr = accel_dev->transport->banks[0].csr_addr; hw_data->get_arb_info(&info); /* Reset arbiter configuration */ for (i = 0; i < ADF_ARB_NUM; i++) WRITE_CSR_ARB_SARCONFIG(csr, arb_off, i, 0); /* Unmap worker threads to service arbiters */ for (i = 0; i < hw_data->num_engines; i++) WRITE_CSR_ARB_WT2SAM(csr, arb_off, wt_off, i, 0); /* Disable arbitration on all rings */ for (i = 0; i < GET_MAX_BANKS(accel_dev); i++) csr_ops->write_csr_ring_srv_arb_en(csr, i, 0); } EXPORT_SYMBOL_GPL(adf_exit_arb);
linux-master
drivers/crypto/intel/qat/qat_common/adf_hw_arbiter.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Intel Corporation */ #include <linux/bitops.h> #include <linux/debugfs.h> #include <linux/err.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/seq_file.h> #include <linux/types.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_fw_counters.h" #define ADF_FW_COUNTERS_MAX_PADDING 16 enum adf_fw_counters_types { ADF_FW_REQUESTS, ADF_FW_RESPONSES, ADF_FW_COUNTERS_COUNT }; static const char * const adf_fw_counter_names[] = { [ADF_FW_REQUESTS] = "Requests", [ADF_FW_RESPONSES] = "Responses", }; static_assert(ARRAY_SIZE(adf_fw_counter_names) == ADF_FW_COUNTERS_COUNT); struct adf_ae_counters { u16 ae; u64 values[ADF_FW_COUNTERS_COUNT]; }; struct adf_fw_counters { u16 ae_count; struct adf_ae_counters ae_counters[]; }; static void adf_fw_counters_parse_ae_values(struct adf_ae_counters *ae_counters, u32 ae, u64 req_count, u64 resp_count) { ae_counters->ae = ae; ae_counters->values[ADF_FW_REQUESTS] = req_count; ae_counters->values[ADF_FW_RESPONSES] = resp_count; } static int adf_fw_counters_load_from_device(struct adf_accel_dev *accel_dev, struct adf_fw_counters *fw_counters) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); unsigned long ae_mask; unsigned int i; unsigned long ae; /* Ignore the admin AEs */ ae_mask = hw_data->ae_mask & ~hw_data->admin_ae_mask; if (hweight_long(ae_mask) > fw_counters->ae_count) return -EINVAL; i = 0; for_each_set_bit(ae, &ae_mask, GET_MAX_ACCELENGINES(accel_dev)) { u64 req_count, resp_count; int ret; ret = adf_get_ae_fw_counters(accel_dev, ae, &req_count, &resp_count); if (ret) return ret; adf_fw_counters_parse_ae_values(&fw_counters->ae_counters[i++], ae, req_count, resp_count); } return 0; } static struct adf_fw_counters *adf_fw_counters_allocate(unsigned long ae_count) { struct adf_fw_counters *fw_counters; if (unlikely(!ae_count)) return ERR_PTR(-EINVAL); fw_counters = kmalloc(struct_size(fw_counters, ae_counters, ae_count), GFP_KERNEL); if (!fw_counters) return ERR_PTR(-ENOMEM); fw_counters->ae_count = ae_count; return fw_counters; } /** * adf_fw_counters_get() - Return FW counters for the provided device. * @accel_dev: Pointer to a QAT acceleration device * * Allocates and returns a table of counters containing execution statistics * for each non-admin AE available through the supplied acceleration device. * The caller becomes the owner of such memory and is responsible for * the deallocation through a call to kfree(). * * Returns: a pointer to a dynamically allocated struct adf_fw_counters * on success, or a negative value on error. */ static struct adf_fw_counters *adf_fw_counters_get(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev); struct adf_fw_counters *fw_counters; unsigned long ae_count; int ret; if (!adf_dev_started(accel_dev)) { dev_err(&GET_DEV(accel_dev), "QAT Device not started\n"); return ERR_PTR(-EFAULT); } /* Ignore the admin AEs */ ae_count = hweight_long(hw_data->ae_mask & ~hw_data->admin_ae_mask); fw_counters = adf_fw_counters_allocate(ae_count); if (IS_ERR(fw_counters)) return fw_counters; ret = adf_fw_counters_load_from_device(accel_dev, fw_counters); if (ret) { kfree(fw_counters); dev_err(&GET_DEV(accel_dev), "Failed to create QAT fw_counters file table [%d].\n", ret); return ERR_PTR(ret); } return fw_counters; } static void *qat_fw_counters_seq_start(struct seq_file *sfile, loff_t *pos) { struct adf_fw_counters *fw_counters = sfile->private; if (*pos == 0) return SEQ_START_TOKEN; if (*pos > fw_counters->ae_count) return NULL; return &fw_counters->ae_counters[*pos - 1]; } static void *qat_fw_counters_seq_next(struct seq_file *sfile, void *v, loff_t *pos) { struct adf_fw_counters *fw_counters = sfile->private; (*pos)++; if (*pos > fw_counters->ae_count) return NULL; return &fw_counters->ae_counters[*pos - 1]; } static void qat_fw_counters_seq_stop(struct seq_file *sfile, void *v) {} static int qat_fw_counters_seq_show(struct seq_file *sfile, void *v) { int i; if (v == SEQ_START_TOKEN) { seq_puts(sfile, "AE "); for (i = 0; i < ADF_FW_COUNTERS_COUNT; ++i) seq_printf(sfile, " %*s", ADF_FW_COUNTERS_MAX_PADDING, adf_fw_counter_names[i]); } else { struct adf_ae_counters *ae_counters = (struct adf_ae_counters *)v; seq_printf(sfile, "%2d:", ae_counters->ae); for (i = 0; i < ADF_FW_COUNTERS_COUNT; ++i) seq_printf(sfile, " %*llu", ADF_FW_COUNTERS_MAX_PADDING, ae_counters->values[i]); } seq_putc(sfile, '\n'); return 0; } static const struct seq_operations qat_fw_counters_sops = { .start = qat_fw_counters_seq_start, .next = qat_fw_counters_seq_next, .stop = qat_fw_counters_seq_stop, .show = qat_fw_counters_seq_show, }; static int qat_fw_counters_file_open(struct inode *inode, struct file *file) { struct adf_accel_dev *accel_dev = inode->i_private; struct seq_file *fw_counters_seq_file; struct adf_fw_counters *fw_counters; int ret; fw_counters = adf_fw_counters_get(accel_dev); if (IS_ERR(fw_counters)) return PTR_ERR(fw_counters); ret = seq_open(file, &qat_fw_counters_sops); if (unlikely(ret)) { kfree(fw_counters); return ret; } fw_counters_seq_file = file->private_data; fw_counters_seq_file->private = fw_counters; return ret; } static int qat_fw_counters_file_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; kfree(seq->private); seq->private = NULL; return seq_release(inode, file); } static const struct file_operations qat_fw_counters_fops = { .owner = THIS_MODULE, .open = qat_fw_counters_file_open, .read = seq_read, .llseek = seq_lseek, .release = qat_fw_counters_file_release, }; /** * adf_fw_counters_dbgfs_add() - Create a debugfs file containing FW * execution counters. * @accel_dev: Pointer to a QAT acceleration device * * Function creates a file to display a table with statistics for the given * QAT acceleration device. The table stores device specific execution values * for each AE, such as the number of requests sent to the FW and responses * received from the FW. * * Return: void */ void adf_fw_counters_dbgfs_add(struct adf_accel_dev *accel_dev) { accel_dev->fw_cntr_dbgfile = debugfs_create_file("fw_counters", 0400, accel_dev->debugfs_dir, accel_dev, &qat_fw_counters_fops); } /** * adf_fw_counters_dbgfs_rm() - Remove the debugfs file containing FW counters. * @accel_dev: Pointer to a QAT acceleration device. * * Function removes the file providing the table of statistics for the given * QAT acceleration device. * * Return: void */ void adf_fw_counters_dbgfs_rm(struct adf_accel_dev *accel_dev) { debugfs_remove(accel_dev->fw_cntr_dbgfile); accel_dev->fw_cntr_dbgfile = NULL; }
linux-master
drivers/crypto/intel/qat/qat_common/adf_fw_counters.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2015 - 2021 Intel Corporation */ #include <linux/workqueue.h> #include <linux/pci.h> #include <linux/device.h> #include "adf_common_drv.h" #include "adf_cfg.h" #include "adf_pfvf_pf_msg.h" #define ADF_VF2PF_RATELIMIT_INTERVAL 8 #define ADF_VF2PF_RATELIMIT_BURST 130 static struct workqueue_struct *pf2vf_resp_wq; struct adf_pf2vf_resp { struct work_struct pf2vf_resp_work; struct adf_accel_vf_info *vf_info; }; static void adf_iov_send_resp(struct work_struct *work) { struct adf_pf2vf_resp *pf2vf_resp = container_of(work, struct adf_pf2vf_resp, pf2vf_resp_work); struct adf_accel_vf_info *vf_info = pf2vf_resp->vf_info; struct adf_accel_dev *accel_dev = vf_info->accel_dev; u32 vf_nr = vf_info->vf_nr; bool ret; ret = adf_recv_and_handle_vf2pf_msg(accel_dev, vf_nr); if (ret) /* re-enable interrupt on PF from this VF */ adf_enable_vf2pf_interrupts(accel_dev, 1 << vf_nr); kfree(pf2vf_resp); } void adf_schedule_vf2pf_handler(struct adf_accel_vf_info *vf_info) { struct adf_pf2vf_resp *pf2vf_resp; pf2vf_resp = kzalloc(sizeof(*pf2vf_resp), GFP_ATOMIC); if (!pf2vf_resp) return; pf2vf_resp->vf_info = vf_info; INIT_WORK(&pf2vf_resp->pf2vf_resp_work, adf_iov_send_resp); queue_work(pf2vf_resp_wq, &pf2vf_resp->pf2vf_resp_work); } static int adf_enable_sriov(struct adf_accel_dev *accel_dev) { struct pci_dev *pdev = accel_to_pci_dev(accel_dev); int totalvfs = pci_sriov_get_totalvfs(pdev); struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_accel_vf_info *vf_info; int i; for (i = 0, vf_info = accel_dev->pf.vf_info; i < totalvfs; i++, vf_info++) { /* This ptr will be populated when VFs will be created */ vf_info->accel_dev = accel_dev; vf_info->vf_nr = i; vf_info->vf_compat_ver = 0; mutex_init(&vf_info->pf2vf_lock); ratelimit_state_init(&vf_info->vf2pf_ratelimit, ADF_VF2PF_RATELIMIT_INTERVAL, ADF_VF2PF_RATELIMIT_BURST); } /* Set Valid bits in AE Thread to PCIe Function Mapping */ if (hw_data->configure_iov_threads) hw_data->configure_iov_threads(accel_dev, true); /* Enable VF to PF interrupts for all VFs */ adf_enable_vf2pf_interrupts(accel_dev, BIT_ULL(totalvfs) - 1); /* * Due to the hardware design, when SR-IOV and the ring arbiter * are enabled all the VFs supported in hardware must be enabled in * order for all the hardware resources (i.e. bundles) to be usable. * When SR-IOV is enabled, each of the VFs will own one bundle. */ return pci_enable_sriov(pdev, totalvfs); } /** * adf_disable_sriov() - Disable SRIOV for the device * @accel_dev: Pointer to accel device. * * Function disables SRIOV for the accel device. * * Return: 0 on success, error code otherwise. */ void adf_disable_sriov(struct adf_accel_dev *accel_dev) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; int totalvfs = pci_sriov_get_totalvfs(accel_to_pci_dev(accel_dev)); struct adf_accel_vf_info *vf; int i; if (!accel_dev->pf.vf_info) return; adf_pf2vf_notify_restarting(accel_dev); pci_disable_sriov(accel_to_pci_dev(accel_dev)); /* Disable VF to PF interrupts */ adf_disable_all_vf2pf_interrupts(accel_dev); /* Clear Valid bits in AE Thread to PCIe Function Mapping */ if (hw_data->configure_iov_threads) hw_data->configure_iov_threads(accel_dev, false); for (i = 0, vf = accel_dev->pf.vf_info; i < totalvfs; i++, vf++) mutex_destroy(&vf->pf2vf_lock); kfree(accel_dev->pf.vf_info); accel_dev->pf.vf_info = NULL; } EXPORT_SYMBOL_GPL(adf_disable_sriov); /** * adf_sriov_configure() - Enable SRIOV for the device * @pdev: Pointer to PCI device. * @numvfs: Number of virtual functions (VFs) to enable. * * Note that the @numvfs parameter is ignored and all VFs supported by the * device are enabled due to the design of the hardware. * * Function enables SRIOV for the PCI device. * * Return: number of VFs enabled on success, error code otherwise. */ int adf_sriov_configure(struct pci_dev *pdev, int numvfs) { struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev); int totalvfs = pci_sriov_get_totalvfs(pdev); unsigned long val; int ret; if (!accel_dev) { dev_err(&pdev->dev, "Failed to find accel_dev\n"); return -EFAULT; } if (!device_iommu_mapped(&pdev->dev)) dev_warn(&pdev->dev, "IOMMU should be enabled for SR-IOV to work correctly\n"); if (accel_dev->pf.vf_info) { dev_info(&pdev->dev, "Already enabled for this device\n"); return -EINVAL; } if (adf_dev_started(accel_dev)) { if (adf_devmgr_in_reset(accel_dev) || adf_dev_in_use(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Device busy\n"); return -EBUSY; } ret = adf_dev_down(accel_dev, true); if (ret) return ret; } if (adf_cfg_section_add(accel_dev, ADF_KERNEL_SEC)) return -EFAULT; val = 0; if (adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_CY, (void *)&val, ADF_DEC)) return -EFAULT; ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_DC, &val, ADF_DEC); if (ret) return ret; set_bit(ADF_STATUS_CONFIGURED, &accel_dev->status); /* Allocate memory for VF info structs */ accel_dev->pf.vf_info = kcalloc(totalvfs, sizeof(struct adf_accel_vf_info), GFP_KERNEL); if (!accel_dev->pf.vf_info) return -ENOMEM; if (adf_dev_up(accel_dev, false)) { dev_err(&GET_DEV(accel_dev), "Failed to start qat_dev%d\n", accel_dev->accel_id); return -EFAULT; } ret = adf_enable_sriov(accel_dev); if (ret) return ret; return numvfs; } EXPORT_SYMBOL_GPL(adf_sriov_configure); int __init adf_init_pf_wq(void) { /* Workqueue for PF2VF responses */ pf2vf_resp_wq = alloc_workqueue("qat_pf2vf_resp_wq", WQ_MEM_RECLAIM, 0); return !pf2vf_resp_wq ? -ENOMEM : 0; } void adf_exit_pf_wq(void) { if (pf2vf_resp_wq) { destroy_workqueue(pf2vf_resp_wq); pf2vf_resp_wq = NULL; } }
linux-master
drivers/crypto/intel/qat/qat_common/adf_sriov.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2015 - 2021 Intel Corporation */ #include <linux/bitfield.h> #include <linux/completion.h> #include <linux/minmax.h> #include <linux/types.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_pfvf_msg.h" #include "adf_pfvf_utils.h" #include "adf_pfvf_vf_msg.h" #include "adf_pfvf_vf_proto.h" #define ADF_PFVF_MSG_COLLISION_DETECT_DELAY 10 #define ADF_PFVF_MSG_ACK_DELAY 2 #define ADF_PFVF_MSG_ACK_MAX_RETRY 100 /* How often to retry if there is no response */ #define ADF_PFVF_MSG_RESP_RETRIES 5 #define ADF_PFVF_MSG_RESP_TIMEOUT (ADF_PFVF_MSG_ACK_DELAY * \ ADF_PFVF_MSG_ACK_MAX_RETRY + \ ADF_PFVF_MSG_COLLISION_DETECT_DELAY) /** * adf_send_vf2pf_msg() - send VF to PF message * @accel_dev: Pointer to acceleration device * @msg: Message to send * * This function allows the VF to send a message to the PF. * * Return: 0 on success, error code otherwise. */ int adf_send_vf2pf_msg(struct adf_accel_dev *accel_dev, struct pfvf_message msg) { struct adf_pfvf_ops *pfvf_ops = GET_PFVF_OPS(accel_dev); u32 pfvf_offset = pfvf_ops->get_vf2pf_offset(0); return pfvf_ops->send_msg(accel_dev, msg, pfvf_offset, &accel_dev->vf.vf2pf_lock); } /** * adf_recv_pf2vf_msg() - receive a PF to VF message * @accel_dev: Pointer to acceleration device * * This function allows the VF to receive a message from the PF. * * Return: a valid message on success, zero otherwise. */ static struct pfvf_message adf_recv_pf2vf_msg(struct adf_accel_dev *accel_dev) { struct adf_pfvf_ops *pfvf_ops = GET_PFVF_OPS(accel_dev); u32 pfvf_offset = pfvf_ops->get_pf2vf_offset(0); return pfvf_ops->recv_msg(accel_dev, pfvf_offset, accel_dev->vf.pf_compat_ver); } /** * adf_send_vf2pf_req() - send VF2PF request message * @accel_dev: Pointer to acceleration device. * @msg: Request message to send * @resp: Returned PF response * * This function sends a message that requires a response from the VF to the PF * and waits for a reply. * * Return: 0 on success, error code otherwise. */ int adf_send_vf2pf_req(struct adf_accel_dev *accel_dev, struct pfvf_message msg, struct pfvf_message *resp) { unsigned long timeout = msecs_to_jiffies(ADF_PFVF_MSG_RESP_TIMEOUT); unsigned int retries = ADF_PFVF_MSG_RESP_RETRIES; int ret; reinit_completion(&accel_dev->vf.msg_received); /* Send request from VF to PF */ do { ret = adf_send_vf2pf_msg(accel_dev, msg); if (ret) { dev_err(&GET_DEV(accel_dev), "Failed to send request msg to PF\n"); return ret; } /* Wait for response, if it times out retry */ ret = wait_for_completion_timeout(&accel_dev->vf.msg_received, timeout); if (ret) { if (likely(resp)) *resp = accel_dev->vf.response; /* Once copied, set to an invalid value */ accel_dev->vf.response.type = 0; return 0; } dev_err(&GET_DEV(accel_dev), "PFVF response message timeout\n"); } while (--retries); return -EIO; } static int adf_vf2pf_blkmsg_data_req(struct adf_accel_dev *accel_dev, bool crc, u8 *type, u8 *data) { struct pfvf_message req = { 0 }; struct pfvf_message resp = { 0 }; u8 blk_type; u8 blk_byte; u8 msg_type; u8 max_data; int err; /* Convert the block type to {small, medium, large} size category */ if (*type <= ADF_VF2PF_SMALL_BLOCK_TYPE_MAX) { msg_type = ADF_VF2PF_MSGTYPE_SMALL_BLOCK_REQ; blk_type = FIELD_PREP(ADF_VF2PF_SMALL_BLOCK_TYPE_MASK, *type); blk_byte = FIELD_PREP(ADF_VF2PF_SMALL_BLOCK_BYTE_MASK, *data); max_data = ADF_VF2PF_SMALL_BLOCK_BYTE_MAX; } else if (*type <= ADF_VF2PF_MEDIUM_BLOCK_TYPE_MAX) { msg_type = ADF_VF2PF_MSGTYPE_MEDIUM_BLOCK_REQ; blk_type = FIELD_PREP(ADF_VF2PF_MEDIUM_BLOCK_TYPE_MASK, *type - ADF_VF2PF_SMALL_BLOCK_TYPE_MAX); blk_byte = FIELD_PREP(ADF_VF2PF_MEDIUM_BLOCK_BYTE_MASK, *data); max_data = ADF_VF2PF_MEDIUM_BLOCK_BYTE_MAX; } else if (*type <= ADF_VF2PF_LARGE_BLOCK_TYPE_MAX) { msg_type = ADF_VF2PF_MSGTYPE_LARGE_BLOCK_REQ; blk_type = FIELD_PREP(ADF_VF2PF_LARGE_BLOCK_TYPE_MASK, *type - ADF_VF2PF_MEDIUM_BLOCK_TYPE_MAX); blk_byte = FIELD_PREP(ADF_VF2PF_LARGE_BLOCK_BYTE_MASK, *data); max_data = ADF_VF2PF_LARGE_BLOCK_BYTE_MAX; } else { dev_err(&GET_DEV(accel_dev), "Invalid message type %u\n", *type); return -EINVAL; } /* Sanity check */ if (*data > max_data) { dev_err(&GET_DEV(accel_dev), "Invalid byte %s %u for message type %u\n", crc ? "count" : "index", *data, *type); return -EINVAL; } /* Build the block message */ req.type = msg_type; req.data = blk_type | blk_byte | FIELD_PREP(ADF_VF2PF_BLOCK_CRC_REQ_MASK, crc); err = adf_send_vf2pf_req(accel_dev, req, &resp); if (err) return err; *type = FIELD_GET(ADF_PF2VF_BLKMSG_RESP_TYPE_MASK, resp.data); *data = FIELD_GET(ADF_PF2VF_BLKMSG_RESP_DATA_MASK, resp.data); return 0; } static int adf_vf2pf_blkmsg_get_byte(struct adf_accel_dev *accel_dev, u8 type, u8 index, u8 *data) { int ret; ret = adf_vf2pf_blkmsg_data_req(accel_dev, false, &type, &index); if (ret < 0) return ret; if (unlikely(type != ADF_PF2VF_BLKMSG_RESP_TYPE_DATA)) { dev_err(&GET_DEV(accel_dev), "Unexpected BLKMSG response type %u, byte 0x%x\n", type, index); return -EFAULT; } *data = index; return 0; } static int adf_vf2pf_blkmsg_get_crc(struct adf_accel_dev *accel_dev, u8 type, u8 bytes, u8 *crc) { int ret; /* The count of bytes refers to a length, however shift it to a 0-based * count to avoid overflows. Thus, a request for 0 bytes is technically * valid. */ --bytes; ret = adf_vf2pf_blkmsg_data_req(accel_dev, true, &type, &bytes); if (ret < 0) return ret; if (unlikely(type != ADF_PF2VF_BLKMSG_RESP_TYPE_CRC)) { dev_err(&GET_DEV(accel_dev), "Unexpected CRC BLKMSG response type %u, crc 0x%x\n", type, bytes); return -EFAULT; } *crc = bytes; return 0; } /** * adf_send_vf2pf_blkmsg_req() - retrieve block message * @accel_dev: Pointer to acceleration VF device. * @type: The block message type, see adf_pfvf_msg.h for allowed values * @buffer: input buffer where to place the received data * @buffer_len: buffer length as input, the amount of written bytes on output * * Request a message of type 'type' over the block message transport. * This function will send the required amount block message requests and * return the overall content back to the caller through the provided buffer. * The buffer should be large enough to contain the requested message type, * otherwise the response will be truncated. * * Return: 0 on success, error code otherwise. */ int adf_send_vf2pf_blkmsg_req(struct adf_accel_dev *accel_dev, u8 type, u8 *buffer, unsigned int *buffer_len) { unsigned int index; unsigned int msg_len; int ret; u8 remote_crc; u8 local_crc; if (unlikely(type > ADF_VF2PF_LARGE_BLOCK_TYPE_MAX)) { dev_err(&GET_DEV(accel_dev), "Invalid block message type %d\n", type); return -EINVAL; } if (unlikely(*buffer_len < ADF_PFVF_BLKMSG_HEADER_SIZE)) { dev_err(&GET_DEV(accel_dev), "Buffer size too small for a block message\n"); return -EINVAL; } ret = adf_vf2pf_blkmsg_get_byte(accel_dev, type, ADF_PFVF_BLKMSG_VER_BYTE, &buffer[ADF_PFVF_BLKMSG_VER_BYTE]); if (unlikely(ret)) return ret; if (unlikely(!buffer[ADF_PFVF_BLKMSG_VER_BYTE])) { dev_err(&GET_DEV(accel_dev), "Invalid version 0 received for block request %u", type); return -EFAULT; } ret = adf_vf2pf_blkmsg_get_byte(accel_dev, type, ADF_PFVF_BLKMSG_LEN_BYTE, &buffer[ADF_PFVF_BLKMSG_LEN_BYTE]); if (unlikely(ret)) return ret; if (unlikely(!buffer[ADF_PFVF_BLKMSG_LEN_BYTE])) { dev_err(&GET_DEV(accel_dev), "Invalid size 0 received for block request %u", type); return -EFAULT; } /* We need to pick the minimum since there is no way to request a * specific version. As a consequence any scenario is possible: * - PF has a newer (longer) version which doesn't fit in the buffer * - VF expects a newer (longer) version, so we must not ask for * bytes in excess * - PF and VF share the same version, no problem */ msg_len = ADF_PFVF_BLKMSG_HEADER_SIZE + buffer[ADF_PFVF_BLKMSG_LEN_BYTE]; msg_len = min(*buffer_len, msg_len); /* Get the payload */ for (index = ADF_PFVF_BLKMSG_HEADER_SIZE; index < msg_len; index++) { ret = adf_vf2pf_blkmsg_get_byte(accel_dev, type, index, &buffer[index]); if (unlikely(ret)) return ret; } ret = adf_vf2pf_blkmsg_get_crc(accel_dev, type, msg_len, &remote_crc); if (unlikely(ret)) return ret; local_crc = adf_pfvf_calc_blkmsg_crc(buffer, msg_len); if (unlikely(local_crc != remote_crc)) { dev_err(&GET_DEV(accel_dev), "CRC error on msg type %d. Local %02X, remote %02X\n", type, local_crc, remote_crc); return -EIO; } *buffer_len = msg_len; return 0; } static bool adf_handle_pf2vf_msg(struct adf_accel_dev *accel_dev, struct pfvf_message msg) { switch (msg.type) { case ADF_PF2VF_MSGTYPE_RESTARTING: dev_dbg(&GET_DEV(accel_dev), "Restarting message received from PF\n"); adf_pf2vf_handle_pf_restarting(accel_dev); return false; case ADF_PF2VF_MSGTYPE_VERSION_RESP: case ADF_PF2VF_MSGTYPE_BLKMSG_RESP: case ADF_PF2VF_MSGTYPE_RP_RESET_RESP: dev_dbg(&GET_DEV(accel_dev), "Response Message received from PF (type 0x%.4x, data 0x%.4x)\n", msg.type, msg.data); accel_dev->vf.response = msg; complete(&accel_dev->vf.msg_received); return true; default: dev_err(&GET_DEV(accel_dev), "Unknown message from PF (type 0x%.4x, data: 0x%.4x)\n", msg.type, msg.data); } return false; } bool adf_recv_and_handle_pf2vf_msg(struct adf_accel_dev *accel_dev) { struct pfvf_message msg; msg = adf_recv_pf2vf_msg(accel_dev); if (msg.type) /* Invalid or no message */ return adf_handle_pf2vf_msg(accel_dev, msg); /* No replies for PF->VF messages at present */ return true; } /** * adf_enable_vf2pf_comms() - Function enables communication from vf to pf * * @accel_dev: Pointer to acceleration device virtual function. * * Return: 0 on success, error code otherwise. */ int adf_enable_vf2pf_comms(struct adf_accel_dev *accel_dev) { int ret; adf_pfvf_crc_init(); adf_enable_pf2vf_interrupts(accel_dev); ret = adf_vf2pf_request_version(accel_dev); if (ret) return ret; ret = adf_vf2pf_get_capabilities(accel_dev); if (ret) return ret; ret = adf_vf2pf_get_ring_to_svc(accel_dev); return ret; } EXPORT_SYMBOL_GPL(adf_enable_vf2pf_comms);
linux-master
drivers/crypto/intel/qat/qat_common/adf_pfvf_vf_proto.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2021 Intel Corporation */ #include <linux/delay.h> #include <linux/iopoll.h> #include <linux/mutex.h> #include <linux/types.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" #include "adf_gen2_pfvf.h" #include "adf_pfvf_msg.h" #include "adf_pfvf_pf_proto.h" #include "adf_pfvf_vf_proto.h" #include "adf_pfvf_utils.h" /* VF2PF interrupts */ #define ADF_GEN2_VF_MSK 0xFFFF #define ADF_GEN2_ERR_REG_VF2PF(vf_src) (((vf_src) & 0x01FFFE00) >> 9) #define ADF_GEN2_ERR_MSK_VF2PF(vf_mask) (((vf_mask) & ADF_GEN2_VF_MSK) << 9) #define ADF_GEN2_PF_PF2VF_OFFSET(i) (0x3A000 + 0x280 + ((i) * 0x04)) #define ADF_GEN2_VF_PF2VF_OFFSET 0x200 #define ADF_GEN2_CSR_IN_USE 0x6AC2 #define ADF_GEN2_CSR_IN_USE_MASK 0xFFFE enum gen2_csr_pos { ADF_GEN2_CSR_PF2VF_OFFSET = 0, ADF_GEN2_CSR_VF2PF_OFFSET = 16, }; #define ADF_PFVF_GEN2_MSGTYPE_SHIFT 2 #define ADF_PFVF_GEN2_MSGTYPE_MASK 0x0F #define ADF_PFVF_GEN2_MSGDATA_SHIFT 6 #define ADF_PFVF_GEN2_MSGDATA_MASK 0x3FF static const struct pfvf_csr_format csr_gen2_fmt = { { ADF_PFVF_GEN2_MSGTYPE_SHIFT, ADF_PFVF_GEN2_MSGTYPE_MASK }, { ADF_PFVF_GEN2_MSGDATA_SHIFT, ADF_PFVF_GEN2_MSGDATA_MASK }, }; #define ADF_PFVF_MSG_RETRY_DELAY 5 #define ADF_PFVF_MSG_MAX_RETRIES 3 static u32 adf_gen2_pf_get_pfvf_offset(u32 i) { return ADF_GEN2_PF_PF2VF_OFFSET(i); } static u32 adf_gen2_vf_get_pfvf_offset(u32 i) { return ADF_GEN2_VF_PF2VF_OFFSET; } static void adf_gen2_enable_vf2pf_interrupts(void __iomem *pmisc_addr, u32 vf_mask) { /* Enable VF2PF Messaging Ints - VFs 0 through 15 per vf_mask[15:0] */ if (vf_mask & ADF_GEN2_VF_MSK) { u32 val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3) & ~ADF_GEN2_ERR_MSK_VF2PF(vf_mask); ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, val); } } static void adf_gen2_disable_all_vf2pf_interrupts(void __iomem *pmisc_addr) { /* Disable VF2PF interrupts for VFs 0 through 15 per vf_mask[15:0] */ u32 val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3) | ADF_GEN2_ERR_MSK_VF2PF(ADF_GEN2_VF_MSK); ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, val); } static u32 adf_gen2_disable_pending_vf2pf_interrupts(void __iomem *pmisc_addr) { u32 sources, disabled, pending; u32 errsou3, errmsk3; /* Get the interrupt sources triggered by VFs */ errsou3 = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRSOU3); sources = ADF_GEN2_ERR_REG_VF2PF(errsou3); if (!sources) return 0; /* Get the already disabled interrupts */ errmsk3 = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3); disabled = ADF_GEN2_ERR_REG_VF2PF(errmsk3); pending = sources & ~disabled; if (!pending) return 0; /* Due to HW limitations, when disabling the interrupts, we can't * just disable the requested sources, as this would lead to missed * interrupts if ERRSOU3 changes just before writing to ERRMSK3. * To work around it, disable all and re-enable only the sources that * are not in vf_mask and were not already disabled. Re-enabling will * trigger a new interrupt for the sources that have changed in the * meantime, if any. */ errmsk3 |= ADF_GEN2_ERR_MSK_VF2PF(ADF_GEN2_VF_MSK); ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, errmsk3); errmsk3 &= ADF_GEN2_ERR_MSK_VF2PF(sources | disabled); ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, errmsk3); /* Return the sources of the (new) interrupt(s) */ return pending; } static u32 gen2_csr_get_int_bit(enum gen2_csr_pos offset) { return ADF_PFVF_INT << offset; } static u32 gen2_csr_msg_to_position(u32 csr_msg, enum gen2_csr_pos offset) { return (csr_msg & 0xFFFF) << offset; } static u32 gen2_csr_msg_from_position(u32 csr_val, enum gen2_csr_pos offset) { return (csr_val >> offset) & 0xFFFF; } static bool gen2_csr_is_in_use(u32 msg, enum gen2_csr_pos offset) { return ((msg >> offset) & ADF_GEN2_CSR_IN_USE_MASK) == ADF_GEN2_CSR_IN_USE; } static void gen2_csr_clear_in_use(u32 *msg, enum gen2_csr_pos offset) { *msg &= ~(ADF_GEN2_CSR_IN_USE_MASK << offset); } static void gen2_csr_set_in_use(u32 *msg, enum gen2_csr_pos offset) { *msg |= (ADF_GEN2_CSR_IN_USE << offset); } static bool is_legacy_user_pfvf_message(u32 msg) { return !(msg & ADF_PFVF_MSGORIGIN_SYSTEM); } static bool is_pf2vf_notification(u8 msg_type) { switch (msg_type) { case ADF_PF2VF_MSGTYPE_RESTARTING: return true; default: return false; } } static bool is_vf2pf_notification(u8 msg_type) { switch (msg_type) { case ADF_VF2PF_MSGTYPE_INIT: case ADF_VF2PF_MSGTYPE_SHUTDOWN: return true; default: return false; } } struct pfvf_gen2_params { u32 pfvf_offset; struct mutex *csr_lock; /* lock preventing concurrent access of CSR */ enum gen2_csr_pos local_offset; enum gen2_csr_pos remote_offset; bool (*is_notification_message)(u8 msg_type); u8 compat_ver; }; static int adf_gen2_pfvf_send(struct adf_accel_dev *accel_dev, struct pfvf_message msg, struct pfvf_gen2_params *params) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); enum gen2_csr_pos remote_offset = params->remote_offset; enum gen2_csr_pos local_offset = params->local_offset; unsigned int retries = ADF_PFVF_MSG_MAX_RETRIES; struct mutex *lock = params->csr_lock; u32 pfvf_offset = params->pfvf_offset; u32 int_bit; u32 csr_val; u32 csr_msg; int ret; /* Gen2 messages, both PF->VF and VF->PF, are all 16 bits long. This * allows us to build and read messages as if they where all 0 based. * However, send and receive are in a single shared 32 bits register, * so we need to shift and/or mask the message half before decoding * it and after encoding it. Which one to shift depends on the * direction. */ int_bit = gen2_csr_get_int_bit(local_offset); csr_msg = adf_pfvf_csr_msg_of(accel_dev, msg, &csr_gen2_fmt); if (unlikely(!csr_msg)) return -EINVAL; /* Prepare for CSR format, shifting the wire message in place and * setting the in use pattern */ csr_msg = gen2_csr_msg_to_position(csr_msg, local_offset); gen2_csr_set_in_use(&csr_msg, remote_offset); mutex_lock(lock); start: /* Check if the PFVF CSR is in use by remote function */ csr_val = ADF_CSR_RD(pmisc_addr, pfvf_offset); if (gen2_csr_is_in_use(csr_val, local_offset)) { dev_dbg(&GET_DEV(accel_dev), "PFVF CSR in use by remote function\n"); goto retry; } /* Attempt to get ownership of the PFVF CSR */ ADF_CSR_WR(pmisc_addr, pfvf_offset, csr_msg | int_bit); /* Wait for confirmation from remote func it received the message */ ret = read_poll_timeout(ADF_CSR_RD, csr_val, !(csr_val & int_bit), ADF_PFVF_MSG_ACK_DELAY_US, ADF_PFVF_MSG_ACK_MAX_DELAY_US, true, pmisc_addr, pfvf_offset); if (unlikely(ret < 0)) { dev_dbg(&GET_DEV(accel_dev), "ACK not received from remote\n"); csr_val &= ~int_bit; } /* For fire-and-forget notifications, the receiver does not clear * the in-use pattern. This is used to detect collisions. */ if (params->is_notification_message(msg.type) && csr_val != csr_msg) { /* Collision must have overwritten the message */ dev_err(&GET_DEV(accel_dev), "Collision on notification - PFVF CSR overwritten by remote function\n"); goto retry; } /* If the far side did not clear the in-use pattern it is either * 1) Notification - message left intact to detect collision * 2) Older protocol (compatibility version < 3) on the far side * where the sender is responsible for clearing the in-use * pattern after the received has acknowledged receipt. * In either case, clear the in-use pattern now. */ if (gen2_csr_is_in_use(csr_val, remote_offset)) { gen2_csr_clear_in_use(&csr_val, remote_offset); ADF_CSR_WR(pmisc_addr, pfvf_offset, csr_val); } out: mutex_unlock(lock); return ret; retry: if (--retries) { msleep(ADF_PFVF_MSG_RETRY_DELAY); goto start; } else { ret = -EBUSY; goto out; } } static struct pfvf_message adf_gen2_pfvf_recv(struct adf_accel_dev *accel_dev, struct pfvf_gen2_params *params) { void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev); enum gen2_csr_pos remote_offset = params->remote_offset; enum gen2_csr_pos local_offset = params->local_offset; u32 pfvf_offset = params->pfvf_offset; struct pfvf_message msg = { 0 }; u32 int_bit; u32 csr_val; u16 csr_msg; int_bit = gen2_csr_get_int_bit(local_offset); /* Read message */ csr_val = ADF_CSR_RD(pmisc_addr, pfvf_offset); if (!(csr_val & int_bit)) { dev_info(&GET_DEV(accel_dev), "Spurious PFVF interrupt, msg 0x%.8x. Ignored\n", csr_val); return msg; } /* Extract the message from the CSR */ csr_msg = gen2_csr_msg_from_position(csr_val, local_offset); /* Ignore legacy non-system (non-kernel) messages */ if (unlikely(is_legacy_user_pfvf_message(csr_msg))) { dev_dbg(&GET_DEV(accel_dev), "Ignored non-system message (0x%.8x);\n", csr_val); /* Because this must be a legacy message, the far side * must clear the in-use pattern, so don't do it. */ return msg; } /* Return the pfvf_message format */ msg = adf_pfvf_message_of(accel_dev, csr_msg, &csr_gen2_fmt); /* The in-use pattern is not cleared for notifications (so that * it can be used for collision detection) or older implementations */ if (params->compat_ver >= ADF_PFVF_COMPAT_FAST_ACK && !params->is_notification_message(msg.type)) gen2_csr_clear_in_use(&csr_val, remote_offset); /* To ACK, clear the INT bit */ csr_val &= ~int_bit; ADF_CSR_WR(pmisc_addr, pfvf_offset, csr_val); return msg; } static int adf_gen2_pf2vf_send(struct adf_accel_dev *accel_dev, struct pfvf_message msg, u32 pfvf_offset, struct mutex *csr_lock) { struct pfvf_gen2_params params = { .csr_lock = csr_lock, .pfvf_offset = pfvf_offset, .local_offset = ADF_GEN2_CSR_PF2VF_OFFSET, .remote_offset = ADF_GEN2_CSR_VF2PF_OFFSET, .is_notification_message = is_pf2vf_notification, }; return adf_gen2_pfvf_send(accel_dev, msg, &params); } static int adf_gen2_vf2pf_send(struct adf_accel_dev *accel_dev, struct pfvf_message msg, u32 pfvf_offset, struct mutex *csr_lock) { struct pfvf_gen2_params params = { .csr_lock = csr_lock, .pfvf_offset = pfvf_offset, .local_offset = ADF_GEN2_CSR_VF2PF_OFFSET, .remote_offset = ADF_GEN2_CSR_PF2VF_OFFSET, .is_notification_message = is_vf2pf_notification, }; return adf_gen2_pfvf_send(accel_dev, msg, &params); } static struct pfvf_message adf_gen2_pf2vf_recv(struct adf_accel_dev *accel_dev, u32 pfvf_offset, u8 compat_ver) { struct pfvf_gen2_params params = { .pfvf_offset = pfvf_offset, .local_offset = ADF_GEN2_CSR_PF2VF_OFFSET, .remote_offset = ADF_GEN2_CSR_VF2PF_OFFSET, .is_notification_message = is_pf2vf_notification, .compat_ver = compat_ver, }; return adf_gen2_pfvf_recv(accel_dev, &params); } static struct pfvf_message adf_gen2_vf2pf_recv(struct adf_accel_dev *accel_dev, u32 pfvf_offset, u8 compat_ver) { struct pfvf_gen2_params params = { .pfvf_offset = pfvf_offset, .local_offset = ADF_GEN2_CSR_VF2PF_OFFSET, .remote_offset = ADF_GEN2_CSR_PF2VF_OFFSET, .is_notification_message = is_vf2pf_notification, .compat_ver = compat_ver, }; return adf_gen2_pfvf_recv(accel_dev, &params); } void adf_gen2_init_pf_pfvf_ops(struct adf_pfvf_ops *pfvf_ops) { pfvf_ops->enable_comms = adf_enable_pf2vf_comms; pfvf_ops->get_pf2vf_offset = adf_gen2_pf_get_pfvf_offset; pfvf_ops->get_vf2pf_offset = adf_gen2_pf_get_pfvf_offset; pfvf_ops->enable_vf2pf_interrupts = adf_gen2_enable_vf2pf_interrupts; pfvf_ops->disable_all_vf2pf_interrupts = adf_gen2_disable_all_vf2pf_interrupts; pfvf_ops->disable_pending_vf2pf_interrupts = adf_gen2_disable_pending_vf2pf_interrupts; pfvf_ops->send_msg = adf_gen2_pf2vf_send; pfvf_ops->recv_msg = adf_gen2_vf2pf_recv; } EXPORT_SYMBOL_GPL(adf_gen2_init_pf_pfvf_ops); void adf_gen2_init_vf_pfvf_ops(struct adf_pfvf_ops *pfvf_ops) { pfvf_ops->enable_comms = adf_enable_vf2pf_comms; pfvf_ops->get_pf2vf_offset = adf_gen2_vf_get_pfvf_offset; pfvf_ops->get_vf2pf_offset = adf_gen2_vf_get_pfvf_offset; pfvf_ops->send_msg = adf_gen2_vf2pf_send; pfvf_ops->recv_msg = adf_gen2_pf2vf_recv; } EXPORT_SYMBOL_GPL(adf_gen2_init_vf_pfvf_ops);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen2_pfvf.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation */ #include "adf_accel_devices.h" #include "adf_gen2_dc.h" #include "icp_qat_fw_comp.h" static void qat_comp_build_deflate_ctx(void *ctx) { struct icp_qat_fw_comp_req *req_tmpl = (struct icp_qat_fw_comp_req *)ctx; struct icp_qat_fw_comn_req_hdr *header = &req_tmpl->comn_hdr; struct icp_qat_fw_comp_req_hdr_cd_pars *cd_pars = &req_tmpl->cd_pars; struct icp_qat_fw_comp_req_params *req_pars = &req_tmpl->comp_pars; struct icp_qat_fw_comp_cd_hdr *comp_cd_ctrl = &req_tmpl->comp_cd_ctrl; memset(req_tmpl, 0, sizeof(*req_tmpl)); header->hdr_flags = ICP_QAT_FW_COMN_HDR_FLAGS_BUILD(ICP_QAT_FW_COMN_REQ_FLAG_SET); header->service_type = ICP_QAT_FW_COMN_REQ_CPM_FW_COMP; header->service_cmd_id = ICP_QAT_FW_COMP_CMD_STATIC; header->comn_req_flags = ICP_QAT_FW_COMN_FLAGS_BUILD(QAT_COMN_CD_FLD_TYPE_16BYTE_DATA, QAT_COMN_PTR_TYPE_SGL); header->serv_specif_flags = ICP_QAT_FW_COMP_FLAGS_BUILD(ICP_QAT_FW_COMP_STATELESS_SESSION, ICP_QAT_FW_COMP_NOT_AUTO_SELECT_BEST, ICP_QAT_FW_COMP_NOT_ENH_AUTO_SELECT_BEST, ICP_QAT_FW_COMP_NOT_DISABLE_TYPE0_ENH_AUTO_SELECT_BEST, ICP_QAT_FW_COMP_ENABLE_SECURE_RAM_USED_AS_INTMD_BUF); cd_pars->u.sl.comp_slice_cfg_word[0] = ICP_QAT_HW_COMPRESSION_CONFIG_BUILD(ICP_QAT_HW_COMPRESSION_DIR_COMPRESS, ICP_QAT_HW_COMPRESSION_DELAYED_MATCH_DISABLED, ICP_QAT_HW_COMPRESSION_ALGO_DEFLATE, ICP_QAT_HW_COMPRESSION_DEPTH_1, ICP_QAT_HW_COMPRESSION_FILE_TYPE_0); req_pars->crc.legacy.initial_adler = COMP_CPR_INITIAL_ADLER; req_pars->crc.legacy.initial_crc32 = COMP_CPR_INITIAL_CRC; req_pars->req_par_flags = ICP_QAT_FW_COMP_REQ_PARAM_FLAGS_BUILD(ICP_QAT_FW_COMP_SOP, ICP_QAT_FW_COMP_EOP, ICP_QAT_FW_COMP_BFINAL, ICP_QAT_FW_COMP_CNV, ICP_QAT_FW_COMP_CNV_RECOVERY, ICP_QAT_FW_COMP_NO_CNV_DFX, ICP_QAT_FW_COMP_CRC_MODE_LEGACY, ICP_QAT_FW_COMP_NO_XXHASH_ACC, ICP_QAT_FW_COMP_CNV_ERROR_NONE, ICP_QAT_FW_COMP_NO_APPEND_CRC, ICP_QAT_FW_COMP_NO_DROP_DATA); ICP_QAT_FW_COMN_NEXT_ID_SET(comp_cd_ctrl, ICP_QAT_FW_SLICE_DRAM_WR); ICP_QAT_FW_COMN_CURR_ID_SET(comp_cd_ctrl, ICP_QAT_FW_SLICE_COMP); /* Fill second half of the template for decompression */ memcpy(req_tmpl + 1, req_tmpl, sizeof(*req_tmpl)); req_tmpl++; header = &req_tmpl->comn_hdr; header->service_cmd_id = ICP_QAT_FW_COMP_CMD_DECOMPRESS; cd_pars = &req_tmpl->cd_pars; cd_pars->u.sl.comp_slice_cfg_word[0] = ICP_QAT_HW_COMPRESSION_CONFIG_BUILD(ICP_QAT_HW_COMPRESSION_DIR_DECOMPRESS, ICP_QAT_HW_COMPRESSION_DELAYED_MATCH_DISABLED, ICP_QAT_HW_COMPRESSION_ALGO_DEFLATE, ICP_QAT_HW_COMPRESSION_DEPTH_1, ICP_QAT_HW_COMPRESSION_FILE_TYPE_0); } void adf_gen2_init_dc_ops(struct adf_dc_ops *dc_ops) { dc_ops->build_deflate_ctx = qat_comp_build_deflate_ctx; } EXPORT_SYMBOL_GPL(adf_gen2_init_dc_ops);
linux-master
drivers/crypto/intel/qat/qat_common/adf_gen2_dc.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2015 - 2021 Intel Corporation */ #include <linux/pci.h> #include "adf_accel_devices.h" #include "adf_pfvf_msg.h" #include "adf_pfvf_pf_msg.h" #include "adf_pfvf_pf_proto.h" void adf_pf2vf_notify_restarting(struct adf_accel_dev *accel_dev) { struct adf_accel_vf_info *vf; struct pfvf_message msg = { .type = ADF_PF2VF_MSGTYPE_RESTARTING }; int i, num_vfs = pci_num_vf(accel_to_pci_dev(accel_dev)); for (i = 0, vf = accel_dev->pf.vf_info; i < num_vfs; i++, vf++) { if (vf->init && adf_send_pf2vf_msg(accel_dev, i, msg)) dev_err(&GET_DEV(accel_dev), "Failed to send restarting msg to VF%d\n", i); } } int adf_pf_capabilities_msg_provider(struct adf_accel_dev *accel_dev, u8 *buffer, u8 compat) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct capabilities_v2 caps_msg; caps_msg.ext_dc_caps = hw_data->extended_dc_capabilities; caps_msg.capabilities = hw_data->accel_capabilities_mask; caps_msg.hdr.version = ADF_PFVF_CAPABILITIES_V2_VERSION; caps_msg.hdr.payload_size = ADF_PFVF_BLKMSG_PAYLOAD_SIZE(struct capabilities_v2); memcpy(buffer, &caps_msg, sizeof(caps_msg)); return 0; } int adf_pf_ring_to_svc_msg_provider(struct adf_accel_dev *accel_dev, u8 *buffer, u8 compat) { struct ring_to_svc_map_v1 rts_map_msg; rts_map_msg.map = accel_dev->hw_device->ring_to_svc_map; rts_map_msg.hdr.version = ADF_PFVF_RING_TO_SVC_VERSION; rts_map_msg.hdr.payload_size = ADF_PFVF_BLKMSG_PAYLOAD_SIZE(rts_map_msg); memcpy(buffer, &rts_map_msg, sizeof(rts_map_msg)); return 0; }
linux-master
drivers/crypto/intel/qat/qat_common/adf_pfvf_pf_msg.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2014 - 2022 Intel Corporation */ #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/pci.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/types.h> #include "adf_accel_devices.h" #include "qat_bl.h" #include "qat_crypto.h" void qat_bl_free_bufl(struct adf_accel_dev *accel_dev, struct qat_request_buffs *buf) { struct device *dev = &GET_DEV(accel_dev); struct qat_alg_buf_list *bl = buf->bl; struct qat_alg_buf_list *blout = buf->blout; dma_addr_t blp = buf->blp; dma_addr_t blpout = buf->bloutp; size_t sz = buf->sz; size_t sz_out = buf->sz_out; int bl_dma_dir; int i; bl_dma_dir = blp != blpout ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; for (i = 0; i < bl->num_bufs; i++) dma_unmap_single(dev, bl->buffers[i].addr, bl->buffers[i].len, bl_dma_dir); dma_unmap_single(dev, blp, sz, DMA_TO_DEVICE); if (!buf->sgl_src_valid) kfree(bl); if (blp != blpout) { for (i = 0; i < blout->num_mapped_bufs; i++) { dma_unmap_single(dev, blout->buffers[i].addr, blout->buffers[i].len, DMA_FROM_DEVICE); } dma_unmap_single(dev, blpout, sz_out, DMA_TO_DEVICE); if (!buf->sgl_dst_valid) kfree(blout); } } static int __qat_bl_sgl_to_bufl(struct adf_accel_dev *accel_dev, struct scatterlist *sgl, struct scatterlist *sglout, struct qat_request_buffs *buf, dma_addr_t extra_dst_buff, size_t sz_extra_dst_buff, unsigned int sskip, unsigned int dskip, gfp_t flags) { struct device *dev = &GET_DEV(accel_dev); int i, sg_nctr = 0; int n = sg_nents(sgl); struct qat_alg_buf_list *bufl; struct qat_alg_buf_list *buflout = NULL; dma_addr_t blp = DMA_MAPPING_ERROR; dma_addr_t bloutp = DMA_MAPPING_ERROR; struct scatterlist *sg; size_t sz_out, sz = struct_size(bufl, buffers, n); int node = dev_to_node(&GET_DEV(accel_dev)); unsigned int left; int bufl_dma_dir; if (unlikely(!n)) return -EINVAL; buf->sgl_src_valid = false; buf->sgl_dst_valid = false; if (n > QAT_MAX_BUFF_DESC) { bufl = kzalloc_node(sz, flags, node); if (unlikely(!bufl)) return -ENOMEM; } else { bufl = &buf->sgl_src.sgl_hdr; memset(bufl, 0, sizeof(struct qat_alg_buf_list)); buf->sgl_src_valid = true; } bufl_dma_dir = sgl != sglout ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; for (i = 0; i < n; i++) bufl->buffers[i].addr = DMA_MAPPING_ERROR; left = sskip; for_each_sg(sgl, sg, n, i) { int y = sg_nctr; if (!sg->length) continue; if (left >= sg->length) { left -= sg->length; continue; } bufl->buffers[y].addr = dma_map_single(dev, sg_virt(sg) + left, sg->length - left, bufl_dma_dir); bufl->buffers[y].len = sg->length; if (unlikely(dma_mapping_error(dev, bufl->buffers[y].addr))) goto err_in; sg_nctr++; if (left) { bufl->buffers[y].len -= left; left = 0; } } bufl->num_bufs = sg_nctr; blp = dma_map_single(dev, bufl, sz, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, blp))) goto err_in; buf->bl = bufl; buf->blp = blp; buf->sz = sz; /* Handle out of place operation */ if (sgl != sglout) { struct qat_alg_buf *buffers; int extra_buff = extra_dst_buff ? 1 : 0; int n_sglout = sg_nents(sglout); n = n_sglout + extra_buff; sz_out = struct_size(buflout, buffers, n); left = dskip; sg_nctr = 0; if (n > QAT_MAX_BUFF_DESC) { buflout = kzalloc_node(sz_out, flags, node); if (unlikely(!buflout)) goto err_in; } else { buflout = &buf->sgl_dst.sgl_hdr; memset(buflout, 0, sizeof(struct qat_alg_buf_list)); buf->sgl_dst_valid = true; } buffers = buflout->buffers; for (i = 0; i < n; i++) buffers[i].addr = DMA_MAPPING_ERROR; for_each_sg(sglout, sg, n_sglout, i) { int y = sg_nctr; if (!sg->length) continue; if (left >= sg->length) { left -= sg->length; continue; } buffers[y].addr = dma_map_single(dev, sg_virt(sg) + left, sg->length - left, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, buffers[y].addr))) goto err_out; buffers[y].len = sg->length; sg_nctr++; if (left) { buffers[y].len -= left; left = 0; } } if (extra_buff) { buffers[sg_nctr].addr = extra_dst_buff; buffers[sg_nctr].len = sz_extra_dst_buff; } buflout->num_bufs = sg_nctr; buflout->num_bufs += extra_buff; buflout->num_mapped_bufs = sg_nctr; bloutp = dma_map_single(dev, buflout, sz_out, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, bloutp))) goto err_out; buf->blout = buflout; buf->bloutp = bloutp; buf->sz_out = sz_out; } else { /* Otherwise set the src and dst to the same address */ buf->bloutp = buf->blp; buf->sz_out = 0; } return 0; err_out: if (!dma_mapping_error(dev, bloutp)) dma_unmap_single(dev, bloutp, sz_out, DMA_TO_DEVICE); n = sg_nents(sglout); for (i = 0; i < n; i++) { if (buflout->buffers[i].addr == extra_dst_buff) break; if (!dma_mapping_error(dev, buflout->buffers[i].addr)) dma_unmap_single(dev, buflout->buffers[i].addr, buflout->buffers[i].len, DMA_FROM_DEVICE); } if (!buf->sgl_dst_valid) kfree(buflout); err_in: if (!dma_mapping_error(dev, blp)) dma_unmap_single(dev, blp, sz, DMA_TO_DEVICE); n = sg_nents(sgl); for (i = 0; i < n; i++) if (!dma_mapping_error(dev, bufl->buffers[i].addr)) dma_unmap_single(dev, bufl->buffers[i].addr, bufl->buffers[i].len, bufl_dma_dir); if (!buf->sgl_src_valid) kfree(bufl); dev_err(dev, "Failed to map buf for dma\n"); return -ENOMEM; } int qat_bl_sgl_to_bufl(struct adf_accel_dev *accel_dev, struct scatterlist *sgl, struct scatterlist *sglout, struct qat_request_buffs *buf, struct qat_sgl_to_bufl_params *params, gfp_t flags) { dma_addr_t extra_dst_buff = 0; size_t sz_extra_dst_buff = 0; unsigned int sskip = 0; unsigned int dskip = 0; if (params) { extra_dst_buff = params->extra_dst_buff; sz_extra_dst_buff = params->sz_extra_dst_buff; sskip = params->sskip; dskip = params->dskip; } return __qat_bl_sgl_to_bufl(accel_dev, sgl, sglout, buf, extra_dst_buff, sz_extra_dst_buff, sskip, dskip, flags); } static void qat_bl_sgl_unmap(struct adf_accel_dev *accel_dev, struct qat_alg_buf_list *bl) { struct device *dev = &GET_DEV(accel_dev); int n = bl->num_bufs; int i; for (i = 0; i < n; i++) if (!dma_mapping_error(dev, bl->buffers[i].addr)) dma_unmap_single(dev, bl->buffers[i].addr, bl->buffers[i].len, DMA_FROM_DEVICE); } static int qat_bl_sgl_map(struct adf_accel_dev *accel_dev, struct scatterlist *sgl, struct qat_alg_buf_list **bl) { struct device *dev = &GET_DEV(accel_dev); struct qat_alg_buf_list *bufl; int node = dev_to_node(dev); struct scatterlist *sg; int n, i, sg_nctr; size_t sz; n = sg_nents(sgl); sz = struct_size(bufl, buffers, n); bufl = kzalloc_node(sz, GFP_KERNEL, node); if (unlikely(!bufl)) return -ENOMEM; for (i = 0; i < n; i++) bufl->buffers[i].addr = DMA_MAPPING_ERROR; sg_nctr = 0; for_each_sg(sgl, sg, n, i) { int y = sg_nctr; if (!sg->length) continue; bufl->buffers[y].addr = dma_map_single(dev, sg_virt(sg), sg->length, DMA_FROM_DEVICE); bufl->buffers[y].len = sg->length; if (unlikely(dma_mapping_error(dev, bufl->buffers[y].addr))) goto err_map; sg_nctr++; } bufl->num_bufs = sg_nctr; bufl->num_mapped_bufs = sg_nctr; *bl = bufl; return 0; err_map: for (i = 0; i < n; i++) if (!dma_mapping_error(dev, bufl->buffers[i].addr)) dma_unmap_single(dev, bufl->buffers[i].addr, bufl->buffers[i].len, DMA_FROM_DEVICE); kfree(bufl); *bl = NULL; return -ENOMEM; } static void qat_bl_sgl_free_unmap(struct adf_accel_dev *accel_dev, struct scatterlist *sgl, struct qat_alg_buf_list *bl, bool free_bl) { if (bl) { qat_bl_sgl_unmap(accel_dev, bl); if (free_bl) kfree(bl); } if (sgl) sgl_free(sgl); } static int qat_bl_sgl_alloc_map(struct adf_accel_dev *accel_dev, struct scatterlist **sgl, struct qat_alg_buf_list **bl, unsigned int dlen, gfp_t gfp) { struct scatterlist *dst; int ret; dst = sgl_alloc(dlen, gfp, NULL); if (!dst) { dev_err(&GET_DEV(accel_dev), "sg_alloc failed\n"); return -ENOMEM; } ret = qat_bl_sgl_map(accel_dev, dst, bl); if (ret) goto err; *sgl = dst; return 0; err: sgl_free(dst); *sgl = NULL; return ret; } int qat_bl_realloc_map_new_dst(struct adf_accel_dev *accel_dev, struct scatterlist **sg, unsigned int dlen, struct qat_request_buffs *qat_bufs, gfp_t gfp) { struct device *dev = &GET_DEV(accel_dev); dma_addr_t new_blp = DMA_MAPPING_ERROR; struct qat_alg_buf_list *new_bl; struct scatterlist *new_sg; size_t new_bl_size; int ret; ret = qat_bl_sgl_alloc_map(accel_dev, &new_sg, &new_bl, dlen, gfp); if (ret) return ret; new_bl_size = struct_size(new_bl, buffers, new_bl->num_bufs); /* Map new firmware SGL descriptor */ new_blp = dma_map_single(dev, new_bl, new_bl_size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, new_blp))) goto err; /* Unmap old firmware SGL descriptor */ dma_unmap_single(dev, qat_bufs->bloutp, qat_bufs->sz_out, DMA_TO_DEVICE); /* Free and unmap old scatterlist */ qat_bl_sgl_free_unmap(accel_dev, *sg, qat_bufs->blout, !qat_bufs->sgl_dst_valid); qat_bufs->sgl_dst_valid = false; qat_bufs->blout = new_bl; qat_bufs->bloutp = new_blp; qat_bufs->sz_out = new_bl_size; *sg = new_sg; return 0; err: qat_bl_sgl_free_unmap(accel_dev, new_sg, new_bl, true); if (!dma_mapping_error(dev, new_blp)) dma_unmap_single(dev, new_blp, new_bl_size, DMA_TO_DEVICE); return -ENOMEM; }
linux-master
drivers/crypto/intel/qat/qat_common/qat_bl.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2021 Intel Corporation */ #include <linux/crc8.h> #include <linux/pci.h> #include <linux/types.h> #include "adf_accel_devices.h" #include "adf_pfvf_msg.h" #include "adf_pfvf_utils.h" /* CRC Calculation */ DECLARE_CRC8_TABLE(pfvf_crc8_table); #define ADF_PFVF_CRC8_POLYNOMIAL 0x97 void adf_pfvf_crc_init(void) { crc8_populate_msb(pfvf_crc8_table, ADF_PFVF_CRC8_POLYNOMIAL); } u8 adf_pfvf_calc_blkmsg_crc(u8 const *buf, u8 buf_len) { return crc8(pfvf_crc8_table, buf, buf_len, CRC8_INIT_VALUE); } static bool set_value_on_csr_msg(struct adf_accel_dev *accel_dev, u32 *csr_msg, u32 value, const struct pfvf_field_format *fmt) { if (unlikely((value & fmt->mask) != value)) { dev_err(&GET_DEV(accel_dev), "PFVF message value 0x%X out of range, %u max allowed\n", value, fmt->mask); return false; } *csr_msg |= value << fmt->offset; return true; } u32 adf_pfvf_csr_msg_of(struct adf_accel_dev *accel_dev, struct pfvf_message msg, const struct pfvf_csr_format *fmt) { u32 csr_msg = 0; if (!set_value_on_csr_msg(accel_dev, &csr_msg, msg.type, &fmt->type) || !set_value_on_csr_msg(accel_dev, &csr_msg, msg.data, &fmt->data)) return 0; return csr_msg | ADF_PFVF_MSGORIGIN_SYSTEM; } struct pfvf_message adf_pfvf_message_of(struct adf_accel_dev *accel_dev, u32 csr_msg, const struct pfvf_csr_format *fmt) { struct pfvf_message msg = { 0 }; msg.type = (csr_msg >> fmt->type.offset) & fmt->type.mask; msg.data = (csr_msg >> fmt->data.offset) & fmt->data.mask; if (unlikely(!msg.type)) dev_err(&GET_DEV(accel_dev), "Invalid PFVF msg with no type received\n"); return msg; }
linux-master
drivers/crypto/intel/qat/qat_common/adf_pfvf_utils.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2021 Intel Corporation */ #include <adf_accel_devices.h> #include <adf_clock.h> #include <adf_common_drv.h> #include <adf_gen2_config.h> #include <adf_gen2_dc.h> #include <adf_gen2_hw_data.h> #include <adf_gen2_pfvf.h> #include "adf_c62x_hw_data.h" #include "adf_heartbeat.h" #include "icp_qat_hw.h" /* Worker thread to service arbiter mappings */ static const u32 thrd_to_arb_map[ADF_C62X_MAX_ACCELENGINES] = { 0x12222AAA, 0x11222AAA, 0x12222AAA, 0x11222AAA, 0x12222AAA, 0x11222AAA, 0x12222AAA, 0x11222AAA, 0x12222AAA, 0x11222AAA }; static struct adf_hw_device_class c62x_class = { .name = ADF_C62X_DEVICE_NAME, .type = DEV_C62X, .instances = 0 }; static u32 get_accel_mask(struct adf_hw_device_data *self) { u32 straps = self->straps; u32 fuses = self->fuses; u32 accel; accel = ~(fuses | straps) >> ADF_C62X_ACCELERATORS_REG_OFFSET; accel &= ADF_C62X_ACCELERATORS_MASK; return accel; } static u32 get_ae_mask(struct adf_hw_device_data *self) { u32 straps = self->straps; u32 fuses = self->fuses; unsigned long disabled; u32 ae_disable; int accel; /* If an accel is disabled, then disable the corresponding two AEs */ disabled = ~get_accel_mask(self) & ADF_C62X_ACCELERATORS_MASK; ae_disable = BIT(1) | BIT(0); for_each_set_bit(accel, &disabled, ADF_C62X_MAX_ACCELERATORS) straps |= ae_disable << (accel << 1); return ~(fuses | straps) & ADF_C62X_ACCELENGINES_MASK; } static u32 get_ts_clock(struct adf_hw_device_data *self) { /* * Timestamp update interval is 16 AE clock ticks for c62x. */ return self->clock_frequency / 16; } static int measure_clock(struct adf_accel_dev *accel_dev) { u32 frequency; int ret; ret = adf_dev_measure_clock(accel_dev, &frequency, ADF_C62X_MIN_AE_FREQ, ADF_C62X_MAX_AE_FREQ); if (ret) return ret; accel_dev->hw_device->clock_frequency = frequency; return 0; } static u32 get_misc_bar_id(struct adf_hw_device_data *self) { return ADF_C62X_PMISC_BAR; } static u32 get_etr_bar_id(struct adf_hw_device_data *self) { return ADF_C62X_ETR_BAR; } static u32 get_sram_bar_id(struct adf_hw_device_data *self) { return ADF_C62X_SRAM_BAR; } static enum dev_sku_info get_sku(struct adf_hw_device_data *self) { int aes = self->get_num_aes(self); if (aes == 8) return DEV_SKU_2; else if (aes == 10) return DEV_SKU_4; return DEV_SKU_UNKNOWN; } static const u32 *adf_get_arbiter_mapping(struct adf_accel_dev *accel_dev) { return thrd_to_arb_map; } static void configure_iov_threads(struct adf_accel_dev *accel_dev, bool enable) { adf_gen2_cfg_iov_thds(accel_dev, enable, ADF_C62X_AE2FUNC_MAP_GRP_A_NUM_REGS, ADF_C62X_AE2FUNC_MAP_GRP_B_NUM_REGS); } void adf_init_hw_data_c62x(struct adf_hw_device_data *hw_data) { hw_data->dev_class = &c62x_class; hw_data->instance_id = c62x_class.instances++; hw_data->num_banks = ADF_C62X_ETR_MAX_BANKS; hw_data->num_rings_per_bank = ADF_ETR_MAX_RINGS_PER_BANK; hw_data->num_accel = ADF_C62X_MAX_ACCELERATORS; hw_data->num_logical_accel = 1; hw_data->num_engines = ADF_C62X_MAX_ACCELENGINES; hw_data->tx_rx_gap = ADF_GEN2_RX_RINGS_OFFSET; hw_data->tx_rings_mask = ADF_GEN2_TX_RINGS_MASK; hw_data->ring_to_svc_map = ADF_GEN2_DEFAULT_RING_TO_SRV_MAP; hw_data->alloc_irq = adf_isr_resource_alloc; hw_data->free_irq = adf_isr_resource_free; hw_data->enable_error_correction = adf_gen2_enable_error_correction; hw_data->get_accel_mask = get_accel_mask; hw_data->get_ae_mask = get_ae_mask; hw_data->get_accel_cap = adf_gen2_get_accel_cap; hw_data->get_num_accels = adf_gen2_get_num_accels; hw_data->get_num_aes = adf_gen2_get_num_aes; hw_data->get_sram_bar_id = get_sram_bar_id; hw_data->get_etr_bar_id = get_etr_bar_id; hw_data->get_misc_bar_id = get_misc_bar_id; hw_data->get_admin_info = adf_gen2_get_admin_info; hw_data->get_arb_info = adf_gen2_get_arb_info; hw_data->get_sku = get_sku; hw_data->fw_name = ADF_C62X_FW; hw_data->fw_mmp_name = ADF_C62X_MMP; hw_data->init_admin_comms = adf_init_admin_comms; hw_data->exit_admin_comms = adf_exit_admin_comms; hw_data->configure_iov_threads = configure_iov_threads; hw_data->send_admin_init = adf_send_admin_init; hw_data->init_arb = adf_init_arb; hw_data->exit_arb = adf_exit_arb; hw_data->get_arb_mapping = adf_get_arbiter_mapping; hw_data->enable_ints = adf_gen2_enable_ints; hw_data->reset_device = adf_reset_flr; hw_data->set_ssm_wdtimer = adf_gen2_set_ssm_wdtimer; hw_data->disable_iov = adf_disable_sriov; hw_data->dev_config = adf_gen2_dev_config; hw_data->measure_clock = measure_clock; hw_data->get_hb_clock = get_ts_clock; hw_data->num_hb_ctrs = ADF_NUM_HB_CNT_PER_AE; hw_data->check_hb_ctrs = adf_heartbeat_check_ctrs; adf_gen2_init_pf_pfvf_ops(&hw_data->pfvf_ops); adf_gen2_init_hw_csr_ops(&hw_data->csr_ops); adf_gen2_init_dc_ops(&hw_data->dc_ops); } void adf_clean_hw_data_c62x(struct adf_hw_device_data *hw_data) { hw_data->dev_class->instances--; }
linux-master
drivers/crypto/intel/qat/qat_c62x/adf_c62x_hw_data.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <linux/io.h> #include <adf_accel_devices.h> #include <adf_common_drv.h> #include <adf_cfg.h> #include <adf_dbgfs.h> #include "adf_c62x_hw_data.h" static const struct pci_device_id adf_pci_tbl[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_QAT_C62X), }, { } }; MODULE_DEVICE_TABLE(pci, adf_pci_tbl); static int adf_probe(struct pci_dev *dev, const struct pci_device_id *ent); static void adf_remove(struct pci_dev *dev); static struct pci_driver adf_driver = { .id_table = adf_pci_tbl, .name = ADF_C62X_DEVICE_NAME, .probe = adf_probe, .remove = adf_remove, .sriov_configure = adf_sriov_configure, .err_handler = &adf_err_handler, }; static void adf_cleanup_pci_dev(struct adf_accel_dev *accel_dev) { pci_release_regions(accel_dev->accel_pci_dev.pci_dev); pci_disable_device(accel_dev->accel_pci_dev.pci_dev); } static void adf_cleanup_accel(struct adf_accel_dev *accel_dev) { struct adf_accel_pci *accel_pci_dev = &accel_dev->accel_pci_dev; int i; for (i = 0; i < ADF_PCI_MAX_BARS; i++) { struct adf_bar *bar = &accel_pci_dev->pci_bars[i]; if (bar->virt_addr) pci_iounmap(accel_pci_dev->pci_dev, bar->virt_addr); } if (accel_dev->hw_device) { switch (accel_pci_dev->pci_dev->device) { case PCI_DEVICE_ID_INTEL_QAT_C62X: adf_clean_hw_data_c62x(accel_dev->hw_device); break; default: break; } kfree(accel_dev->hw_device); accel_dev->hw_device = NULL; } adf_dbgfs_exit(accel_dev); adf_cfg_dev_remove(accel_dev); adf_devmgr_rm_dev(accel_dev, NULL); } static int adf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct adf_accel_dev *accel_dev; struct adf_accel_pci *accel_pci_dev; struct adf_hw_device_data *hw_data; unsigned int i, bar_nr; unsigned long bar_mask; int ret; switch (ent->device) { case PCI_DEVICE_ID_INTEL_QAT_C62X: break; default: dev_err(&pdev->dev, "Invalid device 0x%x.\n", ent->device); return -ENODEV; } if (num_possible_nodes() > 1 && dev_to_node(&pdev->dev) < 0) { /* If the accelerator is connected to a node with no memory * there is no point in using the accelerator since the remote * memory transaction will be very slow. */ dev_err(&pdev->dev, "Invalid NUMA configuration.\n"); return -EINVAL; } accel_dev = kzalloc_node(sizeof(*accel_dev), GFP_KERNEL, dev_to_node(&pdev->dev)); if (!accel_dev) return -ENOMEM; INIT_LIST_HEAD(&accel_dev->crypto_list); accel_pci_dev = &accel_dev->accel_pci_dev; accel_pci_dev->pci_dev = pdev; /* Add accel device to accel table. * This should be called before adf_cleanup_accel is called */ if (adf_devmgr_add_dev(accel_dev, NULL)) { dev_err(&pdev->dev, "Failed to add new accelerator device.\n"); kfree(accel_dev); return -EFAULT; } accel_dev->owner = THIS_MODULE; /* Allocate and configure device configuration structure */ hw_data = kzalloc_node(sizeof(*hw_data), GFP_KERNEL, dev_to_node(&pdev->dev)); if (!hw_data) { ret = -ENOMEM; goto out_err; } accel_dev->hw_device = hw_data; adf_init_hw_data_c62x(accel_dev->hw_device); pci_read_config_byte(pdev, PCI_REVISION_ID, &accel_pci_dev->revid); pci_read_config_dword(pdev, ADF_DEVICE_FUSECTL_OFFSET, &hw_data->fuses); pci_read_config_dword(pdev, ADF_C62X_SOFTSTRAP_CSR_OFFSET, &hw_data->straps); /* Get Accelerators and Accelerators Engines masks */ hw_data->accel_mask = hw_data->get_accel_mask(hw_data); hw_data->ae_mask = hw_data->get_ae_mask(hw_data); accel_pci_dev->sku = hw_data->get_sku(hw_data); /* If the device has no acceleration engines then ignore it. */ if (!hw_data->accel_mask || !hw_data->ae_mask || ((~hw_data->ae_mask) & 0x01)) { dev_err(&pdev->dev, "No acceleration units found"); ret = -EFAULT; goto out_err; } /* Create device configuration table */ ret = adf_cfg_dev_add(accel_dev); if (ret) goto out_err; /* enable PCI device */ if (pci_enable_device(pdev)) { ret = -EFAULT; goto out_err; } /* set dma identifier */ ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (ret) { dev_err(&pdev->dev, "No usable DMA configuration\n"); goto out_err_disable; } if (pci_request_regions(pdev, ADF_C62X_DEVICE_NAME)) { ret = -EFAULT; goto out_err_disable; } /* Get accelerator capabilities mask */ hw_data->accel_capabilities_mask = hw_data->get_accel_cap(accel_dev); /* Find and map all the device's BARS */ i = (hw_data->fuses & ADF_DEVICE_FUSECTL_MASK) ? 1 : 0; bar_mask = pci_select_bars(pdev, IORESOURCE_MEM); for_each_set_bit(bar_nr, &bar_mask, ADF_PCI_MAX_BARS * 2) { struct adf_bar *bar = &accel_pci_dev->pci_bars[i++]; bar->base_addr = pci_resource_start(pdev, bar_nr); if (!bar->base_addr) break; bar->size = pci_resource_len(pdev, bar_nr); bar->virt_addr = pci_iomap(accel_pci_dev->pci_dev, bar_nr, 0); if (!bar->virt_addr) { dev_err(&pdev->dev, "Failed to map BAR %d\n", bar_nr); ret = -EFAULT; goto out_err_free_reg; } } pci_set_master(pdev); if (pci_save_state(pdev)) { dev_err(&pdev->dev, "Failed to save pci state\n"); ret = -ENOMEM; goto out_err_free_reg; } adf_dbgfs_init(accel_dev); ret = adf_dev_up(accel_dev, true); if (ret) goto out_err_dev_stop; return ret; out_err_dev_stop: adf_dev_down(accel_dev, false); out_err_free_reg: pci_release_regions(accel_pci_dev->pci_dev); out_err_disable: pci_disable_device(accel_pci_dev->pci_dev); out_err: adf_cleanup_accel(accel_dev); kfree(accel_dev); return ret; } static void adf_remove(struct pci_dev *pdev) { struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev); if (!accel_dev) { pr_err("QAT: Driver removal failed\n"); return; } adf_dev_down(accel_dev, false); adf_cleanup_accel(accel_dev); adf_cleanup_pci_dev(accel_dev); kfree(accel_dev); } static int __init adfdrv_init(void) { request_module("intel_qat"); if (pci_register_driver(&adf_driver)) { pr_err("QAT: Driver initialization failed\n"); return -EFAULT; } return 0; } static void __exit adfdrv_release(void) { pci_unregister_driver(&adf_driver); } module_init(adfdrv_init); module_exit(adfdrv_release); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel"); MODULE_FIRMWARE(ADF_C62X_FW); MODULE_FIRMWARE(ADF_C62X_MMP); MODULE_DESCRIPTION("Intel(R) QuickAssist Technology"); MODULE_VERSION(ADF_DRV_VERSION);
linux-master
drivers/crypto/intel/qat/qat_c62x/adf_drv.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2015 - 2021 Intel Corporation */ #include <adf_accel_devices.h> #include <adf_common_drv.h> #include <adf_gen2_config.h> #include <adf_gen2_dc.h> #include <adf_gen2_hw_data.h> #include <adf_gen2_pfvf.h> #include <adf_pfvf_vf_msg.h> #include "adf_dh895xccvf_hw_data.h" static struct adf_hw_device_class dh895xcciov_class = { .name = ADF_DH895XCCVF_DEVICE_NAME, .type = DEV_DH895XCCVF, .instances = 0 }; static u32 get_accel_mask(struct adf_hw_device_data *self) { return ADF_DH895XCCIOV_ACCELERATORS_MASK; } static u32 get_ae_mask(struct adf_hw_device_data *self) { return ADF_DH895XCCIOV_ACCELENGINES_MASK; } static u32 get_num_accels(struct adf_hw_device_data *self) { return ADF_DH895XCCIOV_MAX_ACCELERATORS; } static u32 get_num_aes(struct adf_hw_device_data *self) { return ADF_DH895XCCIOV_MAX_ACCELENGINES; } static u32 get_misc_bar_id(struct adf_hw_device_data *self) { return ADF_DH895XCCIOV_PMISC_BAR; } static u32 get_etr_bar_id(struct adf_hw_device_data *self) { return ADF_DH895XCCIOV_ETR_BAR; } static enum dev_sku_info get_sku(struct adf_hw_device_data *self) { return DEV_SKU_VF; } static int adf_vf_int_noop(struct adf_accel_dev *accel_dev) { return 0; } static void adf_vf_void_noop(struct adf_accel_dev *accel_dev) { } void adf_init_hw_data_dh895xcciov(struct adf_hw_device_data *hw_data) { hw_data->dev_class = &dh895xcciov_class; hw_data->num_banks = ADF_DH895XCCIOV_ETR_MAX_BANKS; hw_data->num_rings_per_bank = ADF_ETR_MAX_RINGS_PER_BANK; hw_data->num_accel = ADF_DH895XCCIOV_MAX_ACCELERATORS; hw_data->num_logical_accel = 1; hw_data->num_engines = ADF_DH895XCCIOV_MAX_ACCELENGINES; hw_data->tx_rx_gap = ADF_DH895XCCIOV_RX_RINGS_OFFSET; hw_data->tx_rings_mask = ADF_DH895XCCIOV_TX_RINGS_MASK; hw_data->ring_to_svc_map = ADF_GEN2_DEFAULT_RING_TO_SRV_MAP; hw_data->alloc_irq = adf_vf_isr_resource_alloc; hw_data->free_irq = adf_vf_isr_resource_free; hw_data->enable_error_correction = adf_vf_void_noop; hw_data->init_admin_comms = adf_vf_int_noop; hw_data->exit_admin_comms = adf_vf_void_noop; hw_data->send_admin_init = adf_vf2pf_notify_init; hw_data->init_arb = adf_vf_int_noop; hw_data->exit_arb = adf_vf_void_noop; hw_data->disable_iov = adf_vf2pf_notify_shutdown; hw_data->get_accel_mask = get_accel_mask; hw_data->get_ae_mask = get_ae_mask; hw_data->get_num_accels = get_num_accels; hw_data->get_num_aes = get_num_aes; hw_data->get_etr_bar_id = get_etr_bar_id; hw_data->get_misc_bar_id = get_misc_bar_id; hw_data->get_sku = get_sku; hw_data->enable_ints = adf_vf_void_noop; hw_data->dev_class->instances++; hw_data->dev_config = adf_gen2_dev_config; adf_devmgr_update_class_index(hw_data); adf_gen2_init_vf_pfvf_ops(&hw_data->pfvf_ops); adf_gen2_init_hw_csr_ops(&hw_data->csr_ops); adf_gen2_init_dc_ops(&hw_data->dc_ops); } void adf_clean_hw_data_dh895xcciov(struct adf_hw_device_data *hw_data) { hw_data->dev_class->instances--; adf_devmgr_update_class_index(hw_data); }
linux-master
drivers/crypto/intel/qat/qat_dh895xccvf/adf_dh895xccvf_hw_data.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <linux/io.h> #include <adf_accel_devices.h> #include <adf_common_drv.h> #include <adf_cfg.h> #include <adf_dbgfs.h> #include "adf_dh895xccvf_hw_data.h" static const struct pci_device_id adf_pci_tbl[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_QAT_DH895XCC_VF), }, { } }; MODULE_DEVICE_TABLE(pci, adf_pci_tbl); static int adf_probe(struct pci_dev *dev, const struct pci_device_id *ent); static void adf_remove(struct pci_dev *dev); static struct pci_driver adf_driver = { .id_table = adf_pci_tbl, .name = ADF_DH895XCCVF_DEVICE_NAME, .probe = adf_probe, .remove = adf_remove, }; static void adf_cleanup_pci_dev(struct adf_accel_dev *accel_dev) { pci_release_regions(accel_dev->accel_pci_dev.pci_dev); pci_disable_device(accel_dev->accel_pci_dev.pci_dev); } static void adf_cleanup_accel(struct adf_accel_dev *accel_dev) { struct adf_accel_pci *accel_pci_dev = &accel_dev->accel_pci_dev; struct adf_accel_dev *pf; int i; for (i = 0; i < ADF_PCI_MAX_BARS; i++) { struct adf_bar *bar = &accel_pci_dev->pci_bars[i]; if (bar->virt_addr) pci_iounmap(accel_pci_dev->pci_dev, bar->virt_addr); } if (accel_dev->hw_device) { switch (accel_pci_dev->pci_dev->device) { case PCI_DEVICE_ID_INTEL_QAT_DH895XCC_VF: adf_clean_hw_data_dh895xcciov(accel_dev->hw_device); break; default: break; } kfree(accel_dev->hw_device); accel_dev->hw_device = NULL; } adf_dbgfs_exit(accel_dev); adf_cfg_dev_remove(accel_dev); pf = adf_devmgr_pci_to_accel_dev(accel_pci_dev->pci_dev->physfn); adf_devmgr_rm_dev(accel_dev, pf); } static int adf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct adf_accel_dev *accel_dev; struct adf_accel_dev *pf; struct adf_accel_pci *accel_pci_dev; struct adf_hw_device_data *hw_data; unsigned int i, bar_nr; unsigned long bar_mask; int ret; switch (ent->device) { case PCI_DEVICE_ID_INTEL_QAT_DH895XCC_VF: break; default: dev_err(&pdev->dev, "Invalid device 0x%x.\n", ent->device); return -ENODEV; } accel_dev = kzalloc_node(sizeof(*accel_dev), GFP_KERNEL, dev_to_node(&pdev->dev)); if (!accel_dev) return -ENOMEM; accel_dev->is_vf = true; pf = adf_devmgr_pci_to_accel_dev(pdev->physfn); accel_pci_dev = &accel_dev->accel_pci_dev; accel_pci_dev->pci_dev = pdev; /* Add accel device to accel table */ if (adf_devmgr_add_dev(accel_dev, pf)) { dev_err(&pdev->dev, "Failed to add new accelerator device.\n"); kfree(accel_dev); return -EFAULT; } INIT_LIST_HEAD(&accel_dev->crypto_list); accel_dev->owner = THIS_MODULE; /* Allocate and configure device configuration structure */ hw_data = kzalloc_node(sizeof(*hw_data), GFP_KERNEL, dev_to_node(&pdev->dev)); if (!hw_data) { ret = -ENOMEM; goto out_err; } accel_dev->hw_device = hw_data; adf_init_hw_data_dh895xcciov(accel_dev->hw_device); /* Get Accelerators and Accelerators Engines masks */ hw_data->accel_mask = hw_data->get_accel_mask(hw_data); hw_data->ae_mask = hw_data->get_ae_mask(hw_data); accel_pci_dev->sku = hw_data->get_sku(hw_data); /* Create device configuration table */ ret = adf_cfg_dev_add(accel_dev); if (ret) goto out_err; /* enable PCI device */ if (pci_enable_device(pdev)) { ret = -EFAULT; goto out_err; } /* set dma identifier */ ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (ret) { dev_err(&pdev->dev, "No usable DMA configuration\n"); goto out_err_disable; } if (pci_request_regions(pdev, ADF_DH895XCCVF_DEVICE_NAME)) { ret = -EFAULT; goto out_err_disable; } /* Find and map all the device's BARS */ i = 0; bar_mask = pci_select_bars(pdev, IORESOURCE_MEM); for_each_set_bit(bar_nr, &bar_mask, ADF_PCI_MAX_BARS * 2) { struct adf_bar *bar = &accel_pci_dev->pci_bars[i++]; bar->base_addr = pci_resource_start(pdev, bar_nr); if (!bar->base_addr) break; bar->size = pci_resource_len(pdev, bar_nr); bar->virt_addr = pci_iomap(accel_pci_dev->pci_dev, bar_nr, 0); if (!bar->virt_addr) { dev_err(&pdev->dev, "Failed to map BAR %d\n", bar_nr); ret = -EFAULT; goto out_err_free_reg; } } pci_set_master(pdev); /* Completion for VF2PF request/response message exchange */ init_completion(&accel_dev->vf.msg_received); adf_dbgfs_init(accel_dev); ret = adf_dev_up(accel_dev, false); if (ret) goto out_err_dev_stop; return ret; out_err_dev_stop: adf_dev_down(accel_dev, false); out_err_free_reg: pci_release_regions(accel_pci_dev->pci_dev); out_err_disable: pci_disable_device(accel_pci_dev->pci_dev); out_err: adf_cleanup_accel(accel_dev); kfree(accel_dev); return ret; } static void adf_remove(struct pci_dev *pdev) { struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev); if (!accel_dev) { pr_err("QAT: Driver removal failed\n"); return; } adf_flush_vf_wq(accel_dev); adf_dev_down(accel_dev, false); adf_cleanup_accel(accel_dev); adf_cleanup_pci_dev(accel_dev); kfree(accel_dev); } static int __init adfdrv_init(void) { request_module("intel_qat"); if (pci_register_driver(&adf_driver)) { pr_err("QAT: Driver initialization failed\n"); return -EFAULT; } return 0; } static void __exit adfdrv_release(void) { pci_unregister_driver(&adf_driver); adf_clean_vf_map(true); } module_init(adfdrv_init); module_exit(adfdrv_release); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel"); MODULE_DESCRIPTION("Intel(R) QuickAssist Technology"); MODULE_VERSION(ADF_DRV_VERSION);
linux-master
drivers/crypto/intel/qat/qat_dh895xccvf/adf_drv.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2015 - 2021 Intel Corporation */ #include <adf_accel_devices.h> #include <adf_common_drv.h> #include <adf_gen2_config.h> #include <adf_gen2_dc.h> #include <adf_gen2_hw_data.h> #include <adf_gen2_pfvf.h> #include <adf_pfvf_vf_msg.h> #include "adf_c3xxxvf_hw_data.h" static struct adf_hw_device_class c3xxxiov_class = { .name = ADF_C3XXXVF_DEVICE_NAME, .type = DEV_C3XXXVF, .instances = 0 }; static u32 get_accel_mask(struct adf_hw_device_data *self) { return ADF_C3XXXIOV_ACCELERATORS_MASK; } static u32 get_ae_mask(struct adf_hw_device_data *self) { return ADF_C3XXXIOV_ACCELENGINES_MASK; } static u32 get_num_accels(struct adf_hw_device_data *self) { return ADF_C3XXXIOV_MAX_ACCELERATORS; } static u32 get_num_aes(struct adf_hw_device_data *self) { return ADF_C3XXXIOV_MAX_ACCELENGINES; } static u32 get_misc_bar_id(struct adf_hw_device_data *self) { return ADF_C3XXXIOV_PMISC_BAR; } static u32 get_etr_bar_id(struct adf_hw_device_data *self) { return ADF_C3XXXIOV_ETR_BAR; } static enum dev_sku_info get_sku(struct adf_hw_device_data *self) { return DEV_SKU_VF; } static int adf_vf_int_noop(struct adf_accel_dev *accel_dev) { return 0; } static void adf_vf_void_noop(struct adf_accel_dev *accel_dev) { } void adf_init_hw_data_c3xxxiov(struct adf_hw_device_data *hw_data) { hw_data->dev_class = &c3xxxiov_class; hw_data->num_banks = ADF_C3XXXIOV_ETR_MAX_BANKS; hw_data->num_rings_per_bank = ADF_ETR_MAX_RINGS_PER_BANK; hw_data->num_accel = ADF_C3XXXIOV_MAX_ACCELERATORS; hw_data->num_logical_accel = 1; hw_data->num_engines = ADF_C3XXXIOV_MAX_ACCELENGINES; hw_data->tx_rx_gap = ADF_C3XXXIOV_RX_RINGS_OFFSET; hw_data->tx_rings_mask = ADF_C3XXXIOV_TX_RINGS_MASK; hw_data->ring_to_svc_map = ADF_GEN2_DEFAULT_RING_TO_SRV_MAP; hw_data->alloc_irq = adf_vf_isr_resource_alloc; hw_data->free_irq = adf_vf_isr_resource_free; hw_data->enable_error_correction = adf_vf_void_noop; hw_data->init_admin_comms = adf_vf_int_noop; hw_data->exit_admin_comms = adf_vf_void_noop; hw_data->send_admin_init = adf_vf2pf_notify_init; hw_data->init_arb = adf_vf_int_noop; hw_data->exit_arb = adf_vf_void_noop; hw_data->disable_iov = adf_vf2pf_notify_shutdown; hw_data->get_accel_mask = get_accel_mask; hw_data->get_ae_mask = get_ae_mask; hw_data->get_num_accels = get_num_accels; hw_data->get_num_aes = get_num_aes; hw_data->get_etr_bar_id = get_etr_bar_id; hw_data->get_misc_bar_id = get_misc_bar_id; hw_data->get_sku = get_sku; hw_data->enable_ints = adf_vf_void_noop; hw_data->dev_class->instances++; hw_data->dev_config = adf_gen2_dev_config; adf_devmgr_update_class_index(hw_data); adf_gen2_init_vf_pfvf_ops(&hw_data->pfvf_ops); adf_gen2_init_hw_csr_ops(&hw_data->csr_ops); adf_gen2_init_dc_ops(&hw_data->dc_ops); } void adf_clean_hw_data_c3xxxiov(struct adf_hw_device_data *hw_data) { hw_data->dev_class->instances--; adf_devmgr_update_class_index(hw_data); }
linux-master
drivers/crypto/intel/qat/qat_c3xxxvf/adf_c3xxxvf_hw_data.c
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2014 - 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <linux/io.h> #include <adf_accel_devices.h> #include <adf_common_drv.h> #include <adf_cfg.h> #include <adf_dbgfs.h> #include "adf_c3xxxvf_hw_data.h" static const struct pci_device_id adf_pci_tbl[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_QAT_C3XXX_VF), }, { } }; MODULE_DEVICE_TABLE(pci, adf_pci_tbl); static int adf_probe(struct pci_dev *dev, const struct pci_device_id *ent); static void adf_remove(struct pci_dev *dev); static struct pci_driver adf_driver = { .id_table = adf_pci_tbl, .name = ADF_C3XXXVF_DEVICE_NAME, .probe = adf_probe, .remove = adf_remove, }; static void adf_cleanup_pci_dev(struct adf_accel_dev *accel_dev) { pci_release_regions(accel_dev->accel_pci_dev.pci_dev); pci_disable_device(accel_dev->accel_pci_dev.pci_dev); } static void adf_cleanup_accel(struct adf_accel_dev *accel_dev) { struct adf_accel_pci *accel_pci_dev = &accel_dev->accel_pci_dev; struct adf_accel_dev *pf; int i; for (i = 0; i < ADF_PCI_MAX_BARS; i++) { struct adf_bar *bar = &accel_pci_dev->pci_bars[i]; if (bar->virt_addr) pci_iounmap(accel_pci_dev->pci_dev, bar->virt_addr); } if (accel_dev->hw_device) { switch (accel_pci_dev->pci_dev->device) { case PCI_DEVICE_ID_INTEL_QAT_C3XXX_VF: adf_clean_hw_data_c3xxxiov(accel_dev->hw_device); break; default: break; } kfree(accel_dev->hw_device); accel_dev->hw_device = NULL; } adf_dbgfs_exit(accel_dev); adf_cfg_dev_remove(accel_dev); pf = adf_devmgr_pci_to_accel_dev(accel_pci_dev->pci_dev->physfn); adf_devmgr_rm_dev(accel_dev, pf); } static int adf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct adf_accel_dev *accel_dev; struct adf_accel_dev *pf; struct adf_accel_pci *accel_pci_dev; struct adf_hw_device_data *hw_data; unsigned int i, bar_nr; unsigned long bar_mask; int ret; switch (ent->device) { case PCI_DEVICE_ID_INTEL_QAT_C3XXX_VF: break; default: dev_err(&pdev->dev, "Invalid device 0x%x.\n", ent->device); return -ENODEV; } accel_dev = kzalloc_node(sizeof(*accel_dev), GFP_KERNEL, dev_to_node(&pdev->dev)); if (!accel_dev) return -ENOMEM; accel_dev->is_vf = true; pf = adf_devmgr_pci_to_accel_dev(pdev->physfn); accel_pci_dev = &accel_dev->accel_pci_dev; accel_pci_dev->pci_dev = pdev; /* Add accel device to accel table */ if (adf_devmgr_add_dev(accel_dev, pf)) { dev_err(&pdev->dev, "Failed to add new accelerator device.\n"); kfree(accel_dev); return -EFAULT; } INIT_LIST_HEAD(&accel_dev->crypto_list); accel_dev->owner = THIS_MODULE; /* Allocate and configure device configuration structure */ hw_data = kzalloc_node(sizeof(*hw_data), GFP_KERNEL, dev_to_node(&pdev->dev)); if (!hw_data) { ret = -ENOMEM; goto out_err; } accel_dev->hw_device = hw_data; adf_init_hw_data_c3xxxiov(accel_dev->hw_device); /* Get Accelerators and Accelerators Engines masks */ hw_data->accel_mask = hw_data->get_accel_mask(hw_data); hw_data->ae_mask = hw_data->get_ae_mask(hw_data); accel_pci_dev->sku = hw_data->get_sku(hw_data); /* Create device configuration table */ ret = adf_cfg_dev_add(accel_dev); if (ret) goto out_err; /* enable PCI device */ if (pci_enable_device(pdev)) { ret = -EFAULT; goto out_err; } /* set dma identifier */ ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (ret) { dev_err(&pdev->dev, "No usable DMA configuration\n"); goto out_err_disable; } if (pci_request_regions(pdev, ADF_C3XXXVF_DEVICE_NAME)) { ret = -EFAULT; goto out_err_disable; } /* Find and map all the device's BARS */ i = 0; bar_mask = pci_select_bars(pdev, IORESOURCE_MEM); for_each_set_bit(bar_nr, &bar_mask, ADF_PCI_MAX_BARS * 2) { struct adf_bar *bar = &accel_pci_dev->pci_bars[i++]; bar->base_addr = pci_resource_start(pdev, bar_nr); if (!bar->base_addr) break; bar->size = pci_resource_len(pdev, bar_nr); bar->virt_addr = pci_iomap(accel_pci_dev->pci_dev, bar_nr, 0); if (!bar->virt_addr) { dev_err(&pdev->dev, "Failed to map BAR %d\n", bar_nr); ret = -EFAULT; goto out_err_free_reg; } } pci_set_master(pdev); /* Completion for VF2PF request/response message exchange */ init_completion(&accel_dev->vf.msg_received); adf_dbgfs_init(accel_dev); ret = adf_dev_up(accel_dev, false); if (ret) goto out_err_dev_stop; return ret; out_err_dev_stop: adf_dev_down(accel_dev, false); out_err_free_reg: pci_release_regions(accel_pci_dev->pci_dev); out_err_disable: pci_disable_device(accel_pci_dev->pci_dev); out_err: adf_cleanup_accel(accel_dev); kfree(accel_dev); return ret; } static void adf_remove(struct pci_dev *pdev) { struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev); if (!accel_dev) { pr_err("QAT: Driver removal failed\n"); return; } adf_flush_vf_wq(accel_dev); adf_dev_down(accel_dev, false); adf_cleanup_accel(accel_dev); adf_cleanup_pci_dev(accel_dev); kfree(accel_dev); } static int __init adfdrv_init(void) { request_module("intel_qat"); if (pci_register_driver(&adf_driver)) { pr_err("QAT: Driver initialization failed\n"); return -EFAULT; } return 0; } static void __exit adfdrv_release(void) { pci_unregister_driver(&adf_driver); adf_clean_vf_map(true); } module_init(adfdrv_init); module_exit(adfdrv_release); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel"); MODULE_DESCRIPTION("Intel(R) QuickAssist Technology"); MODULE_VERSION(ADF_DRV_VERSION);
linux-master
drivers/crypto/intel/qat/qat_c3xxxvf/adf_drv.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS HCU Crypto Driver. * * Copyright (C) 2018-2020 Intel Corporation */ #include <linux/delay.h> #include <linux/device.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/module.h> #include <crypto/sha2.h> #include "ocs-hcu.h" /* Registers. */ #define OCS_HCU_MODE 0x00 #define OCS_HCU_CHAIN 0x04 #define OCS_HCU_OPERATION 0x08 #define OCS_HCU_KEY_0 0x0C #define OCS_HCU_ISR 0x50 #define OCS_HCU_IER 0x54 #define OCS_HCU_STATUS 0x58 #define OCS_HCU_MSG_LEN_LO 0x60 #define OCS_HCU_MSG_LEN_HI 0x64 #define OCS_HCU_KEY_BYTE_ORDER_CFG 0x80 #define OCS_HCU_DMA_SRC_ADDR 0x400 #define OCS_HCU_DMA_SRC_SIZE 0x408 #define OCS_HCU_DMA_DST_SIZE 0x40C #define OCS_HCU_DMA_DMA_MODE 0x410 #define OCS_HCU_DMA_NEXT_SRC_DESCR 0x418 #define OCS_HCU_DMA_MSI_ISR 0x480 #define OCS_HCU_DMA_MSI_IER 0x484 #define OCS_HCU_DMA_MSI_MASK 0x488 /* Register bit definitions. */ #define HCU_MODE_ALGO_SHIFT 16 #define HCU_MODE_HMAC_SHIFT 22 #define HCU_STATUS_BUSY BIT(0) #define HCU_BYTE_ORDER_SWAP BIT(0) #define HCU_IRQ_HASH_DONE BIT(2) #define HCU_IRQ_HASH_ERR_MASK (BIT(3) | BIT(1) | BIT(0)) #define HCU_DMA_IRQ_SRC_DONE BIT(0) #define HCU_DMA_IRQ_SAI_ERR BIT(2) #define HCU_DMA_IRQ_BAD_COMP_ERR BIT(3) #define HCU_DMA_IRQ_INBUF_RD_ERR BIT(4) #define HCU_DMA_IRQ_INBUF_WD_ERR BIT(5) #define HCU_DMA_IRQ_OUTBUF_WR_ERR BIT(6) #define HCU_DMA_IRQ_OUTBUF_RD_ERR BIT(7) #define HCU_DMA_IRQ_CRD_ERR BIT(8) #define HCU_DMA_IRQ_ERR_MASK (HCU_DMA_IRQ_SAI_ERR | \ HCU_DMA_IRQ_BAD_COMP_ERR | \ HCU_DMA_IRQ_INBUF_RD_ERR | \ HCU_DMA_IRQ_INBUF_WD_ERR | \ HCU_DMA_IRQ_OUTBUF_WR_ERR | \ HCU_DMA_IRQ_OUTBUF_RD_ERR | \ HCU_DMA_IRQ_CRD_ERR) #define HCU_DMA_SNOOP_MASK (0x7 << 28) #define HCU_DMA_SRC_LL_EN BIT(25) #define HCU_DMA_EN BIT(31) #define OCS_HCU_ENDIANNESS_VALUE 0x2A #define HCU_DMA_MSI_UNMASK BIT(0) #define HCU_DMA_MSI_DISABLE 0 #define HCU_IRQ_DISABLE 0 #define OCS_HCU_START BIT(0) #define OCS_HCU_TERMINATE BIT(1) #define OCS_LL_DMA_FLAG_TERMINATE BIT(31) #define OCS_HCU_HW_KEY_LEN_U32 (OCS_HCU_HW_KEY_LEN / sizeof(u32)) #define HCU_DATA_WRITE_ENDIANNESS_OFFSET 26 #define OCS_HCU_NUM_CHAINS_SHA256_224_SM3 (SHA256_DIGEST_SIZE / sizeof(u32)) #define OCS_HCU_NUM_CHAINS_SHA384_512 (SHA512_DIGEST_SIZE / sizeof(u32)) /* * While polling on a busy HCU, wait maximum 200us between one check and the * other. */ #define OCS_HCU_WAIT_BUSY_RETRY_DELAY_US 200 /* Wait on a busy HCU for maximum 1 second. */ #define OCS_HCU_WAIT_BUSY_TIMEOUT_US 1000000 /** * struct ocs_hcu_dma_entry - An entry in an OCS DMA linked list. * @src_addr: Source address of the data. * @src_len: Length of data to be fetched. * @nxt_desc: Next descriptor to fetch. * @ll_flags: Flags (Freeze @ terminate) for the DMA engine. */ struct ocs_hcu_dma_entry { u32 src_addr; u32 src_len; u32 nxt_desc; u32 ll_flags; }; /** * struct ocs_hcu_dma_list - OCS-specific DMA linked list. * @head: The head of the list (points to the array backing the list). * @tail: The current tail of the list; NULL if the list is empty. * @dma_addr: The DMA address of @head (i.e., the DMA address of the backing * array). * @max_nents: Maximum number of entries in the list (i.e., number of elements * in the backing array). * * The OCS DMA list is an array-backed list of OCS DMA descriptors. The array * backing the list is allocated with dma_alloc_coherent() and pointed by * @head. */ struct ocs_hcu_dma_list { struct ocs_hcu_dma_entry *head; struct ocs_hcu_dma_entry *tail; dma_addr_t dma_addr; size_t max_nents; }; static inline u32 ocs_hcu_num_chains(enum ocs_hcu_algo algo) { switch (algo) { case OCS_HCU_ALGO_SHA224: case OCS_HCU_ALGO_SHA256: case OCS_HCU_ALGO_SM3: return OCS_HCU_NUM_CHAINS_SHA256_224_SM3; case OCS_HCU_ALGO_SHA384: case OCS_HCU_ALGO_SHA512: return OCS_HCU_NUM_CHAINS_SHA384_512; default: return 0; }; } static inline u32 ocs_hcu_digest_size(enum ocs_hcu_algo algo) { switch (algo) { case OCS_HCU_ALGO_SHA224: return SHA224_DIGEST_SIZE; case OCS_HCU_ALGO_SHA256: case OCS_HCU_ALGO_SM3: /* SM3 shares the same block size. */ return SHA256_DIGEST_SIZE; case OCS_HCU_ALGO_SHA384: return SHA384_DIGEST_SIZE; case OCS_HCU_ALGO_SHA512: return SHA512_DIGEST_SIZE; default: return 0; } } /** * ocs_hcu_wait_busy() - Wait for HCU OCS hardware to became usable. * @hcu_dev: OCS HCU device to wait for. * * Return: 0 if device free, -ETIMEOUT if device busy and internal timeout has * expired. */ static int ocs_hcu_wait_busy(struct ocs_hcu_dev *hcu_dev) { long val; return readl_poll_timeout(hcu_dev->io_base + OCS_HCU_STATUS, val, !(val & HCU_STATUS_BUSY), OCS_HCU_WAIT_BUSY_RETRY_DELAY_US, OCS_HCU_WAIT_BUSY_TIMEOUT_US); } static void ocs_hcu_done_irq_en(struct ocs_hcu_dev *hcu_dev) { /* Clear any pending interrupts. */ writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_ISR); hcu_dev->irq_err = false; /* Enable error and HCU done interrupts. */ writel(HCU_IRQ_HASH_DONE | HCU_IRQ_HASH_ERR_MASK, hcu_dev->io_base + OCS_HCU_IER); } static void ocs_hcu_dma_irq_en(struct ocs_hcu_dev *hcu_dev) { /* Clear any pending interrupts. */ writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); hcu_dev->irq_err = false; /* Only operating on DMA source completion and error interrupts. */ writel(HCU_DMA_IRQ_ERR_MASK | HCU_DMA_IRQ_SRC_DONE, hcu_dev->io_base + OCS_HCU_DMA_MSI_IER); /* Unmask */ writel(HCU_DMA_MSI_UNMASK, hcu_dev->io_base + OCS_HCU_DMA_MSI_MASK); } static void ocs_hcu_irq_dis(struct ocs_hcu_dev *hcu_dev) { writel(HCU_IRQ_DISABLE, hcu_dev->io_base + OCS_HCU_IER); writel(HCU_DMA_MSI_DISABLE, hcu_dev->io_base + OCS_HCU_DMA_MSI_IER); } static int ocs_hcu_wait_and_disable_irq(struct ocs_hcu_dev *hcu_dev) { int rc; rc = wait_for_completion_interruptible(&hcu_dev->irq_done); if (rc) goto exit; if (hcu_dev->irq_err) { /* Unset flag and return error. */ hcu_dev->irq_err = false; rc = -EIO; goto exit; } exit: ocs_hcu_irq_dis(hcu_dev); return rc; } /** * ocs_hcu_get_intermediate_data() - Get intermediate data. * @hcu_dev: The target HCU device. * @data: Where to store the intermediate. * @algo: The algorithm being used. * * This function is used to save the current hashing process state in order to * continue it in the future. * * Note: once all data has been processed, the intermediate data actually * contains the hashing result. So this function is also used to retrieve the * final result of a hashing process. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_get_intermediate_data(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_idata *data, enum ocs_hcu_algo algo) { const int n = ocs_hcu_num_chains(algo); u32 *chain; int rc; int i; /* Data not requested. */ if (!data) return -EINVAL; chain = (u32 *)data->digest; /* Ensure that the OCS is no longer busy before reading the chains. */ rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; /* * This loops is safe because data->digest is an array of * SHA512_DIGEST_SIZE bytes and the maximum value returned by * ocs_hcu_num_chains() is OCS_HCU_NUM_CHAINS_SHA384_512 which is equal * to SHA512_DIGEST_SIZE / sizeof(u32). */ for (i = 0; i < n; i++) chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN); data->msg_len_lo = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_LO); data->msg_len_hi = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_HI); return 0; } /** * ocs_hcu_set_intermediate_data() - Set intermediate data. * @hcu_dev: The target HCU device. * @data: The intermediate data to be set. * @algo: The algorithm being used. * * This function is used to continue a previous hashing process. */ static void ocs_hcu_set_intermediate_data(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_idata *data, enum ocs_hcu_algo algo) { const int n = ocs_hcu_num_chains(algo); u32 *chain = (u32 *)data->digest; int i; /* * This loops is safe because data->digest is an array of * SHA512_DIGEST_SIZE bytes and the maximum value returned by * ocs_hcu_num_chains() is OCS_HCU_NUM_CHAINS_SHA384_512 which is equal * to SHA512_DIGEST_SIZE / sizeof(u32). */ for (i = 0; i < n; i++) writel(chain[i], hcu_dev->io_base + OCS_HCU_CHAIN); writel(data->msg_len_lo, hcu_dev->io_base + OCS_HCU_MSG_LEN_LO); writel(data->msg_len_hi, hcu_dev->io_base + OCS_HCU_MSG_LEN_HI); } static int ocs_hcu_get_digest(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, u8 *dgst, size_t dgst_len) { u32 *chain; int rc; int i; if (!dgst) return -EINVAL; /* Length of the output buffer must match the algo digest size. */ if (dgst_len != ocs_hcu_digest_size(algo)) return -EINVAL; /* Ensure that the OCS is no longer busy before reading the chains. */ rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; chain = (u32 *)dgst; for (i = 0; i < dgst_len / sizeof(u32); i++) chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN); return 0; } /** * ocs_hcu_hw_cfg() - Configure the HCU hardware. * @hcu_dev: The HCU device to configure. * @algo: The algorithm to be used by the HCU device. * @use_hmac: Whether or not HW HMAC should be used. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_hw_cfg(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, bool use_hmac) { u32 cfg; int rc; if (algo != OCS_HCU_ALGO_SHA256 && algo != OCS_HCU_ALGO_SHA224 && algo != OCS_HCU_ALGO_SHA384 && algo != OCS_HCU_ALGO_SHA512 && algo != OCS_HCU_ALGO_SM3) return -EINVAL; rc = ocs_hcu_wait_busy(hcu_dev); if (rc) return rc; /* Ensure interrupts are disabled. */ ocs_hcu_irq_dis(hcu_dev); /* Configure endianness, hashing algorithm and HW HMAC (if needed) */ cfg = OCS_HCU_ENDIANNESS_VALUE << HCU_DATA_WRITE_ENDIANNESS_OFFSET; cfg |= algo << HCU_MODE_ALGO_SHIFT; if (use_hmac) cfg |= BIT(HCU_MODE_HMAC_SHIFT); writel(cfg, hcu_dev->io_base + OCS_HCU_MODE); return 0; } /** * ocs_hcu_clear_key() - Clear key stored in OCS HMAC KEY registers. * @hcu_dev: The OCS HCU device whose key registers should be cleared. */ static void ocs_hcu_clear_key(struct ocs_hcu_dev *hcu_dev) { int reg_off; /* Clear OCS_HCU_KEY_[0..15] */ for (reg_off = 0; reg_off < OCS_HCU_HW_KEY_LEN; reg_off += sizeof(u32)) writel(0, hcu_dev->io_base + OCS_HCU_KEY_0 + reg_off); } /** * ocs_hcu_write_key() - Write key to OCS HMAC KEY registers. * @hcu_dev: The OCS HCU device the key should be written to. * @key: The key to be written. * @len: The size of the key to write. It must be OCS_HCU_HW_KEY_LEN. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_write_key(struct ocs_hcu_dev *hcu_dev, const u8 *key, size_t len) { u32 key_u32[OCS_HCU_HW_KEY_LEN_U32]; int i; if (len > OCS_HCU_HW_KEY_LEN) return -EINVAL; /* Copy key into temporary u32 array. */ memcpy(key_u32, key, len); /* * Hardware requires all the bytes of the HW Key vector to be * written. So pad with zero until we reach OCS_HCU_HW_KEY_LEN. */ memzero_explicit((u8 *)key_u32 + len, OCS_HCU_HW_KEY_LEN - len); /* * OCS hardware expects the MSB of the key to be written at the highest * address of the HCU Key vector; in other word, the key must be * written in reverse order. * * Therefore, we first enable byte swapping for the HCU key vector; * so that bytes of 32-bit word written to OCS_HCU_KEY_[0..15] will be * swapped: * 3 <---> 0, 2 <---> 1. */ writel(HCU_BYTE_ORDER_SWAP, hcu_dev->io_base + OCS_HCU_KEY_BYTE_ORDER_CFG); /* * And then we write the 32-bit words composing the key starting from * the end of the key. */ for (i = 0; i < OCS_HCU_HW_KEY_LEN_U32; i++) writel(key_u32[OCS_HCU_HW_KEY_LEN_U32 - 1 - i], hcu_dev->io_base + OCS_HCU_KEY_0 + (sizeof(u32) * i)); memzero_explicit(key_u32, OCS_HCU_HW_KEY_LEN); return 0; } /** * ocs_hcu_ll_dma_start() - Start OCS HCU hashing via DMA * @hcu_dev: The OCS HCU device to use. * @dma_list: The OCS DMA list mapping the data to hash. * @finalize: Whether or not this is the last hashing operation and therefore * the final hash should be compute even if data is not * block-aligned. * * Return: 0 on success, negative error code otherwise. */ static int ocs_hcu_ll_dma_start(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_dma_list *dma_list, bool finalize) { u32 cfg = HCU_DMA_SNOOP_MASK | HCU_DMA_SRC_LL_EN | HCU_DMA_EN; int rc; if (!dma_list) return -EINVAL; /* * For final requests we use HCU_DONE IRQ to be notified when all input * data has been processed by the HCU; however, we cannot do so for * non-final requests, because we don't get a HCU_DONE IRQ when we * don't terminate the operation. * * Therefore, for non-final requests, we use the DMA IRQ, which * triggers when DMA has finishing feeding all the input data to the * HCU, but the HCU may still be processing it. This is fine, since we * will wait for the HCU processing to be completed when we try to read * intermediate results, in ocs_hcu_get_intermediate_data(). */ if (finalize) ocs_hcu_done_irq_en(hcu_dev); else ocs_hcu_dma_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(dma_list->dma_addr, hcu_dev->io_base + OCS_HCU_DMA_NEXT_SRC_DESCR); writel(0, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE); writel(0, hcu_dev->io_base + OCS_HCU_DMA_DST_SIZE); writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION); writel(cfg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE); if (finalize) writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; return 0; } struct ocs_hcu_dma_list *ocs_hcu_dma_list_alloc(struct ocs_hcu_dev *hcu_dev, int max_nents) { struct ocs_hcu_dma_list *dma_list; dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL); if (!dma_list) return NULL; /* Total size of the DMA list to allocate. */ dma_list->head = dma_alloc_coherent(hcu_dev->dev, sizeof(*dma_list->head) * max_nents, &dma_list->dma_addr, GFP_KERNEL); if (!dma_list->head) { kfree(dma_list); return NULL; } dma_list->max_nents = max_nents; dma_list->tail = NULL; return dma_list; } void ocs_hcu_dma_list_free(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_dma_list *dma_list) { if (!dma_list) return; dma_free_coherent(hcu_dev->dev, sizeof(*dma_list->head) * dma_list->max_nents, dma_list->head, dma_list->dma_addr); kfree(dma_list); } /* Add a new DMA entry at the end of the OCS DMA list. */ int ocs_hcu_dma_list_add_tail(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_dma_list *dma_list, dma_addr_t addr, u32 len) { struct device *dev = hcu_dev->dev; struct ocs_hcu_dma_entry *old_tail; struct ocs_hcu_dma_entry *new_tail; if (!len) return 0; if (!dma_list) return -EINVAL; if (addr & ~OCS_HCU_DMA_BIT_MASK) { dev_err(dev, "Unexpected error: Invalid DMA address for OCS HCU\n"); return -EINVAL; } old_tail = dma_list->tail; new_tail = old_tail ? old_tail + 1 : dma_list->head; /* Check if list is full. */ if (new_tail - dma_list->head >= dma_list->max_nents) return -ENOMEM; /* * If there was an old tail (i.e., this is not the first element we are * adding), un-terminate the old tail and make it point to the new one. */ if (old_tail) { old_tail->ll_flags &= ~OCS_LL_DMA_FLAG_TERMINATE; /* * The old tail 'nxt_desc' must point to the DMA address of the * new tail. */ old_tail->nxt_desc = dma_list->dma_addr + sizeof(*dma_list->tail) * (new_tail - dma_list->head); } new_tail->src_addr = (u32)addr; new_tail->src_len = (u32)len; new_tail->ll_flags = OCS_LL_DMA_FLAG_TERMINATE; new_tail->nxt_desc = 0; /* Update list tail with new tail. */ dma_list->tail = new_tail; return 0; } /** * ocs_hcu_hash_init() - Initialize hash operation context. * @ctx: The context to initialize. * @algo: The hashing algorithm to use. * * Return: 0 on success, negative error code otherwise. */ int ocs_hcu_hash_init(struct ocs_hcu_hash_ctx *ctx, enum ocs_hcu_algo algo) { if (!ctx) return -EINVAL; ctx->algo = algo; ctx->idata.msg_len_lo = 0; ctx->idata.msg_len_hi = 0; /* No need to set idata.digest to 0. */ return 0; } /** * ocs_hcu_hash_update() - Perform a hashing iteration. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dma_list: The OCS DMA list mapping the input data to process. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_update(struct ocs_hcu_dev *hcu_dev, struct ocs_hcu_hash_ctx *ctx, const struct ocs_hcu_dma_list *dma_list) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* Start linked-list DMA hashing. */ rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, false); if (rc) return rc; /* Update idata and return. */ return ocs_hcu_get_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); } /** * ocs_hcu_hash_finup() - Update and finalize hash computation. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dma_list: The OCS DMA list mapping the input data to process. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_finup(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_hash_ctx *ctx, const struct ocs_hcu_dma_list *dma_list, u8 *dgst, size_t dgst_len) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* Start linked-list DMA hashing. */ rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, true); if (rc) return rc; /* Get digest and return. */ return ocs_hcu_get_digest(hcu_dev, ctx->algo, dgst, dgst_len); } /** * ocs_hcu_hash_final() - Finalize hash computation. * @hcu_dev: The OCS HCU device to use. * @ctx: The OCS HCU hashing context. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hash_final(struct ocs_hcu_dev *hcu_dev, const struct ocs_hcu_hash_ctx *ctx, u8 *dgst, size_t dgst_len) { int rc; if (!hcu_dev || !ctx) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false); if (rc) return rc; /* If we already processed some data, idata needs to be set. */ if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi) ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo); /* * Enable HCU interrupts, so that HCU_DONE will be triggered once the * final hash is computed. */ ocs_hcu_done_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; /* Get digest and return. */ return ocs_hcu_get_digest(hcu_dev, ctx->algo, dgst, dgst_len); } /** * ocs_hcu_digest() - Compute hash digest. * @hcu_dev: The OCS HCU device to use. * @algo: The hash algorithm to use. * @data: The input data to process. * @data_len: The length of @data. * @dgst: The buffer where to save the computed digest. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_digest(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, void *data, size_t data_len, u8 *dgst, size_t dgst_len) { struct device *dev = hcu_dev->dev; dma_addr_t dma_handle; u32 reg; int rc; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, algo, false); if (rc) return rc; dma_handle = dma_map_single(dev, data, data_len, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_handle)) return -EIO; reg = HCU_DMA_SNOOP_MASK | HCU_DMA_EN; ocs_hcu_done_irq_en(hcu_dev); reinit_completion(&hcu_dev->irq_done); writel(dma_handle, hcu_dev->io_base + OCS_HCU_DMA_SRC_ADDR); writel(data_len, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE); writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION); writel(reg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE); writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION); rc = ocs_hcu_wait_and_disable_irq(hcu_dev); if (rc) return rc; dma_unmap_single(dev, dma_handle, data_len, DMA_TO_DEVICE); return ocs_hcu_get_digest(hcu_dev, algo, dgst, dgst_len); } /** * ocs_hcu_hmac() - Compute HMAC. * @hcu_dev: The OCS HCU device to use. * @algo: The hash algorithm to use with HMAC. * @key: The key to use. * @dma_list: The OCS DMA list mapping the input data to process. * @key_len: The length of @key. * @dgst: The buffer where to save the computed HMAC. * @dgst_len: The length of @dgst. * * Return: 0 on success; negative error code otherwise. */ int ocs_hcu_hmac(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo, const u8 *key, size_t key_len, const struct ocs_hcu_dma_list *dma_list, u8 *dgst, size_t dgst_len) { int rc; /* Ensure 'key' is not NULL. */ if (!key || key_len == 0) return -EINVAL; /* Configure the hardware for the current request. */ rc = ocs_hcu_hw_cfg(hcu_dev, algo, true); if (rc) return rc; rc = ocs_hcu_write_key(hcu_dev, key, key_len); if (rc) return rc; rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, true); /* Clear HW key before processing return code. */ ocs_hcu_clear_key(hcu_dev); if (rc) return rc; return ocs_hcu_get_digest(hcu_dev, algo, dgst, dgst_len); } irqreturn_t ocs_hcu_irq_handler(int irq, void *dev_id) { struct ocs_hcu_dev *hcu_dev = dev_id; u32 hcu_irq; u32 dma_irq; /* Read and clear the HCU interrupt. */ hcu_irq = readl(hcu_dev->io_base + OCS_HCU_ISR); writel(hcu_irq, hcu_dev->io_base + OCS_HCU_ISR); /* Read and clear the HCU DMA interrupt. */ dma_irq = readl(hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); writel(dma_irq, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR); /* Check for errors. */ if (hcu_irq & HCU_IRQ_HASH_ERR_MASK || dma_irq & HCU_DMA_IRQ_ERR_MASK) { hcu_dev->irq_err = true; goto complete; } /* Check for DONE IRQs. */ if (hcu_irq & HCU_IRQ_HASH_DONE || dma_irq & HCU_DMA_IRQ_SRC_DONE) goto complete; return IRQ_NONE; complete: complete(&hcu_dev->irq_done); return IRQ_HANDLED; } MODULE_LICENSE("GPL");
linux-master
drivers/crypto/intel/keembay/ocs-hcu.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS AES Crypto Driver. * * Copyright (C) 2018-2020 Intel Corporation */ #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/swab.h> #include <asm/byteorder.h> #include <asm/errno.h> #include <crypto/aes.h> #include <crypto/gcm.h> #include "ocs-aes.h" #define AES_COMMAND_OFFSET 0x0000 #define AES_KEY_0_OFFSET 0x0004 #define AES_KEY_1_OFFSET 0x0008 #define AES_KEY_2_OFFSET 0x000C #define AES_KEY_3_OFFSET 0x0010 #define AES_KEY_4_OFFSET 0x0014 #define AES_KEY_5_OFFSET 0x0018 #define AES_KEY_6_OFFSET 0x001C #define AES_KEY_7_OFFSET 0x0020 #define AES_IV_0_OFFSET 0x0024 #define AES_IV_1_OFFSET 0x0028 #define AES_IV_2_OFFSET 0x002C #define AES_IV_3_OFFSET 0x0030 #define AES_ACTIVE_OFFSET 0x0034 #define AES_STATUS_OFFSET 0x0038 #define AES_KEY_SIZE_OFFSET 0x0044 #define AES_IER_OFFSET 0x0048 #define AES_ISR_OFFSET 0x005C #define AES_MULTIPURPOSE1_0_OFFSET 0x0200 #define AES_MULTIPURPOSE1_1_OFFSET 0x0204 #define AES_MULTIPURPOSE1_2_OFFSET 0x0208 #define AES_MULTIPURPOSE1_3_OFFSET 0x020C #define AES_MULTIPURPOSE2_0_OFFSET 0x0220 #define AES_MULTIPURPOSE2_1_OFFSET 0x0224 #define AES_MULTIPURPOSE2_2_OFFSET 0x0228 #define AES_MULTIPURPOSE2_3_OFFSET 0x022C #define AES_BYTE_ORDER_CFG_OFFSET 0x02C0 #define AES_TLEN_OFFSET 0x0300 #define AES_T_MAC_0_OFFSET 0x0304 #define AES_T_MAC_1_OFFSET 0x0308 #define AES_T_MAC_2_OFFSET 0x030C #define AES_T_MAC_3_OFFSET 0x0310 #define AES_PLEN_OFFSET 0x0314 #define AES_A_DMA_SRC_ADDR_OFFSET 0x0400 #define AES_A_DMA_DST_ADDR_OFFSET 0x0404 #define AES_A_DMA_SRC_SIZE_OFFSET 0x0408 #define AES_A_DMA_DST_SIZE_OFFSET 0x040C #define AES_A_DMA_DMA_MODE_OFFSET 0x0410 #define AES_A_DMA_NEXT_SRC_DESCR_OFFSET 0x0418 #define AES_A_DMA_NEXT_DST_DESCR_OFFSET 0x041C #define AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET 0x0420 #define AES_A_DMA_LOG_OFFSET 0x0424 #define AES_A_DMA_STATUS_OFFSET 0x0428 #define AES_A_DMA_PERF_CNTR_OFFSET 0x042C #define AES_A_DMA_MSI_ISR_OFFSET 0x0480 #define AES_A_DMA_MSI_IER_OFFSET 0x0484 #define AES_A_DMA_MSI_MASK_OFFSET 0x0488 #define AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET 0x0600 #define AES_A_DMA_OUTBUFFER_READ_FIFO_OFFSET 0x0700 /* * AES_A_DMA_DMA_MODE register. * Default: 0x00000000. * bit[31] ACTIVE * This bit activates the DMA. When the DMA finishes, it resets * this bit to zero. * bit[30:26] Unused by this driver. * bit[25] SRC_LINK_LIST_EN * Source link list enable bit. When the linked list is terminated * this bit is reset by the DMA. * bit[24] DST_LINK_LIST_EN * Destination link list enable bit. When the linked list is * terminated this bit is reset by the DMA. * bit[23:0] Unused by this driver. */ #define AES_A_DMA_DMA_MODE_ACTIVE BIT(31) #define AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN BIT(25) #define AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN BIT(24) /* * AES_ACTIVE register * default 0x00000000 * bit[31:10] Reserved * bit[9] LAST_ADATA * bit[8] LAST_GCX * bit[7:2] Reserved * bit[1] TERMINATION * bit[0] TRIGGER */ #define AES_ACTIVE_LAST_ADATA BIT(9) #define AES_ACTIVE_LAST_CCM_GCM BIT(8) #define AES_ACTIVE_TERMINATION BIT(1) #define AES_ACTIVE_TRIGGER BIT(0) #define AES_DISABLE_INT 0x00000000 #define AES_DMA_CPD_ERR_INT BIT(8) #define AES_DMA_OUTBUF_RD_ERR_INT BIT(7) #define AES_DMA_OUTBUF_WR_ERR_INT BIT(6) #define AES_DMA_INBUF_RD_ERR_INT BIT(5) #define AES_DMA_INBUF_WR_ERR_INT BIT(4) #define AES_DMA_BAD_COMP_INT BIT(3) #define AES_DMA_SAI_INT BIT(2) #define AES_DMA_SRC_DONE_INT BIT(0) #define AES_COMPLETE_INT BIT(1) #define AES_DMA_MSI_MASK_CLEAR BIT(0) #define AES_128_BIT_KEY 0x00000000 #define AES_256_BIT_KEY BIT(0) #define AES_DEACTIVATE_PERF_CNTR 0x00000000 #define AES_ACTIVATE_PERF_CNTR BIT(0) #define AES_MAX_TAG_SIZE_U32 4 #define OCS_LL_DMA_FLAG_TERMINATE BIT(31) /* * There is an inconsistency in the documentation. This is documented as a * 11-bit value, but it is actually 10-bits. */ #define AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK 0x3FF /* * During CCM decrypt, the OCS block needs to finish processing the ciphertext * before the tag is written. For 128-bit mode this required delay is 28 OCS * clock cycles. For 256-bit mode it is 36 OCS clock cycles. */ #define CCM_DECRYPT_DELAY_TAG_CLK_COUNT 36UL /* * During CCM decrypt there must be a delay of at least 42 OCS clock cycles * between setting the TRIGGER bit in AES_ACTIVE and setting the LAST_CCM_GCM * bit in the same register (as stated in the OCS databook) */ #define CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT 42UL /* See RFC3610 section 2.2 */ #define L_PRIME_MIN (1) #define L_PRIME_MAX (7) /* * CCM IV format from RFC 3610 section 2.3 * * Octet Number Contents * ------------ --------- * 0 Flags * 1 ... 15-L Nonce N * 16-L ... 15 Counter i * * Flags = L' = L - 1 */ #define L_PRIME_IDX 0 #define COUNTER_START(lprime) (16 - ((lprime) + 1)) #define COUNTER_LEN(lprime) ((lprime) + 1) enum aes_counter_mode { AES_CTR_M_NO_INC = 0, AES_CTR_M_32_INC = 1, AES_CTR_M_64_INC = 2, AES_CTR_M_128_INC = 3, }; /** * struct ocs_dma_linked_list - OCS DMA linked list entry. * @src_addr: Source address of the data. * @src_len: Length of data to be fetched. * @next: Next dma_list to fetch. * @ll_flags: Flags (Freeze @ terminate) for the DMA engine. */ struct ocs_dma_linked_list { u32 src_addr; u32 src_len; u32 next; u32 ll_flags; } __packed; /* * Set endianness of inputs and outputs * AES_BYTE_ORDER_CFG * default 0x00000000 * bit [10] - KEY_HI_LO_SWAP * bit [9] - KEY_HI_SWAP_DWORDS_IN_OCTWORD * bit [8] - KEY_HI_SWAP_BYTES_IN_DWORD * bit [7] - KEY_LO_SWAP_DWORDS_IN_OCTWORD * bit [6] - KEY_LO_SWAP_BYTES_IN_DWORD * bit [5] - IV_SWAP_DWORDS_IN_OCTWORD * bit [4] - IV_SWAP_BYTES_IN_DWORD * bit [3] - DOUT_SWAP_DWORDS_IN_OCTWORD * bit [2] - DOUT_SWAP_BYTES_IN_DWORD * bit [1] - DOUT_SWAP_DWORDS_IN_OCTWORD * bit [0] - DOUT_SWAP_BYTES_IN_DWORD */ static inline void aes_a_set_endianness(const struct ocs_aes_dev *aes_dev) { iowrite32(0x7FF, aes_dev->base_reg + AES_BYTE_ORDER_CFG_OFFSET); } /* Trigger AES process start. */ static inline void aes_a_op_trigger(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_ACTIVE_TRIGGER, aes_dev->base_reg + AES_ACTIVE_OFFSET); } /* Indicate last bulk of data. */ static inline void aes_a_op_termination(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_ACTIVE_TERMINATION, aes_dev->base_reg + AES_ACTIVE_OFFSET); } /* * Set LAST_CCM_GCM in AES_ACTIVE register and clear all other bits. * * Called when DMA is programmed to fetch the last batch of data. * - For AES-CCM it is called for the last batch of Payload data and Ciphertext * data. * - For AES-GCM, it is called for the last batch of Plaintext data and * Ciphertext data. */ static inline void aes_a_set_last_gcx(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_ACTIVE_LAST_CCM_GCM, aes_dev->base_reg + AES_ACTIVE_OFFSET); } /* Wait for LAST_CCM_GCM bit to be unset. */ static inline void aes_a_wait_last_gcx(const struct ocs_aes_dev *aes_dev) { u32 aes_active_reg; do { aes_active_reg = ioread32(aes_dev->base_reg + AES_ACTIVE_OFFSET); } while (aes_active_reg & AES_ACTIVE_LAST_CCM_GCM); } /* Wait for 10 bits of input occupancy. */ static void aes_a_dma_wait_input_buffer_occupancy(const struct ocs_aes_dev *aes_dev) { u32 reg; do { reg = ioread32(aes_dev->base_reg + AES_A_DMA_STATUS_OFFSET); } while (reg & AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK); } /* * Set LAST_CCM_GCM and LAST_ADATA bits in AES_ACTIVE register (and clear all * other bits). * * Called when DMA is programmed to fetch the last batch of Associated Data * (CCM case) or Additional Authenticated Data (GCM case). */ static inline void aes_a_set_last_gcx_and_adata(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_ACTIVE_LAST_ADATA | AES_ACTIVE_LAST_CCM_GCM, aes_dev->base_reg + AES_ACTIVE_OFFSET); } /* Set DMA src and dst transfer size to 0 */ static inline void aes_a_dma_set_xfer_size_zero(const struct ocs_aes_dev *aes_dev) { iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET); iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET); } /* Activate DMA for zero-byte transfer case. */ static inline void aes_a_dma_active(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_A_DMA_DMA_MODE_ACTIVE, aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET); } /* Activate DMA and enable src linked list */ static inline void aes_a_dma_active_src_ll_en(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_A_DMA_DMA_MODE_ACTIVE | AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN, aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET); } /* Activate DMA and enable dst linked list */ static inline void aes_a_dma_active_dst_ll_en(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_A_DMA_DMA_MODE_ACTIVE | AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN, aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET); } /* Activate DMA and enable src and dst linked lists */ static inline void aes_a_dma_active_src_dst_ll_en(const struct ocs_aes_dev *aes_dev) { iowrite32(AES_A_DMA_DMA_MODE_ACTIVE | AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN | AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN, aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET); } /* Reset PERF_CNTR to 0 and activate it */ static inline void aes_a_dma_reset_and_activate_perf_cntr(const struct ocs_aes_dev *aes_dev) { iowrite32(0x00000000, aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET); iowrite32(AES_ACTIVATE_PERF_CNTR, aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET); } /* Wait until PERF_CNTR is > delay, then deactivate it */ static inline void aes_a_dma_wait_and_deactivate_perf_cntr(const struct ocs_aes_dev *aes_dev, int delay) { while (ioread32(aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET) < delay) ; iowrite32(AES_DEACTIVATE_PERF_CNTR, aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET); } /* Disable AES and DMA IRQ. */ static void aes_irq_disable(struct ocs_aes_dev *aes_dev) { u32 isr_val = 0; /* Disable interrupts */ iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET); iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET); /* Clear any pending interrupt */ isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET); if (isr_val) iowrite32(isr_val, aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET); isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET); if (isr_val) iowrite32(isr_val, aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET); isr_val = ioread32(aes_dev->base_reg + AES_ISR_OFFSET); if (isr_val) iowrite32(isr_val, aes_dev->base_reg + AES_ISR_OFFSET); } /* Enable AES or DMA IRQ. IRQ is disabled once fired. */ static void aes_irq_enable(struct ocs_aes_dev *aes_dev, u8 irq) { if (irq == AES_COMPLETE_INT) { /* Ensure DMA error interrupts are enabled */ iowrite32(AES_DMA_CPD_ERR_INT | AES_DMA_OUTBUF_RD_ERR_INT | AES_DMA_OUTBUF_WR_ERR_INT | AES_DMA_INBUF_RD_ERR_INT | AES_DMA_INBUF_WR_ERR_INT | AES_DMA_BAD_COMP_INT | AES_DMA_SAI_INT, aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET); /* * AES_IER * default 0x00000000 * bits [31:3] - reserved * bit [2] - EN_SKS_ERR * bit [1] - EN_AES_COMPLETE * bit [0] - reserved */ iowrite32(AES_COMPLETE_INT, aes_dev->base_reg + AES_IER_OFFSET); return; } if (irq == AES_DMA_SRC_DONE_INT) { /* Ensure AES interrupts are disabled */ iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET); /* * DMA_MSI_IER * default 0x00000000 * bits [31:9] - reserved * bit [8] - CPD_ERR_INT_EN * bit [7] - OUTBUF_RD_ERR_INT_EN * bit [6] - OUTBUF_WR_ERR_INT_EN * bit [5] - INBUF_RD_ERR_INT_EN * bit [4] - INBUF_WR_ERR_INT_EN * bit [3] - BAD_COMP_INT_EN * bit [2] - SAI_INT_EN * bit [1] - DST_DONE_INT_EN * bit [0] - SRC_DONE_INT_EN */ iowrite32(AES_DMA_CPD_ERR_INT | AES_DMA_OUTBUF_RD_ERR_INT | AES_DMA_OUTBUF_WR_ERR_INT | AES_DMA_INBUF_RD_ERR_INT | AES_DMA_INBUF_WR_ERR_INT | AES_DMA_BAD_COMP_INT | AES_DMA_SAI_INT | AES_DMA_SRC_DONE_INT, aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET); } } /* Enable and wait for IRQ (either from OCS AES engine or DMA) */ static int ocs_aes_irq_enable_and_wait(struct ocs_aes_dev *aes_dev, u8 irq) { int rc; reinit_completion(&aes_dev->irq_completion); aes_irq_enable(aes_dev, irq); rc = wait_for_completion_interruptible(&aes_dev->irq_completion); if (rc) return rc; return aes_dev->dma_err_mask ? -EIO : 0; } /* Configure DMA to OCS, linked list mode */ static inline void dma_to_ocs_aes_ll(struct ocs_aes_dev *aes_dev, dma_addr_t dma_list) { iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET); iowrite32(dma_list, aes_dev->base_reg + AES_A_DMA_NEXT_SRC_DESCR_OFFSET); } /* Configure DMA from OCS, linked list mode */ static inline void dma_from_ocs_aes_ll(struct ocs_aes_dev *aes_dev, dma_addr_t dma_list) { iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET); iowrite32(dma_list, aes_dev->base_reg + AES_A_DMA_NEXT_DST_DESCR_OFFSET); } irqreturn_t ocs_aes_irq_handler(int irq, void *dev_id) { struct ocs_aes_dev *aes_dev = dev_id; u32 aes_dma_isr; /* Read DMA ISR status. */ aes_dma_isr = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET); /* Disable and clear interrupts. */ aes_irq_disable(aes_dev); /* Save DMA error status. */ aes_dev->dma_err_mask = aes_dma_isr & (AES_DMA_CPD_ERR_INT | AES_DMA_OUTBUF_RD_ERR_INT | AES_DMA_OUTBUF_WR_ERR_INT | AES_DMA_INBUF_RD_ERR_INT | AES_DMA_INBUF_WR_ERR_INT | AES_DMA_BAD_COMP_INT | AES_DMA_SAI_INT); /* Signal IRQ completion. */ complete(&aes_dev->irq_completion); return IRQ_HANDLED; } /** * ocs_aes_set_key() - Write key into OCS AES hardware. * @aes_dev: The OCS AES device to write the key to. * @key_size: The size of the key (in bytes). * @key: The key to write. * @cipher: The cipher the key is for. * * For AES @key_size must be either 16 or 32. For SM4 @key_size must be 16. * * Return: 0 on success, negative error code otherwise. */ int ocs_aes_set_key(struct ocs_aes_dev *aes_dev, u32 key_size, const u8 *key, enum ocs_cipher cipher) { const u32 *key_u32; u32 val; int i; /* OCS AES supports 128-bit and 256-bit keys only. */ if (cipher == OCS_AES && !(key_size == 32 || key_size == 16)) { dev_err(aes_dev->dev, "%d-bit keys not supported by AES cipher\n", key_size * 8); return -EINVAL; } /* OCS SM4 supports 128-bit keys only. */ if (cipher == OCS_SM4 && key_size != 16) { dev_err(aes_dev->dev, "%d-bit keys not supported for SM4 cipher\n", key_size * 8); return -EINVAL; } if (!key) return -EINVAL; key_u32 = (const u32 *)key; /* Write key to AES_KEY[0-7] registers */ for (i = 0; i < (key_size / sizeof(u32)); i++) { iowrite32(key_u32[i], aes_dev->base_reg + AES_KEY_0_OFFSET + (i * sizeof(u32))); } /* * Write key size * bits [31:1] - reserved * bit [0] - AES_KEY_SIZE * 0 - 128 bit key * 1 - 256 bit key */ val = (key_size == 16) ? AES_128_BIT_KEY : AES_256_BIT_KEY; iowrite32(val, aes_dev->base_reg + AES_KEY_SIZE_OFFSET); return 0; } /* Write AES_COMMAND */ static inline void set_ocs_aes_command(struct ocs_aes_dev *aes_dev, enum ocs_cipher cipher, enum ocs_mode mode, enum ocs_instruction instruction) { u32 val; /* AES_COMMAND * default 0x000000CC * bit [14] - CIPHER_SELECT * 0 - AES * 1 - SM4 * bits [11:8] - OCS_AES_MODE * 0000 - ECB * 0001 - CBC * 0010 - CTR * 0110 - CCM * 0111 - GCM * 1001 - CTS * bits [7:6] - AES_INSTRUCTION * 00 - ENCRYPT * 01 - DECRYPT * 10 - EXPAND * 11 - BYPASS * bits [3:2] - CTR_M_BITS * 00 - No increment * 01 - Least significant 32 bits are incremented * 10 - Least significant 64 bits are incremented * 11 - Full 128 bits are incremented */ val = (cipher << 14) | (mode << 8) | (instruction << 6) | (AES_CTR_M_128_INC << 2); iowrite32(val, aes_dev->base_reg + AES_COMMAND_OFFSET); } static void ocs_aes_init(struct ocs_aes_dev *aes_dev, enum ocs_mode mode, enum ocs_cipher cipher, enum ocs_instruction instruction) { /* Ensure interrupts are disabled and pending interrupts cleared. */ aes_irq_disable(aes_dev); /* Set endianness recommended by data-sheet. */ aes_a_set_endianness(aes_dev); /* Set AES_COMMAND register. */ set_ocs_aes_command(aes_dev, cipher, mode, instruction); } /* * Write the byte length of the last AES/SM4 block of Payload data (without * zero padding and without the length of the MAC) in register AES_PLEN. */ static inline void ocs_aes_write_last_data_blk_len(struct ocs_aes_dev *aes_dev, u32 size) { u32 val; if (size == 0) { val = 0; goto exit; } val = size % AES_BLOCK_SIZE; if (val == 0) val = AES_BLOCK_SIZE; exit: iowrite32(val, aes_dev->base_reg + AES_PLEN_OFFSET); } /* * Validate inputs according to mode. * If OK return 0; else return -EINVAL. */ static int ocs_aes_validate_inputs(dma_addr_t src_dma_list, u32 src_size, const u8 *iv, u32 iv_size, dma_addr_t aad_dma_list, u32 aad_size, const u8 *tag, u32 tag_size, enum ocs_cipher cipher, enum ocs_mode mode, enum ocs_instruction instruction, dma_addr_t dst_dma_list) { /* Ensure cipher, mode and instruction are valid. */ if (!(cipher == OCS_AES || cipher == OCS_SM4)) return -EINVAL; if (mode != OCS_MODE_ECB && mode != OCS_MODE_CBC && mode != OCS_MODE_CTR && mode != OCS_MODE_CCM && mode != OCS_MODE_GCM && mode != OCS_MODE_CTS) return -EINVAL; if (instruction != OCS_ENCRYPT && instruction != OCS_DECRYPT && instruction != OCS_EXPAND && instruction != OCS_BYPASS) return -EINVAL; /* * When instruction is OCS_BYPASS, OCS simply copies data from source * to destination using DMA. * * AES mode is irrelevant, but both source and destination DMA * linked-list must be defined. */ if (instruction == OCS_BYPASS) { if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; return 0; } /* * For performance reasons switch based on mode to limit unnecessary * conditionals for each mode */ switch (mode) { case OCS_MODE_ECB: /* Ensure input length is multiple of block size */ if (src_size % AES_BLOCK_SIZE != 0) return -EINVAL; /* Ensure source and destination linked lists are created */ if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; return 0; case OCS_MODE_CBC: /* Ensure input length is multiple of block size */ if (src_size % AES_BLOCK_SIZE != 0) return -EINVAL; /* Ensure source and destination linked lists are created */ if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Ensure IV is present and block size in length */ if (!iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; case OCS_MODE_CTR: /* Ensure input length of 1 byte or greater */ if (src_size == 0) return -EINVAL; /* Ensure source and destination linked lists are created */ if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Ensure IV is present and block size in length */ if (!iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; case OCS_MODE_CTS: /* Ensure input length >= block size */ if (src_size < AES_BLOCK_SIZE) return -EINVAL; /* Ensure source and destination linked lists are created */ if (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Ensure IV is present and block size in length */ if (!iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; case OCS_MODE_GCM: /* Ensure IV is present and GCM_AES_IV_SIZE in length */ if (!iv || iv_size != GCM_AES_IV_SIZE) return -EINVAL; /* * If input data present ensure source and destination linked * lists are created */ if (src_size && (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR)) return -EINVAL; /* If aad present ensure aad linked list is created */ if (aad_size && aad_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Ensure tag destination is set */ if (!tag) return -EINVAL; /* Just ensure that tag_size doesn't cause overflows. */ if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32))) return -EINVAL; return 0; case OCS_MODE_CCM: /* Ensure IV is present and block size in length */ if (!iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; /* 2 <= L <= 8, so 1 <= L' <= 7 */ if (iv[L_PRIME_IDX] < L_PRIME_MIN || iv[L_PRIME_IDX] > L_PRIME_MAX) return -EINVAL; /* If aad present ensure aad linked list is created */ if (aad_size && aad_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* Just ensure that tag_size doesn't cause overflows. */ if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32))) return -EINVAL; if (instruction == OCS_DECRYPT) { /* * If input data present ensure source and destination * linked lists are created */ if (src_size && (src_dma_list == DMA_MAPPING_ERROR || dst_dma_list == DMA_MAPPING_ERROR)) return -EINVAL; /* Ensure input tag is present */ if (!tag) return -EINVAL; return 0; } /* Instruction == OCS_ENCRYPT */ /* * Destination linked list always required (for tag even if no * input data) */ if (dst_dma_list == DMA_MAPPING_ERROR) return -EINVAL; /* If input data present ensure src linked list is created */ if (src_size && src_dma_list == DMA_MAPPING_ERROR) return -EINVAL; return 0; default: return -EINVAL; } } /** * ocs_aes_op() - Perform AES/SM4 operation. * @aes_dev: The OCS AES device to use. * @mode: The mode to use (ECB, CBC, CTR, or CTS). * @cipher: The cipher to use (AES or SM4). * @instruction: The instruction to perform (encrypt or decrypt). * @dst_dma_list: The OCS DMA list mapping output memory. * @src_dma_list: The OCS DMA list mapping input payload data. * @src_size: The amount of data mapped by @src_dma_list. * @iv: The IV vector. * @iv_size: The size (in bytes) of @iv. * * Return: 0 on success, negative error code otherwise. */ int ocs_aes_op(struct ocs_aes_dev *aes_dev, enum ocs_mode mode, enum ocs_cipher cipher, enum ocs_instruction instruction, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size, u8 *iv, u32 iv_size) { u32 *iv32; int rc; rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, iv_size, 0, 0, NULL, 0, cipher, mode, instruction, dst_dma_list); if (rc) return rc; /* * ocs_aes_validate_inputs() is a generic check, now ensure mode is not * GCM or CCM. */ if (mode == OCS_MODE_GCM || mode == OCS_MODE_CCM) return -EINVAL; /* Cast IV to u32 array. */ iv32 = (u32 *)iv; ocs_aes_init(aes_dev, mode, cipher, instruction); if (mode == OCS_MODE_CTS) { /* Write the byte length of the last data block to engine. */ ocs_aes_write_last_data_blk_len(aes_dev, src_size); } /* ECB is the only mode that doesn't use IV. */ if (mode != OCS_MODE_ECB) { iowrite32(iv32[0], aes_dev->base_reg + AES_IV_0_OFFSET); iowrite32(iv32[1], aes_dev->base_reg + AES_IV_1_OFFSET); iowrite32(iv32[2], aes_dev->base_reg + AES_IV_2_OFFSET); iowrite32(iv32[3], aes_dev->base_reg + AES_IV_3_OFFSET); } /* Set AES_ACTIVE.TRIGGER to start the operation. */ aes_a_op_trigger(aes_dev); /* Configure and activate input / output DMA. */ dma_to_ocs_aes_ll(aes_dev, src_dma_list); dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_src_dst_ll_en(aes_dev); if (mode == OCS_MODE_CTS) { /* * For CTS mode, instruct engine to activate ciphertext * stealing if last block of data is incomplete. */ aes_a_set_last_gcx(aes_dev); } else { /* For all other modes, just write the 'termination' bit. */ aes_a_op_termination(aes_dev); } /* Wait for engine to complete processing. */ rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT); if (rc) return rc; if (mode == OCS_MODE_CTR) { /* Read back IV for streaming mode */ iv32[0] = ioread32(aes_dev->base_reg + AES_IV_0_OFFSET); iv32[1] = ioread32(aes_dev->base_reg + AES_IV_1_OFFSET); iv32[2] = ioread32(aes_dev->base_reg + AES_IV_2_OFFSET); iv32[3] = ioread32(aes_dev->base_reg + AES_IV_3_OFFSET); } return 0; } /* Compute and write J0 to engine registers. */ static void ocs_aes_gcm_write_j0(const struct ocs_aes_dev *aes_dev, const u8 *iv) { const u32 *j0 = (u32 *)iv; /* * IV must be 12 bytes; Other sizes not supported as Linux crypto API * does only expects/allows 12 byte IV for GCM */ iowrite32(0x00000001, aes_dev->base_reg + AES_IV_0_OFFSET); iowrite32(__swab32(j0[2]), aes_dev->base_reg + AES_IV_1_OFFSET); iowrite32(__swab32(j0[1]), aes_dev->base_reg + AES_IV_2_OFFSET); iowrite32(__swab32(j0[0]), aes_dev->base_reg + AES_IV_3_OFFSET); } /* Read GCM tag from engine registers. */ static inline void ocs_aes_gcm_read_tag(struct ocs_aes_dev *aes_dev, u8 *tag, u32 tag_size) { u32 tag_u32[AES_MAX_TAG_SIZE_U32]; /* * The Authentication Tag T is stored in Little Endian order in the * registers with the most significant bytes stored from AES_T_MAC[3] * downward. */ tag_u32[0] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_3_OFFSET)); tag_u32[1] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_2_OFFSET)); tag_u32[2] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_1_OFFSET)); tag_u32[3] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_0_OFFSET)); memcpy(tag, tag_u32, tag_size); } /** * ocs_aes_gcm_op() - Perform GCM operation. * @aes_dev: The OCS AES device to use. * @cipher: The Cipher to use (AES or SM4). * @instruction: The instruction to perform (encrypt or decrypt). * @dst_dma_list: The OCS DMA list mapping output memory. * @src_dma_list: The OCS DMA list mapping input payload data. * @src_size: The amount of data mapped by @src_dma_list. * @iv: The input IV vector. * @aad_dma_list: The OCS DMA list mapping input AAD data. * @aad_size: The amount of data mapped by @aad_dma_list. * @out_tag: Where to store computed tag. * @tag_size: The size (in bytes) of @out_tag. * * Return: 0 on success, negative error code otherwise. */ int ocs_aes_gcm_op(struct ocs_aes_dev *aes_dev, enum ocs_cipher cipher, enum ocs_instruction instruction, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size, const u8 *iv, dma_addr_t aad_dma_list, u32 aad_size, u8 *out_tag, u32 tag_size) { u64 bit_len; u32 val; int rc; rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, GCM_AES_IV_SIZE, aad_dma_list, aad_size, out_tag, tag_size, cipher, OCS_MODE_GCM, instruction, dst_dma_list); if (rc) return rc; ocs_aes_init(aes_dev, OCS_MODE_GCM, cipher, instruction); /* Compute and write J0 to OCS HW. */ ocs_aes_gcm_write_j0(aes_dev, iv); /* Write out_tag byte length */ iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET); /* Write the byte length of the last plaintext / ciphertext block. */ ocs_aes_write_last_data_blk_len(aes_dev, src_size); /* Write ciphertext bit length */ bit_len = (u64)src_size * 8; val = bit_len & 0xFFFFFFFF; iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_0_OFFSET); val = bit_len >> 32; iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_1_OFFSET); /* Write aad bit length */ bit_len = (u64)aad_size * 8; val = bit_len & 0xFFFFFFFF; iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_2_OFFSET); val = bit_len >> 32; iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_3_OFFSET); /* Set AES_ACTIVE.TRIGGER to start the operation. */ aes_a_op_trigger(aes_dev); /* Process AAD. */ if (aad_size) { /* If aad present, configure DMA to feed it to the engine. */ dma_to_ocs_aes_ll(aes_dev, aad_dma_list); aes_a_dma_active_src_ll_en(aes_dev); /* Instructs engine to pad last block of aad, if needed. */ aes_a_set_last_gcx_and_adata(aes_dev); /* Wait for DMA transfer to complete. */ rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT); if (rc) return rc; } else { aes_a_set_last_gcx_and_adata(aes_dev); } /* Wait until adata (if present) has been processed. */ aes_a_wait_last_gcx(aes_dev); aes_a_dma_wait_input_buffer_occupancy(aes_dev); /* Now process payload. */ if (src_size) { /* Configure and activate DMA for both input and output data. */ dma_to_ocs_aes_ll(aes_dev, src_dma_list); dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_src_dst_ll_en(aes_dev); } else { aes_a_dma_set_xfer_size_zero(aes_dev); aes_a_dma_active(aes_dev); } /* Instruct AES/SMA4 engine payload processing is over. */ aes_a_set_last_gcx(aes_dev); /* Wait for OCS AES engine to complete processing. */ rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT); if (rc) return rc; ocs_aes_gcm_read_tag(aes_dev, out_tag, tag_size); return 0; } /* Write encrypted tag to AES/SM4 engine. */ static void ocs_aes_ccm_write_encrypted_tag(struct ocs_aes_dev *aes_dev, const u8 *in_tag, u32 tag_size) { int i; /* Ensure DMA input buffer is empty */ aes_a_dma_wait_input_buffer_occupancy(aes_dev); /* * During CCM decrypt, the OCS block needs to finish processing the * ciphertext before the tag is written. So delay needed after DMA has * completed writing the ciphertext */ aes_a_dma_reset_and_activate_perf_cntr(aes_dev); aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev, CCM_DECRYPT_DELAY_TAG_CLK_COUNT); /* Write encrypted tag to AES/SM4 engine. */ for (i = 0; i < tag_size; i++) { iowrite8(in_tag[i], aes_dev->base_reg + AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET); } } /* * Write B0 CCM block to OCS AES HW. * * Note: B0 format is documented in NIST Special Publication 800-38C * https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf * (see Section A.2.1) */ static int ocs_aes_ccm_write_b0(const struct ocs_aes_dev *aes_dev, const u8 *iv, u32 adata_size, u32 tag_size, u32 cryptlen) { u8 b0[16]; /* CCM B0 block is 16 bytes long. */ int i, q; /* Initialize B0 to 0. */ memset(b0, 0, sizeof(b0)); /* * B0[0] is the 'Flags Octet' and has the following structure: * bit 7: Reserved * bit 6: Adata flag * bit 5-3: t value encoded as (t-2)/2 * bit 2-0: q value encoded as q - 1 */ /* If there is AAD data, set the Adata flag. */ if (adata_size) b0[0] |= BIT(6); /* * t denotes the octet length of T. * t can only be an element of { 4, 6, 8, 10, 12, 14, 16} and is * encoded as (t - 2) / 2 */ b0[0] |= (((tag_size - 2) / 2) & 0x7) << 3; /* * q is the octet length of Q. * q can only be an element of {2, 3, 4, 5, 6, 7, 8} and is encoded as * q - 1 == iv[0] & 0x7; */ b0[0] |= iv[0] & 0x7; /* * Copy the Nonce N from IV to B0; N is located in iv[1]..iv[15 - q] * and must be copied to b0[1]..b0[15-q]. * q == (iv[0] & 0x7) + 1 */ q = (iv[0] & 0x7) + 1; for (i = 1; i <= 15 - q; i++) b0[i] = iv[i]; /* * The rest of B0 must contain Q, i.e., the message length. * Q is encoded in q octets, in big-endian order, so to write it, we * start from the end of B0 and we move backward. */ i = sizeof(b0) - 1; while (q) { b0[i] = cryptlen & 0xff; cryptlen >>= 8; i--; q--; } /* * If cryptlen is not zero at this point, it means that its original * value was too big. */ if (cryptlen) return -EOVERFLOW; /* Now write B0 to OCS AES input buffer. */ for (i = 0; i < sizeof(b0); i++) iowrite8(b0[i], aes_dev->base_reg + AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET); return 0; } /* * Write adata length to OCS AES HW. * * Note: adata len encoding is documented in NIST Special Publication 800-38C * https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf * (see Section A.2.2) */ static void ocs_aes_ccm_write_adata_len(const struct ocs_aes_dev *aes_dev, u64 adata_len) { u8 enc_a[10]; /* Maximum encoded size: 10 octets. */ int i, len; /* * adata_len ('a') is encoded as follows: * If 0 < a < 2^16 - 2^8 ==> 'a' encoded as [a]16, i.e., two octets * (big endian). * If 2^16 - 2^8 ≤ a < 2^32 ==> 'a' encoded as 0xff || 0xfe || [a]32, * i.e., six octets (big endian). * If 2^32 ≤ a < 2^64 ==> 'a' encoded as 0xff || 0xff || [a]64, * i.e., ten octets (big endian). */ if (adata_len < 65280) { len = 2; *(__be16 *)enc_a = cpu_to_be16(adata_len); } else if (adata_len <= 0xFFFFFFFF) { len = 6; *(__be16 *)enc_a = cpu_to_be16(0xfffe); *(__be32 *)&enc_a[2] = cpu_to_be32(adata_len); } else { /* adata_len >= 2^32 */ len = 10; *(__be16 *)enc_a = cpu_to_be16(0xffff); *(__be64 *)&enc_a[2] = cpu_to_be64(adata_len); } for (i = 0; i < len; i++) iowrite8(enc_a[i], aes_dev->base_reg + AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET); } static int ocs_aes_ccm_do_adata(struct ocs_aes_dev *aes_dev, dma_addr_t adata_dma_list, u32 adata_size) { int rc; if (!adata_size) { /* Since no aad the LAST_GCX bit can be set now */ aes_a_set_last_gcx_and_adata(aes_dev); goto exit; } /* Adata case. */ /* * Form the encoding of the Associated data length and write it * to the AES/SM4 input buffer. */ ocs_aes_ccm_write_adata_len(aes_dev, adata_size); /* Configure the AES/SM4 DMA to fetch the Associated Data */ dma_to_ocs_aes_ll(aes_dev, adata_dma_list); /* Activate DMA to fetch Associated data. */ aes_a_dma_active_src_ll_en(aes_dev); /* Set LAST_GCX and LAST_ADATA in AES ACTIVE register. */ aes_a_set_last_gcx_and_adata(aes_dev); /* Wait for DMA transfer to complete. */ rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT); if (rc) return rc; exit: /* Wait until adata (if present) has been processed. */ aes_a_wait_last_gcx(aes_dev); aes_a_dma_wait_input_buffer_occupancy(aes_dev); return 0; } static int ocs_aes_ccm_encrypt_do_payload(struct ocs_aes_dev *aes_dev, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size) { if (src_size) { /* * Configure and activate DMA for both input and output * data. */ dma_to_ocs_aes_ll(aes_dev, src_dma_list); dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_src_dst_ll_en(aes_dev); } else { /* Configure and activate DMA for output data only. */ dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_dst_ll_en(aes_dev); } /* * Set the LAST GCX bit in AES_ACTIVE Register to instruct * AES/SM4 engine to pad the last block of data. */ aes_a_set_last_gcx(aes_dev); /* We are done, wait for IRQ and return. */ return ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT); } static int ocs_aes_ccm_decrypt_do_payload(struct ocs_aes_dev *aes_dev, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size) { if (!src_size) { /* Let engine process 0-length input. */ aes_a_dma_set_xfer_size_zero(aes_dev); aes_a_dma_active(aes_dev); aes_a_set_last_gcx(aes_dev); return 0; } /* * Configure and activate DMA for both input and output * data. */ dma_to_ocs_aes_ll(aes_dev, src_dma_list); dma_from_ocs_aes_ll(aes_dev, dst_dma_list); aes_a_dma_active_src_dst_ll_en(aes_dev); /* * Set the LAST GCX bit in AES_ACTIVE Register; this allows the * AES/SM4 engine to differentiate between encrypted data and * encrypted MAC. */ aes_a_set_last_gcx(aes_dev); /* * Enable DMA DONE interrupt; once DMA transfer is over, * interrupt handler will process the MAC/tag. */ return ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT); } /* * Compare Tag to Yr. * * Only used at the end of CCM decrypt. If tag == yr, message authentication * has succeeded. */ static inline int ccm_compare_tag_to_yr(struct ocs_aes_dev *aes_dev, u8 tag_size_bytes) { u32 tag[AES_MAX_TAG_SIZE_U32]; u32 yr[AES_MAX_TAG_SIZE_U32]; u8 i; /* Read Tag and Yr from AES registers. */ for (i = 0; i < AES_MAX_TAG_SIZE_U32; i++) { tag[i] = ioread32(aes_dev->base_reg + AES_T_MAC_0_OFFSET + (i * sizeof(u32))); yr[i] = ioread32(aes_dev->base_reg + AES_MULTIPURPOSE2_0_OFFSET + (i * sizeof(u32))); } return memcmp(tag, yr, tag_size_bytes) ? -EBADMSG : 0; } /** * ocs_aes_ccm_op() - Perform CCM operation. * @aes_dev: The OCS AES device to use. * @cipher: The Cipher to use (AES or SM4). * @instruction: The instruction to perform (encrypt or decrypt). * @dst_dma_list: The OCS DMA list mapping output memory. * @src_dma_list: The OCS DMA list mapping input payload data. * @src_size: The amount of data mapped by @src_dma_list. * @iv: The input IV vector. * @adata_dma_list: The OCS DMA list mapping input A-data. * @adata_size: The amount of data mapped by @adata_dma_list. * @in_tag: Input tag. * @tag_size: The size (in bytes) of @in_tag. * * Note: for encrypt the tag is appended to the ciphertext (in the memory * mapped by @dst_dma_list). * * Return: 0 on success, negative error code otherwise. */ int ocs_aes_ccm_op(struct ocs_aes_dev *aes_dev, enum ocs_cipher cipher, enum ocs_instruction instruction, dma_addr_t dst_dma_list, dma_addr_t src_dma_list, u32 src_size, u8 *iv, dma_addr_t adata_dma_list, u32 adata_size, u8 *in_tag, u32 tag_size) { u32 *iv_32; u8 lprime; int rc; rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, AES_BLOCK_SIZE, adata_dma_list, adata_size, in_tag, tag_size, cipher, OCS_MODE_CCM, instruction, dst_dma_list); if (rc) return rc; ocs_aes_init(aes_dev, OCS_MODE_CCM, cipher, instruction); /* * Note: rfc 3610 and NIST 800-38C require counter of zero to encrypt * auth tag so ensure this is the case */ lprime = iv[L_PRIME_IDX]; memset(&iv[COUNTER_START(lprime)], 0, COUNTER_LEN(lprime)); /* * Nonce is already converted to ctr0 before being passed into this * function as iv. */ iv_32 = (u32 *)iv; iowrite32(__swab32(iv_32[0]), aes_dev->base_reg + AES_MULTIPURPOSE1_3_OFFSET); iowrite32(__swab32(iv_32[1]), aes_dev->base_reg + AES_MULTIPURPOSE1_2_OFFSET); iowrite32(__swab32(iv_32[2]), aes_dev->base_reg + AES_MULTIPURPOSE1_1_OFFSET); iowrite32(__swab32(iv_32[3]), aes_dev->base_reg + AES_MULTIPURPOSE1_0_OFFSET); /* Write MAC/tag length in register AES_TLEN */ iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET); /* * Write the byte length of the last AES/SM4 block of Payload data * (without zero padding and without the length of the MAC) in register * AES_PLEN. */ ocs_aes_write_last_data_blk_len(aes_dev, src_size); /* Set AES_ACTIVE.TRIGGER to start the operation. */ aes_a_op_trigger(aes_dev); aes_a_dma_reset_and_activate_perf_cntr(aes_dev); /* Form block B0 and write it to the AES/SM4 input buffer. */ rc = ocs_aes_ccm_write_b0(aes_dev, iv, adata_size, tag_size, src_size); if (rc) return rc; /* * Ensure there has been at least CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT * clock cycles since TRIGGER bit was set */ aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev, CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT); /* Process Adata. */ ocs_aes_ccm_do_adata(aes_dev, adata_dma_list, adata_size); /* For Encrypt case we just process the payload and return. */ if (instruction == OCS_ENCRYPT) { return ocs_aes_ccm_encrypt_do_payload(aes_dev, dst_dma_list, src_dma_list, src_size); } /* For Decypt we need to process the payload and then the tag. */ rc = ocs_aes_ccm_decrypt_do_payload(aes_dev, dst_dma_list, src_dma_list, src_size); if (rc) return rc; /* Process MAC/tag directly: feed tag to engine and wait for IRQ. */ ocs_aes_ccm_write_encrypted_tag(aes_dev, in_tag, tag_size); rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT); if (rc) return rc; return ccm_compare_tag_to_yr(aes_dev, tag_size); } /** * ocs_create_linked_list_from_sg() - Create OCS DMA linked list from SG list. * @aes_dev: The OCS AES device the list will be created for. * @sg: The SG list OCS DMA linked list will be created from. When * passed to this function, @sg must have been already mapped * with dma_map_sg(). * @sg_dma_count: The number of DMA-mapped entries in @sg. This must be the * value returned by dma_map_sg() when @sg was mapped. * @dll_desc: The OCS DMA dma_list to use to store information about the * created linked list. * @data_size: The size of the data (from the SG list) to be mapped into the * OCS DMA linked list. * @data_offset: The offset (within the SG list) of the data to be mapped. * * Return: 0 on success, negative error code otherwise. */ int ocs_create_linked_list_from_sg(const struct ocs_aes_dev *aes_dev, struct scatterlist *sg, int sg_dma_count, struct ocs_dll_desc *dll_desc, size_t data_size, size_t data_offset) { struct ocs_dma_linked_list *ll = NULL; struct scatterlist *sg_tmp; unsigned int tmp; int dma_nents; int i; if (!dll_desc || !sg || !aes_dev) return -EINVAL; /* Default values for when no ddl_desc is created. */ dll_desc->vaddr = NULL; dll_desc->dma_addr = DMA_MAPPING_ERROR; dll_desc->size = 0; if (data_size == 0) return 0; /* Loop over sg_list until we reach entry at specified offset. */ while (data_offset >= sg_dma_len(sg)) { data_offset -= sg_dma_len(sg); sg_dma_count--; sg = sg_next(sg); /* If we reach the end of the list, offset was invalid. */ if (!sg || sg_dma_count == 0) return -EINVAL; } /* Compute number of DMA-mapped SG entries to add into OCS DMA list. */ dma_nents = 0; tmp = 0; sg_tmp = sg; while (tmp < data_offset + data_size) { /* If we reach the end of the list, data_size was invalid. */ if (!sg_tmp) return -EINVAL; tmp += sg_dma_len(sg_tmp); dma_nents++; sg_tmp = sg_next(sg_tmp); } if (dma_nents > sg_dma_count) return -EINVAL; /* Allocate the DMA list, one entry for each SG entry. */ dll_desc->size = sizeof(struct ocs_dma_linked_list) * dma_nents; dll_desc->vaddr = dma_alloc_coherent(aes_dev->dev, dll_desc->size, &dll_desc->dma_addr, GFP_KERNEL); if (!dll_desc->vaddr) return -ENOMEM; /* Populate DMA linked list entries. */ ll = dll_desc->vaddr; for (i = 0; i < dma_nents; i++, sg = sg_next(sg)) { ll[i].src_addr = sg_dma_address(sg) + data_offset; ll[i].src_len = (sg_dma_len(sg) - data_offset) < data_size ? (sg_dma_len(sg) - data_offset) : data_size; data_offset = 0; data_size -= ll[i].src_len; /* Current element points to the DMA address of the next one. */ ll[i].next = dll_desc->dma_addr + (sizeof(*ll) * (i + 1)); ll[i].ll_flags = 0; } /* Terminate last element. */ ll[i - 1].next = 0; ll[i - 1].ll_flags = OCS_LL_DMA_FLAG_TERMINATE; return 0; }
