python_code
stringlengths 0
1.8M
| repo_name
stringclasses 7
values | file_path
stringlengths 5
99
|
---|---|---|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
* Author: [email protected] for STMicroelectronics.
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/of_address.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include "mmci.h"
#define SDMMC_LLI_BUF_LEN PAGE_SIZE
#define DLYB_CR 0x0
#define DLYB_CR_DEN BIT(0)
#define DLYB_CR_SEN BIT(1)
#define DLYB_CFGR 0x4
#define DLYB_CFGR_SEL_MASK GENMASK(3, 0)
#define DLYB_CFGR_UNIT_MASK GENMASK(14, 8)
#define DLYB_CFGR_LNG_MASK GENMASK(27, 16)
#define DLYB_CFGR_LNGF BIT(31)
#define DLYB_NB_DELAY 11
#define DLYB_CFGR_SEL_MAX (DLYB_NB_DELAY + 1)
#define DLYB_CFGR_UNIT_MAX 127
#define DLYB_LNG_TIMEOUT_US 1000
#define SDMMC_VSWEND_TIMEOUT_US 10000
#define SYSCFG_DLYBSD_CR 0x0
#define DLYBSD_CR_EN BIT(0)
#define DLYBSD_CR_RXTAPSEL_MASK GENMASK(6, 1)
#define DLYBSD_TAPSEL_NB 32
#define DLYBSD_BYP_EN BIT(16)
#define DLYBSD_BYP_CMD GENMASK(21, 17)
#define DLYBSD_ANTIGLITCH_EN BIT(22)
#define SYSCFG_DLYBSD_SR 0x4
#define DLYBSD_SR_LOCK BIT(0)
#define DLYBSD_SR_RXTAPSEL_ACK BIT(1)
#define DLYBSD_TIMEOUT_1S_IN_US 1000000
struct sdmmc_lli_desc {
u32 idmalar;
u32 idmabase;
u32 idmasize;
};
struct sdmmc_idma {
dma_addr_t sg_dma;
void *sg_cpu;
dma_addr_t bounce_dma_addr;
void *bounce_buf;
bool use_bounce_buffer;
};
struct sdmmc_dlyb;
struct sdmmc_tuning_ops {
int (*dlyb_enable)(struct sdmmc_dlyb *dlyb);
void (*set_input_ck)(struct sdmmc_dlyb *dlyb);
int (*tuning_prepare)(struct mmci_host *host);
int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused,
int phase, bool sampler __maybe_unused);
};
struct sdmmc_dlyb {
void __iomem *base;
u32 unit;
u32 max;
struct sdmmc_tuning_ops *ops;
};
static int sdmmc_idma_validate_data(struct mmci_host *host,
struct mmc_data *data)
{
struct sdmmc_idma *idma = host->dma_priv;
struct device *dev = mmc_dev(host->mmc);
struct scatterlist *sg;
int i;
/*
* idma has constraints on idmabase & idmasize for each element
* excepted the last element which has no constraint on idmasize
*/
idma->use_bounce_buffer = false;
for_each_sg(data->sg, sg, data->sg_len - 1, i) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
!IS_ALIGNED(sg->length,
host->variant->stm32_idmabsize_align)) {
dev_dbg(mmc_dev(host->mmc),
"unaligned scatterlist: ofst:%x length:%d\n",
data->sg->offset, data->sg->length);
goto use_bounce_buffer;
}
}
if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
dev_dbg(mmc_dev(host->mmc),
"unaligned last scatterlist: ofst:%x length:%d\n",
data->sg->offset, data->sg->length);
goto use_bounce_buffer;
}
return 0;
use_bounce_buffer:
if (!idma->bounce_buf) {
idma->bounce_buf = dmam_alloc_coherent(dev,
host->mmc->max_req_size,
&idma->bounce_dma_addr,
GFP_KERNEL);
if (!idma->bounce_buf) {
dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
return -ENOMEM;
}
}
idma->use_bounce_buffer = true;
return 0;
}
static int _sdmmc_idma_prep_data(struct mmci_host *host,
struct mmc_data *data)
{
struct sdmmc_idma *idma = host->dma_priv;
if (idma->use_bounce_buffer) {
if (data->flags & MMC_DATA_WRITE) {
unsigned int xfer_bytes = data->blksz * data->blocks;
sg_copy_to_buffer(data->sg, data->sg_len,
idma->bounce_buf, xfer_bytes);
dma_wmb();
}
} else {
int n_elem;
n_elem = dma_map_sg(mmc_dev(host->mmc),
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
if (!n_elem) {
dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
return -EINVAL;
}
}
return 0;
}
static int sdmmc_idma_prep_data(struct mmci_host *host,
struct mmc_data *data, bool next)
{
/* Check if job is already prepared. */
if (!next && data->host_cookie == host->next_cookie)
return 0;
return _sdmmc_idma_prep_data(host, data);
}
static void sdmmc_idma_unprep_data(struct mmci_host *host,
struct mmc_data *data, int err)
{
struct sdmmc_idma *idma = host->dma_priv;
if (idma->use_bounce_buffer) {
if (data->flags & MMC_DATA_READ) {
unsigned int xfer_bytes = data->blksz * data->blocks;
sg_copy_from_buffer(data->sg, data->sg_len,
idma->bounce_buf, xfer_bytes);
}
} else {
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
}
static int sdmmc_idma_setup(struct mmci_host *host)
{
struct sdmmc_idma *idma;
struct device *dev = mmc_dev(host->mmc);
idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
if (!idma)
return -ENOMEM;
host->dma_priv = idma;
if (host->variant->dma_lli) {
idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
&idma->sg_dma, GFP_KERNEL);
if (!idma->sg_cpu) {
dev_err(dev, "Failed to alloc IDMA descriptor\n");
return -ENOMEM;
}
host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
sizeof(struct sdmmc_lli_desc);
host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
host->mmc->max_req_size = SZ_1M;
} else {
host->mmc->max_segs = 1;
host->mmc->max_seg_size = host->mmc->max_req_size;
}
return dma_set_max_seg_size(dev, host->mmc->max_seg_size);
}
static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
{
struct sdmmc_idma *idma = host->dma_priv;
struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
struct mmc_data *data = host->data;
struct scatterlist *sg;
int i;
if (!host->variant->dma_lli || data->sg_len == 1 ||
idma->use_bounce_buffer) {
u32 dma_addr;
if (idma->use_bounce_buffer)
dma_addr = idma->bounce_dma_addr;
else
dma_addr = sg_dma_address(data->sg);
writel_relaxed(dma_addr,
host->base + MMCI_STM32_IDMABASE0R);
writel_relaxed(MMCI_STM32_IDMAEN,
host->base + MMCI_STM32_IDMACTRLR);
return 0;
}
for_each_sg(data->sg, sg, data->sg_len, i) {
desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
| MMCI_STM32_ABR;
desc[i].idmabase = sg_dma_address(sg);
desc[i].idmasize = sg_dma_len(sg);
}
/* notice the end of link list */
desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
dma_wmb();
writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
host->base + MMCI_STM32_IDMACTRLR);
return 0;
}
static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
{
writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
if (!data->host_cookie)
sdmmc_idma_unprep_data(host, data, 0);
}
static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
{
unsigned int clk = 0, ddr = 0;
if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
ddr = MCI_STM32_CLK_DDR;
/*
* cclk = mclk / (2 * clkdiv)
* clkdiv 0 => bypass
* in ddr mode bypass is not possible
*/
if (desired) {
if (desired >= host->mclk && !ddr) {
host->cclk = host->mclk;
} else {
clk = DIV_ROUND_UP(host->mclk, 2 * desired);
if (clk > MCI_STM32_CLK_CLKDIV_MSK)
clk = MCI_STM32_CLK_CLKDIV_MSK;
host->cclk = host->mclk / (2 * clk);
}
} else {
/*
* while power-on phase the clock can't be define to 0,
* Only power-off and power-cyc deactivate the clock.
* if desired clock is 0, set max divider
*/
clk = MCI_STM32_CLK_CLKDIV_MSK;
host->cclk = host->mclk / (2 * clk);
}
/* Set actual clock for debug */
if (host->mmc->ios.power_mode == MMC_POWER_ON)
host->mmc->actual_clock = host->cclk;
else
host->mmc->actual_clock = 0;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
clk |= MCI_STM32_CLK_WIDEBUS_4;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
clk |= MCI_STM32_CLK_WIDEBUS_8;
clk |= MCI_STM32_CLK_HWFCEN;
clk |= host->clk_reg_add;
clk |= ddr;
if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50)
clk |= MCI_STM32_CLK_BUSSPEED;
mmci_write_clkreg(host, clk);
}
static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb)
{
if (!dlyb || !dlyb->base)
return;
/* Output clock = Input clock */
writel_relaxed(0, dlyb->base + DLYB_CR);
}
static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
{
struct mmc_ios ios = host->mmc->ios;
struct sdmmc_dlyb *dlyb = host->variant_priv;
/* adds OF options */
pwr = host->pwr_reg_add;
if (dlyb && dlyb->ops->set_input_ck)
dlyb->ops->set_input_ck(dlyb);
if (ios.power_mode == MMC_POWER_OFF) {
/* Only a reset could power-off sdmmc */
reset_control_assert(host->rst);
udelay(2);
reset_control_deassert(host->rst);
/*
* Set the SDMMC in Power-cycle state.
* This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
* are driven low, to prevent the Card from being supplied
* through the signal lines.
*/
mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
} else if (ios.power_mode == MMC_POWER_ON) {
/*
* After power-off (reset): the irq mask defined in probe
* functionis lost
* ault irq mask (probe) must be activated
*/
writel(MCI_IRQENABLE | host->variant->start_err,
host->base + MMCIMASK0);
/* preserves voltage switch bits */
pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
MCI_STM32_VSWITCH);
/*
* After a power-cycle state, we must set the SDMMC in
* Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
* driven high. Then we can set the SDMMC to Power-on state
*/
mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
mdelay(1);
mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
}
}
static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
{
u32 datactrl;
datactrl = mmci_dctrl_blksz(host);
if (host->hw_revision >= 3) {
u32 thr = 0;
if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
thr = ffs(min_t(unsigned int, host->data->blksz,
host->variant->fifosize));
thr = min_t(u32, thr, MMCI_STM32_THR_MASK);
}
writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR);
}
if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
host->data->blocks == 1)
datactrl |= MCI_DPSM_STM32_MODE_SDIO;
else if (host->data->stop && !host->mrq->sbc)
datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
else
datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
return datactrl;
}
static bool sdmmc_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
u32 status, u32 err_msk)
{
void __iomem *base = host->base;
u32 busy_d0, busy_d0end, mask, sdmmc_status;
mask = readl_relaxed(base + MMCIMASK0);
sdmmc_status = readl_relaxed(base + MMCISTATUS);
busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
/* complete if there is an error or busy_d0end */
if ((status & err_msk) || busy_d0end)
goto complete;
/*
* On response the busy signaling is reflected in the BUSYD0 flag.
* if busy_d0 is in-progress we must activate busyd0end interrupt
* to wait this completion. Else this request has no busy step.
*/
if (busy_d0) {
if (!host->busy_status) {
writel_relaxed(mask | host->variant->busy_detect_mask,
base + MMCIMASK0);
host->busy_status = status &
(MCI_CMDSENT | MCI_CMDRESPEND);
}
return false;
}
complete:
if (host->busy_status) {
writel_relaxed(mask & ~host->variant->busy_detect_mask,
base + MMCIMASK0);
host->busy_status = 0;
}
writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
return true;
}
static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb)
{
writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
return 0;
}
static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb,
int unit, int phase, bool sampler)
{
u32 cfgr;
writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
if (!sampler)
writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
return 0;
}
static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host)
{
struct sdmmc_dlyb *dlyb = host->variant_priv;
u32 cfgr;
int i, lng, ret;
for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true);
ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
(cfgr & DLYB_CFGR_LNGF),
1, DLYB_LNG_TIMEOUT_US);
if (ret) {
dev_warn(mmc_dev(host->mmc),
"delay line cfg timeout unit:%d cfgr:%d\n",
i, cfgr);
continue;
}
lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
break;
}
if (i > DLYB_CFGR_UNIT_MAX)
return -EINVAL;
dlyb->unit = i;
dlyb->max = __fls(lng);
return 0;
}
static int sdmmc_dlyb_mp25_enable(struct sdmmc_dlyb *dlyb)
{
u32 cr, sr;
cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
cr |= DLYBSD_CR_EN;
writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
sr, sr & DLYBSD_SR_LOCK, 1,
DLYBSD_TIMEOUT_1S_IN_US);
}
static int sdmmc_dlyb_mp25_set_cfg(struct sdmmc_dlyb *dlyb,
int unit __maybe_unused, int phase,
bool sampler __maybe_unused)
{
u32 cr, sr;
cr = readl_relaxed(dlyb->base + SYSCFG_DLYBSD_CR);
cr &= ~DLYBSD_CR_RXTAPSEL_MASK;
cr |= FIELD_PREP(DLYBSD_CR_RXTAPSEL_MASK, phase);
writel_relaxed(cr, dlyb->base + SYSCFG_DLYBSD_CR);
return readl_relaxed_poll_timeout(dlyb->base + SYSCFG_DLYBSD_SR,
sr, sr & DLYBSD_SR_RXTAPSEL_ACK, 1,
DLYBSD_TIMEOUT_1S_IN_US);
}
static int sdmmc_dlyb_mp25_prepare(struct mmci_host *host)
{
struct sdmmc_dlyb *dlyb = host->variant_priv;
dlyb->max = DLYBSD_TAPSEL_NB;
return 0;
}
static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
{
struct sdmmc_dlyb *dlyb = host->variant_priv;
int cur_len = 0, max_len = 0, end_of_len = 0;
int phase, ret;
for (phase = 0; phase <= dlyb->max; phase++) {
ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
if (ret) {
dev_err(mmc_dev(host->mmc), "tuning config failed\n");
return ret;
}
if (mmc_send_tuning(host->mmc, opcode, NULL)) {
cur_len = 0;
} else {
cur_len++;
if (cur_len > max_len) {
max_len = cur_len;
end_of_len = phase;
}
}
}
if (!max_len) {
dev_err(mmc_dev(host->mmc), "no tuning point found\n");
return -EINVAL;
}
if (dlyb->ops->set_input_ck)
dlyb->ops->set_input_ck(dlyb);
phase = end_of_len - max_len / 2;
ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
if (ret) {
dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n");
return ret;
}
dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
dlyb->unit, dlyb->max, phase);
return 0;
}
static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct mmci_host *host = mmc_priv(mmc);
struct sdmmc_dlyb *dlyb = host->variant_priv;
u32 clk;
int ret;
if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 &&
host->mmc->ios.timing != MMC_TIMING_MMC_HS200) ||
host->mmc->actual_clock <= 50000000)
return 0;
if (!dlyb || !dlyb->base)
return -EINVAL;
ret = dlyb->ops->dlyb_enable(dlyb);
if (ret)
return ret;
/*
* SDMMC_FBCK is selected when an external Delay Block is needed
* with SDR104 or HS200.
*/
clk = host->clk_reg;
clk &= ~MCI_STM32_CLK_SEL_MSK;
clk |= MCI_STM32_CLK_SELFBCK;
mmci_write_clkreg(host, clk);
ret = dlyb->ops->tuning_prepare(host);
if (ret)
return ret;
return sdmmc_dlyb_phase_tuning(host, opcode);
}
static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
{
/* clear the voltage switch completion flag */
writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
/* enable Voltage switch procedure */
mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
}
static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
struct mmc_ios *ios)
{
unsigned long flags;
u32 status;
int ret = 0;
spin_lock_irqsave(&host->lock, flags);
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
host->pwr_reg & MCI_STM32_VSWITCHEN) {
mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
spin_unlock_irqrestore(&host->lock, flags);
/* wait voltage switch completion while 10ms */
ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
status,
(status & MCI_STM32_VSWEND),
10, SDMMC_VSWEND_TIMEOUT_US);
writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
host->base + MMCICLEAR);
spin_lock_irqsave(&host->lock, flags);
mmci_write_pwrreg(host, host->pwr_reg &
~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
}
spin_unlock_irqrestore(&host->lock, flags);
return ret;
}
static struct mmci_host_ops sdmmc_variant_ops = {
.validate_data = sdmmc_idma_validate_data,
.prep_data = sdmmc_idma_prep_data,
.unprep_data = sdmmc_idma_unprep_data,
.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
.dma_setup = sdmmc_idma_setup,
.dma_start = sdmmc_idma_start,
.dma_finalize = sdmmc_idma_finalize,
.set_clkreg = mmci_sdmmc_set_clkreg,
.set_pwrreg = mmci_sdmmc_set_pwrreg,
.busy_complete = sdmmc_busy_complete,
.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
};
static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = {
.dlyb_enable = sdmmc_dlyb_mp15_enable,
.set_input_ck = sdmmc_dlyb_mp15_input_ck,
.tuning_prepare = sdmmc_dlyb_mp15_prepare,
.set_cfg = sdmmc_dlyb_mp15_set_cfg,
};
static struct sdmmc_tuning_ops dlyb_tuning_mp25_ops = {
.dlyb_enable = sdmmc_dlyb_mp25_enable,
.tuning_prepare = sdmmc_dlyb_mp25_prepare,
.set_cfg = sdmmc_dlyb_mp25_set_cfg,
};
void sdmmc_variant_init(struct mmci_host *host)
{
struct device_node *np = host->mmc->parent->of_node;
void __iomem *base_dlyb;
struct sdmmc_dlyb *dlyb;
host->ops = &sdmmc_variant_ops;
host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
if (IS_ERR(base_dlyb))
return;
dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
if (!dlyb)
return;
dlyb->base = base_dlyb;
if (of_device_is_compatible(np, "st,stm32mp25-sdmmc2"))
dlyb->ops = &dlyb_tuning_mp25_ops;
else
dlyb->ops = &dlyb_tuning_mp15_ops;
host->variant_priv = dlyb;
host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
}
| linux-master | drivers/mmc/host/mmci_stm32_sdmmc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Freescale eSDHC i.MX controller driver for the platform bus.
*
* derived from the OF-version.
*
* Copyright (c) 2010 Pengutronix e.K.
* Author: Wolfram Sang <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pm_qos.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include "sdhci-cqhci.h"
#include "sdhci-pltfm.h"
#include "sdhci-esdhc.h"
#include "cqhci.h"
#define ESDHC_SYS_CTRL_DTOCV_MASK 0x0f
#define ESDHC_CTRL_D3CD 0x08
#define ESDHC_BURST_LEN_EN_INCR (1 << 27)
/* VENDOR SPEC register */
#define ESDHC_VENDOR_SPEC 0xc0
#define ESDHC_VENDOR_SPEC_SDIO_QUIRK (1 << 1)
#define ESDHC_VENDOR_SPEC_VSELECT (1 << 1)
#define ESDHC_VENDOR_SPEC_FRC_SDCLK_ON (1 << 8)
#define ESDHC_DEBUG_SEL_AND_STATUS_REG 0xc2
#define ESDHC_DEBUG_SEL_REG 0xc3
#define ESDHC_DEBUG_SEL_MASK 0xf
#define ESDHC_DEBUG_SEL_CMD_STATE 1
#define ESDHC_DEBUG_SEL_DATA_STATE 2
#define ESDHC_DEBUG_SEL_TRANS_STATE 3
#define ESDHC_DEBUG_SEL_DMA_STATE 4
#define ESDHC_DEBUG_SEL_ADMA_STATE 5
#define ESDHC_DEBUG_SEL_FIFO_STATE 6
#define ESDHC_DEBUG_SEL_ASYNC_FIFO_STATE 7
#define ESDHC_WTMK_LVL 0x44
#define ESDHC_WTMK_DEFAULT_VAL 0x10401040
#define ESDHC_WTMK_LVL_RD_WML_MASK 0x000000FF
#define ESDHC_WTMK_LVL_RD_WML_SHIFT 0
#define ESDHC_WTMK_LVL_WR_WML_MASK 0x00FF0000
#define ESDHC_WTMK_LVL_WR_WML_SHIFT 16
#define ESDHC_WTMK_LVL_WML_VAL_DEF 64
#define ESDHC_WTMK_LVL_WML_VAL_MAX 128
#define ESDHC_MIX_CTRL 0x48
#define ESDHC_MIX_CTRL_DDREN (1 << 3)
#define ESDHC_MIX_CTRL_AC23EN (1 << 7)
#define ESDHC_MIX_CTRL_EXE_TUNE (1 << 22)
#define ESDHC_MIX_CTRL_SMPCLK_SEL (1 << 23)
#define ESDHC_MIX_CTRL_AUTO_TUNE_EN (1 << 24)
#define ESDHC_MIX_CTRL_FBCLK_SEL (1 << 25)
#define ESDHC_MIX_CTRL_HS400_EN (1 << 26)
#define ESDHC_MIX_CTRL_HS400_ES_EN (1 << 27)
/* Bits 3 and 6 are not SDHCI standard definitions */
#define ESDHC_MIX_CTRL_SDHCI_MASK 0xb7
/* Tuning bits */
#define ESDHC_MIX_CTRL_TUNING_MASK 0x03c00000
/* dll control register */
#define ESDHC_DLL_CTRL 0x60
#define ESDHC_DLL_OVERRIDE_VAL_SHIFT 9
#define ESDHC_DLL_OVERRIDE_EN_SHIFT 8
/* tune control register */
#define ESDHC_TUNE_CTRL_STATUS 0x68
#define ESDHC_TUNE_CTRL_STEP 1
#define ESDHC_TUNE_CTRL_MIN 0
#define ESDHC_TUNE_CTRL_MAX ((1 << 7) - 1)
/* strobe dll register */
#define ESDHC_STROBE_DLL_CTRL 0x70
#define ESDHC_STROBE_DLL_CTRL_ENABLE (1 << 0)
#define ESDHC_STROBE_DLL_CTRL_RESET (1 << 1)
#define ESDHC_STROBE_DLL_CTRL_SLV_DLY_TARGET_DEFAULT 0x7
#define ESDHC_STROBE_DLL_CTRL_SLV_DLY_TARGET_SHIFT 3
#define ESDHC_STROBE_DLL_CTRL_SLV_UPDATE_INT_DEFAULT (4 << 20)
#define ESDHC_STROBE_DLL_STATUS 0x74
#define ESDHC_STROBE_DLL_STS_REF_LOCK (1 << 1)
#define ESDHC_STROBE_DLL_STS_SLV_LOCK 0x1
#define ESDHC_VEND_SPEC2 0xc8
#define ESDHC_VEND_SPEC2_EN_BUSY_IRQ (1 << 8)
#define ESDHC_VEND_SPEC2_AUTO_TUNE_8BIT_EN (1 << 4)
#define ESDHC_VEND_SPEC2_AUTO_TUNE_4BIT_EN (0 << 4)
#define ESDHC_VEND_SPEC2_AUTO_TUNE_1BIT_EN (2 << 4)
#define ESDHC_VEND_SPEC2_AUTO_TUNE_CMD_EN (1 << 6)
#define ESDHC_VEND_SPEC2_AUTO_TUNE_MODE_MASK (7 << 4)
#define ESDHC_TUNING_CTRL 0xcc
#define ESDHC_STD_TUNING_EN (1 << 24)
/* NOTE: the minimum valid tuning start tap for mx6sl is 1 */
#define ESDHC_TUNING_START_TAP_DEFAULT 0x1
#define ESDHC_TUNING_START_TAP_MASK 0x7f
#define ESDHC_TUNING_CMD_CRC_CHECK_DISABLE (1 << 7)
#define ESDHC_TUNING_STEP_DEFAULT 0x1
#define ESDHC_TUNING_STEP_MASK 0x00070000
#define ESDHC_TUNING_STEP_SHIFT 16
/* pinctrl state */
#define ESDHC_PINCTRL_STATE_100MHZ "state_100mhz"
#define ESDHC_PINCTRL_STATE_200MHZ "state_200mhz"
/*
* Our interpretation of the SDHCI_HOST_CONTROL register
*/
#define ESDHC_CTRL_4BITBUS (0x1 << 1)
#define ESDHC_CTRL_8BITBUS (0x2 << 1)
#define ESDHC_CTRL_BUSWIDTH_MASK (0x3 << 1)
#define USDHC_GET_BUSWIDTH(c) (c & ESDHC_CTRL_BUSWIDTH_MASK)
/*
* There is an INT DMA ERR mismatch between eSDHC and STD SDHC SPEC:
* Bit25 is used in STD SPEC, and is reserved in fsl eSDHC design,
* but bit28 is used as the INT DMA ERR in fsl eSDHC design.
* Define this macro DMA error INT for fsl eSDHC
*/
#define ESDHC_INT_VENDOR_SPEC_DMA_ERR (1 << 28)
/* the address offset of CQHCI */
#define ESDHC_CQHCI_ADDR_OFFSET 0x100
/*
* The CMDTYPE of the CMD register (offset 0xE) should be set to
* "11" when the STOP CMD12 is issued on imx53 to abort one
* open ended multi-blk IO. Otherwise the TC INT wouldn't
* be generated.
* In exact block transfer, the controller doesn't complete the
* operations automatically as required at the end of the
* transfer and remains on hold if the abort command is not sent.
* As a result, the TC flag is not asserted and SW received timeout
* exception. Bit1 of Vendor Spec register is used to fix it.
*/
#define ESDHC_FLAG_MULTIBLK_NO_INT BIT(1)
/*
* The flag tells that the ESDHC controller is an USDHC block that is
* integrated on the i.MX6 series.
*/
#define ESDHC_FLAG_USDHC BIT(3)
/* The IP supports manual tuning process */
#define ESDHC_FLAG_MAN_TUNING BIT(4)
/* The IP supports standard tuning process */
#define ESDHC_FLAG_STD_TUNING BIT(5)
/* The IP has SDHCI_CAPABILITIES_1 register */
#define ESDHC_FLAG_HAVE_CAP1 BIT(6)
/*
* The IP has erratum ERR004536
* uSDHC: ADMA Length Mismatch Error occurs if the AHB read access is slow,
* when reading data from the card
* This flag is also set for i.MX25 and i.MX35 in order to get
* SDHCI_QUIRK_BROKEN_ADMA, but for different reasons (ADMA capability bits).
*/
#define ESDHC_FLAG_ERR004536 BIT(7)
/* The IP supports HS200 mode */
#define ESDHC_FLAG_HS200 BIT(8)
/* The IP supports HS400 mode */
#define ESDHC_FLAG_HS400 BIT(9)
/*
* The IP has errata ERR010450
* uSDHC: At 1.8V due to the I/O timing limit, for SDR mode, SD card
* clock can't exceed 150MHz, for DDR mode, SD card clock can't exceed 45MHz.
*/
#define ESDHC_FLAG_ERR010450 BIT(10)
/* The IP supports HS400ES mode */
#define ESDHC_FLAG_HS400_ES BIT(11)
/* The IP has Host Controller Interface for Command Queuing */
#define ESDHC_FLAG_CQHCI BIT(12)
/* need request pmqos during low power */
#define ESDHC_FLAG_PMQOS BIT(13)
/* The IP state got lost in low power mode */
#define ESDHC_FLAG_STATE_LOST_IN_LPMODE BIT(14)
/* The IP lost clock rate in PM_RUNTIME */
#define ESDHC_FLAG_CLK_RATE_LOST_IN_PM_RUNTIME BIT(15)
/*
* The IP do not support the ACMD23 feature completely when use ADMA mode.
* In ADMA mode, it only use the 16 bit block count of the register 0x4
* (BLOCK_ATT) as the CMD23's argument for ACMD23 mode, which means it will
* ignore the upper 16 bit of the CMD23's argument. This will block the reliable
* write operation in RPMB, because RPMB reliable write need to set the bit31
* of the CMD23's argument.
* imx6qpdl/imx6sx/imx6sl/imx7d has this limitation only for ADMA mode, SDMA
* do not has this limitation. so when these SoC use ADMA mode, it need to
* disable the ACMD23 feature.
*/
#define ESDHC_FLAG_BROKEN_AUTO_CMD23 BIT(16)
/* ERR004536 is not applicable for the IP */
#define ESDHC_FLAG_SKIP_ERR004536 BIT(17)
enum wp_types {
ESDHC_WP_NONE, /* no WP, neither controller nor gpio */
ESDHC_WP_CONTROLLER, /* mmc controller internal WP */
ESDHC_WP_GPIO, /* external gpio pin for WP */
};
enum cd_types {
ESDHC_CD_NONE, /* no CD, neither controller nor gpio */
ESDHC_CD_CONTROLLER, /* mmc controller internal CD */
ESDHC_CD_GPIO, /* external gpio pin for CD */
ESDHC_CD_PERMANENT, /* no CD, card permanently wired to host */
};
/*
* struct esdhc_platform_data - platform data for esdhc on i.MX
*
* ESDHC_WP(CD)_CONTROLLER type is not available on i.MX25/35.
*
* @wp_type: type of write_protect method (see wp_types enum above)
* @cd_type: type of card_detect method (see cd_types enum above)
*/
struct esdhc_platform_data {
enum wp_types wp_type;
enum cd_types cd_type;
int max_bus_width;
unsigned int delay_line;
unsigned int tuning_step; /* The delay cell steps in tuning procedure */
unsigned int tuning_start_tap; /* The start delay cell point in tuning procedure */
unsigned int strobe_dll_delay_target; /* The delay cell for strobe pad (read clock) */
};
struct esdhc_soc_data {
u32 flags;
};
static const struct esdhc_soc_data esdhc_imx25_data = {
.flags = ESDHC_FLAG_ERR004536,
};
static const struct esdhc_soc_data esdhc_imx35_data = {
.flags = ESDHC_FLAG_ERR004536,
};
static const struct esdhc_soc_data esdhc_imx51_data = {
.flags = 0,
};
static const struct esdhc_soc_data esdhc_imx53_data = {
.flags = ESDHC_FLAG_MULTIBLK_NO_INT,
};
static const struct esdhc_soc_data usdhc_imx6q_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_MAN_TUNING
| ESDHC_FLAG_BROKEN_AUTO_CMD23,
};
static const struct esdhc_soc_data usdhc_imx6sl_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_ERR004536
| ESDHC_FLAG_HS200
| ESDHC_FLAG_BROKEN_AUTO_CMD23,
};
static const struct esdhc_soc_data usdhc_imx6sll_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_HS400
| ESDHC_FLAG_STATE_LOST_IN_LPMODE,
};
static const struct esdhc_soc_data usdhc_imx6sx_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_STATE_LOST_IN_LPMODE
| ESDHC_FLAG_BROKEN_AUTO_CMD23,
};
static const struct esdhc_soc_data usdhc_imx6ull_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_ERR010450
| ESDHC_FLAG_STATE_LOST_IN_LPMODE,
};
static const struct esdhc_soc_data usdhc_imx7d_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_HS400
| ESDHC_FLAG_STATE_LOST_IN_LPMODE
| ESDHC_FLAG_BROKEN_AUTO_CMD23,
};
static struct esdhc_soc_data usdhc_s32g2_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_MAN_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_HS400 | ESDHC_FLAG_HS400_ES
| ESDHC_FLAG_SKIP_ERR004536,
};
static struct esdhc_soc_data usdhc_imx7ulp_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_PMQOS | ESDHC_FLAG_HS400
| ESDHC_FLAG_STATE_LOST_IN_LPMODE,
};
static struct esdhc_soc_data usdhc_imxrt1050_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200,
};
static struct esdhc_soc_data usdhc_imx8qxp_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_HS400 | ESDHC_FLAG_HS400_ES
| ESDHC_FLAG_STATE_LOST_IN_LPMODE
| ESDHC_FLAG_CLK_RATE_LOST_IN_PM_RUNTIME,
};
static struct esdhc_soc_data usdhc_imx8mm_data = {
.flags = ESDHC_FLAG_USDHC | ESDHC_FLAG_STD_TUNING
| ESDHC_FLAG_HAVE_CAP1 | ESDHC_FLAG_HS200
| ESDHC_FLAG_HS400 | ESDHC_FLAG_HS400_ES
| ESDHC_FLAG_STATE_LOST_IN_LPMODE,
};
struct pltfm_imx_data {
u32 scratchpad;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_100mhz;
struct pinctrl_state *pins_200mhz;
const struct esdhc_soc_data *socdata;
struct esdhc_platform_data boarddata;
struct clk *clk_ipg;
struct clk *clk_ahb;
struct clk *clk_per;
unsigned int actual_clock;
/*
* USDHC has one limition, require the SDIO device a different
* register setting. Driver has to recognize card type during
* the card init, but at this stage, mmc_host->card is not
* available. So involve this field to save the card type
* during card init through usdhc_init_card().
*/
unsigned int init_card_type;
enum {
NO_CMD_PENDING, /* no multiblock command pending */
MULTIBLK_IN_PROCESS, /* exact multiblock cmd in process */
WAIT_FOR_INT, /* sent CMD12, waiting for response INT */
} multiblock_status;
u32 is_ddr;
struct pm_qos_request pm_qos_req;
};
static const struct of_device_id imx_esdhc_dt_ids[] = {
{ .compatible = "fsl,imx25-esdhc", .data = &esdhc_imx25_data, },
{ .compatible = "fsl,imx35-esdhc", .data = &esdhc_imx35_data, },
{ .compatible = "fsl,imx51-esdhc", .data = &esdhc_imx51_data, },
{ .compatible = "fsl,imx53-esdhc", .data = &esdhc_imx53_data, },
{ .compatible = "fsl,imx6sx-usdhc", .data = &usdhc_imx6sx_data, },
{ .compatible = "fsl,imx6sl-usdhc", .data = &usdhc_imx6sl_data, },
{ .compatible = "fsl,imx6sll-usdhc", .data = &usdhc_imx6sll_data, },
{ .compatible = "fsl,imx6q-usdhc", .data = &usdhc_imx6q_data, },
{ .compatible = "fsl,imx6ull-usdhc", .data = &usdhc_imx6ull_data, },
{ .compatible = "fsl,imx7d-usdhc", .data = &usdhc_imx7d_data, },
{ .compatible = "fsl,imx7ulp-usdhc", .data = &usdhc_imx7ulp_data, },
{ .compatible = "fsl,imx8qxp-usdhc", .data = &usdhc_imx8qxp_data, },
{ .compatible = "fsl,imx8mm-usdhc", .data = &usdhc_imx8mm_data, },
{ .compatible = "fsl,imxrt1050-usdhc", .data = &usdhc_imxrt1050_data, },
{ .compatible = "nxp,s32g2-usdhc", .data = &usdhc_s32g2_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_esdhc_dt_ids);
static inline int is_imx25_esdhc(struct pltfm_imx_data *data)
{
return data->socdata == &esdhc_imx25_data;
}
static inline int is_imx53_esdhc(struct pltfm_imx_data *data)
{
return data->socdata == &esdhc_imx53_data;
}
static inline int esdhc_is_usdhc(struct pltfm_imx_data *data)
{
return !!(data->socdata->flags & ESDHC_FLAG_USDHC);
}
static inline void esdhc_clrset_le(struct sdhci_host *host, u32 mask, u32 val, int reg)
{
void __iomem *base = host->ioaddr + (reg & ~0x3);
u32 shift = (reg & 0x3) * 8;
writel(((readl(base) & ~(mask << shift)) | (val << shift)), base);
}
#define DRIVER_NAME "sdhci-esdhc-imx"
#define ESDHC_IMX_DUMP(f, x...) \
pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
static void esdhc_dump_debug_regs(struct sdhci_host *host)
{
int i;
char *debug_status[7] = {
"cmd debug status",
"data debug status",
"trans debug status",
"dma debug status",
"adma debug status",
"fifo debug status",
"async fifo debug status"
};
ESDHC_IMX_DUMP("========= ESDHC IMX DEBUG STATUS DUMP =========\n");
for (i = 0; i < 7; i++) {
esdhc_clrset_le(host, ESDHC_DEBUG_SEL_MASK,
ESDHC_DEBUG_SEL_CMD_STATE + i, ESDHC_DEBUG_SEL_REG);
ESDHC_IMX_DUMP("%s: 0x%04x\n", debug_status[i],
readw(host->ioaddr + ESDHC_DEBUG_SEL_AND_STATUS_REG));
}
esdhc_clrset_le(host, ESDHC_DEBUG_SEL_MASK, 0, ESDHC_DEBUG_SEL_REG);
}
static inline void esdhc_wait_for_card_clock_gate_off(struct sdhci_host *host)
{
u32 present_state;
int ret;
ret = readl_poll_timeout(host->ioaddr + ESDHC_PRSSTAT, present_state,
(present_state & ESDHC_CLOCK_GATE_OFF), 2, 100);
if (ret == -ETIMEDOUT)
dev_warn(mmc_dev(host->mmc), "%s: card clock still not gate off in 100us!.\n", __func__);
}
/* Enable the auto tuning circuit to check the CMD line and BUS line */
static inline void usdhc_auto_tuning_mode_sel_and_en(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
u32 buswidth, auto_tune_buswidth;
u32 reg;
buswidth = USDHC_GET_BUSWIDTH(readl(host->ioaddr + SDHCI_HOST_CONTROL));
switch (buswidth) {
case ESDHC_CTRL_8BITBUS:
auto_tune_buswidth = ESDHC_VEND_SPEC2_AUTO_TUNE_8BIT_EN;
break;
case ESDHC_CTRL_4BITBUS:
auto_tune_buswidth = ESDHC_VEND_SPEC2_AUTO_TUNE_4BIT_EN;
break;
default: /* 1BITBUS */
auto_tune_buswidth = ESDHC_VEND_SPEC2_AUTO_TUNE_1BIT_EN;
break;
}
/*
* For USDHC, auto tuning circuit can not handle the async sdio
* device interrupt correctly. When sdio device use 4 data lines,
* async sdio interrupt will use the shared DAT[1], if enable auto
* tuning circuit check these 4 data lines, include the DAT[1],
* this circuit will detect this interrupt, take this as a data on
* DAT[1], and adjust the delay cell wrongly.
* This is the hardware design limitation, to avoid this, for sdio
* device, config the auto tuning circuit only check DAT[0] and CMD
* line.
*/
if (imx_data->init_card_type == MMC_TYPE_SDIO)
auto_tune_buswidth = ESDHC_VEND_SPEC2_AUTO_TUNE_1BIT_EN;
esdhc_clrset_le(host, ESDHC_VEND_SPEC2_AUTO_TUNE_MODE_MASK,
auto_tune_buswidth | ESDHC_VEND_SPEC2_AUTO_TUNE_CMD_EN,
ESDHC_VEND_SPEC2);
reg = readl(host->ioaddr + ESDHC_MIX_CTRL);
reg |= ESDHC_MIX_CTRL_AUTO_TUNE_EN;
writel(reg, host->ioaddr + ESDHC_MIX_CTRL);
}
static u32 esdhc_readl_le(struct sdhci_host *host, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
u32 val = readl(host->ioaddr + reg);
if (unlikely(reg == SDHCI_PRESENT_STATE)) {
u32 fsl_prss = val;
/* save the least 20 bits */
val = fsl_prss & 0x000FFFFF;
/* move dat[0-3] bits */
val |= (fsl_prss & 0x0F000000) >> 4;
/* move cmd line bit */
val |= (fsl_prss & 0x00800000) << 1;
}
if (unlikely(reg == SDHCI_CAPABILITIES)) {
/* ignore bit[0-15] as it stores cap_1 register val for mx6sl */
if (imx_data->socdata->flags & ESDHC_FLAG_HAVE_CAP1)
val &= 0xffff0000;
/* In FSL esdhc IC module, only bit20 is used to indicate the
* ADMA2 capability of esdhc, but this bit is messed up on
* some SOCs (e.g. on MX25, MX35 this bit is set, but they
* don't actually support ADMA2). So set the BROKEN_ADMA
* quirk on MX25/35 platforms.
*/
if (val & SDHCI_CAN_DO_ADMA1) {
val &= ~SDHCI_CAN_DO_ADMA1;
val |= SDHCI_CAN_DO_ADMA2;
}
}
if (unlikely(reg == SDHCI_CAPABILITIES_1)) {
if (esdhc_is_usdhc(imx_data)) {
if (imx_data->socdata->flags & ESDHC_FLAG_HAVE_CAP1)
val = readl(host->ioaddr + SDHCI_CAPABILITIES) & 0xFFFF;
else
/* imx6q/dl does not have cap_1 register, fake one */
val = SDHCI_SUPPORT_DDR50 | SDHCI_SUPPORT_SDR104
| SDHCI_SUPPORT_SDR50
| SDHCI_USE_SDR50_TUNING
| FIELD_PREP(SDHCI_RETUNING_MODE_MASK,
SDHCI_TUNING_MODE_3);
/*
* Do not advertise faster UHS modes if there are no
* pinctrl states for 100MHz/200MHz.
*/
if (IS_ERR_OR_NULL(imx_data->pins_100mhz))
val &= ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50);
if (IS_ERR_OR_NULL(imx_data->pins_200mhz))
val &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_HS400);
}
}
if (unlikely(reg == SDHCI_MAX_CURRENT) && esdhc_is_usdhc(imx_data)) {
val = 0;
val |= FIELD_PREP(SDHCI_MAX_CURRENT_330_MASK, 0xFF);
val |= FIELD_PREP(SDHCI_MAX_CURRENT_300_MASK, 0xFF);
val |= FIELD_PREP(SDHCI_MAX_CURRENT_180_MASK, 0xFF);
}
if (unlikely(reg == SDHCI_INT_STATUS)) {
if (val & ESDHC_INT_VENDOR_SPEC_DMA_ERR) {
val &= ~ESDHC_INT_VENDOR_SPEC_DMA_ERR;
val |= SDHCI_INT_ADMA_ERROR;
}
/*
* mask off the interrupt we get in response to the manually
* sent CMD12
*/
if ((imx_data->multiblock_status == WAIT_FOR_INT) &&
((val & SDHCI_INT_RESPONSE) == SDHCI_INT_RESPONSE)) {
val &= ~SDHCI_INT_RESPONSE;
writel(SDHCI_INT_RESPONSE, host->ioaddr +
SDHCI_INT_STATUS);
imx_data->multiblock_status = NO_CMD_PENDING;
}
}
return val;
}
static void esdhc_writel_le(struct sdhci_host *host, u32 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
u32 data;
if (unlikely(reg == SDHCI_INT_ENABLE || reg == SDHCI_SIGNAL_ENABLE ||
reg == SDHCI_INT_STATUS)) {
if ((val & SDHCI_INT_CARD_INT) && !esdhc_is_usdhc(imx_data)) {
/*
* Clear and then set D3CD bit to avoid missing the
* card interrupt. This is an eSDHC controller problem
* so we need to apply the following workaround: clear
* and set D3CD bit will make eSDHC re-sample the card
* interrupt. In case a card interrupt was lost,
* re-sample it by the following steps.
*/
data = readl(host->ioaddr + SDHCI_HOST_CONTROL);
data &= ~ESDHC_CTRL_D3CD;
writel(data, host->ioaddr + SDHCI_HOST_CONTROL);
data |= ESDHC_CTRL_D3CD;
writel(data, host->ioaddr + SDHCI_HOST_CONTROL);
}
if (val & SDHCI_INT_ADMA_ERROR) {
val &= ~SDHCI_INT_ADMA_ERROR;
val |= ESDHC_INT_VENDOR_SPEC_DMA_ERR;
}
}
if (unlikely((imx_data->socdata->flags & ESDHC_FLAG_MULTIBLK_NO_INT)
&& (reg == SDHCI_INT_STATUS)
&& (val & SDHCI_INT_DATA_END))) {
u32 v;
v = readl(host->ioaddr + ESDHC_VENDOR_SPEC);
v &= ~ESDHC_VENDOR_SPEC_SDIO_QUIRK;
writel(v, host->ioaddr + ESDHC_VENDOR_SPEC);
if (imx_data->multiblock_status == MULTIBLK_IN_PROCESS)
{
/* send a manual CMD12 with RESPTYP=none */
data = MMC_STOP_TRANSMISSION << 24 |
SDHCI_CMD_ABORTCMD << 16;
writel(data, host->ioaddr + SDHCI_TRANSFER_MODE);
imx_data->multiblock_status = WAIT_FOR_INT;
}
}
writel(val, host->ioaddr + reg);
}
static u16 esdhc_readw_le(struct sdhci_host *host, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
u16 ret = 0;
u32 val;
if (unlikely(reg == SDHCI_HOST_VERSION)) {
reg ^= 2;
if (esdhc_is_usdhc(imx_data)) {
/*
* The usdhc register returns a wrong host version.
* Correct it here.
*/
return SDHCI_SPEC_300;
}
}
if (unlikely(reg == SDHCI_HOST_CONTROL2)) {
val = readl(host->ioaddr + ESDHC_VENDOR_SPEC);
if (val & ESDHC_VENDOR_SPEC_VSELECT)
ret |= SDHCI_CTRL_VDD_180;
if (esdhc_is_usdhc(imx_data)) {
if (imx_data->socdata->flags & ESDHC_FLAG_MAN_TUNING)
val = readl(host->ioaddr + ESDHC_MIX_CTRL);
else if (imx_data->socdata->flags & ESDHC_FLAG_STD_TUNING)
/* the std tuning bits is in ACMD12_ERR for imx6sl */
val = readl(host->ioaddr + SDHCI_AUTO_CMD_STATUS);
}
if (val & ESDHC_MIX_CTRL_EXE_TUNE)
ret |= SDHCI_CTRL_EXEC_TUNING;
if (val & ESDHC_MIX_CTRL_SMPCLK_SEL)
ret |= SDHCI_CTRL_TUNED_CLK;
ret &= ~SDHCI_CTRL_PRESET_VAL_ENABLE;
return ret;
}
if (unlikely(reg == SDHCI_TRANSFER_MODE)) {
if (esdhc_is_usdhc(imx_data)) {
u32 m = readl(host->ioaddr + ESDHC_MIX_CTRL);
ret = m & ESDHC_MIX_CTRL_SDHCI_MASK;
/* Swap AC23 bit */
if (m & ESDHC_MIX_CTRL_AC23EN) {
ret &= ~ESDHC_MIX_CTRL_AC23EN;
ret |= SDHCI_TRNS_AUTO_CMD23;
}
} else {
ret = readw(host->ioaddr + SDHCI_TRANSFER_MODE);
}
return ret;
}
return readw(host->ioaddr + reg);
}
static void esdhc_writew_le(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
u32 new_val = 0;
switch (reg) {
case SDHCI_CLOCK_CONTROL:
new_val = readl(host->ioaddr + ESDHC_VENDOR_SPEC);
if (val & SDHCI_CLOCK_CARD_EN)
new_val |= ESDHC_VENDOR_SPEC_FRC_SDCLK_ON;
else
new_val &= ~ESDHC_VENDOR_SPEC_FRC_SDCLK_ON;
writel(new_val, host->ioaddr + ESDHC_VENDOR_SPEC);
if (!(new_val & ESDHC_VENDOR_SPEC_FRC_SDCLK_ON))
esdhc_wait_for_card_clock_gate_off(host);
return;
case SDHCI_HOST_CONTROL2:
new_val = readl(host->ioaddr + ESDHC_VENDOR_SPEC);
if (val & SDHCI_CTRL_VDD_180)
new_val |= ESDHC_VENDOR_SPEC_VSELECT;
else
new_val &= ~ESDHC_VENDOR_SPEC_VSELECT;
writel(new_val, host->ioaddr + ESDHC_VENDOR_SPEC);
if (imx_data->socdata->flags & ESDHC_FLAG_STD_TUNING) {
u32 v = readl(host->ioaddr + SDHCI_AUTO_CMD_STATUS);
u32 m = readl(host->ioaddr + ESDHC_MIX_CTRL);
if (val & SDHCI_CTRL_TUNED_CLK) {
v |= ESDHC_MIX_CTRL_SMPCLK_SEL;
} else {
v &= ~ESDHC_MIX_CTRL_SMPCLK_SEL;
m &= ~ESDHC_MIX_CTRL_FBCLK_SEL;
}
if (val & SDHCI_CTRL_EXEC_TUNING) {
v |= ESDHC_MIX_CTRL_EXE_TUNE;
m |= ESDHC_MIX_CTRL_FBCLK_SEL;
} else {
v &= ~ESDHC_MIX_CTRL_EXE_TUNE;
}
writel(v, host->ioaddr + SDHCI_AUTO_CMD_STATUS);
writel(m, host->ioaddr + ESDHC_MIX_CTRL);
}
return;
case SDHCI_TRANSFER_MODE:
if ((imx_data->socdata->flags & ESDHC_FLAG_MULTIBLK_NO_INT)
&& (host->cmd->opcode == SD_IO_RW_EXTENDED)
&& (host->cmd->data->blocks > 1)
&& (host->cmd->data->flags & MMC_DATA_READ)) {
u32 v;
v = readl(host->ioaddr + ESDHC_VENDOR_SPEC);
v |= ESDHC_VENDOR_SPEC_SDIO_QUIRK;
writel(v, host->ioaddr + ESDHC_VENDOR_SPEC);
}
if (esdhc_is_usdhc(imx_data)) {
u32 wml;
u32 m = readl(host->ioaddr + ESDHC_MIX_CTRL);
/* Swap AC23 bit */
if (val & SDHCI_TRNS_AUTO_CMD23) {
val &= ~SDHCI_TRNS_AUTO_CMD23;
val |= ESDHC_MIX_CTRL_AC23EN;
}
m = val | (m & ~ESDHC_MIX_CTRL_SDHCI_MASK);
writel(m, host->ioaddr + ESDHC_MIX_CTRL);
/* Set watermark levels for PIO access to maximum value
* (128 words) to accommodate full 512 bytes buffer.
* For DMA access restore the levels to default value.
*/
m = readl(host->ioaddr + ESDHC_WTMK_LVL);
if (val & SDHCI_TRNS_DMA) {
wml = ESDHC_WTMK_LVL_WML_VAL_DEF;
} else {
u8 ctrl;
wml = ESDHC_WTMK_LVL_WML_VAL_MAX;
/*
* Since already disable DMA mode, so also need
* to clear the DMASEL. Otherwise, for standard
* tuning, when send tuning command, usdhc will
* still prefetch the ADMA script from wrong
* DMA address, then we will see IOMMU report
* some error which show lack of TLB mapping.
*/
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
m &= ~(ESDHC_WTMK_LVL_RD_WML_MASK |
ESDHC_WTMK_LVL_WR_WML_MASK);
m |= (wml << ESDHC_WTMK_LVL_RD_WML_SHIFT) |
(wml << ESDHC_WTMK_LVL_WR_WML_SHIFT);
writel(m, host->ioaddr + ESDHC_WTMK_LVL);
} else {
/*
* Postpone this write, we must do it together with a
* command write that is down below.
*/
imx_data->scratchpad = val;
}
return;
case SDHCI_COMMAND:
if (host->cmd->opcode == MMC_STOP_TRANSMISSION)
val |= SDHCI_CMD_ABORTCMD;
if ((host->cmd->opcode == MMC_SET_BLOCK_COUNT) &&
(imx_data->socdata->flags & ESDHC_FLAG_MULTIBLK_NO_INT))
imx_data->multiblock_status = MULTIBLK_IN_PROCESS;
if (esdhc_is_usdhc(imx_data))
writel(val << 16,
host->ioaddr + SDHCI_TRANSFER_MODE);
else
writel(val << 16 | imx_data->scratchpad,
host->ioaddr + SDHCI_TRANSFER_MODE);
return;
case SDHCI_BLOCK_SIZE:
val &= ~SDHCI_MAKE_BLKSZ(0x7, 0);
break;
}
esdhc_clrset_le(host, 0xffff, val, reg);
}
static u8 esdhc_readb_le(struct sdhci_host *host, int reg)
{
u8 ret;
u32 val;
switch (reg) {
case SDHCI_HOST_CONTROL:
val = readl(host->ioaddr + reg);
ret = val & SDHCI_CTRL_LED;
ret |= (val >> 5) & SDHCI_CTRL_DMA_MASK;
ret |= (val & ESDHC_CTRL_4BITBUS);
ret |= (val & ESDHC_CTRL_8BITBUS) << 3;
return ret;
}
return readb(host->ioaddr + reg);
}
static void esdhc_writeb_le(struct sdhci_host *host, u8 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
u32 new_val = 0;
u32 mask;
switch (reg) {
case SDHCI_POWER_CONTROL:
/*
* FSL put some DMA bits here
* If your board has a regulator, code should be here
*/
return;
case SDHCI_HOST_CONTROL:
/* FSL messed up here, so we need to manually compose it. */
new_val = val & SDHCI_CTRL_LED;
/* ensure the endianness */
new_val |= ESDHC_HOST_CONTROL_LE;
/* bits 8&9 are reserved on mx25 */
if (!is_imx25_esdhc(imx_data)) {
/* DMA mode bits are shifted */
new_val |= (val & SDHCI_CTRL_DMA_MASK) << 5;
}
/*
* Do not touch buswidth bits here. This is done in
* esdhc_pltfm_bus_width.
* Do not touch the D3CD bit either which is used for the
* SDIO interrupt erratum workaround.
*/
mask = 0xffff & ~(ESDHC_CTRL_BUSWIDTH_MASK | ESDHC_CTRL_D3CD);
esdhc_clrset_le(host, mask, new_val, reg);
return;
case SDHCI_SOFTWARE_RESET:
if (val & SDHCI_RESET_DATA)
new_val = readl(host->ioaddr + SDHCI_HOST_CONTROL);
break;
}
esdhc_clrset_le(host, 0xff, val, reg);
if (reg == SDHCI_SOFTWARE_RESET) {
if (val & SDHCI_RESET_ALL) {
/*
* The esdhc has a design violation to SDHC spec which
* tells that software reset should not affect card
* detection circuit. But esdhc clears its SYSCTL
* register bits [0..2] during the software reset. This
* will stop those clocks that card detection circuit
* relies on. To work around it, we turn the clocks on
* back to keep card detection circuit functional.
*/
esdhc_clrset_le(host, 0x7, 0x7, ESDHC_SYSTEM_CONTROL);
/*
* The reset on usdhc fails to clear MIX_CTRL register.
* Do it manually here.
*/
if (esdhc_is_usdhc(imx_data)) {
/*
* the tuning bits should be kept during reset
*/
new_val = readl(host->ioaddr + ESDHC_MIX_CTRL);
writel(new_val & ESDHC_MIX_CTRL_TUNING_MASK,
host->ioaddr + ESDHC_MIX_CTRL);
imx_data->is_ddr = 0;
}
} else if (val & SDHCI_RESET_DATA) {
/*
* The eSDHC DAT line software reset clears at least the
* data transfer width on i.MX25, so make sure that the
* Host Control register is unaffected.
*/
esdhc_clrset_le(host, 0xff, new_val,
SDHCI_HOST_CONTROL);
}
}
}
static unsigned int esdhc_pltfm_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
return pltfm_host->clock;
}
static unsigned int esdhc_pltfm_get_min_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
return pltfm_host->clock / 256 / 16;
}
static inline void esdhc_pltfm_set_clock(struct sdhci_host *host,
unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
unsigned int host_clock = pltfm_host->clock;
int ddr_pre_div = imx_data->is_ddr ? 2 : 1;
int pre_div = 1;
int div = 1;
int ret;
u32 temp, val;
if (esdhc_is_usdhc(imx_data)) {
val = readl(host->ioaddr + ESDHC_VENDOR_SPEC);
writel(val & ~ESDHC_VENDOR_SPEC_FRC_SDCLK_ON,
host->ioaddr + ESDHC_VENDOR_SPEC);
esdhc_wait_for_card_clock_gate_off(host);
}
if (clock == 0) {
host->mmc->actual_clock = 0;
return;
}
/* For i.MX53 eSDHCv3, SYSCTL.SDCLKFS may not be set to 0. */
if (is_imx53_esdhc(imx_data)) {
/*
* According to the i.MX53 reference manual, if DLLCTRL[10] can
* be set, then the controller is eSDHCv3, else it is eSDHCv2.
*/
val = readl(host->ioaddr + ESDHC_DLL_CTRL);
writel(val | BIT(10), host->ioaddr + ESDHC_DLL_CTRL);
temp = readl(host->ioaddr + ESDHC_DLL_CTRL);
writel(val, host->ioaddr + ESDHC_DLL_CTRL);
if (temp & BIT(10))
pre_div = 2;
}
temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
temp &= ~(ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
| ESDHC_CLOCK_MASK);
sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
if ((imx_data->socdata->flags & ESDHC_FLAG_ERR010450) &&
(!(host->quirks2 & SDHCI_QUIRK2_NO_1_8_V))) {
unsigned int max_clock;
max_clock = imx_data->is_ddr ? 45000000 : 150000000;
clock = min(clock, max_clock);
}
while (host_clock / (16 * pre_div * ddr_pre_div) > clock &&
pre_div < 256)
pre_div *= 2;
while (host_clock / (div * pre_div * ddr_pre_div) > clock && div < 16)
div++;
host->mmc->actual_clock = host_clock / (div * pre_div * ddr_pre_div);
dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
clock, host->mmc->actual_clock);
pre_div >>= 1;
div--;
temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
| (div << ESDHC_DIVIDER_SHIFT)
| (pre_div << ESDHC_PREDIV_SHIFT));
sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
/* need to wait the bit 3 of the PRSSTAT to be set, make sure card clock is stable */
ret = readl_poll_timeout(host->ioaddr + ESDHC_PRSSTAT, temp,
(temp & ESDHC_CLOCK_STABLE), 2, 100);
if (ret == -ETIMEDOUT)
dev_warn(mmc_dev(host->mmc), "card clock still not stable in 100us!.\n");
if (esdhc_is_usdhc(imx_data)) {
val = readl(host->ioaddr + ESDHC_VENDOR_SPEC);
writel(val | ESDHC_VENDOR_SPEC_FRC_SDCLK_ON,
host->ioaddr + ESDHC_VENDOR_SPEC);
}
}
static unsigned int esdhc_pltfm_get_ro(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
struct esdhc_platform_data *boarddata = &imx_data->boarddata;
switch (boarddata->wp_type) {
case ESDHC_WP_GPIO:
return mmc_gpio_get_ro(host->mmc);
case ESDHC_WP_CONTROLLER:
return !(readl(host->ioaddr + SDHCI_PRESENT_STATE) &
SDHCI_WRITE_PROTECT);
case ESDHC_WP_NONE:
break;
}
return -ENOSYS;
}
static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
{
u32 ctrl;
switch (width) {
case MMC_BUS_WIDTH_8:
ctrl = ESDHC_CTRL_8BITBUS;
break;
case MMC_BUS_WIDTH_4:
ctrl = ESDHC_CTRL_4BITBUS;
break;
default:
ctrl = 0;
break;
}
esdhc_clrset_le(host, ESDHC_CTRL_BUSWIDTH_MASK, ctrl,
SDHCI_HOST_CONTROL);
}
static void esdhc_reset_tuning(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
u32 ctrl;
int ret;
/* Reset the tuning circuit */
if (esdhc_is_usdhc(imx_data)) {
ctrl = readl(host->ioaddr + ESDHC_MIX_CTRL);
ctrl &= ~ESDHC_MIX_CTRL_AUTO_TUNE_EN;
if (imx_data->socdata->flags & ESDHC_FLAG_MAN_TUNING) {
ctrl &= ~ESDHC_MIX_CTRL_SMPCLK_SEL;
ctrl &= ~ESDHC_MIX_CTRL_FBCLK_SEL;
writel(ctrl, host->ioaddr + ESDHC_MIX_CTRL);
writel(0, host->ioaddr + ESDHC_TUNE_CTRL_STATUS);
} else if (imx_data->socdata->flags & ESDHC_FLAG_STD_TUNING) {
writel(ctrl, host->ioaddr + ESDHC_MIX_CTRL);
ctrl = readl(host->ioaddr + SDHCI_AUTO_CMD_STATUS);
ctrl &= ~ESDHC_MIX_CTRL_SMPCLK_SEL;
ctrl &= ~ESDHC_MIX_CTRL_EXE_TUNE;
writel(ctrl, host->ioaddr + SDHCI_AUTO_CMD_STATUS);
/* Make sure ESDHC_MIX_CTRL_EXE_TUNE cleared */
ret = readl_poll_timeout(host->ioaddr + SDHCI_AUTO_CMD_STATUS,
ctrl, !(ctrl & ESDHC_MIX_CTRL_EXE_TUNE), 1, 50);
if (ret == -ETIMEDOUT)
dev_warn(mmc_dev(host->mmc),
"Warning! clear execute tuning bit failed\n");
/*
* SDHCI_INT_DATA_AVAIL is W1C bit, set this bit will clear the
* usdhc IP internal logic flag execute_tuning_with_clr_buf, which
* will finally make sure the normal data transfer logic correct.
*/
ctrl = readl(host->ioaddr + SDHCI_INT_STATUS);
ctrl |= SDHCI_INT_DATA_AVAIL;
writel(ctrl, host->ioaddr + SDHCI_INT_STATUS);
}
}
}
static void usdhc_init_card(struct mmc_host *mmc, struct mmc_card *card)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
imx_data->init_card_type = card->type;
}
static int usdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err;
/*
* i.MX uSDHC internally already uses a fixed optimized timing for
* DDR50, normally does not require tuning for DDR50 mode.
*/
if (host->timing == MMC_TIMING_UHS_DDR50)
return 0;
/*
* Reset tuning circuit logic. If not, the previous tuning result
* will impact current tuning, make current tuning can't set the
* correct delay cell.
*/
esdhc_reset_tuning(host);
err = sdhci_execute_tuning(mmc, opcode);
/* If tuning done, enable auto tuning */
if (!err && !host->tuning_err)
usdhc_auto_tuning_mode_sel_and_en(host);
return err;
}
static void esdhc_prepare_tuning(struct sdhci_host *host, u32 val)
{
u32 reg;
u8 sw_rst;
int ret;
/* FIXME: delay a bit for card to be ready for next tuning due to errors */
mdelay(1);
/* IC suggest to reset USDHC before every tuning command */
esdhc_clrset_le(host, 0xff, SDHCI_RESET_ALL, SDHCI_SOFTWARE_RESET);
ret = readb_poll_timeout(host->ioaddr + SDHCI_SOFTWARE_RESET, sw_rst,
!(sw_rst & SDHCI_RESET_ALL), 10, 100);
if (ret == -ETIMEDOUT)
dev_warn(mmc_dev(host->mmc),
"warning! RESET_ALL never complete before sending tuning command\n");
reg = readl(host->ioaddr + ESDHC_MIX_CTRL);
reg |= ESDHC_MIX_CTRL_EXE_TUNE | ESDHC_MIX_CTRL_SMPCLK_SEL |
ESDHC_MIX_CTRL_FBCLK_SEL;
writel(reg, host->ioaddr + ESDHC_MIX_CTRL);
writel(val << 8, host->ioaddr + ESDHC_TUNE_CTRL_STATUS);
dev_dbg(mmc_dev(host->mmc),
"tuning with delay 0x%x ESDHC_TUNE_CTRL_STATUS 0x%x\n",
val, readl(host->ioaddr + ESDHC_TUNE_CTRL_STATUS));
}
static void esdhc_post_tuning(struct sdhci_host *host)
{
u32 reg;
reg = readl(host->ioaddr + ESDHC_MIX_CTRL);
reg &= ~ESDHC_MIX_CTRL_EXE_TUNE;
writel(reg, host->ioaddr + ESDHC_MIX_CTRL);
}
static int esdhc_executing_tuning(struct sdhci_host *host, u32 opcode)
{
int min, max, avg, ret;
/* find the mininum delay first which can pass tuning */
min = ESDHC_TUNE_CTRL_MIN;
while (min < ESDHC_TUNE_CTRL_MAX) {
esdhc_prepare_tuning(host, min);
if (!mmc_send_tuning(host->mmc, opcode, NULL))
break;
min += ESDHC_TUNE_CTRL_STEP;
}
/* find the maxinum delay which can not pass tuning */
max = min + ESDHC_TUNE_CTRL_STEP;
while (max < ESDHC_TUNE_CTRL_MAX) {
esdhc_prepare_tuning(host, max);
if (mmc_send_tuning(host->mmc, opcode, NULL)) {
max -= ESDHC_TUNE_CTRL_STEP;
break;
}
max += ESDHC_TUNE_CTRL_STEP;
}
/* use average delay to get the best timing */
avg = (min + max) / 2;
esdhc_prepare_tuning(host, avg);
ret = mmc_send_tuning(host->mmc, opcode, NULL);
esdhc_post_tuning(host);
dev_dbg(mmc_dev(host->mmc), "tuning %s at 0x%x ret %d\n",
ret ? "failed" : "passed", avg, ret);
return ret;
}
static void esdhc_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 m;
m = readl(host->ioaddr + ESDHC_MIX_CTRL);
if (ios->enhanced_strobe)
m |= ESDHC_MIX_CTRL_HS400_ES_EN;
else
m &= ~ESDHC_MIX_CTRL_HS400_ES_EN;
writel(m, host->ioaddr + ESDHC_MIX_CTRL);
}
static int esdhc_change_pinstate(struct sdhci_host *host,
unsigned int uhs)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
struct pinctrl_state *pinctrl;
dev_dbg(mmc_dev(host->mmc), "change pinctrl state for uhs %d\n", uhs);
if (IS_ERR(imx_data->pinctrl) ||
IS_ERR(imx_data->pins_100mhz) ||
IS_ERR(imx_data->pins_200mhz))
return -EINVAL;
switch (uhs) {
case MMC_TIMING_UHS_SDR50:
case MMC_TIMING_UHS_DDR50:
pinctrl = imx_data->pins_100mhz;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_MMC_HS400:
pinctrl = imx_data->pins_200mhz;
break;
default:
/* back to default state for other legacy timing */
return pinctrl_select_default_state(mmc_dev(host->mmc));
}
return pinctrl_select_state(imx_data->pinctrl, pinctrl);
}
/*
* For HS400 eMMC, there is a data_strobe line. This signal is generated
* by the device and used for data output and CRC status response output
* in HS400 mode. The frequency of this signal follows the frequency of
* CLK generated by host. The host receives the data which is aligned to the
* edge of data_strobe line. Due to the time delay between CLK line and
* data_strobe line, if the delay time is larger than one clock cycle,
* then CLK and data_strobe line will be misaligned, read error shows up.
*/
static void esdhc_set_strobe_dll(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
u32 strobe_delay;
u32 v;
int ret;
/* disable clock before enabling strobe dll */
writel(readl(host->ioaddr + ESDHC_VENDOR_SPEC) &
~ESDHC_VENDOR_SPEC_FRC_SDCLK_ON,
host->ioaddr + ESDHC_VENDOR_SPEC);
esdhc_wait_for_card_clock_gate_off(host);
/* force a reset on strobe dll */
writel(ESDHC_STROBE_DLL_CTRL_RESET,
host->ioaddr + ESDHC_STROBE_DLL_CTRL);
/* clear the reset bit on strobe dll before any setting */
writel(0, host->ioaddr + ESDHC_STROBE_DLL_CTRL);
/*
* enable strobe dll ctrl and adjust the delay target
* for the uSDHC loopback read clock
*/
if (imx_data->boarddata.strobe_dll_delay_target)
strobe_delay = imx_data->boarddata.strobe_dll_delay_target;
else
strobe_delay = ESDHC_STROBE_DLL_CTRL_SLV_DLY_TARGET_DEFAULT;
v = ESDHC_STROBE_DLL_CTRL_ENABLE |
ESDHC_STROBE_DLL_CTRL_SLV_UPDATE_INT_DEFAULT |
(strobe_delay << ESDHC_STROBE_DLL_CTRL_SLV_DLY_TARGET_SHIFT);
writel(v, host->ioaddr + ESDHC_STROBE_DLL_CTRL);
/* wait max 50us to get the REF/SLV lock */
ret = readl_poll_timeout(host->ioaddr + ESDHC_STROBE_DLL_STATUS, v,
((v & ESDHC_STROBE_DLL_STS_REF_LOCK) && (v & ESDHC_STROBE_DLL_STS_SLV_LOCK)), 1, 50);
if (ret == -ETIMEDOUT)
dev_warn(mmc_dev(host->mmc),
"warning! HS400 strobe DLL status REF/SLV not lock in 50us, STROBE DLL status is %x!\n", v);
}
static void esdhc_set_uhs_signaling(struct sdhci_host *host, unsigned timing)
{
u32 m;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
struct esdhc_platform_data *boarddata = &imx_data->boarddata;
/* disable ddr mode and disable HS400 mode */
m = readl(host->ioaddr + ESDHC_MIX_CTRL);
m &= ~(ESDHC_MIX_CTRL_DDREN | ESDHC_MIX_CTRL_HS400_EN);
imx_data->is_ddr = 0;
switch (timing) {
case MMC_TIMING_UHS_SDR12:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_SDR50:
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS:
case MMC_TIMING_MMC_HS200:
writel(m, host->ioaddr + ESDHC_MIX_CTRL);
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
m |= ESDHC_MIX_CTRL_DDREN;
writel(m, host->ioaddr + ESDHC_MIX_CTRL);
imx_data->is_ddr = 1;
if (boarddata->delay_line) {
u32 v;
v = boarddata->delay_line <<
ESDHC_DLL_OVERRIDE_VAL_SHIFT |
(1 << ESDHC_DLL_OVERRIDE_EN_SHIFT);
if (is_imx53_esdhc(imx_data))
v <<= 1;
writel(v, host->ioaddr + ESDHC_DLL_CTRL);
}
break;
case MMC_TIMING_MMC_HS400:
m |= ESDHC_MIX_CTRL_DDREN | ESDHC_MIX_CTRL_HS400_EN;
writel(m, host->ioaddr + ESDHC_MIX_CTRL);
imx_data->is_ddr = 1;
/* update clock after enable DDR for strobe DLL lock */
host->ops->set_clock(host, host->clock);
esdhc_set_strobe_dll(host);
break;
case MMC_TIMING_LEGACY:
default:
esdhc_reset_tuning(host);
break;
}
esdhc_change_pinstate(host, timing);
}
static void esdhc_reset(struct sdhci_host *host, u8 mask)
{
sdhci_and_cqhci_reset(host, mask);
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static unsigned int esdhc_get_max_timeout_count(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
/* Doc Erratum: the uSDHC actual maximum timeout count is 1 << 29 */
return esdhc_is_usdhc(imx_data) ? 1 << 29 : 1 << 27;
}
static void esdhc_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
/* use maximum timeout counter */
esdhc_clrset_le(host, ESDHC_SYS_CTRL_DTOCV_MASK,
esdhc_is_usdhc(imx_data) ? 0xF : 0xE,
SDHCI_TIMEOUT_CONTROL);
}
static u32 esdhc_cqhci_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static struct sdhci_ops sdhci_esdhc_ops = {
.read_l = esdhc_readl_le,
.read_w = esdhc_readw_le,
.read_b = esdhc_readb_le,
.write_l = esdhc_writel_le,
.write_w = esdhc_writew_le,
.write_b = esdhc_writeb_le,
.set_clock = esdhc_pltfm_set_clock,
.get_max_clock = esdhc_pltfm_get_max_clock,
.get_min_clock = esdhc_pltfm_get_min_clock,
.get_max_timeout_count = esdhc_get_max_timeout_count,
.get_ro = esdhc_pltfm_get_ro,
.set_timeout = esdhc_set_timeout,
.set_bus_width = esdhc_pltfm_set_bus_width,
.set_uhs_signaling = esdhc_set_uhs_signaling,
.reset = esdhc_reset,
.irq = esdhc_cqhci_irq,
.dump_vendor_regs = esdhc_dump_debug_regs,
};
static const struct sdhci_pltfm_data sdhci_esdhc_imx_pdata = {
.quirks = ESDHC_DEFAULT_QUIRKS | SDHCI_QUIRK_NO_HISPD_BIT
| SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC
| SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC
| SDHCI_QUIRK_BROKEN_CARD_DETECTION,
.ops = &sdhci_esdhc_ops,
};
static void sdhci_esdhc_imx_hwinit(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
struct cqhci_host *cq_host = host->mmc->cqe_private;
u32 tmp;
if (esdhc_is_usdhc(imx_data)) {
/*
* The imx6q ROM code will change the default watermark
* level setting to something insane. Change it back here.