linux-master
drivers/crypto/intel/keembay/ocs-aes.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS HCU Crypto Driver. * * Copyright (C) 2018-2020 Intel Corporation */ #include <crypto/engine.h> #include <crypto/hmac.h> #include <crypto/internal/hash.h> #include <crypto/scatterwalk.h> #include <crypto/sha2.h> #include <crypto/sm3.h> #include <linux/completion.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/string.h> #include "ocs-hcu.h" #define DRV_NAME "keembay-ocs-hcu" /* Flag marking a final request. */ #define REQ_FINAL BIT(0) /* Flag marking a HMAC request. */ #define REQ_FLAGS_HMAC BIT(1) /* Flag set when HW HMAC is being used. */ #define REQ_FLAGS_HMAC_HW BIT(2) /* Flag set when SW HMAC is being used. */ #define REQ_FLAGS_HMAC_SW BIT(3) /** * struct ocs_hcu_ctx: OCS HCU Transform context. * @hcu_dev: The OCS HCU device used by the transformation. * @key: The key (used only for HMAC transformations). * @key_len: The length of the key. * @is_sm3_tfm: Whether or not this is an SM3 transformation. * @is_hmac_tfm: Whether or not this is a HMAC transformation. */ struct ocs_hcu_ctx { struct ocs_hcu_dev *hcu_dev; u8 key[SHA512_BLOCK_SIZE]; size_t key_len; bool is_sm3_tfm; bool is_hmac_tfm; }; /** * struct ocs_hcu_rctx - Context for the request. * @hcu_dev: OCS HCU device to be used to service the request. * @flags: Flags tracking request status. * @algo: Algorithm to use for the request. * @blk_sz: Block size of the transformation / request. * @dig_sz: Digest size of the transformation / request. * @dma_list: OCS DMA linked list. * @hash_ctx: OCS HCU hashing context. * @buffer: Buffer to store: partial block of data and SW HMAC * artifacts (ipad, opad, etc.). * @buf_cnt: Number of bytes currently stored in the buffer. * @buf_dma_addr: The DMA address of @buffer (when mapped). * @buf_dma_count: The number of bytes in @buffer currently DMA-mapped. * @sg: Head of the scatterlist entries containing data. * @sg_data_total: Total data in the SG list at any time. * @sg_data_offset: Offset into the data of the current individual SG node. * @sg_dma_nents: Number of sg entries mapped in dma_list. */ struct ocs_hcu_rctx { struct ocs_hcu_dev *hcu_dev; u32 flags; enum ocs_hcu_algo algo; size_t blk_sz; size_t dig_sz; struct ocs_hcu_dma_list *dma_list; struct ocs_hcu_hash_ctx hash_ctx; /* * Buffer is double the block size because we need space for SW HMAC * artifacts, i.e: * - ipad (1 block) + a possible partial block of data. * - opad (1 block) + digest of H(k ^ ipad || m) */ u8 buffer[2 * SHA512_BLOCK_SIZE]; size_t buf_cnt; dma_addr_t buf_dma_addr; size_t buf_dma_count; struct scatterlist *sg; unsigned int sg_data_total; unsigned int sg_data_offset; unsigned int sg_dma_nents; }; /** * struct ocs_hcu_drv - Driver data * @dev_list: The list of HCU devices. * @lock: The lock protecting dev_list. */ struct ocs_hcu_drv { struct list_head dev_list; spinlock_t lock; /* Protects dev_list. */ }; static struct ocs_hcu_drv ocs_hcu = { .dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list), .lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock), }; /* * Return the total amount of data in the request; that is: the data in the * request buffer + the data in the sg list. */ static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx) { return rctx->sg_data_total + rctx->buf_cnt; } /* Move remaining content of scatter-gather list to context buffer. */ static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx) { size_t count; if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) { WARN(1, "%s: sg data does not fit in buffer\n", __func__); return -EINVAL; } while (rctx->sg_data_total) { if (!rctx->sg) { WARN(1, "%s: unexpected NULL sg\n", __func__); return -EINVAL; } /* * If current sg has been fully processed, skip to the next * one. */ if (rctx->sg_data_offset == rctx->sg->length) { rctx->sg = sg_next(rctx->sg); rctx->sg_data_offset = 0; continue; } /* * Determine the maximum data available to copy from the node. * Minimum of the length left in the sg node, or the total data * in the request. */ count = min(rctx->sg->length - rctx->sg_data_offset, rctx->sg_data_total); /* Copy from scatter-list entry to context buffer. */ scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt], rctx->sg, rctx->sg_data_offset, count, 0); rctx->sg_data_offset += count; rctx->sg_data_total -= count; rctx->buf_cnt += count; } return 0; } static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm); /* If the HCU device for the request was previously set, return it. */ if (tctx->hcu_dev) return tctx->hcu_dev; /* * Otherwise, get the first HCU device available (there should be one * and only one device). */ spin_lock_bh(&ocs_hcu.lock); tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list, struct ocs_hcu_dev, list); spin_unlock_bh(&ocs_hcu.lock); return tctx->hcu_dev; } /* Free OCS DMA linked list and DMA-able context buffer. */ static void kmb_ocs_hcu_dma_cleanup(struct ahash_request *req, struct ocs_hcu_rctx *rctx) { struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev; struct device *dev = hcu_dev->dev; /* Unmap rctx->buffer (if mapped). */ if (rctx->buf_dma_count) { dma_unmap_single(dev, rctx->buf_dma_addr, rctx->buf_dma_count, DMA_TO_DEVICE); rctx->buf_dma_count = 0; } /* Unmap req->src (if mapped). */ if (rctx->sg_dma_nents) { dma_unmap_sg(dev, req->src, rctx->sg_dma_nents, DMA_TO_DEVICE); rctx->sg_dma_nents = 0; } /* Free dma_list (if allocated). */ if (rctx->dma_list) { ocs_hcu_dma_list_free(hcu_dev, rctx->dma_list); rctx->dma_list = NULL; } } /* * Prepare for DMA operation: * - DMA-map request context buffer (if needed) * - DMA-map SG list (only the entries to be processed, see note below) * - Allocate OCS HCU DMA linked list (number of elements = SG entries to * process + context buffer (if not empty)). * - Add DMA-mapped request context buffer to OCS HCU DMA list. * - Add SG entries to DMA list. * * Note: if this is a final request, we process all the data in the SG list, * otherwise we can only process up to the maximum amount of block-aligned data * (the remainder will be put into the context buffer and processed in the next * request). */ static int kmb_ocs_dma_prepare(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct device *dev = rctx->hcu_dev->dev; unsigned int remainder = 0; unsigned int total; size_t nents; size_t count; int rc; int i; /* This function should be called only when there is data to process. */ total = kmb_get_total_data(rctx); if (!total) return -EINVAL; /* * If this is not a final DMA (terminated DMA), the data passed to the * HCU must be aligned to the block size; compute the remainder data to * be processed in the next request. */ if (!(rctx->flags & REQ_FINAL)) remainder = total % rctx->blk_sz; /* Determine the number of scatter gather list entries to process. */ nents = sg_nents_for_len(req->src, rctx->sg_data_total - remainder); /* If there are entries to process, map them. */ if (nents) { rctx->sg_dma_nents = dma_map_sg(dev, req->src, nents, DMA_TO_DEVICE); if (!rctx->sg_dma_nents) { dev_err(dev, "Failed to MAP SG\n"); rc = -ENOMEM; goto cleanup; } /* * The value returned by dma_map_sg() can be < nents; so update * nents accordingly. */ nents = rctx->sg_dma_nents; } /* * If context buffer is not empty, map it and add extra DMA entry for * it. */ if (rctx->buf_cnt) { rctx->buf_dma_addr = dma_map_single(dev, rctx->buffer, rctx->buf_cnt, DMA_TO_DEVICE); if (dma_mapping_error(dev, rctx->buf_dma_addr)) { dev_err(dev, "Failed to map request context buffer\n"); rc = -ENOMEM; goto cleanup; } rctx->buf_dma_count = rctx->buf_cnt; /* Increase number of dma entries. */ nents++; } /* Allocate OCS HCU DMA list. */ rctx->dma_list = ocs_hcu_dma_list_alloc(rctx->hcu_dev, nents); if (!rctx->dma_list) { rc = -ENOMEM; goto cleanup; } /* Add request context buffer (if previously DMA-mapped) */ if (rctx->buf_dma_count) { rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list, rctx->buf_dma_addr, rctx->buf_dma_count); if (rc) goto cleanup; } /* Add the SG nodes to be processed to the DMA linked list. */ for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) { /* * The number of bytes to add to the list entry is the minimum * between: * - The DMA length of the SG entry. * - The data left to be processed. */ count = min(rctx->sg_data_total - remainder, sg_dma_len(rctx->sg) - rctx->sg_data_offset); /* * Do not create a zero length DMA descriptor. Check in case of * zero length SG node. */ if (count == 0) continue; /* Add sg to HCU DMA list. */ rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list, rctx->sg->dma_address, count); if (rc) goto cleanup; /* Update amount of data remaining in SG list. */ rctx->sg_data_total -= count; /* * If remaining data is equal to remainder (note: 'less than' * case should never happen in practice), we are done: update * offset and exit the loop. */ if (rctx->sg_data_total <= remainder) { WARN_ON(rctx->sg_data_total < remainder); rctx->sg_data_offset += count; break; } /* * If we get here is because we need to process the next sg in * the list; set offset within the sg to 0. */ rctx->sg_data_offset = 0; } return 0; cleanup: dev_err(dev, "Failed to prepare DMA.\n"); kmb_ocs_hcu_dma_cleanup(req, rctx); return rc; } static void kmb_ocs_hcu_secure_cleanup(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); /* Clear buffer of any data. */ memzero_explicit(rctx->buffer, sizeof(rctx->buffer)); } static int kmb_ocs_hcu_handle_queue(struct ahash_request *req) { struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); if (!hcu_dev) return -ENOENT; return crypto_transfer_hash_request_to_engine(hcu_dev->engine, req); } static int prepare_ipad(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); int i; WARN(rctx->buf_cnt, "%s: Context buffer is not empty\n", __func__); WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW), "%s: HMAC_SW flag is not set\n", __func__); /* * Key length must be equal to block size. If key is shorter, * we pad it with zero (note: key cannot be longer, since * longer keys are hashed by kmb_ocs_hcu_setkey()). */ if (ctx->key_len > rctx->blk_sz) { WARN(1, "%s: Invalid key length in tfm context\n", __func__); return -EINVAL; } memzero_explicit(&ctx->key[ctx->key_len], rctx->blk_sz - ctx->key_len); ctx->key_len = rctx->blk_sz; /* * Prepare IPAD for HMAC. Only done for first block. * HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m)) * k ^ ipad will be first hashed block. * k ^ opad will be calculated in the final request. * Only needed if not using HW HMAC. */ for (i = 0; i < rctx->blk_sz; i++) rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE; rctx->buf_cnt = rctx->blk_sz; return 0; } static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq) { struct ahash_request *req = container_of(areq, struct ahash_request, base); struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm); int rc; int i; if (!hcu_dev) { rc = -ENOENT; goto error; } /* * If hardware HMAC flag is set, perform HMAC in hardware. * * NOTE: this flag implies REQ_FINAL && kmb_get_total_data(rctx) */ if (rctx->flags & REQ_FLAGS_HMAC_HW) { /* Map input data into the HCU DMA linked list. */ rc = kmb_ocs_dma_prepare(req); if (rc) goto error; rc = ocs_hcu_hmac(hcu_dev, rctx->algo, tctx->key, tctx->key_len, rctx->dma_list, req->result, rctx->dig_sz); /* Unmap data and free DMA list regardless of return code. */ kmb_ocs_hcu_dma_cleanup(req, rctx); /* Process previous return code. */ if (rc) goto error; goto done; } /* Handle update request case. */ if (!(rctx->flags & REQ_FINAL)) { /* Update should always have input data. */ if (!kmb_get_total_data(rctx)) return -EINVAL; /* Map input data into the HCU DMA linked list. */ rc = kmb_ocs_dma_prepare(req); if (rc) goto error; /* Do hashing step. */ rc = ocs_hcu_hash_update(hcu_dev, &rctx->hash_ctx, rctx->dma_list); /* Unmap data and free DMA list regardless of return code. */ kmb_ocs_hcu_dma_cleanup(req, rctx); /* Process previous return code. */ if (rc) goto error; /* * Reset request buffer count (data in the buffer was just * processed). */ rctx->buf_cnt = 0; /* * Move remaining sg data into the request buffer, so that it * will be processed during the next request. * * NOTE: we have remaining data if kmb_get_total_data() was not * a multiple of block size. */ rc = flush_sg_to_ocs_buffer(rctx); if (rc) goto error; goto done; } /* If we get here, this is a final request. */ /* If there is data to process, use finup. */ if (kmb_get_total_data(rctx)) { /* Map input data into the HCU DMA linked list. */ rc = kmb_ocs_dma_prepare(req); if (rc) goto error; /* Do hashing step. */ rc = ocs_hcu_hash_finup(hcu_dev, &rctx->hash_ctx, rctx->dma_list, req->result, rctx->dig_sz); /* Free DMA list regardless of return code. */ kmb_ocs_hcu_dma_cleanup(req, rctx); /* Process previous return code. */ if (rc) goto error; } else { /* Otherwise (if we have no data), use final. */ rc = ocs_hcu_hash_final(hcu_dev, &rctx->hash_ctx, req->result, rctx->dig_sz); if (rc) goto error; } /* * If we are finalizing a SW HMAC request, we just computed the result * of: H(k ^ ipad || m). * * We now need to complete the HMAC calculation with the OPAD step, * that is, we need to compute H(k ^ opad || digest), where digest is * the digest we just obtained, i.e., H(k ^ ipad || m). */ if (rctx->flags & REQ_FLAGS_HMAC_SW) { /* * Compute k ^ opad and store it in the request buffer (which * is not used anymore at this point). * Note: key has been padded / hashed already (so keylen == * blksz) . */ WARN_ON(tctx->key_len != rctx->blk_sz); for (i = 0; i < rctx->blk_sz; i++) rctx->buffer[i] = tctx->key[i] ^ HMAC_OPAD_VALUE; /* Now append the digest to the rest of the buffer. */ for (i = 0; (i < rctx->dig_sz); i++) rctx->buffer[rctx->blk_sz + i] = req->result[i]; /* Now hash the buffer to obtain the final HMAC. */ rc = ocs_hcu_digest(hcu_dev, rctx->algo, rctx->buffer, rctx->blk_sz + rctx->dig_sz, req->result, rctx->dig_sz); if (rc) goto error; } /* Perform secure clean-up. */ kmb_ocs_hcu_secure_cleanup(req); done: crypto_finalize_hash_request(hcu_dev->engine, req, 0); return 0; error: kmb_ocs_hcu_secure_cleanup(req); return rc; } static int kmb_ocs_hcu_init(struct ahash_request *req) { struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); if (!hcu_dev) return -ENOENT; /* Initialize entire request context to zero. */ memset(rctx, 0, sizeof(*rctx)); rctx->hcu_dev = hcu_dev; rctx->dig_sz = crypto_ahash_digestsize(tfm); switch (rctx->dig_sz) { #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 case SHA224_DIGEST_SIZE: rctx->blk_sz = SHA224_BLOCK_SIZE; rctx->algo = OCS_HCU_ALGO_SHA224; break; #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ case SHA256_DIGEST_SIZE: rctx->blk_sz = SHA256_BLOCK_SIZE; /* * SHA256 and SM3 have the same digest size: use info from tfm * context to find out which one we should use. */ rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 : OCS_HCU_ALGO_SHA256; break; case SHA384_DIGEST_SIZE: rctx->blk_sz = SHA384_BLOCK_SIZE; rctx->algo = OCS_HCU_ALGO_SHA384; break; case SHA512_DIGEST_SIZE: rctx->blk_sz = SHA512_BLOCK_SIZE; rctx->algo = OCS_HCU_ALGO_SHA512; break; default: return -EINVAL; } /* Initialize intermediate data. */ ocs_hcu_hash_init(&rctx->hash_ctx, rctx->algo); /* If this a HMAC request, set HMAC flag. */ if (ctx->is_hmac_tfm) rctx->flags |= REQ_FLAGS_HMAC; return 0; } static int kmb_ocs_hcu_update(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); int rc; if (!req->nbytes) return 0; rctx->sg_data_total = req->nbytes; rctx->sg_data_offset = 0; rctx->sg = req->src; /* * If we are doing HMAC, then we must use SW-assisted HMAC, since HW * HMAC does not support context switching (there it can only be used * with finup() or digest()). */ if (rctx->flags & REQ_FLAGS_HMAC && !(rctx->flags & REQ_FLAGS_HMAC_SW)) { rctx->flags |= REQ_FLAGS_HMAC_SW; rc = prepare_ipad(req); if (rc) return rc; } /* * If remaining sg_data fits into ctx buffer, just copy it there; we'll * process it at the next update() or final(). */ if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt)) return flush_sg_to_ocs_buffer(rctx); return kmb_ocs_hcu_handle_queue(req); } /* Common logic for kmb_ocs_hcu_final() and kmb_ocs_hcu_finup(). */ static int kmb_ocs_hcu_fin_common(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); int rc; rctx->flags |= REQ_FINAL; /* * If this is a HMAC request and, so far, we didn't have to switch to * SW HMAC, check if we can use HW HMAC. */ if (rctx->flags & REQ_FLAGS_HMAC && !(rctx->flags & REQ_FLAGS_HMAC_SW)) { /* * If we are here, it means we never processed any data so far, * so we can use HW HMAC, but only if there is some data to * process (since OCS HW MAC does not support zero-length * messages) and the key length is supported by the hardware * (OCS HCU HW only supports length <= 64); if HW HMAC cannot * be used, fall back to SW-assisted HMAC. */ if (kmb_get_total_data(rctx) && ctx->key_len <= OCS_HCU_HW_KEY_LEN) { rctx->flags |= REQ_FLAGS_HMAC_HW; } else { rctx->flags |= REQ_FLAGS_HMAC_SW; rc = prepare_ipad(req); if (rc) return rc; } } return kmb_ocs_hcu_handle_queue(req); } static int kmb_ocs_hcu_final(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); rctx->sg_data_total = 0; rctx->sg_data_offset = 0; rctx->sg = NULL; return kmb_ocs_hcu_fin_common(req); } static int kmb_ocs_hcu_finup(struct ahash_request *req) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); rctx->sg_data_total = req->nbytes; rctx->sg_data_offset = 0; rctx->sg = req->src; return kmb_ocs_hcu_fin_common(req); } static int kmb_ocs_hcu_digest(struct ahash_request *req) { int rc = 0; struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); if (!hcu_dev) return -ENOENT; rc = kmb_ocs_hcu_init(req); if (rc) return rc; rc = kmb_ocs_hcu_finup(req); return rc; } static int kmb_ocs_hcu_export(struct ahash_request *req, void *out) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); /* Intermediate data is always stored and applied per request. */ memcpy(out, rctx, sizeof(*rctx)); return 0; } static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in) { struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); /* Intermediate data is always stored and applied per request. */ memcpy(rctx, in, sizeof(*rctx)); return 0; } static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { unsigned int digestsize = crypto_ahash_digestsize(tfm); struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); size_t blk_sz = crypto_ahash_blocksize(tfm); struct crypto_ahash *ahash_tfm; struct ahash_request *req; struct crypto_wait wait; struct scatterlist sg; const char *alg_name; int rc; /* * Key length must be equal to block size: * - If key is shorter, we are done for now (the key will be padded * later on); this is to maximize the use of HW HMAC (which works * only for keys <= 64 bytes). * - If key is longer, we hash it. */ if (keylen <= blk_sz) { memcpy(ctx->key, key, keylen); ctx->key_len = keylen; return 0; } switch (digestsize) { #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 case SHA224_DIGEST_SIZE: alg_name = "sha224-keembay-ocs"; break; #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ case SHA256_DIGEST_SIZE: alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" : "sha256-keembay-ocs"; break; case SHA384_DIGEST_SIZE: alg_name = "sha384-keembay-ocs"; break; case SHA512_DIGEST_SIZE: alg_name = "sha512-keembay-ocs"; break; default: return -EINVAL; } ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0); if (IS_ERR(ahash_tfm)) return PTR_ERR(ahash_tfm); req = ahash_request_alloc(ahash_tfm, GFP_KERNEL); if (!req) { rc = -ENOMEM; goto err_free_ahash; } crypto_init_wait(&wait); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); crypto_ahash_clear_flags(ahash_tfm, ~0); sg_init_one(&sg, key, keylen); ahash_request_set_crypt(req, &sg, ctx->key, keylen); rc = crypto_wait_req(crypto_ahash_digest(req), &wait); if (rc == 0) ctx->key_len = digestsize; ahash_request_free(req); err_free_ahash: crypto_free_ahash(ahash_tfm); return rc; } /* Set request size and initialize tfm context. */ static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx) { crypto_ahash_set_reqsize_dma(__crypto_ahash_cast(tfm), sizeof(struct ocs_hcu_rctx)); } static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); __cra_init(tfm, ctx); return 0; } static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); __cra_init(tfm, ctx); ctx->is_sm3_tfm = true; return 0; } static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); __cra_init(tfm, ctx); ctx->is_sm3_tfm = true; ctx->is_hmac_tfm = true; return 0; } static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); __cra_init(tfm, ctx); ctx->is_hmac_tfm = true; return 0; } /* Function called when 'tfm' is de-initialized. */ static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm) { struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); /* Clear the key. */ memzero_explicit(ctx->key, sizeof(ctx->key)); } static struct ahash_engine_alg ocs_hcu_algs[] = { #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sha224", .cra_driver_name = "sha224-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sha_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sha224)", .cra_driver_name = "hmac-sha224-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sha_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "hmac-sha256-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sm3", .cra_driver_name = "sm3-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SM3_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sm3_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sm3)", .cra_driver_name = "hmac-sm3-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SM3_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_sm3_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sha384", .cra_driver_name = "sha384-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sha_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sha384)", .cra_driver_name = "hmac-sha384-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "sha512", .cra_driver_name = "sha512-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_sha_cra_init, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, { .base.init = kmb_ocs_hcu_init, .base.update = kmb_ocs_hcu_update, .base.final = kmb_ocs_hcu_final, .base.finup = kmb_ocs_hcu_finup, .base.digest = kmb_ocs_hcu_digest, .base.export = kmb_ocs_hcu_export, .base.import = kmb_ocs_hcu_import, .base.setkey = kmb_ocs_hcu_setkey, .base.halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct ocs_hcu_rctx), .base = { .cra_name = "hmac(sha512)", .cra_driver_name = "hmac-sha512-keembay-ocs", .cra_priority = 255, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ocs_hcu_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = kmb_ocs_hcu_hmac_cra_init, .cra_exit = kmb_ocs_hcu_hmac_cra_exit, } }, .op.do_one_request = kmb_ocs_hcu_do_one_request, }, }; /* Device tree driver match. */ static const struct of_device_id kmb_ocs_hcu_of_match[] = { { .compatible = "intel,keembay-ocs-hcu", }, {} }; static int kmb_ocs_hcu_remove(struct platform_device *pdev) { struct ocs_hcu_dev *hcu_dev; int rc; hcu_dev = platform_get_drvdata(pdev); if (!hcu_dev) return -ENODEV; crypto_engine_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs)); rc = crypto_engine_exit(hcu_dev->engine); spin_lock_bh(&ocs_hcu.lock); list_del(&hcu_dev->list); spin_unlock_bh(&ocs_hcu.lock); return rc; } static int kmb_ocs_hcu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ocs_hcu_dev *hcu_dev; int rc; hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL); if (!hcu_dev) return -ENOMEM; hcu_dev->dev = dev; platform_set_drvdata(pdev, hcu_dev); rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK); if (rc) return rc; hcu_dev->io_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hcu_dev->io_base)) return PTR_ERR(hcu_dev->io_base); init_completion(&hcu_dev->irq_done); /* Get and request IRQ. */ hcu_dev->irq = platform_get_irq(pdev, 0); if (hcu_dev->irq < 0) return hcu_dev->irq; rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq, ocs_hcu_irq_handler, NULL, 0, "keembay-ocs-hcu", hcu_dev); if (rc < 0) { dev_err(dev, "Could not request IRQ.\n"); return rc; } INIT_LIST_HEAD(&hcu_dev->list); spin_lock_bh(&ocs_hcu.lock); list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list); spin_unlock_bh(&ocs_hcu.lock); /* Initialize crypto engine */ hcu_dev->engine = crypto_engine_alloc_init(dev, 1); if (!hcu_dev->engine) { rc = -ENOMEM; goto list_del; } rc = crypto_engine_start(hcu_dev->engine); if (rc) { dev_err(dev, "Could not start engine.\n"); goto cleanup; } /* Security infrastructure guarantees OCS clock is enabled. */ rc = crypto_engine_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs)); if (rc) { dev_err(dev, "Could not register algorithms.\n"); goto cleanup; } return 0; cleanup: crypto_engine_exit(hcu_dev->engine); list_del: spin_lock_bh(&ocs_hcu.lock); list_del(&hcu_dev->list); spin_unlock_bh(&ocs_hcu.lock); return rc; } /* The OCS driver is a platform device. */ static struct platform_driver kmb_ocs_hcu_driver = { .probe = kmb_ocs_hcu_probe, .remove = kmb_ocs_hcu_remove, .driver = { .name = DRV_NAME, .of_match_table = kmb_ocs_hcu_of_match, }, }; module_platform_driver(kmb_ocs_hcu_driver); MODULE_LICENSE("GPL");
linux-master
drivers/crypto/intel/keembay/keembay-ocs-hcu-core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS ECC Crypto Driver. * * Copyright (C) 2019-2021 Intel Corporation */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <crypto/ecc_curve.h> #include <crypto/ecdh.h> #include <crypto/engine.h> #include <crypto/internal/ecc.h> #include <crypto/internal/kpp.h> #include <crypto/kpp.h> #include <crypto/rng.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/err.h> #include <linux/fips.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/string.h> #define DRV_NAME "keembay-ocs-ecc" #define KMB_OCS_ECC_PRIORITY 350 #define HW_OFFS_OCS_ECC_COMMAND 0x00000000 #define HW_OFFS_OCS_ECC_STATUS 0x00000004 #define HW_OFFS_OCS_ECC_DATA_IN 0x00000080 #define HW_OFFS_OCS_ECC_CX_DATA_OUT 0x00000100 #define HW_OFFS_OCS_ECC_CY_DATA_OUT 0x00000180 #define HW_OFFS_OCS_ECC_ISR 0x00000400 #define HW_OFFS_OCS_ECC_IER 0x00000404 #define HW_OCS_ECC_ISR_INT_STATUS_DONE BIT(0) #define HW_OCS_ECC_COMMAND_INS_BP BIT(0) #define HW_OCS_ECC_COMMAND_START_VAL BIT(0) #define OCS_ECC_OP_SIZE_384 BIT(8) #define OCS_ECC_OP_SIZE_256 0 /* ECC Instruction : for ECC_COMMAND */ #define OCS_ECC_INST_WRITE_AX (0x1 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_AY (0x2 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_BX_D (0x3 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_BY_L (0x4 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_P (0x5 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_WRITE_A (0x6 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_CALC_D_IDX_A (0x8 << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_CALC_A_POW_B_MODP (0xB << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_CALC_A_MUL_B_MODP (0xC << HW_OCS_ECC_COMMAND_INS_BP) #define OCS_ECC_INST_CALC_A_ADD_B_MODP (0xD << HW_OCS_ECC_COMMAND_INS_BP) #define ECC_ENABLE_INTR 1 #define POLL_USEC 100 #define TIMEOUT_USEC 10000 #define KMB_ECC_VLI_MAX_DIGITS ECC_CURVE_NIST_P384_DIGITS #define KMB_ECC_VLI_MAX_BYTES (KMB_ECC_VLI_MAX_DIGITS \ << ECC_DIGITS_TO_BYTES_SHIFT) #define POW_CUBE 3 /** * struct ocs_ecc_dev - ECC device context * @list: List of device contexts * @dev: OCS ECC device * @base_reg: IO base address of OCS ECC * @engine: Crypto engine for the device * @irq_done: IRQ done completion. * @irq: IRQ number */ struct ocs_ecc_dev { struct list_head list; struct device *dev; void __iomem *base_reg; struct crypto_engine *engine; struct completion irq_done; int irq; }; /** * struct ocs_ecc_ctx - Transformation context. * @ecc_dev: The ECC driver associated with this context. * @curve: The elliptic curve used by this transformation. * @private_key: The private key. */ struct ocs_ecc_ctx { struct ocs_ecc_dev *ecc_dev; const struct ecc_curve *curve; u64 private_key[KMB_ECC_VLI_MAX_DIGITS]; }; /* Driver data. */ struct ocs_ecc_drv { struct list_head dev_list; spinlock_t lock; /* Protects dev_list. */ }; /* Global variable holding the list of OCS ECC devices (only one expected). */ static struct ocs_ecc_drv ocs_ecc = { .dev_list = LIST_HEAD_INIT(ocs_ecc.dev_list), .lock = __SPIN_LOCK_UNLOCKED(ocs_ecc.lock), }; /* Get OCS ECC tfm context from kpp_request. */ static inline struct ocs_ecc_ctx *kmb_ocs_ecc_tctx(struct kpp_request *req) { return kpp_tfm_ctx(crypto_kpp_reqtfm(req)); } /* Converts number of digits to number of bytes. */ static inline unsigned int digits_to_bytes(unsigned int n) { return n << ECC_DIGITS_TO_BYTES_SHIFT; } /* * Wait for ECC idle i.e when an operation (other than write operations) * is done. */ static inline int ocs_ecc_wait_idle(struct ocs_ecc_dev *dev) { u32 value; return readl_poll_timeout((dev->base_reg + HW_OFFS_OCS_ECC_STATUS), value, !(value & HW_OCS_ECC_ISR_INT_STATUS_DONE), POLL_USEC, TIMEOUT_USEC); } static void ocs_ecc_cmd_start(struct ocs_ecc_dev *ecc_dev, u32 op_size) { iowrite32(op_size | HW_OCS_ECC_COMMAND_START_VAL, ecc_dev->base_reg + HW_OFFS_OCS_ECC_COMMAND); } /* Direct write of u32 buffer to ECC engine with associated instruction. */ static void ocs_ecc_write_cmd_and_data(struct ocs_ecc_dev *dev, u32 op_size, u32 inst, const void *data_in, size_t data_size) { iowrite32(op_size | inst, dev->base_reg + HW_OFFS_OCS_ECC_COMMAND); /* MMIO Write src uint32 to dst. */ memcpy_toio(dev->base_reg + HW_OFFS_OCS_ECC_DATA_IN, data_in, data_size); } /* Start OCS ECC operation and wait for its completion. */ static int ocs_ecc_trigger_op(struct ocs_ecc_dev *ecc_dev, u32 op_size, u32 inst) { reinit_completion(&ecc_dev->irq_done); iowrite32(ECC_ENABLE_INTR, ecc_dev->base_reg + HW_OFFS_OCS_ECC_IER); iowrite32(op_size | inst, ecc_dev->base_reg + HW_OFFS_OCS_ECC_COMMAND); return wait_for_completion_interruptible(&ecc_dev->irq_done); } /** * ocs_ecc_read_cx_out() - Read the CX data output buffer. * @dev: The OCS ECC device to read from. * @cx_out: The buffer where to store the CX value. Must be at least * @byte_count byte long. * @byte_count: The amount of data to read. */ static inline void ocs_ecc_read_cx_out(struct ocs_ecc_dev *dev, void *cx_out, size_t byte_count) { memcpy_fromio(cx_out, dev->base_reg + HW_OFFS_OCS_ECC_CX_DATA_OUT, byte_count); } /** * ocs_ecc_read_cy_out() - Read the CX data output buffer. * @dev: The OCS ECC device to read from. * @cy_out: The buffer where to store the CY value. Must be at least * @byte_count byte long. * @byte_count: The amount of data to read. */ static inline void ocs_ecc_read_cy_out(struct ocs_ecc_dev *dev, void *cy_out, size_t byte_count) { memcpy_fromio(cy_out, dev->base_reg + HW_OFFS_OCS_ECC_CY_DATA_OUT, byte_count); } static struct ocs_ecc_dev *kmb_ocs_ecc_find_dev(struct ocs_ecc_ctx *tctx) { if (tctx->ecc_dev) return tctx->ecc_dev; spin_lock(&ocs_ecc.lock); /* Only a single OCS device available. */ tctx->ecc_dev = list_first_entry(&ocs_ecc.dev_list, struct ocs_ecc_dev, list); spin_unlock(&ocs_ecc.lock); return tctx->ecc_dev; } /* Do point multiplication using OCS ECC HW. */ static int kmb_ecc_point_mult(struct ocs_ecc_dev *ecc_dev, struct ecc_point *result, const struct ecc_point *point, u64 *scalar, const struct ecc_curve *curve) { u8 sca[KMB_ECC_VLI_MAX_BYTES]; /* Use the maximum data size. */ u32 op_size = (curve->g.ndigits > ECC_CURVE_NIST_P256_DIGITS) ? OCS_ECC_OP_SIZE_384 : OCS_ECC_OP_SIZE_256; size_t nbytes = digits_to_bytes(curve->g.ndigits); int rc = 0; /* Generate random nbytes for Simple and Differential SCA protection. */ rc = crypto_get_default_rng(); if (rc) return rc; rc = crypto_rng_get_bytes(crypto_default_rng, sca, nbytes); crypto_put_default_rng(); if (rc) return rc; /* Wait engine to be idle before starting new operation. */ rc = ocs_ecc_wait_idle(ecc_dev); if (rc) return rc; /* Send ecc_start pulse as well as indicating operation size. */ ocs_ecc_cmd_start(ecc_dev, op_size); /* Write ax param; Base point (Gx). */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AX, point->x, nbytes); /* Write ay param; Base point (Gy). */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AY, point->y, nbytes); /* * Write the private key into DATA_IN reg. * * Since DATA_IN register is used to write different values during the * computation private Key value is overwritten with * side-channel-resistance value. */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_BX_D, scalar, nbytes); /* Write operand by/l. */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_BY_L, sca, nbytes); memzero_explicit(sca, sizeof(sca)); /* Write p = curve prime(GF modulus). */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_P, curve->p, nbytes); /* Write a = curve coefficient. */ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_A, curve->a, nbytes); /* Make hardware perform the multiplication. */ rc = ocs_ecc_trigger_op(ecc_dev, op_size, OCS_ECC_INST_CALC_D_IDX_A); if (rc) return rc; /* Read result. */ ocs_ecc_read_cx_out(ecc_dev, result->x, nbytes); ocs_ecc_read_cy_out(ecc_dev, result->y, nbytes); return 0; } /** * kmb_ecc_do_scalar_op() - Perform Scalar operation using OCS ECC HW. * @ecc_dev: The OCS ECC device to use. * @scalar_out: Where to store the output scalar. * @scalar_a: Input scalar operand 'a'. * @scalar_b: Input scalar operand 'b' * @curve: The curve on which the operation is performed. * @ndigits: The size of the operands (in digits). * @inst: The operation to perform (as an OCS ECC instruction). * * Return: 0 on success, negative error code otherwise. */ static int kmb_ecc_do_scalar_op(struct ocs_ecc_dev *ecc_dev, u64 *scalar_out, const u64 *scalar_a, const u64 *scalar_b, const struct ecc_curve *curve, unsigned int ndigits, const u32 inst) { u32 op_size = (ndigits > ECC_CURVE_NIST_P256_DIGITS) ? OCS_ECC_OP_SIZE_384 : OCS_ECC_OP_SIZE_256; size_t nbytes = digits_to_bytes(ndigits); int rc; /* Wait engine to be idle before starting new operation. */ rc = ocs_ecc_wait_idle(ecc_dev); if (rc) return rc; /* Send ecc_start pulse as well as indicating operation size. */ ocs_ecc_cmd_start(ecc_dev, op_size); /* Write ax param (Base point (Gx).*/ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AX, scalar_a, nbytes); /* Write ay param Base point (Gy).*/ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_AY, scalar_b, nbytes); /* Write p = curve prime(GF modulus).*/ ocs_ecc_write_cmd_and_data(ecc_dev, op_size, OCS_ECC_INST_WRITE_P, curve->p, nbytes); /* Give instruction A.B or A+B to ECC engine. */ rc = ocs_ecc_trigger_op(ecc_dev, op_size, inst); if (rc) return rc; ocs_ecc_read_cx_out(ecc_dev, scalar_out, nbytes); if (vli_is_zero(scalar_out, ndigits)) return -EINVAL; return 0; } /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ static int kmb_ocs_ecc_is_pubkey_valid_partial(struct ocs_ecc_dev *ecc_dev, const struct ecc_curve *curve, struct ecc_point *pk) { u64 xxx[KMB_ECC_VLI_MAX_DIGITS] = { 0 }; u64 yy[KMB_ECC_VLI_MAX_DIGITS] = { 0 }; u64 w[KMB_ECC_VLI_MAX_DIGITS] = { 0 }; int rc; if (WARN_ON(pk->ndigits != curve->g.ndigits)) return -EINVAL; /* Check 1: Verify key is not the zero point. */ if (ecc_point_is_zero(pk)) return -EINVAL; /* Check 2: Verify key is in the range [0, p-1]. */ if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) return -EINVAL; if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) return -EINVAL; /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ /* y^2 */ /* Compute y^2 -> store in yy */ rc = kmb_ecc_do_scalar_op(ecc_dev, yy, pk->y, pk->y, curve, pk->ndigits, OCS_ECC_INST_CALC_A_MUL_B_MODP); if (rc) goto exit; /* x^3 */ /* Assigning w = 3, used for calculating x^3. */ w[0] = POW_CUBE; /* Load the next stage.*/ rc = kmb_ecc_do_scalar_op(ecc_dev, xxx, pk->x, w, curve, pk->ndigits, OCS_ECC_INST_CALC_A_POW_B_MODP); if (rc) goto exit; /* Do a*x -> store in w. */ rc = kmb_ecc_do_scalar_op(ecc_dev, w, curve->a, pk->x, curve, pk->ndigits, OCS_ECC_INST_CALC_A_MUL_B_MODP); if (rc) goto exit; /* Do ax + b == w + b; store in w. */ rc = kmb_ecc_do_scalar_op(ecc_dev, w, w, curve->b, curve, pk->ndigits, OCS_ECC_INST_CALC_A_ADD_B_MODP); if (rc) goto exit; /* x^3 + ax + b == x^3 + w -> store in w. */ rc = kmb_ecc_do_scalar_op(ecc_dev, w, xxx, w, curve, pk->ndigits, OCS_ECC_INST_CALC_A_ADD_B_MODP); if (rc) goto exit; /* Compare y^2 == x^3 + a·x + b. */ rc = vli_cmp(yy, w, pk->ndigits); if (rc) rc = -EINVAL; exit: memzero_explicit(xxx, sizeof(xxx)); memzero_explicit(yy, sizeof(yy)); memzero_explicit(w, sizeof(w)); return rc; } /* SP800-56A section 5.6.2.3.3 full verification */ static int kmb_ocs_ecc_is_pubkey_valid_full(struct ocs_ecc_dev *ecc_dev, const struct ecc_curve *curve, struct ecc_point *pk) { struct ecc_point *nQ; int rc; /* Checks 1 through 3 */ rc = kmb_ocs_ecc_is_pubkey_valid_partial(ecc_dev, curve, pk); if (rc) return rc; /* Check 4: Verify that nQ is the zero point. */ nQ = ecc_alloc_point(pk->ndigits); if (!nQ) return -ENOMEM; rc = kmb_ecc_point_mult(ecc_dev, nQ, pk, curve->n, curve); if (rc) goto exit; if (!ecc_point_is_zero(nQ)) rc = -EINVAL; exit: ecc_free_point(nQ); return rc; } static int kmb_ecc_is_key_valid(const struct ecc_curve *curve, const u64 *private_key, size_t private_key_len) { size_t ndigits = curve->g.ndigits; u64 one[KMB_ECC_VLI_MAX_DIGITS] = {1}; u64 res[KMB_ECC_VLI_MAX_DIGITS]; if (private_key_len != digits_to_bytes(ndigits)) return -EINVAL; if (!private_key) return -EINVAL; /* Make sure the private key is in the range [2, n-3]. */ if (vli_cmp(one, private_key, ndigits) != -1) return -EINVAL; vli_sub(res, curve->n, one, ndigits); vli_sub(res, res, one, ndigits); if (vli_cmp(res, private_key, ndigits) != 1) return -EINVAL; return 0; } /* * ECC private keys are generated using the method of extra random bits, * equivalent to that described in FIPS 186-4, Appendix B.4.1. * * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer * than requested * 0 <= c mod(n-1) <= n-2 and implies that * 1 <= d <= n-1 * * This method generates a private key uniformly distributed in the range * [1, n-1]. */ static int kmb_ecc_gen_privkey(const struct ecc_curve *curve, u64 *privkey) { size_t nbytes = digits_to_bytes(curve->g.ndigits); u64 priv[KMB_ECC_VLI_MAX_DIGITS]; size_t nbits; int rc; nbits = vli_num_bits(curve->n, curve->g.ndigits); /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ if (nbits < 160 || curve->g.ndigits > ARRAY_SIZE(priv)) return -EINVAL; /* * FIPS 186-4 recommends that the private key should be obtained from a * RBG with a security strength equal to or greater than the security * strength associated with N. * * The maximum security strength identified by NIST SP800-57pt1r4 for * ECC is 256 (N >= 512). * * This condition is met by the default RNG because it selects a favored * DRBG with a security strength of 256. */ if (crypto_get_default_rng()) return -EFAULT; rc = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); crypto_put_default_rng(); if (rc) goto cleanup; rc = kmb_ecc_is_key_valid(curve, priv, nbytes); if (rc) goto cleanup; ecc_swap_digits(priv, privkey, curve->g.ndigits); cleanup: memzero_explicit(&priv, sizeof(priv)); return rc; } static int kmb_ocs_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf, unsigned int len) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); struct ecdh params; int rc = 0; rc = crypto_ecdh_decode_key(buf, len, &params); if (rc) goto cleanup; /* Ensure key size is not bigger then expected. */ if (params.key_size > digits_to_bytes(tctx->curve->g.ndigits)) { rc = -EINVAL; goto cleanup; } /* Auto-generate private key is not provided. */ if (!params.key || !params.key_size) { rc = kmb_ecc_gen_privkey(tctx->curve, tctx->private_key); goto cleanup; } rc = kmb_ecc_is_key_valid(tctx->curve, (const u64 *)params.key, params.key_size); if (rc) goto cleanup; ecc_swap_digits((const u64 *)params.key, tctx->private_key, tctx->curve->g.ndigits); cleanup: memzero_explicit(&params, sizeof(params)); if (rc) tctx->curve = NULL; return rc; } /* Compute shared secret. */ static int kmb_ecc_do_shared_secret(struct ocs_ecc_ctx *tctx, struct kpp_request *req) { struct ocs_ecc_dev *ecc_dev = tctx->ecc_dev; const struct ecc_curve *curve = tctx->curve; u64 shared_secret[KMB_ECC_VLI_MAX_DIGITS]; u64 pubk_buf[KMB_ECC_VLI_MAX_DIGITS * 2]; size_t copied, nbytes, pubk_len; struct ecc_point *pk, *result; int rc; nbytes = digits_to_bytes(curve->g.ndigits); /* Public key is a point, thus it has two coordinates */ pubk_len = 2 * nbytes; /* Copy public key from SG list to pubk_buf. */ copied = sg_copy_to_buffer(req->src, sg_nents_for_len(req->src, pubk_len), pubk_buf, pubk_len); if (copied != pubk_len) return -EINVAL; /* Allocate and initialize public key point. */ pk = ecc_alloc_point(curve->g.ndigits); if (!pk) return -ENOMEM; ecc_swap_digits(pubk_buf, pk->x, curve->g.ndigits); ecc_swap_digits(&pubk_buf[curve->g.ndigits], pk->y, curve->g.ndigits); /* * Check the public key for following * Check 1: Verify key is not the zero point. * Check 2: Verify key is in the range [1, p-1]. * Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ rc = kmb_ocs_ecc_is_pubkey_valid_partial(ecc_dev, curve, pk); if (rc) goto exit_free_pk; /* Allocate point for storing computed shared secret. */ result = ecc_alloc_point(pk->ndigits); if (!result) { rc = -ENOMEM; goto exit_free_pk; } /* Calculate the shared secret.*/ rc = kmb_ecc_point_mult(ecc_dev, result, pk, tctx->private_key, curve); if (rc) goto exit_free_result; if (ecc_point_is_zero(result)) { rc = -EFAULT; goto exit_free_result; } /* Copy shared secret from point to buffer. */ ecc_swap_digits(result->x, shared_secret, result->ndigits); /* Request might ask for less bytes than what we have. */ nbytes = min_t(size_t, nbytes, req->dst_len); copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, nbytes), shared_secret, nbytes); if (copied != nbytes) rc = -EINVAL; memzero_explicit(shared_secret, sizeof(shared_secret)); exit_free_result: ecc_free_point(result); exit_free_pk: ecc_free_point(pk); return rc; } /* Compute public key. */ static int kmb_ecc_do_public_key(struct ocs_ecc_ctx *tctx, struct kpp_request *req) { const struct ecc_curve *curve = tctx->curve; u64 pubk_buf[KMB_ECC_VLI_MAX_DIGITS * 2]; struct ecc_point *pk; size_t pubk_len; size_t copied; int rc; /* Public key is a point, so it has double the digits. */ pubk_len = 2 * digits_to_bytes(curve->g.ndigits); pk = ecc_alloc_point(curve->g.ndigits); if (!pk) return -ENOMEM; /* Public Key(pk) = priv * G. */ rc = kmb_ecc_point_mult(tctx->ecc_dev, pk, &curve->g, tctx->private_key, curve); if (rc) goto exit; /* SP800-56A rev 3 5.6.2.1.3 key check */ if (kmb_ocs_ecc_is_pubkey_valid_full(tctx->ecc_dev, curve, pk)) { rc = -EAGAIN; goto exit; } /* Copy public key from point to buffer. */ ecc_swap_digits(pk->x, pubk_buf, pk->ndigits); ecc_swap_digits(pk->y, &pubk_buf[pk->ndigits], pk->ndigits); /* Copy public key to req->dst. */ copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, pubk_len), pubk_buf, pubk_len); if (copied != pubk_len) rc = -EINVAL; exit: ecc_free_point(pk); return rc; } static int kmb_ocs_ecc_do_one_request(struct crypto_engine *engine, void *areq) { struct kpp_request *req = container_of(areq, struct kpp_request, base); struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req); struct ocs_ecc_dev *ecc_dev = tctx->ecc_dev; int rc; if (req->src) rc = kmb_ecc_do_shared_secret(tctx, req); else rc = kmb_ecc_do_public_key(tctx, req); crypto_finalize_kpp_request(ecc_dev->engine, req, rc); return 0; } static int kmb_ocs_ecdh_generate_public_key(struct kpp_request *req) { struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req); const struct ecc_curve *curve = tctx->curve; /* Ensure kmb_ocs_ecdh_set_secret() has been successfully called. */ if (!tctx->curve) return -EINVAL; /* Ensure dst is present. */ if (!req->dst) return -EINVAL; /* Check the request dst is big enough to hold the public key. */ if (req->dst_len < (2 * digits_to_bytes(curve->g.ndigits))) return -EINVAL; /* 'src' is not supposed to be present when generate pubk is called. */ if (req->src) return -EINVAL; return crypto_transfer_kpp_request_to_engine(tctx->ecc_dev->engine, req); } static int kmb_ocs_ecdh_compute_shared_secret(struct kpp_request *req) { struct ocs_ecc_ctx *tctx = kmb_ocs_ecc_tctx(req); const struct ecc_curve *curve = tctx->curve; /* Ensure kmb_ocs_ecdh_set_secret() has been successfully called. */ if (!tctx->curve) return -EINVAL; /* Ensure dst is present. */ if (!req->dst) return -EINVAL; /* Ensure src is present. */ if (!req->src) return -EINVAL; /* * req->src is expected to the (other-side) public key, so its length * must be 2 * coordinate size (in bytes). */ if (req->src_len != 2 * digits_to_bytes(curve->g.ndigits)) return -EINVAL; return crypto_transfer_kpp_request_to_engine(tctx->ecc_dev->engine, req); } static int kmb_ecc_tctx_init(struct ocs_ecc_ctx *tctx, unsigned int curve_id) { memset(tctx, 0, sizeof(*tctx)); tctx->ecc_dev = kmb_ocs_ecc_find_dev(tctx); if (IS_ERR(tctx->ecc_dev)) { pr_err("Failed to find the device : %ld\n", PTR_ERR(tctx->ecc_dev)); return PTR_ERR(tctx->ecc_dev); } tctx->curve = ecc_get_curve(curve_id); if (!tctx->curve) return -EOPNOTSUPP; return 0; } static int kmb_ocs_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); return kmb_ecc_tctx_init(tctx, ECC_CURVE_NIST_P256); } static int kmb_ocs_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); return kmb_ecc_tctx_init(tctx, ECC_CURVE_NIST_P384); } static void kmb_ocs_ecdh_exit_tfm(struct crypto_kpp *tfm) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); memzero_explicit(tctx->private_key, sizeof(*tctx->private_key)); } static unsigned int kmb_ocs_ecdh_max_size(struct crypto_kpp *tfm) { struct ocs_ecc_ctx *tctx = kpp_tfm_ctx(tfm); /* Public key is made of two coordinates, so double the digits. */ return digits_to_bytes(tctx->curve->g.ndigits) * 2; } static struct kpp_engine_alg ocs_ecdh_p256 = { .base.set_secret = kmb_ocs_ecdh_set_secret, .base.generate_public_key = kmb_ocs_ecdh_generate_public_key, .base.compute_shared_secret = kmb_ocs_ecdh_compute_shared_secret, .base.init = kmb_ocs_ecdh_nist_p256_init_tfm, .base.exit = kmb_ocs_ecdh_exit_tfm, .base.max_size = kmb_ocs_ecdh_max_size, .base.base = { .cra_name = "ecdh-nist-p256", .cra_driver_name = "ecdh-nist-p256-keembay-ocs", .cra_priority = KMB_OCS_ECC_PRIORITY, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ocs_ecc_ctx), }, .op.do_one_request = kmb_ocs_ecc_do_one_request, }; static struct kpp_engine_alg ocs_ecdh_p384 = { .base.set_secret = kmb_ocs_ecdh_set_secret, .base.generate_public_key = kmb_ocs_ecdh_generate_public_key, .base.compute_shared_secret = kmb_ocs_ecdh_compute_shared_secret, .base.init = kmb_ocs_ecdh_nist_p384_init_tfm, .base.exit = kmb_ocs_ecdh_exit_tfm, .base.max_size = kmb_ocs_ecdh_max_size, .base.base = { .cra_name = "ecdh-nist-p384", .cra_driver_name = "ecdh-nist-p384-keembay-ocs", .cra_priority = KMB_OCS_ECC_PRIORITY, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ocs_ecc_ctx), }, .op.do_one_request = kmb_ocs_ecc_do_one_request, }; static irqreturn_t ocs_ecc_irq_handler(int irq, void *dev_id) { struct ocs_ecc_dev *ecc_dev = dev_id; u32 status; /* * Read the status register and write it back to clear the * DONE_INT_STATUS bit. */ status = ioread32(ecc_dev->base_reg + HW_OFFS_OCS_ECC_ISR); iowrite32(status, ecc_dev->base_reg + HW_OFFS_OCS_ECC_ISR); if (!(status & HW_OCS_ECC_ISR_INT_STATUS_DONE)) return IRQ_NONE; complete(&ecc_dev->irq_done); return IRQ_HANDLED; } static int kmb_ocs_ecc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ocs_ecc_dev *ecc_dev; int rc; ecc_dev = devm_kzalloc(dev, sizeof(*ecc_dev), GFP_KERNEL); if (!ecc_dev) return -ENOMEM; ecc_dev->dev = dev; platform_set_drvdata(pdev, ecc_dev); INIT_LIST_HEAD(&ecc_dev->list); init_completion(&ecc_dev->irq_done); /* Get base register address. */ ecc_dev->base_reg = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ecc_dev->base_reg)) { dev_err(dev, "Failed to get base address\n"); rc = PTR_ERR(ecc_dev->base_reg); goto list_del; } /* Get and request IRQ */ ecc_dev->irq = platform_get_irq(pdev, 0); if (ecc_dev->irq < 0) { rc = ecc_dev->irq; goto list_del; } rc = devm_request_threaded_irq(dev, ecc_dev->irq, ocs_ecc_irq_handler, NULL, 0, "keembay-ocs-ecc", ecc_dev); if (rc < 0) { dev_err(dev, "Could not request IRQ\n"); goto list_del; } /* Add device to the list of OCS ECC devices. */ spin_lock(&ocs_ecc.lock); list_add_tail(&ecc_dev->list, &ocs_ecc.dev_list); spin_unlock(&ocs_ecc.lock); /* Initialize crypto engine. */ ecc_dev->engine = crypto_engine_alloc_init(dev, 1); if (!ecc_dev->engine) { dev_err(dev, "Could not allocate crypto engine\n"); rc = -ENOMEM; goto list_del; } rc = crypto_engine_start(ecc_dev->engine); if (rc) { dev_err(dev, "Could not start crypto engine\n"); goto cleanup; } /* Register the KPP algo. */ rc = crypto_engine_register_kpp(&ocs_ecdh_p256); if (rc) { dev_err(dev, "Could not register OCS algorithms with Crypto API\n"); goto cleanup; } rc = crypto_engine_register_kpp(&ocs_ecdh_p384); if (rc) { dev_err(dev, "Could not register OCS algorithms with Crypto API\n"); goto ocs_ecdh_p384_error; } return 0; ocs_ecdh_p384_error: crypto_engine_unregister_kpp(&ocs_ecdh_p256); cleanup: crypto_engine_exit(ecc_dev->engine); list_del: spin_lock(&ocs_ecc.lock); list_del(&ecc_dev->list); spin_unlock(&ocs_ecc.lock); return rc; } static int kmb_ocs_ecc_remove(struct platform_device *pdev) { struct ocs_ecc_dev *ecc_dev; ecc_dev = platform_get_drvdata(pdev); crypto_engine_unregister_kpp(&ocs_ecdh_p384); crypto_engine_unregister_kpp(&ocs_ecdh_p256); spin_lock(&ocs_ecc.lock); list_del(&ecc_dev->list); spin_unlock(&ocs_ecc.lock); crypto_engine_exit(ecc_dev->engine); return 0; } /* Device tree driver match. */ static const struct of_device_id kmb_ocs_ecc_of_match[] = { { .compatible = "intel,keembay-ocs-ecc", }, {} }; /* The OCS driver is a platform device. */ static struct platform_driver kmb_ocs_ecc_driver = { .probe = kmb_ocs_ecc_probe, .remove = kmb_ocs_ecc_remove, .driver = { .name = DRV_NAME, .of_match_table = kmb_ocs_ecc_of_match, }, }; module_platform_driver(kmb_ocs_ecc_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Intel Keem Bay OCS ECC Driver"); MODULE_ALIAS_CRYPTO("ecdh-nist-p256"); MODULE_ALIAS_CRYPTO("ecdh-nist-p384"); MODULE_ALIAS_CRYPTO("ecdh-nist-p256-keembay-ocs"); MODULE_ALIAS_CRYPTO("ecdh-nist-p384-keembay-ocs");
linux-master
drivers/crypto/intel/keembay/keembay-ocs-ecc.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Keem Bay OCS AES Crypto Driver. * * Copyright (C) 2018-2020 Intel Corporation */ #include <crypto/aes.h> #include <crypto/engine.h> #include <crypto/gcm.h> #include <crypto/internal/aead.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/string.h> #include "ocs-aes.h" #define KMB_OCS_PRIORITY 350 #define DRV_NAME "keembay-ocs-aes" #define OCS_AES_MIN_KEY_SIZE 16 #define OCS_AES_MAX_KEY_SIZE 32 #define OCS_AES_KEYSIZE_128 16 #define OCS_AES_KEYSIZE_192 24 #define OCS_AES_KEYSIZE_256 32 #define OCS_SM4_KEY_SIZE 16 /** * struct ocs_aes_tctx - OCS AES Transform context * @aes_dev: The OCS AES device. * @key: AES/SM4 key. * @key_len: The length (in bytes) of @key. * @cipher: OCS cipher to use (either AES or SM4). * @sw_cipher: The cipher to use as fallback. * @use_fallback: Whether or not fallback cipher should be used. */ struct ocs_aes_tctx { struct ocs_aes_dev *aes_dev; u8 key[OCS_AES_KEYSIZE_256]; unsigned int key_len; enum ocs_cipher cipher; union { struct crypto_sync_skcipher *sk; struct crypto_aead *aead; } sw_cipher; bool use_fallback; }; /** * struct ocs_aes_rctx - OCS AES Request context. * @instruction: Instruction to be executed (encrypt / decrypt). * @mode: Mode to use (ECB, CBC, CTR, CCm, GCM, CTS) * @src_nents: Number of source SG entries. * @dst_nents: Number of destination SG entries. * @src_dma_count: The number of DMA-mapped entries of the source SG. * @dst_dma_count: The number of DMA-mapped entries of the destination SG. * @in_place: Whether or not this is an in place request, i.e., * src_sg == dst_sg. * @src_dll: OCS DMA linked list for input data. * @dst_dll: OCS DMA linked list for output data. * @last_ct_blk: Buffer to hold last cipher text block (only used in CBC * mode). * @cts_swap: Whether or not CTS swap must be performed. * @aad_src_dll: OCS DMA linked list for input AAD data. * @aad_dst_dll: OCS DMA linked list for output AAD data. * @in_tag: Buffer to hold input encrypted tag (only used for * CCM/GCM decrypt). * @out_tag: Buffer to hold output encrypted / decrypted tag (only * used for GCM encrypt / decrypt). */ struct ocs_aes_rctx { /* Fields common across all modes. */ enum ocs_instruction instruction; enum ocs_mode mode; int src_nents; int dst_nents; int src_dma_count; int dst_dma_count; bool in_place; struct ocs_dll_desc src_dll; struct ocs_dll_desc dst_dll; /* CBC specific */ u8 last_ct_blk[AES_BLOCK_SIZE]; /* CTS specific */ int cts_swap; /* CCM/GCM specific */ struct ocs_dll_desc aad_src_dll; struct ocs_dll_desc aad_dst_dll; u8 in_tag[AES_BLOCK_SIZE]; /* GCM specific */ u8 out_tag[AES_BLOCK_SIZE]; }; /* Driver data. */ struct ocs_aes_drv { struct list_head dev_list; spinlock_t lock; /* Protects dev_list. */ }; static struct ocs_aes_drv ocs_aes = { .dev_list = LIST_HEAD_INIT(ocs_aes.dev_list), .lock = __SPIN_LOCK_UNLOCKED(ocs_aes.lock), }; static struct ocs_aes_dev *kmb_ocs_aes_find_dev(struct ocs_aes_tctx *tctx) { struct ocs_aes_dev *aes_dev; spin_lock(&ocs_aes.lock); if (tctx->aes_dev) { aes_dev = tctx->aes_dev; goto exit; } /* Only a single OCS device available */ aes_dev = list_first_entry(&ocs_aes.dev_list, struct ocs_aes_dev, list); tctx->aes_dev = aes_dev; exit: spin_unlock(&ocs_aes.lock); return aes_dev; } /* * Ensure key is 128-bit or 256-bit for AES or 128-bit for SM4 and an actual * key is being passed in. * * Return: 0 if key is valid, -EINVAL otherwise. */ static int check_key(const u8 *in_key, size_t key_len, enum ocs_cipher cipher) { if (!in_key) return -EINVAL; /* For AES, only 128-byte or 256-byte keys are supported. */ if (cipher == OCS_AES && (key_len == OCS_AES_KEYSIZE_128 || key_len == OCS_AES_KEYSIZE_256)) return 0; /* For SM4, only 128-byte keys are supported. */ if (cipher == OCS_SM4 && key_len == OCS_AES_KEYSIZE_128) return 0; /* Everything else is unsupported. */ return -EINVAL; } /* Save key into transformation context. */ static int save_key(struct ocs_aes_tctx *tctx, const u8 *in_key, size_t key_len, enum ocs_cipher cipher) { int ret; ret = check_key(in_key, key_len, cipher); if (ret) return ret; memcpy(tctx->key, in_key, key_len); tctx->key_len = key_len; tctx->cipher = cipher; return 0; } /* Set key for symmetric cypher. */ static int kmb_ocs_sk_set_key(struct crypto_skcipher *tfm, const u8 *in_key, size_t key_len, enum ocs_cipher cipher) { struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); /* Fallback is used for AES with 192-bit key. */ tctx->use_fallback = (cipher == OCS_AES && key_len == OCS_AES_KEYSIZE_192); if (!tctx->use_fallback) return save_key(tctx, in_key, key_len, cipher); crypto_sync_skcipher_clear_flags(tctx->sw_cipher.sk, CRYPTO_TFM_REQ_MASK); crypto_sync_skcipher_set_flags(tctx->sw_cipher.sk, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); return crypto_sync_skcipher_setkey(tctx->sw_cipher.sk, in_key, key_len); } /* Set key for AEAD cipher. */ static int kmb_ocs_aead_set_key(struct crypto_aead *tfm, const u8 *in_key, size_t key_len, enum ocs_cipher cipher) { struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm); /* Fallback is used for AES with 192-bit key. */ tctx->use_fallback = (cipher == OCS_AES && key_len == OCS_AES_KEYSIZE_192); if (!tctx->use_fallback) return save_key(tctx, in_key, key_len, cipher); crypto_aead_clear_flags(tctx->sw_cipher.aead, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(tctx->sw_cipher.aead, crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_aead_setkey(tctx->sw_cipher.aead, in_key, key_len); } /* Swap two AES blocks in SG lists. */ static void sg_swap_blocks(struct scatterlist *sgl, unsigned int nents, off_t blk1_offset, off_t blk2_offset) { u8 tmp_buf1[AES_BLOCK_SIZE], tmp_buf2[AES_BLOCK_SIZE]; /* * No easy way to copy within sg list, so copy both blocks to temporary * buffers first. */ sg_pcopy_to_buffer(sgl, nents, tmp_buf1, AES_BLOCK_SIZE, blk1_offset); sg_pcopy_to_buffer(sgl, nents, tmp_buf2, AES_BLOCK_SIZE, blk2_offset); sg_pcopy_from_buffer(sgl, nents, tmp_buf1, AES_BLOCK_SIZE, blk2_offset); sg_pcopy_from_buffer(sgl, nents, tmp_buf2, AES_BLOCK_SIZE, blk1_offset); } /* Initialize request context to default values. */ static void ocs_aes_init_rctx(struct ocs_aes_rctx *rctx) { /* Zero everything. */ memset(rctx, 0, sizeof(*rctx)); /* Set initial value for DMA addresses. */ rctx->src_dll.dma_addr = DMA_MAPPING_ERROR; rctx->dst_dll.dma_addr = DMA_MAPPING_ERROR; rctx->aad_src_dll.dma_addr = DMA_MAPPING_ERROR; rctx->aad_dst_dll.dma_addr = DMA_MAPPING_ERROR; } static int kmb_ocs_sk_validate_input(struct skcipher_request *req, enum ocs_mode mode) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); int iv_size = crypto_skcipher_ivsize(tfm); switch (mode) { case OCS_MODE_ECB: /* Ensure input length is multiple of block size */ if (req->cryptlen % AES_BLOCK_SIZE != 0) return -EINVAL; return 0; case OCS_MODE_CBC: /* Ensure input length is multiple of block size */ if (req->cryptlen % AES_BLOCK_SIZE != 0) return -EINVAL; /* Ensure IV is present and block size in length */ if (!req->iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; /* * NOTE: Since req->cryptlen == 0 case was already handled in * kmb_ocs_sk_common(), the above two conditions also guarantee * that: cryptlen >= iv_size */ return 0; case OCS_MODE_CTR: /* Ensure IV is present and block size in length */ if (!req->iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; case OCS_MODE_CTS: /* Ensure input length >= block size */ if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; /* Ensure IV is present and block size in length */ if (!req->iv || iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; default: return -EINVAL; } } /* * Called by encrypt() / decrypt() skcipher functions. * * Use fallback if needed, otherwise initialize context and enqueue request * into engine. */ static int kmb_ocs_sk_common(struct skcipher_request *req, enum ocs_cipher cipher, enum ocs_instruction instruction, enum ocs_mode mode) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ocs_aes_rctx *rctx = skcipher_request_ctx(req); struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); struct ocs_aes_dev *aes_dev; int rc; if (tctx->use_fallback) { SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, tctx->sw_cipher.sk); skcipher_request_set_sync_tfm(subreq, tctx->sw_cipher.sk); skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); if (instruction == OCS_ENCRYPT) rc = crypto_skcipher_encrypt(subreq); else rc = crypto_skcipher_decrypt(subreq); skcipher_request_zero(subreq); return rc; } /* * If cryptlen == 0, no processing needed for ECB, CBC and CTR. * * For CTS continue: kmb_ocs_sk_validate_input() will return -EINVAL. */ if (!req->cryptlen && mode != OCS_MODE_CTS) return 0; rc = kmb_ocs_sk_validate_input(req, mode); if (rc) return rc; aes_dev = kmb_ocs_aes_find_dev(tctx); if (!aes_dev) return -ENODEV; if (cipher != tctx->cipher) return -EINVAL; ocs_aes_init_rctx(rctx); rctx->instruction = instruction; rctx->mode = mode; return crypto_transfer_skcipher_request_to_engine(aes_dev->engine, req); } static void cleanup_ocs_dma_linked_list(struct device *dev, struct ocs_dll_desc *dll) { if (dll->vaddr) dma_free_coherent(dev, dll->size, dll->vaddr, dll->dma_addr); dll->vaddr = NULL; dll->size = 0; dll->dma_addr = DMA_MAPPING_ERROR; } static void kmb_ocs_sk_dma_cleanup(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ocs_aes_rctx *rctx = skcipher_request_ctx(req); struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); struct device *dev = tctx->aes_dev->dev; if (rctx->src_dma_count) { dma_unmap_sg(dev, req->src, rctx->src_nents, DMA_TO_DEVICE); rctx->src_dma_count = 0; } if (rctx->dst_dma_count) { dma_unmap_sg(dev, req->dst, rctx->dst_nents, rctx->in_place ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE); rctx->dst_dma_count = 0; } /* Clean up OCS DMA linked lists */ cleanup_ocs_dma_linked_list(dev, &rctx->src_dll); cleanup_ocs_dma_linked_list(dev, &rctx->dst_dll); } static int kmb_ocs_sk_prepare_inplace(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ocs_aes_rctx *rctx = skcipher_request_ctx(req); struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); int iv_size = crypto_skcipher_ivsize(tfm); int rc; /* * For CBC decrypt, save last block (iv) to last_ct_blk buffer. * * Note: if we are here, we already checked that cryptlen >= iv_size * and iv_size == AES_BLOCK_SIZE (i.e., the size of last_ct_blk); see * kmb_ocs_sk_validate_input(). */ if (rctx->mode == OCS_MODE_CBC && rctx->instruction == OCS_DECRYPT) scatterwalk_map_and_copy(rctx->last_ct_blk, req->src, req->cryptlen - iv_size, iv_size, 0); /* For CTS decrypt, swap last two blocks, if needed. */ if (rctx->cts_swap && rctx->instruction == OCS_DECRYPT) sg_swap_blocks(req->dst, rctx->dst_nents, req->cryptlen - AES_BLOCK_SIZE, req->cryptlen - (2 * AES_BLOCK_SIZE)); /* src and dst buffers are the same, use bidirectional DMA mapping. */ rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst, rctx->dst_nents, DMA_BIDIRECTIONAL); if (rctx->dst_dma_count == 0) { dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n"); return -ENOMEM; } /* Create DST linked list */ rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst, rctx->dst_dma_count, &rctx->dst_dll, req->cryptlen, 0); if (rc) return rc; /* * If descriptor creation was successful, set the src_dll.dma_addr to * the value of dst_dll.dma_addr, as we do in-place AES operation on * the src. */ rctx->src_dll.dma_addr = rctx->dst_dll.dma_addr; return 0; } static int kmb_ocs_sk_prepare_notinplace(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ocs_aes_rctx *rctx = skcipher_request_ctx(req); struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); int rc; rctx->src_nents = sg_nents_for_len(req->src, req->cryptlen); if (rctx->src_nents < 0) return -EBADMSG; /* Map SRC SG. */ rctx->src_dma_count = dma_map_sg(tctx->aes_dev->dev, req->src, rctx->src_nents, DMA_TO_DEVICE); if (rctx->src_dma_count == 0) { dev_err(tctx->aes_dev->dev, "Failed to map source sg\n"); return -ENOMEM; } /* Create SRC linked list */ rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src, rctx->src_dma_count, &rctx->src_dll, req->cryptlen, 0); if (rc) return rc; /* Map DST SG. */ rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst, rctx->dst_nents, DMA_FROM_DEVICE); if (rctx->dst_dma_count == 0) { dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n"); return -ENOMEM; } /* Create DST linked list */ rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst, rctx->dst_dma_count, &rctx->dst_dll, req->cryptlen, 0); if (rc) return rc; /* If this is not a CTS decrypt operation with swapping, we are done. */ if (!(rctx->cts_swap && rctx->instruction == OCS_DECRYPT)) return 0; /* * Otherwise, we have to copy src to dst (as we cannot modify src). * Use OCS AES bypass mode to copy src to dst via DMA. * * NOTE: for anything other than small data sizes this is rather * inefficient. */ rc = ocs_aes_bypass_op(tctx->aes_dev, rctx->dst_dll.dma_addr, rctx->src_dll.dma_addr, req->cryptlen); if (rc) return rc; /* * Now dst == src, so clean up what we did so far and use in_place * logic. */ kmb_ocs_sk_dma_cleanup(req); rctx->in_place = true; return kmb_ocs_sk_prepare_inplace(req); } static int kmb_ocs_sk_run(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ocs_aes_rctx *rctx = skcipher_request_ctx(req); struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); struct ocs_aes_dev *aes_dev = tctx->aes_dev; int iv_size = crypto_skcipher_ivsize(tfm); int rc; rctx->dst_nents = sg_nents_for_len(req->dst, req->cryptlen); if (rctx->dst_nents < 0) return -EBADMSG; /* * If 2 blocks or greater, and multiple of block size swap last two * blocks to be compatible with other crypto API CTS implementations: * OCS mode uses CBC-CS2, whereas other crypto API implementations use * CBC-CS3. * CBC-CS2 and CBC-CS3 defined by: * https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a-add.pdf */ rctx->cts_swap = (rctx->mode == OCS_MODE_CTS && req->cryptlen > AES_BLOCK_SIZE && req->cryptlen % AES_BLOCK_SIZE == 0); rctx->in_place = (req->src == req->dst); if (rctx->in_place) rc = kmb_ocs_sk_prepare_inplace(req); else rc = kmb_ocs_sk_prepare_notinplace(req); if (rc) goto error; rc = ocs_aes_op(aes_dev, rctx->mode, tctx->cipher, rctx->instruction, rctx->dst_dll.dma_addr, rctx->src_dll.dma_addr, req->cryptlen, req->iv, iv_size); if (rc) goto error; /* Clean-up DMA before further processing output. */ kmb_ocs_sk_dma_cleanup(req); /* For CTS Encrypt, swap last 2 blocks, if needed. */ if (rctx->cts_swap && rctx->instruction == OCS_ENCRYPT) { sg_swap_blocks(req->dst, rctx->dst_nents, req->cryptlen - AES_BLOCK_SIZE, req->cryptlen - (2 * AES_BLOCK_SIZE)); return 0; } /* For CBC copy IV to req->IV. */ if (rctx->mode == OCS_MODE_CBC) { /* CBC encrypt case. */ if (rctx->instruction == OCS_ENCRYPT) { scatterwalk_map_and_copy(req->iv, req->dst, req->cryptlen - iv_size, iv_size, 0); return 0; } /* CBC decrypt case. */ if (rctx->in_place) memcpy(req->iv, rctx->last_ct_blk, iv_size); else scatterwalk_map_and_copy(req->iv, req->src, req->cryptlen - iv_size, iv_size, 0); return 0; } /* For all other modes there's nothing to do. */ return 0; error: kmb_ocs_sk_dma_cleanup(req); return rc; } static int kmb_ocs_aead_validate_input(struct aead_request *req, enum ocs_instruction instruction, enum ocs_mode mode) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); int tag_size = crypto_aead_authsize(tfm); int iv_size = crypto_aead_ivsize(tfm); /* For decrypt crytplen == len(PT) + len(tag). */ if (instruction == OCS_DECRYPT && req->cryptlen < tag_size) return -EINVAL; /* IV is mandatory. */ if (!req->iv) return -EINVAL; switch (mode) { case OCS_MODE_GCM: if (iv_size != GCM_AES_IV_SIZE) return -EINVAL; return 0; case OCS_MODE_CCM: /* Ensure IV is present and block size in length */ if (iv_size != AES_BLOCK_SIZE) return -EINVAL; return 0; default: return -EINVAL; } } /* * Called by encrypt() / decrypt() aead functions. * * Use fallback if needed, otherwise initialize context and enqueue request * into engine. */ static int kmb_ocs_aead_common(struct aead_request *req, enum ocs_cipher cipher, enum ocs_instruction instruction, enum ocs_mode mode) { struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); struct ocs_aes_rctx *rctx = aead_request_ctx(req); struct ocs_aes_dev *dd; int rc; if (tctx->use_fallback) { struct aead_request *subreq = aead_request_ctx(req); aead_request_set_tfm(subreq, tctx->sw_cipher.aead); aead_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); rc = crypto_aead_setauthsize(tctx->sw_cipher.aead, crypto_aead_authsize(crypto_aead_reqtfm(req))); if (rc) return rc; return (instruction == OCS_ENCRYPT) ? crypto_aead_encrypt(subreq) : crypto_aead_decrypt(subreq); } rc = kmb_ocs_aead_validate_input(req, instruction, mode); if (rc) return rc; dd = kmb_ocs_aes_find_dev(tctx); if (!dd) return -ENODEV; if (cipher != tctx->cipher) return -EINVAL; ocs_aes_init_rctx(rctx); rctx->instruction = instruction; rctx->mode = mode; return crypto_transfer_aead_request_to_engine(dd->engine, req); } static void kmb_ocs_aead_dma_cleanup(struct aead_request *req) { struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); struct ocs_aes_rctx *rctx = aead_request_ctx(req); struct device *dev = tctx->aes_dev->dev; if (rctx->src_dma_count) { dma_unmap_sg(dev, req->src, rctx->src_nents, DMA_TO_DEVICE); rctx->src_dma_count = 0; } if (rctx->dst_dma_count) { dma_unmap_sg(dev, req->dst, rctx->dst_nents, rctx->in_place ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE); rctx->dst_dma_count = 0; } /* Clean up OCS DMA linked lists */ cleanup_ocs_dma_linked_list(dev, &rctx->src_dll); cleanup_ocs_dma_linked_list(dev, &rctx->dst_dll); cleanup_ocs_dma_linked_list(dev, &rctx->aad_src_dll); cleanup_ocs_dma_linked_list(dev, &rctx->aad_dst_dll); } /** * kmb_ocs_aead_dma_prepare() - Do DMA mapping for AEAD processing. * @req: The AEAD request being processed. * @src_dll_size: Where to store the length of the data mapped into the * src_dll OCS DMA list. * * Do the following: * - DMA map req->src and req->dst * - Initialize the following OCS DMA linked lists: rctx->src_dll, * rctx->dst_dll, rctx->aad_src_dll and rxtc->aad_dst_dll. * * Return: 0 on success, negative error code otherwise. */ static int kmb_ocs_aead_dma_prepare(struct aead_request *req, u32 *src_dll_size) { struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); const int tag_size = crypto_aead_authsize(crypto_aead_reqtfm(req)); struct ocs_aes_rctx *rctx = aead_request_ctx(req); u32 in_size; /* The length of the data to be mapped by src_dll. */ u32 out_size; /* The length of the data to be mapped by dst_dll. */ u32 dst_size; /* The length of the data in dst_sg. */ int rc; /* Get number of entries in input data SG list. */ rctx->src_nents = sg_nents_for_len(req->src, req->assoclen + req->cryptlen); if (rctx->src_nents < 0) return -EBADMSG; if (rctx->instruction == OCS_DECRYPT) { /* * For decrypt: * - src sg list is: AAD|CT|tag * - dst sg list expects: AAD|PT * * in_size == len(CT); out_size == len(PT) */ /* req->cryptlen includes both CT and tag. */ in_size = req->cryptlen - tag_size; /* out_size = PT size == CT size */ out_size = in_size; /* len(dst_sg) == len(AAD) + len(PT) */ dst_size = req->assoclen + out_size; /* * Copy tag from source SG list to 'in_tag' buffer. * * Note: this needs to be done here, before DMA mapping src_sg. */ sg_pcopy_to_buffer(req->src, rctx->src_nents, rctx->in_tag, tag_size, req->assoclen + in_size); } else { /* OCS_ENCRYPT */ /* * For encrypt: * src sg list is: AAD|PT * dst sg list expects: AAD|CT|tag */ /* in_size == len(PT) */ in_size = req->cryptlen; /* * In CCM mode the OCS engine appends the tag to the ciphertext, * but in GCM mode the tag must be read from the tag registers * and appended manually below */ out_size = (rctx->mode == OCS_MODE_CCM) ? in_size + tag_size : in_size; /* len(dst_sg) == len(AAD) + len(CT) + len(tag) */ dst_size = req->assoclen + in_size + tag_size; } *src_dll_size = in_size; /* Get number of entries in output data SG list. */ rctx->dst_nents = sg_nents_for_len(req->dst, dst_size); if (rctx->dst_nents < 0) return -EBADMSG; rctx->in_place = (req->src == req->dst) ? 1 : 0; /* Map destination; use bidirectional mapping for in-place case. */ rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst, rctx->dst_nents, rctx->in_place ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE); if (rctx->dst_dma_count == 0 && rctx->dst_nents != 0) { dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n"); return -ENOMEM; } /* Create AAD DST list: maps dst[0:AAD_SIZE-1]. */ rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst, rctx->dst_dma_count, &rctx->aad_dst_dll, req->assoclen, 0); if (rc) return rc; /* Create DST list: maps dst[AAD_SIZE:out_size] */ rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst, rctx->dst_dma_count, &rctx->dst_dll, out_size, req->assoclen); if (rc) return rc; if (rctx->in_place) { /* If this is not CCM encrypt, we are done. */ if (!(rctx->mode == OCS_MODE_CCM && rctx->instruction == OCS_ENCRYPT)) { /* * SRC and DST are the same, so re-use the same DMA * addresses (to avoid allocating new DMA lists * identical to the dst ones). */ rctx->src_dll.dma_addr = rctx->dst_dll.dma_addr; rctx->aad_src_dll.dma_addr = rctx->aad_dst_dll.dma_addr; return 0; } /* * For CCM encrypt the input and output linked lists contain * different amounts of data, so, we need to create different * SRC and AAD SRC lists, even for the in-place case. */ rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst, rctx->dst_dma_count, &rctx->aad_src_dll, req->assoclen, 0); if (rc) return rc; rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst, rctx->dst_dma_count, &rctx->src_dll, in_size, req->assoclen); if (rc) return rc; return 0; } /* Not in-place case. */ /* Map source SG. */ rctx->src_dma_count = dma_map_sg(tctx->aes_dev->dev, req->src, rctx->src_nents, DMA_TO_DEVICE); if (rctx->src_dma_count == 0 && rctx->src_nents != 0) { dev_err(tctx->aes_dev->dev, "Failed to map source sg\n"); return -ENOMEM; } /* Create AAD SRC list. */ rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src, rctx->src_dma_count, &rctx->aad_src_dll, req->assoclen, 0); if (rc) return rc; /* Create SRC list. */ rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src, rctx->src_dma_count, &rctx->src_dll, in_size, req->assoclen); if (rc) return rc; if (req->assoclen == 0) return 0; /* Copy AAD from src sg to dst sg using OCS DMA. */ rc = ocs_aes_bypass_op(tctx->aes_dev, rctx->aad_dst_dll.dma_addr, rctx->aad_src_dll.dma_addr, req->cryptlen); if (rc) dev_err(tctx->aes_dev->dev, "Failed to copy source AAD to destination AAD\n"); return rc; } static int kmb_ocs_aead_run(struct aead_request *req) { struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); const int tag_size = crypto_aead_authsize(crypto_aead_reqtfm(req)); struct ocs_aes_rctx *rctx = aead_request_ctx(req); u32 in_size; /* The length of the data mapped by src_dll. */ int rc; rc = kmb_ocs_aead_dma_prepare(req, &in_size); if (rc) goto exit; /* For CCM, we just call the OCS processing and we are done. */ if (rctx->mode == OCS_MODE_CCM) { rc = ocs_aes_ccm_op(tctx->aes_dev, tctx->cipher, rctx->instruction, rctx->dst_dll.dma_addr, rctx->src_dll.dma_addr, in_size, req->iv, rctx->aad_src_dll.dma_addr, req->assoclen, rctx->in_tag, tag_size); goto exit; } /* GCM case; invoke OCS processing. */ rc = ocs_aes_gcm_op(tctx->aes_dev, tctx->cipher, rctx->instruction, rctx->dst_dll.dma_addr, rctx->src_dll.dma_addr, in_size, req->iv, rctx->aad_src_dll.dma_addr, req->assoclen, rctx->out_tag, tag_size); if (rc) goto exit; /* For GCM decrypt, we have to compare in_tag with out_tag. */ if (rctx->instruction == OCS_DECRYPT) { rc = memcmp(rctx->in_tag, rctx->out_tag, tag_size) ? -EBADMSG : 0; goto exit; } /* For GCM encrypt, we must manually copy out_tag to DST sg. */ /* Clean-up must be called before the sg_pcopy_from_buffer() below. */ kmb_ocs_aead_dma_cleanup(req); /* Copy tag to destination sg after AAD and CT. */ sg_pcopy_from_buffer(req->dst, rctx->dst_nents, rctx->out_tag, tag_size, req->assoclen + req->cryptlen); /* Return directly as DMA cleanup already done. */ return 0; exit: kmb_ocs_aead_dma_cleanup(req); return rc; } static int kmb_ocs_aes_sk_do_one_request(struct crypto_engine *engine, void *areq) { struct skcipher_request *req = container_of(areq, struct skcipher_request, base); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); int err; if (!tctx->aes_dev) { err = -ENODEV; goto exit; } err = ocs_aes_set_key(tctx->aes_dev, tctx->key_len, tctx->key, tctx->cipher); if (err) goto exit; err = kmb_ocs_sk_run(req); exit: crypto_finalize_skcipher_request(engine, req, err); return 0; } static int kmb_ocs_aes_aead_do_one_request(struct crypto_engine *engine, void *areq) { struct aead_request *req = container_of(areq, struct aead_request, base); struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); int err; if (!tctx->aes_dev) return -ENODEV; err = ocs_aes_set_key(tctx->aes_dev, tctx->key_len, tctx->key, tctx->cipher); if (err) goto exit; err = kmb_ocs_aead_run(req); exit: crypto_finalize_aead_request(tctx->aes_dev->engine, req, err); return 0; } static int kmb_ocs_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { return kmb_ocs_sk_set_key(tfm, in_key, key_len, OCS_AES); } static int kmb_ocs_aes_aead_set_key(struct crypto_aead *tfm, const u8 *in_key, unsigned int key_len) { return kmb_ocs_aead_set_key(tfm, in_key, key_len, OCS_AES); } #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB static int kmb_ocs_aes_ecb_encrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_ECB); } static int kmb_ocs_aes_ecb_decrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_ECB); } #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */ static int kmb_ocs_aes_cbc_encrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CBC); } static int kmb_ocs_aes_cbc_decrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CBC); } static int kmb_ocs_aes_ctr_encrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CTR); } static int kmb_ocs_aes_ctr_decrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CTR); } #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS static int kmb_ocs_aes_cts_encrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CTS); } static int kmb_ocs_aes_cts_decrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CTS); } #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */ static int kmb_ocs_aes_gcm_encrypt(struct aead_request *req) { return kmb_ocs_aead_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_GCM); } static int kmb_ocs_aes_gcm_decrypt(struct aead_request *req) { return kmb_ocs_aead_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_GCM); } static int kmb_ocs_aes_ccm_encrypt(struct aead_request *req) { return kmb_ocs_aead_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CCM); } static int kmb_ocs_aes_ccm_decrypt(struct aead_request *req) { return kmb_ocs_aead_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CCM); } static int kmb_ocs_sm4_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { return kmb_ocs_sk_set_key(tfm, in_key, key_len, OCS_SM4); } static int kmb_ocs_sm4_aead_set_key(struct crypto_aead *tfm, const u8 *in_key, unsigned int key_len) { return kmb_ocs_aead_set_key(tfm, in_key, key_len, OCS_SM4); } #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB static int kmb_ocs_sm4_ecb_encrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_ECB); } static int kmb_ocs_sm4_ecb_decrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_ECB); } #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */ static int kmb_ocs_sm4_cbc_encrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CBC); } static int kmb_ocs_sm4_cbc_decrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CBC); } static int kmb_ocs_sm4_ctr_encrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CTR); } static int kmb_ocs_sm4_ctr_decrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CTR); } #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS static int kmb_ocs_sm4_cts_encrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CTS); } static int kmb_ocs_sm4_cts_decrypt(struct skcipher_request *req) { return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CTS); } #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */ static int kmb_ocs_sm4_gcm_encrypt(struct aead_request *req) { return kmb_ocs_aead_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_GCM); } static int kmb_ocs_sm4_gcm_decrypt(struct aead_request *req) { return kmb_ocs_aead_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_GCM); } static int kmb_ocs_sm4_ccm_encrypt(struct aead_request *req) { return kmb_ocs_aead_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CCM); } static int kmb_ocs_sm4_ccm_decrypt(struct aead_request *req) { return kmb_ocs_aead_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CCM); } static int ocs_aes_init_tfm(struct crypto_skcipher *tfm) { const char *alg_name = crypto_tfm_alg_name(&tfm->base); struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); struct crypto_sync_skcipher *blk; /* set fallback cipher in case it will be needed */ blk = crypto_alloc_sync_skcipher(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(blk)) return PTR_ERR(blk); tctx->sw_cipher.sk = blk; crypto_skcipher_set_reqsize(tfm, sizeof(struct ocs_aes_rctx)); return 0; } static int ocs_sm4_init_tfm(struct crypto_skcipher *tfm) { crypto_skcipher_set_reqsize(tfm, sizeof(struct ocs_aes_rctx)); return 0; } static inline void clear_key(struct ocs_aes_tctx *tctx) { memzero_explicit(tctx->key, OCS_AES_KEYSIZE_256); /* Zero key registers if set */ if (tctx->aes_dev) ocs_aes_set_key(tctx->aes_dev, OCS_AES_KEYSIZE_256, tctx->key, OCS_AES); } static void ocs_exit_tfm(struct crypto_skcipher *tfm) { struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm); clear_key(tctx); if (tctx->sw_cipher.sk) { crypto_free_sync_skcipher(tctx->sw_cipher.sk); tctx->sw_cipher.sk = NULL; } } static int ocs_aes_aead_cra_init(struct crypto_aead *tfm) { const char *alg_name = crypto_tfm_alg_name(&tfm->base); struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm); struct crypto_aead *blk; /* Set fallback cipher in case it will be needed */ blk = crypto_alloc_aead(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(blk)) return PTR_ERR(blk); tctx->sw_cipher.aead = blk; crypto_aead_set_reqsize(tfm, max(sizeof(struct ocs_aes_rctx), (sizeof(struct aead_request) + crypto_aead_reqsize(tctx->sw_cipher.aead)))); return 0; } static int kmb_ocs_aead_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: return 0; default: return -EINVAL; } } static int kmb_ocs_aead_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return crypto_gcm_check_authsize(authsize); } static int ocs_sm4_aead_cra_init(struct crypto_aead *tfm) { crypto_aead_set_reqsize(tfm, sizeof(struct ocs_aes_rctx)); return 0; } static void ocs_aead_cra_exit(struct crypto_aead *tfm) { struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm); clear_key(tctx); if (tctx->sw_cipher.aead) { crypto_free_aead(tctx->sw_cipher.aead); tctx->sw_cipher.aead = NULL; } } static struct skcipher_engine_alg algs[] = { #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB { .base.base.cra_name = "ecb(aes)", .base.base.cra_driver_name = "ecb-aes-keembay-ocs", .base.base.cra_priority = KMB_OCS_PRIORITY, .base.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .base.base.cra_blocksize = AES_BLOCK_SIZE, .base.base.cra_ctxsize = sizeof(struct ocs_aes_tctx), .base.base.cra_module = THIS_MODULE, .base.base.cra_alignmask = 0, .base.min_keysize = OCS_AES_MIN_KEY_SIZE, .base.max_keysize = OCS_AES_MAX_KEY_SIZE, .base.setkey = kmb_ocs_aes_set_key, .base.encrypt = kmb_ocs_aes_ecb_encrypt, .base.decrypt = kmb_ocs_aes_ecb_decrypt, .base.init = ocs_aes_init_tfm, .base.exit = ocs_exit_tfm, .op.do_one_request = kmb_ocs_aes_sk_do_one_request, }, #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */ { .base.base.cra_name = "cbc(aes)", .base.base.cra_driver_name = "cbc-aes-keembay-ocs", .base.base.cra_priority = KMB_OCS_PRIORITY, .base.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .base.base.cra_blocksize = AES_BLOCK_SIZE, .base.base.cra_ctxsize = sizeof(struct ocs_aes_tctx), .base.base.cra_module = THIS_MODULE, .base.base.cra_alignmask = 0, .base.min_keysize = OCS_AES_MIN_KEY_SIZE, .base.max_keysize = OCS_AES_MAX_KEY_SIZE, .base.ivsize = AES_BLOCK_SIZE, .base.setkey = kmb_ocs_aes_set_key, .base.encrypt = kmb_ocs_aes_cbc_encrypt, .base.decrypt = kmb_ocs_aes_cbc_decrypt, .base.init = ocs_aes_init_tfm, .base.exit = ocs_exit_tfm, .op.do_one_request = kmb_ocs_aes_sk_do_one_request, }, { .base.base.cra_name = "ctr(aes)", .base.base.cra_driver_name = "ctr-aes-keembay-ocs", .base.base.cra_priority = KMB_OCS_PRIORITY, .base.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .base.base.cra_blocksize = 1, .base.base.cra_ctxsize = sizeof(struct ocs_aes_tctx), .base.base.cra_module = THIS_MODULE, .base.base.cra_alignmask = 0, .base.min_keysize = OCS_AES_MIN_KEY_SIZE, .base.max_keysize = OCS_AES_MAX_KEY_SIZE, .base.ivsize = AES_BLOCK_SIZE, .base.setkey = kmb_ocs_aes_set_key, .base.encrypt = kmb_ocs_aes_ctr_encrypt, .base.decrypt = kmb_ocs_aes_ctr_decrypt, .base.init = ocs_aes_init_tfm, .base.exit = ocs_exit_tfm, .op.do_one_request = kmb_ocs_aes_sk_do_one_request, }, #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS { .base.base.cra_name = "cts(cbc(aes))", .base.base.cra_driver_name = "cts-aes-keembay-ocs", .base.base.cra_priority = KMB_OCS_PRIORITY, .base.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .base.base.cra_blocksize = AES_BLOCK_SIZE, .base.base.cra_ctxsize = sizeof(struct ocs_aes_tctx), .base.base.cra_module = THIS_MODULE, .base.base.cra_alignmask = 0, .base.min_keysize = OCS_AES_MIN_KEY_SIZE, .base.max_keysize = OCS_AES_MAX_KEY_SIZE, .base.ivsize = AES_BLOCK_SIZE, .base.setkey = kmb_ocs_aes_set_key, .base.encrypt = kmb_ocs_aes_cts_encrypt, .base.decrypt = kmb_ocs_aes_cts_decrypt, .base.init = ocs_aes_init_tfm, .base.exit = ocs_exit_tfm, .op.do_one_request = kmb_ocs_aes_sk_do_one_request, }, #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */ #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB { .base.base.cra_name = "ecb(sm4)", .base.base.cra_driver_name = "ecb-sm4-keembay-ocs", .base.base.cra_priority = KMB_OCS_PRIORITY, .base.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.base.cra_blocksize = AES_BLOCK_SIZE, .base.base.cra_ctxsize = sizeof(struct ocs_aes_tctx), .base.base.cra_module = THIS_MODULE, .base.base.cra_alignmask = 0, .base.min_keysize = OCS_SM4_KEY_SIZE, .base.max_keysize = OCS_SM4_KEY_SIZE, .base.setkey = kmb_ocs_sm4_set_key, .base.encrypt = kmb_ocs_sm4_ecb_encrypt, .base.decrypt = kmb_ocs_sm4_ecb_decrypt, .base.init = ocs_sm4_init_tfm, .base.exit = ocs_exit_tfm, .op.do_one_request = kmb_ocs_aes_sk_do_one_request, }, #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */ { .base.base.cra_name = "cbc(sm4)", .base.base.cra_driver_name = "cbc-sm4-keembay-ocs", .base.base.cra_priority = KMB_OCS_PRIORITY, .base.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.base.cra_blocksize = AES_BLOCK_SIZE, .base.base.cra_ctxsize = sizeof(struct ocs_aes_tctx), .base.base.cra_module = THIS_MODULE, .base.base.cra_alignmask = 0, .base.min_keysize = OCS_SM4_KEY_SIZE, .base.max_keysize = OCS_SM4_KEY_SIZE, .base.ivsize = AES_BLOCK_SIZE, .base.setkey = kmb_ocs_sm4_set_key, .base.encrypt = kmb_ocs_sm4_cbc_encrypt, .base.decrypt = kmb_ocs_sm4_cbc_decrypt, .base.init = ocs_sm4_init_tfm, .base.exit = ocs_exit_tfm, .op.do_one_request = kmb_ocs_aes_sk_do_one_request, }, { .base.base.cra_name = "ctr(sm4)", .base.base.cra_driver_name = "ctr-sm4-keembay-ocs", .base.base.cra_priority = KMB_OCS_PRIORITY, .base.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.base.cra_blocksize = 1, .base.base.cra_ctxsize = sizeof(struct ocs_aes_tctx), .base.base.cra_module = THIS_MODULE, .base.base.cra_alignmask = 0, .base.min_keysize = OCS_SM4_KEY_SIZE, .base.max_keysize = OCS_SM4_KEY_SIZE, .base.ivsize = AES_BLOCK_SIZE, .base.setkey = kmb_ocs_sm4_set_key, .base.encrypt = kmb_ocs_sm4_ctr_encrypt, .base.decrypt = kmb_ocs_sm4_ctr_decrypt, .base.init = ocs_sm4_init_tfm, .base.exit = ocs_exit_tfm, .op.do_one_request = kmb_ocs_aes_sk_do_one_request, }, #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS { .base.base.cra_name = "cts(cbc(sm4))", .base.base.cra_driver_name = "cts-sm4-keembay-ocs", .base.base.cra_priority = KMB_OCS_PRIORITY, .base.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .base.base.cra_blocksize = AES_BLOCK_SIZE, .base.base.cra_ctxsize = sizeof(struct ocs_aes_tctx), .base.base.cra_module = THIS_MODULE, .base.base.cra_alignmask = 0, .base.min_keysize = OCS_SM4_KEY_SIZE, .base.max_keysize = OCS_SM4_KEY_SIZE, .base.ivsize = AES_BLOCK_SIZE, .base.setkey = kmb_ocs_sm4_set_key, .base.encrypt = kmb_ocs_sm4_cts_encrypt, .base.decrypt = kmb_ocs_sm4_cts_decrypt, .base.init = ocs_sm4_init_tfm, .base.exit = ocs_exit_tfm, .op.do_one_request = kmb_ocs_aes_sk_do_one_request, } #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */ }; static struct aead_engine_alg algs_aead[] = { { .base.base = { .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-keembay-ocs", .cra_priority = KMB_OCS_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct ocs_aes_tctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .base.init = ocs_aes_aead_cra_init, .base.exit = ocs_aead_cra_exit, .base.ivsize = GCM_AES_IV_SIZE, .base.maxauthsize = AES_BLOCK_SIZE, .base.setauthsize = kmb_ocs_aead_gcm_setauthsize, .base.setkey = kmb_ocs_aes_aead_set_key, .base.encrypt = kmb_ocs_aes_gcm_encrypt, .base.decrypt = kmb_ocs_aes_gcm_decrypt, .op.do_one_request = kmb_ocs_aes_aead_do_one_request, }, { .base.base = { .cra_name = "ccm(aes)", .cra_driver_name = "ccm-aes-keembay-ocs", .cra_priority = KMB_OCS_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct ocs_aes_tctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .base.init = ocs_aes_aead_cra_init, .base.exit = ocs_aead_cra_exit, .base.ivsize = AES_BLOCK_SIZE, .base.maxauthsize = AES_BLOCK_SIZE, .base.setauthsize = kmb_ocs_aead_ccm_setauthsize, .base.setkey = kmb_ocs_aes_aead_set_key, .base.encrypt = kmb_ocs_aes_ccm_encrypt, .base.decrypt = kmb_ocs_aes_ccm_decrypt, .op.do_one_request = kmb_ocs_aes_aead_do_one_request, }, { .base.base = { .cra_name = "gcm(sm4)", .cra_driver_name = "gcm-sm4-keembay-ocs", .cra_priority = KMB_OCS_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct ocs_aes_tctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .base.init = ocs_sm4_aead_cra_init, .base.exit = ocs_aead_cra_exit, .base.ivsize = GCM_AES_IV_SIZE, .base.maxauthsize = AES_BLOCK_SIZE, .base.setauthsize = kmb_ocs_aead_gcm_setauthsize, .base.setkey = kmb_ocs_sm4_aead_set_key, .base.encrypt = kmb_ocs_sm4_gcm_encrypt, .base.decrypt = kmb_ocs_sm4_gcm_decrypt, .op.do_one_request = kmb_ocs_aes_aead_do_one_request, }, { .base.base = { .cra_name = "ccm(sm4)", .cra_driver_name = "ccm-sm4-keembay-ocs", .cra_priority = KMB_OCS_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct ocs_aes_tctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .base.init = ocs_sm4_aead_cra_init, .base.exit = ocs_aead_cra_exit, .base.ivsize = AES_BLOCK_SIZE, .base.maxauthsize = AES_BLOCK_SIZE, .base.setauthsize = kmb_ocs_aead_ccm_setauthsize, .base.setkey = kmb_ocs_sm4_aead_set_key, .base.encrypt = kmb_ocs_sm4_ccm_encrypt, .base.decrypt = kmb_ocs_sm4_ccm_decrypt, .op.do_one_request = kmb_ocs_aes_aead_do_one_request, } }; static void unregister_aes_algs(struct ocs_aes_dev *aes_dev) { crypto_engine_unregister_aeads(algs_aead, ARRAY_SIZE(algs_aead)); crypto_engine_unregister_skciphers(algs, ARRAY_SIZE(algs)); } static int register_aes_algs(struct ocs_aes_dev *aes_dev) { int ret; /* * If any algorithm fails to register, all preceding algorithms that * were successfully registered will be automatically unregistered. */ ret = crypto_engine_register_aeads(algs_aead, ARRAY_SIZE(algs_aead)); if (ret) return ret; ret = crypto_engine_register_skciphers(algs, ARRAY_SIZE(algs)); if (ret) crypto_engine_unregister_aeads(algs_aead, ARRAY_SIZE(algs)); return ret; } /* Device tree driver match. */ static const struct of_device_id kmb_ocs_aes_of_match[] = { { .compatible = "intel,keembay-ocs-aes", }, {} }; static int kmb_ocs_aes_remove(struct platform_device *pdev) { struct ocs_aes_dev *aes_dev; aes_dev = platform_get_drvdata(pdev); unregister_aes_algs(aes_dev); spin_lock(&ocs_aes.lock); list_del(&aes_dev->list); spin_unlock(&ocs_aes.lock); crypto_engine_exit(aes_dev->engine); return 0; } static int kmb_ocs_aes_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ocs_aes_dev *aes_dev; int rc; aes_dev = devm_kzalloc(dev, sizeof(*aes_dev), GFP_KERNEL); if (!aes_dev) return -ENOMEM; aes_dev->dev = dev; platform_set_drvdata(pdev, aes_dev); rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (rc) { dev_err(dev, "Failed to set 32 bit dma mask %d\n", rc); return rc; } /* Get base register address. */ aes_dev->base_reg = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(aes_dev->base_reg)) return PTR_ERR(aes_dev->base_reg); /* Get and request IRQ */ aes_dev->irq = platform_get_irq(pdev, 0); if (aes_dev->irq < 0) return aes_dev->irq; rc = devm_request_threaded_irq(dev, aes_dev->irq, ocs_aes_irq_handler, NULL, 0, "keembay-ocs-aes", aes_dev); if (rc < 0) { dev_err(dev, "Could not request IRQ\n"); return rc; } INIT_LIST_HEAD(&aes_dev->list); spin_lock(&ocs_aes.lock); list_add_tail(&aes_dev->list, &ocs_aes.dev_list); spin_unlock(&ocs_aes.lock); init_completion(&aes_dev->irq_completion); /* Initialize crypto engine */ aes_dev->engine = crypto_engine_alloc_init(dev, true); if (!aes_dev->engine) { rc = -ENOMEM; goto list_del; } rc = crypto_engine_start(aes_dev->engine); if (rc) { dev_err(dev, "Could not start crypto engine\n"); goto cleanup; } rc = register_aes_algs(aes_dev); if (rc) { dev_err(dev, "Could not register OCS algorithms with Crypto API\n"); goto cleanup; } return 0; cleanup: crypto_engine_exit(aes_dev->engine); list_del: spin_lock(&ocs_aes.lock); list_del(&aes_dev->list); spin_unlock(&ocs_aes.lock); return rc; } /* The OCS driver is a platform device. */ static struct platform_driver kmb_ocs_aes_driver = { .probe = kmb_ocs_aes_probe, .remove = kmb_ocs_aes_remove, .driver = { .name = DRV_NAME, .of_match_table = kmb_ocs_aes_of_match, }, }; module_platform_driver(kmb_ocs_aes_driver); MODULE_DESCRIPTION("Intel Keem Bay Offload and Crypto Subsystem (OCS) AES/SM4 Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("cbc-aes-keembay-ocs"); MODULE_ALIAS_CRYPTO("ctr-aes-keembay-ocs"); MODULE_ALIAS_CRYPTO("gcm-aes-keembay-ocs"); MODULE_ALIAS_CRYPTO("ccm-aes-keembay-ocs"); MODULE_ALIAS_CRYPTO("cbc-sm4-keembay-ocs"); MODULE_ALIAS_CRYPTO("ctr-sm4-keembay-ocs"); MODULE_ALIAS_CRYPTO("gcm-sm4-keembay-ocs"); MODULE_ALIAS_CRYPTO("ccm-sm4-keembay-ocs"); #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB MODULE_ALIAS_CRYPTO("ecb-aes-keembay-ocs"); MODULE_ALIAS_CRYPTO("ecb-sm4-keembay-ocs"); #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */ #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS MODULE_ALIAS_CRYPTO("cts-aes-keembay-ocs"); MODULE_ALIAS_CRYPTO("cts-sm4-keembay-ocs"); #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
linux-master
drivers/crypto/intel/keembay/keembay-ocs-aes-core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Intel IXP4xx NPE-C crypto driver * * Copyright (C) 2008 Christian Hohnstaedt <[email protected]> */ #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/rtnetlink.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/gfp.h> #include <linux/module.h> #include <linux/of.h> #include <crypto/ctr.h> #include <crypto/internal/des.h> #include <crypto/aes.h> #include <crypto/hmac.h> #include <crypto/sha1.h> #include <crypto/algapi.h> #include <crypto/internal/aead.h> #include <crypto/internal/skcipher.h> #include <crypto/authenc.h> #include <crypto/scatterwalk.h> #include <linux/soc/ixp4xx/npe.h> #include <linux/soc/ixp4xx/qmgr.h> /* Intermittent includes, delete this after v5.14-rc1 */ #include <linux/soc/ixp4xx/cpu.h> #define MAX_KEYLEN 32 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */ #define NPE_CTX_LEN 80 #define AES_BLOCK128 16 #define NPE_OP_HASH_VERIFY 0x01 #define NPE_OP_CCM_ENABLE 0x04 #define NPE_OP_CRYPT_ENABLE 0x08 #define NPE_OP_HASH_ENABLE 0x10 #define NPE_OP_NOT_IN_PLACE 0x20 #define NPE_OP_HMAC_DISABLE 0x40 #define NPE_OP_CRYPT_ENCRYPT 0x80 #define NPE_OP_CCM_GEN_MIC 0xcc #define NPE_OP_HASH_GEN_ICV 0x50 #define NPE_OP_ENC_GEN_KEY 0xc9 #define MOD_ECB 0x0000 #define MOD_CTR 0x1000 #define MOD_CBC_ENC 0x2000 #define MOD_CBC_DEC 0x3000 #define MOD_CCM_ENC 0x4000 #define MOD_CCM_DEC 0x5000 #define KEYLEN_128 4 #define KEYLEN_192 6 #define KEYLEN_256 8 #define CIPH_DECR 0x0000 #define CIPH_ENCR 0x0400 #define MOD_DES 0x0000 #define MOD_TDEA2 0x0100 #define MOD_3DES 0x0200 #define MOD_AES 0x0800 #define MOD_AES128 (0x0800 | KEYLEN_128) #define MOD_AES192 (0x0900 | KEYLEN_192) #define MOD_AES256 (0x0a00 | KEYLEN_256) #define MAX_IVLEN 16 #define NPE_QLEN 16 /* Space for registering when the first * NPE_QLEN crypt_ctl are busy */ #define NPE_QLEN_TOTAL 64 #define CTL_FLAG_UNUSED 0x0000 #define CTL_FLAG_USED 0x1000 #define CTL_FLAG_PERFORM_ABLK 0x0001 #define CTL_FLAG_GEN_ICV 0x0002 #define CTL_FLAG_GEN_REVAES 0x0004 #define CTL_FLAG_PERFORM_AEAD 0x0008 #define CTL_FLAG_MASK 0x000f #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE #define MD5_DIGEST_SIZE 16 struct buffer_desc { u32 phys_next; #ifdef __ARMEB__ u16 buf_len; u16 pkt_len; #else u16 pkt_len; u16 buf_len; #endif dma_addr_t phys_addr; u32 __reserved[4]; struct buffer_desc *next; enum dma_data_direction dir; }; struct crypt_ctl { #ifdef __ARMEB__ u8 mode; /* NPE_OP_* operation mode */ u8 init_len; u16 reserved; #else u16 reserved; u8 init_len; u8 mode; /* NPE_OP_* operation mode */ #endif u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */ u32 icv_rev_aes; /* icv or rev aes */ u32 src_buf; u32 dst_buf; #ifdef __ARMEB__ u16 auth_offs; /* Authentication start offset */ u16 auth_len; /* Authentication data length */ u16 crypt_offs; /* Cryption start offset */ u16 crypt_len; /* Cryption data length */ #else u16 auth_len; /* Authentication data length */ u16 auth_offs; /* Authentication start offset */ u16 crypt_len; /* Cryption data length */ u16 crypt_offs; /* Cryption start offset */ #endif u32 aadAddr; /* Additional Auth Data Addr for CCM mode */ u32 crypto_ctx; /* NPE Crypto Param structure address */ /* Used by Host: 4*4 bytes*/ unsigned int ctl_flags; union { struct skcipher_request *ablk_req; struct aead_request *aead_req; struct crypto_tfm *tfm; } data; struct buffer_desc *regist_buf; u8 *regist_ptr; }; struct ablk_ctx { struct buffer_desc *src; struct buffer_desc *dst; u8 iv[MAX_IVLEN]; bool encrypt; struct skcipher_request fallback_req; // keep at the end }; struct aead_ctx { struct buffer_desc *src; struct buffer_desc *dst; struct scatterlist ivlist; /* used when the hmac is not on one sg entry */ u8 *hmac_virt; int encrypt; }; struct ix_hash_algo { u32 cfgword; unsigned char *icv; }; struct ix_sa_dir { unsigned char *npe_ctx; dma_addr_t npe_ctx_phys; int npe_ctx_idx; u8 npe_mode; }; struct ixp_ctx { struct ix_sa_dir encrypt; struct ix_sa_dir decrypt; int authkey_len; u8 authkey[MAX_KEYLEN]; int enckey_len; u8 enckey[MAX_KEYLEN]; u8 salt[MAX_IVLEN]; u8 nonce[CTR_RFC3686_NONCE_SIZE]; unsigned int salted; atomic_t configuring; struct completion completion; struct crypto_skcipher *fallback_tfm; }; struct ixp_alg { struct skcipher_alg crypto; const struct ix_hash_algo *hash; u32 cfg_enc; u32 cfg_dec; int registered; }; struct ixp_aead_alg { struct aead_alg crypto; const struct ix_hash_algo *hash; u32 cfg_enc; u32 cfg_dec; int registered; }; static const struct ix_hash_algo hash_alg_md5 = { .cfgword = 0xAA010004, .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF" "\xFE\xDC\xBA\x98\x76\x54\x32\x10", }; static const struct ix_hash_algo hash_alg_sha1 = { .cfgword = 0x00000005, .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA" "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0", }; static struct npe *npe_c; static unsigned int send_qid; static unsigned int recv_qid; static struct dma_pool *buffer_pool; static struct dma_pool *ctx_pool; static struct crypt_ctl *crypt_virt; static dma_addr_t crypt_phys; static int support_aes = 1; static struct platform_device *pdev; static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt) { return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl); } static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys) { return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl); } static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc; } static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec; } static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash; } static int setup_crypt_desc(void) { struct device *dev = &pdev->dev; BUILD_BUG_ON(!(IS_ENABLED(CONFIG_COMPILE_TEST) && IS_ENABLED(CONFIG_64BIT)) && sizeof(struct crypt_ctl) != 64); crypt_virt = dma_alloc_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl), &crypt_phys, GFP_ATOMIC); if (!crypt_virt) return -ENOMEM; return 0; } static DEFINE_SPINLOCK(desc_lock); static struct crypt_ctl *get_crypt_desc(void) { int i; static int idx; unsigned long flags; spin_lock_irqsave(&desc_lock, flags); if (unlikely(!crypt_virt)) setup_crypt_desc(); if (unlikely(!crypt_virt)) { spin_unlock_irqrestore(&desc_lock, flags); return NULL; } i = idx; if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { if (++idx >= NPE_QLEN) idx = 0; crypt_virt[i].ctl_flags = CTL_FLAG_USED; spin_unlock_irqrestore(&desc_lock, flags); return crypt_virt + i; } else { spin_unlock_irqrestore(&desc_lock, flags); return NULL; } } static DEFINE_SPINLOCK(emerg_lock); static struct crypt_ctl *get_crypt_desc_emerg(void) { int i; static int idx = NPE_QLEN; struct crypt_ctl *desc; unsigned long flags; desc = get_crypt_desc(); if (desc) return desc; if (unlikely(!crypt_virt)) return NULL; spin_lock_irqsave(&emerg_lock, flags); i = idx; if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { if (++idx >= NPE_QLEN_TOTAL) idx = NPE_QLEN; crypt_virt[i].ctl_flags = CTL_FLAG_USED; spin_unlock_irqrestore(&emerg_lock, flags); return crypt_virt + i; } else { spin_unlock_irqrestore(&emerg_lock, flags); return NULL; } } static void free_buf_chain(struct device *dev, struct buffer_desc *buf, dma_addr_t phys) { while (buf) { struct buffer_desc *buf1; u32 phys1; buf1 = buf->next; phys1 = buf->phys_next; dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir); dma_pool_free(buffer_pool, buf, phys); buf = buf1; phys = phys1; } } static struct tasklet_struct crypto_done_tasklet; static void finish_scattered_hmac(struct crypt_ctl *crypt) { struct aead_request *req = crypt->data.aead_req; struct aead_ctx *req_ctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); int authsize = crypto_aead_authsize(tfm); int decryptlen = req->assoclen + req->cryptlen - authsize; if (req_ctx->encrypt) { scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst, decryptlen, authsize, 1); } dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes); } static void one_packet(dma_addr_t phys) { struct device *dev = &pdev->dev; struct crypt_ctl *crypt; struct ixp_ctx *ctx; int failed; failed = phys & 0x1 ? -EBADMSG : 0; phys &= ~0x3; crypt = crypt_phys2virt(phys); switch (crypt->ctl_flags & CTL_FLAG_MASK) { case CTL_FLAG_PERFORM_AEAD: { struct aead_request *req = crypt->data.aead_req; struct aead_ctx *req_ctx = aead_request_ctx(req); free_buf_chain(dev, req_ctx->src, crypt->src_buf); free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); if (req_ctx->hmac_virt) finish_scattered_hmac(crypt); aead_request_complete(req, failed); break; } case CTL_FLAG_PERFORM_ABLK: { struct skcipher_request *req = crypt->data.ablk_req; struct ablk_ctx *req_ctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); unsigned int ivsize = crypto_skcipher_ivsize(tfm); unsigned int offset; if (ivsize > 0) { offset = req->cryptlen - ivsize; if (req_ctx->encrypt) { scatterwalk_map_and_copy(req->iv, req->dst, offset, ivsize, 0); } else { memcpy(req->iv, req_ctx->iv, ivsize); memzero_explicit(req_ctx->iv, ivsize); } } if (req_ctx->dst) free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); free_buf_chain(dev, req_ctx->src, crypt->src_buf); skcipher_request_complete(req, failed); break; } case CTL_FLAG_GEN_ICV: ctx = crypto_tfm_ctx(crypt->data.tfm); dma_pool_free(ctx_pool, crypt->regist_ptr, crypt->regist_buf->phys_addr); dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf); if (atomic_dec_and_test(&ctx->configuring)) complete(&ctx->completion); break; case CTL_FLAG_GEN_REVAES: ctx = crypto_tfm_ctx(crypt->data.tfm); *(__be32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR); if (atomic_dec_and_test(&ctx->configuring)) complete(&ctx->completion); break; default: BUG(); } crypt->ctl_flags = CTL_FLAG_UNUSED; } static void irqhandler(void *_unused) { tasklet_schedule(&crypto_done_tasklet); } static void crypto_done_action(unsigned long arg) { int i; for (i = 0; i < 4; i++) { dma_addr_t phys = qmgr_get_entry(recv_qid); if (!phys) return; one_packet(phys); } tasklet_schedule(&crypto_done_tasklet); } static int init_ixp_crypto(struct device *dev) { struct device_node *np = dev->of_node; u32 msg[2] = { 0, 0 }; int ret = -ENODEV; u32 npe_id; dev_info(dev, "probing...\n"); /* Locate the NPE and queue manager to use from device tree */ if (IS_ENABLED(CONFIG_OF) && np) { struct of_phandle_args queue_spec; struct of_phandle_args npe_spec; ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0, &npe_spec); if (ret) { dev_err(dev, "no NPE engine specified\n"); return -ENODEV; } npe_id = npe_spec.args[0]; ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0, &queue_spec); if (ret) { dev_err(dev, "no rx queue phandle\n"); return -ENODEV; } recv_qid = queue_spec.args[0]; ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0, &queue_spec); if (ret) { dev_err(dev, "no txready queue phandle\n"); return -ENODEV; } send_qid = queue_spec.args[0]; } else { /* * Hardcoded engine when using platform data, this goes away * when we switch to using DT only. */ npe_id = 2; send_qid = 29; recv_qid = 30; } npe_c = npe_request(npe_id); if (!npe_c) return ret; if (!npe_running(npe_c)) { ret = npe_load_firmware(npe_c, npe_name(npe_c), dev); if (ret) goto npe_release; if (npe_recv_message(npe_c, msg, "STATUS_MSG")) goto npe_error; } else { if (npe_send_message(npe_c, msg, "STATUS_MSG")) goto npe_error; if (npe_recv_message(npe_c, msg, "STATUS_MSG")) goto npe_error; } switch ((msg[1] >> 16) & 0xff) { case 3: dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c)); support_aes = 0; break; case 4: case 5: support_aes = 1; break; default: dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c)); ret = -ENODEV; goto npe_release; } /* buffer_pool will also be used to sometimes store the hmac, * so assure it is large enough */ BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc)); buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc), 32, 0); ret = -ENOMEM; if (!buffer_pool) goto err; ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0); if (!ctx_pool) goto err; ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0, "ixp_crypto:out", NULL); if (ret) goto err; ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0, "ixp_crypto:in", NULL); if (ret) { qmgr_release_queue(send_qid); goto err; } qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL); tasklet_init(&crypto_done_tasklet, crypto_done_action, 0); qmgr_enable_irq(recv_qid); return 0; npe_error: dev_err(dev, "%s not responding\n", npe_name(npe_c)); ret = -EIO; err: dma_pool_destroy(ctx_pool); dma_pool_destroy(buffer_pool); npe_release: npe_release(npe_c); return ret; } static void release_ixp_crypto(struct device *dev) { qmgr_disable_irq(recv_qid); tasklet_kill(&crypto_done_tasklet); qmgr_release_queue(send_qid); qmgr_release_queue(recv_qid); dma_pool_destroy(ctx_pool); dma_pool_destroy(buffer_pool); npe_release(npe_c); if (crypt_virt) dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl), crypt_virt, crypt_phys); } static void reset_sa_dir(struct ix_sa_dir *dir) { memset(dir->npe_ctx, 0, NPE_CTX_LEN); dir->npe_ctx_idx = 0; dir->npe_mode = 0; } static int init_sa_dir(struct ix_sa_dir *dir) { dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys); if (!dir->npe_ctx) return -ENOMEM; reset_sa_dir(dir); return 0; } static void free_sa_dir(struct ix_sa_dir *dir) { memset(dir->npe_ctx, 0, NPE_CTX_LEN); dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys); } static int init_tfm(struct crypto_tfm *tfm) { struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); int ret; atomic_set(&ctx->configuring, 0); ret = init_sa_dir(&ctx->encrypt); if (ret) return ret; ret = init_sa_dir(&ctx->decrypt); if (ret) free_sa_dir(&ctx->encrypt); return ret; } static int init_tfm_ablk(struct crypto_skcipher *tfm) { struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm); struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm); const char *name = crypto_tfm_alg_name(ctfm); ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback_tfm)) { pr_err("ERROR: Cannot allocate fallback for %s %ld\n", name, PTR_ERR(ctx->fallback_tfm)); return PTR_ERR(ctx->fallback_tfm); } pr_info("Fallback for %s is %s\n", crypto_tfm_alg_driver_name(&tfm->base), crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm)) ); crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm)); return init_tfm(crypto_skcipher_tfm(tfm)); } static int init_tfm_aead(struct crypto_aead *tfm) { crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx)); return init_tfm(crypto_aead_tfm(tfm)); } static void exit_tfm(struct crypto_tfm *tfm) { struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); free_sa_dir(&ctx->encrypt); free_sa_dir(&ctx->decrypt); } static void exit_tfm_ablk(struct crypto_skcipher *tfm) { struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm); struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm); crypto_free_skcipher(ctx->fallback_tfm); exit_tfm(crypto_skcipher_tfm(tfm)); } static void exit_tfm_aead(struct crypto_aead *tfm) { exit_tfm(crypto_aead_tfm(tfm)); } static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target, int init_len, u32 ctx_addr, const u8 *key, int key_len) { struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); struct crypt_ctl *crypt; struct buffer_desc *buf; int i; u8 *pad; dma_addr_t pad_phys, buf_phys; BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN); pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys); if (!pad) return -ENOMEM; buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys); if (!buf) { dma_pool_free(ctx_pool, pad, pad_phys); return -ENOMEM; } crypt = get_crypt_desc_emerg(); if (!crypt) { dma_pool_free(ctx_pool, pad, pad_phys); dma_pool_free(buffer_pool, buf, buf_phys); return -EAGAIN; } memcpy(pad, key, key_len); memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len); for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) pad[i] ^= xpad; crypt->data.tfm = tfm; crypt->regist_ptr = pad; crypt->regist_buf = buf; crypt->auth_offs = 0; crypt->auth_len = HMAC_PAD_BLOCKLEN; crypt->crypto_ctx = ctx_addr; crypt->src_buf = buf_phys; crypt->icv_rev_aes = target; crypt->mode = NPE_OP_HASH_GEN_ICV; crypt->init_len = init_len; crypt->ctl_flags |= CTL_FLAG_GEN_ICV; buf->next = NULL; buf->buf_len = HMAC_PAD_BLOCKLEN; buf->pkt_len = 0; buf->phys_addr = pad_phys; atomic_inc(&ctx->configuring); qmgr_put_entry(send_qid, crypt_virt2phys(crypt)); BUG_ON(qmgr_stat_overflow(send_qid)); return 0; } static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize, const u8 *key, int key_len, unsigned int digest_len) { u32 itarget, otarget, npe_ctx_addr; unsigned char *cinfo; int init_len, ret = 0; u32 cfgword; struct ix_sa_dir *dir; struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); const struct ix_hash_algo *algo; dir = encrypt ? &ctx->encrypt : &ctx->decrypt; cinfo = dir->npe_ctx + dir->npe_ctx_idx; algo = ix_hash(tfm); /* write cfg word to cryptinfo */ cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */ #ifndef __ARMEB__ cfgword ^= 0xAA000000; /* change the "byte swap" flags */ #endif *(__be32 *)cinfo = cpu_to_be32(cfgword); cinfo += sizeof(cfgword); /* write ICV to cryptinfo */ memcpy(cinfo, algo->icv, digest_len); cinfo += digest_len; itarget = dir->npe_ctx_phys + dir->npe_ctx_idx + sizeof(algo->cfgword); otarget = itarget + digest_len; init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx); npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx; dir->npe_ctx_idx += init_len; dir->npe_mode |= NPE_OP_HASH_ENABLE; if (!encrypt) dir->npe_mode |= NPE_OP_HASH_VERIFY; ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget, init_len, npe_ctx_addr, key, key_len); if (ret) return ret; return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget, init_len, npe_ctx_addr, key, key_len); } static int gen_rev_aes_key(struct crypto_tfm *tfm) { struct crypt_ctl *crypt; struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); struct ix_sa_dir *dir = &ctx->decrypt; crypt = get_crypt_desc_emerg(); if (!crypt) return -EAGAIN; *(__be32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR); crypt->data.tfm = tfm; crypt->crypt_offs = 0; crypt->crypt_len = AES_BLOCK128; crypt->src_buf = 0; crypt->crypto_ctx = dir->npe_ctx_phys; crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32); crypt->mode = NPE_OP_ENC_GEN_KEY; crypt->init_len = dir->npe_ctx_idx; crypt->ctl_flags |= CTL_FLAG_GEN_REVAES; atomic_inc(&ctx->configuring); qmgr_put_entry(send_qid, crypt_virt2phys(crypt)); BUG_ON(qmgr_stat_overflow(send_qid)); return 0; } static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key, int key_len) { u8 *cinfo; u32 cipher_cfg; u32 keylen_cfg = 0; struct ix_sa_dir *dir; struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); int err; dir = encrypt ? &ctx->encrypt : &ctx->decrypt; cinfo = dir->npe_ctx; if (encrypt) { cipher_cfg = cipher_cfg_enc(tfm); dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT; } else { cipher_cfg = cipher_cfg_dec(tfm); } if (cipher_cfg & MOD_AES) { switch (key_len) { case 16: keylen_cfg = MOD_AES128; break; case 24: keylen_cfg = MOD_AES192; break; case 32: keylen_cfg = MOD_AES256; break; default: return -EINVAL; } cipher_cfg |= keylen_cfg; } else { err = crypto_des_verify_key(tfm, key); if (err) return err; } /* write cfg word to cryptinfo */ *(__be32 *)cinfo = cpu_to_be32(cipher_cfg); cinfo += sizeof(cipher_cfg); /* write cipher key to cryptinfo */ memcpy(cinfo, key, key_len); /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */ if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) { memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len); key_len = DES3_EDE_KEY_SIZE; } dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len; dir->npe_mode |= NPE_OP_CRYPT_ENABLE; if ((cipher_cfg & MOD_AES) && !encrypt) return gen_rev_aes_key(tfm); return 0; } static struct buffer_desc *chainup_buffers(struct device *dev, struct scatterlist *sg, unsigned int nbytes, struct buffer_desc *buf, gfp_t flags, enum dma_data_direction dir) { for (; nbytes > 0; sg = sg_next(sg)) { unsigned int len = min(nbytes, sg->length); struct buffer_desc *next_buf; dma_addr_t next_buf_phys; void *ptr; nbytes -= len; ptr = sg_virt(sg); next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys); if (!next_buf) { buf = NULL; break; } sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir); buf->next = next_buf; buf->phys_next = next_buf_phys; buf = next_buf; buf->phys_addr = sg_dma_address(sg); buf->buf_len = len; buf->dir = dir; } buf->next = NULL; buf->phys_next = 0; return buf; } static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; init_completion(&ctx->completion); atomic_inc(&ctx->configuring); reset_sa_dir(&ctx->encrypt); reset_sa_dir(&ctx->decrypt); ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE; ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE; ret = setup_cipher(&tfm->base, 0, key, key_len); if (ret) goto out; ret = setup_cipher(&tfm->base, 1, key, key_len); out: if (!atomic_dec_and_test(&ctx->configuring)) wait_for_completion(&ctx->completion); if (ret) return ret; crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len); } static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { return verify_skcipher_des3_key(tfm, key) ?: ablk_setkey(tfm, key, key_len); } static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm); /* the nonce is stored in bytes at end of key */ if (key_len < CTR_RFC3686_NONCE_SIZE) return -EINVAL; memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE), CTR_RFC3686_NONCE_SIZE); key_len -= CTR_RFC3686_NONCE_SIZE; return ablk_setkey(tfm, key, key_len); } static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct ixp_ctx *op = crypto_skcipher_ctx(tfm); struct ablk_ctx *rctx = skcipher_request_ctx(areq); int err; skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm); skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags, areq->base.complete, areq->base.data); skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst, areq->cryptlen, areq->iv); if (encrypt) err = crypto_skcipher_encrypt(&rctx->fallback_req); else err = crypto_skcipher_decrypt(&rctx->fallback_req); return err; } static int ablk_perform(struct skcipher_request *req, int encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm); unsigned int ivsize = crypto_skcipher_ivsize(tfm); struct ix_sa_dir *dir; struct crypt_ctl *crypt; unsigned int nbytes = req->cryptlen; enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; struct ablk_ctx *req_ctx = skcipher_request_ctx(req); struct buffer_desc src_hook; struct device *dev = &pdev->dev; unsigned int offset; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1) return ixp4xx_cipher_fallback(req, encrypt); if (qmgr_stat_full(send_qid)) return -EAGAIN; if (atomic_read(&ctx->configuring)) return -EAGAIN; dir = encrypt ? &ctx->encrypt : &ctx->decrypt; req_ctx->encrypt = encrypt; crypt = get_crypt_desc(); if (!crypt) return -ENOMEM; crypt->data.ablk_req = req; crypt->crypto_ctx = dir->npe_ctx_phys; crypt->mode = dir->npe_mode; crypt->init_len = dir->npe_ctx_idx; crypt->crypt_offs = 0; crypt->crypt_len = nbytes; BUG_ON(ivsize && !req->iv); memcpy(crypt->iv, req->iv, ivsize); if (ivsize > 0 && !encrypt) { offset = req->cryptlen - ivsize; scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0); } if (req->src != req->dst) { struct buffer_desc dst_hook; crypt->mode |= NPE_OP_NOT_IN_PLACE; /* This was never tested by Intel * for more than one dst buffer, I think. */ req_ctx->dst = NULL; if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook, flags, DMA_FROM_DEVICE)) goto free_buf_dest; src_direction = DMA_TO_DEVICE; req_ctx->dst = dst_hook.next; crypt->dst_buf = dst_hook.phys_next; } else { req_ctx->dst = NULL; } req_ctx->src = NULL; if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags, src_direction)) goto free_buf_src; req_ctx->src = src_hook.next; crypt->src_buf = src_hook.phys_next; crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK; qmgr_put_entry(send_qid, crypt_virt2phys(crypt)); BUG_ON(qmgr_stat_overflow(send_qid)); return -EINPROGRESS; free_buf_src: free_buf_chain(dev, req_ctx->src, crypt->src_buf); free_buf_dest: if (req->src != req->dst) free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); crypt->ctl_flags = CTL_FLAG_UNUSED; return -ENOMEM; } static int ablk_encrypt(struct skcipher_request *req) { return ablk_perform(req, 1); } static int ablk_decrypt(struct skcipher_request *req) { return ablk_perform(req, 0); } static int ablk_rfc3686_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm); u8 iv[CTR_RFC3686_BLOCK_SIZE]; u8 *info = req->iv; int ret; /* set up counter block */ memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE); /* initialize counter portion of counter block */ *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = cpu_to_be32(1); req->iv = iv; ret = ablk_perform(req, 1); req->iv = info; return ret; } static int aead_perform(struct aead_request *req, int encrypt, int cryptoffset, int eff_cryptlen, u8 *iv) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct ixp_ctx *ctx = crypto_aead_ctx(tfm); unsigned int ivsize = crypto_aead_ivsize(tfm); unsigned int authsize = crypto_aead_authsize(tfm); struct ix_sa_dir *dir; struct crypt_ctl *crypt; unsigned int cryptlen; struct buffer_desc *buf, src_hook; struct aead_ctx *req_ctx = aead_request_ctx(req); struct device *dev = &pdev->dev; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; unsigned int lastlen; if (qmgr_stat_full(send_qid)) return -EAGAIN; if (atomic_read(&ctx->configuring)) return -EAGAIN; if (encrypt) { dir = &ctx->encrypt; cryptlen = req->cryptlen; } else { dir = &ctx->decrypt; /* req->cryptlen includes the authsize when decrypting */ cryptlen = req->cryptlen - authsize; eff_cryptlen -= authsize; } crypt = get_crypt_desc(); if (!crypt) return -ENOMEM; crypt->data.aead_req = req; crypt->crypto_ctx = dir->npe_ctx_phys; crypt->mode = dir->npe_mode; crypt->init_len = dir->npe_ctx_idx; crypt->crypt_offs = cryptoffset; crypt->crypt_len = eff_cryptlen; crypt->auth_offs = 0; crypt->auth_len = req->assoclen + cryptlen; BUG_ON(ivsize && !req->iv); memcpy(crypt->iv, req->iv, ivsize); buf = chainup_buffers(dev, req->src, crypt->auth_len, &src_hook, flags, src_direction); req_ctx->src = src_hook.next; crypt->src_buf = src_hook.phys_next; if (!buf) goto free_buf_src; lastlen = buf->buf_len; if (lastlen >= authsize) crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize; req_ctx->dst = NULL; if (req->src != req->dst) { struct buffer_desc dst_hook; crypt->mode |= NPE_OP_NOT_IN_PLACE; src_direction = DMA_TO_DEVICE; buf = chainup_buffers(dev, req->dst, crypt->auth_len, &dst_hook, flags, DMA_FROM_DEVICE); req_ctx->dst = dst_hook.next; crypt->dst_buf = dst_hook.phys_next; if (!buf) goto free_buf_dst; if (encrypt) { lastlen = buf->buf_len; if (lastlen >= authsize) crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize; } } if (unlikely(lastlen < authsize)) { dma_addr_t dma; /* The 12 hmac bytes are scattered, * we need to copy them into a safe buffer */ req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, &dma); if (unlikely(!req_ctx->hmac_virt)) goto free_buf_dst; crypt->icv_rev_aes = dma; if (!encrypt) { scatterwalk_map_and_copy(req_ctx->hmac_virt, req->src, cryptlen, authsize, 0); } req_ctx->encrypt = encrypt; } else { req_ctx->hmac_virt = NULL; } crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD; qmgr_put_entry(send_qid, crypt_virt2phys(crypt)); BUG_ON(qmgr_stat_overflow(send_qid)); return -EINPROGRESS; free_buf_dst: free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); free_buf_src: free_buf_chain(dev, req_ctx->src, crypt->src_buf); crypt->ctl_flags = CTL_FLAG_UNUSED; return -ENOMEM; } static int aead_setup(struct crypto_aead *tfm, unsigned int authsize) { struct ixp_ctx *ctx = crypto_aead_ctx(tfm); unsigned int digest_len = crypto_aead_maxauthsize(tfm); int ret; if (!ctx->enckey_len && !ctx->authkey_len) return 0; init_completion(&ctx->completion); atomic_inc(&ctx->configuring); reset_sa_dir(&ctx->encrypt); reset_sa_dir(&ctx->decrypt); ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len); if (ret) goto out; ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len); if (ret) goto out; ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey, ctx->authkey_len, digest_len); if (ret) goto out; ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey, ctx->authkey_len, digest_len); out: if (!atomic_dec_and_test(&ctx->configuring)) wait_for_completion(&ctx->completion); return ret; } static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { int max = crypto_aead_maxauthsize(tfm) >> 2; if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3)) return -EINVAL; return aead_setup(tfm, authsize); } static int aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct ixp_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_authenc_keys keys; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) goto badkey; if (keys.authkeylen > sizeof(ctx->authkey)) goto badkey; if (keys.enckeylen > sizeof(ctx->enckey)) goto badkey; memcpy(ctx->authkey, keys.authkey, keys.authkeylen); memcpy(ctx->enckey, keys.enckey, keys.enckeylen); ctx->authkey_len = keys.authkeylen; ctx->enckey_len = keys.enckeylen; memzero_explicit(&keys, sizeof(keys)); return aead_setup(tfm, crypto_aead_authsize(tfm)); badkey: memzero_explicit(&keys, sizeof(keys)); return -EINVAL; } static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct ixp_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_authenc_keys keys; int err; err = crypto_authenc_extractkeys(&keys, key, keylen); if (unlikely(err)) goto badkey; err = -EINVAL; if (keys.authkeylen > sizeof(ctx->authkey)) goto badkey; err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen); if (err) goto badkey; memcpy(ctx->authkey, keys.authkey, keys.authkeylen); memcpy(ctx->enckey, keys.enckey, keys.enckeylen); ctx->authkey_len = keys.authkeylen; ctx->enckey_len = keys.enckeylen; memzero_explicit(&keys, sizeof(keys)); return aead_setup(tfm, crypto_aead_authsize(tfm)); badkey: memzero_explicit(&keys, sizeof(keys)); return err; } static int aead_encrypt(struct aead_request *req) { return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv); } static int aead_decrypt(struct aead_request *req) { return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv); } static struct ixp_alg ixp4xx_algos[] = { { .crypto = { .base.cra_name = "cbc(des)", .base.cra_blocksize = DES_BLOCK_SIZE, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .base.cra_name = "ecb(des)", .base.cra_blocksize = DES_BLOCK_SIZE, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, }, .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192, }, { .crypto = { .base.cra_name = "cbc(des3_ede)", .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .setkey = ablk_des3_setkey, }, .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .base.cra_name = "ecb(des3_ede)", .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .setkey = ablk_des3_setkey, }, .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192, }, { .crypto = { .base.cra_name = "cbc(aes)", .base.cra_blocksize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, }, { .crypto = { .base.cra_name = "ecb(aes)", .base.cra_blocksize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB, .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB, }, { .crypto = { .base.cra_name = "ctr(aes)", .base.cra_blocksize = 1, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, }, { .crypto = { .base.cra_name = "rfc3686(ctr(aes))", .base.cra_blocksize = 1, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ablk_rfc3686_setkey, .encrypt = ablk_rfc3686_crypt, .decrypt = ablk_rfc3686_crypt, }, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, } }; static struct ixp_aead_alg ixp4xx_aeads[] = { { .crypto = { .base = { .cra_name = "authenc(hmac(md5),cbc(des))", .cra_blocksize = DES_BLOCK_SIZE, }, .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .hash = &hash_alg_md5, .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .base = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, .setkey = des3_aead_setkey, }, .hash = &hash_alg_md5, .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .base = { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_blocksize = DES_BLOCK_SIZE, }, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .hash = &hash_alg_sha1, .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .base = { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .setkey = des3_aead_setkey, }, .hash = &hash_alg_sha1, .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .base = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_blocksize = AES_BLOCK_SIZE, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .hash = &hash_alg_md5, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, }, { .crypto = { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_blocksize = AES_BLOCK_SIZE, }, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .hash = &hash_alg_sha1, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, } }; #define IXP_POSTFIX "-ixp4xx" static int ixp_crypto_probe(struct platform_device *_pdev) { struct device *dev = &_pdev->dev; int num = ARRAY_SIZE(ixp4xx_algos); int i, err; pdev = _pdev; err = init_ixp_crypto(dev); if (err) return err; for (i = 0; i < num; i++) { struct skcipher_alg *cra = &ixp4xx_algos[i].crypto; if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s"IXP_POSTFIX, cra->base.cra_name) >= CRYPTO_MAX_ALG_NAME) continue; if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) continue; /* block ciphers */ cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_NEED_FALLBACK; if (!cra->setkey) cra->setkey = ablk_setkey; if (!cra->encrypt) cra->encrypt = ablk_encrypt; if (!cra->decrypt) cra->decrypt = ablk_decrypt; cra->init = init_tfm_ablk; cra->exit = exit_tfm_ablk; cra->base.cra_ctxsize = sizeof(struct ixp_ctx); cra->base.cra_module = THIS_MODULE; cra->base.cra_alignmask = 3; cra->base.cra_priority = 300; if (crypto_register_skcipher(cra)) dev_err(&pdev->dev, "Failed to register '%s'\n", cra->base.cra_name); else ixp4xx_algos[i].registered = 1; } for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) { struct aead_alg *cra = &ixp4xx_aeads[i].crypto; if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s"IXP_POSTFIX, cra->base.cra_name) >= CRYPTO_MAX_ALG_NAME) continue; if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) continue; /* authenc */ cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; cra->setkey = cra->setkey ?: aead_setkey; cra->setauthsize = aead_setauthsize; cra->encrypt = aead_encrypt; cra->decrypt = aead_decrypt; cra->init = init_tfm_aead; cra->exit = exit_tfm_aead; cra->base.cra_ctxsize = sizeof(struct ixp_ctx); cra->base.cra_module = THIS_MODULE; cra->base.cra_alignmask = 3; cra->base.cra_priority = 300; if (crypto_register_aead(cra)) dev_err(&pdev->dev, "Failed to register '%s'\n", cra->base.cra_driver_name); else ixp4xx_aeads[i].registered = 1; } return 0; } static int ixp_crypto_remove(struct platform_device *pdev) { int num = ARRAY_SIZE(ixp4xx_algos); int i; for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) { if (ixp4xx_aeads[i].registered) crypto_unregister_aead(&ixp4xx_aeads[i].crypto); } for (i = 0; i < num; i++) { if (ixp4xx_algos[i].registered) crypto_unregister_skcipher(&ixp4xx_algos[i].crypto); } release_ixp_crypto(&pdev->dev); return 0; } static const struct of_device_id ixp4xx_crypto_of_match[] = { { .compatible = "intel,ixp4xx-crypto", }, {}, }; static struct platform_driver ixp_crypto_driver = { .probe = ixp_crypto_probe, .remove = ixp_crypto_remove, .driver = { .name = "ixp4xx_crypto", .of_match_table = ixp4xx_crypto_of_match, }, }; module_platform_driver(ixp_crypto_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Christian Hohnstaedt <[email protected]>"); MODULE_DESCRIPTION("IXP4xx hardware crypto");