*/
writel(ESDHC_WTMK_DEFAULT_VAL, host->ioaddr + ESDHC_WTMK_LVL);
/*
* ROM code will change the bit burst_length_enable setting
* to zero if this usdhc is chosen to boot system. Change
* it back here, otherwise it will impact the performance a
* lot. This bit is used to enable/disable the burst length
* for the external AHB2AXI bridge. It's useful especially
* for INCR transfer because without burst length indicator,
* the AHB2AXI bridge does not know the burst length in
* advance. And without burst length indicator, AHB INCR
* transfer can only be converted to singles on the AXI side.
*/
writel(readl(host->ioaddr + SDHCI_HOST_CONTROL)
| ESDHC_BURST_LEN_EN_INCR,
host->ioaddr + SDHCI_HOST_CONTROL);
/*
* erratum ESDHC_FLAG_ERR004536 fix for MX6Q TO1.2 and MX6DL
* TO1.1, it's harmless for MX6SL
*/
if (!(imx_data->socdata->flags & ESDHC_FLAG_SKIP_ERR004536)) {
writel(readl(host->ioaddr + 0x6c) & ~BIT(7),
host->ioaddr + 0x6c);
}
/* disable DLL_CTRL delay line settings */
writel(0x0, host->ioaddr + ESDHC_DLL_CTRL);
/*
* For the case of command with busy, if set the bit
* ESDHC_VEND_SPEC2_EN_BUSY_IRQ, USDHC will generate a
* transfer complete interrupt when busy is deasserted.
* When CQHCI use DCMD to send a CMD need R1b respons,
* CQHCI require to set ESDHC_VEND_SPEC2_EN_BUSY_IRQ,
* otherwise DCMD will always meet timeout waiting for
* hardware interrupt issue.
*/
if (imx_data->socdata->flags & ESDHC_FLAG_CQHCI) {
tmp = readl(host->ioaddr + ESDHC_VEND_SPEC2);
tmp |= ESDHC_VEND_SPEC2_EN_BUSY_IRQ;
writel(tmp, host->ioaddr + ESDHC_VEND_SPEC2);
host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
}
if (imx_data->socdata->flags & ESDHC_FLAG_STD_TUNING) {
tmp = readl(host->ioaddr + ESDHC_TUNING_CTRL);
tmp |= ESDHC_STD_TUNING_EN;
/*
* ROM code or bootloader may config the start tap
* and step, unmask them first.
*/
tmp &= ~(ESDHC_TUNING_START_TAP_MASK | ESDHC_TUNING_STEP_MASK);
if (imx_data->boarddata.tuning_start_tap)
tmp |= imx_data->boarddata.tuning_start_tap;
else
tmp |= ESDHC_TUNING_START_TAP_DEFAULT;
if (imx_data->boarddata.tuning_step) {
tmp |= imx_data->boarddata.tuning_step
<< ESDHC_TUNING_STEP_SHIFT;
} else {
tmp |= ESDHC_TUNING_STEP_DEFAULT
<< ESDHC_TUNING_STEP_SHIFT;
}
/* Disable the CMD CRC check for tuning, if not, need to
* add some delay after every tuning command, because
* hardware standard tuning logic will directly go to next
* step once it detect the CMD CRC error, will not wait for
* the card side to finally send out the tuning data, trigger
* the buffer read ready interrupt immediately. If usdhc send
* the next tuning command some eMMC card will stuck, can't
* response, block the tuning procedure or the first command
* after the whole tuning procedure always can't get any response.
*/
tmp |= ESDHC_TUNING_CMD_CRC_CHECK_DISABLE;
writel(tmp, host->ioaddr + ESDHC_TUNING_CTRL);
} else if (imx_data->socdata->flags & ESDHC_FLAG_MAN_TUNING) {
/*
* ESDHC_STD_TUNING_EN may be configed in bootloader
* or ROM code, so clear this bit here to make sure
* the manual tuning can work.
*/
tmp = readl(host->ioaddr + ESDHC_TUNING_CTRL);
tmp &= ~ESDHC_STD_TUNING_EN;
writel(tmp, host->ioaddr + ESDHC_TUNING_CTRL);
}
/*
* On i.MX8MM, we are running Dual Linux OS, with 1st Linux using SD Card
* as rootfs storage, 2nd Linux using eMMC as rootfs storage. We let
* the 1st linux configure power/clock for the 2nd Linux.
*
* When the 2nd Linux is booting into rootfs stage, we let the 1st Linux
* to destroy the 2nd linux, then restart the 2nd linux, we met SDHCI dump.
* After we clear the pending interrupt and halt CQCTL, issue gone.
*/
if (cq_host) {
tmp = cqhci_readl(cq_host, CQHCI_IS);
cqhci_writel(cq_host, tmp, CQHCI_IS);
cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
}
}
}
static void esdhc_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
struct cqhci_host *cq_host = mmc->cqe_private;
u32 reg;
u16 mode;
int count = 10;
/*
* CQE gets stuck if it sees Buffer Read Enable bit set, which can be
* the case after tuning, so ensure the buffer is drained.
*/
reg = sdhci_readl(host, SDHCI_PRESENT_STATE);
while (reg & SDHCI_DATA_AVAILABLE) {
sdhci_readl(host, SDHCI_BUFFER);
reg = sdhci_readl(host, SDHCI_PRESENT_STATE);
if (count-- == 0) {
dev_warn(mmc_dev(host->mmc),
"CQE may get stuck because the Buffer Read Enable bit is set\n");
break;
}
mdelay(1);
}
/*
* Runtime resume will reset the entire host controller, which
* will also clear the DMAEN/BCEN of register ESDHC_MIX_CTRL.
* Here set DMAEN and BCEN when enable CMDQ.
*/
mode = sdhci_readw(host, SDHCI_TRANSFER_MODE);
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE))
mode |= SDHCI_TRNS_BLK_CNT_EN;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
/*
* Though Runtime resume reset the entire host controller,
* but do not impact the CQHCI side, need to clear the
* HALT bit, avoid CQHCI stuck in the first request when
* system resume back.
*/
cqhci_writel(cq_host, 0, CQHCI_CTL);
if (cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT)
dev_err(mmc_dev(host->mmc),
"failed to exit halt state when enable CQE\n");
sdhci_cqe_enable(mmc);
}
static void esdhc_sdhci_dumpregs(struct mmc_host *mmc)
{
sdhci_dumpregs(mmc_priv(mmc));
}
static const struct cqhci_host_ops esdhc_cqhci_ops = {
.enable = esdhc_cqe_enable,
.disable = sdhci_cqe_disable,
.dumpregs = esdhc_sdhci_dumpregs,
};
static int
sdhci_esdhc_imx_probe_dt(struct platform_device *pdev,
struct sdhci_host *host,
struct pltfm_imx_data *imx_data)
{
struct device_node *np = pdev->dev.of_node;
struct esdhc_platform_data *boarddata = &imx_data->boarddata;
int ret;
if (of_property_read_bool(np, "fsl,wp-controller"))
boarddata->wp_type = ESDHC_WP_CONTROLLER;
/*
* If we have this property, then activate WP check.
* Retrieveing and requesting the actual WP GPIO will happen
* in the call to mmc_of_parse().
*/
if (of_property_read_bool(np, "wp-gpios"))
boarddata->wp_type = ESDHC_WP_GPIO;
of_property_read_u32(np, "fsl,tuning-step", &boarddata->tuning_step);
of_property_read_u32(np, "fsl,tuning-start-tap",
&boarddata->tuning_start_tap);
of_property_read_u32(np, "fsl,strobe-dll-delay-target",
&boarddata->strobe_dll_delay_target);
if (of_property_read_bool(np, "no-1-8-v"))
host->quirks2 |= SDHCI_QUIRK2_NO_1_8_V;
if (of_property_read_u32(np, "fsl,delay-line", &boarddata->delay_line))
boarddata->delay_line = 0;
mmc_of_parse_voltage(host->mmc, &host->ocr_mask);
if (esdhc_is_usdhc(imx_data) && !IS_ERR(imx_data->pinctrl)) {
imx_data->pins_100mhz = pinctrl_lookup_state(imx_data->pinctrl,
ESDHC_PINCTRL_STATE_100MHZ);
imx_data->pins_200mhz = pinctrl_lookup_state(imx_data->pinctrl,
ESDHC_PINCTRL_STATE_200MHZ);
}
/* call to generic mmc_of_parse to support additional capabilities */
ret = mmc_of_parse(host->mmc);
if (ret)
return ret;
/* HS400/HS400ES require 8 bit bus */
if (!(host->mmc->caps & MMC_CAP_8_BIT_DATA))
host->mmc->caps2 &= ~(MMC_CAP2_HS400 | MMC_CAP2_HS400_ES);
if (mmc_gpio_get_cd(host->mmc) >= 0)
host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
return 0;
}
static int sdhci_esdhc_imx_probe(struct platform_device *pdev)
{
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_host *host;
struct cqhci_host *cq_host;
int err;
struct pltfm_imx_data *imx_data;
host = sdhci_pltfm_init(pdev, &sdhci_esdhc_imx_pdata,
sizeof(*imx_data));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
imx_data = sdhci_pltfm_priv(pltfm_host);
imx_data->socdata = device_get_match_data(&pdev->dev);
if (imx_data->socdata->flags & ESDHC_FLAG_PMQOS)
cpu_latency_qos_add_request(&imx_data->pm_qos_req, 0);
imx_data->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(imx_data->clk_ipg)) {
err = PTR_ERR(imx_data->clk_ipg);
goto free_sdhci;
}
imx_data->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(imx_data->clk_ahb)) {
err = PTR_ERR(imx_data->clk_ahb);
goto free_sdhci;
}
imx_data->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(imx_data->clk_per)) {
err = PTR_ERR(imx_data->clk_per);
goto free_sdhci;
}
pltfm_host->clk = imx_data->clk_per;
pltfm_host->clock = clk_get_rate(pltfm_host->clk);
err = clk_prepare_enable(imx_data->clk_per);
if (err)
goto free_sdhci;
err = clk_prepare_enable(imx_data->clk_ipg);
if (err)
goto disable_per_clk;
err = clk_prepare_enable(imx_data->clk_ahb);
if (err)
goto disable_ipg_clk;
imx_data->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(imx_data->pinctrl))
dev_warn(mmc_dev(host->mmc), "could not get pinctrl\n");
if (esdhc_is_usdhc(imx_data)) {
host->quirks2 |= SDHCI_QUIRK2_PRESET_VALUE_BROKEN;
host->mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
/* GPIO CD can be set as a wakeup source */
host->mmc->caps |= MMC_CAP_CD_WAKE;
if (!(imx_data->socdata->flags & ESDHC_FLAG_HS200))
host->quirks2 |= SDHCI_QUIRK2_BROKEN_HS200;
/* clear tuning bits in case ROM has set it already */
writel(0x0, host->ioaddr + ESDHC_MIX_CTRL);
writel(0x0, host->ioaddr + SDHCI_AUTO_CMD_STATUS);
writel(0x0, host->ioaddr + ESDHC_TUNE_CTRL_STATUS);
/*
* Link usdhc specific mmc_host_ops execute_tuning function,
* to replace the standard one in sdhci_ops.
*/
host->mmc_host_ops.execute_tuning = usdhc_execute_tuning;
/*
* Link usdhc specific mmc_host_ops init card function,
* to distinguish the card type.
*/
host->mmc_host_ops.init_card = usdhc_init_card;
}
if (imx_data->socdata->flags & ESDHC_FLAG_MAN_TUNING)
sdhci_esdhc_ops.platform_execute_tuning =
esdhc_executing_tuning;
if (imx_data->socdata->flags & ESDHC_FLAG_ERR004536)
host->quirks |= SDHCI_QUIRK_BROKEN_ADMA;
if (imx_data->socdata->flags & ESDHC_FLAG_HS400)
host->mmc->caps2 |= MMC_CAP2_HS400;
if (imx_data->socdata->flags & ESDHC_FLAG_BROKEN_AUTO_CMD23)
host->quirks2 |= SDHCI_QUIRK2_ACMD23_BROKEN;
if (imx_data->socdata->flags & ESDHC_FLAG_HS400_ES) {
host->mmc->caps2 |= MMC_CAP2_HS400_ES;
host->mmc_host_ops.hs400_enhanced_strobe =
esdhc_hs400_enhanced_strobe;
}
if (imx_data->socdata->flags & ESDHC_FLAG_CQHCI) {
host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
if (!cq_host) {
err = -ENOMEM;
goto disable_ahb_clk;
}
cq_host->mmio = host->ioaddr + ESDHC_CQHCI_ADDR_OFFSET;
cq_host->ops = &esdhc_cqhci_ops;
err = cqhci_init(cq_host, host->mmc, false);
if (err)
goto disable_ahb_clk;
}
err = sdhci_esdhc_imx_probe_dt(pdev, host, imx_data);
if (err)
goto disable_ahb_clk;
sdhci_esdhc_imx_hwinit(host);
err = sdhci_add_host(host);
if (err)
goto disable_ahb_clk;
/*
* Setup the wakeup capability here, let user to decide
* whether need to enable this wakeup through sysfs interface.
*/
if ((host->mmc->pm_caps & MMC_PM_KEEP_POWER) &&
(host->mmc->pm_caps & MMC_PM_WAKE_SDIO_IRQ))
device_set_wakeup_capable(&pdev->dev, true);
pm_runtime_set_active(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_suspend_ignore_children(&pdev->dev, 1);
pm_runtime_enable(&pdev->dev);
return 0;
disable_ahb_clk:
clk_disable_unprepare(imx_data->clk_ahb);
disable_ipg_clk:
clk_disable_unprepare(imx_data->clk_ipg);
disable_per_clk:
clk_disable_unprepare(imx_data->clk_per);
free_sdhci:
if (imx_data->socdata->flags & ESDHC_FLAG_PMQOS)
cpu_latency_qos_remove_request(&imx_data->pm_qos_req);
sdhci_pltfm_free(pdev);
return err;
}
static void sdhci_esdhc_imx_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
int dead;
pm_runtime_get_sync(&pdev->dev);
dead = (readl(host->ioaddr + SDHCI_INT_STATUS) == 0xffffffff);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
sdhci_remove_host(host, dead);
clk_disable_unprepare(imx_data->clk_per);
clk_disable_unprepare(imx_data->clk_ipg);
clk_disable_unprepare(imx_data->clk_ahb);
if (imx_data->socdata->flags & ESDHC_FLAG_PMQOS)
cpu_latency_qos_remove_request(&imx_data->pm_qos_req);
sdhci_pltfm_free(pdev);
}
#ifdef CONFIG_PM_SLEEP
static int sdhci_esdhc_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->mmc->caps2 & MMC_CAP2_CQE) {
ret = cqhci_suspend(host->mmc);
if (ret)
return ret;
}
if ((imx_data->socdata->flags & ESDHC_FLAG_STATE_LOST_IN_LPMODE) &&
(host->tuning_mode != SDHCI_TUNING_MODE_1)) {
mmc_retune_timer_stop(host->mmc);
mmc_retune_needed(host->mmc);
}
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
ret = sdhci_suspend_host(host);
if (ret)
return ret;
ret = pinctrl_pm_select_sleep_state(dev);
if (ret)
return ret;
ret = mmc_gpio_set_cd_wake(host->mmc, true);
return ret;
}
static int sdhci_esdhc_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
/* re-initialize hw state in case it's lost in low power mode */
sdhci_esdhc_imx_hwinit(host);
ret = sdhci_resume_host(host);
if (ret)
return ret;
if (host->mmc->caps2 & MMC_CAP2_CQE)
ret = cqhci_resume(host->mmc);
if (!ret)
ret = mmc_gpio_set_cd_wake(host->mmc, false);
return ret;
}
#endif
#ifdef CONFIG_PM
static int sdhci_esdhc_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->mmc->caps2 & MMC_CAP2_CQE) {
ret = cqhci_suspend(host->mmc);
if (ret)
return ret;
}
ret = sdhci_runtime_suspend_host(host);
if (ret)
return ret;
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
imx_data->actual_clock = host->mmc->actual_clock;
esdhc_pltfm_set_clock(host, 0);
clk_disable_unprepare(imx_data->clk_per);
clk_disable_unprepare(imx_data->clk_ipg);
clk_disable_unprepare(imx_data->clk_ahb);
if (imx_data->socdata->flags & ESDHC_FLAG_PMQOS)
cpu_latency_qos_remove_request(&imx_data->pm_qos_req);
return ret;
}
static int sdhci_esdhc_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct pltfm_imx_data *imx_data = sdhci_pltfm_priv(pltfm_host);
int err;
if (imx_data->socdata->flags & ESDHC_FLAG_PMQOS)
cpu_latency_qos_add_request(&imx_data->pm_qos_req, 0);
if (imx_data->socdata->flags & ESDHC_FLAG_CLK_RATE_LOST_IN_PM_RUNTIME)
clk_set_rate(imx_data->clk_per, pltfm_host->clock);
err = clk_prepare_enable(imx_data->clk_ahb);
if (err)
goto remove_pm_qos_request;
err = clk_prepare_enable(imx_data->clk_per);
if (err)
goto disable_ahb_clk;
err = clk_prepare_enable(imx_data->clk_ipg);
if (err)
goto disable_per_clk;
esdhc_pltfm_set_clock(host, imx_data->actual_clock);
err = sdhci_runtime_resume_host(host, 0);
if (err)
goto disable_ipg_clk;
if (host->mmc->caps2 & MMC_CAP2_CQE)
err = cqhci_resume(host->mmc);
return err;
disable_ipg_clk:
clk_disable_unprepare(imx_data->clk_ipg);
disable_per_clk:
clk_disable_unprepare(imx_data->clk_per);
disable_ahb_clk:
clk_disable_unprepare(imx_data->clk_ahb);
remove_pm_qos_request:
if (imx_data->socdata->flags & ESDHC_FLAG_PMQOS)
cpu_latency_qos_remove_request(&imx_data->pm_qos_req);
return err;
}
#endif
static const struct dev_pm_ops sdhci_esdhc_pmops = {
SET_SYSTEM_SLEEP_PM_OPS(sdhci_esdhc_suspend, sdhci_esdhc_resume)
SET_RUNTIME_PM_OPS(sdhci_esdhc_runtime_suspend,
sdhci_esdhc_runtime_resume, NULL)
};
static struct platform_driver sdhci_esdhc_imx_driver = {
.driver = {
.name = "sdhci-esdhc-imx",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = imx_esdhc_dt_ids,
.pm = &sdhci_esdhc_pmops,
},
.probe = sdhci_esdhc_imx_probe,
.remove_new = sdhci_esdhc_imx_remove,
};
module_platform_driver(sdhci_esdhc_imx_driver);
MODULE_DESCRIPTION("SDHCI driver for Freescale i.MX eSDHC");
MODULE_AUTHOR("Wolfram Sang <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-esdhc-imx.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Synopsys DesignWare Multimedia Card PCI Interface driver
*
* Copyright (C) 2012 Vayavya Labs Pvt. Ltd.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include "dw_mmc.h"
#define PCI_BAR_NO 2
#define SYNOPSYS_DW_MCI_VENDOR_ID 0x700
#define SYNOPSYS_DW_MCI_DEVICE_ID 0x1107
/* Defining the Capabilities */
#define DW_MCI_CAPABILITIES (MMC_CAP_4_BIT_DATA | MMC_CAP_MMC_HIGHSPEED |\
MMC_CAP_SD_HIGHSPEED | MMC_CAP_8_BIT_DATA |\
MMC_CAP_SDIO_IRQ)
static struct dw_mci_board pci_board_data = {
.caps = DW_MCI_CAPABILITIES,
.bus_hz = 33 * 1000 * 1000,
.detect_delay_ms = 200,
.fifo_depth = 32,
};
static int dw_mci_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *entries)
{
struct dw_mci *host;
int ret;
ret = pcim_enable_device(pdev);
if (ret)
return ret;
host = devm_kzalloc(&pdev->dev, sizeof(struct dw_mci), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->irq = pdev->irq;
host->irq_flags = IRQF_SHARED;
host->dev = &pdev->dev;
host->pdata = &pci_board_data;
ret = pcim_iomap_regions(pdev, 1 << PCI_BAR_NO, pci_name(pdev));
if (ret)
return ret;
host->regs = pcim_iomap_table(pdev)[PCI_BAR_NO];
pci_set_master(pdev);
ret = dw_mci_probe(host);
if (ret)
return ret;
pci_set_drvdata(pdev, host);
return 0;
}
static void dw_mci_pci_remove(struct pci_dev *pdev)
{
struct dw_mci *host = pci_get_drvdata(pdev);
dw_mci_remove(host);
}
static const struct dev_pm_ops dw_mci_pci_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(dw_mci_runtime_suspend,
dw_mci_runtime_resume,
NULL)
};
static const struct pci_device_id dw_mci_pci_id[] = {
{ PCI_DEVICE(SYNOPSYS_DW_MCI_VENDOR_ID, SYNOPSYS_DW_MCI_DEVICE_ID) },
{}
};
MODULE_DEVICE_TABLE(pci, dw_mci_pci_id);
static struct pci_driver dw_mci_pci_driver = {
.name = "dw_mmc_pci",
.id_table = dw_mci_pci_id,
.probe = dw_mci_pci_probe,
.remove = dw_mci_pci_remove,
.driver = {
.pm = &dw_mci_pci_dev_pm_ops,
},
};
module_pci_driver(dw_mci_pci_driver);
MODULE_DESCRIPTION("DW Multimedia Card PCI Interface driver");
MODULE_AUTHOR("Shashidhar Hiremath <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/dw_mmc-pci.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Portions copyright (C) 2003 Russell King, PXA MMCI Driver
* Portions copyright (C) 2004-2005 Pierre Ossman, W83L51xD SD/MMC driver
*
* Copyright 2008 Embedded Alley Solutions, Inc.
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/dma/mxs-dma.h>
#include <linux/highmem.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/module.h>
#include <linux/stmp_device.h>
#include <linux/spi/mxs-spi.h>
#define DRIVER_NAME "mxs-mmc"
#define MXS_MMC_IRQ_BITS (BM_SSP_CTRL1_SDIO_IRQ | \
BM_SSP_CTRL1_RESP_ERR_IRQ | \
BM_SSP_CTRL1_RESP_TIMEOUT_IRQ | \
BM_SSP_CTRL1_DATA_TIMEOUT_IRQ | \
BM_SSP_CTRL1_DATA_CRC_IRQ | \
BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ | \
BM_SSP_CTRL1_RECV_TIMEOUT_IRQ | \
BM_SSP_CTRL1_FIFO_OVERRUN_IRQ)
/* card detect polling timeout */
#define MXS_MMC_DETECT_TIMEOUT (HZ/2)
struct mxs_mmc_host {
struct mxs_ssp ssp;
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
unsigned char bus_width;
spinlock_t lock;
int sdio_irq_en;
bool broken_cd;
};
static int mxs_mmc_get_cd(struct mmc_host *mmc)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
struct mxs_ssp *ssp = &host->ssp;
int present, ret;
if (host->broken_cd)
return -ENOSYS;
ret = mmc_gpio_get_cd(mmc);
if (ret >= 0)
return ret;
present = mmc->caps & MMC_CAP_NEEDS_POLL ||
!(readl(ssp->base + HW_SSP_STATUS(ssp)) &
BM_SSP_STATUS_CARD_DETECT);
if (mmc->caps2 & MMC_CAP2_CD_ACTIVE_HIGH)
present = !present;
return present;
}
static int mxs_mmc_reset(struct mxs_mmc_host *host)
{
struct mxs_ssp *ssp = &host->ssp;
u32 ctrl0, ctrl1;
int ret;
ret = stmp_reset_block(ssp->base);
if (ret)
return ret;
ctrl0 = BM_SSP_CTRL0_IGNORE_CRC;
ctrl1 = BF_SSP(0x3, CTRL1_SSP_MODE) |
BF_SSP(0x7, CTRL1_WORD_LENGTH) |
BM_SSP_CTRL1_DMA_ENABLE |
BM_SSP_CTRL1_POLARITY |
BM_SSP_CTRL1_RECV_TIMEOUT_IRQ_EN |
BM_SSP_CTRL1_DATA_CRC_IRQ_EN |
BM_SSP_CTRL1_DATA_TIMEOUT_IRQ_EN |
BM_SSP_CTRL1_RESP_TIMEOUT_IRQ_EN |
BM_SSP_CTRL1_RESP_ERR_IRQ_EN;
writel(BF_SSP(0xffff, TIMING_TIMEOUT) |
BF_SSP(2, TIMING_CLOCK_DIVIDE) |
BF_SSP(0, TIMING_CLOCK_RATE),
ssp->base + HW_SSP_TIMING(ssp));
if (host->sdio_irq_en) {
ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
ctrl1 |= BM_SSP_CTRL1_SDIO_IRQ_EN;
}
writel(ctrl0, ssp->base + HW_SSP_CTRL0);
writel(ctrl1, ssp->base + HW_SSP_CTRL1(ssp));
return 0;
}
static void mxs_mmc_start_cmd(struct mxs_mmc_host *host,
struct mmc_command *cmd);
static void mxs_mmc_request_done(struct mxs_mmc_host *host)
{
struct mmc_command *cmd = host->cmd;
struct mmc_data *data = host->data;
struct mmc_request *mrq = host->mrq;
struct mxs_ssp *ssp = &host->ssp;
if (mmc_resp_type(cmd) & MMC_RSP_PRESENT) {
if (mmc_resp_type(cmd) & MMC_RSP_136) {
cmd->resp[3] = readl(ssp->base + HW_SSP_SDRESP0(ssp));
cmd->resp[2] = readl(ssp->base + HW_SSP_SDRESP1(ssp));
cmd->resp[1] = readl(ssp->base + HW_SSP_SDRESP2(ssp));
cmd->resp[0] = readl(ssp->base + HW_SSP_SDRESP3(ssp));
} else {
cmd->resp[0] = readl(ssp->base + HW_SSP_SDRESP0(ssp));
}
}
if (cmd == mrq->sbc) {
/* Finished CMD23, now send actual command. */
mxs_mmc_start_cmd(host, mrq->cmd);
return;
} else if (data) {
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, ssp->dma_dir);
/*
* If there was an error on any block, we mark all
* data blocks as being in error.
*/
if (!data->error)
data->bytes_xfered = data->blocks * data->blksz;
else
data->bytes_xfered = 0;
host->data = NULL;
if (data->stop && (data->error || !mrq->sbc)) {
mxs_mmc_start_cmd(host, mrq->stop);
return;
}
}
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
static void mxs_mmc_dma_irq_callback(void *param)
{
struct mxs_mmc_host *host = param;
mxs_mmc_request_done(host);
}
static irqreturn_t mxs_mmc_irq_handler(int irq, void *dev_id)
{
struct mxs_mmc_host *host = dev_id;
struct mmc_command *cmd = host->cmd;
struct mmc_data *data = host->data;
struct mxs_ssp *ssp = &host->ssp;
u32 stat;
spin_lock(&host->lock);
stat = readl(ssp->base + HW_SSP_CTRL1(ssp));
writel(stat & MXS_MMC_IRQ_BITS,
ssp->base + HW_SSP_CTRL1(ssp) + STMP_OFFSET_REG_CLR);
spin_unlock(&host->lock);
if ((stat & BM_SSP_CTRL1_SDIO_IRQ) && (stat & BM_SSP_CTRL1_SDIO_IRQ_EN))
mmc_signal_sdio_irq(host->mmc);
if (stat & BM_SSP_CTRL1_RESP_TIMEOUT_IRQ)
cmd->error = -ETIMEDOUT;
else if (stat & BM_SSP_CTRL1_RESP_ERR_IRQ)
cmd->error = -EIO;
if (data) {
if (stat & (BM_SSP_CTRL1_DATA_TIMEOUT_IRQ |
BM_SSP_CTRL1_RECV_TIMEOUT_IRQ))
data->error = -ETIMEDOUT;
else if (stat & BM_SSP_CTRL1_DATA_CRC_IRQ)
data->error = -EILSEQ;
else if (stat & (BM_SSP_CTRL1_FIFO_UNDERRUN_IRQ |
BM_SSP_CTRL1_FIFO_OVERRUN_IRQ))
data->error = -EIO;
}
return IRQ_HANDLED;
}
static struct dma_async_tx_descriptor *mxs_mmc_prep_dma(
struct mxs_mmc_host *host, unsigned long flags)
{
struct mxs_ssp *ssp = &host->ssp;
struct dma_async_tx_descriptor *desc;
struct mmc_data *data = host->data;
struct scatterlist * sgl;
unsigned int sg_len;
if (data) {
/* data */
dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, ssp->dma_dir);
sgl = data->sg;
sg_len = data->sg_len;
} else {
/* pio */
sgl = (struct scatterlist *) ssp->ssp_pio_words;
sg_len = SSP_PIO_NUM;
}
desc = dmaengine_prep_slave_sg(ssp->dmach,
sgl, sg_len, ssp->slave_dirn, flags);
if (desc) {
desc->callback = mxs_mmc_dma_irq_callback;
desc->callback_param = host;
} else {
if (data)
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, ssp->dma_dir);
}
return desc;
}
static void mxs_mmc_bc(struct mxs_mmc_host *host)
{
struct mxs_ssp *ssp = &host->ssp;
struct mmc_command *cmd = host->cmd;
struct dma_async_tx_descriptor *desc;
u32 ctrl0, cmd0, cmd1;
ctrl0 = BM_SSP_CTRL0_ENABLE | BM_SSP_CTRL0_IGNORE_CRC;
cmd0 = BF_SSP(cmd->opcode, CMD0_CMD) | BM_SSP_CMD0_APPEND_8CYC;
cmd1 = cmd->arg;
if (host->sdio_irq_en) {
ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
}
ssp->ssp_pio_words[0] = ctrl0;
ssp->ssp_pio_words[1] = cmd0;
ssp->ssp_pio_words[2] = cmd1;
ssp->dma_dir = DMA_NONE;
ssp->slave_dirn = DMA_TRANS_NONE;
desc = mxs_mmc_prep_dma(host, MXS_DMA_CTRL_WAIT4END);
if (!desc)
goto out;
dmaengine_submit(desc);
dma_async_issue_pending(ssp->dmach);
return;
out:
dev_warn(mmc_dev(host->mmc),
"%s: failed to prep dma\n", __func__);
}
static void mxs_mmc_ac(struct mxs_mmc_host *host)
{
struct mxs_ssp *ssp = &host->ssp;
struct mmc_command *cmd = host->cmd;
struct dma_async_tx_descriptor *desc;
u32 ignore_crc, get_resp, long_resp;
u32 ctrl0, cmd0, cmd1;
ignore_crc = (mmc_resp_type(cmd) & MMC_RSP_CRC) ?
0 : BM_SSP_CTRL0_IGNORE_CRC;
get_resp = (mmc_resp_type(cmd) & MMC_RSP_PRESENT) ?
BM_SSP_CTRL0_GET_RESP : 0;
long_resp = (mmc_resp_type(cmd) & MMC_RSP_136) ?
BM_SSP_CTRL0_LONG_RESP : 0;
ctrl0 = BM_SSP_CTRL0_ENABLE | ignore_crc | get_resp | long_resp;
cmd0 = BF_SSP(cmd->opcode, CMD0_CMD);
cmd1 = cmd->arg;
if (cmd->opcode == MMC_STOP_TRANSMISSION)
cmd0 |= BM_SSP_CMD0_APPEND_8CYC;
if (host->sdio_irq_en) {
ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
}
ssp->ssp_pio_words[0] = ctrl0;
ssp->ssp_pio_words[1] = cmd0;
ssp->ssp_pio_words[2] = cmd1;
ssp->dma_dir = DMA_NONE;
ssp->slave_dirn = DMA_TRANS_NONE;
desc = mxs_mmc_prep_dma(host, MXS_DMA_CTRL_WAIT4END);
if (!desc)
goto out;
dmaengine_submit(desc);
dma_async_issue_pending(ssp->dmach);
return;
out:
dev_warn(mmc_dev(host->mmc),
"%s: failed to prep dma\n", __func__);
}
static unsigned short mxs_ns_to_ssp_ticks(unsigned clock_rate, unsigned ns)
{
const unsigned int ssp_timeout_mul = 4096;
/*
* Calculate ticks in ms since ns are large numbers
* and might overflow
*/
const unsigned int clock_per_ms = clock_rate / 1000;
const unsigned int ms = ns / 1000;
const unsigned int ticks = ms * clock_per_ms;
const unsigned int ssp_ticks = ticks / ssp_timeout_mul;
WARN_ON(ssp_ticks == 0);
return ssp_ticks;
}
static void mxs_mmc_adtc(struct mxs_mmc_host *host)
{
struct mmc_command *cmd = host->cmd;
struct mmc_data *data = cmd->data;
struct dma_async_tx_descriptor *desc;
struct scatterlist *sgl = data->sg, *sg;
unsigned int sg_len = data->sg_len;
unsigned int i;
unsigned short dma_data_dir, timeout;
enum dma_transfer_direction slave_dirn;
unsigned int data_size = 0, log2_blksz;
unsigned int blocks = data->blocks;
struct mxs_ssp *ssp = &host->ssp;
u32 ignore_crc, get_resp, long_resp, read;
u32 ctrl0, cmd0, cmd1, val;
ignore_crc = (mmc_resp_type(cmd) & MMC_RSP_CRC) ?
0 : BM_SSP_CTRL0_IGNORE_CRC;
get_resp = (mmc_resp_type(cmd) & MMC_RSP_PRESENT) ?
BM_SSP_CTRL0_GET_RESP : 0;
long_resp = (mmc_resp_type(cmd) & MMC_RSP_136) ?
BM_SSP_CTRL0_LONG_RESP : 0;
if (data->flags & MMC_DATA_WRITE) {
dma_data_dir = DMA_TO_DEVICE;
slave_dirn = DMA_MEM_TO_DEV;
read = 0;
} else {
dma_data_dir = DMA_FROM_DEVICE;
slave_dirn = DMA_DEV_TO_MEM;
read = BM_SSP_CTRL0_READ;
}
ctrl0 = BF_SSP(host->bus_width, CTRL0_BUS_WIDTH) |
ignore_crc | get_resp | long_resp |
BM_SSP_CTRL0_DATA_XFER | read |
BM_SSP_CTRL0_WAIT_FOR_IRQ |
BM_SSP_CTRL0_ENABLE;
cmd0 = BF_SSP(cmd->opcode, CMD0_CMD);
/* get logarithm to base 2 of block size for setting register */
log2_blksz = ilog2(data->blksz);
/*
* take special care of the case that data size from data->sg
* is not equal to blocks x blksz
*/
for_each_sg(sgl, sg, sg_len, i)
data_size += sg->length;
if (data_size != data->blocks * data->blksz)
blocks = 1;
/* xfer count, block size and count need to be set differently */
if (ssp_is_old(ssp)) {
ctrl0 |= BF_SSP(data_size, CTRL0_XFER_COUNT);
cmd0 |= BF_SSP(log2_blksz, CMD0_BLOCK_SIZE) |
BF_SSP(blocks - 1, CMD0_BLOCK_COUNT);
} else {
writel(data_size, ssp->base + HW_SSP_XFER_SIZE);
writel(BF_SSP(log2_blksz, BLOCK_SIZE_BLOCK_SIZE) |
BF_SSP(blocks - 1, BLOCK_SIZE_BLOCK_COUNT),
ssp->base + HW_SSP_BLOCK_SIZE);
}
if (cmd->opcode == SD_IO_RW_EXTENDED)
cmd0 |= BM_SSP_CMD0_APPEND_8CYC;
cmd1 = cmd->arg;
if (host->sdio_irq_en) {
ctrl0 |= BM_SSP_CTRL0_SDIO_IRQ_CHECK;
cmd0 |= BM_SSP_CMD0_CONT_CLKING_EN | BM_SSP_CMD0_SLOW_CLKING_EN;
}
/* set the timeout count */
timeout = mxs_ns_to_ssp_ticks(ssp->clk_rate, data->timeout_ns);
val = readl(ssp->base + HW_SSP_TIMING(ssp));
val &= ~(BM_SSP_TIMING_TIMEOUT);
val |= BF_SSP(timeout, TIMING_TIMEOUT);
writel(val, ssp->base + HW_SSP_TIMING(ssp));
/* pio */
ssp->ssp_pio_words[0] = ctrl0;
ssp->ssp_pio_words[1] = cmd0;
ssp->ssp_pio_words[2] = cmd1;
ssp->dma_dir = DMA_NONE;
ssp->slave_dirn = DMA_TRANS_NONE;
desc = mxs_mmc_prep_dma(host, 0);
if (!desc)
goto out;
/* append data sg */
WARN_ON(host->data != NULL);
host->data = data;
ssp->dma_dir = dma_data_dir;
ssp->slave_dirn = slave_dirn;
desc = mxs_mmc_prep_dma(host, DMA_PREP_INTERRUPT | MXS_DMA_CTRL_WAIT4END);
if (!desc)
goto out;
dmaengine_submit(desc);
dma_async_issue_pending(ssp->dmach);
return;
out:
dev_warn(mmc_dev(host->mmc),
"%s: failed to prep dma\n", __func__);
}
static void mxs_mmc_start_cmd(struct mxs_mmc_host *host,
struct mmc_command *cmd)
{
host->cmd = cmd;
switch (mmc_cmd_type(cmd)) {
case MMC_CMD_BC:
mxs_mmc_bc(host);
break;
case MMC_CMD_BCR:
mxs_mmc_ac(host);
break;
case MMC_CMD_AC:
mxs_mmc_ac(host);
break;
case MMC_CMD_ADTC:
mxs_mmc_adtc(host);
break;
default:
dev_warn(mmc_dev(host->mmc),
"%s: unknown MMC command\n", __func__);
break;
}
}
static void mxs_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
WARN_ON(host->mrq != NULL);
host->mrq = mrq;
if (mrq->sbc)
mxs_mmc_start_cmd(host, mrq->sbc);
else
mxs_mmc_start_cmd(host, mrq->cmd);
}
static void mxs_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
if (ios->bus_width == MMC_BUS_WIDTH_8)
host->bus_width = 2;
else if (ios->bus_width == MMC_BUS_WIDTH_4)
host->bus_width = 1;
else
host->bus_width = 0;
if (ios->clock)
mxs_ssp_set_clk_rate(&host->ssp, ios->clock);
}
static void mxs_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct mxs_mmc_host *host = mmc_priv(mmc);
struct mxs_ssp *ssp = &host->ssp;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->sdio_irq_en = enable;
if (enable) {
writel(BM_SSP_CTRL0_SDIO_IRQ_CHECK,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
writel(BM_SSP_CTRL1_SDIO_IRQ_EN,
ssp->base + HW_SSP_CTRL1(ssp) + STMP_OFFSET_REG_SET);
} else {
writel(BM_SSP_CTRL0_SDIO_IRQ_CHECK,
ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
writel(BM_SSP_CTRL1_SDIO_IRQ_EN,
ssp->base + HW_SSP_CTRL1(ssp) + STMP_OFFSET_REG_CLR);
}
spin_unlock_irqrestore(&host->lock, flags);
if (enable && readl(ssp->base + HW_SSP_STATUS(ssp)) &
BM_SSP_STATUS_SDIO_IRQ)
mmc_signal_sdio_irq(host->mmc);
}
static const struct mmc_host_ops mxs_mmc_ops = {
.request = mxs_mmc_request,
.get_ro = mmc_gpio_get_ro,
.get_cd = mxs_mmc_get_cd,
.set_ios = mxs_mmc_set_ios,
.enable_sdio_irq = mxs_mmc_enable_sdio_irq,
};
static const struct of_device_id mxs_mmc_dt_ids[] = {
{ .compatible = "fsl,imx23-mmc", .data = (void *) IMX23_SSP, },
{ .compatible = "fsl,imx28-mmc", .data = (void *) IMX28_SSP, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_mmc_dt_ids);
static void mxs_mmc_regulator_disable(void *regulator)
{
regulator_disable(regulator);
}
static int mxs_mmc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct mxs_mmc_host *host;
struct mmc_host *mmc;
int ret = 0, irq_err;
struct regulator *reg_vmmc;
struct mxs_ssp *ssp;
irq_err = platform_get_irq(pdev, 0);
if (irq_err < 0)
return irq_err;
mmc = mmc_alloc_host(sizeof(struct mxs_mmc_host), &pdev->dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
ssp = &host->ssp;
ssp->dev = &pdev->dev;
ssp->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ssp->base)) {
ret = PTR_ERR(ssp->base);
goto out_mmc_free;
}
ssp->devid = (enum mxs_ssp_id)of_device_get_match_data(&pdev->dev);
host->mmc = mmc;
host->sdio_irq_en = 0;
reg_vmmc = devm_regulator_get(&pdev->dev, "vmmc");
if (!IS_ERR(reg_vmmc)) {
ret = regulator_enable(reg_vmmc);
if (ret) {
dev_err(&pdev->dev,
"Failed to enable vmmc regulator: %d\n", ret);
goto out_mmc_free;
}
ret = devm_add_action_or_reset(&pdev->dev, mxs_mmc_regulator_disable,
reg_vmmc);
if (ret)
goto out_mmc_free;
}
ssp->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(ssp->clk)) {
ret = PTR_ERR(ssp->clk);
goto out_mmc_free;
}
ret = clk_prepare_enable(ssp->clk);
if (ret)
goto out_mmc_free;
ret = mxs_mmc_reset(host);
if (ret) {
dev_err(&pdev->dev, "Failed to reset mmc: %d\n", ret);
goto out_clk_disable;
}
ssp->dmach = dma_request_chan(&pdev->dev, "rx-tx");
if (IS_ERR(ssp->dmach)) {
dev_err(mmc_dev(host->mmc),
"%s: failed to request dma\n", __func__);
ret = PTR_ERR(ssp->dmach);
goto out_clk_disable;
}
/* set mmc core parameters */
mmc->ops = &mxs_mmc_ops;
mmc->caps = MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED |
MMC_CAP_SDIO_IRQ | MMC_CAP_NEEDS_POLL | MMC_CAP_CMD23;
host->broken_cd = of_property_read_bool(np, "broken-cd");
mmc->f_min = 400000;
mmc->f_max = 288000000;
ret = mmc_of_parse(mmc);
if (ret)
goto out_free_dma;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_segs = 52;
mmc->max_blk_size = 1 << 0xf;
mmc->max_blk_count = (ssp_is_old(ssp)) ? 0xff : 0xffffff;
mmc->max_req_size = (ssp_is_old(ssp)) ? 0xffff : 0xffffffff;
mmc->max_seg_size = dma_get_max_seg_size(ssp->dmach->device->dev);
platform_set_drvdata(pdev, mmc);
spin_lock_init(&host->lock);
ret = devm_request_irq(&pdev->dev, irq_err, mxs_mmc_irq_handler, 0,
dev_name(&pdev->dev), host);
if (ret)
goto out_free_dma;
ret = mmc_add_host(mmc);
if (ret)
goto out_free_dma;
dev_info(mmc_dev(host->mmc), "initialized\n");
return 0;
out_free_dma:
dma_release_channel(ssp->dmach);
out_clk_disable:
clk_disable_unprepare(ssp->clk);
out_mmc_free:
mmc_free_host(mmc);
return ret;
}
static void mxs_mmc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct mxs_mmc_host *host = mmc_priv(mmc);
struct mxs_ssp *ssp = &host->ssp;
mmc_remove_host(mmc);
if (ssp->dmach)
dma_release_channel(ssp->dmach);
clk_disable_unprepare(ssp->clk);
mmc_free_host(mmc);
}
#ifdef CONFIG_PM_SLEEP
static int mxs_mmc_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct mxs_mmc_host *host = mmc_priv(mmc);
struct mxs_ssp *ssp = &host->ssp;
clk_disable_unprepare(ssp->clk);
return 0;
}
static int mxs_mmc_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct mxs_mmc_host *host = mmc_priv(mmc);
struct mxs_ssp *ssp = &host->ssp;
return clk_prepare_enable(ssp->clk);
}
#endif
static SIMPLE_DEV_PM_OPS(mxs_mmc_pm_ops, mxs_mmc_suspend, mxs_mmc_resume);
static struct platform_driver mxs_mmc_driver = {
.probe = mxs_mmc_probe,
.remove_new = mxs_mmc_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &mxs_mmc_pm_ops,
.of_match_table = mxs_mmc_dt_ids,
},
};
module_platform_driver(mxs_mmc_driver);
MODULE_DESCRIPTION("FREESCALE MXS MMC peripheral");
MODULE_AUTHOR("Freescale Semiconductor");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
| linux-master | drivers/mmc/host/mxs-mmc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* LiteX LiteSDCard driver
*
* Copyright (C) 2019-2020 Antmicro <[email protected]>
* Copyright (C) 2019-2020 Kamil Rakoczy <[email protected]>
* Copyright (C) 2019-2020 Maciej Dudek <[email protected]>
* Copyright (C) 2020 Paul Mackerras <[email protected]>
* Copyright (C) 2020-2022 Gabriel Somlo <[email protected]>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/litex.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#define LITEX_PHY_CARDDETECT 0x00
#define LITEX_PHY_CLOCKERDIV 0x04
#define LITEX_PHY_INITIALIZE 0x08
#define LITEX_PHY_WRITESTATUS 0x0C
#define LITEX_CORE_CMDARG 0x00
#define LITEX_CORE_CMDCMD 0x04
#define LITEX_CORE_CMDSND 0x08
#define LITEX_CORE_CMDRSP 0x0C
#define LITEX_CORE_CMDEVT 0x1C
#define LITEX_CORE_DATEVT 0x20
#define LITEX_CORE_BLKLEN 0x24
#define LITEX_CORE_BLKCNT 0x28
#define LITEX_BLK2MEM_BASE 0x00
#define LITEX_BLK2MEM_LEN 0x08
#define LITEX_BLK2MEM_ENA 0x0C
#define LITEX_BLK2MEM_DONE 0x10
#define LITEX_BLK2MEM_LOOP 0x14
#define LITEX_MEM2BLK_BASE 0x00
#define LITEX_MEM2BLK_LEN 0x08
#define LITEX_MEM2BLK_ENA 0x0C
#define LITEX_MEM2BLK_DONE 0x10
#define LITEX_MEM2BLK_LOOP 0x14
#define LITEX_MEM2BLK 0x18
#define LITEX_IRQ_STATUS 0x00
#define LITEX_IRQ_PENDING 0x04
#define LITEX_IRQ_ENABLE 0x08
#define SD_CTL_DATA_XFER_NONE 0
#define SD_CTL_DATA_XFER_READ 1
#define SD_CTL_DATA_XFER_WRITE 2
#define SD_CTL_RESP_NONE 0
#define SD_CTL_RESP_SHORT 1
#define SD_CTL_RESP_LONG 2
#define SD_CTL_RESP_SHORT_BUSY 3
#define SD_BIT_DONE BIT(0)
#define SD_BIT_WR_ERR BIT(1)
#define SD_BIT_TIMEOUT BIT(2)
#define SD_BIT_CRC_ERR BIT(3)
#define SD_SLEEP_US 5
#define SD_TIMEOUT_US 20000
#define SDIRQ_CARD_DETECT 1
#define SDIRQ_SD_TO_MEM_DONE 2
#define SDIRQ_MEM_TO_SD_DONE 4
#define SDIRQ_CMD_DONE 8
struct litex_mmc_host {
struct mmc_host *mmc;
void __iomem *sdphy;
void __iomem *sdcore;
void __iomem *sdreader;
void __iomem *sdwriter;
void __iomem *sdirq;
void *buffer;
size_t buf_size;
dma_addr_t dma;
struct completion cmd_done;
int irq;
unsigned int ref_clk;
unsigned int sd_clk;
u32 resp[4];
u16 rca;
bool is_bus_width_set;
bool app_cmd;
};
static int litex_mmc_sdcard_wait_done(void __iomem *reg, struct device *dev)
{
u8 evt;
int ret;
ret = readx_poll_timeout(litex_read8, reg, evt, evt & SD_BIT_DONE,
SD_SLEEP_US, SD_TIMEOUT_US);
if (ret)
return ret;
if (evt == SD_BIT_DONE)
return 0;
if (evt & SD_BIT_WR_ERR)
return -EIO;
if (evt & SD_BIT_TIMEOUT)
return -ETIMEDOUT;
if (evt & SD_BIT_CRC_ERR)
return -EILSEQ;
dev_err(dev, "%s: unknown error (evt=%x)\n", __func__, evt);
return -EINVAL;
}
static int litex_mmc_send_cmd(struct litex_mmc_host *host,
u8 cmd, u32 arg, u8 response_len, u8 transfer)
{
struct device *dev = mmc_dev(host->mmc);
void __iomem *reg;
int ret;
u8 evt;
litex_write32(host->sdcore + LITEX_CORE_CMDARG, arg);
litex_write32(host->sdcore + LITEX_CORE_CMDCMD,
cmd << 8 | transfer << 5 | response_len);
litex_write8(host->sdcore + LITEX_CORE_CMDSND, 1);
/*
* Wait for an interrupt if we have an interrupt and either there is
* data to be transferred, or if the card can report busy via DAT0.
*/
if (host->irq > 0 &&
(transfer != SD_CTL_DATA_XFER_NONE ||
response_len == SD_CTL_RESP_SHORT_BUSY)) {
reinit_completion(&host->cmd_done);
litex_write32(host->sdirq + LITEX_IRQ_ENABLE,
SDIRQ_CMD_DONE | SDIRQ_CARD_DETECT);
wait_for_completion(&host->cmd_done);
}
ret = litex_mmc_sdcard_wait_done(host->sdcore + LITEX_CORE_CMDEVT, dev);
if (ret) {
dev_err(dev, "Command (cmd %d) error, status %d\n", cmd, ret);
return ret;
}
if (response_len != SD_CTL_RESP_NONE) {
/*
* NOTE: this matches the semantics of litex_read32()
* regardless of underlying arch endianness!
*/
memcpy_fromio(host->resp,
host->sdcore + LITEX_CORE_CMDRSP, 0x10);
}
if (!host->app_cmd && cmd == SD_SEND_RELATIVE_ADDR)
host->rca = (host->resp[3] >> 16);
host->app_cmd = (cmd == MMC_APP_CMD);
if (transfer == SD_CTL_DATA_XFER_NONE)
return ret; /* OK from prior litex_mmc_sdcard_wait_done() */
ret = litex_mmc_sdcard_wait_done(host->sdcore + LITEX_CORE_DATEVT, dev);
if (ret) {
dev_err(dev, "Data xfer (cmd %d) error, status %d\n", cmd, ret);
return ret;
}
/* Wait for completion of (read or write) DMA transfer */
reg = (transfer == SD_CTL_DATA_XFER_READ) ?
host->sdreader + LITEX_BLK2MEM_DONE :
host->sdwriter + LITEX_MEM2BLK_DONE;
ret = readx_poll_timeout(litex_read8, reg, evt, evt & SD_BIT_DONE,
SD_SLEEP_US, SD_TIMEOUT_US);
if (ret)
dev_err(dev, "DMA timeout (cmd %d)\n", cmd);
return ret;
}
static int litex_mmc_send_app_cmd(struct litex_mmc_host *host)
{
return litex_mmc_send_cmd(host, MMC_APP_CMD, host->rca << 16,
SD_CTL_RESP_SHORT, SD_CTL_DATA_XFER_NONE);
}
static int litex_mmc_send_set_bus_w_cmd(struct litex_mmc_host *host, u32 width)
{
return litex_mmc_send_cmd(host, SD_APP_SET_BUS_WIDTH, width,
SD_CTL_RESP_SHORT, SD_CTL_DATA_XFER_NONE);
}
static int litex_mmc_set_bus_width(struct litex_mmc_host *host)
{
bool app_cmd_sent;
int ret;
if (host->is_bus_width_set)
return 0;
/* Ensure 'app_cmd' precedes 'app_set_bus_width_cmd' */
app_cmd_sent = host->app_cmd; /* was preceding command app_cmd? */
if (!app_cmd_sent) {
ret = litex_mmc_send_app_cmd(host);
if (ret)
return ret;
}
/* LiteSDCard only supports 4-bit bus width */
ret = litex_mmc_send_set_bus_w_cmd(host, MMC_BUS_WIDTH_4);
if (ret)
return ret;
/* Re-send 'app_cmd' if necessary */
if (app_cmd_sent) {
ret = litex_mmc_send_app_cmd(host);
if (ret)
return ret;
}
host->is_bus_width_set = true;
return 0;
}
static int litex_mmc_get_cd(struct mmc_host *mmc)
{
struct litex_mmc_host *host = mmc_priv(mmc);
int ret;
if (!mmc_card_is_removable(mmc))
return 1;
ret = !litex_read8(host->sdphy + LITEX_PHY_CARDDETECT);
if (ret)
return ret;
/* Ensure bus width will be set (again) upon card (re)insertion */
host->is_bus_width_set = false;
return 0;
}
static irqreturn_t litex_mmc_interrupt(int irq, void *arg)
{
struct mmc_host *mmc = arg;
struct litex_mmc_host *host = mmc_priv(mmc);
u32 pending = litex_read32(host->sdirq + LITEX_IRQ_PENDING);
irqreturn_t ret = IRQ_NONE;
/* Check for card change interrupt */
if (pending & SDIRQ_CARD_DETECT) {
litex_write32(host->sdirq + LITEX_IRQ_PENDING,
SDIRQ_CARD_DETECT);
mmc_detect_change(mmc, msecs_to_jiffies(10));
ret = IRQ_HANDLED;
}
/* Check for command completed */
if (pending & SDIRQ_CMD_DONE) {
/* Disable it so it doesn't keep interrupting */
litex_write32(host->sdirq + LITEX_IRQ_ENABLE,
SDIRQ_CARD_DETECT);
complete(&host->cmd_done);
ret = IRQ_HANDLED;
}
return ret;
}
static u32 litex_mmc_response_len(struct mmc_command *cmd)
{
if (cmd->flags & MMC_RSP_136)
return SD_CTL_RESP_LONG;
if (!(cmd->flags & MMC_RSP_PRESENT))
return SD_CTL_RESP_NONE;
if (cmd->flags & MMC_RSP_BUSY)
return SD_CTL_RESP_SHORT_BUSY;
return SD_CTL_RESP_SHORT;
}
static void litex_mmc_do_dma(struct litex_mmc_host *host, struct mmc_data *data,
unsigned int *len, bool *direct, u8 *transfer)
{
struct device *dev = mmc_dev(host->mmc);
dma_addr_t dma;
int sg_count;
/*
* Try to DMA directly to/from the data buffer.
* We can do that if the buffer can be mapped for DMA
* in one contiguous chunk.
*/
dma = host->dma;
*len = data->blksz * data->blocks;
sg_count = dma_map_sg(dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (sg_count == 1) {
dma = sg_dma_address(data->sg);
*len = sg_dma_len(data->sg);
*direct = true;
} else if (*len > host->buf_size)
*len = host->buf_size;
if (data->flags & MMC_DATA_READ) {
litex_write8(host->sdreader + LITEX_BLK2MEM_ENA, 0);
litex_write64(host->sdreader + LITEX_BLK2MEM_BASE, dma);
litex_write32(host->sdreader + LITEX_BLK2MEM_LEN, *len);
litex_write8(host->sdreader + LITEX_BLK2MEM_ENA, 1);
*transfer = SD_CTL_DATA_XFER_READ;
} else if (data->flags & MMC_DATA_WRITE) {
if (!*direct)
sg_copy_to_buffer(data->sg, data->sg_len,
host->buffer, *len);
litex_write8(host->sdwriter + LITEX_MEM2BLK_ENA, 0);
litex_write64(host->sdwriter + LITEX_MEM2BLK_BASE, dma);
litex_write32(host->sdwriter + LITEX_MEM2BLK_LEN, *len);
litex_write8(host->sdwriter + LITEX_MEM2BLK_ENA, 1);
*transfer = SD_CTL_DATA_XFER_WRITE;
} else {
dev_warn(dev, "Data present w/o read or write flag.\n");
/* Continue: set cmd status, mark req done */
}
litex_write16(host->sdcore + LITEX_CORE_BLKLEN, data->blksz);
litex_write32(host->sdcore + LITEX_CORE_BLKCNT, data->blocks);
}
static void litex_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct litex_mmc_host *host = mmc_priv(mmc);
struct device *dev = mmc_dev(mmc);
struct mmc_command *cmd = mrq->cmd;
struct mmc_command *sbc = mrq->sbc;
struct mmc_data *data = mrq->data;
struct mmc_command *stop = mrq->stop;
unsigned int retries = cmd->retries;
unsigned int len = 0;
bool direct = false;
u32 response_len = litex_mmc_response_len(cmd);
u8 transfer = SD_CTL_DATA_XFER_NONE;
/* First check that the card is still there */
if (!litex_mmc_get_cd(mmc)) {
cmd->error = -ENOMEDIUM;
mmc_request_done(mmc, mrq);
return;
}
/* Send set-block-count command if needed */
if (sbc) {
sbc->error = litex_mmc_send_cmd(host, sbc->opcode, sbc->arg,
litex_mmc_response_len(sbc),
SD_CTL_DATA_XFER_NONE);
if (sbc->error) {
host->is_bus_width_set = false;
mmc_request_done(mmc, mrq);
return;
}
}
if (data) {
/*
* LiteSDCard only supports 4-bit bus width; therefore, we MUST
* inject a SET_BUS_WIDTH (acmd6) before the very first data
* transfer, earlier than when the mmc subsystem would normally
* get around to it!
*/
cmd->error = litex_mmc_set_bus_width(host);
if (cmd->error) {
dev_err(dev, "Can't set bus width!\n");
mmc_request_done(mmc, mrq);
return;
}
litex_mmc_do_dma(host, data, &len, &direct, &transfer);
}
do {
cmd->error = litex_mmc_send_cmd(host, cmd->opcode, cmd->arg,
response_len, transfer);
} while (cmd->error && retries-- > 0);
if (cmd->error) {
/* Card may be gone; don't assume bus width is still set */
host->is_bus_width_set = false;
}
if (response_len == SD_CTL_RESP_SHORT) {
/* Pull short response fields from appropriate host registers */
cmd->resp[0] = host->resp[3];
cmd->resp[1] = host->resp[2] & 0xFF;
} else if (response_len == SD_CTL_RESP_LONG) {
cmd->resp[0] = host->resp[0];
cmd->resp[1] = host->resp[1];
cmd->resp[2] = host->resp[2];
cmd->resp[3] = host->resp[3];
}
/* Send stop-transmission command if required */
if (stop && (cmd->error || !sbc)) {
stop->error = litex_mmc_send_cmd(host, stop->opcode, stop->arg,
litex_mmc_response_len(stop),
SD_CTL_DATA_XFER_NONE);
if (stop->error)
host->is_bus_width_set = false;
}
if (data) {
dma_unmap_sg(dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
if (!cmd->error && transfer != SD_CTL_DATA_XFER_NONE) {
data->bytes_xfered = min(len, mmc->max_req_size);
if (transfer == SD_CTL_DATA_XFER_READ && !direct) {
sg_copy_from_buffer(data->sg, sg_nents(data->sg),
host->buffer, data->bytes_xfered);
}
}
mmc_request_done(mmc, mrq);
}
static void litex_mmc_setclk(struct litex_mmc_host *host, unsigned int freq)
{
struct device *dev = mmc_dev(host->mmc);
u32 div;
div = freq ? host->ref_clk / freq : 256U;
div = roundup_pow_of_two(div);
div = clamp(div, 2U, 256U);
dev_dbg(dev, "sd_clk_freq=%d: set to %d via div=%d\n",
freq, host->ref_clk / div, div);
litex_write16(host->sdphy + LITEX_PHY_CLOCKERDIV, div);
host->sd_clk = freq;
}
static void litex_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct litex_mmc_host *host = mmc_priv(mmc);
/*
* NOTE: Ignore any ios->bus_width updates; they occur right after
* the mmc core sends its own acmd6 bus-width change notification,
* which is redundant since we snoop on the command flow and inject
* an early acmd6 before the first data transfer command is sent!
*/
/* Update sd_clk */
if (ios->clock != host->sd_clk)
litex_mmc_setclk(host, ios->clock);
}
static const struct mmc_host_ops litex_mmc_ops = {
.get_cd = litex_mmc_get_cd,
.request = litex_mmc_request,
.set_ios = litex_mmc_set_ios,
};
static int litex_mmc_irq_init(struct platform_device *pdev,
struct litex_mmc_host *host)
{
struct device *dev = mmc_dev(host->mmc);
int ret;
ret = platform_get_irq_optional(pdev, 0);
if (ret < 0 && ret != -ENXIO)
return ret;
if (ret > 0)
host->irq = ret;
else {
dev_warn(dev, "Failed to get IRQ, using polling\n");
goto use_polling;
}
host->sdirq = devm_platform_ioremap_resource_byname(pdev, "irq");
if (IS_ERR(host->sdirq))
return PTR_ERR(host->sdirq);
ret = devm_request_irq(dev, host->irq, litex_mmc_interrupt, 0,
"litex-mmc", host->mmc);
if (ret < 0) {
dev_warn(dev, "IRQ request error %d, using polling\n", ret);
goto use_polling;
}
/* Clear & enable card-change interrupts */
litex_write32(host->sdirq + LITEX_IRQ_PENDING, SDIRQ_CARD_DETECT);
litex_write32(host->sdirq + LITEX_IRQ_ENABLE, SDIRQ_CARD_DETECT);
return 0;
use_polling:
host->mmc->caps |= MMC_CAP_NEEDS_POLL;
host->irq = 0;
return 0;
}
static void litex_mmc_free_host_wrapper(void *mmc)
{
mmc_free_host(mmc);
}
static int litex_mmc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct litex_mmc_host *host;
struct mmc_host *mmc;
struct clk *clk;
int ret;
/*
* NOTE: defaults to max_[req,seg]_size=PAGE_SIZE, max_blk_size=512,
* and max_blk_count accordingly set to 8;
* If for some reason we need to modify max_blk_count, we must also
* re-calculate `max_[req,seg]_size = max_blk_size * max_blk_count;`
*/
mmc = mmc_alloc_host(sizeof(struct litex_mmc_host), dev);
if (!mmc)
return -ENOMEM;
ret = devm_add_action_or_reset(dev, litex_mmc_free_host_wrapper, mmc);
if (ret)
return dev_err_probe(dev, ret,
"Can't register mmc_free_host action\n");
host = mmc_priv(mmc);
host->mmc = mmc;
/* Initialize clock source */
clk = devm_clk_get(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "can't get clock\n");
host->ref_clk = clk_get_rate(clk);
host->sd_clk = 0;
/*
* LiteSDCard only supports 4-bit bus width; therefore, we MUST inject
* a SET_BUS_WIDTH (acmd6) before the very first data transfer, earlier
* than when the mmc subsystem would normally get around to it!
*/
host->is_bus_width_set = false;
host->app_cmd = false;
/* LiteSDCard can support 64-bit DMA addressing */
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret)
return ret;
host->buf_size = mmc->max_req_size * 2;
host->buffer = dmam_alloc_coherent(dev, host->buf_size,
&host->dma, GFP_KERNEL);
if (host->buffer == NULL)
return -ENOMEM;
host->sdphy = devm_platform_ioremap_resource_byname(pdev, "phy");
if (IS_ERR(host->sdphy))
return PTR_ERR(host->sdphy);
host->sdcore = devm_platform_ioremap_resource_byname(pdev, "core");
if (IS_ERR(host->sdcore))
return PTR_ERR(host->sdcore);
host->sdreader = devm_platform_ioremap_resource_byname(pdev, "reader");
if (IS_ERR(host->sdreader))
return PTR_ERR(host->sdreader);
host->sdwriter = devm_platform_ioremap_resource_byname(pdev, "writer");
if (IS_ERR(host->sdwriter))
return PTR_ERR(host->sdwriter);
/* Ensure DMA bus masters are disabled */
litex_write8(host->sdreader + LITEX_BLK2MEM_ENA, 0);
litex_write8(host->sdwriter + LITEX_MEM2BLK_ENA, 0);
init_completion(&host->cmd_done);
ret = litex_mmc_irq_init(pdev, host);
if (ret)
return ret;
mmc->ops = &litex_mmc_ops;
ret = mmc_regulator_get_supply(mmc);
if (ret || mmc->ocr_avail == 0) {
dev_warn(dev, "can't get voltage, defaulting to 3.3V\n");
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
}
/*
* Set default sd_clk frequency range based on empirical observations
* of LiteSDCard gateware behavior on typical SDCard media
*/
mmc->f_min = 12.5e6;
mmc->f_max = 50e6;
ret = mmc_of_parse(mmc);
if (ret)
return ret;
/* Force 4-bit bus_width (only width supported by hardware) */
mmc->caps &= ~MMC_CAP_8_BIT_DATA;
mmc->caps |= MMC_CAP_4_BIT_DATA;
/* Set default capabilities */
mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY |
MMC_CAP_DRIVER_TYPE_D |
MMC_CAP_CMD23;
mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT |
MMC_CAP2_NO_SDIO |
MMC_CAP2_NO_MMC;
platform_set_drvdata(pdev, host);
ret = mmc_add_host(mmc);
if (ret)
return ret;
dev_info(dev, "LiteX MMC controller initialized.\n");
return 0;
}
static void litex_mmc_remove(struct platform_device *pdev)
{
struct litex_mmc_host *host = platform_get_drvdata(pdev);
mmc_remove_host(host->mmc);
}
static const struct of_device_id litex_match[] = {
{ .compatible = "litex,mmc" },
{ }
};
MODULE_DEVICE_TABLE(of, litex_match);
static struct platform_driver litex_mmc_driver = {
.probe = litex_mmc_probe,
.remove_new = litex_mmc_remove,
.driver = {
.name = "litex-mmc",
.of_match_table = litex_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
module_platform_driver(litex_mmc_driver);
MODULE_DESCRIPTION("LiteX SDCard driver");
MODULE_AUTHOR("Antmicro <[email protected]>");
MODULE_AUTHOR("Kamil Rakoczy <[email protected]>");
MODULE_AUTHOR("Maciej Dudek <[email protected]>");
MODULE_AUTHOR("Paul Mackerras <[email protected]>");
MODULE_AUTHOR("Gabriel Somlo <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/litex_mmc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* drivers/mmc/host/via-sdmmc.c - VIA SD/MMC Card Reader driver
* Copyright (c) 2008, VIA Technologies Inc. All Rights Reserved.
*/
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mmc/host.h>
#define DRV_NAME "via_sdmmc"
#define PCI_DEVICE_ID_VIA_9530 0x9530
#define VIA_CRDR_SDC_OFF 0x200
#define VIA_CRDR_DDMA_OFF 0x400
#define VIA_CRDR_PCICTRL_OFF 0x600
#define VIA_CRDR_MIN_CLOCK 375000
#define VIA_CRDR_MAX_CLOCK 48000000
/*
* PCI registers
*/
#define VIA_CRDR_PCI_WORK_MODE 0x40
#define VIA_CRDR_PCI_DBG_MODE 0x41
/*
* SDC MMIO Registers
*/
#define VIA_CRDR_SDCTRL 0x0
#define VIA_CRDR_SDCTRL_START 0x01
#define VIA_CRDR_SDCTRL_WRITE 0x04
#define VIA_CRDR_SDCTRL_SINGLE_WR 0x10
#define VIA_CRDR_SDCTRL_SINGLE_RD 0x20
#define VIA_CRDR_SDCTRL_MULTI_WR 0x30
#define VIA_CRDR_SDCTRL_MULTI_RD 0x40
#define VIA_CRDR_SDCTRL_STOP 0x70
#define VIA_CRDR_SDCTRL_RSP_NONE 0x0
#define VIA_CRDR_SDCTRL_RSP_R1 0x10000
#define VIA_CRDR_SDCTRL_RSP_R2 0x20000
#define VIA_CRDR_SDCTRL_RSP_R3 0x30000
#define VIA_CRDR_SDCTRL_RSP_R1B 0x90000
#define VIA_CRDR_SDCARG 0x4
#define VIA_CRDR_SDBUSMODE 0x8
#define VIA_CRDR_SDMODE_4BIT 0x02
#define VIA_CRDR_SDMODE_CLK_ON 0x40
#define VIA_CRDR_SDBLKLEN 0xc
/*
* Bit 0 -Bit 10 : Block length. So, the maximum block length should be 2048.
* Bit 11 - Bit 13 : Reserved.
* GPIDET : Select GPI pin to detect card, GPI means CR_CD# in top design.
* INTEN : Enable SD host interrupt.
* Bit 16 - Bit 31 : Block count. So, the maximun block count should be 65536.
*/
#define VIA_CRDR_SDBLKLEN_GPIDET 0x2000
#define VIA_CRDR_SDBLKLEN_INTEN 0x8000
#define VIA_CRDR_MAX_BLOCK_COUNT 65536
#define VIA_CRDR_MAX_BLOCK_LENGTH 2048
#define VIA_CRDR_SDRESP0 0x10
#define VIA_CRDR_SDRESP1 0x14
#define VIA_CRDR_SDRESP2 0x18
#define VIA_CRDR_SDRESP3 0x1c
#define VIA_CRDR_SDCURBLKCNT 0x20
#define VIA_CRDR_SDINTMASK 0x24
/*
* MBDIE : Multiple Blocks transfer Done Interrupt Enable
* BDDIE : Block Data transfer Done Interrupt Enable
* CIRIE : Card Insertion or Removal Interrupt Enable
* CRDIE : Command-Response transfer Done Interrupt Enable
* CRTOIE : Command-Response response TimeOut Interrupt Enable
* ASCRDIE : Auto Stop Command-Response transfer Done Interrupt Enable
* DTIE : Data access Timeout Interrupt Enable
* SCIE : reSponse CRC error Interrupt Enable
* RCIE : Read data CRC error Interrupt Enable
* WCIE : Write data CRC error Interrupt Enable
*/
#define VIA_CRDR_SDINTMASK_MBDIE 0x10
#define VIA_CRDR_SDINTMASK_BDDIE 0x20
#define VIA_CRDR_SDINTMASK_CIRIE 0x80
#define VIA_CRDR_SDINTMASK_CRDIE 0x200
#define VIA_CRDR_SDINTMASK_CRTOIE 0x400
#define VIA_CRDR_SDINTMASK_ASCRDIE 0x800
#define VIA_CRDR_SDINTMASK_DTIE 0x1000
#define VIA_CRDR_SDINTMASK_SCIE 0x2000
#define VIA_CRDR_SDINTMASK_RCIE 0x4000
#define VIA_CRDR_SDINTMASK_WCIE 0x8000
#define VIA_CRDR_SDACTIVE_INTMASK \
(VIA_CRDR_SDINTMASK_MBDIE | VIA_CRDR_SDINTMASK_CIRIE \
| VIA_CRDR_SDINTMASK_CRDIE | VIA_CRDR_SDINTMASK_CRTOIE \
| VIA_CRDR_SDINTMASK_DTIE | VIA_CRDR_SDINTMASK_SCIE \
| VIA_CRDR_SDINTMASK_RCIE | VIA_CRDR_SDINTMASK_WCIE)
#define VIA_CRDR_SDSTATUS 0x28
/*
* CECC : Reserved
* WP : SD card Write Protect status
* SLOTD : Reserved
* SLOTG : SD SLOT status(Gpi pin status)
* MBD : Multiple Blocks transfer Done interrupt status
* BDD : Block Data transfer Done interrupt status
* CD : Reserved
* CIR : Card Insertion or Removal interrupt detected on GPI pin
* IO : Reserved
* CRD : Command-Response transfer Done interrupt status
* CRTO : Command-Response response TimeOut interrupt status
* ASCRDIE : Auto Stop Command-Response transfer Done interrupt status
* DT : Data access Timeout interrupt status
* SC : reSponse CRC error interrupt status
* RC : Read data CRC error interrupt status
* WC : Write data CRC error interrupt status
*/
#define VIA_CRDR_SDSTS_CECC 0x01
#define VIA_CRDR_SDSTS_WP 0x02
#define VIA_CRDR_SDSTS_SLOTD 0x04
#define VIA_CRDR_SDSTS_SLOTG 0x08
#define VIA_CRDR_SDSTS_MBD 0x10
#define VIA_CRDR_SDSTS_BDD 0x20
#define VIA_CRDR_SDSTS_CD 0x40
#define VIA_CRDR_SDSTS_CIR 0x80
#define VIA_CRDR_SDSTS_IO 0x100
#define VIA_CRDR_SDSTS_CRD 0x200
#define VIA_CRDR_SDSTS_CRTO 0x400
#define VIA_CRDR_SDSTS_ASCRDIE 0x800
#define VIA_CRDR_SDSTS_DT 0x1000
#define VIA_CRDR_SDSTS_SC 0x2000
#define VIA_CRDR_SDSTS_RC 0x4000
#define VIA_CRDR_SDSTS_WC 0x8000
#define VIA_CRDR_SDSTS_IGN_MASK\
(VIA_CRDR_SDSTS_BDD | VIA_CRDR_SDSTS_ASCRDIE | VIA_CRDR_SDSTS_IO)
#define VIA_CRDR_SDSTS_INT_MASK \
(VIA_CRDR_SDSTS_MBD | VIA_CRDR_SDSTS_BDD | VIA_CRDR_SDSTS_CD \
| VIA_CRDR_SDSTS_CIR | VIA_CRDR_SDSTS_IO | VIA_CRDR_SDSTS_CRD \
| VIA_CRDR_SDSTS_CRTO | VIA_CRDR_SDSTS_ASCRDIE | VIA_CRDR_SDSTS_DT \
| VIA_CRDR_SDSTS_SC | VIA_CRDR_SDSTS_RC | VIA_CRDR_SDSTS_WC)
#define VIA_CRDR_SDSTS_W1C_MASK \
(VIA_CRDR_SDSTS_CECC | VIA_CRDR_SDSTS_MBD | VIA_CRDR_SDSTS_BDD \
| VIA_CRDR_SDSTS_CD | VIA_CRDR_SDSTS_CIR | VIA_CRDR_SDSTS_CRD \
| VIA_CRDR_SDSTS_CRTO | VIA_CRDR_SDSTS_ASCRDIE | VIA_CRDR_SDSTS_DT \
| VIA_CRDR_SDSTS_SC | VIA_CRDR_SDSTS_RC | VIA_CRDR_SDSTS_WC)
#define VIA_CRDR_SDSTS_CMD_MASK \
(VIA_CRDR_SDSTS_CRD | VIA_CRDR_SDSTS_CRTO | VIA_CRDR_SDSTS_SC)
#define VIA_CRDR_SDSTS_DATA_MASK\
(VIA_CRDR_SDSTS_MBD | VIA_CRDR_SDSTS_DT \
| VIA_CRDR_SDSTS_RC | VIA_CRDR_SDSTS_WC)
#define VIA_CRDR_SDSTATUS2 0x2a
/*
* CFE : Enable SD host automatic Clock FReezing
*/
#define VIA_CRDR_SDSTS_CFE 0x80
#define VIA_CRDR_SDRSPTMO 0x2C
#define VIA_CRDR_SDCLKSEL 0x30
#define VIA_CRDR_SDEXTCTRL 0x34
#define VIS_CRDR_SDEXTCTRL_AUTOSTOP_SD 0x01
#define VIS_CRDR_SDEXTCTRL_SHIFT_9 0x02
#define VIS_CRDR_SDEXTCTRL_MMC_8BIT 0x04
#define VIS_CRDR_SDEXTCTRL_RELD_BLK 0x08
#define VIS_CRDR_SDEXTCTRL_BAD_CMDA 0x10
#define VIS_CRDR_SDEXTCTRL_BAD_DATA 0x20
#define VIS_CRDR_SDEXTCTRL_AUTOSTOP_SPI 0x40
#define VIA_CRDR_SDEXTCTRL_HISPD 0x80
/* 0x38-0xFF reserved */
/*
* Data DMA Control Registers
*/
#define VIA_CRDR_DMABASEADD 0x0
#define VIA_CRDR_DMACOUNTER 0x4
#define VIA_CRDR_DMACTRL 0x8
/*
* DIR :Transaction Direction
* 0 : From card to memory
* 1 : From memory to card
*/
#define VIA_CRDR_DMACTRL_DIR 0x100
#define VIA_CRDR_DMACTRL_ENIRQ 0x10000
#define VIA_CRDR_DMACTRL_SFTRST 0x1000000
#define VIA_CRDR_DMASTS 0xc
#define VIA_CRDR_DMASTART 0x10
/*0x14-0xFF reserved*/
/*
* PCI Control Registers
*/
/*0x0 - 0x1 reserved*/
#define VIA_CRDR_PCICLKGATT 0x2
/*
* SFTRST :
* 0 : Soft reset all the controller and it will be de-asserted automatically
* 1 : Soft reset is de-asserted
*/
#define VIA_CRDR_PCICLKGATT_SFTRST 0x01
/*
* 3V3 : Pad power select
* 0 : 1.8V
* 1 : 3.3V
* NOTE : No mater what the actual value should be, this bit always
* read as 0. This is a hardware bug.
*/
#define VIA_CRDR_PCICLKGATT_3V3 0x10
/*
* PAD_PWRON : Pad Power on/off select
* 0 : Power off
* 1 : Power on
* NOTE : No mater what the actual value should be, this bit always
* read as 0. This is a hardware bug.
*/
#define VIA_CRDR_PCICLKGATT_PAD_PWRON 0x20
#define VIA_CRDR_PCISDCCLK 0x5
#define VIA_CRDR_PCIDMACLK 0x7
#define VIA_CRDR_PCIDMACLK_SDC 0x2
#define VIA_CRDR_PCIINTCTRL 0x8
#define VIA_CRDR_PCIINTCTRL_SDCIRQEN 0x04
#define VIA_CRDR_PCIINTSTATUS 0x9
#define VIA_CRDR_PCIINTSTATUS_SDC 0x04
#define VIA_CRDR_PCITMOCTRL 0xa
#define VIA_CRDR_PCITMOCTRL_NO 0x0
#define VIA_CRDR_PCITMOCTRL_32US 0x1
#define VIA_CRDR_PCITMOCTRL_256US 0x2
#define VIA_CRDR_PCITMOCTRL_1024US 0x3
#define VIA_CRDR_PCITMOCTRL_256MS 0x4
#define VIA_CRDR_PCITMOCTRL_512MS 0x5
#define VIA_CRDR_PCITMOCTRL_1024MS 0x6
/*0xB-0xFF reserved*/
enum PCI_HOST_CLK_CONTROL {
PCI_CLK_375K = 0x03,
PCI_CLK_8M = 0x04,
PCI_CLK_12M = 0x00,
PCI_CLK_16M = 0x05,
PCI_CLK_24M = 0x01,
PCI_CLK_33M = 0x06,
PCI_CLK_48M = 0x02
};
struct sdhcreg {
u32 sdcontrol_reg;
u32 sdcmdarg_reg;
u32 sdbusmode_reg;
u32 sdblklen_reg;
u32 sdresp_reg[4];
u32 sdcurblkcnt_reg;
u32 sdintmask_reg;
u32 sdstatus_reg;
u32 sdrsptmo_reg;
u32 sdclksel_reg;
u32 sdextctrl_reg;
};
struct pcictrlreg {
u8 reserve[2];
u8 pciclkgat_reg;
u8 pcinfcclk_reg;
u8 pcimscclk_reg;
u8 pcisdclk_reg;
u8 pcicaclk_reg;
u8 pcidmaclk_reg;
u8 pciintctrl_reg;
u8 pciintstatus_reg;
u8 pcitmoctrl_reg;
u8 Resv;
};
struct via_crdr_mmc_host {
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
void __iomem *mmiobase;
void __iomem *sdhc_mmiobase;
void __iomem *ddma_mmiobase;
void __iomem *pcictrl_mmiobase;
struct pcictrlreg pm_pcictrl_reg;
struct sdhcreg pm_sdhc_reg;
struct work_struct carddet_work;
struct tasklet_struct finish_tasklet;
struct timer_list timer;
spinlock_t lock;
u8 power;
int reject;
unsigned int quirks;
};
/* some devices need a very long delay for power to stabilize */
#define VIA_CRDR_QUIRK_300MS_PWRDELAY 0x0001
#define VIA_CMD_TIMEOUT_MS 1000
static const struct pci_device_id via_ids[] = {
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_9530,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
{0,}
};
MODULE_DEVICE_TABLE(pci, via_ids);
static void via_print_sdchc(struct via_crdr_mmc_host *host)
{
void __iomem *addrbase = host->sdhc_mmiobase;
pr_debug("SDC MMIO Registers:\n");
pr_debug("SDCONTROL=%08x, SDCMDARG=%08x, SDBUSMODE=%08x\n",
readl(addrbase + VIA_CRDR_SDCTRL),
readl(addrbase + VIA_CRDR_SDCARG),
readl(addrbase + VIA_CRDR_SDBUSMODE));
pr_debug("SDBLKLEN=%08x, SDCURBLKCNT=%08x, SDINTMASK=%08x\n",
readl(addrbase + VIA_CRDR_SDBLKLEN),
readl(addrbase + VIA_CRDR_SDCURBLKCNT),
readl(addrbase + VIA_CRDR_SDINTMASK));
pr_debug("SDSTATUS=%08x, SDCLKSEL=%08x, SDEXTCTRL=%08x\n",
readl(addrbase + VIA_CRDR_SDSTATUS),
readl(addrbase + VIA_CRDR_SDCLKSEL),
readl(addrbase + VIA_CRDR_SDEXTCTRL));
}
static void via_print_pcictrl(struct via_crdr_mmc_host *host)
{
void __iomem *addrbase = host->pcictrl_mmiobase;
pr_debug("PCI Control Registers:\n");
pr_debug("PCICLKGATT=%02x, PCISDCCLK=%02x, PCIDMACLK=%02x\n",
readb(addrbase + VIA_CRDR_PCICLKGATT),
readb(addrbase + VIA_CRDR_PCISDCCLK),
readb(addrbase + VIA_CRDR_PCIDMACLK));
pr_debug("PCIINTCTRL=%02x, PCIINTSTATUS=%02x\n",
readb(addrbase + VIA_CRDR_PCIINTCTRL),
readb(addrbase + VIA_CRDR_PCIINTSTATUS));
}
static void via_save_pcictrlreg(struct via_crdr_mmc_host *host)
{
struct pcictrlreg *pm_pcictrl_reg;
void __iomem *addrbase;
pm_pcictrl_reg = &(host->pm_pcictrl_reg);
addrbase = host->pcictrl_mmiobase;
pm_pcictrl_reg->pciclkgat_reg = readb(addrbase + VIA_CRDR_PCICLKGATT);
pm_pcictrl_reg->pciclkgat_reg |=
VIA_CRDR_PCICLKGATT_3V3 | VIA_CRDR_PCICLKGATT_PAD_PWRON;
pm_pcictrl_reg->pcisdclk_reg = readb(addrbase + VIA_CRDR_PCISDCCLK);
pm_pcictrl_reg->pcidmaclk_reg = readb(addrbase + VIA_CRDR_PCIDMACLK);
pm_pcictrl_reg->pciintctrl_reg = readb(addrbase + VIA_CRDR_PCIINTCTRL);
pm_pcictrl_reg->pciintstatus_reg =
readb(addrbase + VIA_CRDR_PCIINTSTATUS);
pm_pcictrl_reg->pcitmoctrl_reg = readb(addrbase + VIA_CRDR_PCITMOCTRL);
}
static void via_restore_pcictrlreg(struct via_crdr_mmc_host *host)
{
struct pcictrlreg *pm_pcictrl_reg;
void __iomem *addrbase;
pm_pcictrl_reg = &(host->pm_pcictrl_reg);
addrbase = host->pcictrl_mmiobase;
writeb(pm_pcictrl_reg->pciclkgat_reg, addrbase + VIA_CRDR_PCICLKGATT);
writeb(pm_pcictrl_reg->pcisdclk_reg, addrbase + VIA_CRDR_PCISDCCLK);
writeb(pm_pcictrl_reg->pcidmaclk_reg, addrbase + VIA_CRDR_PCIDMACLK);
writeb(pm_pcictrl_reg->pciintctrl_reg, addrbase + VIA_CRDR_PCIINTCTRL);
writeb(pm_pcictrl_reg->pciintstatus_reg,
addrbase + VIA_CRDR_PCIINTSTATUS);
writeb(pm_pcictrl_reg->pcitmoctrl_reg, addrbase + VIA_CRDR_PCITMOCTRL);
}
static void via_save_sdcreg(struct via_crdr_mmc_host *host)
{
struct sdhcreg *pm_sdhc_reg;
void __iomem *addrbase;
pm_sdhc_reg = &(host->pm_sdhc_reg);
addrbase = host->sdhc_mmiobase;
pm_sdhc_reg->sdcontrol_reg = readl(addrbase + VIA_CRDR_SDCTRL);
pm_sdhc_reg->sdcmdarg_reg = readl(addrbase + VIA_CRDR_SDCARG);
pm_sdhc_reg->sdbusmode_reg = readl(addrbase + VIA_CRDR_SDBUSMODE);
pm_sdhc_reg->sdblklen_reg = readl(addrbase + VIA_CRDR_SDBLKLEN);
pm_sdhc_reg->sdcurblkcnt_reg = readl(addrbase + VIA_CRDR_SDCURBLKCNT);
pm_sdhc_reg->sdintmask_reg = readl(addrbase + VIA_CRDR_SDINTMASK);
pm_sdhc_reg->sdstatus_reg = readl(addrbase + VIA_CRDR_SDSTATUS);
pm_sdhc_reg->sdrsptmo_reg = readl(addrbase + VIA_CRDR_SDRSPTMO);
pm_sdhc_reg->sdclksel_reg = readl(addrbase + VIA_CRDR_SDCLKSEL);
pm_sdhc_reg->sdextctrl_reg = readl(addrbase + VIA_CRDR_SDEXTCTRL);
}
static void via_restore_sdcreg(struct via_crdr_mmc_host *host)
{
struct sdhcreg *pm_sdhc_reg;
void __iomem *addrbase;
pm_sdhc_reg = &(host->pm_sdhc_reg);
addrbase = host->sdhc_mmiobase;
writel(pm_sdhc_reg->sdcontrol_reg, addrbase + VIA_CRDR_SDCTRL);
writel(pm_sdhc_reg->sdcmdarg_reg, addrbase + VIA_CRDR_SDCARG);
writel(pm_sdhc_reg->sdbusmode_reg, addrbase + VIA_CRDR_SDBUSMODE);
writel(pm_sdhc_reg->sdblklen_reg, addrbase + VIA_CRDR_SDBLKLEN);
writel(pm_sdhc_reg->sdcurblkcnt_reg, addrbase + VIA_CRDR_SDCURBLKCNT);
writel(pm_sdhc_reg->sdintmask_reg, addrbase + VIA_CRDR_SDINTMASK);
writel(pm_sdhc_reg->sdstatus_reg, addrbase + VIA_CRDR_SDSTATUS);
writel(pm_sdhc_reg->sdrsptmo_reg, addrbase + VIA_CRDR_SDRSPTMO);
writel(pm_sdhc_reg->sdclksel_reg, addrbase + VIA_CRDR_SDCLKSEL);
writel(pm_sdhc_reg->sdextctrl_reg, addrbase + VIA_CRDR_SDEXTCTRL);
}
static void via_pwron_sleep(struct via_crdr_mmc_host *sdhost)
{
if (sdhost->quirks & VIA_CRDR_QUIRK_300MS_PWRDELAY)
msleep(300);
else
msleep(3);
}
static void via_set_ddma(struct via_crdr_mmc_host *host,
dma_addr_t dmaaddr, u32 count, int dir, int enirq)
{
void __iomem *addrbase;
u32 ctrl_data = 0;
if (enirq)
ctrl_data |= VIA_CRDR_DMACTRL_ENIRQ;
if (dir)
ctrl_data |= VIA_CRDR_DMACTRL_DIR;
addrbase = host->ddma_mmiobase;
writel(dmaaddr, addrbase + VIA_CRDR_DMABASEADD);
writel(count, addrbase + VIA_CRDR_DMACOUNTER);
writel(ctrl_data, addrbase + VIA_CRDR_DMACTRL);
writel(0x01, addrbase + VIA_CRDR_DMASTART);
/* It seems that our DMA can not work normally with 375kHz clock */
/* FIXME: don't brute-force 8MHz but use PIO at 375kHz !! */
addrbase = host->pcictrl_mmiobase;
if (readb(addrbase + VIA_CRDR_PCISDCCLK) == PCI_CLK_375K) {
dev_info(host->mmc->parent, "forcing card speed to 8MHz\n");
writeb(PCI_CLK_8M, addrbase + VIA_CRDR_PCISDCCLK);
}
}
static void via_sdc_preparedata(struct via_crdr_mmc_host *host,
struct mmc_data *data)
{
void __iomem *addrbase;
u32 blk_reg;
int count;
WARN_ON(host->data);
/* Sanity checks */
BUG_ON(data->blksz > host->mmc->max_blk_size);
BUG_ON(data->blocks > host->mmc->max_blk_count);
host->data = data;
count = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
((data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE));
BUG_ON(count != 1);
via_set_ddma(host, sg_dma_address(data->sg), sg_dma_len(data->sg),
(data->flags & MMC_DATA_WRITE) ? 1 : 0, 1);
addrbase = host->sdhc_mmiobase;
blk_reg = data->blksz - 1;
blk_reg |= VIA_CRDR_SDBLKLEN_GPIDET | VIA_CRDR_SDBLKLEN_INTEN;
blk_reg |= (data->blocks) << 16;
writel(blk_reg, addrbase + VIA_CRDR_SDBLKLEN);
}
static void via_sdc_get_response(struct via_crdr_mmc_host *host,
struct mmc_command *cmd)
{
void __iomem *addrbase = host->sdhc_mmiobase;
u32 dwdata0 = readl(addrbase + VIA_CRDR_SDRESP0);
u32 dwdata1 = readl(addrbase + VIA_CRDR_SDRESP1);
u32 dwdata2 = readl(addrbase + VIA_CRDR_SDRESP2);
u32 dwdata3 = readl(addrbase + VIA_CRDR_SDRESP3);
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = ((u8) (dwdata1)) |
(((u8) (dwdata0 >> 24)) << 8) |
(((u8) (dwdata0 >> 16)) << 16) |
(((u8) (dwdata0 >> 8)) << 24);
cmd->resp[1] = ((u8) (dwdata2)) |
(((u8) (dwdata1 >> 24)) << 8) |
(((u8) (dwdata1 >> 16)) << 16) |
(((u8) (dwdata1 >> 8)) << 24);
cmd->resp[2] = ((u8) (dwdata3)) |
(((u8) (dwdata2 >> 24)) << 8) |
(((u8) (dwdata2 >> 16)) << 16) |
(((u8) (dwdata2 >> 8)) << 24);
cmd->resp[3] = 0xff |
((((u8) (dwdata3 >> 24))) << 8) |
(((u8) (dwdata3 >> 16)) << 16) |
(((u8) (dwdata3 >> 8)) << 24);
} else {
dwdata0 >>= 8;
cmd->resp[0] = ((dwdata0 & 0xff) << 24) |
(((dwdata0 >> 8) & 0xff) << 16) |
(((dwdata0 >> 16) & 0xff) << 8) | (dwdata1 & 0xff);
dwdata1 >>= 8;
cmd->resp[1] = ((dwdata1 & 0xff) << 24) |
(((dwdata1 >> 8) & 0xff) << 16) |
(((dwdata1 >> 16) & 0xff) << 8);
}
}
static void via_sdc_send_command(struct via_crdr_mmc_host *host,
struct mmc_command *cmd)
{
void __iomem *addrbase;
struct mmc_data *data;
unsigned int timeout_ms;
u32 cmdctrl = 0;
WARN_ON(host->cmd);
data = cmd->data;
host->cmd = cmd;
timeout_ms = cmd->busy_timeout ? cmd->busy_timeout : VIA_CMD_TIMEOUT_MS;
mod_timer(&host->timer, jiffies + msecs_to_jiffies(timeout_ms));
/*Command index*/
cmdctrl = cmd->opcode << 8;
/*Response type*/
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
cmdctrl |= VIA_CRDR_SDCTRL_RSP_NONE;
break;
case MMC_RSP_R1:
cmdctrl |= VIA_CRDR_SDCTRL_RSP_R1;
break;
case MMC_RSP_R1B:
cmdctrl |= VIA_CRDR_SDCTRL_RSP_R1B;
break;
case MMC_RSP_R2:
cmdctrl |= VIA_CRDR_SDCTRL_RSP_R2;
break;
case MMC_RSP_R3:
cmdctrl |= VIA_CRDR_SDCTRL_RSP_R3;
break;
default:
pr_err("%s: cmd->flag is not valid\n", mmc_hostname(host->mmc));
break;
}
if (!(cmd->data))
goto nodata;
via_sdc_preparedata(host, data);
/*Command control*/
if (data->blocks > 1) {
if (data->flags & MMC_DATA_WRITE) {
cmdctrl |= VIA_CRDR_SDCTRL_WRITE;
cmdctrl |= VIA_CRDR_SDCTRL_MULTI_WR;
} else {
cmdctrl |= VIA_CRDR_SDCTRL_MULTI_RD;
}
} else {
if (data->flags & MMC_DATA_WRITE) {
cmdctrl |= VIA_CRDR_SDCTRL_WRITE;
cmdctrl |= VIA_CRDR_SDCTRL_SINGLE_WR;
} else {
cmdctrl |= VIA_CRDR_SDCTRL_SINGLE_RD;
}
}
nodata:
if (cmd == host->mrq->stop)
cmdctrl |= VIA_CRDR_SDCTRL_STOP;
cmdctrl |= VIA_CRDR_SDCTRL_START;
addrbase = host->sdhc_mmiobase;
writel(cmd->arg, addrbase + VIA_CRDR_SDCARG);
writel(cmdctrl, addrbase + VIA_CRDR_SDCTRL);
}
static void via_sdc_finish_data(struct via_crdr_mmc_host *host)
{
struct mmc_data *data;
BUG_ON(!host->data);
data = host->data;
host->data = NULL;
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blocks * data->blksz;
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
((data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE));
if (data->stop)
via_sdc_send_command(host, data->stop);
else
tasklet_schedule(&host->finish_tasklet);
}
static void via_sdc_finish_command(struct via_crdr_mmc_host *host)
{
via_sdc_get_response(host, host->cmd);
host->cmd->error = 0;
if (!host->cmd->data)
tasklet_schedule(&host->finish_tasklet);
host->cmd = NULL;
}
static void via_sdc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
void __iomem *addrbase;
struct via_crdr_mmc_host *host;
unsigned long flags;
u16 status;
host = mmc_priv(mmc);
spin_lock_irqsave(&host->lock, flags);
addrbase = host->pcictrl_mmiobase;
writeb(VIA_CRDR_PCIDMACLK_SDC, addrbase + VIA_CRDR_PCIDMACLK);
status = readw(host->sdhc_mmiobase + VIA_CRDR_SDSTATUS);
status &= VIA_CRDR_SDSTS_W1C_MASK;
writew(status, host->sdhc_mmiobase + VIA_CRDR_SDSTATUS);
WARN_ON(host->mrq != NULL);
host->mrq = mrq;
status = readw(host->sdhc_mmiobase + VIA_CRDR_SDSTATUS);
if (!(status & VIA_CRDR_SDSTS_SLOTG) || host->reject) {
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
} else {
via_sdc_send_command(host, mrq->cmd);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static void via_sdc_set_power(struct via_crdr_mmc_host *host,
unsigned short power, unsigned int on)
{
unsigned long flags;
u8 gatt;
spin_lock_irqsave(&host->lock, flags);
host->power = (1 << power);
gatt = readb(host->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
if (host->power == MMC_VDD_165_195)
gatt &= ~VIA_CRDR_PCICLKGATT_3V3;
else
gatt |= VIA_CRDR_PCICLKGATT_3V3;
if (on)
gatt |= VIA_CRDR_PCICLKGATT_PAD_PWRON;
else
gatt &= ~VIA_CRDR_PCICLKGATT_PAD_PWRON;
writeb(gatt, host->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
spin_unlock_irqrestore(&host->lock, flags);
via_pwron_sleep(host);
}
static void via_sdc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct via_crdr_mmc_host *host;
unsigned long flags;
void __iomem *addrbase;
u32 org_data, sdextctrl;
u8 clock;
host = mmc_priv(mmc);
spin_lock_irqsave(&host->lock, flags);
addrbase = host->sdhc_mmiobase;
org_data = readl(addrbase + VIA_CRDR_SDBUSMODE);
sdextctrl = readl(addrbase + VIA_CRDR_SDEXTCTRL);
if (ios->bus_width == MMC_BUS_WIDTH_1)
org_data &= ~VIA_CRDR_SDMODE_4BIT;
else
org_data |= VIA_CRDR_SDMODE_4BIT;
if (ios->power_mode == MMC_POWER_OFF)
org_data &= ~VIA_CRDR_SDMODE_CLK_ON;
else
org_data |= VIA_CRDR_SDMODE_CLK_ON;
if (ios->timing == MMC_TIMING_SD_HS)
sdextctrl |= VIA_CRDR_SDEXTCTRL_HISPD;
else
sdextctrl &= ~VIA_CRDR_SDEXTCTRL_HISPD;
writel(org_data, addrbase + VIA_CRDR_SDBUSMODE);
writel(sdextctrl, addrbase + VIA_CRDR_SDEXTCTRL);
if (ios->clock >= 48000000)
clock = PCI_CLK_48M;
else if (ios->clock >= 33000000)
clock = PCI_CLK_33M;
else if (ios->clock >= 24000000)
clock = PCI_CLK_24M;
else if (ios->clock >= 16000000)
clock = PCI_CLK_16M;
else if (ios->clock >= 12000000)
clock = PCI_CLK_12M;
else if (ios->clock >= 8000000)
clock = PCI_CLK_8M;
else
clock = PCI_CLK_375K;
addrbase = host->pcictrl_mmiobase;
if (readb(addrbase + VIA_CRDR_PCISDCCLK) != clock)
writeb(clock, addrbase + VIA_CRDR_PCISDCCLK);
spin_unlock_irqrestore(&host->lock, flags);
if (ios->power_mode != MMC_POWER_OFF)
via_sdc_set_power(host, ios->vdd, 1);
else
via_sdc_set_power(host, ios->vdd, 0);
}
static int via_sdc_get_ro(struct mmc_host *mmc)
{
struct via_crdr_mmc_host *host;
unsigned long flags;
u16 status;
host = mmc_priv(mmc);
spin_lock_irqsave(&host->lock, flags);
status = readw(host->sdhc_mmiobase + VIA_CRDR_SDSTATUS);
spin_unlock_irqrestore(&host->lock, flags);
return !(status & VIA_CRDR_SDSTS_WP);
}
static const struct mmc_host_ops via_sdc_ops = {
.request = via_sdc_request,
.set_ios = via_sdc_set_ios,
.get_ro = via_sdc_get_ro,
};
static void via_reset_pcictrl(struct via_crdr_mmc_host *host)
{
unsigned long flags;
u8 gatt;
spin_lock_irqsave(&host->lock, flags);
via_save_pcictrlreg(host);
via_save_sdcreg(host);
spin_unlock_irqrestore(&host->lock, flags);
gatt = VIA_CRDR_PCICLKGATT_PAD_PWRON;
if (host->power == MMC_VDD_165_195)
gatt &= VIA_CRDR_PCICLKGATT_3V3;
else
gatt |= VIA_CRDR_PCICLKGATT_3V3;
writeb(gatt, host->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
via_pwron_sleep(host);
gatt |= VIA_CRDR_PCICLKGATT_SFTRST;
writeb(gatt, host->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
msleep(3);
spin_lock_irqsave(&host->lock, flags);
via_restore_pcictrlreg(host);
via_restore_sdcreg(host);
spin_unlock_irqrestore(&host->lock, flags);
}
static void via_sdc_cmd_isr(struct via_crdr_mmc_host *host, u16 intmask)
{
BUG_ON(intmask == 0);
if (!host->cmd) {
pr_err("%s: Got command interrupt 0x%x even "
"though no command operation was in progress.\n",
mmc_hostname(host->mmc), intmask);
return;
}
if (intmask & VIA_CRDR_SDSTS_CRTO)
host->cmd->error = -ETIMEDOUT;
else if (intmask & VIA_CRDR_SDSTS_SC)
host->cmd->error = -EILSEQ;
if (host->cmd->error)
tasklet_schedule(&host->finish_tasklet);
else if (intmask & VIA_CRDR_SDSTS_CRD)
via_sdc_finish_command(host);
}
static void via_sdc_data_isr(struct via_crdr_mmc_host *host, u16 intmask)
{
BUG_ON(intmask == 0);
if (!host->data)
return;
if (intmask & VIA_CRDR_SDSTS_DT)
host->data->error = -ETIMEDOUT;
else if (intmask & (VIA_CRDR_SDSTS_RC | VIA_CRDR_SDSTS_WC))
host->data->error = -EILSEQ;
via_sdc_finish_data(host);
}
static irqreturn_t via_sdc_isr(int irq, void *dev_id)
{
struct via_crdr_mmc_host *sdhost = dev_id;
void __iomem *addrbase;
u8 pci_status;
u16 sd_status;
irqreturn_t result;
if (!sdhost)
return IRQ_NONE;
spin_lock(&sdhost->lock);
addrbase = sdhost->pcictrl_mmiobase;
pci_status = readb(addrbase + VIA_CRDR_PCIINTSTATUS);
if (!(pci_status & VIA_CRDR_PCIINTSTATUS_SDC)) {
result = IRQ_NONE;
goto out;
}
addrbase = sdhost->sdhc_mmiobase;
sd_status = readw(addrbase + VIA_CRDR_SDSTATUS);
sd_status &= VIA_CRDR_SDSTS_INT_MASK;
sd_status &= ~VIA_CRDR_SDSTS_IGN_MASK;
if (!sd_status) {
result = IRQ_NONE;
goto out;
}
if (sd_status & VIA_CRDR_SDSTS_CIR) {
writew(sd_status & VIA_CRDR_SDSTS_CIR,
addrbase + VIA_CRDR_SDSTATUS);
schedule_work(&sdhost->carddet_work);
}
sd_status &= ~VIA_CRDR_SDSTS_CIR;
if (sd_status & VIA_CRDR_SDSTS_CMD_MASK) {
writew(sd_status & VIA_CRDR_SDSTS_CMD_MASK,
addrbase + VIA_CRDR_SDSTATUS);
via_sdc_cmd_isr(sdhost, sd_status & VIA_CRDR_SDSTS_CMD_MASK);
}
if (sd_status & VIA_CRDR_SDSTS_DATA_MASK) {
writew(sd_status & VIA_CRDR_SDSTS_DATA_MASK,
addrbase + VIA_CRDR_SDSTATUS);
via_sdc_data_isr(sdhost, sd_status & VIA_CRDR_SDSTS_DATA_MASK);
}
sd_status &= ~(VIA_CRDR_SDSTS_CMD_MASK | VIA_CRDR_SDSTS_DATA_MASK);
if (sd_status) {
pr_err("%s: Unexpected interrupt 0x%x\n",
mmc_hostname(sdhost->mmc), sd_status);
writew(sd_status, addrbase + VIA_CRDR_SDSTATUS);
}
result = IRQ_HANDLED;
out:
spin_unlock(&sdhost->lock);
return result;
}
static void via_sdc_timeout(struct timer_list *t)
{
struct via_crdr_mmc_host *sdhost;
unsigned long flags;
sdhost = from_timer(sdhost, t, timer);
spin_lock_irqsave(&sdhost->lock, flags);
if (sdhost->mrq) {
pr_err("%s: Timeout waiting for hardware interrupt."
"cmd:0x%x\n", mmc_hostname(sdhost->mmc),
sdhost->mrq->cmd->opcode);
if (sdhost->data) {
writel(VIA_CRDR_DMACTRL_SFTRST,
sdhost->ddma_mmiobase + VIA_CRDR_DMACTRL);
sdhost->data->error = -ETIMEDOUT;
via_sdc_finish_data(sdhost);
} else {
if (sdhost->cmd)
sdhost->cmd->error = -ETIMEDOUT;
else
sdhost->mrq->cmd->error = -ETIMEDOUT;
tasklet_schedule(&sdhost->finish_tasklet);
}
}
spin_unlock_irqrestore(&sdhost->lock, flags);
}
static void via_sdc_tasklet_finish(struct tasklet_struct *t)
{
struct via_crdr_mmc_host *host = from_tasklet(host, t, finish_tasklet);
unsigned long flags;
struct mmc_request *mrq;
spin_lock_irqsave(&host->lock, flags);
del_timer(&host->timer);
mrq = host->mrq;
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
}
static void via_sdc_card_detect(struct work_struct *work)
{
struct via_crdr_mmc_host *host;
void __iomem *addrbase;
unsigned long flags;
u16 status;
host = container_of(work, struct via_crdr_mmc_host, carddet_work);
addrbase = host->ddma_mmiobase;
writel(VIA_CRDR_DMACTRL_SFTRST, addrbase + VIA_CRDR_DMACTRL);
spin_lock_irqsave(&host->lock, flags);
addrbase = host->pcictrl_mmiobase;
writeb(VIA_CRDR_PCIDMACLK_SDC, addrbase + VIA_CRDR_PCIDMACLK);
addrbase = host->sdhc_mmiobase;
status = readw(addrbase + VIA_CRDR_SDSTATUS);
if (!(status & VIA_CRDR_SDSTS_SLOTG)) {
if (host->mrq) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
spin_unlock_irqrestore(&host->lock, flags);
via_reset_pcictrl(host);
spin_lock_irqsave(&host->lock, flags);
}
spin_unlock_irqrestore(&host->lock, flags);
via_print_pcictrl(host);
via_print_sdchc(host);
mmc_detect_change(host->mmc, msecs_to_jiffies(500));
}
static void via_init_mmc_host(struct via_crdr_mmc_host *host)
{
struct mmc_host *mmc = host->mmc;
void __iomem *addrbase;
u32 lenreg;
u32 status;
timer_setup(&host->timer, via_sdc_timeout, 0);
spin_lock_init(&host->lock);
mmc->f_min = VIA_CRDR_MIN_CLOCK;
mmc->f_max = VIA_CRDR_MAX_CLOCK;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED;
mmc->ops = &via_sdc_ops;
/*Hardware cannot do scatter lists*/
mmc->max_segs = 1;
mmc->max_blk_size = VIA_CRDR_MAX_BLOCK_LENGTH;
mmc->max_blk_count = VIA_CRDR_MAX_BLOCK_COUNT;
mmc->max_seg_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_req_size = mmc->max_seg_size;
INIT_WORK(&host->carddet_work, via_sdc_card_detect);
tasklet_setup(&host->finish_tasklet, via_sdc_tasklet_finish);
addrbase = host->sdhc_mmiobase;
writel(0x0, addrbase + VIA_CRDR_SDINTMASK);
msleep(1);
lenreg = VIA_CRDR_SDBLKLEN_GPIDET | VIA_CRDR_SDBLKLEN_INTEN;
writel(lenreg, addrbase + VIA_CRDR_SDBLKLEN);
status = readw(addrbase + VIA_CRDR_SDSTATUS);
status &= VIA_CRDR_SDSTS_W1C_MASK;
writew(status, addrbase + VIA_CRDR_SDSTATUS);
status = readw(addrbase + VIA_CRDR_SDSTATUS2);
status |= VIA_CRDR_SDSTS_CFE;
writew(status, addrbase + VIA_CRDR_SDSTATUS2);
writeb(0x0, addrbase + VIA_CRDR_SDEXTCTRL);
writel(VIA_CRDR_SDACTIVE_INTMASK, addrbase + VIA_CRDR_SDINTMASK);
msleep(1);
}
static int via_sd_probe(struct pci_dev *pcidev,
const struct pci_device_id *id)
{
struct mmc_host *mmc;
struct via_crdr_mmc_host *sdhost;
u32 base, len;
u8 gatt;
int ret;
pr_info(DRV_NAME
": VIA SDMMC controller found at %s [%04x:%04x] (rev %x)\n",
pci_name(pcidev), (int)pcidev->vendor, (int)pcidev->device,
(int)pcidev->revision);
ret = pci_enable_device(pcidev);
if (ret)
return ret;
ret = pci_request_regions(pcidev, DRV_NAME);
if (ret)
goto disable;
pci_write_config_byte(pcidev, VIA_CRDR_PCI_WORK_MODE, 0);
pci_write_config_byte(pcidev, VIA_CRDR_PCI_DBG_MODE, 0);
mmc = mmc_alloc_host(sizeof(struct via_crdr_mmc_host), &pcidev->dev);
if (!mmc) {
ret = -ENOMEM;
goto release;
}
sdhost = mmc_priv(mmc);
sdhost->mmc = mmc;
dev_set_drvdata(&pcidev->dev, sdhost);
len = pci_resource_len(pcidev, 0);
base = pci_resource_start(pcidev, 0);
sdhost->mmiobase = ioremap(base, len);
if (!sdhost->mmiobase) {
ret = -ENOMEM;
goto free_mmc_host;
}
sdhost->sdhc_mmiobase =
sdhost->mmiobase + VIA_CRDR_SDC_OFF;
sdhost->ddma_mmiobase =
sdhost->mmiobase + VIA_CRDR_DDMA_OFF;
sdhost->pcictrl_mmiobase =
sdhost->mmiobase + VIA_CRDR_PCICTRL_OFF;
sdhost->power = MMC_VDD_165_195;
gatt = VIA_CRDR_PCICLKGATT_3V3 | VIA_CRDR_PCICLKGATT_PAD_PWRON;
writeb(gatt, sdhost->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
via_pwron_sleep(sdhost);
gatt |= VIA_CRDR_PCICLKGATT_SFTRST;
writeb(gatt, sdhost->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
msleep(3);
via_init_mmc_host(sdhost);
ret =
request_irq(pcidev->irq, via_sdc_isr, IRQF_SHARED, DRV_NAME,
sdhost);
if (ret)
goto unmap;
writeb(VIA_CRDR_PCIINTCTRL_SDCIRQEN,
sdhost->pcictrl_mmiobase + VIA_CRDR_PCIINTCTRL);
writeb(VIA_CRDR_PCITMOCTRL_1024MS,
sdhost->pcictrl_mmiobase + VIA_CRDR_PCITMOCTRL);
/* device-specific quirks */
if (pcidev->subsystem_vendor == PCI_VENDOR_ID_LENOVO &&
pcidev->subsystem_device == 0x3891)
sdhost->quirks = VIA_CRDR_QUIRK_300MS_PWRDELAY;
ret = mmc_add_host(mmc);
if (ret)
goto unmap;
return 0;
unmap:
iounmap(sdhost->mmiobase);
free_mmc_host:
mmc_free_host(mmc);
release:
pci_release_regions(pcidev);
disable:
pci_disable_device(pcidev);
return ret;
}
static void via_sd_remove(struct pci_dev *pcidev)
{
struct via_crdr_mmc_host *sdhost = pci_get_drvdata(pcidev);
unsigned long flags;
u8 gatt;
spin_lock_irqsave(&sdhost->lock, flags);
/* Ensure we don't accept more commands from mmc layer */
sdhost->reject = 1;
/* Disable generating further interrupts */
writeb(0x0, sdhost->pcictrl_mmiobase + VIA_CRDR_PCIINTCTRL);
if (sdhost->mrq) {
pr_err("%s: Controller removed during "
"transfer\n", mmc_hostname(sdhost->mmc));
/* make sure all DMA is stopped */
writel(VIA_CRDR_DMACTRL_SFTRST,
sdhost->ddma_mmiobase + VIA_CRDR_DMACTRL);
sdhost->mrq->cmd->error = -ENOMEDIUM;
if (sdhost->mrq->stop)
sdhost->mrq->stop->error = -ENOMEDIUM;
tasklet_schedule(&sdhost->finish_tasklet);
}
spin_unlock_irqrestore(&sdhost->lock, flags);
mmc_remove_host(sdhost->mmc);
free_irq(pcidev->irq, sdhost);
del_timer_sync(&sdhost->timer);
tasklet_kill(&sdhost->finish_tasklet);
/* switch off power */
gatt = readb(sdhost->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
gatt &= ~VIA_CRDR_PCICLKGATT_PAD_PWRON;
writeb(gatt, sdhost->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
iounmap(sdhost->mmiobase);
mmc_free_host(sdhost->mmc);
pci_release_regions(pcidev);
pci_disable_device(pcidev);
pr_info(DRV_NAME
": VIA SDMMC controller at %s [%04x:%04x] has been removed\n",
pci_name(pcidev), (int)pcidev->vendor, (int)pcidev->device);
}
static void __maybe_unused via_init_sdc_pm(struct via_crdr_mmc_host *host)
{
struct sdhcreg *pm_sdhcreg;
void __iomem *addrbase;
u32 lenreg;
u16 status;
pm_sdhcreg = &(host->pm_sdhc_reg);
addrbase = host->sdhc_mmiobase;
writel(0x0, addrbase + VIA_CRDR_SDINTMASK);
lenreg = VIA_CRDR_SDBLKLEN_GPIDET | VIA_CRDR_SDBLKLEN_INTEN;
writel(lenreg, addrbase + VIA_CRDR_SDBLKLEN);
status = readw(addrbase + VIA_CRDR_SDSTATUS);
status &= VIA_CRDR_SDSTS_W1C_MASK;
writew(status, addrbase + VIA_CRDR_SDSTATUS);
status = readw(addrbase + VIA_CRDR_SDSTATUS2);
status |= VIA_CRDR_SDSTS_CFE;
writew(status, addrbase + VIA_CRDR_SDSTATUS2);
writel(pm_sdhcreg->sdcontrol_reg, addrbase + VIA_CRDR_SDCTRL);
writel(pm_sdhcreg->sdcmdarg_reg, addrbase + VIA_CRDR_SDCARG);
writel(pm_sdhcreg->sdintmask_reg, addrbase + VIA_CRDR_SDINTMASK);
writel(pm_sdhcreg->sdrsptmo_reg, addrbase + VIA_CRDR_SDRSPTMO);
writel(pm_sdhcreg->sdclksel_reg, addrbase + VIA_CRDR_SDCLKSEL);
writel(pm_sdhcreg->sdextctrl_reg, addrbase + VIA_CRDR_SDEXTCTRL);
via_print_pcictrl(host);
via_print_sdchc(host);
}
static int __maybe_unused via_sd_suspend(struct device *dev)
{
struct via_crdr_mmc_host *host;
unsigned long flags;
host = dev_get_drvdata(dev);
spin_lock_irqsave(&host->lock, flags);
via_save_pcictrlreg(host);
via_save_sdcreg(host);
spin_unlock_irqrestore(&host->lock, flags);
device_wakeup_enable(dev);
return 0;
}
static int __maybe_unused via_sd_resume(struct device *dev)
{
struct via_crdr_mmc_host *sdhost;
u8 gatt;
sdhost = dev_get_drvdata(dev);
gatt = VIA_CRDR_PCICLKGATT_PAD_PWRON;
if (sdhost->power == MMC_VDD_165_195)
gatt &= ~VIA_CRDR_PCICLKGATT_3V3;
else
gatt |= VIA_CRDR_PCICLKGATT_3V3;
writeb(gatt, sdhost->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
via_pwron_sleep(sdhost);
gatt |= VIA_CRDR_PCICLKGATT_SFTRST;
writeb(gatt, sdhost->pcictrl_mmiobase + VIA_CRDR_PCICLKGATT);
msleep(3);
msleep(100);
via_restore_pcictrlreg(sdhost);
via_init_sdc_pm(sdhost);
return 0;
}
static SIMPLE_DEV_PM_OPS(via_sd_pm_ops, via_sd_suspend, via_sd_resume);
static struct pci_driver via_sd_driver = {
.name = DRV_NAME,
.id_table = via_ids,
.probe = via_sd_probe,
.remove = via_sd_remove,
.driver.pm = &via_sd_pm_ops,
};
module_pci_driver(via_sd_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("VIA Technologies Inc.");
MODULE_DESCRIPTION("VIA SD/MMC Card Interface driver");
| linux-master | drivers/mmc/host/via-sdmmc.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/host/omap.c
*
* Copyright (C) 2004 Nokia Corporation
* Written by Tuukka Tikkanen and Juha Yrjölä<[email protected]>
* Misc hacks here and there by Tony Lindgren <[email protected]>
* Other hacks (DMA, SD, etc) by David Brownell
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/of.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_data/mmc-omap.h>
#define OMAP_MMC_REG_CMD 0x00
#define OMAP_MMC_REG_ARGL 0x01
#define OMAP_MMC_REG_ARGH 0x02
#define OMAP_MMC_REG_CON 0x03
#define OMAP_MMC_REG_STAT 0x04
#define OMAP_MMC_REG_IE 0x05
#define OMAP_MMC_REG_CTO 0x06
#define OMAP_MMC_REG_DTO 0x07
#define OMAP_MMC_REG_DATA 0x08
#define OMAP_MMC_REG_BLEN 0x09
#define OMAP_MMC_REG_NBLK 0x0a
#define OMAP_MMC_REG_BUF 0x0b
#define OMAP_MMC_REG_SDIO 0x0d
#define OMAP_MMC_REG_REV 0x0f
#define OMAP_MMC_REG_RSP0 0x10
#define OMAP_MMC_REG_RSP1 0x11
#define OMAP_MMC_REG_RSP2 0x12
#define OMAP_MMC_REG_RSP3 0x13
#define OMAP_MMC_REG_RSP4 0x14
#define OMAP_MMC_REG_RSP5 0x15
#define OMAP_MMC_REG_RSP6 0x16
#define OMAP_MMC_REG_RSP7 0x17
#define OMAP_MMC_REG_IOSR 0x18
#define OMAP_MMC_REG_SYSC 0x19
#define OMAP_MMC_REG_SYSS 0x1a
#define OMAP_MMC_STAT_CARD_ERR (1 << 14)
#define OMAP_MMC_STAT_CARD_IRQ (1 << 13)
#define OMAP_MMC_STAT_OCR_BUSY (1 << 12)
#define OMAP_MMC_STAT_A_EMPTY (1 << 11)
#define OMAP_MMC_STAT_A_FULL (1 << 10)
#define OMAP_MMC_STAT_CMD_CRC (1 << 8)
#define OMAP_MMC_STAT_CMD_TOUT (1 << 7)
#define OMAP_MMC_STAT_DATA_CRC (1 << 6)
#define OMAP_MMC_STAT_DATA_TOUT (1 << 5)
#define OMAP_MMC_STAT_END_BUSY (1 << 4)
#define OMAP_MMC_STAT_END_OF_DATA (1 << 3)
#define OMAP_MMC_STAT_CARD_BUSY (1 << 2)
#define OMAP_MMC_STAT_END_OF_CMD (1 << 0)
#define mmc_omap7xx() (host->features & MMC_OMAP7XX)
#define mmc_omap15xx() (host->features & MMC_OMAP15XX)
#define mmc_omap16xx() (host->features & MMC_OMAP16XX)
#define MMC_OMAP1_MASK (MMC_OMAP7XX | MMC_OMAP15XX | MMC_OMAP16XX)
#define mmc_omap1() (host->features & MMC_OMAP1_MASK)
#define mmc_omap2() (!mmc_omap1())
#define OMAP_MMC_REG(host, reg) (OMAP_MMC_REG_##reg << (host)->reg_shift)
#define OMAP_MMC_READ(host, reg) __raw_readw((host)->virt_base + OMAP_MMC_REG(host, reg))
#define OMAP_MMC_WRITE(host, reg, val) __raw_writew((val), (host)->virt_base + OMAP_MMC_REG(host, reg))
/*
* Command types
*/
#define OMAP_MMC_CMDTYPE_BC 0
#define OMAP_MMC_CMDTYPE_BCR 1
#define OMAP_MMC_CMDTYPE_AC 2
#define OMAP_MMC_CMDTYPE_ADTC 3
#define DRIVER_NAME "mmci-omap"
/* Specifies how often in millisecs to poll for card status changes
* when the cover switch is open */
#define OMAP_MMC_COVER_POLL_DELAY 500
struct mmc_omap_host;
struct mmc_omap_slot {
int id;
unsigned int vdd;
u16 saved_con;
u16 bus_mode;
u16 power_mode;
unsigned int fclk_freq;
struct tasklet_struct cover_tasklet;
struct timer_list cover_timer;
unsigned cover_open;
struct mmc_request *mrq;
struct mmc_omap_host *host;
struct mmc_host *mmc;
struct gpio_desc *vsd;
struct gpio_desc *vio;
struct gpio_desc *cover;
struct omap_mmc_slot_data *pdata;
};
struct mmc_omap_host {
int initialized;
struct mmc_request * mrq;
struct mmc_command * cmd;
struct mmc_data * data;
struct mmc_host * mmc;
struct device * dev;
unsigned char id; /* 16xx chips have 2 MMC blocks */
struct clk * iclk;
struct clk * fclk;
struct dma_chan *dma_rx;
u32 dma_rx_burst;
struct dma_chan *dma_tx;
u32 dma_tx_burst;
void __iomem *virt_base;
unsigned int phys_base;
int irq;
unsigned char bus_mode;
unsigned int reg_shift;
struct gpio_desc *slot_switch;
struct work_struct cmd_abort_work;
unsigned abort:1;
struct timer_list cmd_abort_timer;
struct work_struct slot_release_work;
struct mmc_omap_slot *next_slot;
struct work_struct send_stop_work;
struct mmc_data *stop_data;
unsigned int sg_len;
int sg_idx;
u16 * buffer;
u32 buffer_bytes_left;
u32 total_bytes_left;
unsigned features;
unsigned brs_received:1, dma_done:1;
unsigned dma_in_use:1;
spinlock_t dma_lock;
struct mmc_omap_slot *slots[OMAP_MMC_MAX_SLOTS];
struct mmc_omap_slot *current_slot;
spinlock_t slot_lock;
wait_queue_head_t slot_wq;
int nr_slots;
struct timer_list clk_timer;
spinlock_t clk_lock; /* for changing enabled state */
unsigned int fclk_enabled:1;
struct workqueue_struct *mmc_omap_wq;
struct omap_mmc_platform_data *pdata;
};
static void mmc_omap_fclk_offdelay(struct mmc_omap_slot *slot)
{
unsigned long tick_ns;
if (slot != NULL && slot->host->fclk_enabled && slot->fclk_freq > 0) {
tick_ns = DIV_ROUND_UP(NSEC_PER_SEC, slot->fclk_freq);
ndelay(8 * tick_ns);
}
}
static void mmc_omap_fclk_enable(struct mmc_omap_host *host, unsigned int enable)
{
unsigned long flags;
spin_lock_irqsave(&host->clk_lock, flags);
if (host->fclk_enabled != enable) {
host->fclk_enabled = enable;
if (enable)
clk_enable(host->fclk);
else
clk_disable(host->fclk);
}
spin_unlock_irqrestore(&host->clk_lock, flags);
}
static void mmc_omap_select_slot(struct mmc_omap_slot *slot, int claimed)
{
struct mmc_omap_host *host = slot->host;
unsigned long flags;
if (claimed)
goto no_claim;
spin_lock_irqsave(&host->slot_lock, flags);
while (host->mmc != NULL) {
spin_unlock_irqrestore(&host->slot_lock, flags);
wait_event(host->slot_wq, host->mmc == NULL);
spin_lock_irqsave(&host->slot_lock, flags);
}
host->mmc = slot->mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
no_claim:
del_timer(&host->clk_timer);
if (host->current_slot != slot || !claimed)
mmc_omap_fclk_offdelay(host->current_slot);
if (host->current_slot != slot) {
OMAP_MMC_WRITE(host, CON, slot->saved_con & 0xFC00);
if (host->slot_switch)
/*
* With two slots and a simple GPIO switch, setting
* the GPIO to 0 selects slot ID 0, setting it to 1
* selects slot ID 1.
*/
gpiod_set_value(host->slot_switch, slot->id);
host->current_slot = slot;
}
if (claimed) {
mmc_omap_fclk_enable(host, 1);
/* Doing the dummy read here seems to work around some bug
* at least in OMAP24xx silicon where the command would not
* start after writing the CMD register. Sigh. */
OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, slot->saved_con);
} else
mmc_omap_fclk_enable(host, 0);
}
static void mmc_omap_start_request(struct mmc_omap_host *host,
struct mmc_request *req);
static void mmc_omap_slot_release_work(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
slot_release_work);
struct mmc_omap_slot *next_slot = host->next_slot;
struct mmc_request *rq;
host->next_slot = NULL;
mmc_omap_select_slot(next_slot, 1);
rq = next_slot->mrq;
next_slot->mrq = NULL;
mmc_omap_start_request(host, rq);
}
static void mmc_omap_release_slot(struct mmc_omap_slot *slot, int clk_enabled)
{
struct mmc_omap_host *host = slot->host;
unsigned long flags;
int i;
BUG_ON(slot == NULL || host->mmc == NULL);
if (clk_enabled)
/* Keeps clock running for at least 8 cycles on valid freq */
mod_timer(&host->clk_timer, jiffies + HZ/10);
else {
del_timer(&host->clk_timer);
mmc_omap_fclk_offdelay(slot);
mmc_omap_fclk_enable(host, 0);
}
spin_lock_irqsave(&host->slot_lock, flags);
/* Check for any pending requests */
for (i = 0; i < host->nr_slots; i++) {
struct mmc_omap_slot *new_slot;
if (host->slots[i] == NULL || host->slots[i]->mrq == NULL)
continue;
BUG_ON(host->next_slot != NULL);
new_slot = host->slots[i];
/* The current slot should not have a request in queue */
BUG_ON(new_slot == host->current_slot);
host->next_slot = new_slot;
host->mmc = new_slot->mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
queue_work(host->mmc_omap_wq, &host->slot_release_work);
return;
}
host->mmc = NULL;
wake_up(&host->slot_wq);
spin_unlock_irqrestore(&host->slot_lock, flags);
}
static inline
int mmc_omap_cover_is_open(struct mmc_omap_slot *slot)
{
/* If we have a GPIO then use that */
if (slot->cover)
return gpiod_get_value(slot->cover);
if (slot->pdata->get_cover_state)
return slot->pdata->get_cover_state(mmc_dev(slot->mmc),
slot->id);
return 0;
}
static ssize_t
mmc_omap_show_cover_switch(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct mmc_omap_slot *slot = mmc_priv(mmc);
return sprintf(buf, "%s\n", mmc_omap_cover_is_open(slot) ? "open" :
"closed");
}
static DEVICE_ATTR(cover_switch, S_IRUGO, mmc_omap_show_cover_switch, NULL);
static ssize_t
mmc_omap_show_slot_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct mmc_omap_slot *slot = mmc_priv(mmc);
return sprintf(buf, "%s\n", slot->pdata->name);
}
static DEVICE_ATTR(slot_name, S_IRUGO, mmc_omap_show_slot_name, NULL);
static void
mmc_omap_start_command(struct mmc_omap_host *host, struct mmc_command *cmd)
{
u32 cmdreg;
u32 resptype;
u32 cmdtype;
u16 irq_mask;
host->cmd = cmd;
resptype = 0;
cmdtype = 0;
/* Our hardware needs to know exact type */
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
break;
case MMC_RSP_R1:
case MMC_RSP_R1B:
/* resp 1, 1b, 6, 7 */
resptype = 1;
break;
case MMC_RSP_R2:
resptype = 2;
break;
case MMC_RSP_R3:
resptype = 3;
break;
default:
dev_err(mmc_dev(host->mmc), "Invalid response type: %04x\n", mmc_resp_type(cmd));
break;
}
if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) {
cmdtype = OMAP_MMC_CMDTYPE_ADTC;
} else if (mmc_cmd_type(cmd) == MMC_CMD_BC) {
cmdtype = OMAP_MMC_CMDTYPE_BC;
} else if (mmc_cmd_type(cmd) == MMC_CMD_BCR) {
cmdtype = OMAP_MMC_CMDTYPE_BCR;
} else {
cmdtype = OMAP_MMC_CMDTYPE_AC;
}
cmdreg = cmd->opcode | (resptype << 8) | (cmdtype << 12);
if (host->current_slot->bus_mode == MMC_BUSMODE_OPENDRAIN)
cmdreg |= 1 << 6;
if (cmd->flags & MMC_RSP_BUSY)
cmdreg |= 1 << 11;
if (host->data && !(host->data->flags & MMC_DATA_WRITE))
cmdreg |= 1 << 15;
mod_timer(&host->cmd_abort_timer, jiffies + HZ/2);
OMAP_MMC_WRITE(host, CTO, 200);
OMAP_MMC_WRITE(host, ARGL, cmd->arg & 0xffff);
OMAP_MMC_WRITE(host, ARGH, cmd->arg >> 16);
irq_mask = OMAP_MMC_STAT_A_EMPTY | OMAP_MMC_STAT_A_FULL |
OMAP_MMC_STAT_CMD_CRC | OMAP_MMC_STAT_CMD_TOUT |
OMAP_MMC_STAT_DATA_CRC | OMAP_MMC_STAT_DATA_TOUT |
OMAP_MMC_STAT_END_OF_CMD | OMAP_MMC_STAT_CARD_ERR |
OMAP_MMC_STAT_END_OF_DATA;
if (cmd->opcode == MMC_ERASE)
irq_mask &= ~OMAP_MMC_STAT_DATA_TOUT;
OMAP_MMC_WRITE(host, IE, irq_mask);
OMAP_MMC_WRITE(host, CMD, cmdreg);
}
static void
mmc_omap_release_dma(struct mmc_omap_host *host, struct mmc_data *data,
int abort)
{
enum dma_data_direction dma_data_dir;
struct device *dev = mmc_dev(host->mmc);
struct dma_chan *c;
if (data->flags & MMC_DATA_WRITE) {
dma_data_dir = DMA_TO_DEVICE;
c = host->dma_tx;
} else {
dma_data_dir = DMA_FROM_DEVICE;
c = host->dma_rx;
}
if (c) {
if (data->error) {
dmaengine_terminate_all(c);
/* Claim nothing transferred on error... */
data->bytes_xfered = 0;
}
dev = c->device->dev;
}
dma_unmap_sg(dev, data->sg, host->sg_len, dma_data_dir);
}
static void mmc_omap_send_stop_work(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
send_stop_work);
struct mmc_omap_slot *slot = host->current_slot;
struct mmc_data *data = host->stop_data;
unsigned long tick_ns;
tick_ns = DIV_ROUND_UP(NSEC_PER_SEC, slot->fclk_freq);
ndelay(8*tick_ns);
mmc_omap_start_command(host, data->stop);
}
static void
mmc_omap_xfer_done(struct mmc_omap_host *host, struct mmc_data *data)
{
if (host->dma_in_use)
mmc_omap_release_dma(host, data, data->error);
host->data = NULL;
host->sg_len = 0;
/* NOTE: MMC layer will sometimes poll-wait CMD13 next, issuing
* dozens of requests until the card finishes writing data.
* It'd be cheaper to just wait till an EOFB interrupt arrives...
*/
if (!data->stop) {
struct mmc_host *mmc;
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, data->mrq);
return;
}
host->stop_data = data;
queue_work(host->mmc_omap_wq, &host->send_stop_work);
}
static void
mmc_omap_send_abort(struct mmc_omap_host *host, int maxloops)
{
struct mmc_omap_slot *slot = host->current_slot;
unsigned int restarts, passes, timeout;
u16 stat = 0;
/* Sending abort takes 80 clocks. Have some extra and round up */
timeout = DIV_ROUND_UP(120 * USEC_PER_SEC, slot->fclk_freq);
restarts = 0;
while (restarts < maxloops) {
OMAP_MMC_WRITE(host, STAT, 0xFFFF);
OMAP_MMC_WRITE(host, CMD, (3 << 12) | (1 << 7));
passes = 0;
while (passes < timeout) {
stat = OMAP_MMC_READ(host, STAT);
if (stat & OMAP_MMC_STAT_END_OF_CMD)
goto out;
udelay(1);
passes++;
}
restarts++;
}
out:
OMAP_MMC_WRITE(host, STAT, stat);
}
static void
mmc_omap_abort_xfer(struct mmc_omap_host *host, struct mmc_data *data)
{
if (host->dma_in_use)
mmc_omap_release_dma(host, data, 1);
host->data = NULL;
host->sg_len = 0;
mmc_omap_send_abort(host, 10000);
}
static void
mmc_omap_end_of_data(struct mmc_omap_host *host, struct mmc_data *data)
{
unsigned long flags;
int done;
if (!host->dma_in_use) {
mmc_omap_xfer_done(host, data);
return;
}
done = 0;
spin_lock_irqsave(&host->dma_lock, flags);
if (host->dma_done)
done = 1;
else
host->brs_received = 1;
spin_unlock_irqrestore(&host->dma_lock, flags);
if (done)
mmc_omap_xfer_done(host, data);
}
static void
mmc_omap_dma_done(struct mmc_omap_host *host, struct mmc_data *data)
{
unsigned long flags;
int done;
done = 0;
spin_lock_irqsave(&host->dma_lock, flags);
if (host->brs_received)
done = 1;
else
host->dma_done = 1;
spin_unlock_irqrestore(&host->dma_lock, flags);
if (done)
mmc_omap_xfer_done(host, data);
}
static void
mmc_omap_cmd_done(struct mmc_omap_host *host, struct mmc_command *cmd)
{
host->cmd = NULL;
del_timer(&host->cmd_abort_timer);
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
/* response type 2 */
cmd->resp[3] =
OMAP_MMC_READ(host, RSP0) |
(OMAP_MMC_READ(host, RSP1) << 16);
cmd->resp[2] =
OMAP_MMC_READ(host, RSP2) |
(OMAP_MMC_READ(host, RSP3) << 16);
cmd->resp[1] =
OMAP_MMC_READ(host, RSP4) |
(OMAP_MMC_READ(host, RSP5) << 16);
cmd->resp[0] =
OMAP_MMC_READ(host, RSP6) |
(OMAP_MMC_READ(host, RSP7) << 16);
} else {
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->resp[0] =
OMAP_MMC_READ(host, RSP6) |
(OMAP_MMC_READ(host, RSP7) << 16);
}
}
if (host->data == NULL || cmd->error) {
struct mmc_host *mmc;
if (host->data != NULL)
mmc_omap_abort_xfer(host, host->data);
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, cmd->mrq);
}
}
/*
* Abort stuck command. Can occur when card is removed while it is being
* read.
*/
static void mmc_omap_abort_command(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
cmd_abort_work);
BUG_ON(!host->cmd);
dev_dbg(mmc_dev(host->mmc), "Aborting stuck command CMD%d\n",
host->cmd->opcode);
if (host->cmd->error == 0)
host->cmd->error = -ETIMEDOUT;
if (host->data == NULL) {
struct mmc_command *cmd;
struct mmc_host *mmc;
cmd = host->cmd;
host->cmd = NULL;
mmc_omap_send_abort(host, 10000);
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, cmd->mrq);
} else
mmc_omap_cmd_done(host, host->cmd);
host->abort = 0;
enable_irq(host->irq);
}
static void
mmc_omap_cmd_timer(struct timer_list *t)
{
struct mmc_omap_host *host = from_timer(host, t, cmd_abort_timer);
unsigned long flags;
spin_lock_irqsave(&host->slot_lock, flags);
if (host->cmd != NULL && !host->abort) {
OMAP_MMC_WRITE(host, IE, 0);
disable_irq(host->irq);
host->abort = 1;
queue_work(host->mmc_omap_wq, &host->cmd_abort_work);
}
spin_unlock_irqrestore(&host->slot_lock, flags);
}
/* PIO only */
static void
mmc_omap_sg_to_buf(struct mmc_omap_host *host)
{
struct scatterlist *sg;
sg = host->data->sg + host->sg_idx;
host->buffer_bytes_left = sg->length;
host->buffer = sg_virt(sg);
if (host->buffer_bytes_left > host->total_bytes_left)
host->buffer_bytes_left = host->total_bytes_left;
}
static void
mmc_omap_clk_timer(struct timer_list *t)
{
struct mmc_omap_host *host = from_timer(host, t, clk_timer);
mmc_omap_fclk_enable(host, 0);
}
/* PIO only */
static void
mmc_omap_xfer_data(struct mmc_omap_host *host, int write)
{
int n, nwords;
if (host->buffer_bytes_left == 0) {
host->sg_idx++;
BUG_ON(host->sg_idx == host->sg_len);
mmc_omap_sg_to_buf(host);
}
n = 64;
if (n > host->buffer_bytes_left)
n = host->buffer_bytes_left;
/* Round up to handle odd number of bytes to transfer */
nwords = DIV_ROUND_UP(n, 2);
host->buffer_bytes_left -= n;
host->total_bytes_left -= n;
host->data->bytes_xfered += n;
if (write) {
__raw_writesw(host->virt_base + OMAP_MMC_REG(host, DATA),
host->buffer, nwords);
} else {
__raw_readsw(host->virt_base + OMAP_MMC_REG(host, DATA),
host->buffer, nwords);
}
host->buffer += nwords;
}
#ifdef CONFIG_MMC_DEBUG
static void mmc_omap_report_irq(struct mmc_omap_host *host, u16 status)
{
static const char *mmc_omap_status_bits[] = {
"EOC", "CD", "CB", "BRS", "EOFB", "DTO", "DCRC", "CTO",
"CCRC", "CRW", "AF", "AE", "OCRB", "CIRQ", "CERR"
};
int i;
char res[64], *buf = res;
buf += sprintf(buf, "MMC IRQ 0x%x:", status);
for (i = 0; i < ARRAY_SIZE(mmc_omap_status_bits); i++)
if (status & (1 << i))
buf += sprintf(buf, " %s", mmc_omap_status_bits[i]);
dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
}
#else
static void mmc_omap_report_irq(struct mmc_omap_host *host, u16 status)
{
}
#endif
static irqreturn_t mmc_omap_irq(int irq, void *dev_id)
{
struct mmc_omap_host * host = (struct mmc_omap_host *)dev_id;
u16 status;
int end_command;
int end_transfer;
int transfer_error, cmd_error;
if (host->cmd == NULL && host->data == NULL) {
status = OMAP_MMC_READ(host, STAT);
dev_info(mmc_dev(host->slots[0]->mmc),
"Spurious IRQ 0x%04x\n", status);
if (status != 0) {
OMAP_MMC_WRITE(host, STAT, status);
OMAP_MMC_WRITE(host, IE, 0);
}
return IRQ_HANDLED;
}
end_command = 0;
end_transfer = 0;
transfer_error = 0;
cmd_error = 0;
while ((status = OMAP_MMC_READ(host, STAT)) != 0) {
int cmd;
OMAP_MMC_WRITE(host, STAT, status);
if (host->cmd != NULL)
cmd = host->cmd->opcode;
else
cmd = -1;
dev_dbg(mmc_dev(host->mmc), "MMC IRQ %04x (CMD %d): ",
status, cmd);
mmc_omap_report_irq(host, status);
if (host->total_bytes_left) {
if ((status & OMAP_MMC_STAT_A_FULL) ||
(status & OMAP_MMC_STAT_END_OF_DATA))
mmc_omap_xfer_data(host, 0);
if (status & OMAP_MMC_STAT_A_EMPTY)
mmc_omap_xfer_data(host, 1);
}
if (status & OMAP_MMC_STAT_END_OF_DATA)
end_transfer = 1;
if (status & OMAP_MMC_STAT_DATA_TOUT) {
dev_dbg(mmc_dev(host->mmc), "data timeout (CMD%d)\n",
cmd);
if (host->data) {
host->data->error = -ETIMEDOUT;
transfer_error = 1;
}
}
if (status & OMAP_MMC_STAT_DATA_CRC) {
if (host->data) {
host->data->error = -EILSEQ;
dev_dbg(mmc_dev(host->mmc),
"data CRC error, bytes left %d\n",
host->total_bytes_left);
transfer_error = 1;
} else {
dev_dbg(mmc_dev(host->mmc), "data CRC error\n");
}
}
if (status & OMAP_MMC_STAT_CMD_TOUT) {
/* Timeouts are routine with some commands */
if (host->cmd) {
struct mmc_omap_slot *slot =
host->current_slot;
if (slot == NULL ||
!mmc_omap_cover_is_open(slot))
dev_err(mmc_dev(host->mmc),
"command timeout (CMD%d)\n",
cmd);
host->cmd->error = -ETIMEDOUT;
end_command = 1;
cmd_error = 1;
}
}
if (status & OMAP_MMC_STAT_CMD_CRC) {
if (host->cmd) {
dev_err(mmc_dev(host->mmc),
"command CRC error (CMD%d, arg 0x%08x)\n",
cmd, host->cmd->arg);
host->cmd->error = -EILSEQ;
end_command = 1;
cmd_error = 1;
} else
dev_err(mmc_dev(host->mmc),
"command CRC error without cmd?\n");
}
if (status & OMAP_MMC_STAT_CARD_ERR) {
dev_dbg(mmc_dev(host->mmc),
"ignoring card status error (CMD%d)\n",
cmd);
end_command = 1;
}
/*
* NOTE: On 1610 the END_OF_CMD may come too early when
* starting a write
*/
if ((status & OMAP_MMC_STAT_END_OF_CMD) &&
(!(status & OMAP_MMC_STAT_A_EMPTY))) {
end_command = 1;
}
}
if (cmd_error && host->data) {
del_timer(&host->cmd_abort_timer);
host->abort = 1;
OMAP_MMC_WRITE(host, IE, 0);
disable_irq_nosync(host->irq);
queue_work(host->mmc_omap_wq, &host->cmd_abort_work);
return IRQ_HANDLED;
}
if (end_command && host->cmd)
mmc_omap_cmd_done(host, host->cmd);
if (host->data != NULL) {
if (transfer_error)
mmc_omap_xfer_done(host, host->data);
else if (end_transfer)
mmc_omap_end_of_data(host, host->data);
}
return IRQ_HANDLED;
}
void omap_mmc_notify_cover_event(struct device *dev, int num, int is_closed)
{
int cover_open;
struct mmc_omap_host *host = dev_get_drvdata(dev);
struct mmc_omap_slot *slot = host->slots[num];
BUG_ON(num >= host->nr_slots);
/* Other subsystems can call in here before we're initialised. */
if (host->nr_slots == 0 || !host->slots[num])
return;
cover_open = mmc_omap_cover_is_open(slot);
if (cover_open != slot->cover_open) {
slot->cover_open = cover_open;
sysfs_notify(&slot->mmc->class_dev.kobj, NULL, "cover_switch");
}
tasklet_hi_schedule(&slot->cover_tasklet);
}
static void mmc_omap_cover_timer(struct timer_list *t)
{
struct mmc_omap_slot *slot = from_timer(slot, t, cover_timer);
tasklet_schedule(&slot->cover_tasklet);
}
static void mmc_omap_cover_handler(struct tasklet_struct *t)
{
struct mmc_omap_slot *slot = from_tasklet(slot, t, cover_tasklet);
int cover_open = mmc_omap_cover_is_open(slot);
mmc_detect_change(slot->mmc, 0);
if (!cover_open)
return;
/*
* If no card is inserted, we postpone polling until
* the cover has been closed.