linux-master
drivers/crypto/intel/ixp4xx/ixp4xx_crypto.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Marvell * * Antoine Tenart <[email protected]> */ #include <linux/clk.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/firmware.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/of_irq.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/workqueue.h> #include <crypto/internal/aead.h> #include <crypto/internal/hash.h> #include <crypto/internal/skcipher.h> #include "safexcel.h" static u32 max_rings = EIP197_MAX_RINGS; module_param(max_rings, uint, 0644); MODULE_PARM_DESC(max_rings, "Maximum number of rings to use."); static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv) { int i; /* * Map all interfaces/rings to register index 0 * so they can share contexts. Without this, the EIP197 will * assume each interface/ring to be in its own memory domain * i.e. have its own subset of UNIQUE memory addresses. * Which would cause records with the SAME memory address to * use DIFFERENT cache buffers, causing both poor cache utilization * AND serious coherence/invalidation issues. */ for (i = 0; i < 4; i++) writel(0, priv->base + EIP197_FLUE_IFC_LUT(i)); /* * Initialize other virtualization regs for cache * These may not be in their reset state ... */ for (i = 0; i < priv->config.rings; i++) { writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i)); writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i)); writel(EIP197_FLUE_CONFIG_MAGIC, priv->base + EIP197_FLUE_CONFIG(i)); } writel(0, priv->base + EIP197_FLUE_OFFSETS); writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET); } static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv, u32 addrmid, int *actbank) { u32 val; int curbank; curbank = addrmid >> 16; if (curbank != *actbank) { val = readl(priv->base + EIP197_CS_RAM_CTRL); val = (val & ~EIP197_CS_BANKSEL_MASK) | (curbank << EIP197_CS_BANKSEL_OFS); writel(val, priv->base + EIP197_CS_RAM_CTRL); *actbank = curbank; } } static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv, int maxbanks, u32 probemask, u32 stride) { u32 val, addrhi, addrlo, addrmid, addralias, delta, marker; int actbank; /* * And probe the actual size of the physically attached cache data RAM * Using a binary subdivision algorithm downto 32 byte cache lines. */ addrhi = 1 << (16 + maxbanks); addrlo = 0; actbank = min(maxbanks - 1, 0); while ((addrhi - addrlo) > stride) { /* write marker to lowest address in top half */ addrmid = (addrhi + addrlo) >> 1; marker = (addrmid ^ 0xabadbabe) & probemask; /* Unique */ eip197_trc_cache_banksel(priv, addrmid, &actbank); writel(marker, priv->base + EIP197_CLASSIFICATION_RAMS + (addrmid & 0xffff)); /* write invalid markers to possible aliases */ delta = 1 << __fls(addrmid); while (delta >= stride) { addralias = addrmid - delta; eip197_trc_cache_banksel(priv, addralias, &actbank); writel(~marker, priv->base + EIP197_CLASSIFICATION_RAMS + (addralias & 0xffff)); delta >>= 1; } /* read back marker from top half */ eip197_trc_cache_banksel(priv, addrmid, &actbank); val = readl(priv->base + EIP197_CLASSIFICATION_RAMS + (addrmid & 0xffff)); if ((val & probemask) == marker) /* read back correct, continue with top half */ addrlo = addrmid; else /* not read back correct, continue with bottom half */ addrhi = addrmid; } return addrhi; } static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv, int cs_rc_max, int cs_ht_wc) { int i; u32 htable_offset, val, offset; /* Clear all records in administration RAM */ for (i = 0; i < cs_rc_max; i++) { offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE; writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) | EIP197_CS_RC_PREV(EIP197_RC_NULL), priv->base + offset); val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1); if (i == 0) val |= EIP197_CS_RC_PREV(EIP197_RC_NULL); else if (i == cs_rc_max - 1) val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL); writel(val, priv->base + offset + 4); /* must also initialize the address key due to ECC! */ writel(0, priv->base + offset + 8); writel(0, priv->base + offset + 12); } /* Clear the hash table entries */ htable_offset = cs_rc_max * EIP197_CS_RC_SIZE; for (i = 0; i < cs_ht_wc; i++) writel(GENMASK(29, 0), priv->base + EIP197_CLASSIFICATION_RAMS + htable_offset + i * sizeof(u32)); } static int eip197_trc_cache_init(struct safexcel_crypto_priv *priv) { u32 val, dsize, asize; int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc; int cs_rc_abs_max, cs_ht_sz; int maxbanks; /* Setup (dummy) virtualization for cache */ eip197_trc_cache_setupvirt(priv); /* * Enable the record cache memory access and * probe the bank select width */ val = readl(priv->base + EIP197_CS_RAM_CTRL); val &= ~EIP197_TRC_ENABLE_MASK; val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK; writel(val, priv->base + EIP197_CS_RAM_CTRL); val = readl(priv->base + EIP197_CS_RAM_CTRL); maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1; /* Clear all ECC errors */ writel(0, priv->base + EIP197_TRC_ECCCTRL); /* * Make sure the cache memory is accessible by taking record cache into * reset. Need data memory access here, not admin access. */ val = readl(priv->base + EIP197_TRC_PARAMS); val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS; writel(val, priv->base + EIP197_TRC_PARAMS); /* Probed data RAM size in bytes */ dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff, 32); /* * Now probe the administration RAM size pretty much the same way * Except that only the lower 30 bits are writable and we don't need * bank selects */ val = readl(priv->base + EIP197_TRC_PARAMS); /* admin access now */ val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK); writel(val, priv->base + EIP197_TRC_PARAMS); /* Probed admin RAM size in admin words */ asize = eip197_trc_cache_probe(priv, 0, 0x3fffffff, 16) >> 4; /* Clear any ECC errors detected while probing! */ writel(0, priv->base + EIP197_TRC_ECCCTRL); /* Sanity check probing results */ if (dsize < EIP197_MIN_DSIZE || asize < EIP197_MIN_ASIZE) { dev_err(priv->dev, "Record cache probing failed (%d,%d).", dsize, asize); return -ENODEV; } /* * Determine optimal configuration from RAM sizes * Note that we assume that the physical RAM configuration is sane * Therefore, we don't do any parameter error checking here ... */ /* For now, just use a single record format covering everything */ cs_trc_rec_wc = EIP197_CS_TRC_REC_WC; cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC; /* * Step #1: How many records will physically fit? * Hard upper limit is 1023! */ cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023); /* Step #2: Need at least 2 words in the admin RAM per record */ cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1)); /* Step #3: Determine log2 of hash table size */ cs_ht_sz = __fls(asize - cs_rc_max) - 2; /* Step #4: determine current size of hash table in dwords */ cs_ht_wc = 16 << cs_ht_sz; /* dwords, not admin words */ /* Step #5: add back excess words and see if we can fit more records */ cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 2)); /* Clear the cache RAMs */ eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc); /* Disable the record cache memory access */ val = readl(priv->base + EIP197_CS_RAM_CTRL); val &= ~EIP197_TRC_ENABLE_MASK; writel(val, priv->base + EIP197_CS_RAM_CTRL); /* Write head and tail pointers of the record free chain */ val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) | EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1); writel(val, priv->base + EIP197_TRC_FREECHAIN); /* Configure the record cache #1 */ val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) | EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max); writel(val, priv->base + EIP197_TRC_PARAMS2); /* Configure the record cache #2 */ val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) | EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) | EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz); writel(val, priv->base + EIP197_TRC_PARAMS); dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n", dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc); return 0; } static void eip197_init_firmware(struct safexcel_crypto_priv *priv) { int pe, i; u32 val; for (pe = 0; pe < priv->config.pes; pe++) { /* Configure the token FIFO's */ writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe)); writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe)); /* Clear the ICE scratchpad memory */ val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER | EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN | EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS | EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS; writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); /* clear the scratchpad RAM using 32 bit writes only */ for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++) writel(0, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2)); /* Reset the IFPP engine to make its program mem accessible */ writel(EIP197_PE_ICE_x_CTRL_SW_RESET | EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); /* Reset the IPUE engine to make its program mem accessible */ writel(EIP197_PE_ICE_x_CTRL_SW_RESET | EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); /* Enable access to all IFPP program memories */ writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); /* bypass the OCE, if present */ if (priv->flags & EIP197_OCE) writel(EIP197_DEBUG_OCE_BYPASS, EIP197_PE(priv) + EIP197_PE_DEBUG(pe)); } } static int eip197_write_firmware(struct safexcel_crypto_priv *priv, const struct firmware *fw) { u32 val; int i; /* Write the firmware */ for (i = 0; i < fw->size / sizeof(u32); i++) { if (priv->data->fw_little_endian) val = le32_to_cpu(((const __le32 *)fw->data)[i]); else val = be32_to_cpu(((const __be32 *)fw->data)[i]); writel(val, priv->base + EIP197_CLASSIFICATION_RAMS + i * sizeof(val)); } /* Exclude final 2 NOPs from size */ return i - EIP197_FW_TERMINAL_NOPS; } /* * If FW is actual production firmware, then poll for its initialization * to complete and check if it is good for the HW, otherwise just return OK. */ static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp) { int pe, pollcnt; u32 base, pollofs; if (fpp) pollofs = EIP197_FW_FPP_READY; else pollofs = EIP197_FW_PUE_READY; for (pe = 0; pe < priv->config.pes; pe++) { base = EIP197_PE_ICE_SCRATCH_RAM(pe); pollcnt = EIP197_FW_START_POLLCNT; while (pollcnt && (readl_relaxed(EIP197_PE(priv) + base + pollofs) != 1)) { pollcnt--; } if (!pollcnt) { dev_err(priv->dev, "FW(%d) for PE %d failed to start\n", fpp, pe); return false; } } return true; } static bool eip197_start_firmware(struct safexcel_crypto_priv *priv, int ipuesz, int ifppsz, int minifw) { int pe; u32 val; for (pe = 0; pe < priv->config.pes; pe++) { /* Disable access to all program memory */ writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); /* Start IFPP microengines */ if (minifw) val = 0; else val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) & EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | EIP197_PE_ICE_UENG_DEBUG_RESET; writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); /* Start IPUE microengines */ if (minifw) val = 0; else val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) & EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | EIP197_PE_ICE_UENG_DEBUG_RESET; writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); } /* For miniFW startup, there is no initialization, so always succeed */ if (minifw) return true; /* Wait until all the firmwares have properly started up */ if (!poll_fw_ready(priv, 1)) return false; if (!poll_fw_ready(priv, 0)) return false; return true; } static int eip197_load_firmwares(struct safexcel_crypto_priv *priv) { const char *fw_name[] = {"ifpp.bin", "ipue.bin"}; const struct firmware *fw[FW_NB]; char fw_path[37], *dir = NULL; int i, j, ret = 0, pe; int ipuesz, ifppsz, minifw = 0; if (priv->data->version == EIP197D_MRVL) dir = "eip197d"; else if (priv->data->version == EIP197B_MRVL || priv->data->version == EIP197_DEVBRD) dir = "eip197b"; else if (priv->data->version == EIP197C_MXL) dir = "eip197c"; else return -ENODEV; retry_fw: for (i = 0; i < FW_NB; i++) { snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]); ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev); if (ret) { if (minifw || priv->data->version != EIP197B_MRVL) goto release_fw; /* Fallback to the old firmware location for the * EIP197b. */ ret = firmware_request_nowarn(&fw[i], fw_name[i], priv->dev); if (ret) goto release_fw; } } eip197_init_firmware(priv); ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]); /* Enable access to IPUE program memories */ for (pe = 0; pe < priv->config.pes; pe++) writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]); if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) { dev_dbg(priv->dev, "Firmware loaded successfully\n"); return 0; } ret = -ENODEV; release_fw: for (j = 0; j < i; j++) release_firmware(fw[j]); if (!minifw) { /* Retry with minifw path */ dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n"); dir = "eip197_minifw"; minifw = 1; goto retry_fw; } dev_err(priv->dev, "Firmware load failed.\n"); return ret; } static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv) { u32 cd_size_rnd, val; int i, cd_fetch_cnt; cd_size_rnd = (priv->config.cd_size + (BIT(priv->hwconfig.hwdataw) - 1)) >> priv->hwconfig.hwdataw; /* determine number of CD's we can fetch into the CD FIFO as 1 block */ if (priv->flags & SAFEXCEL_HW_EIP197) { /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd; cd_fetch_cnt = min_t(uint, cd_fetch_cnt, (priv->config.pes * EIP197_FETCH_DEPTH)); } else { /* for the EIP97, just fetch all that fits minus 1 */ cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) / cd_size_rnd) - 1; } /* * Since we're using command desc's way larger than formally specified, * we need to check whether we can fit even 1 for low-end EIP196's! */ if (!cd_fetch_cnt) { dev_err(priv->dev, "Unable to fit even 1 command desc!\n"); return -ENODEV; } for (i = 0; i < priv->config.rings; i++) { /* ring base address */ writel(lower_32_bits(priv->ring[i].cdr.base_dma), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); writel(upper_32_bits(priv->ring[i].cdr.base_dma), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); writel(EIP197_xDR_DESC_MODE_64BIT | EIP197_CDR_DESC_MODE_ADCP | (priv->config.cd_offset << 14) | priv->config.cd_size, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); writel(((cd_fetch_cnt * (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) | (cd_fetch_cnt * (priv->config.cd_offset / sizeof(u32))), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); /* Configure DMA tx control */ val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); /* clear any pending interrupt */ writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); } return 0; } static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv) { u32 rd_size_rnd, val; int i, rd_fetch_cnt; /* determine number of RD's we can fetch into the FIFO as one block */ rd_size_rnd = (EIP197_RD64_FETCH_SIZE + (BIT(priv->hwconfig.hwdataw) - 1)) >> priv->hwconfig.hwdataw; if (priv->flags & SAFEXCEL_HW_EIP197) { /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd; rd_fetch_cnt = min_t(uint, rd_fetch_cnt, (priv->config.pes * EIP197_FETCH_DEPTH)); } else { /* for the EIP97, just fetch all that fits minus 1 */ rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) / rd_size_rnd) - 1; } for (i = 0; i < priv->config.rings; i++) { /* ring base address */ writel(lower_32_bits(priv->ring[i].rdr.base_dma), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); writel(upper_32_bits(priv->ring[i].rdr.base_dma), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 14) | priv->config.rd_size, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); writel(((rd_fetch_cnt * (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) | (rd_fetch_cnt * (priv->config.rd_offset / sizeof(u32))), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); /* Configure DMA tx control */ val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF; writel(val, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); /* clear any pending interrupt */ writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); /* enable ring interrupt */ val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); val |= EIP197_RDR_IRQ(i); writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); } return 0; } static int safexcel_hw_init(struct safexcel_crypto_priv *priv) { u32 val; int i, ret, pe, opbuflo, opbufhi; dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n", priv->config.pes, priv->config.rings); /* * For EIP197's only set maximum number of TX commands to 2^5 = 32 * Skip for the EIP97 as it does not have this field. */ if (priv->flags & SAFEXCEL_HW_EIP197) { val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); val |= EIP197_MST_CTRL_TX_MAX_CMD(5); writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); } /* Configure wr/rd cache values */ writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) | EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS), EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL); /* Interrupts reset */ /* Disable all global interrupts */ writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL); /* Clear any pending interrupt */ writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); /* Processing Engine configuration */ for (pe = 0; pe < priv->config.pes; pe++) { /* Data Fetch Engine configuration */ /* Reset all DFE threads */ writel(EIP197_DxE_THR_CTRL_RESET_PE, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); if (priv->flags & EIP197_PE_ARB) /* Reset HIA input interface arbiter (if present) */ writel(EIP197_HIA_RA_PE_CTRL_RESET, EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); /* DMA transfer size to use */ val = EIP197_HIA_DFE_CFG_DIS_DEBUG; val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) | EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9); val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) | EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7); val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS); val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS); writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe)); /* Leave the DFE threads reset state */ writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); /* Configure the processing engine thresholds */ writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | EIP197_PE_IN_xBUF_THRES_MAX(9), EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe)); writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | EIP197_PE_IN_xBUF_THRES_MAX(7), EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe)); if (priv->flags & SAFEXCEL_HW_EIP197) /* enable HIA input interface arbiter and rings */ writel(EIP197_HIA_RA_PE_CTRL_EN | GENMASK(priv->config.rings - 1, 0), EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); /* Data Store Engine configuration */ /* Reset all DSE threads */ writel(EIP197_DxE_THR_CTRL_RESET_PE, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); /* Wait for all DSE threads to complete */ while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) & GENMASK(15, 12)) != GENMASK(15, 12)) ; /* DMA transfer size to use */ if (priv->hwconfig.hwnumpes > 4) { opbuflo = 9; opbufhi = 10; } else { opbuflo = 7; opbufhi = 8; } val = EIP197_HIA_DSE_CFG_DIS_DEBUG; val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(opbuflo) | EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(opbufhi); val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS); val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE; /* FIXME: instability issues can occur for EIP97 but disabling * it impacts performance. */ if (priv->flags & SAFEXCEL_HW_EIP197) val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR; writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe)); /* Leave the DSE threads reset state */ writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); /* Configure the processing engine thresholds */ writel(EIP197_PE_OUT_DBUF_THRES_MIN(opbuflo) | EIP197_PE_OUT_DBUF_THRES_MAX(opbufhi), EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe)); /* Processing Engine configuration */ /* Token & context configuration */ val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES | EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT | EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT; writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe)); /* H/W capabilities selection: just enable everything */ writel(EIP197_FUNCTION_ALL, EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe)); writel(EIP197_FUNCTION_ALL, EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe)); } /* Command Descriptor Rings prepare */ for (i = 0; i < priv->config.rings; i++) { /* Clear interrupts for this ring */ writel(GENMASK(31, 0), EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i)); /* Disable external triggering */ writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); /* Clear the pending prepared counter */ writel(EIP197_xDR_PREP_CLR_COUNT, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); /* Clear the pending processed counter */ writel(EIP197_xDR_PROC_CLR_COUNT, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); } /* Result Descriptor Ring prepare */ for (i = 0; i < priv->config.rings; i++) { /* Disable external triggering*/ writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); /* Clear the pending prepared counter */ writel(EIP197_xDR_PREP_CLR_COUNT, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); /* Clear the pending processed counter */ writel(EIP197_xDR_PROC_CLR_COUNT, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); /* Ring size */ writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); } for (pe = 0; pe < priv->config.pes; pe++) { /* Enable command descriptor rings */ writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); /* Enable result descriptor rings */ writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); } /* Clear any HIA interrupt */ writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); if (priv->flags & EIP197_SIMPLE_TRC) { writel(EIP197_STRC_CONFIG_INIT | EIP197_STRC_CONFIG_LARGE_REC(EIP197_CS_TRC_REC_WC) | EIP197_STRC_CONFIG_SMALL_REC(EIP197_CS_TRC_REC_WC), priv->base + EIP197_STRC_CONFIG); writel(EIP197_PE_EIP96_TOKEN_CTRL2_CTX_DONE, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL2(0)); } else if (priv->flags & SAFEXCEL_HW_EIP197) { ret = eip197_trc_cache_init(priv); if (ret) return ret; } if (priv->flags & EIP197_ICE) { ret = eip197_load_firmwares(priv); if (ret) return ret; } return safexcel_hw_setup_cdesc_rings(priv) ?: safexcel_hw_setup_rdesc_rings(priv) ?: 0; } /* Called with ring's lock taken */ static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv, int ring) { int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ); if (!coal) return; /* Configure when we want an interrupt */ writel(EIP197_HIA_RDR_THRESH_PKT_MODE | EIP197_HIA_RDR_THRESH_PROC_PKT(coal), EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH); } void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring) { struct crypto_async_request *req, *backlog; struct safexcel_context *ctx; int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results; /* If a request wasn't properly dequeued because of a lack of resources, * proceeded it first, */ req = priv->ring[ring].req; backlog = priv->ring[ring].backlog; if (req) goto handle_req; while (true) { spin_lock_bh(&priv->ring[ring].queue_lock); backlog = crypto_get_backlog(&priv->ring[ring].queue); req = crypto_dequeue_request(&priv->ring[ring].queue); spin_unlock_bh(&priv->ring[ring].queue_lock); if (!req) { priv->ring[ring].req = NULL; priv->ring[ring].backlog = NULL; goto finalize; } handle_req: ctx = crypto_tfm_ctx(req->tfm); ret = ctx->send(req, ring, &commands, &results); if (ret) goto request_failed; if (backlog) crypto_request_complete(backlog, -EINPROGRESS); /* In case the send() helper did not issue any command to push * to the engine because the input data was cached, continue to * dequeue other requests as this is valid and not an error. */ if (!commands && !results) continue; cdesc += commands; rdesc += results; nreq++; } request_failed: /* Not enough resources to handle all the requests. Bail out and save * the request and the backlog for the next dequeue call (per-ring). */ priv->ring[ring].req = req; priv->ring[ring].backlog = backlog; finalize: if (!nreq) return; spin_lock_bh(&priv->ring[ring].lock); priv->ring[ring].requests += nreq; if (!priv->ring[ring].busy) { safexcel_try_push_requests(priv, ring); priv->ring[ring].busy = true; } spin_unlock_bh(&priv->ring[ring].lock); /* let the RDR know we have pending descriptors */ writel((rdesc * priv->config.rd_offset), EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); /* let the CDR know we have pending descriptors */ writel((cdesc * priv->config.cd_offset), EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); } inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv, void *rdp) { struct safexcel_result_desc *rdesc = rdp; struct result_data_desc *result_data = rdp + priv->config.res_offset; if (likely((!rdesc->last_seg) || /* Rest only valid if last seg! */ ((!rdesc->descriptor_overflow) && (!rdesc->buffer_overflow) && (!result_data->error_code)))) return 0; if (rdesc->descriptor_overflow) dev_err(priv->dev, "Descriptor overflow detected"); if (rdesc->buffer_overflow) dev_err(priv->dev, "Buffer overflow detected"); if (result_data->error_code & 0x4066) { /* Fatal error (bits 1,2,5,6 & 14) */ dev_err(priv->dev, "result descriptor error (%x)", result_data->error_code); return -EIO; } else if (result_data->error_code & (BIT(7) | BIT(4) | BIT(3) | BIT(0))) { /* * Give priority over authentication fails: * Blocksize, length & overflow errors, * something wrong with the input! */ return -EINVAL; } else if (result_data->error_code & BIT(9)) { /* Authentication failed */ return -EBADMSG; } /* All other non-fatal errors */ return -EINVAL; } inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv, int ring, struct safexcel_result_desc *rdesc, struct crypto_async_request *req) { int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc); priv->ring[ring].rdr_req[i] = req; } inline struct crypto_async_request * safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring) { int i = safexcel_ring_first_rdr_index(priv, ring); return priv->ring[ring].rdr_req[i]; } void safexcel_complete(struct safexcel_crypto_priv *priv, int ring) { struct safexcel_command_desc *cdesc; /* Acknowledge the command descriptors */ do { cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr); if (IS_ERR(cdesc)) { dev_err(priv->dev, "Could not retrieve the command descriptor\n"); return; } } while (!cdesc->last_seg); } int safexcel_invalidate_cache(struct crypto_async_request *async, struct safexcel_crypto_priv *priv, dma_addr_t ctxr_dma, int ring) { struct safexcel_command_desc *cdesc; struct safexcel_result_desc *rdesc; struct safexcel_token *dmmy; int ret = 0; /* Prepare command descriptor */ cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma, &dmmy); if (IS_ERR(cdesc)) return PTR_ERR(cdesc); cdesc->control_data.type = EIP197_TYPE_EXTENDED; cdesc->control_data.options = 0; cdesc->control_data.context_lo &= ~EIP197_CONTEXT_SIZE_MASK; cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR; /* Prepare result descriptor */ rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0); if (IS_ERR(rdesc)) { ret = PTR_ERR(rdesc); goto cdesc_rollback; } safexcel_rdr_req_set(priv, ring, rdesc, async); return ret; cdesc_rollback: safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); return ret; } static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv, int ring) { struct crypto_async_request *req; struct safexcel_context *ctx; int ret, i, nreq, ndesc, tot_descs, handled = 0; bool should_complete; handle_results: tot_descs = 0; nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET; nreq &= EIP197_xDR_PROC_xD_PKT_MASK; if (!nreq) goto requests_left; for (i = 0; i < nreq; i++) { req = safexcel_rdr_req_get(priv, ring); ctx = crypto_tfm_ctx(req->tfm); ndesc = ctx->handle_result(priv, ring, req, &should_complete, &ret); if (ndesc < 0) { dev_err(priv->dev, "failed to handle result (%d)\n", ndesc); goto acknowledge; } if (should_complete) { local_bh_disable(); crypto_request_complete(req, ret); local_bh_enable(); } tot_descs += ndesc; handled++; } acknowledge: if (i) writel(EIP197_xDR_PROC_xD_PKT(i) | (tot_descs * priv->config.rd_offset), EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); /* If the number of requests overflowed the counter, try to proceed more * requests. */ if (nreq == EIP197_xDR_PROC_xD_PKT_MASK) goto handle_results; requests_left: spin_lock_bh(&priv->ring[ring].lock); priv->ring[ring].requests -= handled; safexcel_try_push_requests(priv, ring); if (!priv->ring[ring].requests) priv->ring[ring].busy = false; spin_unlock_bh(&priv->ring[ring].lock); } static void safexcel_dequeue_work(struct work_struct *work) { struct safexcel_work_data *data = container_of(work, struct safexcel_work_data, work); safexcel_dequeue(data->priv, data->ring); } struct safexcel_ring_irq_data { struct safexcel_crypto_priv *priv; int ring; }; static irqreturn_t safexcel_irq_ring(int irq, void *data) { struct safexcel_ring_irq_data *irq_data = data; struct safexcel_crypto_priv *priv = irq_data->priv; int ring = irq_data->ring, rc = IRQ_NONE; u32 status, stat; status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring)); if (!status) return rc; /* RDR interrupts */ if (status & EIP197_RDR_IRQ(ring)) { stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); if (unlikely(stat & EIP197_xDR_ERR)) { /* * Fatal error, the RDR is unusable and must be * reinitialized. This should not happen under * normal circumstances. */ dev_err(priv->dev, "RDR: fatal error.\n"); } else if (likely(stat & EIP197_xDR_THRESH)) { rc = IRQ_WAKE_THREAD; } /* ACK the interrupts */ writel(stat & 0xff, EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); } /* ACK the interrupts */ writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring)); return rc; } static irqreturn_t safexcel_irq_ring_thread(int irq, void *data) { struct safexcel_ring_irq_data *irq_data = data; struct safexcel_crypto_priv *priv = irq_data->priv; int ring = irq_data->ring; safexcel_handle_result_descriptor(priv, ring); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); return IRQ_HANDLED; } static int safexcel_request_ring_irq(void *pdev, int irqid, int is_pci_dev, int ring_id, irq_handler_t handler, irq_handler_t threaded_handler, struct safexcel_ring_irq_data *ring_irq_priv) { int ret, irq, cpu; struct device *dev; if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) { struct pci_dev *pci_pdev = pdev; dev = &pci_pdev->dev; irq = pci_irq_vector(pci_pdev, irqid); if (irq < 0) { dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n", irqid, irq); return irq; } } else if (IS_ENABLED(CONFIG_OF)) { struct platform_device *plf_pdev = pdev; char irq_name[6] = {0}; /* "ringX\0" */ snprintf(irq_name, 6, "ring%d", irqid); dev = &plf_pdev->dev; irq = platform_get_irq_byname(plf_pdev, irq_name); if (irq < 0) return irq; } else { return -ENXIO; } ret = devm_request_threaded_irq(dev, irq, handler, threaded_handler, IRQF_ONESHOT, dev_name(dev), ring_irq_priv); if (ret) { dev_err(dev, "unable to request IRQ %d\n", irq); return ret; } /* Set affinity */ cpu = cpumask_local_spread(ring_id, NUMA_NO_NODE); irq_set_affinity_hint(irq, get_cpu_mask(cpu)); return irq; } static struct safexcel_alg_template *safexcel_algs[] = { &safexcel_alg_ecb_des, &safexcel_alg_cbc_des, &safexcel_alg_ecb_des3_ede, &safexcel_alg_cbc_des3_ede, &safexcel_alg_ecb_aes, &safexcel_alg_cbc_aes, &safexcel_alg_cfb_aes, &safexcel_alg_ofb_aes, &safexcel_alg_ctr_aes, &safexcel_alg_md5, &safexcel_alg_sha1, &safexcel_alg_sha224, &safexcel_alg_sha256, &safexcel_alg_sha384, &safexcel_alg_sha512, &safexcel_alg_hmac_md5, &safexcel_alg_hmac_sha1, &safexcel_alg_hmac_sha224, &safexcel_alg_hmac_sha256, &safexcel_alg_hmac_sha384, &safexcel_alg_hmac_sha512, &safexcel_alg_authenc_hmac_sha1_cbc_aes, &safexcel_alg_authenc_hmac_sha224_cbc_aes, &safexcel_alg_authenc_hmac_sha256_cbc_aes, &safexcel_alg_authenc_hmac_sha384_cbc_aes, &safexcel_alg_authenc_hmac_sha512_cbc_aes, &safexcel_alg_authenc_hmac_sha1_cbc_des3_ede, &safexcel_alg_authenc_hmac_sha1_ctr_aes, &safexcel_alg_authenc_hmac_sha224_ctr_aes, &safexcel_alg_authenc_hmac_sha256_ctr_aes, &safexcel_alg_authenc_hmac_sha384_ctr_aes, &safexcel_alg_authenc_hmac_sha512_ctr_aes, &safexcel_alg_xts_aes, &safexcel_alg_gcm, &safexcel_alg_ccm, &safexcel_alg_crc32, &safexcel_alg_cbcmac, &safexcel_alg_xcbcmac, &safexcel_alg_cmac, &safexcel_alg_chacha20, &safexcel_alg_chachapoly, &safexcel_alg_chachapoly_esp, &safexcel_alg_sm3, &safexcel_alg_hmac_sm3, &safexcel_alg_ecb_sm4, &safexcel_alg_cbc_sm4, &safexcel_alg_ofb_sm4, &safexcel_alg_cfb_sm4, &safexcel_alg_ctr_sm4, &safexcel_alg_authenc_hmac_sha1_cbc_sm4, &safexcel_alg_authenc_hmac_sm3_cbc_sm4, &safexcel_alg_authenc_hmac_sha1_ctr_sm4, &safexcel_alg_authenc_hmac_sm3_ctr_sm4, &safexcel_alg_sha3_224, &safexcel_alg_sha3_256, &safexcel_alg_sha3_384, &safexcel_alg_sha3_512, &safexcel_alg_hmac_sha3_224, &safexcel_alg_hmac_sha3_256, &safexcel_alg_hmac_sha3_384, &safexcel_alg_hmac_sha3_512, &safexcel_alg_authenc_hmac_sha1_cbc_des, &safexcel_alg_authenc_hmac_sha256_cbc_des3_ede, &safexcel_alg_authenc_hmac_sha224_cbc_des3_ede, &safexcel_alg_authenc_hmac_sha512_cbc_des3_ede, &safexcel_alg_authenc_hmac_sha384_cbc_des3_ede, &safexcel_alg_authenc_hmac_sha256_cbc_des, &safexcel_alg_authenc_hmac_sha224_cbc_des, &safexcel_alg_authenc_hmac_sha512_cbc_des, &safexcel_alg_authenc_hmac_sha384_cbc_des, &safexcel_alg_rfc4106_gcm, &safexcel_alg_rfc4543_gcm, &safexcel_alg_rfc4309_ccm, }; static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv) { int i, j, ret = 0; for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { safexcel_algs[i]->priv = priv; /* Do we have all required base algorithms available? */ if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != safexcel_algs[i]->algo_mask) /* No, so don't register this ciphersuite */ continue; if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher); else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) ret = crypto_register_aead(&safexcel_algs[i]->alg.aead); else ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash); if (ret) goto fail; } return 0; fail: for (j = 0; j < i; j++) { /* Do we have all required base algorithms available? */ if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) != safexcel_algs[j]->algo_mask) /* No, so don't unregister this ciphersuite */ continue; if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher); else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD) crypto_unregister_aead(&safexcel_algs[j]->alg.aead); else crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash); } return ret; } static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv) { int i; for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { /* Do we have all required base algorithms available? */ if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != safexcel_algs[i]->algo_mask) /* No, so don't unregister this ciphersuite */ continue; if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher); else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) crypto_unregister_aead(&safexcel_algs[i]->alg.aead); else crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash); } } static void safexcel_configure(struct safexcel_crypto_priv *priv) { u32 mask = BIT(priv->hwconfig.hwdataw) - 1; priv->config.pes = priv->hwconfig.hwnumpes; priv->config.rings = min_t(u32, priv->hwconfig.hwnumrings, max_rings); /* Cannot currently support more rings than we have ring AICs! */ priv->config.rings = min_t(u32, priv->config.rings, priv->hwconfig.hwnumraic); priv->config.cd_size = EIP197_CD64_FETCH_SIZE; priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask; priv->config.cdsh_offset = (EIP197_MAX_TOKENS + mask) & ~mask; /* res token is behind the descr, but ofs must be rounded to buswdth */ priv->config.res_offset = (EIP197_RD64_FETCH_SIZE + mask) & ~mask; /* now the size of the descr is this 1st part plus the result struct */ priv->config.rd_size = priv->config.res_offset + EIP197_RD64_RESULT_SIZE; priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask; /* convert dwords to bytes */ priv->config.cd_offset *= sizeof(u32); priv->config.cdsh_offset *= sizeof(u32); priv->config.rd_offset *= sizeof(u32); priv->config.res_offset *= sizeof(u32); } static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv) { struct safexcel_register_offsets *offsets = &priv->offsets; if (priv->flags & SAFEXCEL_HW_EIP197) { offsets->hia_aic = EIP197_HIA_AIC_BASE; offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE; offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE; offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE; offsets->hia_dfe = EIP197_HIA_DFE_BASE; offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE; offsets->hia_dse = EIP197_HIA_DSE_BASE; offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE; offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE; offsets->pe = EIP197_PE_BASE; offsets->global = EIP197_GLOBAL_BASE; } else { offsets->hia_aic = EIP97_HIA_AIC_BASE; offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE; offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE; offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE; offsets->hia_dfe = EIP97_HIA_DFE_BASE; offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE; offsets->hia_dse = EIP97_HIA_DSE_BASE; offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE; offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE; offsets->pe = EIP97_PE_BASE; offsets->global = EIP97_GLOBAL_BASE; } } /* * Generic part of probe routine, shared by platform and PCI driver * * Assumes IO resources have been mapped, private data mem has been allocated, * clocks have been enabled, device pointer has been assigned etc. * */ static int safexcel_probe_generic(void *pdev, struct safexcel_crypto_priv *priv, int is_pci_dev) { struct device *dev = priv->dev; u32 peid, version, mask, val, hiaopt, hwopt, peopt; int i, ret, hwctg; priv->context_pool = dmam_pool_create("safexcel-context", dev, sizeof(struct safexcel_context_record), 1, 0); if (!priv->context_pool) return -ENOMEM; /* * First try the EIP97 HIA version regs * For the EIP197, this is guaranteed to NOT return any of the test * values */ version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION); mask = 0; /* do not swap */ if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) { /* read back byte-swapped, so complement byte swap bits */ mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); } else { /* So it wasn't an EIP97 ... maybe it's an EIP197? */ version = readl(priv->base + EIP197_HIA_AIC_BASE + EIP197_HIA_VERSION); if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); priv->flags |= SAFEXCEL_HW_EIP197; } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) { /* read back byte-swapped, so complement swap bits */ mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); priv->flags |= SAFEXCEL_HW_EIP197; } else { return -ENODEV; } } /* Now initialize the reg offsets based on the probing info so far */ safexcel_init_register_offsets(priv); /* * If the version was read byte-swapped, we need to flip the device * swapping Keep in mind here, though, that what we write will also be * byte-swapped ... */ if (mask) { val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); val = val ^ (mask >> 24); /* toggle byte swap bits */ writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); } /* * We're not done probing yet! We may fall through to here if no HIA * was found at all. So, with the endianness presumably correct now and * the offsets setup, *really* probe for the EIP97/EIP197. */ version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION); if (((priv->flags & SAFEXCEL_HW_EIP197) && (EIP197_REG_LO16(version) != EIP197_VERSION_LE) && (EIP197_REG_LO16(version) != EIP196_VERSION_LE)) || ((!(priv->flags & SAFEXCEL_HW_EIP197) && (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) { /* * We did not find the device that matched our initial probing * (or our initial probing failed) Report appropriate error. */ dev_err(priv->dev, "Probing for EIP97/EIP19x failed - no such device (read %08x)\n", version); return -ENODEV; } priv->hwconfig.hwver = EIP197_VERSION_MASK(version); hwctg = version >> 28; peid = version & 255; /* Detect EIP206 processing pipe */ version = readl(EIP197_PE(priv) + + EIP197_PE_VERSION(0)); if (EIP197_REG_LO16(version) != EIP206_VERSION_LE) { dev_err(priv->dev, "EIP%d: EIP206 not detected\n", peid); return -ENODEV; } priv->hwconfig.ppver = EIP197_VERSION_MASK(version); /* Detect EIP96 packet engine and version */ version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0)); if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { dev_err(dev, "EIP%d: EIP96 not detected.\n", peid); return -ENODEV; } priv->hwconfig.pever = EIP197_VERSION_MASK(version); hwopt = readl(EIP197_GLOBAL(priv) + EIP197_OPTIONS); hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS); priv->hwconfig.icever = 0; priv->hwconfig.ocever = 0; priv->hwconfig.psever = 0; if (priv->flags & SAFEXCEL_HW_EIP197) { /* EIP197 */ peopt = readl(EIP197_PE(priv) + EIP197_PE_OPTIONS(0)); priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & EIP197_HWDATAW_MASK; priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) & EIP197_CFSIZE_MASK) + EIP197_CFSIZE_ADJUST; priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) & EIP197_RFSIZE_MASK) + EIP197_RFSIZE_ADJUST; priv->hwconfig.hwnumpes = (hiaopt >> EIP197_N_PES_OFFSET) & EIP197_N_PES_MASK; priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) & EIP197_N_RINGS_MASK; if (hiaopt & EIP197_HIA_OPT_HAS_PE_ARB) priv->flags |= EIP197_PE_ARB; if (EIP206_OPT_ICE_TYPE(peopt) == 1) { priv->flags |= EIP197_ICE; /* Detect ICE EIP207 class. engine and version */ version = readl(EIP197_PE(priv) + EIP197_PE_ICE_VERSION(0)); if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) { dev_err(dev, "EIP%d: ICE EIP207 not detected.\n", peid); return -ENODEV; } priv->hwconfig.icever = EIP197_VERSION_MASK(version); } if (EIP206_OPT_OCE_TYPE(peopt) == 1) { priv->flags |= EIP197_OCE; /* Detect EIP96PP packet stream editor and version */ version = readl(EIP197_PE(priv) + EIP197_PE_PSE_VERSION(0)); if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { dev_err(dev, "EIP%d: EIP96PP not detected.\n", peid); return -ENODEV; } priv->hwconfig.psever = EIP197_VERSION_MASK(version); /* Detect OCE EIP207 class. engine and version */ version = readl(EIP197_PE(priv) + EIP197_PE_ICE_VERSION(0)); if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) { dev_err(dev, "EIP%d: OCE EIP207 not detected.\n", peid); return -ENODEV; } priv->hwconfig.ocever = EIP197_VERSION_MASK(version); } /* If not a full TRC, then assume simple TRC */ if (!(hwopt & EIP197_OPT_HAS_TRC)) priv->flags |= EIP197_SIMPLE_TRC; /* EIP197 always has SOME form of TRC */ priv->flags |= EIP197_TRC_CACHE; } else { /* EIP97 */ priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & EIP97_HWDATAW_MASK; priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) & EIP97_CFSIZE_MASK; priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) & EIP97_RFSIZE_MASK; priv->hwconfig.hwnumpes = 1; /* by definition */ priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) & EIP197_N_RINGS_MASK; } /* Scan for ring AIC's */ for (i = 0; i < EIP197_MAX_RING_AIC; i++) { version = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_VERSION(i)); if (EIP197_REG_LO16(version) != EIP201_VERSION_LE) break; } priv->hwconfig.hwnumraic = i; /* Low-end EIP196 may not have any ring AIC's ... */ if (!priv->hwconfig.hwnumraic) { dev_err(priv->dev, "No ring interrupt controller present!\n"); return -ENODEV; } /* Get supported algorithms from EIP96 transform engine */ priv->hwconfig.algo_flags = readl(EIP197_PE(priv) + EIP197_PE_EIP96_OPTIONS(0)); /* Print single info line describing what we just detected */ dev_info(priv->dev, "EIP%d:%x(%d,%d,%d,%d)-HIA:%x(%d,%d,%d),PE:%x/%x(alg:%08x)/%x/%x/%x\n", peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hwnumpes, priv->hwconfig.hwnumrings, priv->hwconfig.hwnumraic, priv->hwconfig.hiaver, priv->hwconfig.hwdataw, priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize, priv->hwconfig.ppver, priv->hwconfig.pever, priv->hwconfig.algo_flags, priv->hwconfig.icever, priv->hwconfig.ocever, priv->hwconfig.psever); safexcel_configure(priv); if (IS_ENABLED(CONFIG_PCI) && priv->data->version == EIP197_DEVBRD) { /* * Request MSI vectors for global + 1 per ring - * or just 1 for older dev images */ struct pci_dev *pci_pdev = pdev; ret = pci_alloc_irq_vectors(pci_pdev, priv->config.rings + 1, priv->config.rings + 1, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (ret < 0) { dev_err(dev, "Failed to allocate PCI MSI interrupts\n"); return ret; } } /* Register the ring IRQ handlers and configure the rings */ priv->ring = devm_kcalloc(dev, priv->config.rings, sizeof(*priv->ring), GFP_KERNEL); if (!priv->ring) return -ENOMEM; for (i = 0; i < priv->config.rings; i++) { char wq_name[9] = {0}; int irq; struct safexcel_ring_irq_data *ring_irq; ret = safexcel_init_ring_descriptors(priv, &priv->ring[i].cdr, &priv->ring[i].rdr); if (ret) { dev_err(dev, "Failed to initialize rings\n"); goto err_cleanup_rings; } priv->ring[i].rdr_req = devm_kcalloc(dev, EIP197_DEFAULT_RING_SIZE, sizeof(*priv->ring[i].rdr_req), GFP_KERNEL); if (!priv->ring[i].rdr_req) { ret = -ENOMEM; goto err_cleanup_rings; } ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL); if (!ring_irq) { ret = -ENOMEM; goto err_cleanup_rings; } ring_irq->priv = priv; ring_irq->ring = i; irq = safexcel_request_ring_irq(pdev, EIP197_IRQ_NUMBER(i, is_pci_dev), is_pci_dev, i, safexcel_irq_ring, safexcel_irq_ring_thread, ring_irq); if (irq < 0) { dev_err(dev, "Failed to get IRQ ID for ring %d\n", i); ret = irq; goto err_cleanup_rings; } priv->ring[i].irq = irq; priv->ring[i].work_data.priv = priv; priv->ring[i].work_data.ring = i; INIT_WORK(&priv->ring[i].work_data.work, safexcel_dequeue_work); snprintf(wq_name, 9, "wq_ring%d", i); priv->ring[i].workqueue = create_singlethread_workqueue(wq_name); if (!priv->ring[i].workqueue) { ret = -ENOMEM; goto err_cleanup_rings; } priv->ring[i].requests = 0; priv->ring[i].busy = false; crypto_init_queue(&priv->ring[i].queue, EIP197_DEFAULT_RING_SIZE); spin_lock_init(&priv->ring[i].lock); spin_lock_init(&priv->ring[i].queue_lock); } atomic_set(&priv->ring_used, 0); ret = safexcel_hw_init(priv); if (ret) { dev_err(dev, "HW init failed (%d)\n", ret); goto err_cleanup_rings; } ret = safexcel_register_algorithms(priv); if (ret) { dev_err(dev, "Failed to register algorithms (%d)\n", ret); goto err_cleanup_rings; } return 0; err_cleanup_rings: for (i = 0; i < priv->config.rings; i++) { if (priv->ring[i].irq) irq_set_affinity_hint(priv->ring[i].irq, NULL); if (priv->ring[i].workqueue) destroy_workqueue(priv->ring[i].workqueue); } return ret; } static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv) { int i; for (i = 0; i < priv->config.rings; i++) { /* clear any pending interrupt */ writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); /* Reset the CDR base address */ writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); /* Reset the RDR base address */ writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); } } /* for Device Tree platform driver */ static int safexcel_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct safexcel_crypto_priv *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->data = (struct safexcel_priv_data *)of_device_get_match_data(dev); platform_set_drvdata(pdev, priv); priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) { dev_err(dev, "failed to get resource\n"); return PTR_ERR(priv->base); } priv->clk = devm_clk_get(&pdev->dev, NULL); ret = PTR_ERR_OR_ZERO(priv->clk); /* The clock isn't mandatory */ if (ret != -ENOENT) { if (ret) return ret; ret = clk_prepare_enable(priv->clk); if (ret) { dev_err(dev, "unable to enable clk (%d)\n", ret); return ret; } } priv->reg_clk = devm_clk_get(&pdev->dev, "reg"); ret = PTR_ERR_OR_ZERO(priv->reg_clk); /* The clock isn't mandatory */ if (ret != -ENOENT) { if (ret) goto err_core_clk; ret = clk_prepare_enable(priv->reg_clk); if (ret) { dev_err(dev, "unable to enable reg clk (%d)\n", ret); goto err_core_clk; } } ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret) goto err_reg_clk; /* Generic EIP97/EIP197 device probing */ ret = safexcel_probe_generic(pdev, priv, 0); if (ret) goto err_reg_clk; return 0; err_reg_clk: clk_disable_unprepare(priv->reg_clk); err_core_clk: clk_disable_unprepare(priv->clk); return ret; } static int safexcel_remove(struct platform_device *pdev) { struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev); int i; safexcel_unregister_algorithms(priv); safexcel_hw_reset_rings(priv); clk_disable_unprepare(priv->reg_clk); clk_disable_unprepare(priv->clk); for (i = 0; i < priv->config.rings; i++) { irq_set_affinity_hint(priv->ring[i].irq, NULL); destroy_workqueue(priv->ring[i].workqueue); } return 0; } static const struct safexcel_priv_data eip97ies_mrvl_data = { .version = EIP97IES_MRVL, }; static const struct safexcel_priv_data eip197b_mrvl_data = { .version = EIP197B_MRVL, }; static const struct safexcel_priv_data eip197d_mrvl_data = { .version = EIP197D_MRVL, }; static const struct safexcel_priv_data eip197_devbrd_data = { .version = EIP197_DEVBRD, }; static const struct safexcel_priv_data eip197c_mxl_data = { .version = EIP197C_MXL, .fw_little_endian = true, }; static const struct of_device_id safexcel_of_match_table[] = { { .compatible = "inside-secure,safexcel-eip97ies", .data = &eip97ies_mrvl_data, }, { .compatible = "inside-secure,safexcel-eip197b", .data = &eip197b_mrvl_data, }, { .compatible = "inside-secure,safexcel-eip197d", .data = &eip197d_mrvl_data, }, { .compatible = "inside-secure,safexcel-eip197c-mxl", .data = &eip197c_mxl_data, }, /* For backward compatibility and intended for generic use */ { .compatible = "inside-secure,safexcel-eip97", .data = &eip97ies_mrvl_data, }, { .compatible = "inside-secure,safexcel-eip197", .data = &eip197b_mrvl_data, }, {}, }; MODULE_DEVICE_TABLE(of, safexcel_of_match_table); static struct platform_driver crypto_safexcel = { .probe = safexcel_probe, .remove = safexcel_remove, .driver = { .name = "crypto-safexcel", .of_match_table = safexcel_of_match_table, }, }; /* PCIE devices - i.e. Inside Secure development boards */ static int safexcel_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct safexcel_crypto_priv *priv; void __iomem *pciebase; int rc; u32 val; dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n", ent->vendor, ent->device, ent->subvendor, ent->subdevice, ent->driver_data); priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->data = (struct safexcel_priv_data *)ent->driver_data; pci_set_drvdata(pdev, priv); /* enable the device */ rc = pcim_enable_device(pdev); if (rc) { dev_err(dev, "Failed to enable PCI device\n"); return rc; } /* take ownership of PCI BAR0 */ rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel"); if (rc) { dev_err(dev, "Failed to map IO region for BAR0\n"); return rc; } priv->base = pcim_iomap_table(pdev)[0]; if (priv->data->version == EIP197_DEVBRD) { dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n"); rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel"); if (rc) { dev_err(dev, "Failed to map IO region for BAR4\n"); return rc; } pciebase = pcim_iomap_table(pdev)[2]; val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR); if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) { dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n", (val & 0xff)); /* Setup MSI identity map mapping */ writel(EIP197_XLX_USER_VECT_LUT0_IDENT, pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR); writel(EIP197_XLX_USER_VECT_LUT1_IDENT, pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR); writel(EIP197_XLX_USER_VECT_LUT2_IDENT, pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR); writel(EIP197_XLX_USER_VECT_LUT3_IDENT, pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR); /* Enable all device interrupts */ writel(GENMASK(31, 0), pciebase + EIP197_XLX_USER_INT_ENB_MSK); } else { dev_err(dev, "Unrecognised IRQ block identifier %x\n", val); return -ENODEV; } /* HW reset FPGA dev board */ /* assert reset */ writel(1, priv->base + EIP197_XLX_GPIO_BASE); wmb(); /* maintain strict ordering for accesses here */ /* deassert reset */ writel(0, priv->base + EIP197_XLX_GPIO_BASE); wmb(); /* maintain strict ordering for accesses here */ } /* enable bus mastering */ pci_set_master(pdev); /* Generic EIP97/EIP197 device probing */ rc = safexcel_probe_generic(pdev, priv, 1); return rc; } static void safexcel_pci_remove(struct pci_dev *pdev) { struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev); int i; safexcel_unregister_algorithms(priv); for (i = 0; i < priv->config.rings; i++) destroy_workqueue(priv->ring[i].workqueue); safexcel_hw_reset_rings(priv); } static const struct pci_device_id safexcel_pci_ids[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038, 0x16ae, 0xc522), .driver_data = (kernel_ulong_t)&eip197_devbrd_data, }, {}, }; MODULE_DEVICE_TABLE(pci, safexcel_pci_ids); static struct pci_driver safexcel_pci_driver = { .name = "crypto-safexcel", .id_table = safexcel_pci_ids, .probe = safexcel_pci_probe, .remove = safexcel_pci_remove, }; static int __init safexcel_init(void) { int ret; /* Register PCI driver */ ret = pci_register_driver(&safexcel_pci_driver); /* Register platform driver */ if (IS_ENABLED(CONFIG_OF) && !ret) { ret = platform_driver_register(&crypto_safexcel); if (ret) pci_unregister_driver(&safexcel_pci_driver); } return ret; } static void __exit safexcel_exit(void) { /* Unregister platform driver */ if (IS_ENABLED(CONFIG_OF)) platform_driver_unregister(&crypto_safexcel); /* Unregister PCI driver if successfully registered before */ pci_unregister_driver(&safexcel_pci_driver); } module_init(safexcel_init); module_exit(safexcel_exit); MODULE_AUTHOR("Antoine Tenart <[email protected]>"); MODULE_AUTHOR("Ofer Heifetz <[email protected]>"); MODULE_AUTHOR("Igal Liberman <[email protected]>"); MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(CRYPTO_INTERNAL); MODULE_FIRMWARE("ifpp.bin"); MODULE_FIRMWARE("ipue.bin"); MODULE_FIRMWARE("inside-secure/eip197b/ifpp.bin"); MODULE_FIRMWARE("inside-secure/eip197b/ipue.bin"); MODULE_FIRMWARE("inside-secure/eip197d/ifpp.bin"); MODULE_FIRMWARE("inside-secure/eip197d/ipue.bin"); MODULE_FIRMWARE("inside-secure/eip197_minifw/ifpp.bin"); MODULE_FIRMWARE("inside-secure/eip197_minifw/ipue.bin");
linux-master
drivers/crypto/inside-secure/safexcel.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Marvell * * Antoine Tenart <[email protected]> */ #include <asm/unaligned.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <crypto/aead.h> #include <crypto/aes.h> #include <crypto/authenc.h> #include <crypto/chacha.h> #include <crypto/ctr.h> #include <crypto/internal/des.h> #include <crypto/gcm.h> #include <crypto/ghash.h> #include <crypto/poly1305.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/sm3.h> #include <crypto/sm4.h> #include <crypto/xts.h> #include <crypto/skcipher.h> #include <crypto/internal/aead.h> #include <crypto/internal/skcipher.h> #include "safexcel.h" enum safexcel_cipher_direction { SAFEXCEL_ENCRYPT, SAFEXCEL_DECRYPT, }; enum safexcel_cipher_alg { SAFEXCEL_DES, SAFEXCEL_3DES, SAFEXCEL_AES, SAFEXCEL_CHACHA20, SAFEXCEL_SM4, }; struct safexcel_cipher_ctx { struct safexcel_context base; struct safexcel_crypto_priv *priv; u32 mode; enum safexcel_cipher_alg alg; u8 aead; /* !=0=AEAD, 2=IPSec ESP AEAD, 3=IPsec ESP GMAC */ u8 xcm; /* 0=authenc, 1=GCM, 2 reserved for CCM */ u8 aadskip; u8 blocksz; u32 ivmask; u32 ctrinit; __le32 key[16]; u32 nonce; unsigned int key_len, xts; /* All the below is AEAD specific */ u32 hash_alg; u32 state_sz; struct crypto_aead *fback; }; struct safexcel_cipher_req { enum safexcel_cipher_direction direction; /* Number of result descriptors associated to the request */ unsigned int rdescs; bool needs_inv; int nr_src, nr_dst; }; static int safexcel_skcipher_iv(struct safexcel_cipher_ctx *ctx, u8 *iv, struct safexcel_command_desc *cdesc) { if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) { cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD; /* 32 bit nonce */ cdesc->control_data.token[0] = ctx->nonce; /* 64 bit IV part */ memcpy(&cdesc->control_data.token[1], iv, 8); /* 32 bit counter, start at 0 or 1 (big endian!) */ cdesc->control_data.token[3] = (__force u32)cpu_to_be32(ctx->ctrinit); return 4; } if (ctx->alg == SAFEXCEL_CHACHA20) { cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD; /* 96 bit nonce part */ memcpy(&cdesc->control_data.token[0], &iv[4], 12); /* 32 bit counter */ cdesc->control_data.token[3] = *(u32 *)iv; return 4; } cdesc->control_data.options |= ctx->ivmask; memcpy(cdesc->control_data.token, iv, ctx->blocksz); return ctx->blocksz / sizeof(u32); } static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv, struct safexcel_command_desc *cdesc, struct safexcel_token *atoken, u32 length) { struct safexcel_token *token; int ivlen; ivlen = safexcel_skcipher_iv(ctx, iv, cdesc); if (ivlen == 4) { /* No space in cdesc, instruction moves to atoken */ cdesc->additional_cdata_size = 1; token = atoken; } else { /* Everything fits in cdesc */ token = (struct safexcel_token *)(cdesc->control_data.token + 2); /* Need to pad with NOP */ eip197_noop_token(&token[1]); } token->opcode = EIP197_TOKEN_OPCODE_DIRECTION; token->packet_length = length; token->stat = EIP197_TOKEN_STAT_LAST_PACKET | EIP197_TOKEN_STAT_LAST_HASH; token->instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_CRYPTO | EIP197_TOKEN_INS_TYPE_OUTPUT; } static void safexcel_aead_iv(struct safexcel_cipher_ctx *ctx, u8 *iv, struct safexcel_command_desc *cdesc) { if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD || ctx->aead & EIP197_AEAD_TYPE_IPSEC_ESP) { /* _ESP and _ESP_GMAC */ /* 32 bit nonce */ cdesc->control_data.token[0] = ctx->nonce; /* 64 bit IV part */ memcpy(&cdesc->control_data.token[1], iv, 8); /* 32 bit counter, start at 0 or 1 (big endian!) */ cdesc->control_data.token[3] = (__force u32)cpu_to_be32(ctx->ctrinit); return; } if (ctx->xcm == EIP197_XCM_MODE_GCM || ctx->alg == SAFEXCEL_CHACHA20) { /* 96 bit IV part */ memcpy(&cdesc->control_data.token[0], iv, 12); /* 32 bit counter, start at 0 or 1 (big endian!) */ cdesc->control_data.token[3] = (__force u32)cpu_to_be32(ctx->ctrinit); return; } /* CBC */ memcpy(cdesc->control_data.token, iv, ctx->blocksz); } static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv, struct safexcel_command_desc *cdesc, struct safexcel_token *atoken, enum safexcel_cipher_direction direction, u32 cryptlen, u32 assoclen, u32 digestsize) { struct safexcel_token *aadref; int atoksize = 2; /* Start with minimum size */ int assocadj = assoclen - ctx->aadskip, aadalign; /* Always 4 dwords of embedded IV for AEAD modes */ cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD; if (direction == SAFEXCEL_DECRYPT) cryptlen -= digestsize; if (unlikely(ctx->xcm == EIP197_XCM_MODE_CCM)) { /* Construct IV block B0 for the CBC-MAC */ u8 *final_iv = (u8 *)cdesc->control_data.token; u8 *cbcmaciv = (u8 *)&atoken[1]; __le32 *aadlen = (__le32 *)&atoken[5]; if (ctx->aead == EIP197_AEAD_TYPE_IPSEC_ESP) { /* Length + nonce */ cdesc->control_data.token[0] = ctx->nonce; /* Fixup flags byte */ *(__le32 *)cbcmaciv = cpu_to_le32(ctx->nonce | ((assocadj > 0) << 6) | ((digestsize - 2) << 2)); /* 64 bit IV part */ memcpy(&cdesc->control_data.token[1], iv, 8); memcpy(cbcmaciv + 4, iv, 8); /* Start counter at 0 */ cdesc->control_data.token[3] = 0; /* Message length */ *(__be32 *)(cbcmaciv + 12) = cpu_to_be32(cryptlen); } else { /* Variable length IV part */ memcpy(final_iv, iv, 15 - iv[0]); memcpy(cbcmaciv, iv, 15 - iv[0]); /* Start variable length counter at 0 */ memset(final_iv + 15 - iv[0], 0, iv[0] + 1); memset(cbcmaciv + 15 - iv[0], 0, iv[0] - 1); /* fixup flags byte */ cbcmaciv[0] |= ((assocadj > 0) << 6) | ((digestsize - 2) << 2); /* insert lower 2 bytes of message length */ cbcmaciv[14] = cryptlen >> 8; cbcmaciv[15] = cryptlen & 255; } atoken->opcode = EIP197_TOKEN_OPCODE_INSERT; atoken->packet_length = AES_BLOCK_SIZE + ((assocadj > 0) << 1); atoken->stat = 0; atoken->instructions = EIP197_TOKEN_INS_ORIGIN_TOKEN | EIP197_TOKEN_INS_TYPE_HASH; if (likely(assocadj)) { *aadlen = cpu_to_le32((assocadj >> 8) | (assocadj & 255) << 8); atoken += 6; atoksize += 7; } else { atoken += 5; atoksize += 6; } /* Process AAD data */ aadref = atoken; atoken->opcode = EIP197_TOKEN_OPCODE_DIRECTION; atoken->packet_length = assocadj; atoken->stat = 0; atoken->instructions = EIP197_TOKEN_INS_TYPE_HASH; atoken++; /* For CCM only, align AAD data towards hash engine */ atoken->opcode = EIP197_TOKEN_OPCODE_INSERT; aadalign = (assocadj + 2) & 15; atoken->packet_length = assocadj && aadalign ? 16 - aadalign : 0; if (likely(cryptlen)) { atoken->stat = 0; atoken->instructions = EIP197_TOKEN_INS_TYPE_HASH; } else { atoken->stat = EIP197_TOKEN_STAT_LAST_HASH; atoken->instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_HASH; } } else { safexcel_aead_iv(ctx, iv, cdesc); /* Process AAD data */ aadref = atoken; atoken->opcode = EIP197_TOKEN_OPCODE_DIRECTION; atoken->packet_length = assocadj; atoken->stat = EIP197_TOKEN_STAT_LAST_HASH; atoken->instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_HASH; } atoken++; if (ctx->aead == EIP197_AEAD_TYPE_IPSEC_ESP) { /* For ESP mode (and not GMAC), skip over the IV */ atoken->opcode = EIP197_TOKEN_OPCODE_DIRECTION; atoken->packet_length = EIP197_AEAD_IPSEC_IV_SIZE; atoken->stat = 0; atoken->instructions = 0; atoken++; atoksize++; } else if (unlikely(ctx->alg == SAFEXCEL_CHACHA20 && direction == SAFEXCEL_DECRYPT)) { /* Poly-chacha decryption needs a dummy NOP here ... */ atoken->opcode = EIP197_TOKEN_OPCODE_INSERT; atoken->packet_length = 16; /* According to Op Manual */ atoken->stat = 0; atoken->instructions = 0; atoken++; atoksize++; } if (ctx->xcm) { /* For GCM and CCM, obtain enc(Y0) */ atoken->opcode = EIP197_TOKEN_OPCODE_INSERT_REMRES; atoken->packet_length = 0; atoken->stat = 0; atoken->instructions = AES_BLOCK_SIZE; atoken++; atoken->opcode = EIP197_TOKEN_OPCODE_INSERT; atoken->packet_length = AES_BLOCK_SIZE; atoken->stat = 0; atoken->instructions = EIP197_TOKEN_INS_TYPE_OUTPUT | EIP197_TOKEN_INS_TYPE_CRYPTO; atoken++; atoksize += 2; } if (likely(cryptlen || ctx->alg == SAFEXCEL_CHACHA20)) { /* Fixup stat field for AAD direction instruction */ aadref->stat = 0; /* Process crypto data */ atoken->opcode = EIP197_TOKEN_OPCODE_DIRECTION; atoken->packet_length = cryptlen; if (unlikely(ctx->aead == EIP197_AEAD_TYPE_IPSEC_ESP_GMAC)) { /* Fixup instruction field for AAD dir instruction */ aadref->instructions = EIP197_TOKEN_INS_TYPE_HASH; /* Do not send to crypt engine in case of GMAC */ atoken->instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_HASH | EIP197_TOKEN_INS_TYPE_OUTPUT; } else { atoken->instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_CRYPTO | EIP197_TOKEN_INS_TYPE_HASH | EIP197_TOKEN_INS_TYPE_OUTPUT; } cryptlen &= 15; if (unlikely(ctx->xcm == EIP197_XCM_MODE_CCM && cryptlen)) { atoken->stat = 0; /* For CCM only, pad crypto data to the hash engine */ atoken++; atoksize++; atoken->opcode = EIP197_TOKEN_OPCODE_INSERT; atoken->packet_length = 16 - cryptlen; atoken->stat = EIP197_TOKEN_STAT_LAST_HASH; atoken->instructions = EIP197_TOKEN_INS_TYPE_HASH; } else { atoken->stat = EIP197_TOKEN_STAT_LAST_HASH; } atoken++; atoksize++; } if (direction == SAFEXCEL_ENCRYPT) { /* Append ICV */ atoken->opcode = EIP197_TOKEN_OPCODE_INSERT; atoken->packet_length = digestsize; atoken->stat = EIP197_TOKEN_STAT_LAST_HASH | EIP197_TOKEN_STAT_LAST_PACKET; atoken->instructions = EIP197_TOKEN_INS_TYPE_OUTPUT | EIP197_TOKEN_INS_INSERT_HASH_DIGEST; } else { /* Extract ICV */ atoken->opcode = EIP197_TOKEN_OPCODE_RETRIEVE; atoken->packet_length = digestsize; atoken->stat = EIP197_TOKEN_STAT_LAST_HASH | EIP197_TOKEN_STAT_LAST_PACKET; atoken->instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST; atoken++; atoksize++; /* Verify ICV */ atoken->opcode = EIP197_TOKEN_OPCODE_VERIFY; atoken->packet_length = digestsize | EIP197_TOKEN_HASH_RESULT_VERIFY; atoken->stat = EIP197_TOKEN_STAT_LAST_HASH | EIP197_TOKEN_STAT_LAST_PACKET; atoken->instructions = EIP197_TOKEN_INS_TYPE_OUTPUT; } /* Fixup length of the token in the command descriptor */ cdesc->additional_cdata_size = atoksize; } static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; struct crypto_aes_ctx aes; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) return ret; if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < len / sizeof(u32); i++) { if (le32_to_cpu(ctx->key[i]) != aes.key_enc[i]) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < len / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = len; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_aead_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; struct crypto_authenc_keys keys; struct crypto_aes_ctx aes; int err = -EINVAL, i; const char *alg; if (unlikely(crypto_authenc_extractkeys(&keys, key, len))) goto badkey; if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) { /* Must have at least space for the nonce here */ if (unlikely(keys.enckeylen < CTR_RFC3686_NONCE_SIZE)) goto badkey; /* last 4 bytes of key are the nonce! */ ctx->nonce = *(u32 *)(keys.enckey + keys.enckeylen - CTR_RFC3686_NONCE_SIZE); /* exclude the nonce here */ keys.enckeylen -= CTR_RFC3686_NONCE_SIZE; } /* Encryption key */ switch (ctx->alg) { case SAFEXCEL_DES: err = verify_aead_des_key(ctfm, keys.enckey, keys.enckeylen); if (unlikely(err)) goto badkey; break; case SAFEXCEL_3DES: err = verify_aead_des3_key(ctfm, keys.enckey, keys.enckeylen); if (unlikely(err)) goto badkey; break; case SAFEXCEL_AES: err = aes_expandkey(&aes, keys.enckey, keys.enckeylen); if (unlikely(err)) goto badkey; break; case SAFEXCEL_SM4: if (unlikely(keys.enckeylen != SM4_KEY_SIZE)) goto badkey; break; default: dev_err(priv->dev, "aead: unsupported cipher algorithm\n"); goto badkey; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < keys.enckeylen / sizeof(u32); i++) { if (le32_to_cpu(ctx->key[i]) != ((u32 *)keys.enckey)[i]) { ctx->base.needs_inv = true; break; } } } /* Auth key */ switch (ctx->hash_alg) { case CONTEXT_CONTROL_CRYPTO_ALG_SHA1: alg = "safexcel-sha1"; break; case CONTEXT_CONTROL_CRYPTO_ALG_SHA224: alg = "safexcel-sha224"; break; case CONTEXT_CONTROL_CRYPTO_ALG_SHA256: alg = "safexcel-sha256"; break; case CONTEXT_CONTROL_CRYPTO_ALG_SHA384: alg = "safexcel-sha384"; break; case CONTEXT_CONTROL_CRYPTO_ALG_SHA512: alg = "safexcel-sha512"; break; case CONTEXT_CONTROL_CRYPTO_ALG_SM3: alg = "safexcel-sm3"; break; default: dev_err(priv->dev, "aead: unsupported hash algorithm\n"); goto badkey; } if (safexcel_hmac_setkey(&ctx->base, keys.authkey, keys.authkeylen, alg, ctx->state_sz)) goto badkey; /* Now copy the keys into the context */ for (i = 0; i < keys.enckeylen / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(((u32 *)keys.enckey)[i]); ctx->key_len = keys.enckeylen; memzero_explicit(&keys, sizeof(keys)); return 0; badkey: memzero_explicit(&keys, sizeof(keys)); return err; } static int safexcel_context_control(struct safexcel_cipher_ctx *ctx, struct crypto_async_request *async, struct safexcel_cipher_req *sreq, struct safexcel_command_desc *cdesc) { struct safexcel_crypto_priv *priv = ctx->base.priv; int ctrl_size = ctx->key_len / sizeof(u32); cdesc->control_data.control1 = ctx->mode; if (ctx->aead) { /* Take in account the ipad+opad digests */ if (ctx->xcm) { ctrl_size += ctx->state_sz / sizeof(u32); cdesc->control_data.control0 = CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_DIGEST_XCM | ctx->hash_alg | CONTEXT_CONTROL_SIZE(ctrl_size); } else if (ctx->alg == SAFEXCEL_CHACHA20) { /* Chacha20-Poly1305 */ cdesc->control_data.control0 = CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_CRYPTO_ALG_CHACHA20 | (sreq->direction == SAFEXCEL_ENCRYPT ? CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT : CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN) | ctx->hash_alg | CONTEXT_CONTROL_SIZE(ctrl_size); return 0; } else { ctrl_size += ctx->state_sz / sizeof(u32) * 2; cdesc->control_data.control0 = CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_DIGEST_HMAC | ctx->hash_alg | CONTEXT_CONTROL_SIZE(ctrl_size); } if (sreq->direction == SAFEXCEL_ENCRYPT && (ctx->xcm == EIP197_XCM_MODE_CCM || ctx->aead == EIP197_AEAD_TYPE_IPSEC_ESP_GMAC)) cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_ENCRYPT_OUT; else if (sreq->direction == SAFEXCEL_ENCRYPT) cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT; else if (ctx->xcm == EIP197_XCM_MODE_CCM) cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_DECRYPT_HASH_IN; else cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN; } else { if (sreq->direction == SAFEXCEL_ENCRYPT) cdesc->control_data.control0 = CONTEXT_CONTROL_TYPE_CRYPTO_OUT | CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_SIZE(ctrl_size); else cdesc->control_data.control0 = CONTEXT_CONTROL_TYPE_CRYPTO_IN | CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_SIZE(ctrl_size); } if (ctx->alg == SAFEXCEL_DES) { cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_DES; } else if (ctx->alg == SAFEXCEL_3DES) { cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_3DES; } else if (ctx->alg == SAFEXCEL_AES) { switch (ctx->key_len >> ctx->xts) { case AES_KEYSIZE_128: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128; break; case AES_KEYSIZE_192: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192; break; case AES_KEYSIZE_256: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256; break; default: dev_err(priv->dev, "aes keysize not supported: %u\n", ctx->key_len >> ctx->xts); return -EINVAL; } } else if (ctx->alg == SAFEXCEL_CHACHA20) { cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_CHACHA20; } else if (ctx->alg == SAFEXCEL_SM4) { cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_SM4; } return 0; } static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, struct safexcel_cipher_req *sreq, bool *should_complete, int *ret) { struct skcipher_request *areq = skcipher_request_cast(async); struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq); struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(skcipher); struct safexcel_result_desc *rdesc; int ndesc = 0; *ret = 0; if (unlikely(!sreq->rdescs)) return 0; while (sreq->rdescs--) { rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "cipher: result: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); break; } if (likely(!*ret)) *ret = safexcel_rdesc_check_errors(priv, rdesc); ndesc++; } safexcel_complete(priv, ring); if (src == dst) { if (sreq->nr_src > 0) dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL); } else { if (sreq->nr_src > 0) dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE); if (sreq->nr_dst > 0) dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE); } /* * Update IV in req from last crypto output word for CBC modes */ if ((!ctx->aead) && (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) && (sreq->direction == SAFEXCEL_ENCRYPT)) { /* For encrypt take the last output word */ sg_pcopy_to_buffer(dst, sreq->nr_dst, areq->iv, crypto_skcipher_ivsize(skcipher), (cryptlen - crypto_skcipher_ivsize(skcipher))); } *should_complete = true; return ndesc; } static int safexcel_send_req(struct crypto_async_request *base, int ring, struct safexcel_cipher_req *sreq, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, unsigned int assoclen, unsigned int digestsize, u8 *iv, int *commands, int *results) { struct skcipher_request *areq = skcipher_request_cast(base); struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; struct safexcel_command_desc *cdesc; struct safexcel_command_desc *first_cdesc = NULL; struct safexcel_result_desc *rdesc, *first_rdesc = NULL; struct scatterlist *sg; unsigned int totlen; unsigned int totlen_src = cryptlen + assoclen; unsigned int totlen_dst = totlen_src; struct safexcel_token *atoken; int n_cdesc = 0, n_rdesc = 0; int queued, i, ret = 0; bool first = true; sreq->nr_src = sg_nents_for_len(src, totlen_src); if (ctx->aead) { /* * AEAD has auth tag appended to output for encrypt and * removed from the output for decrypt! */ if (sreq->direction == SAFEXCEL_DECRYPT) totlen_dst -= digestsize; else totlen_dst += digestsize; memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32), &ctx->base.ipad, ctx->state_sz); if (!ctx->xcm) memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32), &ctx->base.opad, ctx->state_sz); } else if ((ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) && (sreq->direction == SAFEXCEL_DECRYPT)) { /* * Save IV from last crypto input word for CBC modes in decrypt * direction. Need to do this first in case of inplace operation * as it will be overwritten. */ sg_pcopy_to_buffer(src, sreq->nr_src, areq->iv, crypto_skcipher_ivsize(skcipher), (totlen_src - crypto_skcipher_ivsize(skcipher))); } sreq->nr_dst = sg_nents_for_len(dst, totlen_dst); /* * Remember actual input length, source buffer length may be * updated in case of inline operation below. */ totlen = totlen_src; queued = totlen_src; if (src == dst) { sreq->nr_src = max(sreq->nr_src, sreq->nr_dst); sreq->nr_dst = sreq->nr_src; if (unlikely((totlen_src || totlen_dst) && (sreq->nr_src <= 0))) { dev_err(priv->dev, "In-place buffer not large enough (need %d bytes)!", max(totlen_src, totlen_dst)); return -EINVAL; } if (sreq->nr_src > 0) dma_map_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL); } else { if (unlikely(totlen_src && (sreq->nr_src <= 0))) { dev_err(priv->dev, "Source buffer not large enough (need %d bytes)!", totlen_src); return -EINVAL; } if (sreq->nr_src > 0) dma_map_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE); if (unlikely(totlen_dst && (sreq->nr_dst <= 0))) { dev_err(priv->dev, "Dest buffer not large enough (need %d bytes)!", totlen_dst); ret = -EINVAL; goto unmap; } if (sreq->nr_dst > 0) dma_map_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE); } memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len); if (!totlen) { /* * The EIP97 cannot deal with zero length input packets! * So stuff a dummy command descriptor indicating a 1 byte * (dummy) input packet, using the context record as source. */ first_cdesc = safexcel_add_cdesc(priv, ring, 1, 1, ctx->base.ctxr_dma, 1, 1, ctx->base.ctxr_dma, &atoken); if (IS_ERR(first_cdesc)) { /* No space left in the command descriptor ring */ ret = PTR_ERR(first_cdesc); goto cdesc_rollback; } n_cdesc = 1; goto skip_cdesc; } /* command descriptors */ for_each_sg(src, sg, sreq->nr_src, i) { int len = sg_dma_len(sg); /* Do not overflow the request */ if (queued < len) len = queued; cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len), sg_dma_address(sg), len, totlen, ctx->base.ctxr_dma, &atoken); if (IS_ERR(cdesc)) { /* No space left in the command descriptor ring */ ret = PTR_ERR(cdesc); goto cdesc_rollback; } if (!n_cdesc) first_cdesc = cdesc; n_cdesc++; queued -= len; if (!queued) break; } skip_cdesc: /* Add context control words and token to first command descriptor */ safexcel_context_control(ctx, base, sreq, first_cdesc); if (ctx->aead) safexcel_aead_token(ctx, iv, first_cdesc, atoken, sreq->direction, cryptlen, assoclen, digestsize); else safexcel_skcipher_token(ctx, iv, first_cdesc, atoken, cryptlen); /* result descriptors */ for_each_sg(dst, sg, sreq->nr_dst, i) { bool last = (i == sreq->nr_dst - 1); u32 len = sg_dma_len(sg); /* only allow the part of the buffer we know we need */ if (len > totlen_dst) len = totlen_dst; if (unlikely(!len)) break; totlen_dst -= len; /* skip over AAD space in buffer - not written */ if (assoclen) { if (assoclen >= len) { assoclen -= len; continue; } rdesc = safexcel_add_rdesc(priv, ring, first, last, sg_dma_address(sg) + assoclen, len - assoclen); assoclen = 0; } else { rdesc = safexcel_add_rdesc(priv, ring, first, last, sg_dma_address(sg), len); } if (IS_ERR(rdesc)) { /* No space left in the result descriptor ring */ ret = PTR_ERR(rdesc); goto rdesc_rollback; } if (first) { first_rdesc = rdesc; first = false; } n_rdesc++; } if (unlikely(first)) { /* * Special case: AEAD decrypt with only AAD data. * In this case there is NO output data from the engine, * but the engine still needs a result descriptor! * Create a dummy one just for catching the result token. */ rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0); if (IS_ERR(rdesc)) { /* No space left in the result descriptor ring */ ret = PTR_ERR(rdesc); goto rdesc_rollback; } first_rdesc = rdesc; n_rdesc = 1; } safexcel_rdr_req_set(priv, ring, first_rdesc, base); *commands = n_cdesc; *results = n_rdesc; return 0; rdesc_rollback: for (i = 0; i < n_rdesc; i++) safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr); cdesc_rollback: for (i = 0; i < n_cdesc; i++) safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); unmap: if (src == dst) { if (sreq->nr_src > 0) dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL); } else { if (sreq->nr_src > 0) dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE); if (sreq->nr_dst > 0) dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE); } return ret; } static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *base, struct safexcel_cipher_req *sreq, bool *should_complete, int *ret) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_result_desc *rdesc; int ndesc = 0, enq_ret; *ret = 0; if (unlikely(!sreq->rdescs)) return 0; while (sreq->rdescs--) { rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "cipher: invalidate: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); break; } if (likely(!*ret)) *ret = safexcel_rdesc_check_errors(priv, rdesc); ndesc++; } safexcel_complete(priv, ring); if (ctx->base.exit_inv) { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); *should_complete = true; return ndesc; } ring = safexcel_select_ring(priv); ctx->base.ring = ring; spin_lock_bh(&priv->ring[ring].queue_lock); enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base); spin_unlock_bh(&priv->ring[ring].queue_lock); if (enq_ret != -EINPROGRESS) *ret = enq_ret; queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); *should_complete = false; return ndesc; } static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); int err; if (sreq->needs_inv) { sreq->needs_inv = false; err = safexcel_handle_inv_result(priv, ring, async, sreq, should_complete, ret); } else { err = safexcel_handle_req_result(priv, ring, async, req->src, req->dst, req->cryptlen, sreq, should_complete, ret); } return err; } static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct aead_request *req = aead_request_cast(async); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct safexcel_cipher_req *sreq = aead_request_ctx(req); int err; if (sreq->needs_inv) { sreq->needs_inv = false; err = safexcel_handle_inv_result(priv, ring, async, sreq, should_complete, ret); } else { err = safexcel_handle_req_result(priv, ring, async, req->src, req->dst, req->cryptlen + crypto_aead_authsize(tfm), sreq, should_complete, ret); } return err; } static int safexcel_cipher_send_inv(struct crypto_async_request *base, int ring, int *commands, int *results) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret; ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring); if (unlikely(ret)) return ret; *commands = 1; *results = 1; return 0; } static int safexcel_skcipher_send(struct crypto_async_request *async, int ring, int *commands, int *results) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret; BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv); if (sreq->needs_inv) { ret = safexcel_cipher_send_inv(async, ring, commands, results); } else { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); u8 input_iv[AES_BLOCK_SIZE]; /* * Save input IV in case of CBC decrypt mode * Will be overwritten with output IV prior to use! */ memcpy(input_iv, req->iv, crypto_skcipher_ivsize(skcipher)); ret = safexcel_send_req(async, ring, sreq, req->src, req->dst, req->cryptlen, 0, 0, input_iv, commands, results); } sreq->rdescs = *results; return ret; } static int safexcel_aead_send(struct crypto_async_request *async, int ring, int *commands, int *results) { struct aead_request *req = aead_request_cast(async); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_cipher_req *sreq = aead_request_ctx(req); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret; BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv); if (sreq->needs_inv) ret = safexcel_cipher_send_inv(async, ring, commands, results); else ret = safexcel_send_req(async, ring, sreq, req->src, req->dst, req->cryptlen, req->assoclen, crypto_aead_authsize(tfm), req->iv, commands, results); sreq->rdescs = *results; return ret; } static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm, struct crypto_async_request *base, struct safexcel_cipher_req *sreq, struct crypto_wait *result) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; int ring = ctx->base.ring; int err; ctx = crypto_tfm_ctx(base->tfm); ctx->base.exit_inv = true; sreq->needs_inv = true; spin_lock_bh(&priv->ring[ring].queue_lock); crypto_enqueue_request(&priv->ring[ring].queue, base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); err = crypto_wait_req(-EINPROGRESS, result); if (err) { dev_warn(priv->dev, "cipher: sync: invalidate: completion error %d\n", err); return err; } return 0; } static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm) { EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); DECLARE_CRYPTO_WAIT(result); memset(req, 0, sizeof(struct skcipher_request)); skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm)); return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result); } static int safexcel_aead_exit_inv(struct crypto_tfm *tfm) { EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE); struct safexcel_cipher_req *sreq = aead_request_ctx(req); DECLARE_CRYPTO_WAIT(result); memset(req, 0, sizeof(struct aead_request)); aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); aead_request_set_tfm(req, __crypto_aead_cast(tfm)); return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result); } static int safexcel_queue_req(struct crypto_async_request *base, struct safexcel_cipher_req *sreq, enum safexcel_cipher_direction dir) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret, ring; sreq->needs_inv = false; sreq->direction = dir; if (ctx->base.ctxr) { if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) { sreq->needs_inv = true; ctx->base.needs_inv = false; } } else { ctx->base.ring = safexcel_select_ring(priv); ctx->base.ctxr = dma_pool_zalloc(priv->context_pool, EIP197_GFP_FLAGS(*base), &ctx->base.ctxr_dma); if (!ctx->base.ctxr) return -ENOMEM; } ring = ctx->base.ring; spin_lock_bh(&priv->ring[ring].queue_lock); ret = crypto_enqueue_request(&priv->ring[ring].queue, base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); return ret; } static int safexcel_encrypt(struct skcipher_request *req) { return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_ENCRYPT); } static int safexcel_decrypt(struct skcipher_request *req) { return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_DECRYPT); } static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_alg_template *tmpl = container_of(tfm->__crt_alg, struct safexcel_alg_template, alg.skcipher.base); crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), sizeof(struct safexcel_cipher_req)); ctx->base.priv = tmpl->priv; ctx->base.send = safexcel_skcipher_send; ctx->base.handle_result = safexcel_skcipher_handle_result; ctx->ivmask = EIP197_OPTION_4_TOKEN_IV_CMD; ctx->ctrinit = 1; return 0; } static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); memzero_explicit(ctx->key, sizeof(ctx->key)); /* context not allocated, skip invalidation */ if (!ctx->base.ctxr) return -ENOMEM; memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data)); return 0; } static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret; if (safexcel_cipher_cra_exit(tfm)) return; if (priv->flags & EIP197_TRC_CACHE) { ret = safexcel_skcipher_exit_inv(tfm); if (ret) dev_warn(priv->dev, "skcipher: invalidation error %d\n", ret); } else { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); } } static void safexcel_aead_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret; if (safexcel_cipher_cra_exit(tfm)) return; if (priv->flags & EIP197_TRC_CACHE) { ret = safexcel_aead_exit_inv(tfm); if (ret) dev_warn(priv->dev, "aead: invalidation error %d\n", ret); } else { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); } } static int safexcel_skcipher_aes_ecb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB; ctx->blocksz = 0; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_ecb_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES, .alg.skcipher = { .setkey = safexcel_skcipher_aes_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .base = { .cra_name = "ecb(aes)", .cra_driver_name = "safexcel-ecb-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_ecb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_aes_cbc_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->blocksz = AES_BLOCK_SIZE; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; return 0; } struct safexcel_alg_template safexcel_alg_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES, .alg.skcipher = { .setkey = safexcel_skcipher_aes_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "cbc(aes)", .cra_driver_name = "safexcel-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_cbc_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_aes_cfb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->blocksz = AES_BLOCK_SIZE; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CFB; return 0; } struct safexcel_alg_template safexcel_alg_cfb_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_AES_XFB, .alg.skcipher = { .setkey = safexcel_skcipher_aes_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "cfb(aes)", .cra_driver_name = "safexcel-cfb-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_cfb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_aes_ofb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->blocksz = AES_BLOCK_SIZE; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_OFB; return 0; } struct safexcel_alg_template safexcel_alg_ofb_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_AES_XFB, .alg.skcipher = { .setkey = safexcel_skcipher_aes_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "ofb(aes)", .cra_driver_name = "safexcel-ofb-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_ofb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_aesctr_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; struct crypto_aes_ctx aes; int ret, i; unsigned int keylen; /* last 4 bytes of key are the nonce! */ ctx->nonce = *(u32 *)(key + len - CTR_RFC3686_NONCE_SIZE); /* exclude the nonce here */ keylen = len - CTR_RFC3686_NONCE_SIZE; ret = aes_expandkey(&aes, key, keylen); if (ret) return ret; if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < keylen / sizeof(u32); i++) { if (le32_to_cpu(ctx->key[i]) != aes.key_enc[i]) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < keylen / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = keylen; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_skcipher_aes_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->blocksz = AES_BLOCK_SIZE; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; return 0; } struct safexcel_alg_template safexcel_alg_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES, .alg.skcipher = { .setkey = safexcel_skcipher_aesctr_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, /* Add nonce size */ .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, .base = { .cra_name = "rfc3686(ctr(aes))", .cra_driver_name = "safexcel-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_ctr_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret; ret = verify_skcipher_des_key(ctfm, key); if (ret) return ret; /* if context exits and key changed, need to invalidate it */ if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) if (memcmp(ctx->key, key, len)) ctx->base.needs_inv = true; memcpy(ctx->key, key, len); ctx->key_len = len; return 0; } static int safexcel_skcipher_des_cbc_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_DES; ctx->blocksz = DES_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; return 0; } struct safexcel_alg_template safexcel_alg_cbc_des = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_DES, .alg.skcipher = { .setkey = safexcel_des_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .base = { .cra_name = "cbc(des)", .cra_driver_name = "safexcel-cbc-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_des_cbc_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_des_ecb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_DES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB; ctx->blocksz = 0; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_ecb_des = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_DES, .alg.skcipher = { .setkey = safexcel_des_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .base = { .cra_name = "ecb(des)", .cra_driver_name = "safexcel-ecb-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_des_ecb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_des3_ede_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm); struct safexcel_crypto_priv *priv = ctx->base.priv; int err; err = verify_skcipher_des3_key(ctfm, key); if (err) return err; /* if context exits and key changed, need to invalidate it */ if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) if (memcmp(ctx->key, key, len)) ctx->base.needs_inv = true; memcpy(ctx->key, key, len); ctx->key_len = len; return 0; } static int safexcel_skcipher_des3_cbc_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; ctx->blocksz = DES3_EDE_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; return 0; } struct safexcel_alg_template safexcel_alg_cbc_des3_ede = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_DES, .alg.skcipher = { .setkey = safexcel_des3_ede_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .base = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "safexcel-cbc-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_des3_cbc_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_des3_ecb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB; ctx->blocksz = 0; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_ecb_des3_ede = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_DES, .alg.skcipher = { .setkey = safexcel_des3_ede_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .base = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "safexcel-ecb-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_des3_ecb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_encrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT); } static int safexcel_aead_decrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT); } static int safexcel_aead_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_alg_template *tmpl = container_of(tfm->__crt_alg, struct safexcel_alg_template, alg.aead.base); crypto_aead_set_reqsize(__crypto_aead_cast(tfm), sizeof(struct safexcel_cipher_req)); ctx->base.priv = tmpl->priv; ctx->alg = SAFEXCEL_AES; /* default */ ctx->blocksz = AES_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_4_TOKEN_IV_CMD; ctx->ctrinit = 1; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; /* default */ ctx->aead = true; ctx->base.send = safexcel_aead_send; ctx->base.handle_result = safexcel_aead_handle_result; return 0; } static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1; ctx->state_sz = SHA1_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha1_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256; ctx->state_sz = SHA256_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha256_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224; ctx->state_sz = SHA256_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha224),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha224_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512; ctx->state_sz = SHA512_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha512_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384; ctx->state_sz = SHA512_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha384_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha1_des3_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha1_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; /* override default */ ctx->blocksz = DES3_EDE_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_des3_ede = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha1_des3_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha256_des3_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha256_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; /* override default */ ctx->blocksz = DES3_EDE_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_des3_ede = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha256_des3_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha224_des3_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha224_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; /* override default */ ctx->blocksz = DES3_EDE_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_des3_ede = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha224_des3_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha512_des3_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha512_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; /* override default */ ctx->blocksz = DES3_EDE_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_des3_ede = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", .cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha512_des3_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha384_des3_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha384_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; /* override default */ ctx->blocksz = DES3_EDE_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_des3_ede = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", .cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha384_des3_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha1_des_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha1_cra_init(tfm); ctx->alg = SAFEXCEL_DES; /* override default */ ctx->blocksz = DES_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_des = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha1_des_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha256_des_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha256_cra_init(tfm); ctx->alg = SAFEXCEL_DES; /* override default */ ctx->blocksz = DES_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_des = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha256),cbc(des))", .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha256_des_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha224_des_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha224_cra_init(tfm); ctx->alg = SAFEXCEL_DES; /* override default */ ctx->blocksz = DES_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_des = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha224),cbc(des))", .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha224_des_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha512_des_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha512_cra_init(tfm); ctx->alg = SAFEXCEL_DES; /* override default */ ctx->blocksz = DES_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_des = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha512),cbc(des))", .cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha512_des_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha384_des_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha384_cra_init(tfm); ctx->alg = SAFEXCEL_DES; /* override default */ ctx->blocksz = DES_BLOCK_SIZE; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_des = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha384),cbc(des))", .cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha384_des_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha1_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha1_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha1-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha1_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha256_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha256_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha256),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha256-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha256_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha224_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha224_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha224),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha224-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha224_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha512_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha512_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha512),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha512-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha512_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha384_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha384_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha384),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha384-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha384_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_aesxts_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; struct crypto_aes_ctx aes; int ret, i; unsigned int keylen; /* Check for illegal XTS keys */ ret = xts_verify_key(ctfm, key, len); if (ret) return ret; /* Only half of the key data is cipher key */ keylen = (len >> 1); ret = aes_expandkey(&aes, key, keylen); if (ret) return ret; if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < keylen / sizeof(u32); i++) { if (le32_to_cpu(ctx->key[i]) != aes.key_enc[i]) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < keylen / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); /* The other half is the tweak key */ ret = aes_expandkey(&aes, (u8 *)(key + keylen), keylen); if (ret) return ret; if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < keylen / sizeof(u32); i++) { if (le32_to_cpu(ctx->key[i + keylen / sizeof(u32)]) != aes.key_enc[i]) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < keylen / sizeof(u32); i++) ctx->key[i + keylen / sizeof(u32)] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = keylen << 1; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_skcipher_aes_xts_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->blocksz = AES_BLOCK_SIZE; ctx->xts = 1; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_XTS; return 0; } static int safexcel_encrypt_xts(struct skcipher_request *req) { if (req->cryptlen < XTS_BLOCK_SIZE) return -EINVAL; return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_ENCRYPT); } static int safexcel_decrypt_xts(struct skcipher_request *req) { if (req->cryptlen < XTS_BLOCK_SIZE) return -EINVAL; return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_DECRYPT); } struct safexcel_alg_template safexcel_alg_xts_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_AES_XTS, .alg.skcipher = { .setkey = safexcel_skcipher_aesxts_setkey, .encrypt = safexcel_encrypt_xts, .decrypt = safexcel_decrypt_xts, /* XTS actually uses 2 AES keys glued together */ .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = XTS_BLOCK_SIZE, .base = { .cra_name = "xts(aes)", .cra_driver_name = "safexcel-xts-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = XTS_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_xts_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_gcm_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; struct crypto_aes_ctx aes; u32 hashkey[AES_BLOCK_SIZE >> 2]; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) { memzero_explicit(&aes, sizeof(aes)); return ret; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < len / sizeof(u32); i++) { if (le32_to_cpu(ctx->key[i]) != aes.key_enc[i]) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < len / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = len; /* Compute hash key by encrypting zeroes with cipher key */ memset(hashkey, 0, AES_BLOCK_SIZE); aes_encrypt(&aes, (u8 *)hashkey, (u8 *)hashkey); if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) { if (be32_to_cpu(ctx->base.ipad.be[i]) != hashkey[i]) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) ctx->base.ipad.be[i] = cpu_to_be32(hashkey[i]); memzero_explicit(hashkey, AES_BLOCK_SIZE); memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_aead_gcm_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_GHASH; ctx->state_sz = GHASH_BLOCK_SIZE; ctx->xcm = EIP197_XCM_MODE_GCM; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_XCM; /* override default */ return 0; } static void safexcel_aead_gcm_cra_exit(struct crypto_tfm *tfm) { safexcel_aead_cra_exit(tfm); } static int safexcel_aead_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return crypto_gcm_check_authsize(authsize); } struct safexcel_alg_template safexcel_alg_gcm = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_GHASH, .alg.aead = { .setkey = safexcel_aead_gcm_setkey, .setauthsize = safexcel_aead_gcm_setauthsize, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = GHASH_DIGEST_SIZE, .base = { .cra_name = "gcm(aes)", .cra_driver_name = "safexcel-gcm-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_gcm_cra_init, .cra_exit = safexcel_aead_gcm_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_ccm_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; struct crypto_aes_ctx aes; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) { memzero_explicit(&aes, sizeof(aes)); return ret; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < len / sizeof(u32); i++) { if (le32_to_cpu(ctx->key[i]) != aes.key_enc[i]) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < len / sizeof(u32); i++) { ctx->key[i] = cpu_to_le32(aes.key_enc[i]); ctx->base.ipad.be[i + 2 * AES_BLOCK_SIZE / sizeof(u32)] = cpu_to_be32(aes.key_enc[i]); } ctx->key_len = len; ctx->state_sz = 2 * AES_BLOCK_SIZE + len; if (len == AES_KEYSIZE_192) ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192; else if (len == AES_KEYSIZE_256) ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256; else ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_aead_ccm_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128; ctx->state_sz = 3 * AES_BLOCK_SIZE; ctx->xcm = EIP197_XCM_MODE_CCM; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_XCM; /* override default */ ctx->ctrinit = 0; return 0; } static int safexcel_aead_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { /* Borrowed from crypto/ccm.c */ switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } return 0; } static int safexcel_ccm_encrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); if (req->iv[0] < 1 || req->iv[0] > 7) return -EINVAL; return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT); } static int safexcel_ccm_decrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); if (req->iv[0] < 1 || req->iv[0] > 7) return -EINVAL; return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT); } struct safexcel_alg_template safexcel_alg_ccm = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_CBC_MAC_ALL, .alg.aead = { .setkey = safexcel_aead_ccm_setkey, .setauthsize = safexcel_aead_ccm_setauthsize, .encrypt = safexcel_ccm_encrypt, .decrypt = safexcel_ccm_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, .base = { .cra_name = "ccm(aes)", .cra_driver_name = "safexcel-ccm-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_ccm_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static void safexcel_chacha20_setkey(struct safexcel_cipher_ctx *ctx, const u8 *key) { struct safexcel_crypto_priv *priv = ctx->base.priv; if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) if (memcmp(ctx->key, key, CHACHA_KEY_SIZE)) ctx->base.needs_inv = true; memcpy(ctx->key, key, CHACHA_KEY_SIZE); ctx->key_len = CHACHA_KEY_SIZE; } static int safexcel_skcipher_chacha20_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm); if (len != CHACHA_KEY_SIZE) return -EINVAL; safexcel_chacha20_setkey(ctx, key); return 0; } static int safexcel_skcipher_chacha20_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_CHACHA20; ctx->ctrinit = 0; ctx->mode = CONTEXT_CONTROL_CHACHA20_MODE_256_32; return 0; } struct safexcel_alg_template safexcel_alg_chacha20 = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_CHACHA20, .alg.skcipher = { .setkey = safexcel_skcipher_chacha20_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = CHACHA_KEY_SIZE, .max_keysize = CHACHA_KEY_SIZE, .ivsize = CHACHA_IV_SIZE, .base = { .cra_name = "chacha20", .cra_driver_name = "safexcel-chacha20", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_chacha20_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_chachapoly_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct safexcel_cipher_ctx *ctx = crypto_aead_ctx(ctfm); if (ctx->aead == EIP197_AEAD_TYPE_IPSEC_ESP && len > EIP197_AEAD_IPSEC_NONCE_SIZE) { /* ESP variant has nonce appended to key */ len -= EIP197_AEAD_IPSEC_NONCE_SIZE; ctx->nonce = *(u32 *)(key + len); } if (len != CHACHA_KEY_SIZE) return -EINVAL; safexcel_chacha20_setkey(ctx, key); return 0; } static int safexcel_aead_chachapoly_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { if (authsize != POLY1305_DIGEST_SIZE) return -EINVAL; return 0; } static int safexcel_aead_chachapoly_crypt(struct aead_request *req, enum safexcel_cipher_direction dir) { struct safexcel_cipher_req *creq = aead_request_ctx(req); struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct aead_request *subreq = aead_request_ctx(req); u32 key[CHACHA_KEY_SIZE / sizeof(u32) + 1]; int ret = 0; /* * Instead of wasting time detecting umpteen silly corner cases, * just dump all "small" requests to the fallback implementation. * HW would not be faster on such small requests anyway. */ if (likely((ctx->aead != EIP197_AEAD_TYPE_IPSEC_ESP || req->assoclen >= EIP197_AEAD_IPSEC_IV_SIZE) && req->cryptlen > POLY1305_DIGEST_SIZE)) { return safexcel_queue_req(&req->base, creq, dir); } /* HW cannot do full (AAD+payload) zero length, use fallback */ memcpy(key, ctx->key, CHACHA_KEY_SIZE); if (ctx->aead == EIP197_AEAD_TYPE_IPSEC_ESP) { /* ESP variant has nonce appended to the key */ key[CHACHA_KEY_SIZE / sizeof(u32)] = ctx->nonce; ret = crypto_aead_setkey(ctx->fback, (u8 *)key, CHACHA_KEY_SIZE + EIP197_AEAD_IPSEC_NONCE_SIZE); } else { ret = crypto_aead_setkey(ctx->fback, (u8 *)key, CHACHA_KEY_SIZE); } if (ret) { crypto_aead_clear_flags(aead, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(aead, crypto_aead_get_flags(ctx->fback) & CRYPTO_TFM_REQ_MASK); return ret; } aead_request_set_tfm(subreq, ctx->fback); aead_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); return (dir == SAFEXCEL_ENCRYPT) ? crypto_aead_encrypt(subreq) : crypto_aead_decrypt(subreq); } static int safexcel_aead_chachapoly_encrypt(struct aead_request *req) { return safexcel_aead_chachapoly_crypt(req, SAFEXCEL_ENCRYPT); } static int safexcel_aead_chachapoly_decrypt(struct aead_request *req) { return safexcel_aead_chachapoly_crypt(req, SAFEXCEL_DECRYPT); } static int safexcel_aead_fallback_cra_init(struct crypto_tfm *tfm) { struct crypto_aead *aead = __crypto_aead_cast(tfm); struct aead_alg *alg = crypto_aead_alg(aead); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); /* Allocate fallback implementation */ ctx->fback = crypto_alloc_aead(alg->base.cra_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fback)) return PTR_ERR(ctx->fback); crypto_aead_set_reqsize(aead, max(sizeof(struct safexcel_cipher_req), sizeof(struct aead_request) + crypto_aead_reqsize(ctx->fback))); return 0; } static int safexcel_aead_chachapoly_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_fallback_cra_init(tfm); ctx->alg = SAFEXCEL_CHACHA20; ctx->mode = CONTEXT_CONTROL_CHACHA20_MODE_256_32 | CONTEXT_CONTROL_CHACHA20_MODE_CALC_OTK; ctx->ctrinit = 0; ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_POLY1305; ctx->state_sz = 0; /* Precomputed by HW */ return 0; } static void safexcel_aead_fallback_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_aead(ctx->fback); safexcel_aead_cra_exit(tfm); } struct safexcel_alg_template safexcel_alg_chachapoly = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_CHACHA20 | SAFEXCEL_ALG_POLY1305, .alg.aead = { .setkey = safexcel_aead_chachapoly_setkey, .setauthsize = safexcel_aead_chachapoly_setauthsize, .encrypt = safexcel_aead_chachapoly_encrypt, .decrypt = safexcel_aead_chachapoly_decrypt, .ivsize = CHACHAPOLY_IV_SIZE, .maxauthsize = POLY1305_DIGEST_SIZE, .base = { .cra_name = "rfc7539(chacha20,poly1305)", .cra_driver_name = "safexcel-chacha20-poly1305", /* +1 to put it above HW chacha + SW poly */ .cra_priority = SAFEXCEL_CRA_PRIORITY + 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_chachapoly_cra_init, .cra_exit = safexcel_aead_fallback_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_chachapolyesp_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = safexcel_aead_chachapoly_cra_init(tfm); ctx->aead = EIP197_AEAD_TYPE_IPSEC_ESP; ctx->aadskip = EIP197_AEAD_IPSEC_IV_SIZE; return ret; } struct safexcel_alg_template safexcel_alg_chachapoly_esp = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_CHACHA20 | SAFEXCEL_ALG_POLY1305, .alg.aead = { .setkey = safexcel_aead_chachapoly_setkey, .setauthsize = safexcel_aead_chachapoly_setauthsize, .encrypt = safexcel_aead_chachapoly_encrypt, .decrypt = safexcel_aead_chachapoly_decrypt, .ivsize = CHACHAPOLY_IV_SIZE - EIP197_AEAD_IPSEC_NONCE_SIZE, .maxauthsize = POLY1305_DIGEST_SIZE, .base = { .cra_name = "rfc7539esp(chacha20,poly1305)", .cra_driver_name = "safexcel-chacha20-poly1305-esp", /* +1 to put it above HW chacha + SW poly */ .cra_priority = SAFEXCEL_CRA_PRIORITY + 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_chachapolyesp_cra_init, .cra_exit = safexcel_aead_fallback_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_sm4_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; if (len != SM4_KEY_SIZE) return -EINVAL; if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) if (memcmp(ctx->key, key, SM4_KEY_SIZE)) ctx->base.needs_inv = true; memcpy(ctx->key, key, SM4_KEY_SIZE); ctx->key_len = SM4_KEY_SIZE; return 0; } static int safexcel_sm4_blk_encrypt(struct skcipher_request *req) { /* Workaround for HW bug: EIP96 4.3 does not report blocksize error */ if (req->cryptlen & (SM4_BLOCK_SIZE - 1)) return -EINVAL; else return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_ENCRYPT); } static int safexcel_sm4_blk_decrypt(struct skcipher_request *req) { /* Workaround for HW bug: EIP96 4.3 does not report blocksize error */ if (req->cryptlen & (SM4_BLOCK_SIZE - 1)) return -EINVAL; else return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_DECRYPT); } static int safexcel_skcipher_sm4_ecb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_SM4; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB; ctx->blocksz = 0; ctx->ivmask = EIP197_OPTION_2_TOKEN_IV_CMD; return 0; } struct safexcel_alg_template safexcel_alg_ecb_sm4 = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_SM4, .alg.skcipher = { .setkey = safexcel_skcipher_sm4_setkey, .encrypt = safexcel_sm4_blk_encrypt, .decrypt = safexcel_sm4_blk_decrypt, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .base = { .cra_name = "ecb(sm4)", .cra_driver_name = "safexcel-ecb-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_sm4_ecb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_sm4_cbc_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_SM4; ctx->blocksz = SM4_BLOCK_SIZE; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; return 0; } struct safexcel_alg_template safexcel_alg_cbc_sm4 = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_SM4, .alg.skcipher = { .setkey = safexcel_skcipher_sm4_setkey, .encrypt = safexcel_sm4_blk_encrypt, .decrypt = safexcel_sm4_blk_decrypt, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .base = { .cra_name = "cbc(sm4)", .cra_driver_name = "safexcel-cbc-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_sm4_cbc_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_sm4_ofb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_SM4; ctx->blocksz = SM4_BLOCK_SIZE; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_OFB; return 0; } struct safexcel_alg_template safexcel_alg_ofb_sm4 = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_SM4 | SAFEXCEL_ALG_AES_XFB, .alg.skcipher = { .setkey = safexcel_skcipher_sm4_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .base = { .cra_name = "ofb(sm4)", .cra_driver_name = "safexcel-ofb-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_sm4_ofb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_sm4_cfb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_SM4; ctx->blocksz = SM4_BLOCK_SIZE; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CFB; return 0; } struct safexcel_alg_template safexcel_alg_cfb_sm4 = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_SM4 | SAFEXCEL_ALG_AES_XFB, .alg.skcipher = { .setkey = safexcel_skcipher_sm4_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .base = { .cra_name = "cfb(sm4)", .cra_driver_name = "safexcel-cfb-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_sm4_cfb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_sm4ctr_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); /* last 4 bytes of key are the nonce! */ ctx->nonce = *(u32 *)(key + len - CTR_RFC3686_NONCE_SIZE); /* exclude the nonce here */ len -= CTR_RFC3686_NONCE_SIZE; return safexcel_skcipher_sm4_setkey(ctfm, key, len); } static int safexcel_skcipher_sm4_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_SM4; ctx->blocksz = SM4_BLOCK_SIZE; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; return 0; } struct safexcel_alg_template safexcel_alg_ctr_sm4 = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_SM4, .alg.skcipher = { .setkey = safexcel_skcipher_sm4ctr_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, /* Add nonce size */ .min_keysize = SM4_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = SM4_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, .base = { .cra_name = "rfc3686(ctr(sm4))", .cra_driver_name = "safexcel-ctr-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_sm4_ctr_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sm4_blk_encrypt(struct aead_request *req) { /* Workaround for HW bug: EIP96 4.3 does not report blocksize error */ if (req->cryptlen & (SM4_BLOCK_SIZE - 1)) return -EINVAL; return safexcel_queue_req(&req->base, aead_request_ctx(req), SAFEXCEL_ENCRYPT); } static int safexcel_aead_sm4_blk_decrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); /* Workaround for HW bug: EIP96 4.3 does not report blocksize error */ if ((req->cryptlen - crypto_aead_authsize(tfm)) & (SM4_BLOCK_SIZE - 1)) return -EINVAL; return safexcel_queue_req(&req->base, aead_request_ctx(req), SAFEXCEL_DECRYPT); } static int safexcel_aead_sm4cbc_sha1_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->alg = SAFEXCEL_SM4; ctx->blocksz = SM4_BLOCK_SIZE; ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1; ctx->state_sz = SHA1_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_sm4 = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_SM4 | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_sm4_blk_encrypt, .decrypt = safexcel_aead_sm4_blk_decrypt, .ivsize = SM4_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),cbc(sm4))", .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sm4cbc_sha1_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_fallback_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); /* Keep fallback cipher synchronized */ return crypto_aead_setkey(ctx->fback, (u8 *)key, len) ?: safexcel_aead_setkey(ctfm, key, len); } static int safexcel_aead_fallback_setauthsize(struct crypto_aead *ctfm, unsigned int authsize) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); /* Keep fallback cipher synchronized */ return crypto_aead_setauthsize(ctx->fback, authsize); } static int safexcel_aead_fallback_crypt(struct aead_request *req, enum safexcel_cipher_direction dir) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct aead_request *subreq = aead_request_ctx(req); aead_request_set_tfm(subreq, ctx->fback); aead_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); return (dir == SAFEXCEL_ENCRYPT) ? crypto_aead_encrypt(subreq) : crypto_aead_decrypt(subreq); } static int safexcel_aead_sm4cbc_sm3_encrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); /* Workaround for HW bug: EIP96 4.3 does not report blocksize error */ if (req->cryptlen & (SM4_BLOCK_SIZE - 1)) return -EINVAL; else if (req->cryptlen || req->assoclen) /* If input length > 0 only */ return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT); /* HW cannot do full (AAD+payload) zero length, use fallback */ return safexcel_aead_fallback_crypt(req, SAFEXCEL_ENCRYPT); } static int safexcel_aead_sm4cbc_sm3_decrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); /* Workaround for HW bug: EIP96 4.3 does not report blocksize error */ if ((req->cryptlen - crypto_aead_authsize(tfm)) & (SM4_BLOCK_SIZE - 1)) return -EINVAL; else if (req->cryptlen > crypto_aead_authsize(tfm) || req->assoclen) /* If input length > 0 only */ return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT); /* HW cannot do full (AAD+payload) zero length, use fallback */ return safexcel_aead_fallback_crypt(req, SAFEXCEL_DECRYPT); } static int safexcel_aead_sm4cbc_sm3_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_fallback_cra_init(tfm); ctx->alg = SAFEXCEL_SM4; ctx->blocksz = SM4_BLOCK_SIZE; ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3; ctx->state_sz = SM3_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sm3_cbc_sm4 = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_SM4 | SAFEXCEL_ALG_SM3, .alg.aead = { .setkey = safexcel_aead_fallback_setkey, .setauthsize = safexcel_aead_fallback_setauthsize, .encrypt = safexcel_aead_sm4cbc_sm3_encrypt, .decrypt = safexcel_aead_sm4cbc_sm3_decrypt, .ivsize = SM4_BLOCK_SIZE, .maxauthsize = SM3_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sm3),cbc(sm4))", .cra_driver_name = "safexcel-authenc-hmac-sm3-cbc-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sm4cbc_sm3_cra_init, .cra_exit = safexcel_aead_fallback_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sm4ctr_sha1_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sm4cbc_sha1_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_ctr_sm4 = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_SM4 | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),rfc3686(ctr(sm4)))", .cra_driver_name = "safexcel-authenc-hmac-sha1-ctr-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sm4ctr_sha1_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sm4ctr_sm3_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sm4cbc_sm3_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sm3_ctr_sm4 = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_SM4 | SAFEXCEL_ALG_SM3, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SM3_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sm3),rfc3686(ctr(sm4)))", .cra_driver_name = "safexcel-authenc-hmac-sm3-ctr-sm4", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sm4ctr_sm3_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_rfc4106_gcm_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); /* last 4 bytes of key are the nonce! */ ctx->nonce = *(u32 *)(key + len - CTR_RFC3686_NONCE_SIZE); len -= CTR_RFC3686_NONCE_SIZE; return safexcel_aead_gcm_setkey(ctfm, key, len); } static int safexcel_rfc4106_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return crypto_rfc4106_check_authsize(authsize); } static int safexcel_rfc4106_encrypt(struct aead_request *req) { return crypto_ipsec_check_assoclen(req->assoclen) ?: safexcel_aead_encrypt(req); } static int safexcel_rfc4106_decrypt(struct aead_request *req) { return crypto_ipsec_check_assoclen(req->assoclen) ?: safexcel_aead_decrypt(req); } static int safexcel_rfc4106_gcm_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = safexcel_aead_gcm_cra_init(tfm); ctx->aead = EIP197_AEAD_TYPE_IPSEC_ESP; ctx->aadskip = EIP197_AEAD_IPSEC_IV_SIZE; return ret; } struct safexcel_alg_template safexcel_alg_rfc4106_gcm = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_GHASH, .alg.aead = { .setkey = safexcel_rfc4106_gcm_setkey, .setauthsize = safexcel_rfc4106_gcm_setauthsize, .encrypt = safexcel_rfc4106_encrypt, .decrypt = safexcel_rfc4106_decrypt, .ivsize = GCM_RFC4106_IV_SIZE, .maxauthsize = GHASH_DIGEST_SIZE, .base = { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "safexcel-rfc4106-gcm-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_rfc4106_gcm_cra_init, .cra_exit = safexcel_aead_gcm_cra_exit, }, }, }; static int safexcel_rfc4543_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { if (authsize != GHASH_DIGEST_SIZE) return -EINVAL; return 0; } static int safexcel_rfc4543_gcm_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = safexcel_aead_gcm_cra_init(tfm); ctx->aead = EIP197_AEAD_TYPE_IPSEC_ESP_GMAC; return ret; } struct safexcel_alg_template safexcel_alg_rfc4543_gcm = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_GHASH, .alg.aead = { .setkey = safexcel_rfc4106_gcm_setkey, .setauthsize = safexcel_rfc4543_gcm_setauthsize, .encrypt = safexcel_rfc4106_encrypt, .decrypt = safexcel_rfc4106_decrypt, .ivsize = GCM_RFC4543_IV_SIZE, .maxauthsize = GHASH_DIGEST_SIZE, .base = { .cra_name = "rfc4543(gcm(aes))", .cra_driver_name = "safexcel-rfc4543-gcm-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_rfc4543_gcm_cra_init, .cra_exit = safexcel_aead_gcm_cra_exit, }, }, }; static int safexcel_rfc4309_ccm_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); /* First byte of the nonce = L = always 3 for RFC4309 (4 byte ctr) */ *(u8 *)&ctx->nonce = EIP197_AEAD_IPSEC_COUNTER_SIZE - 1; /* last 3 bytes of key are the nonce! */ memcpy((u8 *)&ctx->nonce + 1, key + len - EIP197_AEAD_IPSEC_CCM_NONCE_SIZE, EIP197_AEAD_IPSEC_CCM_NONCE_SIZE); len -= EIP197_AEAD_IPSEC_CCM_NONCE_SIZE; return safexcel_aead_ccm_setkey(ctfm, key, len); } static int safexcel_rfc4309_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { /* Borrowed from crypto/ccm.c */ switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return 0; } static int safexcel_rfc4309_ccm_encrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); /* Borrowed from crypto/ccm.c */ if (req->assoclen != 16 && req->assoclen != 20) return -EINVAL; return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT); } static int safexcel_rfc4309_ccm_decrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); /* Borrowed from crypto/ccm.c */ if (req->assoclen != 16 && req->assoclen != 20) return -EINVAL; return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT); } static int safexcel_rfc4309_ccm_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = safexcel_aead_ccm_cra_init(tfm); ctx->aead = EIP197_AEAD_TYPE_IPSEC_ESP; ctx->aadskip = EIP197_AEAD_IPSEC_IV_SIZE; return ret; } struct safexcel_alg_template safexcel_alg_rfc4309_ccm = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_CBC_MAC_ALL, .alg.aead = { .setkey = safexcel_rfc4309_ccm_setkey, .setauthsize = safexcel_rfc4309_ccm_setauthsize, .encrypt = safexcel_rfc4309_ccm_encrypt, .decrypt = safexcel_rfc4309_ccm_decrypt, .ivsize = EIP197_AEAD_IPSEC_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, .base = { .cra_name = "rfc4309(ccm(aes))", .cra_driver_name = "safexcel-rfc4309-ccm-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_rfc4309_ccm_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, };
linux-master
drivers/crypto/inside-secure/safexcel_cipher.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Marvell * * Antoine Tenart <[email protected]> */ #include <linux/dma-mapping.h> #include <linux/spinlock.h> #include "safexcel.h" int safexcel_init_ring_descriptors(struct safexcel_crypto_priv *priv, struct safexcel_desc_ring *cdr, struct safexcel_desc_ring *rdr) { int i; struct safexcel_command_desc *cdesc; dma_addr_t atok; /* Actual command descriptor ring */ cdr->offset = priv->config.cd_offset; cdr->base = dmam_alloc_coherent(priv->dev, cdr->offset * EIP197_DEFAULT_RING_SIZE, &cdr->base_dma, GFP_KERNEL); if (!cdr->base) return -ENOMEM; cdr->write = cdr->base; cdr->base_end = cdr->base + cdr->offset * (EIP197_DEFAULT_RING_SIZE - 1); cdr->read = cdr->base; /* Command descriptor shadow ring for storing additional token data */ cdr->shoffset = priv->config.cdsh_offset; cdr->shbase = dmam_alloc_coherent(priv->dev, cdr->shoffset * EIP197_DEFAULT_RING_SIZE, &cdr->shbase_dma, GFP_KERNEL); if (!cdr->shbase) return -ENOMEM; cdr->shwrite = cdr->shbase; cdr->shbase_end = cdr->shbase + cdr->shoffset * (EIP197_DEFAULT_RING_SIZE - 1); /* * Populate command descriptors with physical pointers to shadow descs. * Note that we only need to do this once if we don't overwrite them. */ cdesc = cdr->base; atok = cdr->shbase_dma; for (i = 0; i < EIP197_DEFAULT_RING_SIZE; i++) { cdesc->atok_lo = lower_32_bits(atok); cdesc->atok_hi = upper_32_bits(atok); cdesc = (void *)cdesc + cdr->offset; atok += cdr->shoffset; } rdr->offset = priv->config.rd_offset; /* Use shoffset for result token offset here */ rdr->shoffset = priv->config.res_offset; rdr->base = dmam_alloc_coherent(priv->dev, rdr->offset * EIP197_DEFAULT_RING_SIZE, &rdr->base_dma, GFP_KERNEL); if (!rdr->base) return -ENOMEM; rdr->write = rdr->base; rdr->base_end = rdr->base + rdr->offset * (EIP197_DEFAULT_RING_SIZE - 1); rdr->read = rdr->base; return 0; } inline int safexcel_select_ring(struct safexcel_crypto_priv *priv) { return (atomic_inc_return(&priv->ring_used) % priv->config.rings); } static void *safexcel_ring_next_cwptr(struct safexcel_crypto_priv *priv, struct safexcel_desc_ring *ring, bool first, struct safexcel_token **atoken) { void *ptr = ring->write; if (first) *atoken = ring->shwrite; if ((ring->write == ring->read - ring->offset) || (ring->read == ring->base && ring->write == ring->base_end)) return ERR_PTR(-ENOMEM); if (ring->write == ring->base_end) { ring->write = ring->base; ring->shwrite = ring->shbase; } else { ring->write += ring->offset; ring->shwrite += ring->shoffset; } return ptr; } static void *safexcel_ring_next_rwptr(struct safexcel_crypto_priv *priv, struct safexcel_desc_ring *ring, struct result_data_desc **rtoken) { void *ptr = ring->write; /* Result token at relative offset shoffset */ *rtoken = ring->write + ring->shoffset; if ((ring->write == ring->read - ring->offset) || (ring->read == ring->base && ring->write == ring->base_end)) return ERR_PTR(-ENOMEM); if (ring->write == ring->base_end) ring->write = ring->base; else ring->write += ring->offset; return ptr; } void *safexcel_ring_next_rptr(struct safexcel_crypto_priv *priv, struct safexcel_desc_ring *ring) { void *ptr = ring->read; if (ring->write == ring->read) return ERR_PTR(-ENOENT); if (ring->read == ring->base_end) ring->read = ring->base; else ring->read += ring->offset; return ptr; } inline void *safexcel_ring_curr_rptr(struct safexcel_crypto_priv *priv, int ring) { struct safexcel_desc_ring *rdr = &priv->ring[ring].rdr; return rdr->read; } inline int safexcel_ring_first_rdr_index(struct safexcel_crypto_priv *priv, int ring) { struct safexcel_desc_ring *rdr = &priv->ring[ring].rdr; return (rdr->read - rdr->base) / rdr->offset; } inline int safexcel_ring_rdr_rdesc_index(struct safexcel_crypto_priv *priv, int ring, struct safexcel_result_desc *rdesc) { struct safexcel_desc_ring *rdr = &priv->ring[ring].rdr; return ((void *)rdesc - rdr->base) / rdr->offset; } void safexcel_ring_rollback_wptr(struct safexcel_crypto_priv *priv, struct safexcel_desc_ring *ring) { if (ring->write == ring->read) return; if (ring->write == ring->base) { ring->write = ring->base_end; ring->shwrite = ring->shbase_end; } else { ring->write -= ring->offset; ring->shwrite -= ring->shoffset; } } struct safexcel_command_desc *safexcel_add_cdesc(struct safexcel_crypto_priv *priv, int ring_id, bool first, bool last, dma_addr_t data, u32 data_len, u32 full_data_len, dma_addr_t context, struct safexcel_token **atoken) { struct safexcel_command_desc *cdesc; cdesc = safexcel_ring_next_cwptr(priv, &priv->ring[ring_id].cdr, first, atoken); if (IS_ERR(cdesc)) return cdesc; cdesc->particle_size = data_len; cdesc->rsvd0 = 0; cdesc->last_seg = last; cdesc->first_seg = first; cdesc->additional_cdata_size = 0; cdesc->rsvd1 = 0; cdesc->data_lo = lower_32_bits(data); cdesc->data_hi = upper_32_bits(data); if (first) { /* * Note that the length here MUST be >0 or else the EIP(1)97 * may hang. Newer EIP197 firmware actually incorporates this * fix already, but that doesn't help the EIP97 and we may * also be running older firmware. */ cdesc->control_data.packet_length = full_data_len ?: 1; cdesc->control_data.options = EIP197_OPTION_MAGIC_VALUE | EIP197_OPTION_64BIT_CTX | EIP197_OPTION_CTX_CTRL_IN_CMD | EIP197_OPTION_RC_AUTO; cdesc->control_data.type = EIP197_TYPE_BCLA; cdesc->control_data.context_lo = lower_32_bits(context) | EIP197_CONTEXT_SMALL; cdesc->control_data.context_hi = upper_32_bits(context); } return cdesc; } struct safexcel_result_desc *safexcel_add_rdesc(struct safexcel_crypto_priv *priv, int ring_id, bool first, bool last, dma_addr_t data, u32 len) { struct safexcel_result_desc *rdesc; struct result_data_desc *rtoken; rdesc = safexcel_ring_next_rwptr(priv, &priv->ring[ring_id].rdr, &rtoken); if (IS_ERR(rdesc)) return rdesc; rdesc->particle_size = len; rdesc->rsvd0 = 0; rdesc->descriptor_overflow = 1; /* assume error */ rdesc->buffer_overflow = 1; /* assume error */ rdesc->last_seg = last; rdesc->first_seg = first; rdesc->result_size = EIP197_RD64_RESULT_SIZE; rdesc->rsvd1 = 0; rdesc->data_lo = lower_32_bits(data); rdesc->data_hi = upper_32_bits(data); /* Clear length in result token */ rtoken->packet_length = 0; /* Assume errors - HW will clear if not the case */ rtoken->error_code = 0x7fff; return rdesc; }
linux-master
drivers/crypto/inside-secure/safexcel_ring.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Marvell * * Antoine Tenart <[email protected]> */ #include <crypto/aes.h> #include <crypto/hmac.h> #include <crypto/md5.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/sha3.h> #include <crypto/skcipher.h> #include <crypto/sm3.h> #include <crypto/internal/cipher.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include "safexcel.h" struct safexcel_ahash_ctx { struct safexcel_context base; u32 alg; u8 key_sz; bool cbcmac; bool do_fallback; bool fb_init_done; bool fb_do_setkey; struct crypto_aes_ctx *aes; struct crypto_ahash *fback; struct crypto_shash *shpre; struct shash_desc *shdesc; }; struct safexcel_ahash_req { bool last_req; bool finish; bool hmac; bool needs_inv; bool hmac_zlen; bool len_is_le; bool not_first; bool xcbcmac; int nents; dma_addr_t result_dma; u32 digest; u8 state_sz; /* expected state size, only set once */ u8 block_sz; /* block size, only set once */ u8 digest_sz; /* output digest size, only set once */ __le32 state[SHA3_512_BLOCK_SIZE / sizeof(__le32)] __aligned(sizeof(__le32)); u64 len; u64 processed; u8 cache[HASH_CACHE_SIZE] __aligned(sizeof(u32)); dma_addr_t cache_dma; unsigned int cache_sz; u8 cache_next[HASH_CACHE_SIZE] __aligned(sizeof(u32)); }; static inline u64 safexcel_queued_len(struct safexcel_ahash_req *req) { return req->len - req->processed; } static void safexcel_hash_token(struct safexcel_command_desc *cdesc, u32 input_length, u32 result_length, bool cbcmac) { struct safexcel_token *token = (struct safexcel_token *)cdesc->control_data.token; token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION; token[0].packet_length = input_length; token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH; input_length &= 15; if (unlikely(cbcmac && input_length)) { token[0].stat = 0; token[1].opcode = EIP197_TOKEN_OPCODE_INSERT; token[1].packet_length = 16 - input_length; token[1].stat = EIP197_TOKEN_STAT_LAST_HASH; token[1].instructions = EIP197_TOKEN_INS_TYPE_HASH; } else { token[0].stat = EIP197_TOKEN_STAT_LAST_HASH; eip197_noop_token(&token[1]); } token[2].opcode = EIP197_TOKEN_OPCODE_INSERT; token[2].stat = EIP197_TOKEN_STAT_LAST_HASH | EIP197_TOKEN_STAT_LAST_PACKET; token[2].packet_length = result_length; token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT | EIP197_TOKEN_INS_INSERT_HASH_DIGEST; eip197_noop_token(&token[3]); } static void safexcel_context_control(struct safexcel_ahash_ctx *ctx, struct safexcel_ahash_req *req, struct safexcel_command_desc *cdesc) { struct safexcel_crypto_priv *priv = ctx->base.priv; u64 count = 0; cdesc->control_data.control0 = ctx->alg; cdesc->control_data.control1 = 0; /* * Copy the input digest if needed, and setup the context * fields. Do this now as we need it to setup the first command * descriptor. */ if (unlikely(req->digest == CONTEXT_CONTROL_DIGEST_XCM)) { if (req->xcbcmac) memcpy(ctx->base.ctxr->data, &ctx->base.ipad, ctx->key_sz); else memcpy(ctx->base.ctxr->data, req->state, req->state_sz); if (!req->finish && req->xcbcmac) cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_XCM | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_NO_FINISH_HASH | CONTEXT_CONTROL_SIZE(req->state_sz / sizeof(u32)); else cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_XCM | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_SIZE(req->state_sz / sizeof(u32)); return; } else if (!req->processed) { /* First - and possibly only - block of basic hash only */ if (req->finish) cdesc->control_data.control0 |= req->digest | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_RESTART_HASH | /* ensure its not 0! */ CONTEXT_CONTROL_SIZE(1); else cdesc->control_data.control0 |= req->digest | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_RESTART_HASH | CONTEXT_CONTROL_NO_FINISH_HASH | /* ensure its not 0! */ CONTEXT_CONTROL_SIZE(1); return; } /* Hash continuation or HMAC, setup (inner) digest from state */ memcpy(ctx->base.ctxr->data, req->state, req->state_sz); if (req->finish) { /* Compute digest count for hash/HMAC finish operations */ if ((req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) || req->hmac_zlen || (req->processed != req->block_sz)) { count = req->processed / EIP197_COUNTER_BLOCK_SIZE; /* This is a hardware limitation, as the * counter must fit into an u32. This represents * a fairly big amount of input data, so we * shouldn't see this. */ if (unlikely(count & 0xffffffff00000000ULL)) { dev_warn(priv->dev, "Input data is too big\n"); return; } } if ((req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) || /* Special case: zero length HMAC */ req->hmac_zlen || /* PE HW < 4.4 cannot do HMAC continue, fake using hash */ (req->processed != req->block_sz)) { /* Basic hash continue operation, need digest + cnt */ cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE((req->state_sz >> 2) + 1) | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_DIGEST_PRECOMPUTED; /* For zero-len HMAC, don't finalize, already padded! */ if (req->hmac_zlen) cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH; cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT; ctx->base.ctxr->data[req->state_sz >> 2] = cpu_to_le32(count); req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; /* Clear zero-length HMAC flag for next operation! */ req->hmac_zlen = false; } else { /* HMAC */ /* Need outer digest for HMAC finalization */ memcpy(ctx->base.ctxr->data + (req->state_sz >> 2), &ctx->base.opad, req->state_sz); /* Single pass HMAC - no digest count */ cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(req->state_sz >> 1) | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_DIGEST_HMAC; } } else { /* Hash continuation, do not finish yet */ cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(req->state_sz >> 2) | CONTEXT_CONTROL_DIGEST_PRECOMPUTED | CONTEXT_CONTROL_TYPE_HASH_OUT | CONTEXT_CONTROL_NO_FINISH_HASH; } } static int safexcel_ahash_enqueue(struct ahash_request *areq); static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct safexcel_result_desc *rdesc; struct ahash_request *areq = ahash_request_cast(async); struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq); struct safexcel_ahash_req *sreq = ahash_request_ctx_dma(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash); u64 cache_len; *ret = 0; rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "hash: result: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); } else { *ret = safexcel_rdesc_check_errors(priv, rdesc); } safexcel_complete(priv, ring); if (sreq->nents) { dma_unmap_sg(priv->dev, areq->src, sreq->nents, DMA_TO_DEVICE); sreq->nents = 0; } if (sreq->result_dma) { dma_unmap_single(priv->dev, sreq->result_dma, sreq->digest_sz, DMA_FROM_DEVICE); sreq->result_dma = 0; } if (sreq->cache_dma) { dma_unmap_single(priv->dev, sreq->cache_dma, sreq->cache_sz, DMA_TO_DEVICE); sreq->cache_dma = 0; sreq->cache_sz = 0; } if (sreq->finish) { if (sreq->hmac && (sreq->digest != CONTEXT_CONTROL_DIGEST_HMAC)) { /* Faking HMAC using hash - need to do outer hash */ memcpy(sreq->cache, sreq->state, crypto_ahash_digestsize(ahash)); memcpy(sreq->state, &ctx->base.opad, sreq->digest_sz); sreq->len = sreq->block_sz + crypto_ahash_digestsize(ahash); sreq->processed = sreq->block_sz; sreq->hmac = 0; if (priv->flags & EIP197_TRC_CACHE) ctx->base.needs_inv = true; areq->nbytes = 0; safexcel_ahash_enqueue(areq); *should_complete = false; /* Not done yet */ return 1; } if (unlikely(sreq->digest == CONTEXT_CONTROL_DIGEST_XCM && ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_CRC32)) { /* Undo final XOR with 0xffffffff ...*/ *(__le32 *)areq->result = ~sreq->state[0]; } else { memcpy(areq->result, sreq->state, crypto_ahash_digestsize(ahash)); } } cache_len = safexcel_queued_len(sreq); if (cache_len) memcpy(sreq->cache, sreq->cache_next, cache_len); *should_complete = true; return 1; } static int safexcel_ahash_send_req(struct crypto_async_request *async, int ring, int *commands, int *results) { struct ahash_request *areq = ahash_request_cast(async); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_crypto_priv *priv = ctx->base.priv; struct safexcel_command_desc *cdesc, *first_cdesc = NULL; struct safexcel_result_desc *rdesc; struct scatterlist *sg; struct safexcel_token *dmmy; int i, extra = 0, n_cdesc = 0, ret = 0, cache_len, skip = 0; u64 queued, len; queued = safexcel_queued_len(req); if (queued <= HASH_CACHE_SIZE) cache_len = queued; else cache_len = queued - areq->nbytes; if (!req->finish && !req->last_req) { /* If this is not the last request and the queued data does not * fit into full cache blocks, cache it for the next send call. */ extra = queued & (HASH_CACHE_SIZE - 1); /* If this is not the last request and the queued data * is a multiple of a block, cache the last one for now. */ if (!extra) extra = HASH_CACHE_SIZE; sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), req->cache_next, extra, areq->nbytes - extra); queued -= extra; if (!queued) { *commands = 0; *results = 0; return 0; } extra = 0; } if (unlikely(req->xcbcmac && req->processed > AES_BLOCK_SIZE)) { if (unlikely(cache_len < AES_BLOCK_SIZE)) { /* * Cache contains less than 1 full block, complete. */ extra = AES_BLOCK_SIZE - cache_len; if (queued > cache_len) { /* More data follows: borrow bytes */ u64 tmp = queued - cache_len; skip = min_t(u64, tmp, extra); sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), req->cache + cache_len, skip, 0); } extra -= skip; memset(req->cache + cache_len + skip, 0, extra); if (!ctx->cbcmac && extra) { // 10- padding for XCBCMAC & CMAC req->cache[cache_len + skip] = 0x80; // HW will use K2 iso K3 - compensate! for (i = 0; i < AES_BLOCK_SIZE / 4; i++) { u32 *cache = (void *)req->cache; u32 *ipad = ctx->base.ipad.word; u32 x; x = ipad[i] ^ ipad[i + 4]; cache[i] ^= swab32(x); } } cache_len = AES_BLOCK_SIZE; queued = queued + extra; } /* XCBC continue: XOR previous result into 1st word */ crypto_xor(req->cache, (const u8 *)req->state, AES_BLOCK_SIZE); } len = queued; /* Add a command descriptor for the cached data, if any */ if (cache_len) { req->cache_dma = dma_map_single(priv->dev, req->cache, cache_len, DMA_TO_DEVICE); if (dma_mapping_error(priv->dev, req->cache_dma)) return -EINVAL; req->cache_sz = cache_len; first_cdesc = safexcel_add_cdesc(priv, ring, 1, (cache_len == len), req->cache_dma, cache_len, len, ctx->base.ctxr_dma, &dmmy); if (IS_ERR(first_cdesc)) { ret = PTR_ERR(first_cdesc); goto unmap_cache; } n_cdesc++; queued -= cache_len; if (!queued) goto send_command; } /* Now handle the current ahash request buffer(s) */ req->nents = dma_map_sg(priv->dev, areq->src, sg_nents_for_len(areq->src, areq->nbytes), DMA_TO_DEVICE); if (!req->nents) { ret = -ENOMEM; goto cdesc_rollback; } for_each_sg(areq->src, sg, req->nents, i) { int sglen = sg_dma_len(sg); if (unlikely(sglen <= skip)) { skip -= sglen; continue; } /* Do not overflow the request */ if ((queued + skip) <= sglen) sglen = queued; else sglen -= skip; cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - sglen), sg_dma_address(sg) + skip, sglen, len, ctx->base.ctxr_dma, &dmmy); if (IS_ERR(cdesc)) { ret = PTR_ERR(cdesc); goto unmap_sg; } if (!n_cdesc) first_cdesc = cdesc; n_cdesc++; queued -= sglen; if (!queued) break; skip = 0; } send_command: /* Setup the context options */ safexcel_context_control(ctx, req, first_cdesc); /* Add the token */ safexcel_hash_token(first_cdesc, len, req->digest_sz, ctx->cbcmac); req->result_dma = dma_map_single(priv->dev, req->state, req->digest_sz, DMA_FROM_DEVICE); if (dma_mapping_error(priv->dev, req->result_dma)) { ret = -EINVAL; goto unmap_sg; } /* Add a result descriptor */ rdesc = safexcel_add_rdesc(priv, ring, 1, 1, req->result_dma, req->digest_sz); if (IS_ERR(rdesc)) { ret = PTR_ERR(rdesc); goto unmap_result; } safexcel_rdr_req_set(priv, ring, rdesc, &areq->base); req->processed += len - extra; *commands = n_cdesc; *results = 1; return 0; unmap_result: dma_unmap_single(priv->dev, req->result_dma, req->digest_sz, DMA_FROM_DEVICE); unmap_sg: if (req->nents) { dma_unmap_sg(priv->dev, areq->src, req->nents, DMA_TO_DEVICE); req->nents = 0; } cdesc_rollback: for (i = 0; i < n_cdesc; i++) safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); unmap_cache: if (req->cache_dma) { dma_unmap_single(priv->dev, req->cache_dma, req->cache_sz, DMA_TO_DEVICE); req->cache_dma = 0; req->cache_sz = 0; } return ret; } static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct safexcel_result_desc *rdesc; struct ahash_request *areq = ahash_request_cast(async); struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash); int enq_ret; *ret = 0; rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "hash: invalidate: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); } else { *ret = safexcel_rdesc_check_errors(priv, rdesc); } safexcel_complete(priv, ring); if (ctx->base.exit_inv) { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); *should_complete = true; return 1; } ring = safexcel_select_ring(priv); ctx->base.ring = ring; spin_lock_bh(&priv->ring[ring].queue_lock); enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async); spin_unlock_bh(&priv->ring[ring].queue_lock); if (enq_ret != -EINPROGRESS) *ret = enq_ret; queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); *should_complete = false; return 1; } static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct ahash_request *areq = ahash_request_cast(async); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); int err; BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && req->needs_inv); if (req->needs_inv) { req->needs_inv = false; err = safexcel_handle_inv_result(priv, ring, async, should_complete, ret); } else { err = safexcel_handle_req_result(priv, ring, async, should_complete, ret); } return err; } static int safexcel_ahash_send_inv(struct crypto_async_request *async, int ring, int *commands, int *results) { struct ahash_request *areq = ahash_request_cast(async); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); int ret; ret = safexcel_invalidate_cache(async, ctx->base.priv, ctx->base.ctxr_dma, ring); if (unlikely(ret)) return ret; *commands = 1; *results = 1; return 0; } static int safexcel_ahash_send(struct crypto_async_request *async, int ring, int *commands, int *results) { struct ahash_request *areq = ahash_request_cast(async); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); int ret; if (req->needs_inv) ret = safexcel_ahash_send_inv(async, ring, commands, results); else ret = safexcel_ahash_send_req(async, ring, commands, results); return ret; } static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; EIP197_REQUEST_ON_STACK(req, ahash, EIP197_AHASH_REQ_SIZE); struct safexcel_ahash_req *rctx = ahash_request_ctx_dma(req); DECLARE_CRYPTO_WAIT(result); int ring = ctx->base.ring; int err; memset(req, 0, EIP197_AHASH_REQ_SIZE); /* create invalidation request */ init_completion(&result.completion); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); ahash_request_set_tfm(req, __crypto_ahash_cast(tfm)); ctx = crypto_tfm_ctx(req->base.tfm); ctx->base.exit_inv = true; rctx->needs_inv = true; spin_lock_bh(&priv->ring[ring].queue_lock); crypto_enqueue_request(&priv->ring[ring].queue, &req->base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); err = crypto_wait_req(-EINPROGRESS, &result); if (err) { dev_warn(priv->dev, "hash: completion error (%d)\n", err); return err; } return 0; } /* safexcel_ahash_cache: cache data until at least one request can be sent to * the engine, aka. when there is at least 1 block size in the pipe. */ static int safexcel_ahash_cache(struct ahash_request *areq) { struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); u64 cache_len; /* cache_len: everything accepted by the driver but not sent yet, * tot sz handled by update() - last req sz - tot sz handled by send() */ cache_len = safexcel_queued_len(req); /* * In case there isn't enough bytes to proceed (less than a * block size), cache the data until we have enough. */ if (cache_len + areq->nbytes <= HASH_CACHE_SIZE) { sg_pcopy_to_buffer(areq->src, sg_nents(areq->src), req->cache + cache_len, areq->nbytes, 0); return 0; } /* We couldn't cache all the data */ return -E2BIG; } static int safexcel_ahash_enqueue(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret, ring; req->needs_inv = false; if (ctx->base.ctxr) { if (priv->flags & EIP197_TRC_CACHE && !ctx->base.needs_inv && /* invalidate for *any* non-XCBC continuation */ ((req->not_first && !req->xcbcmac) || /* invalidate if (i)digest changed */ memcmp(ctx->base.ctxr->data, req->state, req->state_sz) || /* invalidate for HMAC finish with odigest changed */ (req->finish && req->hmac && memcmp(ctx->base.ctxr->data + (req->state_sz>>2), &ctx->base.opad, req->state_sz)))) /* * We're still setting needs_inv here, even though it is * cleared right away, because the needs_inv flag can be * set in other functions and we want to keep the same * logic. */ ctx->base.needs_inv = true; if (ctx->base.needs_inv) { ctx->base.needs_inv = false; req->needs_inv = true; } } else { ctx->base.ring = safexcel_select_ring(priv); ctx->base.ctxr = dma_pool_zalloc(priv->context_pool, EIP197_GFP_FLAGS(areq->base), &ctx->base.ctxr_dma); if (!ctx->base.ctxr) return -ENOMEM; } req->not_first = true; ring = ctx->base.ring; spin_lock_bh(&priv->ring[ring].queue_lock); ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); return ret; } static int safexcel_ahash_update(struct ahash_request *areq) { struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); int ret; /* If the request is 0 length, do nothing */ if (!areq->nbytes) return 0; /* Add request to the cache if it fits */ ret = safexcel_ahash_cache(areq); /* Update total request length */ req->len += areq->nbytes; /* If not all data could fit into the cache, go process the excess. * Also go process immediately for an HMAC IV precompute, which * will never be finished at all, but needs to be processed anyway. */ if ((ret && !req->finish) || req->last_req) return safexcel_ahash_enqueue(areq); return 0; } static int safexcel_ahash_final(struct ahash_request *areq) { struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); req->finish = true; if (unlikely(!req->len && !areq->nbytes)) { /* * If we have an overall 0 length *hash* request: * The HW cannot do 0 length hash, so we provide the correct * result directly here. */ if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5) memcpy(areq->result, md5_zero_message_hash, MD5_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1) memcpy(areq->result, sha1_zero_message_hash, SHA1_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224) memcpy(areq->result, sha224_zero_message_hash, SHA224_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256) memcpy(areq->result, sha256_zero_message_hash, SHA256_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA384) memcpy(areq->result, sha384_zero_message_hash, SHA384_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA512) memcpy(areq->result, sha512_zero_message_hash, SHA512_DIGEST_SIZE); else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SM3) { memcpy(areq->result, EIP197_SM3_ZEROM_HASH, SM3_DIGEST_SIZE); } return 0; } else if (unlikely(req->digest == CONTEXT_CONTROL_DIGEST_XCM && ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5 && req->len == sizeof(u32) && !areq->nbytes)) { /* Zero length CRC32 */ memcpy(areq->result, &ctx->base.ipad, sizeof(u32)); return 0; } else if (unlikely(ctx->cbcmac && req->len == AES_BLOCK_SIZE && !areq->nbytes)) { /* Zero length CBC MAC */ memset(areq->result, 0, AES_BLOCK_SIZE); return 0; } else if (unlikely(req->xcbcmac && req->len == AES_BLOCK_SIZE && !areq->nbytes)) { /* Zero length (X)CBC/CMAC */ int i; for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) { u32 *result = (void *)areq->result; /* K3 */ result[i] = swab32(ctx->base.ipad.word[i + 4]); } areq->result[0] ^= 0x80; // 10- padding aes_encrypt(ctx->aes, areq->result, areq->result); return 0; } else if (unlikely(req->hmac && (req->len == req->block_sz) && !areq->nbytes)) { /* * If we have an overall 0 length *HMAC* request: * For HMAC, we need to finalize the inner digest * and then perform the outer hash. */ /* generate pad block in the cache */ /* start with a hash block of all zeroes */ memset(req->cache, 0, req->block_sz); /* set the first byte to 0x80 to 'append a 1 bit' */ req->cache[0] = 0x80; /* add the length in bits in the last 2 bytes */ if (req->len_is_le) { /* Little endian length word (e.g. MD5) */ req->cache[req->block_sz-8] = (req->block_sz << 3) & 255; req->cache[req->block_sz-7] = (req->block_sz >> 5); } else { /* Big endian length word (e.g. any SHA) */ req->cache[req->block_sz-2] = (req->block_sz >> 5); req->cache[req->block_sz-1] = (req->block_sz << 3) & 255; } req->len += req->block_sz; /* plus 1 hash block */ /* Set special zero-length HMAC flag */ req->hmac_zlen = true; /* Finalize HMAC */ req->digest = CONTEXT_CONTROL_DIGEST_HMAC; } else if (req->hmac) { /* Finalize HMAC */ req->digest = CONTEXT_CONTROL_DIGEST_HMAC; } return safexcel_ahash_enqueue(areq); } static int safexcel_ahash_finup(struct ahash_request *areq) { struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); req->finish = true; safexcel_ahash_update(areq); return safexcel_ahash_final(areq); } static int safexcel_ahash_export(struct ahash_request *areq, void *out) { struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); struct safexcel_ahash_export_state *export = out; export->len = req->len; export->processed = req->processed; export->digest = req->digest; memcpy(export->state, req->state, req->state_sz); memcpy(export->cache, req->cache, HASH_CACHE_SIZE); return 0; } static int safexcel_ahash_import(struct ahash_request *areq, const void *in) { struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); const struct safexcel_ahash_export_state *export = in; int ret; ret = crypto_ahash_init(areq); if (ret) return ret; req->len = export->len; req->processed = export->processed; req->digest = export->digest; memcpy(req->cache, export->cache, HASH_CACHE_SIZE); memcpy(req->state, export->state, req->state_sz); return 0; } static int safexcel_ahash_cra_init(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_alg_template *tmpl = container_of(__crypto_ahash_alg(tfm->__crt_alg), struct safexcel_alg_template, alg.ahash); ctx->base.priv = tmpl->priv; ctx->base.send = safexcel_ahash_send; ctx->base.handle_result = safexcel_handle_result; ctx->fb_do_setkey = false; crypto_ahash_set_reqsize_dma(__crypto_ahash_cast(tfm), sizeof(struct safexcel_ahash_req)); return 0; } static int safexcel_sha1_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA1_DIGEST_SIZE; req->digest_sz = SHA1_DIGEST_SIZE; req->block_sz = SHA1_BLOCK_SIZE; return 0; } static int safexcel_sha1_digest(struct ahash_request *areq) { int ret = safexcel_sha1_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->base.priv; int ret; /* context not allocated, skip invalidation */ if (!ctx->base.ctxr) return; if (priv->flags & EIP197_TRC_CACHE) { ret = safexcel_ahash_exit_inv(tfm); if (ret) dev_warn(priv->dev, "hash: invalidation error %d\n", ret); } else { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); } } struct safexcel_alg_template safexcel_alg_sha1 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA1, .alg.ahash = { .init = safexcel_sha1_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha1_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha1", .cra_driver_name = "safexcel-sha1", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha1_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, &ctx->base.ipad, SHA1_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA1_BLOCK_SIZE; req->processed = SHA1_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA1_DIGEST_SIZE; req->digest_sz = SHA1_DIGEST_SIZE; req->block_sz = SHA1_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha1_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha1_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } static int safexcel_hmac_init_pad(struct ahash_request *areq, unsigned int blocksize, const u8 *key, unsigned int keylen, u8 *ipad, u8 *opad) { DECLARE_CRYPTO_WAIT(result); struct scatterlist sg; int ret, i; u8 *keydup; if (keylen <= blocksize) { memcpy(ipad, key, keylen); } else { keydup = kmemdup(key, keylen, GFP_KERNEL); if (!keydup) return -ENOMEM; ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); sg_init_one(&sg, keydup, keylen); ahash_request_set_crypt(areq, &sg, ipad, keylen); ret = crypto_ahash_digest(areq); ret = crypto_wait_req(ret, &result); /* Avoid leaking */ kfree_sensitive(keydup); if (ret) return ret; keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq)); } memset(ipad + keylen, 0, blocksize - keylen); memcpy(opad, ipad, blocksize); for (i = 0; i < blocksize; i++) { ipad[i] ^= HMAC_IPAD_VALUE; opad[i] ^= HMAC_OPAD_VALUE; } return 0; } static int safexcel_hmac_init_iv(struct ahash_request *areq, unsigned int blocksize, u8 *pad, void *state) { struct safexcel_ahash_req *req; DECLARE_CRYPTO_WAIT(result); struct scatterlist sg; int ret; ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); sg_init_one(&sg, pad, blocksize); ahash_request_set_crypt(areq, &sg, pad, blocksize); ret = crypto_ahash_init(areq); if (ret) return ret; req = ahash_request_ctx_dma(areq); req->hmac = true; req->last_req = true; ret = crypto_ahash_update(areq); ret = crypto_wait_req(ret, &result); return ret ?: crypto_ahash_export(areq, state); } static int __safexcel_hmac_setkey(const char *alg, const u8 *key, unsigned int keylen, void *istate, void *ostate) { struct ahash_request *areq; struct crypto_ahash *tfm; unsigned int blocksize; u8 *ipad, *opad; int ret; tfm = crypto_alloc_ahash(alg, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); areq = ahash_request_alloc(tfm, GFP_KERNEL); if (!areq) { ret = -ENOMEM; goto free_ahash; } crypto_ahash_clear_flags(tfm, ~0); blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); ipad = kcalloc(2, blocksize, GFP_KERNEL); if (!ipad) { ret = -ENOMEM; goto free_request; } opad = ipad + blocksize; ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad); if (ret) goto free_ipad; ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate); if (ret) goto free_ipad; ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate); free_ipad: kfree(ipad); free_request: ahash_request_free(areq); free_ahash: crypto_free_ahash(tfm); return ret; } int safexcel_hmac_setkey(struct safexcel_context *base, const u8 *key, unsigned int keylen, const char *alg, unsigned int state_sz) { struct safexcel_crypto_priv *priv = base->priv; struct safexcel_ahash_export_state istate, ostate; int ret; ret = __safexcel_hmac_setkey(alg, key, keylen, &istate, &ostate); if (ret) return ret; if (priv->flags & EIP197_TRC_CACHE && base->ctxr && (memcmp(&base->ipad, istate.state, state_sz) || memcmp(&base->opad, ostate.state, state_sz))) base->needs_inv = true; memcpy(&base->ipad, &istate.state, state_sz); memcpy(&base->opad, &ostate.state, state_sz); return 0; } static int safexcel_hmac_alg_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen, const char *alg, unsigned int state_sz) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); return safexcel_hmac_setkey(&ctx->base, key, keylen, alg, state_sz); } static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha1", SHA1_DIGEST_SIZE); } struct safexcel_alg_template safexcel_alg_hmac_sha1 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA1, .alg.ahash = { .init = safexcel_hmac_sha1_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha1_digest, .setkey = safexcel_hmac_sha1_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "safexcel-hmac-sha1", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha256_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA256_DIGEST_SIZE; req->digest_sz = SHA256_DIGEST_SIZE; req->block_sz = SHA256_BLOCK_SIZE; return 0; } static int safexcel_sha256_digest(struct ahash_request *areq) { int ret = safexcel_sha256_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sha256 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_256, .alg.ahash = { .init = safexcel_sha256_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha256_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha256", .cra_driver_name = "safexcel-sha256", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha224_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA256_DIGEST_SIZE; req->digest_sz = SHA256_DIGEST_SIZE; req->block_sz = SHA256_BLOCK_SIZE; return 0; } static int safexcel_sha224_digest(struct ahash_request *areq) { int ret = safexcel_sha224_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sha224 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_256, .alg.ahash = { .init = safexcel_sha224_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha224_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha224", .cra_driver_name = "safexcel-sha224", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha224_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha224", SHA256_DIGEST_SIZE); } static int safexcel_hmac_sha224_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, &ctx->base.ipad, SHA256_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA256_BLOCK_SIZE; req->processed = SHA256_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA256_DIGEST_SIZE; req->digest_sz = SHA256_DIGEST_SIZE; req->block_sz = SHA256_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha224_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha224_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sha224 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_256, .alg.ahash = { .init = safexcel_hmac_sha224_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha224_digest, .setkey = safexcel_hmac_sha224_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha224)", .cra_driver_name = "safexcel-hmac-sha224", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha256", SHA256_DIGEST_SIZE); } static int safexcel_hmac_sha256_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, &ctx->base.ipad, SHA256_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA256_BLOCK_SIZE; req->processed = SHA256_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA256_DIGEST_SIZE; req->digest_sz = SHA256_DIGEST_SIZE; req->block_sz = SHA256_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha256_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha256_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sha256 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_256, .alg.ahash = { .init = safexcel_hmac_sha256_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha256_digest, .setkey = safexcel_hmac_sha256_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "safexcel-hmac-sha256", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha512_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA512_DIGEST_SIZE; req->digest_sz = SHA512_DIGEST_SIZE; req->block_sz = SHA512_BLOCK_SIZE; return 0; } static int safexcel_sha512_digest(struct ahash_request *areq) { int ret = safexcel_sha512_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sha512 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_512, .alg.ahash = { .init = safexcel_sha512_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha512_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha512", .cra_driver_name = "safexcel-sha512", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha384_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA512_DIGEST_SIZE; req->digest_sz = SHA512_DIGEST_SIZE; req->block_sz = SHA512_BLOCK_SIZE; return 0; } static int safexcel_sha384_digest(struct ahash_request *areq) { int ret = safexcel_sha384_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sha384 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_512, .alg.ahash = { .init = safexcel_sha384_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sha384_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha384", .cra_driver_name = "safexcel-sha384", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha512_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha512", SHA512_DIGEST_SIZE); } static int safexcel_hmac_sha512_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, &ctx->base.ipad, SHA512_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA512_BLOCK_SIZE; req->processed = SHA512_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA512_DIGEST_SIZE; req->digest_sz = SHA512_DIGEST_SIZE; req->block_sz = SHA512_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha512_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha512_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sha512 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_512, .alg.ahash = { .init = safexcel_hmac_sha512_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha512_digest, .setkey = safexcel_hmac_sha512_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha512)", .cra_driver_name = "safexcel-hmac-sha512", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha384_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha384", SHA512_DIGEST_SIZE); } static int safexcel_hmac_sha384_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, &ctx->base.ipad, SHA512_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SHA512_BLOCK_SIZE; req->processed = SHA512_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SHA512_DIGEST_SIZE; req->digest_sz = SHA512_DIGEST_SIZE; req->block_sz = SHA512_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sha384_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sha384_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sha384 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA2_512, .alg.ahash = { .init = safexcel_hmac_sha384_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sha384_digest, .setkey = safexcel_hmac_sha384_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha384)", .cra_driver_name = "safexcel-hmac-sha384", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_md5_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = MD5_DIGEST_SIZE; req->digest_sz = MD5_DIGEST_SIZE; req->block_sz = MD5_HMAC_BLOCK_SIZE; return 0; } static int safexcel_md5_digest(struct ahash_request *areq) { int ret = safexcel_md5_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_md5 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_MD5, .alg.ahash = { .init = safexcel_md5_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_md5_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "md5", .cra_driver_name = "safexcel-md5", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_md5_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, &ctx->base.ipad, MD5_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = MD5_HMAC_BLOCK_SIZE; req->processed = MD5_HMAC_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = MD5_DIGEST_SIZE; req->digest_sz = MD5_DIGEST_SIZE; req->block_sz = MD5_HMAC_BLOCK_SIZE; req->len_is_le = true; /* MD5 is little endian! ... */ req->hmac = true; return 0; } static int safexcel_hmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-md5", MD5_DIGEST_SIZE); } static int safexcel_hmac_md5_digest(struct ahash_request *areq) { int ret = safexcel_hmac_md5_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_md5 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_MD5, .alg.ahash = { .init = safexcel_hmac_md5_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_md5_digest, .setkey = safexcel_hmac_md5_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(md5)", .cra_driver_name = "safexcel-hmac-md5", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_crc32_cra_init(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); int ret = safexcel_ahash_cra_init(tfm); /* Default 'key' is all zeroes */ memset(&ctx->base.ipad, 0, sizeof(u32)); return ret; } static int safexcel_crc32_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from loaded key */ req->state[0] = cpu_to_le32(~ctx->base.ipad.word[0]); /* Set processed to non-zero to enable invalidation detection */ req->len = sizeof(u32); req->processed = sizeof(u32); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_CRC32; req->digest = CONTEXT_CONTROL_DIGEST_XCM; req->state_sz = sizeof(u32); req->digest_sz = sizeof(u32); req->block_sz = sizeof(u32); return 0; } static int safexcel_crc32_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); if (keylen != sizeof(u32)) return -EINVAL; memcpy(&ctx->base.ipad, key, sizeof(u32)); return 0; } static int safexcel_crc32_digest(struct ahash_request *areq) { return safexcel_crc32_init(areq) ?: safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_crc32 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = 0, .alg.ahash = { .init = safexcel_crc32_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_crc32_digest, .setkey = safexcel_crc32_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = sizeof(u32), .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "crc32", .cra_driver_name = "safexcel-crc32", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_crc32_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_cbcmac_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from loaded keys */ memcpy(req->state, &ctx->base.ipad, ctx->key_sz); /* Set processed to non-zero to enable invalidation detection */ req->len = AES_BLOCK_SIZE; req->processed = AES_BLOCK_SIZE; req->digest = CONTEXT_CONTROL_DIGEST_XCM; req->state_sz = ctx->key_sz; req->digest_sz = AES_BLOCK_SIZE; req->block_sz = AES_BLOCK_SIZE; req->xcbcmac = true; return 0; } static int safexcel_cbcmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct crypto_aes_ctx aes; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) return ret; memset(&ctx->base.ipad, 0, 2 * AES_BLOCK_SIZE); for (i = 0; i < len / sizeof(u32); i++) ctx->base.ipad.be[i + 8] = cpu_to_be32(aes.key_enc[i]); if (len == AES_KEYSIZE_192) { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192; ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE; } else if (len == AES_KEYSIZE_256) { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256; ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE; } else { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128; ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE; } ctx->cbcmac = true; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_cbcmac_digest(struct ahash_request *areq) { return safexcel_cbcmac_init(areq) ?: safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_cbcmac = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = 0, .alg.ahash = { .init = safexcel_cbcmac_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_cbcmac_digest, .setkey = safexcel_cbcmac_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "cbcmac(aes)", .cra_driver_name = "safexcel-cbcmac-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_xcbcmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); u32 key_tmp[3 * AES_BLOCK_SIZE / sizeof(u32)]; int ret, i; ret = aes_expandkey(ctx->aes, key, len); if (ret) return ret; /* precompute the XCBC key material */ aes_encrypt(ctx->aes, (u8 *)key_tmp + 2 * AES_BLOCK_SIZE, "\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1"); aes_encrypt(ctx->aes, (u8 *)key_tmp, "\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2"); aes_encrypt(ctx->aes, (u8 *)key_tmp + AES_BLOCK_SIZE, "\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3"); for (i = 0; i < 3 * AES_BLOCK_SIZE / sizeof(u32); i++) ctx->base.ipad.word[i] = swab32(key_tmp[i]); ret = aes_expandkey(ctx->aes, (u8 *)key_tmp + 2 * AES_BLOCK_SIZE, AES_MIN_KEY_SIZE); if (ret) return ret; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128; ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE; ctx->cbcmac = false; return 0; } static int safexcel_xcbcmac_cra_init(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_ahash_cra_init(tfm); ctx->aes = kmalloc(sizeof(*ctx->aes), GFP_KERNEL); return PTR_ERR_OR_ZERO(ctx->aes); } static void safexcel_xcbcmac_cra_exit(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); kfree(ctx->aes); safexcel_ahash_cra_exit(tfm); } struct safexcel_alg_template safexcel_alg_xcbcmac = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = 0, .alg.ahash = { .init = safexcel_cbcmac_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_cbcmac_digest, .setkey = safexcel_xcbcmac_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "xcbc(aes)", .cra_driver_name = "safexcel-xcbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_xcbcmac_cra_init, .cra_exit = safexcel_xcbcmac_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_cmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int len) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); __be64 consts[4]; u64 _const[2]; u8 msb_mask, gfmask; int ret, i; /* precompute the CMAC key material */ ret = aes_expandkey(ctx->aes, key, len); if (ret) return ret; for (i = 0; i < len / sizeof(u32); i++) ctx->base.ipad.word[i + 8] = swab32(ctx->aes->key_enc[i]); /* code below borrowed from crypto/cmac.c */ /* encrypt the zero block */ memset(consts, 0, AES_BLOCK_SIZE); aes_encrypt(ctx->aes, (u8 *)consts, (u8 *)consts); gfmask = 0x87; _const[0] = be64_to_cpu(consts[1]); _const[1] = be64_to_cpu(consts[0]); /* gf(2^128) multiply zero-ciphertext with u and u^2 */ for (i = 0; i < 4; i += 2) { msb_mask = ((s64)_const[1] >> 63) & gfmask; _const[1] = (_const[1] << 1) | (_const[0] >> 63); _const[0] = (_const[0] << 1) ^ msb_mask; consts[i + 0] = cpu_to_be64(_const[1]); consts[i + 1] = cpu_to_be64(_const[0]); } /* end of code borrowed from crypto/cmac.c */ for (i = 0; i < 2 * AES_BLOCK_SIZE / sizeof(u32); i++) ctx->base.ipad.be[i] = cpu_to_be32(((u32 *)consts)[i]); if (len == AES_KEYSIZE_192) { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192; ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE; } else if (len == AES_KEYSIZE_256) { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256; ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE; } else { ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128; ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE; } ctx->cbcmac = false; return 0; } struct safexcel_alg_template safexcel_alg_cmac = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = 0, .alg.ahash = { .init = safexcel_cbcmac_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_cbcmac_digest, .setkey = safexcel_cmac_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "cmac(aes)", .cra_driver_name = "safexcel-cmac-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_xcbcmac_cra_init, .cra_exit = safexcel_xcbcmac_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sm3_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SM3_DIGEST_SIZE; req->digest_sz = SM3_DIGEST_SIZE; req->block_sz = SM3_BLOCK_SIZE; return 0; } static int safexcel_sm3_digest(struct ahash_request *areq) { int ret = safexcel_sm3_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_sm3 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SM3, .alg.ahash = { .init = safexcel_sm3_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_sm3_digest, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sm3", .cra_driver_name = "safexcel-sm3", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SM3_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sm3_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sm3", SM3_DIGEST_SIZE); } static int safexcel_hmac_sm3_init(struct ahash_request *areq) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq)); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Start from ipad precompute */ memcpy(req->state, &ctx->base.ipad, SM3_DIGEST_SIZE); /* Already processed the key^ipad part now! */ req->len = SM3_BLOCK_SIZE; req->processed = SM3_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3; req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED; req->state_sz = SM3_DIGEST_SIZE; req->digest_sz = SM3_DIGEST_SIZE; req->block_sz = SM3_BLOCK_SIZE; req->hmac = true; return 0; } static int safexcel_hmac_sm3_digest(struct ahash_request *areq) { int ret = safexcel_hmac_sm3_init(areq); if (ret) return ret; return safexcel_ahash_finup(areq); } struct safexcel_alg_template safexcel_alg_hmac_sm3 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SM3, .alg.ahash = { .init = safexcel_hmac_sm3_init, .update = safexcel_ahash_update, .final = safexcel_ahash_final, .finup = safexcel_ahash_finup, .digest = safexcel_hmac_sm3_digest, .setkey = safexcel_hmac_sm3_setkey, .export = safexcel_ahash_export, .import = safexcel_ahash_import, .halg = { .digestsize = SM3_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sm3)", .cra_driver_name = "safexcel-hmac-sm3", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SM3_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_ahash_cra_init, .cra_exit = safexcel_ahash_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha3_224_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_224; req->digest = CONTEXT_CONTROL_DIGEST_INITIAL; req->state_sz = SHA3_224_DIGEST_SIZE; req->digest_sz = SHA3_224_DIGEST_SIZE; req->block_sz = SHA3_224_BLOCK_SIZE; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_sha3_fbcheck(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx_dma(req); int ret = 0; if (ctx->do_fallback) { ahash_request_set_tfm(subreq, ctx->fback); ahash_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); ahash_request_set_crypt(subreq, req->src, req->result, req->nbytes); if (!ctx->fb_init_done) { if (ctx->fb_do_setkey) { /* Set fallback cipher HMAC key */ u8 key[SHA3_224_BLOCK_SIZE]; memcpy(key, &ctx->base.ipad, crypto_ahash_blocksize(ctx->fback) / 2); memcpy(key + crypto_ahash_blocksize(ctx->fback) / 2, &ctx->base.opad, crypto_ahash_blocksize(ctx->fback) / 2); ret = crypto_ahash_setkey(ctx->fback, key, crypto_ahash_blocksize(ctx->fback)); memzero_explicit(key, crypto_ahash_blocksize(ctx->fback)); ctx->fb_do_setkey = false; } ret = ret ?: crypto_ahash_init(subreq); ctx->fb_init_done = true; } } return ret; } static int safexcel_sha3_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx_dma(req); ctx->do_fallback = true; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_update(subreq); } static int safexcel_sha3_final(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx_dma(req); ctx->do_fallback = true; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_final(subreq); } static int safexcel_sha3_finup(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx_dma(req); ctx->do_fallback |= !req->nbytes; if (ctx->do_fallback) /* Update or ex/import happened or len 0, cannot use the HW */ return safexcel_sha3_fbcheck(req) ?: crypto_ahash_finup(subreq); else return safexcel_ahash_finup(req); } static int safexcel_sha3_digest_fallback(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx_dma(req); ctx->do_fallback = true; ctx->fb_init_done = false; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_finup(subreq); } static int safexcel_sha3_224_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_sha3_224_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length hash, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_sha3_export(struct ahash_request *req, void *out) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx_dma(req); ctx->do_fallback = true; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_export(subreq, out); } static int safexcel_sha3_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *subreq = ahash_request_ctx_dma(req); ctx->do_fallback = true; return safexcel_sha3_fbcheck(req) ?: crypto_ahash_import(subreq, in); // return safexcel_ahash_import(req, in); } static int safexcel_sha3_cra_init(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_ahash_cra_init(tfm); /* Allocate fallback implementation */ ctx->fback = crypto_alloc_ahash(crypto_tfm_alg_name(tfm), 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fback)) return PTR_ERR(ctx->fback); /* Update statesize from fallback algorithm! */ crypto_hash_alg_common(ahash)->statesize = crypto_ahash_statesize(ctx->fback); crypto_ahash_set_reqsize_dma( ahash, max(sizeof(struct safexcel_ahash_req), sizeof(struct ahash_request) + crypto_ahash_reqsize(ctx->fback))); return 0; } static void safexcel_sha3_cra_exit(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_ahash(ctx->fback); safexcel_ahash_cra_exit(tfm); } struct safexcel_alg_template safexcel_alg_sha3_224 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_sha3_224_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_sha3_224_digest, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_224_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha3-224", .cra_driver_name = "safexcel-sha3-224", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_sha3_cra_init, .cra_exit = safexcel_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha3_256_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_256; req->digest = CONTEXT_CONTROL_DIGEST_INITIAL; req->state_sz = SHA3_256_DIGEST_SIZE; req->digest_sz = SHA3_256_DIGEST_SIZE; req->block_sz = SHA3_256_BLOCK_SIZE; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_sha3_256_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_sha3_256_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length hash, use fallback instead */ return safexcel_sha3_digest_fallback(req); } struct safexcel_alg_template safexcel_alg_sha3_256 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_sha3_256_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_sha3_256_digest, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_256_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha3-256", .cra_driver_name = "safexcel-sha3-256", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_sha3_cra_init, .cra_exit = safexcel_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha3_384_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_384; req->digest = CONTEXT_CONTROL_DIGEST_INITIAL; req->state_sz = SHA3_384_DIGEST_SIZE; req->digest_sz = SHA3_384_DIGEST_SIZE; req->block_sz = SHA3_384_BLOCK_SIZE; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_sha3_384_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_sha3_384_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length hash, use fallback instead */ return safexcel_sha3_digest_fallback(req); } struct safexcel_alg_template safexcel_alg_sha3_384 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_sha3_384_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_sha3_384_digest, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_384_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha3-384", .cra_driver_name = "safexcel-sha3-384", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_sha3_cra_init, .cra_exit = safexcel_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_sha3_512_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_512; req->digest = CONTEXT_CONTROL_DIGEST_INITIAL; req->state_sz = SHA3_512_DIGEST_SIZE; req->digest_sz = SHA3_512_DIGEST_SIZE; req->block_sz = SHA3_512_BLOCK_SIZE; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_sha3_512_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_sha3_512_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length hash, use fallback instead */ return safexcel_sha3_digest_fallback(req); } struct safexcel_alg_template safexcel_alg_sha3_512 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_sha3_512_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_sha3_512_digest, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_512_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "sha3-512", .cra_driver_name = "safexcel-sha3-512", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_sha3_cra_init, .cra_exit = safexcel_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha3_cra_init(struct crypto_tfm *tfm, const char *alg) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); int ret; ret = safexcel_sha3_cra_init(tfm); if (ret) return ret; /* Allocate precalc basic digest implementation */ ctx->shpre = crypto_alloc_shash(alg, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->shpre)) return PTR_ERR(ctx->shpre); ctx->shdesc = kmalloc(sizeof(*ctx->shdesc) + crypto_shash_descsize(ctx->shpre), GFP_KERNEL); if (!ctx->shdesc) { crypto_free_shash(ctx->shpre); return -ENOMEM; } ctx->shdesc->tfm = ctx->shpre; return 0; } static void safexcel_hmac_sha3_cra_exit(struct crypto_tfm *tfm) { struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_ahash(ctx->fback); crypto_free_shash(ctx->shpre); kfree(ctx->shdesc); safexcel_ahash_cra_exit(tfm); } static int safexcel_hmac_sha3_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); int ret = 0; if (keylen > crypto_ahash_blocksize(tfm)) { /* * If the key is larger than the blocksize, then hash it * first using our fallback cipher */ ret = crypto_shash_digest(ctx->shdesc, key, keylen, ctx->base.ipad.byte); keylen = crypto_shash_digestsize(ctx->shpre); /* * If the digest is larger than half the blocksize, we need to * move the rest to opad due to the way our HMAC infra works. */ if (keylen > crypto_ahash_blocksize(tfm) / 2) /* Buffers overlap, need to use memmove iso memcpy! */ memmove(&ctx->base.opad, ctx->base.ipad.byte + crypto_ahash_blocksize(tfm) / 2, keylen - crypto_ahash_blocksize(tfm) / 2); } else { /* * Copy the key to our ipad & opad buffers * Note that ipad and opad each contain one half of the key, * to match the existing HMAC driver infrastructure. */ if (keylen <= crypto_ahash_blocksize(tfm) / 2) { memcpy(&ctx->base.ipad, key, keylen); } else { memcpy(&ctx->base.ipad, key, crypto_ahash_blocksize(tfm) / 2); memcpy(&ctx->base.opad, key + crypto_ahash_blocksize(tfm) / 2, keylen - crypto_ahash_blocksize(tfm) / 2); } } /* Pad key with zeroes */ if (keylen <= crypto_ahash_blocksize(tfm) / 2) { memset(ctx->base.ipad.byte + keylen, 0, crypto_ahash_blocksize(tfm) / 2 - keylen); memset(&ctx->base.opad, 0, crypto_ahash_blocksize(tfm) / 2); } else { memset(ctx->base.opad.byte + keylen - crypto_ahash_blocksize(tfm) / 2, 0, crypto_ahash_blocksize(tfm) - keylen); } /* If doing fallback, still need to set the new key! */ ctx->fb_do_setkey = true; return ret; } static int safexcel_hmac_sha3_224_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Copy (half of) the key */ memcpy(req->state, &ctx->base.ipad, SHA3_224_BLOCK_SIZE / 2); /* Start of HMAC should have len == processed == blocksize */ req->len = SHA3_224_BLOCK_SIZE; req->processed = SHA3_224_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_224; req->digest = CONTEXT_CONTROL_DIGEST_HMAC; req->state_sz = SHA3_224_BLOCK_SIZE / 2; req->digest_sz = SHA3_224_DIGEST_SIZE; req->block_sz = SHA3_224_BLOCK_SIZE; req->hmac = true; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_hmac_sha3_224_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_hmac_sha3_224_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length HMAC, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_hmac_sha3_224_cra_init(struct crypto_tfm *tfm) { return safexcel_hmac_sha3_cra_init(tfm, "sha3-224"); } struct safexcel_alg_template safexcel_alg_hmac_sha3_224 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_hmac_sha3_224_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_hmac_sha3_224_digest, .setkey = safexcel_hmac_sha3_setkey, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_224_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha3-224)", .cra_driver_name = "safexcel-hmac-sha3-224", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_hmac_sha3_224_cra_init, .cra_exit = safexcel_hmac_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha3_256_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Copy (half of) the key */ memcpy(req->state, &ctx->base.ipad, SHA3_256_BLOCK_SIZE / 2); /* Start of HMAC should have len == processed == blocksize */ req->len = SHA3_256_BLOCK_SIZE; req->processed = SHA3_256_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_256; req->digest = CONTEXT_CONTROL_DIGEST_HMAC; req->state_sz = SHA3_256_BLOCK_SIZE / 2; req->digest_sz = SHA3_256_DIGEST_SIZE; req->block_sz = SHA3_256_BLOCK_SIZE; req->hmac = true; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_hmac_sha3_256_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_hmac_sha3_256_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length HMAC, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_hmac_sha3_256_cra_init(struct crypto_tfm *tfm) { return safexcel_hmac_sha3_cra_init(tfm, "sha3-256"); } struct safexcel_alg_template safexcel_alg_hmac_sha3_256 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_hmac_sha3_256_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_hmac_sha3_256_digest, .setkey = safexcel_hmac_sha3_setkey, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_256_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha3-256)", .cra_driver_name = "safexcel-hmac-sha3-256", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_hmac_sha3_256_cra_init, .cra_exit = safexcel_hmac_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha3_384_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Copy (half of) the key */ memcpy(req->state, &ctx->base.ipad, SHA3_384_BLOCK_SIZE / 2); /* Start of HMAC should have len == processed == blocksize */ req->len = SHA3_384_BLOCK_SIZE; req->processed = SHA3_384_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_384; req->digest = CONTEXT_CONTROL_DIGEST_HMAC; req->state_sz = SHA3_384_BLOCK_SIZE / 2; req->digest_sz = SHA3_384_DIGEST_SIZE; req->block_sz = SHA3_384_BLOCK_SIZE; req->hmac = true; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_hmac_sha3_384_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_hmac_sha3_384_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length HMAC, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_hmac_sha3_384_cra_init(struct crypto_tfm *tfm) { return safexcel_hmac_sha3_cra_init(tfm, "sha3-384"); } struct safexcel_alg_template safexcel_alg_hmac_sha3_384 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_hmac_sha3_384_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_hmac_sha3_384_digest, .setkey = safexcel_hmac_sha3_setkey, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_384_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha3-384)", .cra_driver_name = "safexcel-hmac-sha3-384", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_hmac_sha3_384_cra_init, .cra_exit = safexcel_hmac_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, }; static int safexcel_hmac_sha3_512_init(struct ahash_request *areq) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq); struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm); struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq); memset(req, 0, sizeof(*req)); /* Copy (half of) the key */ memcpy(req->state, &ctx->base.ipad, SHA3_512_BLOCK_SIZE / 2); /* Start of HMAC should have len == processed == blocksize */ req->len = SHA3_512_BLOCK_SIZE; req->processed = SHA3_512_BLOCK_SIZE; ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_512; req->digest = CONTEXT_CONTROL_DIGEST_HMAC; req->state_sz = SHA3_512_BLOCK_SIZE / 2; req->digest_sz = SHA3_512_DIGEST_SIZE; req->block_sz = SHA3_512_BLOCK_SIZE; req->hmac = true; ctx->do_fallback = false; ctx->fb_init_done = false; return 0; } static int safexcel_hmac_sha3_512_digest(struct ahash_request *req) { if (req->nbytes) return safexcel_hmac_sha3_512_init(req) ?: safexcel_ahash_finup(req); /* HW cannot do zero length HMAC, use fallback instead */ return safexcel_sha3_digest_fallback(req); } static int safexcel_hmac_sha3_512_cra_init(struct crypto_tfm *tfm) { return safexcel_hmac_sha3_cra_init(tfm, "sha3-512"); } struct safexcel_alg_template safexcel_alg_hmac_sha3_512 = { .type = SAFEXCEL_ALG_TYPE_AHASH, .algo_mask = SAFEXCEL_ALG_SHA3, .alg.ahash = { .init = safexcel_hmac_sha3_512_init, .update = safexcel_sha3_update, .final = safexcel_sha3_final, .finup = safexcel_sha3_finup, .digest = safexcel_hmac_sha3_512_digest, .setkey = safexcel_hmac_sha3_setkey, .export = safexcel_sha3_export, .import = safexcel_sha3_import, .halg = { .digestsize = SHA3_512_DIGEST_SIZE, .statesize = sizeof(struct safexcel_ahash_export_state), .base = { .cra_name = "hmac(sha3-512)", .cra_driver_name = "safexcel-hmac-sha3-512", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_ahash_ctx), .cra_init = safexcel_hmac_sha3_512_cra_init, .cra_exit = safexcel_hmac_sha3_cra_exit, .cra_module = THIS_MODULE, }, }, }, };
linux-master
drivers/crypto/inside-secure/safexcel_hash.c
// SPDX-License-Identifier: GPL-2.0 /* * Xilinx ZynqMP AES Driver. * Copyright (c) 2020 Xilinx Inc. */ #include <crypto/aes.h> #include <crypto/engine.h> #include <crypto/gcm.h> #include <crypto/internal/aead.h> #include <crypto/scatterwalk.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/firmware/xlnx-zynqmp.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/string.h> #define ZYNQMP_DMA_BIT_MASK 32U #define ZYNQMP_AES_KEY_SIZE AES_KEYSIZE_256 #define ZYNQMP_AES_AUTH_SIZE 16U #define ZYNQMP_KEY_SRC_SEL_KEY_LEN 1U #define ZYNQMP_AES_BLK_SIZE 1U #define ZYNQMP_AES_MIN_INPUT_BLK_SIZE 4U #define ZYNQMP_AES_WORD_LEN 4U #define ZYNQMP_AES_GCM_TAG_MISMATCH_ERR 0x01 #define ZYNQMP_AES_WRONG_KEY_SRC_ERR 0x13 #define ZYNQMP_AES_PUF_NOT_PROGRAMMED 0xE300 enum zynqmp_aead_op { ZYNQMP_AES_DECRYPT = 0, ZYNQMP_AES_ENCRYPT }; enum zynqmp_aead_keysrc { ZYNQMP_AES_KUP_KEY = 0, ZYNQMP_AES_DEV_KEY, ZYNQMP_AES_PUF_KEY }; struct zynqmp_aead_drv_ctx { union { struct aead_engine_alg aead; } alg; struct device *dev; struct crypto_engine *engine; }; struct zynqmp_aead_hw_req { u64 src; u64 iv; u64 key; u64 dst; u64 size; u64 op; u64 keysrc; }; struct zynqmp_aead_tfm_ctx { struct device *dev; u8 key[ZYNQMP_AES_KEY_SIZE]; u8 *iv; u32 keylen; u32 authsize; enum zynqmp_aead_keysrc keysrc; struct crypto_aead *fbk_cipher; }; struct zynqmp_aead_req_ctx { enum zynqmp_aead_op op; }; static int zynqmp_aes_aead_cipher(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct zynqmp_aead_tfm_ctx *tfm_ctx = crypto_aead_ctx(aead); struct zynqmp_aead_req_ctx *rq_ctx = aead_request_ctx(req); struct device *dev = tfm_ctx->dev; struct zynqmp_aead_hw_req *hwreq; dma_addr_t dma_addr_data, dma_addr_hw_req; unsigned int data_size; unsigned int status; int ret; size_t dma_size; char *kbuf; int err; if (tfm_ctx->keysrc == ZYNQMP_AES_KUP_KEY) dma_size = req->cryptlen + ZYNQMP_AES_KEY_SIZE + GCM_AES_IV_SIZE; else dma_size = req->cryptlen + GCM_AES_IV_SIZE; kbuf = dma_alloc_coherent(dev, dma_size, &dma_addr_data, GFP_KERNEL); if (!kbuf) return -ENOMEM; hwreq = dma_alloc_coherent(dev, sizeof(struct zynqmp_aead_hw_req), &dma_addr_hw_req, GFP_KERNEL); if (!hwreq) { dma_free_coherent(dev, dma_size, kbuf, dma_addr_data); return -ENOMEM; } data_size = req->cryptlen; scatterwalk_map_and_copy(kbuf, req->src, 0, req->cryptlen, 0); memcpy(kbuf + data_size, req->iv, GCM_AES_IV_SIZE); hwreq->src = dma_addr_data; hwreq->dst = dma_addr_data; hwreq->iv = hwreq->src + data_size; hwreq->keysrc = tfm_ctx->keysrc; hwreq->op = rq_ctx->op; if (hwreq->op == ZYNQMP_AES_ENCRYPT) hwreq->size = data_size; else hwreq->size = data_size - ZYNQMP_AES_AUTH_SIZE; if (hwreq->keysrc == ZYNQMP_AES_KUP_KEY) { memcpy(kbuf + data_size + GCM_AES_IV_SIZE, tfm_ctx->key, ZYNQMP_AES_KEY_SIZE); hwreq->key = hwreq->src + data_size + GCM_AES_IV_SIZE; } else { hwreq->key = 0; } ret = zynqmp_pm_aes_engine(dma_addr_hw_req, &status); if (ret) { dev_err(dev, "ERROR: AES PM API failed\n"); err = ret; } else if (status) { switch (status) { case ZYNQMP_AES_GCM_TAG_MISMATCH_ERR: dev_err(dev, "ERROR: Gcm Tag mismatch\n"); break; case ZYNQMP_AES_WRONG_KEY_SRC_ERR: dev_err(dev, "ERROR: Wrong KeySrc, enable secure mode\n"); break; case ZYNQMP_AES_PUF_NOT_PROGRAMMED: dev_err(dev, "ERROR: PUF is not registered\n"); break; default: dev_err(dev, "ERROR: Unknown error\n"); break; } err = -status; } else { if (hwreq->op == ZYNQMP_AES_ENCRYPT) data_size = data_size + ZYNQMP_AES_AUTH_SIZE; else data_size = data_size - ZYNQMP_AES_AUTH_SIZE; sg_copy_from_buffer(req->dst, sg_nents(req->dst), kbuf, data_size); err = 0; } if (kbuf) { memzero_explicit(kbuf, dma_size); dma_free_coherent(dev, dma_size, kbuf, dma_addr_data); } if (hwreq) { memzero_explicit(hwreq, sizeof(struct zynqmp_aead_hw_req)); dma_free_coherent(dev, sizeof(struct zynqmp_aead_hw_req), hwreq, dma_addr_hw_req); } return err; } static int zynqmp_fallback_check(struct zynqmp_aead_tfm_ctx *tfm_ctx, struct aead_request *req) { int need_fallback = 0; struct zynqmp_aead_req_ctx *rq_ctx = aead_request_ctx(req); if (tfm_ctx->authsize != ZYNQMP_AES_AUTH_SIZE) need_fallback = 1; if (tfm_ctx->keysrc == ZYNQMP_AES_KUP_KEY && tfm_ctx->keylen != ZYNQMP_AES_KEY_SIZE) { need_fallback = 1; } if (req->assoclen != 0 || req->cryptlen < ZYNQMP_AES_MIN_INPUT_BLK_SIZE) { need_fallback = 1; } if ((req->cryptlen % ZYNQMP_AES_WORD_LEN) != 0) need_fallback = 1; if (rq_ctx->op == ZYNQMP_AES_DECRYPT && req->cryptlen <= ZYNQMP_AES_AUTH_SIZE) { need_fallback = 1; } return need_fallback; } static int zynqmp_handle_aes_req(struct crypto_engine *engine, void *req) { struct aead_request *areq = container_of(req, struct aead_request, base); struct crypto_aead *aead = crypto_aead_reqtfm(req); struct zynqmp_aead_tfm_ctx *tfm_ctx = crypto_aead_ctx(aead); struct zynqmp_aead_req_ctx *rq_ctx = aead_request_ctx(areq); struct aead_request *subreq = aead_request_ctx(req); int need_fallback; int err; need_fallback = zynqmp_fallback_check(tfm_ctx, areq); if (need_fallback) { aead_request_set_tfm(subreq, tfm_ctx->fbk_cipher); aead_request_set_callback(subreq, areq->base.flags, NULL, NULL); aead_request_set_crypt(subreq, areq->src, areq->dst, areq->cryptlen, areq->iv); aead_request_set_ad(subreq, areq->assoclen); if (rq_ctx->op == ZYNQMP_AES_ENCRYPT) err = crypto_aead_encrypt(subreq); else err = crypto_aead_decrypt(subreq); } else { err = zynqmp_aes_aead_cipher(areq); } crypto_finalize_aead_request(engine, areq, err); return 0; } static int zynqmp_aes_aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct zynqmp_aead_tfm_ctx *tfm_ctx = (struct zynqmp_aead_tfm_ctx *)crypto_tfm_ctx(tfm); unsigned char keysrc; if (keylen == ZYNQMP_KEY_SRC_SEL_KEY_LEN) { keysrc = *key; if (keysrc == ZYNQMP_AES_KUP_KEY || keysrc == ZYNQMP_AES_DEV_KEY || keysrc == ZYNQMP_AES_PUF_KEY) { tfm_ctx->keysrc = (enum zynqmp_aead_keysrc)keysrc; } else { tfm_ctx->keylen = keylen; } } else { tfm_ctx->keylen = keylen; if (keylen == ZYNQMP_AES_KEY_SIZE) { tfm_ctx->keysrc = ZYNQMP_AES_KUP_KEY; memcpy(tfm_ctx->key, key, keylen); } } tfm_ctx->fbk_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; tfm_ctx->fbk_cipher->base.crt_flags |= (aead->base.crt_flags & CRYPTO_TFM_REQ_MASK); return crypto_aead_setkey(tfm_ctx->fbk_cipher, key, keylen); } static int zynqmp_aes_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct zynqmp_aead_tfm_ctx *tfm_ctx = (struct zynqmp_aead_tfm_ctx *)crypto_tfm_ctx(tfm); tfm_ctx->authsize = authsize; return crypto_aead_setauthsize(tfm_ctx->fbk_cipher, authsize); } static int zynqmp_aes_aead_encrypt(struct aead_request *req) { struct zynqmp_aead_drv_ctx *drv_ctx; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct aead_alg *alg = crypto_aead_alg(aead); struct zynqmp_aead_req_ctx *rq_ctx = aead_request_ctx(req); rq_ctx->op = ZYNQMP_AES_ENCRYPT; drv_ctx = container_of(alg, struct zynqmp_aead_drv_ctx, alg.aead.base); return crypto_transfer_aead_request_to_engine(drv_ctx->engine, req); } static int zynqmp_aes_aead_decrypt(struct aead_request *req) { struct zynqmp_aead_drv_ctx *drv_ctx; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct aead_alg *alg = crypto_aead_alg(aead); struct zynqmp_aead_req_ctx *rq_ctx = aead_request_ctx(req); rq_ctx->op = ZYNQMP_AES_DECRYPT; drv_ctx = container_of(alg, struct zynqmp_aead_drv_ctx, alg.aead.base); return crypto_transfer_aead_request_to_engine(drv_ctx->engine, req); } static int zynqmp_aes_aead_init(struct crypto_aead *aead) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct zynqmp_aead_tfm_ctx *tfm_ctx = (struct zynqmp_aead_tfm_ctx *)crypto_tfm_ctx(tfm); struct zynqmp_aead_drv_ctx *drv_ctx; struct aead_alg *alg = crypto_aead_alg(aead); drv_ctx = container_of(alg, struct zynqmp_aead_drv_ctx, alg.aead.base); tfm_ctx->dev = drv_ctx->dev; tfm_ctx->fbk_cipher = crypto_alloc_aead(drv_ctx->alg.aead.base.base.cra_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(tfm_ctx->fbk_cipher)) { pr_err("%s() Error: failed to allocate fallback for %s\n", __func__, drv_ctx->alg.aead.base.base.cra_name); return PTR_ERR(tfm_ctx->fbk_cipher); } crypto_aead_set_reqsize(aead, max(sizeof(struct zynqmp_aead_req_ctx), sizeof(struct aead_request) + crypto_aead_reqsize(tfm_ctx->fbk_cipher))); return 0; } static void zynqmp_aes_aead_exit(struct crypto_aead *aead) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct zynqmp_aead_tfm_ctx *tfm_ctx = (struct zynqmp_aead_tfm_ctx *)crypto_tfm_ctx(tfm); if (tfm_ctx->fbk_cipher) { crypto_free_aead(tfm_ctx->fbk_cipher); tfm_ctx->fbk_cipher = NULL; } memzero_explicit(tfm_ctx, sizeof(struct zynqmp_aead_tfm_ctx)); } static struct zynqmp_aead_drv_ctx aes_drv_ctx = { .alg.aead.base = { .setkey = zynqmp_aes_aead_setkey, .setauthsize = zynqmp_aes_aead_setauthsize, .encrypt = zynqmp_aes_aead_encrypt, .decrypt = zynqmp_aes_aead_decrypt, .init = zynqmp_aes_aead_init, .exit = zynqmp_aes_aead_exit, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = ZYNQMP_AES_AUTH_SIZE, .base = { .cra_name = "gcm(aes)", .cra_driver_name = "xilinx-zynqmp-aes-gcm", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = ZYNQMP_AES_BLK_SIZE, .cra_ctxsize = sizeof(struct zynqmp_aead_tfm_ctx), .cra_module = THIS_MODULE, } }, .alg.aead.op = { .do_one_request = zynqmp_handle_aes_req, }, }; static int zynqmp_aes_aead_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; int err; /* ZynqMP AES driver supports only one instance */ if (!aes_drv_ctx.dev) aes_drv_ctx.dev = dev; else return -ENODEV; err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(ZYNQMP_DMA_BIT_MASK)); if (err < 0) { dev_err(dev, "No usable DMA configuration\n"); return err; } aes_drv_ctx.engine = crypto_engine_alloc_init(dev, 1); if (!aes_drv_ctx.engine) { dev_err(dev, "Cannot alloc AES engine\n"); err = -ENOMEM; goto err_engine; } err = crypto_engine_start(aes_drv_ctx.engine); if (err) { dev_err(dev, "Cannot start AES engine\n"); goto err_engine; } err = crypto_engine_register_aead(&aes_drv_ctx.alg.aead); if (err < 0) { dev_err(dev, "Failed to register AEAD alg.\n"); goto err_aead; } return 0; err_aead: crypto_engine_unregister_aead(&aes_drv_ctx.alg.aead); err_engine: if (aes_drv_ctx.engine) crypto_engine_exit(aes_drv_ctx.engine); return err; } static int zynqmp_aes_aead_remove(struct platform_device *pdev) { crypto_engine_exit(aes_drv_ctx.engine); crypto_engine_unregister_aead(&aes_drv_ctx.alg.aead); return 0; } static const struct of_device_id zynqmp_aes_dt_ids[] = { { .compatible = "xlnx,zynqmp-aes" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, zynqmp_aes_dt_ids); static struct platform_driver zynqmp_aes_driver = { .probe = zynqmp_aes_aead_probe, .remove = zynqmp_aes_aead_remove, .driver = { .name = "zynqmp-aes", .of_match_table = zynqmp_aes_dt_ids, }, }; module_platform_driver(zynqmp_aes_driver); MODULE_LICENSE("GPL");
linux-master
drivers/crypto/xilinx/zynqmp-aes-gcm.c
// SPDX-License-Identifier: GPL-2.0 /* * Xilinx ZynqMP SHA Driver. * Copyright (c) 2022 Xilinx Inc. */ #include <linux/cacheflush.h> #include <crypto/hash.h> #include <crypto/internal/hash.h> #include <crypto/sha3.h> #include <linux/crypto.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/firmware/xlnx-zynqmp.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #define ZYNQMP_DMA_BIT_MASK 32U #define ZYNQMP_DMA_ALLOC_FIXED_SIZE 0x1000U enum zynqmp_sha_op { ZYNQMP_SHA3_INIT = 1, ZYNQMP_SHA3_UPDATE = 2, ZYNQMP_SHA3_FINAL = 4, }; struct zynqmp_sha_drv_ctx { struct shash_alg sha3_384; struct device *dev; }; struct zynqmp_sha_tfm_ctx { struct device *dev; struct crypto_shash *fbk_tfm; }; struct zynqmp_sha_desc_ctx { struct shash_desc fbk_req; }; static dma_addr_t update_dma_addr, final_dma_addr; static char *ubuf, *fbuf; static int zynqmp_sha_init_tfm(struct crypto_shash *hash) { const char *fallback_driver_name = crypto_shash_alg_name(hash); struct zynqmp_sha_tfm_ctx *tfm_ctx = crypto_shash_ctx(hash); struct shash_alg *alg = crypto_shash_alg(hash); struct crypto_shash *fallback_tfm; struct zynqmp_sha_drv_ctx *drv_ctx; drv_ctx = container_of(alg, struct zynqmp_sha_drv_ctx, sha3_384); tfm_ctx->dev = drv_ctx->dev; /* Allocate a fallback and abort if it failed. */ fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback_tfm)) return PTR_ERR(fallback_tfm); tfm_ctx->fbk_tfm = fallback_tfm; hash->descsize += crypto_shash_descsize(tfm_ctx->fbk_tfm); return 0; } static void zynqmp_sha_exit_tfm(struct crypto_shash *hash) { struct zynqmp_sha_tfm_ctx *tfm_ctx = crypto_shash_ctx(hash); if (tfm_ctx->fbk_tfm) { crypto_free_shash(tfm_ctx->fbk_tfm); tfm_ctx->fbk_tfm = NULL; } memzero_explicit(tfm_ctx, sizeof(struct zynqmp_sha_tfm_ctx)); } static int zynqmp_sha_init(struct shash_desc *desc) { struct zynqmp_sha_desc_ctx *dctx = shash_desc_ctx(desc); struct zynqmp_sha_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); dctx->fbk_req.tfm = tctx->fbk_tfm; return crypto_shash_init(&dctx->fbk_req); } static int zynqmp_sha_update(struct shash_desc *desc, const u8 *data, unsigned int length) { struct zynqmp_sha_desc_ctx *dctx = shash_desc_ctx(desc); return crypto_shash_update(&dctx->fbk_req, data, length); } static int zynqmp_sha_final(struct shash_desc *desc, u8 *out) { struct zynqmp_sha_desc_ctx *dctx = shash_desc_ctx(desc); return crypto_shash_final(&dctx->fbk_req, out); } static int zynqmp_sha_finup(struct shash_desc *desc, const u8 *data, unsigned int length, u8 *out) { struct zynqmp_sha_desc_ctx *dctx = shash_desc_ctx(desc); return crypto_shash_finup(&dctx->fbk_req, data, length, out); } static int zynqmp_sha_import(struct shash_desc *desc, const void *in) { struct zynqmp_sha_desc_ctx *dctx = shash_desc_ctx(desc); struct zynqmp_sha_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); dctx->fbk_req.tfm = tctx->fbk_tfm; return crypto_shash_import(&dctx->fbk_req, in); } static int zynqmp_sha_export(struct shash_desc *desc, void *out) { struct zynqmp_sha_desc_ctx *dctx = shash_desc_ctx(desc); return crypto_shash_export(&dctx->fbk_req, out); } static int zynqmp_sha_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { unsigned int remaining_len = len; int update_size; int ret; ret = zynqmp_pm_sha_hash(0, 0, ZYNQMP_SHA3_INIT); if (ret) return ret; while (remaining_len != 0) { memzero_explicit(ubuf, ZYNQMP_DMA_ALLOC_FIXED_SIZE); if (remaining_len >= ZYNQMP_DMA_ALLOC_FIXED_SIZE) { update_size = ZYNQMP_DMA_ALLOC_FIXED_SIZE; remaining_len -= ZYNQMP_DMA_ALLOC_FIXED_SIZE; } else { update_size = remaining_len; remaining_len = 0; } memcpy(ubuf, data, update_size); flush_icache_range((unsigned long)ubuf, (unsigned long)ubuf + update_size); ret = zynqmp_pm_sha_hash(update_dma_addr, update_size, ZYNQMP_SHA3_UPDATE); if (ret) return ret; data += update_size; } ret = zynqmp_pm_sha_hash(final_dma_addr, SHA3_384_DIGEST_SIZE, ZYNQMP_SHA3_FINAL); memcpy(out, fbuf, SHA3_384_DIGEST_SIZE); memzero_explicit(fbuf, SHA3_384_DIGEST_SIZE); return ret; } static struct zynqmp_sha_drv_ctx sha3_drv_ctx = { .sha3_384 = { .init = zynqmp_sha_init, .update = zynqmp_sha_update, .final = zynqmp_sha_final, .finup = zynqmp_sha_finup, .digest = zynqmp_sha_digest, .export = zynqmp_sha_export, .import = zynqmp_sha_import, .init_tfm = zynqmp_sha_init_tfm, .exit_tfm = zynqmp_sha_exit_tfm, .descsize = sizeof(struct zynqmp_sha_desc_ctx), .statesize = sizeof(struct sha3_state), .digestsize = SHA3_384_DIGEST_SIZE, .base = { .cra_name = "sha3-384", .cra_driver_name = "zynqmp-sha3-384", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA3_384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct zynqmp_sha_tfm_ctx), .cra_alignmask = 3, .cra_module = THIS_MODULE, } } }; static int zynqmp_sha_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; int err; u32 v; /* Verify the hardware is present */ err = zynqmp_pm_get_api_version(&v); if (err) return err; err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(ZYNQMP_DMA_BIT_MASK)); if (err < 0) { dev_err(dev, "No usable DMA configuration\n"); return err; } err = crypto_register_shash(&sha3_drv_ctx.sha3_384); if (err < 0) { dev_err(dev, "Failed to register shash alg.\n"); return err; } sha3_drv_ctx.dev = dev; platform_set_drvdata(pdev, &sha3_drv_ctx); ubuf = dma_alloc_coherent(dev, ZYNQMP_DMA_ALLOC_FIXED_SIZE, &update_dma_addr, GFP_KERNEL); if (!ubuf) { err = -ENOMEM; goto err_shash; } fbuf = dma_alloc_coherent(dev, SHA3_384_DIGEST_SIZE, &final_dma_addr, GFP_KERNEL); if (!fbuf) { err = -ENOMEM; goto err_mem; } return 0; err_mem: dma_free_coherent(sha3_drv_ctx.dev, ZYNQMP_DMA_ALLOC_FIXED_SIZE, ubuf, update_dma_addr); err_shash: crypto_unregister_shash(&sha3_drv_ctx.sha3_384); return err; } static int zynqmp_sha_remove(struct platform_device *pdev) { sha3_drv_ctx.dev = platform_get_drvdata(pdev); dma_free_coherent(sha3_drv_ctx.dev, ZYNQMP_DMA_ALLOC_FIXED_SIZE, ubuf, update_dma_addr); dma_free_coherent(sha3_drv_ctx.dev, SHA3_384_DIGEST_SIZE, fbuf, final_dma_addr); crypto_unregister_shash(&sha3_drv_ctx.sha3_384); return 0; } static struct platform_driver zynqmp_sha_driver = { .probe = zynqmp_sha_probe, .remove = zynqmp_sha_remove, .driver = { .name = "zynqmp-sha3-384", }, }; module_platform_driver(zynqmp_sha_driver); MODULE_DESCRIPTION("ZynqMP SHA3 hardware acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Harsha <[email protected]>");
linux-master
drivers/crypto/xilinx/zynqmp-sha.c
// SPDX-License-Identifier: GPL-2.0 /* * sl3516-ce-rng.c - hardware cryptographic offloader for SL3516 SoC. * * Copyright (C) 2021 Corentin Labbe <[email protected]> * * This file handle the RNG found in the SL3516 crypto engine */ #include "sl3516-ce.h" #include <linux/pm_runtime.h> #include <linux/hw_random.h> static int sl3516_ce_rng_read(struct hwrng *rng, void *buf, size_t max, bool wait) { struct sl3516_ce_dev *ce; u32 *data = buf; size_t read = 0; int err; ce = container_of(rng, struct sl3516_ce_dev, trng); #ifdef CONFIG_CRYPTO_DEV_SL3516_DEBUG ce->hwrng_stat_req++; ce->hwrng_stat_bytes += max; #endif err = pm_runtime_get_sync(ce->dev); if (err < 0) { pm_runtime_put_noidle(ce->dev); return err; } while (read < max) { *data = readl(ce->base + IPSEC_RAND_NUM_REG); data++; read += 4; } pm_runtime_put(ce->dev); return read; } int sl3516_ce_rng_register(struct sl3516_ce_dev *ce) { int ret; ce->trng.name = "SL3516 Crypto Engine RNG"; ce->trng.read = sl3516_ce_rng_read; ce->trng.quality = 700; ret = hwrng_register(&ce->trng); if (ret) dev_err(ce->dev, "Fail to register the RNG\n"); return ret; } void sl3516_ce_rng_unregister(struct sl3516_ce_dev *ce) { hwrng_unregister(&ce->trng); }
linux-master
drivers/crypto/gemini/sl3516-ce-rng.c
// SPDX-License-Identifier: GPL-2.0 /* * sl3516-ce-cipher.c - hardware cryptographic offloader for Storlink SL3516 SoC * * Copyright (C) 2021 Corentin LABBE <[email protected]> * * This file adds support for AES cipher with 128,192,256 bits keysize in * ECB mode. */ #include <crypto/engine.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/string.h> #include "sl3516-ce.h" /* sl3516_ce_need_fallback - check if a request can be handled by the CE */ static bool sl3516_ce_need_fallback(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct sl3516_ce_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sl3516_ce_dev *ce = op->ce; struct scatterlist *in_sg; struct scatterlist *out_sg; struct scatterlist *sg; if (areq->cryptlen == 0 || areq->cryptlen % 16) { ce->fallback_mod16++; return true; } /* * check if we have enough descriptors for TX * Note: TX need one control desc for each SG */ if (sg_nents(areq->src) > MAXDESC / 2) { ce->fallback_sg_count_tx++; return true; } /* check if we have enough descriptors for RX */ if (sg_nents(areq->dst) > MAXDESC) { ce->fallback_sg_count_rx++; return true; } sg = areq->src; while (sg) { if ((sg->length % 16) != 0) { ce->fallback_mod16++; return true; } if ((sg_dma_len(sg) % 16) != 0) { ce->fallback_mod16++; return true; } if (!IS_ALIGNED(sg->offset, 16)) { ce->fallback_align16++; return true; } sg = sg_next(sg); } sg = areq->dst; while (sg) { if ((sg->length % 16) != 0) { ce->fallback_mod16++; return true; } if ((sg_dma_len(sg) % 16) != 0) { ce->fallback_mod16++; return true; } if (!IS_ALIGNED(sg->offset, 16)) { ce->fallback_align16++; return true; } sg = sg_next(sg); } /* need same numbers of SG (with same length) for source and destination */ in_sg = areq->src; out_sg = areq->dst; while (in_sg && out_sg) { if (in_sg->length != out_sg->length) { ce->fallback_not_same_len++; return true; } in_sg = sg_next(in_sg); out_sg = sg_next(out_sg); } if (in_sg || out_sg) return true; return false; } static int sl3516_ce_cipher_fallback(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct sl3516_ce_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sl3516_ce_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct sl3516_ce_alg_template *algt; int err; algt = container_of(alg, struct sl3516_ce_alg_template, alg.skcipher.base); algt->stat_fb++; skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm); skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags, areq->base.complete, areq->base.data); skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst, areq->cryptlen, areq->iv); if (rctx->op_dir == CE_DECRYPTION) err = crypto_skcipher_decrypt(&rctx->fallback_req); else err = crypto_skcipher_encrypt(&rctx->fallback_req); return err; } static int sl3516_ce_cipher(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct sl3516_ce_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sl3516_ce_dev *ce = op->ce; struct sl3516_ce_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct sl3516_ce_alg_template *algt; struct scatterlist *sg; unsigned int todo, len; struct pkt_control_ecb *ecb; int nr_sgs = 0; int nr_sgd = 0; int err = 0; int i; algt = container_of(alg, struct sl3516_ce_alg_template, alg.skcipher.base); dev_dbg(ce->dev, "%s %s %u %x IV(%p %u) key=%u\n", __func__, crypto_tfm_alg_name(areq->base.tfm), areq->cryptlen, rctx->op_dir, areq->iv, crypto_skcipher_ivsize(tfm), op->keylen); algt->stat_req++; if (areq->src == areq->dst) { nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src), DMA_BIDIRECTIONAL); if (nr_sgs <= 0 || nr_sgs > MAXDESC / 2) { dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs); err = -EINVAL; goto theend; } nr_sgd = nr_sgs; } else { nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE); if (nr_sgs <= 0 || nr_sgs > MAXDESC / 2) { dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs); err = -EINVAL; goto theend; } nr_sgd = dma_map_sg(ce->dev, areq->dst, sg_nents(areq->dst), DMA_FROM_DEVICE); if (nr_sgd <= 0 || nr_sgd > MAXDESC) { dev_err(ce->dev, "Invalid sg number %d\n", nr_sgd); err = -EINVAL; goto theend_sgs; } } len = areq->cryptlen; i = 0; sg = areq->src; while (i < nr_sgs && sg && len) { if (sg_dma_len(sg) == 0) goto sgs_next; rctx->t_src[i].addr = sg_dma_address(sg); todo = min(len, sg_dma_len(sg)); rctx->t_src[i].len = todo; dev_dbg(ce->dev, "%s total=%u SGS(%d %u off=%d) todo=%u\n", __func__, areq->cryptlen, i, rctx->t_src[i].len, sg->offset, todo); len -= todo; i++; sgs_next: sg = sg_next(sg); } if (len > 0) { dev_err(ce->dev, "remaining len %d/%u nr_sgs=%d\n", len, areq->cryptlen, nr_sgs); err = -EINVAL; goto theend_sgs; } len = areq->cryptlen; i = 0; sg = areq->dst; while (i < nr_sgd && sg && len) { if (sg_dma_len(sg) == 0) goto sgd_next; rctx->t_dst[i].addr = sg_dma_address(sg); todo = min(len, sg_dma_len(sg)); rctx->t_dst[i].len = todo; dev_dbg(ce->dev, "%s total=%u SGD(%d %u off=%d) todo=%u\n", __func__, areq->cryptlen, i, rctx->t_dst[i].len, sg->offset, todo); len -= todo; i++; sgd_next: sg = sg_next(sg); } if (len > 0) { dev_err(ce->dev, "remaining len %d\n", len); err = -EINVAL; goto theend_sgs; } switch (algt->mode) { case ECB_AES: rctx->pctrllen = sizeof(struct pkt_control_ecb); ecb = (struct pkt_control_ecb *)ce->pctrl; rctx->tqflag = TQ0_TYPE_CTRL; rctx->tqflag |= TQ1_CIPHER; ecb->control.op_mode = rctx->op_dir; ecb->control.cipher_algorithm = ECB_AES; ecb->cipher.header_len = 0; ecb->cipher.algorithm_len = areq->cryptlen; cpu_to_be32_array((__be32 *)ecb->key, (u32 *)op->key, op->keylen / 4); rctx->h = &ecb->cipher; rctx->tqflag |= TQ4_KEY0; rctx->tqflag |= TQ5_KEY4; rctx->tqflag |= TQ6_KEY6; ecb->control.aesnk = op->keylen / 4; break; } rctx->nr_sgs = nr_sgs; rctx->nr_sgd = nr_sgd; err = sl3516_ce_run_task(ce, rctx, crypto_tfm_alg_name(areq->base.tfm)); theend_sgs: if (areq->src == areq->dst) { dma_unmap_sg(ce->dev, areq->src, sg_nents(areq->src), DMA_BIDIRECTIONAL); } else { dma_unmap_sg(ce->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE); dma_unmap_sg(ce->dev, areq->dst, sg_nents(areq->dst), DMA_FROM_DEVICE); } theend: return err; } int sl3516_ce_handle_cipher_request(struct crypto_engine *engine, void *areq) { int err; struct skcipher_request *breq = container_of(areq, struct skcipher_request, base); err = sl3516_ce_cipher(breq); local_bh_disable(); crypto_finalize_skcipher_request(engine, breq, err); local_bh_enable(); return 0; } int sl3516_ce_skdecrypt(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct sl3516_ce_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sl3516_ce_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct crypto_engine *engine; memset(rctx, 0, sizeof(struct sl3516_ce_cipher_req_ctx)); rctx->op_dir = CE_DECRYPTION; if (sl3516_ce_need_fallback(areq)) return sl3516_ce_cipher_fallback(areq); engine = op->ce->engine; return crypto_transfer_skcipher_request_to_engine(engine, areq); } int sl3516_ce_skencrypt(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct sl3516_ce_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sl3516_ce_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct crypto_engine *engine; memset(rctx, 0, sizeof(struct sl3516_ce_cipher_req_ctx)); rctx->op_dir = CE_ENCRYPTION; if (sl3516_ce_need_fallback(areq)) return sl3516_ce_cipher_fallback(areq); engine = op->ce->engine; return crypto_transfer_skcipher_request_to_engine(engine, areq); } int sl3516_ce_cipher_init(struct crypto_tfm *tfm) { struct sl3516_ce_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm); struct sl3516_ce_alg_template *algt; const char *name = crypto_tfm_alg_name(tfm); struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm); struct skcipher_alg *alg = crypto_skcipher_alg(sktfm); int err; memset(op, 0, sizeof(struct sl3516_ce_cipher_tfm_ctx)); algt = container_of(alg, struct sl3516_ce_alg_template, alg.skcipher.base); op->ce = algt->ce; op->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(op->fallback_tfm)) { dev_err(op->ce->dev, "ERROR: Cannot allocate fallback for %s %ld\n", name, PTR_ERR(op->fallback_tfm)); return PTR_ERR(op->fallback_tfm); } sktfm->reqsize = sizeof(struct sl3516_ce_cipher_req_ctx) + crypto_skcipher_reqsize(op->fallback_tfm); dev_info(op->ce->dev, "Fallback for %s is %s\n", crypto_tfm_alg_driver_name(&sktfm->base), crypto_tfm_alg_driver_name(crypto_skcipher_tfm(op->fallback_tfm))); err = pm_runtime_get_sync(op->ce->dev); if (err < 0) goto error_pm; return 0; error_pm: pm_runtime_put_noidle(op->ce->dev); crypto_free_skcipher(op->fallback_tfm); return err; } void sl3516_ce_cipher_exit(struct crypto_tfm *tfm) { struct sl3516_ce_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm); kfree_sensitive(op->key); crypto_free_skcipher(op->fallback_tfm); pm_runtime_put_sync_suspend(op->ce->dev); } int sl3516_ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct sl3516_ce_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sl3516_ce_dev *ce = op->ce; switch (keylen) { case 128 / 8: break; case 192 / 8: break; case 256 / 8: break; default: dev_dbg(ce->dev, "ERROR: Invalid keylen %u\n", keylen); return -EINVAL; } kfree_sensitive(op->key); op->keylen = keylen; op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA); if (!op->key) return -ENOMEM; crypto_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); return crypto_skcipher_setkey(op->fallback_tfm, key, keylen); }
linux-master
drivers/crypto/gemini/sl3516-ce-cipher.c
// SPDX-License-Identifier: GPL-2.0 /* * sl3516-ce-core.c - hardware cryptographic offloader for Storlink SL3516 SoC * * Copyright (C) 2021 Corentin Labbe <[email protected]> * * Core file which registers crypto algorithms supported by the CryptoEngine */ #include <crypto/engine.h> #include <crypto/internal/rng.h> #include <crypto/internal/skcipher.h> #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/dev_printk.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include "sl3516-ce.h" static int sl3516_ce_desc_init(struct sl3516_ce_dev *ce) { const size_t sz = sizeof(struct descriptor) * MAXDESC; int i; ce->tx = dma_alloc_coherent(ce->dev, sz, &ce->dtx, GFP_KERNEL); if (!ce->tx) return -ENOMEM; ce->rx = dma_alloc_coherent(ce->dev, sz, &ce->drx, GFP_KERNEL); if (!ce->rx) goto err_rx; for (i = 0; i < MAXDESC; i++) { ce->tx[i].frame_ctrl.bits.own = CE_CPU; ce->tx[i].next_desc.next_descriptor = ce->dtx + (i + 1) * sizeof(struct descriptor); } ce->tx[MAXDESC - 1].next_desc.next_descriptor = ce->dtx; for (i = 0; i < MAXDESC; i++) { ce->rx[i].frame_ctrl.bits.own = CE_CPU; ce->rx[i].next_desc.next_descriptor = ce->drx + (i + 1) * sizeof(struct descriptor); } ce->rx[MAXDESC - 1].next_desc.next_descriptor = ce->drx; ce->pctrl = dma_alloc_coherent(ce->dev, sizeof(struct pkt_control_ecb), &ce->dctrl, GFP_KERNEL); if (!ce->pctrl) goto err_pctrl; return 0; err_pctrl: dma_free_coherent(ce->dev, sz, ce->rx, ce->drx); err_rx: dma_free_coherent(ce->dev, sz, ce->tx, ce->dtx); return -ENOMEM; } static void sl3516_ce_free_descs(struct sl3516_ce_dev *ce) { const size_t sz = sizeof(struct descriptor) * MAXDESC; dma_free_coherent(ce->dev, sz, ce->tx, ce->dtx); dma_free_coherent(ce->dev, sz, ce->rx, ce->drx); dma_free_coherent(ce->dev, sizeof(struct pkt_control_ecb), ce->pctrl, ce->dctrl); } static void start_dma_tx(struct sl3516_ce_dev *ce) { u32 v; v = TXDMA_CTRL_START | TXDMA_CTRL_CHAIN_MODE | TXDMA_CTRL_CONTINUE | \ TXDMA_CTRL_INT_FAIL | TXDMA_CTRL_INT_PERR | TXDMA_CTRL_BURST_UNK; writel(v, ce->base + IPSEC_TXDMA_CTRL); } static void start_dma_rx(struct sl3516_ce_dev *ce) { u32 v; v = RXDMA_CTRL_START | RXDMA_CTRL_CHAIN_MODE | RXDMA_CTRL_CONTINUE | \ RXDMA_CTRL_BURST_UNK | RXDMA_CTRL_INT_FINISH | \ RXDMA_CTRL_INT_FAIL | RXDMA_CTRL_INT_PERR | \ RXDMA_CTRL_INT_EOD | RXDMA_CTRL_INT_EOF; writel(v, ce->base + IPSEC_RXDMA_CTRL); } static struct descriptor *get_desc_tx(struct sl3516_ce_dev *ce) { struct descriptor *dd; dd = &ce->tx[ce->ctx]; ce->ctx++; if (ce->ctx >= MAXDESC) ce->ctx = 0; return dd; } static struct descriptor *get_desc_rx(struct sl3516_ce_dev *ce) { struct descriptor *rdd; rdd = &ce->rx[ce->crx]; ce->crx++; if (ce->crx >= MAXDESC) ce->crx = 0; return rdd; } int sl3516_ce_run_task(struct sl3516_ce_dev *ce, struct sl3516_ce_cipher_req_ctx *rctx, const char *name) { struct descriptor *dd, *rdd = NULL; u32 v; int i, err = 0; ce->stat_req++; reinit_completion(&ce->complete); ce->status = 0; for (i = 0; i < rctx->nr_sgd; i++) { dev_dbg(ce->dev, "%s handle DST SG %d/%d len=%d\n", __func__, i, rctx->nr_sgd, rctx->t_dst[i].len); rdd = get_desc_rx(ce); rdd->buf_adr = rctx->t_dst[i].addr; rdd->frame_ctrl.bits.buffer_size = rctx->t_dst[i].len; rdd->frame_ctrl.bits.own = CE_DMA; } rdd->next_desc.bits.eofie = 1; for (i = 0; i < rctx->nr_sgs; i++) { dev_dbg(ce->dev, "%s handle SRC SG %d/%d len=%d\n", __func__, i, rctx->nr_sgs, rctx->t_src[i].len); rctx->h->algorithm_len = rctx->t_src[i].len; dd = get_desc_tx(ce); dd->frame_ctrl.raw = 0; dd->flag_status.raw = 0; dd->frame_ctrl.bits.buffer_size = rctx->pctrllen; dd->buf_adr = ce->dctrl; dd->flag_status.tx_flag.tqflag = rctx->tqflag; dd->next_desc.bits.eofie = 0; dd->next_desc.bits.dec = 0; dd->next_desc.bits.sof_eof = DESC_FIRST | DESC_LAST; dd->frame_ctrl.bits.own = CE_DMA; dd = get_desc_tx(ce); dd->frame_ctrl.raw = 0; dd->flag_status.raw = 0; dd->frame_ctrl.bits.buffer_size = rctx->t_src[i].len; dd->buf_adr = rctx->t_src[i].addr; dd->flag_status.tx_flag.tqflag = 0; dd->next_desc.bits.eofie = 0; dd->next_desc.bits.dec = 0; dd->next_desc.bits.sof_eof = DESC_FIRST | DESC_LAST; dd->frame_ctrl.bits.own = CE_DMA; start_dma_tx(ce); start_dma_rx(ce); } wait_for_completion_interruptible_timeout(&ce->complete, msecs_to_jiffies(5000)); if (ce->status == 0) { dev_err(ce->dev, "DMA timeout for %s\n", name); err = -EFAULT; } v = readl(ce->base + IPSEC_STATUS_REG); if (v & 0xFFF) { dev_err(ce->dev, "IPSEC_STATUS_REG %x\n", v); err = -EFAULT; } return err; } static irqreturn_t ce_irq_handler(int irq, void *data) { struct sl3516_ce_dev *ce = (struct sl3516_ce_dev *)data; u32 v; ce->stat_irq++; v = readl(ce->base + IPSEC_DMA_STATUS); writel(v, ce->base + IPSEC_DMA_STATUS); if (v & DMA_STATUS_TS_DERR) dev_err(ce->dev, "AHB bus Error While Tx !!!\n"); if (v & DMA_STATUS_TS_PERR) dev_err(ce->dev, "Tx Descriptor Protocol Error !!!\n"); if (v & DMA_STATUS_RS_DERR) dev_err(ce->dev, "AHB bus Error While Rx !!!\n"); if (v & DMA_STATUS_RS_PERR) dev_err(ce->dev, "Rx Descriptor Protocol Error !!!\n"); if (v & DMA_STATUS_TS_EOFI) ce->stat_irq_tx++; if (v & DMA_STATUS_RS_EOFI) { ce->status = 1; complete(&ce->complete); ce->stat_irq_rx++; return IRQ_HANDLED; } return IRQ_HANDLED; } static struct sl3516_ce_alg_template ce_algs[] = { { .type = CRYPTO_ALG_TYPE_SKCIPHER, .mode = ECB_AES, .alg.skcipher.base = { .base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-sl3516", .cra_priority = 400, .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct sl3516_ce_cipher_tfm_ctx), .cra_module = THIS_MODULE, .cra_alignmask = 0xf, .cra_init = sl3516_ce_cipher_init, .cra_exit = sl3516_ce_cipher_exit, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = sl3516_ce_aes_setkey, .encrypt = sl3516_ce_skencrypt, .decrypt = sl3516_ce_skdecrypt, }, .alg.skcipher.op = { .do_one_request = sl3516_ce_handle_cipher_request, }, }, }; static int sl3516_ce_debugfs_show(struct seq_file *seq, void *v) { struct sl3516_ce_dev *ce = seq->private; unsigned int i; seq_printf(seq, "HWRNG %lu %lu\n", ce->hwrng_stat_req, ce->hwrng_stat_bytes); seq_printf(seq, "IRQ %lu\n", ce->stat_irq); seq_printf(seq, "IRQ TX %lu\n", ce->stat_irq_tx); seq_printf(seq, "IRQ RX %lu\n", ce->stat_irq_rx); seq_printf(seq, "nreq %lu\n", ce->stat_req); seq_printf(seq, "fallback SG count TX %lu\n", ce->fallback_sg_count_tx); seq_printf(seq, "fallback SG count RX %lu\n", ce->fallback_sg_count_rx); seq_printf(seq, "fallback modulo16 %lu\n", ce->fallback_mod16); seq_printf(seq, "fallback align16 %lu\n", ce->fallback_align16); seq_printf(seq, "fallback not same len %lu\n", ce->fallback_not_same_len); for (i = 0; i < ARRAY_SIZE(ce_algs); i++) { if (!ce_algs[i].ce) continue; switch (ce_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n", ce_algs[i].alg.skcipher.base.base.cra_driver_name, ce_algs[i].alg.skcipher.base.base.cra_name, ce_algs[i].stat_req, ce_algs[i].stat_fb); break; } } return 0; } DEFINE_SHOW_ATTRIBUTE(sl3516_ce_debugfs); static int sl3516_ce_register_algs(struct sl3516_ce_dev *ce) { int err; unsigned int i; for (i = 0; i < ARRAY_SIZE(ce_algs); i++) { ce_algs[i].ce = ce; switch (ce_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: dev_info(ce->dev, "DEBUG: Register %s\n", ce_algs[i].alg.skcipher.base.base.cra_name); err = crypto_engine_register_skcipher(&ce_algs[i].alg.skcipher); if (err) { dev_err(ce->dev, "Fail to register %s\n", ce_algs[i].alg.skcipher.base.base.cra_name); ce_algs[i].ce = NULL; return err; } break; default: ce_algs[i].ce = NULL; dev_err(ce->dev, "ERROR: tried to register an unknown algo\n"); } } return 0; } static void sl3516_ce_unregister_algs(struct sl3516_ce_dev *ce) { unsigned int i; for (i = 0; i < ARRAY_SIZE(ce_algs); i++) { if (!ce_algs[i].ce) continue; switch (ce_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: dev_info(ce->dev, "Unregister %d %s\n", i, ce_algs[i].alg.skcipher.base.base.cra_name); crypto_engine_unregister_skcipher(&ce_algs[i].alg.skcipher); break; } } } static void sl3516_ce_start(struct sl3516_ce_dev *ce) { ce->ctx = 0; ce->crx = 0; writel(ce->dtx, ce->base + IPSEC_TXDMA_CURR_DESC); writel(ce->drx, ce->base + IPSEC_RXDMA_CURR_DESC); writel(0, ce->base + IPSEC_DMA_STATUS); } /* * Power management strategy: The device is suspended unless a TFM exists for * one of the algorithms proposed by this driver. */ static int sl3516_ce_pm_suspend(struct device *dev) { struct sl3516_ce_dev *ce = dev_get_drvdata(dev); reset_control_assert(ce->reset); clk_disable_unprepare(ce->clks); return 0; } static int sl3516_ce_pm_resume(struct device *dev) { struct sl3516_ce_dev *ce = dev_get_drvdata(dev); int err; err = clk_prepare_enable(ce->clks); if (err) { dev_err(ce->dev, "Cannot prepare_enable\n"); goto error; } err = reset_control_deassert(ce->reset); if (err) { dev_err(ce->dev, "Cannot deassert reset control\n"); goto error; } sl3516_ce_start(ce); return 0; error: sl3516_ce_pm_suspend(dev); return err; } static const struct dev_pm_ops sl3516_ce_pm_ops = { SET_RUNTIME_PM_OPS(sl3516_ce_pm_suspend, sl3516_ce_pm_resume, NULL) }; static int sl3516_ce_pm_init(struct sl3516_ce_dev *ce) { int err; pm_runtime_use_autosuspend(ce->dev); pm_runtime_set_autosuspend_delay(ce->dev, 2000); err = pm_runtime_set_suspended(ce->dev); if (err) return err; pm_runtime_enable(ce->dev); return err; } static void sl3516_ce_pm_exit(struct sl3516_ce_dev *ce) { pm_runtime_disable(ce->dev); } static int sl3516_ce_probe(struct platform_device *pdev) { struct sl3516_ce_dev *ce; int err, irq; u32 v; ce = devm_kzalloc(&pdev->dev, sizeof(*ce), GFP_KERNEL); if (!ce) return -ENOMEM; ce->dev = &pdev->dev; platform_set_drvdata(pdev, ce); ce->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ce->base)) return PTR_ERR(ce->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; err = devm_request_irq(&pdev->dev, irq, ce_irq_handler, 0, "crypto", ce); if (err) { dev_err(ce->dev, "Cannot request Crypto Engine IRQ (err=%d)\n", err); return err; } ce->reset = devm_reset_control_get(&pdev->dev, NULL); if (IS_ERR(ce->reset)) return dev_err_probe(&pdev->dev, PTR_ERR(ce->reset), "No reset control found\n"); ce->clks = devm_clk_get(ce->dev, NULL); if (IS_ERR(ce->clks)) { err = PTR_ERR(ce->clks); dev_err(ce->dev, "Cannot get clock err=%d\n", err); return err; } err = sl3516_ce_desc_init(ce); if (err) return err; err = sl3516_ce_pm_init(ce); if (err) goto error_pm; init_completion(&ce->complete); ce->engine = crypto_engine_alloc_init(ce->dev, true); if (!ce->engine) { dev_err(ce->dev, "Cannot allocate engine\n"); err = -ENOMEM; goto error_engine; } err = crypto_engine_start(ce->engine); if (err) { dev_err(ce->dev, "Cannot start engine\n"); goto error_engine; } err = sl3516_ce_register_algs(ce); if (err) goto error_alg; err = sl3516_ce_rng_register(ce); if (err) goto error_rng; err = pm_runtime_resume_and_get(ce->dev); if (err < 0) goto error_pmuse; v = readl(ce->base + IPSEC_ID); dev_info(ce->dev, "SL3516 dev %lx rev %lx\n", v & GENMASK(31, 4), v & GENMASK(3, 0)); v = readl(ce->base + IPSEC_DMA_DEVICE_ID); dev_info(ce->dev, "SL3516 DMA dev %lx rev %lx\n", v & GENMASK(15, 4), v & GENMASK(3, 0)); pm_runtime_put_sync(ce->dev); if (IS_ENABLED(CONFIG_CRYPTO_DEV_SL3516_DEBUG)) { struct dentry *dbgfs_dir __maybe_unused; struct dentry *dbgfs_stats __maybe_unused; /* Ignore error of debugfs */ dbgfs_dir = debugfs_create_dir("sl3516", NULL); dbgfs_stats = debugfs_create_file("stats", 0444, dbgfs_dir, ce, &sl3516_ce_debugfs_fops); #ifdef CONFIG_CRYPTO_DEV_SL3516_DEBUG ce->dbgfs_dir = dbgfs_dir; ce->dbgfs_stats = dbgfs_stats; #endif } return 0; error_pmuse: sl3516_ce_rng_unregister(ce); error_rng: sl3516_ce_unregister_algs(ce); error_alg: crypto_engine_exit(ce->engine); error_engine: sl3516_ce_pm_exit(ce); error_pm: sl3516_ce_free_descs(ce); return err; } static int sl3516_ce_remove(struct platform_device *pdev) { struct sl3516_ce_dev *ce = platform_get_drvdata(pdev); sl3516_ce_rng_unregister(ce); sl3516_ce_unregister_algs(ce); crypto_engine_exit(ce->engine); sl3516_ce_pm_exit(ce); sl3516_ce_free_descs(ce); #ifdef CONFIG_CRYPTO_DEV_SL3516_DEBUG debugfs_remove_recursive(ce->dbgfs_dir); #endif return 0; } static const struct of_device_id sl3516_ce_crypto_of_match_table[] = { { .compatible = "cortina,sl3516-crypto"}, {} }; MODULE_DEVICE_TABLE(of, sl3516_ce_crypto_of_match_table); static struct platform_driver sl3516_ce_driver = { .probe = sl3516_ce_probe, .remove = sl3516_ce_remove, .driver = { .name = "sl3516-crypto", .pm = &sl3516_ce_pm_ops, .of_match_table = sl3516_ce_crypto_of_match_table, }, }; module_platform_driver(sl3516_ce_driver); MODULE_DESCRIPTION("SL3516 cryptographic offloader"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Corentin Labbe <[email protected]>");
linux-master
drivers/crypto/gemini/sl3516-ce-core.c
// SPDX-License-Identifier: GPL-2.0 /* * amlgoic-core.c - hardware cryptographic offloader for Amlogic GXL SoC * * Copyright (C) 2018-2019 Corentin Labbe <[email protected]> * * Core file which registers crypto algorithms supported by the hardware. */ #include <crypto/engine.h> #include <crypto/internal/skcipher.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include "amlogic-gxl.h" static irqreturn_t meson_irq_handler(int irq, void *data) { struct meson_dev *mc = (struct meson_dev *)data; int flow; u32 p; for (flow = 0; flow < MAXFLOW; flow++) { if (mc->irqs[flow] == irq) { p = readl(mc->base + ((0x04 + flow) << 2)); if (p) { writel_relaxed(0xF, mc->base + ((0x4 + flow) << 2)); mc->chanlist[flow].status = 1; complete(&mc->chanlist[flow].complete); return IRQ_HANDLED; } dev_err(mc->dev, "%s %d Got irq for flow %d but ctrl is empty\n", __func__, irq, flow); } } dev_err(mc->dev, "%s %d from unknown irq\n", __func__, irq); return IRQ_HANDLED; } static struct meson_alg_template mc_algs[] = { { .type = CRYPTO_ALG_TYPE_SKCIPHER, .blockmode = MESON_OPMODE_CBC, .alg.skcipher.base = { .base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-gxl", .cra_priority = 400, .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct meson_cipher_tfm_ctx), .cra_module = THIS_MODULE, .cra_alignmask = 0xf, .cra_init = meson_cipher_init, .cra_exit = meson_cipher_exit, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = meson_aes_setkey, .encrypt = meson_skencrypt, .decrypt = meson_skdecrypt, }, .alg.skcipher.op = { .do_one_request = meson_handle_cipher_request, }, }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .blockmode = MESON_OPMODE_ECB, .alg.skcipher.base = { .base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-gxl", .cra_priority = 400, .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct meson_cipher_tfm_ctx), .cra_module = THIS_MODULE, .cra_alignmask = 0xf, .cra_init = meson_cipher_init, .cra_exit = meson_cipher_exit, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = meson_aes_setkey, .encrypt = meson_skencrypt, .decrypt = meson_skdecrypt, }, .alg.skcipher.op = { .do_one_request = meson_handle_cipher_request, }, }, }; static int meson_debugfs_show(struct seq_file *seq, void *v) { struct meson_dev *mc __maybe_unused = seq->private; int i; for (i = 0; i < MAXFLOW; i++) seq_printf(seq, "Channel %d: nreq %lu\n", i, #ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG mc->chanlist[i].stat_req); #else 0ul); #endif for (i = 0; i < ARRAY_SIZE(mc_algs); i++) { switch (mc_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: seq_printf(seq, "%s %s %lu %lu\n", mc_algs[i].alg.skcipher.base.base.cra_driver_name, mc_algs[i].alg.skcipher.base.base.cra_name, #ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG mc_algs[i].stat_req, mc_algs[i].stat_fb); #else 0ul, 0ul); #endif break; } } return 0; } DEFINE_SHOW_ATTRIBUTE(meson_debugfs); static void meson_free_chanlist(struct meson_dev *mc, int i) { while (i >= 0) { crypto_engine_exit(mc->chanlist[i].engine); if (mc->chanlist[i].tl) dma_free_coherent(mc->dev, sizeof(struct meson_desc) * MAXDESC, mc->chanlist[i].tl, mc->chanlist[i].t_phy); i--; } } /* * Allocate the channel list structure */ static int meson_allocate_chanlist(struct meson_dev *mc) { int i, err; mc->chanlist = devm_kcalloc(mc->dev, MAXFLOW, sizeof(struct meson_flow), GFP_KERNEL); if (!mc->chanlist) return -ENOMEM; for (i = 0; i < MAXFLOW; i++) { init_completion(&mc->chanlist[i].complete); mc->chanlist[i].engine = crypto_engine_alloc_init(mc->dev, true); if (!mc->chanlist[i].engine) { dev_err(mc->dev, "Cannot allocate engine\n"); i--; err = -ENOMEM; goto error_engine; } err = crypto_engine_start(mc->chanlist[i].engine); if (err) { dev_err(mc->dev, "Cannot start engine\n"); goto error_engine; } mc->chanlist[i].tl = dma_alloc_coherent(mc->dev, sizeof(struct meson_desc) * MAXDESC, &mc->chanlist[i].t_phy, GFP_KERNEL); if (!mc->chanlist[i].tl) { err = -ENOMEM; goto error_engine; } } return 0; error_engine: meson_free_chanlist(mc, i); return err; } static int meson_register_algs(struct meson_dev *mc) { int err, i; for (i = 0; i < ARRAY_SIZE(mc_algs); i++) { mc_algs[i].mc = mc; switch (mc_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: err = crypto_engine_register_skcipher(&mc_algs[i].alg.skcipher); if (err) { dev_err(mc->dev, "Fail to register %s\n", mc_algs[i].alg.skcipher.base.base.cra_name); mc_algs[i].mc = NULL; return err; } break; } } return 0; } static void meson_unregister_algs(struct meson_dev *mc) { int i; for (i = 0; i < ARRAY_SIZE(mc_algs); i++) { if (!mc_algs[i].mc) continue; switch (mc_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: crypto_engine_unregister_skcipher(&mc_algs[i].alg.skcipher); break; } } } static int meson_crypto_probe(struct platform_device *pdev) { struct meson_dev *mc; int err, i; mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); if (!mc) return -ENOMEM; mc->dev = &pdev->dev; platform_set_drvdata(pdev, mc); mc->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mc->base)) { err = PTR_ERR(mc->base); dev_err(&pdev->dev, "Cannot request MMIO err=%d\n", err); return err; } mc->busclk = devm_clk_get(&pdev->dev, "blkmv"); if (IS_ERR(mc->busclk)) { err = PTR_ERR(mc->busclk); dev_err(&pdev->dev, "Cannot get core clock err=%d\n", err); return err; } for (i = 0; i < MAXFLOW; i++) { mc->irqs[i] = platform_get_irq(pdev, i); if (mc->irqs[i] < 0) return mc->irqs[i]; err = devm_request_irq(&pdev->dev, mc->irqs[i], meson_irq_handler, 0, "gxl-crypto", mc); if (err < 0) { dev_err(mc->dev, "Cannot request IRQ for flow %d\n", i); return err; } } err = clk_prepare_enable(mc->busclk); if (err != 0) { dev_err(&pdev->dev, "Cannot prepare_enable busclk\n"); return err; } err = meson_allocate_chanlist(mc); if (err) goto error_flow; err = meson_register_algs(mc); if (err) goto error_alg; if (IS_ENABLED(CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG)) { struct dentry *dbgfs_dir; dbgfs_dir = debugfs_create_dir("gxl-crypto", NULL); debugfs_create_file("stats", 0444, dbgfs_dir, mc, &meson_debugfs_fops); #ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG mc->dbgfs_dir = dbgfs_dir; #endif } return 0; error_alg: meson_unregister_algs(mc); error_flow: meson_free_chanlist(mc, MAXFLOW - 1); clk_disable_unprepare(mc->busclk); return err; } static int meson_crypto_remove(struct platform_device *pdev) { struct meson_dev *mc = platform_get_drvdata(pdev); #ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG debugfs_remove_recursive(mc->dbgfs_dir); #endif meson_unregister_algs(mc); meson_free_chanlist(mc, MAXFLOW - 1); clk_disable_unprepare(mc->busclk); return 0; } static const struct of_device_id meson_crypto_of_match_table[] = { { .compatible = "amlogic,gxl-crypto", }, {} }; MODULE_DEVICE_TABLE(of, meson_crypto_of_match_table); static struct platform_driver meson_crypto_driver = { .probe = meson_crypto_probe, .remove = meson_crypto_remove, .driver = { .name = "gxl-crypto", .of_match_table = meson_crypto_of_match_table, }, }; module_platform_driver(meson_crypto_driver); MODULE_DESCRIPTION("Amlogic GXL cryptographic offloader"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Corentin Labbe <[email protected]>");
linux-master
drivers/crypto/amlogic/amlogic-gxl-core.c
// SPDX-License-Identifier: GPL-2.0 /* * amlogic-cipher.c - hardware cryptographic offloader for Amlogic GXL SoC * * Copyright (C) 2018-2019 Corentin LABBE <[email protected]> * * This file add support for AES cipher with 128,192,256 bits keysize in * CBC and ECB mode. */ #include <linux/crypto.h> #include <linux/delay.h> #include <linux/io.h> #include <crypto/scatterwalk.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <crypto/internal/skcipher.h> #include "amlogic-gxl.h" static int get_engine_number(struct meson_dev *mc) { return atomic_inc_return(&mc->flow) % MAXFLOW; } static bool meson_cipher_need_fallback(struct skcipher_request *areq) { struct scatterlist *src_sg = areq->src; struct scatterlist *dst_sg = areq->dst; if (areq->cryptlen == 0) return true; if (sg_nents(src_sg) != sg_nents(dst_sg)) return true; /* KEY/IV descriptors use 3 desc */ if (sg_nents(src_sg) > MAXDESC - 3 || sg_nents(dst_sg) > MAXDESC - 3) return true; while (src_sg && dst_sg) { if ((src_sg->length % 16) != 0) return true; if ((dst_sg->length % 16) != 0) return true; if (src_sg->length != dst_sg->length) return true; if (!IS_ALIGNED(src_sg->offset, sizeof(u32))) return true; if (!IS_ALIGNED(dst_sg->offset, sizeof(u32))) return true; src_sg = sg_next(src_sg); dst_sg = sg_next(dst_sg); } return false; } static int meson_cipher_do_fallback(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq); int err; #ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct meson_alg_template *algt; algt = container_of(alg, struct meson_alg_template, alg.skcipher.base); algt->stat_fb++; #endif skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm); skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags, areq->base.complete, areq->base.data); skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst, areq->cryptlen, areq->iv); if (rctx->op_dir == MESON_DECRYPT) err = crypto_skcipher_decrypt(&rctx->fallback_req); else err = crypto_skcipher_encrypt(&rctx->fallback_req); return err; } static int meson_cipher(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct meson_dev *mc = op->mc; struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct meson_alg_template *algt; int flow = rctx->flow; unsigned int todo, eat, len; struct scatterlist *src_sg = areq->src; struct scatterlist *dst_sg = areq->dst; struct meson_desc *desc; int nr_sgs, nr_sgd; int i, err = 0; unsigned int keyivlen, ivsize, offset, tloffset; dma_addr_t phykeyiv; void *backup_iv = NULL, *bkeyiv; u32 v; algt = container_of(alg, struct meson_alg_template, alg.skcipher.base); dev_dbg(mc->dev, "%s %s %u %x IV(%u) key=%u flow=%d\n", __func__, crypto_tfm_alg_name(areq->base.tfm), areq->cryptlen, rctx->op_dir, crypto_skcipher_ivsize(tfm), op->keylen, flow); #ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG algt->stat_req++; mc->chanlist[flow].stat_req++; #endif /* * The hardware expect a list of meson_desc structures. * The 2 first structures store key * The third stores IV */ bkeyiv = kzalloc(48, GFP_KERNEL | GFP_DMA); if (!bkeyiv) return -ENOMEM; memcpy(bkeyiv, op->key, op->keylen); keyivlen = op->keylen; ivsize = crypto_skcipher_ivsize(tfm); if (areq->iv && ivsize > 0) { if (ivsize > areq->cryptlen) { dev_err(mc->dev, "invalid ivsize=%d vs len=%d\n", ivsize, areq->cryptlen); err = -EINVAL; goto theend; } memcpy(bkeyiv + 32, areq->iv, ivsize); keyivlen = 48; if (rctx->op_dir == MESON_DECRYPT) { backup_iv = kzalloc(ivsize, GFP_KERNEL); if (!backup_iv) { err = -ENOMEM; goto theend; } offset = areq->cryptlen - ivsize; scatterwalk_map_and_copy(backup_iv, areq->src, offset, ivsize, 0); } } if (keyivlen == 24) keyivlen = 32; phykeyiv = dma_map_single(mc->dev, bkeyiv, keyivlen, DMA_TO_DEVICE); err = dma_mapping_error(mc->dev, phykeyiv); if (err) { dev_err(mc->dev, "Cannot DMA MAP KEY IV\n"); goto theend; } tloffset = 0; eat = 0; i = 0; while (keyivlen > eat) { desc = &mc->chanlist[flow].tl[tloffset]; memset(desc, 0, sizeof(struct meson_desc)); todo = min(keyivlen - eat, 16u); desc->t_src = cpu_to_le32(phykeyiv + i * 16); desc->t_dst = cpu_to_le32(i * 16); v = (MODE_KEY << 20) | DESC_OWN | 16; desc->t_status = cpu_to_le32(v); eat += todo; i++; tloffset++; } if (areq->src == areq->dst) { nr_sgs = dma_map_sg(mc->dev, areq->src, sg_nents(areq->src), DMA_BIDIRECTIONAL); if (!nr_sgs) { dev_err(mc->dev, "Invalid SG count %d\n", nr_sgs); err = -EINVAL; goto theend; } nr_sgd = nr_sgs; } else { nr_sgs = dma_map_sg(mc->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE); if (!nr_sgs || nr_sgs > MAXDESC - 3) { dev_err(mc->dev, "Invalid SG count %d\n", nr_sgs); err = -EINVAL; goto theend; } nr_sgd = dma_map_sg(mc->dev, areq->dst, sg_nents(areq->dst), DMA_FROM_DEVICE); if (!nr_sgd || nr_sgd > MAXDESC - 3) { dev_err(mc->dev, "Invalid SG count %d\n", nr_sgd); err = -EINVAL; goto theend; } } src_sg = areq->src; dst_sg = areq->dst; len = areq->cryptlen; while (src_sg) { desc = &mc->chanlist[flow].tl[tloffset]; memset(desc, 0, sizeof(struct meson_desc)); desc->t_src = cpu_to_le32(sg_dma_address(src_sg)); desc->t_dst = cpu_to_le32(sg_dma_address(dst_sg)); todo = min(len, sg_dma_len(src_sg)); v = (op->keymode << 20) | DESC_OWN | todo | (algt->blockmode << 26); if (rctx->op_dir) v |= DESC_ENCRYPTION; len -= todo; if (!sg_next(src_sg)) v |= DESC_LAST; desc->t_status = cpu_to_le32(v); tloffset++; src_sg = sg_next(src_sg); dst_sg = sg_next(dst_sg); } reinit_completion(&mc->chanlist[flow].complete); mc->chanlist[flow].status = 0; writel(mc->chanlist[flow].t_phy | 2, mc->base + (flow << 2)); wait_for_completion_interruptible_timeout(&mc->chanlist[flow].complete, msecs_to_jiffies(500)); if (mc->chanlist[flow].status == 0) { dev_err(mc->dev, "DMA timeout for flow %d\n", flow); err = -EINVAL; } dma_unmap_single(mc->dev, phykeyiv, keyivlen, DMA_TO_DEVICE); if (areq->src == areq->dst) { dma_unmap_sg(mc->dev, areq->src, sg_nents(areq->src), DMA_BIDIRECTIONAL); } else { dma_unmap_sg(mc->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE); dma_unmap_sg(mc->dev, areq->dst, sg_nents(areq->dst), DMA_FROM_DEVICE); } if (areq->iv && ivsize > 0) { if (rctx->op_dir == MESON_DECRYPT) { memcpy(areq->iv, backup_iv, ivsize); } else { scatterwalk_map_and_copy(areq->iv, areq->dst, areq->cryptlen - ivsize, ivsize, 0); } } theend: kfree_sensitive(bkeyiv); kfree_sensitive(backup_iv); return err; } int meson_handle_cipher_request(struct crypto_engine *engine, void *areq) { int err; struct skcipher_request *breq = container_of(areq, struct skcipher_request, base); err = meson_cipher(breq); local_bh_disable(); crypto_finalize_skcipher_request(engine, breq, err); local_bh_enable(); return 0; } int meson_skdecrypt(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct crypto_engine *engine; int e; rctx->op_dir = MESON_DECRYPT; if (meson_cipher_need_fallback(areq)) return meson_cipher_do_fallback(areq); e = get_engine_number(op->mc); engine = op->mc->chanlist[e].engine; rctx->flow = e; return crypto_transfer_skcipher_request_to_engine(engine, areq); } int meson_skencrypt(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct crypto_engine *engine; int e; rctx->op_dir = MESON_ENCRYPT; if (meson_cipher_need_fallback(areq)) return meson_cipher_do_fallback(areq); e = get_engine_number(op->mc); engine = op->mc->chanlist[e].engine; rctx->flow = e; return crypto_transfer_skcipher_request_to_engine(engine, areq); } int meson_cipher_init(struct crypto_tfm *tfm) { struct meson_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm); struct meson_alg_template *algt; const char *name = crypto_tfm_alg_name(tfm); struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm); struct skcipher_alg *alg = crypto_skcipher_alg(sktfm); memset(op, 0, sizeof(struct meson_cipher_tfm_ctx)); algt = container_of(alg, struct meson_alg_template, alg.skcipher.base); op->mc = algt->mc; op->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(op->fallback_tfm)) { dev_err(op->mc->dev, "ERROR: Cannot allocate fallback for %s %ld\n", name, PTR_ERR(op->fallback_tfm)); return PTR_ERR(op->fallback_tfm); } sktfm->reqsize = sizeof(struct meson_cipher_req_ctx) + crypto_skcipher_reqsize(op->fallback_tfm); return 0; } void meson_cipher_exit(struct crypto_tfm *tfm) { struct meson_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm); kfree_sensitive(op->key); crypto_free_skcipher(op->fallback_tfm); } int meson_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_dev *mc = op->mc; switch (keylen) { case 128 / 8: op->keymode = MODE_AES_128; break; case 192 / 8: op->keymode = MODE_AES_192; break; case 256 / 8: op->keymode = MODE_AES_256; break; default: dev_dbg(mc->dev, "ERROR: Invalid keylen %u\n", keylen); return -EINVAL; } kfree_sensitive(op->key); op->keylen = keylen; op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA); if (!op->key) return -ENOMEM; return crypto_skcipher_setkey(op->fallback_tfm, key, keylen); }
linux-master
drivers/crypto/amlogic/amlogic-gxl-cipher.c