*/
if (slot->mmc->card == NULL)
return;
mod_timer(&slot->cover_timer,
jiffies + msecs_to_jiffies(OMAP_MMC_COVER_POLL_DELAY));
}
static void mmc_omap_dma_callback(void *priv)
{
struct mmc_omap_host *host = priv;
struct mmc_data *data = host->data;
/* If we got to the end of DMA, assume everything went well */
data->bytes_xfered += data->blocks * data->blksz;
mmc_omap_dma_done(host, data);
}
static inline void set_cmd_timeout(struct mmc_omap_host *host, struct mmc_request *req)
{
u16 reg;
reg = OMAP_MMC_READ(host, SDIO);
reg &= ~(1 << 5);
OMAP_MMC_WRITE(host, SDIO, reg);
/* Set maximum timeout */
OMAP_MMC_WRITE(host, CTO, 0xfd);
}
static inline void set_data_timeout(struct mmc_omap_host *host, struct mmc_request *req)
{
unsigned int timeout, cycle_ns;
u16 reg;
cycle_ns = 1000000000 / host->current_slot->fclk_freq;
timeout = req->data->timeout_ns / cycle_ns;
timeout += req->data->timeout_clks;
/* Check if we need to use timeout multiplier register */
reg = OMAP_MMC_READ(host, SDIO);
if (timeout > 0xffff) {
reg |= (1 << 5);
timeout /= 1024;
} else
reg &= ~(1 << 5);
OMAP_MMC_WRITE(host, SDIO, reg);
OMAP_MMC_WRITE(host, DTO, timeout);
}
static void
mmc_omap_prepare_data(struct mmc_omap_host *host, struct mmc_request *req)
{
struct mmc_data *data = req->data;
int i, use_dma = 1, block_size;
struct scatterlist *sg;
unsigned sg_len;
host->data = data;
if (data == NULL) {
OMAP_MMC_WRITE(host, BLEN, 0);
OMAP_MMC_WRITE(host, NBLK, 0);
OMAP_MMC_WRITE(host, BUF, 0);
host->dma_in_use = 0;
set_cmd_timeout(host, req);
return;
}
block_size = data->blksz;
OMAP_MMC_WRITE(host, NBLK, data->blocks - 1);
OMAP_MMC_WRITE(host, BLEN, block_size - 1);
set_data_timeout(host, req);
/* cope with calling layer confusion; it issues "single
* block" writes using multi-block scatterlists.
*/
sg_len = (data->blocks == 1) ? 1 : data->sg_len;
/* Only do DMA for entire blocks */
for_each_sg(data->sg, sg, sg_len, i) {
if ((sg->length % block_size) != 0) {
use_dma = 0;
break;
}
}
host->sg_idx = 0;
if (use_dma) {
enum dma_data_direction dma_data_dir;
struct dma_async_tx_descriptor *tx;
struct dma_chan *c;
u32 burst, *bp;
u16 buf;
/*
* FIFO is 16x2 bytes on 15xx, and 32x2 bytes on 16xx
* and 24xx. Use 16 or 32 word frames when the
* blocksize is at least that large. Blocksize is
* usually 512 bytes; but not for some SD reads.
*/
burst = mmc_omap15xx() ? 32 : 64;
if (burst > data->blksz)
burst = data->blksz;
burst >>= 1;
if (data->flags & MMC_DATA_WRITE) {
c = host->dma_tx;
bp = &host->dma_tx_burst;
buf = 0x0f80 | (burst - 1) << 0;
dma_data_dir = DMA_TO_DEVICE;
} else {
c = host->dma_rx;
bp = &host->dma_rx_burst;
buf = 0x800f | (burst - 1) << 8;
dma_data_dir = DMA_FROM_DEVICE;
}
if (!c)
goto use_pio;
/* Only reconfigure if we have a different burst size */
if (*bp != burst) {
struct dma_slave_config cfg = {
.src_addr = host->phys_base +
OMAP_MMC_REG(host, DATA),
.dst_addr = host->phys_base +
OMAP_MMC_REG(host, DATA),
.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
.src_maxburst = burst,
.dst_maxburst = burst,
};
if (dmaengine_slave_config(c, &cfg))
goto use_pio;
*bp = burst;
}
host->sg_len = dma_map_sg(c->device->dev, data->sg, sg_len,
dma_data_dir);
if (host->sg_len == 0)
goto use_pio;
tx = dmaengine_prep_slave_sg(c, data->sg, host->sg_len,
data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx)
goto use_pio;
OMAP_MMC_WRITE(host, BUF, buf);
tx->callback = mmc_omap_dma_callback;
tx->callback_param = host;
dmaengine_submit(tx);
host->brs_received = 0;
host->dma_done = 0;
host->dma_in_use = 1;
return;
}
use_pio:
/* Revert to PIO? */
OMAP_MMC_WRITE(host, BUF, 0x1f1f);
host->total_bytes_left = data->blocks * block_size;
host->sg_len = sg_len;
mmc_omap_sg_to_buf(host);
host->dma_in_use = 0;
}
static void mmc_omap_start_request(struct mmc_omap_host *host,
struct mmc_request *req)
{
BUG_ON(host->mrq != NULL);
host->mrq = req;
/* only touch fifo AFTER the controller readies it */
mmc_omap_prepare_data(host, req);
mmc_omap_start_command(host, req->cmd);
if (host->dma_in_use) {
struct dma_chan *c = host->data->flags & MMC_DATA_WRITE ?
host->dma_tx : host->dma_rx;
dma_async_issue_pending(c);
}
}
static void mmc_omap_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
unsigned long flags;
spin_lock_irqsave(&host->slot_lock, flags);
if (host->mmc != NULL) {
BUG_ON(slot->mrq != NULL);
slot->mrq = req;
spin_unlock_irqrestore(&host->slot_lock, flags);
return;
} else
host->mmc = mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
mmc_omap_select_slot(slot, 1);
mmc_omap_start_request(host, req);
}
static void mmc_omap_set_power(struct mmc_omap_slot *slot, int power_on,
int vdd)
{
struct mmc_omap_host *host;
host = slot->host;
if (slot->vsd)
gpiod_set_value(slot->vsd, power_on);
if (slot->vio)
gpiod_set_value(slot->vio, power_on);
if (slot->pdata->set_power != NULL)
slot->pdata->set_power(mmc_dev(slot->mmc), slot->id, power_on,
vdd);
if (mmc_omap2()) {
u16 w;
if (power_on) {
w = OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, w | (1 << 11));
} else {
w = OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, w & ~(1 << 11));
}
}
}
static int mmc_omap_calc_divisor(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
int func_clk_rate = clk_get_rate(host->fclk);
int dsor;
if (ios->clock == 0)
return 0;
dsor = func_clk_rate / ios->clock;
if (dsor < 1)
dsor = 1;
if (func_clk_rate / dsor > ios->clock)
dsor++;
if (dsor > 250)
dsor = 250;
slot->fclk_freq = func_clk_rate / dsor;
if (ios->bus_width == MMC_BUS_WIDTH_4)
dsor |= 1 << 15;
return dsor;
}
static void mmc_omap_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
int i, dsor;
int clk_enabled, init_stream;
mmc_omap_select_slot(slot, 0);
dsor = mmc_omap_calc_divisor(mmc, ios);
if (ios->vdd != slot->vdd)
slot->vdd = ios->vdd;
clk_enabled = 0;
init_stream = 0;
switch (ios->power_mode) {
case MMC_POWER_OFF:
mmc_omap_set_power(slot, 0, ios->vdd);
break;
case MMC_POWER_UP:
/* Cannot touch dsor yet, just power up MMC */
mmc_omap_set_power(slot, 1, ios->vdd);
slot->power_mode = ios->power_mode;
goto exit;
case MMC_POWER_ON:
mmc_omap_fclk_enable(host, 1);
clk_enabled = 1;
dsor |= 1 << 11;
if (slot->power_mode != MMC_POWER_ON)
init_stream = 1;
break;
}
slot->power_mode = ios->power_mode;
if (slot->bus_mode != ios->bus_mode) {
if (slot->pdata->set_bus_mode != NULL)
slot->pdata->set_bus_mode(mmc_dev(mmc), slot->id,
ios->bus_mode);
slot->bus_mode = ios->bus_mode;
}
/* On insanely high arm_per frequencies something sometimes
* goes somehow out of sync, and the POW bit is not being set,
* which results in the while loop below getting stuck.
* Writing to the CON register twice seems to do the trick. */
for (i = 0; i < 2; i++)
OMAP_MMC_WRITE(host, CON, dsor);
slot->saved_con = dsor;
if (init_stream) {
/* worst case at 400kHz, 80 cycles makes 200 microsecs */
int usecs = 250;
/* Send clock cycles, poll completion */
OMAP_MMC_WRITE(host, IE, 0);
OMAP_MMC_WRITE(host, STAT, 0xffff);
OMAP_MMC_WRITE(host, CMD, 1 << 7);
while (usecs > 0 && (OMAP_MMC_READ(host, STAT) & 1) == 0) {
udelay(1);
usecs--;
}
OMAP_MMC_WRITE(host, STAT, 1);
}
exit:
mmc_omap_release_slot(slot, clk_enabled);
}
static const struct mmc_host_ops mmc_omap_ops = {
.request = mmc_omap_request,
.set_ios = mmc_omap_set_ios,
};
static int mmc_omap_new_slot(struct mmc_omap_host *host, int id)
{
struct mmc_omap_slot *slot = NULL;
struct mmc_host *mmc;
int r;
mmc = mmc_alloc_host(sizeof(struct mmc_omap_slot), host->dev);
if (mmc == NULL)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->host = host;
slot->mmc = mmc;
slot->id = id;
slot->power_mode = MMC_POWER_UNDEFINED;
slot->pdata = &host->pdata->slots[id];
/* Check for some optional GPIO controls */
slot->vsd = gpiod_get_index_optional(host->dev, "vsd",
id, GPIOD_OUT_LOW);
if (IS_ERR(slot->vsd))
return dev_err_probe(host->dev, PTR_ERR(slot->vsd),
"error looking up VSD GPIO\n");
slot->vio = gpiod_get_index_optional(host->dev, "vio",
id, GPIOD_OUT_LOW);
if (IS_ERR(slot->vio))
return dev_err_probe(host->dev, PTR_ERR(slot->vio),
"error looking up VIO GPIO\n");
slot->cover = gpiod_get_index_optional(host->dev, "cover",
id, GPIOD_IN);
if (IS_ERR(slot->cover))
return dev_err_probe(host->dev, PTR_ERR(slot->cover),
"error looking up cover switch GPIO\n");
host->slots[id] = slot;
mmc->caps = 0;
if (host->pdata->slots[id].wires >= 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
mmc->ops = &mmc_omap_ops;
mmc->f_min = 400000;
if (mmc_omap2())
mmc->f_max = 48000000;
else
mmc->f_max = 24000000;
if (host->pdata->max_freq)
mmc->f_max = min(host->pdata->max_freq, mmc->f_max);
mmc->ocr_avail = slot->pdata->ocr_mask;
/* Use scatterlist DMA to reduce per-transfer costs.
* NOTE max_seg_size assumption that small blocks aren't
* normally used (except e.g. for reading SD registers).
*/
mmc->max_segs = 32;
mmc->max_blk_size = 2048; /* BLEN is 11 bits (+1) */
mmc->max_blk_count = 2048; /* NBLK is 11 bits (+1) */
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
if (slot->pdata->get_cover_state != NULL) {
timer_setup(&slot->cover_timer, mmc_omap_cover_timer, 0);
tasklet_setup(&slot->cover_tasklet, mmc_omap_cover_handler);
}
r = mmc_add_host(mmc);
if (r < 0)
goto err_remove_host;
if (slot->pdata->name != NULL) {
r = device_create_file(&mmc->class_dev,
&dev_attr_slot_name);
if (r < 0)
goto err_remove_host;
}
if (slot->pdata->get_cover_state != NULL) {
r = device_create_file(&mmc->class_dev,
&dev_attr_cover_switch);
if (r < 0)
goto err_remove_slot_name;
tasklet_schedule(&slot->cover_tasklet);
}
return 0;
err_remove_slot_name:
if (slot->pdata->name != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_slot_name);
err_remove_host:
mmc_remove_host(mmc);
mmc_free_host(mmc);
return r;
}
static void mmc_omap_remove_slot(struct mmc_omap_slot *slot)
{
struct mmc_host *mmc = slot->mmc;
if (slot->pdata->name != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_slot_name);
if (slot->pdata->get_cover_state != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_cover_switch);
tasklet_kill(&slot->cover_tasklet);
del_timer_sync(&slot->cover_timer);
flush_workqueue(slot->host->mmc_omap_wq);
mmc_remove_host(mmc);
mmc_free_host(mmc);
}
static int mmc_omap_probe(struct platform_device *pdev)
{
struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
struct mmc_omap_host *host = NULL;
struct resource *res;
int i, ret = 0;
int irq;
if (pdata == NULL) {
dev_err(&pdev->dev, "platform data missing\n");
return -ENXIO;
}
if (pdata->nr_slots == 0) {
dev_err(&pdev->dev, "no slots\n");
return -EPROBE_DEFER;
}
host = devm_kzalloc(&pdev->dev, sizeof(struct mmc_omap_host),
GFP_KERNEL);
if (host == NULL)
return -ENOMEM;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
host->virt_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(host->virt_base))
return PTR_ERR(host->virt_base);
host->slot_switch = gpiod_get_optional(host->dev, "switch",
GPIOD_OUT_LOW);
if (IS_ERR(host->slot_switch))
return dev_err_probe(host->dev, PTR_ERR(host->slot_switch),
"error looking up slot switch GPIO\n");
INIT_WORK(&host->slot_release_work, mmc_omap_slot_release_work);
INIT_WORK(&host->send_stop_work, mmc_omap_send_stop_work);
INIT_WORK(&host->cmd_abort_work, mmc_omap_abort_command);
timer_setup(&host->cmd_abort_timer, mmc_omap_cmd_timer, 0);
spin_lock_init(&host->clk_lock);
timer_setup(&host->clk_timer, mmc_omap_clk_timer, 0);
spin_lock_init(&host->dma_lock);
spin_lock_init(&host->slot_lock);
init_waitqueue_head(&host->slot_wq);
host->pdata = pdata;
host->features = host->pdata->slots[0].features;
host->dev = &pdev->dev;
platform_set_drvdata(pdev, host);
host->id = pdev->id;
host->irq = irq;
host->phys_base = res->start;
host->iclk = clk_get(&pdev->dev, "ick");
if (IS_ERR(host->iclk))
return PTR_ERR(host->iclk);
clk_prepare_enable(host->iclk);
host->fclk = clk_get(&pdev->dev, "fck");
if (IS_ERR(host->fclk)) {
ret = PTR_ERR(host->fclk);
goto err_free_iclk;
}
ret = clk_prepare(host->fclk);
if (ret)
goto err_put_fclk;
host->dma_tx_burst = -1;
host->dma_rx_burst = -1;
host->dma_tx = dma_request_chan(&pdev->dev, "tx");
if (IS_ERR(host->dma_tx)) {
ret = PTR_ERR(host->dma_tx);
if (ret == -EPROBE_DEFER)
goto err_free_fclk;
host->dma_tx = NULL;
dev_warn(host->dev, "TX DMA channel request failed\n");
}
host->dma_rx = dma_request_chan(&pdev->dev, "rx");
if (IS_ERR(host->dma_rx)) {
ret = PTR_ERR(host->dma_rx);
if (ret == -EPROBE_DEFER) {
if (host->dma_tx)
dma_release_channel(host->dma_tx);
goto err_free_fclk;
}
host->dma_rx = NULL;
dev_warn(host->dev, "RX DMA channel request failed\n");
}
ret = request_irq(host->irq, mmc_omap_irq, 0, DRIVER_NAME, host);
if (ret)
goto err_free_dma;
if (pdata->init != NULL) {
ret = pdata->init(&pdev->dev);
if (ret < 0)
goto err_free_irq;
}
host->nr_slots = pdata->nr_slots;
host->reg_shift = (mmc_omap7xx() ? 1 : 2);
host->mmc_omap_wq = alloc_workqueue("mmc_omap", 0, 0);
if (!host->mmc_omap_wq) {
ret = -ENOMEM;
goto err_plat_cleanup;
}
for (i = 0; i < pdata->nr_slots; i++) {
ret = mmc_omap_new_slot(host, i);
if (ret < 0) {
while (--i >= 0)
mmc_omap_remove_slot(host->slots[i]);
goto err_destroy_wq;
}
}
return 0;
err_destroy_wq:
destroy_workqueue(host->mmc_omap_wq);
err_plat_cleanup:
if (pdata->cleanup)
pdata->cleanup(&pdev->dev);
err_free_irq:
free_irq(host->irq, host);
err_free_dma:
if (host->dma_tx)
dma_release_channel(host->dma_tx);
if (host->dma_rx)
dma_release_channel(host->dma_rx);
err_free_fclk:
clk_unprepare(host->fclk);
err_put_fclk:
clk_put(host->fclk);
err_free_iclk:
clk_disable_unprepare(host->iclk);
clk_put(host->iclk);
return ret;
}
static void mmc_omap_remove(struct platform_device *pdev)
{
struct mmc_omap_host *host = platform_get_drvdata(pdev);
int i;
BUG_ON(host == NULL);
for (i = 0; i < host->nr_slots; i++)
mmc_omap_remove_slot(host->slots[i]);
if (host->pdata->cleanup)
host->pdata->cleanup(&pdev->dev);
mmc_omap_fclk_enable(host, 0);
free_irq(host->irq, host);
clk_unprepare(host->fclk);
clk_put(host->fclk);
clk_disable_unprepare(host->iclk);
clk_put(host->iclk);
if (host->dma_tx)
dma_release_channel(host->dma_tx);
if (host->dma_rx)
dma_release_channel(host->dma_rx);
destroy_workqueue(host->mmc_omap_wq);
}
#if IS_BUILTIN(CONFIG_OF)
static const struct of_device_id mmc_omap_match[] = {
{ .compatible = "ti,omap2420-mmc", },
{ },
};
MODULE_DEVICE_TABLE(of, mmc_omap_match);
#endif
static struct platform_driver mmc_omap_driver = {
.probe = mmc_omap_probe,
.remove_new = mmc_omap_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = of_match_ptr(mmc_omap_match),
},
};
module_platform_driver(mmc_omap_driver);
MODULE_DESCRIPTION("OMAP Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Juha Yrjölä");
| linux-master | drivers/mmc/host/omap.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Synopsys DesignWare Multimedia Card Interface driver
* (Based on NXP driver for lpc 31xx)
*
* Copyright (C) 2009 NXP Semiconductors
* Copyright (C) 2009, 2010 Imagination Technologies Ltd.
*/
#include <linux/blkdev.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/prandom.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/bitops.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/mmc/slot-gpio.h>
#include "dw_mmc.h"
/* Common flag combinations */
#define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
SDMMC_INT_HTO | SDMMC_INT_SBE | \
SDMMC_INT_EBE | SDMMC_INT_HLE)
#define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
#define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
DW_MCI_CMD_ERROR_FLAGS)
#define DW_MCI_SEND_STATUS 1
#define DW_MCI_RECV_STATUS 2
#define DW_MCI_DMA_THRESHOLD 16
#define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
#define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
#define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
SDMMC_IDMAC_INT_TI)
#define DESC_RING_BUF_SZ PAGE_SIZE
struct idmac_desc_64addr {
u32 des0; /* Control Descriptor */
#define IDMAC_OWN_CLR64(x) \
!((x) & cpu_to_le32(IDMAC_DES0_OWN))
u32 des1; /* Reserved */
u32 des2; /*Buffer sizes */
#define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
u32 des3; /* Reserved */
u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
u32 des6; /* Lower 32-bits of Next Descriptor Address */
u32 des7; /* Upper 32-bits of Next Descriptor Address */
};
struct idmac_desc {
__le32 des0; /* Control Descriptor */
#define IDMAC_DES0_DIC BIT(1)
#define IDMAC_DES0_LD BIT(2)
#define IDMAC_DES0_FD BIT(3)
#define IDMAC_DES0_CH BIT(4)
#define IDMAC_DES0_ER BIT(5)
#define IDMAC_DES0_CES BIT(30)
#define IDMAC_DES0_OWN BIT(31)
__le32 des1; /* Buffer sizes */
#define IDMAC_SET_BUFFER1_SIZE(d, s) \
((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
__le32 des2; /* buffer 1 physical address */
__le32 des3; /* buffer 2 physical address */
};
/* Each descriptor can transfer up to 4KB of data in chained mode */
#define DW_MCI_DESC_DATA_LENGTH 0x1000
#if defined(CONFIG_DEBUG_FS)
static int dw_mci_req_show(struct seq_file *s, void *v)
{
struct dw_mci_slot *slot = s->private;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_command *stop;
struct mmc_data *data;
/* Make sure we get a consistent snapshot */
spin_lock_bh(&slot->host->lock);
mrq = slot->mrq;
if (mrq) {
cmd = mrq->cmd;
data = mrq->data;
stop = mrq->stop;
if (cmd)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
cmd->opcode, cmd->arg, cmd->flags,
cmd->resp[0], cmd->resp[1], cmd->resp[2],
cmd->resp[2], cmd->error);
if (data)
seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
data->bytes_xfered, data->blocks,
data->blksz, data->flags, data->error);
if (stop)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
stop->opcode, stop->arg, stop->flags,
stop->resp[0], stop->resp[1], stop->resp[2],
stop->resp[2], stop->error);
}
spin_unlock_bh(&slot->host->lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
static int dw_mci_regs_show(struct seq_file *s, void *v)
{
struct dw_mci *host = s->private;
pm_runtime_get_sync(host->dev);
seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
pm_runtime_put_autosuspend(host->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
{
struct mmc_host *mmc = slot->mmc;
struct dw_mci *host = slot->host;
struct dentry *root;
root = mmc->debugfs_root;
if (!root)
return;
debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
debugfs_create_u32("state", S_IRUSR, root, &host->state);
debugfs_create_xul("pending_events", S_IRUSR, root,
&host->pending_events);
debugfs_create_xul("completed_events", S_IRUSR, root,
&host->completed_events);
#ifdef CONFIG_FAULT_INJECTION
fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
#endif
}
#endif /* defined(CONFIG_DEBUG_FS) */
static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
{
u32 ctrl;
ctrl = mci_readl(host, CTRL);
ctrl |= reset;
mci_writel(host, CTRL, ctrl);
/* wait till resets clear */
if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
!(ctrl & reset),
1, 500 * USEC_PER_MSEC)) {
dev_err(host->dev,
"Timeout resetting block (ctrl reset %#x)\n",
ctrl & reset);
return false;
}
return true;
}
static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
{
u32 status;
/*
* Databook says that before issuing a new data transfer command
* we need to check to see if the card is busy. Data transfer commands
* all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
*
* ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
* expected.
*/
if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
!(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
status,
!(status & SDMMC_STATUS_BUSY),
10, 500 * USEC_PER_MSEC))
dev_err(host->dev, "Busy; trying anyway\n");
}
}
static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
{
struct dw_mci *host = slot->host;
unsigned int cmd_status = 0;
mci_writel(host, CMDARG, arg);
wmb(); /* drain writebuffer */
dw_mci_wait_while_busy(host, cmd);
mci_writel(host, CMD, SDMMC_CMD_START | cmd);
if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
!(cmd_status & SDMMC_CMD_START),
1, 500 * USEC_PER_MSEC))
dev_err(&slot->mmc->class_dev,
"Timeout sending command (cmd %#x arg %#x status %#x)\n",
cmd, arg, cmd_status);
}
static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
u32 cmdr;
cmd->error = -EINPROGRESS;
cmdr = cmd->opcode;
if (cmd->opcode == MMC_STOP_TRANSMISSION ||
cmd->opcode == MMC_GO_IDLE_STATE ||
cmd->opcode == MMC_GO_INACTIVE_STATE ||
(cmd->opcode == SD_IO_RW_DIRECT &&
((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
cmdr |= SDMMC_CMD_STOP;
else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
u32 clk_en_a;
/* Special bit makes CMD11 not die */
cmdr |= SDMMC_CMD_VOLT_SWITCH;
/* Change state to continue to handle CMD11 weirdness */
WARN_ON(slot->host->state != STATE_SENDING_CMD);
slot->host->state = STATE_SENDING_CMD11;
/*
* We need to disable low power mode (automatic clock stop)
* while doing voltage switch so we don't confuse the card,
* since stopping the clock is a specific part of the UHS
* voltage change dance.
*
* Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
* unconditionally turned back on in dw_mci_setup_bus() if it's
* ever called with a non-zero clock. That shouldn't happen
* until the voltage change is all done.
*/
clk_en_a = mci_readl(host, CLKENA);
clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
mci_writel(host, CLKENA, clk_en_a);
mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
SDMMC_CMD_PRV_DAT_WAIT, 0);
}
if (cmd->flags & MMC_RSP_PRESENT) {
/* We expect a response, so set this bit */
cmdr |= SDMMC_CMD_RESP_EXP;
if (cmd->flags & MMC_RSP_136)
cmdr |= SDMMC_CMD_RESP_LONG;
}
if (cmd->flags & MMC_RSP_CRC)
cmdr |= SDMMC_CMD_RESP_CRC;
if (cmd->data) {
cmdr |= SDMMC_CMD_DAT_EXP;
if (cmd->data->flags & MMC_DATA_WRITE)
cmdr |= SDMMC_CMD_DAT_WR;
}
if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
cmdr |= SDMMC_CMD_USE_HOLD_REG;
return cmdr;
}
static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
{
struct mmc_command *stop;
u32 cmdr;
if (!cmd->data)
return 0;
stop = &host->stop_abort;
cmdr = cmd->opcode;
memset(stop, 0, sizeof(struct mmc_command));
if (cmdr == MMC_READ_SINGLE_BLOCK ||
cmdr == MMC_READ_MULTIPLE_BLOCK ||
cmdr == MMC_WRITE_BLOCK ||
cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
mmc_op_tuning(cmdr) ||
cmdr == MMC_GEN_CMD) {
stop->opcode = MMC_STOP_TRANSMISSION;
stop->arg = 0;
stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
} else if (cmdr == SD_IO_RW_EXTENDED) {
stop->opcode = SD_IO_RW_DIRECT;
stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
((cmd->arg >> 28) & 0x7);
stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
} else {
return 0;
}
cmdr = stop->opcode | SDMMC_CMD_STOP |
SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
cmdr |= SDMMC_CMD_USE_HOLD_REG;
return cmdr;
}
static inline void dw_mci_set_cto(struct dw_mci *host)
{
unsigned int cto_clks;
unsigned int cto_div;
unsigned int cto_ms;
unsigned long irqflags;
cto_clks = mci_readl(host, TMOUT) & 0xff;
cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
if (cto_div == 0)
cto_div = 1;
cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
host->bus_hz);
/* add a bit spare time */
cto_ms += 10;
/*
* The durations we're working with are fairly short so we have to be
* extra careful about synchronization here. Specifically in hardware a
* command timeout is _at most_ 5.1 ms, so that means we expect an
* interrupt (either command done or timeout) to come rather quickly
* after the mci_writel. ...but just in case we have a long interrupt
* latency let's add a bit of paranoia.
*
* In general we'll assume that at least an interrupt will be asserted
* in hardware by the time the cto_timer runs. ...and if it hasn't
* been asserted in hardware by that time then we'll assume it'll never
* come.
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
mod_timer(&host->cto_timer,
jiffies + msecs_to_jiffies(cto_ms) + 1);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_start_command(struct dw_mci *host,
struct mmc_command *cmd, u32 cmd_flags)
{
host->cmd = cmd;
dev_vdbg(host->dev,
"start command: ARGR=0x%08x CMDR=0x%08x\n",
cmd->arg, cmd_flags);
mci_writel(host, CMDARG, cmd->arg);
wmb(); /* drain writebuffer */
dw_mci_wait_while_busy(host, cmd_flags);
mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
/* response expected command only */
if (cmd_flags & SDMMC_CMD_RESP_EXP)
dw_mci_set_cto(host);
}
static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
{
struct mmc_command *stop = &host->stop_abort;
dw_mci_start_command(host, stop, host->stop_cmdr);
}
/* DMA interface functions */
static void dw_mci_stop_dma(struct dw_mci *host)
{
if (host->using_dma) {
host->dma_ops->stop(host);
host->dma_ops->cleanup(host);
}
/* Data transfer was stopped by the interrupt handler */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_dma_cleanup(struct dw_mci *host)
{
struct mmc_data *data = host->data;
if (data && data->host_cookie == COOKIE_MAPPED) {
dma_unmap_sg(host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
}
static void dw_mci_idmac_reset(struct dw_mci *host)
{
u32 bmod = mci_readl(host, BMOD);
/* Software reset of DMA */
bmod |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, bmod);
}
static void dw_mci_idmac_stop_dma(struct dw_mci *host)
{
u32 temp;
/* Disable and reset the IDMAC interface */
temp = mci_readl(host, CTRL);
temp &= ~SDMMC_CTRL_USE_IDMAC;
temp |= SDMMC_CTRL_DMA_RESET;
mci_writel(host, CTRL, temp);
/* Stop the IDMAC running */
temp = mci_readl(host, BMOD);
temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
temp |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, temp);
}
static void dw_mci_dmac_complete_dma(void *arg)
{
struct dw_mci *host = arg;
struct mmc_data *data = host->data;
dev_vdbg(host->dev, "DMA complete\n");
if ((host->use_dma == TRANS_MODE_EDMAC) &&
data && (data->flags & MMC_DATA_READ))
/* Invalidate cache after read */
dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
data->sg,
data->sg_len,
DMA_FROM_DEVICE);
host->dma_ops->cleanup(host);
/*
* If the card was removed, data will be NULL. No point in trying to
* send the stop command or waiting for NBUSY in this case.
*/
if (data) {
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
}
static int dw_mci_idmac_init(struct dw_mci *host)
{
int i;
if (host->dma_64bit_address == 1) {
struct idmac_desc_64addr *p;
/* Number of descriptors in the ring buffer */
host->ring_size =
DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
/* Forward link the descriptor list */
for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
i++, p++) {
p->des6 = (host->sg_dma +
(sizeof(struct idmac_desc_64addr) *
(i + 1))) & 0xffffffff;
p->des7 = (u64)(host->sg_dma +
(sizeof(struct idmac_desc_64addr) *
(i + 1))) >> 32;
/* Initialize reserved and buffer size fields to "0" */
p->des0 = 0;
p->des1 = 0;
p->des2 = 0;
p->des3 = 0;
}
/* Set the last descriptor as the end-of-ring descriptor */
p->des6 = host->sg_dma & 0xffffffff;
p->des7 = (u64)host->sg_dma >> 32;
p->des0 = IDMAC_DES0_ER;
} else {
struct idmac_desc *p;
/* Number of descriptors in the ring buffer */
host->ring_size =
DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
/* Forward link the descriptor list */
for (i = 0, p = host->sg_cpu;
i < host->ring_size - 1;
i++, p++) {
p->des3 = cpu_to_le32(host->sg_dma +
(sizeof(struct idmac_desc) * (i + 1)));
p->des0 = 0;
p->des1 = 0;
}
/* Set the last descriptor as the end-of-ring descriptor */
p->des3 = cpu_to_le32(host->sg_dma);
p->des0 = cpu_to_le32(IDMAC_DES0_ER);
}
dw_mci_idmac_reset(host);
if (host->dma_64bit_address == 1) {
/* Mask out interrupts - get Tx & Rx complete only */
mci_writel(host, IDSTS64, IDMAC_INT_CLR);
mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
/* Set the descriptor base address */
mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
} else {
/* Mask out interrupts - get Tx & Rx complete only */
mci_writel(host, IDSTS, IDMAC_INT_CLR);
mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
/* Set the descriptor base address */
mci_writel(host, DBADDR, host->sg_dma);
}
return 0;
}
static inline int dw_mci_prepare_desc64(struct dw_mci *host,
struct mmc_data *data,
unsigned int sg_len)
{
unsigned int desc_len;
struct idmac_desc_64addr *desc_first, *desc_last, *desc;
u32 val;
int i;
desc_first = desc_last = desc = host->sg_cpu;
for (i = 0; i < sg_len; i++) {
unsigned int length = sg_dma_len(&data->sg[i]);
u64 mem_addr = sg_dma_address(&data->sg[i]);
for ( ; length ; desc++) {
desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
length : DW_MCI_DESC_DATA_LENGTH;
length -= desc_len;
/*
* Wait for the former clear OWN bit operation
* of IDMAC to make sure that this descriptor
* isn't still owned by IDMAC as IDMAC's write
* ops and CPU's read ops are asynchronous.
*/
if (readl_poll_timeout_atomic(&desc->des0, val,
!(val & IDMAC_DES0_OWN),
10, 100 * USEC_PER_MSEC))
goto err_own_bit;
/*
* Set the OWN bit and disable interrupts
* for this descriptor
*/
desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
IDMAC_DES0_CH;
/* Buffer length */
IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
/* Physical address to DMA to/from */
desc->des4 = mem_addr & 0xffffffff;
desc->des5 = mem_addr >> 32;
/* Update physical address for the next desc */
mem_addr += desc_len;
/* Save pointer to the last descriptor */
desc_last = desc;
}
}
/* Set first descriptor */
desc_first->des0 |= IDMAC_DES0_FD;
/* Set last descriptor */
desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
desc_last->des0 |= IDMAC_DES0_LD;
return 0;
err_own_bit:
/* restore the descriptor chain as it's polluted */
dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
dw_mci_idmac_init(host);
return -EINVAL;
}
static inline int dw_mci_prepare_desc32(struct dw_mci *host,
struct mmc_data *data,
unsigned int sg_len)
{
unsigned int desc_len;
struct idmac_desc *desc_first, *desc_last, *desc;
u32 val;
int i;
desc_first = desc_last = desc = host->sg_cpu;
for (i = 0; i < sg_len; i++) {
unsigned int length = sg_dma_len(&data->sg[i]);
u32 mem_addr = sg_dma_address(&data->sg[i]);
for ( ; length ; desc++) {
desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
length : DW_MCI_DESC_DATA_LENGTH;
length -= desc_len;
/*
* Wait for the former clear OWN bit operation
* of IDMAC to make sure that this descriptor
* isn't still owned by IDMAC as IDMAC's write
* ops and CPU's read ops are asynchronous.
*/
if (readl_poll_timeout_atomic(&desc->des0, val,
IDMAC_OWN_CLR64(val),
10,
100 * USEC_PER_MSEC))
goto err_own_bit;
/*
* Set the OWN bit and disable interrupts
* for this descriptor
*/
desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
IDMAC_DES0_DIC |
IDMAC_DES0_CH);
/* Buffer length */
IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
/* Physical address to DMA to/from */
desc->des2 = cpu_to_le32(mem_addr);
/* Update physical address for the next desc */
mem_addr += desc_len;
/* Save pointer to the last descriptor */
desc_last = desc;
}
}
/* Set first descriptor */
desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
/* Set last descriptor */
desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
IDMAC_DES0_DIC));
desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
return 0;
err_own_bit:
/* restore the descriptor chain as it's polluted */
dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
dw_mci_idmac_init(host);
return -EINVAL;
}
static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
{
u32 temp;
int ret;
if (host->dma_64bit_address == 1)
ret = dw_mci_prepare_desc64(host, host->data, sg_len);
else
ret = dw_mci_prepare_desc32(host, host->data, sg_len);
if (ret)
goto out;
/* drain writebuffer */
wmb();
/* Make sure to reset DMA in case we did PIO before this */
dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
dw_mci_idmac_reset(host);
/* Select IDMAC interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_USE_IDMAC;
mci_writel(host, CTRL, temp);
/* drain writebuffer */
wmb();
/* Enable the IDMAC */
temp = mci_readl(host, BMOD);
temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
mci_writel(host, BMOD, temp);
/* Start it running */
mci_writel(host, PLDMND, 1);
out:
return ret;
}
static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
.init = dw_mci_idmac_init,
.start = dw_mci_idmac_start_dma,
.stop = dw_mci_idmac_stop_dma,
.complete = dw_mci_dmac_complete_dma,
.cleanup = dw_mci_dma_cleanup,
};
static void dw_mci_edmac_stop_dma(struct dw_mci *host)
{
dmaengine_terminate_async(host->dms->ch);
}
static int dw_mci_edmac_start_dma(struct dw_mci *host,
unsigned int sg_len)
{
struct dma_slave_config cfg;
struct dma_async_tx_descriptor *desc = NULL;
struct scatterlist *sgl = host->data->sg;
static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
u32 sg_elems = host->data->sg_len;
u32 fifoth_val;
u32 fifo_offset = host->fifo_reg - host->regs;
int ret = 0;
/* Set external dma config: burst size, burst width */
memset(&cfg, 0, sizeof(cfg));
cfg.dst_addr = host->phy_regs + fifo_offset;
cfg.src_addr = cfg.dst_addr;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
/* Match burst msize with external dma config */
fifoth_val = mci_readl(host, FIFOTH);
cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
cfg.src_maxburst = cfg.dst_maxburst;
if (host->data->flags & MMC_DATA_WRITE)
cfg.direction = DMA_MEM_TO_DEV;
else
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(host->dms->ch, &cfg);
if (ret) {
dev_err(host->dev, "Failed to config edmac.\n");
return -EBUSY;
}
desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
sg_len, cfg.direction,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(host->dev, "Can't prepare slave sg.\n");
return -EBUSY;
}
/* Set dw_mci_dmac_complete_dma as callback */
desc->callback = dw_mci_dmac_complete_dma;
desc->callback_param = (void *)host;
dmaengine_submit(desc);
/* Flush cache before write */
if (host->data->flags & MMC_DATA_WRITE)
dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
sg_elems, DMA_TO_DEVICE);
dma_async_issue_pending(host->dms->ch);
return 0;
}
static int dw_mci_edmac_init(struct dw_mci *host)
{
/* Request external dma channel */
host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
if (!host->dms)
return -ENOMEM;
host->dms->ch = dma_request_chan(host->dev, "rx-tx");
if (IS_ERR(host->dms->ch)) {
int ret = PTR_ERR(host->dms->ch);
dev_err(host->dev, "Failed to get external DMA channel.\n");
kfree(host->dms);
host->dms = NULL;
return ret;
}
return 0;
}
static void dw_mci_edmac_exit(struct dw_mci *host)
{
if (host->dms) {
if (host->dms->ch) {
dma_release_channel(host->dms->ch);
host->dms->ch = NULL;
}
kfree(host->dms);
host->dms = NULL;
}
}
static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
.init = dw_mci_edmac_init,
.exit = dw_mci_edmac_exit,
.start = dw_mci_edmac_start_dma,
.stop = dw_mci_edmac_stop_dma,
.complete = dw_mci_dmac_complete_dma,
.cleanup = dw_mci_dma_cleanup,
};
static int dw_mci_pre_dma_transfer(struct dw_mci *host,
struct mmc_data *data,
int cookie)
{
struct scatterlist *sg;
unsigned int i, sg_len;
if (data->host_cookie == COOKIE_PRE_MAPPED)
return data->sg_len;
/*
* We don't do DMA on "complex" transfers, i.e. with
* non-word-aligned buffers or lengths. Also, we don't bother
* with all the DMA setup overhead for short transfers.
*/
if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
return -EINVAL;
if (data->blksz & 3)
return -EINVAL;
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3)
return -EINVAL;
}
sg_len = dma_map_sg(host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
if (sg_len == 0)
return -EINVAL;
data->host_cookie = cookie;
return sg_len;
}
static void dw_mci_pre_req(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!slot->host->use_dma || !data)
return;
/* This data might be unmapped at this time */
data->host_cookie = COOKIE_UNMAPPED;
if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
COOKIE_PRE_MAPPED) < 0)
data->host_cookie = COOKIE_UNMAPPED;
}
static void dw_mci_post_req(struct mmc_host *mmc,
struct mmc_request *mrq,
int err)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!slot->host->use_dma || !data)
return;
if (data->host_cookie != COOKIE_UNMAPPED)
dma_unmap_sg(slot->host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
static int dw_mci_get_cd(struct mmc_host *mmc)
{
int present;
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
int gpio_cd = mmc_gpio_get_cd(mmc);
/* Use platform get_cd function, else try onboard card detect */
if (((mmc->caps & MMC_CAP_NEEDS_POLL)
|| !mmc_card_is_removable(mmc))) {
present = 1;
if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
if (mmc->caps & MMC_CAP_NEEDS_POLL) {
dev_info(&mmc->class_dev,
"card is polling.\n");
} else {
dev_info(&mmc->class_dev,
"card is non-removable.\n");
}
set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
}
return present;
} else if (gpio_cd >= 0)
present = gpio_cd;
else
present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
== 0 ? 1 : 0;
spin_lock_bh(&host->lock);
if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
dev_dbg(&mmc->class_dev, "card is present\n");
else if (!present &&
!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
dev_dbg(&mmc->class_dev, "card is not present\n");
spin_unlock_bh(&host->lock);
return present;
}
static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
{
unsigned int blksz = data->blksz;
static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
u32 fifo_width = 1 << host->data_shift;
u32 blksz_depth = blksz / fifo_width, fifoth_val;
u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
int idx = ARRAY_SIZE(mszs) - 1;
/* pio should ship this scenario */
if (!host->use_dma)
return;
tx_wmark = (host->fifo_depth) / 2;
tx_wmark_invers = host->fifo_depth - tx_wmark;
/*
* MSIZE is '1',
* if blksz is not a multiple of the FIFO width
*/
if (blksz % fifo_width)
goto done;
do {
if (!((blksz_depth % mszs[idx]) ||
(tx_wmark_invers % mszs[idx]))) {
msize = idx;
rx_wmark = mszs[idx] - 1;
break;
}
} while (--idx > 0);
/*
* If idx is '0', it won't be tried
* Thus, initial values are uesed
*/
done:
fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
mci_writel(host, FIFOTH, fifoth_val);
}
static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
{
unsigned int blksz = data->blksz;
u32 blksz_depth, fifo_depth;
u16 thld_size;
u8 enable;
/*
* CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
* in the FIFO region, so we really shouldn't access it).
*/
if (host->verid < DW_MMC_240A ||
(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
return;
/*
* Card write Threshold is introduced since 2.80a
* It's used when HS400 mode is enabled.
*/
if (data->flags & MMC_DATA_WRITE &&
host->timing != MMC_TIMING_MMC_HS400)
goto disable;
if (data->flags & MMC_DATA_WRITE)
enable = SDMMC_CARD_WR_THR_EN;
else
enable = SDMMC_CARD_RD_THR_EN;
if (host->timing != MMC_TIMING_MMC_HS200 &&
host->timing != MMC_TIMING_UHS_SDR104 &&
host->timing != MMC_TIMING_MMC_HS400)
goto disable;
blksz_depth = blksz / (1 << host->data_shift);
fifo_depth = host->fifo_depth;
if (blksz_depth > fifo_depth)
goto disable;
/*
* If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
* If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
* Currently just choose blksz.
*/
thld_size = blksz;
mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
return;
disable:
mci_writel(host, CDTHRCTL, 0);
}
static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
{
unsigned long irqflags;
int sg_len;
u32 temp;
host->using_dma = 0;
/* If we don't have a channel, we can't do DMA */
if (!host->use_dma)
return -ENODEV;
sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_len < 0) {
host->dma_ops->stop(host);
return sg_len;
}
host->using_dma = 1;
if (host->use_dma == TRANS_MODE_IDMAC)
dev_vdbg(host->dev,
"sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
(unsigned long)host->sg_cpu,
(unsigned long)host->sg_dma,
sg_len);
/*
* Decide the MSIZE and RX/TX Watermark.
* If current block size is same with previous size,
* no need to update fifoth.
*/
if (host->prev_blksz != data->blksz)
dw_mci_adjust_fifoth(host, data);
/* Enable the DMA interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_DMA_ENABLE;
mci_writel(host, CTRL, temp);
/* Disable RX/TX IRQs, let DMA handle it */
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
if (host->dma_ops->start(host, sg_len)) {
host->dma_ops->stop(host);
/* We can't do DMA, try PIO for this one */
dev_dbg(host->dev,
"%s: fall back to PIO mode for current transfer\n",
__func__);
return -ENODEV;
}
return 0;
}
static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
{
unsigned long irqflags;
int flags = SG_MITER_ATOMIC;
u32 temp;
data->error = -EINPROGRESS;
WARN_ON(host->data);
host->sg = NULL;
host->data = data;
if (data->flags & MMC_DATA_READ)
host->dir_status = DW_MCI_RECV_STATUS;
else
host->dir_status = DW_MCI_SEND_STATUS;
dw_mci_ctrl_thld(host, data);
if (dw_mci_submit_data_dma(host, data)) {
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->sg = data->sg;
host->part_buf_start = 0;
host->part_buf_count = 0;
mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
temp = mci_readl(host, CTRL);
temp &= ~SDMMC_CTRL_DMA_ENABLE;
mci_writel(host, CTRL, temp);
/*
* Use the initial fifoth_val for PIO mode. If wm_algined
* is set, we set watermark same as data size.
* If next issued data may be transfered by DMA mode,
* prev_blksz should be invalidated.
*/
if (host->wm_aligned)
dw_mci_adjust_fifoth(host, data);
else
mci_writel(host, FIFOTH, host->fifoth_val);
host->prev_blksz = 0;
} else {
/*
* Keep the current block size.
* It will be used to decide whether to update
* fifoth register next time.
*/
host->prev_blksz = data->blksz;
}
}
static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
{
struct dw_mci *host = slot->host;
unsigned int clock = slot->clock;
u32 div;
u32 clk_en_a;
u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
/* We must continue to set bit 28 in CMD until the change is complete */
if (host->state == STATE_WAITING_CMD11_DONE)
sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
slot->mmc->actual_clock = 0;
if (!clock) {
mci_writel(host, CLKENA, 0);
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
} else if (clock != host->current_speed || force_clkinit) {
div = host->bus_hz / clock;
if (host->bus_hz % clock && host->bus_hz > clock)
/*
* move the + 1 after the divide to prevent
* over-clocking the card.
*/
div += 1;
div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
if ((clock != slot->__clk_old &&
!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
force_clkinit) {
/* Silent the verbose log if calling from PM context */
if (!force_clkinit)
dev_info(&slot->mmc->class_dev,
"Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
slot->id, host->bus_hz, clock,
div ? ((host->bus_hz / div) >> 1) :
host->bus_hz, div);
/*
* If card is polling, display the message only
* one time at boot time.
*/
if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
slot->mmc->f_min == clock)
set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
}
/* disable clock */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* set clock to desired speed */
mci_writel(host, CLKDIV, div);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* enable clock; only low power if no SDIO */
clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
mci_writel(host, CLKENA, clk_en_a);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* keep the last clock value that was requested from core */
slot->__clk_old = clock;
slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
host->bus_hz;
}
host->current_speed = clock;
/* Set the current slot bus width */
mci_writel(host, CTYPE, (slot->ctype << slot->id));
}
static void dw_mci_set_data_timeout(struct dw_mci *host,
unsigned int timeout_ns)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
u32 clk_div, tmout;
u64 tmp;
if (drv_data && drv_data->set_data_timeout)
return drv_data->set_data_timeout(host, timeout_ns);
clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
if (clk_div == 0)
clk_div = 1;
tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
/* TMOUT[7:0] (RESPONSE_TIMEOUT) */
tmout = 0xFF; /* Set maximum */
/* TMOUT[31:8] (DATA_TIMEOUT) */
if (!tmp || tmp > 0xFFFFFF)
tmout |= (0xFFFFFF << 8);
else
tmout |= (tmp & 0xFFFFFF) << 8;
mci_writel(host, TMOUT, tmout);
dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
timeout_ns, tmout >> 8);
}
static void __dw_mci_start_request(struct dw_mci *host,
struct dw_mci_slot *slot,
struct mmc_command *cmd)
{
struct mmc_request *mrq;
struct mmc_data *data;
u32 cmdflags;
mrq = slot->mrq;
host->mrq = mrq;
host->pending_events = 0;
host->completed_events = 0;
host->cmd_status = 0;
host->data_status = 0;
host->dir_status = 0;
data = cmd->data;
if (data) {
dw_mci_set_data_timeout(host, data->timeout_ns);
mci_writel(host, BYTCNT, data->blksz*data->blocks);
mci_writel(host, BLKSIZ, data->blksz);
}
cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
/* this is the first command, send the initialization clock */
if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
cmdflags |= SDMMC_CMD_INIT;
if (data) {
dw_mci_submit_data(host, data);
wmb(); /* drain writebuffer */
}
dw_mci_start_command(host, cmd, cmdflags);
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
unsigned long irqflags;
/*
* Databook says to fail after 2ms w/ no response, but evidence
* shows that sometimes the cmd11 interrupt takes over 130ms.
* We'll set to 500ms, plus an extra jiffy just in case jiffies
* is just about to roll over.
*
* We do this whole thing under spinlock and only if the
* command hasn't already completed (indicating the irq
* already ran so we don't want the timeout).
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
mod_timer(&host->cmd11_timer,
jiffies + msecs_to_jiffies(500) + 1);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
}
static void dw_mci_start_request(struct dw_mci *host,
struct dw_mci_slot *slot)
{
struct mmc_request *mrq = slot->mrq;
struct mmc_command *cmd;
cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
__dw_mci_start_request(host, slot, cmd);
}
/* must be called with host->lock held */
static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
struct mmc_request *mrq)
{
dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
host->state);
slot->mrq = mrq;
if (host->state == STATE_WAITING_CMD11_DONE) {
dev_warn(&slot->mmc->class_dev,
"Voltage change didn't complete\n");
/*
* this case isn't expected to happen, so we can
* either crash here or just try to continue on
* in the closest possible state
*/
host->state = STATE_IDLE;
}
if (host->state == STATE_IDLE) {
host->state = STATE_SENDING_CMD;
dw_mci_start_request(host, slot);
} else {
list_add_tail(&slot->queue_node, &host->queue);
}
}
static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
WARN_ON(slot->mrq);
/*
* The check for card presence and queueing of the request must be
* atomic, otherwise the card could be removed in between and the
* request wouldn't fail until another card was inserted.
*/
if (!dw_mci_get_cd(mmc)) {
mrq->cmd->error = -ENOMEDIUM;
mmc_request_done(mmc, mrq);
return;
}
spin_lock_bh(&host->lock);
dw_mci_queue_request(host, slot, mrq);
spin_unlock_bh(&host->lock);
}
static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
u32 regs;
int ret;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_4:
slot->ctype = SDMMC_CTYPE_4BIT;
break;
case MMC_BUS_WIDTH_8:
slot->ctype = SDMMC_CTYPE_8BIT;
break;
default:
/* set default 1 bit mode */
slot->ctype = SDMMC_CTYPE_1BIT;
}
regs = mci_readl(slot->host, UHS_REG);
/* DDR mode set */
if (ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_MMC_HS400)
regs |= ((0x1 << slot->id) << 16);
else
regs &= ~((0x1 << slot->id) << 16);
mci_writel(slot->host, UHS_REG, regs);
slot->host->timing = ios->timing;
/*
* Use mirror of ios->clock to prevent race with mmc
* core ios update when finding the minimum.
*/
slot->clock = ios->clock;
if (drv_data && drv_data->set_ios)
drv_data->set_ios(slot->host, ios);
switch (ios->power_mode) {
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc)) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
ios->vdd);
if (ret) {
dev_err(slot->host->dev,
"failed to enable vmmc regulator\n");
/*return, if failed turn on vmmc*/
return;
}
}
set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
regs = mci_readl(slot->host, PWREN);
regs |= (1 << slot->id);
mci_writel(slot->host, PWREN, regs);
break;
case MMC_POWER_ON:
if (!slot->host->vqmmc_enabled) {
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret < 0)
dev_err(slot->host->dev,
"failed to enable vqmmc\n");
else
slot->host->vqmmc_enabled = true;
} else {
/* Keep track so we don't reset again */
slot->host->vqmmc_enabled = true;
}
/* Reset our state machine after powering on */
dw_mci_ctrl_reset(slot->host,
SDMMC_CTRL_ALL_RESET_FLAGS);
}
/* Adjust clock / bus width after power is up */
dw_mci_setup_bus(slot, false);
break;
case MMC_POWER_OFF:
/* Turn clock off before power goes down */
dw_mci_setup_bus(slot, false);
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
regulator_disable(mmc->supply.vqmmc);
slot->host->vqmmc_enabled = false;
regs = mci_readl(slot->host, PWREN);
regs &= ~(1 << slot->id);
mci_writel(slot->host, PWREN, regs);
break;
default:
break;
}
if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
slot->host->state = STATE_IDLE;
}
static int dw_mci_card_busy(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
u32 status;
/*
* Check the busy bit which is low when DAT[3:0]
* (the data lines) are 0000
*/
status = mci_readl(slot->host, STATUS);
return !!(status & SDMMC_STATUS_BUSY);
}
static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
u32 uhs;
u32 v18 = SDMMC_UHS_18V << slot->id;
int ret;
if (drv_data && drv_data->switch_voltage)
return drv_data->switch_voltage(mmc, ios);
/*
* Program the voltage. Note that some instances of dw_mmc may use
* the UHS_REG for this. For other instances (like exynos) the UHS_REG
* does no harm but you need to set the regulator directly. Try both.
*/
uhs = mci_readl(host, UHS_REG);
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
uhs &= ~v18;
else
uhs |= v18;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
dev_dbg(&mmc->class_dev,
"Regulator set error %d - %s V\n",
ret, uhs & v18 ? "1.8" : "3.3");
return ret;
}
}
mci_writel(host, UHS_REG, uhs);
return 0;
}
static int dw_mci_get_ro(struct mmc_host *mmc)
{
int read_only;
struct dw_mci_slot *slot = mmc_priv(mmc);
int gpio_ro = mmc_gpio_get_ro(mmc);
/* Use platform get_ro function, else try on board write protect */
if (gpio_ro >= 0)
read_only = gpio_ro;
else
read_only =
mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
dev_dbg(&mmc->class_dev, "card is %s\n",
read_only ? "read-only" : "read-write");
return read_only;
}
static void dw_mci_hw_reset(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
int reset;
if (host->use_dma == TRANS_MODE_IDMAC)
dw_mci_idmac_reset(host);
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
SDMMC_CTRL_FIFO_RESET))
return;
/*
* According to eMMC spec, card reset procedure:
* tRstW >= 1us: RST_n pulse width
* tRSCA >= 200us: RST_n to Command time
* tRSTH >= 1us: RST_n high period
*/
reset = mci_readl(host, RST_N);
reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
mci_writel(host, RST_N, reset);
usleep_range(1, 2);
reset |= SDMMC_RST_HWACTIVE << slot->id;
mci_writel(host, RST_N, reset);
usleep_range(200, 300);
}
static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
{
struct dw_mci *host = slot->host;
const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
u32 clk_en_a_old;
u32 clk_en_a;
/*
* Low power mode will stop the card clock when idle. According to the
* description of the CLKENA register we should disable low power mode
* for SDIO cards if we need SDIO interrupts to work.
*/
clk_en_a_old = mci_readl(host, CLKENA);
if (prepare) {
set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
clk_en_a = clk_en_a_old & ~clken_low_pwr;
} else {
clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
clk_en_a = clk_en_a_old | clken_low_pwr;
}
if (clk_en_a != clk_en_a_old) {
mci_writel(host, CLKENA, clk_en_a);
mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
0);
}
}
static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
{
struct dw_mci *host = slot->host;
unsigned long irqflags;
u32 int_mask;
spin_lock_irqsave(&host->irq_lock, irqflags);
/* Enable/disable Slot Specific SDIO interrupt */
int_mask = mci_readl(host, INTMASK);
if (enb)
int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
else
int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
mci_writel(host, INTMASK, int_mask);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
dw_mci_prepare_sdio_irq(slot, enb);
__dw_mci_enable_sdio_irq(slot, enb);
/* Avoid runtime suspending the device when SDIO IRQ is enabled */
if (enb)
pm_runtime_get_noresume(host->dev);
else
pm_runtime_put_noidle(host->dev);
}
static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
__dw_mci_enable_sdio_irq(slot, 1);
}
static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int err = -EINVAL;
if (drv_data && drv_data->execute_tuning)
err = drv_data->execute_tuning(slot, opcode);
return err;
}
static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
if (drv_data && drv_data->prepare_hs400_tuning)
return drv_data->prepare_hs400_tuning(host, ios);
return 0;
}
static bool dw_mci_reset(struct dw_mci *host)
{
u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
bool ret = false;
u32 status = 0;
/*
* Resetting generates a block interrupt, hence setting
* the scatter-gather pointer to NULL.
*/
if (host->sg) {
sg_miter_stop(&host->sg_miter);
host->sg = NULL;
}
if (host->use_dma)
flags |= SDMMC_CTRL_DMA_RESET;
if (dw_mci_ctrl_reset(host, flags)) {
/*
* In all cases we clear the RAWINTS
* register to clear any interrupts.
*/
mci_writel(host, RINTSTS, 0xFFFFFFFF);
if (!host->use_dma) {
ret = true;
goto ciu_out;
}
/* Wait for dma_req to be cleared */
if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
status,
!(status & SDMMC_STATUS_DMA_REQ),
1, 500 * USEC_PER_MSEC)) {
dev_err(host->dev,
"%s: Timeout waiting for dma_req to be cleared\n",
__func__);
goto ciu_out;
}
/* when using DMA next we reset the fifo again */
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
goto ciu_out;
} else {
/* if the controller reset bit did clear, then set clock regs */
if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
dev_err(host->dev,
"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
__func__);
goto ciu_out;
}
}
if (host->use_dma == TRANS_MODE_IDMAC)
/* It is also required that we reinit idmac */
dw_mci_idmac_init(host);
ret = true;
ciu_out:
/* After a CTRL reset we need to have CIU set clock registers */
mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
return ret;
}
static const struct mmc_host_ops dw_mci_ops = {
.request = dw_mci_request,
.pre_req = dw_mci_pre_req,
.post_req = dw_mci_post_req,
.set_ios = dw_mci_set_ios,
.get_ro = dw_mci_get_ro,
.get_cd = dw_mci_get_cd,
.card_hw_reset = dw_mci_hw_reset,
.enable_sdio_irq = dw_mci_enable_sdio_irq,
.ack_sdio_irq = dw_mci_ack_sdio_irq,
.execute_tuning = dw_mci_execute_tuning,
.card_busy = dw_mci_card_busy,
.start_signal_voltage_switch = dw_mci_switch_voltage,
.prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
};
#ifdef CONFIG_FAULT_INJECTION
static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
{
struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
/*
* Only inject an error if we haven't already got an error or data over
* interrupt.
*/
if (!host->data_status) {
host->data_status = SDMMC_INT_DCRC;
set_bit(EVENT_DATA_ERROR, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
spin_unlock_irqrestore(&host->irq_lock, flags);
return HRTIMER_NORESTART;
}
static void dw_mci_start_fault_timer(struct dw_mci *host)
{
struct mmc_data *data = host->data;
if (!data || data->blocks <= 1)
return;
if (!should_fail(&host->fail_data_crc, 1))
return;
/*
* Try to inject the error at random points during the data transfer.
*/
hrtimer_start(&host->fault_timer,
ms_to_ktime(get_random_u32_below(25)),
HRTIMER_MODE_REL);
}
static void dw_mci_stop_fault_timer(struct dw_mci *host)
{
hrtimer_cancel(&host->fault_timer);
}
static void dw_mci_init_fault(struct dw_mci *host)
{
host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
host->fault_timer.function = dw_mci_fault_timer;
}
#else
static void dw_mci_init_fault(struct dw_mci *host)
{
}
static void dw_mci_start_fault_timer(struct dw_mci *host)
{
}
static void dw_mci_stop_fault_timer(struct dw_mci *host)
{
}
#endif
static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
__releases(&host->lock)
__acquires(&host->lock)
{
struct dw_mci_slot *slot;
struct mmc_host *prev_mmc = host->slot->mmc;
WARN_ON(host->cmd || host->data);
host->slot->mrq = NULL;
host->mrq = NULL;
if (!list_empty(&host->queue)) {
slot = list_entry(host->queue.next,
struct dw_mci_slot, queue_node);
list_del(&slot->queue_node);
dev_vdbg(host->dev, "list not empty: %s is next\n",
mmc_hostname(slot->mmc));
host->state = STATE_SENDING_CMD;
dw_mci_start_request(host, slot);
} else {
dev_vdbg(host->dev, "list empty\n");
if (host->state == STATE_SENDING_CMD11)
host->state = STATE_WAITING_CMD11_DONE;
else
host->state = STATE_IDLE;
}
spin_unlock(&host->lock);
mmc_request_done(prev_mmc, mrq);
spin_lock(&host->lock);
}
static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
{
u32 status = host->cmd_status;
host->cmd_status = 0;
/* Read the response from the card (up to 16 bytes) */
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
cmd->resp[3] = mci_readl(host, RESP0);
cmd->resp[2] = mci_readl(host, RESP1);
cmd->resp[1] = mci_readl(host, RESP2);
cmd->resp[0] = mci_readl(host, RESP3);
} else {
cmd->resp[0] = mci_readl(host, RESP0);
cmd->resp[1] = 0;
cmd->resp[2] = 0;
cmd->resp[3] = 0;
}
}
if (status & SDMMC_INT_RTO)
cmd->error = -ETIMEDOUT;
else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
cmd->error = -EILSEQ;
else if (status & SDMMC_INT_RESP_ERR)
cmd->error = -EIO;
else
cmd->error = 0;
return cmd->error;
}
static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
{
u32 status = host->data_status;
if (status & DW_MCI_DATA_ERROR_FLAGS) {
if (status & SDMMC_INT_DRTO) {
data->error = -ETIMEDOUT;
} else if (status & SDMMC_INT_DCRC) {
data->error = -EILSEQ;
} else if (status & SDMMC_INT_EBE) {
if (host->dir_status ==
DW_MCI_SEND_STATUS) {
/*
* No data CRC status was returned.
* The number of bytes transferred
* will be exaggerated in PIO mode.
*/
data->bytes_xfered = 0;
data->error = -ETIMEDOUT;
} else if (host->dir_status ==
DW_MCI_RECV_STATUS) {
data->error = -EILSEQ;
}
} else {
/* SDMMC_INT_SBE is included */
data->error = -EILSEQ;
}
dev_dbg(host->dev, "data error, status 0x%08x\n", status);
/*
* After an error, there may be data lingering
* in the FIFO
*/
dw_mci_reset(host);
} else {
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
}
return data->error;
}
static void dw_mci_set_drto(struct dw_mci *host)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
unsigned int drto_clks;
unsigned int drto_div;
unsigned int drto_ms;
unsigned long irqflags;
if (drv_data && drv_data->get_drto_clks)
drto_clks = drv_data->get_drto_clks(host);
else
drto_clks = mci_readl(host, TMOUT) >> 8;
drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
if (drto_div == 0)
drto_div = 1;
drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
host->bus_hz);
dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
/* add a bit spare time */
drto_ms += 10;
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
mod_timer(&host->dto_timer,
jiffies + msecs_to_jiffies(drto_ms));
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
{
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
return false;
/*
* Really be certain that the timer has stopped. This is a bit of
* paranoia and could only really happen if we had really bad
* interrupt latency and the interrupt routine and timeout were
* running concurrently so that the del_timer() in the interrupt
* handler couldn't run.
*/
WARN_ON(del_timer_sync(&host->cto_timer));
clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
return true;
}
static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
{
if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
return false;
/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
WARN_ON(del_timer_sync(&host->dto_timer));
clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
return true;
}
static void dw_mci_tasklet_func(struct tasklet_struct *t)
{
struct dw_mci *host = from_tasklet(host, t, tasklet);
struct mmc_data *data;
struct mmc_command *cmd;
struct mmc_request *mrq;
enum dw_mci_state state;
enum dw_mci_state prev_state;
unsigned int err;
spin_lock(&host->lock);
state = host->state;
data = host->data;
mrq = host->mrq;
do {
prev_state = state;
switch (state) {
case STATE_IDLE:
case STATE_WAITING_CMD11_DONE:
break;
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
if (!dw_mci_clear_pending_cmd_complete(host))
break;
cmd = host->cmd;
host->cmd = NULL;
set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
err = dw_mci_command_complete(host, cmd);
if (cmd == mrq->sbc && !err) {
__dw_mci_start_request(host, host->slot,
mrq->cmd);
goto unlock;
}
if (cmd->data && err) {
/*
* During UHS tuning sequence, sending the stop
* command after the response CRC error would
* throw the system into a confused state
* causing all future tuning phases to report
* failure.
*
* In such case controller will move into a data
* transfer state after a response error or
* response CRC error. Let's let that finish
* before trying to send a stop, so we'll go to
* STATE_SENDING_DATA.
*
* Although letting the data transfer take place
* will waste a bit of time (we already know
* the command was bad), it can't cause any
* errors since it's possible it would have
* taken place anyway if this tasklet got
* delayed. Allowing the transfer to take place
* avoids races and keeps things simple.
*/
if (err != -ETIMEDOUT &&
host->dir_status == DW_MCI_RECV_STATUS) {
state = STATE_SENDING_DATA;
continue;
}
send_stop_abort(host, data);
dw_mci_stop_dma(host);
state = STATE_SENDING_STOP;
break;
}
if (!cmd->data || err) {
dw_mci_request_end(host, mrq);
goto unlock;
}
prev_state = state = STATE_SENDING_DATA;
fallthrough;
case STATE_SENDING_DATA:
/*
* We could get a data error and never a transfer
* complete so we'd better check for it here.
*
* Note that we don't really care if we also got a
* transfer complete; stopping the DMA and sending an
* abort won't hurt.
*/
if (test_and_clear_bit(EVENT_DATA_ERROR,
&host->pending_events)) {
if (!(host->data_status & (SDMMC_INT_DRTO |
SDMMC_INT_EBE)))
send_stop_abort(host, data);
dw_mci_stop_dma(host);
state = STATE_DATA_ERROR;
break;
}
if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
&host->pending_events)) {
/*
* If all data-related interrupts don't come
* within the given time in reading data state.
*/
if (host->dir_status == DW_MCI_RECV_STATUS)
dw_mci_set_drto(host);
break;
}
set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
/*
* Handle an EVENT_DATA_ERROR that might have shown up
* before the transfer completed. This might not have
* been caught by the check above because the interrupt
* could have gone off between the previous check and
* the check for transfer complete.
*
* Technically this ought not be needed assuming we
* get a DATA_COMPLETE eventually (we'll notice the
* error and end the request), but it shouldn't hurt.
*
* This has the advantage of sending the stop command.
*/
if (test_and_clear_bit(EVENT_DATA_ERROR,
&host->pending_events)) {
if (!(host->data_status & (SDMMC_INT_DRTO |
SDMMC_INT_EBE)))
send_stop_abort(host, data);
dw_mci_stop_dma(host);
state = STATE_DATA_ERROR;
break;
}
prev_state = state = STATE_DATA_BUSY;
fallthrough;
case STATE_DATA_BUSY:
if (!dw_mci_clear_pending_data_complete(host)) {
/*
* If data error interrupt comes but data over
* interrupt doesn't come within the given time.
* in reading data state.
*/
if (host->dir_status == DW_MCI_RECV_STATUS)
dw_mci_set_drto(host);
break;
}
dw_mci_stop_fault_timer(host);
host->data = NULL;
set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
err = dw_mci_data_complete(host, data);
if (!err) {
if (!data->stop || mrq->sbc) {
if (mrq->sbc && data->stop)
data->stop->error = 0;
dw_mci_request_end(host, mrq);
goto unlock;
}
/* stop command for open-ended transfer*/
if (data->stop)
send_stop_abort(host, data);
} else {
/*
* If we don't have a command complete now we'll
* never get one since we just reset everything;
* better end the request.
*
* If we do have a command complete we'll fall
* through to the SENDING_STOP command and
* everything will be peachy keen.
*/
if (!test_bit(EVENT_CMD_COMPLETE,
&host->pending_events)) {
host->cmd = NULL;
dw_mci_request_end(host, mrq);
goto unlock;
}
}
/*
* If err has non-zero,
* stop-abort command has been already issued.