// SPDX-License-Identifier: GPL-2.0-or-later /* Asymmetric algorithms supported by virtio crypto device * * Authors: zhenwei pi <[email protected]> * lei he <[email protected]> * * Copyright 2022 Bytedance CO., LTD. */ #include <crypto/engine.h> #include <crypto/internal/akcipher.h> #include <crypto/internal/rsa.h> #include <crypto/scatterwalk.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/mpi.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/string.h> #include <uapi/linux/virtio_crypto.h> #include "virtio_crypto_common.h" struct virtio_crypto_rsa_ctx { MPI n; }; struct virtio_crypto_akcipher_ctx { struct virtio_crypto *vcrypto; struct crypto_akcipher *tfm; bool session_valid; __u64 session_id; union { struct virtio_crypto_rsa_ctx rsa_ctx; }; }; struct virtio_crypto_akcipher_request { struct virtio_crypto_request base; struct virtio_crypto_akcipher_ctx *akcipher_ctx; struct akcipher_request *akcipher_req; void *src_buf; void *dst_buf; uint32_t opcode; }; struct virtio_crypto_akcipher_algo { uint32_t algonum; uint32_t service; unsigned int active_devs; struct akcipher_engine_alg algo; }; static DEFINE_MUTEX(algs_lock); static void virtio_crypto_akcipher_finalize_req( struct virtio_crypto_akcipher_request *vc_akcipher_req, struct akcipher_request *req, int err) { kfree(vc_akcipher_req->src_buf); kfree(vc_akcipher_req->dst_buf); vc_akcipher_req->src_buf = NULL; vc_akcipher_req->dst_buf = NULL; virtcrypto_clear_request(&vc_akcipher_req->base); crypto_finalize_akcipher_request(vc_akcipher_req->base.dataq->engine, req, err); } static void virtio_crypto_dataq_akcipher_callback(struct virtio_crypto_request *vc_req, int len) { struct virtio_crypto_akcipher_request *vc_akcipher_req = container_of(vc_req, struct virtio_crypto_akcipher_request, base); struct akcipher_request *akcipher_req; int error; switch (vc_req->status) { case VIRTIO_CRYPTO_OK: error = 0; break; case VIRTIO_CRYPTO_INVSESS: case VIRTIO_CRYPTO_ERR: error = -EINVAL; break; case VIRTIO_CRYPTO_BADMSG: error = -EBADMSG; break; case VIRTIO_CRYPTO_KEY_REJECTED: error = -EKEYREJECTED; break; default: error = -EIO; break; } akcipher_req = vc_akcipher_req->akcipher_req; if (vc_akcipher_req->opcode != VIRTIO_CRYPTO_AKCIPHER_VERIFY) { /* actuall length maybe less than dst buffer */ akcipher_req->dst_len = len - sizeof(vc_req->status); sg_copy_from_buffer(akcipher_req->dst, sg_nents(akcipher_req->dst), vc_akcipher_req->dst_buf, akcipher_req->dst_len); } virtio_crypto_akcipher_finalize_req(vc_akcipher_req, akcipher_req, error); } static int virtio_crypto_alg_akcipher_init_session(struct virtio_crypto_akcipher_ctx *ctx, struct virtio_crypto_ctrl_header *header, void *para, const uint8_t *key, unsigned int keylen) { struct scatterlist outhdr_sg, key_sg, inhdr_sg, *sgs[3]; struct virtio_crypto *vcrypto = ctx->vcrypto; uint8_t *pkey; int err; unsigned int num_out = 0, num_in = 0; struct virtio_crypto_op_ctrl_req *ctrl; struct virtio_crypto_session_input *input; struct virtio_crypto_ctrl_request *vc_ctrl_req; pkey = kmemdup(key, keylen, GFP_KERNEL); if (!pkey) return -ENOMEM; vc_ctrl_req = kzalloc(sizeof(*vc_ctrl_req), GFP_KERNEL); if (!vc_ctrl_req) { err = -ENOMEM; goto out; } ctrl = &vc_ctrl_req->ctrl; memcpy(&ctrl->header, header, sizeof(ctrl->header)); memcpy(&ctrl->u, para, sizeof(ctrl->u)); input = &vc_ctrl_req->input; input->status = cpu_to_le32(VIRTIO_CRYPTO_ERR); sg_init_one(&outhdr_sg, ctrl, sizeof(*ctrl)); sgs[num_out++] = &outhdr_sg; sg_init_one(&key_sg, pkey, keylen); sgs[num_out++] = &key_sg; sg_init_one(&inhdr_sg, input, sizeof(*input)); sgs[num_out + num_in++] = &inhdr_sg; err = virtio_crypto_ctrl_vq_request(vcrypto, sgs, num_out, num_in, vc_ctrl_req); if (err < 0) goto out; if (le32_to_cpu(input->status) != VIRTIO_CRYPTO_OK) { pr_err("virtio_crypto: Create session failed status: %u\n", le32_to_cpu(input->status)); err = -EINVAL; goto out; } ctx->session_id = le64_to_cpu(input->session_id); ctx->session_valid = true; err = 0; out: kfree(vc_ctrl_req); kfree_sensitive(pkey); return err; } static int virtio_crypto_alg_akcipher_close_session(struct virtio_crypto_akcipher_ctx *ctx) { struct scatterlist outhdr_sg, inhdr_sg, *sgs[2]; struct virtio_crypto_destroy_session_req *destroy_session; struct virtio_crypto *vcrypto = ctx->vcrypto; unsigned int num_out = 0, num_in = 0; int err; struct virtio_crypto_op_ctrl_req *ctrl; struct virtio_crypto_inhdr *ctrl_status; struct virtio_crypto_ctrl_request *vc_ctrl_req; if (!ctx->session_valid) return 0; vc_ctrl_req = kzalloc(sizeof(*vc_ctrl_req), GFP_KERNEL); if (!vc_ctrl_req) return -ENOMEM; ctrl_status = &vc_ctrl_req->ctrl_status; ctrl_status->status = VIRTIO_CRYPTO_ERR; ctrl = &vc_ctrl_req->ctrl; ctrl->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_AKCIPHER_DESTROY_SESSION); ctrl->header.queue_id = 0; destroy_session = &ctrl->u.destroy_session; destroy_session->session_id = cpu_to_le64(ctx->session_id); sg_init_one(&outhdr_sg, ctrl, sizeof(*ctrl)); sgs[num_out++] = &outhdr_sg; sg_init_one(&inhdr_sg, &ctrl_status->status, sizeof(ctrl_status->status)); sgs[num_out + num_in++] = &inhdr_sg; err = virtio_crypto_ctrl_vq_request(vcrypto, sgs, num_out, num_in, vc_ctrl_req); if (err < 0) goto out; if (ctrl_status->status != VIRTIO_CRYPTO_OK) { pr_err("virtio_crypto: Close session failed status: %u, session_id: 0x%llx\n", ctrl_status->status, destroy_session->session_id); err = -EINVAL; goto out; } err = 0; ctx->session_valid = false; out: kfree(vc_ctrl_req); return err; } static int __virtio_crypto_akcipher_do_req(struct virtio_crypto_akcipher_request *vc_akcipher_req, struct akcipher_request *req, struct data_queue *data_vq) { struct virtio_crypto_akcipher_ctx *ctx = vc_akcipher_req->akcipher_ctx; struct virtio_crypto_request *vc_req = &vc_akcipher_req->base; struct virtio_crypto *vcrypto = ctx->vcrypto; struct virtio_crypto_op_data_req *req_data = vc_req->req_data; struct scatterlist *sgs[4], outhdr_sg, inhdr_sg, srcdata_sg, dstdata_sg; void *src_buf = NULL, *dst_buf = NULL; unsigned int num_out = 0, num_in = 0; int node = dev_to_node(&vcrypto->vdev->dev); unsigned long flags; int ret = -ENOMEM; bool verify = vc_akcipher_req->opcode == VIRTIO_CRYPTO_AKCIPHER_VERIFY; unsigned int src_len = verify ? req->src_len + req->dst_len : req->src_len; /* out header */ sg_init_one(&outhdr_sg, req_data, sizeof(*req_data)); sgs[num_out++] = &outhdr_sg; /* src data */ src_buf = kcalloc_node(src_len, 1, GFP_KERNEL, node); if (!src_buf) goto err; if (verify) { /* for verify operation, both src and dst data work as OUT direction */ sg_copy_to_buffer(req->src, sg_nents(req->src), src_buf, src_len); sg_init_one(&srcdata_sg, src_buf, src_len); sgs[num_out++] = &srcdata_sg; } else { sg_copy_to_buffer(req->src, sg_nents(req->src), src_buf, src_len); sg_init_one(&srcdata_sg, src_buf, src_len); sgs[num_out++] = &srcdata_sg; /* dst data */ dst_buf = kcalloc_node(req->dst_len, 1, GFP_KERNEL, node); if (!dst_buf) goto err; sg_init_one(&dstdata_sg, dst_buf, req->dst_len); sgs[num_out + num_in++] = &dstdata_sg; } vc_akcipher_req->src_buf = src_buf; vc_akcipher_req->dst_buf = dst_buf; /* in header */ sg_init_one(&inhdr_sg, &vc_req->status, sizeof(vc_req->status)); sgs[num_out + num_in++] = &inhdr_sg; spin_lock_irqsave(&data_vq->lock, flags); ret = virtqueue_add_sgs(data_vq->vq, sgs, num_out, num_in, vc_req, GFP_ATOMIC); virtqueue_kick(data_vq->vq); spin_unlock_irqrestore(&data_vq->lock, flags); if (ret) goto err; return 0; err: kfree(src_buf); kfree(dst_buf); return -ENOMEM; } static int virtio_crypto_rsa_do_req(struct crypto_engine *engine, void *vreq) { struct akcipher_request *req = container_of(vreq, struct akcipher_request, base); struct virtio_crypto_akcipher_request *vc_akcipher_req = akcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_akcipher_req->base; struct virtio_crypto_akcipher_ctx *ctx = vc_akcipher_req->akcipher_ctx; struct virtio_crypto *vcrypto = ctx->vcrypto; struct data_queue *data_vq = vc_req->dataq; struct virtio_crypto_op_header *header; struct virtio_crypto_akcipher_data_req *akcipher_req; int ret; vc_req->sgs = NULL; vc_req->req_data = kzalloc_node(sizeof(*vc_req->req_data), GFP_KERNEL, dev_to_node(&vcrypto->vdev->dev)); if (!vc_req->req_data) return -ENOMEM; /* build request header */ header = &vc_req->req_data->header; header->opcode = cpu_to_le32(vc_akcipher_req->opcode); header->algo = cpu_to_le32(VIRTIO_CRYPTO_AKCIPHER_RSA); header->session_id = cpu_to_le64(ctx->session_id); /* build request akcipher data */ akcipher_req = &vc_req->req_data->u.akcipher_req; akcipher_req->para.src_data_len = cpu_to_le32(req->src_len); akcipher_req->para.dst_data_len = cpu_to_le32(req->dst_len); ret = __virtio_crypto_akcipher_do_req(vc_akcipher_req, req, data_vq); if (ret < 0) { kfree_sensitive(vc_req->req_data); vc_req->req_data = NULL; return ret; } return 0; } static int virtio_crypto_rsa_req(struct akcipher_request *req, uint32_t opcode) { struct crypto_akcipher *atfm = crypto_akcipher_reqtfm(req); struct virtio_crypto_akcipher_ctx *ctx = akcipher_tfm_ctx(atfm); struct virtio_crypto_akcipher_request *vc_akcipher_req = akcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_akcipher_req->base; struct virtio_crypto *vcrypto = ctx->vcrypto; /* Use the first data virtqueue as default */ struct data_queue *data_vq = &vcrypto->data_vq[0]; vc_req->dataq = data_vq; vc_req->alg_cb = virtio_crypto_dataq_akcipher_callback; vc_akcipher_req->akcipher_ctx = ctx; vc_akcipher_req->akcipher_req = req; vc_akcipher_req->opcode = opcode; return crypto_transfer_akcipher_request_to_engine(data_vq->engine, req); } static int virtio_crypto_rsa_encrypt(struct akcipher_request *req) { return virtio_crypto_rsa_req(req, VIRTIO_CRYPTO_AKCIPHER_ENCRYPT); } static int virtio_crypto_rsa_decrypt(struct akcipher_request *req) { return virtio_crypto_rsa_req(req, VIRTIO_CRYPTO_AKCIPHER_DECRYPT); } static int virtio_crypto_rsa_sign(struct akcipher_request *req) { return virtio_crypto_rsa_req(req, VIRTIO_CRYPTO_AKCIPHER_SIGN); } static int virtio_crypto_rsa_verify(struct akcipher_request *req) { return virtio_crypto_rsa_req(req, VIRTIO_CRYPTO_AKCIPHER_VERIFY); } static int virtio_crypto_rsa_set_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen, bool private, int padding_algo, int hash_algo) { struct virtio_crypto_akcipher_ctx *ctx = akcipher_tfm_ctx(tfm); struct virtio_crypto_rsa_ctx *rsa_ctx = &ctx->rsa_ctx; struct virtio_crypto *vcrypto; struct virtio_crypto_ctrl_header header; struct virtio_crypto_akcipher_session_para para; struct rsa_key rsa_key = {0}; int node = virtio_crypto_get_current_node(); uint32_t keytype; int ret; /* mpi_free will test n, just free it. */ mpi_free(rsa_ctx->n); rsa_ctx->n = NULL; if (private) { keytype = VIRTIO_CRYPTO_AKCIPHER_KEY_TYPE_PRIVATE; ret = rsa_parse_priv_key(&rsa_key, key, keylen); } else { keytype = VIRTIO_CRYPTO_AKCIPHER_KEY_TYPE_PUBLIC; ret = rsa_parse_pub_key(&rsa_key, key, keylen); } if (ret) return ret; rsa_ctx->n = mpi_read_raw_data(rsa_key.n, rsa_key.n_sz); if (!rsa_ctx->n) return -ENOMEM; if (!ctx->vcrypto) { vcrypto = virtcrypto_get_dev_node(node, VIRTIO_CRYPTO_SERVICE_AKCIPHER, VIRTIO_CRYPTO_AKCIPHER_RSA); if (!vcrypto) { pr_err("virtio_crypto: Could not find a virtio device in the system or unsupported algo\n"); return -ENODEV; } ctx->vcrypto = vcrypto; } else { virtio_crypto_alg_akcipher_close_session(ctx); } /* set ctrl header */ header.opcode = cpu_to_le32(VIRTIO_CRYPTO_AKCIPHER_CREATE_SESSION); header.algo = cpu_to_le32(VIRTIO_CRYPTO_AKCIPHER_RSA); header.queue_id = 0; /* set RSA para */ para.algo = cpu_to_le32(VIRTIO_CRYPTO_AKCIPHER_RSA); para.keytype = cpu_to_le32(keytype); para.keylen = cpu_to_le32(keylen); para.u.rsa.padding_algo = cpu_to_le32(padding_algo); para.u.rsa.hash_algo = cpu_to_le32(hash_algo); return virtio_crypto_alg_akcipher_init_session(ctx, &header, &para, key, keylen); } static int virtio_crypto_rsa_raw_set_priv_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { return virtio_crypto_rsa_set_key(tfm, key, keylen, 1, VIRTIO_CRYPTO_RSA_RAW_PADDING, VIRTIO_CRYPTO_RSA_NO_HASH); } static int virtio_crypto_p1pad_rsa_sha1_set_priv_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { return virtio_crypto_rsa_set_key(tfm, key, keylen, 1, VIRTIO_CRYPTO_RSA_PKCS1_PADDING, VIRTIO_CRYPTO_RSA_SHA1); } static int virtio_crypto_rsa_raw_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { return virtio_crypto_rsa_set_key(tfm, key, keylen, 0, VIRTIO_CRYPTO_RSA_RAW_PADDING, VIRTIO_CRYPTO_RSA_NO_HASH); } static int virtio_crypto_p1pad_rsa_sha1_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { return virtio_crypto_rsa_set_key(tfm, key, keylen, 0, VIRTIO_CRYPTO_RSA_PKCS1_PADDING, VIRTIO_CRYPTO_RSA_SHA1); } static unsigned int virtio_crypto_rsa_max_size(struct crypto_akcipher *tfm) { struct virtio_crypto_akcipher_ctx *ctx = akcipher_tfm_ctx(tfm); struct virtio_crypto_rsa_ctx *rsa_ctx = &ctx->rsa_ctx; return mpi_get_size(rsa_ctx->n); } static int virtio_crypto_rsa_init_tfm(struct crypto_akcipher *tfm) { struct virtio_crypto_akcipher_ctx *ctx = akcipher_tfm_ctx(tfm); ctx->tfm = tfm; akcipher_set_reqsize(tfm, sizeof(struct virtio_crypto_akcipher_request)); return 0; } static void virtio_crypto_rsa_exit_tfm(struct crypto_akcipher *tfm) { struct virtio_crypto_akcipher_ctx *ctx = akcipher_tfm_ctx(tfm); struct virtio_crypto_rsa_ctx *rsa_ctx = &ctx->rsa_ctx; virtio_crypto_alg_akcipher_close_session(ctx); virtcrypto_dev_put(ctx->vcrypto); mpi_free(rsa_ctx->n); rsa_ctx->n = NULL; } static struct virtio_crypto_akcipher_algo virtio_crypto_akcipher_algs[] = { { .algonum = VIRTIO_CRYPTO_AKCIPHER_RSA, .service = VIRTIO_CRYPTO_SERVICE_AKCIPHER, .algo.base = { .encrypt = virtio_crypto_rsa_encrypt, .decrypt = virtio_crypto_rsa_decrypt, .set_pub_key = virtio_crypto_rsa_raw_set_pub_key, .set_priv_key = virtio_crypto_rsa_raw_set_priv_key, .max_size = virtio_crypto_rsa_max_size, .init = virtio_crypto_rsa_init_tfm, .exit = virtio_crypto_rsa_exit_tfm, .base = { .cra_name = "rsa", .cra_driver_name = "virtio-crypto-rsa", .cra_priority = 150, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct virtio_crypto_akcipher_ctx), }, }, .algo.op = { .do_one_request = virtio_crypto_rsa_do_req, }, }, { .algonum = VIRTIO_CRYPTO_AKCIPHER_RSA, .service = VIRTIO_CRYPTO_SERVICE_AKCIPHER, .algo.base = { .encrypt = virtio_crypto_rsa_encrypt, .decrypt = virtio_crypto_rsa_decrypt, .sign = virtio_crypto_rsa_sign, .verify = virtio_crypto_rsa_verify, .set_pub_key = virtio_crypto_p1pad_rsa_sha1_set_pub_key, .set_priv_key = virtio_crypto_p1pad_rsa_sha1_set_priv_key, .max_size = virtio_crypto_rsa_max_size, .init = virtio_crypto_rsa_init_tfm, .exit = virtio_crypto_rsa_exit_tfm, .base = { .cra_name = "pkcs1pad(rsa,sha1)", .cra_driver_name = "virtio-pkcs1-rsa-with-sha1", .cra_priority = 150, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct virtio_crypto_akcipher_ctx), }, }, .algo.op = { .do_one_request = virtio_crypto_rsa_do_req, }, }, }; int virtio_crypto_akcipher_algs_register(struct virtio_crypto *vcrypto) { int ret = 0; int i = 0; mutex_lock(&algs_lock); for (i = 0; i < ARRAY_SIZE(virtio_crypto_akcipher_algs); i++) { uint32_t service = virtio_crypto_akcipher_algs[i].service; uint32_t algonum = virtio_crypto_akcipher_algs[i].algonum; if (!virtcrypto_algo_is_supported(vcrypto, service, algonum)) continue; if (virtio_crypto_akcipher_algs[i].active_devs == 0) { ret = crypto_engine_register_akcipher(&virtio_crypto_akcipher_algs[i].algo); if (ret) goto unlock; } virtio_crypto_akcipher_algs[i].active_devs++; dev_info(&vcrypto->vdev->dev, "Registered akcipher algo %s\n", virtio_crypto_akcipher_algs[i].algo.base.base.cra_name); } unlock: mutex_unlock(&algs_lock); return ret; } void virtio_crypto_akcipher_algs_unregister(struct virtio_crypto *vcrypto) { int i = 0; mutex_lock(&algs_lock); for (i = 0; i < ARRAY_SIZE(virtio_crypto_akcipher_algs); i++) { uint32_t service = virtio_crypto_akcipher_algs[i].service; uint32_t algonum = virtio_crypto_akcipher_algs[i].algonum; if (virtio_crypto_akcipher_algs[i].active_devs == 0 || !virtcrypto_algo_is_supported(vcrypto, service, algonum)) continue; if (virtio_crypto_akcipher_algs[i].active_devs == 1) crypto_engine_unregister_akcipher(&virtio_crypto_akcipher_algs[i].algo); virtio_crypto_akcipher_algs[i].active_devs--; } mutex_unlock(&algs_lock); }
linux-master
drivers/crypto/virtio/virtio_crypto_akcipher_algs.c
// SPDX-License-Identifier: GPL-2.0-or-later /* Algorithms supported by virtio crypto device * * Authors: Gonglei <[email protected]> * * Copyright 2016 HUAWEI TECHNOLOGIES CO., LTD. */ #include <crypto/engine.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/err.h> #include <linux/scatterlist.h> #include <uapi/linux/virtio_crypto.h> #include "virtio_crypto_common.h" struct virtio_crypto_skcipher_ctx { struct virtio_crypto *vcrypto; struct crypto_skcipher *tfm; struct virtio_crypto_sym_session_info enc_sess_info; struct virtio_crypto_sym_session_info dec_sess_info; }; struct virtio_crypto_sym_request { struct virtio_crypto_request base; /* Cipher or aead */ uint32_t type; struct virtio_crypto_skcipher_ctx *skcipher_ctx; struct skcipher_request *skcipher_req; uint8_t *iv; /* Encryption? */ bool encrypt; }; struct virtio_crypto_algo { uint32_t algonum; uint32_t service; unsigned int active_devs; struct skcipher_engine_alg algo; }; /* * The algs_lock protects the below global virtio_crypto_active_devs * and crypto algorithms registion. */ static DEFINE_MUTEX(algs_lock); static void virtio_crypto_skcipher_finalize_req( struct virtio_crypto_sym_request *vc_sym_req, struct skcipher_request *req, int err); static void virtio_crypto_dataq_sym_callback (struct virtio_crypto_request *vc_req, int len) { struct virtio_crypto_sym_request *vc_sym_req = container_of(vc_req, struct virtio_crypto_sym_request, base); struct skcipher_request *ablk_req; int error; /* Finish the encrypt or decrypt process */ if (vc_sym_req->type == VIRTIO_CRYPTO_SYM_OP_CIPHER) { switch (vc_req->status) { case VIRTIO_CRYPTO_OK: error = 0; break; case VIRTIO_CRYPTO_INVSESS: case VIRTIO_CRYPTO_ERR: error = -EINVAL; break; case VIRTIO_CRYPTO_BADMSG: error = -EBADMSG; break; default: error = -EIO; break; } ablk_req = vc_sym_req->skcipher_req; virtio_crypto_skcipher_finalize_req(vc_sym_req, ablk_req, error); } } static u64 virtio_crypto_alg_sg_nents_length(struct scatterlist *sg) { u64 total = 0; for (total = 0; sg; sg = sg_next(sg)) total += sg->length; return total; } static int virtio_crypto_alg_validate_key(int key_len, uint32_t *alg) { switch (key_len) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: case AES_KEYSIZE_256: *alg = VIRTIO_CRYPTO_CIPHER_AES_CBC; break; default: return -EINVAL; } return 0; } static int virtio_crypto_alg_skcipher_init_session( struct virtio_crypto_skcipher_ctx *ctx, uint32_t alg, const uint8_t *key, unsigned int keylen, int encrypt) { struct scatterlist outhdr, key_sg, inhdr, *sgs[3]; struct virtio_crypto *vcrypto = ctx->vcrypto; int op = encrypt ? VIRTIO_CRYPTO_OP_ENCRYPT : VIRTIO_CRYPTO_OP_DECRYPT; int err; unsigned int num_out = 0, num_in = 0; struct virtio_crypto_op_ctrl_req *ctrl; struct virtio_crypto_session_input *input; struct virtio_crypto_sym_create_session_req *sym_create_session; struct virtio_crypto_ctrl_request *vc_ctrl_req; /* * Avoid to do DMA from the stack, switch to using * dynamically-allocated for the key */ uint8_t *cipher_key = kmemdup(key, keylen, GFP_ATOMIC); if (!cipher_key) return -ENOMEM; vc_ctrl_req = kzalloc(sizeof(*vc_ctrl_req), GFP_KERNEL); if (!vc_ctrl_req) { err = -ENOMEM; goto out; } /* Pad ctrl header */ ctrl = &vc_ctrl_req->ctrl; ctrl->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_CREATE_SESSION); ctrl->header.algo = cpu_to_le32(alg); /* Set the default dataqueue id to 0 */ ctrl->header.queue_id = 0; input = &vc_ctrl_req->input; input->status = cpu_to_le32(VIRTIO_CRYPTO_ERR); /* Pad cipher's parameters */ sym_create_session = &ctrl->u.sym_create_session; sym_create_session->op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER); sym_create_session->u.cipher.para.algo = ctrl->header.algo; sym_create_session->u.cipher.para.keylen = cpu_to_le32(keylen); sym_create_session->u.cipher.para.op = cpu_to_le32(op); sg_init_one(&outhdr, ctrl, sizeof(*ctrl)); sgs[num_out++] = &outhdr; /* Set key */ sg_init_one(&key_sg, cipher_key, keylen); sgs[num_out++] = &key_sg; /* Return status and session id back */ sg_init_one(&inhdr, input, sizeof(*input)); sgs[num_out + num_in++] = &inhdr; err = virtio_crypto_ctrl_vq_request(vcrypto, sgs, num_out, num_in, vc_ctrl_req); if (err < 0) goto out; if (le32_to_cpu(input->status) != VIRTIO_CRYPTO_OK) { pr_err("virtio_crypto: Create session failed status: %u\n", le32_to_cpu(input->status)); err = -EINVAL; goto out; } if (encrypt) ctx->enc_sess_info.session_id = le64_to_cpu(input->session_id); else ctx->dec_sess_info.session_id = le64_to_cpu(input->session_id); err = 0; out: kfree(vc_ctrl_req); kfree_sensitive(cipher_key); return err; } static int virtio_crypto_alg_skcipher_close_session( struct virtio_crypto_skcipher_ctx *ctx, int encrypt) { struct scatterlist outhdr, status_sg, *sgs[2]; struct virtio_crypto_destroy_session_req *destroy_session; struct virtio_crypto *vcrypto = ctx->vcrypto; int err; unsigned int num_out = 0, num_in = 0; struct virtio_crypto_op_ctrl_req *ctrl; struct virtio_crypto_inhdr *ctrl_status; struct virtio_crypto_ctrl_request *vc_ctrl_req; vc_ctrl_req = kzalloc(sizeof(*vc_ctrl_req), GFP_KERNEL); if (!vc_ctrl_req) return -ENOMEM; ctrl_status = &vc_ctrl_req->ctrl_status; ctrl_status->status = VIRTIO_CRYPTO_ERR; /* Pad ctrl header */ ctrl = &vc_ctrl_req->ctrl; ctrl->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_DESTROY_SESSION); /* Set the default virtqueue id to 0 */ ctrl->header.queue_id = 0; destroy_session = &ctrl->u.destroy_session; if (encrypt) destroy_session->session_id = cpu_to_le64(ctx->enc_sess_info.session_id); else destroy_session->session_id = cpu_to_le64(ctx->dec_sess_info.session_id); sg_init_one(&outhdr, ctrl, sizeof(*ctrl)); sgs[num_out++] = &outhdr; /* Return status and session id back */ sg_init_one(&status_sg, &ctrl_status->status, sizeof(ctrl_status->status)); sgs[num_out + num_in++] = &status_sg; err = virtio_crypto_ctrl_vq_request(vcrypto, sgs, num_out, num_in, vc_ctrl_req); if (err < 0) goto out; if (ctrl_status->status != VIRTIO_CRYPTO_OK) { pr_err("virtio_crypto: Close session failed status: %u, session_id: 0x%llx\n", ctrl_status->status, destroy_session->session_id); err = -EINVAL; goto out; } err = 0; out: kfree(vc_ctrl_req); return err; } static int virtio_crypto_alg_skcipher_init_sessions( struct virtio_crypto_skcipher_ctx *ctx, const uint8_t *key, unsigned int keylen) { uint32_t alg; int ret; struct virtio_crypto *vcrypto = ctx->vcrypto; if (keylen > vcrypto->max_cipher_key_len) { pr_err("virtio_crypto: the key is too long\n"); return -EINVAL; } if (virtio_crypto_alg_validate_key(keylen, &alg)) return -EINVAL; /* Create encryption session */ ret = virtio_crypto_alg_skcipher_init_session(ctx, alg, key, keylen, 1); if (ret) return ret; /* Create decryption session */ ret = virtio_crypto_alg_skcipher_init_session(ctx, alg, key, keylen, 0); if (ret) { virtio_crypto_alg_skcipher_close_session(ctx, 1); return ret; } return 0; } /* Note: kernel crypto API realization */ static int virtio_crypto_skcipher_setkey(struct crypto_skcipher *tfm, const uint8_t *key, unsigned int keylen) { struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); uint32_t alg; int ret; ret = virtio_crypto_alg_validate_key(keylen, &alg); if (ret) return ret; if (!ctx->vcrypto) { /* New key */ int node = virtio_crypto_get_current_node(); struct virtio_crypto *vcrypto = virtcrypto_get_dev_node(node, VIRTIO_CRYPTO_SERVICE_CIPHER, alg); if (!vcrypto) { pr_err("virtio_crypto: Could not find a virtio device in the system or unsupported algo\n"); return -ENODEV; } ctx->vcrypto = vcrypto; } else { /* Rekeying, we should close the created sessions previously */ virtio_crypto_alg_skcipher_close_session(ctx, 1); virtio_crypto_alg_skcipher_close_session(ctx, 0); } ret = virtio_crypto_alg_skcipher_init_sessions(ctx, key, keylen); if (ret) { virtcrypto_dev_put(ctx->vcrypto); ctx->vcrypto = NULL; return ret; } return 0; } static int __virtio_crypto_skcipher_do_req(struct virtio_crypto_sym_request *vc_sym_req, struct skcipher_request *req, struct data_queue *data_vq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct virtio_crypto_skcipher_ctx *ctx = vc_sym_req->skcipher_ctx; struct virtio_crypto_request *vc_req = &vc_sym_req->base; unsigned int ivsize = crypto_skcipher_ivsize(tfm); struct virtio_crypto *vcrypto = ctx->vcrypto; struct virtio_crypto_op_data_req *req_data; int src_nents, dst_nents; int err; unsigned long flags; struct scatterlist outhdr, iv_sg, status_sg, **sgs; u64 dst_len; unsigned int num_out = 0, num_in = 0; int sg_total; uint8_t *iv; struct scatterlist *sg; src_nents = sg_nents_for_len(req->src, req->cryptlen); if (src_nents < 0) { pr_err("Invalid number of src SG.\n"); return src_nents; } dst_nents = sg_nents(req->dst); pr_debug("virtio_crypto: Number of sgs (src_nents: %d, dst_nents: %d)\n", src_nents, dst_nents); /* Why 3? outhdr + iv + inhdr */ sg_total = src_nents + dst_nents + 3; sgs = kcalloc_node(sg_total, sizeof(*sgs), GFP_KERNEL, dev_to_node(&vcrypto->vdev->dev)); if (!sgs) return -ENOMEM; req_data = kzalloc_node(sizeof(*req_data), GFP_KERNEL, dev_to_node(&vcrypto->vdev->dev)); if (!req_data) { kfree(sgs); return -ENOMEM; } vc_req->req_data = req_data; vc_sym_req->type = VIRTIO_CRYPTO_SYM_OP_CIPHER; /* Head of operation */ if (vc_sym_req->encrypt) { req_data->header.session_id = cpu_to_le64(ctx->enc_sess_info.session_id); req_data->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_ENCRYPT); } else { req_data->header.session_id = cpu_to_le64(ctx->dec_sess_info.session_id); req_data->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_DECRYPT); } req_data->u.sym_req.op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER); req_data->u.sym_req.u.cipher.para.iv_len = cpu_to_le32(ivsize); req_data->u.sym_req.u.cipher.para.src_data_len = cpu_to_le32(req->cryptlen); dst_len = virtio_crypto_alg_sg_nents_length(req->dst); if (unlikely(dst_len > U32_MAX)) { pr_err("virtio_crypto: The dst_len is beyond U32_MAX\n"); err = -EINVAL; goto free; } dst_len = min_t(unsigned int, req->cryptlen, dst_len); pr_debug("virtio_crypto: src_len: %u, dst_len: %llu\n", req->cryptlen, dst_len); if (unlikely(req->cryptlen + dst_len + ivsize + sizeof(vc_req->status) > vcrypto->max_size)) { pr_err("virtio_crypto: The length is too big\n"); err = -EINVAL; goto free; } req_data->u.sym_req.u.cipher.para.dst_data_len = cpu_to_le32((uint32_t)dst_len); /* Outhdr */ sg_init_one(&outhdr, req_data, sizeof(*req_data)); sgs[num_out++] = &outhdr; /* IV */ /* * Avoid to do DMA from the stack, switch to using * dynamically-allocated for the IV */ iv = kzalloc_node(ivsize, GFP_ATOMIC, dev_to_node(&vcrypto->vdev->dev)); if (!iv) { err = -ENOMEM; goto free; } memcpy(iv, req->iv, ivsize); if (!vc_sym_req->encrypt) scatterwalk_map_and_copy(req->iv, req->src, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE, 0); sg_init_one(&iv_sg, iv, ivsize); sgs[num_out++] = &iv_sg; vc_sym_req->iv = iv; /* Source data */ for (sg = req->src; src_nents; sg = sg_next(sg), src_nents--) sgs[num_out++] = sg; /* Destination data */ for (sg = req->dst; sg; sg = sg_next(sg)) sgs[num_out + num_in++] = sg; /* Status */ sg_init_one(&status_sg, &vc_req->status, sizeof(vc_req->status)); sgs[num_out + num_in++] = &status_sg; vc_req->sgs = sgs; spin_lock_irqsave(&data_vq->lock, flags); err = virtqueue_add_sgs(data_vq->vq, sgs, num_out, num_in, vc_req, GFP_ATOMIC); virtqueue_kick(data_vq->vq); spin_unlock_irqrestore(&data_vq->lock, flags); if (unlikely(err < 0)) goto free_iv; return 0; free_iv: kfree_sensitive(iv); free: kfree_sensitive(req_data); kfree(sgs); return err; } static int virtio_crypto_skcipher_encrypt(struct skcipher_request *req) { struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(req); struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(atfm); struct virtio_crypto_sym_request *vc_sym_req = skcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_sym_req->base; struct virtio_crypto *vcrypto = ctx->vcrypto; /* Use the first data virtqueue as default */ struct data_queue *data_vq = &vcrypto->data_vq[0]; if (!req->cryptlen) return 0; if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; vc_req->dataq = data_vq; vc_req->alg_cb = virtio_crypto_dataq_sym_callback; vc_sym_req->skcipher_ctx = ctx; vc_sym_req->skcipher_req = req; vc_sym_req->encrypt = true; return crypto_transfer_skcipher_request_to_engine(data_vq->engine, req); } static int virtio_crypto_skcipher_decrypt(struct skcipher_request *req) { struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(req); struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(atfm); struct virtio_crypto_sym_request *vc_sym_req = skcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_sym_req->base; struct virtio_crypto *vcrypto = ctx->vcrypto; /* Use the first data virtqueue as default */ struct data_queue *data_vq = &vcrypto->data_vq[0]; if (!req->cryptlen) return 0; if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; vc_req->dataq = data_vq; vc_req->alg_cb = virtio_crypto_dataq_sym_callback; vc_sym_req->skcipher_ctx = ctx; vc_sym_req->skcipher_req = req; vc_sym_req->encrypt = false; return crypto_transfer_skcipher_request_to_engine(data_vq->engine, req); } static int virtio_crypto_skcipher_init(struct crypto_skcipher *tfm) { struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_skcipher_set_reqsize(tfm, sizeof(struct virtio_crypto_sym_request)); ctx->tfm = tfm; return 0; } static void virtio_crypto_skcipher_exit(struct crypto_skcipher *tfm) { struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); if (!ctx->vcrypto) return; virtio_crypto_alg_skcipher_close_session(ctx, 1); virtio_crypto_alg_skcipher_close_session(ctx, 0); virtcrypto_dev_put(ctx->vcrypto); ctx->vcrypto = NULL; } int virtio_crypto_skcipher_crypt_req( struct crypto_engine *engine, void *vreq) { struct skcipher_request *req = container_of(vreq, struct skcipher_request, base); struct virtio_crypto_sym_request *vc_sym_req = skcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_sym_req->base; struct data_queue *data_vq = vc_req->dataq; int ret; ret = __virtio_crypto_skcipher_do_req(vc_sym_req, req, data_vq); if (ret < 0) return ret; virtqueue_kick(data_vq->vq); return 0; } static void virtio_crypto_skcipher_finalize_req( struct virtio_crypto_sym_request *vc_sym_req, struct skcipher_request *req, int err) { if (vc_sym_req->encrypt) scatterwalk_map_and_copy(req->iv, req->dst, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE, 0); kfree_sensitive(vc_sym_req->iv); virtcrypto_clear_request(&vc_sym_req->base); crypto_finalize_skcipher_request(vc_sym_req->base.dataq->engine, req, err); } static struct virtio_crypto_algo virtio_crypto_algs[] = { { .algonum = VIRTIO_CRYPTO_CIPHER_AES_CBC, .service = VIRTIO_CRYPTO_SERVICE_CIPHER, .algo.base = { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "virtio_crypto_aes_cbc", .base.cra_priority = 150, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct virtio_crypto_skcipher_ctx), .base.cra_module = THIS_MODULE, .init = virtio_crypto_skcipher_init, .exit = virtio_crypto_skcipher_exit, .setkey = virtio_crypto_skcipher_setkey, .decrypt = virtio_crypto_skcipher_decrypt, .encrypt = virtio_crypto_skcipher_encrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .algo.op = { .do_one_request = virtio_crypto_skcipher_crypt_req, }, } }; int virtio_crypto_skcipher_algs_register(struct virtio_crypto *vcrypto) { int ret = 0; int i = 0; mutex_lock(&algs_lock); for (i = 0; i < ARRAY_SIZE(virtio_crypto_algs); i++) { uint32_t service = virtio_crypto_algs[i].service; uint32_t algonum = virtio_crypto_algs[i].algonum; if (!virtcrypto_algo_is_supported(vcrypto, service, algonum)) continue; if (virtio_crypto_algs[i].active_devs == 0) { ret = crypto_engine_register_skcipher(&virtio_crypto_algs[i].algo); if (ret) goto unlock; } virtio_crypto_algs[i].active_devs++; dev_info(&vcrypto->vdev->dev, "Registered algo %s\n", virtio_crypto_algs[i].algo.base.base.cra_name); } unlock: mutex_unlock(&algs_lock); return ret; } void virtio_crypto_skcipher_algs_unregister(struct virtio_crypto *vcrypto) { int i = 0; mutex_lock(&algs_lock); for (i = 0; i < ARRAY_SIZE(virtio_crypto_algs); i++) { uint32_t service = virtio_crypto_algs[i].service; uint32_t algonum = virtio_crypto_algs[i].algonum; if (virtio_crypto_algs[i].active_devs == 0 || !virtcrypto_algo_is_supported(vcrypto, service, algonum)) continue; if (virtio_crypto_algs[i].active_devs == 1) crypto_engine_unregister_skcipher(&virtio_crypto_algs[i].algo); virtio_crypto_algs[i].active_devs--; } mutex_unlock(&algs_lock); }
linux-master
drivers/crypto/virtio/virtio_crypto_skcipher_algs.c
// SPDX-License-Identifier: GPL-2.0-or-later /* Driver for Virtio crypto device. * * Copyright 2016 HUAWEI TECHNOLOGIES CO., LTD. */ #include <linux/err.h> #include <linux/module.h> #include <linux/virtio_config.h> #include <linux/cpu.h> #include <uapi/linux/virtio_crypto.h> #include "virtio_crypto_common.h" void virtcrypto_clear_request(struct virtio_crypto_request *vc_req) { if (vc_req) { kfree_sensitive(vc_req->req_data); kfree(vc_req->sgs); } } static void virtio_crypto_ctrlq_callback(struct virtio_crypto_ctrl_request *vc_ctrl_req) { complete(&vc_ctrl_req->compl); } static void virtcrypto_ctrlq_callback(struct virtqueue *vq) { struct virtio_crypto *vcrypto = vq->vdev->priv; struct virtio_crypto_ctrl_request *vc_ctrl_req; unsigned long flags; unsigned int len; spin_lock_irqsave(&vcrypto->ctrl_lock, flags); do { virtqueue_disable_cb(vq); while ((vc_ctrl_req = virtqueue_get_buf(vq, &len)) != NULL) { spin_unlock_irqrestore(&vcrypto->ctrl_lock, flags); virtio_crypto_ctrlq_callback(vc_ctrl_req); spin_lock_irqsave(&vcrypto->ctrl_lock, flags); } if (unlikely(virtqueue_is_broken(vq))) break; } while (!virtqueue_enable_cb(vq)); spin_unlock_irqrestore(&vcrypto->ctrl_lock, flags); } int virtio_crypto_ctrl_vq_request(struct virtio_crypto *vcrypto, struct scatterlist *sgs[], unsigned int out_sgs, unsigned int in_sgs, struct virtio_crypto_ctrl_request *vc_ctrl_req) { int err; unsigned long flags; init_completion(&vc_ctrl_req->compl); spin_lock_irqsave(&vcrypto->ctrl_lock, flags); err = virtqueue_add_sgs(vcrypto->ctrl_vq, sgs, out_sgs, in_sgs, vc_ctrl_req, GFP_ATOMIC); if (err < 0) { spin_unlock_irqrestore(&vcrypto->ctrl_lock, flags); return err; } virtqueue_kick(vcrypto->ctrl_vq); spin_unlock_irqrestore(&vcrypto->ctrl_lock, flags); wait_for_completion(&vc_ctrl_req->compl); return 0; } static void virtcrypto_dataq_callback(struct virtqueue *vq) { struct virtio_crypto *vcrypto = vq->vdev->priv; struct virtio_crypto_request *vc_req; unsigned long flags; unsigned int len; unsigned int qid = vq->index; spin_lock_irqsave(&vcrypto->data_vq[qid].lock, flags); do { virtqueue_disable_cb(vq); while ((vc_req = virtqueue_get_buf(vq, &len)) != NULL) { spin_unlock_irqrestore( &vcrypto->data_vq[qid].lock, flags); if (vc_req->alg_cb) vc_req->alg_cb(vc_req, len); spin_lock_irqsave( &vcrypto->data_vq[qid].lock, flags); } } while (!virtqueue_enable_cb(vq)); spin_unlock_irqrestore(&vcrypto->data_vq[qid].lock, flags); } static int virtcrypto_find_vqs(struct virtio_crypto *vi) { vq_callback_t **callbacks; struct virtqueue **vqs; int ret = -ENOMEM; int i, total_vqs; const char **names; struct device *dev = &vi->vdev->dev; /* * We expect 1 data virtqueue, followed by * possible N-1 data queues used in multiqueue mode, * followed by control vq. */ total_vqs = vi->max_data_queues + 1; /* Allocate space for find_vqs parameters */ vqs = kcalloc(total_vqs, sizeof(*vqs), GFP_KERNEL); if (!vqs) goto err_vq; callbacks = kcalloc(total_vqs, sizeof(*callbacks), GFP_KERNEL); if (!callbacks) goto err_callback; names = kcalloc(total_vqs, sizeof(*names), GFP_KERNEL); if (!names) goto err_names; /* Parameters for control virtqueue */ callbacks[total_vqs - 1] = virtcrypto_ctrlq_callback; names[total_vqs - 1] = "controlq"; /* Allocate/initialize parameters for data virtqueues */ for (i = 0; i < vi->max_data_queues; i++) { callbacks[i] = virtcrypto_dataq_callback; snprintf(vi->data_vq[i].name, sizeof(vi->data_vq[i].name), "dataq.%d", i); names[i] = vi->data_vq[i].name; } ret = virtio_find_vqs(vi->vdev, total_vqs, vqs, callbacks, names, NULL); if (ret) goto err_find; vi->ctrl_vq = vqs[total_vqs - 1]; for (i = 0; i < vi->max_data_queues; i++) { spin_lock_init(&vi->data_vq[i].lock); vi->data_vq[i].vq = vqs[i]; /* Initialize crypto engine */ vi->data_vq[i].engine = crypto_engine_alloc_init_and_set(dev, true, NULL, true, virtqueue_get_vring_size(vqs[i])); if (!vi->data_vq[i].engine) { ret = -ENOMEM; goto err_engine; } } kfree(names); kfree(callbacks); kfree(vqs); return 0; err_engine: err_find: kfree(names); err_names: kfree(callbacks); err_callback: kfree(vqs); err_vq: return ret; } static int virtcrypto_alloc_queues(struct virtio_crypto *vi) { vi->data_vq = kcalloc(vi->max_data_queues, sizeof(*vi->data_vq), GFP_KERNEL); if (!vi->data_vq) return -ENOMEM; return 0; } static void virtcrypto_clean_affinity(struct virtio_crypto *vi, long hcpu) { int i; if (vi->affinity_hint_set) { for (i = 0; i < vi->max_data_queues; i++) virtqueue_set_affinity(vi->data_vq[i].vq, NULL); vi->affinity_hint_set = false; } } static void virtcrypto_set_affinity(struct virtio_crypto *vcrypto) { int i = 0; int cpu; /* * In single queue mode, we don't set the cpu affinity. */ if (vcrypto->curr_queue == 1 || vcrypto->max_data_queues == 1) { virtcrypto_clean_affinity(vcrypto, -1); return; } /* * In multiqueue mode, we let the queue to be private to one cpu * by setting the affinity hint to eliminate the contention. * * TODO: adds cpu hotplug support by register cpu notifier. * */ for_each_online_cpu(cpu) { virtqueue_set_affinity(vcrypto->data_vq[i].vq, cpumask_of(cpu)); if (++i >= vcrypto->max_data_queues) break; } vcrypto->affinity_hint_set = true; } static void virtcrypto_free_queues(struct virtio_crypto *vi) { kfree(vi->data_vq); } static int virtcrypto_init_vqs(struct virtio_crypto *vi) { int ret; /* Allocate send & receive queues */ ret = virtcrypto_alloc_queues(vi); if (ret) goto err; ret = virtcrypto_find_vqs(vi); if (ret) goto err_free; cpus_read_lock(); virtcrypto_set_affinity(vi); cpus_read_unlock(); return 0; err_free: virtcrypto_free_queues(vi); err: return ret; } static int virtcrypto_update_status(struct virtio_crypto *vcrypto) { u32 status; int err; virtio_cread_le(vcrypto->vdev, struct virtio_crypto_config, status, &status); /* * Unknown status bits would be a host error and the driver * should consider the device to be broken. */ if (status & (~VIRTIO_CRYPTO_S_HW_READY)) { dev_warn(&vcrypto->vdev->dev, "Unknown status bits: 0x%x\n", status); virtio_break_device(vcrypto->vdev); return -EPERM; } if (vcrypto->status == status) return 0; vcrypto->status = status; if (vcrypto->status & VIRTIO_CRYPTO_S_HW_READY) { err = virtcrypto_dev_start(vcrypto); if (err) { dev_err(&vcrypto->vdev->dev, "Failed to start virtio crypto device.\n"); return -EPERM; } dev_info(&vcrypto->vdev->dev, "Accelerator device is ready\n"); } else { virtcrypto_dev_stop(vcrypto); dev_info(&vcrypto->vdev->dev, "Accelerator is not ready\n"); } return 0; } static int virtcrypto_start_crypto_engines(struct virtio_crypto *vcrypto) { int32_t i; int ret; for (i = 0; i < vcrypto->max_data_queues; i++) { if (vcrypto->data_vq[i].engine) { ret = crypto_engine_start(vcrypto->data_vq[i].engine); if (ret) goto err; } } return 0; err: while (--i >= 0) if (vcrypto->data_vq[i].engine) crypto_engine_exit(vcrypto->data_vq[i].engine); return ret; } static void virtcrypto_clear_crypto_engines(struct virtio_crypto *vcrypto) { u32 i; for (i = 0; i < vcrypto->max_data_queues; i++) if (vcrypto->data_vq[i].engine) crypto_engine_exit(vcrypto->data_vq[i].engine); } static void virtcrypto_del_vqs(struct virtio_crypto *vcrypto) { struct virtio_device *vdev = vcrypto->vdev; virtcrypto_clean_affinity(vcrypto, -1); vdev->config->del_vqs(vdev); virtcrypto_free_queues(vcrypto); } static int virtcrypto_probe(struct virtio_device *vdev) { int err = -EFAULT; struct virtio_crypto *vcrypto; u32 max_data_queues = 0, max_cipher_key_len = 0; u32 max_auth_key_len = 0; u64 max_size = 0; u32 cipher_algo_l = 0; u32 cipher_algo_h = 0; u32 hash_algo = 0; u32 mac_algo_l = 0; u32 mac_algo_h = 0; u32 aead_algo = 0; u32 akcipher_algo = 0; u32 crypto_services = 0; if (!virtio_has_feature(vdev, VIRTIO_F_VERSION_1)) return -ENODEV; if (!vdev->config->get) { dev_err(&vdev->dev, "%s failure: config access disabled\n", __func__); return -EINVAL; } if (num_possible_nodes() > 1 && dev_to_node(&vdev->dev) < 0) { /* * If the accelerator is connected to a node with no memory * there is no point in using the accelerator since the remote * memory transaction will be very slow. */ dev_err(&vdev->dev, "Invalid NUMA configuration.\n"); return -EINVAL; } vcrypto = kzalloc_node(sizeof(*vcrypto), GFP_KERNEL, dev_to_node(&vdev->dev)); if (!vcrypto) return -ENOMEM; virtio_cread_le(vdev, struct virtio_crypto_config, max_dataqueues, &max_data_queues); if (max_data_queues < 1) max_data_queues = 1; virtio_cread_le(vdev, struct virtio_crypto_config, max_cipher_key_len, &max_cipher_key_len); virtio_cread_le(vdev, struct virtio_crypto_config, max_auth_key_len, &max_auth_key_len); virtio_cread_le(vdev, struct virtio_crypto_config, max_size, &max_size); virtio_cread_le(vdev, struct virtio_crypto_config, crypto_services, &crypto_services); virtio_cread_le(vdev, struct virtio_crypto_config, cipher_algo_l, &cipher_algo_l); virtio_cread_le(vdev, struct virtio_crypto_config, cipher_algo_h, &cipher_algo_h); virtio_cread_le(vdev, struct virtio_crypto_config, hash_algo, &hash_algo); virtio_cread_le(vdev, struct virtio_crypto_config, mac_algo_l, &mac_algo_l); virtio_cread_le(vdev, struct virtio_crypto_config, mac_algo_h, &mac_algo_h); virtio_cread_le(vdev, struct virtio_crypto_config, aead_algo, &aead_algo); if (crypto_services & (1 << VIRTIO_CRYPTO_SERVICE_AKCIPHER)) virtio_cread_le(vdev, struct virtio_crypto_config, akcipher_algo, &akcipher_algo); /* Add virtio crypto device to global table */ err = virtcrypto_devmgr_add_dev(vcrypto); if (err) { dev_err(&vdev->dev, "Failed to add new virtio crypto device.\n"); goto free; } vcrypto->owner = THIS_MODULE; vcrypto = vdev->priv = vcrypto; vcrypto->vdev = vdev; spin_lock_init(&vcrypto->ctrl_lock); /* Use single data queue as default */ vcrypto->curr_queue = 1; vcrypto->max_data_queues = max_data_queues; vcrypto->max_cipher_key_len = max_cipher_key_len; vcrypto->max_auth_key_len = max_auth_key_len; vcrypto->max_size = max_size; vcrypto->crypto_services = crypto_services; vcrypto->cipher_algo_l = cipher_algo_l; vcrypto->cipher_algo_h = cipher_algo_h; vcrypto->mac_algo_l = mac_algo_l; vcrypto->mac_algo_h = mac_algo_h; vcrypto->hash_algo = hash_algo; vcrypto->aead_algo = aead_algo; vcrypto->akcipher_algo = akcipher_algo; dev_info(&vdev->dev, "max_queues: %u, max_cipher_key_len: %u, max_auth_key_len: %u, max_size 0x%llx\n", vcrypto->max_data_queues, vcrypto->max_cipher_key_len, vcrypto->max_auth_key_len, vcrypto->max_size); err = virtcrypto_init_vqs(vcrypto); if (err) { dev_err(&vdev->dev, "Failed to initialize vqs.\n"); goto free_dev; } err = virtcrypto_start_crypto_engines(vcrypto); if (err) goto free_vqs; virtio_device_ready(vdev); err = virtcrypto_update_status(vcrypto); if (err) goto free_engines; return 0; free_engines: virtcrypto_clear_crypto_engines(vcrypto); free_vqs: virtio_reset_device(vdev); virtcrypto_del_vqs(vcrypto); free_dev: virtcrypto_devmgr_rm_dev(vcrypto); free: kfree(vcrypto); return err; } static void virtcrypto_free_unused_reqs(struct virtio_crypto *vcrypto) { struct virtio_crypto_request *vc_req; int i; struct virtqueue *vq; for (i = 0; i < vcrypto->max_data_queues; i++) { vq = vcrypto->data_vq[i].vq; while ((vc_req = virtqueue_detach_unused_buf(vq)) != NULL) { kfree(vc_req->req_data); kfree(vc_req->sgs); } cond_resched(); } } static void virtcrypto_remove(struct virtio_device *vdev) { struct virtio_crypto *vcrypto = vdev->priv; dev_info(&vdev->dev, "Start virtcrypto_remove.\n"); if (virtcrypto_dev_started(vcrypto)) virtcrypto_dev_stop(vcrypto); virtio_reset_device(vdev); virtcrypto_free_unused_reqs(vcrypto); virtcrypto_clear_crypto_engines(vcrypto); virtcrypto_del_vqs(vcrypto); virtcrypto_devmgr_rm_dev(vcrypto); kfree(vcrypto); } static void virtcrypto_config_changed(struct virtio_device *vdev) { struct virtio_crypto *vcrypto = vdev->priv; virtcrypto_update_status(vcrypto); } #ifdef CONFIG_PM_SLEEP static int virtcrypto_freeze(struct virtio_device *vdev) { struct virtio_crypto *vcrypto = vdev->priv; virtio_reset_device(vdev); virtcrypto_free_unused_reqs(vcrypto); if (virtcrypto_dev_started(vcrypto)) virtcrypto_dev_stop(vcrypto); virtcrypto_clear_crypto_engines(vcrypto); virtcrypto_del_vqs(vcrypto); return 0; } static int virtcrypto_restore(struct virtio_device *vdev) { struct virtio_crypto *vcrypto = vdev->priv; int err; err = virtcrypto_init_vqs(vcrypto); if (err) return err; err = virtcrypto_start_crypto_engines(vcrypto); if (err) goto free_vqs; virtio_device_ready(vdev); err = virtcrypto_dev_start(vcrypto); if (err) { dev_err(&vdev->dev, "Failed to start virtio crypto device.\n"); goto free_engines; } return 0; free_engines: virtcrypto_clear_crypto_engines(vcrypto); free_vqs: virtio_reset_device(vdev); virtcrypto_del_vqs(vcrypto); return err; } #endif static const unsigned int features[] = { /* none */ }; static const struct virtio_device_id id_table[] = { { VIRTIO_ID_CRYPTO, VIRTIO_DEV_ANY_ID }, { 0 }, }; static struct virtio_driver virtio_crypto_driver = { .driver.name = KBUILD_MODNAME, .driver.owner = THIS_MODULE, .feature_table = features, .feature_table_size = ARRAY_SIZE(features), .id_table = id_table, .probe = virtcrypto_probe, .remove = virtcrypto_remove, .config_changed = virtcrypto_config_changed, #ifdef CONFIG_PM_SLEEP .freeze = virtcrypto_freeze, .restore = virtcrypto_restore, #endif }; module_virtio_driver(virtio_crypto_driver); MODULE_DEVICE_TABLE(virtio, id_table); MODULE_DESCRIPTION("virtio crypto device driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Gonglei <[email protected]>");
linux-master
drivers/crypto/virtio/virtio_crypto_core.c
// SPDX-License-Identifier: GPL-2.0-or-later /* Management for virtio crypto devices (refer to adf_dev_mgr.c) * * Copyright 2016 HUAWEI TECHNOLOGIES CO., LTD. */ #include <linux/mutex.h> #include <linux/list.h> #include <linux/module.h> #include <uapi/linux/virtio_crypto.h> #include "virtio_crypto_common.h" static LIST_HEAD(virtio_crypto_table); static uint32_t num_devices; /* The table_lock protects the above global list and num_devices */ static DEFINE_MUTEX(table_lock); #define VIRTIO_CRYPTO_MAX_DEVICES 32 /* * virtcrypto_devmgr_add_dev() - Add vcrypto_dev to the acceleration * framework. * @vcrypto_dev: Pointer to virtio crypto device. * * Function adds virtio crypto device to the global list. * To be used by virtio crypto device specific drivers. * * Return: 0 on success, error code othewise. */ int virtcrypto_devmgr_add_dev(struct virtio_crypto *vcrypto_dev) { struct list_head *itr; mutex_lock(&table_lock); if (num_devices == VIRTIO_CRYPTO_MAX_DEVICES) { pr_info("virtio_crypto: only support up to %d devices\n", VIRTIO_CRYPTO_MAX_DEVICES); mutex_unlock(&table_lock); return -EFAULT; } list_for_each(itr, &virtio_crypto_table) { struct virtio_crypto *ptr = list_entry(itr, struct virtio_crypto, list); if (ptr == vcrypto_dev) { mutex_unlock(&table_lock); return -EEXIST; } } atomic_set(&vcrypto_dev->ref_count, 0); list_add_tail(&vcrypto_dev->list, &virtio_crypto_table); vcrypto_dev->dev_id = num_devices++; mutex_unlock(&table_lock); return 0; } struct list_head *virtcrypto_devmgr_get_head(void) { return &virtio_crypto_table; } /* * virtcrypto_devmgr_rm_dev() - Remove vcrypto_dev from the acceleration * framework. * @vcrypto_dev: Pointer to virtio crypto device. * * Function removes virtio crypto device from the acceleration framework. * To be used by virtio crypto device specific drivers. * * Return: void */ void virtcrypto_devmgr_rm_dev(struct virtio_crypto *vcrypto_dev) { mutex_lock(&table_lock); list_del(&vcrypto_dev->list); num_devices--; mutex_unlock(&table_lock); } /* * virtcrypto_devmgr_get_first() * * Function returns the first virtio crypto device from the acceleration * framework. * * To be used by virtio crypto device specific drivers. * * Return: pointer to vcrypto_dev or NULL if not found. */ struct virtio_crypto *virtcrypto_devmgr_get_first(void) { struct virtio_crypto *dev = NULL; mutex_lock(&table_lock); if (!list_empty(&virtio_crypto_table)) dev = list_first_entry(&virtio_crypto_table, struct virtio_crypto, list); mutex_unlock(&table_lock); return dev; } /* * virtcrypto_dev_in_use() - Check whether vcrypto_dev is currently in use * @vcrypto_dev: Pointer to virtio crypto device. * * To be used by virtio crypto device specific drivers. * * Return: 1 when device is in use, 0 otherwise. */ int virtcrypto_dev_in_use(struct virtio_crypto *vcrypto_dev) { return atomic_read(&vcrypto_dev->ref_count) != 0; } /* * virtcrypto_dev_get() - Increment vcrypto_dev reference count * @vcrypto_dev: Pointer to virtio crypto device. * * Increment the vcrypto_dev refcount and if this is the first time * incrementing it during this period the vcrypto_dev is in use, * increment the module refcount too. * To be used by virtio crypto device specific drivers. * * Return: 0 when successful, EFAULT when fail to bump module refcount */ int virtcrypto_dev_get(struct virtio_crypto *vcrypto_dev) { if (atomic_add_return(1, &vcrypto_dev->ref_count) == 1) if (!try_module_get(vcrypto_dev->owner)) return -EFAULT; return 0; } /* * virtcrypto_dev_put() - Decrement vcrypto_dev reference count * @vcrypto_dev: Pointer to virtio crypto device. * * Decrement the vcrypto_dev refcount and if this is the last time * decrementing it during this period the vcrypto_dev is in use, * decrement the module refcount too. * To be used by virtio crypto device specific drivers. * * Return: void */ void virtcrypto_dev_put(struct virtio_crypto *vcrypto_dev) { if (atomic_sub_return(1, &vcrypto_dev->ref_count) == 0) module_put(vcrypto_dev->owner); } /* * virtcrypto_dev_started() - Check whether device has started * @vcrypto_dev: Pointer to virtio crypto device. * * To be used by virtio crypto device specific drivers. * * Return: 1 when the device has started, 0 otherwise */ int virtcrypto_dev_started(struct virtio_crypto *vcrypto_dev) { return (vcrypto_dev->status & VIRTIO_CRYPTO_S_HW_READY); } /* * virtcrypto_get_dev_node() - Get vcrypto_dev on the node. * @node: Node id the driver works. * @service: Crypto service that needs to be supported by the * dev * @algo: The algorithm number that needs to be supported by the * dev * * Function returns the virtio crypto device used fewest on the node, * and supports the given crypto service and algorithm. * * To be used by virtio crypto device specific drivers. * * Return: pointer to vcrypto_dev or NULL if not found. */ struct virtio_crypto *virtcrypto_get_dev_node(int node, uint32_t service, uint32_t algo) { struct virtio_crypto *vcrypto_dev = NULL, *tmp_dev; unsigned long best = ~0; unsigned long ctr; mutex_lock(&table_lock); list_for_each_entry(tmp_dev, virtcrypto_devmgr_get_head(), list) { if ((node == dev_to_node(&tmp_dev->vdev->dev) || dev_to_node(&tmp_dev->vdev->dev) < 0) && virtcrypto_dev_started(tmp_dev) && virtcrypto_algo_is_supported(tmp_dev, service, algo)) { ctr = atomic_read(&tmp_dev->ref_count); if (best > ctr) { vcrypto_dev = tmp_dev; best = ctr; } } } if (!vcrypto_dev) { pr_info("virtio_crypto: Could not find a device on node %d\n", node); /* Get any started device */ list_for_each_entry(tmp_dev, virtcrypto_devmgr_get_head(), list) { if (virtcrypto_dev_started(tmp_dev) && virtcrypto_algo_is_supported(tmp_dev, service, algo)) { vcrypto_dev = tmp_dev; break; } } } mutex_unlock(&table_lock); if (!vcrypto_dev) return NULL; virtcrypto_dev_get(vcrypto_dev); return vcrypto_dev; } /* * virtcrypto_dev_start() - Start virtio crypto device * @vcrypto: Pointer to virtio crypto device. * * Function notifies all the registered services that the virtio crypto device * is ready to be used. * To be used by virtio crypto device specific drivers. * * Return: 0 on success, EFAULT when fail to register algorithms */ int virtcrypto_dev_start(struct virtio_crypto *vcrypto) { if (virtio_crypto_skcipher_algs_register(vcrypto)) { pr_err("virtio_crypto: Failed to register crypto skcipher algs\n"); return -EFAULT; } if (virtio_crypto_akcipher_algs_register(vcrypto)) { pr_err("virtio_crypto: Failed to register crypto akcipher algs\n"); virtio_crypto_skcipher_algs_unregister(vcrypto); return -EFAULT; } return 0; } /* * virtcrypto_dev_stop() - Stop virtio crypto device * @vcrypto: Pointer to virtio crypto device. * * Function notifies all the registered services that the virtio crypto device * is ready to be used. * To be used by virtio crypto device specific drivers. * * Return: void */ void virtcrypto_dev_stop(struct virtio_crypto *vcrypto) { virtio_crypto_skcipher_algs_unregister(vcrypto); virtio_crypto_akcipher_algs_unregister(vcrypto); } /* * vcrypto_algo_is_supported() * @vcrypto: Pointer to virtio crypto device. * @service: The bit number for service validate. * See VIRTIO_CRYPTO_SERVICE_* * @algo : The bit number for the algorithm to validate. * * * Validate if the virtio crypto device supports a service and * algo. * * Return true if device supports a service and algo. */ bool virtcrypto_algo_is_supported(struct virtio_crypto *vcrypto, uint32_t service, uint32_t algo) { uint32_t service_mask = 1u << service; uint32_t algo_mask = 0; bool low = true; if (algo > 31) { algo -= 32; low = false; } if (!(vcrypto->crypto_services & service_mask)) return false; switch (service) { case VIRTIO_CRYPTO_SERVICE_CIPHER: if (low) algo_mask = vcrypto->cipher_algo_l; else algo_mask = vcrypto->cipher_algo_h; break; case VIRTIO_CRYPTO_SERVICE_HASH: algo_mask = vcrypto->hash_algo; break; case VIRTIO_CRYPTO_SERVICE_MAC: if (low) algo_mask = vcrypto->mac_algo_l; else algo_mask = vcrypto->mac_algo_h; break; case VIRTIO_CRYPTO_SERVICE_AEAD: algo_mask = vcrypto->aead_algo; break; case VIRTIO_CRYPTO_SERVICE_AKCIPHER: algo_mask = vcrypto->akcipher_algo; break; } if (!(algo_mask & (1u << algo))) return false; return true; }
linux-master
drivers/crypto/virtio/virtio_crypto_mgr.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include "otx2_cpt_common.h" #include "otx2_cptvf.h" #include "otx2_cptlf.h" #include "otx2_cptvf_algs.h" #include "cn10k_cpt.h" #include <rvu_reg.h> #define OTX2_CPTVF_DRV_NAME "rvu_cptvf" static void cptvf_enable_pfvf_mbox_intrs(struct otx2_cptvf_dev *cptvf) { /* Clear interrupt if any */ otx2_cpt_write64(cptvf->reg_base, BLKADDR_RVUM, 0, OTX2_RVU_VF_INT, 0x1ULL); /* Enable PF-VF interrupt */ otx2_cpt_write64(cptvf->reg_base, BLKADDR_RVUM, 0, OTX2_RVU_VF_INT_ENA_W1S, 0x1ULL); } static void cptvf_disable_pfvf_mbox_intrs(struct otx2_cptvf_dev *cptvf) { /* Disable PF-VF interrupt */ otx2_cpt_write64(cptvf->reg_base, BLKADDR_RVUM, 0, OTX2_RVU_VF_INT_ENA_W1C, 0x1ULL); /* Clear interrupt if any */ otx2_cpt_write64(cptvf->reg_base, BLKADDR_RVUM, 0, OTX2_RVU_VF_INT, 0x1ULL); } static int cptvf_register_interrupts(struct otx2_cptvf_dev *cptvf) { int ret, irq; int num_vec; num_vec = pci_msix_vec_count(cptvf->pdev); if (num_vec <= 0) return -EINVAL; /* Enable MSI-X */ ret = pci_alloc_irq_vectors(cptvf->pdev, num_vec, num_vec, PCI_IRQ_MSIX); if (ret < 0) { dev_err(&cptvf->pdev->dev, "Request for %d msix vectors failed\n", num_vec); return ret; } irq = pci_irq_vector(cptvf->pdev, OTX2_CPT_VF_INT_VEC_E_MBOX); /* Register VF<=>PF mailbox interrupt handler */ ret = devm_request_irq(&cptvf->pdev->dev, irq, otx2_cptvf_pfvf_mbox_intr, 0, "CPTPFVF Mbox", cptvf); if (ret) return ret; /* Enable PF-VF mailbox interrupts */ cptvf_enable_pfvf_mbox_intrs(cptvf); ret = otx2_cpt_send_ready_msg(&cptvf->pfvf_mbox, cptvf->pdev); if (ret) { dev_warn(&cptvf->pdev->dev, "PF not responding to mailbox, deferring probe\n"); cptvf_disable_pfvf_mbox_intrs(cptvf); return -EPROBE_DEFER; } return 0; } static int cptvf_pfvf_mbox_init(struct otx2_cptvf_dev *cptvf) { struct pci_dev *pdev = cptvf->pdev; resource_size_t offset, size; int ret; cptvf->pfvf_mbox_wq = alloc_ordered_workqueue("cpt_pfvf_mailbox", WQ_HIGHPRI | WQ_MEM_RECLAIM); if (!cptvf->pfvf_mbox_wq) return -ENOMEM; if (test_bit(CN10K_MBOX, &cptvf->cap_flag)) { /* For cn10k platform, VF mailbox region is in its BAR2 * register space */ cptvf->pfvf_mbox_base = cptvf->reg_base + CN10K_CPT_VF_MBOX_REGION; } else { offset = pci_resource_start(pdev, PCI_MBOX_BAR_NUM); size = pci_resource_len(pdev, PCI_MBOX_BAR_NUM); /* Map PF-VF mailbox memory */ cptvf->pfvf_mbox_base = devm_ioremap_wc(&pdev->dev, offset, size); if (!cptvf->pfvf_mbox_base) { dev_err(&pdev->dev, "Unable to map BAR4\n"); ret = -ENOMEM; goto free_wqe; } } ret = otx2_mbox_init(&cptvf->pfvf_mbox, cptvf->pfvf_mbox_base, pdev, cptvf->reg_base, MBOX_DIR_VFPF, 1); if (ret) goto free_wqe; ret = otx2_cpt_mbox_bbuf_init(cptvf, pdev); if (ret) goto destroy_mbox; INIT_WORK(&cptvf->pfvf_mbox_work, otx2_cptvf_pfvf_mbox_handler); return 0; destroy_mbox: otx2_mbox_destroy(&cptvf->pfvf_mbox); free_wqe: destroy_workqueue(cptvf->pfvf_mbox_wq); return ret; } static void cptvf_pfvf_mbox_destroy(struct otx2_cptvf_dev *cptvf) { destroy_workqueue(cptvf->pfvf_mbox_wq); otx2_mbox_destroy(&cptvf->pfvf_mbox); } static void cptlf_work_handler(unsigned long data) { otx2_cpt_post_process((struct otx2_cptlf_wqe *) data); } static void cleanup_tasklet_work(struct otx2_cptlfs_info *lfs) { int i; for (i = 0; i < lfs->lfs_num; i++) { if (!lfs->lf[i].wqe) continue; tasklet_kill(&lfs->lf[i].wqe->work); kfree(lfs->lf[i].wqe); lfs->lf[i].wqe = NULL; } } static int init_tasklet_work(struct otx2_cptlfs_info *lfs) { struct otx2_cptlf_wqe *wqe; int i, ret = 0; for (i = 0; i < lfs->lfs_num; i++) { wqe = kzalloc(sizeof(struct otx2_cptlf_wqe), GFP_KERNEL); if (!wqe) { ret = -ENOMEM; goto cleanup_tasklet; } tasklet_init(&wqe->work, cptlf_work_handler, (u64) wqe); wqe->lfs = lfs; wqe->lf_num = i; lfs->lf[i].wqe = wqe; } return 0; cleanup_tasklet: cleanup_tasklet_work(lfs); return ret; } static void free_pending_queues(struct otx2_cptlfs_info *lfs) { int i; for (i = 0; i < lfs->lfs_num; i++) { kfree(lfs->lf[i].pqueue.head); lfs->lf[i].pqueue.head = NULL; } } static int alloc_pending_queues(struct otx2_cptlfs_info *lfs) { int size, ret, i; if (!lfs->lfs_num) return -EINVAL; for (i = 0; i < lfs->lfs_num; i++) { lfs->lf[i].pqueue.qlen = OTX2_CPT_INST_QLEN_MSGS; size = lfs->lf[i].pqueue.qlen * sizeof(struct otx2_cpt_pending_entry); lfs->lf[i].pqueue.head = kzalloc(size, GFP_KERNEL); if (!lfs->lf[i].pqueue.head) { ret = -ENOMEM; goto error; } /* Initialize spin lock */ spin_lock_init(&lfs->lf[i].pqueue.lock); } return 0; error: free_pending_queues(lfs); return ret; } static void lf_sw_cleanup(struct otx2_cptlfs_info *lfs) { cleanup_tasklet_work(lfs); free_pending_queues(lfs); } static int lf_sw_init(struct otx2_cptlfs_info *lfs) { int ret; ret = alloc_pending_queues(lfs); if (ret) { dev_err(&lfs->pdev->dev, "Allocating pending queues failed\n"); return ret; } ret = init_tasklet_work(lfs); if (ret) { dev_err(&lfs->pdev->dev, "Tasklet work init failed\n"); goto pending_queues_free; } return 0; pending_queues_free: free_pending_queues(lfs); return ret; } static void cptvf_lf_shutdown(struct otx2_cptlfs_info *lfs) { atomic_set(&lfs->state, OTX2_CPTLF_IN_RESET); /* Remove interrupts affinity */ otx2_cptlf_free_irqs_affinity(lfs); /* Disable instruction queue */ otx2_cptlf_disable_iqueues(lfs); /* Unregister crypto algorithms */ otx2_cpt_crypto_exit(lfs->pdev, THIS_MODULE); /* Unregister LFs interrupts */ otx2_cptlf_unregister_interrupts(lfs); /* Cleanup LFs software side */ lf_sw_cleanup(lfs); /* Send request to detach LFs */ otx2_cpt_detach_rsrcs_msg(lfs); } static int cptvf_lf_init(struct otx2_cptvf_dev *cptvf) { struct otx2_cptlfs_info *lfs = &cptvf->lfs; struct device *dev = &cptvf->pdev->dev; int ret, lfs_num; u8 eng_grp_msk; /* Get engine group number for symmetric crypto */ cptvf->lfs.kcrypto_eng_grp_num = OTX2_CPT_INVALID_CRYPTO_ENG_GRP; ret = otx2_cptvf_send_eng_grp_num_msg(cptvf, OTX2_CPT_SE_TYPES); if (ret) return ret; if (cptvf->lfs.kcrypto_eng_grp_num == OTX2_CPT_INVALID_CRYPTO_ENG_GRP) { dev_err(dev, "Engine group for kernel crypto not available\n"); ret = -ENOENT; return ret; } eng_grp_msk = 1 << cptvf->lfs.kcrypto_eng_grp_num; ret = otx2_cptvf_send_kvf_limits_msg(cptvf); if (ret) return ret; lfs_num = cptvf->lfs.kvf_limits ? cptvf->lfs.kvf_limits : num_online_cpus(); otx2_cptlf_set_dev_info(lfs, cptvf->pdev, cptvf->reg_base, &cptvf->pfvf_mbox, cptvf->blkaddr); ret = otx2_cptlf_init(lfs, eng_grp_msk, OTX2_CPT_QUEUE_HI_PRIO, lfs_num); if (ret) return ret; /* Get msix offsets for attached LFs */ ret = otx2_cpt_msix_offset_msg(lfs); if (ret) goto cleanup_lf; /* Initialize LFs software side */ ret = lf_sw_init(lfs); if (ret) goto cleanup_lf; /* Register LFs interrupts */ ret = otx2_cptlf_register_interrupts(lfs); if (ret) goto cleanup_lf_sw; /* Set interrupts affinity */ ret = otx2_cptlf_set_irqs_affinity(lfs); if (ret) goto unregister_intr; atomic_set(&lfs->state, OTX2_CPTLF_STARTED); /* Register crypto algorithms */ ret = otx2_cpt_crypto_init(lfs->pdev, THIS_MODULE, lfs_num, 1); if (ret) { dev_err(&lfs->pdev->dev, "algorithms registration failed\n"); goto disable_irqs; } return 0; disable_irqs: otx2_cptlf_free_irqs_affinity(lfs); unregister_intr: otx2_cptlf_unregister_interrupts(lfs); cleanup_lf_sw: lf_sw_cleanup(lfs); cleanup_lf: otx2_cptlf_shutdown(lfs); return ret; } static int otx2_cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct otx2_cptvf_dev *cptvf; int ret; cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL); if (!cptvf) return -ENOMEM; ret = pcim_enable_device(pdev); if (ret) { dev_err(dev, "Failed to enable PCI device\n"); goto clear_drvdata; } ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); if (ret) { dev_err(dev, "Unable to get usable DMA configuration\n"); goto clear_drvdata; } /* Map VF's configuration registers */ ret = pcim_iomap_regions_request_all(pdev, 1 << PCI_PF_REG_BAR_NUM, OTX2_CPTVF_DRV_NAME); if (ret) { dev_err(dev, "Couldn't get PCI resources 0x%x\n", ret); goto clear_drvdata; } pci_set_master(pdev); pci_set_drvdata(pdev, cptvf); cptvf->pdev = pdev; cptvf->reg_base = pcim_iomap_table(pdev)[PCI_PF_REG_BAR_NUM]; otx2_cpt_set_hw_caps(pdev, &cptvf->cap_flag); ret = cn10k_cptvf_lmtst_init(cptvf); if (ret) goto clear_drvdata; /* Initialize PF<=>VF mailbox */ ret = cptvf_pfvf_mbox_init(cptvf); if (ret) goto clear_drvdata; /* Register interrupts */ ret = cptvf_register_interrupts(cptvf); if (ret) goto destroy_pfvf_mbox; cptvf->blkaddr = BLKADDR_CPT0; /* Initialize CPT LFs */ ret = cptvf_lf_init(cptvf); if (ret) goto unregister_interrupts; return 0; unregister_interrupts: cptvf_disable_pfvf_mbox_intrs(cptvf); destroy_pfvf_mbox: cptvf_pfvf_mbox_destroy(cptvf); clear_drvdata: pci_set_drvdata(pdev, NULL); return ret; } static void otx2_cptvf_remove(struct pci_dev *pdev) { struct otx2_cptvf_dev *cptvf = pci_get_drvdata(pdev); if (!cptvf) { dev_err(&pdev->dev, "Invalid CPT VF device.\n"); return; } cptvf_lf_shutdown(&cptvf->lfs); /* Disable PF-VF mailbox interrupt */ cptvf_disable_pfvf_mbox_intrs(cptvf); /* Destroy PF-VF mbox */ cptvf_pfvf_mbox_destroy(cptvf); pci_set_drvdata(pdev, NULL); } /* Supported devices */ static const struct pci_device_id otx2_cptvf_id_table[] = { {PCI_VDEVICE(CAVIUM, OTX2_CPT_PCI_VF_DEVICE_ID), 0}, {PCI_VDEVICE(CAVIUM, CN10K_CPT_PCI_VF_DEVICE_ID), 0}, { 0, } /* end of table */ }; static struct pci_driver otx2_cptvf_pci_driver = { .name = OTX2_CPTVF_DRV_NAME, .id_table = otx2_cptvf_id_table, .probe = otx2_cptvf_probe, .remove = otx2_cptvf_remove, }; module_pci_driver(otx2_cptvf_pci_driver); MODULE_IMPORT_NS(CRYPTO_DEV_OCTEONTX2_CPT); MODULE_AUTHOR("Marvell"); MODULE_DESCRIPTION("Marvell RVU CPT Virtual Function Driver"); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(pci, otx2_cptvf_id_table);
linux-master
drivers/crypto/marvell/octeontx2/otx2_cptvf_main.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include "otx2_cptvf.h" #include "otx2_cpt_common.h" /* SG list header size in bytes */ #define SG_LIST_HDR_SIZE 8 /* Default timeout when waiting for free pending entry in us */ #define CPT_PENTRY_TIMEOUT 1000 #define CPT_PENTRY_STEP 50 /* Default threshold for stopping and resuming sender requests */ #define CPT_IQ_STOP_MARGIN 128 #define CPT_IQ_RESUME_MARGIN 512 /* Default command timeout in seconds */ #define CPT_COMMAND_TIMEOUT 4 #define CPT_TIME_IN_RESET_COUNT 5 static void otx2_cpt_dump_sg_list(struct pci_dev *pdev, struct otx2_cpt_req_info *req) { int i; pr_debug("Gather list size %d\n", req->in_cnt); for (i = 0; i < req->in_cnt; i++) { pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i, req->in[i].size, req->in[i].vptr, (void *) req->in[i].dma_addr); pr_debug("Buffer hexdump (%d bytes)\n", req->in[i].size); print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, req->in[i].vptr, req->in[i].size, false); } pr_debug("Scatter list size %d\n", req->out_cnt); for (i = 0; i < req->out_cnt; i++) { pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i, req->out[i].size, req->out[i].vptr, (void *) req->out[i].dma_addr); pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size); print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, req->out[i].vptr, req->out[i].size, false); } } static inline struct otx2_cpt_pending_entry *get_free_pending_entry( struct otx2_cpt_pending_queue *q, int qlen) { struct otx2_cpt_pending_entry *ent = NULL; ent = &q->head[q->rear]; if (unlikely(ent->busy)) return NULL; q->rear++; if (unlikely(q->rear == qlen)) q->rear = 0; return ent; } static inline u32 modulo_inc(u32 index, u32 length, u32 inc) { if (WARN_ON(inc > length)) inc = length; index += inc; if (unlikely(index >= length)) index -= length; return index; } static inline void free_pentry(struct otx2_cpt_pending_entry *pentry) { pentry->completion_addr = NULL; pentry->info = NULL; pentry->callback = NULL; pentry->areq = NULL; pentry->resume_sender = false; pentry->busy = false; } static inline int setup_sgio_components(struct pci_dev *pdev, struct otx2_cpt_buf_ptr *list, int buf_count, u8 *buffer) { struct otx2_cpt_sglist_component *sg_ptr = NULL; int ret = 0, i, j; int components; if (unlikely(!list)) { dev_err(&pdev->dev, "Input list pointer is NULL\n"); return -EFAULT; } for (i = 0; i < buf_count; i++) { if (unlikely(!list[i].vptr)) continue; list[i].dma_addr = dma_map_single(&pdev->dev, list[i].vptr, list[i].size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, list[i].dma_addr))) { dev_err(&pdev->dev, "Dma mapping failed\n"); ret = -EIO; goto sg_cleanup; } } components = buf_count / 4; sg_ptr = (struct otx2_cpt_sglist_component *)buffer; for (i = 0; i < components; i++) { sg_ptr->len0 = cpu_to_be16(list[i * 4 + 0].size); sg_ptr->len1 = cpu_to_be16(list[i * 4 + 1].size); sg_ptr->len2 = cpu_to_be16(list[i * 4 + 2].size); sg_ptr->len3 = cpu_to_be16(list[i * 4 + 3].size); sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr); sg_ptr++; } components = buf_count % 4; switch (components) { case 3: sg_ptr->len2 = cpu_to_be16(list[i * 4 + 2].size); sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); fallthrough; case 2: sg_ptr->len1 = cpu_to_be16(list[i * 4 + 1].size); sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); fallthrough; case 1: sg_ptr->len0 = cpu_to_be16(list[i * 4 + 0].size); sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); break; default: break; } return ret; sg_cleanup: for (j = 0; j < i; j++) { if (list[j].dma_addr) { dma_unmap_single(&pdev->dev, list[j].dma_addr, list[j].size, DMA_BIDIRECTIONAL); } list[j].dma_addr = 0; } return ret; } static inline struct otx2_cpt_inst_info *info_create(struct pci_dev *pdev, struct otx2_cpt_req_info *req, gfp_t gfp) { int align = OTX2_CPT_DMA_MINALIGN; struct otx2_cpt_inst_info *info; u32 dlen, align_dlen, info_len; u16 g_sz_bytes, s_sz_bytes; u32 total_mem_len; if (unlikely(req->in_cnt > OTX2_CPT_MAX_SG_IN_CNT || req->out_cnt > OTX2_CPT_MAX_SG_OUT_CNT)) { dev_err(&pdev->dev, "Error too many sg components\n"); return NULL; } g_sz_bytes = ((req->in_cnt + 3) / 4) * sizeof(struct otx2_cpt_sglist_component); s_sz_bytes = ((req->out_cnt + 3) / 4) * sizeof(struct otx2_cpt_sglist_component); dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE; align_dlen = ALIGN(dlen, align); info_len = ALIGN(sizeof(*info), align); total_mem_len = align_dlen + info_len + sizeof(union otx2_cpt_res_s); info = kzalloc(total_mem_len, gfp); if (unlikely(!info)) return NULL; info->dlen = dlen; info->in_buffer = (u8 *)info + info_len; ((u16 *)info->in_buffer)[0] = req->out_cnt; ((u16 *)info->in_buffer)[1] = req->in_cnt; ((u16 *)info->in_buffer)[2] = 0; ((u16 *)info->in_buffer)[3] = 0; cpu_to_be64s((u64 *)info->in_buffer); /* Setup gather (input) components */ if (setup_sgio_components(pdev, req->in, req->in_cnt, &info->in_buffer[8])) { dev_err(&pdev->dev, "Failed to setup gather list\n"); goto destroy_info; } if (setup_sgio_components(pdev, req->out, req->out_cnt, &info->in_buffer[8 + g_sz_bytes])) { dev_err(&pdev->dev, "Failed to setup scatter list\n"); goto destroy_info; } info->dma_len = total_mem_len - info_len; info->dptr_baddr = dma_map_single(&pdev->dev, info->in_buffer, info->dma_len, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) { dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n"); goto destroy_info; } /* * Get buffer for union otx2_cpt_res_s response * structure and its physical address */ info->completion_addr = info->in_buffer + align_dlen; info->comp_baddr = info->dptr_baddr + align_dlen; return info; destroy_info: otx2_cpt_info_destroy(pdev, info); return NULL; } static int process_request(struct pci_dev *pdev, struct otx2_cpt_req_info *req, struct otx2_cpt_pending_queue *pqueue, struct otx2_cptlf_info *lf) { struct otx2_cptvf_request *cpt_req = &req->req; struct otx2_cpt_pending_entry *pentry = NULL; union otx2_cpt_ctrl_info *ctrl = &req->ctrl; struct otx2_cpt_inst_info *info = NULL; union otx2_cpt_res_s *result = NULL; struct otx2_cpt_iq_command iq_cmd; union otx2_cpt_inst_s cptinst; int retry, ret = 0; u8 resume_sender; gfp_t gfp; gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; if (unlikely(!otx2_cptlf_started(lf->lfs))) return -ENODEV; info = info_create(pdev, req, gfp); if (unlikely(!info)) { dev_err(&pdev->dev, "Setting up cpt inst info failed"); return -ENOMEM; } cpt_req->dlen = info->dlen; result = info->completion_addr; result->s.compcode = OTX2_CPT_COMPLETION_CODE_INIT; spin_lock_bh(&pqueue->lock); pentry = get_free_pending_entry(pqueue, pqueue->qlen); retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP; while (unlikely(!pentry) && retry--) { spin_unlock_bh(&pqueue->lock); udelay(CPT_PENTRY_STEP); spin_lock_bh(&pqueue->lock); pentry = get_free_pending_entry(pqueue, pqueue->qlen); } if (unlikely(!pentry)) { ret = -ENOSPC; goto destroy_info; } /* * Check if we are close to filling in entire pending queue, * if so then tell the sender to stop/sleep by returning -EBUSY * We do it only for context which can sleep (GFP_KERNEL) */ if (gfp == GFP_KERNEL && pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) { pentry->resume_sender = true; } else pentry->resume_sender = false; resume_sender = pentry->resume_sender; pqueue->pending_count++; pentry->completion_addr = info->completion_addr; pentry->info = info; pentry->callback = req->callback; pentry->areq = req->areq; pentry->busy = true; info->pentry = pentry; info->time_in = jiffies; info->req = req; /* Fill in the command */ iq_cmd.cmd.u = 0; iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags); iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1); iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2); iq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen); /* 64-bit swap for microcode data reads, not needed for addresses*/ cpu_to_be64s(&iq_cmd.cmd.u); iq_cmd.dptr = info->dptr_baddr; iq_cmd.rptr = 0; iq_cmd.cptr.u = 0; iq_cmd.cptr.s.grp = ctrl->s.grp; /* Fill in the CPT_INST_S type command for HW interpretation */ otx2_cpt_fill_inst(&cptinst, &iq_cmd, info->comp_baddr); /* Print debug info if enabled */ otx2_cpt_dump_sg_list(pdev, req); pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX2_CPT_INST_SIZE); print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX2_CPT_INST_SIZE, false); pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen); print_hex_dump_debug("", 0, 16, 1, info->in_buffer, cpt_req->dlen, false); /* Send CPT command */ lf->lfs->ops->send_cmd(&cptinst, 1, lf); /* * We allocate and prepare pending queue entry in critical section * together with submitting CPT instruction to CPT instruction queue * to make sure that order of CPT requests is the same in both * pending and instruction queues */ spin_unlock_bh(&pqueue->lock); ret = resume_sender ? -EBUSY : -EINPROGRESS; return ret; destroy_info: spin_unlock_bh(&pqueue->lock); otx2_cpt_info_destroy(pdev, info); return ret; } int otx2_cpt_do_request(struct pci_dev *pdev, struct otx2_cpt_req_info *req, int cpu_num) { struct otx2_cptvf_dev *cptvf = pci_get_drvdata(pdev); struct otx2_cptlfs_info *lfs = &cptvf->lfs; return process_request(lfs->pdev, req, &lfs->lf[cpu_num].pqueue, &lfs->lf[cpu_num]); } static int cpt_process_ccode(struct otx2_cptlfs_info *lfs, union otx2_cpt_res_s *cpt_status, struct otx2_cpt_inst_info *info, u32 *res_code) { u8 uc_ccode = lfs->ops->cpt_get_uc_compcode(cpt_status); u8 ccode = lfs->ops->cpt_get_compcode(cpt_status); struct pci_dev *pdev = lfs->pdev; switch (ccode) { case OTX2_CPT_COMP_E_FAULT: dev_err(&pdev->dev, "Request failed with DMA fault\n"); otx2_cpt_dump_sg_list(pdev, info->req); break; case OTX2_CPT_COMP_E_HWERR: dev_err(&pdev->dev, "Request failed with hardware error\n"); otx2_cpt_dump_sg_list(pdev, info->req); break; case OTX2_CPT_COMP_E_INSTERR: dev_err(&pdev->dev, "Request failed with instruction error\n"); otx2_cpt_dump_sg_list(pdev, info->req); break; case OTX2_CPT_COMP_E_NOTDONE: /* check for timeout */ if (time_after_eq(jiffies, info->time_in + CPT_COMMAND_TIMEOUT * HZ)) dev_warn(&pdev->dev, "Request timed out 0x%p", info->req); else if (info->extra_time < CPT_TIME_IN_RESET_COUNT) { info->time_in = jiffies; info->extra_time++; } return 1; case OTX2_CPT_COMP_E_GOOD: case OTX2_CPT_COMP_E_WARN: /* * Check microcode completion code, it is only valid * when completion code is CPT_COMP_E::GOOD */ if (uc_ccode != OTX2_CPT_UCC_SUCCESS) { /* * If requested hmac is truncated and ucode returns * s/g write length error then we report success * because ucode writes as many bytes of calculated * hmac as available in gather buffer and reports * s/g write length error if number of bytes in gather * buffer is less than full hmac size. */ if (info->req->is_trunc_hmac && uc_ccode == OTX2_CPT_UCC_SG_WRITE_LENGTH) { *res_code = 0; break; } dev_err(&pdev->dev, "Request failed with software error code 0x%x\n", cpt_status->s.uc_compcode); otx2_cpt_dump_sg_list(pdev, info->req); break; } /* Request has been processed with success */ *res_code = 0; break; default: dev_err(&pdev->dev, "Request returned invalid status %d\n", ccode); break; } return 0; } static inline void process_pending_queue(struct otx2_cptlfs_info *lfs, struct otx2_cpt_pending_queue *pqueue) { struct otx2_cpt_pending_entry *resume_pentry = NULL; void (*callback)(int status, void *arg, void *req); struct otx2_cpt_pending_entry *pentry = NULL; union otx2_cpt_res_s *cpt_status = NULL; struct otx2_cpt_inst_info *info = NULL; struct otx2_cpt_req_info *req = NULL; struct crypto_async_request *areq; struct pci_dev *pdev = lfs->pdev; u32 res_code, resume_index; while (1) { spin_lock_bh(&pqueue->lock); pentry = &pqueue->head[pqueue->front]; if (WARN_ON(!pentry)) { spin_unlock_bh(&pqueue->lock); break; } res_code = -EINVAL; if (unlikely(!pentry->busy)) { spin_unlock_bh(&pqueue->lock); break; } if (unlikely(!pentry->callback)) { dev_err(&pdev->dev, "Callback NULL\n"); goto process_pentry; } info = pentry->info; if (unlikely(!info)) { dev_err(&pdev->dev, "Pending entry post arg NULL\n"); goto process_pentry; } req = info->req; if (unlikely(!req)) { dev_err(&pdev->dev, "Request NULL\n"); goto process_pentry; } cpt_status = pentry->completion_addr; if (unlikely(!cpt_status)) { dev_err(&pdev->dev, "Completion address NULL\n"); goto process_pentry; } if (cpt_process_ccode(lfs, cpt_status, info, &res_code)) { spin_unlock_bh(&pqueue->lock); return; } info->pdev = pdev; process_pentry: /* * Check if we should inform sending side to resume * We do it CPT_IQ_RESUME_MARGIN elements in advance before * pending queue becomes empty */ resume_index = modulo_inc(pqueue->front, pqueue->qlen, CPT_IQ_RESUME_MARGIN); resume_pentry = &pqueue->head[resume_index]; if (resume_pentry && resume_pentry->resume_sender) { resume_pentry->resume_sender = false; callback = resume_pentry->callback; areq = resume_pentry->areq; if (callback) { spin_unlock_bh(&pqueue->lock); /* * EINPROGRESS is an indication for sending * side that it can resume sending requests */ callback(-EINPROGRESS, areq, info); spin_lock_bh(&pqueue->lock); } } callback = pentry->callback; areq = pentry->areq; free_pentry(pentry); pqueue->pending_count--; pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1); spin_unlock_bh(&pqueue->lock); /* * Call callback after current pending entry has been * processed, we don't do it if the callback pointer is * invalid. */ if (callback) callback(res_code, areq, info); } } void otx2_cpt_post_process(struct otx2_cptlf_wqe *wqe) { process_pending_queue(wqe->lfs, &wqe->lfs->lf[wqe->lf_num].pqueue); } int otx2_cpt_get_kcrypto_eng_grp_num(struct pci_dev *pdev) { struct otx2_cptvf_dev *cptvf = pci_get_drvdata(pdev); return cptvf->lfs.kcrypto_eng_grp_num; }
linux-master
drivers/crypto/marvell/octeontx2/otx2_cptvf_reqmgr.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2021 Marvell. */ #include <linux/soc/marvell/octeontx2/asm.h> #include "otx2_cptpf.h" #include "otx2_cptvf.h" #include "otx2_cptlf.h" #include "cn10k_cpt.h" static void cn10k_cpt_send_cmd(union otx2_cpt_inst_s *cptinst, u32 insts_num, struct otx2_cptlf_info *lf); static struct cpt_hw_ops otx2_hw_ops = { .send_cmd = otx2_cpt_send_cmd, .cpt_get_compcode = otx2_cpt_get_compcode, .cpt_get_uc_compcode = otx2_cpt_get_uc_compcode, }; static struct cpt_hw_ops cn10k_hw_ops = { .send_cmd = cn10k_cpt_send_cmd, .cpt_get_compcode = cn10k_cpt_get_compcode, .cpt_get_uc_compcode = cn10k_cpt_get_uc_compcode, }; static void cn10k_cpt_send_cmd(union otx2_cpt_inst_s *cptinst, u32 insts_num, struct otx2_cptlf_info *lf) { void __iomem *lmtline = lf->lmtline; u64 val = (lf->slot & 0x7FF); u64 tar_addr = 0; /* tar_addr<6:4> = Size of first LMTST - 1 in units of 128b. */ tar_addr |= (__force u64)lf->ioreg | (((OTX2_CPT_INST_SIZE/16) - 1) & 0x7) << 4; /* * Make sure memory areas pointed in CPT_INST_S * are flushed before the instruction is sent to CPT */ dma_wmb(); /* Copy CPT command to LMTLINE */ memcpy_toio(lmtline, cptinst, insts_num * OTX2_CPT_INST_SIZE); cn10k_lmt_flush(val, tar_addr); } int cn10k_cptpf_lmtst_init(struct otx2_cptpf_dev *cptpf) { struct pci_dev *pdev = cptpf->pdev; resource_size_t size; u64 lmt_base; if (!test_bit(CN10K_LMTST, &cptpf->cap_flag)) { cptpf->lfs.ops = &otx2_hw_ops; return 0; } cptpf->lfs.ops = &cn10k_hw_ops; lmt_base = readq(cptpf->reg_base + RVU_PF_LMTLINE_ADDR); if (!lmt_base) { dev_err(&pdev->dev, "PF LMTLINE address not configured\n"); return -ENOMEM; } size = pci_resource_len(pdev, PCI_MBOX_BAR_NUM); size -= ((1 + cptpf->max_vfs) * MBOX_SIZE); cptpf->lfs.lmt_base = devm_ioremap_wc(&pdev->dev, lmt_base, size); if (!cptpf->lfs.lmt_base) { dev_err(&pdev->dev, "Mapping of PF LMTLINE address failed\n"); return -ENOMEM; } return 0; } EXPORT_SYMBOL_NS_GPL(cn10k_cptpf_lmtst_init, CRYPTO_DEV_OCTEONTX2_CPT); int cn10k_cptvf_lmtst_init(struct otx2_cptvf_dev *cptvf) { struct pci_dev *pdev = cptvf->pdev; resource_size_t offset, size; if (!test_bit(CN10K_LMTST, &cptvf->cap_flag)) { cptvf->lfs.ops = &otx2_hw_ops; return 0; } cptvf->lfs.ops = &cn10k_hw_ops; offset = pci_resource_start(pdev, PCI_MBOX_BAR_NUM); size = pci_resource_len(pdev, PCI_MBOX_BAR_NUM); /* Map VF LMILINE region */ cptvf->lfs.lmt_base = devm_ioremap_wc(&pdev->dev, offset, size); if (!cptvf->lfs.lmt_base) { dev_err(&pdev->dev, "Unable to map BAR4\n"); return -ENOMEM; } return 0; } EXPORT_SYMBOL_NS_GPL(cn10k_cptvf_lmtst_init, CRYPTO_DEV_OCTEONTX2_CPT);
linux-master
drivers/crypto/marvell/octeontx2/cn10k_cpt.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include "otx2_cpt_common.h" #include "otx2_cptpf.h" #include "rvu_reg.h" /* Fastpath ipsec opcode with inplace processing */ #define CPT_INLINE_RX_OPCODE (0x26 | (1 << 6)) #define CN10K_CPT_INLINE_RX_OPCODE (0x29 | (1 << 6)) #define cpt_inline_rx_opcode(pdev) \ ({ \ u8 opcode; \ if (is_dev_otx2(pdev)) \ opcode = CPT_INLINE_RX_OPCODE; \ else \ opcode = CN10K_CPT_INLINE_RX_OPCODE; \ (opcode); \ }) /* * CPT PF driver version, It will be incremented by 1 for every feature * addition in CPT mailbox messages. */ #define OTX2_CPT_PF_DRV_VERSION 0x1 static int forward_to_af(struct otx2_cptpf_dev *cptpf, struct otx2_cptvf_info *vf, struct mbox_msghdr *req, int size) { struct mbox_msghdr *msg; int ret; mutex_lock(&cptpf->lock); msg = otx2_mbox_alloc_msg(&cptpf->afpf_mbox, 0, size); if (msg == NULL) { mutex_unlock(&cptpf->lock); return -ENOMEM; } memcpy((uint8_t *)msg + sizeof(struct mbox_msghdr), (uint8_t *)req + sizeof(struct mbox_msghdr), size); msg->id = req->id; msg->pcifunc = req->pcifunc; msg->sig = req->sig; msg->ver = req->ver; ret = otx2_cpt_sync_mbox_msg(&cptpf->afpf_mbox); /* Error code -EIO indicate there is a communication failure * to the AF. Rest of the error codes indicate that AF processed * VF messages and set the error codes in response messages * (if any) so simply forward responses to VF. */ if (ret == -EIO) { dev_warn(&cptpf->pdev->dev, "AF not responding to VF%d messages\n", vf->vf_id); mutex_unlock(&cptpf->lock); return ret; } mutex_unlock(&cptpf->lock); return 0; } static int handle_msg_get_caps(struct otx2_cptpf_dev *cptpf, struct otx2_cptvf_info *vf, struct mbox_msghdr *req) { struct otx2_cpt_caps_rsp *rsp; rsp = (struct otx2_cpt_caps_rsp *) otx2_mbox_alloc_msg(&cptpf->vfpf_mbox, vf->vf_id, sizeof(*rsp)); if (!rsp) return -ENOMEM; rsp->hdr.id = MBOX_MSG_GET_CAPS; rsp->hdr.sig = OTX2_MBOX_RSP_SIG; rsp->hdr.pcifunc = req->pcifunc; rsp->cpt_pf_drv_version = OTX2_CPT_PF_DRV_VERSION; rsp->cpt_revision = cptpf->pdev->revision; memcpy(&rsp->eng_caps, &cptpf->eng_caps, sizeof(rsp->eng_caps)); return 0; } static int handle_msg_get_eng_grp_num(struct otx2_cptpf_dev *cptpf, struct otx2_cptvf_info *vf, struct mbox_msghdr *req) { struct otx2_cpt_egrp_num_msg *grp_req; struct otx2_cpt_egrp_num_rsp *rsp; grp_req = (struct otx2_cpt_egrp_num_msg *)req; rsp = (struct otx2_cpt_egrp_num_rsp *) otx2_mbox_alloc_msg(&cptpf->vfpf_mbox, vf->vf_id, sizeof(*rsp)); if (!rsp) return -ENOMEM; rsp->hdr.id = MBOX_MSG_GET_ENG_GRP_NUM; rsp->hdr.sig = OTX2_MBOX_RSP_SIG; rsp->hdr.pcifunc = req->pcifunc; rsp->eng_type = grp_req->eng_type; rsp->eng_grp_num = otx2_cpt_get_eng_grp(&cptpf->eng_grps, grp_req->eng_type); return 0; } static int handle_msg_kvf_limits(struct otx2_cptpf_dev *cptpf, struct otx2_cptvf_info *vf, struct mbox_msghdr *req) { struct otx2_cpt_kvf_limits_rsp *rsp; rsp = (struct otx2_cpt_kvf_limits_rsp *) otx2_mbox_alloc_msg(&cptpf->vfpf_mbox, vf->vf_id, sizeof(*rsp)); if (!rsp) return -ENOMEM; rsp->hdr.id = MBOX_MSG_GET_KVF_LIMITS; rsp->hdr.sig = OTX2_MBOX_RSP_SIG; rsp->hdr.pcifunc = req->pcifunc; rsp->kvf_limits = cptpf->kvf_limits; return 0; } static int send_inline_ipsec_inbound_msg(struct otx2_cptpf_dev *cptpf, int sso_pf_func, u8 slot) { struct cpt_inline_ipsec_cfg_msg *req; struct pci_dev *pdev = cptpf->pdev; req = (struct cpt_inline_ipsec_cfg_msg *) otx2_mbox_alloc_msg_rsp(&cptpf->afpf_mbox, 0, sizeof(*req), sizeof(struct msg_rsp)); if (req == NULL) { dev_err(&pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } memset(req, 0, sizeof(*req)); req->hdr.id = MBOX_MSG_CPT_INLINE_IPSEC_CFG; req->hdr.sig = OTX2_MBOX_REQ_SIG; req->hdr.pcifunc = OTX2_CPT_RVU_PFFUNC(cptpf->pf_id, 0); req->dir = CPT_INLINE_INBOUND; req->slot = slot; req->sso_pf_func_ovrd = cptpf->sso_pf_func_ovrd; req->sso_pf_func = sso_pf_func; req->enable = 1; return otx2_cpt_send_mbox_msg(&cptpf->afpf_mbox, pdev); } static int rx_inline_ipsec_lf_cfg(struct otx2_cptpf_dev *cptpf, u8 egrp, struct otx2_cpt_rx_inline_lf_cfg *req) { struct nix_inline_ipsec_cfg *nix_req; struct pci_dev *pdev = cptpf->pdev; int ret; nix_req = (struct nix_inline_ipsec_cfg *) otx2_mbox_alloc_msg_rsp(&cptpf->afpf_mbox, 0, sizeof(*nix_req), sizeof(struct msg_rsp)); if (nix_req == NULL) { dev_err(&pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } memset(nix_req, 0, sizeof(*nix_req)); nix_req->hdr.id = MBOX_MSG_NIX_INLINE_IPSEC_CFG; nix_req->hdr.sig = OTX2_MBOX_REQ_SIG; nix_req->enable = 1; if (!req->credit || req->credit > OTX2_CPT_INST_QLEN_MSGS) nix_req->cpt_credit = OTX2_CPT_INST_QLEN_MSGS - 1; else nix_req->cpt_credit = req->credit - 1; nix_req->gen_cfg.egrp = egrp; if (req->opcode) nix_req->gen_cfg.opcode = req->opcode; else nix_req->gen_cfg.opcode = cpt_inline_rx_opcode(pdev); nix_req->gen_cfg.param1 = req->param1; nix_req->gen_cfg.param2 = req->param2; nix_req->inst_qsel.cpt_pf_func = OTX2_CPT_RVU_PFFUNC(cptpf->pf_id, 0); nix_req->inst_qsel.cpt_slot = 0; ret = otx2_cpt_send_mbox_msg(&cptpf->afpf_mbox, pdev); if (ret) return ret; if (cptpf->has_cpt1) { ret = send_inline_ipsec_inbound_msg(cptpf, req->sso_pf_func, 1); if (ret) return ret; } return send_inline_ipsec_inbound_msg(cptpf, req->sso_pf_func, 0); } static int handle_msg_rx_inline_ipsec_lf_cfg(struct otx2_cptpf_dev *cptpf, struct mbox_msghdr *req) { struct otx2_cpt_rx_inline_lf_cfg *cfg_req; u8 egrp; int ret; cfg_req = (struct otx2_cpt_rx_inline_lf_cfg *)req; if (cptpf->lfs.lfs_num) { dev_err(&cptpf->pdev->dev, "LF is already configured for RX inline ipsec.\n"); return -EEXIST; } /* * Allow LFs to execute requests destined to only grp IE_TYPES and * set queue priority of each LF to high */ egrp = otx2_cpt_get_eng_grp(&cptpf->eng_grps, OTX2_CPT_IE_TYPES); if (egrp == OTX2_CPT_INVALID_CRYPTO_ENG_GRP) { dev_err(&cptpf->pdev->dev, "Engine group for inline ipsec is not available\n"); return -ENOENT; } otx2_cptlf_set_dev_info(&cptpf->lfs, cptpf->pdev, cptpf->reg_base, &cptpf->afpf_mbox, BLKADDR_CPT0); ret = otx2_cptlf_init(&cptpf->lfs, 1 << egrp, OTX2_CPT_QUEUE_HI_PRIO, 1); if (ret) { dev_err(&cptpf->pdev->dev, "LF configuration failed for RX inline ipsec.\n"); return ret; } if (cptpf->has_cpt1) { cptpf->rsrc_req_blkaddr = BLKADDR_CPT1; otx2_cptlf_set_dev_info(&cptpf->cpt1_lfs, cptpf->pdev, cptpf->reg_base, &cptpf->afpf_mbox, BLKADDR_CPT1); ret = otx2_cptlf_init(&cptpf->cpt1_lfs, 1 << egrp, OTX2_CPT_QUEUE_HI_PRIO, 1); if (ret) { dev_err(&cptpf->pdev->dev, "LF configuration failed for RX inline ipsec.\n"); goto lf_cleanup; } cptpf->rsrc_req_blkaddr = 0; } ret = rx_inline_ipsec_lf_cfg(cptpf, egrp, cfg_req); if (ret) goto lf1_cleanup; return 0; lf1_cleanup: otx2_cptlf_shutdown(&cptpf->cpt1_lfs); lf_cleanup: otx2_cptlf_shutdown(&cptpf->lfs); return ret; } static int cptpf_handle_vf_req(struct otx2_cptpf_dev *cptpf, struct otx2_cptvf_info *vf, struct mbox_msghdr *req, int size) { int err = 0; /* Check if msg is valid, if not reply with an invalid msg */ if (req->sig != OTX2_MBOX_REQ_SIG) goto inval_msg; switch (req->id) { case MBOX_MSG_GET_ENG_GRP_NUM: err = handle_msg_get_eng_grp_num(cptpf, vf, req); break; case MBOX_MSG_GET_CAPS: err = handle_msg_get_caps(cptpf, vf, req); break; case MBOX_MSG_GET_KVF_LIMITS: err = handle_msg_kvf_limits(cptpf, vf, req); break; case MBOX_MSG_RX_INLINE_IPSEC_LF_CFG: err = handle_msg_rx_inline_ipsec_lf_cfg(cptpf, req); break; default: err = forward_to_af(cptpf, vf, req, size); break; } return err; inval_msg: otx2_reply_invalid_msg(&cptpf->vfpf_mbox, vf->vf_id, 0, req->id); otx2_mbox_msg_send(&cptpf->vfpf_mbox, vf->vf_id); return err; } irqreturn_t otx2_cptpf_vfpf_mbox_intr(int __always_unused irq, void *arg) { struct otx2_cptpf_dev *cptpf = arg; struct otx2_cptvf_info *vf; int i, vf_idx; u64 intr; /* * Check which VF has raised an interrupt and schedule * corresponding work queue to process the messages */ for (i = 0; i < 2; i++) { /* Read the interrupt bits */ intr = otx2_cpt_read64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INTX(i)); for (vf_idx = i * 64; vf_idx < cptpf->enabled_vfs; vf_idx++) { vf = &cptpf->vf[vf_idx]; if (intr & (1ULL << vf->intr_idx)) { queue_work(cptpf->vfpf_mbox_wq, &vf->vfpf_mbox_work); /* Clear the interrupt */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INTX(i), BIT_ULL(vf->intr_idx)); } } } return IRQ_HANDLED; } void otx2_cptpf_vfpf_mbox_handler(struct work_struct *work) { struct otx2_cptpf_dev *cptpf; struct otx2_cptvf_info *vf; struct otx2_mbox_dev *mdev; struct mbox_hdr *req_hdr; struct mbox_msghdr *msg; struct otx2_mbox *mbox; int offset, i, err; vf = container_of(work, struct otx2_cptvf_info, vfpf_mbox_work); cptpf = vf->cptpf; mbox = &cptpf->vfpf_mbox; /* sync with mbox memory region */ smp_rmb(); mdev = &mbox->dev[vf->vf_id]; /* Process received mbox messages */ req_hdr = (struct mbox_hdr *)(mdev->mbase + mbox->rx_start); offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN); for (i = 0; i < req_hdr->num_msgs; i++) { msg = (struct mbox_msghdr *)(mdev->mbase + offset); /* Set which VF sent this message based on mbox IRQ */ msg->pcifunc = ((u16)cptpf->pf_id << RVU_PFVF_PF_SHIFT) | ((vf->vf_id + 1) & RVU_PFVF_FUNC_MASK); err = cptpf_handle_vf_req(cptpf, vf, msg, msg->next_msgoff - offset); /* * Behave as the AF, drop the msg if there is * no memory, timeout handling also goes here */ if (err == -ENOMEM || err == -EIO) break; offset = msg->next_msgoff; /* Write barrier required for VF responses which are handled by * PF driver and not forwarded to AF. */ smp_wmb(); } /* Send mbox responses to VF */ if (mdev->num_msgs) otx2_mbox_msg_send(mbox, vf->vf_id); } irqreturn_t otx2_cptpf_afpf_mbox_intr(int __always_unused irq, void *arg) { struct otx2_cptpf_dev *cptpf = arg; struct otx2_mbox_dev *mdev; struct otx2_mbox *mbox; struct mbox_hdr *hdr; u64 intr; /* Read the interrupt bits */ intr = otx2_cpt_read64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_INT); if (intr & 0x1ULL) { mbox = &cptpf->afpf_mbox; mdev = &mbox->dev[0]; hdr = mdev->mbase + mbox->rx_start; if (hdr->num_msgs) /* Schedule work queue function to process the MBOX request */ queue_work(cptpf->afpf_mbox_wq, &cptpf->afpf_mbox_work); mbox = &cptpf->afpf_mbox_up; mdev = &mbox->dev[0]; hdr = mdev->mbase + mbox->rx_start; if (hdr->num_msgs) /* Schedule work queue function to process the MBOX request */ queue_work(cptpf->afpf_mbox_wq, &cptpf->afpf_mbox_up_work); /* Clear and ack the interrupt */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_INT, 0x1ULL); } return IRQ_HANDLED; } static void process_afpf_mbox_msg(struct otx2_cptpf_dev *cptpf, struct mbox_msghdr *msg) { struct otx2_cptlfs_info *lfs = &cptpf->lfs; struct device *dev = &cptpf->pdev->dev; struct cpt_rd_wr_reg_msg *rsp_rd_wr; if (msg->id >= MBOX_MSG_MAX) { dev_err(dev, "MBOX msg with unknown ID %d\n", msg->id); return; } if (msg->sig != OTX2_MBOX_RSP_SIG) { dev_err(dev, "MBOX msg with wrong signature %x, ID %d\n", msg->sig, msg->id); return; } if (cptpf->rsrc_req_blkaddr == BLKADDR_CPT1) lfs = &cptpf->cpt1_lfs; switch (msg->id) { case MBOX_MSG_READY: cptpf->pf_id = (msg->pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK; break; case MBOX_MSG_CPT_RD_WR_REGISTER: rsp_rd_wr = (struct cpt_rd_wr_reg_msg *)msg; if (msg->rc) { dev_err(dev, "Reg %llx rd/wr(%d) failed %d\n", rsp_rd_wr->reg_offset, rsp_rd_wr->is_write, msg->rc); return; } if (!rsp_rd_wr->is_write) *rsp_rd_wr->ret_val = rsp_rd_wr->val; break; case MBOX_MSG_ATTACH_RESOURCES: if (!msg->rc) lfs->are_lfs_attached = 1; break; case MBOX_MSG_DETACH_RESOURCES: if (!msg->rc) lfs->are_lfs_attached = 0; break; case MBOX_MSG_CPT_INLINE_IPSEC_CFG: case MBOX_MSG_NIX_INLINE_IPSEC_CFG: break; default: dev_err(dev, "Unsupported msg %d received.\n", msg->id); break; } } static void forward_to_vf(struct otx2_cptpf_dev *cptpf, struct mbox_msghdr *msg, int vf_id, int size) { struct otx2_mbox *vfpf_mbox; struct mbox_msghdr *fwd; if (msg->id >= MBOX_MSG_MAX) { dev_err(&cptpf->pdev->dev, "MBOX msg with unknown ID %d\n", msg->id); return; } if (msg->sig != OTX2_MBOX_RSP_SIG) { dev_err(&cptpf->pdev->dev, "MBOX msg with wrong signature %x, ID %d\n", msg->sig, msg->id); return; } vfpf_mbox = &cptpf->vfpf_mbox; vf_id--; if (vf_id >= cptpf->enabled_vfs) { dev_err(&cptpf->pdev->dev, "MBOX msg to unknown VF: %d >= %d\n", vf_id, cptpf->enabled_vfs); return; } if (msg->id == MBOX_MSG_VF_FLR) return; fwd = otx2_mbox_alloc_msg(vfpf_mbox, vf_id, size); if (!fwd) { dev_err(&cptpf->pdev->dev, "Forwarding to VF%d failed.\n", vf_id); return; } memcpy((uint8_t *)fwd + sizeof(struct mbox_msghdr), (uint8_t *)msg + sizeof(struct mbox_msghdr), size); fwd->id = msg->id; fwd->pcifunc = msg->pcifunc; fwd->sig = msg->sig; fwd->ver = msg->ver; fwd->rc = msg->rc; } /* Handle mailbox messages received from AF */ void otx2_cptpf_afpf_mbox_handler(struct work_struct *work) { struct otx2_cptpf_dev *cptpf; struct otx2_mbox *afpf_mbox; struct otx2_mbox_dev *mdev; struct mbox_hdr *rsp_hdr; struct mbox_msghdr *msg; int offset, vf_id, i; cptpf = container_of(work, struct otx2_cptpf_dev, afpf_mbox_work); afpf_mbox = &cptpf->afpf_mbox; mdev = &afpf_mbox->dev[0]; /* Sync mbox data into memory */ smp_wmb(); rsp_hdr = (struct mbox_hdr *)(mdev->mbase + afpf_mbox->rx_start); offset = ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN); for (i = 0; i < rsp_hdr->num_msgs; i++) { msg = (struct mbox_msghdr *)(mdev->mbase + afpf_mbox->rx_start + offset); vf_id = (msg->pcifunc >> RVU_PFVF_FUNC_SHIFT) & RVU_PFVF_FUNC_MASK; if (vf_id > 0) forward_to_vf(cptpf, msg, vf_id, msg->next_msgoff - offset); else process_afpf_mbox_msg(cptpf, msg); offset = msg->next_msgoff; /* Sync VF response ready to be sent */ smp_wmb(); mdev->msgs_acked++; } otx2_mbox_reset(afpf_mbox, 0); } static void handle_msg_cpt_inst_lmtst(struct otx2_cptpf_dev *cptpf, struct mbox_msghdr *msg) { struct cpt_inst_lmtst_req *req = (struct cpt_inst_lmtst_req *)msg; struct otx2_cptlfs_info *lfs = &cptpf->lfs; struct msg_rsp *rsp; if (cptpf->lfs.lfs_num) lfs->ops->send_cmd((union otx2_cpt_inst_s *)req->inst, 1, &lfs->lf[0]); rsp = (struct msg_rsp *)otx2_mbox_alloc_msg(&cptpf->afpf_mbox_up, 0, sizeof(*rsp)); if (!rsp) return; rsp->hdr.id = msg->id; rsp->hdr.sig = OTX2_MBOX_RSP_SIG; rsp->hdr.pcifunc = 0; rsp->hdr.rc = 0; } static void process_afpf_mbox_up_msg(struct otx2_cptpf_dev *cptpf, struct mbox_msghdr *msg) { if (msg->id >= MBOX_MSG_MAX) { dev_err(&cptpf->pdev->dev, "MBOX msg with unknown ID %d\n", msg->id); return; } switch (msg->id) { case MBOX_MSG_CPT_INST_LMTST: handle_msg_cpt_inst_lmtst(cptpf, msg); break; default: otx2_reply_invalid_msg(&cptpf->afpf_mbox_up, 0, 0, msg->id); } } void otx2_cptpf_afpf_mbox_up_handler(struct work_struct *work) { struct otx2_cptpf_dev *cptpf; struct otx2_mbox_dev *mdev; struct mbox_hdr *rsp_hdr; struct mbox_msghdr *msg; struct otx2_mbox *mbox; int offset, i; cptpf = container_of(work, struct otx2_cptpf_dev, afpf_mbox_up_work); mbox = &cptpf->afpf_mbox_up; mdev = &mbox->dev[0]; /* Sync mbox data into memory */ smp_wmb(); rsp_hdr = (struct mbox_hdr *)(mdev->mbase + mbox->rx_start); offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN); for (i = 0; i < rsp_hdr->num_msgs; i++) { msg = (struct mbox_msghdr *)(mdev->mbase + offset); process_afpf_mbox_up_msg(cptpf, msg); offset = mbox->rx_start + msg->next_msgoff; } otx2_mbox_msg_send(mbox, 0); }
linux-master
drivers/crypto/marvell/octeontx2/otx2_cptpf_mbox.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include <crypto/aes.h> #include <crypto/authenc.h> #include <crypto/cryptd.h> #include <crypto/des.h> #include <crypto/internal/aead.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/xts.h> #include <crypto/gcm.h> #include <crypto/scatterwalk.h> #include <linux/rtnetlink.h> #include <linux/sort.h> #include <linux/module.h> #include "otx2_cptvf.h" #include "otx2_cptvf_algs.h" #include "otx2_cpt_reqmgr.h" /* Size of salt in AES GCM mode */ #define AES_GCM_SALT_SIZE 4 /* Size of IV in AES GCM mode */ #define AES_GCM_IV_SIZE 8 /* Size of ICV (Integrity Check Value) in AES GCM mode */ #define AES_GCM_ICV_SIZE 16 /* Offset of IV in AES GCM mode */ #define AES_GCM_IV_OFFSET 8 #define CONTROL_WORD_LEN 8 #define KEY2_OFFSET 48 #define DMA_MODE_FLAG(dma_mode) \ (((dma_mode) == OTX2_CPT_DMA_MODE_SG) ? (1 << 7) : 0) /* Truncated SHA digest size */ #define SHA1_TRUNC_DIGEST_SIZE 12 #define SHA256_TRUNC_DIGEST_SIZE 16 #define SHA384_TRUNC_DIGEST_SIZE 24 #define SHA512_TRUNC_DIGEST_SIZE 32 static DEFINE_MUTEX(mutex); static int is_crypto_registered; struct cpt_device_desc { struct pci_dev *dev; int num_queues; }; struct cpt_device_table { atomic_t count; struct cpt_device_desc desc[OTX2_CPT_MAX_LFS_NUM]; }; static struct cpt_device_table se_devices = { .count = ATOMIC_INIT(0) }; static inline int get_se_device(struct pci_dev **pdev, int *cpu_num) { int count; count = atomic_read(&se_devices.count); if (count < 1) return -ENODEV; *cpu_num = get_cpu(); /* * On OcteonTX2 platform CPT instruction queue is bound to each * local function LF, in turn LFs can be attached to PF * or VF therefore we always use first device. We get maximum * performance if one CPT queue is available for each cpu * otherwise CPT queues need to be shared between cpus. */ if (*cpu_num >= se_devices.desc[0].num_queues) *cpu_num %= se_devices.desc[0].num_queues; *pdev = se_devices.desc[0].dev; put_cpu(); return 0; } static inline int validate_hmac_cipher_null(struct otx2_cpt_req_info *cpt_req) { struct otx2_cpt_req_ctx *rctx; struct aead_request *req; struct crypto_aead *tfm; req = container_of(cpt_req->areq, struct aead_request, base); tfm = crypto_aead_reqtfm(req); rctx = aead_request_ctx_dma(req); if (memcmp(rctx->fctx.hmac.s.hmac_calc, rctx->fctx.hmac.s.hmac_recv, crypto_aead_authsize(tfm)) != 0) return -EBADMSG; return 0; } static void otx2_cpt_aead_callback(int status, void *arg1, void *arg2) { struct otx2_cpt_inst_info *inst_info = arg2; struct crypto_async_request *areq = arg1; struct otx2_cpt_req_info *cpt_req; struct pci_dev *pdev; if (inst_info) { cpt_req = inst_info->req; if (!status) { /* * When selected cipher is NULL we need to manually * verify whether calculated hmac value matches * received hmac value */ if (cpt_req->req_type == OTX2_CPT_AEAD_ENC_DEC_NULL_REQ && !cpt_req->is_enc) status = validate_hmac_cipher_null(cpt_req); } pdev = inst_info->pdev; otx2_cpt_info_destroy(pdev, inst_info); } if (areq) crypto_request_complete(areq, status); } static void output_iv_copyback(struct crypto_async_request *areq) { struct otx2_cpt_req_info *req_info; struct otx2_cpt_req_ctx *rctx; struct skcipher_request *sreq; struct crypto_skcipher *stfm; struct otx2_cpt_enc_ctx *ctx; u32 start, ivsize; sreq = container_of(areq, struct skcipher_request, base); stfm = crypto_skcipher_reqtfm(sreq); ctx = crypto_skcipher_ctx(stfm); if (ctx->cipher_type == OTX2_CPT_AES_CBC || ctx->cipher_type == OTX2_CPT_DES3_CBC) { rctx = skcipher_request_ctx_dma(sreq); req_info = &rctx->cpt_req; ivsize = crypto_skcipher_ivsize(stfm); start = sreq->cryptlen - ivsize; if (req_info->is_enc) { scatterwalk_map_and_copy(sreq->iv, sreq->dst, start, ivsize, 0); } else { if (sreq->src != sreq->dst) { scatterwalk_map_and_copy(sreq->iv, sreq->src, start, ivsize, 0); } else { memcpy(sreq->iv, req_info->iv_out, ivsize); kfree(req_info->iv_out); } } } } static void otx2_cpt_skcipher_callback(int status, void *arg1, void *arg2) { struct otx2_cpt_inst_info *inst_info = arg2; struct crypto_async_request *areq = arg1; struct pci_dev *pdev; if (areq) { if (!status) output_iv_copyback(areq); if (inst_info) { pdev = inst_info->pdev; otx2_cpt_info_destroy(pdev, inst_info); } crypto_request_complete(areq, status); } } static inline void update_input_data(struct otx2_cpt_req_info *req_info, struct scatterlist *inp_sg, u32 nbytes, u32 *argcnt) { req_info->req.dlen += nbytes; while (nbytes) { u32 len = (nbytes < inp_sg->length) ? nbytes : inp_sg->length; u8 *ptr = sg_virt(inp_sg); req_info->in[*argcnt].vptr = (void *)ptr; req_info->in[*argcnt].size = len; nbytes -= len; ++(*argcnt); inp_sg = sg_next(inp_sg); } } static inline void update_output_data(struct otx2_cpt_req_info *req_info, struct scatterlist *outp_sg, u32 offset, u32 nbytes, u32 *argcnt) { u32 len, sg_len; u8 *ptr; req_info->rlen += nbytes; while (nbytes) { sg_len = outp_sg->length - offset; len = (nbytes < sg_len) ? nbytes : sg_len; ptr = sg_virt(outp_sg); req_info->out[*argcnt].vptr = (void *) (ptr + offset); req_info->out[*argcnt].size = len; nbytes -= len; ++(*argcnt); offset = 0; outp_sg = sg_next(outp_sg); } } static inline int create_ctx_hdr(struct skcipher_request *req, u32 enc, u32 *argcnt) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; struct otx2_cpt_fc_ctx *fctx = &rctx->fctx; int ivsize = crypto_skcipher_ivsize(stfm); u32 start = req->cryptlen - ivsize; gfp_t flags; flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG; req_info->ctrl.s.se_req = 1; req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_FC | DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG); if (enc) { req_info->req.opcode.s.minor = 2; } else { req_info->req.opcode.s.minor = 3; if ((ctx->cipher_type == OTX2_CPT_AES_CBC || ctx->cipher_type == OTX2_CPT_DES3_CBC) && req->src == req->dst) { req_info->iv_out = kmalloc(ivsize, flags); if (!req_info->iv_out) return -ENOMEM; scatterwalk_map_and_copy(req_info->iv_out, req->src, start, ivsize, 0); } } /* Encryption data length */ req_info->req.param1 = req->cryptlen; /* Authentication data length */ req_info->req.param2 = 0; fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_CPTR; if (ctx->cipher_type == OTX2_CPT_AES_XTS) memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2); else memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len); memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm)); cpu_to_be64s(&fctx->enc.enc_ctrl.u); /* * Storing Packet Data Information in offset * Control Word First 8 bytes */ req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; req_info->in[*argcnt].size = CONTROL_WORD_LEN; req_info->req.dlen += CONTROL_WORD_LEN; ++(*argcnt); req_info->in[*argcnt].vptr = (u8 *)fctx; req_info->in[*argcnt].size = sizeof(struct otx2_cpt_fc_ctx); req_info->req.dlen += sizeof(struct otx2_cpt_fc_ctx); ++(*argcnt); return 0; } static inline int create_input_list(struct skcipher_request *req, u32 enc, u32 enc_iv_len) { struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0; int ret; ret = create_ctx_hdr(req, enc, &argcnt); if (ret) return ret; update_input_data(req_info, req->src, req->cryptlen, &argcnt); req_info->in_cnt = argcnt; return 0; } static inline void create_output_list(struct skcipher_request *req, u32 enc_iv_len) { struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0; /* * OUTPUT Buffer Processing * AES encryption/decryption output would be * received in the following format * * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----| * [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ] */ update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt); req_info->out_cnt = argcnt; } static int skcipher_do_fallback(struct skcipher_request *req, bool is_enc) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm); int ret; if (ctx->fbk_cipher) { skcipher_request_set_tfm(&rctx->sk_fbk_req, ctx->fbk_cipher); skcipher_request_set_callback(&rctx->sk_fbk_req, req->base.flags, req->base.complete, req->base.data); skcipher_request_set_crypt(&rctx->sk_fbk_req, req->src, req->dst, req->cryptlen, req->iv); ret = is_enc ? crypto_skcipher_encrypt(&rctx->sk_fbk_req) : crypto_skcipher_decrypt(&rctx->sk_fbk_req); } else { ret = -EINVAL; } return ret; } static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; u32 enc_iv_len = crypto_skcipher_ivsize(stfm); struct pci_dev *pdev; int status, cpu_num; if (req->cryptlen == 0) return 0; if (!IS_ALIGNED(req->cryptlen, ctx->enc_align_len)) return -EINVAL; if (req->cryptlen > OTX2_CPT_MAX_REQ_SIZE) return skcipher_do_fallback(req, enc); /* Clear control words */ rctx->ctrl_word.flags = 0; rctx->fctx.enc.enc_ctrl.u = 0; status = create_input_list(req, enc, enc_iv_len); if (status) return status; create_output_list(req, enc_iv_len); status = get_se_device(&pdev, &cpu_num); if (status) return status; req_info->callback = otx2_cpt_skcipher_callback; req_info->areq = &req->base; req_info->req_type = OTX2_CPT_ENC_DEC_REQ; req_info->is_enc = enc; req_info->is_trunc_hmac = false; req_info->ctrl.s.grp = otx2_cpt_get_kcrypto_eng_grp_num(pdev); /* * We perform an asynchronous send and once * the request is completed the driver would * intimate through registered call back functions */ status = otx2_cpt_do_request(pdev, req_info, cpu_num); return status; } static int otx2_cpt_skcipher_encrypt(struct skcipher_request *req) { return cpt_enc_dec(req, true); } static int otx2_cpt_skcipher_decrypt(struct skcipher_request *req) { return cpt_enc_dec(req, false); } static int otx2_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); const u8 *key2 = key + (keylen / 2); const u8 *key1 = key; int ret; ret = xts_verify_key(tfm, key, keylen); if (ret) return ret; ctx->key_len = keylen; ctx->enc_align_len = 1; memcpy(ctx->enc_key, key1, keylen / 2); memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2); ctx->cipher_type = OTX2_CPT_AES_XTS; switch (ctx->key_len) { case 2 * AES_KEYSIZE_128: ctx->key_type = OTX2_CPT_AES_128_BIT; break; case 2 * AES_KEYSIZE_192: ctx->key_type = OTX2_CPT_AES_192_BIT; break; case 2 * AES_KEYSIZE_256: ctx->key_type = OTX2_CPT_AES_256_BIT; break; default: return -EINVAL; } return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen); } static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen, u8 cipher_type) { struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); if (keylen != DES3_EDE_KEY_SIZE) return -EINVAL; ctx->key_len = keylen; ctx->cipher_type = cipher_type; ctx->enc_align_len = 8; memcpy(ctx->enc_key, key, keylen); return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen); } static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen, u8 cipher_type) { struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); switch (keylen) { case AES_KEYSIZE_128: ctx->key_type = OTX2_CPT_AES_128_BIT; break; case AES_KEYSIZE_192: ctx->key_type = OTX2_CPT_AES_192_BIT; break; case AES_KEYSIZE_256: ctx->key_type = OTX2_CPT_AES_256_BIT; break; default: return -EINVAL; } if (cipher_type == OTX2_CPT_AES_CBC || cipher_type == OTX2_CPT_AES_ECB) ctx->enc_align_len = 16; else ctx->enc_align_len = 1; ctx->key_len = keylen; ctx->cipher_type = cipher_type; memcpy(ctx->enc_key, key, keylen); return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen); } static int otx2_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_aes_setkey(tfm, key, keylen, OTX2_CPT_AES_CBC); } static int otx2_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_aes_setkey(tfm, key, keylen, OTX2_CPT_AES_ECB); } static int otx2_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_des_setkey(tfm, key, keylen, OTX2_CPT_DES3_CBC); } static int otx2_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_des_setkey(tfm, key, keylen, OTX2_CPT_DES3_ECB); } static int cpt_skcipher_fallback_init(struct otx2_cpt_enc_ctx *ctx, struct crypto_alg *alg) { if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { ctx->fbk_cipher = crypto_alloc_skcipher(alg->cra_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fbk_cipher)) { pr_err("%s() failed to allocate fallback for %s\n", __func__, alg->cra_name); return PTR_ERR(ctx->fbk_cipher); } } return 0; } static int otx2_cpt_enc_dec_init(struct crypto_skcipher *stfm) { struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm); struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm); struct crypto_alg *alg = tfm->__crt_alg; memset(ctx, 0, sizeof(*ctx)); /* * Additional memory for skcipher_request is * allocated since the cryptd daemon uses * this memory for request_ctx information */ crypto_skcipher_set_reqsize_dma( stfm, sizeof(struct otx2_cpt_req_ctx) + sizeof(struct skcipher_request)); return cpt_skcipher_fallback_init(ctx, alg); } static void otx2_cpt_skcipher_exit(struct crypto_skcipher *tfm) { struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); if (ctx->fbk_cipher) { crypto_free_skcipher(ctx->fbk_cipher); ctx->fbk_cipher = NULL; } } static int cpt_aead_fallback_init(struct otx2_cpt_aead_ctx *ctx, struct crypto_alg *alg) { if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { ctx->fbk_cipher = crypto_alloc_aead(alg->cra_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fbk_cipher)) { pr_err("%s() failed to allocate fallback for %s\n", __func__, alg->cra_name); return PTR_ERR(ctx->fbk_cipher); } } return 0; } static int cpt_aead_init(struct crypto_aead *atfm, u8 cipher_type, u8 mac_type) { struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(atfm); struct crypto_tfm *tfm = crypto_aead_tfm(atfm); struct crypto_alg *alg = tfm->__crt_alg; ctx->cipher_type = cipher_type; ctx->mac_type = mac_type; /* * When selected cipher is NULL we use HMAC opcode instead of * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms * for calculating ipad and opad */ if (ctx->cipher_type != OTX2_CPT_CIPHER_NULL) { switch (ctx->mac_type) { case OTX2_CPT_SHA1: ctx->hashalg = crypto_alloc_shash("sha1", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX2_CPT_SHA256: ctx->hashalg = crypto_alloc_shash("sha256", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX2_CPT_SHA384: ctx->hashalg = crypto_alloc_shash("sha384", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX2_CPT_SHA512: ctx->hashalg = crypto_alloc_shash("sha512", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; } } switch (ctx->cipher_type) { case OTX2_CPT_AES_CBC: case OTX2_CPT_AES_ECB: ctx->enc_align_len = 16; break; case OTX2_CPT_DES3_CBC: case OTX2_CPT_DES3_ECB: ctx->enc_align_len = 8; break; case OTX2_CPT_AES_GCM: case OTX2_CPT_CIPHER_NULL: ctx->enc_align_len = 1; break; } crypto_aead_set_reqsize_dma(atfm, sizeof(struct otx2_cpt_req_ctx)); return cpt_aead_fallback_init(ctx, alg); } static int otx2_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA1); } static int otx2_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA256); } static int otx2_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA384); } static int otx2_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA512); } static int otx2_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA1); } static int otx2_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA256); } static int otx2_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA384); } static int otx2_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA512); } static int otx2_cpt_aead_gcm_aes_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX2_CPT_AES_GCM, OTX2_CPT_MAC_NULL); } static void otx2_cpt_aead_exit(struct crypto_aead *tfm) { struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); kfree(ctx->ipad); kfree(ctx->opad); if (ctx->hashalg) crypto_free_shash(ctx->hashalg); kfree(ctx->sdesc); if (ctx->fbk_cipher) { crypto_free_aead(ctx->fbk_cipher); ctx->fbk_cipher = NULL; } } static int otx2_cpt_aead_gcm_set_authsize(struct crypto_aead *tfm, unsigned int authsize) { struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); if (crypto_rfc4106_check_authsize(authsize)) return -EINVAL; tfm->authsize = authsize; /* Set authsize for fallback case */ if (ctx->fbk_cipher) ctx->fbk_cipher->authsize = authsize; return 0; } static int otx2_cpt_aead_set_authsize(struct crypto_aead *tfm, unsigned int authsize) { tfm->authsize = authsize; return 0; } static int otx2_cpt_aead_null_set_authsize(struct crypto_aead *tfm, unsigned int authsize) { struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); ctx->is_trunc_hmac = true; tfm->authsize = authsize; return 0; } static struct otx2_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg) { struct otx2_cpt_sdesc *sdesc; int size; size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); sdesc = kmalloc(size, GFP_KERNEL); if (!sdesc) return NULL; sdesc->shash.tfm = alg; return sdesc; } static inline void swap_data32(void *buf, u32 len) { cpu_to_be32_array(buf, buf, len / 4); } static inline void swap_data64(void *buf, u32 len) { u64 *src = buf; int i = 0; for (i = 0 ; i < len / 8; i++, src++) cpu_to_be64s(src); } static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad) { struct sha512_state *sha512; struct sha256_state *sha256; struct sha1_state *sha1; switch (mac_type) { case OTX2_CPT_SHA1: sha1 = (struct sha1_state *) in_pad; swap_data32(sha1->state, SHA1_DIGEST_SIZE); memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE); break; case OTX2_CPT_SHA256: sha256 = (struct sha256_state *) in_pad; swap_data32(sha256->state, SHA256_DIGEST_SIZE); memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE); break; case OTX2_CPT_SHA384: case OTX2_CPT_SHA512: sha512 = (struct sha512_state *) in_pad; swap_data64(sha512->state, SHA512_DIGEST_SIZE); memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE); break; default: return -EINVAL; } return 0; } static int aead_hmac_init(struct crypto_aead *cipher) { struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); int state_size = crypto_shash_statesize(ctx->hashalg); int ds = crypto_shash_digestsize(ctx->hashalg); int bs = crypto_shash_blocksize(ctx->hashalg); int authkeylen = ctx->auth_key_len; u8 *ipad = NULL, *opad = NULL; int ret = 0, icount = 0; ctx->sdesc = alloc_sdesc(ctx->hashalg); if (!ctx->sdesc) return -ENOMEM; ctx->ipad = kzalloc(bs, GFP_KERNEL); if (!ctx->ipad) { ret = -ENOMEM; goto calc_fail; } ctx->opad = kzalloc(bs, GFP_KERNEL); if (!ctx->opad) { ret = -ENOMEM; goto calc_fail; } ipad = kzalloc(state_size, GFP_KERNEL); if (!ipad) { ret = -ENOMEM; goto calc_fail; } opad = kzalloc(state_size, GFP_KERNEL); if (!opad) { ret = -ENOMEM; goto calc_fail; } if (authkeylen > bs) { ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key, authkeylen, ipad); if (ret) goto calc_fail; authkeylen = ds; } else { memcpy(ipad, ctx->key, authkeylen); } memset(ipad + authkeylen, 0, bs - authkeylen); memcpy(opad, ipad, bs); for (icount = 0; icount < bs; icount++) { ipad[icount] ^= 0x36; opad[icount] ^= 0x5c; } /* * Partial Hash calculated from the software * algorithm is retrieved for IPAD & OPAD */ /* IPAD Calculation */ crypto_shash_init(&ctx->sdesc->shash); crypto_shash_update(&ctx->sdesc->shash, ipad, bs); crypto_shash_export(&ctx->sdesc->shash, ipad); ret = copy_pad(ctx->mac_type, ctx->ipad, ipad); if (ret) goto calc_fail; /* OPAD Calculation */ crypto_shash_init(&ctx->sdesc->shash); crypto_shash_update(&ctx->sdesc->shash, opad, bs); crypto_shash_export(&ctx->sdesc->shash, opad); ret = copy_pad(ctx->mac_type, ctx->opad, opad); if (ret) goto calc_fail; kfree(ipad); kfree(opad); return 0; calc_fail: kfree(ctx->ipad); ctx->ipad = NULL; kfree(ctx->opad); ctx->opad = NULL; kfree(ipad); kfree(opad); kfree(ctx->sdesc); ctx->sdesc = NULL; return ret; } static int otx2_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); struct crypto_authenc_key_param *param; int enckeylen = 0, authkeylen = 0; struct rtattr *rta = (void *)key; if (!RTA_OK(rta, keylen)) return -EINVAL; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) return -EINVAL; if (RTA_PAYLOAD(rta) < sizeof(*param)) return -EINVAL; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) return -EINVAL; if (keylen > OTX2_CPT_MAX_KEY_SIZE) return -EINVAL; authkeylen = keylen - enckeylen; memcpy(ctx->key, key, keylen); switch (enckeylen) { case AES_KEYSIZE_128: ctx->key_type = OTX2_CPT_AES_128_BIT; break; case AES_KEYSIZE_192: ctx->key_type = OTX2_CPT_AES_192_BIT; break; case AES_KEYSIZE_256: ctx->key_type = OTX2_CPT_AES_256_BIT; break; default: /* Invalid key length */ return -EINVAL; } ctx->enc_key_len = enckeylen; ctx->auth_key_len = authkeylen; return aead_hmac_init(cipher); } static int otx2_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); struct crypto_authenc_key_param *param; struct rtattr *rta = (void *)key; int enckeylen = 0; if (!RTA_OK(rta, keylen)) return -EINVAL; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) return -EINVAL; if (RTA_PAYLOAD(rta) < sizeof(*param)) return -EINVAL; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (enckeylen != 0) return -EINVAL; if (keylen > OTX2_CPT_MAX_KEY_SIZE) return -EINVAL; memcpy(ctx->key, key, keylen); ctx->enc_key_len = enckeylen; ctx->auth_key_len = keylen; return 0; } static int otx2_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); /* * For aes gcm we expect to get encryption key (16, 24, 32 bytes) * and salt (4 bytes) */ switch (keylen) { case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE: ctx->key_type = OTX2_CPT_AES_128_BIT; ctx->enc_key_len = AES_KEYSIZE_128; break; case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE: ctx->key_type = OTX2_CPT_AES_192_BIT; ctx->enc_key_len = AES_KEYSIZE_192; break; case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE: ctx->key_type = OTX2_CPT_AES_256_BIT; ctx->enc_key_len = AES_KEYSIZE_256; break; default: /* Invalid key and salt length */ return -EINVAL; } /* Store encryption key and salt */ memcpy(ctx->key, key, keylen); return crypto_aead_setkey(ctx->fbk_cipher, key, keylen); } static inline int create_aead_ctx_hdr(struct aead_request *req, u32 enc, u32 *argcnt) { struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; struct otx2_cpt_fc_ctx *fctx = &rctx->fctx; int mac_len = crypto_aead_authsize(tfm); int ds; rctx->ctrl_word.e.enc_data_offset = req->assoclen; switch (ctx->cipher_type) { case OTX2_CPT_AES_CBC: if (req->assoclen > 248 || !IS_ALIGNED(req->assoclen, 8)) return -EINVAL; fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_CPTR; /* Copy encryption key to context */ memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len, ctx->enc_key_len); /* Copy IV to context */ memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm)); ds = crypto_shash_digestsize(ctx->hashalg); if (ctx->mac_type == OTX2_CPT_SHA384) ds = SHA512_DIGEST_SIZE; if (ctx->ipad) memcpy(fctx->hmac.e.ipad, ctx->ipad, ds); if (ctx->opad) memcpy(fctx->hmac.e.opad, ctx->opad, ds); break; case OTX2_CPT_AES_GCM: if (crypto_ipsec_check_assoclen(req->assoclen)) return -EINVAL; fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_DPTR; /* Copy encryption key to context */ memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len); /* Copy salt to context */ memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len, AES_GCM_SALT_SIZE); rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET; break; default: /* Unknown cipher type */ return -EINVAL; } cpu_to_be64s(&rctx->ctrl_word.flags); req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG; req_info->ctrl.s.se_req = 1; req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_FC | DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG); if (enc) { req_info->req.opcode.s.minor = 2; req_info->req.param1 = req->cryptlen; req_info->req.param2 = req->cryptlen + req->assoclen; } else { req_info->req.opcode.s.minor = 3; req_info->req.param1 = req->cryptlen - mac_len; req_info->req.param2 = req->cryptlen + req->assoclen - mac_len; } fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type; fctx->enc.enc_ctrl.e.mac_len = mac_len; cpu_to_be64s(&fctx->enc.enc_ctrl.u); /* * Storing Packet Data Information in offset * Control Word First 8 bytes */ req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; req_info->in[*argcnt].size = CONTROL_WORD_LEN; req_info->req.dlen += CONTROL_WORD_LEN; ++(*argcnt); req_info->in[*argcnt].vptr = (u8 *)fctx; req_info->in[*argcnt].size = sizeof(struct otx2_cpt_fc_ctx); req_info->req.dlen += sizeof(struct otx2_cpt_fc_ctx); ++(*argcnt); return 0; } static inline void create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt, u32 enc) { struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG; req_info->ctrl.s.se_req = 1; req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_HMAC | DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG); req_info->is_trunc_hmac = ctx->is_trunc_hmac; req_info->req.opcode.s.minor = 0; req_info->req.param1 = ctx->auth_key_len; req_info->req.param2 = ctx->mac_type << 8; /* Add authentication key */ req_info->in[*argcnt].vptr = ctx->key; req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8); req_info->req.dlen += round_up(ctx->auth_key_len, 8); ++(*argcnt); } static inline int create_aead_input_list(struct aead_request *req, u32 enc) { struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; u32 inputlen = req->cryptlen + req->assoclen; u32 status, argcnt = 0; status = create_aead_ctx_hdr(req, enc, &argcnt); if (status) return status; update_input_data(req_info, req->src, inputlen, &argcnt); req_info->in_cnt = argcnt; return 0; } static inline void create_aead_output_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0, outputlen = 0; if (enc) outputlen = req->cryptlen + req->assoclen + mac_len; else outputlen = req->cryptlen + req->assoclen - mac_len; update_output_data(req_info, req->dst, 0, outputlen, &argcnt); req_info->out_cnt = argcnt; } static inline void create_aead_null_input_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; u32 inputlen, argcnt = 0; if (enc) inputlen = req->cryptlen + req->assoclen; else inputlen = req->cryptlen + req->assoclen - mac_len; create_hmac_ctx_hdr(req, &argcnt, enc); update_input_data(req_info, req->src, inputlen, &argcnt); req_info->in_cnt = argcnt; } static inline int create_aead_null_output_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; struct scatterlist *dst; u8 *ptr = NULL; int argcnt = 0, status, offset; u32 inputlen; if (enc) inputlen = req->cryptlen + req->assoclen; else inputlen = req->cryptlen + req->assoclen - mac_len; /* * If source and destination are different * then copy payload to destination */ if (req->src != req->dst) { ptr = kmalloc(inputlen, (req_info->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC); if (!ptr) return -ENOMEM; status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr, inputlen); if (status != inputlen) { status = -EINVAL; goto error_free; } status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr, inputlen); if (status != inputlen) { status = -EINVAL; goto error_free; } kfree(ptr); } if (enc) { /* * In an encryption scenario hmac needs * to be appended after payload */ dst = req->dst; offset = inputlen; while (offset >= dst->length) { offset -= dst->length; dst = sg_next(dst); if (!dst) return -ENOENT; } update_output_data(req_info, dst, offset, mac_len, &argcnt); } else { /* * In a decryption scenario calculated hmac for received * payload needs to be compare with hmac received */ status = sg_copy_buffer(req->src, sg_nents(req->src), rctx->fctx.hmac.s.hmac_recv, mac_len, inputlen, true); if (status != mac_len) return -EINVAL; req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc; req_info->out[argcnt].size = mac_len; argcnt++; } req_info->out_cnt = argcnt; return 0; error_free: kfree(ptr); return status; } static int aead_do_fallback(struct aead_request *req, bool is_enc) { struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct crypto_aead *aead = crypto_aead_reqtfm(req); struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(aead); int ret; if (ctx->fbk_cipher) { /* Store the cipher tfm and then use the fallback tfm */ aead_request_set_tfm(&rctx->fbk_req, ctx->fbk_cipher); aead_request_set_callback(&rctx->fbk_req, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(&rctx->fbk_req, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(&rctx->fbk_req, req->assoclen); ret = is_enc ? crypto_aead_encrypt(&rctx->fbk_req) : crypto_aead_decrypt(&rctx->fbk_req); } else { ret = -EINVAL; } return ret; } static int cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc) { struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx2_cpt_req_info *req_info = &rctx->cpt_req; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); struct pci_dev *pdev; int status, cpu_num; /* Clear control words */ rctx->ctrl_word.flags = 0; rctx->fctx.enc.enc_ctrl.u = 0; req_info->callback = otx2_cpt_aead_callback; req_info->areq = &req->base; req_info->req_type = reg_type; req_info->is_enc = enc; req_info->is_trunc_hmac = false; switch (reg_type) { case OTX2_CPT_AEAD_ENC_DEC_REQ: status = create_aead_input_list(req, enc); if (status) return status; create_aead_output_list(req, enc, crypto_aead_authsize(tfm)); break; case OTX2_CPT_AEAD_ENC_DEC_NULL_REQ: create_aead_null_input_list(req, enc, crypto_aead_authsize(tfm)); status = create_aead_null_output_list(req, enc, crypto_aead_authsize(tfm)); if (status) return status; break; default: return -EINVAL; } if (!IS_ALIGNED(req_info->req.param1, ctx->enc_align_len)) return -EINVAL; if (!req_info->req.param2 || (req_info->req.param1 > OTX2_CPT_MAX_REQ_SIZE) || (req_info->req.param2 > OTX2_CPT_MAX_REQ_SIZE)) return aead_do_fallback(req, enc); status = get_se_device(&pdev, &cpu_num); if (status) return status; req_info->ctrl.s.grp = otx2_cpt_get_kcrypto_eng_grp_num(pdev); /* * We perform an asynchronous send and once * the request is completed the driver would * intimate through registered call back functions */ return otx2_cpt_do_request(pdev, req_info, cpu_num); } static int otx2_cpt_aead_encrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_REQ, true); } static int otx2_cpt_aead_decrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_REQ, false); } static int otx2_cpt_aead_null_encrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_NULL_REQ, true); } static int otx2_cpt_aead_null_decrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_NULL_REQ, false); } static struct skcipher_alg otx2_cpt_skciphers[] = { { .base.cra_name = "xts(aes)", .base.cra_driver_name = "cpt_xts_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx2_cpt_enc_dec_init, .exit = otx2_cpt_skcipher_exit, .ivsize = AES_BLOCK_SIZE, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .setkey = otx2_cpt_skcipher_xts_setkey, .encrypt = otx2_cpt_skcipher_encrypt, .decrypt = otx2_cpt_skcipher_decrypt, }, { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cpt_cbc_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx2_cpt_enc_dec_init, .exit = otx2_cpt_skcipher_exit, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = otx2_cpt_skcipher_cbc_aes_setkey, .encrypt = otx2_cpt_skcipher_encrypt, .decrypt = otx2_cpt_skcipher_decrypt, }, { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "cpt_ecb_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx2_cpt_enc_dec_init, .exit = otx2_cpt_skcipher_exit, .ivsize = 0, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = otx2_cpt_skcipher_ecb_aes_setkey, .encrypt = otx2_cpt_skcipher_encrypt, .decrypt = otx2_cpt_skcipher_decrypt, }, { .base.cra_name = "cbc(des3_ede)", .base.cra_driver_name = "cpt_cbc_des3_ede", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx2_cpt_enc_dec_init, .exit = otx2_cpt_skcipher_exit, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = otx2_cpt_skcipher_cbc_des3_setkey, .encrypt = otx2_cpt_skcipher_encrypt, .decrypt = otx2_cpt_skcipher_decrypt, }, { .base.cra_name = "ecb(des3_ede)", .base.cra_driver_name = "cpt_ecb_des3_ede", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx2_cpt_enc_dec_init, .exit = otx2_cpt_skcipher_exit, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = 0, .setkey = otx2_cpt_skcipher_ecb_des3_setkey, .encrypt = otx2_cpt_skcipher_encrypt, .decrypt = otx2_cpt_skcipher_decrypt, } }; static struct aead_alg otx2_cpt_aeads[] = { { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "cpt_hmac_sha1_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_cbc_aes_sha1_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx2_cpt_aead_set_authsize, .encrypt = otx2_cpt_aead_encrypt, .decrypt = otx2_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "cpt_hmac_sha256_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_cbc_aes_sha256_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx2_cpt_aead_set_authsize, .encrypt = otx2_cpt_aead_encrypt, .decrypt = otx2_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "cpt_hmac_sha384_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_cbc_aes_sha384_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx2_cpt_aead_set_authsize, .encrypt = otx2_cpt_aead_encrypt, .decrypt = otx2_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "cpt_hmac_sha512_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_cbc_aes_sha512_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx2_cpt_aead_set_authsize, .encrypt = otx2_cpt_aead_encrypt, .decrypt = otx2_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha1),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha1_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_ecb_null_sha1_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx2_cpt_aead_null_set_authsize, .encrypt = otx2_cpt_aead_null_encrypt, .decrypt = otx2_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA1_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha256),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha256_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_ecb_null_sha256_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx2_cpt_aead_null_set_authsize, .encrypt = otx2_cpt_aead_null_encrypt, .decrypt = otx2_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA256_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha384),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha384_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_ecb_null_sha384_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx2_cpt_aead_null_set_authsize, .encrypt = otx2_cpt_aead_null_encrypt, .decrypt = otx2_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA384_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha512),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha512_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_ecb_null_sha512_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx2_cpt_aead_null_set_authsize, .encrypt = otx2_cpt_aead_null_encrypt, .decrypt = otx2_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA512_DIGEST_SIZE, }, { .base = { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "cpt_rfc4106_gcm_aes", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx2_cpt_aead_gcm_aes_init, .exit = otx2_cpt_aead_exit, .setkey = otx2_cpt_aead_gcm_aes_setkey, .setauthsize = otx2_cpt_aead_gcm_set_authsize, .encrypt = otx2_cpt_aead_encrypt, .decrypt = otx2_cpt_aead_decrypt, .ivsize = AES_GCM_IV_SIZE, .maxauthsize = AES_GCM_ICV_SIZE, } }; static inline int cpt_register_algs(void) { int i, err = 0; for (i = 0; i < ARRAY_SIZE(otx2_cpt_skciphers); i++) otx2_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; err = crypto_register_skciphers(otx2_cpt_skciphers, ARRAY_SIZE(otx2_cpt_skciphers)); if (err) return err; for (i = 0; i < ARRAY_SIZE(otx2_cpt_aeads); i++) otx2_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; err = crypto_register_aeads(otx2_cpt_aeads, ARRAY_SIZE(otx2_cpt_aeads)); if (err) { crypto_unregister_skciphers(otx2_cpt_skciphers, ARRAY_SIZE(otx2_cpt_skciphers)); return err; } return 0; } static inline void cpt_unregister_algs(void) { crypto_unregister_skciphers(otx2_cpt_skciphers, ARRAY_SIZE(otx2_cpt_skciphers)); crypto_unregister_aeads(otx2_cpt_aeads, ARRAY_SIZE(otx2_cpt_aeads)); } static int compare_func(const void *lptr, const void *rptr) { const struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr; const struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr; if (ldesc->dev->devfn < rdesc->dev->devfn) return -1; if (ldesc->dev->devfn > rdesc->dev->devfn) return 1; return 0; } static void swap_func(void *lptr, void *rptr, int size) { struct cpt_device_desc *ldesc = lptr; struct cpt_device_desc *rdesc = rptr; swap(*ldesc, *rdesc); } int otx2_cpt_crypto_init(struct pci_dev *pdev, struct module *mod, int num_queues, int num_devices) { int ret = 0; int count; mutex_lock(&mutex); count = atomic_read(&se_devices.count); if (count >= OTX2_CPT_MAX_LFS_NUM) { dev_err(&pdev->dev, "No space to add a new device\n"); ret = -ENOSPC; goto unlock; } se_devices.desc[count].num_queues = num_queues; se_devices.desc[count++].dev = pdev; atomic_inc(&se_devices.count); if (atomic_read(&se_devices.count) == num_devices && is_crypto_registered == false) { if (cpt_register_algs()) { dev_err(&pdev->dev, "Error in registering crypto algorithms\n"); ret = -EINVAL; goto unlock; } try_module_get(mod); is_crypto_registered = true; } sort(se_devices.desc, count, sizeof(struct cpt_device_desc), compare_func, swap_func); unlock: mutex_unlock(&mutex); return ret; } void otx2_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod) { struct cpt_device_table *dev_tbl; bool dev_found = false; int i, j, count; mutex_lock(&mutex); dev_tbl = &se_devices; count = atomic_read(&dev_tbl->count); for (i = 0; i < count; i++) { if (pdev == dev_tbl->desc[i].dev) { for (j = i; j < count-1; j++) dev_tbl->desc[j] = dev_tbl->desc[j+1]; dev_found = true; break; } } if (!dev_found) { dev_err(&pdev->dev, "%s device not found\n", __func__); goto unlock; } if (atomic_dec_and_test(&se_devices.count)) { cpt_unregister_algs(); module_put(mod); is_crypto_registered = false; } unlock: mutex_unlock(&mutex); }