*/
prev_state = state = STATE_SENDING_STOP;
fallthrough;
case STATE_SENDING_STOP:
if (!dw_mci_clear_pending_cmd_complete(host))
break;
/* CMD error in data command */
if (mrq->cmd->error && mrq->data)
dw_mci_reset(host);
dw_mci_stop_fault_timer(host);
host->cmd = NULL;
host->data = NULL;
if (!mrq->sbc && mrq->stop)
dw_mci_command_complete(host, mrq->stop);
else
host->cmd_status = 0;
dw_mci_request_end(host, mrq);
goto unlock;
case STATE_DATA_ERROR:
if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
&host->pending_events))
break;
state = STATE_DATA_BUSY;
break;
}
} while (state != prev_state);
host->state = state;
unlock:
spin_unlock(&host->lock);
}
/* push final bytes to part_buf, only use during push */
static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
memcpy((void *)&host->part_buf, buf, cnt);
host->part_buf_count = cnt;
}
/* append bytes to part_buf, only use during push */
static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
host->part_buf_count += cnt;
return cnt;
}
/* pull first bytes from part_buf, only use during pull */
static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
cnt = min_t(int, cnt, host->part_buf_count);
if (cnt) {
memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
cnt);
host->part_buf_count -= cnt;
host->part_buf_start += cnt;
}
return cnt;
}
/* pull final bytes from the part_buf, assuming it's just been filled */
static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
{
memcpy(buf, &host->part_buf, cnt);
host->part_buf_start = cnt;
host->part_buf_count = (1 << host->data_shift) - cnt;
}
static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 2) {
mci_fifo_writew(host->fifo_reg, host->part_buf16);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x1)) {
while (cnt >= 2) {
u16 aligned_buf[64];
int len = min(cnt & -2, (int)sizeof(aligned_buf));
int items = len >> 1;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u16 *pdata = buf;
for (; cnt >= 2; cnt -= 2)
mci_fifo_writew(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writew(host->fifo_reg, host->part_buf16);
}
}
static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x1)) {
while (cnt >= 2) {
/* pull data from fifo into aligned buffer */
u16 aligned_buf[64];
int len = min(cnt & -2, (int)sizeof(aligned_buf));
int items = len >> 1;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u16 *pdata = buf;
for (; cnt >= 2; cnt -= 2)
*pdata++ = mci_fifo_readw(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf16 = mci_fifo_readw(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 4) {
mci_fifo_writel(host->fifo_reg, host->part_buf32);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x3)) {
while (cnt >= 4) {
u32 aligned_buf[32];
int len = min(cnt & -4, (int)sizeof(aligned_buf));
int items = len >> 2;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u32 *pdata = buf;
for (; cnt >= 4; cnt -= 4)
mci_fifo_writel(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writel(host->fifo_reg, host->part_buf32);
}
}
static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x3)) {
while (cnt >= 4) {
/* pull data from fifo into aligned buffer */
u32 aligned_buf[32];
int len = min(cnt & -4, (int)sizeof(aligned_buf));
int items = len >> 2;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u32 *pdata = buf;
for (; cnt >= 4; cnt -= 4)
*pdata++ = mci_fifo_readl(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf32 = mci_fifo_readl(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 8) {
mci_fifo_writeq(host->fifo_reg, host->part_buf);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x7)) {
while (cnt >= 8) {
u64 aligned_buf[16];
int len = min(cnt & -8, (int)sizeof(aligned_buf));
int items = len >> 3;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u64 *pdata = buf;
for (; cnt >= 8; cnt -= 8)
mci_fifo_writeq(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writeq(host->fifo_reg, host->part_buf);
}
}
static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x7)) {
while (cnt >= 8) {
/* pull data from fifo into aligned buffer */
u64 aligned_buf[16];
int len = min(cnt & -8, (int)sizeof(aligned_buf));
int items = len >> 3;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u64 *pdata = buf;
for (; cnt >= 8; cnt -= 8)
*pdata++ = mci_fifo_readq(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf = mci_fifo_readq(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
{
int len;
/* get remaining partial bytes */
len = dw_mci_pull_part_bytes(host, buf, cnt);
if (unlikely(len == cnt))
return;
buf += len;
cnt -= len;
/* get the rest of the data */
host->pull_data(host, buf, cnt);
}
static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
{
struct sg_mapping_iter *sg_miter = &host->sg_miter;
void *buf;
unsigned int offset;
struct mmc_data *data = host->data;
int shift = host->data_shift;
u32 status;
unsigned int len;
unsigned int remain, fcnt;
do {
if (!sg_miter_next(sg_miter))
goto done;
host->sg = sg_miter->piter.sg;
buf = sg_miter->addr;
remain = sg_miter->length;
offset = 0;
do {
fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
<< shift) + host->part_buf_count;
len = min(remain, fcnt);
if (!len)
break;
dw_mci_pull_data(host, (void *)(buf + offset), len);
data->bytes_xfered += len;
offset += len;
remain -= len;
} while (remain);
sg_miter->consumed = offset;
status = mci_readl(host, MINTSTS);
mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
/* if the RXDR is ready read again */
} while ((status & SDMMC_INT_RXDR) ||
(dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
if (!remain) {
if (!sg_miter_next(sg_miter))
goto done;
sg_miter->consumed = 0;
}
sg_miter_stop(sg_miter);
return;
done:
sg_miter_stop(sg_miter);
host->sg = NULL;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_write_data_pio(struct dw_mci *host)
{
struct sg_mapping_iter *sg_miter = &host->sg_miter;
void *buf;
unsigned int offset;
struct mmc_data *data = host->data;
int shift = host->data_shift;
u32 status;
unsigned int len;
unsigned int fifo_depth = host->fifo_depth;
unsigned int remain, fcnt;
do {
if (!sg_miter_next(sg_miter))
goto done;
host->sg = sg_miter->piter.sg;
buf = sg_miter->addr;
remain = sg_miter->length;
offset = 0;
do {
fcnt = ((fifo_depth -
SDMMC_GET_FCNT(mci_readl(host, STATUS)))
<< shift) - host->part_buf_count;
len = min(remain, fcnt);
if (!len)
break;
host->push_data(host, (void *)(buf + offset), len);
data->bytes_xfered += len;
offset += len;
remain -= len;
} while (remain);
sg_miter->consumed = offset;
status = mci_readl(host, MINTSTS);
mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
if (!remain) {
if (!sg_miter_next(sg_miter))
goto done;
sg_miter->consumed = 0;
}
sg_miter_stop(sg_miter);
return;
done:
sg_miter_stop(sg_miter);
host->sg = NULL;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
{
del_timer(&host->cto_timer);
if (!host->cmd_status)
host->cmd_status = status;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
dw_mci_start_fault_timer(host);
}
static void dw_mci_handle_cd(struct dw_mci *host)
{
struct dw_mci_slot *slot = host->slot;
mmc_detect_change(slot->mmc,
msecs_to_jiffies(host->pdata->detect_delay_ms));
}
static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
{
struct dw_mci *host = dev_id;
u32 pending;
struct dw_mci_slot *slot = host->slot;
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending) {
/* Check volt switch first, since it can look like an error */
if ((host->state == STATE_SENDING_CMD11) &&
(pending & SDMMC_INT_VOLT_SWITCH)) {
mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
pending &= ~SDMMC_INT_VOLT_SWITCH;
/*
* Hold the lock; we know cmd11_timer can't be kicked
* off after the lock is released, so safe to delete.
*/
spin_lock(&host->irq_lock);
dw_mci_cmd_interrupt(host, pending);
spin_unlock(&host->irq_lock);
del_timer(&host->cmd11_timer);
}
if (pending & DW_MCI_CMD_ERROR_FLAGS) {
spin_lock(&host->irq_lock);
del_timer(&host->cto_timer);
mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
host->cmd_status = pending;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
spin_unlock(&host->irq_lock);
}
if (pending & DW_MCI_DATA_ERROR_FLAGS) {
spin_lock(&host->irq_lock);
if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
del_timer(&host->dto_timer);
/* if there is an error report DATA_ERROR */
mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
host->data_status = pending;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_DATA_ERROR, &host->pending_events);
if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
/* In case of error, we cannot expect a DTO */
set_bit(EVENT_DATA_COMPLETE,
&host->pending_events);
tasklet_schedule(&host->tasklet);
spin_unlock(&host->irq_lock);
}
if (pending & SDMMC_INT_DATA_OVER) {
spin_lock(&host->irq_lock);
del_timer(&host->dto_timer);
mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
if (!host->data_status)
host->data_status = pending;
smp_wmb(); /* drain writebuffer */
if (host->dir_status == DW_MCI_RECV_STATUS) {
if (host->sg != NULL)
dw_mci_read_data_pio(host, true);
}
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
spin_unlock(&host->irq_lock);
}
if (pending & SDMMC_INT_RXDR) {
mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
dw_mci_read_data_pio(host, false);
}
if (pending & SDMMC_INT_TXDR) {
mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
dw_mci_write_data_pio(host);
}
if (pending & SDMMC_INT_CMD_DONE) {
spin_lock(&host->irq_lock);
mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
dw_mci_cmd_interrupt(host, pending);
spin_unlock(&host->irq_lock);
}
if (pending & SDMMC_INT_CD) {
mci_writel(host, RINTSTS, SDMMC_INT_CD);
dw_mci_handle_cd(host);
}
if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
mci_writel(host, RINTSTS,
SDMMC_INT_SDIO(slot->sdio_id));
__dw_mci_enable_sdio_irq(slot, 0);
sdio_signal_irq(slot->mmc);
}
}
if (host->use_dma != TRANS_MODE_IDMAC)
return IRQ_HANDLED;
/* Handle IDMA interrupts */
if (host->dma_64bit_address == 1) {
pending = mci_readl(host, IDSTS64);
if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
SDMMC_IDMAC_INT_RI);
mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
host->dma_ops->complete((void *)host);
}
} else {
pending = mci_readl(host, IDSTS);
if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
SDMMC_IDMAC_INT_RI);
mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
host->dma_ops->complete((void *)host);
}
}
return IRQ_HANDLED;
}
static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
{
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
struct mmc_host *mmc = slot->mmc;
int ctrl_id;
if (host->pdata->caps)
mmc->caps = host->pdata->caps;
if (host->pdata->pm_caps)
mmc->pm_caps = host->pdata->pm_caps;
if (drv_data)
mmc->caps |= drv_data->common_caps;
if (host->dev->of_node) {
ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
if (ctrl_id < 0)
ctrl_id = 0;
} else {
ctrl_id = to_platform_device(host->dev)->id;
}
if (drv_data && drv_data->caps) {
if (ctrl_id >= drv_data->num_caps) {
dev_err(host->dev, "invalid controller id %d\n",
ctrl_id);
return -EINVAL;
}
mmc->caps |= drv_data->caps[ctrl_id];
}
if (host->pdata->caps2)
mmc->caps2 = host->pdata->caps2;
/* if host has set a minimum_freq, we should respect it */
if (host->minimum_speed)
mmc->f_min = host->minimum_speed;
else
mmc->f_min = DW_MCI_FREQ_MIN;
if (!mmc->f_max)
mmc->f_max = DW_MCI_FREQ_MAX;
/* Process SDIO IRQs through the sdio_irq_work. */
if (mmc->caps & MMC_CAP_SDIO_IRQ)
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
return 0;
}
static int dw_mci_init_slot(struct dw_mci *host)
{
struct mmc_host *mmc;
struct dw_mci_slot *slot;
int ret;
mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
if (!mmc)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->id = 0;
slot->sdio_id = host->sdio_id0 + slot->id;
slot->mmc = mmc;
slot->host = host;
host->slot = slot;
mmc->ops = &dw_mci_ops;
/*if there are external regulators, get them*/
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto err_host_allocated;
if (!mmc->ocr_avail)
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
ret = mmc_of_parse(mmc);
if (ret)
goto err_host_allocated;
ret = dw_mci_init_slot_caps(slot);
if (ret)
goto err_host_allocated;
/* Useful defaults if platform data is unset. */
if (host->use_dma == TRANS_MODE_IDMAC) {
mmc->max_segs = host->ring_size;
mmc->max_blk_size = 65535;
mmc->max_seg_size = 0x1000;
mmc->max_req_size = mmc->max_seg_size * host->ring_size;
mmc->max_blk_count = mmc->max_req_size / 512;
} else if (host->use_dma == TRANS_MODE_EDMAC) {
mmc->max_segs = 64;
mmc->max_blk_size = 65535;
mmc->max_blk_count = 65535;
mmc->max_req_size =
mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
} else {
/* TRANS_MODE_PIO */
mmc->max_segs = 64;
mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
mmc->max_blk_count = 512;
mmc->max_req_size = mmc->max_blk_size *
mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
}
dw_mci_get_cd(mmc);
ret = mmc_add_host(mmc);
if (ret)
goto err_host_allocated;
#if defined(CONFIG_DEBUG_FS)
dw_mci_init_debugfs(slot);
#endif
return 0;
err_host_allocated:
mmc_free_host(mmc);
return ret;
}
static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
{
/* Debugfs stuff is cleaned up by mmc core */
mmc_remove_host(slot->mmc);
slot->host->slot = NULL;
mmc_free_host(slot->mmc);
}
static void dw_mci_init_dma(struct dw_mci *host)
{
int addr_config;
struct device *dev = host->dev;
/*
* Check tansfer mode from HCON[17:16]
* Clear the ambiguous description of dw_mmc databook:
* 2b'00: No DMA Interface -> Actually means using Internal DMA block
* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
* 2b'11: Non DW DMA Interface -> pio only
* Compared to DesignWare DMA Interface, Generic DMA Interface has a
* simpler request/acknowledge handshake mechanism and both of them
* are regarded as external dma master for dw_mmc.
*/
host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
if (host->use_dma == DMA_INTERFACE_IDMA) {
host->use_dma = TRANS_MODE_IDMAC;
} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
host->use_dma == DMA_INTERFACE_GDMA) {
host->use_dma = TRANS_MODE_EDMAC;
} else {
goto no_dma;
}
/* Determine which DMA interface to use */
if (host->use_dma == TRANS_MODE_IDMAC) {
/*
* Check ADDR_CONFIG bit in HCON to find
* IDMAC address bus width
*/
addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
if (addr_config == 1) {
/* host supports IDMAC in 64-bit address mode */
host->dma_64bit_address = 1;
dev_info(host->dev,
"IDMAC supports 64-bit address mode.\n");
if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
dma_set_coherent_mask(host->dev,
DMA_BIT_MASK(64));
} else {
/* host supports IDMAC in 32-bit address mode */
host->dma_64bit_address = 0;
dev_info(host->dev,
"IDMAC supports 32-bit address mode.\n");
}
/* Alloc memory for sg translation */
host->sg_cpu = dmam_alloc_coherent(host->dev,
DESC_RING_BUF_SZ,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(host->dev,
"%s: could not alloc DMA memory\n",
__func__);
goto no_dma;
}
host->dma_ops = &dw_mci_idmac_ops;
dev_info(host->dev, "Using internal DMA controller.\n");
} else {
/* TRANS_MODE_EDMAC: check dma bindings again */
if ((device_property_string_array_count(dev, "dma-names") < 0) ||
!device_property_present(dev, "dmas")) {
goto no_dma;
}
host->dma_ops = &dw_mci_edmac_ops;
dev_info(host->dev, "Using external DMA controller.\n");
}
if (host->dma_ops->init && host->dma_ops->start &&
host->dma_ops->stop && host->dma_ops->cleanup) {
if (host->dma_ops->init(host)) {
dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
__func__);
goto no_dma;
}
} else {
dev_err(host->dev, "DMA initialization not found.\n");
goto no_dma;
}
return;
no_dma:
dev_info(host->dev, "Using PIO mode.\n");
host->use_dma = TRANS_MODE_PIO;
}
static void dw_mci_cmd11_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, cmd11_timer);
if (host->state != STATE_SENDING_CMD11) {
dev_warn(host->dev, "Unexpected CMD11 timeout\n");
return;
}
host->cmd_status = SDMMC_INT_RTO;
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
}
static void dw_mci_cto_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, cto_timer);
unsigned long irqflags;
u32 pending;
spin_lock_irqsave(&host->irq_lock, irqflags);
/*
* If somehow we have very bad interrupt latency it's remotely possible
* that the timer could fire while the interrupt is still pending or
* while the interrupt is midway through running. Let's be paranoid
* and detect those two cases. Note that this is paranoia is somewhat
* justified because in this function we don't actually cancel the
* pending command in the controller--we just assume it will never come.
*/
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
/* The interrupt should fire; no need to act but we can warn */
dev_warn(host->dev, "Unexpected interrupt latency\n");
goto exit;
}
if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
/* Presumably interrupt handler couldn't delete the timer */
dev_warn(host->dev, "CTO timeout when already completed\n");
goto exit;
}
/*
* Continued paranoia to make sure we're in the state we expect.
* This paranoia isn't really justified but it seems good to be safe.
*/
switch (host->state) {
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
case STATE_SENDING_STOP:
/*
* If CMD_DONE interrupt does NOT come in sending command
* state, we should notify the driver to terminate current
* transfer and report a command timeout to the core.
*/
host->cmd_status = SDMMC_INT_RTO;
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
break;
default:
dev_warn(host->dev, "Unexpected command timeout, state %d\n",
host->state);
break;
}
exit:
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_dto_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, dto_timer);
unsigned long irqflags;
u32 pending;
spin_lock_irqsave(&host->irq_lock, irqflags);
/*
* The DTO timer is much longer than the CTO timer, so it's even less
* likely that we'll these cases, but it pays to be paranoid.
*/
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending & SDMMC_INT_DATA_OVER) {
/* The interrupt should fire; no need to act but we can warn */
dev_warn(host->dev, "Unexpected data interrupt latency\n");
goto exit;
}
if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
/* Presumably interrupt handler couldn't delete the timer */
dev_warn(host->dev, "DTO timeout when already completed\n");
goto exit;
}
/*
* Continued paranoia to make sure we're in the state we expect.
* This paranoia isn't really justified but it seems good to be safe.
*/
switch (host->state) {
case STATE_SENDING_DATA:
case STATE_DATA_BUSY:
/*
* If DTO interrupt does NOT come in sending data state,
* we should notify the driver to terminate current transfer
* and report a data timeout to the core.
*/
host->data_status = SDMMC_INT_DRTO;
set_bit(EVENT_DATA_ERROR, &host->pending_events);
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
tasklet_schedule(&host->tasklet);
break;
default:
dev_warn(host->dev, "Unexpected data timeout, state %d\n",
host->state);
break;
}
exit:
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
#ifdef CONFIG_OF
static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
{
struct dw_mci_board *pdata;
struct device *dev = host->dev;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int ret;
u32 clock_frequency;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
/* find reset controller when exist */
pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
if (IS_ERR(pdata->rstc))
return ERR_CAST(pdata->rstc);
if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
dev_info(dev,
"fifo-depth property not found, using value of FIFOTH register as default\n");
device_property_read_u32(dev, "card-detect-delay",
&pdata->detect_delay_ms);
device_property_read_u32(dev, "data-addr", &host->data_addr_override);
if (device_property_present(dev, "fifo-watermark-aligned"))
host->wm_aligned = true;
if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
pdata->bus_hz = clock_frequency;
if (drv_data && drv_data->parse_dt) {
ret = drv_data->parse_dt(host);
if (ret)
return ERR_PTR(ret);
}
return pdata;
}
#else /* CONFIG_OF */
static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
{
return ERR_PTR(-EINVAL);
}
#endif /* CONFIG_OF */
static void dw_mci_enable_cd(struct dw_mci *host)
{
unsigned long irqflags;
u32 temp;
/*
* No need for CD if all slots have a non-error GPIO
* as well as broken card detection is found.
*/
if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
return;
if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp |= SDMMC_INT_CD;
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
}
int dw_mci_probe(struct dw_mci *host)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
int width, i, ret = 0;
u32 fifo_size;
if (!host->pdata) {
host->pdata = dw_mci_parse_dt(host);
if (IS_ERR(host->pdata))
return dev_err_probe(host->dev, PTR_ERR(host->pdata),
"platform data not available\n");
}
host->biu_clk = devm_clk_get(host->dev, "biu");
if (IS_ERR(host->biu_clk)) {
dev_dbg(host->dev, "biu clock not available\n");
} else {
ret = clk_prepare_enable(host->biu_clk);
if (ret) {
dev_err(host->dev, "failed to enable biu clock\n");
return ret;
}
}
host->ciu_clk = devm_clk_get(host->dev, "ciu");
if (IS_ERR(host->ciu_clk)) {
dev_dbg(host->dev, "ciu clock not available\n");
host->bus_hz = host->pdata->bus_hz;
} else {
ret = clk_prepare_enable(host->ciu_clk);
if (ret) {
dev_err(host->dev, "failed to enable ciu clock\n");
goto err_clk_biu;
}
if (host->pdata->bus_hz) {
ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
if (ret)
dev_warn(host->dev,
"Unable to set bus rate to %uHz\n",
host->pdata->bus_hz);
}
host->bus_hz = clk_get_rate(host->ciu_clk);
}
if (!host->bus_hz) {
dev_err(host->dev,
"Platform data must supply bus speed\n");
ret = -ENODEV;
goto err_clk_ciu;
}
if (host->pdata->rstc) {
reset_control_assert(host->pdata->rstc);
usleep_range(10, 50);
reset_control_deassert(host->pdata->rstc);
}
if (drv_data && drv_data->init) {
ret = drv_data->init(host);
if (ret) {
dev_err(host->dev,
"implementation specific init failed\n");
goto err_clk_ciu;
}
}
timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
spin_lock_init(&host->lock);
spin_lock_init(&host->irq_lock);
INIT_LIST_HEAD(&host->queue);
dw_mci_init_fault(host);
/*
* Get the host data width - this assumes that HCON has been set with
* the correct values.
*/
i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
if (!i) {
host->push_data = dw_mci_push_data16;
host->pull_data = dw_mci_pull_data16;
width = 16;
host->data_shift = 1;
} else if (i == 2) {
host->push_data = dw_mci_push_data64;
host->pull_data = dw_mci_pull_data64;
width = 64;
host->data_shift = 3;
} else {
/* Check for a reserved value, and warn if it is */
WARN((i != 1),
"HCON reports a reserved host data width!\n"
"Defaulting to 32-bit access.\n");
host->push_data = dw_mci_push_data32;
host->pull_data = dw_mci_pull_data32;
width = 32;
host->data_shift = 2;
}
/* Reset all blocks */
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
ret = -ENODEV;
goto err_clk_ciu;
}
host->dma_ops = host->pdata->dma_ops;
dw_mci_init_dma(host);
/* Clear the interrupts for the host controller */
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
/* Put in max timeout */
mci_writel(host, TMOUT, 0xFFFFFFFF);
/*
* FIFO threshold settings RxMark = fifo_size / 2 - 1,
* Tx Mark = fifo_size / 2 DMA Size = 8
*/
if (!host->pdata->fifo_depth) {
/*
* Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
* have been overwritten by the bootloader, just like we're
* about to do, so if you know the value for your hardware, you
* should put it in the platform data.
*/
fifo_size = mci_readl(host, FIFOTH);
fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
} else {
fifo_size = host->pdata->fifo_depth;
}
host->fifo_depth = fifo_size;
host->fifoth_val =
SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
mci_writel(host, FIFOTH, host->fifoth_val);
/* disable clock to CIU */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
/*
* In 2.40a spec, Data offset is changed.
* Need to check the version-id and set data-offset for DATA register.
*/
host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
dev_info(host->dev, "Version ID is %04x\n", host->verid);
if (host->data_addr_override)
host->fifo_reg = host->regs + host->data_addr_override;
else if (host->verid < DW_MMC_240A)
host->fifo_reg = host->regs + DATA_OFFSET;
else
host->fifo_reg = host->regs + DATA_240A_OFFSET;
tasklet_setup(&host->tasklet, dw_mci_tasklet_func);
ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
host->irq_flags, "dw-mci", host);
if (ret)
goto err_dmaunmap;
/*
* Enable interrupts for command done, data over, data empty,
* receive ready and error such as transmit, receive timeout, crc error
*/
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
/* Enable mci interrupt */
mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
dev_info(host->dev,
"DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
host->irq, width, fifo_size);
/* We need at least one slot to succeed */
ret = dw_mci_init_slot(host);
if (ret) {
dev_dbg(host->dev, "slot %d init failed\n", i);
goto err_dmaunmap;
}
/* Now that slots are all setup, we can enable card detect */
dw_mci_enable_cd(host);
return 0;
err_dmaunmap:
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
reset_control_assert(host->pdata->rstc);
err_clk_ciu:
clk_disable_unprepare(host->ciu_clk);
err_clk_biu:
clk_disable_unprepare(host->biu_clk);
return ret;
}
EXPORT_SYMBOL(dw_mci_probe);
void dw_mci_remove(struct dw_mci *host)
{
dev_dbg(host->dev, "remove slot\n");
if (host->slot)
dw_mci_cleanup_slot(host->slot);
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
/* disable clock to CIU */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
reset_control_assert(host->pdata->rstc);
clk_disable_unprepare(host->ciu_clk);
clk_disable_unprepare(host->biu_clk);
}
EXPORT_SYMBOL(dw_mci_remove);
#ifdef CONFIG_PM
int dw_mci_runtime_suspend(struct device *dev)
{
struct dw_mci *host = dev_get_drvdata(dev);
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
clk_disable_unprepare(host->ciu_clk);
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc)))
clk_disable_unprepare(host->biu_clk);
return 0;
}
EXPORT_SYMBOL(dw_mci_runtime_suspend);
int dw_mci_runtime_resume(struct device *dev)
{
int ret = 0;
struct dw_mci *host = dev_get_drvdata(dev);
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc))) {
ret = clk_prepare_enable(host->biu_clk);
if (ret)
return ret;
}
ret = clk_prepare_enable(host->ciu_clk);
if (ret)
goto err;
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
clk_disable_unprepare(host->ciu_clk);
ret = -ENODEV;
goto err;
}
if (host->use_dma && host->dma_ops->init)
host->dma_ops->init(host);
/*
* Restore the initial value at FIFOTH register
* And Invalidate the prev_blksz with zero
*/
mci_writel(host, FIFOTH, host->fifoth_val);
host->prev_blksz = 0;
/* Put in max timeout */
mci_writel(host, TMOUT, 0xFFFFFFFF);
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
/* Force setup bus to guarantee available clock output */
dw_mci_setup_bus(host->slot, true);
/* Re-enable SDIO interrupts. */
if (sdio_irq_claimed(host->slot->mmc))
__dw_mci_enable_sdio_irq(host->slot, 1);
/* Now that slots are all setup, we can enable card detect */
dw_mci_enable_cd(host);
return 0;
err:
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc)))
clk_disable_unprepare(host->biu_clk);
return ret;
}
EXPORT_SYMBOL(dw_mci_runtime_resume);
#endif /* CONFIG_PM */
static int __init dw_mci_init(void)
{
pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
return 0;
}
static void __exit dw_mci_exit(void)
{
}
module_init(dw_mci_init);
module_exit(dw_mci_exit);
MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
MODULE_AUTHOR("NXP Semiconductor VietNam");
MODULE_AUTHOR("Imagination Technologies Ltd");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/dw_mmc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Arasan Secure Digital Host Controller Interface.
* Copyright (C) 2011 - 2012 Michal Simek <[email protected]>
* Copyright (c) 2012 Wind River Systems, Inc.
* Copyright (C) 2013 Pengutronix e.K.
* Copyright (C) 2013 Xilinx Inc.
*
* Based on sdhci-of-esdhc.c
*
* Copyright (c) 2007 Freescale Semiconductor, Inc.
* Copyright (c) 2009 MontaVista Software, Inc.
*
* Authors: Xiaobo Xie <[email protected]>
* Anton Vorontsov <[email protected]>
*/
#include <linux/clk-provider.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/firmware/xlnx-zynqmp.h>
#include "cqhci.h"
#include "sdhci-cqhci.h"
#include "sdhci-pltfm.h"
#define SDHCI_ARASAN_VENDOR_REGISTER 0x78
#define SDHCI_ARASAN_ITAPDLY_REGISTER 0xF0F8
#define SDHCI_ARASAN_ITAPDLY_SEL_MASK 0xFF
#define SDHCI_ARASAN_OTAPDLY_REGISTER 0xF0FC
#define SDHCI_ARASAN_OTAPDLY_SEL_MASK 0x3F
#define SDHCI_ARASAN_CQE_BASE_ADDR 0x200
#define VENDOR_ENHANCED_STROBE BIT(0)
#define PHY_CLK_TOO_SLOW_HZ 400000
#define MIN_PHY_CLK_HZ 50000000
#define SDHCI_ITAPDLY_CHGWIN 0x200
#define SDHCI_ITAPDLY_ENABLE 0x100
#define SDHCI_OTAPDLY_ENABLE 0x40
#define PHY_CTRL_REG1 0x270
#define PHY_CTRL_ITAPDLY_ENA_MASK BIT(0)
#define PHY_CTRL_ITAPDLY_SEL_MASK GENMASK(5, 1)
#define PHY_CTRL_ITAPDLY_SEL_SHIFT 1
#define PHY_CTRL_ITAP_CHG_WIN_MASK BIT(6)
#define PHY_CTRL_OTAPDLY_ENA_MASK BIT(8)
#define PHY_CTRL_OTAPDLY_SEL_MASK GENMASK(15, 12)
#define PHY_CTRL_OTAPDLY_SEL_SHIFT 12
#define PHY_CTRL_STRB_SEL_MASK GENMASK(23, 16)
#define PHY_CTRL_STRB_SEL_SHIFT 16
#define PHY_CTRL_TEST_CTRL_MASK GENMASK(31, 24)
#define PHY_CTRL_REG2 0x274
#define PHY_CTRL_EN_DLL_MASK BIT(0)
#define PHY_CTRL_DLL_RDY_MASK BIT(1)
#define PHY_CTRL_FREQ_SEL_MASK GENMASK(6, 4)
#define PHY_CTRL_FREQ_SEL_SHIFT 4
#define PHY_CTRL_SEL_DLY_TX_MASK BIT(16)
#define PHY_CTRL_SEL_DLY_RX_MASK BIT(17)
#define FREQSEL_200M_170M 0x0
#define FREQSEL_170M_140M 0x1
#define FREQSEL_140M_110M 0x2
#define FREQSEL_110M_80M 0x3
#define FREQSEL_80M_50M 0x4
#define FREQSEL_275M_250M 0x5
#define FREQSEL_250M_225M 0x6
#define FREQSEL_225M_200M 0x7
#define PHY_DLL_TIMEOUT_MS 100
/* Default settings for ZynqMP Clock Phases */
#define ZYNQMP_ICLK_PHASE {0, 63, 63, 0, 63, 0, 0, 183, 54, 0, 0}
#define ZYNQMP_OCLK_PHASE {0, 72, 60, 0, 60, 72, 135, 48, 72, 135, 0}
#define VERSAL_ICLK_PHASE {0, 132, 132, 0, 132, 0, 0, 162, 90, 0, 0}
#define VERSAL_OCLK_PHASE {0, 60, 48, 0, 48, 72, 90, 36, 60, 90, 0}
#define VERSAL_NET_EMMC_ICLK_PHASE {0, 0, 0, 0, 0, 0, 0, 0, 39, 0, 0}
#define VERSAL_NET_EMMC_OCLK_PHASE {0, 113, 0, 0, 0, 0, 0, 0, 113, 79, 45}
#define VERSAL_NET_PHY_CTRL_STRB90_STRB180_VAL 0X77
/*
* On some SoCs the syscon area has a feature where the upper 16-bits of
* each 32-bit register act as a write mask for the lower 16-bits. This allows
* atomic updates of the register without locking. This macro is used on SoCs
* that have that feature.
*/
#define HIWORD_UPDATE(val, mask, shift) \
((val) << (shift) | (mask) << ((shift) + 16))
/**
* struct sdhci_arasan_soc_ctl_field - Field used in sdhci_arasan_soc_ctl_map
*
* @reg: Offset within the syscon of the register containing this field
* @width: Number of bits for this field
* @shift: Bit offset within @reg of this field (or -1 if not avail)
*/
struct sdhci_arasan_soc_ctl_field {
u32 reg;
u16 width;
s16 shift;
};
/**
* struct sdhci_arasan_soc_ctl_map - Map in syscon to corecfg registers
*
* @baseclkfreq: Where to find corecfg_baseclkfreq
* @clockmultiplier: Where to find corecfg_clockmultiplier
* @support64b: Where to find SUPPORT64B bit
* @hiword_update: If true, use HIWORD_UPDATE to access the syscon
*
* It's up to the licensee of the Arsan IP block to make these available
* somewhere if needed. Presumably these will be scattered somewhere that's
* accessible via the syscon API.
*/
struct sdhci_arasan_soc_ctl_map {
struct sdhci_arasan_soc_ctl_field baseclkfreq;
struct sdhci_arasan_soc_ctl_field clockmultiplier;
struct sdhci_arasan_soc_ctl_field support64b;
bool hiword_update;
};
/**
* struct sdhci_arasan_clk_ops - Clock Operations for Arasan SD controller
*
* @sdcardclk_ops: The output clock related operations
* @sampleclk_ops: The sample clock related operations
*/
struct sdhci_arasan_clk_ops {
const struct clk_ops *sdcardclk_ops;
const struct clk_ops *sampleclk_ops;
};
/**
* struct sdhci_arasan_clk_data - Arasan Controller Clock Data.
*
* @sdcardclk_hw: Struct for the clock we might provide to a PHY.
* @sdcardclk: Pointer to normal 'struct clock' for sdcardclk_hw.
* @sampleclk_hw: Struct for the clock we might provide to a PHY.
* @sampleclk: Pointer to normal 'struct clock' for sampleclk_hw.
* @clk_phase_in: Array of Input Clock Phase Delays for all speed modes
* @clk_phase_out: Array of Output Clock Phase Delays for all speed modes
* @set_clk_delays: Function pointer for setting Clock Delays
* @clk_of_data: Platform specific runtime clock data storage pointer
*/
struct sdhci_arasan_clk_data {
struct clk_hw sdcardclk_hw;
struct clk *sdcardclk;
struct clk_hw sampleclk_hw;
struct clk *sampleclk;
int clk_phase_in[MMC_TIMING_MMC_HS400 + 1];
int clk_phase_out[MMC_TIMING_MMC_HS400 + 1];
void (*set_clk_delays)(struct sdhci_host *host);
void *clk_of_data;
};
/**
* struct sdhci_arasan_data - Arasan Controller Data
*
* @host: Pointer to the main SDHCI host structure.
* @clk_ahb: Pointer to the AHB clock
* @phy: Pointer to the generic phy
* @is_phy_on: True if the PHY is on; false if not.
* @internal_phy_reg: True if the PHY is within the Host controller.
* @has_cqe: True if controller has command queuing engine.
* @clk_data: Struct for the Arasan Controller Clock Data.
* @clk_ops: Struct for the Arasan Controller Clock Operations.
* @soc_ctl_base: Pointer to regmap for syscon for soc_ctl registers.
* @soc_ctl_map: Map to get offsets into soc_ctl registers.
* @quirks: Arasan deviations from spec.
*/
struct sdhci_arasan_data {
struct sdhci_host *host;
struct clk *clk_ahb;
struct phy *phy;
bool is_phy_on;
bool internal_phy_reg;
bool has_cqe;
struct sdhci_arasan_clk_data clk_data;
const struct sdhci_arasan_clk_ops *clk_ops;
struct regmap *soc_ctl_base;
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map;
unsigned int quirks;
/* Controller does not have CD wired and will not function normally without */
#define SDHCI_ARASAN_QUIRK_FORCE_CDTEST BIT(0)
/* Controller immediately reports SDHCI_CLOCK_INT_STABLE after enabling the
* internal clock even when the clock isn't stable */
#define SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE BIT(1)
/*
* Some of the Arasan variations might not have timing requirements
* met at 25MHz for Default Speed mode, those controllers work at
* 19MHz instead
*/
#define SDHCI_ARASAN_QUIRK_CLOCK_25_BROKEN BIT(2)
};
struct sdhci_arasan_of_data {
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map;
const struct sdhci_pltfm_data *pdata;
const struct sdhci_arasan_clk_ops *clk_ops;
};
static const struct sdhci_arasan_soc_ctl_map rk3399_soc_ctl_map = {
.baseclkfreq = { .reg = 0xf000, .width = 8, .shift = 8 },
.clockmultiplier = { .reg = 0xf02c, .width = 8, .shift = 0},
.hiword_update = true,
};
static const struct sdhci_arasan_soc_ctl_map intel_lgm_emmc_soc_ctl_map = {
.baseclkfreq = { .reg = 0xa0, .width = 8, .shift = 2 },
.clockmultiplier = { .reg = 0, .width = -1, .shift = -1 },
.hiword_update = false,
};
static const struct sdhci_arasan_soc_ctl_map intel_lgm_sdxc_soc_ctl_map = {
.baseclkfreq = { .reg = 0x80, .width = 8, .shift = 2 },
.clockmultiplier = { .reg = 0, .width = -1, .shift = -1 },
.hiword_update = false,
};
static const struct sdhci_arasan_soc_ctl_map intel_keembay_soc_ctl_map = {
.baseclkfreq = { .reg = 0x0, .width = 8, .shift = 14 },
.clockmultiplier = { .reg = 0x4, .width = 8, .shift = 14 },
.support64b = { .reg = 0x4, .width = 1, .shift = 24 },
.hiword_update = false,
};
static void sdhci_arasan_phy_set_delaychain(struct sdhci_host *host, bool enable)
{
u32 reg;
reg = readl(host->ioaddr + PHY_CTRL_REG2);
if (enable)
reg |= (PHY_CTRL_SEL_DLY_TX_MASK | PHY_CTRL_SEL_DLY_RX_MASK);
else
reg &= ~(PHY_CTRL_SEL_DLY_TX_MASK | PHY_CTRL_SEL_DLY_RX_MASK);
writel(reg, host->ioaddr + PHY_CTRL_REG2);
}
static int sdhci_arasan_phy_set_dll(struct sdhci_host *host, bool enable)
{
u32 reg;
reg = readl(host->ioaddr + PHY_CTRL_REG2);
if (enable)
reg |= PHY_CTRL_EN_DLL_MASK;
else
reg &= ~PHY_CTRL_EN_DLL_MASK;
writel(reg, host->ioaddr + PHY_CTRL_REG2);
if (!enable)
return 0;
return readl_relaxed_poll_timeout(host->ioaddr + PHY_CTRL_REG2, reg,
(reg & PHY_CTRL_DLL_RDY_MASK), 10,
1000 * PHY_DLL_TIMEOUT_MS);
}
static void sdhci_arasan_phy_dll_set_freq(struct sdhci_host *host, int clock)
{
u32 reg, freq_sel, freq;
freq = DIV_ROUND_CLOSEST(clock, 1000000);
if (freq <= 200 && freq > 170)
freq_sel = FREQSEL_200M_170M;
else if (freq <= 170 && freq > 140)
freq_sel = FREQSEL_170M_140M;
else if (freq <= 140 && freq > 110)
freq_sel = FREQSEL_140M_110M;
else if (freq <= 110 && freq > 80)
freq_sel = FREQSEL_110M_80M;
else
freq_sel = FREQSEL_80M_50M;
reg = readl(host->ioaddr + PHY_CTRL_REG2);
reg &= ~PHY_CTRL_FREQ_SEL_MASK;
reg |= (freq_sel << PHY_CTRL_FREQ_SEL_SHIFT);
writel(reg, host->ioaddr + PHY_CTRL_REG2);
}
/**
* sdhci_arasan_syscon_write - Write to a field in soc_ctl registers
*
* @host: The sdhci_host
* @fld: The field to write to
* @val: The value to write
*
* This function allows writing to fields in sdhci_arasan_soc_ctl_map.
* Note that if a field is specified as not available (shift < 0) then
* this function will silently return an error code. It will be noisy
* and print errors for any other (unexpected) errors.
*
* Return: 0 on success and error value on error
*/
static int sdhci_arasan_syscon_write(struct sdhci_host *host,
const struct sdhci_arasan_soc_ctl_field *fld,
u32 val)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct regmap *soc_ctl_base = sdhci_arasan->soc_ctl_base;
u32 reg = fld->reg;
u16 width = fld->width;
s16 shift = fld->shift;
int ret;
/*
* Silently return errors for shift < 0 so caller doesn't have
* to check for fields which are optional. For fields that
* are required then caller needs to do something special
* anyway.
*/
if (shift < 0)
return -EINVAL;
if (sdhci_arasan->soc_ctl_map->hiword_update)
ret = regmap_write(soc_ctl_base, reg,
HIWORD_UPDATE(val, GENMASK(width, 0),
shift));
else
ret = regmap_update_bits(soc_ctl_base, reg,
GENMASK(shift + width, shift),
val << shift);
/* Yell about (unexpected) regmap errors */
if (ret)
pr_warn("%s: Regmap write fail: %d\n",
mmc_hostname(host->mmc), ret);
return ret;
}
static void sdhci_arasan_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data;
bool ctrl_phy = false;
if (!IS_ERR(sdhci_arasan->phy)) {
if (!sdhci_arasan->is_phy_on && clock <= PHY_CLK_TOO_SLOW_HZ) {
/*
* If PHY off, set clock to max speed and power PHY on.
*
* Although PHY docs apparently suggest power cycling
* when changing the clock the PHY doesn't like to be
* powered on while at low speeds like those used in ID
* mode. Even worse is powering the PHY on while the
* clock is off.
*
* To workaround the PHY limitations, the best we can
* do is to power it on at a faster speed and then slam
* through low speeds without power cycling.
*/
sdhci_set_clock(host, host->max_clk);
if (phy_power_on(sdhci_arasan->phy)) {
pr_err("%s: Cannot power on phy.\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan->is_phy_on = true;
/*
* We'll now fall through to the below case with
* ctrl_phy = false (so we won't turn off/on). The
* sdhci_set_clock() will set the real clock.
*/
} else if (clock > PHY_CLK_TOO_SLOW_HZ) {
/*
* At higher clock speeds the PHY is fine being power
* cycled and docs say you _should_ power cycle when
* changing clock speeds.
*/
ctrl_phy = true;
}
}
if (ctrl_phy && sdhci_arasan->is_phy_on) {
phy_power_off(sdhci_arasan->phy);
sdhci_arasan->is_phy_on = false;
}
if (sdhci_arasan->quirks & SDHCI_ARASAN_QUIRK_CLOCK_25_BROKEN) {
/*
* Some of the Arasan variations might not have timing
* requirements met at 25MHz for Default Speed mode,
* those controllers work at 19MHz instead.
*/
if (clock == DEFAULT_SPEED_MAX_DTR)
clock = (DEFAULT_SPEED_MAX_DTR * 19) / 25;
}
/* Set the Input and Output Clock Phase Delays */
if (clk_data->set_clk_delays && clock > PHY_CLK_TOO_SLOW_HZ)
clk_data->set_clk_delays(host);
if (sdhci_arasan->internal_phy_reg && clock >= MIN_PHY_CLK_HZ) {
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
sdhci_arasan_phy_set_dll(host, 0);
sdhci_arasan_phy_set_delaychain(host, 0);
sdhci_arasan_phy_dll_set_freq(host, clock);
} else if (sdhci_arasan->internal_phy_reg) {
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
sdhci_arasan_phy_set_delaychain(host, 1);
}
sdhci_set_clock(host, clock);
if (sdhci_arasan->internal_phy_reg && clock >= MIN_PHY_CLK_HZ)
sdhci_arasan_phy_set_dll(host, 1);
if (sdhci_arasan->quirks & SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE)
/*
* Some controllers immediately report SDHCI_CLOCK_INT_STABLE
* after enabling the clock even though the clock is not
* stable. Trying to use a clock without waiting here results
* in EILSEQ while detecting some older/slower cards. The
* chosen delay is the maximum delay from sdhci_set_clock.
*/
msleep(20);
if (ctrl_phy) {
if (phy_power_on(sdhci_arasan->phy)) {
pr_err("%s: Cannot power on phy.\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan->is_phy_on = true;
}
}
static void sdhci_arasan_hs400_enhanced_strobe(struct mmc_host *mmc,
struct mmc_ios *ios)
{
u32 vendor;
struct sdhci_host *host = mmc_priv(mmc);
vendor = sdhci_readl(host, SDHCI_ARASAN_VENDOR_REGISTER);
if (ios->enhanced_strobe)
vendor |= VENDOR_ENHANCED_STROBE;
else
vendor &= ~VENDOR_ENHANCED_STROBE;
sdhci_writel(host, vendor, SDHCI_ARASAN_VENDOR_REGISTER);
}
static void sdhci_arasan_reset(struct sdhci_host *host, u8 mask)
{
u8 ctrl;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
sdhci_and_cqhci_reset(host, mask);
if (sdhci_arasan->quirks & SDHCI_ARASAN_QUIRK_FORCE_CDTEST) {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_CDTEST_INS | SDHCI_CTRL_CDTEST_EN;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
}
static int sdhci_arasan_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_180:
/*
* Plese don't switch to 1V8 as arasan,5.1 doesn't
* actually refer to this setting to indicate the
* signal voltage and the state machine will be broken
* actually if we force to enable 1V8. That's something
* like broken quirk but we could work around here.
*/
return 0;
case MMC_SIGNAL_VOLTAGE_330:
case MMC_SIGNAL_VOLTAGE_120:
/* We don't support 3V3 and 1V2 */
break;
}
return -EINVAL;
}
static const struct sdhci_ops sdhci_arasan_ops = {
.set_clock = sdhci_arasan_set_clock,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_arasan_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.set_power = sdhci_set_power_and_bus_voltage,
};
static u32 sdhci_arasan_cqhci_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static void sdhci_arasan_dumpregs(struct mmc_host *mmc)
{
sdhci_dumpregs(mmc_priv(mmc));
}
static void sdhci_arasan_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 reg;
reg = sdhci_readl(host, SDHCI_PRESENT_STATE);
while (reg & SDHCI_DATA_AVAILABLE) {
sdhci_readl(host, SDHCI_BUFFER);
reg = sdhci_readl(host, SDHCI_PRESENT_STATE);
}
sdhci_cqe_enable(mmc);
}
static const struct cqhci_host_ops sdhci_arasan_cqhci_ops = {
.enable = sdhci_arasan_cqe_enable,
.disable = sdhci_cqe_disable,
.dumpregs = sdhci_arasan_dumpregs,
};
static const struct sdhci_ops sdhci_arasan_cqe_ops = {
.set_clock = sdhci_arasan_set_clock,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_arasan_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.set_power = sdhci_set_power_and_bus_voltage,
.irq = sdhci_arasan_cqhci_irq,
};
static const struct sdhci_pltfm_data sdhci_arasan_cqe_pdata = {
.ops = &sdhci_arasan_cqe_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN,
};
#ifdef CONFIG_PM_SLEEP
/**
* sdhci_arasan_suspend - Suspend method for the driver
* @dev: Address of the device structure
*
* Put the device in a low power state.
*
* Return: 0 on success and error value on error
*/
static int sdhci_arasan_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
if (sdhci_arasan->has_cqe) {
ret = cqhci_suspend(host->mmc);
if (ret)
return ret;
}
ret = sdhci_suspend_host(host);
if (ret)
return ret;
if (!IS_ERR(sdhci_arasan->phy) && sdhci_arasan->is_phy_on) {
ret = phy_power_off(sdhci_arasan->phy);
if (ret) {
dev_err(dev, "Cannot power off phy.\n");
if (sdhci_resume_host(host))
dev_err(dev, "Cannot resume host.\n");
return ret;
}
sdhci_arasan->is_phy_on = false;
}
clk_disable(pltfm_host->clk);
clk_disable(sdhci_arasan->clk_ahb);
return 0;
}
/**
* sdhci_arasan_resume - Resume method for the driver
* @dev: Address of the device structure
*
* Resume operation after suspend
*
* Return: 0 on success and error value on error
*/
static int sdhci_arasan_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
int ret;
ret = clk_enable(sdhci_arasan->clk_ahb);
if (ret) {
dev_err(dev, "Cannot enable AHB clock.\n");
return ret;
}
ret = clk_enable(pltfm_host->clk);
if (ret) {
dev_err(dev, "Cannot enable SD clock.\n");
return ret;
}
if (!IS_ERR(sdhci_arasan->phy) && host->mmc->actual_clock) {
ret = phy_power_on(sdhci_arasan->phy);
if (ret) {
dev_err(dev, "Cannot power on phy.\n");
return ret;
}
sdhci_arasan->is_phy_on = true;
}
ret = sdhci_resume_host(host);
if (ret) {
dev_err(dev, "Cannot resume host.\n");
return ret;
}
if (sdhci_arasan->has_cqe)
return cqhci_resume(host->mmc);
return 0;
}
#endif /* ! CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(sdhci_arasan_dev_pm_ops, sdhci_arasan_suspend,
sdhci_arasan_resume);
/**
* sdhci_arasan_sdcardclk_recalc_rate - Return the card clock rate
*
* @hw: Pointer to the hardware clock structure.
* @parent_rate: The parent rate (should be rate of clk_xin).
*
* Return the current actual rate of the SD card clock. This can be used
* to communicate with out PHY.
*
* Return: The card clock rate.
*/
static unsigned long sdhci_arasan_sdcardclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
return host->mmc->actual_clock;
}
static const struct clk_ops arasan_sdcardclk_ops = {
.recalc_rate = sdhci_arasan_sdcardclk_recalc_rate,
};
/**
* sdhci_arasan_sampleclk_recalc_rate - Return the sampling clock rate
*
* @hw: Pointer to the hardware clock structure.
* @parent_rate: The parent rate (should be rate of clk_xin).
*
* Return the current actual rate of the sampling clock. This can be used
* to communicate with out PHY.
*
* Return: The sample clock rate.
*/
static unsigned long sdhci_arasan_sampleclk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
return host->mmc->actual_clock;
}
static const struct clk_ops arasan_sampleclk_ops = {
.recalc_rate = sdhci_arasan_sampleclk_recalc_rate,
};
/**
* sdhci_zynqmp_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
*
* @hw: Pointer to the hardware clock structure.
* @degrees: The clock phase shift between 0 - 359.
*
* Set the SD Output Clock Tap Delays for Output path
*
* Return: 0 on success and error value on error
*/
static int sdhci_zynqmp_sdcardclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
const char *clk_name = clk_hw_get_name(hw);
u32 node_id = !strcmp(clk_name, "clk_out_sd0") ? NODE_SD_0 : NODE_SD_1;
u8 tap_delay, tap_max = 0;
int ret;
/* This is applicable for SDHCI_SPEC_300 and above */
if (host->version < SDHCI_SPEC_300)
return 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 30 Taps are available */
tap_max = 30;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 15 Taps are available */
tap_max = 15;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 8 Taps are available */
tap_max = 8;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
ret = zynqmp_pm_set_sd_tapdelay(node_id, PM_TAPDELAY_OUTPUT, tap_delay);
if (ret)
pr_err("Error setting Output Tap Delay\n");
/* Release DLL Reset */
zynqmp_pm_sd_dll_reset(node_id, PM_DLL_RESET_RELEASE);
return ret;
}
static const struct clk_ops zynqmp_sdcardclk_ops = {
.recalc_rate = sdhci_arasan_sdcardclk_recalc_rate,
.set_phase = sdhci_zynqmp_sdcardclk_set_phase,
};
/**
* sdhci_zynqmp_sampleclk_set_phase - Set the SD Input Clock Tap Delays
*
* @hw: Pointer to the hardware clock structure.
* @degrees: The clock phase shift between 0 - 359.
*
* Set the SD Input Clock Tap Delays for Input path
*
* Return: 0 on success and error value on error
*/
static int sdhci_zynqmp_sampleclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
const char *clk_name = clk_hw_get_name(hw);
u32 node_id = !strcmp(clk_name, "clk_in_sd0") ? NODE_SD_0 : NODE_SD_1;
u8 tap_delay, tap_max = 0;
int ret;
/* This is applicable for SDHCI_SPEC_300 and above */
if (host->version < SDHCI_SPEC_300)
return 0;
/* Assert DLL Reset */
zynqmp_pm_sd_dll_reset(node_id, PM_DLL_RESET_ASSERT);
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 120 Taps are available */
tap_max = 120;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 60 Taps are available */
tap_max = 60;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 30 Taps are available */
tap_max = 30;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
ret = zynqmp_pm_set_sd_tapdelay(node_id, PM_TAPDELAY_INPUT, tap_delay);
if (ret)
pr_err("Error setting Input Tap Delay\n");
return ret;
}
static const struct clk_ops zynqmp_sampleclk_ops = {
.recalc_rate = sdhci_arasan_sampleclk_recalc_rate,
.set_phase = sdhci_zynqmp_sampleclk_set_phase,
};
/**
* sdhci_versal_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
*
* @hw: Pointer to the hardware clock structure.
* @degrees: The clock phase shift between 0 - 359.
*
* Set the SD Output Clock Tap Delays for Output path
*
* Return: 0 on success and error value on error
*/
static int sdhci_versal_sdcardclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
u8 tap_delay, tap_max = 0;
/* This is applicable for SDHCI_SPEC_300 and above */
if (host->version < SDHCI_SPEC_300)
return 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 30 Taps are available */
tap_max = 30;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 15 Taps are available */
tap_max = 15;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 8 Taps are available */
tap_max = 8;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
u32 regval;
regval = sdhci_readl(host, SDHCI_ARASAN_OTAPDLY_REGISTER);
regval |= SDHCI_OTAPDLY_ENABLE;
sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
regval &= ~SDHCI_ARASAN_OTAPDLY_SEL_MASK;
regval |= tap_delay;
sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
}
return 0;
}
static const struct clk_ops versal_sdcardclk_ops = {
.recalc_rate = sdhci_arasan_sdcardclk_recalc_rate,
.set_phase = sdhci_versal_sdcardclk_set_phase,
};
/**
* sdhci_versal_sampleclk_set_phase - Set the SD Input Clock Tap Delays
*
* @hw: Pointer to the hardware clock structure.
* @degrees: The clock phase shift between 0 - 359.
*
* Set the SD Input Clock Tap Delays for Input path
*
* Return: 0 on success and error value on error
*/
static int sdhci_versal_sampleclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
u8 tap_delay, tap_max = 0;
/* This is applicable for SDHCI_SPEC_300 and above */
if (host->version < SDHCI_SPEC_300)
return 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 120 Taps are available */
tap_max = 120;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 60 Taps are available */
tap_max = 60;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 30 Taps are available */
tap_max = 30;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
u32 regval;
regval = sdhci_readl(host, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval |= SDHCI_ITAPDLY_CHGWIN;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval |= SDHCI_ITAPDLY_ENABLE;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval &= ~SDHCI_ARASAN_ITAPDLY_SEL_MASK;
regval |= tap_delay;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval &= ~SDHCI_ITAPDLY_CHGWIN;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
}
return 0;
}
static const struct clk_ops versal_sampleclk_ops = {
.recalc_rate = sdhci_arasan_sampleclk_recalc_rate,
.set_phase = sdhci_versal_sampleclk_set_phase,
};
static int sdhci_versal_net_emmc_sdcardclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sdcardclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
u8 tap_delay, tap_max = 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_MMC_DDR52:
tap_max = 16;
break;
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_MMC_HS400:
/* For 200MHz clock, 32 Taps are available */
tap_max = 32;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
u32 regval;
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval |= PHY_CTRL_OTAPDLY_ENA_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_OTAPDLY_SEL_MASK;
regval |= tap_delay << PHY_CTRL_OTAPDLY_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
}
return 0;
}
static const struct clk_ops versal_net_sdcardclk_ops = {
.recalc_rate = sdhci_arasan_sdcardclk_recalc_rate,
.set_phase = sdhci_versal_net_emmc_sdcardclk_set_phase,
};
static int sdhci_versal_net_emmc_sampleclk_set_phase(struct clk_hw *hw, int degrees)
{
struct sdhci_arasan_clk_data *clk_data =
container_of(hw, struct sdhci_arasan_clk_data, sampleclk_hw);
struct sdhci_arasan_data *sdhci_arasan =
container_of(clk_data, struct sdhci_arasan_data, clk_data);
struct sdhci_host *host = sdhci_arasan->host;
u8 tap_delay, tap_max = 0;
u32 regval;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_MMC_DDR52:
tap_max = 32;
break;
case MMC_TIMING_MMC_HS400:
/* Strobe select tap point for strb90 and strb180 */
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_STRB_SEL_MASK;
regval |= VERSAL_NET_PHY_CTRL_STRB90_STRB180_VAL << PHY_CTRL_STRB_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval |= PHY_CTRL_ITAP_CHG_WIN_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval |= PHY_CTRL_ITAPDLY_ENA_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_ITAPDLY_SEL_MASK;
regval |= tap_delay << PHY_CTRL_ITAPDLY_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_ITAP_CHG_WIN_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
}
return 0;
}
static const struct clk_ops versal_net_sampleclk_ops = {
.recalc_rate = sdhci_arasan_sampleclk_recalc_rate,
.set_phase = sdhci_versal_net_emmc_sampleclk_set_phase,
};
static void arasan_zynqmp_dll_reset(struct sdhci_host *host, u32 deviceid)
{
u16 clk;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~(SDHCI_CLOCK_CARD_EN | SDHCI_CLOCK_INT_EN);
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Issue DLL Reset */
zynqmp_pm_sd_dll_reset(deviceid, PM_DLL_RESET_PULSE);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
sdhci_enable_clk(host, clk);
}
static int arasan_zynqmp_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct clk_hw *hw = &sdhci_arasan->clk_data.sdcardclk_hw;
const char *clk_name = clk_hw_get_name(hw);
u32 device_id = !strcmp(clk_name, "clk_out_sd0") ? NODE_SD_0 :
NODE_SD_1;
int err;
/* ZynqMP SD controller does not perform auto tuning in DDR50 mode */
if (mmc->ios.timing == MMC_TIMING_UHS_DDR50)
return 0;
arasan_zynqmp_dll_reset(host, device_id);
err = sdhci_execute_tuning(mmc, opcode);
if (err)
return err;
arasan_zynqmp_dll_reset(host, device_id);
return 0;
}
/**
* sdhci_arasan_update_clockmultiplier - Set corecfg_clockmultiplier
*
* @host: The sdhci_host
* @value: The value to write
*
* The corecfg_clockmultiplier is supposed to contain clock multiplier
* value of programmable clock generator.
*
* NOTES:
* - Many existing devices don't seem to do this and work fine. To keep
* compatibility for old hardware where the device tree doesn't provide a
* register map, this function is a noop if a soc_ctl_map hasn't been provided
* for this platform.
* - The value of corecfg_clockmultiplier should sync with that of corresponding
* value reading from sdhci_capability_register. So this function is called
* once at probe time and never called again.
*/
static void sdhci_arasan_update_clockmultiplier(struct sdhci_host *host,
u32 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map =
sdhci_arasan->soc_ctl_map;
/* Having a map is optional */
if (!soc_ctl_map)
return;
/* If we have a map, we expect to have a syscon */
if (!sdhci_arasan->soc_ctl_base) {
pr_warn("%s: Have regmap, but no soc-ctl-syscon\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan_syscon_write(host, &soc_ctl_map->clockmultiplier, value);
}
/**
* sdhci_arasan_update_baseclkfreq - Set corecfg_baseclkfreq
*
* @host: The sdhci_host
*
* The corecfg_baseclkfreq is supposed to contain the MHz of clk_xin. This
* function can be used to make that happen.
*
* NOTES:
* - Many existing devices don't seem to do this and work fine. To keep
* compatibility for old hardware where the device tree doesn't provide a
* register map, this function is a noop if a soc_ctl_map hasn't been provided
* for this platform.
* - It's assumed that clk_xin is not dynamic and that we use the SDHCI divider
* to achieve lower clock rates. That means that this function is called once
* at probe time and never called again.
*/
static void sdhci_arasan_update_baseclkfreq(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map =
sdhci_arasan->soc_ctl_map;
u32 mhz = DIV_ROUND_CLOSEST_ULL(clk_get_rate(pltfm_host->clk), 1000000);
/* Having a map is optional */
if (!soc_ctl_map)
return;
/* If we have a map, we expect to have a syscon */
if (!sdhci_arasan->soc_ctl_base) {
pr_warn("%s: Have regmap, but no soc-ctl-syscon\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan_syscon_write(host, &soc_ctl_map->baseclkfreq, mhz);
}
static void sdhci_arasan_set_clk_delays(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data;
clk_set_phase(clk_data->sampleclk,
clk_data->clk_phase_in[host->timing]);
clk_set_phase(clk_data->sdcardclk,
clk_data->clk_phase_out[host->timing]);
}
static void arasan_dt_read_clk_phase(struct device *dev,
struct sdhci_arasan_clk_data *clk_data,
unsigned int timing, const char *prop)
{
struct device_node *np = dev->of_node;
u32 clk_phase[2] = {0};
int ret;
/*
* Read Tap Delay values from DT, if the DT does not contain the
* Tap Values then use the pre-defined values.
*/
ret = of_property_read_variable_u32_array(np, prop, &clk_phase[0],
2, 0);
if (ret < 0) {
dev_dbg(dev, "Using predefined clock phase for %s = %d %d\n",
prop, clk_data->clk_phase_in[timing],
clk_data->clk_phase_out[timing]);
return;
}
/* The values read are Input and Output Clock Delays in order */
clk_data->clk_phase_in[timing] = clk_phase[0];
clk_data->clk_phase_out[timing] = clk_phase[1];
}
/**
* arasan_dt_parse_clk_phases - Read Clock Delay values from DT
*
* @dev: Pointer to our struct device.
* @clk_data: Pointer to the Clock Data structure
*
* Called at initialization to parse the values of Clock Delays.
*/
static void arasan_dt_parse_clk_phases(struct device *dev,
struct sdhci_arasan_clk_data *clk_data)
{
u32 mio_bank = 0;
int i;
/*
* This has been kept as a pointer and is assigned a function here.
* So that different controller variants can assign their own handling
* function.
*/
clk_data->set_clk_delays = sdhci_arasan_set_clk_delays;
if (of_device_is_compatible(dev->of_node, "xlnx,zynqmp-8.9a")) {
u32 zynqmp_iclk_phase[MMC_TIMING_MMC_HS400 + 1] =
ZYNQMP_ICLK_PHASE;
u32 zynqmp_oclk_phase[MMC_TIMING_MMC_HS400 + 1] =
ZYNQMP_OCLK_PHASE;
of_property_read_u32(dev->of_node, "xlnx,mio-bank", &mio_bank);
if (mio_bank == 2) {
zynqmp_oclk_phase[MMC_TIMING_UHS_SDR104] = 90;
zynqmp_oclk_phase[MMC_TIMING_MMC_HS200] = 90;
}
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = zynqmp_iclk_phase[i];
clk_data->clk_phase_out[i] = zynqmp_oclk_phase[i];
}
}
if (of_device_is_compatible(dev->of_node, "xlnx,versal-8.9a")) {
u32 versal_iclk_phase[MMC_TIMING_MMC_HS400 + 1] =
VERSAL_ICLK_PHASE;
u32 versal_oclk_phase[MMC_TIMING_MMC_HS400 + 1] =
VERSAL_OCLK_PHASE;
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = versal_iclk_phase[i];
clk_data->clk_phase_out[i] = versal_oclk_phase[i];
}
}
if (of_device_is_compatible(dev->of_node, "xlnx,versal-net-emmc")) {
u32 versal_net_iclk_phase[MMC_TIMING_MMC_HS400 + 1] =
VERSAL_NET_EMMC_ICLK_PHASE;
u32 versal_net_oclk_phase[MMC_TIMING_MMC_HS400 + 1] =
VERSAL_NET_EMMC_OCLK_PHASE;
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = versal_net_iclk_phase[i];
clk_data->clk_phase_out[i] = versal_net_oclk_phase[i];
}
}
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_LEGACY,
"clk-phase-legacy");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS,
"clk-phase-mmc-hs");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_SD_HS,
"clk-phase-sd-hs");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR12,
"clk-phase-uhs-sdr12");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR25,
"clk-phase-uhs-sdr25");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR50,
"clk-phase-uhs-sdr50");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_SDR104,
"clk-phase-uhs-sdr104");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_UHS_DDR50,
"clk-phase-uhs-ddr50");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_DDR52,
"clk-phase-mmc-ddr52");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS200,
"clk-phase-mmc-hs200");
arasan_dt_read_clk_phase(dev, clk_data, MMC_TIMING_MMC_HS400,
"clk-phase-mmc-hs400");
}
static const struct sdhci_pltfm_data sdhci_arasan_pdata = {
.ops = &sdhci_arasan_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_STOP_WITH_TC,
};
static const struct sdhci_arasan_clk_ops arasan_clk_ops = {
.sdcardclk_ops = &arasan_sdcardclk_ops,
.sampleclk_ops = &arasan_sampleclk_ops,
};
static struct sdhci_arasan_of_data sdhci_arasan_generic_data = {
.pdata = &sdhci_arasan_pdata,
.clk_ops = &arasan_clk_ops,
};
static const struct sdhci_pltfm_data sdhci_keembay_emmc_pdata = {
.ops = &sdhci_arasan_cqe_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_NO_LED |
SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE |
SDHCI_QUIRK_32BIT_ADMA_SIZE,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 |
SDHCI_QUIRK2_STOP_WITH_TC |
SDHCI_QUIRK2_BROKEN_64_BIT_DMA,
};
static const struct sdhci_pltfm_data sdhci_keembay_sd_pdata = {
.ops = &sdhci_arasan_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_NO_LED |
SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE |
SDHCI_QUIRK_32BIT_ADMA_SIZE,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON |
SDHCI_QUIRK2_STOP_WITH_TC |
SDHCI_QUIRK2_BROKEN_64_BIT_DMA,
};
static const struct sdhci_pltfm_data sdhci_keembay_sdio_pdata = {
.ops = &sdhci_arasan_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_NO_LED |
SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE |
SDHCI_QUIRK_32BIT_ADMA_SIZE,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_HOST_OFF_CARD_ON |
SDHCI_QUIRK2_BROKEN_64_BIT_DMA,
};
static struct sdhci_arasan_of_data sdhci_arasan_rk3399_data = {
.soc_ctl_map = &rk3399_soc_ctl_map,
.pdata = &sdhci_arasan_cqe_pdata,
.clk_ops = &arasan_clk_ops,
};
static struct sdhci_arasan_of_data intel_lgm_emmc_data = {
.soc_ctl_map = &intel_lgm_emmc_soc_ctl_map,
.pdata = &sdhci_arasan_cqe_pdata,
.clk_ops = &arasan_clk_ops,
};
static struct sdhci_arasan_of_data intel_lgm_sdxc_data = {
.soc_ctl_map = &intel_lgm_sdxc_soc_ctl_map,
.pdata = &sdhci_arasan_cqe_pdata,
.clk_ops = &arasan_clk_ops,
};
static const struct sdhci_pltfm_data sdhci_arasan_zynqmp_pdata = {
.ops = &sdhci_arasan_ops,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_STOP_WITH_TC,
};
static const struct sdhci_pltfm_data sdhci_arasan_versal_net_pdata = {
.ops = &sdhci_arasan_ops,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN |
SDHCI_QUIRK2_STOP_WITH_TC |
SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400,
};
static const struct sdhci_arasan_clk_ops zynqmp_clk_ops = {
.sdcardclk_ops = &zynqmp_sdcardclk_ops,
.sampleclk_ops = &zynqmp_sampleclk_ops,
};
static struct sdhci_arasan_of_data sdhci_arasan_zynqmp_data = {
.pdata = &sdhci_arasan_zynqmp_pdata,
.clk_ops = &zynqmp_clk_ops,
};
static const struct sdhci_arasan_clk_ops versal_clk_ops = {
.sdcardclk_ops = &versal_sdcardclk_ops,
.sampleclk_ops = &versal_sampleclk_ops,
};
static struct sdhci_arasan_of_data sdhci_arasan_versal_data = {
.pdata = &sdhci_arasan_zynqmp_pdata,
.clk_ops = &versal_clk_ops,
};
static const struct sdhci_arasan_clk_ops versal_net_clk_ops = {
.sdcardclk_ops = &versal_net_sdcardclk_ops,
.sampleclk_ops = &versal_net_sampleclk_ops,
};
static struct sdhci_arasan_of_data sdhci_arasan_versal_net_data = {
.pdata = &sdhci_arasan_versal_net_pdata,
.clk_ops = &versal_net_clk_ops,
};
static struct sdhci_arasan_of_data intel_keembay_emmc_data = {
.soc_ctl_map = &intel_keembay_soc_ctl_map,
.pdata = &sdhci_keembay_emmc_pdata,
.clk_ops = &arasan_clk_ops,
};
static struct sdhci_arasan_of_data intel_keembay_sd_data = {
.soc_ctl_map = &intel_keembay_soc_ctl_map,
.pdata = &sdhci_keembay_sd_pdata,
.clk_ops = &arasan_clk_ops,
};
static struct sdhci_arasan_of_data intel_keembay_sdio_data = {
.soc_ctl_map = &intel_keembay_soc_ctl_map,
.pdata = &sdhci_keembay_sdio_pdata,
.clk_ops = &arasan_clk_ops,
};
static const struct of_device_id sdhci_arasan_of_match[] = {
/* SoC-specific compatible strings w/ soc_ctl_map */
{
.compatible = "rockchip,rk3399-sdhci-5.1",
.data = &sdhci_arasan_rk3399_data,
},
{
.compatible = "intel,lgm-sdhci-5.1-emmc",
.data = &intel_lgm_emmc_data,
},
{
.compatible = "intel,lgm-sdhci-5.1-sdxc",
.data = &intel_lgm_sdxc_data,
},
{
.compatible = "intel,keembay-sdhci-5.1-emmc",
.data = &intel_keembay_emmc_data,
},
{
.compatible = "intel,keembay-sdhci-5.1-sd",
.data = &intel_keembay_sd_data,
},
{
.compatible = "intel,keembay-sdhci-5.1-sdio",
.data = &intel_keembay_sdio_data,
},
/* Generic compatible below here */
{
.compatible = "arasan,sdhci-8.9a",
.data = &sdhci_arasan_generic_data,
},
{
.compatible = "arasan,sdhci-5.1",
.data = &sdhci_arasan_generic_data,
},
{
.compatible = "arasan,sdhci-4.9a",
.data = &sdhci_arasan_generic_data,
},
{
.compatible = "xlnx,zynqmp-8.9a",
.data = &sdhci_arasan_zynqmp_data,
},
{
.compatible = "xlnx,versal-8.9a",
.data = &sdhci_arasan_versal_data,
},
{
.compatible = "xlnx,versal-net-emmc",
.data = &sdhci_arasan_versal_net_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdhci_arasan_of_match);
/**
* sdhci_arasan_register_sdcardclk - Register the sdcardclk for a PHY to use
*
* @sdhci_arasan: Our private data structure.
* @clk_xin: Pointer to the functional clock
* @dev: Pointer to our struct device.
*
* Some PHY devices need to know what the actual card clock is. In order for
* them to find out, we'll provide a clock through the common clock framework
* for them to query.
*
* Return: 0 on success and error value on error
*/
static int
sdhci_arasan_register_sdcardclk(struct sdhci_arasan_data *sdhci_arasan,
struct clk *clk_xin,
struct device *dev)
{
struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data;
struct device_node *np = dev->of_node;
struct clk_init_data sdcardclk_init;
const char *parent_clk_name;
int ret;
ret = of_property_read_string_index(np, "clock-output-names", 0,
&sdcardclk_init.name);
if (ret) {
dev_err(dev, "DT has #clock-cells but no clock-output-names\n");
return ret;
}
parent_clk_name = __clk_get_name(clk_xin);
sdcardclk_init.parent_names = &parent_clk_name;
sdcardclk_init.num_parents = 1;
sdcardclk_init.flags = CLK_GET_RATE_NOCACHE;
sdcardclk_init.ops = sdhci_arasan->clk_ops->sdcardclk_ops;
clk_data->sdcardclk_hw.init = &sdcardclk_init;
clk_data->sdcardclk =
devm_clk_register(dev, &clk_data->sdcardclk_hw);
if (IS_ERR(clk_data->sdcardclk))
return PTR_ERR(clk_data->sdcardclk);
clk_data->sdcardclk_hw.init = NULL;
ret = of_clk_add_provider(np, of_clk_src_simple_get,
clk_data->sdcardclk);
if (ret)
dev_err(dev, "Failed to add sdcard clock provider\n");
return ret;
}
/**
* sdhci_arasan_register_sampleclk - Register the sampleclk for a PHY to use
*
* @sdhci_arasan: Our private data structure.
* @clk_xin: Pointer to the functional clock
* @dev: Pointer to our struct device.
*
* Some PHY devices need to know what the actual card clock is. In order for
* them to find out, we'll provide a clock through the common clock framework
* for them to query.
*
* Return: 0 on success and error value on error
*/
static int
sdhci_arasan_register_sampleclk(struct sdhci_arasan_data *sdhci_arasan,
struct clk *clk_xin,
struct device *dev)
{
struct sdhci_arasan_clk_data *clk_data = &sdhci_arasan->clk_data;
struct device_node *np = dev->of_node;
struct clk_init_data sampleclk_init;
const char *parent_clk_name;
int ret;
ret = of_property_read_string_index(np, "clock-output-names", 1,
&sampleclk_init.name);
if (ret) {
dev_err(dev, "DT has #clock-cells but no clock-output-names\n");
return ret;
}
parent_clk_name = __clk_get_name(clk_xin);
sampleclk_init.parent_names = &parent_clk_name;
sampleclk_init.num_parents = 1;
sampleclk_init.flags = CLK_GET_RATE_NOCACHE;
sampleclk_init.ops = sdhci_arasan->clk_ops->sampleclk_ops;
clk_data->sampleclk_hw.init = &sampleclk_init;
clk_data->sampleclk =
devm_clk_register(dev, &clk_data->sampleclk_hw);
if (IS_ERR(clk_data->sampleclk))
return PTR_ERR(clk_data->sampleclk);
clk_data->sampleclk_hw.init = NULL;
ret = of_clk_add_provider(np, of_clk_src_simple_get,
clk_data->sampleclk);
if (ret)
dev_err(dev, "Failed to add sample clock provider\n");
return ret;
}
/**
* sdhci_arasan_unregister_sdclk - Undoes sdhci_arasan_register_sdclk()
*
* @dev: Pointer to our struct device.
*
* Should be called any time we're exiting and sdhci_arasan_register_sdclk()
* returned success.
*/
static void sdhci_arasan_unregister_sdclk(struct device *dev)
{
struct device_node *np = dev->of_node;
if (!of_property_present(np, "#clock-cells"))
return;
of_clk_del_provider(dev->of_node);
}
/**
* sdhci_arasan_update_support64b - Set SUPPORT_64B (64-bit System Bus Support)
* @host: The sdhci_host
* @value: The value to write
*
* This should be set based on the System Address Bus.
* 0: the Core supports only 32-bit System Address Bus.
* 1: the Core supports 64-bit System Address Bus.
*
* NOTE:
* For Keem Bay, it is required to clear this bit. Its default value is 1'b1.
* Keem Bay does not support 64-bit access.
*/
static void sdhci_arasan_update_support64b(struct sdhci_host *host, u32 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_arasan_soc_ctl_map *soc_ctl_map;
/* Having a map is optional */
soc_ctl_map = sdhci_arasan->soc_ctl_map;
if (!soc_ctl_map)
return;
/* If we have a map, we expect to have a syscon */
if (!sdhci_arasan->soc_ctl_base) {
pr_warn("%s: Have regmap, but no soc-ctl-syscon\n",
mmc_hostname(host->mmc));
return;
}
sdhci_arasan_syscon_write(host, &soc_ctl_map->support64b, value);
}
/**
* sdhci_arasan_register_sdclk - Register the sdcardclk for a PHY to use
*
* @sdhci_arasan: Our private data structure.
* @clk_xin: Pointer to the functional clock
* @dev: Pointer to our struct device.
*
* Some PHY devices need to know what the actual card clock is. In order for
* them to find out, we'll provide a clock through the common clock framework
* for them to query.
*
* Note: without seriously re-architecting SDHCI's clock code and testing on
* all platforms, there's no way to create a totally beautiful clock here
* with all clock ops implemented. Instead, we'll just create a clock that can
* be queried and set the CLK_GET_RATE_NOCACHE attribute to tell common clock
* framework that we're doing things behind its back. This should be sufficient
* to create nice clean device tree bindings and later (if needed) we can try
* re-architecting SDHCI if we see some benefit to it.
*
* Return: 0 on success and error value on error
*/
static int sdhci_arasan_register_sdclk(struct sdhci_arasan_data *sdhci_arasan,
struct clk *clk_xin,
struct device *dev)
{
struct device_node *np = dev->of_node;
u32 num_clks = 0;
int ret;
/* Providing a clock to the PHY is optional; no error if missing */
if (of_property_read_u32(np, "#clock-cells", &num_clks) < 0)
return 0;
ret = sdhci_arasan_register_sdcardclk(sdhci_arasan, clk_xin, dev);
if (ret)
return ret;
if (num_clks) {
ret = sdhci_arasan_register_sampleclk(sdhci_arasan, clk_xin,
dev);
if (ret) {
sdhci_arasan_unregister_sdclk(dev);
return ret;
}
}
return 0;
}
static int sdhci_zynqmp_set_dynamic_config(struct device *dev,
struct sdhci_arasan_data *sdhci_arasan)
{
struct sdhci_host *host = sdhci_arasan->host;
struct clk_hw *hw = &sdhci_arasan->clk_data.sdcardclk_hw;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
const char *clk_name = clk_hw_get_name(hw);
u32 mhz, node_id = !strcmp(clk_name, "clk_out_sd0") ? NODE_SD_0 : NODE_SD_1;
struct reset_control *rstc;
int ret;
/* Obtain SDHC reset control */
rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
if (IS_ERR(rstc)) {
dev_err(dev, "Cannot get SDHC reset.\n");
return PTR_ERR(rstc);
}
ret = reset_control_assert(rstc);
if (ret)
return ret;
ret = zynqmp_pm_set_sd_config(node_id, SD_CONFIG_FIXED, 0);
if (ret)
return ret;
ret = zynqmp_pm_set_sd_config(node_id, SD_CONFIG_EMMC_SEL,
!!(host->mmc->caps & MMC_CAP_NONREMOVABLE));
if (ret)
return ret;
mhz = DIV_ROUND_CLOSEST_ULL(clk_get_rate(pltfm_host->clk), 1000000);
if (mhz > 100 && mhz <= 200)
mhz = 200;
else if (mhz > 50 && mhz <= 100)
mhz = 100;
else if (mhz > 25 && mhz <= 50)
mhz = 50;
else
mhz = 25;
ret = zynqmp_pm_set_sd_config(node_id, SD_CONFIG_BASECLK, mhz);
if (ret)
return ret;
ret = zynqmp_pm_set_sd_config(node_id, SD_CONFIG_8BIT,
!!(host->mmc->caps & MMC_CAP_8_BIT_DATA));
if (ret)
return ret;
ret = reset_control_deassert(rstc);
if (ret)
return ret;
usleep_range(1000, 1500);
return 0;
}
static int sdhci_arasan_add_host(struct sdhci_arasan_data *sdhci_arasan)
{
struct sdhci_host *host = sdhci_arasan->host;
struct cqhci_host *cq_host;
bool dma64;
int ret;
if (!sdhci_arasan->has_cqe)
return sdhci_add_host(host);
ret = sdhci_setup_host(host);
if (ret)
return ret;
cq_host = devm_kzalloc(host->mmc->parent,
sizeof(*cq_host), GFP_KERNEL);
if (!cq_host) {
ret = -ENOMEM;
goto cleanup;
}
cq_host->mmio = host->ioaddr + SDHCI_ARASAN_CQE_BASE_ADDR;
cq_host->ops = &sdhci_arasan_cqhci_ops;
dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
if (dma64)
cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
ret = cqhci_init(cq_host, host->mmc, dma64);
if (ret)
goto cleanup;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
static int sdhci_arasan_probe(struct platform_device *pdev)
{
int ret;
struct device_node *node;
struct clk *clk_xin;
struct clk *clk_dll;
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct sdhci_arasan_data *sdhci_arasan;
const struct sdhci_arasan_of_data *data;
data = of_device_get_match_data(dev);
if (!data)
return -EINVAL;
host = sdhci_pltfm_init(pdev, data->pdata, sizeof(*sdhci_arasan));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
sdhci_arasan->host = host;
sdhci_arasan->soc_ctl_map = data->soc_ctl_map;
sdhci_arasan->clk_ops = data->clk_ops;
node = of_parse_phandle(np, "arasan,soc-ctl-syscon", 0);
if (node) {
sdhci_arasan->soc_ctl_base = syscon_node_to_regmap(node);
of_node_put(node);
if (IS_ERR(sdhci_arasan->soc_ctl_base)) {
ret = dev_err_probe(dev,
PTR_ERR(sdhci_arasan->soc_ctl_base),
"Can't get syscon\n");
goto err_pltfm_free;
}
}
sdhci_get_of_property(pdev);
sdhci_arasan->clk_ahb = devm_clk_get(dev, "clk_ahb");
if (IS_ERR(sdhci_arasan->clk_ahb)) {
ret = dev_err_probe(dev, PTR_ERR(sdhci_arasan->clk_ahb),
"clk_ahb clock not found.\n");
goto err_pltfm_free;
}
clk_xin = devm_clk_get(dev, "clk_xin");
if (IS_ERR(clk_xin)) {
ret = dev_err_probe(dev, PTR_ERR(clk_xin), "clk_xin clock not found.\n");
goto err_pltfm_free;
}
ret = clk_prepare_enable(sdhci_arasan->clk_ahb);
if (ret) {
dev_err(dev, "Unable to enable AHB clock.\n");
goto err_pltfm_free;
}
/* If clock-frequency property is set, use the provided value */
if (pltfm_host->clock &&
pltfm_host->clock != clk_get_rate(clk_xin)) {
ret = clk_set_rate(clk_xin, pltfm_host->clock);
if (ret) {
dev_err(&pdev->dev, "Failed to set SD clock rate\n");
goto clk_dis_ahb;
}
}
ret = clk_prepare_enable(clk_xin);
if (ret) {
dev_err(dev, "Unable to enable SD clock.\n");
goto clk_dis_ahb;
}
clk_dll = devm_clk_get_optional_enabled(dev, "gate");
if (IS_ERR(clk_dll)) {
ret = dev_err_probe(dev, PTR_ERR(clk_dll), "failed to get dll clk\n");
goto clk_disable_all;
}
if (of_property_read_bool(np, "xlnx,fails-without-test-cd"))
sdhci_arasan->quirks |= SDHCI_ARASAN_QUIRK_FORCE_CDTEST;
if (of_property_read_bool(np, "xlnx,int-clock-stable-broken"))
sdhci_arasan->quirks |= SDHCI_ARASAN_QUIRK_CLOCK_UNSTABLE;
pltfm_host->clk = clk_xin;
if (of_device_is_compatible(np, "rockchip,rk3399-sdhci-5.1"))
sdhci_arasan_update_clockmultiplier(host, 0x0);
if (of_device_is_compatible(np, "intel,keembay-sdhci-5.1-emmc") ||
of_device_is_compatible(np, "intel,keembay-sdhci-5.1-sd") ||
of_device_is_compatible(np, "intel,keembay-sdhci-5.1-sdio")) {
sdhci_arasan_update_clockmultiplier(host, 0x0);
sdhci_arasan_update_support64b(host, 0x0);
host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
}
sdhci_arasan_update_baseclkfreq(host);
ret = sdhci_arasan_register_sdclk(sdhci_arasan, clk_xin, dev);
if (ret)
goto clk_disable_all;
if (of_device_is_compatible(np, "xlnx,zynqmp-8.9a")) {
host->mmc_host_ops.execute_tuning =
arasan_zynqmp_execute_tuning;
sdhci_arasan->quirks |= SDHCI_ARASAN_QUIRK_CLOCK_25_BROKEN;
host->quirks |= SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12;
}
arasan_dt_parse_clk_phases(dev, &sdhci_arasan->clk_data);
ret = mmc_of_parse(host->mmc);
if (ret) {
ret = dev_err_probe(dev, ret, "parsing dt failed.\n");
goto unreg_clk;
}
if (of_device_is_compatible(np, "xlnx,zynqmp-8.9a")) {
ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_SD_CONFIG);
if (!ret) {
ret = sdhci_zynqmp_set_dynamic_config(dev, sdhci_arasan);
if (ret)
goto unreg_clk;
}
}
sdhci_arasan->phy = ERR_PTR(-ENODEV);
if (of_device_is_compatible(np, "arasan,sdhci-5.1")) {
sdhci_arasan->phy = devm_phy_get(dev, "phy_arasan");
if (IS_ERR(sdhci_arasan->phy)) {
ret = dev_err_probe(dev, PTR_ERR(sdhci_arasan->phy),
"No phy for arasan,sdhci-5.1.\n");
goto unreg_clk;
}
ret = phy_init(sdhci_arasan->phy);
if (ret < 0) {
dev_err(dev, "phy_init err.\n");
goto unreg_clk;
}
host->mmc_host_ops.hs400_enhanced_strobe =
sdhci_arasan_hs400_enhanced_strobe;
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_arasan_voltage_switch;
sdhci_arasan->has_cqe = true;
host->mmc->caps2 |= MMC_CAP2_CQE;
if (!of_property_read_bool(np, "disable-cqe-dcmd"))
host->mmc->caps2 |= MMC_CAP2_CQE_DCMD;
}
if (of_device_is_compatible(np, "xlnx,versal-net-emmc"))
sdhci_arasan->internal_phy_reg = true;
ret = sdhci_arasan_add_host(sdhci_arasan);
if (ret)
goto err_add_host;
return 0;
err_add_host:
if (!IS_ERR(sdhci_arasan->phy))
phy_exit(sdhci_arasan->phy);
unreg_clk:
sdhci_arasan_unregister_sdclk(dev);
clk_disable_all:
clk_disable_unprepare(clk_xin);
clk_dis_ahb:
clk_disable_unprepare(sdhci_arasan->clk_ahb);
err_pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static void sdhci_arasan_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_arasan_data *sdhci_arasan = sdhci_pltfm_priv(pltfm_host);
struct clk *clk_ahb = sdhci_arasan->clk_ahb;
struct clk *clk_xin = pltfm_host->clk;
if (!IS_ERR(sdhci_arasan->phy)) {
if (sdhci_arasan->is_phy_on)
phy_power_off(sdhci_arasan->phy);
phy_exit(sdhci_arasan->phy);
}
sdhci_arasan_unregister_sdclk(&pdev->dev);
sdhci_pltfm_remove(pdev);
clk_disable_unprepare(clk_xin);
clk_disable_unprepare(clk_ahb);
}
static struct platform_driver sdhci_arasan_driver = {
.driver = {
.name = "sdhci-arasan",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_arasan_of_match,
.pm = &sdhci_arasan_dev_pm_ops,
},
.probe = sdhci_arasan_probe,
.remove_new = sdhci_arasan_remove,
};
module_platform_driver(sdhci_arasan_driver);
MODULE_DESCRIPTION("Driver for the Arasan SDHCI Controller");
MODULE_AUTHOR("Soeren Brinkmann <[email protected]>");
MODULE_LICENSE("GPL");
| linux-master | drivers/mmc/host/sdhci-of-arasan.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2013 - 2015 Fujitsu Semiconductor, Ltd
* Vincent Yang <[email protected]>
* Copyright (C) 2015 Linaro Ltd Andy Green <[email protected]>
* Copyright (C) 2019 Socionext Inc.
* Takao Orito <[email protected]>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/property.h>
#include "sdhci-pltfm.h"
#include "sdhci_f_sdh30.h"
/* milbeaut bridge controller register */
#define MLB_SOFT_RESET 0x0200
#define MLB_SOFT_RESET_RSTX BIT(0)
#define MLB_WP_CD_LED_SET 0x0210
#define MLB_WP_CD_LED_SET_LED_INV BIT(2)
#define MLB_CR_SET 0x0220
#define MLB_CR_SET_CR_TOCLKUNIT BIT(24)
#define MLB_CR_SET_CR_TOCLKFREQ_SFT (16)
#define MLB_CR_SET_CR_TOCLKFREQ_MASK (0x3F << MLB_CR_SET_CR_TOCLKFREQ_SFT)
#define MLB_CR_SET_CR_BCLKFREQ_SFT (8)
#define MLB_CR_SET_CR_BCLKFREQ_MASK (0xFF << MLB_CR_SET_CR_BCLKFREQ_SFT)
#define MLB_CR_SET_CR_RTUNTIMER_SFT (4)
#define MLB_CR_SET_CR_RTUNTIMER_MASK (0xF << MLB_CR_SET_CR_RTUNTIMER_SFT)
#define MLB_SD_TOCLK_I_DIV 16
#define MLB_TOCLKFREQ_UNIT_THRES 16000000
#define MLB_CAL_TOCLKFREQ_MHZ(rate) (rate / MLB_SD_TOCLK_I_DIV / 1000000)
#define MLB_CAL_TOCLKFREQ_KHZ(rate) (rate / MLB_SD_TOCLK_I_DIV / 1000)
#define MLB_TOCLKFREQ_MAX 63
#define MLB_TOCLKFREQ_MIN 1
#define MLB_SD_BCLK_I_DIV 4
#define MLB_CAL_BCLKFREQ(rate) (rate / MLB_SD_BCLK_I_DIV / 1000000)
#define MLB_BCLKFREQ_MAX 255
#define MLB_BCLKFREQ_MIN 1
#define MLB_CDR_SET 0x0230
#define MLB_CDR_SET_CLK2POW16 3
struct f_sdhost_priv {
struct clk *clk_iface;
struct clk *clk;
struct device *dev;
bool enable_cmd_dat_delay;
};
static void sdhci_milbeaut_soft_voltage_switch(struct sdhci_host *host)
{
u32 ctrl = 0;
usleep_range(2500, 3000);
ctrl = sdhci_readl(host, F_SDH30_IO_CONTROL2);
ctrl |= F_SDH30_CRES_O_DN;
sdhci_writel(host, ctrl, F_SDH30_IO_CONTROL2);
ctrl |= F_SDH30_MSEL_O_1_8;
sdhci_writel(host, ctrl, F_SDH30_IO_CONTROL2);
ctrl &= ~F_SDH30_CRES_O_DN;
sdhci_writel(host, ctrl, F_SDH30_IO_CONTROL2);
usleep_range(2500, 3000);
ctrl = sdhci_readl(host, F_SDH30_TUNING_SETTING);
ctrl |= F_SDH30_CMD_CHK_DIS;
sdhci_writel(host, ctrl, F_SDH30_TUNING_SETTING);
}
static unsigned int sdhci_milbeaut_get_min_clock(struct sdhci_host *host)
{
return F_SDH30_MIN_CLOCK;
}
static void sdhci_milbeaut_reset(struct sdhci_host *host, u8 mask)
{
struct f_sdhost_priv *priv = sdhci_priv(host);
u16 clk;
u32 ctl;
ktime_t timeout;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk = (clk & ~SDHCI_CLOCK_CARD_EN) | SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
sdhci_reset(host, mask);
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
timeout = ktime_add_ms(ktime_get(), 10);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timedout) {
pr_err("%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
udelay(10);
}
if (priv->enable_cmd_dat_delay) {
ctl = sdhci_readl(host, F_SDH30_ESD_CONTROL);
ctl |= F_SDH30_CMD_DAT_DELAY;
sdhci_writel(host, ctl, F_SDH30_ESD_CONTROL);
}
}
static const struct sdhci_ops sdhci_milbeaut_ops = {
.voltage_switch = sdhci_milbeaut_soft_voltage_switch,
.get_min_clock = sdhci_milbeaut_get_min_clock,
.reset = sdhci_milbeaut_reset,
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.set_power = sdhci_set_power_and_bus_voltage,
};
static void sdhci_milbeaut_bridge_reset(struct sdhci_host *host,
int reset_flag)
{
if (reset_flag)
sdhci_writel(host, 0, MLB_SOFT_RESET);
else
sdhci_writel(host, MLB_SOFT_RESET_RSTX, MLB_SOFT_RESET);
}
static void sdhci_milbeaut_bridge_init(struct sdhci_host *host,
int rate)
{
u32 val, clk;
/* IO_SDIO_CR_SET should be set while reset */
val = sdhci_readl(host, MLB_CR_SET);
val &= ~(MLB_CR_SET_CR_TOCLKFREQ_MASK | MLB_CR_SET_CR_TOCLKUNIT |
MLB_CR_SET_CR_BCLKFREQ_MASK);
if (rate >= MLB_TOCLKFREQ_UNIT_THRES) {
clk = MLB_CAL_TOCLKFREQ_MHZ(rate);
clk = min_t(u32, MLB_TOCLKFREQ_MAX, clk);
val |= MLB_CR_SET_CR_TOCLKUNIT |
(clk << MLB_CR_SET_CR_TOCLKFREQ_SFT);
} else {
clk = MLB_CAL_TOCLKFREQ_KHZ(rate);
clk = min_t(u32, MLB_TOCLKFREQ_MAX, clk);
clk = max_t(u32, MLB_TOCLKFREQ_MIN, clk);
val |= clk << MLB_CR_SET_CR_TOCLKFREQ_SFT;
}
clk = MLB_CAL_BCLKFREQ(rate);
clk = min_t(u32, MLB_BCLKFREQ_MAX, clk);
clk = max_t(u32, MLB_BCLKFREQ_MIN, clk);
val |= clk << MLB_CR_SET_CR_BCLKFREQ_SFT;
val &= ~MLB_CR_SET_CR_RTUNTIMER_MASK;
sdhci_writel(host, val, MLB_CR_SET);
sdhci_writel(host, MLB_CDR_SET_CLK2POW16, MLB_CDR_SET);
sdhci_writel(host, MLB_WP_CD_LED_SET_LED_INV, MLB_WP_CD_LED_SET);
}
static void sdhci_milbeaut_vendor_init(struct sdhci_host *host)
{
struct f_sdhost_priv *priv = sdhci_priv(host);
u32 ctl;
ctl = sdhci_readl(host, F_SDH30_IO_CONTROL2);
ctl |= F_SDH30_CRES_O_DN;
sdhci_writel(host, ctl, F_SDH30_IO_CONTROL2);
ctl &= ~F_SDH30_MSEL_O_1_8;
sdhci_writel(host, ctl, F_SDH30_IO_CONTROL2);
ctl &= ~F_SDH30_CRES_O_DN;
sdhci_writel(host, ctl, F_SDH30_IO_CONTROL2);
ctl = sdhci_readw(host, F_SDH30_AHB_CONFIG);
ctl |= F_SDH30_SIN | F_SDH30_AHB_INCR_16 | F_SDH30_AHB_INCR_8 |
F_SDH30_AHB_INCR_4;
ctl &= ~(F_SDH30_AHB_BIGED | F_SDH30_BUSLOCK_EN);
sdhci_writew(host, ctl, F_SDH30_AHB_CONFIG);
if (priv->enable_cmd_dat_delay) {
ctl = sdhci_readl(host, F_SDH30_ESD_CONTROL);
ctl |= F_SDH30_CMD_DAT_DELAY;
sdhci_writel(host, ctl, F_SDH30_ESD_CONTROL);
}
}
static const struct of_device_id mlb_dt_ids[] = {
{
.compatible = "socionext,milbeaut-m10v-sdhci-3.0",
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mlb_dt_ids);
static void sdhci_milbeaut_init(struct sdhci_host *host)
{
struct f_sdhost_priv *priv = sdhci_priv(host);
int rate = clk_get_rate(priv->clk);
u16 ctl;
sdhci_milbeaut_bridge_reset(host, 0);
ctl = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
ctl &= ~(SDHCI_CLOCK_CARD_EN | SDHCI_CLOCK_INT_EN);
sdhci_writew(host, ctl, SDHCI_CLOCK_CONTROL);
sdhci_milbeaut_bridge_reset(host, 1);
sdhci_milbeaut_bridge_init(host, rate);
sdhci_milbeaut_bridge_reset(host, 0);
sdhci_milbeaut_vendor_init(host);
}
static int sdhci_milbeaut_probe(struct platform_device *pdev)
{
struct sdhci_host *host;
struct device *dev = &pdev->dev;
int irq, ret = 0;
struct f_sdhost_priv *priv;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
host = sdhci_alloc_host(dev, sizeof(struct f_sdhost_priv));
if (IS_ERR(host))
return PTR_ERR(host);
priv = sdhci_priv(host);
priv->dev = dev;
host->quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_INVERTED_WRITE_PROTECT |
SDHCI_QUIRK_CLOCK_BEFORE_RESET |
SDHCI_QUIRK_DELAY_AFTER_POWER;
host->quirks2 = SDHCI_QUIRK2_SUPPORT_SINGLE |
SDHCI_QUIRK2_TUNING_WORK_AROUND |
SDHCI_QUIRK2_PRESET_VALUE_BROKEN;
priv->enable_cmd_dat_delay = device_property_read_bool(dev,
"fujitsu,cmd-dat-delay-select");
ret = mmc_of_parse(host->mmc);
if (ret)
goto err;
platform_set_drvdata(pdev, host);
host->hw_name = "f_sdh30";
host->ops = &sdhci_milbeaut_ops;
host->irq = irq;
host->ioaddr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(host->ioaddr)) {
ret = PTR_ERR(host->ioaddr);
goto err;
}
if (dev_of_node(dev)) {
sdhci_get_of_property(pdev);
priv->clk_iface = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(priv->clk_iface)) {
ret = PTR_ERR(priv->clk_iface);
goto err;
}
ret = clk_prepare_enable(priv->clk_iface);
if (ret)
goto err;
priv->clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(priv->clk)) {
ret = PTR_ERR(priv->clk);
goto err_clk;
}
ret = clk_prepare_enable(priv->clk);
if (ret)
goto err_clk;
}
sdhci_milbeaut_init(host);
ret = sdhci_add_host(host);
if (ret)
goto err_add_host;
return 0;
err_add_host:
clk_disable_unprepare(priv->clk);
err_clk:
clk_disable_unprepare(priv->clk_iface);
err:
sdhci_free_host(host);
return ret;
}
static void sdhci_milbeaut_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct f_sdhost_priv *priv = sdhci_priv(host);
sdhci_remove_host(host, readl(host->ioaddr + SDHCI_INT_STATUS) ==
0xffffffff);
clk_disable_unprepare(priv->clk_iface);
clk_disable_unprepare(priv->clk);
sdhci_free_host(host);
platform_set_drvdata(pdev, NULL);
}
static struct platform_driver sdhci_milbeaut_driver = {
.driver = {
.name = "sdhci-milbeaut",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = mlb_dt_ids,
},
.probe = sdhci_milbeaut_probe,
.remove_new = sdhci_milbeaut_remove,
};
module_platform_driver(sdhci_milbeaut_driver);
MODULE_DESCRIPTION("MILBEAUT SD Card Controller driver");
MODULE_AUTHOR("Takao Orito <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:sdhci-milbeaut");
| linux-master | drivers/mmc/host/sdhci-milbeaut.c |
/*
* Shared part of driver for MMC/SDHC controller on Cavium OCTEON and
* ThunderX SOCs.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2012-2017 Cavium Inc.
* Authors:
* David Daney <[email protected]>
* Peter Swain <[email protected]>
* Steven J. Hill <[email protected]>
* Jan Glauber <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/scatterlist.h>
#include <linux/time.h>
#include "cavium.h"
const char *cvm_mmc_irq_names[] = {
"MMC Buffer",
"MMC Command",
"MMC DMA",
"MMC Command Error",
"MMC DMA Error",
"MMC Switch",
"MMC Switch Error",
"MMC DMA int Fifo",
"MMC DMA int",
};
/*
* The Cavium MMC host hardware assumes that all commands have fixed
* command and response types. These are correct if MMC devices are
* being used. However, non-MMC devices like SD use command and
* response types that are unexpected by the host hardware.
*
* The command and response types can be overridden by supplying an
* XOR value that is applied to the type. We calculate the XOR value
* from the values in this table and the flags passed from the MMC
* core.
*/
static struct cvm_mmc_cr_type cvm_mmc_cr_types[] = {
{0, 0}, /* CMD0 */
{0, 3}, /* CMD1 */
{0, 2}, /* CMD2 */
{0, 1}, /* CMD3 */
{0, 0}, /* CMD4 */
{0, 1}, /* CMD5 */
{0, 1}, /* CMD6 */
{0, 1}, /* CMD7 */
{1, 1}, /* CMD8 */
{0, 2}, /* CMD9 */
{0, 2}, /* CMD10 */
{1, 1}, /* CMD11 */
{0, 1}, /* CMD12 */
{0, 1}, /* CMD13 */
{1, 1}, /* CMD14 */
{0, 0}, /* CMD15 */
{0, 1}, /* CMD16 */
{1, 1}, /* CMD17 */
{1, 1}, /* CMD18 */
{3, 1}, /* CMD19 */
{2, 1}, /* CMD20 */
{0, 0}, /* CMD21 */
{0, 0}, /* CMD22 */
{0, 1}, /* CMD23 */
{2, 1}, /* CMD24 */
{2, 1}, /* CMD25 */
{2, 1}, /* CMD26 */
{2, 1}, /* CMD27 */
{0, 1}, /* CMD28 */
{0, 1}, /* CMD29 */
{1, 1}, /* CMD30 */
{1, 1}, /* CMD31 */
{0, 0}, /* CMD32 */
{0, 0}, /* CMD33 */
{0, 0}, /* CMD34 */
{0, 1}, /* CMD35 */
{0, 1}, /* CMD36 */
{0, 0}, /* CMD37 */
{0, 1}, /* CMD38 */
{0, 4}, /* CMD39 */
{0, 5}, /* CMD40 */
{0, 0}, /* CMD41 */
{2, 1}, /* CMD42 */
{0, 0}, /* CMD43 */
{0, 0}, /* CMD44 */
{0, 0}, /* CMD45 */
{0, 0}, /* CMD46 */
{0, 0}, /* CMD47 */
{0, 0}, /* CMD48 */
{0, 0}, /* CMD49 */
{0, 0}, /* CMD50 */
{0, 0}, /* CMD51 */
{0, 0}, /* CMD52 */
{0, 0}, /* CMD53 */
{0, 0}, /* CMD54 */
{0, 1}, /* CMD55 */
{0xff, 0xff}, /* CMD56 */
{0, 0}, /* CMD57 */
{0, 0}, /* CMD58 */
{0, 0}, /* CMD59 */
{0, 0}, /* CMD60 */
{0, 0}, /* CMD61 */
{0, 0}, /* CMD62 */
{0, 0} /* CMD63 */
};
static struct cvm_mmc_cr_mods cvm_mmc_get_cr_mods(struct mmc_command *cmd)
{
struct cvm_mmc_cr_type *cr;
u8 hardware_ctype, hardware_rtype;
u8 desired_ctype = 0, desired_rtype = 0;
struct cvm_mmc_cr_mods r;
cr = cvm_mmc_cr_types + (cmd->opcode & 0x3f);
hardware_ctype = cr->ctype;
hardware_rtype = cr->rtype;
if (cmd->opcode == MMC_GEN_CMD)
hardware_ctype = (cmd->arg & 1) ? 1 : 2;
switch (mmc_cmd_type(cmd)) {
case MMC_CMD_ADTC:
desired_ctype = (cmd->data->flags & MMC_DATA_WRITE) ? 2 : 1;
break;
case MMC_CMD_AC:
case MMC_CMD_BC:
case MMC_CMD_BCR:
desired_ctype = 0;
break;
}
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
desired_rtype = 0;
break;
case MMC_RSP_R1:/* MMC_RSP_R5, MMC_RSP_R6, MMC_RSP_R7 */
case MMC_RSP_R1B:
desired_rtype = 1;
break;
case MMC_RSP_R2:
desired_rtype = 2;
break;
case MMC_RSP_R3: /* MMC_RSP_R4 */
desired_rtype = 3;
break;
}
r.ctype_xor = desired_ctype ^ hardware_ctype;
r.rtype_xor = desired_rtype ^ hardware_rtype;
return r;
}
static void check_switch_errors(struct cvm_mmc_host *host)
{
u64 emm_switch;
emm_switch = readq(host->base + MIO_EMM_SWITCH(host));
if (emm_switch & MIO_EMM_SWITCH_ERR0)
dev_err(host->dev, "Switch power class error\n");
if (emm_switch & MIO_EMM_SWITCH_ERR1)
dev_err(host->dev, "Switch hs timing error\n");
if (emm_switch & MIO_EMM_SWITCH_ERR2)
dev_err(host->dev, "Switch bus width error\n");
}
static void clear_bus_id(u64 *reg)
{
u64 bus_id_mask = GENMASK_ULL(61, 60);
*reg &= ~bus_id_mask;
}
static void set_bus_id(u64 *reg, int bus_id)
{
clear_bus_id(reg);
*reg |= FIELD_PREP(GENMASK(61, 60), bus_id);
}
static int get_bus_id(u64 reg)
{
return FIELD_GET(GENMASK_ULL(61, 60), reg);
}
/*
* We never set the switch_exe bit since that would interfere
* with the commands send by the MMC core.
*/
static void do_switch(struct cvm_mmc_host *host, u64 emm_switch)
{
int retries = 100;
u64 rsp_sts;
int bus_id;
/*
* Modes setting only taken from slot 0. Work around that hardware
* issue by first switching to slot 0.
*/
bus_id = get_bus_id(emm_switch);
clear_bus_id(&emm_switch);
writeq(emm_switch, host->base + MIO_EMM_SWITCH(host));
set_bus_id(&emm_switch, bus_id);
writeq(emm_switch, host->base + MIO_EMM_SWITCH(host));
/* wait for the switch to finish */
do {
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
if (!(rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL))
break;
udelay(10);
} while (--retries);
check_switch_errors(host);
}
static bool switch_val_changed(struct cvm_mmc_slot *slot, u64 new_val)
{
/* Match BUS_ID, HS_TIMING, BUS_WIDTH, POWER_CLASS, CLK_HI, CLK_LO */
u64 match = 0x3001070fffffffffull;
return (slot->cached_switch & match) != (new_val & match);
}
static void set_wdog(struct cvm_mmc_slot *slot, unsigned int ns)
{
u64 timeout;
if (!slot->clock)
return;
if (ns)
timeout = (slot->clock * ns) / NSEC_PER_SEC;
else
timeout = (slot->clock * 850ull) / 1000ull;
writeq(timeout, slot->host->base + MIO_EMM_WDOG(slot->host));
}
static void cvm_mmc_reset_bus(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
u64 emm_switch, wdog;
emm_switch = readq(slot->host->base + MIO_EMM_SWITCH(host));
emm_switch &= ~(MIO_EMM_SWITCH_EXE | MIO_EMM_SWITCH_ERR0 |
MIO_EMM_SWITCH_ERR1 | MIO_EMM_SWITCH_ERR2);
set_bus_id(&emm_switch, slot->bus_id);
wdog = readq(slot->host->base + MIO_EMM_WDOG(host));
do_switch(slot->host, emm_switch);
slot->cached_switch = emm_switch;
msleep(20);
writeq(wdog, slot->host->base + MIO_EMM_WDOG(host));
}
/* Switch to another slot if needed */
static void cvm_mmc_switch_to(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
struct cvm_mmc_slot *old_slot;
u64 emm_sample, emm_switch;
if (slot->bus_id == host->last_slot)
return;
if (host->last_slot >= 0 && host->slot[host->last_slot]) {
old_slot = host->slot[host->last_slot];
old_slot->cached_switch = readq(host->base + MIO_EMM_SWITCH(host));
old_slot->cached_rca = readq(host->base + MIO_EMM_RCA(host));
}
writeq(slot->cached_rca, host->base + MIO_EMM_RCA(host));
emm_switch = slot->cached_switch;
set_bus_id(&emm_switch, slot->bus_id);
do_switch(host, emm_switch);
emm_sample = FIELD_PREP(MIO_EMM_SAMPLE_CMD_CNT, slot->cmd_cnt) |
FIELD_PREP(MIO_EMM_SAMPLE_DAT_CNT, slot->dat_cnt);
writeq(emm_sample, host->base + MIO_EMM_SAMPLE(host));
host->last_slot = slot->bus_id;
}
static void do_read(struct cvm_mmc_host *host, struct mmc_request *req,
u64 dbuf)
{
struct sg_mapping_iter *smi = &host->smi;
int data_len = req->data->blocks * req->data->blksz;
int bytes_xfered, shift = -1;
u64 dat = 0;
/* Auto inc from offset zero */
writeq((0x10000 | (dbuf << 6)), host->base + MIO_EMM_BUF_IDX(host));
for (bytes_xfered = 0; bytes_xfered < data_len;) {
if (smi->consumed >= smi->length) {
if (!sg_miter_next(smi))
break;
smi->consumed = 0;
}
if (shift < 0) {
dat = readq(host->base + MIO_EMM_BUF_DAT(host));
shift = 56;
}
while (smi->consumed < smi->length && shift >= 0) {
((u8 *)smi->addr)[smi->consumed] = (dat >> shift) & 0xff;
bytes_xfered++;
smi->consumed++;
shift -= 8;
}
}
sg_miter_stop(smi);
req->data->bytes_xfered = bytes_xfered;
req->data->error = 0;
}
static void do_write(struct mmc_request *req)
{
req->data->bytes_xfered = req->data->blocks * req->data->blksz;
req->data->error = 0;
}
static void set_cmd_response(struct cvm_mmc_host *host, struct mmc_request *req,
u64 rsp_sts)
{
u64 rsp_hi, rsp_lo;
if (!(rsp_sts & MIO_EMM_RSP_STS_RSP_VAL))
return;
rsp_lo = readq(host->base + MIO_EMM_RSP_LO(host));
switch (FIELD_GET(MIO_EMM_RSP_STS_RSP_TYPE, rsp_sts)) {
case 1:
case 3:
req->cmd->resp[0] = (rsp_lo >> 8) & 0xffffffff;
req->cmd->resp[1] = 0;
req->cmd->resp[2] = 0;
req->cmd->resp[3] = 0;
break;
case 2:
req->cmd->resp[3] = rsp_lo & 0xffffffff;
req->cmd->resp[2] = (rsp_lo >> 32) & 0xffffffff;
rsp_hi = readq(host->base + MIO_EMM_RSP_HI(host));
req->cmd->resp[1] = rsp_hi & 0xffffffff;
req->cmd->resp[0] = (rsp_hi >> 32) & 0xffffffff;
break;
}
}
static int get_dma_dir(struct mmc_data *data)
{
return (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
}
static int finish_dma_single(struct cvm_mmc_host *host, struct mmc_data *data)
{
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
return 1;
}
static int finish_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data)
{
u64 fifo_cfg;
int count;
/* Check if there are any pending requests left */
fifo_cfg = readq(host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
count = FIELD_GET(MIO_EMM_DMA_FIFO_CFG_COUNT, fifo_cfg);
if (count)
dev_err(host->dev, "%u requests still pending\n", count);
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
/* Clear and disable FIFO */
writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
return 1;
}
static int finish_dma(struct cvm_mmc_host *host, struct mmc_data *data)
{
if (host->use_sg && data->sg_len > 1)
return finish_dma_sg(host, data);
else
return finish_dma_single(host, data);
}
static int check_status(u64 rsp_sts)
{
if (rsp_sts & MIO_EMM_RSP_STS_RSP_BAD_STS ||
rsp_sts & MIO_EMM_RSP_STS_RSP_CRC_ERR ||
rsp_sts & MIO_EMM_RSP_STS_BLK_CRC_ERR)
return -EILSEQ;
if (rsp_sts & MIO_EMM_RSP_STS_RSP_TIMEOUT ||
rsp_sts & MIO_EMM_RSP_STS_BLK_TIMEOUT)
return -ETIMEDOUT;
if (rsp_sts & MIO_EMM_RSP_STS_DBUF_ERR)
return -EIO;
return 0;
}
/* Try to clean up failed DMA. */
static void cleanup_dma(struct cvm_mmc_host *host, u64 rsp_sts)
{
u64 emm_dma;
emm_dma = readq(host->base + MIO_EMM_DMA(host));
emm_dma |= FIELD_PREP(MIO_EMM_DMA_VAL, 1) |
FIELD_PREP(MIO_EMM_DMA_DAT_NULL, 1);
set_bus_id(&emm_dma, get_bus_id(rsp_sts));
writeq(emm_dma, host->base + MIO_EMM_DMA(host));
}
irqreturn_t cvm_mmc_interrupt(int irq, void *dev_id)
{
struct cvm_mmc_host *host = dev_id;
struct mmc_request *req;
u64 emm_int, rsp_sts;
bool host_done;
if (host->need_irq_handler_lock)
spin_lock(&host->irq_handler_lock);
else
__acquire(&host->irq_handler_lock);
/* Clear interrupt bits (write 1 clears ). */
emm_int = readq(host->base + MIO_EMM_INT(host));
writeq(emm_int, host->base + MIO_EMM_INT(host));
if (emm_int & MIO_EMM_INT_SWITCH_ERR)
check_switch_errors(host);
req = host->current_req;
if (!req)
goto out;
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
/*
* dma_val set means DMA is still in progress. Don't touch
* the request and wait for the interrupt indicating that
* the DMA is finished.
*/
if ((rsp_sts & MIO_EMM_RSP_STS_DMA_VAL) && host->dma_active)
goto out;
if (!host->dma_active && req->data &&
(emm_int & MIO_EMM_INT_BUF_DONE)) {
unsigned int type = (rsp_sts >> 7) & 3;
if (type == 1)
do_read(host, req, rsp_sts & MIO_EMM_RSP_STS_DBUF);
else if (type == 2)
do_write(req);
}
host_done = emm_int & MIO_EMM_INT_CMD_DONE ||
emm_int & MIO_EMM_INT_DMA_DONE ||
emm_int & MIO_EMM_INT_CMD_ERR ||
emm_int & MIO_EMM_INT_DMA_ERR;
if (!(host_done && req->done))
goto no_req_done;
req->cmd->error = check_status(rsp_sts);
if (host->dma_active && req->data)
if (!finish_dma(host, req->data))
goto no_req_done;
set_cmd_response(host, req, rsp_sts);
if ((emm_int & MIO_EMM_INT_DMA_ERR) &&
(rsp_sts & MIO_EMM_RSP_STS_DMA_PEND))
cleanup_dma(host, rsp_sts);
host->current_req = NULL;
req->done(req);
no_req_done:
if (host->dmar_fixup_done)
host->dmar_fixup_done(host);
if (host_done)
host->release_bus(host);
out:
if (host->need_irq_handler_lock)
spin_unlock(&host->irq_handler_lock);
else
__release(&host->irq_handler_lock);
return IRQ_RETVAL(emm_int != 0);
}
/*
* Program DMA_CFG and if needed DMA_ADR.
* Returns 0 on error, DMA address otherwise.
*/
static u64 prepare_dma_single(struct cvm_mmc_host *host, struct mmc_data *data)
{
u64 dma_cfg, addr;
int count, rw;
count = dma_map_sg(host->dev, data->sg, data->sg_len,
get_dma_dir(data));
if (!count)
return 0;
rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0;
dma_cfg = FIELD_PREP(MIO_EMM_DMA_CFG_EN, 1) |
FIELD_PREP(MIO_EMM_DMA_CFG_RW, rw);
#ifdef __LITTLE_ENDIAN
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ENDIAN, 1);
#endif
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_SIZE,
(sg_dma_len(&data->sg[0]) / 8) - 1);
addr = sg_dma_address(&data->sg[0]);
if (!host->big_dma_addr)
dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ADR, addr);
writeq(dma_cfg, host->dma_base + MIO_EMM_DMA_CFG(host));
pr_debug("[%s] sg_dma_len: %u total sg_elem: %d\n",
(rw) ? "W" : "R", sg_dma_len(&data->sg[0]), count);
if (host->big_dma_addr)
writeq(addr, host->dma_base + MIO_EMM_DMA_ADR(host));
return addr;
}
/*
* Queue complete sg list into the FIFO.
* Returns 0 on error, 1 otherwise.
*/
static u64 prepare_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data)
{
struct scatterlist *sg;
u64 fifo_cmd, addr;
int count, i, rw;
count = dma_map_sg(host->dev, data->sg, data->sg_len,
get_dma_dir(data));
if (!count)
return 0;
if (count > 16)
goto error;
/* Enable FIFO by removing CLR bit */
writeq(0, host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
for_each_sg(data->sg, sg, count, i) {
/* Program DMA address */
addr = sg_dma_address(sg);
if (addr & 7)
goto error;
writeq(addr, host->dma_base + MIO_EMM_DMA_FIFO_ADR(host));
/*
* If we have scatter-gather support we also have an extra
* register for the DMA addr, so no need to check
* host->big_dma_addr here.
*/
rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0;
fifo_cmd = FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_RW, rw);
/* enable interrupts on the last element */
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_INTDIS,
(i + 1 == count) ? 0 : 1);
#ifdef __LITTLE_ENDIAN
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_ENDIAN, 1);
#endif
fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_SIZE,
sg_dma_len(sg) / 8 - 1);
/*
* The write copies the address and the command to the FIFO
* and increments the FIFO's COUNT field.
*/
writeq(fifo_cmd, host->dma_base + MIO_EMM_DMA_FIFO_CMD(host));
pr_debug("[%s] sg_dma_len: %u sg_elem: %d/%d\n",
(rw) ? "W" : "R", sg_dma_len(sg), i, count);
}
/*
* In difference to prepare_dma_single we don't return the
* address here, as it would not make sense for scatter-gather.
* The dma fixup is only required on models that don't support
* scatter-gather, so that is not a problem.
*/
return 1;
error:
WARN_ON_ONCE(1);
dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data));
/* Disable FIFO */
writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host));
return 0;
}
static u64 prepare_dma(struct cvm_mmc_host *host, struct mmc_data *data)
{
if (host->use_sg && data->sg_len > 1)
return prepare_dma_sg(host, data);
else
return prepare_dma_single(host, data);
}
static u64 prepare_ext_dma(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
u64 emm_dma;
emm_dma = FIELD_PREP(MIO_EMM_DMA_VAL, 1) |
FIELD_PREP(MIO_EMM_DMA_SECTOR,
mmc_card_is_blockaddr(mmc->card) ? 1 : 0) |
FIELD_PREP(MIO_EMM_DMA_RW,
(mrq->data->flags & MMC_DATA_WRITE) ? 1 : 0) |
FIELD_PREP(MIO_EMM_DMA_BLOCK_CNT, mrq->data->blocks) |
FIELD_PREP(MIO_EMM_DMA_CARD_ADDR, mrq->cmd->arg);
set_bus_id(&emm_dma, slot->bus_id);
if (mmc_card_mmc(mmc->card) || (mmc_card_sd(mmc->card) &&
(mmc->card->scr.cmds & SD_SCR_CMD23_SUPPORT)))
emm_dma |= FIELD_PREP(MIO_EMM_DMA_MULTI, 1);
pr_debug("[%s] blocks: %u multi: %d\n",
(emm_dma & MIO_EMM_DMA_RW) ? "W" : "R",
mrq->data->blocks, (emm_dma & MIO_EMM_DMA_MULTI) ? 1 : 0);
return emm_dma;
}
static void cvm_mmc_dma_request(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
struct mmc_data *data;
u64 emm_dma, addr;
if (!mrq->data || !mrq->data->sg || !mrq->data->sg_len ||
!mrq->stop || mrq->stop->opcode != MMC_STOP_TRANSMISSION) {
dev_err(&mmc->card->dev, "Error: %s no data\n", __func__);
goto error;
}
cvm_mmc_switch_to(slot);
data = mrq->data;
pr_debug("DMA request blocks: %d block_size: %d total_size: %d\n",
data->blocks, data->blksz, data->blocks * data->blksz);
if (data->timeout_ns)
set_wdog(slot, data->timeout_ns);
WARN_ON(host->current_req);
host->current_req = mrq;
emm_dma = prepare_ext_dma(mmc, mrq);
addr = prepare_dma(host, data);
if (!addr) {
dev_err(host->dev, "prepare_dma failed\n");
goto error;
}
host->dma_active = true;
host->int_enable(host, MIO_EMM_INT_CMD_ERR | MIO_EMM_INT_DMA_DONE |
MIO_EMM_INT_DMA_ERR);
if (host->dmar_fixup)
host->dmar_fixup(host, mrq->cmd, data, addr);
/*
* If we have a valid SD card in the slot, we set the response
* bit mask to check for CRC errors and timeouts only.
* Otherwise, use the default power reset value.
*/
if (mmc_card_sd(mmc->card))
writeq(0x00b00000ull, host->base + MIO_EMM_STS_MASK(host));
else
writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host));
writeq(emm_dma, host->base + MIO_EMM_DMA(host));
return;
error:
mrq->cmd->error = -EINVAL;
if (mrq->done)
mrq->done(mrq);
host->release_bus(host);
}
static void do_read_request(struct cvm_mmc_host *host, struct mmc_request *mrq)
{
sg_miter_start(&host->smi, mrq->data->sg, mrq->data->sg_len,
SG_MITER_ATOMIC | SG_MITER_TO_SG);
}
static void do_write_request(struct cvm_mmc_host *host, struct mmc_request *mrq)
{
unsigned int data_len = mrq->data->blocks * mrq->data->blksz;
struct sg_mapping_iter *smi = &host->smi;
unsigned int bytes_xfered;
int shift = 56;
u64 dat = 0;
/* Copy data to the xmit buffer before issuing the command. */
sg_miter_start(smi, mrq->data->sg, mrq->data->sg_len, SG_MITER_FROM_SG);
/* Auto inc from offset zero, dbuf zero */
writeq(0x10000ull, host->base + MIO_EMM_BUF_IDX(host));
for (bytes_xfered = 0; bytes_xfered < data_len;) {
if (smi->consumed >= smi->length) {
if (!sg_miter_next(smi))
break;
smi->consumed = 0;
}
while (smi->consumed < smi->length && shift >= 0) {
dat |= (u64)((u8 *)smi->addr)[smi->consumed] << shift;
bytes_xfered++;
smi->consumed++;
shift -= 8;
}
if (shift < 0) {
writeq(dat, host->base + MIO_EMM_BUF_DAT(host));
shift = 56;
dat = 0;
}
}
sg_miter_stop(smi);
}
static void cvm_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
struct mmc_command *cmd = mrq->cmd;
struct cvm_mmc_cr_mods mods;
u64 emm_cmd, rsp_sts;
int retries = 100;
/*
* Note about locking:
* All MMC devices share the same bus and controller. Allow only a
* single user of the bootbus/MMC bus at a time. The lock is acquired
* on all entry points from the MMC layer.
*
* For requests the lock is only released after the completion
* interrupt!
*/
host->acquire_bus(host);
if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK ||
cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
return cvm_mmc_dma_request(mmc, mrq);
cvm_mmc_switch_to(slot);
mods = cvm_mmc_get_cr_mods(cmd);
WARN_ON(host->current_req);
host->current_req = mrq;
if (cmd->data) {
if (cmd->data->flags & MMC_DATA_READ)
do_read_request(host, mrq);
else
do_write_request(host, mrq);
if (cmd->data->timeout_ns)
set_wdog(slot, cmd->data->timeout_ns);
} else
set_wdog(slot, 0);
host->dma_active = false;
host->int_enable(host, MIO_EMM_INT_CMD_DONE | MIO_EMM_INT_CMD_ERR);
emm_cmd = FIELD_PREP(MIO_EMM_CMD_VAL, 1) |
FIELD_PREP(MIO_EMM_CMD_CTYPE_XOR, mods.ctype_xor) |
FIELD_PREP(MIO_EMM_CMD_RTYPE_XOR, mods.rtype_xor) |
FIELD_PREP(MIO_EMM_CMD_IDX, cmd->opcode) |
FIELD_PREP(MIO_EMM_CMD_ARG, cmd->arg);
set_bus_id(&emm_cmd, slot->bus_id);
if (cmd->data && mmc_cmd_type(cmd) == MMC_CMD_ADTC)
emm_cmd |= FIELD_PREP(MIO_EMM_CMD_OFFSET,
64 - ((cmd->data->blocks * cmd->data->blksz) / 8));
writeq(0, host->base + MIO_EMM_STS_MASK(host));
retry:
rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host));
if (rsp_sts & MIO_EMM_RSP_STS_DMA_VAL ||
rsp_sts & MIO_EMM_RSP_STS_CMD_VAL ||
rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL ||
rsp_sts & MIO_EMM_RSP_STS_DMA_PEND) {
udelay(10);
if (--retries)
goto retry;
}
if (!retries)
dev_err(host->dev, "Bad status: %llx before command write\n", rsp_sts);
writeq(emm_cmd, host->base + MIO_EMM_CMD(host));
}
static void cvm_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct cvm_mmc_slot *slot = mmc_priv(mmc);
struct cvm_mmc_host *host = slot->host;
int clk_period = 0, power_class = 10, bus_width = 0;
u64 clock, emm_switch;
host->acquire_bus(host);
cvm_mmc_switch_to(slot);
/* Set the power state */
switch (ios->power_mode) {
case MMC_POWER_ON:
break;
case MMC_POWER_OFF:
cvm_mmc_reset_bus(slot);
if (host->global_pwr_gpiod)
host->set_shared_power(host, 0);
else if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
break;
case MMC_POWER_UP:
if (host->global_pwr_gpiod)
host->set_shared_power(host, 1);
else if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
break;
}
/* Convert bus width to HW definition */
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
bus_width = 2;
break;
case MMC_BUS_WIDTH_4:
bus_width = 1;
break;
case MMC_BUS_WIDTH_1:
bus_width = 0;
break;
}
/* DDR is available for 4/8 bit bus width */
if (ios->bus_width && ios->timing == MMC_TIMING_MMC_DDR52)
bus_width |= 4;
/* Change the clock frequency. */
clock = ios->clock;
if (clock > 52000000)
clock = 52000000;
slot->clock = clock;
if (clock)
clk_period = (host->sys_freq + clock - 1) / (2 * clock);
emm_switch = FIELD_PREP(MIO_EMM_SWITCH_HS_TIMING,
(ios->timing == MMC_TIMING_MMC_HS)) |
FIELD_PREP(MIO_EMM_SWITCH_BUS_WIDTH, bus_width) |
FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, power_class) |
FIELD_PREP(MIO_EMM_SWITCH_CLK_HI, clk_period) |
FIELD_PREP(MIO_EMM_SWITCH_CLK_LO, clk_period);
set_bus_id(&emm_switch, slot->bus_id);
if (!switch_val_changed(slot, emm_switch))
goto out;
set_wdog(slot, 0);
do_switch(host, emm_switch);
slot->cached_switch = emm_switch;
out:
host->release_bus(host);
}
static const struct mmc_host_ops cvm_mmc_ops = {
.request = cvm_mmc_request,
.set_ios = cvm_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
};
static void cvm_mmc_set_clock(struct cvm_mmc_slot *slot, unsigned int clock)
{
struct mmc_host *mmc = slot->mmc;
clock = min(clock, mmc->f_max);
clock = max(clock, mmc->f_min);
slot->clock = clock;
}
static int cvm_mmc_init_lowlevel(struct cvm_mmc_slot *slot)
{
struct cvm_mmc_host *host = slot->host;
u64 emm_switch;
/* Enable this bus slot. */
host->emm_cfg |= (1ull << slot->bus_id);
writeq(host->emm_cfg, slot->host->base + MIO_EMM_CFG(host));
udelay(10);
/* Program initial clock speed and power. */
cvm_mmc_set_clock(slot, slot->mmc->f_min);
emm_switch = FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, 10);
emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_HI,
(host->sys_freq / slot->clock) / 2);
emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_LO,
(host->sys_freq / slot->clock) / 2);
/* Make the changes take effect on this bus slot. */
set_bus_id(&emm_switch, slot->bus_id);
do_switch(host, emm_switch);
slot->cached_switch = emm_switch;
/*
* Set watchdog timeout value and default reset value
* for the mask register. Finally, set the CARD_RCA
* bit so that we can get the card address relative
* to the CMD register for CMD7 transactions.
*/
set_wdog(slot, 0);
writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host));
writeq(1, host->base + MIO_EMM_RCA(host));
return 0;
}
static int cvm_mmc_of_parse(struct device *dev, struct cvm_mmc_slot *slot)
{
u32 id, cmd_skew = 0, dat_skew = 0, bus_width = 0;
struct device_node *node = dev->of_node;
struct mmc_host *mmc = slot->mmc;
u64 clock_period;
int ret;
ret = of_property_read_u32(node, "reg", &id);
if (ret) {
dev_err(dev, "Missing or invalid reg property on %pOF\n", node);
return ret;
}
if (id >= CAVIUM_MAX_MMC || slot->host->slot[id]) {
dev_err(dev, "Invalid reg property on %pOF\n", node);
return -EINVAL;
}
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
/*
* Legacy Octeon firmware has no regulator entry, fall-back to
* a hard-coded voltage to get a sane OCR.
*/
if (IS_ERR(mmc->supply.vmmc))
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
/* Common MMC bindings */
ret = mmc_of_parse(mmc);
if (ret)
return ret;
/* Set bus width */
if (!(mmc->caps & (MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA))) {
of_property_read_u32(node, "cavium,bus-max-width", &bus_width);
if (bus_width == 8)
mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA;
else if (bus_width == 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
}
/* Set maximum and minimum frequency */
if (!mmc->f_max)
of_property_read_u32(node, "spi-max-frequency", &mmc->f_max);
if (!mmc->f_max || mmc->f_max > 52000000)
mmc->f_max = 52000000;
mmc->f_min = 400000;
/* Sampling register settings, period in picoseconds */
clock_period = 1000000000000ull / slot->host->sys_freq;
of_property_read_u32(node, "cavium,cmd-clk-skew", &cmd_skew);
of_property_read_u32(node, "cavium,dat-clk-skew", &dat_skew);
slot->cmd_cnt = (cmd_skew + clock_period / 2) / clock_period;
slot->dat_cnt = (dat_skew + clock_period / 2) / clock_period;
return id;
}
int cvm_mmc_of_slot_probe(struct device *dev, struct cvm_mmc_host *host)
{
struct cvm_mmc_slot *slot;
struct mmc_host *mmc;
int ret, id;
mmc = mmc_alloc_host(sizeof(struct cvm_mmc_slot), dev);
if (!mmc)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->mmc = mmc;
slot->host = host;
ret = cvm_mmc_of_parse(dev, slot);
if (ret < 0)
goto error;
id = ret;
/* Set up host parameters */
mmc->ops = &cvm_mmc_ops;
/*
* We only have a 3.3v supply, we cannot support any
* of the UHS modes. We do support the high speed DDR
* modes up to 52MHz.
*
* Disable bounce buffers for max_segs = 1
*/
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_CMD23 | MMC_CAP_POWER_OFF_CARD | MMC_CAP_3_3V_DDR;
if (host->use_sg)
mmc->max_segs = 16;
else
mmc->max_segs = 1;
/* DMA size field can address up to 8 MB */
mmc->max_seg_size = min_t(unsigned int, 8 * 1024 * 1024,
dma_get_max_seg_size(host->dev));
mmc->max_req_size = mmc->max_seg_size;
/* External DMA is in 512 byte blocks */
mmc->max_blk_size = 512;
/* DMA block count field is 15 bits */
mmc->max_blk_count = 32767;
slot->clock = mmc->f_min;
slot->bus_id = id;
slot->cached_rca = 1;
host->acquire_bus(host);
host->slot[id] = slot;
cvm_mmc_switch_to(slot);
cvm_mmc_init_lowlevel(slot);
host->release_bus(host);
ret = mmc_add_host(mmc);
if (ret) {
dev_err(dev, "mmc_add_host() returned %d\n", ret);
slot->host->slot[id] = NULL;
goto error;
}
return 0;
error:
mmc_free_host(slot->mmc);
return ret;
}
int cvm_mmc_of_slot_remove(struct cvm_mmc_slot *slot)
{
mmc_remove_host(slot->mmc);
slot->host->slot[slot->bus_id] = NULL;
mmc_free_host(slot->mmc);
return 0;
}
| linux-master | drivers/mmc/host/cavium.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Marvell MMC/SD/SDIO driver
*
* Authors: Maen Suleiman, Nicolas Pitre
* Copyright (C) 2008-2009 Marvell Ltd.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/mbus.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/of_irq.h>
#include <linux/mmc/host.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/sizes.h>
#include <asm/unaligned.h>
#include "mvsdio.h"
#define DRIVER_NAME "mvsdio"
static int maxfreq;
static int nodma;
struct mvsd_host {
void __iomem *base;
struct mmc_request *mrq;
spinlock_t lock;
unsigned int xfer_mode;
unsigned int intr_en;
unsigned int ctrl;
unsigned int pio_size;
void *pio_ptr;
unsigned int sg_frags;
unsigned int ns_per_clk;
unsigned int clock;
unsigned int base_clock;
struct timer_list timer;
struct mmc_host *mmc;
struct device *dev;
struct clk *clk;
};
#define mvsd_write(offs, val) writel(val, iobase + (offs))
#define mvsd_read(offs) readl(iobase + (offs))
static int mvsd_setup_data(struct mvsd_host *host, struct mmc_data *data)
{
void __iomem *iobase = host->base;
unsigned int tmout;
int tmout_index;
/*
* Hardware weirdness. The FIFO_EMPTY bit of the HW_STATE
* register is sometimes not set before a while when some
* "unusual" data block sizes are used (such as with the SWITCH
* command), even despite the fact that the XFER_DONE interrupt
* was raised. And if another data transfer starts before
* this bit comes to good sense (which eventually happens by
* itself) then the new transfer simply fails with a timeout.
*/
if (!(mvsd_read(MVSD_HW_STATE) & (1 << 13))) {
unsigned long t = jiffies + HZ;
unsigned int hw_state, count = 0;
do {
hw_state = mvsd_read(MVSD_HW_STATE);
if (time_after(jiffies, t)) {
dev_warn(host->dev, "FIFO_EMPTY bit missing\n");
break;
}
count++;
} while (!(hw_state & (1 << 13)));
dev_dbg(host->dev, "*** wait for FIFO_EMPTY bit "
"(hw=0x%04x, count=%d, jiffies=%ld)\n",
hw_state, count, jiffies - (t - HZ));
}
/* If timeout=0 then maximum timeout index is used. */
tmout = DIV_ROUND_UP(data->timeout_ns, host->ns_per_clk);
tmout += data->timeout_clks;
tmout_index = fls(tmout - 1) - 12;
if (tmout_index < 0)
tmout_index = 0;
if (tmout_index > MVSD_HOST_CTRL_TMOUT_MAX)
tmout_index = MVSD_HOST_CTRL_TMOUT_MAX;
dev_dbg(host->dev, "data %s at 0x%08x: blocks=%d blksz=%d tmout=%u (%d)\n",
(data->flags & MMC_DATA_READ) ? "read" : "write",
(u32)sg_virt(data->sg), data->blocks, data->blksz,
tmout, tmout_index);
host->ctrl &= ~MVSD_HOST_CTRL_TMOUT_MASK;
host->ctrl |= MVSD_HOST_CTRL_TMOUT(tmout_index);
mvsd_write(MVSD_HOST_CTRL, host->ctrl);
mvsd_write(MVSD_BLK_COUNT, data->blocks);
mvsd_write(MVSD_BLK_SIZE, data->blksz);
if (nodma || (data->blksz | data->sg->offset) & 3 ||
((!(data->flags & MMC_DATA_READ) && data->sg->offset & 0x3f))) {
/*
* We cannot do DMA on a buffer which offset or size
* is not aligned on a 4-byte boundary.
*
* It also appears the host to card DMA can corrupt
* data when the buffer is not aligned on a 64 byte
* boundary.
*/
host->pio_size = data->blocks * data->blksz;
host->pio_ptr = sg_virt(data->sg);
if (!nodma)
dev_dbg(host->dev, "fallback to PIO for data at 0x%p size %d\n",
host->pio_ptr, host->pio_size);
return 1;
} else {
dma_addr_t phys_addr;
host->sg_frags = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len,
mmc_get_dma_dir(data));
phys_addr = sg_dma_address(data->sg);
mvsd_write(MVSD_SYS_ADDR_LOW, (u32)phys_addr & 0xffff);
mvsd_write(MVSD_SYS_ADDR_HI, (u32)phys_addr >> 16);
return 0;
}
}
static void mvsd_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mvsd_host *host = mmc_priv(mmc);
void __iomem *iobase = host->base;
struct mmc_command *cmd = mrq->cmd;
u32 cmdreg = 0, xfer = 0, intr = 0;
unsigned long flags;
unsigned int timeout;
BUG_ON(host->mrq != NULL);
host->mrq = mrq;
dev_dbg(host->dev, "cmd %d (hw state 0x%04x)\n",
cmd->opcode, mvsd_read(MVSD_HW_STATE));
cmdreg = MVSD_CMD_INDEX(cmd->opcode);
if (cmd->flags & MMC_RSP_BUSY)
cmdreg |= MVSD_CMD_RSP_48BUSY;
else if (cmd->flags & MMC_RSP_136)
cmdreg |= MVSD_CMD_RSP_136;
else if (cmd->flags & MMC_RSP_PRESENT)
cmdreg |= MVSD_CMD_RSP_48;
else
cmdreg |= MVSD_CMD_RSP_NONE;
if (cmd->flags & MMC_RSP_CRC)
cmdreg |= MVSD_CMD_CHECK_CMDCRC;
if (cmd->flags & MMC_RSP_OPCODE)
cmdreg |= MVSD_CMD_INDX_CHECK;
if (cmd->flags & MMC_RSP_PRESENT) {
cmdreg |= MVSD_UNEXPECTED_RESP;
intr |= MVSD_NOR_UNEXP_RSP;
}
if (mrq->data) {
struct mmc_data *data = mrq->data;
int pio;
cmdreg |= MVSD_CMD_DATA_PRESENT | MVSD_CMD_CHECK_DATACRC16;
xfer |= MVSD_XFER_MODE_HW_WR_DATA_EN;
if (data->flags & MMC_DATA_READ)
xfer |= MVSD_XFER_MODE_TO_HOST;
pio = mvsd_setup_data(host, data);
if (pio) {
xfer |= MVSD_XFER_MODE_PIO;
/* PIO section of mvsd_irq has comments on those bits */
if (data->flags & MMC_DATA_WRITE)
intr |= MVSD_NOR_TX_AVAIL;
else if (host->pio_size > 32)
intr |= MVSD_NOR_RX_FIFO_8W;
else
intr |= MVSD_NOR_RX_READY;
}
if (data->stop) {
struct mmc_command *stop = data->stop;
u32 cmd12reg = 0;
mvsd_write(MVSD_AUTOCMD12_ARG_LOW, stop->arg & 0xffff);
mvsd_write(MVSD_AUTOCMD12_ARG_HI, stop->arg >> 16);
if (stop->flags & MMC_RSP_BUSY)
cmd12reg |= MVSD_AUTOCMD12_BUSY;
if (stop->flags & MMC_RSP_OPCODE)
cmd12reg |= MVSD_AUTOCMD12_INDX_CHECK;
cmd12reg |= MVSD_AUTOCMD12_INDEX(stop->opcode);
mvsd_write(MVSD_AUTOCMD12_CMD, cmd12reg);
xfer |= MVSD_XFER_MODE_AUTO_CMD12;
intr |= MVSD_NOR_AUTOCMD12_DONE;
} else {
intr |= MVSD_NOR_XFER_DONE;
}
} else {
intr |= MVSD_NOR_CMD_DONE;
}
mvsd_write(MVSD_ARG_LOW, cmd->arg & 0xffff);
mvsd_write(MVSD_ARG_HI, cmd->arg >> 16);
spin_lock_irqsave(&host->lock, flags);
host->xfer_mode &= MVSD_XFER_MODE_INT_CHK_EN;
host->xfer_mode |= xfer;
mvsd_write(MVSD_XFER_MODE, host->xfer_mode);
mvsd_write(MVSD_NOR_INTR_STATUS, ~MVSD_NOR_CARD_INT);
mvsd_write(MVSD_ERR_INTR_STATUS, 0xffff);
mvsd_write(MVSD_CMD, cmdreg);
host->intr_en &= MVSD_NOR_CARD_INT;
host->intr_en |= intr | MVSD_NOR_ERROR;
mvsd_write(MVSD_NOR_INTR_EN, host->intr_en);
mvsd_write(MVSD_ERR_INTR_EN, 0xffff);
timeout = cmd->busy_timeout ? cmd->busy_timeout : 5000;
mod_timer(&host->timer, jiffies + msecs_to_jiffies(timeout));
spin_unlock_irqrestore(&host->lock, flags);
}
static u32 mvsd_finish_cmd(struct mvsd_host *host, struct mmc_command *cmd,
u32 err_status)
{
void __iomem *iobase = host->base;
if (cmd->flags & MMC_RSP_136) {
unsigned int response[8], i;
for (i = 0; i < 8; i++)
response[i] = mvsd_read(MVSD_RSP(i));
cmd->resp[0] = ((response[0] & 0x03ff) << 22) |
((response[1] & 0xffff) << 6) |
((response[2] & 0xfc00) >> 10);
cmd->resp[1] = ((response[2] & 0x03ff) << 22) |
((response[3] & 0xffff) << 6) |
((response[4] & 0xfc00) >> 10);
cmd->resp[2] = ((response[4] & 0x03ff) << 22) |
((response[5] & 0xffff) << 6) |
((response[6] & 0xfc00) >> 10);
cmd->resp[3] = ((response[6] & 0x03ff) << 22) |
((response[7] & 0x3fff) << 8);
} else if (cmd->flags & MMC_RSP_PRESENT) {
unsigned int response[3], i;
for (i = 0; i < 3; i++)
response[i] = mvsd_read(MVSD_RSP(i));
cmd->resp[0] = ((response[2] & 0x003f) << (8 - 8)) |
((response[1] & 0xffff) << (14 - 8)) |
((response[0] & 0x03ff) << (30 - 8));
cmd->resp[1] = ((response[0] & 0xfc00) >> 10);
cmd->resp[2] = 0;
cmd->resp[3] = 0;
}
if (err_status & MVSD_ERR_CMD_TIMEOUT) {
cmd->error = -ETIMEDOUT;
} else if (err_status & (MVSD_ERR_CMD_CRC | MVSD_ERR_CMD_ENDBIT |
MVSD_ERR_CMD_INDEX | MVSD_ERR_CMD_STARTBIT)) {
cmd->error = -EILSEQ;
}
err_status &= ~(MVSD_ERR_CMD_TIMEOUT | MVSD_ERR_CMD_CRC |
MVSD_ERR_CMD_ENDBIT | MVSD_ERR_CMD_INDEX |
MVSD_ERR_CMD_STARTBIT);
return err_status;
}
static u32 mvsd_finish_data(struct mvsd_host *host, struct mmc_data *data,
u32 err_status)
{
void __iomem *iobase = host->base;
if (host->pio_ptr) {
host->pio_ptr = NULL;
host->pio_size = 0;
} else {
dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->sg_frags,
mmc_get_dma_dir(data));
}
if (err_status & MVSD_ERR_DATA_TIMEOUT)
data->error = -ETIMEDOUT;
else if (err_status & (MVSD_ERR_DATA_CRC | MVSD_ERR_DATA_ENDBIT))
data->error = -EILSEQ;
else if (err_status & MVSD_ERR_XFER_SIZE)
data->error = -EBADE;
err_status &= ~(MVSD_ERR_DATA_TIMEOUT | MVSD_ERR_DATA_CRC |
MVSD_ERR_DATA_ENDBIT | MVSD_ERR_XFER_SIZE);
dev_dbg(host->dev, "data done: blocks_left=%d, bytes_left=%d\n",
mvsd_read(MVSD_CURR_BLK_LEFT), mvsd_read(MVSD_CURR_BYTE_LEFT));
data->bytes_xfered =
(data->blocks - mvsd_read(MVSD_CURR_BLK_LEFT)) * data->blksz;
/* We can't be sure about the last block when errors are detected */
if (data->bytes_xfered && data->error)
data->bytes_xfered -= data->blksz;
/* Handle Auto cmd 12 response */
if (data->stop) {
unsigned int response[3], i;
for (i = 0; i < 3; i++)
response[i] = mvsd_read(MVSD_AUTO_RSP(i));
data->stop->resp[0] = ((response[2] & 0x003f) << (8 - 8)) |
((response[1] & 0xffff) << (14 - 8)) |
((response[0] & 0x03ff) << (30 - 8));
data->stop->resp[1] = ((response[0] & 0xfc00) >> 10);
data->stop->resp[2] = 0;
data->stop->resp[3] = 0;
if (err_status & MVSD_ERR_AUTOCMD12) {
u32 err_cmd12 = mvsd_read(MVSD_AUTOCMD12_ERR_STATUS);
dev_dbg(host->dev, "c12err 0x%04x\n", err_cmd12);
if (err_cmd12 & MVSD_AUTOCMD12_ERR_NOTEXE)
data->stop->error = -ENOEXEC;
else if (err_cmd12 & MVSD_AUTOCMD12_ERR_TIMEOUT)
data->stop->error = -ETIMEDOUT;
else if (err_cmd12)
data->stop->error = -EILSEQ;
err_status &= ~MVSD_ERR_AUTOCMD12;
}
}
return err_status;
}
static irqreturn_t mvsd_irq(int irq, void *dev)
{
struct mvsd_host *host = dev;
void __iomem *iobase = host->base;
u32 intr_status, intr_done_mask;
int irq_handled = 0;
intr_status = mvsd_read(MVSD_NOR_INTR_STATUS);
dev_dbg(host->dev, "intr 0x%04x intr_en 0x%04x hw_state 0x%04x\n",
intr_status, mvsd_read(MVSD_NOR_INTR_EN),
mvsd_read(MVSD_HW_STATE));
/*
* It looks like, SDIO IP can issue one late, spurious irq
* although all irqs should be disabled. To work around this,
* bail out early, if we didn't expect any irqs to occur.