linux-master
drivers/crypto/marvell/octeontx2/otx2_cptvf_algs.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2021 Marvell. */ #include "otx2_cpt_devlink.h" static int otx2_cpt_dl_egrp_create(struct devlink *dl, u32 id, struct devlink_param_gset_ctx *ctx) { struct otx2_cpt_devlink *cpt_dl = devlink_priv(dl); struct otx2_cptpf_dev *cptpf = cpt_dl->cptpf; return otx2_cpt_dl_custom_egrp_create(cptpf, ctx); } static int otx2_cpt_dl_egrp_delete(struct devlink *dl, u32 id, struct devlink_param_gset_ctx *ctx) { struct otx2_cpt_devlink *cpt_dl = devlink_priv(dl); struct otx2_cptpf_dev *cptpf = cpt_dl->cptpf; return otx2_cpt_dl_custom_egrp_delete(cptpf, ctx); } static int otx2_cpt_dl_uc_info(struct devlink *dl, u32 id, struct devlink_param_gset_ctx *ctx) { struct otx2_cpt_devlink *cpt_dl = devlink_priv(dl); struct otx2_cptpf_dev *cptpf = cpt_dl->cptpf; otx2_cpt_print_uc_dbg_info(cptpf); return 0; } enum otx2_cpt_dl_param_id { OTX2_CPT_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX, OTX2_CPT_DEVLINK_PARAM_ID_EGRP_CREATE, OTX2_CPT_DEVLINK_PARAM_ID_EGRP_DELETE, }; static const struct devlink_param otx2_cpt_dl_params[] = { DEVLINK_PARAM_DRIVER(OTX2_CPT_DEVLINK_PARAM_ID_EGRP_CREATE, "egrp_create", DEVLINK_PARAM_TYPE_STRING, BIT(DEVLINK_PARAM_CMODE_RUNTIME), otx2_cpt_dl_uc_info, otx2_cpt_dl_egrp_create, NULL), DEVLINK_PARAM_DRIVER(OTX2_CPT_DEVLINK_PARAM_ID_EGRP_DELETE, "egrp_delete", DEVLINK_PARAM_TYPE_STRING, BIT(DEVLINK_PARAM_CMODE_RUNTIME), otx2_cpt_dl_uc_info, otx2_cpt_dl_egrp_delete, NULL), }; static int otx2_cpt_dl_info_firmware_version_put(struct devlink_info_req *req, struct otx2_cpt_eng_grp_info grp[], const char *ver_name, int eng_type) { struct otx2_cpt_engs_rsvd *eng; int i; for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) { eng = find_engines_by_type(&grp[i], eng_type); if (eng) return devlink_info_version_running_put(req, ver_name, eng->ucode->ver_str); } return 0; } static int otx2_cpt_devlink_info_get(struct devlink *dl, struct devlink_info_req *req, struct netlink_ext_ack *extack) { struct otx2_cpt_devlink *cpt_dl = devlink_priv(dl); struct otx2_cptpf_dev *cptpf = cpt_dl->cptpf; int err; err = otx2_cpt_dl_info_firmware_version_put(req, cptpf->eng_grps.grp, "fw.ae", OTX2_CPT_AE_TYPES); if (err) return err; err = otx2_cpt_dl_info_firmware_version_put(req, cptpf->eng_grps.grp, "fw.se", OTX2_CPT_SE_TYPES); if (err) return err; return otx2_cpt_dl_info_firmware_version_put(req, cptpf->eng_grps.grp, "fw.ie", OTX2_CPT_IE_TYPES); } static const struct devlink_ops otx2_cpt_devlink_ops = { .info_get = otx2_cpt_devlink_info_get, }; int otx2_cpt_register_dl(struct otx2_cptpf_dev *cptpf) { struct device *dev = &cptpf->pdev->dev; struct otx2_cpt_devlink *cpt_dl; struct devlink *dl; int ret; dl = devlink_alloc(&otx2_cpt_devlink_ops, sizeof(struct otx2_cpt_devlink), dev); if (!dl) { dev_warn(dev, "devlink_alloc failed\n"); return -ENOMEM; } cpt_dl = devlink_priv(dl); cpt_dl->dl = dl; cpt_dl->cptpf = cptpf; cptpf->dl = dl; ret = devlink_params_register(dl, otx2_cpt_dl_params, ARRAY_SIZE(otx2_cpt_dl_params)); if (ret) { dev_err(dev, "devlink params register failed with error %d", ret); devlink_free(dl); return ret; } devlink_register(dl); return 0; } void otx2_cpt_unregister_dl(struct otx2_cptpf_dev *cptpf) { struct devlink *dl = cptpf->dl; if (!dl) return; devlink_unregister(dl); devlink_params_unregister(dl, otx2_cpt_dl_params, ARRAY_SIZE(otx2_cpt_dl_params)); devlink_free(dl); }
linux-master
drivers/crypto/marvell/octeontx2/otx2_cpt_devlink.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include <linux/firmware.h> #include "otx2_cpt_hw_types.h" #include "otx2_cpt_common.h" #include "otx2_cpt_devlink.h" #include "otx2_cptpf_ucode.h" #include "otx2_cptpf.h" #include "cn10k_cpt.h" #include "rvu_reg.h" #define OTX2_CPT_DRV_NAME "rvu_cptpf" #define OTX2_CPT_DRV_STRING "Marvell RVU CPT Physical Function Driver" #define CPT_UC_RID_CN9K_B0 1 static void cptpf_enable_vfpf_mbox_intr(struct otx2_cptpf_dev *cptpf, int num_vfs) { int ena_bits; /* Clear any pending interrupts */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INTX(0), ~0x0ULL); otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INTX(1), ~0x0ULL); /* Enable VF interrupts for VFs from 0 to 63 */ ena_bits = ((num_vfs - 1) % 64); otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), GENMASK_ULL(ena_bits, 0)); if (num_vfs > 64) { /* Enable VF interrupts for VFs from 64 to 127 */ ena_bits = num_vfs - 64 - 1; otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1), GENMASK_ULL(ena_bits, 0)); } } static void cptpf_disable_vfpf_mbox_intr(struct otx2_cptpf_dev *cptpf, int num_vfs) { int vector; /* Disable VF-PF interrupts */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), ~0ULL); otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1), ~0ULL); /* Clear any pending interrupts */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INTX(0), ~0ULL); vector = pci_irq_vector(cptpf->pdev, RVU_PF_INT_VEC_VFPF_MBOX0); free_irq(vector, cptpf); if (num_vfs > 64) { otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFPF_MBOX_INTX(1), ~0ULL); vector = pci_irq_vector(cptpf->pdev, RVU_PF_INT_VEC_VFPF_MBOX1); free_irq(vector, cptpf); } } static void cptpf_enable_vf_flr_me_intrs(struct otx2_cptpf_dev *cptpf, int num_vfs) { /* Clear FLR interrupt if any */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INTX(0), INTR_MASK(num_vfs)); /* Enable VF FLR interrupts */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(num_vfs)); /* Clear ME interrupt if any */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFME_INTX(0), INTR_MASK(num_vfs)); /* Enable VF ME interrupts */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(num_vfs)); if (num_vfs <= 64) return; otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INTX(1), INTR_MASK(num_vfs - 64)); otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(num_vfs - 64)); otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFME_INTX(1), INTR_MASK(num_vfs - 64)); otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(num_vfs - 64)); } static void cptpf_disable_vf_flr_me_intrs(struct otx2_cptpf_dev *cptpf, int num_vfs) { int vector; /* Disable VF FLR interrupts */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(num_vfs)); vector = pci_irq_vector(cptpf->pdev, RVU_PF_INT_VEC_VFFLR0); free_irq(vector, cptpf); /* Disable VF ME interrupts */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(num_vfs)); vector = pci_irq_vector(cptpf->pdev, RVU_PF_INT_VEC_VFME0); free_irq(vector, cptpf); if (num_vfs <= 64) return; otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(num_vfs - 64)); vector = pci_irq_vector(cptpf->pdev, RVU_PF_INT_VEC_VFFLR1); free_irq(vector, cptpf); otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(num_vfs - 64)); vector = pci_irq_vector(cptpf->pdev, RVU_PF_INT_VEC_VFME1); free_irq(vector, cptpf); } static void cptpf_flr_wq_handler(struct work_struct *work) { struct cptpf_flr_work *flr_work; struct otx2_cptpf_dev *pf; struct mbox_msghdr *req; struct otx2_mbox *mbox; int vf, reg = 0; flr_work = container_of(work, struct cptpf_flr_work, work); pf = flr_work->pf; mbox = &pf->afpf_mbox; vf = flr_work - pf->flr_work; mutex_lock(&pf->lock); req = otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*req), sizeof(struct msg_rsp)); if (!req) { mutex_unlock(&pf->lock); return; } req->sig = OTX2_MBOX_REQ_SIG; req->id = MBOX_MSG_VF_FLR; req->pcifunc &= RVU_PFVF_FUNC_MASK; req->pcifunc |= (vf + 1) & RVU_PFVF_FUNC_MASK; otx2_cpt_send_mbox_msg(mbox, pf->pdev); if (!otx2_cpt_sync_mbox_msg(&pf->afpf_mbox)) { if (vf >= 64) { reg = 1; vf = vf - 64; } /* Clear transaction pending register */ otx2_cpt_write64(pf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf)); otx2_cpt_write64(pf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf)); } mutex_unlock(&pf->lock); } static irqreturn_t cptpf_vf_flr_intr(int __always_unused irq, void *arg) { int reg, dev, vf, start_vf, num_reg = 1; struct otx2_cptpf_dev *cptpf = arg; u64 intr; if (cptpf->max_vfs > 64) num_reg = 2; for (reg = 0; reg < num_reg; reg++) { intr = otx2_cpt_read64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INTX(reg)); if (!intr) continue; start_vf = 64 * reg; for (vf = 0; vf < 64; vf++) { if (!(intr & BIT_ULL(vf))) continue; dev = vf + start_vf; queue_work(cptpf->flr_wq, &cptpf->flr_work[dev].work); /* Clear interrupt */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf)); /* Disable the interrupt */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf)); } } return IRQ_HANDLED; } static irqreturn_t cptpf_vf_me_intr(int __always_unused irq, void *arg) { struct otx2_cptpf_dev *cptpf = arg; int reg, vf, num_reg = 1; u64 intr; if (cptpf->max_vfs > 64) num_reg = 2; for (reg = 0; reg < num_reg; reg++) { intr = otx2_cpt_read64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFME_INTX(reg)); if (!intr) continue; for (vf = 0; vf < 64; vf++) { if (!(intr & BIT_ULL(vf))) continue; otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf)); /* Clear interrupt */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_VFME_INTX(reg), BIT_ULL(vf)); } } return IRQ_HANDLED; } static void cptpf_unregister_vfpf_intr(struct otx2_cptpf_dev *cptpf, int num_vfs) { cptpf_disable_vfpf_mbox_intr(cptpf, num_vfs); cptpf_disable_vf_flr_me_intrs(cptpf, num_vfs); } static int cptpf_register_vfpf_intr(struct otx2_cptpf_dev *cptpf, int num_vfs) { struct pci_dev *pdev = cptpf->pdev; struct device *dev = &pdev->dev; int ret, vector; vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFPF_MBOX0); /* Register VF-PF mailbox interrupt handler */ ret = request_irq(vector, otx2_cptpf_vfpf_mbox_intr, 0, "CPTVFPF Mbox0", cptpf); if (ret) { dev_err(dev, "IRQ registration failed for PFVF mbox0 irq\n"); return ret; } vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFFLR0); /* Register VF FLR interrupt handler */ ret = request_irq(vector, cptpf_vf_flr_intr, 0, "CPTPF FLR0", cptpf); if (ret) { dev_err(dev, "IRQ registration failed for VFFLR0 irq\n"); goto free_mbox0_irq; } vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFME0); /* Register VF ME interrupt handler */ ret = request_irq(vector, cptpf_vf_me_intr, 0, "CPTPF ME0", cptpf); if (ret) { dev_err(dev, "IRQ registration failed for PFVF mbox0 irq\n"); goto free_flr0_irq; } if (num_vfs > 64) { vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFPF_MBOX1); ret = request_irq(vector, otx2_cptpf_vfpf_mbox_intr, 0, "CPTVFPF Mbox1", cptpf); if (ret) { dev_err(dev, "IRQ registration failed for PFVF mbox1 irq\n"); goto free_me0_irq; } vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFFLR1); /* Register VF FLR interrupt handler */ ret = request_irq(vector, cptpf_vf_flr_intr, 0, "CPTPF FLR1", cptpf); if (ret) { dev_err(dev, "IRQ registration failed for VFFLR1 irq\n"); goto free_mbox1_irq; } vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFME1); /* Register VF FLR interrupt handler */ ret = request_irq(vector, cptpf_vf_me_intr, 0, "CPTPF ME1", cptpf); if (ret) { dev_err(dev, "IRQ registration failed for VFFLR1 irq\n"); goto free_flr1_irq; } } cptpf_enable_vfpf_mbox_intr(cptpf, num_vfs); cptpf_enable_vf_flr_me_intrs(cptpf, num_vfs); return 0; free_flr1_irq: vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFFLR1); free_irq(vector, cptpf); free_mbox1_irq: vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFPF_MBOX1); free_irq(vector, cptpf); free_me0_irq: vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFME0); free_irq(vector, cptpf); free_flr0_irq: vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFFLR0); free_irq(vector, cptpf); free_mbox0_irq: vector = pci_irq_vector(pdev, RVU_PF_INT_VEC_VFPF_MBOX0); free_irq(vector, cptpf); return ret; } static void cptpf_flr_wq_destroy(struct otx2_cptpf_dev *pf) { if (!pf->flr_wq) return; destroy_workqueue(pf->flr_wq); pf->flr_wq = NULL; kfree(pf->flr_work); } static int cptpf_flr_wq_init(struct otx2_cptpf_dev *cptpf, int num_vfs) { int vf; cptpf->flr_wq = alloc_ordered_workqueue("cptpf_flr_wq", 0); if (!cptpf->flr_wq) return -ENOMEM; cptpf->flr_work = kcalloc(num_vfs, sizeof(struct cptpf_flr_work), GFP_KERNEL); if (!cptpf->flr_work) goto destroy_wq; for (vf = 0; vf < num_vfs; vf++) { cptpf->flr_work[vf].pf = cptpf; INIT_WORK(&cptpf->flr_work[vf].work, cptpf_flr_wq_handler); } return 0; destroy_wq: destroy_workqueue(cptpf->flr_wq); return -ENOMEM; } static int cptpf_vfpf_mbox_init(struct otx2_cptpf_dev *cptpf, int num_vfs) { struct device *dev = &cptpf->pdev->dev; u64 vfpf_mbox_base; int err, i; cptpf->vfpf_mbox_wq = alloc_ordered_workqueue("cpt_vfpf_mailbox", WQ_HIGHPRI | WQ_MEM_RECLAIM); if (!cptpf->vfpf_mbox_wq) return -ENOMEM; /* Map VF-PF mailbox memory */ if (test_bit(CN10K_MBOX, &cptpf->cap_flag)) vfpf_mbox_base = readq(cptpf->reg_base + RVU_PF_VF_MBOX_ADDR); else vfpf_mbox_base = readq(cptpf->reg_base + RVU_PF_VF_BAR4_ADDR); if (!vfpf_mbox_base) { dev_err(dev, "VF-PF mailbox address not configured\n"); err = -ENOMEM; goto free_wqe; } cptpf->vfpf_mbox_base = devm_ioremap_wc(dev, vfpf_mbox_base, MBOX_SIZE * cptpf->max_vfs); if (!cptpf->vfpf_mbox_base) { dev_err(dev, "Mapping of VF-PF mailbox address failed\n"); err = -ENOMEM; goto free_wqe; } err = otx2_mbox_init(&cptpf->vfpf_mbox, cptpf->vfpf_mbox_base, cptpf->pdev, cptpf->reg_base, MBOX_DIR_PFVF, num_vfs); if (err) goto free_wqe; for (i = 0; i < num_vfs; i++) { cptpf->vf[i].vf_id = i; cptpf->vf[i].cptpf = cptpf; cptpf->vf[i].intr_idx = i % 64; INIT_WORK(&cptpf->vf[i].vfpf_mbox_work, otx2_cptpf_vfpf_mbox_handler); } return 0; free_wqe: destroy_workqueue(cptpf->vfpf_mbox_wq); return err; } static void cptpf_vfpf_mbox_destroy(struct otx2_cptpf_dev *cptpf) { destroy_workqueue(cptpf->vfpf_mbox_wq); otx2_mbox_destroy(&cptpf->vfpf_mbox); } static void cptpf_disable_afpf_mbox_intr(struct otx2_cptpf_dev *cptpf) { /* Disable AF-PF interrupt */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_INT_ENA_W1C, 0x1ULL); /* Clear interrupt if any */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_INT, 0x1ULL); } static int cptpf_register_afpf_mbox_intr(struct otx2_cptpf_dev *cptpf) { struct pci_dev *pdev = cptpf->pdev; struct device *dev = &pdev->dev; int ret, irq; irq = pci_irq_vector(pdev, RVU_PF_INT_VEC_AFPF_MBOX); /* Register AF-PF mailbox interrupt handler */ ret = devm_request_irq(dev, irq, otx2_cptpf_afpf_mbox_intr, 0, "CPTAFPF Mbox", cptpf); if (ret) { dev_err(dev, "IRQ registration failed for PFAF mbox irq\n"); return ret; } /* Clear interrupt if any, to avoid spurious interrupts */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_INT, 0x1ULL); /* Enable AF-PF interrupt */ otx2_cpt_write64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_INT_ENA_W1S, 0x1ULL); ret = otx2_cpt_send_ready_msg(&cptpf->afpf_mbox, cptpf->pdev); if (ret) { dev_warn(dev, "AF not responding to mailbox, deferring probe\n"); cptpf_disable_afpf_mbox_intr(cptpf); return -EPROBE_DEFER; } return 0; } static int cptpf_afpf_mbox_init(struct otx2_cptpf_dev *cptpf) { struct pci_dev *pdev = cptpf->pdev; resource_size_t offset; int err; cptpf->afpf_mbox_wq = alloc_ordered_workqueue("cpt_afpf_mailbox", WQ_HIGHPRI | WQ_MEM_RECLAIM); if (!cptpf->afpf_mbox_wq) return -ENOMEM; offset = pci_resource_start(pdev, PCI_MBOX_BAR_NUM); /* Map AF-PF mailbox memory */ cptpf->afpf_mbox_base = devm_ioremap_wc(&pdev->dev, offset, MBOX_SIZE); if (!cptpf->afpf_mbox_base) { dev_err(&pdev->dev, "Unable to map BAR4\n"); err = -ENOMEM; goto error; } err = otx2_mbox_init(&cptpf->afpf_mbox, cptpf->afpf_mbox_base, pdev, cptpf->reg_base, MBOX_DIR_PFAF, 1); if (err) goto error; err = otx2_mbox_init(&cptpf->afpf_mbox_up, cptpf->afpf_mbox_base, pdev, cptpf->reg_base, MBOX_DIR_PFAF_UP, 1); if (err) goto mbox_cleanup; INIT_WORK(&cptpf->afpf_mbox_work, otx2_cptpf_afpf_mbox_handler); INIT_WORK(&cptpf->afpf_mbox_up_work, otx2_cptpf_afpf_mbox_up_handler); mutex_init(&cptpf->lock); return 0; mbox_cleanup: otx2_mbox_destroy(&cptpf->afpf_mbox); error: destroy_workqueue(cptpf->afpf_mbox_wq); return err; } static void cptpf_afpf_mbox_destroy(struct otx2_cptpf_dev *cptpf) { destroy_workqueue(cptpf->afpf_mbox_wq); otx2_mbox_destroy(&cptpf->afpf_mbox); otx2_mbox_destroy(&cptpf->afpf_mbox_up); } static ssize_t sso_pf_func_ovrd_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx2_cptpf_dev *cptpf = dev_get_drvdata(dev); return sprintf(buf, "%d\n", cptpf->sso_pf_func_ovrd); } static ssize_t sso_pf_func_ovrd_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx2_cptpf_dev *cptpf = dev_get_drvdata(dev); u8 sso_pf_func_ovrd; if (!(cptpf->pdev->revision == CPT_UC_RID_CN9K_B0)) return count; if (kstrtou8(buf, 0, &sso_pf_func_ovrd)) return -EINVAL; cptpf->sso_pf_func_ovrd = sso_pf_func_ovrd; return count; } static ssize_t kvf_limits_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx2_cptpf_dev *cptpf = dev_get_drvdata(dev); return sprintf(buf, "%d\n", cptpf->kvf_limits); } static ssize_t kvf_limits_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx2_cptpf_dev *cptpf = dev_get_drvdata(dev); int lfs_num; int ret; ret = kstrtoint(buf, 0, &lfs_num); if (ret) return ret; if (lfs_num < 1 || lfs_num > num_online_cpus()) { dev_err(dev, "lfs count %d must be in range [1 - %d]\n", lfs_num, num_online_cpus()); return -EINVAL; } cptpf->kvf_limits = lfs_num; return count; } static DEVICE_ATTR_RW(kvf_limits); static DEVICE_ATTR_RW(sso_pf_func_ovrd); static struct attribute *cptpf_attrs[] = { &dev_attr_kvf_limits.attr, &dev_attr_sso_pf_func_ovrd.attr, NULL }; static const struct attribute_group cptpf_sysfs_group = { .attrs = cptpf_attrs, }; static int cpt_is_pf_usable(struct otx2_cptpf_dev *cptpf) { u64 rev; rev = otx2_cpt_read64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_RVUM)); rev = (rev >> 12) & 0xFF; /* * Check if AF has setup revision for RVUM block, otherwise * driver probe should be deferred until AF driver comes up */ if (!rev) { dev_warn(&cptpf->pdev->dev, "AF is not initialized, deferring probe\n"); return -EPROBE_DEFER; } return 0; } static int cptx_device_reset(struct otx2_cptpf_dev *cptpf, int blkaddr) { int timeout = 10, ret; u64 reg = 0; ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_BLK_RST, 0x1, blkaddr); if (ret) return ret; do { ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_BLK_RST, &reg, blkaddr); if (ret) return ret; if (!((reg >> 63) & 0x1)) break; usleep_range(10000, 20000); if (timeout-- < 0) return -EBUSY; } while (1); return ret; } static int cptpf_device_reset(struct otx2_cptpf_dev *cptpf) { int ret = 0; if (cptpf->has_cpt1) { ret = cptx_device_reset(cptpf, BLKADDR_CPT1); if (ret) return ret; } return cptx_device_reset(cptpf, BLKADDR_CPT0); } static void cptpf_check_block_implemented(struct otx2_cptpf_dev *cptpf) { u64 cfg; cfg = otx2_cpt_read64(cptpf->reg_base, BLKADDR_RVUM, 0, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_CPT1)); if (cfg & BIT_ULL(11)) cptpf->has_cpt1 = true; } static int cptpf_device_init(struct otx2_cptpf_dev *cptpf) { union otx2_cptx_af_constants1 af_cnsts1 = {0}; int ret = 0; /* check if 'implemented' bit is set for block BLKADDR_CPT1 */ cptpf_check_block_implemented(cptpf); /* Reset the CPT PF device */ ret = cptpf_device_reset(cptpf); if (ret) return ret; /* Get number of SE, IE and AE engines */ ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_CONSTANTS1, &af_cnsts1.u, BLKADDR_CPT0); if (ret) return ret; cptpf->eng_grps.avail.max_se_cnt = af_cnsts1.s.se; cptpf->eng_grps.avail.max_ie_cnt = af_cnsts1.s.ie; cptpf->eng_grps.avail.max_ae_cnt = af_cnsts1.s.ae; /* Disable all cores */ ret = otx2_cpt_disable_all_cores(cptpf); return ret; } static int cptpf_sriov_disable(struct pci_dev *pdev) { struct otx2_cptpf_dev *cptpf = pci_get_drvdata(pdev); int num_vfs = pci_num_vf(pdev); if (!num_vfs) return 0; pci_disable_sriov(pdev); cptpf_unregister_vfpf_intr(cptpf, num_vfs); cptpf_flr_wq_destroy(cptpf); cptpf_vfpf_mbox_destroy(cptpf); module_put(THIS_MODULE); cptpf->enabled_vfs = 0; return 0; } static int cptpf_sriov_enable(struct pci_dev *pdev, int num_vfs) { struct otx2_cptpf_dev *cptpf = pci_get_drvdata(pdev); int ret; /* Initialize VF<=>PF mailbox */ ret = cptpf_vfpf_mbox_init(cptpf, num_vfs); if (ret) return ret; ret = cptpf_flr_wq_init(cptpf, num_vfs); if (ret) goto destroy_mbox; /* Register VF<=>PF mailbox interrupt */ ret = cptpf_register_vfpf_intr(cptpf, num_vfs); if (ret) goto destroy_flr; /* Get CPT HW capabilities using LOAD_FVC operation. */ ret = otx2_cpt_discover_eng_capabilities(cptpf); if (ret) goto disable_intr; ret = otx2_cpt_create_eng_grps(cptpf, &cptpf->eng_grps); if (ret) goto disable_intr; cptpf->enabled_vfs = num_vfs; ret = pci_enable_sriov(pdev, num_vfs); if (ret) goto disable_intr; dev_notice(&cptpf->pdev->dev, "VFs enabled: %d\n", num_vfs); try_module_get(THIS_MODULE); return num_vfs; disable_intr: cptpf_unregister_vfpf_intr(cptpf, num_vfs); cptpf->enabled_vfs = 0; destroy_flr: cptpf_flr_wq_destroy(cptpf); destroy_mbox: cptpf_vfpf_mbox_destroy(cptpf); return ret; } static int otx2_cptpf_sriov_configure(struct pci_dev *pdev, int num_vfs) { if (num_vfs > 0) { return cptpf_sriov_enable(pdev, num_vfs); } else { return cptpf_sriov_disable(pdev); } } static int otx2_cptpf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct otx2_cptpf_dev *cptpf; int err; cptpf = devm_kzalloc(dev, sizeof(*cptpf), GFP_KERNEL); if (!cptpf) return -ENOMEM; err = pcim_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); goto clear_drvdata; } err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get usable DMA configuration\n"); goto clear_drvdata; } /* Map PF's configuration registers */ err = pcim_iomap_regions_request_all(pdev, 1 << PCI_PF_REG_BAR_NUM, OTX2_CPT_DRV_NAME); if (err) { dev_err(dev, "Couldn't get PCI resources 0x%x\n", err); goto clear_drvdata; } pci_set_master(pdev); pci_set_drvdata(pdev, cptpf); cptpf->pdev = pdev; cptpf->reg_base = pcim_iomap_table(pdev)[PCI_PF_REG_BAR_NUM]; /* Check if AF driver is up, otherwise defer probe */ err = cpt_is_pf_usable(cptpf); if (err) goto clear_drvdata; err = pci_alloc_irq_vectors(pdev, RVU_PF_INT_VEC_CNT, RVU_PF_INT_VEC_CNT, PCI_IRQ_MSIX); if (err < 0) { dev_err(dev, "Request for %d msix vectors failed\n", RVU_PF_INT_VEC_CNT); goto clear_drvdata; } otx2_cpt_set_hw_caps(pdev, &cptpf->cap_flag); /* Initialize AF-PF mailbox */ err = cptpf_afpf_mbox_init(cptpf); if (err) goto clear_drvdata; /* Register mailbox interrupt */ err = cptpf_register_afpf_mbox_intr(cptpf); if (err) goto destroy_afpf_mbox; cptpf->max_vfs = pci_sriov_get_totalvfs(pdev); err = cn10k_cptpf_lmtst_init(cptpf); if (err) goto unregister_intr; /* Initialize CPT PF device */ err = cptpf_device_init(cptpf); if (err) goto unregister_intr; /* Initialize engine groups */ err = otx2_cpt_init_eng_grps(pdev, &cptpf->eng_grps); if (err) goto unregister_intr; err = sysfs_create_group(&dev->kobj, &cptpf_sysfs_group); if (err) goto cleanup_eng_grps; err = otx2_cpt_register_dl(cptpf); if (err) goto sysfs_grp_del; return 0; sysfs_grp_del: sysfs_remove_group(&dev->kobj, &cptpf_sysfs_group); cleanup_eng_grps: otx2_cpt_cleanup_eng_grps(pdev, &cptpf->eng_grps); unregister_intr: cptpf_disable_afpf_mbox_intr(cptpf); destroy_afpf_mbox: cptpf_afpf_mbox_destroy(cptpf); clear_drvdata: pci_set_drvdata(pdev, NULL); return err; } static void otx2_cptpf_remove(struct pci_dev *pdev) { struct otx2_cptpf_dev *cptpf = pci_get_drvdata(pdev); if (!cptpf) return; cptpf_sriov_disable(pdev); otx2_cpt_unregister_dl(cptpf); /* Delete sysfs entry created for kernel VF limits */ sysfs_remove_group(&pdev->dev.kobj, &cptpf_sysfs_group); /* Cleanup engine groups */ otx2_cpt_cleanup_eng_grps(pdev, &cptpf->eng_grps); /* Disable AF-PF mailbox interrupt */ cptpf_disable_afpf_mbox_intr(cptpf); /* Destroy AF-PF mbox */ cptpf_afpf_mbox_destroy(cptpf); pci_set_drvdata(pdev, NULL); } /* Supported devices */ static const struct pci_device_id otx2_cpt_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OTX2_CPT_PCI_PF_DEVICE_ID) }, { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, CN10K_CPT_PCI_PF_DEVICE_ID) }, { 0, } /* end of table */ }; static struct pci_driver otx2_cpt_pci_driver = { .name = OTX2_CPT_DRV_NAME, .id_table = otx2_cpt_id_table, .probe = otx2_cptpf_probe, .remove = otx2_cptpf_remove, .sriov_configure = otx2_cptpf_sriov_configure }; module_pci_driver(otx2_cpt_pci_driver); MODULE_IMPORT_NS(CRYPTO_DEV_OCTEONTX2_CPT); MODULE_AUTHOR("Marvell"); MODULE_DESCRIPTION(OTX2_CPT_DRV_STRING); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(pci, otx2_cpt_id_table);
linux-master
drivers/crypto/marvell/octeontx2/otx2_cptpf_main.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include "otx2_cpt_common.h" #include "otx2_cptlf.h" int otx2_cpt_send_mbox_msg(struct otx2_mbox *mbox, struct pci_dev *pdev) { int ret; otx2_mbox_msg_send(mbox, 0); ret = otx2_mbox_wait_for_rsp(mbox, 0); if (ret == -EIO) { dev_err(&pdev->dev, "RVU MBOX timeout.\n"); return ret; } else if (ret) { dev_err(&pdev->dev, "RVU MBOX error: %d.\n", ret); return -EFAULT; } return ret; } EXPORT_SYMBOL_NS_GPL(otx2_cpt_send_mbox_msg, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cpt_send_ready_msg(struct otx2_mbox *mbox, struct pci_dev *pdev) { struct mbox_msghdr *req; req = otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*req), sizeof(struct ready_msg_rsp)); if (req == NULL) { dev_err(&pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } req->id = MBOX_MSG_READY; req->sig = OTX2_MBOX_REQ_SIG; req->pcifunc = 0; return otx2_cpt_send_mbox_msg(mbox, pdev); } EXPORT_SYMBOL_NS_GPL(otx2_cpt_send_ready_msg, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cpt_send_af_reg_requests(struct otx2_mbox *mbox, struct pci_dev *pdev) { return otx2_cpt_send_mbox_msg(mbox, pdev); } EXPORT_SYMBOL_NS_GPL(otx2_cpt_send_af_reg_requests, CRYPTO_DEV_OCTEONTX2_CPT); static int otx2_cpt_add_read_af_reg(struct otx2_mbox *mbox, struct pci_dev *pdev, u64 reg, u64 *val, int blkaddr) { struct cpt_rd_wr_reg_msg *reg_msg; reg_msg = (struct cpt_rd_wr_reg_msg *) otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*reg_msg), sizeof(*reg_msg)); if (reg_msg == NULL) { dev_err(&pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } reg_msg->hdr.id = MBOX_MSG_CPT_RD_WR_REGISTER; reg_msg->hdr.sig = OTX2_MBOX_REQ_SIG; reg_msg->hdr.pcifunc = 0; reg_msg->is_write = 0; reg_msg->reg_offset = reg; reg_msg->ret_val = val; reg_msg->blkaddr = blkaddr; return 0; } int otx2_cpt_add_write_af_reg(struct otx2_mbox *mbox, struct pci_dev *pdev, u64 reg, u64 val, int blkaddr) { struct cpt_rd_wr_reg_msg *reg_msg; reg_msg = (struct cpt_rd_wr_reg_msg *) otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*reg_msg), sizeof(*reg_msg)); if (reg_msg == NULL) { dev_err(&pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } reg_msg->hdr.id = MBOX_MSG_CPT_RD_WR_REGISTER; reg_msg->hdr.sig = OTX2_MBOX_REQ_SIG; reg_msg->hdr.pcifunc = 0; reg_msg->is_write = 1; reg_msg->reg_offset = reg; reg_msg->val = val; reg_msg->blkaddr = blkaddr; return 0; } EXPORT_SYMBOL_NS_GPL(otx2_cpt_add_write_af_reg, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cpt_read_af_reg(struct otx2_mbox *mbox, struct pci_dev *pdev, u64 reg, u64 *val, int blkaddr) { int ret; ret = otx2_cpt_add_read_af_reg(mbox, pdev, reg, val, blkaddr); if (ret) return ret; return otx2_cpt_send_mbox_msg(mbox, pdev); } EXPORT_SYMBOL_NS_GPL(otx2_cpt_read_af_reg, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cpt_write_af_reg(struct otx2_mbox *mbox, struct pci_dev *pdev, u64 reg, u64 val, int blkaddr) { int ret; ret = otx2_cpt_add_write_af_reg(mbox, pdev, reg, val, blkaddr); if (ret) return ret; return otx2_cpt_send_mbox_msg(mbox, pdev); } EXPORT_SYMBOL_NS_GPL(otx2_cpt_write_af_reg, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cpt_attach_rscrs_msg(struct otx2_cptlfs_info *lfs) { struct otx2_mbox *mbox = lfs->mbox; struct rsrc_attach *req; int ret; req = (struct rsrc_attach *) otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*req), sizeof(struct msg_rsp)); if (req == NULL) { dev_err(&lfs->pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } req->hdr.id = MBOX_MSG_ATTACH_RESOURCES; req->hdr.sig = OTX2_MBOX_REQ_SIG; req->hdr.pcifunc = 0; req->cptlfs = lfs->lfs_num; req->cpt_blkaddr = lfs->blkaddr; req->modify = 1; ret = otx2_cpt_send_mbox_msg(mbox, lfs->pdev); if (ret) return ret; if (!lfs->are_lfs_attached) ret = -EINVAL; return ret; } int otx2_cpt_detach_rsrcs_msg(struct otx2_cptlfs_info *lfs) { struct otx2_mbox *mbox = lfs->mbox; struct rsrc_detach *req; int ret; req = (struct rsrc_detach *) otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*req), sizeof(struct msg_rsp)); if (req == NULL) { dev_err(&lfs->pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } req->hdr.id = MBOX_MSG_DETACH_RESOURCES; req->hdr.sig = OTX2_MBOX_REQ_SIG; req->hdr.pcifunc = 0; req->cptlfs = 1; ret = otx2_cpt_send_mbox_msg(mbox, lfs->pdev); if (ret) return ret; if (lfs->are_lfs_attached) ret = -EINVAL; return ret; } EXPORT_SYMBOL_NS_GPL(otx2_cpt_detach_rsrcs_msg, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cpt_msix_offset_msg(struct otx2_cptlfs_info *lfs) { struct otx2_mbox *mbox = lfs->mbox; struct pci_dev *pdev = lfs->pdev; struct mbox_msghdr *req; int ret, i; req = otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*req), sizeof(struct msix_offset_rsp)); if (req == NULL) { dev_err(&pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } req->id = MBOX_MSG_MSIX_OFFSET; req->sig = OTX2_MBOX_REQ_SIG; req->pcifunc = 0; ret = otx2_cpt_send_mbox_msg(mbox, pdev); if (ret) return ret; for (i = 0; i < lfs->lfs_num; i++) { if (lfs->lf[i].msix_offset == MSIX_VECTOR_INVALID) { dev_err(&pdev->dev, "Invalid msix offset %d for LF %d\n", lfs->lf[i].msix_offset, i); return -EINVAL; } } return ret; } EXPORT_SYMBOL_NS_GPL(otx2_cpt_msix_offset_msg, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cpt_sync_mbox_msg(struct otx2_mbox *mbox) { int err; if (!otx2_mbox_nonempty(mbox, 0)) return 0; otx2_mbox_msg_send(mbox, 0); err = otx2_mbox_wait_for_rsp(mbox, 0); if (err) return err; return otx2_mbox_check_rsp_msgs(mbox, 0); } EXPORT_SYMBOL_NS_GPL(otx2_cpt_sync_mbox_msg, CRYPTO_DEV_OCTEONTX2_CPT);
linux-master
drivers/crypto/marvell/octeontx2/otx2_cpt_mbox_common.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include <linux/ctype.h> #include <linux/firmware.h> #include "otx2_cptpf_ucode.h" #include "otx2_cpt_common.h" #include "otx2_cptpf.h" #include "otx2_cptlf.h" #include "otx2_cpt_reqmgr.h" #include "rvu_reg.h" #define CSR_DELAY 30 #define LOADFVC_RLEN 8 #define LOADFVC_MAJOR_OP 0x01 #define LOADFVC_MINOR_OP 0x08 #define CTX_FLUSH_TIMER_CNT 0xFFFFFF struct fw_info_t { struct list_head ucodes; }; static struct otx2_cpt_bitmap get_cores_bmap(struct device *dev, struct otx2_cpt_eng_grp_info *eng_grp) { struct otx2_cpt_bitmap bmap = { {0} }; bool found = false; int i; if (eng_grp->g->engs_num < 0 || eng_grp->g->engs_num > OTX2_CPT_MAX_ENGINES) { dev_err(dev, "unsupported number of engines %d on octeontx2\n", eng_grp->g->engs_num); return bmap; } for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { if (eng_grp->engs[i].type) { bitmap_or(bmap.bits, bmap.bits, eng_grp->engs[i].bmap, eng_grp->g->engs_num); bmap.size = eng_grp->g->engs_num; found = true; } } if (!found) dev_err(dev, "No engines reserved for engine group %d\n", eng_grp->idx); return bmap; } static int is_eng_type(int val, int eng_type) { return val & (1 << eng_type); } static int is_2nd_ucode_used(struct otx2_cpt_eng_grp_info *eng_grp) { if (eng_grp->ucode[1].type) return true; else return false; } static void set_ucode_filename(struct otx2_cpt_ucode *ucode, const char *filename) { strscpy(ucode->filename, filename, OTX2_CPT_NAME_LENGTH); } static char *get_eng_type_str(int eng_type) { char *str = "unknown"; switch (eng_type) { case OTX2_CPT_SE_TYPES: str = "SE"; break; case OTX2_CPT_IE_TYPES: str = "IE"; break; case OTX2_CPT_AE_TYPES: str = "AE"; break; } return str; } static char *get_ucode_type_str(int ucode_type) { char *str = "unknown"; switch (ucode_type) { case (1 << OTX2_CPT_SE_TYPES): str = "SE"; break; case (1 << OTX2_CPT_IE_TYPES): str = "IE"; break; case (1 << OTX2_CPT_AE_TYPES): str = "AE"; break; case (1 << OTX2_CPT_SE_TYPES | 1 << OTX2_CPT_IE_TYPES): str = "SE+IPSEC"; break; } return str; } static int get_ucode_type(struct device *dev, struct otx2_cpt_ucode_hdr *ucode_hdr, int *ucode_type) { struct otx2_cptpf_dev *cptpf = dev_get_drvdata(dev); char ver_str_prefix[OTX2_CPT_UCODE_VER_STR_SZ]; char tmp_ver_str[OTX2_CPT_UCODE_VER_STR_SZ]; struct pci_dev *pdev = cptpf->pdev; int i, val = 0; u8 nn; strscpy(tmp_ver_str, ucode_hdr->ver_str, OTX2_CPT_UCODE_VER_STR_SZ); for (i = 0; i < strlen(tmp_ver_str); i++) tmp_ver_str[i] = tolower(tmp_ver_str[i]); sprintf(ver_str_prefix, "ocpt-%02d", pdev->revision); if (!strnstr(tmp_ver_str, ver_str_prefix, OTX2_CPT_UCODE_VER_STR_SZ)) return -EINVAL; nn = ucode_hdr->ver_num.nn; if (strnstr(tmp_ver_str, "se-", OTX2_CPT_UCODE_VER_STR_SZ) && (nn == OTX2_CPT_SE_UC_TYPE1 || nn == OTX2_CPT_SE_UC_TYPE2 || nn == OTX2_CPT_SE_UC_TYPE3)) val |= 1 << OTX2_CPT_SE_TYPES; if (strnstr(tmp_ver_str, "ie-", OTX2_CPT_UCODE_VER_STR_SZ) && (nn == OTX2_CPT_IE_UC_TYPE1 || nn == OTX2_CPT_IE_UC_TYPE2 || nn == OTX2_CPT_IE_UC_TYPE3)) val |= 1 << OTX2_CPT_IE_TYPES; if (strnstr(tmp_ver_str, "ae", OTX2_CPT_UCODE_VER_STR_SZ) && nn == OTX2_CPT_AE_UC_TYPE) val |= 1 << OTX2_CPT_AE_TYPES; *ucode_type = val; if (!val) return -EINVAL; return 0; } static int __write_ucode_base(struct otx2_cptpf_dev *cptpf, int eng, dma_addr_t dma_addr, int blkaddr) { return otx2_cpt_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_UCODE_BASE(eng), (u64)dma_addr, blkaddr); } static int cptx_set_ucode_base(struct otx2_cpt_eng_grp_info *eng_grp, struct otx2_cptpf_dev *cptpf, int blkaddr) { struct otx2_cpt_engs_rsvd *engs; dma_addr_t dma_addr; int i, bit, ret; /* Set PF number for microcode fetches */ ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_PF_FUNC, cptpf->pf_id << RVU_PFVF_PF_SHIFT, blkaddr); if (ret) return ret; for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { engs = &eng_grp->engs[i]; if (!engs->type) continue; dma_addr = engs->ucode->dma; /* * Set UCODE_BASE only for the cores which are not used, * other cores should have already valid UCODE_BASE set */ for_each_set_bit(bit, engs->bmap, eng_grp->g->engs_num) if (!eng_grp->g->eng_ref_cnt[bit]) { ret = __write_ucode_base(cptpf, bit, dma_addr, blkaddr); if (ret) return ret; } } return 0; } static int cpt_set_ucode_base(struct otx2_cpt_eng_grp_info *eng_grp, void *obj) { struct otx2_cptpf_dev *cptpf = obj; int ret; if (cptpf->has_cpt1) { ret = cptx_set_ucode_base(eng_grp, cptpf, BLKADDR_CPT1); if (ret) return ret; } return cptx_set_ucode_base(eng_grp, cptpf, BLKADDR_CPT0); } static int cptx_detach_and_disable_cores(struct otx2_cpt_eng_grp_info *eng_grp, struct otx2_cptpf_dev *cptpf, struct otx2_cpt_bitmap bmap, int blkaddr) { int i, timeout = 10; int busy, ret; u64 reg = 0; /* Detach the cores from group */ for_each_set_bit(i, bmap.bits, bmap.size) { ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_CTL2(i), &reg, blkaddr); if (ret) return ret; if (reg & (1ull << eng_grp->idx)) { eng_grp->g->eng_ref_cnt[i]--; reg &= ~(1ull << eng_grp->idx); ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_CTL2(i), reg, blkaddr); if (ret) return ret; } } /* Wait for cores to become idle */ do { busy = 0; usleep_range(10000, 20000); if (timeout-- < 0) return -EBUSY; for_each_set_bit(i, bmap.bits, bmap.size) { ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_STS(i), &reg, blkaddr); if (ret) return ret; if (reg & 0x1) { busy = 1; break; } } } while (busy); /* Disable the cores only if they are not used anymore */ for_each_set_bit(i, bmap.bits, bmap.size) { if (!eng_grp->g->eng_ref_cnt[i]) { ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_CTL(i), 0x0, blkaddr); if (ret) return ret; } } return 0; } static int cpt_detach_and_disable_cores(struct otx2_cpt_eng_grp_info *eng_grp, void *obj) { struct otx2_cptpf_dev *cptpf = obj; struct otx2_cpt_bitmap bmap; int ret; bmap = get_cores_bmap(&cptpf->pdev->dev, eng_grp); if (!bmap.size) return -EINVAL; if (cptpf->has_cpt1) { ret = cptx_detach_and_disable_cores(eng_grp, cptpf, bmap, BLKADDR_CPT1); if (ret) return ret; } return cptx_detach_and_disable_cores(eng_grp, cptpf, bmap, BLKADDR_CPT0); } static int cptx_attach_and_enable_cores(struct otx2_cpt_eng_grp_info *eng_grp, struct otx2_cptpf_dev *cptpf, struct otx2_cpt_bitmap bmap, int blkaddr) { u64 reg = 0; int i, ret; /* Attach the cores to the group */ for_each_set_bit(i, bmap.bits, bmap.size) { ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_CTL2(i), &reg, blkaddr); if (ret) return ret; if (!(reg & (1ull << eng_grp->idx))) { eng_grp->g->eng_ref_cnt[i]++; reg |= 1ull << eng_grp->idx; ret = otx2_cpt_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_CTL2(i), reg, blkaddr); if (ret) return ret; } } /* Enable the cores */ for_each_set_bit(i, bmap.bits, bmap.size) { ret = otx2_cpt_add_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_CTL(i), 0x1, blkaddr); if (ret) return ret; } return otx2_cpt_send_af_reg_requests(&cptpf->afpf_mbox, cptpf->pdev); } static int cpt_attach_and_enable_cores(struct otx2_cpt_eng_grp_info *eng_grp, void *obj) { struct otx2_cptpf_dev *cptpf = obj; struct otx2_cpt_bitmap bmap; int ret; bmap = get_cores_bmap(&cptpf->pdev->dev, eng_grp); if (!bmap.size) return -EINVAL; if (cptpf->has_cpt1) { ret = cptx_attach_and_enable_cores(eng_grp, cptpf, bmap, BLKADDR_CPT1); if (ret) return ret; } return cptx_attach_and_enable_cores(eng_grp, cptpf, bmap, BLKADDR_CPT0); } static int load_fw(struct device *dev, struct fw_info_t *fw_info, char *filename) { struct otx2_cpt_ucode_hdr *ucode_hdr; struct otx2_cpt_uc_info_t *uc_info; int ucode_type, ucode_size; int ret; uc_info = kzalloc(sizeof(*uc_info), GFP_KERNEL); if (!uc_info) return -ENOMEM; ret = request_firmware(&uc_info->fw, filename, dev); if (ret) goto free_uc_info; ucode_hdr = (struct otx2_cpt_ucode_hdr *)uc_info->fw->data; ret = get_ucode_type(dev, ucode_hdr, &ucode_type); if (ret) goto release_fw; ucode_size = ntohl(ucode_hdr->code_length) * 2; if (!ucode_size) { dev_err(dev, "Ucode %s invalid size\n", filename); ret = -EINVAL; goto release_fw; } set_ucode_filename(&uc_info->ucode, filename); memcpy(uc_info->ucode.ver_str, ucode_hdr->ver_str, OTX2_CPT_UCODE_VER_STR_SZ); uc_info->ucode.ver_num = ucode_hdr->ver_num; uc_info->ucode.type = ucode_type; uc_info->ucode.size = ucode_size; list_add_tail(&uc_info->list, &fw_info->ucodes); return 0; release_fw: release_firmware(uc_info->fw); free_uc_info: kfree(uc_info); return ret; } static void cpt_ucode_release_fw(struct fw_info_t *fw_info) { struct otx2_cpt_uc_info_t *curr, *temp; if (!fw_info) return; list_for_each_entry_safe(curr, temp, &fw_info->ucodes, list) { list_del(&curr->list); release_firmware(curr->fw); kfree(curr); } } static struct otx2_cpt_uc_info_t *get_ucode(struct fw_info_t *fw_info, int ucode_type) { struct otx2_cpt_uc_info_t *curr; list_for_each_entry(curr, &fw_info->ucodes, list) { if (!is_eng_type(curr->ucode.type, ucode_type)) continue; return curr; } return NULL; } static void print_uc_info(struct fw_info_t *fw_info) { struct otx2_cpt_uc_info_t *curr; list_for_each_entry(curr, &fw_info->ucodes, list) { pr_debug("Ucode filename %s\n", curr->ucode.filename); pr_debug("Ucode version string %s\n", curr->ucode.ver_str); pr_debug("Ucode version %d.%d.%d.%d\n", curr->ucode.ver_num.nn, curr->ucode.ver_num.xx, curr->ucode.ver_num.yy, curr->ucode.ver_num.zz); pr_debug("Ucode type (%d) %s\n", curr->ucode.type, get_ucode_type_str(curr->ucode.type)); pr_debug("Ucode size %d\n", curr->ucode.size); pr_debug("Ucode ptr %p\n", curr->fw->data); } } static int cpt_ucode_load_fw(struct pci_dev *pdev, struct fw_info_t *fw_info) { char filename[OTX2_CPT_NAME_LENGTH]; char eng_type[8] = {0}; int ret, e, i; INIT_LIST_HEAD(&fw_info->ucodes); for (e = 1; e < OTX2_CPT_MAX_ENG_TYPES; e++) { strcpy(eng_type, get_eng_type_str(e)); for (i = 0; i < strlen(eng_type); i++) eng_type[i] = tolower(eng_type[i]); snprintf(filename, sizeof(filename), "mrvl/cpt%02d/%s.out", pdev->revision, eng_type); /* Request firmware for each engine type */ ret = load_fw(&pdev->dev, fw_info, filename); if (ret) goto release_fw; } print_uc_info(fw_info); return 0; release_fw: cpt_ucode_release_fw(fw_info); return ret; } struct otx2_cpt_engs_rsvd *find_engines_by_type( struct otx2_cpt_eng_grp_info *eng_grp, int eng_type) { int i; for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { if (!eng_grp->engs[i].type) continue; if (eng_grp->engs[i].type == eng_type) return &eng_grp->engs[i]; } return NULL; } static int eng_grp_has_eng_type(struct otx2_cpt_eng_grp_info *eng_grp, int eng_type) { struct otx2_cpt_engs_rsvd *engs; engs = find_engines_by_type(eng_grp, eng_type); return (engs != NULL ? 1 : 0); } static int update_engines_avail_count(struct device *dev, struct otx2_cpt_engs_available *avail, struct otx2_cpt_engs_rsvd *engs, int val) { switch (engs->type) { case OTX2_CPT_SE_TYPES: avail->se_cnt += val; break; case OTX2_CPT_IE_TYPES: avail->ie_cnt += val; break; case OTX2_CPT_AE_TYPES: avail->ae_cnt += val; break; default: dev_err(dev, "Invalid engine type %d\n", engs->type); return -EINVAL; } return 0; } static int update_engines_offset(struct device *dev, struct otx2_cpt_engs_available *avail, struct otx2_cpt_engs_rsvd *engs) { switch (engs->type) { case OTX2_CPT_SE_TYPES: engs->offset = 0; break; case OTX2_CPT_IE_TYPES: engs->offset = avail->max_se_cnt; break; case OTX2_CPT_AE_TYPES: engs->offset = avail->max_se_cnt + avail->max_ie_cnt; break; default: dev_err(dev, "Invalid engine type %d\n", engs->type); return -EINVAL; } return 0; } static int release_engines(struct device *dev, struct otx2_cpt_eng_grp_info *grp) { int i, ret = 0; for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { if (!grp->engs[i].type) continue; if (grp->engs[i].count > 0) { ret = update_engines_avail_count(dev, &grp->g->avail, &grp->engs[i], grp->engs[i].count); if (ret) return ret; } grp->engs[i].type = 0; grp->engs[i].count = 0; grp->engs[i].offset = 0; grp->engs[i].ucode = NULL; bitmap_zero(grp->engs[i].bmap, grp->g->engs_num); } return 0; } static int do_reserve_engines(struct device *dev, struct otx2_cpt_eng_grp_info *grp, struct otx2_cpt_engines *req_engs) { struct otx2_cpt_engs_rsvd *engs = NULL; int i, ret; for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { if (!grp->engs[i].type) { engs = &grp->engs[i]; break; } } if (!engs) return -ENOMEM; engs->type = req_engs->type; engs->count = req_engs->count; ret = update_engines_offset(dev, &grp->g->avail, engs); if (ret) return ret; if (engs->count > 0) { ret = update_engines_avail_count(dev, &grp->g->avail, engs, -engs->count); if (ret) return ret; } return 0; } static int check_engines_availability(struct device *dev, struct otx2_cpt_eng_grp_info *grp, struct otx2_cpt_engines *req_eng) { int avail_cnt = 0; switch (req_eng->type) { case OTX2_CPT_SE_TYPES: avail_cnt = grp->g->avail.se_cnt; break; case OTX2_CPT_IE_TYPES: avail_cnt = grp->g->avail.ie_cnt; break; case OTX2_CPT_AE_TYPES: avail_cnt = grp->g->avail.ae_cnt; break; default: dev_err(dev, "Invalid engine type %d\n", req_eng->type); return -EINVAL; } if (avail_cnt < req_eng->count) { dev_err(dev, "Error available %s engines %d < than requested %d\n", get_eng_type_str(req_eng->type), avail_cnt, req_eng->count); return -EBUSY; } return 0; } static int reserve_engines(struct device *dev, struct otx2_cpt_eng_grp_info *grp, struct otx2_cpt_engines *req_engs, int ucodes_cnt) { int i, ret = 0; /* Validate if a number of requested engines are available */ for (i = 0; i < ucodes_cnt; i++) { ret = check_engines_availability(dev, grp, &req_engs[i]); if (ret) return ret; } /* Reserve requested engines for this engine group */ for (i = 0; i < ucodes_cnt; i++) { ret = do_reserve_engines(dev, grp, &req_engs[i]); if (ret) return ret; } return 0; } static void ucode_unload(struct device *dev, struct otx2_cpt_ucode *ucode) { if (ucode->va) { dma_free_coherent(dev, OTX2_CPT_UCODE_SZ, ucode->va, ucode->dma); ucode->va = NULL; ucode->dma = 0; ucode->size = 0; } memset(&ucode->ver_str, 0, OTX2_CPT_UCODE_VER_STR_SZ); memset(&ucode->ver_num, 0, sizeof(struct otx2_cpt_ucode_ver_num)); set_ucode_filename(ucode, ""); ucode->type = 0; } static int copy_ucode_to_dma_mem(struct device *dev, struct otx2_cpt_ucode *ucode, const u8 *ucode_data) { u32 i; /* Allocate DMAable space */ ucode->va = dma_alloc_coherent(dev, OTX2_CPT_UCODE_SZ, &ucode->dma, GFP_KERNEL); if (!ucode->va) return -ENOMEM; memcpy(ucode->va, ucode_data + sizeof(struct otx2_cpt_ucode_hdr), ucode->size); /* Byte swap 64-bit */ for (i = 0; i < (ucode->size / 8); i++) cpu_to_be64s(&((u64 *)ucode->va)[i]); /* Ucode needs 16-bit swap */ for (i = 0; i < (ucode->size / 2); i++) cpu_to_be16s(&((u16 *)ucode->va)[i]); return 0; } static int enable_eng_grp(struct otx2_cpt_eng_grp_info *eng_grp, void *obj) { int ret; /* Point microcode to each core of the group */ ret = cpt_set_ucode_base(eng_grp, obj); if (ret) return ret; /* Attach the cores to the group and enable them */ ret = cpt_attach_and_enable_cores(eng_grp, obj); return ret; } static int disable_eng_grp(struct device *dev, struct otx2_cpt_eng_grp_info *eng_grp, void *obj) { int i, ret; /* Disable all engines used by this group */ ret = cpt_detach_and_disable_cores(eng_grp, obj); if (ret) return ret; /* Unload ucode used by this engine group */ ucode_unload(dev, &eng_grp->ucode[0]); ucode_unload(dev, &eng_grp->ucode[1]); for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { if (!eng_grp->engs[i].type) continue; eng_grp->engs[i].ucode = &eng_grp->ucode[0]; } /* Clear UCODE_BASE register for each engine used by this group */ ret = cpt_set_ucode_base(eng_grp, obj); return ret; } static void setup_eng_grp_mirroring(struct otx2_cpt_eng_grp_info *dst_grp, struct otx2_cpt_eng_grp_info *src_grp) { /* Setup fields for engine group which is mirrored */ src_grp->mirror.is_ena = false; src_grp->mirror.idx = 0; src_grp->mirror.ref_count++; /* Setup fields for mirroring engine group */ dst_grp->mirror.is_ena = true; dst_grp->mirror.idx = src_grp->idx; dst_grp->mirror.ref_count = 0; } static void remove_eng_grp_mirroring(struct otx2_cpt_eng_grp_info *dst_grp) { struct otx2_cpt_eng_grp_info *src_grp; if (!dst_grp->mirror.is_ena) return; src_grp = &dst_grp->g->grp[dst_grp->mirror.idx]; src_grp->mirror.ref_count--; dst_grp->mirror.is_ena = false; dst_grp->mirror.idx = 0; dst_grp->mirror.ref_count = 0; } static void update_requested_engs(struct otx2_cpt_eng_grp_info *mirror_eng_grp, struct otx2_cpt_engines *engs, int engs_cnt) { struct otx2_cpt_engs_rsvd *mirrored_engs; int i; for (i = 0; i < engs_cnt; i++) { mirrored_engs = find_engines_by_type(mirror_eng_grp, engs[i].type); if (!mirrored_engs) continue; /* * If mirrored group has this type of engines attached then * there are 3 scenarios possible: * 1) mirrored_engs.count == engs[i].count then all engines * from mirrored engine group will be shared with this engine * group * 2) mirrored_engs.count > engs[i].count then only a subset of * engines from mirrored engine group will be shared with this * engine group * 3) mirrored_engs.count < engs[i].count then all engines * from mirrored engine group will be shared with this group * and additional engines will be reserved for exclusively use * by this engine group */ engs[i].count -= mirrored_engs->count; } } static struct otx2_cpt_eng_grp_info *find_mirrored_eng_grp( struct otx2_cpt_eng_grp_info *grp) { struct otx2_cpt_eng_grps *eng_grps = grp->g; int i; for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) { if (!eng_grps->grp[i].is_enabled) continue; if (eng_grps->grp[i].ucode[0].type && eng_grps->grp[i].ucode[1].type) continue; if (grp->idx == i) continue; if (!strncasecmp(eng_grps->grp[i].ucode[0].ver_str, grp->ucode[0].ver_str, OTX2_CPT_UCODE_VER_STR_SZ)) return &eng_grps->grp[i]; } return NULL; } static struct otx2_cpt_eng_grp_info *find_unused_eng_grp( struct otx2_cpt_eng_grps *eng_grps) { int i; for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) { if (!eng_grps->grp[i].is_enabled) return &eng_grps->grp[i]; } return NULL; } static int eng_grp_update_masks(struct device *dev, struct otx2_cpt_eng_grp_info *eng_grp) { struct otx2_cpt_engs_rsvd *engs, *mirrored_engs; struct otx2_cpt_bitmap tmp_bmap = { {0} }; int i, j, cnt, max_cnt; int bit; for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { engs = &eng_grp->engs[i]; if (!engs->type) continue; if (engs->count <= 0) continue; switch (engs->type) { case OTX2_CPT_SE_TYPES: max_cnt = eng_grp->g->avail.max_se_cnt; break; case OTX2_CPT_IE_TYPES: max_cnt = eng_grp->g->avail.max_ie_cnt; break; case OTX2_CPT_AE_TYPES: max_cnt = eng_grp->g->avail.max_ae_cnt; break; default: dev_err(dev, "Invalid engine type %d\n", engs->type); return -EINVAL; } cnt = engs->count; WARN_ON(engs->offset + max_cnt > OTX2_CPT_MAX_ENGINES); bitmap_zero(tmp_bmap.bits, eng_grp->g->engs_num); for (j = engs->offset; j < engs->offset + max_cnt; j++) { if (!eng_grp->g->eng_ref_cnt[j]) { bitmap_set(tmp_bmap.bits, j, 1); cnt--; if (!cnt) break; } } if (cnt) return -ENOSPC; bitmap_copy(engs->bmap, tmp_bmap.bits, eng_grp->g->engs_num); } if (!eng_grp->mirror.is_ena) return 0; for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { engs = &eng_grp->engs[i]; if (!engs->type) continue; mirrored_engs = find_engines_by_type( &eng_grp->g->grp[eng_grp->mirror.idx], engs->type); WARN_ON(!mirrored_engs && engs->count <= 0); if (!mirrored_engs) continue; bitmap_copy(tmp_bmap.bits, mirrored_engs->bmap, eng_grp->g->engs_num); if (engs->count < 0) { bit = find_first_bit(mirrored_engs->bmap, eng_grp->g->engs_num); bitmap_clear(tmp_bmap.bits, bit, -engs->count); } bitmap_or(engs->bmap, engs->bmap, tmp_bmap.bits, eng_grp->g->engs_num); } return 0; } static int delete_engine_group(struct device *dev, struct otx2_cpt_eng_grp_info *eng_grp) { int ret; if (!eng_grp->is_enabled) return 0; if (eng_grp->mirror.ref_count) return -EINVAL; /* Removing engine group mirroring if enabled */ remove_eng_grp_mirroring(eng_grp); /* Disable engine group */ ret = disable_eng_grp(dev, eng_grp, eng_grp->g->obj); if (ret) return ret; /* Release all engines held by this engine group */ ret = release_engines(dev, eng_grp); if (ret) return ret; eng_grp->is_enabled = false; return 0; } static void update_ucode_ptrs(struct otx2_cpt_eng_grp_info *eng_grp) { struct otx2_cpt_ucode *ucode; if (eng_grp->mirror.is_ena) ucode = &eng_grp->g->grp[eng_grp->mirror.idx].ucode[0]; else ucode = &eng_grp->ucode[0]; WARN_ON(!eng_grp->engs[0].type); eng_grp->engs[0].ucode = ucode; if (eng_grp->engs[1].type) { if (is_2nd_ucode_used(eng_grp)) eng_grp->engs[1].ucode = &eng_grp->ucode[1]; else eng_grp->engs[1].ucode = ucode; } } static int create_engine_group(struct device *dev, struct otx2_cpt_eng_grps *eng_grps, struct otx2_cpt_engines *engs, int ucodes_cnt, void *ucode_data[], int is_print) { struct otx2_cpt_eng_grp_info *mirrored_eng_grp; struct otx2_cpt_eng_grp_info *eng_grp; struct otx2_cpt_uc_info_t *uc_info; int i, ret = 0; /* Find engine group which is not used */ eng_grp = find_unused_eng_grp(eng_grps); if (!eng_grp) { dev_err(dev, "Error all engine groups are being used\n"); return -ENOSPC; } /* Load ucode */ for (i = 0; i < ucodes_cnt; i++) { uc_info = (struct otx2_cpt_uc_info_t *) ucode_data[i]; eng_grp->ucode[i] = uc_info->ucode; ret = copy_ucode_to_dma_mem(dev, &eng_grp->ucode[i], uc_info->fw->data); if (ret) goto unload_ucode; } /* Check if this group mirrors another existing engine group */ mirrored_eng_grp = find_mirrored_eng_grp(eng_grp); if (mirrored_eng_grp) { /* Setup mirroring */ setup_eng_grp_mirroring(eng_grp, mirrored_eng_grp); /* * Update count of requested engines because some * of them might be shared with mirrored group */ update_requested_engs(mirrored_eng_grp, engs, ucodes_cnt); } ret = reserve_engines(dev, eng_grp, engs, ucodes_cnt); if (ret) goto unload_ucode; /* Update ucode pointers used by engines */ update_ucode_ptrs(eng_grp); /* Update engine masks used by this group */ ret = eng_grp_update_masks(dev, eng_grp); if (ret) goto release_engs; /* Enable engine group */ ret = enable_eng_grp(eng_grp, eng_grps->obj); if (ret) goto release_engs; /* * If this engine group mirrors another engine group * then we need to unload ucode as we will use ucode * from mirrored engine group */ if (eng_grp->mirror.is_ena) ucode_unload(dev, &eng_grp->ucode[0]); eng_grp->is_enabled = true; if (!is_print) return 0; if (mirrored_eng_grp) dev_info(dev, "Engine_group%d: reuse microcode %s from group %d\n", eng_grp->idx, mirrored_eng_grp->ucode[0].ver_str, mirrored_eng_grp->idx); else dev_info(dev, "Engine_group%d: microcode loaded %s\n", eng_grp->idx, eng_grp->ucode[0].ver_str); if (is_2nd_ucode_used(eng_grp)) dev_info(dev, "Engine_group%d: microcode loaded %s\n", eng_grp->idx, eng_grp->ucode[1].ver_str); return 0; release_engs: release_engines(dev, eng_grp); unload_ucode: ucode_unload(dev, &eng_grp->ucode[0]); ucode_unload(dev, &eng_grp->ucode[1]); return ret; } static void delete_engine_grps(struct pci_dev *pdev, struct otx2_cpt_eng_grps *eng_grps) { int i; /* First delete all mirroring engine groups */ for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) if (eng_grps->grp[i].mirror.is_ena) delete_engine_group(&pdev->dev, &eng_grps->grp[i]); /* Delete remaining engine groups */ for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) delete_engine_group(&pdev->dev, &eng_grps->grp[i]); } #define PCI_DEVID_CN10K_RNM 0xA098 #define RNM_ENTROPY_STATUS 0x8 static void rnm_to_cpt_errata_fixup(struct device *dev) { struct pci_dev *pdev; void __iomem *base; int timeout = 5000; pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_RNM, NULL); if (!pdev) return; base = pci_ioremap_bar(pdev, 0); if (!base) goto put_pdev; while ((readq(base + RNM_ENTROPY_STATUS) & 0x7F) != 0x40) { cpu_relax(); udelay(1); timeout--; if (!timeout) { dev_warn(dev, "RNM is not producing entropy\n"); break; } } iounmap(base); put_pdev: pci_dev_put(pdev); } int otx2_cpt_get_eng_grp(struct otx2_cpt_eng_grps *eng_grps, int eng_type) { int eng_grp_num = OTX2_CPT_INVALID_CRYPTO_ENG_GRP; struct otx2_cpt_eng_grp_info *grp; int i; for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) { grp = &eng_grps->grp[i]; if (!grp->is_enabled) continue; if (eng_type == OTX2_CPT_SE_TYPES) { if (eng_grp_has_eng_type(grp, eng_type) && !eng_grp_has_eng_type(grp, OTX2_CPT_IE_TYPES)) { eng_grp_num = i; break; } } else { if (eng_grp_has_eng_type(grp, eng_type)) { eng_grp_num = i; break; } } } return eng_grp_num; } int otx2_cpt_create_eng_grps(struct otx2_cptpf_dev *cptpf, struct otx2_cpt_eng_grps *eng_grps) { struct otx2_cpt_uc_info_t *uc_info[OTX2_CPT_MAX_ETYPES_PER_GRP] = { }; struct otx2_cpt_engines engs[OTX2_CPT_MAX_ETYPES_PER_GRP] = { {0} }; struct pci_dev *pdev = cptpf->pdev; struct fw_info_t fw_info; u64 reg_val; int ret = 0; mutex_lock(&eng_grps->lock); /* * We don't create engine groups if it was already * made (when user enabled VFs for the first time) */ if (eng_grps->is_grps_created) goto unlock; ret = cpt_ucode_load_fw(pdev, &fw_info); if (ret) goto unlock; /* * Create engine group with SE engines for kernel * crypto functionality (symmetric crypto) */ uc_info[0] = get_ucode(&fw_info, OTX2_CPT_SE_TYPES); if (uc_info[0] == NULL) { dev_err(&pdev->dev, "Unable to find firmware for SE\n"); ret = -EINVAL; goto release_fw; } engs[0].type = OTX2_CPT_SE_TYPES; engs[0].count = eng_grps->avail.max_se_cnt; ret = create_engine_group(&pdev->dev, eng_grps, engs, 1, (void **) uc_info, 1); if (ret) goto release_fw; /* * Create engine group with SE+IE engines for IPSec. * All SE engines will be shared with engine group 0. */ uc_info[0] = get_ucode(&fw_info, OTX2_CPT_SE_TYPES); uc_info[1] = get_ucode(&fw_info, OTX2_CPT_IE_TYPES); if (uc_info[1] == NULL) { dev_err(&pdev->dev, "Unable to find firmware for IE"); ret = -EINVAL; goto delete_eng_grp; } engs[0].type = OTX2_CPT_SE_TYPES; engs[0].count = eng_grps->avail.max_se_cnt; engs[1].type = OTX2_CPT_IE_TYPES; engs[1].count = eng_grps->avail.max_ie_cnt; ret = create_engine_group(&pdev->dev, eng_grps, engs, 2, (void **) uc_info, 1); if (ret) goto delete_eng_grp; /* * Create engine group with AE engines for asymmetric * crypto functionality. */ uc_info[0] = get_ucode(&fw_info, OTX2_CPT_AE_TYPES); if (uc_info[0] == NULL) { dev_err(&pdev->dev, "Unable to find firmware for AE"); ret = -EINVAL; goto delete_eng_grp; } engs[0].type = OTX2_CPT_AE_TYPES; engs[0].count = eng_grps->avail.max_ae_cnt; ret = create_engine_group(&pdev->dev, eng_grps, engs, 1, (void **) uc_info, 1); if (ret) goto delete_eng_grp; eng_grps->is_grps_created = true; cpt_ucode_release_fw(&fw_info); if (is_dev_otx2(pdev)) goto unlock; /* * Ensure RNM_ENTROPY_STATUS[NORMAL_CNT] = 0x40 before writing * CPT_AF_CTL[RNM_REQ_EN] = 1 as a workaround for HW errata. */ rnm_to_cpt_errata_fixup(&pdev->dev); /* * Configure engine group mask to allow context prefetching * for the groups and enable random number request, to enable * CPT to request random numbers from RNM. */ otx2_cpt_write_af_reg(&cptpf->afpf_mbox, pdev, CPT_AF_CTL, OTX2_CPT_ALL_ENG_GRPS_MASK << 3 | BIT_ULL(16), BLKADDR_CPT0); /* * Set interval to periodically flush dirty data for the next * CTX cache entry. Set the interval count to maximum supported * value. */ otx2_cpt_write_af_reg(&cptpf->afpf_mbox, pdev, CPT_AF_CTX_FLUSH_TIMER, CTX_FLUSH_TIMER_CNT, BLKADDR_CPT0); /* * Set CPT_AF_DIAG[FLT_DIS], as a workaround for HW errata, when * CPT_AF_DIAG[FLT_DIS] = 0 and a CPT engine access to LLC/DRAM * encounters a fault/poison, a rare case may result in * unpredictable data being delivered to a CPT engine. */ otx2_cpt_read_af_reg(&cptpf->afpf_mbox, pdev, CPT_AF_DIAG, &reg_val, BLKADDR_CPT0); otx2_cpt_write_af_reg(&cptpf->afpf_mbox, pdev, CPT_AF_DIAG, reg_val | BIT_ULL(24), BLKADDR_CPT0); mutex_unlock(&eng_grps->lock); return 0; delete_eng_grp: delete_engine_grps(pdev, eng_grps); release_fw: cpt_ucode_release_fw(&fw_info); unlock: mutex_unlock(&eng_grps->lock); return ret; } static int cptx_disable_all_cores(struct otx2_cptpf_dev *cptpf, int total_cores, int blkaddr) { int timeout = 10, ret; int i, busy; u64 reg; /* Disengage the cores from groups */ for (i = 0; i < total_cores; i++) { ret = otx2_cpt_add_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_CTL2(i), 0x0, blkaddr); if (ret) return ret; cptpf->eng_grps.eng_ref_cnt[i] = 0; } ret = otx2_cpt_send_af_reg_requests(&cptpf->afpf_mbox, cptpf->pdev); if (ret) return ret; /* Wait for cores to become idle */ do { busy = 0; usleep_range(10000, 20000); if (timeout-- < 0) return -EBUSY; for (i = 0; i < total_cores; i++) { ret = otx2_cpt_read_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_STS(i), &reg, blkaddr); if (ret) return ret; if (reg & 0x1) { busy = 1; break; } } } while (busy); /* Disable the cores */ for (i = 0; i < total_cores; i++) { ret = otx2_cpt_add_write_af_reg(&cptpf->afpf_mbox, cptpf->pdev, CPT_AF_EXEX_CTL(i), 0x0, blkaddr); if (ret) return ret; } return otx2_cpt_send_af_reg_requests(&cptpf->afpf_mbox, cptpf->pdev); } int otx2_cpt_disable_all_cores(struct otx2_cptpf_dev *cptpf) { int total_cores, ret; total_cores = cptpf->eng_grps.avail.max_se_cnt + cptpf->eng_grps.avail.max_ie_cnt + cptpf->eng_grps.avail.max_ae_cnt; if (cptpf->has_cpt1) { ret = cptx_disable_all_cores(cptpf, total_cores, BLKADDR_CPT1); if (ret) return ret; } return cptx_disable_all_cores(cptpf, total_cores, BLKADDR_CPT0); } void otx2_cpt_cleanup_eng_grps(struct pci_dev *pdev, struct otx2_cpt_eng_grps *eng_grps) { struct otx2_cpt_eng_grp_info *grp; int i, j; mutex_lock(&eng_grps->lock); delete_engine_grps(pdev, eng_grps); /* Release memory */ for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) { grp = &eng_grps->grp[i]; for (j = 0; j < OTX2_CPT_MAX_ETYPES_PER_GRP; j++) { kfree(grp->engs[j].bmap); grp->engs[j].bmap = NULL; } } mutex_unlock(&eng_grps->lock); } int otx2_cpt_init_eng_grps(struct pci_dev *pdev, struct otx2_cpt_eng_grps *eng_grps) { struct otx2_cpt_eng_grp_info *grp; int i, j, ret; mutex_init(&eng_grps->lock); eng_grps->obj = pci_get_drvdata(pdev); eng_grps->avail.se_cnt = eng_grps->avail.max_se_cnt; eng_grps->avail.ie_cnt = eng_grps->avail.max_ie_cnt; eng_grps->avail.ae_cnt = eng_grps->avail.max_ae_cnt; eng_grps->engs_num = eng_grps->avail.max_se_cnt + eng_grps->avail.max_ie_cnt + eng_grps->avail.max_ae_cnt; if (eng_grps->engs_num > OTX2_CPT_MAX_ENGINES) { dev_err(&pdev->dev, "Number of engines %d > than max supported %d\n", eng_grps->engs_num, OTX2_CPT_MAX_ENGINES); ret = -EINVAL; goto cleanup_eng_grps; } for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) { grp = &eng_grps->grp[i]; grp->g = eng_grps; grp->idx = i; for (j = 0; j < OTX2_CPT_MAX_ETYPES_PER_GRP; j++) { grp->engs[j].bmap = kcalloc(BITS_TO_LONGS(eng_grps->engs_num), sizeof(long), GFP_KERNEL); if (!grp->engs[j].bmap) { ret = -ENOMEM; goto cleanup_eng_grps; } } } return 0; cleanup_eng_grps: otx2_cpt_cleanup_eng_grps(pdev, eng_grps); return ret; } static int create_eng_caps_discovery_grps(struct pci_dev *pdev, struct otx2_cpt_eng_grps *eng_grps) { struct otx2_cpt_uc_info_t *uc_info[OTX2_CPT_MAX_ETYPES_PER_GRP] = { }; struct otx2_cpt_engines engs[OTX2_CPT_MAX_ETYPES_PER_GRP] = { {0} }; struct fw_info_t fw_info; int ret; mutex_lock(&eng_grps->lock); ret = cpt_ucode_load_fw(pdev, &fw_info); if (ret) { mutex_unlock(&eng_grps->lock); return ret; } uc_info[0] = get_ucode(&fw_info, OTX2_CPT_AE_TYPES); if (uc_info[0] == NULL) { dev_err(&pdev->dev, "Unable to find firmware for AE\n"); ret = -EINVAL; goto release_fw; } engs[0].type = OTX2_CPT_AE_TYPES; engs[0].count = 2; ret = create_engine_group(&pdev->dev, eng_grps, engs, 1, (void **) uc_info, 0); if (ret) goto release_fw; uc_info[0] = get_ucode(&fw_info, OTX2_CPT_SE_TYPES); if (uc_info[0] == NULL) { dev_err(&pdev->dev, "Unable to find firmware for SE\n"); ret = -EINVAL; goto delete_eng_grp; } engs[0].type = OTX2_CPT_SE_TYPES; engs[0].count = 2; ret = create_engine_group(&pdev->dev, eng_grps, engs, 1, (void **) uc_info, 0); if (ret) goto delete_eng_grp; uc_info[0] = get_ucode(&fw_info, OTX2_CPT_IE_TYPES); if (uc_info[0] == NULL) { dev_err(&pdev->dev, "Unable to find firmware for IE\n"); ret = -EINVAL; goto delete_eng_grp; } engs[0].type = OTX2_CPT_IE_TYPES; engs[0].count = 2; ret = create_engine_group(&pdev->dev, eng_grps, engs, 1, (void **) uc_info, 0); if (ret) goto delete_eng_grp; cpt_ucode_release_fw(&fw_info); mutex_unlock(&eng_grps->lock); return 0; delete_eng_grp: delete_engine_grps(pdev, eng_grps); release_fw: cpt_ucode_release_fw(&fw_info); mutex_unlock(&eng_grps->lock); return ret; } /* * Get CPT HW capabilities using LOAD_FVC operation. */ int otx2_cpt_discover_eng_capabilities(struct otx2_cptpf_dev *cptpf) { struct otx2_cptlfs_info *lfs = &cptpf->lfs; struct otx2_cpt_iq_command iq_cmd; union otx2_cpt_opcode opcode; union otx2_cpt_res_s *result; union otx2_cpt_inst_s inst; dma_addr_t rptr_baddr; struct pci_dev *pdev; u32 len, compl_rlen; int ret, etype; void *rptr; /* * We don't get capabilities if it was already done * (when user enabled VFs for the first time) */ if (cptpf->is_eng_caps_discovered) return 0; pdev = cptpf->pdev; /* * Create engine groups for each type to submit LOAD_FVC op and * get engine's capabilities. */ ret = create_eng_caps_discovery_grps(pdev, &cptpf->eng_grps); if (ret) goto delete_grps; otx2_cptlf_set_dev_info(lfs, cptpf->pdev, cptpf->reg_base, &cptpf->afpf_mbox, BLKADDR_CPT0); ret = otx2_cptlf_init(lfs, OTX2_CPT_ALL_ENG_GRPS_MASK, OTX2_CPT_QUEUE_HI_PRIO, 1); if (ret) goto delete_grps; compl_rlen = ALIGN(sizeof(union otx2_cpt_res_s), OTX2_CPT_DMA_MINALIGN); len = compl_rlen + LOADFVC_RLEN; result = kzalloc(len, GFP_KERNEL); if (!result) { ret = -ENOMEM; goto lf_cleanup; } rptr_baddr = dma_map_single(&pdev->dev, (void *)result, len, DMA_BIDIRECTIONAL); if (dma_mapping_error(&pdev->dev, rptr_baddr)) { dev_err(&pdev->dev, "DMA mapping failed\n"); ret = -EFAULT; goto free_result; } rptr = (u8 *)result + compl_rlen; /* Fill in the command */ opcode.s.major = LOADFVC_MAJOR_OP; opcode.s.minor = LOADFVC_MINOR_OP; iq_cmd.cmd.u = 0; iq_cmd.cmd.s.opcode = cpu_to_be16(opcode.flags); /* 64-bit swap for microcode data reads, not needed for addresses */ cpu_to_be64s(&iq_cmd.cmd.u); iq_cmd.dptr = 0; iq_cmd.rptr = rptr_baddr + compl_rlen; iq_cmd.cptr.u = 0; for (etype = 1; etype < OTX2_CPT_MAX_ENG_TYPES; etype++) { result->s.compcode = OTX2_CPT_COMPLETION_CODE_INIT; iq_cmd.cptr.s.grp = otx2_cpt_get_eng_grp(&cptpf->eng_grps, etype); otx2_cpt_fill_inst(&inst, &iq_cmd, rptr_baddr); lfs->ops->send_cmd(&inst, 1, &cptpf->lfs.lf[0]); while (lfs->ops->cpt_get_compcode(result) == OTX2_CPT_COMPLETION_CODE_INIT) cpu_relax(); cptpf->eng_caps[etype].u = be64_to_cpup(rptr); } dma_unmap_single(&pdev->dev, rptr_baddr, len, DMA_BIDIRECTIONAL); cptpf->is_eng_caps_discovered = true; free_result: kfree(result); lf_cleanup: otx2_cptlf_shutdown(lfs); delete_grps: delete_engine_grps(pdev, &cptpf->eng_grps); return ret; } int otx2_cpt_dl_custom_egrp_create(struct otx2_cptpf_dev *cptpf, struct devlink_param_gset_ctx *ctx) { struct otx2_cpt_engines engs[OTX2_CPT_MAX_ETYPES_PER_GRP] = { { 0 } }; struct otx2_cpt_uc_info_t *uc_info[OTX2_CPT_MAX_ETYPES_PER_GRP] = {}; struct otx2_cpt_eng_grps *eng_grps = &cptpf->eng_grps; char *ucode_filename[OTX2_CPT_MAX_ETYPES_PER_GRP]; char tmp_buf[OTX2_CPT_NAME_LENGTH] = { 0 }; struct device *dev = &cptpf->pdev->dev; char *start, *val, *err_msg, *tmp; int grp_idx = 0, ret = -EINVAL; bool has_se, has_ie, has_ae; struct fw_info_t fw_info; int ucode_idx = 0; if (!eng_grps->is_grps_created) { dev_err(dev, "Not allowed before creating the default groups\n"); return -EINVAL; } err_msg = "Invalid engine group format"; strscpy(tmp_buf, ctx->val.vstr, strlen(ctx->val.vstr) + 1); start = tmp_buf; has_se = has_ie = has_ae = false; for (;;) { val = strsep(&start, ";"); if (!val) break; val = strim(val); if (!*val) continue; if (!strncasecmp(val, "se", 2) && strchr(val, ':')) { if (has_se || ucode_idx) goto err_print; tmp = strsep(&val, ":"); if (!tmp) goto err_print; tmp = strim(tmp); if (!val) goto err_print; if (strlen(tmp) != 2) goto err_print; if (kstrtoint(strim(val), 10, &engs[grp_idx].count)) goto err_print; engs[grp_idx++].type = OTX2_CPT_SE_TYPES; has_se = true; } else if (!strncasecmp(val, "ae", 2) && strchr(val, ':')) { if (has_ae || ucode_idx) goto err_print; tmp = strsep(&val, ":"); if (!tmp) goto err_print; tmp = strim(tmp); if (!val) goto err_print; if (strlen(tmp) != 2) goto err_print; if (kstrtoint(strim(val), 10, &engs[grp_idx].count)) goto err_print; engs[grp_idx++].type = OTX2_CPT_AE_TYPES; has_ae = true; } else if (!strncasecmp(val, "ie", 2) && strchr(val, ':')) { if (has_ie || ucode_idx) goto err_print; tmp = strsep(&val, ":"); if (!tmp) goto err_print; tmp = strim(tmp); if (!val) goto err_print; if (strlen(tmp) != 2) goto err_print; if (kstrtoint(strim(val), 10, &engs[grp_idx].count)) goto err_print; engs[grp_idx++].type = OTX2_CPT_IE_TYPES; has_ie = true; } else { if (ucode_idx > 1) goto err_print; if (!strlen(val)) goto err_print; if (strnstr(val, " ", strlen(val))) goto err_print; ucode_filename[ucode_idx++] = val; } } /* Validate input parameters */ if (!(grp_idx && ucode_idx)) goto err_print; if (ucode_idx > 1 && grp_idx < 2) goto err_print; if (grp_idx > OTX2_CPT_MAX_ETYPES_PER_GRP) { err_msg = "Error max 2 engine types can be attached"; goto err_print; } if (grp_idx > 1) { if ((engs[0].type + engs[1].type) != (OTX2_CPT_SE_TYPES + OTX2_CPT_IE_TYPES)) { err_msg = "Only combination of SE+IE engines is allowed"; goto err_print; } /* Keep SE engines at zero index */ if (engs[1].type == OTX2_CPT_SE_TYPES) swap(engs[0], engs[1]); } mutex_lock(&eng_grps->lock); if (cptpf->enabled_vfs) { dev_err(dev, "Disable VFs before modifying engine groups\n"); ret = -EACCES; goto err_unlock; } INIT_LIST_HEAD(&fw_info.ucodes); ret = load_fw(dev, &fw_info, ucode_filename[0]); if (ret) { dev_err(dev, "Unable to load firmware %s\n", ucode_filename[0]); goto err_unlock; } if (ucode_idx > 1) { ret = load_fw(dev, &fw_info, ucode_filename[1]); if (ret) { dev_err(dev, "Unable to load firmware %s\n", ucode_filename[1]); goto release_fw; } } uc_info[0] = get_ucode(&fw_info, engs[0].type); if (uc_info[0] == NULL) { dev_err(dev, "Unable to find firmware for %s\n", get_eng_type_str(engs[0].type)); ret = -EINVAL; goto release_fw; } if (ucode_idx > 1) { uc_info[1] = get_ucode(&fw_info, engs[1].type); if (uc_info[1] == NULL) { dev_err(dev, "Unable to find firmware for %s\n", get_eng_type_str(engs[1].type)); ret = -EINVAL; goto release_fw; } } ret = create_engine_group(dev, eng_grps, engs, grp_idx, (void **)uc_info, 1); release_fw: cpt_ucode_release_fw(&fw_info); err_unlock: mutex_unlock(&eng_grps->lock); return ret; err_print: dev_err(dev, "%s\n", err_msg); return ret; } int otx2_cpt_dl_custom_egrp_delete(struct otx2_cptpf_dev *cptpf, struct devlink_param_gset_ctx *ctx) { struct otx2_cpt_eng_grps *eng_grps = &cptpf->eng_grps; struct device *dev = &cptpf->pdev->dev; char *tmp, *err_msg; int egrp; int ret; err_msg = "Invalid input string format(ex: egrp:0)"; if (strncasecmp(ctx->val.vstr, "egrp", 4)) goto err_print; tmp = ctx->val.vstr; strsep(&tmp, ":"); if (!tmp) goto err_print; if (kstrtoint(tmp, 10, &egrp)) goto err_print; if (egrp < 0 || egrp >= OTX2_CPT_MAX_ENGINE_GROUPS) { dev_err(dev, "Invalid engine group %d", egrp); return -EINVAL; } if (!eng_grps->grp[egrp].is_enabled) { dev_err(dev, "Error engine_group%d is not configured", egrp); return -EINVAL; } mutex_lock(&eng_grps->lock); ret = delete_engine_group(dev, &eng_grps->grp[egrp]); mutex_unlock(&eng_grps->lock); return ret; err_print: dev_err(dev, "%s\n", err_msg); return -EINVAL; } static void get_engs_info(struct otx2_cpt_eng_grp_info *eng_grp, char *buf, int size, int idx) { struct otx2_cpt_engs_rsvd *mirrored_engs = NULL; struct otx2_cpt_engs_rsvd *engs; int len, i; buf[0] = '\0'; for (i = 0; i < OTX2_CPT_MAX_ETYPES_PER_GRP; i++) { engs = &eng_grp->engs[i]; if (!engs->type) continue; if (idx != -1 && idx != i) continue; if (eng_grp->mirror.is_ena) mirrored_engs = find_engines_by_type( &eng_grp->g->grp[eng_grp->mirror.idx], engs->type); if (i > 0 && idx == -1) { len = strlen(buf); scnprintf(buf + len, size - len, ", "); } len = strlen(buf); scnprintf(buf + len, size - len, "%d %s ", mirrored_engs ? engs->count + mirrored_engs->count : engs->count, get_eng_type_str(engs->type)); if (mirrored_engs) { len = strlen(buf); scnprintf(buf + len, size - len, "(%d shared with engine_group%d) ", engs->count <= 0 ? engs->count + mirrored_engs->count : mirrored_engs->count, eng_grp->mirror.idx); } } } void otx2_cpt_print_uc_dbg_info(struct otx2_cptpf_dev *cptpf) { struct otx2_cpt_eng_grps *eng_grps = &cptpf->eng_grps; struct otx2_cpt_eng_grp_info *mirrored_grp; char engs_info[2 * OTX2_CPT_NAME_LENGTH]; struct otx2_cpt_eng_grp_info *grp; struct otx2_cpt_engs_rsvd *engs; int i, j; pr_debug("Engine groups global info"); pr_debug("max SE %d, max IE %d, max AE %d", eng_grps->avail.max_se_cnt, eng_grps->avail.max_ie_cnt, eng_grps->avail.max_ae_cnt); pr_debug("free SE %d", eng_grps->avail.se_cnt); pr_debug("free IE %d", eng_grps->avail.ie_cnt); pr_debug("free AE %d", eng_grps->avail.ae_cnt); for (i = 0; i < OTX2_CPT_MAX_ENGINE_GROUPS; i++) { grp = &eng_grps->grp[i]; pr_debug("engine_group%d, state %s", i, grp->is_enabled ? "enabled" : "disabled"); if (grp->is_enabled) { mirrored_grp = &eng_grps->grp[grp->mirror.idx]; pr_debug("Ucode0 filename %s, version %s", grp->mirror.is_ena ? mirrored_grp->ucode[0].filename : grp->ucode[0].filename, grp->mirror.is_ena ? mirrored_grp->ucode[0].ver_str : grp->ucode[0].ver_str); if (is_2nd_ucode_used(grp)) pr_debug("Ucode1 filename %s, version %s", grp->ucode[1].filename, grp->ucode[1].ver_str); } for (j = 0; j < OTX2_CPT_MAX_ETYPES_PER_GRP; j++) { engs = &grp->engs[j]; if (engs->type) { u32 mask[5] = { }; get_engs_info(grp, engs_info, 2 * OTX2_CPT_NAME_LENGTH, j); pr_debug("Slot%d: %s", j, engs_info); bitmap_to_arr32(mask, engs->bmap, eng_grps->engs_num); if (is_dev_otx2(cptpf->pdev)) pr_debug("Mask: %8.8x %8.8x %8.8x %8.8x", mask[3], mask[2], mask[1], mask[0]); else pr_debug("Mask: %8.8x %8.8x %8.8x %8.8x %8.8x", mask[4], mask[3], mask[2], mask[1], mask[0]); } } } }
linux-master
drivers/crypto/marvell/octeontx2/otx2_cptpf_ucode.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include "otx2_cpt_common.h" #include "otx2_cptlf.h" #include "rvu_reg.h" #define CPT_TIMER_HOLD 0x03F #define CPT_COUNT_HOLD 32 static void cptlf_do_set_done_time_wait(struct otx2_cptlf_info *lf, int time_wait) { union otx2_cptx_lf_done_wait done_wait; done_wait.u = otx2_cpt_read64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_DONE_WAIT); done_wait.s.time_wait = time_wait; otx2_cpt_write64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_DONE_WAIT, done_wait.u); } static void cptlf_do_set_done_num_wait(struct otx2_cptlf_info *lf, int num_wait) { union otx2_cptx_lf_done_wait done_wait; done_wait.u = otx2_cpt_read64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_DONE_WAIT); done_wait.s.num_wait = num_wait; otx2_cpt_write64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_DONE_WAIT, done_wait.u); } static void cptlf_set_done_time_wait(struct otx2_cptlfs_info *lfs, int time_wait) { int slot; for (slot = 0; slot < lfs->lfs_num; slot++) cptlf_do_set_done_time_wait(&lfs->lf[slot], time_wait); } static void cptlf_set_done_num_wait(struct otx2_cptlfs_info *lfs, int num_wait) { int slot; for (slot = 0; slot < lfs->lfs_num; slot++) cptlf_do_set_done_num_wait(&lfs->lf[slot], num_wait); } static int cptlf_set_pri(struct otx2_cptlf_info *lf, int pri) { struct otx2_cptlfs_info *lfs = lf->lfs; union otx2_cptx_af_lf_ctrl lf_ctrl; int ret; ret = otx2_cpt_read_af_reg(lfs->mbox, lfs->pdev, CPT_AF_LFX_CTL(lf->slot), &lf_ctrl.u, lfs->blkaddr); if (ret) return ret; lf_ctrl.s.pri = pri ? 1 : 0; ret = otx2_cpt_write_af_reg(lfs->mbox, lfs->pdev, CPT_AF_LFX_CTL(lf->slot), lf_ctrl.u, lfs->blkaddr); return ret; } static int cptlf_set_eng_grps_mask(struct otx2_cptlf_info *lf, int eng_grps_mask) { struct otx2_cptlfs_info *lfs = lf->lfs; union otx2_cptx_af_lf_ctrl lf_ctrl; int ret; ret = otx2_cpt_read_af_reg(lfs->mbox, lfs->pdev, CPT_AF_LFX_CTL(lf->slot), &lf_ctrl.u, lfs->blkaddr); if (ret) return ret; lf_ctrl.s.grp = eng_grps_mask; ret = otx2_cpt_write_af_reg(lfs->mbox, lfs->pdev, CPT_AF_LFX_CTL(lf->slot), lf_ctrl.u, lfs->blkaddr); return ret; } static int cptlf_set_grp_and_pri(struct otx2_cptlfs_info *lfs, int eng_grp_mask, int pri) { int slot, ret = 0; for (slot = 0; slot < lfs->lfs_num; slot++) { ret = cptlf_set_pri(&lfs->lf[slot], pri); if (ret) return ret; ret = cptlf_set_eng_grps_mask(&lfs->lf[slot], eng_grp_mask); if (ret) return ret; } return ret; } static void cptlf_hw_init(struct otx2_cptlfs_info *lfs) { /* Disable instruction queues */ otx2_cptlf_disable_iqueues(lfs); /* Set instruction queues base addresses */ otx2_cptlf_set_iqueues_base_addr(lfs); /* Set instruction queues sizes */ otx2_cptlf_set_iqueues_size(lfs); /* Set done interrupts time wait */ cptlf_set_done_time_wait(lfs, CPT_TIMER_HOLD); /* Set done interrupts num wait */ cptlf_set_done_num_wait(lfs, CPT_COUNT_HOLD); /* Enable instruction queues */ otx2_cptlf_enable_iqueues(lfs); } static void cptlf_hw_cleanup(struct otx2_cptlfs_info *lfs) { /* Disable instruction queues */ otx2_cptlf_disable_iqueues(lfs); } static void cptlf_set_misc_intrs(struct otx2_cptlfs_info *lfs, u8 enable) { union otx2_cptx_lf_misc_int_ena_w1s irq_misc = { .u = 0x0 }; u64 reg = enable ? OTX2_CPT_LF_MISC_INT_ENA_W1S : OTX2_CPT_LF_MISC_INT_ENA_W1C; int slot; irq_misc.s.fault = 0x1; irq_misc.s.hwerr = 0x1; irq_misc.s.irde = 0x1; irq_misc.s.nqerr = 0x1; irq_misc.s.nwrp = 0x1; for (slot = 0; slot < lfs->lfs_num; slot++) otx2_cpt_write64(lfs->reg_base, lfs->blkaddr, slot, reg, irq_misc.u); } static void cptlf_enable_intrs(struct otx2_cptlfs_info *lfs) { int slot; /* Enable done interrupts */ for (slot = 0; slot < lfs->lfs_num; slot++) otx2_cpt_write64(lfs->reg_base, lfs->blkaddr, slot, OTX2_CPT_LF_DONE_INT_ENA_W1S, 0x1); /* Enable Misc interrupts */ cptlf_set_misc_intrs(lfs, true); } static void cptlf_disable_intrs(struct otx2_cptlfs_info *lfs) { int slot; for (slot = 0; slot < lfs->lfs_num; slot++) otx2_cpt_write64(lfs->reg_base, lfs->blkaddr, slot, OTX2_CPT_LF_DONE_INT_ENA_W1C, 0x1); cptlf_set_misc_intrs(lfs, false); } static inline int cptlf_read_done_cnt(struct otx2_cptlf_info *lf) { union otx2_cptx_lf_done irq_cnt; irq_cnt.u = otx2_cpt_read64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_DONE); return irq_cnt.s.done; } static irqreturn_t cptlf_misc_intr_handler(int __always_unused irq, void *arg) { union otx2_cptx_lf_misc_int irq_misc, irq_misc_ack; struct otx2_cptlf_info *lf = arg; struct device *dev; dev = &lf->lfs->pdev->dev; irq_misc.u = otx2_cpt_read64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_MISC_INT); irq_misc_ack.u = 0x0; if (irq_misc.s.fault) { dev_err(dev, "Memory error detected while executing CPT_INST_S, LF %d.\n", lf->slot); irq_misc_ack.s.fault = 0x1; } else if (irq_misc.s.hwerr) { dev_err(dev, "HW error from an engine executing CPT_INST_S, LF %d.", lf->slot); irq_misc_ack.s.hwerr = 0x1; } else if (irq_misc.s.nwrp) { dev_err(dev, "SMMU fault while writing CPT_RES_S to CPT_INST_S[RES_ADDR], LF %d.\n", lf->slot); irq_misc_ack.s.nwrp = 0x1; } else if (irq_misc.s.irde) { dev_err(dev, "Memory error when accessing instruction memory queue CPT_LF_Q_BASE[ADDR].\n"); irq_misc_ack.s.irde = 0x1; } else if (irq_misc.s.nqerr) { dev_err(dev, "Error enqueuing an instruction received at CPT_LF_NQ.\n"); irq_misc_ack.s.nqerr = 0x1; } else { dev_err(dev, "Unhandled interrupt in CPT LF %d\n", lf->slot); return IRQ_NONE; } /* Acknowledge interrupts */ otx2_cpt_write64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_MISC_INT, irq_misc_ack.u); return IRQ_HANDLED; } static irqreturn_t cptlf_done_intr_handler(int irq, void *arg) { union otx2_cptx_lf_done_wait done_wait; struct otx2_cptlf_info *lf = arg; int irq_cnt; /* Read the number of completed requests */ irq_cnt = cptlf_read_done_cnt(lf); if (irq_cnt) { done_wait.u = otx2_cpt_read64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_DONE_WAIT); /* Acknowledge the number of completed requests */ otx2_cpt_write64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_DONE_ACK, irq_cnt); otx2_cpt_write64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_DONE_WAIT, done_wait.u); if (unlikely(!lf->wqe)) { dev_err(&lf->lfs->pdev->dev, "No work for LF %d\n", lf->slot); return IRQ_NONE; } /* Schedule processing of completed requests */ tasklet_hi_schedule(&lf->wqe->work); } return IRQ_HANDLED; } void otx2_cptlf_unregister_interrupts(struct otx2_cptlfs_info *lfs) { int i, offs, vector; for (i = 0; i < lfs->lfs_num; i++) { for (offs = 0; offs < OTX2_CPT_LF_MSIX_VECTORS; offs++) { if (!lfs->lf[i].is_irq_reg[offs]) continue; vector = pci_irq_vector(lfs->pdev, lfs->lf[i].msix_offset + offs); free_irq(vector, &lfs->lf[i]); lfs->lf[i].is_irq_reg[offs] = false; } } cptlf_disable_intrs(lfs); } EXPORT_SYMBOL_NS_GPL(otx2_cptlf_unregister_interrupts, CRYPTO_DEV_OCTEONTX2_CPT); static int cptlf_do_register_interrrupts(struct otx2_cptlfs_info *lfs, int lf_num, int irq_offset, irq_handler_t handler) { int ret, vector; vector = pci_irq_vector(lfs->pdev, lfs->lf[lf_num].msix_offset + irq_offset); ret = request_irq(vector, handler, 0, lfs->lf[lf_num].irq_name[irq_offset], &lfs->lf[lf_num]); if (ret) return ret; lfs->lf[lf_num].is_irq_reg[irq_offset] = true; return ret; } int otx2_cptlf_register_interrupts(struct otx2_cptlfs_info *lfs) { int irq_offs, ret, i; for (i = 0; i < lfs->lfs_num; i++) { irq_offs = OTX2_CPT_LF_INT_VEC_E_MISC; snprintf(lfs->lf[i].irq_name[irq_offs], 32, "CPTLF Misc%d", i); ret = cptlf_do_register_interrrupts(lfs, i, irq_offs, cptlf_misc_intr_handler); if (ret) goto free_irq; irq_offs = OTX2_CPT_LF_INT_VEC_E_DONE; snprintf(lfs->lf[i].irq_name[irq_offs], 32, "OTX2_CPTLF Done%d", i); ret = cptlf_do_register_interrrupts(lfs, i, irq_offs, cptlf_done_intr_handler); if (ret) goto free_irq; } cptlf_enable_intrs(lfs); return 0; free_irq: otx2_cptlf_unregister_interrupts(lfs); return ret; } EXPORT_SYMBOL_NS_GPL(otx2_cptlf_register_interrupts, CRYPTO_DEV_OCTEONTX2_CPT); void otx2_cptlf_free_irqs_affinity(struct otx2_cptlfs_info *lfs) { int slot, offs; for (slot = 0; slot < lfs->lfs_num; slot++) { for (offs = 0; offs < OTX2_CPT_LF_MSIX_VECTORS; offs++) irq_set_affinity_hint(pci_irq_vector(lfs->pdev, lfs->lf[slot].msix_offset + offs), NULL); free_cpumask_var(lfs->lf[slot].affinity_mask); } } EXPORT_SYMBOL_NS_GPL(otx2_cptlf_free_irqs_affinity, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cptlf_set_irqs_affinity(struct otx2_cptlfs_info *lfs) { struct otx2_cptlf_info *lf = lfs->lf; int slot, offs, ret; for (slot = 0; slot < lfs->lfs_num; slot++) { if (!zalloc_cpumask_var(&lf[slot].affinity_mask, GFP_KERNEL)) { dev_err(&lfs->pdev->dev, "cpumask allocation failed for LF %d", slot); ret = -ENOMEM; goto free_affinity_mask; } cpumask_set_cpu(cpumask_local_spread(slot, dev_to_node(&lfs->pdev->dev)), lf[slot].affinity_mask); for (offs = 0; offs < OTX2_CPT_LF_MSIX_VECTORS; offs++) { ret = irq_set_affinity_hint(pci_irq_vector(lfs->pdev, lf[slot].msix_offset + offs), lf[slot].affinity_mask); if (ret) goto free_affinity_mask; } } return 0; free_affinity_mask: otx2_cptlf_free_irqs_affinity(lfs); return ret; } EXPORT_SYMBOL_NS_GPL(otx2_cptlf_set_irqs_affinity, CRYPTO_DEV_OCTEONTX2_CPT); int otx2_cptlf_init(struct otx2_cptlfs_info *lfs, u8 eng_grp_mask, int pri, int lfs_num) { int slot, ret; if (!lfs->pdev || !lfs->reg_base) return -EINVAL; lfs->lfs_num = lfs_num; for (slot = 0; slot < lfs->lfs_num; slot++) { lfs->lf[slot].lfs = lfs; lfs->lf[slot].slot = slot; if (lfs->lmt_base) lfs->lf[slot].lmtline = lfs->lmt_base + (slot * LMTLINE_SIZE); else lfs->lf[slot].lmtline = lfs->reg_base + OTX2_CPT_RVU_FUNC_ADDR_S(BLKADDR_LMT, slot, OTX2_CPT_LMT_LF_LMTLINEX(0)); lfs->lf[slot].ioreg = lfs->reg_base + OTX2_CPT_RVU_FUNC_ADDR_S(lfs->blkaddr, slot, OTX2_CPT_LF_NQX(0)); } /* Send request to attach LFs */ ret = otx2_cpt_attach_rscrs_msg(lfs); if (ret) goto clear_lfs_num; ret = otx2_cpt_alloc_instruction_queues(lfs); if (ret) { dev_err(&lfs->pdev->dev, "Allocating instruction queues failed\n"); goto detach_rsrcs; } cptlf_hw_init(lfs); /* * Allow each LF to execute requests destined to any of 8 engine * groups and set queue priority of each LF to high */ ret = cptlf_set_grp_and_pri(lfs, eng_grp_mask, pri); if (ret) goto free_iq; return 0; free_iq: otx2_cpt_free_instruction_queues(lfs); cptlf_hw_cleanup(lfs); detach_rsrcs: otx2_cpt_detach_rsrcs_msg(lfs); clear_lfs_num: lfs->lfs_num = 0; return ret; } EXPORT_SYMBOL_NS_GPL(otx2_cptlf_init, CRYPTO_DEV_OCTEONTX2_CPT); void otx2_cptlf_shutdown(struct otx2_cptlfs_info *lfs) { lfs->lfs_num = 0; /* Cleanup LFs hardware side */ cptlf_hw_cleanup(lfs); /* Send request to detach LFs */ otx2_cpt_detach_rsrcs_msg(lfs); } EXPORT_SYMBOL_NS_GPL(otx2_cptlf_shutdown, CRYPTO_DEV_OCTEONTX2_CPT); MODULE_AUTHOR("Marvell"); MODULE_DESCRIPTION("Marvell RVU CPT Common module"); MODULE_LICENSE("GPL");
linux-master
drivers/crypto/marvell/octeontx2/otx2_cptlf.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2020 Marvell. */ #include "otx2_cpt_common.h" #include "otx2_cptvf.h" #include <rvu_reg.h> int otx2_cpt_mbox_bbuf_init(struct otx2_cptvf_dev *cptvf, struct pci_dev *pdev) { struct otx2_mbox_dev *mdev; struct otx2_mbox *otx2_mbox; cptvf->bbuf_base = devm_kmalloc(&pdev->dev, MBOX_SIZE, GFP_KERNEL); if (!cptvf->bbuf_base) return -ENOMEM; /* * Overwrite mbox mbase to point to bounce buffer, so that PF/VF * prepare all mbox messages in bounce buffer instead of directly * in hw mbox memory. */ otx2_mbox = &cptvf->pfvf_mbox; mdev = &otx2_mbox->dev[0]; mdev->mbase = cptvf->bbuf_base; return 0; } static void otx2_cpt_sync_mbox_bbuf(struct otx2_mbox *mbox, int devid) { u16 msgs_offset = ALIGN(sizeof(struct mbox_hdr), MBOX_MSG_ALIGN); void *hw_mbase = mbox->hwbase + (devid * MBOX_SIZE); struct otx2_mbox_dev *mdev = &mbox->dev[devid]; struct mbox_hdr *hdr; u64 msg_size; if (mdev->mbase == hw_mbase) return; hdr = hw_mbase + mbox->rx_start; msg_size = hdr->msg_size; if (msg_size > mbox->rx_size - msgs_offset) msg_size = mbox->rx_size - msgs_offset; /* Copy mbox messages from mbox memory to bounce buffer */ memcpy(mdev->mbase + mbox->rx_start, hw_mbase + mbox->rx_start, msg_size + msgs_offset); } irqreturn_t otx2_cptvf_pfvf_mbox_intr(int __always_unused irq, void *arg) { struct otx2_cptvf_dev *cptvf = arg; u64 intr; /* Read the interrupt bits */ intr = otx2_cpt_read64(cptvf->reg_base, BLKADDR_RVUM, 0, OTX2_RVU_VF_INT); if (intr & 0x1ULL) { /* Schedule work queue function to process the MBOX request */ queue_work(cptvf->pfvf_mbox_wq, &cptvf->pfvf_mbox_work); /* Clear and ack the interrupt */ otx2_cpt_write64(cptvf->reg_base, BLKADDR_RVUM, 0, OTX2_RVU_VF_INT, 0x1ULL); } return IRQ_HANDLED; } static void process_pfvf_mbox_mbox_msg(struct otx2_cptvf_dev *cptvf, struct mbox_msghdr *msg) { struct otx2_cptlfs_info *lfs = &cptvf->lfs; struct otx2_cpt_kvf_limits_rsp *rsp_limits; struct otx2_cpt_egrp_num_rsp *rsp_grp; struct cpt_rd_wr_reg_msg *rsp_reg; struct msix_offset_rsp *rsp_msix; int i; if (msg->id >= MBOX_MSG_MAX) { dev_err(&cptvf->pdev->dev, "MBOX msg with unknown ID %d\n", msg->id); return; } if (msg->sig != OTX2_MBOX_RSP_SIG) { dev_err(&cptvf->pdev->dev, "MBOX msg with wrong signature %x, ID %d\n", msg->sig, msg->id); return; } switch (msg->id) { case MBOX_MSG_READY: cptvf->vf_id = ((msg->pcifunc >> RVU_PFVF_FUNC_SHIFT) & RVU_PFVF_FUNC_MASK) - 1; break; case MBOX_MSG_ATTACH_RESOURCES: /* Check if resources were successfully attached */ if (!msg->rc) lfs->are_lfs_attached = 1; break; case MBOX_MSG_DETACH_RESOURCES: /* Check if resources were successfully detached */ if (!msg->rc) lfs->are_lfs_attached = 0; break; case MBOX_MSG_MSIX_OFFSET: rsp_msix = (struct msix_offset_rsp *) msg; for (i = 0; i < rsp_msix->cptlfs; i++) lfs->lf[i].msix_offset = rsp_msix->cptlf_msixoff[i]; break; case MBOX_MSG_CPT_RD_WR_REGISTER: rsp_reg = (struct cpt_rd_wr_reg_msg *) msg; if (msg->rc) { dev_err(&cptvf->pdev->dev, "Reg %llx rd/wr(%d) failed %d\n", rsp_reg->reg_offset, rsp_reg->is_write, msg->rc); return; } if (!rsp_reg->is_write) *rsp_reg->ret_val = rsp_reg->val; break; case MBOX_MSG_GET_ENG_GRP_NUM: rsp_grp = (struct otx2_cpt_egrp_num_rsp *) msg; cptvf->lfs.kcrypto_eng_grp_num = rsp_grp->eng_grp_num; break; case MBOX_MSG_GET_KVF_LIMITS: rsp_limits = (struct otx2_cpt_kvf_limits_rsp *) msg; cptvf->lfs.kvf_limits = rsp_limits->kvf_limits; break; default: dev_err(&cptvf->pdev->dev, "Unsupported msg %d received.\n", msg->id); break; } } void otx2_cptvf_pfvf_mbox_handler(struct work_struct *work) { struct otx2_cptvf_dev *cptvf; struct otx2_mbox *pfvf_mbox; struct otx2_mbox_dev *mdev; struct mbox_hdr *rsp_hdr; struct mbox_msghdr *msg; int offset, i; /* sync with mbox memory region */ smp_rmb(); cptvf = container_of(work, struct otx2_cptvf_dev, pfvf_mbox_work); pfvf_mbox = &cptvf->pfvf_mbox; otx2_cpt_sync_mbox_bbuf(pfvf_mbox, 0); mdev = &pfvf_mbox->dev[0]; rsp_hdr = (struct mbox_hdr *)(mdev->mbase + pfvf_mbox->rx_start); if (rsp_hdr->num_msgs == 0) return; offset = ALIGN(sizeof(struct mbox_hdr), MBOX_MSG_ALIGN); for (i = 0; i < rsp_hdr->num_msgs; i++) { msg = (struct mbox_msghdr *)(mdev->mbase + pfvf_mbox->rx_start + offset); process_pfvf_mbox_mbox_msg(cptvf, msg); offset = msg->next_msgoff; mdev->msgs_acked++; } otx2_mbox_reset(pfvf_mbox, 0); } int otx2_cptvf_send_eng_grp_num_msg(struct otx2_cptvf_dev *cptvf, int eng_type) { struct otx2_mbox *mbox = &cptvf->pfvf_mbox; struct pci_dev *pdev = cptvf->pdev; struct otx2_cpt_egrp_num_msg *req; req = (struct otx2_cpt_egrp_num_msg *) otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*req), sizeof(struct otx2_cpt_egrp_num_rsp)); if (req == NULL) { dev_err(&pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } req->hdr.id = MBOX_MSG_GET_ENG_GRP_NUM; req->hdr.sig = OTX2_MBOX_REQ_SIG; req->hdr.pcifunc = OTX2_CPT_RVU_PFFUNC(cptvf->vf_id, 0); req->eng_type = eng_type; return otx2_cpt_send_mbox_msg(mbox, pdev); } int otx2_cptvf_send_kvf_limits_msg(struct otx2_cptvf_dev *cptvf) { struct otx2_mbox *mbox = &cptvf->pfvf_mbox; struct pci_dev *pdev = cptvf->pdev; struct mbox_msghdr *req; req = (struct mbox_msghdr *) otx2_mbox_alloc_msg_rsp(mbox, 0, sizeof(*req), sizeof(struct otx2_cpt_kvf_limits_rsp)); if (req == NULL) { dev_err(&pdev->dev, "RVU MBOX failed to get message.\n"); return -EFAULT; } req->id = MBOX_MSG_GET_KVF_LIMITS; req->sig = OTX2_MBOX_REQ_SIG; req->pcifunc = OTX2_CPT_RVU_PFFUNC(cptvf->vf_id, 0); return otx2_cpt_send_mbox_msg(mbox, pdev); }
linux-master
drivers/crypto/marvell/octeontx2/otx2_cptvf_mbox.c
// SPDX-License-Identifier: GPL-2.0-only /* * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256. * * Author: Boris Brezillon <[email protected]> * Author: Arnaud Ebalard <[email protected]> * * This work is based on an initial version written by * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > */ #include <crypto/hmac.h> #include <crypto/md5.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include "cesa.h" struct mv_cesa_ahash_dma_iter { struct mv_cesa_dma_iter base; struct mv_cesa_sg_dma_iter src; }; static inline void mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter, struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); unsigned int len = req->nbytes + creq->cache_ptr; if (!creq->last_req) len &= ~CESA_HASH_BLOCK_SIZE_MSK; mv_cesa_req_dma_iter_init(&iter->base, len); mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE); iter->src.op_offset = creq->cache_ptr; } static inline bool mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter) { iter->src.op_offset = 0; return mv_cesa_req_dma_iter_next_op(&iter->base); } static inline int mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags) { req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags, &req->cache_dma); if (!req->cache) return -ENOMEM; return 0; } static inline void mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req) { if (!req->cache) return; dma_pool_free(cesa_dev->dma->cache_pool, req->cache, req->cache_dma); } static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req, gfp_t flags) { if (req->padding) return 0; req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags, &req->padding_dma); if (!req->padding) return -ENOMEM; return 0; } static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req) { if (!req->padding) return; dma_pool_free(cesa_dev->dma->padding_pool, req->padding, req->padding_dma); req->padding = NULL; } static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); mv_cesa_ahash_dma_free_padding(&creq->req.dma); } static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); mv_cesa_ahash_dma_free_cache(&creq->req.dma); mv_cesa_dma_cleanup(&creq->base); } static inline void mv_cesa_ahash_cleanup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_ahash_dma_cleanup(req); } static void mv_cesa_ahash_last_cleanup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_ahash_dma_last_cleanup(req); } static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq) { unsigned int index, padlen; index = creq->len & CESA_HASH_BLOCK_SIZE_MSK; padlen = (index < 56) ? (56 - index) : (64 + 56 - index); return padlen; } static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf) { unsigned int padlen; buf[0] = 0x80; /* Pad out to 56 mod 64 */ padlen = mv_cesa_ahash_pad_len(creq); memset(buf + 1, 0, padlen - 1); if (creq->algo_le) { __le64 bits = cpu_to_le64(creq->len << 3); memcpy(buf + padlen, &bits, sizeof(bits)); } else { __be64 bits = cpu_to_be64(creq->len << 3); memcpy(buf + padlen, &bits, sizeof(bits)); } return padlen + 8; } static void mv_cesa_ahash_std_step(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_ahash_std_req *sreq = &creq->req.std; struct mv_cesa_engine *engine = creq->base.engine; struct mv_cesa_op_ctx *op; unsigned int new_cache_ptr = 0; u32 frag_mode; size_t len; unsigned int digsize; int i; mv_cesa_adjust_op(engine, &creq->op_tmpl); if (engine->pool) memcpy(engine->sram_pool, &creq->op_tmpl, sizeof(creq->op_tmpl)); else memcpy_toio(engine->sram, &creq->op_tmpl, sizeof(creq->op_tmpl)); if (!sreq->offset) { digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req)); for (i = 0; i < digsize / 4; i++) writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i)); } if (creq->cache_ptr) { if (engine->pool) memcpy(engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET, creq->cache, creq->cache_ptr); else memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET, creq->cache, creq->cache_ptr); } len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset, CESA_SA_SRAM_PAYLOAD_SIZE); if (!creq->last_req) { new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK; len &= ~CESA_HASH_BLOCK_SIZE_MSK; } if (len - creq->cache_ptr) sreq->offset += mv_cesa_sg_copy_to_sram( engine, req->src, creq->src_nents, CESA_SA_DATA_SRAM_OFFSET + creq->cache_ptr, len - creq->cache_ptr, sreq->offset); op = &creq->op_tmpl; frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK; if (creq->last_req && sreq->offset == req->nbytes && creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) { if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG) frag_mode = CESA_SA_DESC_CFG_NOT_FRAG; else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG) frag_mode = CESA_SA_DESC_CFG_LAST_FRAG; } if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG || frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) { if (len && creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) { mv_cesa_set_mac_op_total_len(op, creq->len); } else { int trailerlen = mv_cesa_ahash_pad_len(creq) + 8; if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) { len &= CESA_HASH_BLOCK_SIZE_MSK; new_cache_ptr = 64 - trailerlen; if (engine->pool) memcpy(creq->cache, engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET + len, new_cache_ptr); else memcpy_fromio(creq->cache, engine->sram + CESA_SA_DATA_SRAM_OFFSET + len, new_cache_ptr); } else { i = mv_cesa_ahash_pad_req(creq, creq->cache); len += i; if (engine->pool) memcpy(engine->sram_pool + len + CESA_SA_DATA_SRAM_OFFSET, creq->cache, i); else memcpy_toio(engine->sram + len + CESA_SA_DATA_SRAM_OFFSET, creq->cache, i); } if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) frag_mode = CESA_SA_DESC_CFG_MID_FRAG; else frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG; } } mv_cesa_set_mac_op_frag_len(op, len); mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK); /* FIXME: only update enc_len field */ if (engine->pool) memcpy(engine->sram_pool, op, sizeof(*op)); else memcpy_toio(engine->sram, op, sizeof(*op)); if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG) mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG, CESA_SA_DESC_CFG_FRAG_MSK); creq->cache_ptr = new_cache_ptr; mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE); writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG); WARN_ON(readl(engine->regs + CESA_SA_CMD) & CESA_SA_CMD_EN_CESA_SA_ACCL0); writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD); } static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_ahash_std_req *sreq = &creq->req.std; if (sreq->offset < (req->nbytes - creq->cache_ptr)) return -EINPROGRESS; return 0; } static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_req *basereq = &creq->base; mv_cesa_dma_prepare(basereq, basereq->engine); } static void mv_cesa_ahash_std_prepare(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_ahash_std_req *sreq = &creq->req.std; sreq->offset = 0; } static void mv_cesa_ahash_dma_step(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_req *base = &creq->base; /* We must explicitly set the digest state. */ if (base->chain.first->flags & CESA_TDMA_SET_STATE) { struct mv_cesa_engine *engine = base->engine; int i; /* Set the hash state in the IVDIG regs. */ for (i = 0; i < ARRAY_SIZE(creq->state); i++) writel_relaxed(creq->state[i], engine->regs + CESA_IVDIG(i)); } mv_cesa_dma_step(base); } static void mv_cesa_ahash_step(struct crypto_async_request *req) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_ahash_dma_step(ahashreq); else mv_cesa_ahash_std_step(ahashreq); } static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) return mv_cesa_dma_process(&creq->base, status); return mv_cesa_ahash_std_process(ahashreq, status); } static void mv_cesa_ahash_complete(struct crypto_async_request *req) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); struct mv_cesa_engine *engine = creq->base.engine; unsigned int digsize; int i; digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq)); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ && (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_RESULT) { __le32 *data = NULL; /* * Result is already in the correct endianness when the SA is * used */ data = creq->base.chain.last->op->ctx.hash.hash; for (i = 0; i < digsize / 4; i++) creq->state[i] = le32_to_cpu(data[i]); memcpy(ahashreq->result, data, digsize); } else { for (i = 0; i < digsize / 4; i++) creq->state[i] = readl_relaxed(engine->regs + CESA_IVDIG(i)); if (creq->last_req) { /* * Hardware's MD5 digest is in little endian format, but * SHA in big endian format */ if (creq->algo_le) { __le32 *result = (void *)ahashreq->result; for (i = 0; i < digsize / 4; i++) result[i] = cpu_to_le32(creq->state[i]); } else { __be32 *result = (void *)ahashreq->result; for (i = 0; i < digsize / 4; i++) result[i] = cpu_to_be32(creq->state[i]); } } } atomic_sub(ahashreq->nbytes, &engine->load); } static void mv_cesa_ahash_prepare(struct crypto_async_request *req, struct mv_cesa_engine *engine) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); creq->base.engine = engine; if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_ahash_dma_prepare(ahashreq); else mv_cesa_ahash_std_prepare(ahashreq); } static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req) { struct ahash_request *ahashreq = ahash_request_cast(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq); if (creq->last_req) mv_cesa_ahash_last_cleanup(ahashreq); mv_cesa_ahash_cleanup(ahashreq); if (creq->cache_ptr) sg_pcopy_to_buffer(ahashreq->src, creq->src_nents, creq->cache, creq->cache_ptr, ahashreq->nbytes - creq->cache_ptr); } static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = { .step = mv_cesa_ahash_step, .process = mv_cesa_ahash_process, .cleanup = mv_cesa_ahash_req_cleanup, .complete = mv_cesa_ahash_complete, }; static void mv_cesa_ahash_init(struct ahash_request *req, struct mv_cesa_op_ctx *tmpl, bool algo_le) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); memset(creq, 0, sizeof(*creq)); mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_MAC_ONLY | CESA_SA_DESC_CFG_FIRST_FRAG, CESA_SA_DESC_CFG_OP_MSK | CESA_SA_DESC_CFG_FRAG_MSK); mv_cesa_set_mac_op_total_len(tmpl, 0); mv_cesa_set_mac_op_frag_len(tmpl, 0); creq->op_tmpl = *tmpl; creq->len = 0; creq->algo_le = algo_le; } static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm) { struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm); ctx->base.ops = &mv_cesa_ahash_req_ops; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct mv_cesa_ahash_req)); return 0; } static bool mv_cesa_ahash_cache_req(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); bool cached = false; if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE && !creq->last_req) { cached = true; if (!req->nbytes) return cached; sg_pcopy_to_buffer(req->src, creq->src_nents, creq->cache + creq->cache_ptr, req->nbytes, 0); creq->cache_ptr += req->nbytes; } return cached; } static struct mv_cesa_op_ctx * mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain, struct mv_cesa_op_ctx *tmpl, unsigned int frag_len, gfp_t flags) { struct mv_cesa_op_ctx *op; int ret; op = mv_cesa_dma_add_op(chain, tmpl, false, flags); if (IS_ERR(op)) return op; /* Set the operation block fragment length. */ mv_cesa_set_mac_op_frag_len(op, frag_len); /* Append dummy desc to launch operation */ ret = mv_cesa_dma_add_dummy_launch(chain, flags); if (ret) return ERR_PTR(ret); if (mv_cesa_mac_op_is_first_frag(tmpl)) mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_MID_FRAG, CESA_SA_DESC_CFG_FRAG_MSK); return op; } static int mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain, struct mv_cesa_ahash_req *creq, gfp_t flags) { struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma; int ret; if (!creq->cache_ptr) return 0; ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags); if (ret) return ret; memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr); return mv_cesa_dma_add_data_transfer(chain, CESA_SA_DATA_SRAM_OFFSET, ahashdreq->cache_dma, creq->cache_ptr, CESA_TDMA_DST_IN_SRAM, flags); } static struct mv_cesa_op_ctx * mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain, struct mv_cesa_ahash_dma_iter *dma_iter, struct mv_cesa_ahash_req *creq, unsigned int frag_len, gfp_t flags) { struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma; unsigned int len, trailerlen, padoff = 0; struct mv_cesa_op_ctx *op; int ret; /* * If the transfer is smaller than our maximum length, and we have * some data outstanding, we can ask the engine to finish the hash. */ if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) { op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len, flags); if (IS_ERR(op)) return op; mv_cesa_set_mac_op_total_len(op, creq->len); mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ? CESA_SA_DESC_CFG_NOT_FRAG : CESA_SA_DESC_CFG_LAST_FRAG, CESA_SA_DESC_CFG_FRAG_MSK); ret = mv_cesa_dma_add_result_op(chain, CESA_SA_CFG_SRAM_OFFSET, CESA_SA_DATA_SRAM_OFFSET, CESA_TDMA_SRC_IN_SRAM, flags); if (ret) return ERR_PTR(-ENOMEM); return op; } /* * The request is longer than the engine can handle, or we have * no data outstanding. Manually generate the padding, adding it * as a "mid" fragment. */ ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags); if (ret) return ERR_PTR(ret); trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding); len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen); if (len) { ret = mv_cesa_dma_add_data_transfer(chain, CESA_SA_DATA_SRAM_OFFSET + frag_len, ahashdreq->padding_dma, len, CESA_TDMA_DST_IN_SRAM, flags); if (ret) return ERR_PTR(ret); op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len, flags); if (IS_ERR(op)) return op; if (len == trailerlen) return op; padoff += len; } ret = mv_cesa_dma_add_data_transfer(chain, CESA_SA_DATA_SRAM_OFFSET, ahashdreq->padding_dma + padoff, trailerlen - padoff, CESA_TDMA_DST_IN_SRAM, flags); if (ret) return ERR_PTR(ret); return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff, flags); } static int mv_cesa_ahash_dma_req_init(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; struct mv_cesa_req *basereq = &creq->base; struct mv_cesa_ahash_dma_iter iter; struct mv_cesa_op_ctx *op = NULL; unsigned int frag_len; bool set_state = false; int ret; u32 type; basereq->chain.first = NULL; basereq->chain.last = NULL; if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl)) set_state = true; if (creq->src_nents) { ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); if (!ret) { ret = -ENOMEM; goto err; } } mv_cesa_tdma_desc_iter_init(&basereq->chain); mv_cesa_ahash_req_iter_init(&iter, req); /* * Add the cache (left-over data from a previous block) first. * This will never overflow the SRAM size. */ ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags); if (ret) goto err_free_tdma; if (iter.src.sg) { /* * Add all the new data, inserting an operation block and * launch command between each full SRAM block-worth of * data. We intentionally do not add the final op block. */ while (true) { ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base, &iter.src, flags); if (ret) goto err_free_tdma; frag_len = iter.base.op_len; if (!mv_cesa_ahash_req_iter_next_op(&iter)) break; op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl, frag_len, flags); if (IS_ERR(op)) { ret = PTR_ERR(op); goto err_free_tdma; } } } else { /* Account for the data that was in the cache. */ frag_len = iter.base.op_len; } /* * At this point, frag_len indicates whether we have any data * outstanding which needs an operation. Queue up the final * operation, which depends whether this is the final request. */ if (creq->last_req) op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq, frag_len, flags); else if (frag_len) op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl, frag_len, flags); if (IS_ERR(op)) { ret = PTR_ERR(op); goto err_free_tdma; } /* * If results are copied via DMA, this means that this * request can be directly processed by the engine, * without partial updates. So we can chain it at the * DMA level with other requests. */ type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK; if (op && type != CESA_TDMA_RESULT) { /* Add dummy desc to wait for crypto operation end */ ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags); if (ret) goto err_free_tdma; } if (!creq->last_req) creq->cache_ptr = req->nbytes + creq->cache_ptr - iter.base.len; else creq->cache_ptr = 0; basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ; if (type != CESA_TDMA_RESULT) basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN; if (set_state) { /* * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to * let the step logic know that the IVDIG registers should be * explicitly set before launching a TDMA chain. */ basereq->chain.first->flags |= CESA_TDMA_SET_STATE; } return 0; err_free_tdma: mv_cesa_dma_cleanup(basereq); dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); err: mv_cesa_ahash_last_cleanup(req); return ret; } static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); creq->src_nents = sg_nents_for_len(req->src, req->nbytes); if (creq->src_nents < 0) { dev_err(cesa_dev->dev, "Invalid number of src SG"); return creq->src_nents; } *cached = mv_cesa_ahash_cache_req(req); if (*cached) return 0; if (cesa_dev->caps->has_tdma) return mv_cesa_ahash_dma_req_init(req); else return 0; } static int mv_cesa_ahash_queue_req(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_engine *engine; bool cached = false; int ret; ret = mv_cesa_ahash_req_init(req, &cached); if (ret) return ret; if (cached) return 0; engine = mv_cesa_select_engine(req->nbytes); mv_cesa_ahash_prepare(&req->base, engine); ret = mv_cesa_queue_req(&req->base, &creq->base); if (mv_cesa_req_needs_cleanup(&req->base, ret)) mv_cesa_ahash_cleanup(req); return ret; } static int mv_cesa_ahash_update(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); creq->len += req->nbytes; return mv_cesa_ahash_queue_req(req); } static int mv_cesa_ahash_final(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl; mv_cesa_set_mac_op_total_len(tmpl, creq->len); creq->last_req = true; req->nbytes = 0; return mv_cesa_ahash_queue_req(req); } static int mv_cesa_ahash_finup(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl; creq->len += req->nbytes; mv_cesa_set_mac_op_total_len(tmpl, creq->len); creq->last_req = true; return mv_cesa_ahash_queue_req(req); } static int mv_cesa_ahash_export(struct ahash_request *req, void *hash, u64 *len, void *cache) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); unsigned int digsize = crypto_ahash_digestsize(ahash); unsigned int blocksize; blocksize = crypto_ahash_blocksize(ahash); *len = creq->len; memcpy(hash, creq->state, digsize); memset(cache, 0, blocksize); memcpy(cache, creq->cache, creq->cache_ptr); return 0; } static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash, u64 len, const void *cache) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); unsigned int digsize = crypto_ahash_digestsize(ahash); unsigned int blocksize; unsigned int cache_ptr; int ret; ret = crypto_ahash_init(req); if (ret) return ret; blocksize = crypto_ahash_blocksize(ahash); if (len >= blocksize) mv_cesa_update_op_cfg(&creq->op_tmpl, CESA_SA_DESC_CFG_MID_FRAG, CESA_SA_DESC_CFG_FRAG_MSK); creq->len = len; memcpy(creq->state, hash, digsize); creq->cache_ptr = 0; cache_ptr = do_div(len, blocksize); if (!cache_ptr) return 0; memcpy(creq->cache, cache, cache_ptr); creq->cache_ptr = cache_ptr; return 0; } static int mv_cesa_md5_init(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5); mv_cesa_ahash_init(req, &tmpl, true); creq->state[0] = MD5_H0; creq->state[1] = MD5_H1; creq->state[2] = MD5_H2; creq->state[3] = MD5_H3; return 0; } static int mv_cesa_md5_export(struct ahash_request *req, void *out) { struct md5_state *out_state = out; return mv_cesa_ahash_export(req, out_state->hash, &out_state->byte_count, out_state->block); } static int mv_cesa_md5_import(struct ahash_request *req, const void *in) { const struct md5_state *in_state = in; return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count, in_state->block); } static int mv_cesa_md5_digest(struct ahash_request *req) { int ret; ret = mv_cesa_md5_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_md5_alg = { .init = mv_cesa_md5_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_md5_digest, .export = mv_cesa_md5_export, .import = mv_cesa_md5_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct md5_state), .base = { .cra_name = "md5", .cra_driver_name = "mv-md5", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx), .cra_init = mv_cesa_ahash_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_sha1_init(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1); mv_cesa_ahash_init(req, &tmpl, false); creq->state[0] = SHA1_H0; creq->state[1] = SHA1_H1; creq->state[2] = SHA1_H2; creq->state[3] = SHA1_H3; creq->state[4] = SHA1_H4; return 0; } static int mv_cesa_sha1_export(struct ahash_request *req, void *out) { struct sha1_state *out_state = out; return mv_cesa_ahash_export(req, out_state->state, &out_state->count, out_state->buffer); } static int mv_cesa_sha1_import(struct ahash_request *req, const void *in) { const struct sha1_state *in_state = in; return mv_cesa_ahash_import(req, in_state->state, in_state->count, in_state->buffer); } static int mv_cesa_sha1_digest(struct ahash_request *req) { int ret; ret = mv_cesa_sha1_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_sha1_alg = { .init = mv_cesa_sha1_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_sha1_digest, .export = mv_cesa_sha1_export, .import = mv_cesa_sha1_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "mv-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx), .cra_init = mv_cesa_ahash_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_sha256_init(struct ahash_request *req) { struct mv_cesa_ahash_req *creq = ahash_request_ctx(req); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256); mv_cesa_ahash_init(req, &tmpl, false); creq->state[0] = SHA256_H0; creq->state[1] = SHA256_H1; creq->state[2] = SHA256_H2; creq->state[3] = SHA256_H3; creq->state[4] = SHA256_H4; creq->state[5] = SHA256_H5; creq->state[6] = SHA256_H6; creq->state[7] = SHA256_H7; return 0; } static int mv_cesa_sha256_digest(struct ahash_request *req) { int ret; ret = mv_cesa_sha256_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } static int mv_cesa_sha256_export(struct ahash_request *req, void *out) { struct sha256_state *out_state = out; return mv_cesa_ahash_export(req, out_state->state, &out_state->count, out_state->buf); } static int mv_cesa_sha256_import(struct ahash_request *req, const void *in) { const struct sha256_state *in_state = in; return mv_cesa_ahash_import(req, in_state->state, in_state->count, in_state->buf); } struct ahash_alg mv_sha256_alg = { .init = mv_cesa_sha256_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_sha256_digest, .export = mv_cesa_sha256_export, .import = mv_cesa_sha256_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "mv-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx), .cra_init = mv_cesa_ahash_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad, void *state, unsigned int blocksize) { DECLARE_CRYPTO_WAIT(result); struct scatterlist sg; int ret; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); sg_init_one(&sg, pad, blocksize); ahash_request_set_crypt(req, &sg, pad, blocksize); ret = crypto_ahash_init(req); if (ret) return ret; ret = crypto_ahash_update(req); ret = crypto_wait_req(ret, &result); if (ret) return ret; ret = crypto_ahash_export(req, state); if (ret) return ret; return 0; } static int mv_cesa_ahmac_pad_init(struct ahash_request *req, const u8 *key, unsigned int keylen, u8 *ipad, u8 *opad, unsigned int blocksize) { DECLARE_CRYPTO_WAIT(result); struct scatterlist sg; int ret; int i; if (keylen <= blocksize) { memcpy(ipad, key, keylen); } else { u8 *keydup = kmemdup(key, keylen, GFP_KERNEL); if (!keydup) return -ENOMEM; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &result); sg_init_one(&sg, keydup, keylen); ahash_request_set_crypt(req, &sg, ipad, keylen); ret = crypto_ahash_digest(req); ret = crypto_wait_req(ret, &result); /* Set the memory region to 0 to avoid any leak. */ kfree_sensitive(keydup); if (ret) return ret; keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req)); } memset(ipad + keylen, 0, blocksize - keylen); memcpy(opad, ipad, blocksize); for (i = 0; i < blocksize; i++) { ipad[i] ^= HMAC_IPAD_VALUE; opad[i] ^= HMAC_OPAD_VALUE; } return 0; } static int mv_cesa_ahmac_setkey(const char *hash_alg_name, const u8 *key, unsigned int keylen, void *istate, void *ostate) { struct ahash_request *req; struct crypto_ahash *tfm; unsigned int blocksize; u8 *ipad = NULL; u8 *opad; int ret; tfm = crypto_alloc_ahash(hash_alg_name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) { ret = -ENOMEM; goto free_ahash; } crypto_ahash_clear_flags(tfm, ~0); blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); ipad = kcalloc(2, blocksize, GFP_KERNEL); if (!ipad) { ret = -ENOMEM; goto free_req; } opad = ipad + blocksize; ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize); if (ret) goto free_ipad; ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize); if (ret) goto free_ipad; ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize); free_ipad: kfree(ipad); free_req: ahash_request_free(req); free_ahash: crypto_free_ahash(tfm); return ret; } static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm); ctx->base.ops = &mv_cesa_ahash_req_ops; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct mv_cesa_ahash_req)); return 0; } static int mv_cesa_ahmac_md5_init(struct ahash_request *req) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5); memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv)); mv_cesa_ahash_init(req, &tmpl, true); return 0; } static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct md5_state istate, ostate; int ret, i; ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(istate.hash); i++) ctx->iv[i] = cpu_to_be32(istate.hash[i]); for (i = 0; i < ARRAY_SIZE(ostate.hash); i++) ctx->iv[i + 8] = cpu_to_be32(ostate.hash[i]); return 0; } static int mv_cesa_ahmac_md5_digest(struct ahash_request *req) { int ret; ret = mv_cesa_ahmac_md5_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_ahmac_md5_alg = { .init = mv_cesa_ahmac_md5_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_ahmac_md5_digest, .setkey = mv_cesa_ahmac_md5_setkey, .export = mv_cesa_md5_export, .import = mv_cesa_md5_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct md5_state), .base = { .cra_name = "hmac(md5)", .cra_driver_name = "mv-hmac-md5", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx), .cra_init = mv_cesa_ahmac_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_ahmac_sha1_init(struct ahash_request *req) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1); memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv)); mv_cesa_ahash_init(req, &tmpl, false); return 0; } static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct sha1_state istate, ostate; int ret, i; ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(istate.state); i++) ctx->iv[i] = cpu_to_be32(istate.state[i]); for (i = 0; i < ARRAY_SIZE(ostate.state); i++) ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]); return 0; } static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req) { int ret; ret = mv_cesa_ahmac_sha1_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_ahmac_sha1_alg = { .init = mv_cesa_ahmac_sha1_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_ahmac_sha1_digest, .setkey = mv_cesa_ahmac_sha1_setkey, .export = mv_cesa_sha1_export, .import = mv_cesa_sha1_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "mv-hmac-sha1", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx), .cra_init = mv_cesa_ahmac_cra_init, .cra_module = THIS_MODULE, } } }; static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct sha256_state istate, ostate; int ret, i; ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(istate.state); i++) ctx->iv[i] = cpu_to_be32(istate.state[i]); for (i = 0; i < ARRAY_SIZE(ostate.state); i++) ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]); return 0; } static int mv_cesa_ahmac_sha256_init(struct ahash_request *req) { struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_cesa_op_ctx tmpl = { }; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256); memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv)); mv_cesa_ahash_init(req, &tmpl, false); return 0; } static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req) { int ret; ret = mv_cesa_ahmac_sha256_init(req); if (ret) return ret; return mv_cesa_ahash_finup(req); } struct ahash_alg mv_ahmac_sha256_alg = { .init = mv_cesa_ahmac_sha256_init, .update = mv_cesa_ahash_update, .final = mv_cesa_ahash_final, .finup = mv_cesa_ahash_finup, .digest = mv_cesa_ahmac_sha256_digest, .setkey = mv_cesa_ahmac_sha256_setkey, .export = mv_cesa_sha256_export, .import = mv_cesa_sha256_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "mv-hmac-sha256", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx), .cra_init = mv_cesa_ahmac_cra_init, .cra_module = THIS_MODULE, } } };
linux-master
drivers/crypto/marvell/cesa/hash.c
// SPDX-License-Identifier: GPL-2.0-only /* * Provide TDMA helper functions used by cipher and hash algorithm * implementations. * * Author: Boris Brezillon <[email protected]> * Author: Arnaud Ebalard <[email protected]> * * This work is based on an initial version written by * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > */ #include "cesa.h" bool mv_cesa_req_dma_iter_next_transfer(struct mv_cesa_dma_iter *iter, struct mv_cesa_sg_dma_iter *sgiter, unsigned int len) { if (!sgiter->sg) return false; sgiter->op_offset += len; sgiter->offset += len; if (sgiter->offset == sg_dma_len(sgiter->sg)) { if (sg_is_last(sgiter->sg)) return false; sgiter->offset = 0; sgiter->sg = sg_next(sgiter->sg); } if (sgiter->op_offset == iter->op_len) return false; return true; } void mv_cesa_dma_step(struct mv_cesa_req *dreq) { struct mv_cesa_engine *engine = dreq->engine; writel_relaxed(0, engine->regs + CESA_SA_CFG); mv_cesa_set_int_mask(engine, CESA_SA_INT_ACC0_IDMA_DONE); writel_relaxed(CESA_TDMA_DST_BURST_128B | CESA_TDMA_SRC_BURST_128B | CESA_TDMA_NO_BYTE_SWAP | CESA_TDMA_EN, engine->regs + CESA_TDMA_CONTROL); writel_relaxed(CESA_SA_CFG_ACT_CH0_IDMA | CESA_SA_CFG_MULTI_PKT | CESA_SA_CFG_CH0_W_IDMA | CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG); writel_relaxed(dreq->chain.first->cur_dma, engine->regs + CESA_TDMA_NEXT_ADDR); WARN_ON(readl(engine->regs + CESA_SA_CMD) & CESA_SA_CMD_EN_CESA_SA_ACCL0); writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD); } void mv_cesa_dma_cleanup(struct mv_cesa_req *dreq) { struct mv_cesa_tdma_desc *tdma; for (tdma = dreq->chain.first; tdma;) { struct mv_cesa_tdma_desc *old_tdma = tdma; u32 type = tdma->flags & CESA_TDMA_TYPE_MSK; if (type == CESA_TDMA_OP) dma_pool_free(cesa_dev->dma->op_pool, tdma->op, le32_to_cpu(tdma->src)); tdma = tdma->next; dma_pool_free(cesa_dev->dma->tdma_desc_pool, old_tdma, old_tdma->cur_dma); } dreq->chain.first = NULL; dreq->chain.last = NULL; } void mv_cesa_dma_prepare(struct mv_cesa_req *dreq, struct mv_cesa_engine *engine) { struct mv_cesa_tdma_desc *tdma; for (tdma = dreq->chain.first; tdma; tdma = tdma->next) { if (tdma->flags & CESA_TDMA_DST_IN_SRAM) tdma->dst = cpu_to_le32(tdma->dst_dma + engine->sram_dma); if (tdma->flags & CESA_TDMA_SRC_IN_SRAM) tdma->src = cpu_to_le32(tdma->src_dma + engine->sram_dma); if ((tdma->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_OP) mv_cesa_adjust_op(engine, tdma->op); } } void mv_cesa_tdma_chain(struct mv_cesa_engine *engine, struct mv_cesa_req *dreq) { if (engine->chain.first == NULL && engine->chain.last == NULL) { engine->chain.first = dreq->chain.first; engine->chain.last = dreq->chain.last; } else { struct mv_cesa_tdma_desc *last; last = engine->chain.last; last->next = dreq->chain.first; engine->chain.last = dreq->chain.last; /* * Break the DMA chain if the CESA_TDMA_BREAK_CHAIN is set on * the last element of the current chain, or if the request * being queued needs the IV regs to be set before lauching * the request. */ if (!(last->flags & CESA_TDMA_BREAK_CHAIN) && !(dreq->chain.first->flags & CESA_TDMA_SET_STATE)) last->next_dma = cpu_to_le32(dreq->chain.first->cur_dma); } } int mv_cesa_tdma_process(struct mv_cesa_engine *engine, u32 status) { struct crypto_async_request *req = NULL; struct mv_cesa_tdma_desc *tdma = NULL, *next = NULL; dma_addr_t tdma_cur; int res = 0; tdma_cur = readl(engine->regs + CESA_TDMA_CUR); for (tdma = engine->chain.first; tdma; tdma = next) { spin_lock_bh(&engine->lock); next = tdma->next; spin_unlock_bh(&engine->lock); if (tdma->flags & CESA_TDMA_END_OF_REQ) { struct crypto_async_request *backlog = NULL; struct mv_cesa_ctx *ctx; u32 current_status; spin_lock_bh(&engine->lock); /* * if req is NULL, this means we're processing the * request in engine->req. */ if (!req) req = engine->req; else req = mv_cesa_dequeue_req_locked(engine, &backlog); /* Re-chaining to the next request */ engine->chain.first = tdma->next; tdma->next = NULL; /* If this is the last request, clear the chain */ if (engine->chain.first == NULL) engine->chain.last = NULL; spin_unlock_bh(&engine->lock); ctx = crypto_tfm_ctx(req->tfm); current_status = (tdma->cur_dma == tdma_cur) ? status : CESA_SA_INT_ACC0_IDMA_DONE; res = ctx->ops->process(req, current_status); ctx->ops->complete(req); if (res == 0) mv_cesa_engine_enqueue_complete_request(engine, req); if (backlog) crypto_request_complete(backlog, -EINPROGRESS); } if (res || tdma->cur_dma == tdma_cur) break; } /* * Save the last request in error to engine->req, so that the core * knows which request was faulty */ if (res) { spin_lock_bh(&engine->lock); engine->req = req; spin_unlock_bh(&engine->lock); } return res; } static struct mv_cesa_tdma_desc * mv_cesa_dma_add_desc(struct mv_cesa_tdma_chain *chain, gfp_t flags) { struct mv_cesa_tdma_desc *new_tdma = NULL; dma_addr_t dma_handle; new_tdma = dma_pool_zalloc(cesa_dev->dma->tdma_desc_pool, flags, &dma_handle); if (!new_tdma) return ERR_PTR(-ENOMEM); new_tdma->cur_dma = dma_handle; if (chain->last) { chain->last->next_dma = cpu_to_le32(dma_handle); chain->last->next = new_tdma; } else { chain->first = new_tdma; } chain->last = new_tdma; return new_tdma; } int mv_cesa_dma_add_result_op(struct mv_cesa_tdma_chain *chain, dma_addr_t src, u32 size, u32 flags, gfp_t gfp_flags) { struct mv_cesa_tdma_desc *tdma, *op_desc; tdma = mv_cesa_dma_add_desc(chain, gfp_flags); if (IS_ERR(tdma)) return PTR_ERR(tdma); /* We re-use an existing op_desc object to retrieve the context * and result instead of allocating a new one. * There is at least one object of this type in a CESA crypto * req, just pick the first one in the chain. */ for (op_desc = chain->first; op_desc; op_desc = op_desc->next) { u32 type = op_desc->flags & CESA_TDMA_TYPE_MSK; if (type == CESA_TDMA_OP) break; } if (!op_desc) return -EIO; tdma->byte_cnt = cpu_to_le32(size | BIT(31)); tdma->src_dma = src; tdma->dst_dma = op_desc->src_dma; tdma->op = op_desc->op; flags &= (CESA_TDMA_DST_IN_SRAM | CESA_TDMA_SRC_IN_SRAM); tdma->flags = flags | CESA_TDMA_RESULT; return 0; } struct mv_cesa_op_ctx *mv_cesa_dma_add_op(struct mv_cesa_tdma_chain *chain, const struct mv_cesa_op_ctx *op_templ, bool skip_ctx, gfp_t flags) { struct mv_cesa_tdma_desc *tdma; struct mv_cesa_op_ctx *op; dma_addr_t dma_handle; unsigned int size; tdma = mv_cesa_dma_add_desc(chain, flags); if (IS_ERR(tdma)) return ERR_CAST(tdma); op = dma_pool_alloc(cesa_dev->dma->op_pool, flags, &dma_handle); if (!op) return ERR_PTR(-ENOMEM); *op = *op_templ; size = skip_ctx ? sizeof(op->desc) : sizeof(*op); tdma = chain->last; tdma->op = op; tdma->byte_cnt = cpu_to_le32(size | BIT(31)); tdma->src = cpu_to_le32(dma_handle); tdma->dst_dma = CESA_SA_CFG_SRAM_OFFSET; tdma->flags = CESA_TDMA_DST_IN_SRAM | CESA_TDMA_OP; return op; } int mv_cesa_dma_add_data_transfer(struct mv_cesa_tdma_chain *chain, dma_addr_t dst, dma_addr_t src, u32 size, u32 flags, gfp_t gfp_flags) { struct mv_cesa_tdma_desc *tdma; tdma = mv_cesa_dma_add_desc(chain, gfp_flags); if (IS_ERR(tdma)) return PTR_ERR(tdma); tdma->byte_cnt = cpu_to_le32(size | BIT(31)); tdma->src_dma = src; tdma->dst_dma = dst; flags &= (CESA_TDMA_DST_IN_SRAM | CESA_TDMA_SRC_IN_SRAM); tdma->flags = flags | CESA_TDMA_DATA; return 0; } int mv_cesa_dma_add_dummy_launch(struct mv_cesa_tdma_chain *chain, gfp_t flags) { struct mv_cesa_tdma_desc *tdma; tdma = mv_cesa_dma_add_desc(chain, flags); return PTR_ERR_OR_ZERO(tdma); } int mv_cesa_dma_add_dummy_end(struct mv_cesa_tdma_chain *chain, gfp_t flags) { struct mv_cesa_tdma_desc *tdma; tdma = mv_cesa_dma_add_desc(chain, flags); if (IS_ERR(tdma)) return PTR_ERR(tdma); tdma->byte_cnt = cpu_to_le32(BIT(31)); return 0; } int mv_cesa_dma_add_op_transfers(struct mv_cesa_tdma_chain *chain, struct mv_cesa_dma_iter *dma_iter, struct mv_cesa_sg_dma_iter *sgiter, gfp_t gfp_flags) { u32 flags = sgiter->dir == DMA_TO_DEVICE ? CESA_TDMA_DST_IN_SRAM : CESA_TDMA_SRC_IN_SRAM; unsigned int len; do { dma_addr_t dst, src; int ret; len = mv_cesa_req_dma_iter_transfer_len(dma_iter, sgiter); if (sgiter->dir == DMA_TO_DEVICE) { dst = CESA_SA_DATA_SRAM_OFFSET + sgiter->op_offset; src = sg_dma_address(sgiter->sg) + sgiter->offset; } else { dst = sg_dma_address(sgiter->sg) + sgiter->offset; src = CESA_SA_DATA_SRAM_OFFSET + sgiter->op_offset; } ret = mv_cesa_dma_add_data_transfer(chain, dst, src, len, flags, gfp_flags); if (ret) return ret; } while (mv_cesa_req_dma_iter_next_transfer(dma_iter, sgiter, len)); return 0; } size_t mv_cesa_sg_copy(struct mv_cesa_engine *engine, struct scatterlist *sgl, unsigned int nents, unsigned int sram_off, size_t buflen, off_t skip, bool to_sram) { unsigned int sg_flags = SG_MITER_ATOMIC; struct sg_mapping_iter miter; unsigned int offset = 0; if (to_sram) sg_flags |= SG_MITER_FROM_SG; else sg_flags |= SG_MITER_TO_SG; sg_miter_start(&miter, sgl, nents, sg_flags); if (!sg_miter_skip(&miter, skip)) return 0; while ((offset < buflen) && sg_miter_next(&miter)) { unsigned int len; len = min(miter.length, buflen - offset); if (to_sram) { if (engine->pool) memcpy(engine->sram_pool + sram_off + offset, miter.addr, len); else memcpy_toio(engine->sram + sram_off + offset, miter.addr, len); } else { if (engine->pool) memcpy(miter.addr, engine->sram_pool + sram_off + offset, len); else memcpy_fromio(miter.addr, engine->sram + sram_off + offset, len); } offset += len; } sg_miter_stop(&miter); return offset; }
linux-master
drivers/crypto/marvell/cesa/tdma.c