*/
if (!mvsd_read(MVSD_NOR_INTR_EN) && !mvsd_read(MVSD_ERR_INTR_EN)) {
dev_dbg(host->dev, "spurious irq detected intr 0x%04x intr_en 0x%04x erri 0x%04x erri_en 0x%04x\n",
mvsd_read(MVSD_NOR_INTR_STATUS),
mvsd_read(MVSD_NOR_INTR_EN),
mvsd_read(MVSD_ERR_INTR_STATUS),
mvsd_read(MVSD_ERR_INTR_EN));
return IRQ_HANDLED;
}
spin_lock(&host->lock);
/* PIO handling, if needed. Messy business... */
if (host->pio_size &&
(intr_status & host->intr_en &
(MVSD_NOR_RX_READY | MVSD_NOR_RX_FIFO_8W))) {
u16 *p = host->pio_ptr;
int s = host->pio_size;
while (s >= 32 && (intr_status & MVSD_NOR_RX_FIFO_8W)) {
readsw(iobase + MVSD_FIFO, p, 16);
p += 16;
s -= 32;
intr_status = mvsd_read(MVSD_NOR_INTR_STATUS);
}
/*
* Normally we'd use < 32 here, but the RX_FIFO_8W bit
* doesn't appear to assert when there is exactly 32 bytes
* (8 words) left to fetch in a transfer.
*/
if (s <= 32) {
while (s >= 4 && (intr_status & MVSD_NOR_RX_READY)) {
put_unaligned(mvsd_read(MVSD_FIFO), p++);
put_unaligned(mvsd_read(MVSD_FIFO), p++);
s -= 4;
intr_status = mvsd_read(MVSD_NOR_INTR_STATUS);
}
if (s && s < 4 && (intr_status & MVSD_NOR_RX_READY)) {
u16 val[2] = {0, 0};
val[0] = mvsd_read(MVSD_FIFO);
val[1] = mvsd_read(MVSD_FIFO);
memcpy(p, ((void *)&val) + 4 - s, s);
s = 0;
intr_status = mvsd_read(MVSD_NOR_INTR_STATUS);
}
if (s == 0) {
host->intr_en &=
~(MVSD_NOR_RX_READY | MVSD_NOR_RX_FIFO_8W);
mvsd_write(MVSD_NOR_INTR_EN, host->intr_en);
} else if (host->intr_en & MVSD_NOR_RX_FIFO_8W) {
host->intr_en &= ~MVSD_NOR_RX_FIFO_8W;
host->intr_en |= MVSD_NOR_RX_READY;
mvsd_write(MVSD_NOR_INTR_EN, host->intr_en);
}
}
dev_dbg(host->dev, "pio %d intr 0x%04x hw_state 0x%04x\n",
s, intr_status, mvsd_read(MVSD_HW_STATE));
host->pio_ptr = p;
host->pio_size = s;
irq_handled = 1;
} else if (host->pio_size &&
(intr_status & host->intr_en &
(MVSD_NOR_TX_AVAIL | MVSD_NOR_TX_FIFO_8W))) {
u16 *p = host->pio_ptr;
int s = host->pio_size;
/*
* The TX_FIFO_8W bit is unreliable. When set, bursting
* 16 halfwords all at once in the FIFO drops data. Actually
* TX_AVAIL does go off after only one word is pushed even if
* TX_FIFO_8W remains set.
*/
while (s >= 4 && (intr_status & MVSD_NOR_TX_AVAIL)) {
mvsd_write(MVSD_FIFO, get_unaligned(p++));
mvsd_write(MVSD_FIFO, get_unaligned(p++));
s -= 4;
intr_status = mvsd_read(MVSD_NOR_INTR_STATUS);
}
if (s < 4) {
if (s && (intr_status & MVSD_NOR_TX_AVAIL)) {
u16 val[2] = {0, 0};
memcpy(((void *)&val) + 4 - s, p, s);
mvsd_write(MVSD_FIFO, val[0]);
mvsd_write(MVSD_FIFO, val[1]);
s = 0;
intr_status = mvsd_read(MVSD_NOR_INTR_STATUS);
}
if (s == 0) {
host->intr_en &=
~(MVSD_NOR_TX_AVAIL | MVSD_NOR_TX_FIFO_8W);
mvsd_write(MVSD_NOR_INTR_EN, host->intr_en);
}
}
dev_dbg(host->dev, "pio %d intr 0x%04x hw_state 0x%04x\n",
s, intr_status, mvsd_read(MVSD_HW_STATE));
host->pio_ptr = p;
host->pio_size = s;
irq_handled = 1;
}
mvsd_write(MVSD_NOR_INTR_STATUS, intr_status);
intr_done_mask = MVSD_NOR_CARD_INT | MVSD_NOR_RX_READY |
MVSD_NOR_RX_FIFO_8W | MVSD_NOR_TX_FIFO_8W;
if (intr_status & host->intr_en & ~intr_done_mask) {
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd = mrq->cmd;
u32 err_status = 0;
del_timer(&host->timer);
host->mrq = NULL;
host->intr_en &= MVSD_NOR_CARD_INT;
mvsd_write(MVSD_NOR_INTR_EN, host->intr_en);
mvsd_write(MVSD_ERR_INTR_EN, 0);
spin_unlock(&host->lock);
if (intr_status & MVSD_NOR_UNEXP_RSP) {
cmd->error = -EPROTO;
} else if (intr_status & MVSD_NOR_ERROR) {
err_status = mvsd_read(MVSD_ERR_INTR_STATUS);
dev_dbg(host->dev, "err 0x%04x\n", err_status);
}
err_status = mvsd_finish_cmd(host, cmd, err_status);
if (mrq->data)
err_status = mvsd_finish_data(host, mrq->data, err_status);
if (err_status) {
dev_err(host->dev, "unhandled error status %#04x\n",
err_status);
cmd->error = -ENOMSG;
}
mmc_request_done(host->mmc, mrq);
irq_handled = 1;
} else
spin_unlock(&host->lock);
if (intr_status & MVSD_NOR_CARD_INT) {
mmc_signal_sdio_irq(host->mmc);
irq_handled = 1;
}
if (irq_handled)
return IRQ_HANDLED;
dev_err(host->dev, "unhandled interrupt status=0x%04x en=0x%04x pio=%d\n",
intr_status, host->intr_en, host->pio_size);
return IRQ_NONE;
}
static void mvsd_timeout_timer(struct timer_list *t)
{
struct mvsd_host *host = from_timer(host, t, timer);
void __iomem *iobase = host->base;
struct mmc_request *mrq;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
mrq = host->mrq;
if (mrq) {
dev_err(host->dev, "Timeout waiting for hardware interrupt.\n");
dev_err(host->dev, "hw_state=0x%04x, intr_status=0x%04x intr_en=0x%04x\n",
mvsd_read(MVSD_HW_STATE),
mvsd_read(MVSD_NOR_INTR_STATUS),
mvsd_read(MVSD_NOR_INTR_EN));
host->mrq = NULL;
mvsd_write(MVSD_SW_RESET, MVSD_SW_RESET_NOW);
host->xfer_mode &= MVSD_XFER_MODE_INT_CHK_EN;
mvsd_write(MVSD_XFER_MODE, host->xfer_mode);
host->intr_en &= MVSD_NOR_CARD_INT;
mvsd_write(MVSD_NOR_INTR_EN, host->intr_en);
mvsd_write(MVSD_ERR_INTR_EN, 0);
mvsd_write(MVSD_ERR_INTR_STATUS, 0xffff);
mrq->cmd->error = -ETIMEDOUT;
mvsd_finish_cmd(host, mrq->cmd, 0);
if (mrq->data) {
mrq->data->error = -ETIMEDOUT;
mvsd_finish_data(host, mrq->data, 0);
}
}
spin_unlock_irqrestore(&host->lock, flags);
if (mrq)
mmc_request_done(host->mmc, mrq);
}
static void mvsd_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct mvsd_host *host = mmc_priv(mmc);
void __iomem *iobase = host->base;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (enable) {
host->xfer_mode |= MVSD_XFER_MODE_INT_CHK_EN;
host->intr_en |= MVSD_NOR_CARD_INT;
} else {
host->xfer_mode &= ~MVSD_XFER_MODE_INT_CHK_EN;
host->intr_en &= ~MVSD_NOR_CARD_INT;
}
mvsd_write(MVSD_XFER_MODE, host->xfer_mode);
mvsd_write(MVSD_NOR_INTR_EN, host->intr_en);
spin_unlock_irqrestore(&host->lock, flags);
}
static void mvsd_power_up(struct mvsd_host *host)
{
void __iomem *iobase = host->base;
dev_dbg(host->dev, "power up\n");
mvsd_write(MVSD_NOR_INTR_EN, 0);
mvsd_write(MVSD_ERR_INTR_EN, 0);
mvsd_write(MVSD_SW_RESET, MVSD_SW_RESET_NOW);
mvsd_write(MVSD_XFER_MODE, 0);
mvsd_write(MVSD_NOR_STATUS_EN, 0xffff);
mvsd_write(MVSD_ERR_STATUS_EN, 0xffff);
mvsd_write(MVSD_NOR_INTR_STATUS, 0xffff);
mvsd_write(MVSD_ERR_INTR_STATUS, 0xffff);
}
static void mvsd_power_down(struct mvsd_host *host)
{
void __iomem *iobase = host->base;
dev_dbg(host->dev, "power down\n");
mvsd_write(MVSD_NOR_INTR_EN, 0);
mvsd_write(MVSD_ERR_INTR_EN, 0);
mvsd_write(MVSD_SW_RESET, MVSD_SW_RESET_NOW);
mvsd_write(MVSD_XFER_MODE, MVSD_XFER_MODE_STOP_CLK);
mvsd_write(MVSD_NOR_STATUS_EN, 0);
mvsd_write(MVSD_ERR_STATUS_EN, 0);
mvsd_write(MVSD_NOR_INTR_STATUS, 0xffff);
mvsd_write(MVSD_ERR_INTR_STATUS, 0xffff);
}
static void mvsd_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mvsd_host *host = mmc_priv(mmc);
void __iomem *iobase = host->base;
u32 ctrl_reg = 0;
if (ios->power_mode == MMC_POWER_UP)
mvsd_power_up(host);
if (ios->clock == 0) {
mvsd_write(MVSD_XFER_MODE, MVSD_XFER_MODE_STOP_CLK);
mvsd_write(MVSD_CLK_DIV, MVSD_BASE_DIV_MAX);
host->clock = 0;
dev_dbg(host->dev, "clock off\n");
} else if (ios->clock != host->clock) {
u32 m = DIV_ROUND_UP(host->base_clock, ios->clock) - 1;
if (m > MVSD_BASE_DIV_MAX)
m = MVSD_BASE_DIV_MAX;
mvsd_write(MVSD_CLK_DIV, m);
host->clock = ios->clock;
host->ns_per_clk = 1000000000 / (host->base_clock / (m+1));
dev_dbg(host->dev, "clock=%d (%d), div=0x%04x\n",
ios->clock, host->base_clock / (m+1), m);
}
/* default transfer mode */
ctrl_reg |= MVSD_HOST_CTRL_BIG_ENDIAN;
ctrl_reg &= ~MVSD_HOST_CTRL_LSB_FIRST;
/* default to maximum timeout */
ctrl_reg |= MVSD_HOST_CTRL_TMOUT_MASK;
ctrl_reg |= MVSD_HOST_CTRL_TMOUT_EN;
if (ios->bus_mode == MMC_BUSMODE_PUSHPULL)
ctrl_reg |= MVSD_HOST_CTRL_PUSH_PULL_EN;
if (ios->bus_width == MMC_BUS_WIDTH_4)
ctrl_reg |= MVSD_HOST_CTRL_DATA_WIDTH_4_BITS;
/*
* The HI_SPEED_EN bit is causing trouble with many (but not all)
* high speed SD, SDHC and SDIO cards. Not enabling that bit
* makes all cards work. So let's just ignore that bit for now
* and revisit this issue if problems for not enabling this bit
* are ever reported.
*/
#if 0
if (ios->timing == MMC_TIMING_MMC_HS ||
ios->timing == MMC_TIMING_SD_HS)
ctrl_reg |= MVSD_HOST_CTRL_HI_SPEED_EN;
#endif
host->ctrl = ctrl_reg;
mvsd_write(MVSD_HOST_CTRL, ctrl_reg);
dev_dbg(host->dev, "ctrl 0x%04x: %s %s %s\n", ctrl_reg,
(ctrl_reg & MVSD_HOST_CTRL_PUSH_PULL_EN) ?
"push-pull" : "open-drain",
(ctrl_reg & MVSD_HOST_CTRL_DATA_WIDTH_4_BITS) ?
"4bit-width" : "1bit-width",
(ctrl_reg & MVSD_HOST_CTRL_HI_SPEED_EN) ?
"high-speed" : "");
if (ios->power_mode == MMC_POWER_OFF)
mvsd_power_down(host);
}
static const struct mmc_host_ops mvsd_ops = {
.request = mvsd_request,
.get_ro = mmc_gpio_get_ro,
.set_ios = mvsd_set_ios,
.enable_sdio_irq = mvsd_enable_sdio_irq,
};
static void
mv_conf_mbus_windows(struct mvsd_host *host,
const struct mbus_dram_target_info *dram)
{
void __iomem *iobase = host->base;
int i;
for (i = 0; i < 4; i++) {
writel(0, iobase + MVSD_WINDOW_CTRL(i));
writel(0, iobase + MVSD_WINDOW_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel(((cs->size - 1) & 0xffff0000) |
(cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
iobase + MVSD_WINDOW_CTRL(i));
writel(cs->base, iobase + MVSD_WINDOW_BASE(i));
}
}
static int mvsd_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct mmc_host *mmc = NULL;
struct mvsd_host *host = NULL;
const struct mbus_dram_target_info *dram;
int ret, irq;
if (!np) {
dev_err(&pdev->dev, "no DT node\n");
return -ENODEV;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
mmc = mmc_alloc_host(sizeof(struct mvsd_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto out;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->dev = &pdev->dev;
/*
* Some non-DT platforms do not pass a clock, and the clock
* frequency is passed through platform_data. On DT platforms,
* a clock must always be passed, even if there is no gatable
* clock associated to the SDIO interface (it can simply be a
* fixed rate clock).
*/
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
dev_err(&pdev->dev, "no clock associated\n");
ret = -EINVAL;
goto out;
}
clk_prepare_enable(host->clk);
mmc->ops = &mvsd_ops;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->f_min = DIV_ROUND_UP(host->base_clock, MVSD_BASE_DIV_MAX);
mmc->f_max = MVSD_CLOCKRATE_MAX;
mmc->max_blk_size = 2048;
mmc->max_blk_count = 65535;
mmc->max_segs = 1;
mmc->max_seg_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
host->base_clock = clk_get_rate(host->clk) / 2;
ret = mmc_of_parse(mmc);
if (ret < 0)
goto out;
if (maxfreq)
mmc->f_max = maxfreq;
spin_lock_init(&host->lock);
host->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto out;
}
/* (Re-)program MBUS remapping windows if we are asked to. */
dram = mv_mbus_dram_info();
if (dram)
mv_conf_mbus_windows(host, dram);
mvsd_power_down(host);
ret = devm_request_irq(&pdev->dev, irq, mvsd_irq, 0, DRIVER_NAME, host);
if (ret) {
dev_err(&pdev->dev, "cannot assign irq %d\n", irq);
goto out;
}
timer_setup(&host->timer, mvsd_timeout_timer, 0);
platform_set_drvdata(pdev, mmc);
ret = mmc_add_host(mmc);
if (ret)
goto out;
if (!(mmc->caps & MMC_CAP_NEEDS_POLL))
dev_dbg(&pdev->dev, "using GPIO for card detection\n");
else
dev_dbg(&pdev->dev, "lacking card detect (fall back to polling)\n");
return 0;
out:
if (mmc) {
if (!IS_ERR(host->clk))
clk_disable_unprepare(host->clk);
mmc_free_host(mmc);
}
return ret;
}
static void mvsd_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct mvsd_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
del_timer_sync(&host->timer);
mvsd_power_down(host);
if (!IS_ERR(host->clk))
clk_disable_unprepare(host->clk);
mmc_free_host(mmc);
}
static const struct of_device_id mvsdio_dt_ids[] = {
{ .compatible = "marvell,orion-sdio" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mvsdio_dt_ids);
static struct platform_driver mvsd_driver = {
.probe = mvsd_probe,
.remove_new = mvsd_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = mvsdio_dt_ids,
},
};
module_platform_driver(mvsd_driver);
/* maximum card clock frequency (default 50MHz) */
module_param(maxfreq, int, 0);
/* force PIO transfers all the time */
module_param(nodma, int, 0);
MODULE_AUTHOR("Maen Suleiman, Nicolas Pitre");
MODULE_DESCRIPTION("Marvell MMC,SD,SDIO Host Controller driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mvsdio");
| linux-master | drivers/mmc/host/mvsdio.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
*
* Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mmc/mmc.h>
#include <linux/pm_runtime.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/iopoll.h>
#include <linux/regulator/consumer.h>
#include <linux/interconnect.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/reset.h>
#include <soc/qcom/ice.h>
#include "sdhci-cqhci.h"
#include "sdhci-pltfm.h"
#include "cqhci.h"
#define CORE_MCI_VERSION 0x50
#define CORE_VERSION_MAJOR_SHIFT 28
#define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
#define CORE_VERSION_MINOR_MASK 0xff
#define CORE_MCI_GENERICS 0x70
#define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
#define HC_MODE_EN 0x1
#define CORE_POWER 0x0
#define CORE_SW_RST BIT(7)
#define FF_CLK_SW_RST_DIS BIT(13)
#define CORE_PWRCTL_BUS_OFF BIT(0)
#define CORE_PWRCTL_BUS_ON BIT(1)
#define CORE_PWRCTL_IO_LOW BIT(2)
#define CORE_PWRCTL_IO_HIGH BIT(3)
#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
#define CORE_PWRCTL_BUS_FAIL BIT(1)
#define CORE_PWRCTL_IO_SUCCESS BIT(2)
#define CORE_PWRCTL_IO_FAIL BIT(3)
#define REQ_BUS_OFF BIT(0)
#define REQ_BUS_ON BIT(1)
#define REQ_IO_LOW BIT(2)
#define REQ_IO_HIGH BIT(3)
#define INT_MASK 0xf
#define MAX_PHASES 16
#define CORE_DLL_LOCK BIT(7)
#define CORE_DDR_DLL_LOCK BIT(11)
#define CORE_DLL_EN BIT(16)
#define CORE_CDR_EN BIT(17)
#define CORE_CK_OUT_EN BIT(18)
#define CORE_CDR_EXT_EN BIT(19)
#define CORE_DLL_PDN BIT(29)
#define CORE_DLL_RST BIT(30)
#define CORE_CMD_DAT_TRACK_SEL BIT(0)
#define CORE_DDR_CAL_EN BIT(0)
#define CORE_FLL_CYCLE_CNT BIT(18)
#define CORE_DLL_CLOCK_DISABLE BIT(21)
#define DLL_USR_CTL_POR_VAL 0x10800
#define ENABLE_DLL_LOCK_STATUS BIT(26)
#define FINE_TUNE_MODE_EN BIT(27)
#define BIAS_OK_SIGNAL BIT(29)
#define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
#define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
#define CORE_CLK_PWRSAVE BIT(1)
#define CORE_HC_MCLK_SEL_DFLT (2 << 8)
#define CORE_HC_MCLK_SEL_HS400 (3 << 8)
#define CORE_HC_MCLK_SEL_MASK (3 << 8)
#define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
#define CORE_IO_PAD_PWR_SWITCH BIT(16)
#define CORE_HC_SELECT_IN_EN BIT(18)
#define CORE_HC_SELECT_IN_HS400 (6 << 19)
#define CORE_HC_SELECT_IN_MASK (7 << 19)
#define CORE_3_0V_SUPPORT BIT(25)
#define CORE_1_8V_SUPPORT BIT(26)
#define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
#define CORE_CSR_CDC_CTLR_CFG0 0x130
#define CORE_SW_TRIG_FULL_CALIB BIT(16)
#define CORE_HW_AUTOCAL_ENA BIT(17)
#define CORE_CSR_CDC_CTLR_CFG1 0x134
#define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
#define CORE_TIMER_ENA BIT(16)
#define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
#define CORE_CSR_CDC_REFCOUNT_CFG 0x140
#define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
#define CORE_CDC_OFFSET_CFG 0x14C
#define CORE_CSR_CDC_DELAY_CFG 0x150
#define CORE_CDC_SLAVE_DDA_CFG 0x160
#define CORE_CSR_CDC_STATUS0 0x164
#define CORE_CALIBRATION_DONE BIT(0)
#define CORE_CDC_ERROR_CODE_MASK 0x7000000
#define CORE_CSR_CDC_GEN_CFG 0x178
#define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
#define CORE_CDC_SWITCH_RC_EN BIT(1)
#define CORE_CDC_T4_DLY_SEL BIT(0)
#define CORE_CMDIN_RCLK_EN BIT(1)
#define CORE_START_CDC_TRAFFIC BIT(6)
#define CORE_PWRSAVE_DLL BIT(3)
#define DDR_CONFIG_POR_VAL 0x80040873
#define INVALID_TUNING_PHASE -1
#define SDHCI_MSM_MIN_CLOCK 400000
#define CORE_FREQ_100MHZ (100 * 1000 * 1000)
#define CDR_SELEXT_SHIFT 20
#define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
#define CMUX_SHIFT_PHASE_SHIFT 24
#define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
#define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
/* Timeout value to avoid infinite waiting for pwr_irq */
#define MSM_PWR_IRQ_TIMEOUT_MS 5000
/* Max load for eMMC Vdd-io supply */
#define MMC_VQMMC_MAX_LOAD_UA 325000
#define msm_host_readl(msm_host, host, offset) \
msm_host->var_ops->msm_readl_relaxed(host, offset)
#define msm_host_writel(msm_host, val, host, offset) \
msm_host->var_ops->msm_writel_relaxed(val, host, offset)
/* CQHCI vendor specific registers */
#define CQHCI_VENDOR_CFG1 0xA00
#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
struct sdhci_msm_offset {
u32 core_hc_mode;
u32 core_mci_data_cnt;
u32 core_mci_status;
u32 core_mci_fifo_cnt;
u32 core_mci_version;
u32 core_generics;
u32 core_testbus_config;
u32 core_testbus_sel2_bit;
u32 core_testbus_ena;
u32 core_testbus_sel2;
u32 core_pwrctl_status;
u32 core_pwrctl_mask;
u32 core_pwrctl_clear;
u32 core_pwrctl_ctl;
u32 core_sdcc_debug_reg;
u32 core_dll_config;
u32 core_dll_status;
u32 core_vendor_spec;
u32 core_vendor_spec_adma_err_addr0;
u32 core_vendor_spec_adma_err_addr1;
u32 core_vendor_spec_func2;
u32 core_vendor_spec_capabilities0;
u32 core_ddr_200_cfg;
u32 core_vendor_spec3;
u32 core_dll_config_2;
u32 core_dll_config_3;
u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
u32 core_ddr_config;
u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
};
static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
.core_mci_data_cnt = 0x35c,
.core_mci_status = 0x324,
.core_mci_fifo_cnt = 0x308,
.core_mci_version = 0x318,
.core_generics = 0x320,
.core_testbus_config = 0x32c,
.core_testbus_sel2_bit = 3,
.core_testbus_ena = (1 << 31),
.core_testbus_sel2 = (1 << 3),
.core_pwrctl_status = 0x240,
.core_pwrctl_mask = 0x244,
.core_pwrctl_clear = 0x248,
.core_pwrctl_ctl = 0x24c,
.core_sdcc_debug_reg = 0x358,
.core_dll_config = 0x200,
.core_dll_status = 0x208,
.core_vendor_spec = 0x20c,
.core_vendor_spec_adma_err_addr0 = 0x214,
.core_vendor_spec_adma_err_addr1 = 0x218,
.core_vendor_spec_func2 = 0x210,
.core_vendor_spec_capabilities0 = 0x21c,
.core_ddr_200_cfg = 0x224,
.core_vendor_spec3 = 0x250,
.core_dll_config_2 = 0x254,
.core_dll_config_3 = 0x258,
.core_ddr_config = 0x25c,
.core_dll_usr_ctl = 0x388,
};
static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
.core_hc_mode = 0x78,
.core_mci_data_cnt = 0x30,
.core_mci_status = 0x34,
.core_mci_fifo_cnt = 0x44,
.core_mci_version = 0x050,
.core_generics = 0x70,
.core_testbus_config = 0x0cc,
.core_testbus_sel2_bit = 4,
.core_testbus_ena = (1 << 3),
.core_testbus_sel2 = (1 << 4),
.core_pwrctl_status = 0xdc,
.core_pwrctl_mask = 0xe0,
.core_pwrctl_clear = 0xe4,
.core_pwrctl_ctl = 0xe8,
.core_sdcc_debug_reg = 0x124,
.core_dll_config = 0x100,
.core_dll_status = 0x108,
.core_vendor_spec = 0x10c,
.core_vendor_spec_adma_err_addr0 = 0x114,
.core_vendor_spec_adma_err_addr1 = 0x118,
.core_vendor_spec_func2 = 0x110,
.core_vendor_spec_capabilities0 = 0x11c,
.core_ddr_200_cfg = 0x184,
.core_vendor_spec3 = 0x1b0,
.core_dll_config_2 = 0x1b4,
.core_ddr_config_old = 0x1b8,
.core_ddr_config = 0x1bc,
};
struct sdhci_msm_variant_ops {
u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
u32 offset);
};
/*
* From V5, register spaces have changed. Wrap this info in a structure
* and choose the data_structure based on version info mentioned in DT.
*/
struct sdhci_msm_variant_info {
bool mci_removed;
bool restore_dll_config;
const struct sdhci_msm_variant_ops *var_ops;
const struct sdhci_msm_offset *offset;
};
struct sdhci_msm_host {
struct platform_device *pdev;
void __iomem *core_mem; /* MSM SDCC mapped address */
int pwr_irq; /* power irq */
struct clk *bus_clk; /* SDHC bus voter clock */
struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
/* core, iface, cal and sleep clocks */
struct clk_bulk_data bulk_clks[4];
#ifdef CONFIG_MMC_CRYPTO
struct qcom_ice *ice;
#endif
unsigned long clk_rate;
struct mmc_host *mmc;
bool use_14lpp_dll_reset;
bool tuning_done;
bool calibration_done;
u8 saved_tuning_phase;
bool use_cdclp533;
u32 curr_pwr_state;
u32 curr_io_level;
wait_queue_head_t pwr_irq_wait;
bool pwr_irq_flag;
u32 caps_0;
bool mci_removed;
bool restore_dll_config;
const struct sdhci_msm_variant_ops *var_ops;
const struct sdhci_msm_offset *offset;
bool use_cdr;
u32 transfer_mode;
bool updated_ddr_cfg;
bool uses_tassadar_dll;
u32 dll_config;
u32 ddr_config;
bool vqmmc_enabled;
};
static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return msm_host->offset;
}
/*
* APIs to read/write to vendor specific registers which were there in the
* core_mem region before MCI was removed.
*/
static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
u32 offset)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return readl_relaxed(msm_host->core_mem + offset);
}
static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
u32 offset)
{
return readl_relaxed(host->ioaddr + offset);
}
static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
struct sdhci_host *host, u32 offset)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
writel_relaxed(val, msm_host->core_mem + offset);
}
static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
struct sdhci_host *host, u32 offset)
{
writel_relaxed(val, host->ioaddr + offset);
}
static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
{
struct mmc_ios ios = host->mmc->ios;
/*
* The SDHC requires internal clock frequency to be double the
* actual clock that will be set for DDR mode. The controller
* uses the faster clock(100/400MHz) for some of its parts and
* send the actual required clock (50/200MHz) to the card.
*/
if (ios.timing == MMC_TIMING_UHS_DDR50 ||
ios.timing == MMC_TIMING_MMC_DDR52 ||
ios.timing == MMC_TIMING_MMC_HS400 ||
host->flags & SDHCI_HS400_TUNING)
return 2;
return 1;
}
static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios curr_ios = host->mmc->ios;
struct clk *core_clk = msm_host->bulk_clks[0].clk;
unsigned long achieved_rate;
unsigned int desired_rate;
unsigned int mult;
int rc;
mult = msm_get_clock_mult_for_bus_mode(host);
desired_rate = clock * mult;
rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
if (rc) {
pr_err("%s: Failed to set clock at rate %u at timing %d\n",
mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
return;
}
/*
* Qualcomm clock drivers by default round clock _up_ if they can't
* make the requested rate. This is not good for SD. Yell if we
* encounter it.
*/
achieved_rate = clk_get_rate(core_clk);
if (achieved_rate > desired_rate)
pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
mmc_hostname(host->mmc), desired_rate, achieved_rate);
host->mmc->actual_clock = achieved_rate / mult;
/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
msm_host->clk_rate = desired_rate;
pr_debug("%s: Setting clock at rate %lu at timing %d\n",
mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
}
/* Platform specific tuning */
static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
{
u32 wait_cnt = 50;
u8 ck_out_en;
struct mmc_host *mmc = host->mmc;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
/* Poll for CK_OUT_EN bit. max. poll time = 50us */
ck_out_en = !!(readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & CORE_CK_OUT_EN);
while (ck_out_en != poll) {
if (--wait_cnt == 0) {
dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
mmc_hostname(mmc), poll);
return -ETIMEDOUT;
}
udelay(1);
ck_out_en = !!(readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & CORE_CK_OUT_EN);
}
return 0;
}
static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
{
int rc;
static const u8 grey_coded_phase_table[] = {
0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
};
unsigned long flags;
u32 config;
struct mmc_host *mmc = host->mmc;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
if (phase > 0xf)
return -EINVAL;
spin_lock_irqsave(&host->lock, flags);
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
rc = msm_dll_poll_ck_out_en(host, 0);
if (rc)
goto err_out;
/*
* Write the selected DLL clock output phase (0 ... 15)
* to CDR_SELEXT bit field of DLL_CONFIG register.
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~CDR_SELEXT_MASK;
config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
rc = msm_dll_poll_ck_out_en(host, 1);
if (rc)
goto err_out;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CDR_EN;
config &= ~CORE_CDR_EXT_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
goto out;
err_out:
dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
mmc_hostname(mmc), phase);
out:
spin_unlock_irqrestore(&host->lock, flags);
return rc;
}
/*
* Find out the greatest range of consecuitive selected
* DLL clock output phases that can be used as sampling
* setting for SD3.0 UHS-I card read operation (in SDR104
* timing mode) or for eMMC4.5 card read operation (in
* HS400/HS200 timing mode).
* Select the 3/4 of the range and configure the DLL with the
* selected DLL clock output phase.
*/
static int msm_find_most_appropriate_phase(struct sdhci_host *host,
u8 *phase_table, u8 total_phases)
{
int ret;
u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
u8 phases_per_row[MAX_PHASES] = { 0 };
int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
bool phase_0_found = false, phase_15_found = false;
struct mmc_host *mmc = host->mmc;
if (!total_phases || (total_phases > MAX_PHASES)) {
dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
mmc_hostname(mmc), total_phases);
return -EINVAL;
}
for (cnt = 0; cnt < total_phases; cnt++) {
ranges[row_index][col_index] = phase_table[cnt];
phases_per_row[row_index] += 1;
col_index++;
if ((cnt + 1) == total_phases) {
continue;
/* check if next phase in phase_table is consecutive or not */
} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
row_index++;
col_index = 0;
}
}
if (row_index >= MAX_PHASES)
return -EINVAL;
/* Check if phase-0 is present in first valid window? */
if (!ranges[0][0]) {
phase_0_found = true;
phase_0_raw_index = 0;
/* Check if cycle exist between 2 valid windows */
for (cnt = 1; cnt <= row_index; cnt++) {
if (phases_per_row[cnt]) {
for (i = 0; i < phases_per_row[cnt]; i++) {
if (ranges[cnt][i] == 15) {
phase_15_found = true;
phase_15_raw_index = cnt;
break;
}
}
}
}
}
/* If 2 valid windows form cycle then merge them as single window */
if (phase_0_found && phase_15_found) {
/* number of phases in raw where phase 0 is present */
u8 phases_0 = phases_per_row[phase_0_raw_index];
/* number of phases in raw where phase 15 is present */
u8 phases_15 = phases_per_row[phase_15_raw_index];
if (phases_0 + phases_15 >= MAX_PHASES)
/*
* If there are more than 1 phase windows then total
* number of phases in both the windows should not be
* more than or equal to MAX_PHASES.
*/
return -EINVAL;
/* Merge 2 cyclic windows */
i = phases_15;
for (cnt = 0; cnt < phases_0; cnt++) {
ranges[phase_15_raw_index][i] =
ranges[phase_0_raw_index][cnt];
if (++i >= MAX_PHASES)
break;
}
phases_per_row[phase_0_raw_index] = 0;
phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
}
for (cnt = 0; cnt <= row_index; cnt++) {
if (phases_per_row[cnt] > curr_max) {
curr_max = phases_per_row[cnt];
selected_row_index = cnt;
}
}
i = (curr_max * 3) / 4;
if (i)
i--;
ret = ranges[selected_row_index][i];
if (ret >= MAX_PHASES) {
ret = -EINVAL;
dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
mmc_hostname(mmc), ret);
}
return ret;
}
static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
{
u32 mclk_freq = 0, config;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
/* Program the MCLK value to MCLK_FREQ bit field */
if (host->clock <= 112000000)
mclk_freq = 0;
else if (host->clock <= 125000000)
mclk_freq = 1;
else if (host->clock <= 137000000)
mclk_freq = 2;
else if (host->clock <= 150000000)
mclk_freq = 3;
else if (host->clock <= 162000000)
mclk_freq = 4;
else if (host->clock <= 175000000)
mclk_freq = 5;
else if (host->clock <= 187000000)
mclk_freq = 6;
else if (host->clock <= 200000000)
mclk_freq = 7;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~CMUX_SHIFT_PHASE_MASK;
config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
}
/* Initialize the DLL (Programmable Delay Line) */
static int msm_init_cm_dll(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int wait_cnt = 50;
unsigned long flags, xo_clk = 0;
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
xo_clk = clk_get_rate(msm_host->xo_clk);
spin_lock_irqsave(&host->lock, flags);
/*
* Make sure that clock is always enabled when DLL
* tuning is in progress. Keeping PWRSAVE ON may
* turn off the clock.
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_CLK_PWRSAVE;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
if (msm_host->dll_config)
writel_relaxed(msm_host->dll_config,
host->ioaddr + msm_offset->core_dll_config);
if (msm_host->use_14lpp_dll_reset) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config &= ~CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
config |= CORE_DLL_CLOCK_DISABLE;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config_2);
}
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_RST;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
if (!msm_host->dll_config)
msm_cm_dll_set_freq(host);
if (msm_host->use_14lpp_dll_reset &&
!IS_ERR_OR_NULL(msm_host->xo_clk)) {
u32 mclk_freq = 0;
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
config &= CORE_FLL_CYCLE_CNT;
if (config)
mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
xo_clk);
else
mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
xo_clk);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
config &= ~(0xFF << 10);
config |= mclk_freq << 10;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config_2);
/* wait for 5us before enabling DLL clock */
udelay(5);
}
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config &= ~CORE_DLL_RST;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config &= ~CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
if (msm_host->use_14lpp_dll_reset) {
if (!msm_host->dll_config)
msm_cm_dll_set_freq(host);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
config &= ~CORE_DLL_CLOCK_DISABLE;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config_2);
}
/*
* Configure DLL user control register to enable DLL status.
* This setting is applicable to SDCC v5.1 onwards only.
*/
if (msm_host->uses_tassadar_dll) {
config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_usr_ctl);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_3);
config &= ~0xFF;
if (msm_host->clk_rate < 150000000)
config |= DLL_CONFIG_3_LOW_FREQ_VAL;
else
config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config_3);
}
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
CORE_DLL_LOCK)) {
/* max. wait for 50us sec for LOCK bit to be set */
if (--wait_cnt == 0) {
dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
mmc_hostname(mmc));
spin_unlock_irqrestore(&host->lock, flags);
return -ETIMEDOUT;
}
udelay(1);
}
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
static void msm_hc_select_default(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
if (!msm_host->use_cdclp533) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec3);
config &= ~CORE_PWRSAVE_DLL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec3);
}
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_MCLK_SEL_MASK;
config |= CORE_HC_MCLK_SEL_DFLT;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Disable HC_SELECT_IN to be able to use the UHS mode select
* configuration from Host Control2 register for all other
* modes.
* Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
* in VENDOR_SPEC_FUNC
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_SELECT_IN_EN;
config &= ~CORE_HC_SELECT_IN_MASK;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Make sure above writes impacting free running MCLK are completed
* before changing the clk_rate at GCC.
*/
wmb();
}
static void msm_hc_select_hs400(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios ios = host->mmc->ios;
u32 config, dll_lock;
int rc;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
/* Select the divided clock (free running MCLK/2) */
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_MCLK_SEL_MASK;
config |= CORE_HC_MCLK_SEL_HS400;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
* register
*/
if ((msm_host->tuning_done || ios.enhanced_strobe) &&
!msm_host->calibration_done) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
config |= CORE_HC_SELECT_IN_HS400;
config |= CORE_HC_SELECT_IN_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec);
}
if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
/*
* Poll on DLL_LOCK or DDR_DLL_LOCK bits in
* core_dll_status to be set. This should get set
* within 15 us at 200 MHz.
*/
rc = readl_relaxed_poll_timeout(host->ioaddr +
msm_offset->core_dll_status,
dll_lock,
(dll_lock &
(CORE_DLL_LOCK |
CORE_DDR_DLL_LOCK)), 10,
1000);
if (rc == -ETIMEDOUT)
pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
mmc_hostname(host->mmc), dll_lock);
}
/*
* Make sure above writes impacting free running MCLK are completed
* before changing the clk_rate at GCC.
*/
wmb();
}
/*
* sdhci_msm_hc_select_mode :- In general all timing modes are
* controlled via UHS mode select in Host Control2 register.
* eMMC specific HS200/HS400 doesn't have their respective modes
* defined here, hence we use these values.
*
* HS200 - SDR104 (Since they both are equivalent in functionality)
* HS400 - This involves multiple configurations
* Initially SDR104 - when tuning is required as HS200
* Then when switching to DDR @ 400MHz (HS400) we use
* the vendor specific HC_SELECT_IN to control the mode.
*
* In addition to controlling the modes we also need to select the
* correct input clock for DLL depending on the mode.
*
* HS400 - divided clock (free running MCLK/2)
* All other modes - default (free running MCLK)
*/
static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
{
struct mmc_ios ios = host->mmc->ios;
if (ios.timing == MMC_TIMING_MMC_HS400 ||
host->flags & SDHCI_HS400_TUNING)
msm_hc_select_hs400(host);
else
msm_hc_select_default(host);
}
static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 config, calib_done;
int ret;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Retuning in HS400 (DDR mode) will fail, just reset the
* tuning block and restore the saved tuning phase.
*/
ret = msm_init_cm_dll(host);
if (ret)
goto out;
/* Set the selected phase in delay line hw block */
ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
if (ret)
goto out;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CMD_DAT_TRACK_SEL;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config &= ~CORE_CDC_T4_DLY_SEL;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config |= CORE_CDC_SWITCH_RC_EN;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config &= ~CORE_START_CDC_TRAFFIC;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
/* Perform CDC Register Initialization Sequence */
writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
/* CDC HW Calibration */
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config |= CORE_SW_TRIG_FULL_CALIB;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config &= ~CORE_SW_TRIG_FULL_CALIB;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config |= CORE_HW_AUTOCAL_ENA;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
config |= CORE_TIMER_ENA;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
calib_done,
(calib_done & CORE_CALIBRATION_DONE),
1, 50);
if (ret == -ETIMEDOUT) {
pr_err("%s: %s: CDC calibration was not completed\n",
mmc_hostname(host->mmc), __func__);
goto out;
}
ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
& CORE_CDC_ERROR_CODE_MASK;
if (ret) {
pr_err("%s: %s: CDC error code %d\n",
mmc_hostname(host->mmc), __func__, ret);
ret = -EINVAL;
goto out;
}
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config |= CORE_START_CDC_TRAFFIC;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
u32 dll_status, config, ddr_cfg_offset;
int ret;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Currently the core_ddr_config register defaults to desired
* configuration on reset. Currently reprogramming the power on
* reset (POR) value in case it might have been modified by
* bootloaders. In the future, if this changes, then the desired
* values will need to be programmed appropriately.
*/
if (msm_host->updated_ddr_cfg)
ddr_cfg_offset = msm_offset->core_ddr_config;
else
ddr_cfg_offset = msm_offset->core_ddr_config_old;
writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
if (mmc->ios.enhanced_strobe) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_ddr_200_cfg);
config |= CORE_CMDIN_RCLK_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_ddr_200_cfg);
}
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
config |= CORE_DDR_CAL_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
ret = readl_relaxed_poll_timeout(host->ioaddr +
msm_offset->core_dll_status,
dll_status,
(dll_status & CORE_DDR_DLL_LOCK),
10, 1000);
if (ret == -ETIMEDOUT) {
pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
mmc_hostname(host->mmc), __func__);
goto out;
}
/*
* Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
* When MCLK is gated OFF, it is not gated for less than 0.5us
* and MCLK must be switched on for at-least 1us before DATA
* starts coming. Controllers with 14lpp and later tech DLL cannot
* guarantee above requirement. So PWRSAVE_DLL should not be
* turned on for host controllers using this DLL.
*/
if (!msm_host->use_14lpp_dll_reset) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec3);
config |= CORE_PWRSAVE_DLL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec3);
}
/*
* Drain writebuffer to ensure above DLL calibration
* and PWRSAVE DLL is enabled.
*/
wmb();
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_host *mmc = host->mmc;
int ret;
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Retuning in HS400 (DDR mode) will fail, just reset the
* tuning block and restore the saved tuning phase.
*/
ret = msm_init_cm_dll(host);
if (ret)
goto out;
if (!mmc->ios.enhanced_strobe) {
/* Set the selected phase in delay line hw block */
ret = msm_config_cm_dll_phase(host,
msm_host->saved_tuning_phase);
if (ret)
goto out;
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_CMD_DAT_TRACK_SEL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
}
if (msm_host->use_cdclp533)
ret = sdhci_msm_cdclp533_calibration(host);
else
ret = sdhci_msm_cm_dll_sdc4_calibration(host);
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
/*
* Tuning is required for SDR104, HS200 and HS400 cards and
* if clock frequency is greater than 100MHz in these modes.
*/
if (host->clock <= CORE_FREQ_100MHZ ||
!(ios->timing == MMC_TIMING_MMC_HS400 ||
ios->timing == MMC_TIMING_MMC_HS200 ||
ios->timing == MMC_TIMING_UHS_SDR104) ||
ios->enhanced_strobe)
return false;
return true;
}
static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
/*
* SDR DLL comes into picture only for timing modes which needs
* tuning.
*/
if (!sdhci_msm_is_tuning_needed(host))
return 0;
/* Reset the tuning block */
ret = msm_init_cm_dll(host);
if (ret)
return ret;
/* Restore the tuning block */
ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
return ret;
}
static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
{
const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
u32 config, oldconfig = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config = oldconfig;
if (enable) {
config |= CORE_CDR_EN;
config &= ~CORE_CDR_EXT_EN;
} else {
config &= ~CORE_CDR_EN;
config |= CORE_CDR_EXT_EN;
}
if (config != oldconfig) {
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
}
}
static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int tuning_seq_cnt = 10;
u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
int rc;
struct mmc_ios ios = host->mmc->ios;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (!sdhci_msm_is_tuning_needed(host)) {
msm_host->use_cdr = false;
sdhci_msm_set_cdr(host, false);
return 0;
}
/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
msm_host->use_cdr = true;
/*
* Clear tuning_done flag before tuning to ensure proper
* HS400 settings.
*/
msm_host->tuning_done = 0;
/*
* For HS400 tuning in HS200 timing requires:
* - select MCLK/2 in VENDOR_SPEC
* - program MCLK to 400MHz (or nearest supported) in GCC
*/
if (host->flags & SDHCI_HS400_TUNING) {
sdhci_msm_hc_select_mode(host);
msm_set_clock_rate_for_bus_mode(host, ios.clock);
host->flags &= ~SDHCI_HS400_TUNING;
}
retry:
/* First of all reset the tuning block */
rc = msm_init_cm_dll(host);
if (rc)
return rc;
phase = 0;
do {
/* Set the phase in delay line hw block */
rc = msm_config_cm_dll_phase(host, phase);
if (rc)
return rc;
rc = mmc_send_tuning(mmc, opcode, NULL);
if (!rc) {
/* Tuning is successful at this tuning point */
tuned_phases[tuned_phase_cnt++] = phase;
dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
mmc_hostname(mmc), phase);
}
} while (++phase < ARRAY_SIZE(tuned_phases));
if (tuned_phase_cnt) {
if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
/*
* All phases valid is _almost_ as bad as no phases
* valid. Probably all phases are not really reliable
* but we didn't detect where the unreliable place is.
* That means we'll essentially be guessing and hoping
* we get a good phase. Better to try a few times.
*/
dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
mmc_hostname(mmc));
if (--tuning_seq_cnt) {
tuned_phase_cnt = 0;
goto retry;
}
}
rc = msm_find_most_appropriate_phase(host, tuned_phases,
tuned_phase_cnt);
if (rc < 0)
return rc;
else
phase = rc;
/*
* Finally set the selected phase in delay
* line hw block.
*/
rc = msm_config_cm_dll_phase(host, phase);
if (rc)
return rc;
msm_host->saved_tuning_phase = phase;
dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
mmc_hostname(mmc), phase);
} else {
if (--tuning_seq_cnt)
goto retry;
/* Tuning failed */
dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
mmc_hostname(mmc));
rc = -EIO;
}
if (!rc)
msm_host->tuning_done = true;
return rc;
}
/*
* sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
* This needs to be done for both tuning and enhanced_strobe mode.
* DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
* fixed feedback clock is used.
*/
static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->clock > CORE_FREQ_100MHZ &&
(msm_host->tuning_done || ios->enhanced_strobe) &&
!msm_host->calibration_done) {
ret = sdhci_msm_hs400_dll_calibration(host);
if (!ret)
msm_host->calibration_done = true;
else
pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
mmc_hostname(host->mmc), ret);
}
}
static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
unsigned int uhs)
{
struct mmc_host *mmc = host->mmc;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u16 ctrl_2;
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
switch (uhs) {
case MMC_TIMING_UHS_SDR12:
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
break;
case MMC_TIMING_UHS_SDR25:
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
break;
case MMC_TIMING_UHS_SDR50:
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
break;
case MMC_TIMING_MMC_HS400:
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
break;
}
/*
* When clock frequency is less than 100MHz, the feedback clock must be
* provided and DLL must not be used so that tuning can be skipped. To
* provide feedback clock, the mode selection can be any value less
* than 3'b011 in bits [2:0] of HOST CONTROL2 register.
*/
if (host->clock <= CORE_FREQ_100MHZ) {
if (uhs == MMC_TIMING_MMC_HS400 ||
uhs == MMC_TIMING_MMC_HS200 ||
uhs == MMC_TIMING_UHS_SDR104)
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
/*
* DLL is not required for clock <= 100MHz
* Thus, make sure DLL it is disabled when not required
*/
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_RST;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
/*
* The DLL needs to be restored and CDCLP533 recalibrated
* when the clock frequency is set back to 400MHz.
*/
msm_host->calibration_done = false;
}
dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
sdhci_msm_hs400(host, &mmc->ios);
}
static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
{
struct platform_device *pdev = msm_host->pdev;
int ret;
if (level)
ret = pinctrl_pm_select_default_state(&pdev->dev);
else
ret = pinctrl_pm_select_sleep_state(&pdev->dev);
return ret;
}
static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
{
if (IS_ERR(mmc->supply.vmmc))
return 0;
return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
}
static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool level)
{
int ret;
struct mmc_ios ios;
if (msm_host->vqmmc_enabled == level)
return 0;
if (level) {
/* Set the IO voltage regulator to default voltage level */
if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
ret = mmc_regulator_set_vqmmc(mmc, &ios);
if (ret < 0) {
dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
mmc_hostname(mmc), ret);
goto out;
}
}
ret = regulator_enable(mmc->supply.vqmmc);
} else {
ret = regulator_disable(mmc->supply.vqmmc);
}
if (ret)
dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
mmc_hostname(mmc), level ? "en":"dis", ret);
else
msm_host->vqmmc_enabled = level;
out:
return ret;
}
static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool hpm)
{
int load, ret;
load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
ret = regulator_set_load(mmc->supply.vqmmc, load);
if (ret)
dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
mmc_hostname(mmc), ret);
return ret;
}
static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool level)
{
int ret;
bool always_on;
if (IS_ERR(mmc->supply.vqmmc) ||
(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
return 0;
/*
* For eMMC don't turn off Vqmmc, Instead just configure it in LPM
* and HPM modes by setting the corresponding load.
*
* Till eMMC is initialized (i.e. always_on == 0), just turn on/off
* Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
* gets invoked. Once eMMC is initialized (i.e. always_on == 1),
* Vqmmc should remain ON, So just set the load instead of turning it
* off/on.
*/
always_on = !mmc_card_is_removable(mmc) &&
mmc->card && mmc_card_mmc(mmc->card);
if (always_on)
ret = msm_config_vqmmc_mode(msm_host, mmc, level);
else
ret = msm_toggle_vqmmc(msm_host, mmc, level);
return ret;
}
static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
{
init_waitqueue_head(&msm_host->pwr_irq_wait);
}
static inline void sdhci_msm_complete_pwr_irq_wait(
struct sdhci_msm_host *msm_host)
{
wake_up(&msm_host->pwr_irq_wait);
}
/*
* sdhci_msm_check_power_status API should be called when registers writes
* which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
* To what state the register writes will change the IO lines should be passed
* as the argument req_type. This API will check whether the IO line's state
* is already the expected state and will wait for power irq only if
* power irq is expected to be triggered based on the current IO line state
* and expected IO line state.
*/
static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
bool done = false;
u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
mmc_hostname(host->mmc), __func__, req_type,
msm_host->curr_pwr_state, msm_host->curr_io_level);
/*
* The power interrupt will not be generated for signal voltage
* switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
* Since sdhci-msm-v5, this bit has been removed and SW must consider
* it as always set.
*/
if (!msm_host->mci_removed)
val = msm_host_readl(msm_host, host,
msm_offset->core_generics);
if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
!(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
return;
}
/*
* The IRQ for request type IO High/LOW will be generated when -
* there is a state change in 1.8V enable bit (bit 3) of
* SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
* which indicates 3.3V IO voltage. So, when MMC core layer tries
* to set it to 3.3V before card detection happens, the
* IRQ doesn't get triggered as there is no state change in this bit.
* The driver already handles this case by changing the IO voltage
* level to high as part of controller power up sequence. Hence, check
* for host->pwr to handle a case where IO voltage high request is
* issued even before controller power up.
*/
if ((req_type & REQ_IO_HIGH) && !host->pwr) {
pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
mmc_hostname(host->mmc), req_type);
return;
}
if ((req_type & msm_host->curr_pwr_state) ||
(req_type & msm_host->curr_io_level))
done = true;
/*
* This is needed here to handle cases where register writes will
* not change the current bus state or io level of the controller.
* In this case, no power irq will be triggerred and we should
* not wait.
*/
if (!done) {
if (!wait_event_timeout(msm_host->pwr_irq_wait,
msm_host->pwr_irq_flag,
msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
dev_warn(&msm_host->pdev->dev,
"%s: pwr_irq for req: (%d) timed out\n",
mmc_hostname(host->mmc), req_type);
}
pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
__func__, req_type);
}
static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
mmc_hostname(host->mmc),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
}
static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_host *mmc = host->mmc;
u32 irq_status, irq_ack = 0;
int retry = 10, ret;
u32 pwr_state = 0, io_level = 0;
u32 config;
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
irq_status = msm_host_readl(msm_host, host,
msm_offset->core_pwrctl_status);
irq_status &= INT_MASK;
msm_host_writel(msm_host, irq_status, host,
msm_offset->core_pwrctl_clear);
/*
* There is a rare HW scenario where the first clear pulse could be
* lost when actual reset and clear/read of status register is
* happening at a time. Hence, retry for at least 10 times to make
* sure status register is cleared. Otherwise, this will result in
* a spurious power IRQ resulting in system instability.
*/
while (irq_status & msm_host_readl(msm_host, host,
msm_offset->core_pwrctl_status)) {
if (retry == 0) {
pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
mmc_hostname(host->mmc), irq_status);
sdhci_msm_dump_pwr_ctrl_regs(host);
WARN_ON(1);
break;
}
msm_host_writel(msm_host, irq_status, host,
msm_offset->core_pwrctl_clear);
retry--;
udelay(10);
}
/* Handle BUS ON/OFF*/
if (irq_status & CORE_PWRCTL_BUS_ON) {
pwr_state = REQ_BUS_ON;
io_level = REQ_IO_HIGH;
}
if (irq_status & CORE_PWRCTL_BUS_OFF) {
pwr_state = REQ_BUS_OFF;
io_level = REQ_IO_LOW;
}
if (pwr_state) {
ret = sdhci_msm_set_vmmc(mmc);
if (!ret)
ret = sdhci_msm_set_vqmmc(msm_host, mmc,
pwr_state & REQ_BUS_ON);
if (!ret)
ret = sdhci_msm_set_pincfg(msm_host,
pwr_state & REQ_BUS_ON);
if (!ret)
irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
else
irq_ack |= CORE_PWRCTL_BUS_FAIL;
}
/* Handle IO LOW/HIGH */
if (irq_status & CORE_PWRCTL_IO_LOW)
io_level = REQ_IO_LOW;
if (irq_status & CORE_PWRCTL_IO_HIGH)
io_level = REQ_IO_HIGH;
if (io_level)
irq_ack |= CORE_PWRCTL_IO_SUCCESS;
if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
if (ret < 0) {
dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
mmc_hostname(mmc), ret,
mmc->ios.signal_voltage, mmc->ios.vdd,
irq_status);
irq_ack |= CORE_PWRCTL_IO_FAIL;
}
}
/*
* The driver has to acknowledge the interrupt, switch voltages and
* report back if it succeded or not to this register. The voltage
* switches are handled by the sdhci core, so just report success.
*/
msm_host_writel(msm_host, irq_ack, host,
msm_offset->core_pwrctl_ctl);
/*
* If we don't have info regarding the voltage levels supported by
* regulators, don't change the IO PAD PWR SWITCH.
*/
if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
u32 new_config;
/*
* We should unset IO PAD PWR switch only if the register write
* can set IO lines high and the regulator also switches to 3 V.
* Else, we should keep the IO PAD PWR switch set.
* This is applicable to certain targets where eMMC vccq supply
* is only 1.8V. In such targets, even during REQ_IO_HIGH, the
* IO PAD PWR switch must be kept set to reflect actual
* regulator voltage. This way, during initialization of
* controllers with only 1.8V, we will set the IO PAD bit
* without waiting for a REQ_IO_LOW.
*/
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
new_config = config;
if ((io_level & REQ_IO_HIGH) &&
(msm_host->caps_0 & CORE_3_0V_SUPPORT))
new_config &= ~CORE_IO_PAD_PWR_SWITCH;
else if ((io_level & REQ_IO_LOW) ||
(msm_host->caps_0 & CORE_1_8V_SUPPORT))
new_config |= CORE_IO_PAD_PWR_SWITCH;
if (config ^ new_config)
writel_relaxed(new_config, host->ioaddr +
msm_offset->core_vendor_spec);
}
if (pwr_state)
msm_host->curr_pwr_state = pwr_state;
if (io_level)
msm_host->curr_io_level = io_level;
dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
irq_ack);
}
static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
{
struct sdhci_host *host = (struct sdhci_host *)data;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
sdhci_msm_handle_pwr_irq(host, irq);
msm_host->pwr_irq_flag = 1;
sdhci_msm_complete_pwr_irq_wait(msm_host);
return IRQ_HANDLED;
}
static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct clk *core_clk = msm_host->bulk_clks[0].clk;
return clk_round_rate(core_clk, ULONG_MAX);
}
static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
{
return SDHCI_MSM_MIN_CLOCK;
}
/*
* __sdhci_msm_set_clock - sdhci_msm clock control.
*
* Description:
* MSM controller does not use internal divider and
* instead directly control the GCC clock as per
* HW recommendation.
**/
static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
/*
* MSM controller do not use clock divider.
* Thus read SDHCI_CLOCK_CONTROL and only enable
* clock with no divider value programmed.
*/
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
sdhci_enable_clk(host, clk);
}
/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (!clock) {
host->mmc->actual_clock = msm_host->clk_rate = 0;
goto out;
}
sdhci_msm_hc_select_mode(host);
msm_set_clock_rate_for_bus_mode(host, clock);
out:
__sdhci_msm_set_clock(host, clock);
}
/*****************************************************************************\
* *
* Inline Crypto Engine (ICE) support *
* *
\*****************************************************************************/
#ifdef CONFIG_MMC_CRYPTO
static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
struct cqhci_host *cq_host)
{
struct mmc_host *mmc = msm_host->mmc;
struct device *dev = mmc_dev(mmc);
struct qcom_ice *ice;
if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
return 0;
ice = of_qcom_ice_get(dev);
if (ice == ERR_PTR(-EOPNOTSUPP)) {
dev_warn(dev, "Disabling inline encryption support\n");
ice = NULL;
}
if (IS_ERR_OR_NULL(ice))
return PTR_ERR_OR_ZERO(ice);
msm_host->ice = ice;
mmc->caps2 |= MMC_CAP2_CRYPTO;
return 0;
}
static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
{
if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
qcom_ice_enable(msm_host->ice);
}
static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
{
if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
return qcom_ice_resume(msm_host->ice);
return 0;
}
static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
{
if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
return qcom_ice_suspend(msm_host->ice);
return 0;
}
/*
* Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
* vendor-specific SCM calls for this; it doesn't support the standard way.
*/
static int sdhci_msm_program_key(struct cqhci_host *cq_host,
const union cqhci_crypto_cfg_entry *cfg,
int slot)
{
struct sdhci_host *host = mmc_priv(cq_host->mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
union cqhci_crypto_cap_entry cap;
/* Only AES-256-XTS has been tested so far. */
cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256)
return -EINVAL;
if (cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE)
return qcom_ice_program_key(msm_host->ice,
QCOM_ICE_CRYPTO_ALG_AES_XTS,
QCOM_ICE_CRYPTO_KEY_SIZE_256,
cfg->crypto_key,
cfg->data_unit_size, slot);
else
return qcom_ice_evict_key(msm_host->ice, slot);
}
#else /* CONFIG_MMC_CRYPTO */
static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
struct cqhci_host *cq_host)
{
return 0;
}
static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
{
}
static inline __maybe_unused int
sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
{
return 0;
}
static inline __maybe_unused int
sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
{
return 0;
}
#endif /* !CONFIG_MMC_CRYPTO */
/*****************************************************************************\
* *
* MSM Command Queue Engine (CQE) *
* *
\*****************************************************************************/
static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
sdhci_cqe_enable(mmc);
sdhci_msm_ice_enable(msm_host);
}
static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
u32 ctrl;
/*
* When CQE is halted, the legacy SDHCI path operates only
* on 16-byte descriptors in 64bit mode.
*/
if (host->flags & SDHCI_USE_64_BIT_DMA)
host->desc_sz = 16;
spin_lock_irqsave(&host->lock, flags);
/*
* During CQE command transfers, command complete bit gets latched.
* So s/w should clear command complete interrupt status when CQE is
* either halted or disabled. Otherwise unexpected SDCHI legacy
* interrupt gets triggered when CQE is halted/disabled.
*/
ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
ctrl |= SDHCI_INT_RESPONSE;
sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
spin_unlock_irqrestore(&host->lock, flags);
sdhci_cqe_disable(mmc, recovery);
}
static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
u32 count, start = 15;
__sdhci_set_timeout(host, cmd);
count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
/*
* Update software timeout value if its value is less than hardware data
* timeout value. Qcom SoC hardware data timeout value was calculated
* using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
*/
if (cmd && cmd->data && host->clock > 400000 &&
host->clock <= 50000000 &&
((1 << (count + start)) > (10 * host->clock)))
host->data_timeout = 22LL * NSEC_PER_SEC;
}
static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
.enable = sdhci_msm_cqe_enable,
.disable = sdhci_msm_cqe_disable,
#ifdef CONFIG_MMC_CRYPTO
.program_key = sdhci_msm_program_key,
#endif
};
static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
struct platform_device *pdev)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct cqhci_host *cq_host;
bool dma64;
u32 cqcfg;
int ret;
/*
* When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
* So ensure ADMA table is allocated for 16byte descriptors.
*/
if (host->caps & SDHCI_CAN_64BIT)
host->alloc_desc_sz = 16;
ret = sdhci_setup_host(host);
if (ret)
return ret;
cq_host = cqhci_pltfm_init(pdev);
if (IS_ERR(cq_host)) {
ret = PTR_ERR(cq_host);
dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
goto cleanup;
}
msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
cq_host->ops = &sdhci_msm_cqhci_ops;
dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
ret = sdhci_msm_ice_init(msm_host, cq_host);
if (ret)
goto cleanup;
ret = cqhci_init(cq_host, host->mmc, dma64);
if (ret) {
dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
mmc_hostname(host->mmc), ret);
goto cleanup;
}
/* Disable cqe reset due to cqe enable signal */
cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
/*
* SDHC expects 12byte ADMA descriptors till CQE is enabled.
* So limit desc_sz to 12 so that the data commands that are sent
* during card initialization (before CQE gets enabled) would
* get executed without any issues.
*/
if (host->flags & SDHCI_USE_64_BIT_DMA)
host->desc_sz = 12;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
dev_info(&pdev->dev, "%s: CQE init: success\n",
mmc_hostname(host->mmc));
return ret;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
/*
* Platform specific register write functions. This is so that, if any
* register write needs to be followed up by platform specific actions,
* they can be added here. These functions can go to sleep when writes
* to certain registers are done.
* These functions are relying on sdhci_set_ios not using spinlock.
*/
static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 req_type = 0;
switch (reg) {
case SDHCI_HOST_CONTROL2:
req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
REQ_IO_HIGH;
break;
case SDHCI_SOFTWARE_RESET:
if (host->pwr && (val & SDHCI_RESET_ALL))
req_type = REQ_BUS_OFF;
break;
case SDHCI_POWER_CONTROL:
req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
break;
case SDHCI_TRANSFER_MODE:
msm_host->transfer_mode = val;
break;
case SDHCI_COMMAND:
if (!msm_host->use_cdr)
break;
if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
!mmc_op_tuning(SDHCI_GET_CMD(val)))
sdhci_msm_set_cdr(host, true);
else
sdhci_msm_set_cdr(host, false);
break;
}
if (req_type) {
msm_host->pwr_irq_flag = 0;
/*
* Since this register write may trigger a power irq, ensure
* all previous register writes are complete by this point.
*/
mb();
}
return req_type;
}
/* This function may sleep*/
static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
{
u32 req_type = 0;
req_type = __sdhci_msm_check_write(host, val, reg);
writew_relaxed(val, host->ioaddr + reg);
if (req_type)
sdhci_msm_check_power_status(host, req_type);
}
/* This function may sleep*/
static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
{
u32 req_type = 0;
req_type = __sdhci_msm_check_write(host, val, reg);
writeb_relaxed(val, host->ioaddr + reg);
if (req_type)
sdhci_msm_check_power_status(host, req_type);
}
static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
{
struct mmc_host *mmc = msm_host->mmc;
struct regulator *supply = mmc->supply.vqmmc;
u32 caps = 0, config;
struct sdhci_host *host = mmc_priv(mmc);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
if (!IS_ERR(mmc->supply.vqmmc)) {
if (regulator_is_supported_voltage(supply, 1700000, 1950000))
caps |= CORE_1_8V_SUPPORT;
if (regulator_is_supported_voltage(supply, 2700000, 3600000))
caps |= CORE_3_0V_SUPPORT;
if (!caps)
pr_warn("%s: 1.8/3V not supported for vqmmc\n",
mmc_hostname(mmc));
}
if (caps) {
/*
* Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
* bit can be used as required later on.
*/
u32 io_level = msm_host->curr_io_level;
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
config |= CORE_IO_PAD_PWR_SWITCH_EN;
if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
config &= ~CORE_IO_PAD_PWR_SWITCH;
else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
config |= CORE_IO_PAD_PWR_SWITCH;
writel_relaxed(config,
host->ioaddr + msm_offset->core_vendor_spec);
}
msm_host->caps_0 |= caps;
pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
}
static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
{
int ret;
ret = mmc_regulator_get_supply(msm_host->mmc);
if (ret)
return ret;
sdhci_msm_set_regulator_caps(msm_host);
return 0;
}
static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u16 ctrl, status;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
if (!(host->flags & SDHCI_SIGNALING_330))
return -EINVAL;
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
break;
case MMC_SIGNAL_VOLTAGE_180:
if (!(host->flags & SDHCI_SIGNALING_180))
return -EINVAL;
/* Enable 1.8V Signal Enable in the Host Control2 register */
ctrl |= SDHCI_CTRL_VDD_180;
break;
default:
return -EINVAL;
}
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Wait for 5ms */
usleep_range(5000, 5500);
/* regulator output should be stable within 5 ms */
status = ctrl & SDHCI_CTRL_VDD_180;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if ((ctrl & SDHCI_CTRL_VDD_180) == status)
return 0;
dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
}
#define DRIVER_NAME "sdhci_msm"
#define SDHCI_MSM_DUMP(f, x...) \
pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
SDHCI_MSM_DUMP(
"DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
SDHCI_MSM_DUMP(
"DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
SDHCI_MSM_DUMP(
"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec_func2),
readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
}
static const struct sdhci_msm_variant_ops mci_var_ops = {
.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
};
static const struct sdhci_msm_variant_ops v5_var_ops = {
.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
};
static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
.var_ops = &mci_var_ops,
.offset = &sdhci_msm_mci_offset,
};
static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
.mci_removed = true,
.var_ops = &v5_var_ops,
.offset = &sdhci_msm_v5_offset,
};
static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
.mci_removed = true,
.restore_dll_config = true,
.var_ops = &v5_var_ops,
.offset = &sdhci_msm_v5_offset,
};
static const struct of_device_id sdhci_msm_dt_match[] = {
/*
* Do not add new variants to the driver which are compatible with
* generic ones, unless they need customization.
*/
{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
{},
};
MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
static const struct sdhci_ops sdhci_msm_ops = {
.reset = sdhci_and_cqhci_reset,
.set_clock = sdhci_msm_set_clock,
.get_min_clock = sdhci_msm_get_min_clock,
.get_max_clock = sdhci_msm_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
.write_w = sdhci_msm_writew,
.write_b = sdhci_msm_writeb,
.irq = sdhci_msm_cqe_irq,
.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
.set_power = sdhci_set_power_noreg,
.set_timeout = sdhci_msm_set_timeout,
};
static const struct sdhci_pltfm_data sdhci_msm_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &sdhci_msm_ops,
};
static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
struct sdhci_host *host)
{
struct device_node *node = pdev->dev.of_node;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (of_property_read_u32(node, "qcom,ddr-config",
&msm_host->ddr_config))
msm_host->ddr_config = DDR_CONFIG_POR_VAL;
of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
}
static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
{
struct reset_control *reset;
int ret = 0;
reset = reset_control_get_optional_exclusive(dev, NULL);
if (IS_ERR(reset))
return dev_err_probe(dev, PTR_ERR(reset),
"unable to acquire core_reset\n");
if (!reset)
return ret;
ret = reset_control_assert(reset);
if (ret) {
reset_control_put(reset);
return dev_err_probe(dev, ret, "core_reset assert failed\n");
}
/*
* The hardware requirement for delay between assert/deassert
* is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
* ~125us (4/32768). To be on the safe side add 200us delay.