// SPDX-License-Identifier: GPL-2.0-only /* * Support for Marvell's Cryptographic Engine and Security Accelerator (CESA) * that can be found on the following platform: Orion, Kirkwood, Armada. This * driver supports the TDMA engine on platforms on which it is available. * * Author: Boris Brezillon <[email protected]> * Author: Arnaud Ebalard <[email protected]> * * This work is based on an initial version written by * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/genalloc.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kthread.h> #include <linux/mbus.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/of_irq.h> #include "cesa.h" /* Limit of the crypto queue before reaching the backlog */ #define CESA_CRYPTO_DEFAULT_MAX_QLEN 128 struct mv_cesa_dev *cesa_dev; struct crypto_async_request * mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine, struct crypto_async_request **backlog) { struct crypto_async_request *req; *backlog = crypto_get_backlog(&engine->queue); req = crypto_dequeue_request(&engine->queue); if (!req) return NULL; return req; } static void mv_cesa_rearm_engine(struct mv_cesa_engine *engine) { struct crypto_async_request *req = NULL, *backlog = NULL; struct mv_cesa_ctx *ctx; spin_lock_bh(&engine->lock); if (!engine->req) { req = mv_cesa_dequeue_req_locked(engine, &backlog); engine->req = req; } spin_unlock_bh(&engine->lock); if (!req) return; if (backlog) crypto_request_complete(backlog, -EINPROGRESS); ctx = crypto_tfm_ctx(req->tfm); ctx->ops->step(req); } static int mv_cesa_std_process(struct mv_cesa_engine *engine, u32 status) { struct crypto_async_request *req; struct mv_cesa_ctx *ctx; int res; req = engine->req; ctx = crypto_tfm_ctx(req->tfm); res = ctx->ops->process(req, status); if (res == 0) { ctx->ops->complete(req); mv_cesa_engine_enqueue_complete_request(engine, req); } else if (res == -EINPROGRESS) { ctx->ops->step(req); } return res; } static int mv_cesa_int_process(struct mv_cesa_engine *engine, u32 status) { if (engine->chain.first && engine->chain.last) return mv_cesa_tdma_process(engine, status); return mv_cesa_std_process(engine, status); } static inline void mv_cesa_complete_req(struct mv_cesa_ctx *ctx, struct crypto_async_request *req, int res) { ctx->ops->cleanup(req); local_bh_disable(); crypto_request_complete(req, res); local_bh_enable(); } static irqreturn_t mv_cesa_int(int irq, void *priv) { struct mv_cesa_engine *engine = priv; struct crypto_async_request *req; struct mv_cesa_ctx *ctx; u32 status, mask; irqreturn_t ret = IRQ_NONE; while (true) { int res; mask = mv_cesa_get_int_mask(engine); status = readl(engine->regs + CESA_SA_INT_STATUS); if (!(status & mask)) break; /* * TODO: avoid clearing the FPGA_INT_STATUS if this not * relevant on some platforms. */ writel(~status, engine->regs + CESA_SA_FPGA_INT_STATUS); writel(~status, engine->regs + CESA_SA_INT_STATUS); /* Process fetched requests */ res = mv_cesa_int_process(engine, status & mask); ret = IRQ_HANDLED; spin_lock_bh(&engine->lock); req = engine->req; if (res != -EINPROGRESS) engine->req = NULL; spin_unlock_bh(&engine->lock); ctx = crypto_tfm_ctx(req->tfm); if (res && res != -EINPROGRESS) mv_cesa_complete_req(ctx, req, res); /* Launch the next pending request */ mv_cesa_rearm_engine(engine); /* Iterate over the complete queue */ while (true) { req = mv_cesa_engine_dequeue_complete_request(engine); if (!req) break; ctx = crypto_tfm_ctx(req->tfm); mv_cesa_complete_req(ctx, req, 0); } } return ret; } int mv_cesa_queue_req(struct crypto_async_request *req, struct mv_cesa_req *creq) { int ret; struct mv_cesa_engine *engine = creq->engine; spin_lock_bh(&engine->lock); ret = crypto_enqueue_request(&engine->queue, req); if ((mv_cesa_req_get_type(creq) == CESA_DMA_REQ) && (ret == -EINPROGRESS || ret == -EBUSY)) mv_cesa_tdma_chain(engine, creq); spin_unlock_bh(&engine->lock); if (ret != -EINPROGRESS) return ret; mv_cesa_rearm_engine(engine); return -EINPROGRESS; } static int mv_cesa_add_algs(struct mv_cesa_dev *cesa) { int ret; int i, j; for (i = 0; i < cesa->caps->ncipher_algs; i++) { ret = crypto_register_skcipher(cesa->caps->cipher_algs[i]); if (ret) goto err_unregister_crypto; } for (i = 0; i < cesa->caps->nahash_algs; i++) { ret = crypto_register_ahash(cesa->caps->ahash_algs[i]); if (ret) goto err_unregister_ahash; } return 0; err_unregister_ahash: for (j = 0; j < i; j++) crypto_unregister_ahash(cesa->caps->ahash_algs[j]); i = cesa->caps->ncipher_algs; err_unregister_crypto: for (j = 0; j < i; j++) crypto_unregister_skcipher(cesa->caps->cipher_algs[j]); return ret; } static void mv_cesa_remove_algs(struct mv_cesa_dev *cesa) { int i; for (i = 0; i < cesa->caps->nahash_algs; i++) crypto_unregister_ahash(cesa->caps->ahash_algs[i]); for (i = 0; i < cesa->caps->ncipher_algs; i++) crypto_unregister_skcipher(cesa->caps->cipher_algs[i]); } static struct skcipher_alg *orion_cipher_algs[] = { &mv_cesa_ecb_des_alg, &mv_cesa_cbc_des_alg, &mv_cesa_ecb_des3_ede_alg, &mv_cesa_cbc_des3_ede_alg, &mv_cesa_ecb_aes_alg, &mv_cesa_cbc_aes_alg, }; static struct ahash_alg *orion_ahash_algs[] = { &mv_md5_alg, &mv_sha1_alg, &mv_ahmac_md5_alg, &mv_ahmac_sha1_alg, }; static struct skcipher_alg *armada_370_cipher_algs[] = { &mv_cesa_ecb_des_alg, &mv_cesa_cbc_des_alg, &mv_cesa_ecb_des3_ede_alg, &mv_cesa_cbc_des3_ede_alg, &mv_cesa_ecb_aes_alg, &mv_cesa_cbc_aes_alg, }; static struct ahash_alg *armada_370_ahash_algs[] = { &mv_md5_alg, &mv_sha1_alg, &mv_sha256_alg, &mv_ahmac_md5_alg, &mv_ahmac_sha1_alg, &mv_ahmac_sha256_alg, }; static const struct mv_cesa_caps orion_caps = { .nengines = 1, .cipher_algs = orion_cipher_algs, .ncipher_algs = ARRAY_SIZE(orion_cipher_algs), .ahash_algs = orion_ahash_algs, .nahash_algs = ARRAY_SIZE(orion_ahash_algs), .has_tdma = false, }; static const struct mv_cesa_caps kirkwood_caps = { .nengines = 1, .cipher_algs = orion_cipher_algs, .ncipher_algs = ARRAY_SIZE(orion_cipher_algs), .ahash_algs = orion_ahash_algs, .nahash_algs = ARRAY_SIZE(orion_ahash_algs), .has_tdma = true, }; static const struct mv_cesa_caps armada_370_caps = { .nengines = 1, .cipher_algs = armada_370_cipher_algs, .ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs), .ahash_algs = armada_370_ahash_algs, .nahash_algs = ARRAY_SIZE(armada_370_ahash_algs), .has_tdma = true, }; static const struct mv_cesa_caps armada_xp_caps = { .nengines = 2, .cipher_algs = armada_370_cipher_algs, .ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs), .ahash_algs = armada_370_ahash_algs, .nahash_algs = ARRAY_SIZE(armada_370_ahash_algs), .has_tdma = true, }; static const struct of_device_id mv_cesa_of_match_table[] = { { .compatible = "marvell,orion-crypto", .data = &orion_caps }, { .compatible = "marvell,kirkwood-crypto", .data = &kirkwood_caps }, { .compatible = "marvell,dove-crypto", .data = &kirkwood_caps }, { .compatible = "marvell,armada-370-crypto", .data = &armada_370_caps }, { .compatible = "marvell,armada-xp-crypto", .data = &armada_xp_caps }, { .compatible = "marvell,armada-375-crypto", .data = &armada_xp_caps }, { .compatible = "marvell,armada-38x-crypto", .data = &armada_xp_caps }, {} }; MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table); static void mv_cesa_conf_mbus_windows(struct mv_cesa_engine *engine, const struct mbus_dram_target_info *dram) { void __iomem *iobase = engine->regs; int i; for (i = 0; i < 4; i++) { writel(0, iobase + CESA_TDMA_WINDOW_CTRL(i)); writel(0, iobase + CESA_TDMA_WINDOW_BASE(i)); } for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) | (dram->mbus_dram_target_id << 4) | 1, iobase + CESA_TDMA_WINDOW_CTRL(i)); writel(cs->base, iobase + CESA_TDMA_WINDOW_BASE(i)); } } static int mv_cesa_dev_dma_init(struct mv_cesa_dev *cesa) { struct device *dev = cesa->dev; struct mv_cesa_dev_dma *dma; if (!cesa->caps->has_tdma) return 0; dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL); if (!dma) return -ENOMEM; dma->tdma_desc_pool = dmam_pool_create("tdma_desc", dev, sizeof(struct mv_cesa_tdma_desc), 16, 0); if (!dma->tdma_desc_pool) return -ENOMEM; dma->op_pool = dmam_pool_create("cesa_op", dev, sizeof(struct mv_cesa_op_ctx), 16, 0); if (!dma->op_pool) return -ENOMEM; dma->cache_pool = dmam_pool_create("cesa_cache", dev, CESA_MAX_HASH_BLOCK_SIZE, 1, 0); if (!dma->cache_pool) return -ENOMEM; dma->padding_pool = dmam_pool_create("cesa_padding", dev, 72, 1, 0); if (!dma->padding_pool) return -ENOMEM; cesa->dma = dma; return 0; } static int mv_cesa_get_sram(struct platform_device *pdev, int idx) { struct mv_cesa_dev *cesa = platform_get_drvdata(pdev); struct mv_cesa_engine *engine = &cesa->engines[idx]; const char *res_name = "sram"; struct resource *res; engine->pool = of_gen_pool_get(cesa->dev->of_node, "marvell,crypto-srams", idx); if (engine->pool) { engine->sram_pool = gen_pool_dma_alloc(engine->pool, cesa->sram_size, &engine->sram_dma); if (engine->sram_pool) return 0; engine->pool = NULL; return -ENOMEM; } if (cesa->caps->nengines > 1) { if (!idx) res_name = "sram0"; else res_name = "sram1"; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); if (!res || resource_size(res) < cesa->sram_size) return -EINVAL; engine->sram = devm_ioremap_resource(cesa->dev, res); if (IS_ERR(engine->sram)) return PTR_ERR(engine->sram); engine->sram_dma = dma_map_resource(cesa->dev, res->start, cesa->sram_size, DMA_BIDIRECTIONAL, 0); if (dma_mapping_error(cesa->dev, engine->sram_dma)) return -ENOMEM; return 0; } static void mv_cesa_put_sram(struct platform_device *pdev, int idx) { struct mv_cesa_dev *cesa = platform_get_drvdata(pdev); struct mv_cesa_engine *engine = &cesa->engines[idx]; if (engine->pool) gen_pool_free(engine->pool, (unsigned long)engine->sram_pool, cesa->sram_size); else dma_unmap_resource(cesa->dev, engine->sram_dma, cesa->sram_size, DMA_BIDIRECTIONAL, 0); } static int mv_cesa_probe(struct platform_device *pdev) { const struct mv_cesa_caps *caps = &orion_caps; const struct mbus_dram_target_info *dram; const struct of_device_id *match; struct device *dev = &pdev->dev; struct mv_cesa_dev *cesa; struct mv_cesa_engine *engines; int irq, ret, i, cpu; u32 sram_size; if (cesa_dev) { dev_err(&pdev->dev, "Only one CESA device authorized\n"); return -EEXIST; } if (dev->of_node) { match = of_match_node(mv_cesa_of_match_table, dev->of_node); if (!match || !match->data) return -ENOTSUPP; caps = match->data; } cesa = devm_kzalloc(dev, sizeof(*cesa), GFP_KERNEL); if (!cesa) return -ENOMEM; cesa->caps = caps; cesa->dev = dev; sram_size = CESA_SA_DEFAULT_SRAM_SIZE; of_property_read_u32(cesa->dev->of_node, "marvell,crypto-sram-size", &sram_size); if (sram_size < CESA_SA_MIN_SRAM_SIZE) sram_size = CESA_SA_MIN_SRAM_SIZE; cesa->sram_size = sram_size; cesa->engines = devm_kcalloc(dev, caps->nengines, sizeof(*engines), GFP_KERNEL); if (!cesa->engines) return -ENOMEM; spin_lock_init(&cesa->lock); cesa->regs = devm_platform_ioremap_resource_byname(pdev, "regs"); if (IS_ERR(cesa->regs)) return PTR_ERR(cesa->regs); ret = mv_cesa_dev_dma_init(cesa); if (ret) return ret; dram = mv_mbus_dram_info_nooverlap(); platform_set_drvdata(pdev, cesa); for (i = 0; i < caps->nengines; i++) { struct mv_cesa_engine *engine = &cesa->engines[i]; char res_name[7]; engine->id = i; spin_lock_init(&engine->lock); ret = mv_cesa_get_sram(pdev, i); if (ret) goto err_cleanup; irq = platform_get_irq(pdev, i); if (irq < 0) { ret = irq; goto err_cleanup; } engine->irq = irq; /* * Not all platforms can gate the CESA clocks: do not complain * if the clock does not exist. */ snprintf(res_name, sizeof(res_name), "cesa%d", i); engine->clk = devm_clk_get(dev, res_name); if (IS_ERR(engine->clk)) { engine->clk = devm_clk_get(dev, NULL); if (IS_ERR(engine->clk)) engine->clk = NULL; } snprintf(res_name, sizeof(res_name), "cesaz%d", i); engine->zclk = devm_clk_get(dev, res_name); if (IS_ERR(engine->zclk)) engine->zclk = NULL; ret = clk_prepare_enable(engine->clk); if (ret) goto err_cleanup; ret = clk_prepare_enable(engine->zclk); if (ret) goto err_cleanup; engine->regs = cesa->regs + CESA_ENGINE_OFF(i); if (dram && cesa->caps->has_tdma) mv_cesa_conf_mbus_windows(engine, dram); writel(0, engine->regs + CESA_SA_INT_STATUS); writel(CESA_SA_CFG_STOP_DIG_ERR, engine->regs + CESA_SA_CFG); writel(engine->sram_dma & CESA_SA_SRAM_MSK, engine->regs + CESA_SA_DESC_P0); ret = devm_request_threaded_irq(dev, irq, NULL, mv_cesa_int, IRQF_ONESHOT, dev_name(&pdev->dev), engine); if (ret) goto err_cleanup; /* Set affinity */ cpu = cpumask_local_spread(engine->id, NUMA_NO_NODE); irq_set_affinity_hint(irq, get_cpu_mask(cpu)); crypto_init_queue(&engine->queue, CESA_CRYPTO_DEFAULT_MAX_QLEN); atomic_set(&engine->load, 0); INIT_LIST_HEAD(&engine->complete_queue); } cesa_dev = cesa; ret = mv_cesa_add_algs(cesa); if (ret) { cesa_dev = NULL; goto err_cleanup; } dev_info(dev, "CESA device successfully registered\n"); return 0; err_cleanup: for (i = 0; i < caps->nengines; i++) { clk_disable_unprepare(cesa->engines[i].zclk); clk_disable_unprepare(cesa->engines[i].clk); mv_cesa_put_sram(pdev, i); if (cesa->engines[i].irq > 0) irq_set_affinity_hint(cesa->engines[i].irq, NULL); } return ret; } static int mv_cesa_remove(struct platform_device *pdev) { struct mv_cesa_dev *cesa = platform_get_drvdata(pdev); int i; mv_cesa_remove_algs(cesa); for (i = 0; i < cesa->caps->nengines; i++) { clk_disable_unprepare(cesa->engines[i].zclk); clk_disable_unprepare(cesa->engines[i].clk); mv_cesa_put_sram(pdev, i); irq_set_affinity_hint(cesa->engines[i].irq, NULL); } return 0; } static const struct platform_device_id mv_cesa_plat_id_table[] = { { .name = "mv_crypto" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(platform, mv_cesa_plat_id_table); static struct platform_driver marvell_cesa = { .probe = mv_cesa_probe, .remove = mv_cesa_remove, .id_table = mv_cesa_plat_id_table, .driver = { .name = "marvell-cesa", .of_match_table = mv_cesa_of_match_table, }, }; module_platform_driver(marvell_cesa); MODULE_AUTHOR("Boris Brezillon <[email protected]>"); MODULE_AUTHOR("Arnaud Ebalard <[email protected]>"); MODULE_DESCRIPTION("Support for Marvell's cryptographic engine"); MODULE_LICENSE("GPL v2");
linux-master
drivers/crypto/marvell/cesa/cesa.c
// SPDX-License-Identifier: GPL-2.0-only /* * Cipher algorithms supported by the CESA: DES, 3DES and AES. * * Author: Boris Brezillon <[email protected]> * Author: Arnaud Ebalard <[email protected]> * * This work is based on an initial version written by * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > */ #include <crypto/aes.h> #include <crypto/internal/des.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include "cesa.h" struct mv_cesa_des_ctx { struct mv_cesa_ctx base; u8 key[DES_KEY_SIZE]; }; struct mv_cesa_des3_ctx { struct mv_cesa_ctx base; u8 key[DES3_EDE_KEY_SIZE]; }; struct mv_cesa_aes_ctx { struct mv_cesa_ctx base; struct crypto_aes_ctx aes; }; struct mv_cesa_skcipher_dma_iter { struct mv_cesa_dma_iter base; struct mv_cesa_sg_dma_iter src; struct mv_cesa_sg_dma_iter dst; }; static inline void mv_cesa_skcipher_req_iter_init(struct mv_cesa_skcipher_dma_iter *iter, struct skcipher_request *req) { mv_cesa_req_dma_iter_init(&iter->base, req->cryptlen); mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE); mv_cesa_sg_dma_iter_init(&iter->dst, req->dst, DMA_FROM_DEVICE); } static inline bool mv_cesa_skcipher_req_iter_next_op(struct mv_cesa_skcipher_dma_iter *iter) { iter->src.op_offset = 0; iter->dst.op_offset = 0; return mv_cesa_req_dma_iter_next_op(&iter->base); } static inline void mv_cesa_skcipher_dma_cleanup(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); if (req->dst != req->src) { dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents, DMA_FROM_DEVICE); dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); } else { dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_BIDIRECTIONAL); } mv_cesa_dma_cleanup(&creq->base); } static inline void mv_cesa_skcipher_cleanup(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_skcipher_dma_cleanup(req); } static void mv_cesa_skcipher_std_step(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_skcipher_std_req *sreq = &creq->std; struct mv_cesa_engine *engine = creq->base.engine; size_t len = min_t(size_t, req->cryptlen - sreq->offset, CESA_SA_SRAM_PAYLOAD_SIZE); mv_cesa_adjust_op(engine, &sreq->op); if (engine->pool) memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op)); else memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op)); len = mv_cesa_sg_copy_to_sram(engine, req->src, creq->src_nents, CESA_SA_DATA_SRAM_OFFSET, len, sreq->offset); sreq->size = len; mv_cesa_set_crypt_op_len(&sreq->op, len); /* FIXME: only update enc_len field */ if (!sreq->skip_ctx) { if (engine->pool) memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op)); else memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op)); sreq->skip_ctx = true; } else if (engine->pool) memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op.desc)); else memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op.desc)); mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE); writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG); WARN_ON(readl(engine->regs + CESA_SA_CMD) & CESA_SA_CMD_EN_CESA_SA_ACCL0); writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD); } static int mv_cesa_skcipher_std_process(struct skcipher_request *req, u32 status) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_skcipher_std_req *sreq = &creq->std; struct mv_cesa_engine *engine = creq->base.engine; size_t len; len = mv_cesa_sg_copy_from_sram(engine, req->dst, creq->dst_nents, CESA_SA_DATA_SRAM_OFFSET, sreq->size, sreq->offset); sreq->offset += len; if (sreq->offset < req->cryptlen) return -EINPROGRESS; return 0; } static int mv_cesa_skcipher_process(struct crypto_async_request *req, u32 status) { struct skcipher_request *skreq = skcipher_request_cast(req); struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); struct mv_cesa_req *basereq = &creq->base; if (mv_cesa_req_get_type(basereq) == CESA_STD_REQ) return mv_cesa_skcipher_std_process(skreq, status); return mv_cesa_dma_process(basereq, status); } static void mv_cesa_skcipher_step(struct crypto_async_request *req) { struct skcipher_request *skreq = skcipher_request_cast(req); struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_dma_step(&creq->base); else mv_cesa_skcipher_std_step(skreq); } static inline void mv_cesa_skcipher_dma_prepare(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_req *basereq = &creq->base; mv_cesa_dma_prepare(basereq, basereq->engine); } static inline void mv_cesa_skcipher_std_prepare(struct skcipher_request *req) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_skcipher_std_req *sreq = &creq->std; sreq->size = 0; sreq->offset = 0; } static inline void mv_cesa_skcipher_prepare(struct crypto_async_request *req, struct mv_cesa_engine *engine) { struct skcipher_request *skreq = skcipher_request_cast(req); struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); creq->base.engine = engine; if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) mv_cesa_skcipher_dma_prepare(skreq); else mv_cesa_skcipher_std_prepare(skreq); } static inline void mv_cesa_skcipher_req_cleanup(struct crypto_async_request *req) { struct skcipher_request *skreq = skcipher_request_cast(req); mv_cesa_skcipher_cleanup(skreq); } static void mv_cesa_skcipher_complete(struct crypto_async_request *req) { struct skcipher_request *skreq = skcipher_request_cast(req); struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); struct mv_cesa_engine *engine = creq->base.engine; unsigned int ivsize; atomic_sub(skreq->cryptlen, &engine->load); ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(skreq)); if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) { struct mv_cesa_req *basereq; basereq = &creq->base; memcpy(skreq->iv, basereq->chain.last->op->ctx.skcipher.iv, ivsize); } else if (engine->pool) memcpy(skreq->iv, engine->sram_pool + CESA_SA_CRYPT_IV_SRAM_OFFSET, ivsize); else memcpy_fromio(skreq->iv, engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET, ivsize); } static const struct mv_cesa_req_ops mv_cesa_skcipher_req_ops = { .step = mv_cesa_skcipher_step, .process = mv_cesa_skcipher_process, .cleanup = mv_cesa_skcipher_req_cleanup, .complete = mv_cesa_skcipher_complete, }; static void mv_cesa_skcipher_cra_exit(struct crypto_tfm *tfm) { void *ctx = crypto_tfm_ctx(tfm); memzero_explicit(ctx, tfm->__crt_alg->cra_ctxsize); } static int mv_cesa_skcipher_cra_init(struct crypto_tfm *tfm) { struct mv_cesa_ctx *ctx = crypto_tfm_ctx(tfm); ctx->ops = &mv_cesa_skcipher_req_ops; crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), sizeof(struct mv_cesa_skcipher_req)); return 0; } static int mv_cesa_aes_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm); int remaining; int offset; int ret; int i; ret = aes_expandkey(&ctx->aes, key, len); if (ret) return ret; remaining = (ctx->aes.key_length - 16) / 4; offset = ctx->aes.key_length + 24 - remaining; for (i = 0; i < remaining; i++) ctx->aes.key_dec[4 + i] = ctx->aes.key_enc[offset + i]; return 0; } static int mv_cesa_des_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int len) { struct mv_cesa_des_ctx *ctx = crypto_skcipher_ctx(cipher); int err; err = verify_skcipher_des_key(cipher, key); if (err) return err; memcpy(ctx->key, key, DES_KEY_SIZE); return 0; } static int mv_cesa_des3_ede_setkey(struct crypto_skcipher *cipher, const u8 *key, unsigned int len) { struct mv_cesa_des3_ctx *ctx = crypto_skcipher_ctx(cipher); int err; err = verify_skcipher_des3_key(cipher, key); if (err) return err; memcpy(ctx->key, key, DES3_EDE_KEY_SIZE); return 0; } static int mv_cesa_skcipher_dma_req_init(struct skcipher_request *req, const struct mv_cesa_op_ctx *op_templ) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; struct mv_cesa_req *basereq = &creq->base; struct mv_cesa_skcipher_dma_iter iter; bool skip_ctx = false; int ret; basereq->chain.first = NULL; basereq->chain.last = NULL; if (req->src != req->dst) { ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE); if (!ret) return -ENOMEM; ret = dma_map_sg(cesa_dev->dev, req->dst, creq->dst_nents, DMA_FROM_DEVICE); if (!ret) { ret = -ENOMEM; goto err_unmap_src; } } else { ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_BIDIRECTIONAL); if (!ret) return -ENOMEM; } mv_cesa_tdma_desc_iter_init(&basereq->chain); mv_cesa_skcipher_req_iter_init(&iter, req); do { struct mv_cesa_op_ctx *op; op = mv_cesa_dma_add_op(&basereq->chain, op_templ, skip_ctx, flags); if (IS_ERR(op)) { ret = PTR_ERR(op); goto err_free_tdma; } skip_ctx = true; mv_cesa_set_crypt_op_len(op, iter.base.op_len); /* Add input transfers */ ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base, &iter.src, flags); if (ret) goto err_free_tdma; /* Add dummy desc to launch the crypto operation */ ret = mv_cesa_dma_add_dummy_launch(&basereq->chain, flags); if (ret) goto err_free_tdma; /* Add output transfers */ ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base, &iter.dst, flags); if (ret) goto err_free_tdma; } while (mv_cesa_skcipher_req_iter_next_op(&iter)); /* Add output data for IV */ ret = mv_cesa_dma_add_result_op(&basereq->chain, CESA_SA_CFG_SRAM_OFFSET, CESA_SA_DATA_SRAM_OFFSET, CESA_TDMA_SRC_IN_SRAM, flags); if (ret) goto err_free_tdma; basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ; return 0; err_free_tdma: mv_cesa_dma_cleanup(basereq); if (req->dst != req->src) dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents, DMA_FROM_DEVICE); err_unmap_src: dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, req->dst != req->src ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL); return ret; } static inline int mv_cesa_skcipher_std_req_init(struct skcipher_request *req, const struct mv_cesa_op_ctx *op_templ) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_skcipher_std_req *sreq = &creq->std; struct mv_cesa_req *basereq = &creq->base; sreq->op = *op_templ; sreq->skip_ctx = false; basereq->chain.first = NULL; basereq->chain.last = NULL; return 0; } static int mv_cesa_skcipher_req_init(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); unsigned int blksize = crypto_skcipher_blocksize(tfm); int ret; if (!IS_ALIGNED(req->cryptlen, blksize)) return -EINVAL; creq->src_nents = sg_nents_for_len(req->src, req->cryptlen); if (creq->src_nents < 0) { dev_err(cesa_dev->dev, "Invalid number of src SG"); return creq->src_nents; } creq->dst_nents = sg_nents_for_len(req->dst, req->cryptlen); if (creq->dst_nents < 0) { dev_err(cesa_dev->dev, "Invalid number of dst SG"); return creq->dst_nents; } mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY, CESA_SA_DESC_CFG_OP_MSK); if (cesa_dev->caps->has_tdma) ret = mv_cesa_skcipher_dma_req_init(req, tmpl); else ret = mv_cesa_skcipher_std_req_init(req, tmpl); return ret; } static int mv_cesa_skcipher_queue_req(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { int ret; struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); struct mv_cesa_engine *engine; ret = mv_cesa_skcipher_req_init(req, tmpl); if (ret) return ret; engine = mv_cesa_select_engine(req->cryptlen); mv_cesa_skcipher_prepare(&req->base, engine); ret = mv_cesa_queue_req(&req->base, &creq->base); if (mv_cesa_req_needs_cleanup(&req->base, ret)) mv_cesa_skcipher_cleanup(req); return ret; } static int mv_cesa_des_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(req->base.tfm); mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_DES, CESA_SA_DESC_CFG_CRYPTM_MSK); memcpy(tmpl->ctx.skcipher.key, ctx->key, DES_KEY_SIZE); return mv_cesa_skcipher_queue_req(req, tmpl); } static int mv_cesa_ecb_des_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_des_op(req, &tmpl); } static int mv_cesa_ecb_des_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_des_op(req, &tmpl); } struct skcipher_alg mv_cesa_ecb_des_alg = { .setkey = mv_cesa_des_setkey, .encrypt = mv_cesa_ecb_des_encrypt, .decrypt = mv_cesa_ecb_des_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .base = { .cra_name = "ecb(des)", .cra_driver_name = "mv-ecb-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_des_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_cbc_des_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC, CESA_SA_DESC_CFG_CRYPTCM_MSK); memcpy(tmpl->ctx.skcipher.iv, req->iv, DES_BLOCK_SIZE); return mv_cesa_des_op(req, tmpl); } static int mv_cesa_cbc_des_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_cbc_des_op(req, &tmpl); } static int mv_cesa_cbc_des_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_cbc_des_op(req, &tmpl); } struct skcipher_alg mv_cesa_cbc_des_alg = { .setkey = mv_cesa_des_setkey, .encrypt = mv_cesa_cbc_des_encrypt, .decrypt = mv_cesa_cbc_des_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .base = { .cra_name = "cbc(des)", .cra_driver_name = "mv-cbc-des", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_des_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_des3_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { struct mv_cesa_des3_ctx *ctx = crypto_tfm_ctx(req->base.tfm); mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_3DES, CESA_SA_DESC_CFG_CRYPTM_MSK); memcpy(tmpl->ctx.skcipher.key, ctx->key, DES3_EDE_KEY_SIZE); return mv_cesa_skcipher_queue_req(req, tmpl); } static int mv_cesa_ecb_des3_ede_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_3DES_EDE | CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_des3_op(req, &tmpl); } static int mv_cesa_ecb_des3_ede_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_3DES_EDE | CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_des3_op(req, &tmpl); } struct skcipher_alg mv_cesa_ecb_des3_ede_alg = { .setkey = mv_cesa_des3_ede_setkey, .encrypt = mv_cesa_ecb_des3_ede_encrypt, .decrypt = mv_cesa_ecb_des3_ede_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .base = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "mv-ecb-des3-ede", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_cbc_des3_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { memcpy(tmpl->ctx.skcipher.iv, req->iv, DES3_EDE_BLOCK_SIZE); return mv_cesa_des3_op(req, tmpl); } static int mv_cesa_cbc_des3_ede_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC | CESA_SA_DESC_CFG_3DES_EDE | CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_cbc_des3_op(req, &tmpl); } static int mv_cesa_cbc_des3_ede_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC | CESA_SA_DESC_CFG_3DES_EDE | CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_cbc_des3_op(req, &tmpl); } struct skcipher_alg mv_cesa_cbc_des3_ede_alg = { .setkey = mv_cesa_des3_ede_setkey, .encrypt = mv_cesa_cbc_des3_ede_encrypt, .decrypt = mv_cesa_cbc_des3_ede_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .base = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "mv-cbc-des3-ede", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_aes_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(req->base.tfm); int i; u32 *key; u32 cfg; cfg = CESA_SA_DESC_CFG_CRYPTM_AES; if (mv_cesa_get_op_cfg(tmpl) & CESA_SA_DESC_CFG_DIR_DEC) key = ctx->aes.key_dec; else key = ctx->aes.key_enc; for (i = 0; i < ctx->aes.key_length / sizeof(u32); i++) tmpl->ctx.skcipher.key[i] = cpu_to_le32(key[i]); if (ctx->aes.key_length == 24) cfg |= CESA_SA_DESC_CFG_AES_LEN_192; else if (ctx->aes.key_length == 32) cfg |= CESA_SA_DESC_CFG_AES_LEN_256; mv_cesa_update_op_cfg(tmpl, cfg, CESA_SA_DESC_CFG_CRYPTM_MSK | CESA_SA_DESC_CFG_AES_LEN_MSK); return mv_cesa_skcipher_queue_req(req, tmpl); } static int mv_cesa_ecb_aes_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_aes_op(req, &tmpl); } static int mv_cesa_ecb_aes_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_CRYPTCM_ECB | CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_aes_op(req, &tmpl); } struct skcipher_alg mv_cesa_ecb_aes_alg = { .setkey = mv_cesa_aes_setkey, .encrypt = mv_cesa_ecb_aes_encrypt, .decrypt = mv_cesa_ecb_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .base = { .cra_name = "ecb(aes)", .cra_driver_name = "mv-ecb-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, }; static int mv_cesa_cbc_aes_op(struct skcipher_request *req, struct mv_cesa_op_ctx *tmpl) { mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC, CESA_SA_DESC_CFG_CRYPTCM_MSK); memcpy(tmpl->ctx.skcipher.iv, req->iv, AES_BLOCK_SIZE); return mv_cesa_aes_op(req, tmpl); } static int mv_cesa_cbc_aes_encrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC); return mv_cesa_cbc_aes_op(req, &tmpl); } static int mv_cesa_cbc_aes_decrypt(struct skcipher_request *req) { struct mv_cesa_op_ctx tmpl; mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC); return mv_cesa_cbc_aes_op(req, &tmpl); } struct skcipher_alg mv_cesa_cbc_aes_alg = { .setkey = mv_cesa_aes_setkey, .encrypt = mv_cesa_cbc_aes_encrypt, .decrypt = mv_cesa_cbc_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "cbc(aes)", .cra_driver_name = "mv-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = mv_cesa_skcipher_cra_init, .cra_exit = mv_cesa_skcipher_cra_exit, }, };
linux-master
drivers/crypto/marvell/cesa/cipher.c
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "otx_cpt_common.h" #include "otx_cptpf.h" #define DRV_NAME "octeontx-cpt" #define DRV_VERSION "1.0" static void otx_cpt_disable_mbox_interrupts(struct otx_cpt_device *cpt) { /* Disable mbox(0) interrupts for all VFs */ writeq(~0ull, cpt->reg_base + OTX_CPT_PF_MBOX_ENA_W1CX(0)); } static void otx_cpt_enable_mbox_interrupts(struct otx_cpt_device *cpt) { /* Enable mbox(0) interrupts for all VFs */ writeq(~0ull, cpt->reg_base + OTX_CPT_PF_MBOX_ENA_W1SX(0)); } static irqreturn_t otx_cpt_mbx0_intr_handler(int __always_unused irq, void *cpt) { otx_cpt_mbox_intr_handler(cpt, 0); return IRQ_HANDLED; } static void otx_cpt_reset(struct otx_cpt_device *cpt) { writeq(1, cpt->reg_base + OTX_CPT_PF_RESET); } static void otx_cpt_find_max_enabled_cores(struct otx_cpt_device *cpt) { union otx_cptx_pf_constants pf_cnsts = {0}; pf_cnsts.u = readq(cpt->reg_base + OTX_CPT_PF_CONSTANTS); cpt->eng_grps.avail.max_se_cnt = pf_cnsts.s.se; cpt->eng_grps.avail.max_ae_cnt = pf_cnsts.s.ae; } static u32 otx_cpt_check_bist_status(struct otx_cpt_device *cpt) { union otx_cptx_pf_bist_status bist_sts = {0}; bist_sts.u = readq(cpt->reg_base + OTX_CPT_PF_BIST_STATUS); return bist_sts.u; } static u64 otx_cpt_check_exe_bist_status(struct otx_cpt_device *cpt) { union otx_cptx_pf_exe_bist_status bist_sts = {0}; bist_sts.u = readq(cpt->reg_base + OTX_CPT_PF_EXE_BIST_STATUS); return bist_sts.u; } static int otx_cpt_device_init(struct otx_cpt_device *cpt) { struct device *dev = &cpt->pdev->dev; u16 sdevid; u64 bist; /* Reset the PF when probed first */ otx_cpt_reset(cpt); mdelay(100); pci_read_config_word(cpt->pdev, PCI_SUBSYSTEM_ID, &sdevid); /* Check BIST status */ bist = (u64)otx_cpt_check_bist_status(cpt); if (bist) { dev_err(dev, "RAM BIST failed with code 0x%llx\n", bist); return -ENODEV; } bist = otx_cpt_check_exe_bist_status(cpt); if (bist) { dev_err(dev, "Engine BIST failed with code 0x%llx\n", bist); return -ENODEV; } /* Get max enabled cores */ otx_cpt_find_max_enabled_cores(cpt); if ((sdevid == OTX_CPT_PCI_PF_SUBSYS_ID) && (cpt->eng_grps.avail.max_se_cnt == 0)) { cpt->pf_type = OTX_CPT_AE; } else if ((sdevid == OTX_CPT_PCI_PF_SUBSYS_ID) && (cpt->eng_grps.avail.max_ae_cnt == 0)) { cpt->pf_type = OTX_CPT_SE; } /* Get max VQs/VFs supported by the device */ cpt->max_vfs = pci_sriov_get_totalvfs(cpt->pdev); /* Disable all cores */ otx_cpt_disable_all_cores(cpt); return 0; } static int otx_cpt_register_interrupts(struct otx_cpt_device *cpt) { struct device *dev = &cpt->pdev->dev; u32 mbox_int_idx = OTX_CPT_PF_MBOX_INT; u32 num_vec = OTX_CPT_PF_MSIX_VECTORS; int ret; /* Enable MSI-X */ ret = pci_alloc_irq_vectors(cpt->pdev, num_vec, num_vec, PCI_IRQ_MSIX); if (ret < 0) { dev_err(&cpt->pdev->dev, "Request for #%d msix vectors failed\n", num_vec); return ret; } /* Register mailbox interrupt handlers */ ret = request_irq(pci_irq_vector(cpt->pdev, OTX_CPT_PF_INT_VEC_E_MBOXX(mbox_int_idx, 0)), otx_cpt_mbx0_intr_handler, 0, "CPT Mbox0", cpt); if (ret) { dev_err(dev, "Request irq failed\n"); pci_free_irq_vectors(cpt->pdev); return ret; } /* Enable mailbox interrupt */ otx_cpt_enable_mbox_interrupts(cpt); return 0; } static void otx_cpt_unregister_interrupts(struct otx_cpt_device *cpt) { u32 mbox_int_idx = OTX_CPT_PF_MBOX_INT; otx_cpt_disable_mbox_interrupts(cpt); free_irq(pci_irq_vector(cpt->pdev, OTX_CPT_PF_INT_VEC_E_MBOXX(mbox_int_idx, 0)), cpt); pci_free_irq_vectors(cpt->pdev); } static int otx_cpt_sriov_configure(struct pci_dev *pdev, int numvfs) { struct otx_cpt_device *cpt = pci_get_drvdata(pdev); int ret = 0; if (numvfs > cpt->max_vfs) numvfs = cpt->max_vfs; if (numvfs > 0) { ret = otx_cpt_try_create_default_eng_grps(cpt->pdev, &cpt->eng_grps, cpt->pf_type); if (ret) return ret; cpt->vfs_enabled = numvfs; ret = pci_enable_sriov(pdev, numvfs); if (ret) { cpt->vfs_enabled = 0; return ret; } otx_cpt_set_eng_grps_is_rdonly(&cpt->eng_grps, true); try_module_get(THIS_MODULE); ret = numvfs; } else { pci_disable_sriov(pdev); otx_cpt_set_eng_grps_is_rdonly(&cpt->eng_grps, false); module_put(THIS_MODULE); cpt->vfs_enabled = 0; } dev_notice(&cpt->pdev->dev, "VFs enabled: %d\n", ret); return ret; } static int otx_cpt_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) { struct device *dev = &pdev->dev; struct otx_cpt_device *cpt; int err; cpt = devm_kzalloc(dev, sizeof(*cpt), GFP_KERNEL); if (!cpt) return -ENOMEM; pci_set_drvdata(pdev, cpt); cpt->pdev = pdev; err = pci_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); goto err_clear_drvdata; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto err_disable_device; } err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get usable 48-bit DMA configuration\n"); goto err_release_regions; } /* MAP PF's configuration registers */ cpt->reg_base = pci_iomap(pdev, OTX_CPT_PF_PCI_CFG_BAR, 0); if (!cpt->reg_base) { dev_err(dev, "Cannot map config register space, aborting\n"); err = -ENOMEM; goto err_release_regions; } /* CPT device HW initialization */ err = otx_cpt_device_init(cpt); if (err) goto err_unmap_region; /* Register interrupts */ err = otx_cpt_register_interrupts(cpt); if (err) goto err_unmap_region; /* Initialize engine groups */ err = otx_cpt_init_eng_grps(pdev, &cpt->eng_grps, cpt->pf_type); if (err) goto err_unregister_interrupts; return 0; err_unregister_interrupts: otx_cpt_unregister_interrupts(cpt); err_unmap_region: pci_iounmap(pdev, cpt->reg_base); err_release_regions: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); err_clear_drvdata: pci_set_drvdata(pdev, NULL); return err; } static void otx_cpt_remove(struct pci_dev *pdev) { struct otx_cpt_device *cpt = pci_get_drvdata(pdev); if (!cpt) return; /* Disable VFs */ pci_disable_sriov(pdev); /* Cleanup engine groups */ otx_cpt_cleanup_eng_grps(pdev, &cpt->eng_grps); /* Disable CPT PF interrupts */ otx_cpt_unregister_interrupts(cpt); /* Disengage SE and AE cores from all groups */ otx_cpt_disable_all_cores(cpt); pci_iounmap(pdev, cpt->reg_base); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } /* Supported devices */ static const struct pci_device_id otx_cpt_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OTX_CPT_PCI_PF_DEVICE_ID) }, { 0, } /* end of table */ }; static struct pci_driver otx_cpt_pci_driver = { .name = DRV_NAME, .id_table = otx_cpt_id_table, .probe = otx_cpt_probe, .remove = otx_cpt_remove, .sriov_configure = otx_cpt_sriov_configure }; module_pci_driver(otx_cpt_pci_driver); MODULE_AUTHOR("Marvell International Ltd."); MODULE_DESCRIPTION("Marvell OcteonTX CPT Physical Function Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, otx_cpt_id_table);
linux-master
drivers/crypto/marvell/octeontx/otx_cptpf_main.c
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/ctype.h> #include <linux/firmware.h> #include "otx_cpt_common.h" #include "otx_cptpf_ucode.h" #include "otx_cptpf.h" #define CSR_DELAY 30 /* Tar archive defines */ #define TAR_MAGIC "ustar" #define TAR_MAGIC_LEN 6 #define TAR_BLOCK_LEN 512 #define REGTYPE '0' #define AREGTYPE '\0' /* tar header as defined in POSIX 1003.1-1990. */ struct tar_hdr_t { char name[100]; char mode[8]; char uid[8]; char gid[8]; char size[12]; char mtime[12]; char chksum[8]; char typeflag; char linkname[100]; char magic[6]; char version[2]; char uname[32]; char gname[32]; char devmajor[8]; char devminor[8]; char prefix[155]; }; struct tar_blk_t { union { struct tar_hdr_t hdr; char block[TAR_BLOCK_LEN]; }; }; struct tar_arch_info_t { struct list_head ucodes; const struct firmware *fw; }; static struct otx_cpt_bitmap get_cores_bmap(struct device *dev, struct otx_cpt_eng_grp_info *eng_grp) { struct otx_cpt_bitmap bmap = { {0} }; bool found = false; int i; if (eng_grp->g->engs_num > OTX_CPT_MAX_ENGINES) { dev_err(dev, "unsupported number of engines %d on octeontx\n", eng_grp->g->engs_num); return bmap; } for (i = 0; i < OTX_CPT_MAX_ETYPES_PER_GRP; i++) { if (eng_grp->engs[i].type) { bitmap_or(bmap.bits, bmap.bits, eng_grp->engs[i].bmap, eng_grp->g->engs_num); bmap.size = eng_grp->g->engs_num; found = true; } } if (!found) dev_err(dev, "No engines reserved for engine group %d\n", eng_grp->idx); return bmap; } static int is_eng_type(int val, int eng_type) { return val & (1 << eng_type); } static int dev_supports_eng_type(struct otx_cpt_eng_grps *eng_grps, int eng_type) { return is_eng_type(eng_grps->eng_types_supported, eng_type); } static void set_ucode_filename(struct otx_cpt_ucode *ucode, const char *filename) { strscpy(ucode->filename, filename, OTX_CPT_UCODE_NAME_LENGTH); } static char *get_eng_type_str(int eng_type) { char *str = "unknown"; switch (eng_type) { case OTX_CPT_SE_TYPES: str = "SE"; break; case OTX_CPT_AE_TYPES: str = "AE"; break; } return str; } static char *get_ucode_type_str(int ucode_type) { char *str = "unknown"; switch (ucode_type) { case (1 << OTX_CPT_SE_TYPES): str = "SE"; break; case (1 << OTX_CPT_AE_TYPES): str = "AE"; break; } return str; } static int get_ucode_type(struct otx_cpt_ucode_hdr *ucode_hdr, int *ucode_type) { char tmp_ver_str[OTX_CPT_UCODE_VER_STR_SZ]; u32 i, val = 0; u8 nn; strscpy(tmp_ver_str, ucode_hdr->ver_str, OTX_CPT_UCODE_VER_STR_SZ); for (i = 0; i < strlen(tmp_ver_str); i++) tmp_ver_str[i] = tolower(tmp_ver_str[i]); nn = ucode_hdr->ver_num.nn; if (strnstr(tmp_ver_str, "se-", OTX_CPT_UCODE_VER_STR_SZ) && (nn == OTX_CPT_SE_UC_TYPE1 || nn == OTX_CPT_SE_UC_TYPE2 || nn == OTX_CPT_SE_UC_TYPE3)) val |= 1 << OTX_CPT_SE_TYPES; if (strnstr(tmp_ver_str, "ae", OTX_CPT_UCODE_VER_STR_SZ) && nn == OTX_CPT_AE_UC_TYPE) val |= 1 << OTX_CPT_AE_TYPES; *ucode_type = val; if (!val) return -EINVAL; if (is_eng_type(val, OTX_CPT_AE_TYPES) && is_eng_type(val, OTX_CPT_SE_TYPES)) return -EINVAL; return 0; } static int is_mem_zero(const char *ptr, int size) { int i; for (i = 0; i < size; i++) { if (ptr[i]) return 0; } return 1; } static int cpt_set_ucode_base(struct otx_cpt_eng_grp_info *eng_grp, void *obj) { struct otx_cpt_device *cpt = (struct otx_cpt_device *) obj; dma_addr_t dma_addr; struct otx_cpt_bitmap bmap; int i; bmap = get_cores_bmap(&cpt->pdev->dev, eng_grp); if (!bmap.size) return -EINVAL; if (eng_grp->mirror.is_ena) dma_addr = eng_grp->g->grp[eng_grp->mirror.idx].ucode[0].align_dma; else dma_addr = eng_grp->ucode[0].align_dma; /* * Set UCODE_BASE only for the cores which are not used, * other cores should have already valid UCODE_BASE set */ for_each_set_bit(i, bmap.bits, bmap.size) if (!eng_grp->g->eng_ref_cnt[i]) writeq((u64) dma_addr, cpt->reg_base + OTX_CPT_PF_ENGX_UCODE_BASE(i)); return 0; } static int cpt_detach_and_disable_cores(struct otx_cpt_eng_grp_info *eng_grp, void *obj) { struct otx_cpt_device *cpt = (struct otx_cpt_device *) obj; struct otx_cpt_bitmap bmap = { {0} }; int timeout = 10; int i, busy; u64 reg; bmap = get_cores_bmap(&cpt->pdev->dev, eng_grp); if (!bmap.size) return -EINVAL; /* Detach the cores from group */ reg = readq(cpt->reg_base + OTX_CPT_PF_GX_EN(eng_grp->idx)); for_each_set_bit(i, bmap.bits, bmap.size) { if (reg & (1ull << i)) { eng_grp->g->eng_ref_cnt[i]--; reg &= ~(1ull << i); } } writeq(reg, cpt->reg_base + OTX_CPT_PF_GX_EN(eng_grp->idx)); /* Wait for cores to become idle */ do { busy = 0; usleep_range(10000, 20000); if (timeout-- < 0) return -EBUSY; reg = readq(cpt->reg_base + OTX_CPT_PF_EXEC_BUSY); for_each_set_bit(i, bmap.bits, bmap.size) if (reg & (1ull << i)) { busy = 1; break; } } while (busy); /* Disable the cores only if they are not used anymore */ reg = readq(cpt->reg_base + OTX_CPT_PF_EXE_CTL); for_each_set_bit(i, bmap.bits, bmap.size) if (!eng_grp->g->eng_ref_cnt[i]) reg &= ~(1ull << i); writeq(reg, cpt->reg_base + OTX_CPT_PF_EXE_CTL); return 0; } static int cpt_attach_and_enable_cores(struct otx_cpt_eng_grp_info *eng_grp, void *obj) { struct otx_cpt_device *cpt = (struct otx_cpt_device *) obj; struct otx_cpt_bitmap bmap; u64 reg; int i; bmap = get_cores_bmap(&cpt->pdev->dev, eng_grp); if (!bmap.size) return -EINVAL; /* Attach the cores to the group */ reg = readq(cpt->reg_base + OTX_CPT_PF_GX_EN(eng_grp->idx)); for_each_set_bit(i, bmap.bits, bmap.size) { if (!(reg & (1ull << i))) { eng_grp->g->eng_ref_cnt[i]++; reg |= 1ull << i; } } writeq(reg, cpt->reg_base + OTX_CPT_PF_GX_EN(eng_grp->idx)); /* Enable the cores */ reg = readq(cpt->reg_base + OTX_CPT_PF_EXE_CTL); for_each_set_bit(i, bmap.bits, bmap.size) reg |= 1ull << i; writeq(reg, cpt->reg_base + OTX_CPT_PF_EXE_CTL); return 0; } static int process_tar_file(struct device *dev, struct tar_arch_info_t *tar_arch, char *filename, const u8 *data, u32 size) { struct tar_ucode_info_t *tar_info; struct otx_cpt_ucode_hdr *ucode_hdr; int ucode_type, ucode_size; unsigned int code_length; /* * If size is less than microcode header size then don't report * an error because it might not be microcode file, just process * next file from archive */ if (size < sizeof(struct otx_cpt_ucode_hdr)) return 0; ucode_hdr = (struct otx_cpt_ucode_hdr *) data; /* * If microcode version can't be found don't report an error * because it might not be microcode file, just process next file */ if (get_ucode_type(ucode_hdr, &ucode_type)) return 0; code_length = ntohl(ucode_hdr->code_length); if (code_length >= INT_MAX / 2) { dev_err(dev, "Invalid code_length %u\n", code_length); return -EINVAL; } ucode_size = code_length * 2; if (!ucode_size || (size < round_up(ucode_size, 16) + sizeof(struct otx_cpt_ucode_hdr) + OTX_CPT_UCODE_SIGN_LEN)) { dev_err(dev, "Ucode %s invalid size\n", filename); return -EINVAL; } tar_info = kzalloc(sizeof(struct tar_ucode_info_t), GFP_KERNEL); if (!tar_info) return -ENOMEM; tar_info->ucode_ptr = data; set_ucode_filename(&tar_info->ucode, filename); memcpy(tar_info->ucode.ver_str, ucode_hdr->ver_str, OTX_CPT_UCODE_VER_STR_SZ); tar_info->ucode.ver_num = ucode_hdr->ver_num; tar_info->ucode.type = ucode_type; tar_info->ucode.size = ucode_size; list_add_tail(&tar_info->list, &tar_arch->ucodes); return 0; } static void release_tar_archive(struct tar_arch_info_t *tar_arch) { struct tar_ucode_info_t *curr, *temp; if (!tar_arch) return; list_for_each_entry_safe(curr, temp, &tar_arch->ucodes, list) { list_del(&curr->list); kfree(curr); } release_firmware(tar_arch->fw); kfree(tar_arch); } static struct tar_ucode_info_t *get_uc_from_tar_archive( struct tar_arch_info_t *tar_arch, int ucode_type) { struct tar_ucode_info_t *curr, *uc_found = NULL; list_for_each_entry(curr, &tar_arch->ucodes, list) { if (!is_eng_type(curr->ucode.type, ucode_type)) continue; if (!uc_found) { uc_found = curr; continue; } switch (ucode_type) { case OTX_CPT_AE_TYPES: break; case OTX_CPT_SE_TYPES: if (uc_found->ucode.ver_num.nn == OTX_CPT_SE_UC_TYPE2 || (uc_found->ucode.ver_num.nn == OTX_CPT_SE_UC_TYPE3 && curr->ucode.ver_num.nn == OTX_CPT_SE_UC_TYPE1)) uc_found = curr; break; } } return uc_found; } static void print_tar_dbg_info(struct tar_arch_info_t *tar_arch, char *tar_filename) { struct tar_ucode_info_t *curr; pr_debug("Tar archive filename %s\n", tar_filename); pr_debug("Tar archive pointer %p, size %ld\n", tar_arch->fw->data, tar_arch->fw->size); list_for_each_entry(curr, &tar_arch->ucodes, list) { pr_debug("Ucode filename %s\n", curr->ucode.filename); pr_debug("Ucode version string %s\n", curr->ucode.ver_str); pr_debug("Ucode version %d.%d.%d.%d\n", curr->ucode.ver_num.nn, curr->ucode.ver_num.xx, curr->ucode.ver_num.yy, curr->ucode.ver_num.zz); pr_debug("Ucode type (%d) %s\n", curr->ucode.type, get_ucode_type_str(curr->ucode.type)); pr_debug("Ucode size %d\n", curr->ucode.size); pr_debug("Ucode ptr %p\n", curr->ucode_ptr); } } static struct tar_arch_info_t *load_tar_archive(struct device *dev, char *tar_filename) { struct tar_arch_info_t *tar_arch = NULL; struct tar_blk_t *tar_blk; unsigned int cur_size; size_t tar_offs = 0; size_t tar_size; int ret; tar_arch = kzalloc(sizeof(struct tar_arch_info_t), GFP_KERNEL); if (!tar_arch) return NULL; INIT_LIST_HEAD(&tar_arch->ucodes); /* Load tar archive */ ret = request_firmware(&tar_arch->fw, tar_filename, dev); if (ret) goto release_tar_arch; if (tar_arch->fw->size < TAR_BLOCK_LEN) { dev_err(dev, "Invalid tar archive %s\n", tar_filename); goto release_tar_arch; } tar_size = tar_arch->fw->size; tar_blk = (struct tar_blk_t *) tar_arch->fw->data; if (strncmp(tar_blk->hdr.magic, TAR_MAGIC, TAR_MAGIC_LEN - 1)) { dev_err(dev, "Unsupported format of tar archive %s\n", tar_filename); goto release_tar_arch; } while (1) { /* Read current file size */ ret = kstrtouint(tar_blk->hdr.size, 8, &cur_size); if (ret) goto release_tar_arch; if (tar_offs + cur_size > tar_size || tar_offs + 2*TAR_BLOCK_LEN > tar_size) { dev_err(dev, "Invalid tar archive %s\n", tar_filename); goto release_tar_arch; } tar_offs += TAR_BLOCK_LEN; if (tar_blk->hdr.typeflag == REGTYPE || tar_blk->hdr.typeflag == AREGTYPE) { ret = process_tar_file(dev, tar_arch, tar_blk->hdr.name, &tar_arch->fw->data[tar_offs], cur_size); if (ret) goto release_tar_arch; } tar_offs += (cur_size/TAR_BLOCK_LEN) * TAR_BLOCK_LEN; if (cur_size % TAR_BLOCK_LEN) tar_offs += TAR_BLOCK_LEN; /* Check for the end of the archive */ if (tar_offs + 2*TAR_BLOCK_LEN > tar_size) { dev_err(dev, "Invalid tar archive %s\n", tar_filename); goto release_tar_arch; } if (is_mem_zero(&tar_arch->fw->data[tar_offs], 2*TAR_BLOCK_LEN)) break; /* Read next block from tar archive */ tar_blk = (struct tar_blk_t *) &tar_arch->fw->data[tar_offs]; } print_tar_dbg_info(tar_arch, tar_filename); return tar_arch; release_tar_arch: release_tar_archive(tar_arch); return NULL; } static struct otx_cpt_engs_rsvd *find_engines_by_type( struct otx_cpt_eng_grp_info *eng_grp, int eng_type) { int i; for (i = 0; i < OTX_CPT_MAX_ETYPES_PER_GRP; i++) { if (!eng_grp->engs[i].type) continue; if (eng_grp->engs[i].type == eng_type) return &eng_grp->engs[i]; } return NULL; } int otx_cpt_uc_supports_eng_type(struct otx_cpt_ucode *ucode, int eng_type) { return is_eng_type(ucode->type, eng_type); } EXPORT_SYMBOL_GPL(otx_cpt_uc_supports_eng_type); int otx_cpt_eng_grp_has_eng_type(struct otx_cpt_eng_grp_info *eng_grp, int eng_type) { struct otx_cpt_engs_rsvd *engs; engs = find_engines_by_type(eng_grp, eng_type); return (engs != NULL ? 1 : 0); } EXPORT_SYMBOL_GPL(otx_cpt_eng_grp_has_eng_type); static void print_ucode_info(struct otx_cpt_eng_grp_info *eng_grp, char *buf, int size) { if (eng_grp->mirror.is_ena) { scnprintf(buf, size, "%s (shared with engine_group%d)", eng_grp->g->grp[eng_grp->mirror.idx].ucode[0].ver_str, eng_grp->mirror.idx); } else { scnprintf(buf, size, "%s", eng_grp->ucode[0].ver_str); } } static void print_engs_info(struct otx_cpt_eng_grp_info *eng_grp, char *buf, int size, int idx) { struct otx_cpt_engs_rsvd *mirrored_engs = NULL; struct otx_cpt_engs_rsvd *engs; int len, i; buf[0] = '\0'; for (i = 0; i < OTX_CPT_MAX_ETYPES_PER_GRP; i++) { engs = &eng_grp->engs[i]; if (!engs->type) continue; if (idx != -1 && idx != i) continue; if (eng_grp->mirror.is_ena) mirrored_engs = find_engines_by_type( &eng_grp->g->grp[eng_grp->mirror.idx], engs->type); if (i > 0 && idx == -1) { len = strlen(buf); scnprintf(buf+len, size-len, ", "); } len = strlen(buf); scnprintf(buf+len, size-len, "%d %s ", mirrored_engs ? engs->count + mirrored_engs->count : engs->count, get_eng_type_str(engs->type)); if (mirrored_engs) { len = strlen(buf); scnprintf(buf+len, size-len, "(%d shared with engine_group%d) ", engs->count <= 0 ? engs->count + mirrored_engs->count : mirrored_engs->count, eng_grp->mirror.idx); } } } static void print_ucode_dbg_info(struct otx_cpt_ucode *ucode) { pr_debug("Ucode info\n"); pr_debug("Ucode version string %s\n", ucode->ver_str); pr_debug("Ucode version %d.%d.%d.%d\n", ucode->ver_num.nn, ucode->ver_num.xx, ucode->ver_num.yy, ucode->ver_num.zz); pr_debug("Ucode type %s\n", get_ucode_type_str(ucode->type)); pr_debug("Ucode size %d\n", ucode->size); pr_debug("Ucode virt address %16.16llx\n", (u64)ucode->align_va); pr_debug("Ucode phys address %16.16llx\n", ucode->align_dma); } static void cpt_print_engines_mask(struct otx_cpt_eng_grp_info *eng_grp, struct device *dev, char *buf, int size) { struct otx_cpt_bitmap bmap; u32 mask[2]; bmap = get_cores_bmap(dev, eng_grp); if (!bmap.size) { scnprintf(buf, size, "unknown"); return; } bitmap_to_arr32(mask, bmap.bits, bmap.size); scnprintf(buf, size, "%8.8x %8.8x", mask[1], mask[0]); } static void print_dbg_info(struct device *dev, struct otx_cpt_eng_grps *eng_grps) { char engs_info[2*OTX_CPT_UCODE_NAME_LENGTH]; struct otx_cpt_eng_grp_info *mirrored_grp; char engs_mask[OTX_CPT_UCODE_NAME_LENGTH]; struct otx_cpt_eng_grp_info *grp; struct otx_cpt_engs_rsvd *engs; u32 mask[4]; int i, j; pr_debug("Engine groups global info\n"); pr_debug("max SE %d, max AE %d\n", eng_grps->avail.max_se_cnt, eng_grps->avail.max_ae_cnt); pr_debug("free SE %d\n", eng_grps->avail.se_cnt); pr_debug("free AE %d\n", eng_grps->avail.ae_cnt); for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) { grp = &eng_grps->grp[i]; pr_debug("engine_group%d, state %s\n", i, grp->is_enabled ? "enabled" : "disabled"); if (grp->is_enabled) { mirrored_grp = &eng_grps->grp[grp->mirror.idx]; pr_debug("Ucode0 filename %s, version %s\n", grp->mirror.is_ena ? mirrored_grp->ucode[0].filename : grp->ucode[0].filename, grp->mirror.is_ena ? mirrored_grp->ucode[0].ver_str : grp->ucode[0].ver_str); } for (j = 0; j < OTX_CPT_MAX_ETYPES_PER_GRP; j++) { engs = &grp->engs[j]; if (engs->type) { print_engs_info(grp, engs_info, 2*OTX_CPT_UCODE_NAME_LENGTH, j); pr_debug("Slot%d: %s\n", j, engs_info); bitmap_to_arr32(mask, engs->bmap, eng_grps->engs_num); pr_debug("Mask: %8.8x %8.8x %8.8x %8.8x\n", mask[3], mask[2], mask[1], mask[0]); } else pr_debug("Slot%d not used\n", j); } if (grp->is_enabled) { cpt_print_engines_mask(grp, dev, engs_mask, OTX_CPT_UCODE_NAME_LENGTH); pr_debug("Cmask: %s\n", engs_mask); } } } static int update_engines_avail_count(struct device *dev, struct otx_cpt_engs_available *avail, struct otx_cpt_engs_rsvd *engs, int val) { switch (engs->type) { case OTX_CPT_SE_TYPES: avail->se_cnt += val; break; case OTX_CPT_AE_TYPES: avail->ae_cnt += val; break; default: dev_err(dev, "Invalid engine type %d\n", engs->type); return -EINVAL; } return 0; } static int update_engines_offset(struct device *dev, struct otx_cpt_engs_available *avail, struct otx_cpt_engs_rsvd *engs) { switch (engs->type) { case OTX_CPT_SE_TYPES: engs->offset = 0; break; case OTX_CPT_AE_TYPES: engs->offset = avail->max_se_cnt; break; default: dev_err(dev, "Invalid engine type %d\n", engs->type); return -EINVAL; } return 0; } static int release_engines(struct device *dev, struct otx_cpt_eng_grp_info *grp) { int i, ret = 0; for (i = 0; i < OTX_CPT_MAX_ETYPES_PER_GRP; i++) { if (!grp->engs[i].type) continue; if (grp->engs[i].count > 0) { ret = update_engines_avail_count(dev, &grp->g->avail, &grp->engs[i], grp->engs[i].count); if (ret) return ret; } grp->engs[i].type = 0; grp->engs[i].count = 0; grp->engs[i].offset = 0; grp->engs[i].ucode = NULL; bitmap_zero(grp->engs[i].bmap, grp->g->engs_num); } return 0; } static int do_reserve_engines(struct device *dev, struct otx_cpt_eng_grp_info *grp, struct otx_cpt_engines *req_engs) { struct otx_cpt_engs_rsvd *engs = NULL; int i, ret; for (i = 0; i < OTX_CPT_MAX_ETYPES_PER_GRP; i++) { if (!grp->engs[i].type) { engs = &grp->engs[i]; break; } } if (!engs) return -ENOMEM; engs->type = req_engs->type; engs->count = req_engs->count; ret = update_engines_offset(dev, &grp->g->avail, engs); if (ret) return ret; if (engs->count > 0) { ret = update_engines_avail_count(dev, &grp->g->avail, engs, -engs->count); if (ret) return ret; } return 0; } static int check_engines_availability(struct device *dev, struct otx_cpt_eng_grp_info *grp, struct otx_cpt_engines *req_eng) { int avail_cnt = 0; switch (req_eng->type) { case OTX_CPT_SE_TYPES: avail_cnt = grp->g->avail.se_cnt; break; case OTX_CPT_AE_TYPES: avail_cnt = grp->g->avail.ae_cnt; break; default: dev_err(dev, "Invalid engine type %d\n", req_eng->type); return -EINVAL; } if (avail_cnt < req_eng->count) { dev_err(dev, "Error available %s engines %d < than requested %d\n", get_eng_type_str(req_eng->type), avail_cnt, req_eng->count); return -EBUSY; } return 0; } static int reserve_engines(struct device *dev, struct otx_cpt_eng_grp_info *grp, struct otx_cpt_engines *req_engs, int req_cnt) { int i, ret; /* Validate if a number of requested engines is available */ for (i = 0; i < req_cnt; i++) { ret = check_engines_availability(dev, grp, &req_engs[i]); if (ret) return ret; } /* Reserve requested engines for this engine group */ for (i = 0; i < req_cnt; i++) { ret = do_reserve_engines(dev, grp, &req_engs[i]); if (ret) return ret; } return 0; } static ssize_t eng_grp_info_show(struct device *dev, struct device_attribute *attr, char *buf) { char ucode_info[2*OTX_CPT_UCODE_NAME_LENGTH]; char engs_info[2*OTX_CPT_UCODE_NAME_LENGTH]; char engs_mask[OTX_CPT_UCODE_NAME_LENGTH]; struct otx_cpt_eng_grp_info *eng_grp; int ret; eng_grp = container_of(attr, struct otx_cpt_eng_grp_info, info_attr); mutex_lock(&eng_grp->g->lock); print_engs_info(eng_grp, engs_info, 2*OTX_CPT_UCODE_NAME_LENGTH, -1); print_ucode_info(eng_grp, ucode_info, 2*OTX_CPT_UCODE_NAME_LENGTH); cpt_print_engines_mask(eng_grp, dev, engs_mask, OTX_CPT_UCODE_NAME_LENGTH); ret = scnprintf(buf, PAGE_SIZE, "Microcode : %s\nEngines: %s\nEngines mask: %s\n", ucode_info, engs_info, engs_mask); mutex_unlock(&eng_grp->g->lock); return ret; } static int create_sysfs_eng_grps_info(struct device *dev, struct otx_cpt_eng_grp_info *eng_grp) { eng_grp->info_attr.show = eng_grp_info_show; eng_grp->info_attr.store = NULL; eng_grp->info_attr.attr.name = eng_grp->sysfs_info_name; eng_grp->info_attr.attr.mode = 0440; sysfs_attr_init(&eng_grp->info_attr.attr); return device_create_file(dev, &eng_grp->info_attr); } static void ucode_unload(struct device *dev, struct otx_cpt_ucode *ucode) { if (ucode->va) { dma_free_coherent(dev, ucode->size + OTX_CPT_UCODE_ALIGNMENT, ucode->va, ucode->dma); ucode->va = NULL; ucode->align_va = NULL; ucode->dma = 0; ucode->align_dma = 0; ucode->size = 0; } memset(&ucode->ver_str, 0, OTX_CPT_UCODE_VER_STR_SZ); memset(&ucode->ver_num, 0, sizeof(struct otx_cpt_ucode_ver_num)); set_ucode_filename(ucode, ""); ucode->type = 0; } static int copy_ucode_to_dma_mem(struct device *dev, struct otx_cpt_ucode *ucode, const u8 *ucode_data) { u32 i; /* Allocate DMAable space */ ucode->va = dma_alloc_coherent(dev, ucode->size + OTX_CPT_UCODE_ALIGNMENT, &ucode->dma, GFP_KERNEL); if (!ucode->va) { dev_err(dev, "Unable to allocate space for microcode\n"); return -ENOMEM; } ucode->align_va = PTR_ALIGN(ucode->va, OTX_CPT_UCODE_ALIGNMENT); ucode->align_dma = PTR_ALIGN(ucode->dma, OTX_CPT_UCODE_ALIGNMENT); memcpy((void *) ucode->align_va, (void *) ucode_data + sizeof(struct otx_cpt_ucode_hdr), ucode->size); /* Byte swap 64-bit */ for (i = 0; i < (ucode->size / 8); i++) ((__be64 *)ucode->align_va)[i] = cpu_to_be64(((u64 *)ucode->align_va)[i]); /* Ucode needs 16-bit swap */ for (i = 0; i < (ucode->size / 2); i++) ((__be16 *)ucode->align_va)[i] = cpu_to_be16(((u16 *)ucode->align_va)[i]); return 0; } static int ucode_load(struct device *dev, struct otx_cpt_ucode *ucode, const char *ucode_filename) { struct otx_cpt_ucode_hdr *ucode_hdr; const struct firmware *fw; unsigned int code_length; int ret; set_ucode_filename(ucode, ucode_filename); ret = request_firmware(&fw, ucode->filename, dev); if (ret) return ret; ucode_hdr = (struct otx_cpt_ucode_hdr *) fw->data; memcpy(ucode->ver_str, ucode_hdr->ver_str, OTX_CPT_UCODE_VER_STR_SZ); ucode->ver_num = ucode_hdr->ver_num; code_length = ntohl(ucode_hdr->code_length); if (code_length >= INT_MAX / 2) { dev_err(dev, "Ucode invalid code_length %u\n", code_length); ret = -EINVAL; goto release_fw; } ucode->size = code_length * 2; if (!ucode->size || (fw->size < round_up(ucode->size, 16) + sizeof(struct otx_cpt_ucode_hdr) + OTX_CPT_UCODE_SIGN_LEN)) { dev_err(dev, "Ucode %s invalid size\n", ucode_filename); ret = -EINVAL; goto release_fw; } ret = get_ucode_type(ucode_hdr, &ucode->type); if (ret) { dev_err(dev, "Microcode %s unknown type 0x%x\n", ucode->filename, ucode->type); goto release_fw; } ret = copy_ucode_to_dma_mem(dev, ucode, fw->data); if (ret) goto release_fw; print_ucode_dbg_info(ucode); release_fw: release_firmware(fw); return ret; } static int enable_eng_grp(struct otx_cpt_eng_grp_info *eng_grp, void *obj) { int ret; ret = cpt_set_ucode_base(eng_grp, obj); if (ret) return ret; ret = cpt_attach_and_enable_cores(eng_grp, obj); return ret; } static int disable_eng_grp(struct device *dev, struct otx_cpt_eng_grp_info *eng_grp, void *obj) { int i, ret; ret = cpt_detach_and_disable_cores(eng_grp, obj); if (ret) return ret; /* Unload ucode used by this engine group */ ucode_unload(dev, &eng_grp->ucode[0]); for (i = 0; i < OTX_CPT_MAX_ETYPES_PER_GRP; i++) { if (!eng_grp->engs[i].type) continue; eng_grp->engs[i].ucode = &eng_grp->ucode[0]; } ret = cpt_set_ucode_base(eng_grp, obj); return ret; } static void setup_eng_grp_mirroring(struct otx_cpt_eng_grp_info *dst_grp, struct otx_cpt_eng_grp_info *src_grp) { /* Setup fields for engine group which is mirrored */ src_grp->mirror.is_ena = false; src_grp->mirror.idx = 0; src_grp->mirror.ref_count++; /* Setup fields for mirroring engine group */ dst_grp->mirror.is_ena = true; dst_grp->mirror.idx = src_grp->idx; dst_grp->mirror.ref_count = 0; } static void remove_eng_grp_mirroring(struct otx_cpt_eng_grp_info *dst_grp) { struct otx_cpt_eng_grp_info *src_grp; if (!dst_grp->mirror.is_ena) return; src_grp = &dst_grp->g->grp[dst_grp->mirror.idx]; src_grp->mirror.ref_count--; dst_grp->mirror.is_ena = false; dst_grp->mirror.idx = 0; dst_grp->mirror.ref_count = 0; } static void update_requested_engs(struct otx_cpt_eng_grp_info *mirrored_eng_grp, struct otx_cpt_engines *engs, int engs_cnt) { struct otx_cpt_engs_rsvd *mirrored_engs; int i; for (i = 0; i < engs_cnt; i++) { mirrored_engs = find_engines_by_type(mirrored_eng_grp, engs[i].type); if (!mirrored_engs) continue; /* * If mirrored group has this type of engines attached then * there are 3 scenarios possible: * 1) mirrored_engs.count == engs[i].count then all engines * from mirrored engine group will be shared with this engine * group * 2) mirrored_engs.count > engs[i].count then only a subset of * engines from mirrored engine group will be shared with this * engine group * 3) mirrored_engs.count < engs[i].count then all engines * from mirrored engine group will be shared with this group * and additional engines will be reserved for exclusively use * by this engine group */ engs[i].count -= mirrored_engs->count; } } static struct otx_cpt_eng_grp_info *find_mirrored_eng_grp( struct otx_cpt_eng_grp_info *grp) { struct otx_cpt_eng_grps *eng_grps = grp->g; int i; for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) { if (!eng_grps->grp[i].is_enabled) continue; if (eng_grps->grp[i].ucode[0].type) continue; if (grp->idx == i) continue; if (!strncasecmp(eng_grps->grp[i].ucode[0].ver_str, grp->ucode[0].ver_str, OTX_CPT_UCODE_VER_STR_SZ)) return &eng_grps->grp[i]; } return NULL; } static struct otx_cpt_eng_grp_info *find_unused_eng_grp( struct otx_cpt_eng_grps *eng_grps) { int i; for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) { if (!eng_grps->grp[i].is_enabled) return &eng_grps->grp[i]; } return NULL; } static int eng_grp_update_masks(struct device *dev, struct otx_cpt_eng_grp_info *eng_grp) { struct otx_cpt_engs_rsvd *engs, *mirrored_engs; struct otx_cpt_bitmap tmp_bmap = { {0} }; int i, j, cnt, max_cnt; int bit; for (i = 0; i < OTX_CPT_MAX_ETYPES_PER_GRP; i++) { engs = &eng_grp->engs[i]; if (!engs->type) continue; if (engs->count <= 0) continue; switch (engs->type) { case OTX_CPT_SE_TYPES: max_cnt = eng_grp->g->avail.max_se_cnt; break; case OTX_CPT_AE_TYPES: max_cnt = eng_grp->g->avail.max_ae_cnt; break; default: dev_err(dev, "Invalid engine type %d\n", engs->type); return -EINVAL; } cnt = engs->count; WARN_ON(engs->offset + max_cnt > OTX_CPT_MAX_ENGINES); bitmap_zero(tmp_bmap.bits, eng_grp->g->engs_num); for (j = engs->offset; j < engs->offset + max_cnt; j++) { if (!eng_grp->g->eng_ref_cnt[j]) { bitmap_set(tmp_bmap.bits, j, 1); cnt--; if (!cnt) break; } } if (cnt) return -ENOSPC; bitmap_copy(engs->bmap, tmp_bmap.bits, eng_grp->g->engs_num); } if (!eng_grp->mirror.is_ena) return 0; for (i = 0; i < OTX_CPT_MAX_ETYPES_PER_GRP; i++) { engs = &eng_grp->engs[i]; if (!engs->type) continue; mirrored_engs = find_engines_by_type( &eng_grp->g->grp[eng_grp->mirror.idx], engs->type); WARN_ON(!mirrored_engs && engs->count <= 0); if (!mirrored_engs) continue; bitmap_copy(tmp_bmap.bits, mirrored_engs->bmap, eng_grp->g->engs_num); if (engs->count < 0) { bit = find_first_bit(mirrored_engs->bmap, eng_grp->g->engs_num); bitmap_clear(tmp_bmap.bits, bit, -engs->count); } bitmap_or(engs->bmap, engs->bmap, tmp_bmap.bits, eng_grp->g->engs_num); } return 0; } static int delete_engine_group(struct device *dev, struct otx_cpt_eng_grp_info *eng_grp) { int i, ret; if (!eng_grp->is_enabled) return -EINVAL; if (eng_grp->mirror.ref_count) { dev_err(dev, "Can't delete engine_group%d as it is used by engine_group(s):", eng_grp->idx); for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) { if (eng_grp->g->grp[i].mirror.is_ena && eng_grp->g->grp[i].mirror.idx == eng_grp->idx) pr_cont(" %d", i); } pr_cont("\n"); return -EINVAL; } /* Removing engine group mirroring if enabled */ remove_eng_grp_mirroring(eng_grp); /* Disable engine group */ ret = disable_eng_grp(dev, eng_grp, eng_grp->g->obj); if (ret) return ret; /* Release all engines held by this engine group */ ret = release_engines(dev, eng_grp); if (ret) return ret; device_remove_file(dev, &eng_grp->info_attr); eng_grp->is_enabled = false; return 0; } static int validate_1_ucode_scenario(struct device *dev, struct otx_cpt_eng_grp_info *eng_grp, struct otx_cpt_engines *engs, int engs_cnt) { int i; /* Verify that ucode loaded supports requested engine types */ for (i = 0; i < engs_cnt; i++) { if (!otx_cpt_uc_supports_eng_type(&eng_grp->ucode[0], engs[i].type)) { dev_err(dev, "Microcode %s does not support %s engines\n", eng_grp->ucode[0].filename, get_eng_type_str(engs[i].type)); return -EINVAL; } } return 0; } static void update_ucode_ptrs(struct otx_cpt_eng_grp_info *eng_grp) { struct otx_cpt_ucode *ucode; if (eng_grp->mirror.is_ena) ucode = &eng_grp->g->grp[eng_grp->mirror.idx].ucode[0]; else ucode = &eng_grp->ucode[0]; WARN_ON(!eng_grp->engs[0].type); eng_grp->engs[0].ucode = ucode; } static int create_engine_group(struct device *dev, struct otx_cpt_eng_grps *eng_grps, struct otx_cpt_engines *engs, int engs_cnt, void *ucode_data[], int ucodes_cnt, bool use_uc_from_tar_arch) { struct otx_cpt_eng_grp_info *mirrored_eng_grp; struct tar_ucode_info_t *tar_info; struct otx_cpt_eng_grp_info *eng_grp; int i, ret = 0; if (ucodes_cnt > OTX_CPT_MAX_ETYPES_PER_GRP) return -EINVAL; /* Validate if requested engine types are supported by this device */ for (i = 0; i < engs_cnt; i++) if (!dev_supports_eng_type(eng_grps, engs[i].type)) { dev_err(dev, "Device does not support %s engines\n", get_eng_type_str(engs[i].type)); return -EPERM; } /* Find engine group which is not used */ eng_grp = find_unused_eng_grp(eng_grps); if (!eng_grp) { dev_err(dev, "Error all engine groups are being used\n"); return -ENOSPC; } /* Load ucode */ for (i = 0; i < ucodes_cnt; i++) { if (use_uc_from_tar_arch) { tar_info = (struct tar_ucode_info_t *) ucode_data[i]; eng_grp->ucode[i] = tar_info->ucode; ret = copy_ucode_to_dma_mem(dev, &eng_grp->ucode[i], tar_info->ucode_ptr); } else ret = ucode_load(dev, &eng_grp->ucode[i], (char *) ucode_data[i]); if (ret) goto err_ucode_unload; } /* Validate scenario where 1 ucode is used */ ret = validate_1_ucode_scenario(dev, eng_grp, engs, engs_cnt); if (ret) goto err_ucode_unload; /* Check if this group mirrors another existing engine group */ mirrored_eng_grp = find_mirrored_eng_grp(eng_grp); if (mirrored_eng_grp) { /* Setup mirroring */ setup_eng_grp_mirroring(eng_grp, mirrored_eng_grp); /* * Update count of requested engines because some * of them might be shared with mirrored group */ update_requested_engs(mirrored_eng_grp, engs, engs_cnt); } /* Reserve engines */ ret = reserve_engines(dev, eng_grp, engs, engs_cnt); if (ret) goto err_ucode_unload; /* Update ucode pointers used by engines */ update_ucode_ptrs(eng_grp); /* Update engine masks used by this group */ ret = eng_grp_update_masks(dev, eng_grp); if (ret) goto err_release_engs; /* Create sysfs entry for engine group info */ ret = create_sysfs_eng_grps_info(dev, eng_grp); if (ret) goto err_release_engs; /* Enable engine group */ ret = enable_eng_grp(eng_grp, eng_grps->obj); if (ret) goto err_release_engs; /* * If this engine group mirrors another engine group * then we need to unload ucode as we will use ucode * from mirrored engine group */ if (eng_grp->mirror.is_ena) ucode_unload(dev, &eng_grp->ucode[0]); eng_grp->is_enabled = true; if (eng_grp->mirror.is_ena) dev_info(dev, "Engine_group%d: reuse microcode %s from group %d\n", eng_grp->idx, mirrored_eng_grp->ucode[0].ver_str, mirrored_eng_grp->idx); else dev_info(dev, "Engine_group%d: microcode loaded %s\n", eng_grp->idx, eng_grp->ucode[0].ver_str); return 0; err_release_engs: release_engines(dev, eng_grp); err_ucode_unload: ucode_unload(dev, &eng_grp->ucode[0]); return ret; } static ssize_t ucode_load_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx_cpt_engines engs[OTX_CPT_MAX_ETYPES_PER_GRP] = { {0} }; char *ucode_filename[OTX_CPT_MAX_ETYPES_PER_GRP]; char tmp_buf[OTX_CPT_UCODE_NAME_LENGTH] = { 0 }; char *start, *val, *err_msg, *tmp; struct otx_cpt_eng_grps *eng_grps; int grp_idx = 0, ret = -EINVAL; bool has_se, has_ie, has_ae; int del_grp_idx = -1; int ucode_idx = 0; if (strlen(buf) > OTX_CPT_UCODE_NAME_LENGTH) return -EINVAL; eng_grps = container_of(attr, struct otx_cpt_eng_grps, ucode_load_attr); err_msg = "Invalid engine group format"; strscpy(tmp_buf, buf, OTX_CPT_UCODE_NAME_LENGTH); start = tmp_buf; has_se = has_ie = has_ae = false; for (;;) { val = strsep(&start, ";"); if (!val) break; val = strim(val); if (!*val) continue; if (!strncasecmp(val, "engine_group", 12)) { if (del_grp_idx != -1) goto err_print; tmp = strim(strsep(&val, ":")); if (!val) goto err_print; if (strlen(tmp) != 13) goto err_print; if (kstrtoint((tmp + 12), 10, &del_grp_idx)) goto err_print; val = strim(val); if (strncasecmp(val, "null", 4)) goto err_print; if (strlen(val) != 4) goto err_print; } else if (!strncasecmp(val, "se", 2) && strchr(val, ':')) { if (has_se || ucode_idx) goto err_print; tmp = strim(strsep(&val, ":")); if (!val) goto err_print; if (strlen(tmp) != 2) goto err_print; if (kstrtoint(strim(val), 10, &engs[grp_idx].count)) goto err_print; engs[grp_idx++].type = OTX_CPT_SE_TYPES; has_se = true; } else if (!strncasecmp(val, "ae", 2) && strchr(val, ':')) { if (has_ae || ucode_idx) goto err_print; tmp = strim(strsep(&val, ":")); if (!val) goto err_print; if (strlen(tmp) != 2) goto err_print; if (kstrtoint(strim(val), 10, &engs[grp_idx].count)) goto err_print; engs[grp_idx++].type = OTX_CPT_AE_TYPES; has_ae = true; } else { if (ucode_idx > 1) goto err_print; if (!strlen(val)) goto err_print; if (strnstr(val, " ", strlen(val))) goto err_print; ucode_filename[ucode_idx++] = val; } } /* Validate input parameters */ if (del_grp_idx == -1) { if (!(grp_idx && ucode_idx)) goto err_print; if (ucode_idx > 1 && grp_idx < 2) goto err_print; if (grp_idx > OTX_CPT_MAX_ETYPES_PER_GRP) { err_msg = "Error max 2 engine types can be attached"; goto err_print; } } else { if (del_grp_idx < 0 || del_grp_idx >= OTX_CPT_MAX_ENGINE_GROUPS) { dev_err(dev, "Invalid engine group index %d\n", del_grp_idx); ret = -EINVAL; return ret; } if (!eng_grps->grp[del_grp_idx].is_enabled) { dev_err(dev, "Error engine_group%d is not configured\n", del_grp_idx); ret = -EINVAL; return ret; } if (grp_idx || ucode_idx) goto err_print; } mutex_lock(&eng_grps->lock); if (eng_grps->is_rdonly) { dev_err(dev, "Disable VFs before modifying engine groups\n"); ret = -EACCES; goto err_unlock; } if (del_grp_idx == -1) /* create engine group */ ret = create_engine_group(dev, eng_grps, engs, grp_idx, (void **) ucode_filename, ucode_idx, false); else /* delete engine group */ ret = delete_engine_group(dev, &eng_grps->grp[del_grp_idx]); if (ret) goto err_unlock; print_dbg_info(dev, eng_grps); err_unlock: mutex_unlock(&eng_grps->lock); return ret ? ret : count; err_print: dev_err(dev, "%s\n", err_msg); return ret; } int otx_cpt_try_create_default_eng_grps(struct pci_dev *pdev, struct otx_cpt_eng_grps *eng_grps, int pf_type) { struct tar_ucode_info_t *tar_info[OTX_CPT_MAX_ETYPES_PER_GRP] = {}; struct otx_cpt_engines engs[OTX_CPT_MAX_ETYPES_PER_GRP] = {}; struct tar_arch_info_t *tar_arch = NULL; char *tar_filename; int i, ret = 0; mutex_lock(&eng_grps->lock); /* * We don't create engine group for kernel crypto if attempt to create * it was already made (when user enabled VFs for the first time) */ if (eng_grps->is_first_try) goto unlock_mutex; eng_grps->is_first_try = true; /* We create group for kcrypto only if no groups are configured */ for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) if (eng_grps->grp[i].is_enabled) goto unlock_mutex; switch (pf_type) { case OTX_CPT_AE: case OTX_CPT_SE: tar_filename = OTX_CPT_UCODE_TAR_FILE_NAME; break; default: dev_err(&pdev->dev, "Unknown PF type %d\n", pf_type); ret = -EINVAL; goto unlock_mutex; } tar_arch = load_tar_archive(&pdev->dev, tar_filename); if (!tar_arch) goto unlock_mutex; /* * If device supports SE engines and there is SE microcode in tar * archive try to create engine group with SE engines for kernel * crypto functionality (symmetric crypto) */ tar_info[0] = get_uc_from_tar_archive(tar_arch, OTX_CPT_SE_TYPES); if (tar_info[0] && dev_supports_eng_type(eng_grps, OTX_CPT_SE_TYPES)) { engs[0].type = OTX_CPT_SE_TYPES; engs[0].count = eng_grps->avail.max_se_cnt; ret = create_engine_group(&pdev->dev, eng_grps, engs, 1, (void **) tar_info, 1, true); if (ret) goto release_tar_arch; } /* * If device supports AE engines and there is AE microcode in tar * archive try to create engine group with AE engines for asymmetric * crypto functionality. */ tar_info[0] = get_uc_from_tar_archive(tar_arch, OTX_CPT_AE_TYPES); if (tar_info[0] && dev_supports_eng_type(eng_grps, OTX_CPT_AE_TYPES)) { engs[0].type = OTX_CPT_AE_TYPES; engs[0].count = eng_grps->avail.max_ae_cnt; ret = create_engine_group(&pdev->dev, eng_grps, engs, 1, (void **) tar_info, 1, true); if (ret) goto release_tar_arch; } print_dbg_info(&pdev->dev, eng_grps); release_tar_arch: release_tar_archive(tar_arch); unlock_mutex: mutex_unlock(&eng_grps->lock); return ret; } void otx_cpt_set_eng_grps_is_rdonly(struct otx_cpt_eng_grps *eng_grps, bool is_rdonly) { mutex_lock(&eng_grps->lock); eng_grps->is_rdonly = is_rdonly; mutex_unlock(&eng_grps->lock); } void otx_cpt_disable_all_cores(struct otx_cpt_device *cpt) { int grp, timeout = 100; u64 reg; /* Disengage the cores from groups */ for (grp = 0; grp < OTX_CPT_MAX_ENGINE_GROUPS; grp++) { writeq(0, cpt->reg_base + OTX_CPT_PF_GX_EN(grp)); udelay(CSR_DELAY); } reg = readq(cpt->reg_base + OTX_CPT_PF_EXEC_BUSY); while (reg) { udelay(CSR_DELAY); reg = readq(cpt->reg_base + OTX_CPT_PF_EXEC_BUSY); if (timeout--) { dev_warn(&cpt->pdev->dev, "Cores still busy\n"); break; } } /* Disable the cores */ writeq(0, cpt->reg_base + OTX_CPT_PF_EXE_CTL); } void otx_cpt_cleanup_eng_grps(struct pci_dev *pdev, struct otx_cpt_eng_grps *eng_grps) { struct otx_cpt_eng_grp_info *grp; int i, j; mutex_lock(&eng_grps->lock); if (eng_grps->is_ucode_load_created) { device_remove_file(&pdev->dev, &eng_grps->ucode_load_attr); eng_grps->is_ucode_load_created = false; } /* First delete all mirroring engine groups */ for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) if (eng_grps->grp[i].mirror.is_ena) delete_engine_group(&pdev->dev, &eng_grps->grp[i]); /* Delete remaining engine groups */ for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) delete_engine_group(&pdev->dev, &eng_grps->grp[i]); /* Release memory */ for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) { grp = &eng_grps->grp[i]; for (j = 0; j < OTX_CPT_MAX_ETYPES_PER_GRP; j++) { kfree(grp->engs[j].bmap); grp->engs[j].bmap = NULL; } } mutex_unlock(&eng_grps->lock); } int otx_cpt_init_eng_grps(struct pci_dev *pdev, struct otx_cpt_eng_grps *eng_grps, int pf_type) { struct otx_cpt_eng_grp_info *grp; int i, j, ret = 0; mutex_init(&eng_grps->lock); eng_grps->obj = pci_get_drvdata(pdev); eng_grps->avail.se_cnt = eng_grps->avail.max_se_cnt; eng_grps->avail.ae_cnt = eng_grps->avail.max_ae_cnt; eng_grps->engs_num = eng_grps->avail.max_se_cnt + eng_grps->avail.max_ae_cnt; if (eng_grps->engs_num > OTX_CPT_MAX_ENGINES) { dev_err(&pdev->dev, "Number of engines %d > than max supported %d\n", eng_grps->engs_num, OTX_CPT_MAX_ENGINES); ret = -EINVAL; goto err; } for (i = 0; i < OTX_CPT_MAX_ENGINE_GROUPS; i++) { grp = &eng_grps->grp[i]; grp->g = eng_grps; grp->idx = i; snprintf(grp->sysfs_info_name, OTX_CPT_UCODE_NAME_LENGTH, "engine_group%d", i); for (j = 0; j < OTX_CPT_MAX_ETYPES_PER_GRP; j++) { grp->engs[j].bmap = kcalloc(BITS_TO_LONGS(eng_grps->engs_num), sizeof(long), GFP_KERNEL); if (!grp->engs[j].bmap) { ret = -ENOMEM; goto err; } } } switch (pf_type) { case OTX_CPT_SE: /* OcteonTX 83XX SE CPT PF has only SE engines attached */ eng_grps->eng_types_supported = 1 << OTX_CPT_SE_TYPES; break; case OTX_CPT_AE: /* OcteonTX 83XX AE CPT PF has only AE engines attached */ eng_grps->eng_types_supported = 1 << OTX_CPT_AE_TYPES; break; default: dev_err(&pdev->dev, "Unknown PF type %d\n", pf_type); ret = -EINVAL; goto err; } eng_grps->ucode_load_attr.show = NULL; eng_grps->ucode_load_attr.store = ucode_load_store; eng_grps->ucode_load_attr.attr.name = "ucode_load"; eng_grps->ucode_load_attr.attr.mode = 0220; sysfs_attr_init(&eng_grps->ucode_load_attr.attr); ret = device_create_file(&pdev->dev, &eng_grps->ucode_load_attr); if (ret) goto err; eng_grps->is_ucode_load_created = true; print_dbg_info(&pdev->dev, eng_grps); return ret; err: otx_cpt_cleanup_eng_grps(pdev, eng_grps); return ret; }
linux-master
drivers/crypto/marvell/octeontx/otx_cptpf_ucode.c
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/delay.h> #include "otx_cptvf.h" #define CPT_MBOX_MSG_TIMEOUT 2000 static char *get_mbox_opcode_str(int msg_opcode) { char *str = "Unknown"; switch (msg_opcode) { case OTX_CPT_MSG_VF_UP: str = "UP"; break; case OTX_CPT_MSG_VF_DOWN: str = "DOWN"; break; case OTX_CPT_MSG_READY: str = "READY"; break; case OTX_CPT_MSG_QLEN: str = "QLEN"; break; case OTX_CPT_MSG_QBIND_GRP: str = "QBIND_GRP"; break; case OTX_CPT_MSG_VQ_PRIORITY: str = "VQ_PRIORITY"; break; case OTX_CPT_MSG_PF_TYPE: str = "PF_TYPE"; break; case OTX_CPT_MSG_ACK: str = "ACK"; break; case OTX_CPT_MSG_NACK: str = "NACK"; break; } return str; } static void dump_mbox_msg(struct otx_cpt_mbox *mbox_msg, int vf_id) { char raw_data_str[OTX_CPT_MAX_MBOX_DATA_STR_SIZE]; hex_dump_to_buffer(mbox_msg, sizeof(struct otx_cpt_mbox), 16, 8, raw_data_str, OTX_CPT_MAX_MBOX_DATA_STR_SIZE, false); if (vf_id >= 0) pr_debug("MBOX msg %s received from VF%d raw_data %s", get_mbox_opcode_str(mbox_msg->msg), vf_id, raw_data_str); else pr_debug("MBOX msg %s received from PF raw_data %s", get_mbox_opcode_str(mbox_msg->msg), raw_data_str); } static void cptvf_send_msg_to_pf(struct otx_cptvf *cptvf, struct otx_cpt_mbox *mbx) { /* Writing mbox(1) causes interrupt */ writeq(mbx->msg, cptvf->reg_base + OTX_CPT_VFX_PF_MBOXX(0, 0)); writeq(mbx->data, cptvf->reg_base + OTX_CPT_VFX_PF_MBOXX(0, 1)); } /* Interrupt handler to handle mailbox messages from VFs */ void otx_cptvf_handle_mbox_intr(struct otx_cptvf *cptvf) { struct otx_cpt_mbox mbx = {}; /* * MBOX[0] contains msg * MBOX[1] contains data */ mbx.msg = readq(cptvf->reg_base + OTX_CPT_VFX_PF_MBOXX(0, 0)); mbx.data = readq(cptvf->reg_base + OTX_CPT_VFX_PF_MBOXX(0, 1)); dump_mbox_msg(&mbx, -1); switch (mbx.msg) { case OTX_CPT_MSG_VF_UP: cptvf->pf_acked = true; cptvf->num_vfs = mbx.data; break; case OTX_CPT_MSG_READY: cptvf->pf_acked = true; cptvf->vfid = mbx.data; dev_dbg(&cptvf->pdev->dev, "Received VFID %d\n", cptvf->vfid); break; case OTX_CPT_MSG_QBIND_GRP: cptvf->pf_acked = true; cptvf->vftype = mbx.data; dev_dbg(&cptvf->pdev->dev, "VF %d type %s group %d\n", cptvf->vfid, ((mbx.data == OTX_CPT_SE_TYPES) ? "SE" : "AE"), cptvf->vfgrp); break; case OTX_CPT_MSG_ACK: cptvf->pf_acked = true; break; case OTX_CPT_MSG_NACK: cptvf->pf_nacked = true; break; default: dev_err(&cptvf->pdev->dev, "Invalid msg from PF, msg 0x%llx\n", mbx.msg); break; } } static int cptvf_send_msg_to_pf_timeout(struct otx_cptvf *cptvf, struct otx_cpt_mbox *mbx) { int timeout = CPT_MBOX_MSG_TIMEOUT; int sleep = 10; cptvf->pf_acked = false; cptvf->pf_nacked = false; cptvf_send_msg_to_pf(cptvf, mbx); /* Wait for previous message to be acked, timeout 2sec */ while (!cptvf->pf_acked) { if (cptvf->pf_nacked) return -EINVAL; msleep(sleep); if (cptvf->pf_acked) break; timeout -= sleep; if (!timeout) { dev_err(&cptvf->pdev->dev, "PF didn't ack to mbox msg %llx from VF%u\n", mbx->msg, cptvf->vfid); return -EBUSY; } } return 0; } /* * Checks if VF is able to comminicate with PF * and also gets the CPT number this VF is associated to. */ int otx_cptvf_check_pf_ready(struct otx_cptvf *cptvf) { struct otx_cpt_mbox mbx = {}; mbx.msg = OTX_CPT_MSG_READY; return cptvf_send_msg_to_pf_timeout(cptvf, &mbx); } /* * Communicate VQs size to PF to program CPT(0)_PF_Q(0-15)_CTL of the VF. * Must be ACKed. */ int otx_cptvf_send_vq_size_msg(struct otx_cptvf *cptvf) { struct otx_cpt_mbox mbx = {}; mbx.msg = OTX_CPT_MSG_QLEN; mbx.data = cptvf->qsize; return cptvf_send_msg_to_pf_timeout(cptvf, &mbx); } /* * Communicate VF group required to PF and get the VQ binded to that group */ int otx_cptvf_send_vf_to_grp_msg(struct otx_cptvf *cptvf, int group) { struct otx_cpt_mbox mbx = {}; int ret; mbx.msg = OTX_CPT_MSG_QBIND_GRP; /* Convey group of the VF */ mbx.data = group; ret = cptvf_send_msg_to_pf_timeout(cptvf, &mbx); if (ret) return ret; cptvf->vfgrp = group; return 0; } /* * Communicate VF group required to PF and get the VQ binded to that group */ int otx_cptvf_send_vf_priority_msg(struct otx_cptvf *cptvf) { struct otx_cpt_mbox mbx = {}; mbx.msg = OTX_CPT_MSG_VQ_PRIORITY; /* Convey group of the VF */ mbx.data = cptvf->priority; return cptvf_send_msg_to_pf_timeout(cptvf, &mbx); } /* * Communicate to PF that VF is UP and running */ int otx_cptvf_send_vf_up(struct otx_cptvf *cptvf) { struct otx_cpt_mbox mbx = {}; mbx.msg = OTX_CPT_MSG_VF_UP; return cptvf_send_msg_to_pf_timeout(cptvf, &mbx); } /* * Communicate to PF that VF is DOWN and running */ int otx_cptvf_send_vf_down(struct otx_cptvf *cptvf) { struct otx_cpt_mbox mbx = {}; mbx.msg = OTX_CPT_MSG_VF_DOWN; return cptvf_send_msg_to_pf_timeout(cptvf, &mbx); }
linux-master
drivers/crypto/marvell/octeontx/otx_cptvf_mbox.c
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/interrupt.h> #include <linux/module.h> #include "otx_cptvf.h" #include "otx_cptvf_algs.h" #include "otx_cptvf_reqmgr.h" #define DRV_NAME "octeontx-cptvf" #define DRV_VERSION "1.0" static void vq_work_handler(unsigned long data) { struct otx_cptvf_wqe_info *cwqe_info = (struct otx_cptvf_wqe_info *) data; otx_cpt_post_process(&cwqe_info->vq_wqe[0]); } static int init_worker_threads(struct otx_cptvf *cptvf) { struct pci_dev *pdev = cptvf->pdev; struct otx_cptvf_wqe_info *cwqe_info; int i; cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL); if (!cwqe_info) return -ENOMEM; if (cptvf->num_queues) { dev_dbg(&pdev->dev, "Creating VQ worker threads (%d)\n", cptvf->num_queues); } for (i = 0; i < cptvf->num_queues; i++) { tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler, (u64)cwqe_info); cwqe_info->vq_wqe[i].cptvf = cptvf; } cptvf->wqe_info = cwqe_info; return 0; } static void cleanup_worker_threads(struct otx_cptvf *cptvf) { struct pci_dev *pdev = cptvf->pdev; struct otx_cptvf_wqe_info *cwqe_info; int i; cwqe_info = (struct otx_cptvf_wqe_info *)cptvf->wqe_info; if (!cwqe_info) return; if (cptvf->num_queues) { dev_dbg(&pdev->dev, "Cleaning VQ worker threads (%u)\n", cptvf->num_queues); } for (i = 0; i < cptvf->num_queues; i++) tasklet_kill(&cwqe_info->vq_wqe[i].twork); kfree_sensitive(cwqe_info); cptvf->wqe_info = NULL; } static void free_pending_queues(struct otx_cpt_pending_qinfo *pqinfo) { struct otx_cpt_pending_queue *queue; int i; for_each_pending_queue(pqinfo, queue, i) { if (!queue->head) continue; /* free single queue */ kfree_sensitive((queue->head)); queue->front = 0; queue->rear = 0; queue->qlen = 0; } pqinfo->num_queues = 0; } static int alloc_pending_queues(struct otx_cpt_pending_qinfo *pqinfo, u32 qlen, u32 num_queues) { struct otx_cpt_pending_queue *queue = NULL; int ret; u32 i; pqinfo->num_queues = num_queues; for_each_pending_queue(pqinfo, queue, i) { queue->head = kcalloc(qlen, sizeof(*queue->head), GFP_KERNEL); if (!queue->head) { ret = -ENOMEM; goto pending_qfail; } queue->pending_count = 0; queue->front = 0; queue->rear = 0; queue->qlen = qlen; /* init queue spin lock */ spin_lock_init(&queue->lock); } return 0; pending_qfail: free_pending_queues(pqinfo); return ret; } static int init_pending_queues(struct otx_cptvf *cptvf, u32 qlen, u32 num_queues) { struct pci_dev *pdev = cptvf->pdev; int ret; if (!num_queues) return 0; ret = alloc_pending_queues(&cptvf->pqinfo, qlen, num_queues); if (ret) { dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n", num_queues); return ret; } return 0; } static void cleanup_pending_queues(struct otx_cptvf *cptvf) { struct pci_dev *pdev = cptvf->pdev; if (!cptvf->num_queues) return; dev_dbg(&pdev->dev, "Cleaning VQ pending queue (%u)\n", cptvf->num_queues); free_pending_queues(&cptvf->pqinfo); } static void free_command_queues(struct otx_cptvf *cptvf, struct otx_cpt_cmd_qinfo *cqinfo) { struct otx_cpt_cmd_queue *queue = NULL; struct otx_cpt_cmd_chunk *chunk = NULL; struct pci_dev *pdev = cptvf->pdev; int i; /* clean up for each queue */ for (i = 0; i < cptvf->num_queues; i++) { queue = &cqinfo->queue[i]; while (!list_empty(&cqinfo->queue[i].chead)) { chunk = list_first_entry(&cqinfo->queue[i].chead, struct otx_cpt_cmd_chunk, nextchunk); dma_free_coherent(&pdev->dev, chunk->size, chunk->head, chunk->dma_addr); chunk->head = NULL; chunk->dma_addr = 0; list_del(&chunk->nextchunk); kfree_sensitive(chunk); } queue->num_chunks = 0; queue->idx = 0; } } static int alloc_command_queues(struct otx_cptvf *cptvf, struct otx_cpt_cmd_qinfo *cqinfo, u32 qlen) { struct otx_cpt_cmd_chunk *curr, *first, *last; struct otx_cpt_cmd_queue *queue = NULL; struct pci_dev *pdev = cptvf->pdev; size_t q_size, c_size, rem_q_size; u32 qcsize_bytes; int i; /* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */ cptvf->qsize = min(qlen, cqinfo->qchunksize) * OTX_CPT_NEXT_CHUNK_PTR_SIZE + 1; /* Qsize in bytes to create space for alignment */ q_size = qlen * OTX_CPT_INST_SIZE; qcsize_bytes = cqinfo->qchunksize * OTX_CPT_INST_SIZE; /* per queue initialization */ for (i = 0; i < cptvf->num_queues; i++) { rem_q_size = q_size; first = NULL; last = NULL; queue = &cqinfo->queue[i]; INIT_LIST_HEAD(&queue->chead); do { curr = kzalloc(sizeof(*curr), GFP_KERNEL); if (!curr) goto cmd_qfail; c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes : rem_q_size; curr->head = dma_alloc_coherent(&pdev->dev, c_size + OTX_CPT_NEXT_CHUNK_PTR_SIZE, &curr->dma_addr, GFP_KERNEL); if (!curr->head) { dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n", i, queue->num_chunks); goto free_curr; } curr->size = c_size; if (queue->num_chunks == 0) { first = curr; queue->base = first; } list_add_tail(&curr->nextchunk, &cqinfo->queue[i].chead); queue->num_chunks++; rem_q_size -= c_size; if (last) *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; last = curr; } while (rem_q_size); /* * Make the queue circular, tie back last chunk entry to head */ curr = first; *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; queue->qhead = curr; } return 0; free_curr: kfree(curr); cmd_qfail: free_command_queues(cptvf, cqinfo); return -ENOMEM; } static int init_command_queues(struct otx_cptvf *cptvf, u32 qlen) { struct pci_dev *pdev = cptvf->pdev; int ret; /* setup command queues */ ret = alloc_command_queues(cptvf, &cptvf->cqinfo, qlen); if (ret) { dev_err(&pdev->dev, "Failed to allocate command queues (%u)\n", cptvf->num_queues); return ret; } return ret; } static void cleanup_command_queues(struct otx_cptvf *cptvf) { struct pci_dev *pdev = cptvf->pdev; if (!cptvf->num_queues) return; dev_dbg(&pdev->dev, "Cleaning VQ command queue (%u)\n", cptvf->num_queues); free_command_queues(cptvf, &cptvf->cqinfo); } static void cptvf_sw_cleanup(struct otx_cptvf *cptvf) { cleanup_worker_threads(cptvf); cleanup_pending_queues(cptvf); cleanup_command_queues(cptvf); } static int cptvf_sw_init(struct otx_cptvf *cptvf, u32 qlen, u32 num_queues) { struct pci_dev *pdev = cptvf->pdev; u32 max_dev_queues = 0; int ret; max_dev_queues = OTX_CPT_NUM_QS_PER_VF; /* possible cpus */ num_queues = min_t(u32, num_queues, max_dev_queues); cptvf->num_queues = num_queues; ret = init_command_queues(cptvf, qlen); if (ret) { dev_err(&pdev->dev, "Failed to setup command queues (%u)\n", num_queues); return ret; } ret = init_pending_queues(cptvf, qlen, num_queues); if (ret) { dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n", num_queues); goto setup_pqfail; } /* Create worker threads for BH processing */ ret = init_worker_threads(cptvf); if (ret) { dev_err(&pdev->dev, "Failed to setup worker threads\n"); goto init_work_fail; } return 0; init_work_fail: cleanup_worker_threads(cptvf); cleanup_pending_queues(cptvf); setup_pqfail: cleanup_command_queues(cptvf); return ret; } static void cptvf_free_irq_affinity(struct otx_cptvf *cptvf, int vec) { irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL); free_cpumask_var(cptvf->affinity_mask[vec]); } static void cptvf_write_vq_ctl(struct otx_cptvf *cptvf, bool val) { union otx_cptx_vqx_ctl vqx_ctl; vqx_ctl.u = readq(cptvf->reg_base + OTX_CPT_VQX_CTL(0)); vqx_ctl.s.ena = val; writeq(vqx_ctl.u, cptvf->reg_base + OTX_CPT_VQX_CTL(0)); } void otx_cptvf_write_vq_doorbell(struct otx_cptvf *cptvf, u32 val) { union otx_cptx_vqx_doorbell vqx_dbell; vqx_dbell.u = readq(cptvf->reg_base + OTX_CPT_VQX_DOORBELL(0)); vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */ writeq(vqx_dbell.u, cptvf->reg_base + OTX_CPT_VQX_DOORBELL(0)); } static void cptvf_write_vq_inprog(struct otx_cptvf *cptvf, u8 val) { union otx_cptx_vqx_inprog vqx_inprg; vqx_inprg.u = readq(cptvf->reg_base + OTX_CPT_VQX_INPROG(0)); vqx_inprg.s.inflight = val; writeq(vqx_inprg.u, cptvf->reg_base + OTX_CPT_VQX_INPROG(0)); } static void cptvf_write_vq_done_numwait(struct otx_cptvf *cptvf, u32 val) { union otx_cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); vqx_dwait.s.num_wait = val; writeq(vqx_dwait.u, cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); } static u32 cptvf_read_vq_done_numwait(struct otx_cptvf *cptvf) { union otx_cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); return vqx_dwait.s.num_wait; } static void cptvf_write_vq_done_timewait(struct otx_cptvf *cptvf, u16 time) { union otx_cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); vqx_dwait.s.time_wait = time; writeq(vqx_dwait.u, cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); } static u16 cptvf_read_vq_done_timewait(struct otx_cptvf *cptvf) { union otx_cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); return vqx_dwait.s.time_wait; } static void cptvf_enable_swerr_interrupts(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_ena_w1s vqx_misc_ena; vqx_misc_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); /* Enable SWERR interrupts for the requested VF */ vqx_misc_ena.s.swerr = 1; writeq(vqx_misc_ena.u, cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); } static void cptvf_enable_mbox_interrupts(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_ena_w1s vqx_misc_ena; vqx_misc_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); /* Enable MBOX interrupt for the requested VF */ vqx_misc_ena.s.mbox = 1; writeq(vqx_misc_ena.u, cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); } static void cptvf_enable_done_interrupts(struct otx_cptvf *cptvf) { union otx_cptx_vqx_done_ena_w1s vqx_done_ena; vqx_done_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_ENA_W1S(0)); /* Enable DONE interrupt for the requested VF */ vqx_done_ena.s.done = 1; writeq(vqx_done_ena.u, cptvf->reg_base + OTX_CPT_VQX_DONE_ENA_W1S(0)); } static void cptvf_clear_dovf_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.dovf = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static void cptvf_clear_irde_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.irde = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static void cptvf_clear_nwrp_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.nwrp = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static void cptvf_clear_mbox_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.mbox = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static void cptvf_clear_swerr_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.swerr = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static u64 cptvf_read_vf_misc_intr_status(struct otx_cptvf *cptvf) { return readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static irqreturn_t cptvf_misc_intr_handler(int __always_unused irq, void *arg) { struct otx_cptvf *cptvf = arg; struct pci_dev *pdev = cptvf->pdev; u64 intr; intr = cptvf_read_vf_misc_intr_status(cptvf); /* Check for MISC interrupt types */ if (likely(intr & OTX_CPT_VF_INTR_MBOX_MASK)) { dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); otx_cptvf_handle_mbox_intr(cptvf); cptvf_clear_mbox_intr(cptvf); } else if (unlikely(intr & OTX_CPT_VF_INTR_DOVF_MASK)) { cptvf_clear_dovf_intr(cptvf); /* Clear doorbell count */ otx_cptvf_write_vq_doorbell(cptvf, 0); dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & OTX_CPT_VF_INTR_IRDE_MASK)) { cptvf_clear_irde_intr(cptvf); dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & OTX_CPT_VF_INTR_NWRP_MASK)) { cptvf_clear_nwrp_intr(cptvf); dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & OTX_CPT_VF_INTR_SERR_MASK)) { cptvf_clear_swerr_intr(cptvf); dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else { dev_err(&pdev->dev, "Unhandled interrupt in OTX_CPT VF %d\n", cptvf->vfid); } return IRQ_HANDLED; } static inline struct otx_cptvf_wqe *get_cptvf_vq_wqe(struct otx_cptvf *cptvf, int qno) { struct otx_cptvf_wqe_info *nwqe_info; if (unlikely(qno >= cptvf->num_queues)) return NULL; nwqe_info = (struct otx_cptvf_wqe_info *)cptvf->wqe_info; return &nwqe_info->vq_wqe[qno]; } static inline u32 cptvf_read_vq_done_count(struct otx_cptvf *cptvf) { union otx_cptx_vqx_done vqx_done; vqx_done.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE(0)); return vqx_done.s.done; } static inline void cptvf_write_vq_done_ack(struct otx_cptvf *cptvf, u32 ackcnt) { union otx_cptx_vqx_done_ack vqx_dack_cnt; vqx_dack_cnt.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_ACK(0)); vqx_dack_cnt.s.done_ack = ackcnt; writeq(vqx_dack_cnt.u, cptvf->reg_base + OTX_CPT_VQX_DONE_ACK(0)); } static irqreturn_t cptvf_done_intr_handler(int __always_unused irq, void *cptvf_dev) { struct otx_cptvf *cptvf = (struct otx_cptvf *)cptvf_dev; struct pci_dev *pdev = cptvf->pdev; /* Read the number of completions */ u32 intr = cptvf_read_vq_done_count(cptvf); if (intr) { struct otx_cptvf_wqe *wqe; /* * Acknowledge the number of scheduled completions for * processing */ cptvf_write_vq_done_ack(cptvf, intr); wqe = get_cptvf_vq_wqe(cptvf, 0); if (unlikely(!wqe)) { dev_err(&pdev->dev, "No work to schedule for VF (%d)\n", cptvf->vfid); return IRQ_NONE; } tasklet_hi_schedule(&wqe->twork); } return IRQ_HANDLED; } static void cptvf_set_irq_affinity(struct otx_cptvf *cptvf, int vec) { struct pci_dev *pdev = cptvf->pdev; int cpu; if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec], GFP_KERNEL)) { dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d\n", cptvf->vfid); return; } cpu = cptvf->vfid % num_online_cpus(); cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node), cptvf->affinity_mask[vec]); irq_set_affinity_hint(pci_irq_vector(pdev, vec), cptvf->affinity_mask[vec]); } static void cptvf_write_vq_saddr(struct otx_cptvf *cptvf, u64 val) { union otx_cptx_vqx_saddr vqx_saddr; vqx_saddr.u = val; writeq(vqx_saddr.u, cptvf->reg_base + OTX_CPT_VQX_SADDR(0)); } static void cptvf_device_init(struct otx_cptvf *cptvf) { u64 base_addr = 0; /* Disable the VQ */ cptvf_write_vq_ctl(cptvf, 0); /* Reset the doorbell */ otx_cptvf_write_vq_doorbell(cptvf, 0); /* Clear inflight */ cptvf_write_vq_inprog(cptvf, 0); /* Write VQ SADDR */ base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr); cptvf_write_vq_saddr(cptvf, base_addr); /* Configure timerhold / coalescence */ cptvf_write_vq_done_timewait(cptvf, OTX_CPT_TIMER_HOLD); cptvf_write_vq_done_numwait(cptvf, OTX_CPT_COUNT_HOLD); /* Enable the VQ */ cptvf_write_vq_ctl(cptvf, 1); /* Flag the VF ready */ cptvf->flags |= OTX_CPT_FLAG_DEVICE_READY; } static ssize_t vf_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); char *msg; switch (cptvf->vftype) { case OTX_CPT_AE_TYPES: msg = "AE"; break; case OTX_CPT_SE_TYPES: msg = "SE"; break; default: msg = "Invalid"; } return sysfs_emit(buf, "%s\n", msg); } static ssize_t vf_engine_group_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", cptvf->vfgrp); } static ssize_t vf_engine_group_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); int val, ret; ret = kstrtoint(buf, 10, &val); if (ret) return ret; if (val < 0) return -EINVAL; if (val >= OTX_CPT_MAX_ENGINE_GROUPS) { dev_err(dev, "Engine group >= than max available groups %d\n", OTX_CPT_MAX_ENGINE_GROUPS); return -EINVAL; } ret = otx_cptvf_send_vf_to_grp_msg(cptvf, val); if (ret) return ret; return count; } static ssize_t vf_coalesc_time_wait_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", cptvf_read_vq_done_timewait(cptvf)); } static ssize_t vf_coalesc_num_wait_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", cptvf_read_vq_done_numwait(cptvf)); } static ssize_t vf_coalesc_time_wait_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); long val; int ret; ret = kstrtol(buf, 10, &val); if (ret != 0) return ret; if (val < OTX_CPT_COALESC_MIN_TIME_WAIT || val > OTX_CPT_COALESC_MAX_TIME_WAIT) return -EINVAL; cptvf_write_vq_done_timewait(cptvf, val); return count; } static ssize_t vf_coalesc_num_wait_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); long val; int ret; ret = kstrtol(buf, 10, &val); if (ret != 0) return ret; if (val < OTX_CPT_COALESC_MIN_NUM_WAIT || val > OTX_CPT_COALESC_MAX_NUM_WAIT) return -EINVAL; cptvf_write_vq_done_numwait(cptvf, val); return count; } static DEVICE_ATTR_RO(vf_type); static DEVICE_ATTR_RW(vf_engine_group); static DEVICE_ATTR_RW(vf_coalesc_time_wait); static DEVICE_ATTR_RW(vf_coalesc_num_wait); static struct attribute *otx_cptvf_attrs[] = { &dev_attr_vf_type.attr, &dev_attr_vf_engine_group.attr, &dev_attr_vf_coalesc_time_wait.attr, &dev_attr_vf_coalesc_num_wait.attr, NULL }; static const struct attribute_group otx_cptvf_sysfs_group = { .attrs = otx_cptvf_attrs, }; static int otx_cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct otx_cptvf *cptvf; int err; cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL); if (!cptvf) return -ENOMEM; pci_set_drvdata(pdev, cptvf); cptvf->pdev = pdev; err = pci_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); goto clear_drvdata; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto disable_device; } err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get usable 48-bit DMA configuration\n"); goto release_regions; } /* MAP PF's configuration registers */ cptvf->reg_base = pci_iomap(pdev, OTX_CPT_VF_PCI_CFG_BAR, 0); if (!cptvf->reg_base) { dev_err(dev, "Cannot map config register space, aborting\n"); err = -ENOMEM; goto release_regions; } cptvf->node = dev_to_node(&pdev->dev); err = pci_alloc_irq_vectors(pdev, OTX_CPT_VF_MSIX_VECTORS, OTX_CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX); if (err < 0) { dev_err(dev, "Request for #%d msix vectors failed\n", OTX_CPT_VF_MSIX_VECTORS); goto unmap_region; } err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf_misc_intr_handler, 0, "CPT VF misc intr", cptvf); if (err) { dev_err(dev, "Failed to request misc irq\n"); goto free_vectors; } /* Enable mailbox interrupt */ cptvf_enable_mbox_interrupts(cptvf); cptvf_enable_swerr_interrupts(cptvf); /* Check cpt pf status, gets chip ID / device Id from PF if ready */ err = otx_cptvf_check_pf_ready(cptvf); if (err) goto free_misc_irq; /* CPT VF software resources initialization */ cptvf->cqinfo.qchunksize = OTX_CPT_CMD_QCHUNK_SIZE; err = cptvf_sw_init(cptvf, OTX_CPT_CMD_QLEN, OTX_CPT_NUM_QS_PER_VF); if (err) { dev_err(dev, "cptvf_sw_init() failed\n"); goto free_misc_irq; } /* Convey VQ LEN to PF */ err = otx_cptvf_send_vq_size_msg(cptvf); if (err) goto sw_cleanup; /* CPT VF device initialization */ cptvf_device_init(cptvf); /* Send msg to PF to assign currnet Q to required group */ err = otx_cptvf_send_vf_to_grp_msg(cptvf, cptvf->vfgrp); if (err) goto sw_cleanup; cptvf->priority = 1; err = otx_cptvf_send_vf_priority_msg(cptvf); if (err) goto sw_cleanup; err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf_done_intr_handler, 0, "CPT VF done intr", cptvf); if (err) { dev_err(dev, "Failed to request done irq\n"); goto free_done_irq; } /* Enable done interrupt */ cptvf_enable_done_interrupts(cptvf); /* Set irq affinity masks */ cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); err = otx_cptvf_send_vf_up(cptvf); if (err) goto free_irq_affinity; /* Initialize algorithms and set ops */ err = otx_cpt_crypto_init(pdev, THIS_MODULE, cptvf->vftype == OTX_CPT_SE_TYPES ? OTX_CPT_SE : OTX_CPT_AE, cptvf->vftype, 1, cptvf->num_vfs); if (err) { dev_err(dev, "Failed to register crypto algs\n"); goto free_irq_affinity; } err = sysfs_create_group(&dev->kobj, &otx_cptvf_sysfs_group); if (err) { dev_err(dev, "Creating sysfs entries failed\n"); goto crypto_exit; } return 0; crypto_exit: otx_cpt_crypto_exit(pdev, THIS_MODULE, cptvf->vftype); free_irq_affinity: cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); free_done_irq: free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf); sw_cleanup: cptvf_sw_cleanup(cptvf); free_misc_irq: free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); free_vectors: pci_free_irq_vectors(cptvf->pdev); unmap_region: pci_iounmap(pdev, cptvf->reg_base); release_regions: pci_release_regions(pdev); disable_device: pci_disable_device(pdev); clear_drvdata: pci_set_drvdata(pdev, NULL); return err; } static void otx_cptvf_remove(struct pci_dev *pdev) { struct otx_cptvf *cptvf = pci_get_drvdata(pdev); if (!cptvf) { dev_err(&pdev->dev, "Invalid CPT-VF device\n"); return; } /* Convey DOWN to PF */ if (otx_cptvf_send_vf_down(cptvf)) { dev_err(&pdev->dev, "PF not responding to DOWN msg\n"); } else { sysfs_remove_group(&pdev->dev.kobj, &otx_cptvf_sysfs_group); otx_cpt_crypto_exit(pdev, THIS_MODULE, cptvf->vftype); cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf); free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); cptvf_sw_cleanup(cptvf); pci_free_irq_vectors(cptvf->pdev); pci_iounmap(pdev, cptvf->reg_base); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } /* Supported devices */ static const struct pci_device_id otx_cptvf_id_table[] = { {PCI_VDEVICE(CAVIUM, OTX_CPT_PCI_VF_DEVICE_ID), 0}, { 0, } /* end of table */ }; static struct pci_driver otx_cptvf_pci_driver = { .name = DRV_NAME, .id_table = otx_cptvf_id_table, .probe = otx_cptvf_probe, .remove = otx_cptvf_remove, }; module_pci_driver(otx_cptvf_pci_driver); MODULE_AUTHOR("Marvell International Ltd."); MODULE_DESCRIPTION("Marvell OcteonTX CPT Virtual Function Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, otx_cptvf_id_table);
linux-master
drivers/crypto/marvell/octeontx/otx_cptvf_main.c
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <crypto/aes.h> #include <crypto/authenc.h> #include <crypto/cryptd.h> #include <crypto/des.h> #include <crypto/internal/aead.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/xts.h> #include <crypto/scatterwalk.h> #include <linux/rtnetlink.h> #include <linux/sort.h> #include <linux/module.h> #include "otx_cptvf.h" #include "otx_cptvf_algs.h" #include "otx_cptvf_reqmgr.h" #define CPT_MAX_VF_NUM 64 /* Size of salt in AES GCM mode */ #define AES_GCM_SALT_SIZE 4 /* Size of IV in AES GCM mode */ #define AES_GCM_IV_SIZE 8 /* Size of ICV (Integrity Check Value) in AES GCM mode */ #define AES_GCM_ICV_SIZE 16 /* Offset of IV in AES GCM mode */ #define AES_GCM_IV_OFFSET 8 #define CONTROL_WORD_LEN 8 #define KEY2_OFFSET 48 #define DMA_MODE_FLAG(dma_mode) \ (((dma_mode) == OTX_CPT_DMA_GATHER_SCATTER) ? (1 << 7) : 0) /* Truncated SHA digest size */ #define SHA1_TRUNC_DIGEST_SIZE 12 #define SHA256_TRUNC_DIGEST_SIZE 16 #define SHA384_TRUNC_DIGEST_SIZE 24 #define SHA512_TRUNC_DIGEST_SIZE 32 static DEFINE_MUTEX(mutex); static int is_crypto_registered; struct cpt_device_desc { enum otx_cptpf_type pf_type; struct pci_dev *dev; int num_queues; }; struct cpt_device_table { atomic_t count; struct cpt_device_desc desc[CPT_MAX_VF_NUM]; }; static struct cpt_device_table se_devices = { .count = ATOMIC_INIT(0) }; static struct cpt_device_table ae_devices = { .count = ATOMIC_INIT(0) }; static inline int get_se_device(struct pci_dev **pdev, int *cpu_num) { int count, ret = 0; count = atomic_read(&se_devices.count); if (count < 1) return -ENODEV; *cpu_num = get_cpu(); if (se_devices.desc[0].pf_type == OTX_CPT_SE) { /* * On OcteonTX platform there is one CPT instruction queue bound * to each VF. We get maximum performance if one CPT queue * is available for each cpu otherwise CPT queues need to be * shared between cpus. */ if (*cpu_num >= count) *cpu_num %= count; *pdev = se_devices.desc[*cpu_num].dev; } else { pr_err("Unknown PF type %d\n", se_devices.desc[0].pf_type); ret = -EINVAL; } put_cpu(); return ret; } static inline int validate_hmac_cipher_null(struct otx_cpt_req_info *cpt_req) { struct otx_cpt_req_ctx *rctx; struct aead_request *req; struct crypto_aead *tfm; req = container_of(cpt_req->areq, struct aead_request, base); tfm = crypto_aead_reqtfm(req); rctx = aead_request_ctx_dma(req); if (memcmp(rctx->fctx.hmac.s.hmac_calc, rctx->fctx.hmac.s.hmac_recv, crypto_aead_authsize(tfm)) != 0) return -EBADMSG; return 0; } static void otx_cpt_aead_callback(int status, void *arg1, void *arg2) { struct otx_cpt_info_buffer *cpt_info = arg2; struct crypto_async_request *areq = arg1; struct otx_cpt_req_info *cpt_req; struct pci_dev *pdev; if (!cpt_info) goto complete; cpt_req = cpt_info->req; if (!status) { /* * When selected cipher is NULL we need to manually * verify whether calculated hmac value matches * received hmac value */ if (cpt_req->req_type == OTX_CPT_AEAD_ENC_DEC_NULL_REQ && !cpt_req->is_enc) status = validate_hmac_cipher_null(cpt_req); } pdev = cpt_info->pdev; do_request_cleanup(pdev, cpt_info); complete: if (areq) crypto_request_complete(areq, status); } static void output_iv_copyback(struct crypto_async_request *areq) { struct otx_cpt_req_info *req_info; struct skcipher_request *sreq; struct crypto_skcipher *stfm; struct otx_cpt_req_ctx *rctx; struct otx_cpt_enc_ctx *ctx; u32 start, ivsize; sreq = container_of(areq, struct skcipher_request, base); stfm = crypto_skcipher_reqtfm(sreq); ctx = crypto_skcipher_ctx(stfm); if (ctx->cipher_type == OTX_CPT_AES_CBC || ctx->cipher_type == OTX_CPT_DES3_CBC) { rctx = skcipher_request_ctx_dma(sreq); req_info = &rctx->cpt_req; ivsize = crypto_skcipher_ivsize(stfm); start = sreq->cryptlen - ivsize; if (req_info->is_enc) { scatterwalk_map_and_copy(sreq->iv, sreq->dst, start, ivsize, 0); } else { if (sreq->src != sreq->dst) { scatterwalk_map_and_copy(sreq->iv, sreq->src, start, ivsize, 0); } else { memcpy(sreq->iv, req_info->iv_out, ivsize); kfree(req_info->iv_out); } } } } static void otx_cpt_skcipher_callback(int status, void *arg1, void *arg2) { struct otx_cpt_info_buffer *cpt_info = arg2; struct crypto_async_request *areq = arg1; struct pci_dev *pdev; if (areq) { if (!status) output_iv_copyback(areq); if (cpt_info) { pdev = cpt_info->pdev; do_request_cleanup(pdev, cpt_info); } crypto_request_complete(areq, status); } } static inline void update_input_data(struct otx_cpt_req_info *req_info, struct scatterlist *inp_sg, u32 nbytes, u32 *argcnt) { req_info->req.dlen += nbytes; while (nbytes) { u32 len = min(nbytes, inp_sg->length); u8 *ptr = sg_virt(inp_sg); req_info->in[*argcnt].vptr = (void *)ptr; req_info->in[*argcnt].size = len; nbytes -= len; ++(*argcnt); inp_sg = sg_next(inp_sg); } } static inline void update_output_data(struct otx_cpt_req_info *req_info, struct scatterlist *outp_sg, u32 offset, u32 nbytes, u32 *argcnt) { req_info->rlen += nbytes; while (nbytes) { u32 len = min(nbytes, outp_sg->length - offset); u8 *ptr = sg_virt(outp_sg); req_info->out[*argcnt].vptr = (void *) (ptr + offset); req_info->out[*argcnt].size = len; nbytes -= len; ++(*argcnt); offset = 0; outp_sg = sg_next(outp_sg); } } static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc, u32 *argcnt) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm); struct otx_cpt_enc_ctx *ctx = crypto_tfm_ctx(tfm); struct otx_cpt_fc_ctx *fctx = &rctx->fctx; int ivsize = crypto_skcipher_ivsize(stfm); u32 start = req->cryptlen - ivsize; gfp_t flags; flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC | DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); if (enc) { req_info->req.opcode.s.minor = 2; } else { req_info->req.opcode.s.minor = 3; if ((ctx->cipher_type == OTX_CPT_AES_CBC || ctx->cipher_type == OTX_CPT_DES3_CBC) && req->src == req->dst) { req_info->iv_out = kmalloc(ivsize, flags); if (!req_info->iv_out) return -ENOMEM; scatterwalk_map_and_copy(req_info->iv_out, req->src, start, ivsize, 0); } } /* Encryption data length */ req_info->req.param1 = req->cryptlen; /* Authentication data length */ req_info->req.param2 = 0; fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR; if (ctx->cipher_type == OTX_CPT_AES_XTS) memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2); else memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len); memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm)); fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags); /* * Storing Packet Data Information in offset * Control Word First 8 bytes */ req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; req_info->in[*argcnt].size = CONTROL_WORD_LEN; req_info->req.dlen += CONTROL_WORD_LEN; ++(*argcnt); req_info->in[*argcnt].vptr = (u8 *)fctx; req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx); req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx); ++(*argcnt); return 0; } static inline u32 create_input_list(struct skcipher_request *req, u32 enc, u32 enc_iv_len) { struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0; int ret; ret = create_ctx_hdr(req, enc, &argcnt); if (ret) return ret; update_input_data(req_info, req->src, req->cryptlen, &argcnt); req_info->incnt = argcnt; return 0; } static inline void create_output_list(struct skcipher_request *req, u32 enc_iv_len) { struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0; /* * OUTPUT Buffer Processing * AES encryption/decryption output would be * received in the following format * * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----| * [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ] */ update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt); req_info->outcnt = argcnt; } static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc) { struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 enc_iv_len = crypto_skcipher_ivsize(stfm); struct pci_dev *pdev; int status, cpu_num; /* Validate that request doesn't exceed maximum CPT supported size */ if (req->cryptlen > OTX_CPT_MAX_REQ_SIZE) return -E2BIG; /* Clear control words */ rctx->ctrl_word.flags = 0; rctx->fctx.enc.enc_ctrl.flags = 0; status = create_input_list(req, enc, enc_iv_len); if (status) return status; create_output_list(req, enc_iv_len); status = get_se_device(&pdev, &cpu_num); if (status) return status; req_info->callback = (void *)otx_cpt_skcipher_callback; req_info->areq = &req->base; req_info->req_type = OTX_CPT_ENC_DEC_REQ; req_info->is_enc = enc; req_info->is_trunc_hmac = false; req_info->ctrl.s.grp = 0; /* * We perform an asynchronous send and once * the request is completed the driver would * intimate through registered call back functions */ status = otx_cpt_do_request(pdev, req_info, cpu_num); return status; } static int otx_cpt_skcipher_encrypt(struct skcipher_request *req) { return cpt_enc_dec(req, true); } static int otx_cpt_skcipher_decrypt(struct skcipher_request *req) { return cpt_enc_dec(req, false); } static int otx_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); const u8 *key2 = key + (keylen / 2); const u8 *key1 = key; int ret; ret = xts_verify_key(tfm, key, keylen); if (ret) return ret; ctx->key_len = keylen; memcpy(ctx->enc_key, key1, keylen / 2); memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2); ctx->cipher_type = OTX_CPT_AES_XTS; switch (ctx->key_len) { case 2 * AES_KEYSIZE_128: ctx->key_type = OTX_CPT_AES_128_BIT; break; case 2 * AES_KEYSIZE_256: ctx->key_type = OTX_CPT_AES_256_BIT; break; default: return -EINVAL; } return 0; } static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen, u8 cipher_type) { struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); if (keylen != DES3_EDE_KEY_SIZE) return -EINVAL; ctx->key_len = keylen; ctx->cipher_type = cipher_type; memcpy(ctx->enc_key, key, keylen); return 0; } static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen, u8 cipher_type) { struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); switch (keylen) { case AES_KEYSIZE_128: ctx->key_type = OTX_CPT_AES_128_BIT; break; case AES_KEYSIZE_192: ctx->key_type = OTX_CPT_AES_192_BIT; break; case AES_KEYSIZE_256: ctx->key_type = OTX_CPT_AES_256_BIT; break; default: return -EINVAL; } ctx->key_len = keylen; ctx->cipher_type = cipher_type; memcpy(ctx->enc_key, key, keylen); return 0; } static int otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CBC); } static int otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_ECB); } static int otx_cpt_skcipher_cfb_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CFB); } static int otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_CBC); } static int otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_ECB); } static int otx_cpt_enc_dec_init(struct crypto_skcipher *tfm) { struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); memset(ctx, 0, sizeof(*ctx)); /* * Additional memory for skcipher_request is * allocated since the cryptd daemon uses * this memory for request_ctx information */ crypto_skcipher_set_reqsize_dma( tfm, sizeof(struct otx_cpt_req_ctx) + sizeof(struct skcipher_request)); return 0; } static int cpt_aead_init(struct crypto_aead *tfm, u8 cipher_type, u8 mac_type) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); ctx->cipher_type = cipher_type; ctx->mac_type = mac_type; /* * When selected cipher is NULL we use HMAC opcode instead of * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms * for calculating ipad and opad */ if (ctx->cipher_type != OTX_CPT_CIPHER_NULL) { switch (ctx->mac_type) { case OTX_CPT_SHA1: ctx->hashalg = crypto_alloc_shash("sha1", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX_CPT_SHA256: ctx->hashalg = crypto_alloc_shash("sha256", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX_CPT_SHA384: ctx->hashalg = crypto_alloc_shash("sha384", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; case OTX_CPT_SHA512: ctx->hashalg = crypto_alloc_shash("sha512", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->hashalg)) return PTR_ERR(ctx->hashalg); break; } } crypto_aead_set_reqsize_dma(tfm, sizeof(struct otx_cpt_req_ctx)); return 0; } static int otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA1); } static int otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA256); } static int otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA384); } static int otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA512); } static int otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA1); } static int otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA256); } static int otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA384); } static int otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA512); } static int otx_cpt_aead_gcm_aes_init(struct crypto_aead *tfm) { return cpt_aead_init(tfm, OTX_CPT_AES_GCM, OTX_CPT_MAC_NULL); } static void otx_cpt_aead_exit(struct crypto_aead *tfm) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); kfree(ctx->ipad); kfree(ctx->opad); if (ctx->hashalg) crypto_free_shash(ctx->hashalg); kfree(ctx->sdesc); } /* * This is the Integrity Check Value validation (aka the authentication tag * length) */ static int otx_cpt_aead_set_authsize(struct crypto_aead *tfm, unsigned int authsize) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); switch (ctx->mac_type) { case OTX_CPT_SHA1: if (authsize != SHA1_DIGEST_SIZE && authsize != SHA1_TRUNC_DIGEST_SIZE) return -EINVAL; if (authsize == SHA1_TRUNC_DIGEST_SIZE) ctx->is_trunc_hmac = true; break; case OTX_CPT_SHA256: if (authsize != SHA256_DIGEST_SIZE && authsize != SHA256_TRUNC_DIGEST_SIZE) return -EINVAL; if (authsize == SHA256_TRUNC_DIGEST_SIZE) ctx->is_trunc_hmac = true; break; case OTX_CPT_SHA384: if (authsize != SHA384_DIGEST_SIZE && authsize != SHA384_TRUNC_DIGEST_SIZE) return -EINVAL; if (authsize == SHA384_TRUNC_DIGEST_SIZE) ctx->is_trunc_hmac = true; break; case OTX_CPT_SHA512: if (authsize != SHA512_DIGEST_SIZE && authsize != SHA512_TRUNC_DIGEST_SIZE) return -EINVAL; if (authsize == SHA512_TRUNC_DIGEST_SIZE) ctx->is_trunc_hmac = true; break; case OTX_CPT_MAC_NULL: if (ctx->cipher_type == OTX_CPT_AES_GCM) { if (authsize != AES_GCM_ICV_SIZE) return -EINVAL; } else return -EINVAL; break; default: return -EINVAL; } tfm->authsize = authsize; return 0; } static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg) { struct otx_cpt_sdesc *sdesc; int size; size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); sdesc = kmalloc(size, GFP_KERNEL); if (!sdesc) return NULL; sdesc->shash.tfm = alg; return sdesc; } static inline void swap_data32(void *buf, u32 len) { cpu_to_be32_array(buf, buf, len / 4); } static inline void swap_data64(void *buf, u32 len) { __be64 *dst = buf; u64 *src = buf; int i = 0; for (i = 0 ; i < len / 8; i++, src++, dst++) *dst = cpu_to_be64p(src); } static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad) { struct sha512_state *sha512; struct sha256_state *sha256; struct sha1_state *sha1; switch (mac_type) { case OTX_CPT_SHA1: sha1 = (struct sha1_state *) in_pad; swap_data32(sha1->state, SHA1_DIGEST_SIZE); memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE); break; case OTX_CPT_SHA256: sha256 = (struct sha256_state *) in_pad; swap_data32(sha256->state, SHA256_DIGEST_SIZE); memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE); break; case OTX_CPT_SHA384: case OTX_CPT_SHA512: sha512 = (struct sha512_state *) in_pad; swap_data64(sha512->state, SHA512_DIGEST_SIZE); memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE); break; default: return -EINVAL; } return 0; } static int aead_hmac_init(struct crypto_aead *cipher) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); int state_size = crypto_shash_statesize(ctx->hashalg); int ds = crypto_shash_digestsize(ctx->hashalg); int bs = crypto_shash_blocksize(ctx->hashalg); int authkeylen = ctx->auth_key_len; u8 *ipad = NULL, *opad = NULL; int ret = 0, icount = 0; ctx->sdesc = alloc_sdesc(ctx->hashalg); if (!ctx->sdesc) return -ENOMEM; ctx->ipad = kzalloc(bs, GFP_KERNEL); if (!ctx->ipad) { ret = -ENOMEM; goto calc_fail; } ctx->opad = kzalloc(bs, GFP_KERNEL); if (!ctx->opad) { ret = -ENOMEM; goto calc_fail; } ipad = kzalloc(state_size, GFP_KERNEL); if (!ipad) { ret = -ENOMEM; goto calc_fail; } opad = kzalloc(state_size, GFP_KERNEL); if (!opad) { ret = -ENOMEM; goto calc_fail; } if (authkeylen > bs) { ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key, authkeylen, ipad); if (ret) goto calc_fail; authkeylen = ds; } else { memcpy(ipad, ctx->key, authkeylen); } memset(ipad + authkeylen, 0, bs - authkeylen); memcpy(opad, ipad, bs); for (icount = 0; icount < bs; icount++) { ipad[icount] ^= 0x36; opad[icount] ^= 0x5c; } /* * Partial Hash calculated from the software * algorithm is retrieved for IPAD & OPAD */ /* IPAD Calculation */ crypto_shash_init(&ctx->sdesc->shash); crypto_shash_update(&ctx->sdesc->shash, ipad, bs); crypto_shash_export(&ctx->sdesc->shash, ipad); ret = copy_pad(ctx->mac_type, ctx->ipad, ipad); if (ret) goto calc_fail; /* OPAD Calculation */ crypto_shash_init(&ctx->sdesc->shash); crypto_shash_update(&ctx->sdesc->shash, opad, bs); crypto_shash_export(&ctx->sdesc->shash, opad); ret = copy_pad(ctx->mac_type, ctx->opad, opad); if (ret) goto calc_fail; kfree(ipad); kfree(opad); return 0; calc_fail: kfree(ctx->ipad); ctx->ipad = NULL; kfree(ctx->opad); ctx->opad = NULL; kfree(ipad); kfree(opad); kfree(ctx->sdesc); ctx->sdesc = NULL; return ret; } static int otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); struct crypto_authenc_key_param *param; int enckeylen = 0, authkeylen = 0; struct rtattr *rta = (void *)key; int status = -EINVAL; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) goto badkey; if (keylen > OTX_CPT_MAX_KEY_SIZE) goto badkey; authkeylen = keylen - enckeylen; memcpy(ctx->key, key, keylen); switch (enckeylen) { case AES_KEYSIZE_128: ctx->key_type = OTX_CPT_AES_128_BIT; break; case AES_KEYSIZE_192: ctx->key_type = OTX_CPT_AES_192_BIT; break; case AES_KEYSIZE_256: ctx->key_type = OTX_CPT_AES_256_BIT; break; default: /* Invalid key length */ goto badkey; } ctx->enc_key_len = enckeylen; ctx->auth_key_len = authkeylen; status = aead_hmac_init(cipher); if (status) goto badkey; return 0; badkey: return status; } static int otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); struct crypto_authenc_key_param *param; struct rtattr *rta = (void *)key; int enckeylen = 0; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (enckeylen != 0) goto badkey; if (keylen > OTX_CPT_MAX_KEY_SIZE) goto badkey; memcpy(ctx->key, key, keylen); ctx->enc_key_len = enckeylen; ctx->auth_key_len = keylen; return 0; badkey: return -EINVAL; } static int otx_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher, const unsigned char *key, unsigned int keylen) { struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher); /* * For aes gcm we expect to get encryption key (16, 24, 32 bytes) * and salt (4 bytes) */ switch (keylen) { case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE: ctx->key_type = OTX_CPT_AES_128_BIT; ctx->enc_key_len = AES_KEYSIZE_128; break; case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE: ctx->key_type = OTX_CPT_AES_192_BIT; ctx->enc_key_len = AES_KEYSIZE_192; break; case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE: ctx->key_type = OTX_CPT_AES_256_BIT; ctx->enc_key_len = AES_KEYSIZE_256; break; default: /* Invalid key and salt length */ return -EINVAL; } /* Store encryption key and salt */ memcpy(ctx->key, key, keylen); return 0; } static inline u32 create_aead_ctx_hdr(struct aead_request *req, u32 enc, u32 *argcnt) { struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); struct otx_cpt_req_info *req_info = &rctx->cpt_req; struct otx_cpt_fc_ctx *fctx = &rctx->fctx; int mac_len = crypto_aead_authsize(tfm); int ds; rctx->ctrl_word.e.enc_data_offset = req->assoclen; switch (ctx->cipher_type) { case OTX_CPT_AES_CBC: fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR; /* Copy encryption key to context */ memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len, ctx->enc_key_len); /* Copy IV to context */ memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm)); ds = crypto_shash_digestsize(ctx->hashalg); if (ctx->mac_type == OTX_CPT_SHA384) ds = SHA512_DIGEST_SIZE; if (ctx->ipad) memcpy(fctx->hmac.e.ipad, ctx->ipad, ds); if (ctx->opad) memcpy(fctx->hmac.e.opad, ctx->opad, ds); break; case OTX_CPT_AES_GCM: fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_DPTR; /* Copy encryption key to context */ memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len); /* Copy salt to context */ memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len, AES_GCM_SALT_SIZE); rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET; break; default: /* Unknown cipher type */ return -EINVAL; } rctx->ctrl_word.flags = cpu_to_be64(rctx->ctrl_word.cflags); req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC | DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); if (enc) { req_info->req.opcode.s.minor = 2; req_info->req.param1 = req->cryptlen; req_info->req.param2 = req->cryptlen + req->assoclen; } else { req_info->req.opcode.s.minor = 3; req_info->req.param1 = req->cryptlen - mac_len; req_info->req.param2 = req->cryptlen + req->assoclen - mac_len; } fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type; fctx->enc.enc_ctrl.e.mac_len = mac_len; fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags); /* * Storing Packet Data Information in offset * Control Word First 8 bytes */ req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; req_info->in[*argcnt].size = CONTROL_WORD_LEN; req_info->req.dlen += CONTROL_WORD_LEN; ++(*argcnt); req_info->in[*argcnt].vptr = (u8 *)fctx; req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx); req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx); ++(*argcnt); return 0; } static inline u32 create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt, u32 enc) { struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm); struct otx_cpt_req_info *req_info = &rctx->cpt_req; req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_HMAC | DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); req_info->is_trunc_hmac = ctx->is_trunc_hmac; req_info->req.opcode.s.minor = 0; req_info->req.param1 = ctx->auth_key_len; req_info->req.param2 = ctx->mac_type << 8; /* Add authentication key */ req_info->in[*argcnt].vptr = ctx->key; req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8); req_info->req.dlen += round_up(ctx->auth_key_len, 8); ++(*argcnt); return 0; } static inline u32 create_aead_input_list(struct aead_request *req, u32 enc) { struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 inputlen = req->cryptlen + req->assoclen; u32 status, argcnt = 0; status = create_aead_ctx_hdr(req, enc, &argcnt); if (status) return status; update_input_data(req_info, req->src, inputlen, &argcnt); req_info->incnt = argcnt; return 0; } static inline u32 create_aead_output_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 argcnt = 0, outputlen = 0; if (enc) outputlen = req->cryptlen + req->assoclen + mac_len; else outputlen = req->cryptlen + req->assoclen - mac_len; update_output_data(req_info, req->dst, 0, outputlen, &argcnt); req_info->outcnt = argcnt; return 0; } static inline u32 create_aead_null_input_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; u32 inputlen, argcnt = 0; if (enc) inputlen = req->cryptlen + req->assoclen; else inputlen = req->cryptlen + req->assoclen - mac_len; create_hmac_ctx_hdr(req, &argcnt, enc); update_input_data(req_info, req->src, inputlen, &argcnt); req_info->incnt = argcnt; return 0; } static inline u32 create_aead_null_output_list(struct aead_request *req, u32 enc, u32 mac_len) { struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; struct scatterlist *dst; u8 *ptr = NULL; int argcnt = 0, status, offset; u32 inputlen; if (enc) inputlen = req->cryptlen + req->assoclen; else inputlen = req->cryptlen + req->assoclen - mac_len; /* * If source and destination are different * then copy payload to destination */ if (req->src != req->dst) { ptr = kmalloc(inputlen, (req_info->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC); if (!ptr) { status = -ENOMEM; goto error; } status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr, inputlen); if (status != inputlen) { status = -EINVAL; goto error_free; } status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr, inputlen); if (status != inputlen) { status = -EINVAL; goto error_free; } kfree(ptr); } if (enc) { /* * In an encryption scenario hmac needs * to be appended after payload */ dst = req->dst; offset = inputlen; while (offset >= dst->length) { offset -= dst->length; dst = sg_next(dst); if (!dst) { status = -ENOENT; goto error; } } update_output_data(req_info, dst, offset, mac_len, &argcnt); } else { /* * In a decryption scenario calculated hmac for received * payload needs to be compare with hmac received */ status = sg_copy_buffer(req->src, sg_nents(req->src), rctx->fctx.hmac.s.hmac_recv, mac_len, inputlen, true); if (status != mac_len) { status = -EINVAL; goto error; } req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc; req_info->out[argcnt].size = mac_len; argcnt++; } req_info->outcnt = argcnt; return 0; error_free: kfree(ptr); error: return status; } static u32 cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc) { struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req); struct otx_cpt_req_info *req_info = &rctx->cpt_req; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct pci_dev *pdev; u32 status, cpu_num; /* Clear control words */ rctx->ctrl_word.flags = 0; rctx->fctx.enc.enc_ctrl.flags = 0; req_info->callback = otx_cpt_aead_callback; req_info->areq = &req->base; req_info->req_type = reg_type; req_info->is_enc = enc; req_info->is_trunc_hmac = false; switch (reg_type) { case OTX_CPT_AEAD_ENC_DEC_REQ: status = create_aead_input_list(req, enc); if (status) return status; status = create_aead_output_list(req, enc, crypto_aead_authsize(tfm)); if (status) return status; break; case OTX_CPT_AEAD_ENC_DEC_NULL_REQ: status = create_aead_null_input_list(req, enc, crypto_aead_authsize(tfm)); if (status) return status; status = create_aead_null_output_list(req, enc, crypto_aead_authsize(tfm)); if (status) return status; break; default: return -EINVAL; } /* Validate that request doesn't exceed maximum CPT supported size */ if (req_info->req.param1 > OTX_CPT_MAX_REQ_SIZE || req_info->req.param2 > OTX_CPT_MAX_REQ_SIZE) return -E2BIG; status = get_se_device(&pdev, &cpu_num); if (status) return status; req_info->ctrl.s.grp = 0; status = otx_cpt_do_request(pdev, req_info, cpu_num); /* * We perform an asynchronous send and once * the request is completed the driver would * intimate through registered call back functions */ return status; } static int otx_cpt_aead_encrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, true); } static int otx_cpt_aead_decrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, false); } static int otx_cpt_aead_null_encrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, true); } static int otx_cpt_aead_null_decrypt(struct aead_request *req) { return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, false); } static struct skcipher_alg otx_cpt_skciphers[] = { { .base.cra_name = "xts(aes)", .base.cra_driver_name = "cpt_xts_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .ivsize = AES_BLOCK_SIZE, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .setkey = otx_cpt_skcipher_xts_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cpt_cbc_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = otx_cpt_skcipher_cbc_aes_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "cpt_ecb_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .ivsize = 0, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = otx_cpt_skcipher_ecb_aes_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "cfb(aes)", .base.cra_driver_name = "cpt_cfb_aes", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = otx_cpt_skcipher_cfb_aes_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "cbc(des3_ede)", .base.cra_driver_name = "cpt_cbc_des3_ede", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = otx_cpt_skcipher_cbc_des3_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, }, { .base.cra_name = "ecb(des3_ede)", .base.cra_driver_name = "cpt_ecb_des3_ede", .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_module = THIS_MODULE, .init = otx_cpt_enc_dec_init, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = 0, .setkey = otx_cpt_skcipher_ecb_des3_setkey, .encrypt = otx_cpt_skcipher_encrypt, .decrypt = otx_cpt_skcipher_decrypt, } }; static struct aead_alg otx_cpt_aeads[] = { { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "cpt_hmac_sha1_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_cbc_aes_sha1_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "cpt_hmac_sha256_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_cbc_aes_sha256_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "cpt_hmac_sha384_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_cbc_aes_sha384_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "cpt_hmac_sha512_cbc_aes", .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_cbc_aes_sha512_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_cbc_aes_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha1),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha1_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_ecb_null_sha1_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_null_encrypt, .decrypt = otx_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA1_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha256),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha256_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_ecb_null_sha256_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_null_encrypt, .decrypt = otx_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA256_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha384),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha384_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_ecb_null_sha384_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_null_encrypt, .decrypt = otx_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA384_DIGEST_SIZE, }, { .base = { .cra_name = "authenc(hmac(sha512),ecb(cipher_null))", .cra_driver_name = "cpt_hmac_sha512_ecb_null", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_ecb_null_sha512_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_ecb_null_sha_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_null_encrypt, .decrypt = otx_cpt_aead_null_decrypt, .ivsize = 0, .maxauthsize = SHA512_DIGEST_SIZE, }, { .base = { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "cpt_rfc4106_gcm_aes", .cra_blocksize = 1, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING, .cra_priority = 4001, .cra_alignmask = 0, .cra_module = THIS_MODULE, }, .init = otx_cpt_aead_gcm_aes_init, .exit = otx_cpt_aead_exit, .setkey = otx_cpt_aead_gcm_aes_setkey, .setauthsize = otx_cpt_aead_set_authsize, .encrypt = otx_cpt_aead_encrypt, .decrypt = otx_cpt_aead_decrypt, .ivsize = AES_GCM_IV_SIZE, .maxauthsize = AES_GCM_ICV_SIZE, } }; static inline int is_any_alg_used(void) { int i; for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++) if (refcount_read(&otx_cpt_skciphers[i].base.cra_refcnt) != 1) return true; for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++) if (refcount_read(&otx_cpt_aeads[i].base.cra_refcnt) != 1) return true; return false; } static inline int cpt_register_algs(void) { int i, err = 0; if (!IS_ENABLED(CONFIG_DM_CRYPT)) { for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++) otx_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; err = crypto_register_skciphers(otx_cpt_skciphers, ARRAY_SIZE(otx_cpt_skciphers)); if (err) return err; } for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++) otx_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; err = crypto_register_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads)); if (err) { crypto_unregister_skciphers(otx_cpt_skciphers, ARRAY_SIZE(otx_cpt_skciphers)); return err; } return 0; } static inline void cpt_unregister_algs(void) { crypto_unregister_skciphers(otx_cpt_skciphers, ARRAY_SIZE(otx_cpt_skciphers)); crypto_unregister_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads)); } static int compare_func(const void *lptr, const void *rptr) { struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr; struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr; if (ldesc->dev->devfn < rdesc->dev->devfn) return -1; if (ldesc->dev->devfn > rdesc->dev->devfn) return 1; return 0; } static void swap_func(void *lptr, void *rptr, int size) { struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr; struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr; swap(*ldesc, *rdesc); } int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod, enum otx_cptpf_type pf_type, enum otx_cptvf_type engine_type, int num_queues, int num_devices) { int ret = 0; int count; mutex_lock(&mutex); switch (engine_type) { case OTX_CPT_SE_TYPES: count = atomic_read(&se_devices.count); if (count >= CPT_MAX_VF_NUM) { dev_err(&pdev->dev, "No space to add a new device\n"); ret = -ENOSPC; goto err; } se_devices.desc[count].pf_type = pf_type; se_devices.desc[count].num_queues = num_queues; se_devices.desc[count++].dev = pdev; atomic_inc(&se_devices.count); if (atomic_read(&se_devices.count) == num_devices && is_crypto_registered == false) { if (cpt_register_algs()) { dev_err(&pdev->dev, "Error in registering crypto algorithms\n"); ret = -EINVAL; goto err; } try_module_get(mod); is_crypto_registered = true; } sort(se_devices.desc, count, sizeof(struct cpt_device_desc), compare_func, swap_func); break; case OTX_CPT_AE_TYPES: count = atomic_read(&ae_devices.count); if (count >= CPT_MAX_VF_NUM) { dev_err(&pdev->dev, "No space to a add new device\n"); ret = -ENOSPC; goto err; } ae_devices.desc[count].pf_type = pf_type; ae_devices.desc[count].num_queues = num_queues; ae_devices.desc[count++].dev = pdev; atomic_inc(&ae_devices.count); sort(ae_devices.desc, count, sizeof(struct cpt_device_desc), compare_func, swap_func); break; default: dev_err(&pdev->dev, "Unknown VF type %d\n", engine_type); ret = BAD_OTX_CPTVF_TYPE; } err: mutex_unlock(&mutex); return ret; } void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod, enum otx_cptvf_type engine_type) { struct cpt_device_table *dev_tbl; bool dev_found = false; int i, j, count; mutex_lock(&mutex); dev_tbl = (engine_type == OTX_CPT_AE_TYPES) ? &ae_devices : &se_devices; count = atomic_read(&dev_tbl->count); for (i = 0; i < count; i++) if (pdev == dev_tbl->desc[i].dev) { for (j = i; j < count-1; j++) dev_tbl->desc[j] = dev_tbl->desc[j+1]; dev_found = true; break; } if (!dev_found) { dev_err(&pdev->dev, "%s device not found\n", __func__); goto exit; } if (engine_type != OTX_CPT_AE_TYPES) { if (atomic_dec_and_test(&se_devices.count) && !is_any_alg_used()) { cpt_unregister_algs(); module_put(mod); is_crypto_registered = false; } } else atomic_dec(&ae_devices.count); exit: mutex_unlock(&mutex); }
linux-master
drivers/crypto/marvell/octeontx/otx_cptvf_algs.c
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "otx_cpt_common.h" #include "otx_cptpf.h" static char *get_mbox_opcode_str(int msg_opcode) { char *str = "Unknown"; switch (msg_opcode) { case OTX_CPT_MSG_VF_UP: str = "UP"; break; case OTX_CPT_MSG_VF_DOWN: str = "DOWN"; break; case OTX_CPT_MSG_READY: str = "READY"; break; case OTX_CPT_MSG_QLEN: str = "QLEN"; break; case OTX_CPT_MSG_QBIND_GRP: str = "QBIND_GRP"; break; case OTX_CPT_MSG_VQ_PRIORITY: str = "VQ_PRIORITY"; break; case OTX_CPT_MSG_PF_TYPE: str = "PF_TYPE"; break; case OTX_CPT_MSG_ACK: str = "ACK"; break; case OTX_CPT_MSG_NACK: str = "NACK"; break; } return str; } static void dump_mbox_msg(struct otx_cpt_mbox *mbox_msg, int vf_id) { char raw_data_str[OTX_CPT_MAX_MBOX_DATA_STR_SIZE]; hex_dump_to_buffer(mbox_msg, sizeof(struct otx_cpt_mbox), 16, 8, raw_data_str, OTX_CPT_MAX_MBOX_DATA_STR_SIZE, false); if (vf_id >= 0) pr_debug("MBOX opcode %s received from VF%d raw_data %s\n", get_mbox_opcode_str(mbox_msg->msg), vf_id, raw_data_str); else pr_debug("MBOX opcode %s received from PF raw_data %s\n", get_mbox_opcode_str(mbox_msg->msg), raw_data_str); } static void otx_cpt_send_msg_to_vf(struct otx_cpt_device *cpt, int vf, struct otx_cpt_mbox *mbx) { /* Writing mbox(0) causes interrupt */ writeq(mbx->data, cpt->reg_base + OTX_CPT_PF_VFX_MBOXX(vf, 1)); writeq(mbx->msg, cpt->reg_base + OTX_CPT_PF_VFX_MBOXX(vf, 0)); } /* * ACKs VF's mailbox message * @vf: VF to which ACK to be sent */ static void otx_cpt_mbox_send_ack(struct otx_cpt_device *cpt, int vf, struct otx_cpt_mbox *mbx) { mbx->data = 0ull; mbx->msg = OTX_CPT_MSG_ACK; otx_cpt_send_msg_to_vf(cpt, vf, mbx); } /* NACKs VF's mailbox message that PF is not able to complete the action */ static void otx_cptpf_mbox_send_nack(struct otx_cpt_device *cpt, int vf, struct otx_cpt_mbox *mbx) { mbx->data = 0ull; mbx->msg = OTX_CPT_MSG_NACK; otx_cpt_send_msg_to_vf(cpt, vf, mbx); } static void otx_cpt_clear_mbox_intr(struct otx_cpt_device *cpt, u32 vf) { /* W1C for the VF */ writeq(1ull << vf, cpt->reg_base + OTX_CPT_PF_MBOX_INTX(0)); } /* * Configure QLEN/Chunk sizes for VF */ static void otx_cpt_cfg_qlen_for_vf(struct otx_cpt_device *cpt, int vf, u32 size) { union otx_cptx_pf_qx_ctl pf_qx_ctl; pf_qx_ctl.u = readq(cpt->reg_base + OTX_CPT_PF_QX_CTL(vf)); pf_qx_ctl.s.size = size; pf_qx_ctl.s.cont_err = true; writeq(pf_qx_ctl.u, cpt->reg_base + OTX_CPT_PF_QX_CTL(vf)); } /* * Configure VQ priority */ static void otx_cpt_cfg_vq_priority(struct otx_cpt_device *cpt, int vf, u32 pri) { union otx_cptx_pf_qx_ctl pf_qx_ctl; pf_qx_ctl.u = readq(cpt->reg_base + OTX_CPT_PF_QX_CTL(vf)); pf_qx_ctl.s.pri = pri; writeq(pf_qx_ctl.u, cpt->reg_base + OTX_CPT_PF_QX_CTL(vf)); } static int otx_cpt_bind_vq_to_grp(struct otx_cpt_device *cpt, u8 q, u8 grp) { struct device *dev = &cpt->pdev->dev; struct otx_cpt_eng_grp_info *eng_grp; union otx_cptx_pf_qx_ctl pf_qx_ctl; struct otx_cpt_ucode *ucode; if (q >= cpt->max_vfs) { dev_err(dev, "Requested queue %d is > than maximum avail %d\n", q, cpt->max_vfs); return -EINVAL; } if (grp >= OTX_CPT_MAX_ENGINE_GROUPS) { dev_err(dev, "Requested group %d is > than maximum avail %d\n", grp, OTX_CPT_MAX_ENGINE_GROUPS); return -EINVAL; } eng_grp = &cpt->eng_grps.grp[grp]; if (!eng_grp->is_enabled) { dev_err(dev, "Requested engine group %d is disabled\n", grp); return -EINVAL; } pf_qx_ctl.u = readq(cpt->reg_base + OTX_CPT_PF_QX_CTL(q)); pf_qx_ctl.s.grp = grp; writeq(pf_qx_ctl.u, cpt->reg_base + OTX_CPT_PF_QX_CTL(q)); if (eng_grp->mirror.is_ena) ucode = &eng_grp->g->grp[eng_grp->mirror.idx].ucode[0]; else ucode = &eng_grp->ucode[0]; if (otx_cpt_uc_supports_eng_type(ucode, OTX_CPT_SE_TYPES)) return OTX_CPT_SE_TYPES; else if (otx_cpt_uc_supports_eng_type(ucode, OTX_CPT_AE_TYPES)) return OTX_CPT_AE_TYPES; else return BAD_OTX_CPTVF_TYPE; } /* Interrupt handler to handle mailbox messages from VFs */ static void otx_cpt_handle_mbox_intr(struct otx_cpt_device *cpt, int vf) { int vftype = 0; struct otx_cpt_mbox mbx = {}; struct device *dev = &cpt->pdev->dev; /* * MBOX[0] contains msg * MBOX[1] contains data */ mbx.msg = readq(cpt->reg_base + OTX_CPT_PF_VFX_MBOXX(vf, 0)); mbx.data = readq(cpt->reg_base + OTX_CPT_PF_VFX_MBOXX(vf, 1)); dump_mbox_msg(&mbx, vf); switch (mbx.msg) { case OTX_CPT_MSG_VF_UP: mbx.msg = OTX_CPT_MSG_VF_UP; mbx.data = cpt->vfs_enabled; otx_cpt_send_msg_to_vf(cpt, vf, &mbx); break; case OTX_CPT_MSG_READY: mbx.msg = OTX_CPT_MSG_READY; mbx.data = vf; otx_cpt_send_msg_to_vf(cpt, vf, &mbx); break; case OTX_CPT_MSG_VF_DOWN: /* First msg in VF teardown sequence */ otx_cpt_mbox_send_ack(cpt, vf, &mbx); break; case OTX_CPT_MSG_QLEN: otx_cpt_cfg_qlen_for_vf(cpt, vf, mbx.data); otx_cpt_mbox_send_ack(cpt, vf, &mbx); break; case OTX_CPT_MSG_QBIND_GRP: vftype = otx_cpt_bind_vq_to_grp(cpt, vf, (u8)mbx.data); if ((vftype != OTX_CPT_AE_TYPES) && (vftype != OTX_CPT_SE_TYPES)) { dev_err(dev, "VF%d binding to eng group %llu failed\n", vf, mbx.data); otx_cptpf_mbox_send_nack(cpt, vf, &mbx); } else { mbx.msg = OTX_CPT_MSG_QBIND_GRP; mbx.data = vftype; otx_cpt_send_msg_to_vf(cpt, vf, &mbx); } break; case OTX_CPT_MSG_PF_TYPE: mbx.msg = OTX_CPT_MSG_PF_TYPE; mbx.data = cpt->pf_type; otx_cpt_send_msg_to_vf(cpt, vf, &mbx); break; case OTX_CPT_MSG_VQ_PRIORITY: otx_cpt_cfg_vq_priority(cpt, vf, mbx.data); otx_cpt_mbox_send_ack(cpt, vf, &mbx); break; default: dev_err(&cpt->pdev->dev, "Invalid msg from VF%d, msg 0x%llx\n", vf, mbx.msg); break; } } void otx_cpt_mbox_intr_handler (struct otx_cpt_device *cpt, int mbx) { u64 intr; u8 vf; intr = readq(cpt->reg_base + OTX_CPT_PF_MBOX_INTX(0)); pr_debug("PF interrupt mbox%d mask 0x%llx\n", mbx, intr); for (vf = 0; vf < cpt->max_vfs; vf++) { if (intr & (1ULL << vf)) { otx_cpt_handle_mbox_intr(cpt, vf); otx_cpt_clear_mbox_intr(cpt, vf); } } }
linux-master
drivers/crypto/marvell/octeontx/otx_cptpf_mbox.c
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "otx_cptvf.h" #include "otx_cptvf_algs.h" /* Completion code size and initial value */ #define COMPLETION_CODE_SIZE 8 #define COMPLETION_CODE_INIT 0 /* SG list header size in bytes */ #define SG_LIST_HDR_SIZE 8 /* Default timeout when waiting for free pending entry in us */ #define CPT_PENTRY_TIMEOUT 1000 #define CPT_PENTRY_STEP 50 /* Default threshold for stopping and resuming sender requests */ #define CPT_IQ_STOP_MARGIN 128 #define CPT_IQ_RESUME_MARGIN 512 #define CPT_DMA_ALIGN 128 void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req) { int i; pr_debug("Gather list size %d\n", req->incnt); for (i = 0; i < req->incnt; i++) { pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i, req->in[i].size, req->in[i].vptr, (void *) req->in[i].dma_addr); pr_debug("Buffer hexdump (%d bytes)\n", req->in[i].size); print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, req->in[i].vptr, req->in[i].size, false); } pr_debug("Scatter list size %d\n", req->outcnt); for (i = 0; i < req->outcnt; i++) { pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i, req->out[i].size, req->out[i].vptr, (void *) req->out[i].dma_addr); pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size); print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, req->out[i].vptr, req->out[i].size, false); } } static inline struct otx_cpt_pending_entry *get_free_pending_entry( struct otx_cpt_pending_queue *q, int qlen) { struct otx_cpt_pending_entry *ent = NULL; ent = &q->head[q->rear]; if (unlikely(ent->busy)) return NULL; q->rear++; if (unlikely(q->rear == qlen)) q->rear = 0; return ent; } static inline u32 modulo_inc(u32 index, u32 length, u32 inc) { if (WARN_ON(inc > length)) inc = length; index += inc; if (unlikely(index >= length)) index -= length; return index; } static inline void free_pentry(struct otx_cpt_pending_entry *pentry) { pentry->completion_addr = NULL; pentry->info = NULL; pentry->callback = NULL; pentry->areq = NULL; pentry->resume_sender = false; pentry->busy = false; } static inline int setup_sgio_components(struct pci_dev *pdev, struct otx_cpt_buf_ptr *list, int buf_count, u8 *buffer) { struct otx_cpt_sglist_component *sg_ptr = NULL; int ret = 0, i, j; int components; if (unlikely(!list)) { dev_err(&pdev->dev, "Input list pointer is NULL\n"); return -EFAULT; } for (i = 0; i < buf_count; i++) { if (likely(list[i].vptr)) { list[i].dma_addr = dma_map_single(&pdev->dev, list[i].vptr, list[i].size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, list[i].dma_addr))) { dev_err(&pdev->dev, "Dma mapping failed\n"); ret = -EIO; goto sg_cleanup; } } } components = buf_count / 4; sg_ptr = (struct otx_cpt_sglist_component *)buffer; for (i = 0; i < components; i++) { sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size); sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size); sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size); sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size); sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr); sg_ptr++; } components = buf_count % 4; switch (components) { case 3: sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size); sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); fallthrough; case 2: sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size); sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); fallthrough; case 1: sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size); sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); break; default: break; } return ret; sg_cleanup: for (j = 0; j < i; j++) { if (list[j].dma_addr) { dma_unmap_single(&pdev->dev, list[i].dma_addr, list[i].size, DMA_BIDIRECTIONAL); } list[j].dma_addr = 0; } return ret; } static inline int setup_sgio_list(struct pci_dev *pdev, struct otx_cpt_info_buffer **pinfo, struct otx_cpt_req_info *req, gfp_t gfp) { u32 dlen, align_dlen, info_len, rlen; struct otx_cpt_info_buffer *info; u16 g_sz_bytes, s_sz_bytes; int align = CPT_DMA_ALIGN; u32 total_mem_len; if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT || req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) { dev_err(&pdev->dev, "Error too many sg components\n"); return -EINVAL; } g_sz_bytes = ((req->incnt + 3) / 4) * sizeof(struct otx_cpt_sglist_component); s_sz_bytes = ((req->outcnt + 3) / 4) * sizeof(struct otx_cpt_sglist_component); dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE; align_dlen = ALIGN(dlen, align); info_len = ALIGN(sizeof(*info), align); rlen = ALIGN(sizeof(union otx_cpt_res_s), align); total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE; info = kzalloc(total_mem_len, gfp); if (unlikely(!info)) { dev_err(&pdev->dev, "Memory allocation failed\n"); return -ENOMEM; } *pinfo = info; info->dlen = dlen; info->in_buffer = (u8 *)info + info_len; ((__be16 *)info->in_buffer)[0] = cpu_to_be16(req->outcnt); ((__be16 *)info->in_buffer)[1] = cpu_to_be16(req->incnt); ((u16 *)info->in_buffer)[2] = 0; ((u16 *)info->in_buffer)[3] = 0; /* Setup gather (input) components */ if (setup_sgio_components(pdev, req->in, req->incnt, &info->in_buffer[8])) { dev_err(&pdev->dev, "Failed to setup gather list\n"); return -EFAULT; } if (setup_sgio_components(pdev, req->out, req->outcnt, &info->in_buffer[8 + g_sz_bytes])) { dev_err(&pdev->dev, "Failed to setup scatter list\n"); return -EFAULT; } info->dma_len = total_mem_len - info_len; info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer, info->dma_len, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) { dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n"); return -EIO; } /* * Get buffer for union otx_cpt_res_s response * structure and its physical address */ info->completion_addr = (u64 *)(info->in_buffer + align_dlen); info->comp_baddr = info->dptr_baddr + align_dlen; /* Create and initialize RPTR */ info->out_buffer = (u8 *)info->completion_addr + rlen; info->rptr_baddr = info->comp_baddr + rlen; *((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT); return 0; } static void cpt_fill_inst(union otx_cpt_inst_s *inst, struct otx_cpt_info_buffer *info, struct otx_cpt_iq_cmd *cmd) { inst->u[0] = 0x0; inst->s.doneint = true; inst->s.res_addr = (u64)info->comp_baddr; inst->u[2] = 0x0; inst->s.wq_ptr = 0; inst->s.ei0 = cmd->cmd.u64; inst->s.ei1 = cmd->dptr; inst->s.ei2 = cmd->rptr; inst->s.ei3 = cmd->cptr.u64; } /* * On OcteonTX platform the parameter db_count is used as a count for ringing * door bell. The valid values for db_count are: * 0 - 1 CPT instruction will be enqueued however CPT will not be informed * 1 - 1 CPT instruction will be enqueued and CPT will be informed */ static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf) { struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo; struct otx_cpt_cmd_queue *queue; struct otx_cpt_cmd_chunk *curr; u8 *ent; queue = &qinfo->queue[0]; /* * cpt_send_cmd is currently called only from critical section * therefore no locking is required for accessing instruction queue */ ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE]; memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE); if (++queue->idx >= queue->qhead->size / 64) { curr = queue->qhead; if (list_is_last(&curr->nextchunk, &queue->chead)) queue->qhead = queue->base; else queue->qhead = list_next_entry(queue->qhead, nextchunk); queue->idx = 0; } /* make sure all memory stores are done before ringing doorbell */ smp_wmb(); otx_cptvf_write_vq_doorbell(cptvf, 1); } static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req, struct otx_cpt_pending_queue *pqueue, struct otx_cptvf *cptvf) { struct otx_cptvf_request *cpt_req = &req->req; struct otx_cpt_pending_entry *pentry = NULL; union otx_cpt_ctrl_info *ctrl = &req->ctrl; struct otx_cpt_info_buffer *info = NULL; union otx_cpt_res_s *result = NULL; struct otx_cpt_iq_cmd iq_cmd; union otx_cpt_inst_s cptinst; int retry, ret = 0; u8 resume_sender; gfp_t gfp; gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; ret = setup_sgio_list(pdev, &info, req, gfp); if (unlikely(ret)) { dev_err(&pdev->dev, "Setting up SG list failed\n"); goto request_cleanup; } cpt_req->dlen = info->dlen; result = (union otx_cpt_res_s *) info->completion_addr; result->s.compcode = COMPLETION_CODE_INIT; spin_lock_bh(&pqueue->lock); pentry = get_free_pending_entry(pqueue, pqueue->qlen); retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP; while (unlikely(!pentry) && retry--) { spin_unlock_bh(&pqueue->lock); udelay(CPT_PENTRY_STEP); spin_lock_bh(&pqueue->lock); pentry = get_free_pending_entry(pqueue, pqueue->qlen); } if (unlikely(!pentry)) { ret = -ENOSPC; spin_unlock_bh(&pqueue->lock); goto request_cleanup; } /* * Check if we are close to filling in entire pending queue, * if so then tell the sender to stop/sleep by returning -EBUSY * We do it only for context which can sleep (GFP_KERNEL) */ if (gfp == GFP_KERNEL && pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) { pentry->resume_sender = true; } else pentry->resume_sender = false; resume_sender = pentry->resume_sender; pqueue->pending_count++; pentry->completion_addr = info->completion_addr; pentry->info = info; pentry->callback = req->callback; pentry->areq = req->areq; pentry->busy = true; info->pentry = pentry; info->time_in = jiffies; info->req = req; /* Fill in the command */ iq_cmd.cmd.u64 = 0; iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags); iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1); iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2); iq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen); iq_cmd.dptr = info->dptr_baddr; iq_cmd.rptr = info->rptr_baddr; iq_cmd.cptr.u64 = 0; iq_cmd.cptr.s.grp = ctrl->s.grp; /* Fill in the CPT_INST_S type command for HW interpretation */ cpt_fill_inst(&cptinst, info, &iq_cmd); /* Print debug info if enabled */ otx_cpt_dump_sg_list(pdev, req); pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE); print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false); pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen); print_hex_dump_debug("", 0, 16, 1, info->in_buffer, cpt_req->dlen, false); /* Send CPT command */ cpt_send_cmd(&cptinst, cptvf); /* * We allocate and prepare pending queue entry in critical section * together with submitting CPT instruction to CPT instruction queue * to make sure that order of CPT requests is the same in both * pending and instruction queues */ spin_unlock_bh(&pqueue->lock); ret = resume_sender ? -EBUSY : -EINPROGRESS; return ret; request_cleanup: do_request_cleanup(pdev, info); return ret; } int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req, int cpu_num) { struct otx_cptvf *cptvf = pci_get_drvdata(pdev); if (!otx_cpt_device_ready(cptvf)) { dev_err(&pdev->dev, "CPT Device is not ready\n"); return -ENODEV; } if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) { dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request\n", cptvf->vfid); return -EINVAL; } else if ((cptvf->vftype == OTX_CPT_AE_TYPES) && (req->ctrl.s.se_req)) { dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request\n", cptvf->vfid); return -EINVAL; } return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf); } static int cpt_process_ccode(struct pci_dev *pdev, union otx_cpt_res_s *cpt_status, struct otx_cpt_info_buffer *cpt_info, struct otx_cpt_req_info *req, u32 *res_code) { u8 ccode = cpt_status->s.compcode; union otx_cpt_error_code ecode; ecode.u = be64_to_cpup((__be64 *)cpt_info->out_buffer); switch (ccode) { case CPT_COMP_E_FAULT: dev_err(&pdev->dev, "Request failed with DMA fault\n"); otx_cpt_dump_sg_list(pdev, req); break; case CPT_COMP_E_SWERR: dev_err(&pdev->dev, "Request failed with software error code %d\n", ecode.s.ccode); otx_cpt_dump_sg_list(pdev, req); break; case CPT_COMP_E_HWERR: dev_err(&pdev->dev, "Request failed with hardware error\n"); otx_cpt_dump_sg_list(pdev, req); break; case COMPLETION_CODE_INIT: /* check for timeout */ if (time_after_eq(jiffies, cpt_info->time_in + OTX_CPT_COMMAND_TIMEOUT * HZ)) dev_warn(&pdev->dev, "Request timed out 0x%p\n", req); else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) { cpt_info->time_in = jiffies; cpt_info->extra_time++; } return 1; case CPT_COMP_E_GOOD: /* Check microcode completion code */ if (ecode.s.ccode) { /* * If requested hmac is truncated and ucode returns * s/g write length error then we report success * because ucode writes as many bytes of calculated * hmac as available in gather buffer and reports * s/g write length error if number of bytes in gather * buffer is less than full hmac size. */ if (req->is_trunc_hmac && ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) { *res_code = 0; break; } dev_err(&pdev->dev, "Request failed with software error code 0x%x\n", ecode.s.ccode); otx_cpt_dump_sg_list(pdev, req); break; } /* Request has been processed with success */ *res_code = 0; break; default: dev_err(&pdev->dev, "Request returned invalid status\n"); break; } return 0; } static inline void process_pending_queue(struct pci_dev *pdev, struct otx_cpt_pending_queue *pqueue) { void (*callback)(int status, void *arg1, void *arg2); struct otx_cpt_pending_entry *resume_pentry = NULL; struct otx_cpt_pending_entry *pentry = NULL; struct otx_cpt_info_buffer *cpt_info = NULL; union otx_cpt_res_s *cpt_status = NULL; struct otx_cpt_req_info *req = NULL; struct crypto_async_request *areq; u32 res_code, resume_index; while (1) { spin_lock_bh(&pqueue->lock); pentry = &pqueue->head[pqueue->front]; if (WARN_ON(!pentry)) { spin_unlock_bh(&pqueue->lock); break; } res_code = -EINVAL; if (unlikely(!pentry->busy)) { spin_unlock_bh(&pqueue->lock); break; } if (unlikely(!pentry->callback)) { dev_err(&pdev->dev, "Callback NULL\n"); goto process_pentry; } cpt_info = pentry->info; if (unlikely(!cpt_info)) { dev_err(&pdev->dev, "Pending entry post arg NULL\n"); goto process_pentry; } req = cpt_info->req; if (unlikely(!req)) { dev_err(&pdev->dev, "Request NULL\n"); goto process_pentry; } cpt_status = (union otx_cpt_res_s *) pentry->completion_addr; if (unlikely(!cpt_status)) { dev_err(&pdev->dev, "Completion address NULL\n"); goto process_pentry; } if (cpt_process_ccode(pdev, cpt_status, cpt_info, req, &res_code)) { spin_unlock_bh(&pqueue->lock); return; } cpt_info->pdev = pdev; process_pentry: /* * Check if we should inform sending side to resume * We do it CPT_IQ_RESUME_MARGIN elements in advance before * pending queue becomes empty */ resume_index = modulo_inc(pqueue->front, pqueue->qlen, CPT_IQ_RESUME_MARGIN); resume_pentry = &pqueue->head[resume_index]; if (resume_pentry && resume_pentry->resume_sender) { resume_pentry->resume_sender = false; callback = resume_pentry->callback; areq = resume_pentry->areq; if (callback) { spin_unlock_bh(&pqueue->lock); /* * EINPROGRESS is an indication for sending * side that it can resume sending requests */ callback(-EINPROGRESS, areq, cpt_info); spin_lock_bh(&pqueue->lock); } } callback = pentry->callback; areq = pentry->areq; free_pentry(pentry); pqueue->pending_count--; pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1); spin_unlock_bh(&pqueue->lock); /* * Call callback after current pending entry has been * processed, we don't do it if the callback pointer is * invalid. */ if (callback) callback(res_code, areq, cpt_info); } } void otx_cpt_post_process(struct otx_cptvf_wqe *wqe) { process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]); }
linux-master
drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.c
// SPDX-License-Identifier: GPL-2.0-only /* * Generic PowerPC 44x RNG driver * * Copyright 2011 IBM Corporation */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/hw_random.h> #include <linux/delay.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/io.h> #include "crypto4xx_core.h" #include "crypto4xx_trng.h" #include "crypto4xx_reg_def.h" #define PPC4XX_TRNG_CTRL 0x0008 #define PPC4XX_TRNG_CTRL_DALM 0x20 #define PPC4XX_TRNG_STAT 0x0004 #define PPC4XX_TRNG_STAT_B 0x1 #define PPC4XX_TRNG_DATA 0x0000 static int ppc4xx_trng_data_present(struct hwrng *rng, int wait) { struct crypto4xx_device *dev = (void *)rng->priv; int busy, i, present = 0; for (i = 0; i < 20; i++) { busy = (in_le32(dev->trng_base + PPC4XX_TRNG_STAT) & PPC4XX_TRNG_STAT_B); if (!busy || !wait) { present = 1; break; } udelay(10); } return present; } static int ppc4xx_trng_data_read(struct hwrng *rng, u32 *data) { struct crypto4xx_device *dev = (void *)rng->priv; *data = in_le32(dev->trng_base + PPC4XX_TRNG_DATA); return 4; } static void ppc4xx_trng_enable(struct crypto4xx_device *dev, bool enable) { u32 device_ctrl; device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL); if (enable) device_ctrl |= PPC4XX_TRNG_EN; else device_ctrl &= ~PPC4XX_TRNG_EN; writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL); } static const struct of_device_id ppc4xx_trng_match[] = { { .compatible = "ppc4xx-rng", }, { .compatible = "amcc,ppc460ex-rng", }, { .compatible = "amcc,ppc440epx-rng", }, {}, }; void ppc4xx_trng_probe(struct crypto4xx_core_device *core_dev) { struct crypto4xx_device *dev = core_dev->dev; struct device_node *trng = NULL; struct hwrng *rng = NULL; int err; /* Find the TRNG device node and map it */ trng = of_find_matching_node(NULL, ppc4xx_trng_match); if (!trng || !of_device_is_available(trng)) { of_node_put(trng); return; } dev->trng_base = of_iomap(trng, 0); of_node_put(trng); if (!dev->trng_base) goto err_out; rng = kzalloc(sizeof(*rng), GFP_KERNEL); if (!rng) goto err_out; rng->name = KBUILD_MODNAME; rng->data_present = ppc4xx_trng_data_present; rng->data_read = ppc4xx_trng_data_read; rng->priv = (unsigned long) dev; core_dev->trng = rng; ppc4xx_trng_enable(dev, true); out_le32(dev->trng_base + PPC4XX_TRNG_CTRL, PPC4XX_TRNG_CTRL_DALM); err = devm_hwrng_register(core_dev->device, core_dev->trng); if (err) { ppc4xx_trng_enable(dev, false); dev_err(core_dev->device, "failed to register hwrng (%d).\n", err); goto err_out; } return; err_out: iounmap(dev->trng_base); kfree(rng); dev->trng_base = NULL; core_dev->trng = NULL; } void ppc4xx_trng_remove(struct crypto4xx_core_device *core_dev) { if (core_dev && core_dev->trng) { struct crypto4xx_device *dev = core_dev->dev; devm_hwrng_unregister(core_dev->device, core_dev->trng); ppc4xx_trng_enable(dev, false); iounmap(dev->trng_base); kfree(core_dev->trng); } } MODULE_ALIAS("ppc4xx_rng");
linux-master
drivers/crypto/amcc/crypto4xx_trng.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * AMCC SoC PPC4xx Crypto Driver * * Copyright (c) 2008 Applied Micro Circuits Corporation. * All rights reserved. James Hsiao <[email protected]> * * This file implements the Linux crypto algorithms. */ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/spinlock_types.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <linux/hash.h> #include <crypto/internal/hash.h> #include <linux/dma-mapping.h> #include <crypto/algapi.h> #include <crypto/aead.h> #include <crypto/aes.h> #include <crypto/gcm.h> #include <crypto/sha1.h> #include <crypto/ctr.h> #include <crypto/skcipher.h> #include "crypto4xx_reg_def.h" #include "crypto4xx_core.h" #include "crypto4xx_sa.h" static void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h, u32 save_iv, u32 ld_h, u32 ld_iv, u32 hdr_proc, u32 h, u32 c, u32 pad_type, u32 op_grp, u32 op, u32 dir) { sa->sa_command_0.w = 0; sa->sa_command_0.bf.save_hash_state = save_h; sa->sa_command_0.bf.save_iv = save_iv; sa->sa_command_0.bf.load_hash_state = ld_h; sa->sa_command_0.bf.load_iv = ld_iv; sa->sa_command_0.bf.hdr_proc = hdr_proc; sa->sa_command_0.bf.hash_alg = h; sa->sa_command_0.bf.cipher_alg = c; sa->sa_command_0.bf.pad_type = pad_type & 3; sa->sa_command_0.bf.extend_pad = pad_type >> 2; sa->sa_command_0.bf.op_group = op_grp; sa->sa_command_0.bf.opcode = op; sa->sa_command_0.bf.dir = dir; } static void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm, u32 hmac_mc, u32 cfb, u32 esn, u32 sn_mask, u32 mute, u32 cp_pad, u32 cp_pay, u32 cp_hdr) { sa->sa_command_1.w = 0; sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2; sa->sa_command_1.bf.crypto_mode9_8 = cm & 3; sa->sa_command_1.bf.feedback_mode = cfb; sa->sa_command_1.bf.sa_rev = 1; sa->sa_command_1.bf.hmac_muting = hmac_mc; sa->sa_command_1.bf.extended_seq_num = esn; sa->sa_command_1.bf.seq_num_mask = sn_mask; sa->sa_command_1.bf.mutable_bit_proc = mute; sa->sa_command_1.bf.copy_pad = cp_pad; sa->sa_command_1.bf.copy_payload = cp_pay; sa->sa_command_1.bf.copy_hdr = cp_hdr; } static inline int crypto4xx_crypt(struct skcipher_request *req, const unsigned int ivlen, bool decrypt, bool check_blocksize) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); __le32 iv[AES_IV_SIZE]; if (check_blocksize && !IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE)) return -EINVAL; if (ivlen) crypto4xx_memcpy_to_le32(iv, req->iv, ivlen); return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, req->cryptlen, iv, ivlen, decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len, 0, NULL); } int crypto4xx_encrypt_noiv_block(struct skcipher_request *req) { return crypto4xx_crypt(req, 0, false, true); } int crypto4xx_encrypt_iv_stream(struct skcipher_request *req) { return crypto4xx_crypt(req, AES_IV_SIZE, false, false); } int crypto4xx_decrypt_noiv_block(struct skcipher_request *req) { return crypto4xx_crypt(req, 0, true, true); } int crypto4xx_decrypt_iv_stream(struct skcipher_request *req) { return crypto4xx_crypt(req, AES_IV_SIZE, true, false); } int crypto4xx_encrypt_iv_block(struct skcipher_request *req) { return crypto4xx_crypt(req, AES_IV_SIZE, false, true); } int crypto4xx_decrypt_iv_block(struct skcipher_request *req) { return crypto4xx_crypt(req, AES_IV_SIZE, true, true); } /* * AES Functions */ static int crypto4xx_setkey_aes(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen, unsigned char cm, u8 fb) { struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); struct dynamic_sa_ctl *sa; int rc; if (keylen != AES_KEYSIZE_256 && keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_128) return -EINVAL; /* Create SA */ if (ctx->sa_in || ctx->sa_out) crypto4xx_free_sa(ctx); rc = crypto4xx_alloc_sa(ctx, SA_AES128_LEN + (keylen-16) / 4); if (rc) return rc; /* Setup SA */ sa = ctx->sa_in; set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, (cm == CRYPTO_MODE_ECB ? SA_NOT_SAVE_IV : SA_SAVE_IV), SA_NOT_LOAD_HASH, (cm == CRYPTO_MODE_ECB ? SA_LOAD_IV_FROM_SA : SA_LOAD_IV_FROM_STATE), SA_NO_HEADER_PROC, SA_HASH_ALG_NULL, SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_DECRYPT, DIR_INBOUND); set_dynamic_sa_command_1(sa, cm, SA_HASH_MODE_HASH, fb, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, SA_NOT_COPY_HDR); crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen); sa->sa_contents.w = SA_AES_CONTENTS | (keylen << 2); sa->sa_command_1.bf.key_len = keylen >> 3; memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); sa = ctx->sa_out; sa->sa_command_0.bf.dir = DIR_OUTBOUND; /* * SA_OPCODE_ENCRYPT is the same value as SA_OPCODE_DECRYPT. * it's the DIR_(IN|OUT)BOUND that matters */ sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT; return 0; } int crypto4xx_setkey_aes_cbc(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CBC, CRYPTO_FEEDBACK_MODE_NO_FB); } int crypto4xx_setkey_aes_cfb(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CFB, CRYPTO_FEEDBACK_MODE_128BIT_CFB); } int crypto4xx_setkey_aes_ecb(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_ECB, CRYPTO_FEEDBACK_MODE_NO_FB); } int crypto4xx_setkey_aes_ofb(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_OFB, CRYPTO_FEEDBACK_MODE_64BIT_OFB); } int crypto4xx_setkey_rfc3686(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); int rc; rc = crypto4xx_setkey_aes(cipher, key, keylen - CTR_RFC3686_NONCE_SIZE, CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB); if (rc) return rc; ctx->iv_nonce = cpu_to_le32p((u32 *)&key[keylen - CTR_RFC3686_NONCE_SIZE]); return 0; } int crypto4xx_rfc3686_encrypt(struct skcipher_request *req) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); __le32 iv[AES_IV_SIZE / 4] = { ctx->iv_nonce, cpu_to_le32p((u32 *) req->iv), cpu_to_le32p((u32 *) (req->iv + 4)), cpu_to_le32(1) }; return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, req->cryptlen, iv, AES_IV_SIZE, ctx->sa_out, ctx->sa_len, 0, NULL); } int crypto4xx_rfc3686_decrypt(struct skcipher_request *req) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); __le32 iv[AES_IV_SIZE / 4] = { ctx->iv_nonce, cpu_to_le32p((u32 *) req->iv), cpu_to_le32p((u32 *) (req->iv + 4)), cpu_to_le32(1) }; return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, req->cryptlen, iv, AES_IV_SIZE, ctx->sa_out, ctx->sa_len, 0, NULL); } static int crypto4xx_ctr_crypt(struct skcipher_request *req, bool encrypt) { struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); size_t iv_len = crypto_skcipher_ivsize(cipher); unsigned int counter = be32_to_cpup((__be32 *)(req->iv + iv_len - 4)); unsigned int nblks = ALIGN(req->cryptlen, AES_BLOCK_SIZE) / AES_BLOCK_SIZE; /* * The hardware uses only the last 32-bits as the counter while the * kernel tests (aes_ctr_enc_tv_template[4] for example) expect that * the whole IV is a counter. So fallback if the counter is going to * overlow. */ if (counter + nblks < counter) { SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->sw_cipher.cipher); int ret; skcipher_request_set_sync_tfm(subreq, ctx->sw_cipher.cipher); skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); ret = encrypt ? crypto_skcipher_encrypt(subreq) : crypto_skcipher_decrypt(subreq); skcipher_request_zero(subreq); return ret; } return encrypt ? crypto4xx_encrypt_iv_stream(req) : crypto4xx_decrypt_iv_stream(req); } static int crypto4xx_sk_setup_fallback(struct crypto4xx_ctx *ctx, struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { crypto_sync_skcipher_clear_flags(ctx->sw_cipher.cipher, CRYPTO_TFM_REQ_MASK); crypto_sync_skcipher_set_flags(ctx->sw_cipher.cipher, crypto_skcipher_get_flags(cipher) & CRYPTO_TFM_REQ_MASK); return crypto_sync_skcipher_setkey(ctx->sw_cipher.cipher, key, keylen); } int crypto4xx_setkey_aes_ctr(struct crypto_skcipher *cipher, const u8 *key, unsigned int keylen) { struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher); int rc; rc = crypto4xx_sk_setup_fallback(ctx, cipher, key, keylen); if (rc) return rc; return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB); } int crypto4xx_encrypt_ctr(struct skcipher_request *req) { return crypto4xx_ctr_crypt(req, true); } int crypto4xx_decrypt_ctr(struct skcipher_request *req) { return crypto4xx_ctr_crypt(req, false); } static inline bool crypto4xx_aead_need_fallback(struct aead_request *req, unsigned int len, bool is_ccm, bool decrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); /* authsize has to be a multiple of 4 */ if (aead->authsize & 3) return true; /* * hardware does not handle cases where plaintext * is less than a block. */ if (len < AES_BLOCK_SIZE) return true; /* assoc len needs to be a multiple of 4 and <= 1020 */ if (req->assoclen & 0x3 || req->assoclen > 1020) return true; /* CCM supports only counter field length of 2 and 4 bytes */ if (is_ccm && !(req->iv[0] == 1 || req->iv[0] == 3)) return true; return false; } static int crypto4xx_aead_fallback(struct aead_request *req, struct crypto4xx_ctx *ctx, bool do_decrypt) { struct aead_request *subreq = aead_request_ctx(req); aead_request_set_tfm(subreq, ctx->sw_cipher.aead); aead_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); return do_decrypt ? crypto_aead_decrypt(subreq) : crypto_aead_encrypt(subreq); } static int crypto4xx_aead_setup_fallback(struct crypto4xx_ctx *ctx, struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { crypto_aead_clear_flags(ctx->sw_cipher.aead, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(ctx->sw_cipher.aead, crypto_aead_get_flags(cipher) & CRYPTO_TFM_REQ_MASK); return crypto_aead_setkey(ctx->sw_cipher.aead, key, keylen); } /* * AES-CCM Functions */ int crypto4xx_setkey_aes_ccm(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_aead_tfm(cipher); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); struct dynamic_sa_ctl *sa; int rc = 0; rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen); if (rc) return rc; if (ctx->sa_in || ctx->sa_out) crypto4xx_free_sa(ctx); rc = crypto4xx_alloc_sa(ctx, SA_AES128_CCM_LEN + (keylen - 16) / 4); if (rc) return rc; /* Setup SA */ sa = (struct dynamic_sa_ctl *) ctx->sa_in; sa->sa_contents.w = SA_AES_CCM_CONTENTS | (keylen << 2); set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_HASH_DECRYPT, DIR_INBOUND); set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, SA_NOT_COPY_HDR); sa->sa_command_1.bf.key_len = keylen >> 3; crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen); memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); sa = (struct dynamic_sa_ctl *) ctx->sa_out; set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC, SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_ENCRYPT_HASH, DIR_OUTBOUND); set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_COPY_PAD, SA_COPY_PAYLOAD, SA_NOT_COPY_HDR); sa->sa_command_1.bf.key_len = keylen >> 3; return 0; } static int crypto4xx_crypt_aes_ccm(struct aead_request *req, bool decrypt) { struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req); struct crypto_aead *aead = crypto_aead_reqtfm(req); __le32 iv[16]; u32 tmp_sa[SA_AES128_CCM_LEN + 4]; struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *)tmp_sa; unsigned int len = req->cryptlen; if (decrypt) len -= crypto_aead_authsize(aead); if (crypto4xx_aead_need_fallback(req, len, true, decrypt)) return crypto4xx_aead_fallback(req, ctx, decrypt); memcpy(tmp_sa, decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len * 4); sa->sa_command_0.bf.digest_len = crypto_aead_authsize(aead) >> 2; if (req->iv[0] == 1) { /* CRYPTO_MODE_AES_ICM */ sa->sa_command_1.bf.crypto_mode9_8 = 1; } iv[3] = cpu_to_le32(0); crypto4xx_memcpy_to_le32(iv, req->iv, 16 - (req->iv[0] + 1)); return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, len, iv, sizeof(iv), sa, ctx->sa_len, req->assoclen, rctx->dst); } int crypto4xx_encrypt_aes_ccm(struct aead_request *req) { return crypto4xx_crypt_aes_ccm(req, false); } int crypto4xx_decrypt_aes_ccm(struct aead_request *req) { return crypto4xx_crypt_aes_ccm(req, true); } int crypto4xx_setauthsize_aead(struct crypto_aead *cipher, unsigned int authsize) { struct crypto_tfm *tfm = crypto_aead_tfm(cipher); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); return crypto_aead_setauthsize(ctx->sw_cipher.aead, authsize); } /* * AES-GCM Functions */ static int crypto4xx_aes_gcm_validate_keylen(unsigned int keylen) { switch (keylen) { case 16: case 24: case 32: return 0; default: return -EINVAL; } } static int crypto4xx_compute_gcm_hash_key_sw(__le32 *hash_start, const u8 *key, unsigned int keylen) { struct crypto_aes_ctx ctx; uint8_t src[16] = { 0 }; int rc; rc = aes_expandkey(&ctx, key, keylen); if (rc) { pr_err("aes_expandkey() failed: %d\n", rc); return rc; } aes_encrypt(&ctx, src, src); crypto4xx_memcpy_to_le32(hash_start, src, 16); memzero_explicit(&ctx, sizeof(ctx)); return 0; } int crypto4xx_setkey_aes_gcm(struct crypto_aead *cipher, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_aead_tfm(cipher); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); struct dynamic_sa_ctl *sa; int rc = 0; if (crypto4xx_aes_gcm_validate_keylen(keylen) != 0) return -EINVAL; rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen); if (rc) return rc; if (ctx->sa_in || ctx->sa_out) crypto4xx_free_sa(ctx); rc = crypto4xx_alloc_sa(ctx, SA_AES128_GCM_LEN + (keylen - 16) / 4); if (rc) return rc; sa = (struct dynamic_sa_ctl *) ctx->sa_in; sa->sa_contents.w = SA_AES_GCM_CONTENTS | (keylen << 2); set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE, SA_NO_HEADER_PROC, SA_HASH_ALG_GHASH, SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_HASH_DECRYPT, DIR_INBOUND); set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH, CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_ON, SA_MC_DISABLE, SA_NOT_COPY_PAD, SA_COPY_PAYLOAD, SA_NOT_COPY_HDR); sa->sa_command_1.bf.key_len = keylen >> 3; crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen); rc = crypto4xx_compute_gcm_hash_key_sw(get_dynamic_sa_inner_digest(sa), key, keylen); if (rc) { pr_err("GCM hash key setting failed = %d\n", rc); goto err; } memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4); sa = (struct dynamic_sa_ctl *) ctx->sa_out; sa->sa_command_0.bf.dir = DIR_OUTBOUND; sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT_HASH; return 0; err: crypto4xx_free_sa(ctx); return rc; } static inline int crypto4xx_crypt_aes_gcm(struct aead_request *req, bool decrypt) { struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req); __le32 iv[4]; unsigned int len = req->cryptlen; if (decrypt) len -= crypto_aead_authsize(crypto_aead_reqtfm(req)); if (crypto4xx_aead_need_fallback(req, len, false, decrypt)) return crypto4xx_aead_fallback(req, ctx, decrypt); crypto4xx_memcpy_to_le32(iv, req->iv, GCM_AES_IV_SIZE); iv[3] = cpu_to_le32(1); return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst, len, iv, sizeof(iv), decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len, req->assoclen, rctx->dst); } int crypto4xx_encrypt_aes_gcm(struct aead_request *req) { return crypto4xx_crypt_aes_gcm(req, false); } int crypto4xx_decrypt_aes_gcm(struct aead_request *req) { return crypto4xx_crypt_aes_gcm(req, true); } /* * HASH SHA1 Functions */ static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm, unsigned int sa_len, unsigned char ha, unsigned char hm) { struct crypto_alg *alg = tfm->__crt_alg; struct crypto4xx_alg *my_alg; struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm); struct dynamic_sa_hash160 *sa; int rc; my_alg = container_of(__crypto_ahash_alg(alg), struct crypto4xx_alg, alg.u.hash); ctx->dev = my_alg->dev; /* Create SA */ if (ctx->sa_in || ctx->sa_out) crypto4xx_free_sa(ctx); rc = crypto4xx_alloc_sa(ctx, sa_len); if (rc) return rc; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct crypto4xx_ctx)); sa = (struct dynamic_sa_hash160 *)ctx->sa_in; set_dynamic_sa_command_0(&sa->ctrl, SA_SAVE_HASH, SA_NOT_SAVE_IV, SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA, SA_NO_HEADER_PROC, ha, SA_CIPHER_ALG_NULL, SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC, SA_OPCODE_HASH, DIR_INBOUND); set_dynamic_sa_command_1(&sa->ctrl, 0, SA_HASH_MODE_HASH, CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF, SA_SEQ_MASK_OFF, SA_MC_ENABLE, SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD, SA_NOT_COPY_HDR); /* Need to zero hash digest in SA */ memset(sa->inner_digest, 0, sizeof(sa->inner_digest)); memset(sa->outer_digest, 0, sizeof(sa->outer_digest)); return 0; } int crypto4xx_hash_init(struct ahash_request *req) { struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); int ds; struct dynamic_sa_ctl *sa; sa = ctx->sa_in; ds = crypto_ahash_digestsize( __crypto_ahash_cast(req->base.tfm)); sa->sa_command_0.bf.digest_len = ds >> 2; sa->sa_command_0.bf.load_hash_state = SA_LOAD_HASH_FROM_SA; return 0; } int crypto4xx_hash_update(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct scatterlist dst; unsigned int ds = crypto_ahash_digestsize(ahash); sg_init_one(&dst, req->result, ds); return crypto4xx_build_pd(&req->base, ctx, req->src, &dst, req->nbytes, NULL, 0, ctx->sa_in, ctx->sa_len, 0, NULL); } int crypto4xx_hash_final(struct ahash_request *req) { return 0; } int crypto4xx_hash_digest(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct scatterlist dst; unsigned int ds = crypto_ahash_digestsize(ahash); sg_init_one(&dst, req->result, ds); return crypto4xx_build_pd(&req->base, ctx, req->src, &dst, req->nbytes, NULL, 0, ctx->sa_in, ctx->sa_len, 0, NULL); } /* * SHA1 Algorithm */ int crypto4xx_sha1_alg_init(struct crypto_tfm *tfm) { return crypto4xx_hash_alg_init(tfm, SA_HASH160_LEN, SA_HASH_ALG_SHA1, SA_HASH_MODE_HASH); }
linux-master
drivers/crypto/amcc/crypto4xx_alg.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * AMCC SoC PPC4xx Crypto Driver * * Copyright (c) 2008 Applied Micro Circuits Corporation. * All rights reserved. James Hsiao <[email protected]> * * This file implements AMCC crypto offload Linux device driver for use with * Linux CryptoAPI. */ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/spinlock_types.h> #include <linux/random.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/init.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/slab.h> #include <asm/dcr.h> #include <asm/dcr-regs.h> #include <asm/cacheflush.h> #include <crypto/aead.h> #include <crypto/aes.h> #include <crypto/ctr.h> #include <crypto/gcm.h> #include <crypto/sha1.h> #include <crypto/rng.h> #include <crypto/scatterwalk.h> #include <crypto/skcipher.h> #include <crypto/internal/aead.h> #include <crypto/internal/rng.h> #include <crypto/internal/skcipher.h> #include "crypto4xx_reg_def.h" #include "crypto4xx_core.h" #include "crypto4xx_sa.h" #include "crypto4xx_trng.h" #define PPC4XX_SEC_VERSION_STR "0.5" /* * PPC4xx Crypto Engine Initialization Routine */ static void crypto4xx_hw_init(struct crypto4xx_device *dev) { union ce_ring_size ring_size; union ce_ring_control ring_ctrl; union ce_part_ring_size part_ring_size; union ce_io_threshold io_threshold; u32 rand_num; union ce_pe_dma_cfg pe_dma_cfg; u32 device_ctrl; writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG); /* setup pe dma, include reset sg, pdr and pe, then release reset */ pe_dma_cfg.w = 0; pe_dma_cfg.bf.bo_sgpd_en = 1; pe_dma_cfg.bf.bo_data_en = 0; pe_dma_cfg.bf.bo_sa_en = 1; pe_dma_cfg.bf.bo_pd_en = 1; pe_dma_cfg.bf.dynamic_sa_en = 1; pe_dma_cfg.bf.reset_sg = 1; pe_dma_cfg.bf.reset_pdr = 1; pe_dma_cfg.bf.reset_pe = 1; writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); /* un reset pe,sg and pdr */ pe_dma_cfg.bf.pe_mode = 0; pe_dma_cfg.bf.reset_sg = 0; pe_dma_cfg.bf.reset_pdr = 0; pe_dma_cfg.bf.reset_pe = 0; pe_dma_cfg.bf.bo_td_en = 0; writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE); writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE); writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL); get_random_bytes(&rand_num, sizeof(rand_num)); writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L); get_random_bytes(&rand_num, sizeof(rand_num)); writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H); ring_size.w = 0; ring_size.bf.ring_offset = PPC4XX_PD_SIZE; ring_size.bf.ring_size = PPC4XX_NUM_PD; writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE); ring_ctrl.w = 0; writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL); device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL); device_ctrl |= PPC4XX_DC_3DES_EN; writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL); writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE); writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE); part_ring_size.w = 0; part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE; part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE; writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE); writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG); io_threshold.w = 0; io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD; io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD; writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD); writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR); writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR); writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR); writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR); writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR); writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR); writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR); /* un reset pe,sg and pdr */ pe_dma_cfg.bf.pe_mode = 1; pe_dma_cfg.bf.reset_sg = 0; pe_dma_cfg.bf.reset_pdr = 0; pe_dma_cfg.bf.reset_pe = 0; pe_dma_cfg.bf.bo_td_en = 0; writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); /*clear all pending interrupt*/ writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR); writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG); if (dev->is_revb) { writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10, dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT); writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT, dev->ce_base + CRYPTO4XX_INT_EN); } else { writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN); } } int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size) { ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC); if (ctx->sa_in == NULL) return -ENOMEM; ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC); if (ctx->sa_out == NULL) { kfree(ctx->sa_in); ctx->sa_in = NULL; return -ENOMEM; } ctx->sa_len = size; return 0; } void crypto4xx_free_sa(struct crypto4xx_ctx *ctx) { kfree(ctx->sa_in); ctx->sa_in = NULL; kfree(ctx->sa_out); ctx->sa_out = NULL; ctx->sa_len = 0; } /* * alloc memory for the gather ring * no need to alloc buf for the ring * gdr_tail, gdr_head and gdr_count are initialized by this function */ static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev) { int i; dev->pdr = dma_alloc_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, &dev->pdr_pa, GFP_KERNEL); if (!dev->pdr) return -ENOMEM; dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo), GFP_KERNEL); if (!dev->pdr_uinfo) { dma_free_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, dev->pdr, dev->pdr_pa); return -ENOMEM; } dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device, sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD, &dev->shadow_sa_pool_pa, GFP_KERNEL); if (!dev->shadow_sa_pool) return -ENOMEM; dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device, sizeof(struct sa_state_record) * PPC4XX_NUM_PD, &dev->shadow_sr_pool_pa, GFP_KERNEL); if (!dev->shadow_sr_pool) return -ENOMEM; for (i = 0; i < PPC4XX_NUM_PD; i++) { struct ce_pd *pd = &dev->pdr[i]; struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i]; pd->sa = dev->shadow_sa_pool_pa + sizeof(union shadow_sa_buf) * i; /* alloc 256 bytes which is enough for any kind of dynamic sa */ pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa; /* alloc state record */ pd_uinfo->sr_va = &dev->shadow_sr_pool[i]; pd_uinfo->sr_pa = dev->shadow_sr_pool_pa + sizeof(struct sa_state_record) * i; } return 0; } static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev) { if (dev->pdr) dma_free_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, dev->pdr, dev->pdr_pa); if (dev->shadow_sa_pool) dma_free_coherent(dev->core_dev->device, sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD, dev->shadow_sa_pool, dev->shadow_sa_pool_pa); if (dev->shadow_sr_pool) dma_free_coherent(dev->core_dev->device, sizeof(struct sa_state_record) * PPC4XX_NUM_PD, dev->shadow_sr_pool, dev->shadow_sr_pool_pa); kfree(dev->pdr_uinfo); } static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev) { u32 retval; u32 tmp; retval = dev->pdr_head; tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD; if (tmp == dev->pdr_tail) return ERING_WAS_FULL; dev->pdr_head = tmp; return retval; } static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx) { struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx]; u32 tail; unsigned long flags; spin_lock_irqsave(&dev->core_dev->lock, flags); pd_uinfo->state = PD_ENTRY_FREE; if (dev->pdr_tail != PPC4XX_LAST_PD) dev->pdr_tail++; else dev->pdr_tail = 0; tail = dev->pdr_tail; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return tail; } /* * alloc memory for the gather ring * no need to alloc buf for the ring * gdr_tail, gdr_head and gdr_count are initialized by this function */ static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev) { dev->gdr = dma_alloc_coherent(dev->core_dev->device, sizeof(struct ce_gd) * PPC4XX_NUM_GD, &dev->gdr_pa, GFP_KERNEL); if (!dev->gdr) return -ENOMEM; return 0; } static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev) { if (dev->gdr) dma_free_coherent(dev->core_dev->device, sizeof(struct ce_gd) * PPC4XX_NUM_GD, dev->gdr, dev->gdr_pa); } /* * when this function is called. * preemption or interrupt must be disabled */ static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n) { u32 retval; u32 tmp; if (n >= PPC4XX_NUM_GD) return ERING_WAS_FULL; retval = dev->gdr_head; tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD; if (dev->gdr_head > dev->gdr_tail) { if (tmp < dev->gdr_head && tmp >= dev->gdr_tail) return ERING_WAS_FULL; } else if (dev->gdr_head < dev->gdr_tail) { if (tmp < dev->gdr_head || tmp >= dev->gdr_tail) return ERING_WAS_FULL; } dev->gdr_head = tmp; return retval; } static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev) { unsigned long flags; spin_lock_irqsave(&dev->core_dev->lock, flags); if (dev->gdr_tail == dev->gdr_head) { spin_unlock_irqrestore(&dev->core_dev->lock, flags); return 0; } if (dev->gdr_tail != PPC4XX_LAST_GD) dev->gdr_tail++; else dev->gdr_tail = 0; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return 0; } static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev, dma_addr_t *gd_dma, u32 idx) { *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx; return &dev->gdr[idx]; } /* * alloc memory for the scatter ring * need to alloc buf for the ring * sdr_tail, sdr_head and sdr_count are initialized by this function */ static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev) { int i; dev->scatter_buffer_va = dma_alloc_coherent(dev->core_dev->device, PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD, &dev->scatter_buffer_pa, GFP_KERNEL); if (!dev->scatter_buffer_va) return -ENOMEM; /* alloc memory for scatter descriptor ring */ dev->sdr = dma_alloc_coherent(dev->core_dev->device, sizeof(struct ce_sd) * PPC4XX_NUM_SD, &dev->sdr_pa, GFP_KERNEL); if (!dev->sdr) return -ENOMEM; for (i = 0; i < PPC4XX_NUM_SD; i++) { dev->sdr[i].ptr = dev->scatter_buffer_pa + PPC4XX_SD_BUFFER_SIZE * i; } return 0; } static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev) { if (dev->sdr) dma_free_coherent(dev->core_dev->device, sizeof(struct ce_sd) * PPC4XX_NUM_SD, dev->sdr, dev->sdr_pa); if (dev->scatter_buffer_va) dma_free_coherent(dev->core_dev->device, PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD, dev->scatter_buffer_va, dev->scatter_buffer_pa); } /* * when this function is called. * preemption or interrupt must be disabled */ static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n) { u32 retval; u32 tmp; if (n >= PPC4XX_NUM_SD) return ERING_WAS_FULL; retval = dev->sdr_head; tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD; if (dev->sdr_head > dev->gdr_tail) { if (tmp < dev->sdr_head && tmp >= dev->sdr_tail) return ERING_WAS_FULL; } else if (dev->sdr_head < dev->sdr_tail) { if (tmp < dev->sdr_head || tmp >= dev->sdr_tail) return ERING_WAS_FULL; } /* the head = tail, or empty case is already take cared */ dev->sdr_head = tmp; return retval; } static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev) { unsigned long flags; spin_lock_irqsave(&dev->core_dev->lock, flags); if (dev->sdr_tail == dev->sdr_head) { spin_unlock_irqrestore(&dev->core_dev->lock, flags); return 0; } if (dev->sdr_tail != PPC4XX_LAST_SD) dev->sdr_tail++; else dev->sdr_tail = 0; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return 0; } static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev, dma_addr_t *sd_dma, u32 idx) { *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx; return &dev->sdr[idx]; } static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev, struct ce_pd *pd, struct pd_uinfo *pd_uinfo, u32 nbytes, struct scatterlist *dst) { unsigned int first_sd = pd_uinfo->first_sd; unsigned int last_sd; unsigned int overflow = 0; unsigned int to_copy; unsigned int dst_start = 0; /* * Because the scatter buffers are all neatly organized in one * big continuous ringbuffer; scatterwalk_map_and_copy() can * be instructed to copy a range of buffers in one go. */ last_sd = (first_sd + pd_uinfo->num_sd); if (last_sd > PPC4XX_LAST_SD) { last_sd = PPC4XX_LAST_SD; overflow = last_sd % PPC4XX_NUM_SD; } while (nbytes) { void *buf = dev->scatter_buffer_va + first_sd * PPC4XX_SD_BUFFER_SIZE; to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE * (1 + last_sd - first_sd)); scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1); nbytes -= to_copy; if (overflow) { first_sd = 0; last_sd = overflow; dst_start += to_copy; overflow = 0; } } } static void crypto4xx_copy_digest_to_dst(void *dst, struct pd_uinfo *pd_uinfo, struct crypto4xx_ctx *ctx) { struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in; if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) { memcpy(dst, pd_uinfo->sr_va->save_digest, SA_HASH_ALG_SHA1_DIGEST_SIZE); } } static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo) { int i; if (pd_uinfo->num_gd) { for (i = 0; i < pd_uinfo->num_gd; i++) crypto4xx_put_gd_to_gdr(dev); pd_uinfo->first_gd = 0xffffffff; pd_uinfo->num_gd = 0; } if (pd_uinfo->num_sd) { for (i = 0; i < pd_uinfo->num_sd; i++) crypto4xx_put_sd_to_sdr(dev); pd_uinfo->first_sd = 0xffffffff; pd_uinfo->num_sd = 0; } } static void crypto4xx_cipher_done(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo, struct ce_pd *pd) { struct skcipher_request *req; struct scatterlist *dst; req = skcipher_request_cast(pd_uinfo->async_req); if (pd_uinfo->sa_va->sa_command_0.bf.scatter) { crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, req->cryptlen, req->dst); } else { dst = pd_uinfo->dest_va; dma_unmap_page(dev->core_dev->device, pd->dest, dst->length, DMA_FROM_DEVICE); } if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); crypto4xx_memcpy_from_le32((u32 *)req->iv, pd_uinfo->sr_va->save_iv, crypto_skcipher_ivsize(skcipher)); } crypto4xx_ret_sg_desc(dev, pd_uinfo); if (pd_uinfo->state & PD_ENTRY_BUSY) skcipher_request_complete(req, -EINPROGRESS); skcipher_request_complete(req, 0); } static void crypto4xx_ahash_done(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo) { struct crypto4xx_ctx *ctx; struct ahash_request *ahash_req; ahash_req = ahash_request_cast(pd_uinfo->async_req); ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req)); crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx); crypto4xx_ret_sg_desc(dev, pd_uinfo); if (pd_uinfo->state & PD_ENTRY_BUSY) ahash_request_complete(ahash_req, -EINPROGRESS); ahash_request_complete(ahash_req, 0); } static void crypto4xx_aead_done(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo, struct ce_pd *pd) { struct aead_request *aead_req = container_of(pd_uinfo->async_req, struct aead_request, base); struct scatterlist *dst = pd_uinfo->dest_va; size_t cp_len = crypto_aead_authsize( crypto_aead_reqtfm(aead_req)); u32 icv[AES_BLOCK_SIZE]; int err = 0; if (pd_uinfo->sa_va->sa_command_0.bf.scatter) { crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, pd->pd_ctl_len.bf.pkt_len, dst); } else { dma_unmap_page(dev->core_dev->device, pd->dest, dst->length, DMA_FROM_DEVICE); } if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) { /* append icv at the end */ crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest, sizeof(icv)); scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen, cp_len, 1); } else { /* check icv at the end */ scatterwalk_map_and_copy(icv, aead_req->src, aead_req->assoclen + aead_req->cryptlen - cp_len, cp_len, 0); crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv)); if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len)) err = -EBADMSG; } crypto4xx_ret_sg_desc(dev, pd_uinfo); if (pd->pd_ctl.bf.status & 0xff) { if (!__ratelimit(&dev->aead_ratelimit)) { if (pd->pd_ctl.bf.status & 2) pr_err("pad fail error\n"); if (pd->pd_ctl.bf.status & 4) pr_err("seqnum fail\n"); if (pd->pd_ctl.bf.status & 8) pr_err("error _notify\n"); pr_err("aead return err status = 0x%02x\n", pd->pd_ctl.bf.status & 0xff); pr_err("pd pad_ctl = 0x%08x\n", pd->pd_ctl.bf.pd_pad_ctl); } err = -EINVAL; } if (pd_uinfo->state & PD_ENTRY_BUSY) aead_request_complete(aead_req, -EINPROGRESS); aead_request_complete(aead_req, err); } static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx) { struct ce_pd *pd = &dev->pdr[idx]; struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx]; switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) { case CRYPTO_ALG_TYPE_SKCIPHER: crypto4xx_cipher_done(dev, pd_uinfo, pd); break; case CRYPTO_ALG_TYPE_AEAD: crypto4xx_aead_done(dev, pd_uinfo, pd); break; case CRYPTO_ALG_TYPE_AHASH: crypto4xx_ahash_done(dev, pd_uinfo); break; } } static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev) { crypto4xx_destroy_pdr(core_dev->dev); crypto4xx_destroy_gdr(core_dev->dev); crypto4xx_destroy_sdr(core_dev->dev); iounmap(core_dev->dev->ce_base); kfree(core_dev->dev); kfree(core_dev); } static u32 get_next_gd(u32 current) { if (current != PPC4XX_LAST_GD) return current + 1; else return 0; } static u32 get_next_sd(u32 current) { if (current != PPC4XX_LAST_SD) return current + 1; else return 0; } int crypto4xx_build_pd(struct crypto_async_request *req, struct crypto4xx_ctx *ctx, struct scatterlist *src, struct scatterlist *dst, const unsigned int datalen, const __le32 *iv, const u32 iv_len, const struct dynamic_sa_ctl *req_sa, const unsigned int sa_len, const unsigned int assoclen, struct scatterlist *_dst) { struct crypto4xx_device *dev = ctx->dev; struct dynamic_sa_ctl *sa; struct ce_gd *gd; struct ce_pd *pd; u32 num_gd, num_sd; u32 fst_gd = 0xffffffff; u32 fst_sd = 0xffffffff; u32 pd_entry; unsigned long flags; struct pd_uinfo *pd_uinfo; unsigned int nbytes = datalen; size_t offset_to_sr_ptr; u32 gd_idx = 0; int tmp; bool is_busy, force_sd; /* * There's a very subtile/disguised "bug" in the hardware that * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption * of the hardware spec: * *drum roll* the AES/(T)DES OFB and CFB modes are listed as * operation modes for >>> "Block ciphers" <<<. * * To workaround this issue and stop the hardware from causing * "overran dst buffer" on crypttexts that are not a multiple * of 16 (AES_BLOCK_SIZE), we force the driver to use the * scatter buffers. */ force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB) && (datalen % AES_BLOCK_SIZE); /* figure how many gd are needed */ tmp = sg_nents_for_len(src, assoclen + datalen); if (tmp < 0) { dev_err(dev->core_dev->device, "Invalid number of src SG.\n"); return tmp; } if (tmp == 1) tmp = 0; num_gd = tmp; if (assoclen) { nbytes += assoclen; dst = scatterwalk_ffwd(_dst, dst, assoclen); } /* figure how many sd are needed */ if (sg_is_last(dst) && force_sd == false) { num_sd = 0; } else { if (datalen > PPC4XX_SD_BUFFER_SIZE) { num_sd = datalen / PPC4XX_SD_BUFFER_SIZE; if (datalen % PPC4XX_SD_BUFFER_SIZE) num_sd++; } else { num_sd = 1; } } /* * The follow section of code needs to be protected * The gather ring and scatter ring needs to be consecutive * In case of run out of any kind of descriptor, the descriptor * already got must be return the original place. */ spin_lock_irqsave(&dev->core_dev->lock, flags); /* * Let the caller know to slow down, once more than 13/16ths = 81% * of the available data contexts are being used simultaneously. * * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for * 31 more contexts. Before new requests have to be rejected. */ if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) { is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >= ((PPC4XX_NUM_PD * 13) / 16); } else { /* * To fix contention issues between ipsec (no blacklog) and * dm-crypto (backlog) reserve 32 entries for "no backlog" * data contexts. */ is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >= ((PPC4XX_NUM_PD * 15) / 16); if (is_busy) { spin_unlock_irqrestore(&dev->core_dev->lock, flags); return -EBUSY; } } if (num_gd) { fst_gd = crypto4xx_get_n_gd(dev, num_gd); if (fst_gd == ERING_WAS_FULL) { spin_unlock_irqrestore(&dev->core_dev->lock, flags); return -EAGAIN; } } if (num_sd) { fst_sd = crypto4xx_get_n_sd(dev, num_sd); if (fst_sd == ERING_WAS_FULL) { if (num_gd) dev->gdr_head = fst_gd; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return -EAGAIN; } } pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev); if (pd_entry == ERING_WAS_FULL) { if (num_gd) dev->gdr_head = fst_gd; if (num_sd) dev->sdr_head = fst_sd; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return -EAGAIN; } spin_unlock_irqrestore(&dev->core_dev->lock, flags); pd = &dev->pdr[pd_entry]; pd->sa_len = sa_len; pd_uinfo = &dev->pdr_uinfo[pd_entry]; pd_uinfo->num_gd = num_gd; pd_uinfo->num_sd = num_sd; pd_uinfo->dest_va = dst; pd_uinfo->async_req = req; if (iv_len) memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len); sa = pd_uinfo->sa_va; memcpy(sa, req_sa, sa_len * 4); sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2); offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa); *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa; if (num_gd) { dma_addr_t gd_dma; struct scatterlist *sg; /* get first gd we are going to use */ gd_idx = fst_gd; pd_uinfo->first_gd = fst_gd; gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); pd->src = gd_dma; /* enable gather */ sa->sa_command_0.bf.gather = 1; /* walk the sg, and setup gather array */ sg = src; while (nbytes) { size_t len; len = min(sg->length, nbytes); gd->ptr = dma_map_page(dev->core_dev->device, sg_page(sg), sg->offset, len, DMA_TO_DEVICE); gd->ctl_len.len = len; gd->ctl_len.done = 0; gd->ctl_len.ready = 1; if (len >= nbytes) break; nbytes -= sg->length; gd_idx = get_next_gd(gd_idx); gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); sg = sg_next(sg); } } else { pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src), src->offset, min(nbytes, src->length), DMA_TO_DEVICE); /* * Disable gather in sa command */ sa->sa_command_0.bf.gather = 0; /* * Indicate gather array is not used */ pd_uinfo->first_gd = 0xffffffff; } if (!num_sd) { /* * we know application give us dst a whole piece of memory * no need to use scatter ring. */ pd_uinfo->first_sd = 0xffffffff; sa->sa_command_0.bf.scatter = 0; pd->dest = (u32)dma_map_page(dev->core_dev->device, sg_page(dst), dst->offset, min(datalen, dst->length), DMA_TO_DEVICE); } else { dma_addr_t sd_dma; struct ce_sd *sd = NULL; u32 sd_idx = fst_sd; nbytes = datalen; sa->sa_command_0.bf.scatter = 1; pd_uinfo->first_sd = fst_sd; sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx); pd->dest = sd_dma; /* setup scatter descriptor */ sd->ctl.done = 0; sd->ctl.rdy = 1; /* sd->ptr should be setup by sd_init routine*/ if (nbytes >= PPC4XX_SD_BUFFER_SIZE) nbytes -= PPC4XX_SD_BUFFER_SIZE; else nbytes = 0; while (nbytes) { sd_idx = get_next_sd(sd_idx); sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx); /* setup scatter descriptor */ sd->ctl.done = 0; sd->ctl.rdy = 1; if (nbytes >= PPC4XX_SD_BUFFER_SIZE) { nbytes -= PPC4XX_SD_BUFFER_SIZE; } else { /* * SD entry can hold PPC4XX_SD_BUFFER_SIZE, * which is more than nbytes, so done. */ nbytes = 0; } } } pd->pd_ctl.w = PD_CTL_HOST_READY | ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) || (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ? PD_CTL_HASH_FINAL : 0); pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen); pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0); wmb(); /* write any value to push engine to read a pd */ writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); return is_busy ? -EBUSY : -EINPROGRESS; } /* * Algorithm Registration Functions */ static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg, struct crypto4xx_ctx *ctx) { ctx->dev = amcc_alg->dev; ctx->sa_in = NULL; ctx->sa_out = NULL; ctx->sa_len = 0; } static int crypto4xx_sk_init(struct crypto_skcipher *sk) { struct skcipher_alg *alg = crypto_skcipher_alg(sk); struct crypto4xx_alg *amcc_alg; struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk); if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) { ctx->sw_cipher.cipher = crypto_alloc_sync_skcipher(alg->base.cra_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->sw_cipher.cipher)) return PTR_ERR(ctx->sw_cipher.cipher); } amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher); crypto4xx_ctx_init(amcc_alg, ctx); return 0; } static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx) { crypto4xx_free_sa(ctx); } static void crypto4xx_sk_exit(struct crypto_skcipher *sk) { struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk); crypto4xx_common_exit(ctx); if (ctx->sw_cipher.cipher) crypto_free_sync_skcipher(ctx->sw_cipher.cipher); } static int crypto4xx_aead_init(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm); struct crypto4xx_alg *amcc_alg; ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->sw_cipher.aead)) return PTR_ERR(ctx->sw_cipher.aead); amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead); crypto4xx_ctx_init(amcc_alg, ctx); crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 + crypto_aead_reqsize(ctx->sw_cipher.aead), sizeof(struct crypto4xx_aead_reqctx))); return 0; } static void crypto4xx_aead_exit(struct crypto_aead *tfm) { struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm); crypto4xx_common_exit(ctx); crypto_free_aead(ctx->sw_cipher.aead); } static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev, struct crypto4xx_alg_common *crypto_alg, int array_size) { struct crypto4xx_alg *alg; int i; int rc = 0; for (i = 0; i < array_size; i++) { alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL); if (!alg) return -ENOMEM; alg->alg = crypto_alg[i]; alg->dev = sec_dev; switch (alg->alg.type) { case CRYPTO_ALG_TYPE_AEAD: rc = crypto_register_aead(&alg->alg.u.aead); break; case CRYPTO_ALG_TYPE_AHASH: rc = crypto_register_ahash(&alg->alg.u.hash); break; case CRYPTO_ALG_TYPE_RNG: rc = crypto_register_rng(&alg->alg.u.rng); break; default: rc = crypto_register_skcipher(&alg->alg.u.cipher); break; } if (rc) kfree(alg); else list_add_tail(&alg->entry, &sec_dev->alg_list); } return 0; } static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev) { struct crypto4xx_alg *alg, *tmp; list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) { list_del(&alg->entry); switch (alg->alg.type) { case CRYPTO_ALG_TYPE_AHASH: crypto_unregister_ahash(&alg->alg.u.hash); break; case CRYPTO_ALG_TYPE_AEAD: crypto_unregister_aead(&alg->alg.u.aead); break; case CRYPTO_ALG_TYPE_RNG: crypto_unregister_rng(&alg->alg.u.rng); break; default: crypto_unregister_skcipher(&alg->alg.u.cipher); } kfree(alg); } } static void crypto4xx_bh_tasklet_cb(unsigned long data) { struct device *dev = (struct device *)data; struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); struct pd_uinfo *pd_uinfo; struct ce_pd *pd; u32 tail = core_dev->dev->pdr_tail; u32 head = core_dev->dev->pdr_head; do { pd_uinfo = &core_dev->dev->pdr_uinfo[tail]; pd = &core_dev->dev->pdr[tail]; if ((pd_uinfo->state & PD_ENTRY_INUSE) && ((READ_ONCE(pd->pd_ctl.w) & (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) == PD_CTL_PE_DONE)) { crypto4xx_pd_done(core_dev->dev, tail); tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail); } else { /* if tail not done, break */ break; } } while (head != tail); } /* * Top Half of isr. */ static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data, u32 clr_val) { struct device *dev = data; struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR); tasklet_schedule(&core_dev->tasklet); return IRQ_HANDLED; } static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data) { return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR); } static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data) { return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR | PPC4XX_TMO_ERR_INT); } static int ppc4xx_prng_data_read(struct crypto4xx_device *dev, u8 *data, unsigned int max) { unsigned int i, curr = 0; u32 val[2]; do { /* trigger PRN generation */ writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL); for (i = 0; i < 1024; i++) { /* usually 19 iterations are enough */ if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) & CRYPTO4XX_PRNG_STAT_BUSY)) continue; val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0); val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1); break; } if (i == 1024) return -ETIMEDOUT; if ((max - curr) >= 8) { memcpy(data, &val, 8); data += 8; curr += 8; } else { /* copy only remaining bytes */ memcpy(data, &val, max - curr); break; } } while (curr < max); return curr; } static int crypto4xx_prng_generate(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dstn, unsigned int dlen) { struct rng_alg *alg = crypto_rng_alg(tfm); struct crypto4xx_alg *amcc_alg; struct crypto4xx_device *dev; int ret; amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng); dev = amcc_alg->dev; mutex_lock(&dev->core_dev->rng_lock); ret = ppc4xx_prng_data_read(dev, dstn, dlen); mutex_unlock(&dev->core_dev->rng_lock); return ret; } static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed, unsigned int slen) { return 0; } /* * Supported Crypto Algorithms */ static struct crypto4xx_alg_common crypto4xx_alg[] = { /* Crypto AES modes */ { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_IV_SIZE, .setkey = crypto4xx_setkey_aes_cbc, .encrypt = crypto4xx_encrypt_iv_block, .decrypt = crypto4xx_decrypt_iv_block, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "cfb(aes)", .cra_driver_name = "cfb-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_IV_SIZE, .setkey = crypto4xx_setkey_aes_cfb, .encrypt = crypto4xx_encrypt_iv_stream, .decrypt = crypto4xx_decrypt_iv_stream, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_IV_SIZE, .setkey = crypto4xx_setkey_aes_ctr, .encrypt = crypto4xx_encrypt_ctr, .decrypt = crypto4xx_decrypt_ctr, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "rfc3686(ctr(aes))", .cra_driver_name = "rfc3686-ctr-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, .setkey = crypto4xx_setkey_rfc3686, .encrypt = crypto4xx_rfc3686_encrypt, .decrypt = crypto4xx_rfc3686_decrypt, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = crypto4xx_setkey_aes_ecb, .encrypt = crypto4xx_encrypt_noiv_block, .decrypt = crypto4xx_decrypt_noiv_block, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "ofb(aes)", .cra_driver_name = "ofb-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_IV_SIZE, .setkey = crypto4xx_setkey_aes_ofb, .encrypt = crypto4xx_encrypt_iv_stream, .decrypt = crypto4xx_decrypt_iv_stream, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, /* AEAD */ { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = { .setkey = crypto4xx_setkey_aes_ccm, .setauthsize = crypto4xx_setauthsize_aead, .encrypt = crypto4xx_encrypt_aes_ccm, .decrypt = crypto4xx_decrypt_aes_ccm, .init = crypto4xx_aead_init, .exit = crypto4xx_aead_exit, .ivsize = AES_BLOCK_SIZE, .maxauthsize = 16, .base = { .cra_name = "ccm(aes)", .cra_driver_name = "ccm-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, } }, { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = { .setkey = crypto4xx_setkey_aes_gcm, .setauthsize = crypto4xx_setauthsize_aead, .encrypt = crypto4xx_encrypt_aes_gcm, .decrypt = crypto4xx_decrypt_aes_gcm, .init = crypto4xx_aead_init, .exit = crypto4xx_aead_exit, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = 16, .base = { .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, } }, { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = { .base = { .cra_name = "stdrng", .cra_driver_name = "crypto4xx_rng", .cra_priority = 300, .cra_ctxsize = 0, .cra_module = THIS_MODULE, }, .generate = crypto4xx_prng_generate, .seed = crypto4xx_prng_seed, .seedsize = 0, } }, }; /* * Module Initialization Routine */ static int crypto4xx_probe(struct platform_device *ofdev) { int rc; struct resource res; struct device *dev = &ofdev->dev; struct crypto4xx_core_device *core_dev; struct device_node *np; u32 pvr; bool is_revb = true; rc = of_address_to_resource(ofdev->dev.of_node, 0, &res); if (rc) return -ENODEV; np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto"); if (np) { mtdcri(SDR0, PPC460EX_SDR0_SRST, mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET); mtdcri(SDR0, PPC460EX_SDR0_SRST, mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET); } else { np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto"); if (np) { mtdcri(SDR0, PPC405EX_SDR0_SRST, mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET); mtdcri(SDR0, PPC405EX_SDR0_SRST, mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET); is_revb = false; } else { np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto"); if (np) { mtdcri(SDR0, PPC460SX_SDR0_SRST, mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET); mtdcri(SDR0, PPC460SX_SDR0_SRST, mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET); } else { printk(KERN_ERR "Crypto Function Not supported!\n"); return -EINVAL; } } } of_node_put(np); core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL); if (!core_dev) return -ENOMEM; dev_set_drvdata(dev, core_dev); core_dev->ofdev = ofdev; core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL); rc = -ENOMEM; if (!core_dev->dev) goto err_alloc_dev; /* * Older version of 460EX/GT have a hardware bug. * Hence they do not support H/W based security intr coalescing */ pvr = mfspr(SPRN_PVR); if (is_revb && ((pvr >> 4) == 0x130218A)) { u32 min = PVR_MIN(pvr); if (min < 4) { dev_info(dev, "RevA detected - disable interrupt coalescing\n"); is_revb = false; } } core_dev->dev->core_dev = core_dev; core_dev->dev->is_revb = is_revb; core_dev->device = dev; mutex_init(&core_dev->rng_lock); spin_lock_init(&core_dev->lock); INIT_LIST_HEAD(&core_dev->dev->alg_list); ratelimit_default_init(&core_dev->dev->aead_ratelimit); rc = crypto4xx_build_sdr(core_dev->dev); if (rc) goto err_build_sdr; rc = crypto4xx_build_pdr(core_dev->dev); if (rc) goto err_build_sdr; rc = crypto4xx_build_gdr(core_dev->dev); if (rc) goto err_build_sdr; /* Init tasklet for bottom half processing */ tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb, (unsigned long) dev); core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0); if (!core_dev->dev->ce_base) { dev_err(dev, "failed to of_iomap\n"); rc = -ENOMEM; goto err_iomap; } /* Register for Crypto isr, Crypto Engine IRQ */ core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); rc = request_irq(core_dev->irq, is_revb ? crypto4xx_ce_interrupt_handler_revb : crypto4xx_ce_interrupt_handler, 0, KBUILD_MODNAME, dev); if (rc) goto err_request_irq; /* need to setup pdr, rdr, gdr and sdr before this */ crypto4xx_hw_init(core_dev->dev); /* Register security algorithms with Linux CryptoAPI */ rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg, ARRAY_SIZE(crypto4xx_alg)); if (rc) goto err_start_dev; ppc4xx_trng_probe(core_dev); return 0; err_start_dev: free_irq(core_dev->irq, dev); err_request_irq: irq_dispose_mapping(core_dev->irq); iounmap(core_dev->dev->ce_base); err_iomap: tasklet_kill(&core_dev->tasklet); err_build_sdr: crypto4xx_destroy_sdr(core_dev->dev); crypto4xx_destroy_gdr(core_dev->dev); crypto4xx_destroy_pdr(core_dev->dev); kfree(core_dev->dev); err_alloc_dev: kfree(core_dev); return rc; } static int crypto4xx_remove(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); ppc4xx_trng_remove(core_dev); free_irq(core_dev->irq, dev); irq_dispose_mapping(core_dev->irq); tasklet_kill(&core_dev->tasklet); /* Un-register with Linux CryptoAPI */ crypto4xx_unregister_alg(core_dev->dev); mutex_destroy(&core_dev->rng_lock); /* Free all allocated memory */ crypto4xx_stop_all(core_dev); return 0; } static const struct of_device_id crypto4xx_match[] = { { .compatible = "amcc,ppc4xx-crypto",}, { }, }; MODULE_DEVICE_TABLE(of, crypto4xx_match); static struct platform_driver crypto4xx_driver = { .driver = { .name = KBUILD_MODNAME, .of_match_table = crypto4xx_match, }, .probe = crypto4xx_probe, .remove = crypto4xx_remove, }; module_platform_driver(crypto4xx_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("James Hsiao <[email protected]>"); MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
linux-master
drivers/crypto/amcc/crypto4xx_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. */ #include <crypto/internal/hash.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/types.h> #include <crypto/scatterwalk.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include "cipher.h" #include "common.h" #include "core.h" #include "regs-v5.h" #include "sha.h" #include "aead.h" static inline u32 qce_read(struct qce_device *qce, u32 offset) { return readl(qce->base + offset); } static inline void qce_write(struct qce_device *qce, u32 offset, u32 val) { writel(val, qce->base + offset); } static inline void qce_write_array(struct qce_device *qce, u32 offset, const u32 *val, unsigned int len) { int i; for (i = 0; i < len; i++) qce_write(qce, offset + i * sizeof(u32), val[i]); } static inline void qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len) { int i; for (i = 0; i < len; i++) qce_write(qce, offset + i * sizeof(u32), 0); } static u32 qce_config_reg(struct qce_device *qce, int little) { u32 beats = (qce->burst_size >> 3) - 1; u32 pipe_pair = qce->pipe_pair_id; u32 config; config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK; config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) | BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT); config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK; config &= ~HIGH_SPD_EN_N_SHIFT; if (little) config |= BIT(LITTLE_ENDIAN_MODE_SHIFT); return config; } void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len) { __be32 *d = dst; const u8 *s = src; unsigned int n; n = len / sizeof(u32); for (; n > 0; n--) { *d = cpu_to_be32p((const __u32 *) s); s += sizeof(__u32); d++; } } static void qce_setup_config(struct qce_device *qce) { u32 config; /* get big endianness */ config = qce_config_reg(qce, 0); /* clear status */ qce_write(qce, REG_STATUS, 0); qce_write(qce, REG_CONFIG, config); } static inline void qce_crypto_go(struct qce_device *qce, bool result_dump) { if (result_dump) qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT)); else qce_write(qce, REG_GOPROC, BIT(GO_SHIFT)); } #if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD) static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size) { u32 cfg = 0; if (IS_CCM(flags) || IS_CMAC(flags)) cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT; else cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT; if (IS_CCM(flags) || IS_CMAC(flags)) { if (key_size == AES_KEYSIZE_128) cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT; else if (key_size == AES_KEYSIZE_256) cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT; } if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT; else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT; else if (IS_CMAC(flags)) cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT; else if (IS_CCM(flags)) cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT; if (IS_SHA1(flags) || IS_SHA256(flags)) cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT; else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags)) cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT; else if (IS_CCM(flags)) cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT; else if (IS_CMAC(flags)) cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT; if (IS_SHA(flags) || IS_SHA_HMAC(flags)) cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; if (IS_CCM(flags)) cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT; return cfg; } #endif #ifdef CONFIG_CRYPTO_DEV_QCE_SHA static int qce_setup_regs_ahash(struct crypto_async_request *async_req) { struct ahash_request *req = ahash_request_cast(async_req); struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm); struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req); struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm); struct qce_device *qce = tmpl->qce; unsigned int digestsize = crypto_ahash_digestsize(ahash); unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm); __be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0}; __be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0}; u32 auth_cfg = 0, config; unsigned int iv_words; /* if not the last, the size has to be on the block boundary */ if (!rctx->last_blk && req->nbytes % blocksize) return -EINVAL; qce_setup_config(qce); if (IS_CMAC(rctx->flags)) { qce_write(qce, REG_AUTH_SEG_CFG, 0); qce_write(qce, REG_ENCR_SEG_CFG, 0); qce_write(qce, REG_ENCR_SEG_SIZE, 0); qce_clear_array(qce, REG_AUTH_IV0, 16); qce_clear_array(qce, REG_AUTH_KEY0, 16); qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize); } if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) { u32 authkey_words = rctx->authklen / sizeof(u32); qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen); qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey, authkey_words); } if (IS_CMAC(rctx->flags)) goto go_proc; if (rctx->first_blk) memcpy(auth, rctx->digest, digestsize); else qce_cpu_to_be32p_array(auth, rctx->digest, digestsize); iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8; qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words); if (rctx->first_blk) qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); else qce_write_array(qce, REG_AUTH_BYTECNT0, (u32 *)rctx->byte_count, 2); auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize); if (rctx->last_blk) auth_cfg |= BIT(AUTH_LAST_SHIFT); else auth_cfg &= ~BIT(AUTH_LAST_SHIFT); if (rctx->first_blk) auth_cfg |= BIT(AUTH_FIRST_SHIFT); else auth_cfg &= ~BIT(AUTH_FIRST_SHIFT); go_proc: qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes); qce_write(qce, REG_AUTH_SEG_START, 0); qce_write(qce, REG_ENCR_SEG_CFG, 0); qce_write(qce, REG_SEG_SIZE, req->nbytes); /* get little endianness */ config = qce_config_reg(qce, 1); qce_write(qce, REG_CONFIG, config); qce_crypto_go(qce, true); return 0; } #endif #if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD) static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size) { u32 cfg = 0; if (IS_AES(flags)) { if (aes_key_size == AES_KEYSIZE_128) cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT; else if (aes_key_size == AES_KEYSIZE_256) cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT; } if (IS_AES(flags)) cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT; else if (IS_DES(flags) || IS_3DES(flags)) cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT; if (IS_DES(flags)) cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT; if (IS_3DES(flags)) cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT; switch (flags & QCE_MODE_MASK) { case QCE_MODE_ECB: cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT; break; case QCE_MODE_CBC: cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT; break; case QCE_MODE_CTR: cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT; break; case QCE_MODE_XTS: cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT; break; case QCE_MODE_CCM: cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT; cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT; break; default: return ~0; } return cfg; } #endif #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize) { u8 swap[QCE_AES_IV_LENGTH]; u32 i, j; if (ivsize > QCE_AES_IV_LENGTH) return; memset(swap, 0, QCE_AES_IV_LENGTH); for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1; i < QCE_AES_IV_LENGTH; i++, j--) swap[i] = src[j]; qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH); } static void qce_xtskey(struct qce_device *qce, const u8 *enckey, unsigned int enckeylen, unsigned int cryptlen) { u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0}; unsigned int xtsklen = enckeylen / (2 * sizeof(u32)); qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2, enckeylen / 2); qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen); /* Set data unit size to cryptlen. Anything else causes * crypto engine to return back incorrect results. */ qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen); } static int qce_setup_regs_skcipher(struct crypto_async_request *async_req) { struct skcipher_request *req = skcipher_request_cast(async_req); struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req); struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm); struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req)); struct qce_device *qce = tmpl->qce; __be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0}; __be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0}; unsigned int enckey_words, enciv_words; unsigned int keylen; u32 encr_cfg = 0, auth_cfg = 0, config; unsigned int ivsize = rctx->ivsize; unsigned long flags = rctx->flags; qce_setup_config(qce); if (IS_XTS(flags)) keylen = ctx->enc_keylen / 2; else keylen = ctx->enc_keylen; qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen); enckey_words = keylen / sizeof(u32); qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); encr_cfg = qce_encr_cfg(flags, keylen); if (IS_DES(flags)) { enciv_words = 2; enckey_words = 2; } else if (IS_3DES(flags)) { enciv_words = 2; enckey_words = 6; } else if (IS_AES(flags)) { if (IS_XTS(flags)) qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen, rctx->cryptlen); enciv_words = 4; } else { return -EINVAL; } qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words); if (!IS_ECB(flags)) { if (IS_XTS(flags)) qce_xts_swapiv(enciv, rctx->iv, ivsize); else qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize); qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words); } if (IS_ENCRYPT(flags)) encr_cfg |= BIT(ENCODE_SHIFT); qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg); qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen); qce_write(qce, REG_ENCR_SEG_START, 0); if (IS_CTR(flags)) { qce_write(qce, REG_CNTR_MASK, ~0); qce_write(qce, REG_CNTR_MASK0, ~0); qce_write(qce, REG_CNTR_MASK1, ~0); qce_write(qce, REG_CNTR_MASK2, ~0); } qce_write(qce, REG_SEG_SIZE, rctx->cryptlen); /* get little endianness */ config = qce_config_reg(qce, 1); qce_write(qce, REG_CONFIG, config); qce_crypto_go(qce, true); return 0; } #endif #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0 }; static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7 }; static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len) { u32 *d = dst; const u8 *s = src; unsigned int n; n = len / sizeof(u32); for (; n > 0; n--) { *d = be32_to_cpup((const __be32 *)s); s += sizeof(u32); d++; } return DIV_ROUND_UP(len, sizeof(u32)); } static int qce_setup_regs_aead(struct crypto_async_request *async_req) { struct aead_request *req = aead_request_cast(async_req); struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm); struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req)); struct qce_device *qce = tmpl->qce; u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0}; u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0}; u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0}; u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0}; u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0}; unsigned int enc_keylen = ctx->enc_keylen; unsigned int auth_keylen = ctx->auth_keylen; unsigned int enc_ivsize = rctx->ivsize; unsigned int auth_ivsize = 0; unsigned int enckey_words, enciv_words; unsigned int authkey_words, authiv_words, authnonce_words; unsigned long flags = rctx->flags; u32 encr_cfg, auth_cfg, config, totallen; u32 iv_last_word; qce_setup_config(qce); /* Write encryption key */ enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen); qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words); /* Write encryption iv */ enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize); qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words); if (IS_CCM(rctx->flags)) { iv_last_word = enciv[enciv_words - 1]; qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1); qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words); qce_write(qce, REG_CNTR_MASK, ~0); qce_write(qce, REG_CNTR_MASK0, ~0); qce_write(qce, REG_CNTR_MASK1, ~0); qce_write(qce, REG_CNTR_MASK2, ~0); } /* Clear authentication IV and KEY registers of previous values */ qce_clear_array(qce, REG_AUTH_IV0, 16); qce_clear_array(qce, REG_AUTH_KEY0, 16); /* Clear byte count */ qce_clear_array(qce, REG_AUTH_BYTECNT0, 4); /* Write authentication key */ authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen); qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words); /* Write initial authentication IV only for HMAC algorithms */ if (IS_SHA_HMAC(rctx->flags)) { /* Write default authentication iv */ if (IS_SHA1_HMAC(rctx->flags)) { auth_ivsize = SHA1_DIGEST_SIZE; memcpy(authiv, std_iv_sha1, auth_ivsize); } else if (IS_SHA256_HMAC(rctx->flags)) { auth_ivsize = SHA256_DIGEST_SIZE; memcpy(authiv, std_iv_sha256, auth_ivsize); } authiv_words = auth_ivsize / sizeof(u32); qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words); } else if (IS_CCM(rctx->flags)) { /* Write nonce for CCM algorithms */ authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE); qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words); } /* Set up ENCR_SEG_CFG */ encr_cfg = qce_encr_cfg(flags, enc_keylen); if (IS_ENCRYPT(flags)) encr_cfg |= BIT(ENCODE_SHIFT); qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg); /* Set up AUTH_SEG_CFG */ auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize); auth_cfg |= BIT(AUTH_LAST_SHIFT); auth_cfg |= BIT(AUTH_FIRST_SHIFT); if (IS_ENCRYPT(flags)) { if (IS_CCM(rctx->flags)) auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; else auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT; } else { if (IS_CCM(rctx->flags)) auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT; else auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT; } qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg); totallen = rctx->cryptlen + rctx->assoclen; /* Set the encryption size and start offset */ if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags)) qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize); else qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen); qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff); /* Set the authentication size and start offset */ qce_write(qce, REG_AUTH_SEG_SIZE, totallen); qce_write(qce, REG_AUTH_SEG_START, 0); /* Write total length */ if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags)) qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize); else qce_write(qce, REG_SEG_SIZE, totallen); /* get little endianness */ config = qce_config_reg(qce, 1); qce_write(qce, REG_CONFIG, config); /* Start the process */ qce_crypto_go(qce, !IS_CCM(flags)); return 0; } #endif int qce_start(struct crypto_async_request *async_req, u32 type) { switch (type) { #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER case CRYPTO_ALG_TYPE_SKCIPHER: return qce_setup_regs_skcipher(async_req); #endif #ifdef CONFIG_CRYPTO_DEV_QCE_SHA case CRYPTO_ALG_TYPE_AHASH: return qce_setup_regs_ahash(async_req); #endif #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD case CRYPTO_ALG_TYPE_AEAD: return qce_setup_regs_aead(async_req); #endif default: return -EINVAL; } } #define STATUS_ERRORS \ (BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT)) int qce_check_status(struct qce_device *qce, u32 *status) { int ret = 0; *status = qce_read(qce, REG_STATUS); /* * Don't use result dump status. The operation may not be complete. * Instead, use the status we just read from device. In case, we need to * use result_status from result dump the result_status needs to be byte * swapped, since we set the device to little endian. */ if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT))) ret = -ENXIO; else if (*status & BIT(MAC_FAILED_SHIFT)) ret = -EBADMSG; return ret; } void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step) { u32 val; val = qce_read(qce, REG_VERSION); *major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT; *minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT; *step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT; }
linux-master
drivers/crypto/qce/common.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2021, Linaro Limited. All rights reserved. */ #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <crypto/gcm.h> #include <crypto/authenc.h> #include <crypto/internal/aead.h> #include <crypto/internal/des.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/scatterwalk.h> #include "aead.h" #define CCM_NONCE_ADATA_SHIFT 6 #define CCM_NONCE_AUTHSIZE_SHIFT 3 #define MAX_CCM_ADATA_HEADER_LEN 6 static LIST_HEAD(aead_algs); static void qce_aead_done(void *data) { struct crypto_async_request *async_req = data; struct aead_request *req = aead_request_cast(async_req); struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm); struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req)); struct qce_device *qce = tmpl->qce; struct qce_result_dump *result_buf = qce->dma.result_buf; enum dma_data_direction dir_src, dir_dst; bool diff_dst; int error; u32 status; unsigned int totallen; unsigned char tag[SHA256_DIGEST_SIZE] = {0}; int ret = 0; diff_dst = (req->src != req->dst) ? true : false; dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL; error = qce_dma_terminate_all(&qce->dma); if (error) dev_dbg(qce->dev, "aead dma termination error (%d)\n", error); if (diff_dst) dma_unmap_sg(qce->dev, rctx->src_sg, rctx->src_nents, dir_src); dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst); if (IS_CCM(rctx->flags)) { if (req->assoclen) { sg_free_table(&rctx->src_tbl); if (diff_dst) sg_free_table(&rctx->dst_tbl); } else { if (!(IS_DECRYPT(rctx->flags) && !diff_dst)) sg_free_table(&rctx->dst_tbl); } } else { sg_free_table(&rctx->dst_tbl); } error = qce_check_status(qce, &status); if (error < 0 && (error != -EBADMSG)) dev_err(qce->dev, "aead operation error (%x)\n", status); if (IS_ENCRYPT(rctx->flags)) { totallen = req->cryptlen + req->assoclen; if (IS_CCM(rctx->flags)) scatterwalk_map_and_copy(rctx->ccmresult_buf, req->dst, totallen, ctx->authsize, 1); else scatterwalk_map_and_copy(result_buf->auth_iv, req->dst, totallen, ctx->authsize, 1); } else if (!IS_CCM(rctx->flags)) { totallen = req->cryptlen + req->assoclen - ctx->authsize; scatterwalk_map_and_copy(tag, req->src, totallen, ctx->authsize, 0); ret = memcmp(result_buf->auth_iv, tag, ctx->authsize); if (ret) { pr_err("Bad message error\n"); error = -EBADMSG; } } qce->async_req_done(qce, error); } static struct scatterlist * qce_aead_prepare_result_buf(struct sg_table *tbl, struct aead_request *req) { struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req)); struct qce_device *qce = tmpl->qce; sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ); return qce_sgtable_add(tbl, &rctx->result_sg, QCE_RESULT_BUF_SZ); } static struct scatterlist * qce_aead_prepare_ccm_result_buf(struct sg_table *tbl, struct aead_request *req) { struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); sg_init_one(&rctx->result_sg, rctx->ccmresult_buf, QCE_BAM_BURST_SIZE); return qce_sgtable_add(tbl, &rctx->result_sg, QCE_BAM_BURST_SIZE); } static struct scatterlist * qce_aead_prepare_dst_buf(struct aead_request *req) { struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req)); struct qce_device *qce = tmpl->qce; struct scatterlist *sg, *msg_sg, __sg[2]; gfp_t gfp; unsigned int assoclen = req->assoclen; unsigned int totallen; int ret; totallen = rctx->cryptlen + assoclen; rctx->dst_nents = sg_nents_for_len(req->dst, totallen); if (rctx->dst_nents < 0) { dev_err(qce->dev, "Invalid numbers of dst SG.\n"); return ERR_PTR(-EINVAL); } if (IS_CCM(rctx->flags)) rctx->dst_nents += 2; else rctx->dst_nents += 1; gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; ret = sg_alloc_table(&rctx->dst_tbl, rctx->dst_nents, gfp); if (ret) return ERR_PTR(ret); if (IS_CCM(rctx->flags) && assoclen) { /* Get the dst buffer */ msg_sg = scatterwalk_ffwd(__sg, req->dst, assoclen); sg = qce_sgtable_add(&rctx->dst_tbl, &rctx->adata_sg, rctx->assoclen); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto dst_tbl_free; } /* dst buffer */ sg = qce_sgtable_add(&rctx->dst_tbl, msg_sg, rctx->cryptlen); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto dst_tbl_free; } totallen = rctx->cryptlen + rctx->assoclen; } else { if (totallen) { sg = qce_sgtable_add(&rctx->dst_tbl, req->dst, totallen); if (IS_ERR(sg)) goto dst_tbl_free; } } if (IS_CCM(rctx->flags)) sg = qce_aead_prepare_ccm_result_buf(&rctx->dst_tbl, req); else sg = qce_aead_prepare_result_buf(&rctx->dst_tbl, req); if (IS_ERR(sg)) goto dst_tbl_free; sg_mark_end(sg); rctx->dst_sg = rctx->dst_tbl.sgl; rctx->dst_nents = sg_nents_for_len(rctx->dst_sg, totallen) + 1; return sg; dst_tbl_free: sg_free_table(&rctx->dst_tbl); return sg; } static int qce_aead_ccm_prepare_buf_assoclen(struct aead_request *req) { struct scatterlist *sg, *msg_sg, __sg[2]; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct qce_aead_ctx *ctx = crypto_aead_ctx(tfm); unsigned int assoclen = rctx->assoclen; unsigned int adata_header_len, cryptlen, totallen; gfp_t gfp; bool diff_dst; int ret; if (IS_DECRYPT(rctx->flags)) cryptlen = rctx->cryptlen + ctx->authsize; else cryptlen = rctx->cryptlen; totallen = cryptlen + req->assoclen; /* Get the msg */ msg_sg = scatterwalk_ffwd(__sg, req->src, req->assoclen); rctx->adata = kzalloc((ALIGN(assoclen, 16) + MAX_CCM_ADATA_HEADER_LEN) * sizeof(unsigned char), GFP_ATOMIC); if (!rctx->adata) return -ENOMEM; /* * Format associated data (RFC3610 and NIST 800-38C) * Even though specification allows for AAD to be up to 2^64 - 1 bytes, * the assoclen field in aead_request is unsigned int and thus limits * the AAD to be up to 2^32 - 1 bytes. So we handle only two scenarios * while forming the header for AAD. */ if (assoclen < 0xff00) { adata_header_len = 2; *(__be16 *)rctx->adata = cpu_to_be16(assoclen); } else { adata_header_len = 6; *(__be16 *)rctx->adata = cpu_to_be16(0xfffe); *(__be32 *)(rctx->adata + 2) = cpu_to_be32(assoclen); } /* Copy the associated data */ if (sg_copy_to_buffer(req->src, sg_nents_for_len(req->src, assoclen), rctx->adata + adata_header_len, assoclen) != assoclen) return -EINVAL; /* Pad associated data to block size */ rctx->assoclen = ALIGN(assoclen + adata_header_len, 16); diff_dst = (req->src != req->dst) ? true : false; if (diff_dst) rctx->src_nents = sg_nents_for_len(req->src, totallen) + 1; else rctx->src_nents = sg_nents_for_len(req->src, totallen) + 2; gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; ret = sg_alloc_table(&rctx->src_tbl, rctx->src_nents, gfp); if (ret) return ret; /* Associated Data */ sg_init_one(&rctx->adata_sg, rctx->adata, rctx->assoclen); sg = qce_sgtable_add(&rctx->src_tbl, &rctx->adata_sg, rctx->assoclen); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto err_free; } /* src msg */ sg = qce_sgtable_add(&rctx->src_tbl, msg_sg, cryptlen); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto err_free; } if (!diff_dst) { /* * For decrypt, when src and dst buffers are same, there is already space * in the buffer for padded 0's which is output in lieu of * the MAC that is input. So skip the below. */ if (!IS_DECRYPT(rctx->flags)) { sg = qce_aead_prepare_ccm_result_buf(&rctx->src_tbl, req); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto err_free; } } } sg_mark_end(sg); rctx->src_sg = rctx->src_tbl.sgl; totallen = cryptlen + rctx->assoclen; rctx->src_nents = sg_nents_for_len(rctx->src_sg, totallen); if (diff_dst) { sg = qce_aead_prepare_dst_buf(req); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto err_free; } } else { if (IS_ENCRYPT(rctx->flags)) rctx->dst_nents = rctx->src_nents + 1; else rctx->dst_nents = rctx->src_nents; rctx->dst_sg = rctx->src_sg; } return 0; err_free: sg_free_table(&rctx->src_tbl); return ret; } static int qce_aead_prepare_buf(struct aead_request *req) { struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req)); struct qce_device *qce = tmpl->qce; struct scatterlist *sg; bool diff_dst = (req->src != req->dst) ? true : false; unsigned int totallen; totallen = rctx->cryptlen + rctx->assoclen; sg = qce_aead_prepare_dst_buf(req); if (IS_ERR(sg)) return PTR_ERR(sg); if (diff_dst) { rctx->src_nents = sg_nents_for_len(req->src, totallen); if (rctx->src_nents < 0) { dev_err(qce->dev, "Invalid numbers of src SG.\n"); return -EINVAL; } rctx->src_sg = req->src; } else { rctx->src_nents = rctx->dst_nents - 1; rctx->src_sg = rctx->dst_sg; } return 0; } static int qce_aead_ccm_prepare_buf(struct aead_request *req) { struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct qce_aead_ctx *ctx = crypto_aead_ctx(tfm); struct scatterlist *sg; bool diff_dst = (req->src != req->dst) ? true : false; unsigned int cryptlen; if (rctx->assoclen) return qce_aead_ccm_prepare_buf_assoclen(req); if (IS_ENCRYPT(rctx->flags)) return qce_aead_prepare_buf(req); cryptlen = rctx->cryptlen + ctx->authsize; if (diff_dst) { rctx->src_nents = sg_nents_for_len(req->src, cryptlen); rctx->src_sg = req->src; sg = qce_aead_prepare_dst_buf(req); if (IS_ERR(sg)) return PTR_ERR(sg); } else { rctx->src_nents = sg_nents_for_len(req->src, cryptlen); rctx->src_sg = req->src; rctx->dst_nents = rctx->src_nents; rctx->dst_sg = rctx->src_sg; } return 0; } static int qce_aead_create_ccm_nonce(struct qce_aead_reqctx *rctx, struct qce_aead_ctx *ctx) { unsigned int msglen_size, ivsize; u8 msg_len[4]; int i; if (!rctx || !rctx->iv) return -EINVAL; msglen_size = rctx->iv[0] + 1; /* Verify that msg len size is valid */ if (msglen_size < 2 || msglen_size > 8) return -EINVAL; ivsize = rctx->ivsize; /* * Clear the msglen bytes in IV. * Else the h/w engine and nonce will use any stray value pending there. */ if (!IS_CCM_RFC4309(rctx->flags)) { for (i = 0; i < msglen_size; i++) rctx->iv[ivsize - i - 1] = 0; } /* * The crypto framework encodes cryptlen as unsigned int. Thus, even though * spec allows for upto 8 bytes to encode msg_len only 4 bytes are needed. */ if (msglen_size > 4) msglen_size = 4; memcpy(&msg_len[0], &rctx->cryptlen, 4); memcpy(&rctx->ccm_nonce[0], rctx->iv, rctx->ivsize); if (rctx->assoclen) rctx->ccm_nonce[0] |= 1 << CCM_NONCE_ADATA_SHIFT; rctx->ccm_nonce[0] |= ((ctx->authsize - 2) / 2) << CCM_NONCE_AUTHSIZE_SHIFT; for (i = 0; i < msglen_size; i++) rctx->ccm_nonce[QCE_MAX_NONCE - i - 1] = msg_len[i]; return 0; } static int qce_aead_async_req_handle(struct crypto_async_request *async_req) { struct aead_request *req = aead_request_cast(async_req); struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm); struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req)); struct qce_device *qce = tmpl->qce; enum dma_data_direction dir_src, dir_dst; bool diff_dst; int dst_nents, src_nents, ret; if (IS_CCM_RFC4309(rctx->flags)) { memset(rctx->ccm_rfc4309_iv, 0, QCE_MAX_IV_SIZE); rctx->ccm_rfc4309_iv[0] = 3; memcpy(&rctx->ccm_rfc4309_iv[1], ctx->ccm4309_salt, QCE_CCM4309_SALT_SIZE); memcpy(&rctx->ccm_rfc4309_iv[4], req->iv, 8); rctx->iv = rctx->ccm_rfc4309_iv; rctx->ivsize = AES_BLOCK_SIZE; } else { rctx->iv = req->iv; rctx->ivsize = crypto_aead_ivsize(tfm); } if (IS_CCM_RFC4309(rctx->flags)) rctx->assoclen = req->assoclen - 8; else rctx->assoclen = req->assoclen; diff_dst = (req->src != req->dst) ? true : false; dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL; if (IS_CCM(rctx->flags)) { ret = qce_aead_create_ccm_nonce(rctx, ctx); if (ret) return ret; } if (IS_CCM(rctx->flags)) ret = qce_aead_ccm_prepare_buf(req); else ret = qce_aead_prepare_buf(req); if (ret) return ret; dst_nents = dma_map_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst); if (!dst_nents) { ret = -EIO; goto error_free; } if (diff_dst) { src_nents = dma_map_sg(qce->dev, rctx->src_sg, rctx->src_nents, dir_src); if (src_nents < 0) { ret = src_nents; goto error_unmap_dst; } } else { if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags)) src_nents = dst_nents; else src_nents = dst_nents - 1; } ret = qce_dma_prep_sgs(&qce->dma, rctx->src_sg, src_nents, rctx->dst_sg, dst_nents, qce_aead_done, async_req); if (ret) goto error_unmap_src; qce_dma_issue_pending(&qce->dma); ret = qce_start(async_req, tmpl->crypto_alg_type); if (ret) goto error_terminate; return 0; error_terminate: qce_dma_terminate_all(&qce->dma); error_unmap_src: if (diff_dst) dma_unmap_sg(qce->dev, req->src, rctx->src_nents, dir_src); error_unmap_dst: dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst); error_free: if (IS_CCM(rctx->flags) && rctx->assoclen) { sg_free_table(&rctx->src_tbl); if (diff_dst) sg_free_table(&rctx->dst_tbl); } else { sg_free_table(&rctx->dst_tbl); } return ret; } static int qce_aead_crypt(struct aead_request *req, int encrypt) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct qce_aead_reqctx *rctx = aead_request_ctx_dma(req); struct qce_aead_ctx *ctx = crypto_aead_ctx(tfm); struct qce_alg_template *tmpl = to_aead_tmpl(tfm); unsigned int blocksize = crypto_aead_blocksize(tfm); rctx->flags = tmpl->alg_flags; rctx->flags |= encrypt ? QCE_ENCRYPT : QCE_DECRYPT; if (encrypt) rctx->cryptlen = req->cryptlen; else rctx->cryptlen = req->cryptlen - ctx->authsize; /* CE does not handle 0 length messages */ if (!rctx->cryptlen) { if (!(IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))) ctx->need_fallback = true; } /* If fallback is needed, schedule and exit */ if (ctx->need_fallback) { /* Reset need_fallback in case the same ctx is used for another transaction */ ctx->need_fallback = false; aead_request_set_tfm(&rctx->fallback_req, ctx->fallback); aead_request_set_callback(&rctx->fallback_req, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(&rctx->fallback_req, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(&rctx->fallback_req, req->assoclen); return encrypt ? crypto_aead_encrypt(&rctx->fallback_req) : crypto_aead_decrypt(&rctx->fallback_req); } /* * CBC algorithms require message lengths to be * multiples of block size. */ if (IS_CBC(rctx->flags) && !IS_ALIGNED(rctx->cryptlen, blocksize)) return -EINVAL; /* RFC4309 supported AAD size 16 bytes/20 bytes */ if (IS_CCM_RFC4309(rctx->flags)) if (crypto_ipsec_check_assoclen(req->assoclen)) return -EINVAL; return tmpl->qce->async_req_enqueue(tmpl->qce, &req->base); } static int qce_aead_encrypt(struct aead_request *req) { return qce_aead_crypt(req, 1); } static int qce_aead_decrypt(struct aead_request *req) { return qce_aead_crypt(req, 0); } static int qce_aead_ccm_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct qce_aead_ctx *ctx = crypto_aead_ctx(tfm); unsigned long flags = to_aead_tmpl(tfm)->alg_flags; if (IS_CCM_RFC4309(flags)) { if (keylen < QCE_CCM4309_SALT_SIZE) return -EINVAL; keylen -= QCE_CCM4309_SALT_SIZE; memcpy(ctx->ccm4309_salt, key + keylen, QCE_CCM4309_SALT_SIZE); } if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_256 && keylen != AES_KEYSIZE_192) return -EINVAL; ctx->enc_keylen = keylen; ctx->auth_keylen = keylen; memcpy(ctx->enc_key, key, keylen); memcpy(ctx->auth_key, key, keylen); if (keylen == AES_KEYSIZE_192) ctx->need_fallback = true; return IS_CCM_RFC4309(flags) ? crypto_aead_setkey(ctx->fallback, key, keylen + QCE_CCM4309_SALT_SIZE) : crypto_aead_setkey(ctx->fallback, key, keylen); } static int qce_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct qce_aead_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_authenc_keys authenc_keys; unsigned long flags = to_aead_tmpl(tfm)->alg_flags; u32 _key[6]; int err; err = crypto_authenc_extractkeys(&authenc_keys, key, keylen); if (err) return err; if (authenc_keys.enckeylen > QCE_MAX_KEY_SIZE || authenc_keys.authkeylen > QCE_MAX_KEY_SIZE) return -EINVAL; if (IS_DES(flags)) { err = verify_aead_des_key(tfm, authenc_keys.enckey, authenc_keys.enckeylen); if (err) return err; } else if (IS_3DES(flags)) { err = verify_aead_des3_key(tfm, authenc_keys.enckey, authenc_keys.enckeylen); if (err) return err; /* * The crypto engine does not support any two keys * being the same for triple des algorithms. The * verify_skcipher_des3_key does not check for all the * below conditions. Schedule fallback in this case. */ memcpy(_key, authenc_keys.enckey, DES3_EDE_KEY_SIZE); if (!((_key[0] ^ _key[2]) | (_key[1] ^ _key[3])) || !((_key[2] ^ _key[4]) | (_key[3] ^ _key[5])) || !((_key[0] ^ _key[4]) | (_key[1] ^ _key[5]))) ctx->need_fallback = true; } else if (IS_AES(flags)) { /* No random key sizes */ if (authenc_keys.enckeylen != AES_KEYSIZE_128 && authenc_keys.enckeylen != AES_KEYSIZE_192 && authenc_keys.enckeylen != AES_KEYSIZE_256) return -EINVAL; if (authenc_keys.enckeylen == AES_KEYSIZE_192) ctx->need_fallback = true; } ctx->enc_keylen = authenc_keys.enckeylen; ctx->auth_keylen = authenc_keys.authkeylen; memcpy(ctx->enc_key, authenc_keys.enckey, authenc_keys.enckeylen); memset(ctx->auth_key, 0, sizeof(ctx->auth_key)); memcpy(ctx->auth_key, authenc_keys.authkey, authenc_keys.authkeylen); return crypto_aead_setkey(ctx->fallback, key, keylen); } static int qce_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct qce_aead_ctx *ctx = crypto_aead_ctx(tfm); unsigned long flags = to_aead_tmpl(tfm)->alg_flags; if (IS_CCM(flags)) { if (authsize < 4 || authsize > 16 || authsize % 2) return -EINVAL; if (IS_CCM_RFC4309(flags) && (authsize < 8 || authsize % 4)) return -EINVAL; } ctx->authsize = authsize; return crypto_aead_setauthsize(ctx->fallback, authsize); } static int qce_aead_init(struct crypto_aead *tfm) { struct qce_aead_ctx *ctx = crypto_aead_ctx(tfm); ctx->need_fallback = false; ctx->fallback = crypto_alloc_aead(crypto_tfm_alg_name(&tfm->base), 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback)) return PTR_ERR(ctx->fallback); crypto_aead_set_reqsize_dma(tfm, sizeof(struct qce_aead_reqctx) + crypto_aead_reqsize(ctx->fallback)); return 0; } static void qce_aead_exit(struct crypto_aead *tfm) { struct qce_aead_ctx *ctx = crypto_aead_ctx(tfm); crypto_free_aead(ctx->fallback); } struct qce_aead_def { unsigned long flags; const char *name; const char *drv_name; unsigned int blocksize; unsigned int chunksize; unsigned int ivsize; unsigned int maxauthsize; }; static const struct qce_aead_def aead_def[] = { { .flags = QCE_ALG_DES | QCE_MODE_CBC | QCE_HASH_SHA1_HMAC, .name = "authenc(hmac(sha1),cbc(des))", .drv_name = "authenc-hmac-sha1-cbc-des-qce", .blocksize = DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, { .flags = QCE_ALG_3DES | QCE_MODE_CBC | QCE_HASH_SHA1_HMAC, .name = "authenc(hmac(sha1),cbc(des3_ede))", .drv_name = "authenc-hmac-sha1-cbc-3des-qce", .blocksize = DES3_EDE_BLOCK_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, { .flags = QCE_ALG_DES | QCE_MODE_CBC | QCE_HASH_SHA256_HMAC, .name = "authenc(hmac(sha256),cbc(des))", .drv_name = "authenc-hmac-sha256-cbc-des-qce", .blocksize = DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, { .flags = QCE_ALG_3DES | QCE_MODE_CBC | QCE_HASH_SHA256_HMAC, .name = "authenc(hmac(sha256),cbc(des3_ede))", .drv_name = "authenc-hmac-sha256-cbc-3des-qce", .blocksize = DES3_EDE_BLOCK_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_CBC | QCE_HASH_SHA256_HMAC, .name = "authenc(hmac(sha256),cbc(aes))", .drv_name = "authenc-hmac-sha256-cbc-aes-qce", .blocksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_CCM, .name = "ccm(aes)", .drv_name = "ccm-aes-qce", .blocksize = 1, .ivsize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_CCM | QCE_MODE_CCM_RFC4309, .name = "rfc4309(ccm(aes))", .drv_name = "rfc4309-ccm-aes-qce", .blocksize = 1, .ivsize = 8, .maxauthsize = AES_BLOCK_SIZE, }, }; static int qce_aead_register_one(const struct qce_aead_def *def, struct qce_device *qce) { struct qce_alg_template *tmpl; struct aead_alg *alg; int ret; tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL); if (!tmpl) return -ENOMEM; alg = &tmpl->alg.aead; snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", def->drv_name); alg->base.cra_blocksize = def->blocksize; alg->chunksize = def->chunksize; alg->ivsize = def->ivsize; alg->maxauthsize = def->maxauthsize; if (IS_CCM(def->flags)) alg->setkey = qce_aead_ccm_setkey; else alg->setkey = qce_aead_setkey; alg->setauthsize = qce_aead_setauthsize; alg->encrypt = qce_aead_encrypt; alg->decrypt = qce_aead_decrypt; alg->init = qce_aead_init; alg->exit = qce_aead_exit; alg->base.cra_priority = 300; alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK; alg->base.cra_ctxsize = sizeof(struct qce_aead_ctx); alg->base.cra_alignmask = 0; alg->base.cra_module = THIS_MODULE; INIT_LIST_HEAD(&tmpl->entry); tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AEAD; tmpl->alg_flags = def->flags; tmpl->qce = qce; ret = crypto_register_aead(alg); if (ret) { dev_err(qce->dev, "%s registration failed\n", alg->base.cra_name); kfree(tmpl); return ret; } list_add_tail(&tmpl->entry, &aead_algs); dev_dbg(qce->dev, "%s is registered\n", alg->base.cra_name); return 0; } static void qce_aead_unregister(struct qce_device *qce) { struct qce_alg_template *tmpl, *n; list_for_each_entry_safe(tmpl, n, &aead_algs, entry) { crypto_unregister_aead(&tmpl->alg.aead); list_del(&tmpl->entry); kfree(tmpl); } } static int qce_aead_register(struct qce_device *qce) { int ret, i; for (i = 0; i < ARRAY_SIZE(aead_def); i++) { ret = qce_aead_register_one(&aead_def[i], qce); if (ret) goto err; } return 0; err: qce_aead_unregister(qce); return ret; } const struct qce_algo_ops aead_ops = { .type = CRYPTO_ALG_TYPE_AEAD, .register_algs = qce_aead_register, .unregister_algs = qce_aead_unregister, .async_req_handle = qce_aead_async_req_handle, };
linux-master
drivers/crypto/qce/aead.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/interconnect.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include <linux/types.h> #include <crypto/algapi.h> #include <crypto/internal/hash.h> #include "core.h" #include "cipher.h" #include "sha.h" #include "aead.h" #define QCE_MAJOR_VERSION5 0x05 #define QCE_QUEUE_LENGTH 1 #define QCE_DEFAULT_MEM_BANDWIDTH 393600 static const struct qce_algo_ops *qce_ops[] = { #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER &skcipher_ops, #endif #ifdef CONFIG_CRYPTO_DEV_QCE_SHA &ahash_ops, #endif #ifdef CONFIG_CRYPTO_DEV_QCE_AEAD &aead_ops, #endif }; static void qce_unregister_algs(struct qce_device *qce) { const struct qce_algo_ops *ops; int i; for (i = 0; i < ARRAY_SIZE(qce_ops); i++) { ops = qce_ops[i]; ops->unregister_algs(qce); } } static int qce_register_algs(struct qce_device *qce) { const struct qce_algo_ops *ops; int i, ret = -ENODEV; for (i = 0; i < ARRAY_SIZE(qce_ops); i++) { ops = qce_ops[i]; ret = ops->register_algs(qce); if (ret) break; } return ret; } static int qce_handle_request(struct crypto_async_request *async_req) { int ret = -EINVAL, i; const struct qce_algo_ops *ops; u32 type = crypto_tfm_alg_type(async_req->tfm); for (i = 0; i < ARRAY_SIZE(qce_ops); i++) { ops = qce_ops[i]; if (type != ops->type) continue; ret = ops->async_req_handle(async_req); break; } return ret; } static int qce_handle_queue(struct qce_device *qce, struct crypto_async_request *req) { struct crypto_async_request *async_req, *backlog; unsigned long flags; int ret = 0, err; spin_lock_irqsave(&qce->lock, flags); if (req) ret = crypto_enqueue_request(&qce->queue, req); /* busy, do not dequeue request */ if (qce->req) { spin_unlock_irqrestore(&qce->lock, flags); return ret; } backlog = crypto_get_backlog(&qce->queue); async_req = crypto_dequeue_request(&qce->queue); if (async_req) qce->req = async_req; spin_unlock_irqrestore(&qce->lock, flags); if (!async_req) return ret; if (backlog) { spin_lock_bh(&qce->lock); crypto_request_complete(backlog, -EINPROGRESS); spin_unlock_bh(&qce->lock); } err = qce_handle_request(async_req); if (err) { qce->result = err; tasklet_schedule(&qce->done_tasklet); } return ret; } static void qce_tasklet_req_done(unsigned long data) { struct qce_device *qce = (struct qce_device *)data; struct crypto_async_request *req; unsigned long flags; spin_lock_irqsave(&qce->lock, flags); req = qce->req; qce->req = NULL; spin_unlock_irqrestore(&qce->lock, flags); if (req) crypto_request_complete(req, qce->result); qce_handle_queue(qce, NULL); } static int qce_async_request_enqueue(struct qce_device *qce, struct crypto_async_request *req) { return qce_handle_queue(qce, req); } static void qce_async_request_done(struct qce_device *qce, int ret) { qce->result = ret; tasklet_schedule(&qce->done_tasklet); } static int qce_check_version(struct qce_device *qce) { u32 major, minor, step; qce_get_version(qce, &major, &minor, &step); /* * the driver does not support v5 with minor 0 because it has special * alignment requirements. */ if (major != QCE_MAJOR_VERSION5 || minor == 0) return -ENODEV; qce->burst_size = QCE_BAM_BURST_SIZE; /* * Rx and tx pipes are treated as a pair inside CE. * Pipe pair number depends on the actual BAM dma pipe * that is used for transfers. The BAM dma pipes are passed * from the device tree and used to derive the pipe pair * id in the CE driver as follows. * BAM dma pipes(rx, tx) CE pipe pair id * 0,1 0 * 2,3 1 * 4,5 2 * 6,7 3 * ... */ qce->pipe_pair_id = qce->dma.rxchan->chan_id >> 1; dev_dbg(qce->dev, "Crypto device found, version %d.%d.%d\n", major, minor, step); return 0; } static int qce_crypto_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct qce_device *qce; int ret; qce = devm_kzalloc(dev, sizeof(*qce), GFP_KERNEL); if (!qce) return -ENOMEM; qce->dev = dev; platform_set_drvdata(pdev, qce); qce->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qce->base)) return PTR_ERR(qce->base); ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret < 0) return ret; qce->core = devm_clk_get_optional(qce->dev, "core"); if (IS_ERR(qce->core)) return PTR_ERR(qce->core); qce->iface = devm_clk_get_optional(qce->dev, "iface"); if (IS_ERR(qce->iface)) return PTR_ERR(qce->iface); qce->bus = devm_clk_get_optional(qce->dev, "bus"); if (IS_ERR(qce->bus)) return PTR_ERR(qce->bus); qce->mem_path = devm_of_icc_get(qce->dev, "memory"); if (IS_ERR(qce->mem_path)) return PTR_ERR(qce->mem_path); ret = icc_set_bw(qce->mem_path, QCE_DEFAULT_MEM_BANDWIDTH, QCE_DEFAULT_MEM_BANDWIDTH); if (ret) return ret; ret = clk_prepare_enable(qce->core); if (ret) goto err_mem_path_disable; ret = clk_prepare_enable(qce->iface); if (ret) goto err_clks_core; ret = clk_prepare_enable(qce->bus); if (ret) goto err_clks_iface; ret = qce_dma_request(qce->dev, &qce->dma); if (ret) goto err_clks; ret = qce_check_version(qce); if (ret) goto err_clks; spin_lock_init(&qce->lock); tasklet_init(&qce->done_tasklet, qce_tasklet_req_done, (unsigned long)qce); crypto_init_queue(&qce->queue, QCE_QUEUE_LENGTH); qce->async_req_enqueue = qce_async_request_enqueue; qce->async_req_done = qce_async_request_done; ret = qce_register_algs(qce); if (ret) goto err_dma; return 0; err_dma: qce_dma_release(&qce->dma); err_clks: clk_disable_unprepare(qce->bus); err_clks_iface: clk_disable_unprepare(qce->iface); err_clks_core: clk_disable_unprepare(qce->core); err_mem_path_disable: icc_set_bw(qce->mem_path, 0, 0); return ret; } static int qce_crypto_remove(struct platform_device *pdev) { struct qce_device *qce = platform_get_drvdata(pdev); tasklet_kill(&qce->done_tasklet); qce_unregister_algs(qce); qce_dma_release(&qce->dma); clk_disable_unprepare(qce->bus); clk_disable_unprepare(qce->iface); clk_disable_unprepare(qce->core); return 0; } static const struct of_device_id qce_crypto_of_match[] = { { .compatible = "qcom,crypto-v5.1", }, { .compatible = "qcom,crypto-v5.4", }, { .compatible = "qcom,qce", }, {} }; MODULE_DEVICE_TABLE(of, qce_crypto_of_match); static struct platform_driver qce_crypto_driver = { .probe = qce_crypto_probe, .remove = qce_crypto_remove, .driver = { .name = KBUILD_MODNAME, .of_match_table = qce_crypto_of_match, }, }; module_platform_driver(qce_crypto_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm crypto engine driver"); MODULE_ALIAS("platform:" KBUILD_MODNAME); MODULE_AUTHOR("The Linux Foundation");
linux-master
drivers/crypto/qce/core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. */ #include <linux/dmaengine.h> #include <crypto/scatterwalk.h> #include "dma.h" int qce_dma_request(struct device *dev, struct qce_dma_data *dma) { int ret; dma->txchan = dma_request_chan(dev, "tx"); if (IS_ERR(dma->txchan)) return PTR_ERR(dma->txchan); dma->rxchan = dma_request_chan(dev, "rx"); if (IS_ERR(dma->rxchan)) { ret = PTR_ERR(dma->rxchan); goto error_rx; } dma->result_buf = kmalloc(QCE_RESULT_BUF_SZ + QCE_IGNORE_BUF_SZ, GFP_KERNEL); if (!dma->result_buf) { ret = -ENOMEM; goto error_nomem; } dma->ignore_buf = dma->result_buf + QCE_RESULT_BUF_SZ; return 0; error_nomem: dma_release_channel(dma->rxchan); error_rx: dma_release_channel(dma->txchan); return ret; } void qce_dma_release(struct qce_dma_data *dma) { dma_release_channel(dma->txchan); dma_release_channel(dma->rxchan); kfree(dma->result_buf); } struct scatterlist * qce_sgtable_add(struct sg_table *sgt, struct scatterlist *new_sgl, unsigned int max_len) { struct scatterlist *sg = sgt->sgl, *sg_last = NULL; unsigned int new_len; while (sg) { if (!sg_page(sg)) break; sg = sg_next(sg); } if (!sg) return ERR_PTR(-EINVAL); while (new_sgl && sg && max_len) { new_len = new_sgl->length > max_len ? max_len : new_sgl->length; sg_set_page(sg, sg_page(new_sgl), new_len, new_sgl->offset); sg_last = sg; sg = sg_next(sg); new_sgl = sg_next(new_sgl); max_len -= new_len; } return sg_last; } static int qce_dma_prep_sg(struct dma_chan *chan, struct scatterlist *sg, int nents, unsigned long flags, enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_param) { struct dma_async_tx_descriptor *desc; dma_cookie_t cookie; if (!sg || !nents) return -EINVAL; desc = dmaengine_prep_slave_sg(chan, sg, nents, dir, flags); if (!desc) return -EINVAL; desc->callback = cb; desc->callback_param = cb_param; cookie = dmaengine_submit(desc); return dma_submit_error(cookie); } int qce_dma_prep_sgs(struct qce_dma_data *dma, struct scatterlist *rx_sg, int rx_nents, struct scatterlist *tx_sg, int tx_nents, dma_async_tx_callback cb, void *cb_param) { struct dma_chan *rxchan = dma->rxchan; struct dma_chan *txchan = dma->txchan; unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; int ret; ret = qce_dma_prep_sg(rxchan, rx_sg, rx_nents, flags, DMA_MEM_TO_DEV, NULL, NULL); if (ret) return ret; return qce_dma_prep_sg(txchan, tx_sg, tx_nents, flags, DMA_DEV_TO_MEM, cb, cb_param); } void qce_dma_issue_pending(struct qce_dma_data *dma) { dma_async_issue_pending(dma->rxchan); dma_async_issue_pending(dma->txchan); } int qce_dma_terminate_all(struct qce_dma_data *dma) { int ret; ret = dmaengine_terminate_all(dma->rxchan); return ret ?: dmaengine_terminate_all(dma->txchan); }
linux-master
drivers/crypto/qce/dma.c