*/
usleep_range(200, 210);
ret = reset_control_deassert(reset);
if (ret) {
reset_control_put(reset);
return dev_err_probe(dev, ret, "core_reset deassert failed\n");
}
usleep_range(200, 210);
reset_control_put(reset);
return ret;
}
static int sdhci_msm_probe(struct platform_device *pdev)
{
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_msm_host *msm_host;
struct clk *clk;
int ret;
u16 host_version, core_minor;
u32 core_version, config;
u8 core_major;
const struct sdhci_msm_offset *msm_offset;
const struct sdhci_msm_variant_info *var_info;
struct device_node *node = pdev->dev.of_node;
host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
if (IS_ERR(host))
return PTR_ERR(host);
host->sdma_boundary = 0;
pltfm_host = sdhci_priv(host);
msm_host = sdhci_pltfm_priv(pltfm_host);
msm_host->mmc = host->mmc;
msm_host->pdev = pdev;
ret = mmc_of_parse(host->mmc);
if (ret)
goto pltfm_free;
/*
* Based on the compatible string, load the required msm host info from
* the data associated with the version info.
*/
var_info = of_device_get_match_data(&pdev->dev);
msm_host->mci_removed = var_info->mci_removed;
msm_host->restore_dll_config = var_info->restore_dll_config;
msm_host->var_ops = var_info->var_ops;
msm_host->offset = var_info->offset;
msm_offset = msm_host->offset;
sdhci_get_of_property(pdev);
sdhci_msm_get_of_property(pdev, host);
msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
ret = sdhci_msm_gcc_reset(&pdev->dev, host);
if (ret)
goto pltfm_free;
/* Setup SDCC bus voter clock. */
msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (!IS_ERR(msm_host->bus_clk)) {
/* Vote for max. clk rate for max. performance */
ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
if (ret)
goto pltfm_free;
ret = clk_prepare_enable(msm_host->bus_clk);
if (ret)
goto pltfm_free;
}
/* Setup main peripheral bus clock */
clk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
goto bus_clk_disable;
}
msm_host->bulk_clks[1].clk = clk;
/* Setup SDC MMC clock */
clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
goto bus_clk_disable;
}
msm_host->bulk_clks[0].clk = clk;
/* Check for optional interconnect paths */
ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
if (ret)
goto bus_clk_disable;
ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
if (ret)
goto bus_clk_disable;
/* OPP table is optional */
ret = devm_pm_opp_of_add_table(&pdev->dev);
if (ret && ret != -ENODEV) {
dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
goto bus_clk_disable;
}
/* Vote for maximum clock rate for maximum performance */
ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
if (ret)
dev_warn(&pdev->dev, "core clock boost failed\n");
clk = devm_clk_get(&pdev->dev, "cal");
if (IS_ERR(clk))
clk = NULL;
msm_host->bulk_clks[2].clk = clk;
clk = devm_clk_get(&pdev->dev, "sleep");
if (IS_ERR(clk))
clk = NULL;
msm_host->bulk_clks[3].clk = clk;
ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (ret)
goto bus_clk_disable;
/*
* xo clock is needed for FLL feature of cm_dll.
* In case if xo clock is not mentioned in DT, warn and proceed.
*/
msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
if (IS_ERR(msm_host->xo_clk)) {
ret = PTR_ERR(msm_host->xo_clk);
dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
}
if (!msm_host->mci_removed) {
msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(msm_host->core_mem)) {
ret = PTR_ERR(msm_host->core_mem);
goto clk_disable;
}
}
/* Reset the vendor spec register to power on reset state */
writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
host->ioaddr + msm_offset->core_vendor_spec);
if (!msm_host->mci_removed) {
/* Set HC_MODE_EN bit in HC_MODE register */
msm_host_writel(msm_host, HC_MODE_EN, host,
msm_offset->core_hc_mode);
config = msm_host_readl(msm_host, host,
msm_offset->core_hc_mode);
config |= FF_CLK_SW_RST_DIS;
msm_host_writel(msm_host, config, host,
msm_offset->core_hc_mode);
}
host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
SDHCI_VENDOR_VER_SHIFT));
core_version = msm_host_readl(msm_host, host,
msm_offset->core_mci_version);
core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
CORE_VERSION_MAJOR_SHIFT;
core_minor = core_version & CORE_VERSION_MINOR_MASK;
dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
core_version, core_major, core_minor);
if (core_major == 1 && core_minor >= 0x42)
msm_host->use_14lpp_dll_reset = true;
/*
* SDCC 5 controller with major version 1, minor version 0x34 and later
* with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
*/
if (core_major == 1 && core_minor < 0x34)
msm_host->use_cdclp533 = true;
/*
* Support for some capabilities is not advertised by newer
* controller versions and must be explicitly enabled.
*/
if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec_capabilities0);
}
if (core_major == 1 && core_minor >= 0x49)
msm_host->updated_ddr_cfg = true;
if (core_major == 1 && core_minor >= 0x71)
msm_host->uses_tassadar_dll = true;
ret = sdhci_msm_register_vreg(msm_host);
if (ret)
goto clk_disable;
/*
* Power on reset state may trigger power irq if previous status of
* PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
* interrupt in GIC, any pending power irq interrupt should be
* acknowledged. Otherwise power irq interrupt handler would be
* fired prematurely.
*/
sdhci_msm_handle_pwr_irq(host, 0);
/*
* Ensure that above writes are propogated before interrupt enablement
* in GIC.
*/
mb();
/* Setup IRQ for handling power/voltage tasks with PMIC */
msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
if (msm_host->pwr_irq < 0) {
ret = msm_host->pwr_irq;
goto clk_disable;
}
sdhci_msm_init_pwr_irq_wait(msm_host);
/* Enable pwr irq interrupts */
msm_host_writel(msm_host, INT_MASK, host,
msm_offset->core_pwrctl_mask);
ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
sdhci_msm_pwr_irq, IRQF_ONESHOT,
dev_name(&pdev->dev), host);
if (ret) {
dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
goto clk_disable;
}
msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
/* Set the timeout value to max possible */
host->max_timeout_count = 0xF;
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev,
MSM_MMC_AUTOSUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(&pdev->dev);
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_msm_start_signal_voltage_switch;
host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
if (of_property_read_bool(node, "supports-cqe"))
ret = sdhci_msm_cqe_add_host(host, pdev);
else
ret = sdhci_add_host(host);
if (ret)
goto pm_runtime_disable;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
pm_runtime_disable:
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
clk_disable:
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
bus_clk_disable:
if (!IS_ERR(msm_host->bus_clk))
clk_disable_unprepare(msm_host->bus_clk);
pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static void sdhci_msm_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
0xffffffff);
sdhci_remove_host(host, dead);
pm_runtime_get_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (!IS_ERR(msm_host->bus_clk))
clk_disable_unprepare(msm_host->bus_clk);
sdhci_pltfm_free(pdev);
}
static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
/* Drop the performance vote */
dev_pm_opp_set_rate(dev, 0);
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
return sdhci_msm_ice_suspend(msm_host);
}
static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (ret)
return ret;
/*
* Whenever core-clock is gated dynamically, it's needed to
* restore the SDR DLL settings when the clock is ungated.
*/
if (msm_host->restore_dll_config && msm_host->clk_rate) {
ret = sdhci_msm_restore_sdr_dll_config(host);
if (ret)
return ret;
}
dev_pm_opp_set_rate(dev, msm_host->clk_rate);
return sdhci_msm_ice_resume(msm_host);
}
static const struct dev_pm_ops sdhci_msm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
sdhci_msm_runtime_resume,
NULL)
};
static struct platform_driver sdhci_msm_driver = {
.probe = sdhci_msm_probe,
.remove_new = sdhci_msm_remove,
.driver = {
.name = "sdhci_msm",
.of_match_table = sdhci_msm_dt_match,
.pm = &sdhci_msm_pm_ops,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
module_platform_driver(sdhci_msm_driver);
MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-msm.c |
// SPDX-License-Identifier: GPL-2.0
//
// Secure Digital Host Controller
//
// Copyright (C) 2018 Spreadtrum, Inc.
// Author: Chunyan Zhang <[email protected]>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/iopoll.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include "sdhci-pltfm.h"
#include "mmc_hsq.h"
/* SDHCI_ARGUMENT2 register high 16bit */
#define SDHCI_SPRD_ARG2_STUFF GENMASK(31, 16)
#define SDHCI_SPRD_REG_32_DLL_CFG 0x200
#define SDHCI_SPRD_DLL_ALL_CPST_EN (BIT(18) | BIT(24) | BIT(25) | BIT(26) | BIT(27))
#define SDHCI_SPRD_DLL_EN BIT(21)
#define SDHCI_SPRD_DLL_SEARCH_MODE BIT(16)
#define SDHCI_SPRD_DLL_INIT_COUNT 0xc00
#define SDHCI_SPRD_DLL_PHASE_INTERNAL 0x3
#define SDHCI_SPRD_REG_32_DLL_DLY 0x204
#define SDHCI_SPRD_REG_32_DLL_DLY_OFFSET 0x208
#define SDHCIBSPRD_IT_WR_DLY_INV BIT(5)
#define SDHCI_SPRD_BIT_CMD_DLY_INV BIT(13)
#define SDHCI_SPRD_BIT_POSRD_DLY_INV BIT(21)
#define SDHCI_SPRD_BIT_NEGRD_DLY_INV BIT(29)
#define SDHCI_SPRD_REG_32_DLL_STS0 0x210
#define SDHCI_SPRD_DLL_LOCKED BIT(18)
#define SDHCI_SPRD_REG_32_BUSY_POSI 0x250
#define SDHCI_SPRD_BIT_OUTR_CLK_AUTO_EN BIT(25)
#define SDHCI_SPRD_BIT_INNR_CLK_AUTO_EN BIT(24)
#define SDHCI_SPRD_REG_DEBOUNCE 0x28C
#define SDHCI_SPRD_BIT_DLL_BAK BIT(0)
#define SDHCI_SPRD_BIT_DLL_VAL BIT(1)
#define SDHCI_SPRD_INT_SIGNAL_MASK 0x1B7F410B
/* SDHCI_HOST_CONTROL2 */
#define SDHCI_SPRD_CTRL_HS200 0x0005
#define SDHCI_SPRD_CTRL_HS400 0x0006
#define SDHCI_SPRD_CTRL_HS400ES 0x0007
/*
* According to the standard specification, BIT(3) of SDHCI_SOFTWARE_RESET is
* reserved, and only used on Spreadtrum's design, the hardware cannot work
* if this bit is cleared.
* 1 : normal work
* 0 : hardware reset
*/
#define SDHCI_HW_RESET_CARD BIT(3)
#define SDHCI_SPRD_MAX_CUR 0xFFFFFF
#define SDHCI_SPRD_CLK_MAX_DIV 1023
#define SDHCI_SPRD_CLK_DEF_RATE 26000000
#define SDHCI_SPRD_PHY_DLL_CLK 52000000
#define SDHCI_SPRD_MAX_RANGE 0xff
#define SDHCI_SPRD_CMD_DLY_MASK GENMASK(15, 8)
#define SDHCI_SPRD_POSRD_DLY_MASK GENMASK(23, 16)
#define SDHCI_SPRD_CPST_EN GENMASK(27, 24)
struct sdhci_sprd_host {
u32 version;
struct clk *clk_sdio;
struct clk *clk_enable;
struct clk *clk_2x_enable;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_uhs;
struct pinctrl_state *pins_default;
u32 base_rate;
int flags; /* backup of host attribute */
u32 phy_delay[MMC_TIMING_MMC_HS400 + 2];
};
enum sdhci_sprd_tuning_type {
SDHCI_SPRD_TUNING_SD_HS_CMD,
SDHCI_SPRD_TUNING_SD_HS_DATA,
};
struct sdhci_sprd_phy_cfg {
const char *property;
u8 timing;
};
static const struct sdhci_sprd_phy_cfg sdhci_sprd_phy_cfgs[] = {
{ "sprd,phy-delay-legacy", MMC_TIMING_LEGACY, },
{ "sprd,phy-delay-sd-highspeed", MMC_TIMING_SD_HS, },
{ "sprd,phy-delay-sd-uhs-sdr50", MMC_TIMING_UHS_SDR50, },
{ "sprd,phy-delay-sd-uhs-sdr104", MMC_TIMING_UHS_SDR104, },
{ "sprd,phy-delay-mmc-highspeed", MMC_TIMING_MMC_HS, },
{ "sprd,phy-delay-mmc-ddr52", MMC_TIMING_MMC_DDR52, },
{ "sprd,phy-delay-mmc-hs200", MMC_TIMING_MMC_HS200, },
{ "sprd,phy-delay-mmc-hs400", MMC_TIMING_MMC_HS400, },
{ "sprd,phy-delay-mmc-hs400es", MMC_TIMING_MMC_HS400 + 1, },
};
#define TO_SPRD_HOST(host) sdhci_pltfm_priv(sdhci_priv(host))
static void sdhci_sprd_init_config(struct sdhci_host *host)
{
u16 val;
/* set dll backup mode */
val = sdhci_readl(host, SDHCI_SPRD_REG_DEBOUNCE);
val |= SDHCI_SPRD_BIT_DLL_BAK | SDHCI_SPRD_BIT_DLL_VAL;
sdhci_writel(host, val, SDHCI_SPRD_REG_DEBOUNCE);
}
static inline u32 sdhci_sprd_readl(struct sdhci_host *host, int reg)
{
if (unlikely(reg == SDHCI_MAX_CURRENT))
return SDHCI_SPRD_MAX_CUR;
return readl_relaxed(host->ioaddr + reg);
}
static inline void sdhci_sprd_writel(struct sdhci_host *host, u32 val, int reg)
{
/* SDHCI_MAX_CURRENT is reserved on Spreadtrum's platform */
if (unlikely(reg == SDHCI_MAX_CURRENT))
return;
if (unlikely(reg == SDHCI_SIGNAL_ENABLE || reg == SDHCI_INT_ENABLE))
val = val & SDHCI_SPRD_INT_SIGNAL_MASK;
writel_relaxed(val, host->ioaddr + reg);
}
static inline void sdhci_sprd_writew(struct sdhci_host *host, u16 val, int reg)
{
/* SDHCI_BLOCK_COUNT is Read Only on Spreadtrum's platform */
if (unlikely(reg == SDHCI_BLOCK_COUNT))
return;
writew_relaxed(val, host->ioaddr + reg);
}
static inline void sdhci_sprd_writeb(struct sdhci_host *host, u8 val, int reg)
{
/*
* Since BIT(3) of SDHCI_SOFTWARE_RESET is reserved according to the
* standard specification, sdhci_reset() write this register directly
* without checking other reserved bits, that will clear BIT(3) which
* is defined as hardware reset on Spreadtrum's platform and clearing
* it by mistake will lead the card not work. So here we need to work
* around it.
*/
if (unlikely(reg == SDHCI_SOFTWARE_RESET)) {
if (readb_relaxed(host->ioaddr + reg) & SDHCI_HW_RESET_CARD)
val |= SDHCI_HW_RESET_CARD;
}
writeb_relaxed(val, host->ioaddr + reg);
}
static inline void sdhci_sprd_sd_clk_off(struct sdhci_host *host)
{
u16 ctrl = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
ctrl &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, ctrl, SDHCI_CLOCK_CONTROL);
}
static inline void sdhci_sprd_sd_clk_on(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
ctrl |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, ctrl, SDHCI_CLOCK_CONTROL);
}
static inline void
sdhci_sprd_set_dll_invert(struct sdhci_host *host, u32 mask, bool en)
{
u32 dll_dly_offset;
dll_dly_offset = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_DLY_OFFSET);
if (en)
dll_dly_offset |= mask;
else
dll_dly_offset &= ~mask;
sdhci_writel(host, dll_dly_offset, SDHCI_SPRD_REG_32_DLL_DLY_OFFSET);
}
static inline u32 sdhci_sprd_calc_div(u32 base_clk, u32 clk)
{
u32 div;
/* select 2x clock source */
if (base_clk <= clk * 2)
return 0;
div = (u32) (base_clk / (clk * 2));
if ((base_clk / div) > (clk * 2))
div++;
if (div % 2)
div = (div + 1) / 2;
else
div = div / 2;
if (div > SDHCI_SPRD_CLK_MAX_DIV)
div = SDHCI_SPRD_CLK_MAX_DIV;
return div;
}
static inline void _sdhci_sprd_set_clock(struct sdhci_host *host,
unsigned int clk)
{
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
u32 div, val, mask;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
div = sdhci_sprd_calc_div(sprd_host->base_rate, clk);
div = ((div & 0x300) >> 2) | ((div & 0xFF) << 8);
sdhci_enable_clk(host, div);
/* Enable CLK_AUTO when the clock is greater than 400K. */
if (clk > 400000) {
val = sdhci_readl(host, SDHCI_SPRD_REG_32_BUSY_POSI);
mask = SDHCI_SPRD_BIT_OUTR_CLK_AUTO_EN |
SDHCI_SPRD_BIT_INNR_CLK_AUTO_EN;
if (mask != (val & mask)) {
val |= mask;
sdhci_writel(host, val, SDHCI_SPRD_REG_32_BUSY_POSI);
}
}
}
static void sdhci_sprd_enable_phy_dll(struct sdhci_host *host)
{
u32 tmp;
tmp = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG);
tmp &= ~(SDHCI_SPRD_DLL_EN | SDHCI_SPRD_DLL_ALL_CPST_EN);
sdhci_writel(host, tmp, SDHCI_SPRD_REG_32_DLL_CFG);
/* wait 1ms */
usleep_range(1000, 1250);
tmp = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG);
tmp |= SDHCI_SPRD_DLL_ALL_CPST_EN | SDHCI_SPRD_DLL_SEARCH_MODE |
SDHCI_SPRD_DLL_INIT_COUNT | SDHCI_SPRD_DLL_PHASE_INTERNAL;
sdhci_writel(host, tmp, SDHCI_SPRD_REG_32_DLL_CFG);
/* wait 1ms */
usleep_range(1000, 1250);
tmp = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG);
tmp |= SDHCI_SPRD_DLL_EN;
sdhci_writel(host, tmp, SDHCI_SPRD_REG_32_DLL_CFG);
/* wait 1ms */
usleep_range(1000, 1250);
if (read_poll_timeout(sdhci_readl, tmp, (tmp & SDHCI_SPRD_DLL_LOCKED),
2000, USEC_PER_SEC, false, host, SDHCI_SPRD_REG_32_DLL_STS0)) {
pr_err("%s: DLL locked fail!\n", mmc_hostname(host->mmc));
pr_info("%s: DLL_STS0 : 0x%x, DLL_CFG : 0x%x\n",
mmc_hostname(host->mmc),
sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_STS0),
sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG));
}
}
static void sdhci_sprd_set_clock(struct sdhci_host *host, unsigned int clock)
{
bool en = false, clk_changed = false;
if (clock == 0) {
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
} else if (clock != host->clock) {
sdhci_sprd_sd_clk_off(host);
_sdhci_sprd_set_clock(host, clock);
if (clock <= 400000)
en = true;
sdhci_sprd_set_dll_invert(host, SDHCI_SPRD_BIT_CMD_DLY_INV |
SDHCI_SPRD_BIT_POSRD_DLY_INV, en);
clk_changed = true;
} else {
_sdhci_sprd_set_clock(host, clock);
}
/*
* According to the Spreadtrum SD host specification, when we changed
* the clock to be more than 52M, we should enable the PHY DLL which
* is used to track the clock frequency to make the clock work more
* stable. Otherwise deviation may occur of the higher clock.
*/
if (clk_changed && clock > SDHCI_SPRD_PHY_DLL_CLK)
sdhci_sprd_enable_phy_dll(host);
}
static unsigned int sdhci_sprd_get_max_clock(struct sdhci_host *host)
{
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
return clk_round_rate(sprd_host->clk_sdio, ULONG_MAX);
}
static unsigned int sdhci_sprd_get_min_clock(struct sdhci_host *host)
{
return 100000;
}
static void sdhci_sprd_set_uhs_signaling(struct sdhci_host *host,
unsigned int timing)
{
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
struct mmc_host *mmc = host->mmc;
u32 *p = sprd_host->phy_delay;
u16 ctrl_2;
if (timing == host->timing)
return;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
switch (timing) {
case MMC_TIMING_UHS_SDR12:
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
break;
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
break;
case MMC_TIMING_UHS_SDR50:
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
break;
case MMC_TIMING_UHS_SDR104:
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
break;
case MMC_TIMING_MMC_HS200:
ctrl_2 |= SDHCI_SPRD_CTRL_HS200;
break;
case MMC_TIMING_MMC_HS400:
ctrl_2 |= SDHCI_SPRD_CTRL_HS400;
break;
default:
break;
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
if (!mmc->ios.enhanced_strobe)
sdhci_writel(host, p[timing], SDHCI_SPRD_REG_32_DLL_DLY);
}
static void sdhci_sprd_hw_reset(struct sdhci_host *host)
{
int val;
/*
* Note: don't use sdhci_writeb() API here since it is redirected to
* sdhci_sprd_writeb() in which we have a workaround for
* SDHCI_SOFTWARE_RESET which would make bit SDHCI_HW_RESET_CARD can
* not be cleared.
*/
val = readb_relaxed(host->ioaddr + SDHCI_SOFTWARE_RESET);
val &= ~SDHCI_HW_RESET_CARD;
writeb_relaxed(val, host->ioaddr + SDHCI_SOFTWARE_RESET);
/* wait for 10 us */
usleep_range(10, 20);
val |= SDHCI_HW_RESET_CARD;
writeb_relaxed(val, host->ioaddr + SDHCI_SOFTWARE_RESET);
usleep_range(300, 500);
}
static unsigned int sdhci_sprd_get_max_timeout_count(struct sdhci_host *host)
{
/* The Spredtrum controller actual maximum timeout count is 1 << 31 */
return 1 << 31;
}
static unsigned int sdhci_sprd_get_ro(struct sdhci_host *host)
{
return 0;
}
static void sdhci_sprd_request_done(struct sdhci_host *host,
struct mmc_request *mrq)
{
/* Validate if the request was from software queue firstly. */
if (mmc_hsq_finalize_request(host->mmc, mrq))
return;
mmc_request_done(host->mmc, mrq);
}
static struct sdhci_ops sdhci_sprd_ops = {
.read_l = sdhci_sprd_readl,
.write_l = sdhci_sprd_writel,
.write_w = sdhci_sprd_writew,
.write_b = sdhci_sprd_writeb,
.set_clock = sdhci_sprd_set_clock,
.get_max_clock = sdhci_sprd_get_max_clock,
.get_min_clock = sdhci_sprd_get_min_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_sprd_set_uhs_signaling,
.hw_reset = sdhci_sprd_hw_reset,
.get_max_timeout_count = sdhci_sprd_get_max_timeout_count,
.get_ro = sdhci_sprd_get_ro,
.request_done = sdhci_sprd_request_done,
};
static void sdhci_sprd_check_auto_cmd23(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
host->flags |= sprd_host->flags & SDHCI_AUTO_CMD23;
/*
* From version 4.10 onward, ARGUMENT2 register is also as 32-bit
* block count register which doesn't support stuff bits of
* CMD23 argument on Spreadtrum's sd host controller.
*/
if (host->version >= SDHCI_SPEC_410 &&
mrq->sbc && (mrq->sbc->arg & SDHCI_SPRD_ARG2_STUFF) &&
(host->flags & SDHCI_AUTO_CMD23))
host->flags &= ~SDHCI_AUTO_CMD23;
}
static void sdhci_sprd_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
sdhci_sprd_check_auto_cmd23(mmc, mrq);
sdhci_request(mmc, mrq);
}
static int sdhci_sprd_request_atomic(struct mmc_host *mmc,
struct mmc_request *mrq)
{
sdhci_sprd_check_auto_cmd23(mmc, mrq);
return sdhci_request_atomic(mmc, mrq);
}
static int sdhci_sprd_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
int ret;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
pr_err("%s: Switching signalling voltage failed\n",
mmc_hostname(mmc));
return ret;
}
}
if (IS_ERR(sprd_host->pinctrl))
goto reset;
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_180:
ret = pinctrl_select_state(sprd_host->pinctrl,
sprd_host->pins_uhs);
if (ret) {
pr_err("%s: failed to select uhs pin state\n",
mmc_hostname(mmc));
return ret;
}
break;
default:
fallthrough;
case MMC_SIGNAL_VOLTAGE_330:
ret = pinctrl_select_state(sprd_host->pinctrl,
sprd_host->pins_default);
if (ret) {
pr_err("%s: failed to select default pin state\n",
mmc_hostname(mmc));
return ret;
}
break;
}
/* Wait for 300 ~ 500 us for pin state stable */
usleep_range(300, 500);
reset:
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
return 0;
}
static void sdhci_sprd_hs400_enhanced_strobe(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
u32 *p = sprd_host->phy_delay;
u16 ctrl_2;
if (!ios->enhanced_strobe)
return;
sdhci_sprd_sd_clk_off(host);
/* Set HS400 enhanced strobe mode */
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
ctrl_2 |= SDHCI_SPRD_CTRL_HS400ES;
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
sdhci_sprd_sd_clk_on(host);
/* Set the PHY DLL delay value for HS400 enhanced strobe mode */
sdhci_writel(host, p[MMC_TIMING_MMC_HS400 + 1],
SDHCI_SPRD_REG_32_DLL_DLY);
}
static int mmc_send_tuning_cmd(struct mmc_card *card)
{
return mmc_send_status(card, NULL);
}
static int mmc_send_tuning_data(struct mmc_card *card)
{
u8 *status;
int ret;
status = kmalloc(64, GFP_KERNEL);
if (!status)
return -ENOMEM;
ret = mmc_sd_switch(card, 0, 0, 0, status);
kfree(status);
return ret;
}
static int sdhci_sprd_get_best_clk_sample(struct mmc_host *mmc, u8 *value)
{
int range_end = SDHCI_SPRD_MAX_RANGE;
int range_length = 0;
int middle_range = 0;
int count = 0;
int i;
for (i = 0; i <= SDHCI_SPRD_MAX_RANGE; i++) {
if (value[i]) {
pr_debug("%s: tuning ok: %d\n", mmc_hostname(mmc), i);
count++;
} else {
pr_debug("%s: tuning fail: %d\n", mmc_hostname(mmc), i);
if (range_length < count) {
range_length = count;
range_end = i - 1;
count = 0;
}
}
}
if (!count)
return -EIO;
if (count > range_length) {
range_length = count;
range_end = i - 1;
}
middle_range = range_end - (range_length - 1) / 2;
return middle_range;
}
static int sdhci_sprd_tuning(struct mmc_host *mmc, struct mmc_card *card,
enum sdhci_sprd_tuning_type type)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
u32 *p = sprd_host->phy_delay;
u32 dll_cfg, dll_dly;
int best_clk_sample;
int err = 0;
u8 *value;
int i;
value = kmalloc(SDHCI_SPRD_MAX_RANGE + 1, GFP_KERNEL);
if (!value)
return -ENOMEM;
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
dll_cfg = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG);
dll_cfg &= ~SDHCI_SPRD_CPST_EN;
sdhci_writel(host, dll_cfg, SDHCI_SPRD_REG_32_DLL_CFG);
dll_dly = p[mmc->ios.timing];
for (i = 0; i <= SDHCI_SPRD_MAX_RANGE; i++) {
if (type == SDHCI_SPRD_TUNING_SD_HS_CMD) {
dll_dly &= ~SDHCI_SPRD_CMD_DLY_MASK;
dll_dly |= ((i << 8) & SDHCI_SPRD_CMD_DLY_MASK);
} else {
dll_dly &= ~SDHCI_SPRD_POSRD_DLY_MASK;
dll_dly |= ((i << 16) & SDHCI_SPRD_POSRD_DLY_MASK);
}
sdhci_writel(host, dll_dly, SDHCI_SPRD_REG_32_DLL_DLY);
if (type == SDHCI_SPRD_TUNING_SD_HS_CMD)
value[i] = !mmc_send_tuning_cmd(card);
else
value[i] = !mmc_send_tuning_data(card);
}
best_clk_sample = sdhci_sprd_get_best_clk_sample(mmc, value);
if (best_clk_sample < 0) {
dev_err(mmc_dev(host->mmc), "all tuning phase fail!\n");
goto out;
}
if (type == SDHCI_SPRD_TUNING_SD_HS_CMD) {
p[mmc->ios.timing] &= ~SDHCI_SPRD_CMD_DLY_MASK;
p[mmc->ios.timing] |= ((best_clk_sample << 8) & SDHCI_SPRD_CMD_DLY_MASK);
} else {
p[mmc->ios.timing] &= ~(SDHCI_SPRD_POSRD_DLY_MASK);
p[mmc->ios.timing] |= ((best_clk_sample << 16) & SDHCI_SPRD_POSRD_DLY_MASK);
}
pr_debug("%s: the best clk sample %d, delay value 0x%08x\n",
mmc_hostname(host->mmc), best_clk_sample, p[mmc->ios.timing]);
out:
sdhci_writel(host, p[mmc->ios.timing], SDHCI_SPRD_REG_32_DLL_DLY);
kfree(value);
return err;
}
static int sdhci_sprd_prepare_sd_hs_cmd_tuning(struct mmc_host *mmc, struct mmc_card *card)
{
return sdhci_sprd_tuning(mmc, card, SDHCI_SPRD_TUNING_SD_HS_CMD);
}
static int sdhci_sprd_execute_sd_hs_data_tuning(struct mmc_host *mmc, struct mmc_card *card)
{
return sdhci_sprd_tuning(mmc, card, SDHCI_SPRD_TUNING_SD_HS_DATA);
}
static void sdhci_sprd_phy_param_parse(struct sdhci_sprd_host *sprd_host,
struct device_node *np)
{
u32 *p = sprd_host->phy_delay;
int ret, i, index;
u32 val[4];
for (i = 0; i < ARRAY_SIZE(sdhci_sprd_phy_cfgs); i++) {
ret = of_property_read_u32_array(np,
sdhci_sprd_phy_cfgs[i].property, val, 4);
if (ret)
continue;
index = sdhci_sprd_phy_cfgs[i].timing;
p[index] = val[0] | (val[1] << 8) | (val[2] << 16) | (val[3] << 24);
}
}
static const struct sdhci_pltfm_data sdhci_sprd_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK,
.quirks2 = SDHCI_QUIRK2_BROKEN_HS200 |
SDHCI_QUIRK2_USE_32BIT_BLK_CNT |
SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &sdhci_sprd_ops,
};
static int sdhci_sprd_probe(struct platform_device *pdev)
{
struct sdhci_host *host;
struct sdhci_sprd_host *sprd_host;
struct mmc_hsq *hsq;
struct clk *clk;
int ret = 0;
host = sdhci_pltfm_init(pdev, &sdhci_sprd_pdata, sizeof(*sprd_host));
if (IS_ERR(host))
return PTR_ERR(host);
host->dma_mask = DMA_BIT_MASK(64);
pdev->dev.dma_mask = &host->dma_mask;
host->mmc_host_ops.request = sdhci_sprd_request;
host->mmc_host_ops.hs400_enhanced_strobe =
sdhci_sprd_hs400_enhanced_strobe;
host->mmc_host_ops.prepare_sd_hs_tuning =
sdhci_sprd_prepare_sd_hs_cmd_tuning;
host->mmc_host_ops.execute_sd_hs_tuning =
sdhci_sprd_execute_sd_hs_data_tuning;
/*
* We can not use the standard ops to change and detect the voltage
* signal for Spreadtrum SD host controller, since our voltage regulator
* for I/O is fixed in hardware, that means we do not need control
* the standard SD host controller to change the I/O voltage.
*/
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_sprd_voltage_switch;
host->mmc->caps = MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED |
MMC_CAP_WAIT_WHILE_BUSY;
ret = mmc_of_parse(host->mmc);
if (ret)
goto pltfm_free;
if (!mmc_card_is_removable(host->mmc))
host->mmc_host_ops.request_atomic = sdhci_sprd_request_atomic;
else
host->always_defer_done = true;
sprd_host = TO_SPRD_HOST(host);
sdhci_sprd_phy_param_parse(sprd_host, pdev->dev.of_node);
sprd_host->pinctrl = devm_pinctrl_get(&pdev->dev);
if (!IS_ERR(sprd_host->pinctrl)) {
sprd_host->pins_uhs =
pinctrl_lookup_state(sprd_host->pinctrl, "state_uhs");
if (IS_ERR(sprd_host->pins_uhs)) {
ret = PTR_ERR(sprd_host->pins_uhs);
goto pltfm_free;
}
sprd_host->pins_default =
pinctrl_lookup_state(sprd_host->pinctrl, "default");
if (IS_ERR(sprd_host->pins_default)) {
ret = PTR_ERR(sprd_host->pins_default);
goto pltfm_free;
}
}
clk = devm_clk_get(&pdev->dev, "sdio");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
goto pltfm_free;
}
sprd_host->clk_sdio = clk;
sprd_host->base_rate = clk_get_rate(sprd_host->clk_sdio);
if (!sprd_host->base_rate)
sprd_host->base_rate = SDHCI_SPRD_CLK_DEF_RATE;
clk = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
goto pltfm_free;
}
sprd_host->clk_enable = clk;
clk = devm_clk_get(&pdev->dev, "2x_enable");
if (!IS_ERR(clk))
sprd_host->clk_2x_enable = clk;
ret = clk_prepare_enable(sprd_host->clk_sdio);
if (ret)
goto pltfm_free;
ret = clk_prepare_enable(sprd_host->clk_enable);
if (ret)
goto clk_disable;
ret = clk_prepare_enable(sprd_host->clk_2x_enable);
if (ret)
goto clk_disable2;
sdhci_sprd_init_config(host);
host->version = sdhci_readw(host, SDHCI_HOST_VERSION);
sprd_host->version = ((host->version & SDHCI_VENDOR_VER_MASK) >>
SDHCI_VENDOR_VER_SHIFT);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_suspend_ignore_children(&pdev->dev, 1);
sdhci_enable_v4_mode(host);
/*
* Supply the existing CAPS, but clear the UHS-I modes. This
* will allow these modes to be specified only by device
* tree properties through mmc_of_parse().
*/
sdhci_read_caps(host);
host->caps1 &= ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
SDHCI_SUPPORT_DDR50);
ret = sdhci_setup_host(host);
if (ret)
goto pm_runtime_disable;
sprd_host->flags = host->flags;
hsq = devm_kzalloc(&pdev->dev, sizeof(*hsq), GFP_KERNEL);
if (!hsq) {
ret = -ENOMEM;
goto err_cleanup_host;
}
ret = mmc_hsq_init(hsq, host->mmc);
if (ret)
goto err_cleanup_host;
ret = __sdhci_add_host(host);
if (ret)
goto err_cleanup_host;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
err_cleanup_host:
sdhci_cleanup_host(host);
pm_runtime_disable:
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
clk_disable_unprepare(sprd_host->clk_2x_enable);
clk_disable2:
clk_disable_unprepare(sprd_host->clk_enable);
clk_disable:
clk_disable_unprepare(sprd_host->clk_sdio);
pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static void sdhci_sprd_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
sdhci_remove_host(host, 0);
clk_disable_unprepare(sprd_host->clk_sdio);
clk_disable_unprepare(sprd_host->clk_enable);
clk_disable_unprepare(sprd_host->clk_2x_enable);
sdhci_pltfm_free(pdev);
}
static const struct of_device_id sdhci_sprd_of_match[] = {
{ .compatible = "sprd,sdhci-r11", },
{ }
};
MODULE_DEVICE_TABLE(of, sdhci_sprd_of_match);
#ifdef CONFIG_PM
static int sdhci_sprd_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
mmc_hsq_suspend(host->mmc);
sdhci_runtime_suspend_host(host);
clk_disable_unprepare(sprd_host->clk_sdio);
clk_disable_unprepare(sprd_host->clk_enable);
clk_disable_unprepare(sprd_host->clk_2x_enable);
return 0;
}
static int sdhci_sprd_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host);
int ret;
ret = clk_prepare_enable(sprd_host->clk_2x_enable);
if (ret)
return ret;
ret = clk_prepare_enable(sprd_host->clk_enable);
if (ret)
goto clk_2x_disable;
ret = clk_prepare_enable(sprd_host->clk_sdio);
if (ret)
goto clk_disable;
sdhci_runtime_resume_host(host, 1);
mmc_hsq_resume(host->mmc);
return 0;
clk_disable:
clk_disable_unprepare(sprd_host->clk_enable);
clk_2x_disable:
clk_disable_unprepare(sprd_host->clk_2x_enable);
return ret;
}
#endif
static const struct dev_pm_ops sdhci_sprd_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(sdhci_sprd_runtime_suspend,
sdhci_sprd_runtime_resume, NULL)
};
static struct platform_driver sdhci_sprd_driver = {
.probe = sdhci_sprd_probe,
.remove_new = sdhci_sprd_remove,
.driver = {
.name = "sdhci_sprd_r11",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_sprd_of_match,
.pm = &sdhci_sprd_pm_ops,
},
};
module_platform_driver(sdhci_sprd_driver);
MODULE_DESCRIPTION("Spreadtrum sdio host controller r11 driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:sdhci-sprd-r11");
| linux-master | drivers/mmc/host/sdhci-sprd.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Mellanox Technologies.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include "dw_mmc.h"
#include "dw_mmc-pltfm.h"
#define UHS_REG_EXT_SAMPLE_MASK GENMASK(22, 16)
#define UHS_REG_EXT_DRIVE_MASK GENMASK(29, 23)
#define BLUEFIELD_UHS_REG_EXT_SAMPLE 2
#define BLUEFIELD_UHS_REG_EXT_DRIVE 4
static void dw_mci_bluefield_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
u32 reg;
/* Update the Drive and Sample fields in register UHS_REG_EXT. */
reg = mci_readl(host, UHS_REG_EXT);
reg &= ~UHS_REG_EXT_SAMPLE_MASK;
reg |= FIELD_PREP(UHS_REG_EXT_SAMPLE_MASK,
BLUEFIELD_UHS_REG_EXT_SAMPLE);
reg &= ~UHS_REG_EXT_DRIVE_MASK;
reg |= FIELD_PREP(UHS_REG_EXT_DRIVE_MASK, BLUEFIELD_UHS_REG_EXT_DRIVE);
mci_writel(host, UHS_REG_EXT, reg);
}
static const struct dw_mci_drv_data bluefield_drv_data = {
.set_ios = dw_mci_bluefield_set_ios
};
static const struct of_device_id dw_mci_bluefield_match[] = {
{ .compatible = "mellanox,bluefield-dw-mshc",
.data = &bluefield_drv_data },
{},
};
MODULE_DEVICE_TABLE(of, dw_mci_bluefield_match);
static int dw_mci_bluefield_probe(struct platform_device *pdev)
{
return dw_mci_pltfm_register(pdev, &bluefield_drv_data);
}
static struct platform_driver dw_mci_bluefield_pltfm_driver = {
.probe = dw_mci_bluefield_probe,
.remove_new = dw_mci_pltfm_remove,
.driver = {
.name = "dwmmc_bluefield",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = dw_mci_bluefield_match,
.pm = &dw_mci_pltfm_pmops,
},
};
module_platform_driver(dw_mci_bluefield_pltfm_driver);
MODULE_DESCRIPTION("BlueField DW Multimedia Card driver");
MODULE_AUTHOR("Mellanox Technologies");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/dw_mmc-bluefield.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/host/mxcmmc.c - Freescale i.MX MMCI driver
*
* This is a driver for the SDHC controller found in Freescale MX2/MX3
* SoCs. It is basically the same hardware as found on MX1 (imxmmc.c).
* Unlike the hardware found on MX1, this hardware just works and does
* not need all the quirks found in imxmmc.c, hence the separate driver.
*
* Copyright (C) 2008 Sascha Hauer, Pengutronix <[email protected]>
* Copyright (C) 2006 Pavel Pisa, PiKRON <[email protected]>
*
* derived from pxamci.c by Russell King
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/blkdev.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/regulator/consumer.h>
#include <linux/dmaengine.h>
#include <linux/types.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/mmc/slot-gpio.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <linux/platform_data/mmc-mxcmmc.h>
#include <linux/dma/imx-dma.h>
#define DRIVER_NAME "mxc-mmc"
#define MXCMCI_TIMEOUT_MS 10000
#define MMC_REG_STR_STP_CLK 0x00
#define MMC_REG_STATUS 0x04
#define MMC_REG_CLK_RATE 0x08
#define MMC_REG_CMD_DAT_CONT 0x0C
#define MMC_REG_RES_TO 0x10
#define MMC_REG_READ_TO 0x14
#define MMC_REG_BLK_LEN 0x18
#define MMC_REG_NOB 0x1C
#define MMC_REG_REV_NO 0x20
#define MMC_REG_INT_CNTR 0x24
#define MMC_REG_CMD 0x28
#define MMC_REG_ARG 0x2C
#define MMC_REG_RES_FIFO 0x34
#define MMC_REG_BUFFER_ACCESS 0x38
#define STR_STP_CLK_RESET (1 << 3)
#define STR_STP_CLK_START_CLK (1 << 1)
#define STR_STP_CLK_STOP_CLK (1 << 0)
#define STATUS_CARD_INSERTION (1 << 31)
#define STATUS_CARD_REMOVAL (1 << 30)
#define STATUS_YBUF_EMPTY (1 << 29)
#define STATUS_XBUF_EMPTY (1 << 28)
#define STATUS_YBUF_FULL (1 << 27)
#define STATUS_XBUF_FULL (1 << 26)
#define STATUS_BUF_UND_RUN (1 << 25)
#define STATUS_BUF_OVFL (1 << 24)
#define STATUS_SDIO_INT_ACTIVE (1 << 14)
#define STATUS_END_CMD_RESP (1 << 13)
#define STATUS_WRITE_OP_DONE (1 << 12)
#define STATUS_DATA_TRANS_DONE (1 << 11)
#define STATUS_READ_OP_DONE (1 << 11)
#define STATUS_WR_CRC_ERROR_CODE_MASK (3 << 10)
#define STATUS_CARD_BUS_CLK_RUN (1 << 8)
#define STATUS_BUF_READ_RDY (1 << 7)
#define STATUS_BUF_WRITE_RDY (1 << 6)
#define STATUS_RESP_CRC_ERR (1 << 5)
#define STATUS_CRC_READ_ERR (1 << 3)
#define STATUS_CRC_WRITE_ERR (1 << 2)
#define STATUS_TIME_OUT_RESP (1 << 1)
#define STATUS_TIME_OUT_READ (1 << 0)
#define STATUS_ERR_MASK 0x2f
#define CMD_DAT_CONT_CMD_RESP_LONG_OFF (1 << 12)
#define CMD_DAT_CONT_STOP_READWAIT (1 << 11)
#define CMD_DAT_CONT_START_READWAIT (1 << 10)
#define CMD_DAT_CONT_BUS_WIDTH_4 (2 << 8)
#define CMD_DAT_CONT_INIT (1 << 7)
#define CMD_DAT_CONT_WRITE (1 << 4)
#define CMD_DAT_CONT_DATA_ENABLE (1 << 3)
#define CMD_DAT_CONT_RESPONSE_48BIT_CRC (1 << 0)
#define CMD_DAT_CONT_RESPONSE_136BIT (2 << 0)
#define CMD_DAT_CONT_RESPONSE_48BIT (3 << 0)
#define INT_SDIO_INT_WKP_EN (1 << 18)
#define INT_CARD_INSERTION_WKP_EN (1 << 17)
#define INT_CARD_REMOVAL_WKP_EN (1 << 16)
#define INT_CARD_INSERTION_EN (1 << 15)
#define INT_CARD_REMOVAL_EN (1 << 14)
#define INT_SDIO_IRQ_EN (1 << 13)
#define INT_DAT0_EN (1 << 12)
#define INT_BUF_READ_EN (1 << 4)
#define INT_BUF_WRITE_EN (1 << 3)
#define INT_END_CMD_RES_EN (1 << 2)
#define INT_WRITE_OP_DONE_EN (1 << 1)
#define INT_READ_OP_EN (1 << 0)
enum mxcmci_type {
IMX21_MMC,
IMX31_MMC,
MPC512X_MMC,
};
struct mxcmci_host {
struct mmc_host *mmc;
void __iomem *base;
dma_addr_t phys_base;
int detect_irq;
struct dma_chan *dma;
struct dma_async_tx_descriptor *desc;
int do_dma;
int default_irq_mask;
int use_sdio;
unsigned int power_mode;
struct imxmmc_platform_data *pdata;
struct mmc_request *req;
struct mmc_command *cmd;
struct mmc_data *data;
unsigned int datasize;
unsigned int dma_dir;
u16 rev_no;
unsigned int cmdat;
struct clk *clk_ipg;
struct clk *clk_per;
int clock;
struct work_struct datawork;
spinlock_t lock;
int burstlen;
int dmareq;
struct dma_slave_config dma_slave_config;
struct imx_dma_data dma_data;
struct timer_list watchdog;
enum mxcmci_type devtype;
};
static const struct of_device_id mxcmci_of_match[] = {
{
.compatible = "fsl,imx21-mmc",
.data = (void *) IMX21_MMC,
}, {
.compatible = "fsl,imx31-mmc",
.data = (void *) IMX31_MMC,
}, {
.compatible = "fsl,mpc5121-sdhc",
.data = (void *) MPC512X_MMC,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, mxcmci_of_match);
static inline int is_imx31_mmc(struct mxcmci_host *host)
{
return host->devtype == IMX31_MMC;
}
static inline int is_mpc512x_mmc(struct mxcmci_host *host)
{
return host->devtype == MPC512X_MMC;
}
static inline u32 mxcmci_readl(struct mxcmci_host *host, int reg)
{
if (IS_ENABLED(CONFIG_PPC_MPC512x))
return ioread32be(host->base + reg);
else
return readl(host->base + reg);
}
static inline void mxcmci_writel(struct mxcmci_host *host, u32 val, int reg)
{
if (IS_ENABLED(CONFIG_PPC_MPC512x))
iowrite32be(val, host->base + reg);
else
writel(val, host->base + reg);
}
static inline u16 mxcmci_readw(struct mxcmci_host *host, int reg)
{
if (IS_ENABLED(CONFIG_PPC_MPC512x))
return ioread32be(host->base + reg);
else
return readw(host->base + reg);
}
static inline void mxcmci_writew(struct mxcmci_host *host, u16 val, int reg)
{
if (IS_ENABLED(CONFIG_PPC_MPC512x))
iowrite32be(val, host->base + reg);
else
writew(val, host->base + reg);
}
static void mxcmci_set_clk_rate(struct mxcmci_host *host, unsigned int clk_ios);
static void mxcmci_set_power(struct mxcmci_host *host, unsigned int vdd)
{
if (!IS_ERR(host->mmc->supply.vmmc)) {
if (host->power_mode == MMC_POWER_UP)
mmc_regulator_set_ocr(host->mmc,
host->mmc->supply.vmmc, vdd);
else if (host->power_mode == MMC_POWER_OFF)
mmc_regulator_set_ocr(host->mmc,
host->mmc->supply.vmmc, 0);
}
if (host->pdata && host->pdata->setpower)
host->pdata->setpower(mmc_dev(host->mmc), vdd);
}
static inline int mxcmci_use_dma(struct mxcmci_host *host)
{
return host->do_dma;
}
static void mxcmci_softreset(struct mxcmci_host *host)
{
int i;
dev_dbg(mmc_dev(host->mmc), "mxcmci_softreset\n");
/* reset sequence */
mxcmci_writew(host, STR_STP_CLK_RESET, MMC_REG_STR_STP_CLK);
mxcmci_writew(host, STR_STP_CLK_RESET | STR_STP_CLK_START_CLK,
MMC_REG_STR_STP_CLK);
for (i = 0; i < 8; i++)
mxcmci_writew(host, STR_STP_CLK_START_CLK, MMC_REG_STR_STP_CLK);
mxcmci_writew(host, 0xff, MMC_REG_RES_TO);
}
#if IS_ENABLED(CONFIG_PPC_MPC512x)
static inline void buffer_swap32(u32 *buf, int len)
{
int i;
for (i = 0; i < ((len + 3) / 4); i++) {
*buf = swab32(*buf);
buf++;
}
}
static void mxcmci_swap_buffers(struct mmc_data *data)
{
struct scatterlist *sg;
int i;
for_each_sg(data->sg, sg, data->sg_len, i)
buffer_swap32(sg_virt(sg), sg->length);
}
#else
static inline void mxcmci_swap_buffers(struct mmc_data *data) {}
#endif
static int mxcmci_setup_data(struct mxcmci_host *host, struct mmc_data *data)
{
unsigned int nob = data->blocks;
unsigned int blksz = data->blksz;
unsigned int datasize = nob * blksz;
struct scatterlist *sg;
enum dma_transfer_direction slave_dirn;
int i, nents;
host->data = data;
data->bytes_xfered = 0;
mxcmci_writew(host, nob, MMC_REG_NOB);
mxcmci_writew(host, blksz, MMC_REG_BLK_LEN);
host->datasize = datasize;
if (!mxcmci_use_dma(host))
return 0;
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3 || sg->length < 512) {
host->do_dma = 0;
return 0;
}
}
if (data->flags & MMC_DATA_READ) {
host->dma_dir = DMA_FROM_DEVICE;
slave_dirn = DMA_DEV_TO_MEM;
} else {
host->dma_dir = DMA_TO_DEVICE;
slave_dirn = DMA_MEM_TO_DEV;
mxcmci_swap_buffers(data);
}
nents = dma_map_sg(host->dma->device->dev, data->sg,
data->sg_len, host->dma_dir);
if (nents != data->sg_len)
return -EINVAL;
host->desc = dmaengine_prep_slave_sg(host->dma,
data->sg, data->sg_len, slave_dirn,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!host->desc) {
dma_unmap_sg(host->dma->device->dev, data->sg, data->sg_len,
host->dma_dir);
host->do_dma = 0;
return 0; /* Fall back to PIO */
}
wmb();
dmaengine_submit(host->desc);
dma_async_issue_pending(host->dma);
mod_timer(&host->watchdog, jiffies + msecs_to_jiffies(MXCMCI_TIMEOUT_MS));
return 0;
}
static void mxcmci_cmd_done(struct mxcmci_host *host, unsigned int stat);
static void mxcmci_data_done(struct mxcmci_host *host, unsigned int stat);
static void mxcmci_dma_callback(void *data)
{
struct mxcmci_host *host = data;
u32 stat;
del_timer(&host->watchdog);
stat = mxcmci_readl(host, MMC_REG_STATUS);
dev_dbg(mmc_dev(host->mmc), "%s: 0x%08x\n", __func__, stat);
mxcmci_data_done(host, stat);
}
static int mxcmci_start_cmd(struct mxcmci_host *host, struct mmc_command *cmd,
unsigned int cmdat)
{
u32 int_cntr = host->default_irq_mask;
unsigned long flags;
WARN_ON(host->cmd != NULL);
host->cmd = cmd;
switch (mmc_resp_type(cmd)) {
case MMC_RSP_R1: /* short CRC, OPCODE */
case MMC_RSP_R1B:/* short CRC, OPCODE, BUSY */
cmdat |= CMD_DAT_CONT_RESPONSE_48BIT_CRC;
break;
case MMC_RSP_R2: /* long 136 bit + CRC */
cmdat |= CMD_DAT_CONT_RESPONSE_136BIT;
break;
case MMC_RSP_R3: /* short */
cmdat |= CMD_DAT_CONT_RESPONSE_48BIT;
break;
case MMC_RSP_NONE:
break;
default:
dev_err(mmc_dev(host->mmc), "unhandled response type 0x%x\n",
mmc_resp_type(cmd));
cmd->error = -EINVAL;
return -EINVAL;
}
int_cntr = INT_END_CMD_RES_EN;
if (mxcmci_use_dma(host)) {
if (host->dma_dir == DMA_FROM_DEVICE) {
host->desc->callback = mxcmci_dma_callback;
host->desc->callback_param = host;
} else {
int_cntr |= INT_WRITE_OP_DONE_EN;
}
}
spin_lock_irqsave(&host->lock, flags);
if (host->use_sdio)
int_cntr |= INT_SDIO_IRQ_EN;
mxcmci_writel(host, int_cntr, MMC_REG_INT_CNTR);
spin_unlock_irqrestore(&host->lock, flags);
mxcmci_writew(host, cmd->opcode, MMC_REG_CMD);
mxcmci_writel(host, cmd->arg, MMC_REG_ARG);
mxcmci_writew(host, cmdat, MMC_REG_CMD_DAT_CONT);
return 0;
}
static void mxcmci_finish_request(struct mxcmci_host *host,
struct mmc_request *req)
{
u32 int_cntr = host->default_irq_mask;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->use_sdio)
int_cntr |= INT_SDIO_IRQ_EN;
mxcmci_writel(host, int_cntr, MMC_REG_INT_CNTR);
spin_unlock_irqrestore(&host->lock, flags);
host->req = NULL;
host->cmd = NULL;
host->data = NULL;
mmc_request_done(host->mmc, req);
}
static int mxcmci_finish_data(struct mxcmci_host *host, unsigned int stat)
{
struct mmc_data *data = host->data;
int data_error;
if (mxcmci_use_dma(host)) {
dma_unmap_sg(host->dma->device->dev, data->sg, data->sg_len,
host->dma_dir);
mxcmci_swap_buffers(data);
}
if (stat & STATUS_ERR_MASK) {
dev_dbg(mmc_dev(host->mmc), "request failed. status: 0x%08x\n",
stat);
if (stat & STATUS_CRC_READ_ERR) {
dev_err(mmc_dev(host->mmc), "%s: -EILSEQ\n", __func__);
data->error = -EILSEQ;
} else if (stat & STATUS_CRC_WRITE_ERR) {
u32 err_code = (stat >> 9) & 0x3;
if (err_code == 2) { /* No CRC response */
dev_err(mmc_dev(host->mmc),
"%s: No CRC -ETIMEDOUT\n", __func__);
data->error = -ETIMEDOUT;
} else {
dev_err(mmc_dev(host->mmc),
"%s: -EILSEQ\n", __func__);
data->error = -EILSEQ;
}
} else if (stat & STATUS_TIME_OUT_READ) {
dev_err(mmc_dev(host->mmc),
"%s: read -ETIMEDOUT\n", __func__);
data->error = -ETIMEDOUT;
} else {
dev_err(mmc_dev(host->mmc), "%s: -EIO\n", __func__);
data->error = -EIO;
}
} else {
data->bytes_xfered = host->datasize;
}
data_error = data->error;
host->data = NULL;
return data_error;
}
static void mxcmci_read_response(struct mxcmci_host *host, unsigned int stat)
{
struct mmc_command *cmd = host->cmd;
int i;
u32 a, b, c;
if (!cmd)
return;
if (stat & STATUS_TIME_OUT_RESP) {
dev_dbg(mmc_dev(host->mmc), "CMD TIMEOUT\n");
cmd->error = -ETIMEDOUT;
} else if (stat & STATUS_RESP_CRC_ERR && cmd->flags & MMC_RSP_CRC) {
dev_dbg(mmc_dev(host->mmc), "cmd crc error\n");
cmd->error = -EILSEQ;
}
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
for (i = 0; i < 4; i++) {
a = mxcmci_readw(host, MMC_REG_RES_FIFO);
b = mxcmci_readw(host, MMC_REG_RES_FIFO);
cmd->resp[i] = a << 16 | b;
}
} else {
a = mxcmci_readw(host, MMC_REG_RES_FIFO);
b = mxcmci_readw(host, MMC_REG_RES_FIFO);
c = mxcmci_readw(host, MMC_REG_RES_FIFO);
cmd->resp[0] = a << 24 | b << 8 | c >> 8;
}
}
}
static int mxcmci_poll_status(struct mxcmci_host *host, u32 mask)
{
u32 stat;
unsigned long timeout = jiffies + HZ;
do {
stat = mxcmci_readl(host, MMC_REG_STATUS);
if (stat & STATUS_ERR_MASK)
return stat;
if (time_after(jiffies, timeout)) {
mxcmci_softreset(host);
mxcmci_set_clk_rate(host, host->clock);
return STATUS_TIME_OUT_READ;
}
if (stat & mask)
return 0;
cpu_relax();
} while (1);
}
static int mxcmci_pull(struct mxcmci_host *host, void *_buf, int bytes)
{
unsigned int stat;
u32 *buf = _buf;
while (bytes > 3) {
stat = mxcmci_poll_status(host,
STATUS_BUF_READ_RDY | STATUS_READ_OP_DONE);
if (stat)
return stat;
*buf++ = cpu_to_le32(mxcmci_readl(host, MMC_REG_BUFFER_ACCESS));
bytes -= 4;
}
if (bytes) {
u8 *b = (u8 *)buf;
u32 tmp;
stat = mxcmci_poll_status(host,
STATUS_BUF_READ_RDY | STATUS_READ_OP_DONE);
if (stat)
return stat;
tmp = cpu_to_le32(mxcmci_readl(host, MMC_REG_BUFFER_ACCESS));
memcpy(b, &tmp, bytes);
}
return 0;
}
static int mxcmci_push(struct mxcmci_host *host, void *_buf, int bytes)
{
unsigned int stat;
u32 *buf = _buf;
while (bytes > 3) {
stat = mxcmci_poll_status(host, STATUS_BUF_WRITE_RDY);
if (stat)
return stat;
mxcmci_writel(host, cpu_to_le32(*buf++), MMC_REG_BUFFER_ACCESS);
bytes -= 4;
}
if (bytes) {
u8 *b = (u8 *)buf;
u32 tmp;
stat = mxcmci_poll_status(host, STATUS_BUF_WRITE_RDY);
if (stat)
return stat;
memcpy(&tmp, b, bytes);
mxcmci_writel(host, cpu_to_le32(tmp), MMC_REG_BUFFER_ACCESS);
}
return mxcmci_poll_status(host, STATUS_BUF_WRITE_RDY);
}
static int mxcmci_transfer_data(struct mxcmci_host *host)
{
struct mmc_data *data = host->req->data;
struct scatterlist *sg;
int stat, i;
host->data = data;
host->datasize = 0;
if (data->flags & MMC_DATA_READ) {
for_each_sg(data->sg, sg, data->sg_len, i) {
stat = mxcmci_pull(host, sg_virt(sg), sg->length);
if (stat)
return stat;
host->datasize += sg->length;
}
} else {
for_each_sg(data->sg, sg, data->sg_len, i) {
stat = mxcmci_push(host, sg_virt(sg), sg->length);
if (stat)
return stat;
host->datasize += sg->length;
}
stat = mxcmci_poll_status(host, STATUS_WRITE_OP_DONE);
if (stat)
return stat;
}
return 0;
}
static void mxcmci_datawork(struct work_struct *work)
{
struct mxcmci_host *host = container_of(work, struct mxcmci_host,
datawork);
int datastat = mxcmci_transfer_data(host);
mxcmci_writel(host, STATUS_READ_OP_DONE | STATUS_WRITE_OP_DONE,
MMC_REG_STATUS);
mxcmci_finish_data(host, datastat);
if (host->req->stop) {
if (mxcmci_start_cmd(host, host->req->stop, 0)) {
mxcmci_finish_request(host, host->req);
return;
}
} else {
mxcmci_finish_request(host, host->req);
}
}
static void mxcmci_data_done(struct mxcmci_host *host, unsigned int stat)
{
struct mmc_request *req;
int data_error;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (!host->data) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
if (!host->req) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
req = host->req;
if (!req->stop)
host->req = NULL; /* we will handle finish req below */
data_error = mxcmci_finish_data(host, stat);
spin_unlock_irqrestore(&host->lock, flags);
if (data_error)
return;
mxcmci_read_response(host, stat);
host->cmd = NULL;
if (req->stop) {
if (mxcmci_start_cmd(host, req->stop, 0)) {
mxcmci_finish_request(host, req);
return;
}
} else {
mxcmci_finish_request(host, req);
}
}
static void mxcmci_cmd_done(struct mxcmci_host *host, unsigned int stat)
{
mxcmci_read_response(host, stat);
host->cmd = NULL;
if (!host->data && host->req) {
mxcmci_finish_request(host, host->req);
return;
}
/* For the DMA case the DMA engine handles the data transfer
* automatically. For non DMA we have to do it ourselves.
* Don't do it in interrupt context though.
*/
if (!mxcmci_use_dma(host) && host->data)
schedule_work(&host->datawork);
}
static irqreturn_t mxcmci_irq(int irq, void *devid)
{
struct mxcmci_host *host = devid;
bool sdio_irq;
u32 stat;
stat = mxcmci_readl(host, MMC_REG_STATUS);
mxcmci_writel(host,
stat & ~(STATUS_SDIO_INT_ACTIVE | STATUS_DATA_TRANS_DONE |
STATUS_WRITE_OP_DONE),
MMC_REG_STATUS);
dev_dbg(mmc_dev(host->mmc), "%s: 0x%08x\n", __func__, stat);
spin_lock(&host->lock);
sdio_irq = (stat & STATUS_SDIO_INT_ACTIVE) && host->use_sdio;
spin_unlock(&host->lock);
if (mxcmci_use_dma(host) && (stat & (STATUS_WRITE_OP_DONE)))
mxcmci_writel(host, STATUS_WRITE_OP_DONE, MMC_REG_STATUS);
if (sdio_irq) {
mxcmci_writel(host, STATUS_SDIO_INT_ACTIVE, MMC_REG_STATUS);
mmc_signal_sdio_irq(host->mmc);
}
if (stat & STATUS_END_CMD_RESP)
mxcmci_cmd_done(host, stat);
if (mxcmci_use_dma(host) && (stat & STATUS_WRITE_OP_DONE)) {
del_timer(&host->watchdog);
mxcmci_data_done(host, stat);
}
if (host->default_irq_mask &&
(stat & (STATUS_CARD_INSERTION | STATUS_CARD_REMOVAL)))
mmc_detect_change(host->mmc, msecs_to_jiffies(200));
return IRQ_HANDLED;
}
static void mxcmci_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct mxcmci_host *host = mmc_priv(mmc);
unsigned int cmdat = host->cmdat;
int error;
WARN_ON(host->req != NULL);
host->req = req;
host->cmdat &= ~CMD_DAT_CONT_INIT;
if (host->dma)
host->do_dma = 1;
if (req->data) {
error = mxcmci_setup_data(host, req->data);
if (error) {
req->cmd->error = error;
goto out;
}
cmdat |= CMD_DAT_CONT_DATA_ENABLE;
if (req->data->flags & MMC_DATA_WRITE)
cmdat |= CMD_DAT_CONT_WRITE;
}
error = mxcmci_start_cmd(host, req->cmd, cmdat);
out:
if (error)
mxcmci_finish_request(host, req);
}
static void mxcmci_set_clk_rate(struct mxcmci_host *host, unsigned int clk_ios)
{
unsigned int divider;
int prescaler = 0;
unsigned int clk_in = clk_get_rate(host->clk_per);
while (prescaler <= 0x800) {
for (divider = 1; divider <= 0xF; divider++) {
int x;
x = (clk_in / (divider + 1));
if (prescaler)
x /= (prescaler * 2);
if (x <= clk_ios)
break;
}
if (divider < 0x10)
break;
if (prescaler == 0)
prescaler = 1;
else
prescaler <<= 1;
}
mxcmci_writew(host, (prescaler << 4) | divider, MMC_REG_CLK_RATE);
dev_dbg(mmc_dev(host->mmc), "scaler: %d divider: %d in: %d out: %d\n",
prescaler, divider, clk_in, clk_ios);
}
static int mxcmci_setup_dma(struct mmc_host *mmc)
{
struct mxcmci_host *host = mmc_priv(mmc);
struct dma_slave_config *config = &host->dma_slave_config;
config->dst_addr = host->phys_base + MMC_REG_BUFFER_ACCESS;
config->src_addr = host->phys_base + MMC_REG_BUFFER_ACCESS;
config->dst_addr_width = 4;
config->src_addr_width = 4;
config->dst_maxburst = host->burstlen;
config->src_maxburst = host->burstlen;
config->device_fc = false;
return dmaengine_slave_config(host->dma, config);
}
static void mxcmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mxcmci_host *host = mmc_priv(mmc);
int burstlen, ret;
/*
* use burstlen of 64 (16 words) in 4 bit mode (--> reg value 0)
* use burstlen of 16 (4 words) in 1 bit mode (--> reg value 16)
*/
if (ios->bus_width == MMC_BUS_WIDTH_4)
burstlen = 16;
else
burstlen = 4;
if (mxcmci_use_dma(host) && burstlen != host->burstlen) {
host->burstlen = burstlen;
ret = mxcmci_setup_dma(mmc);
if (ret) {
dev_err(mmc_dev(host->mmc),
"failed to config DMA channel. Falling back to PIO\n");
dma_release_channel(host->dma);
host->do_dma = 0;
host->dma = NULL;
}
}
if (ios->bus_width == MMC_BUS_WIDTH_4)
host->cmdat |= CMD_DAT_CONT_BUS_WIDTH_4;
else
host->cmdat &= ~CMD_DAT_CONT_BUS_WIDTH_4;
if (host->power_mode != ios->power_mode) {
host->power_mode = ios->power_mode;
mxcmci_set_power(host, ios->vdd);
if (ios->power_mode == MMC_POWER_ON)
host->cmdat |= CMD_DAT_CONT_INIT;
}
if (ios->clock) {
mxcmci_set_clk_rate(host, ios->clock);
mxcmci_writew(host, STR_STP_CLK_START_CLK, MMC_REG_STR_STP_CLK);
} else {
mxcmci_writew(host, STR_STP_CLK_STOP_CLK, MMC_REG_STR_STP_CLK);
}
host->clock = ios->clock;
}
static irqreturn_t mxcmci_detect_irq(int irq, void *data)
{
struct mmc_host *mmc = data;
dev_dbg(mmc_dev(mmc), "%s\n", __func__);
mmc_detect_change(mmc, msecs_to_jiffies(250));
return IRQ_HANDLED;
}
static int mxcmci_get_ro(struct mmc_host *mmc)
{
struct mxcmci_host *host = mmc_priv(mmc);
if (host->pdata && host->pdata->get_ro)
return !!host->pdata->get_ro(mmc_dev(mmc));
/*
* If board doesn't support read only detection (no mmc_gpio
* context or gpio is invalid), then let the mmc core decide
* what to do.
*/
return mmc_gpio_get_ro(mmc);
}
static void mxcmci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct mxcmci_host *host = mmc_priv(mmc);
unsigned long flags;
u32 int_cntr;
spin_lock_irqsave(&host->lock, flags);
host->use_sdio = enable;
int_cntr = mxcmci_readl(host, MMC_REG_INT_CNTR);
if (enable)
int_cntr |= INT_SDIO_IRQ_EN;
else
int_cntr &= ~INT_SDIO_IRQ_EN;
mxcmci_writel(host, int_cntr, MMC_REG_INT_CNTR);
spin_unlock_irqrestore(&host->lock, flags);
}
static void mxcmci_init_card(struct mmc_host *host, struct mmc_card *card)
{
struct mxcmci_host *mxcmci = mmc_priv(host);
/*
* MX3 SoCs have a silicon bug which corrupts CRC calculation of
* multi-block transfers when connected SDIO peripheral doesn't
* drive the BUSY line as required by the specs.
* One way to prevent this is to only allow 1-bit transfers.
*/
if (is_imx31_mmc(mxcmci) && mmc_card_sdio(card))
host->caps &= ~MMC_CAP_4_BIT_DATA;
else
host->caps |= MMC_CAP_4_BIT_DATA;
}
static bool filter(struct dma_chan *chan, void *param)
{
struct mxcmci_host *host = param;
if (!imx_dma_is_general_purpose(chan))
return false;
chan->private = &host->dma_data;
return true;
}
static void mxcmci_watchdog(struct timer_list *t)
{
struct mxcmci_host *host = from_timer(host, t, watchdog);
struct mmc_request *req = host->req;
unsigned int stat = mxcmci_readl(host, MMC_REG_STATUS);
if (host->dma_dir == DMA_FROM_DEVICE) {
dmaengine_terminate_all(host->dma);
dev_err(mmc_dev(host->mmc),
"%s: read time out (status = 0x%08x)\n",
__func__, stat);
} else {
dev_err(mmc_dev(host->mmc),
"%s: write time out (status = 0x%08x)\n",
__func__, stat);
mxcmci_softreset(host);
}
/* Mark transfer as erroneus and inform the upper layers */
if (host->data)
host->data->error = -ETIMEDOUT;
host->req = NULL;
host->cmd = NULL;
host->data = NULL;
mmc_request_done(host->mmc, req);
}
static const struct mmc_host_ops mxcmci_ops = {
.request = mxcmci_request,
.set_ios = mxcmci_set_ios,
.get_ro = mxcmci_get_ro,
.enable_sdio_irq = mxcmci_enable_sdio_irq,
.init_card = mxcmci_init_card,
};
static int mxcmci_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct mxcmci_host *host;
struct resource *res;
int ret = 0, irq;
bool dat3_card_detect = false;
dma_cap_mask_t mask;
struct imxmmc_platform_data *pdata = pdev->dev.platform_data;
pr_info("i.MX/MPC512x SDHC driver\n");
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
mmc = mmc_alloc_host(sizeof(*host), &pdev->dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto out_free;
}
host->phys_base = res->start;
ret = mmc_of_parse(mmc);
if (ret)
goto out_free;
mmc->ops = &mxcmci_ops;
/* For devicetree parsing, the bus width is read from devicetree */
if (pdata)
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
else
mmc->caps |= MMC_CAP_SDIO_IRQ;
/* MMC core transfer sizes tunable parameters */
mmc->max_blk_size = 2048;
mmc->max_blk_count = 65535;
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
host->devtype = (uintptr_t)of_device_get_match_data(&pdev->dev);
/* adjust max_segs after devtype detection */
if (!is_mpc512x_mmc(host))
mmc->max_segs = 64;
host->mmc = mmc;
host->pdata = pdata;
spin_lock_init(&host->lock);
if (pdata)
dat3_card_detect = pdata->dat3_card_detect;
else if (mmc_card_is_removable(mmc)
&& !of_property_read_bool(pdev->dev.of_node, "cd-gpios"))
dat3_card_detect = true;
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto out_free;
if (!mmc->ocr_avail) {
if (pdata && pdata->ocr_avail)
mmc->ocr_avail = pdata->ocr_avail;
else
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
}
if (dat3_card_detect)
host->default_irq_mask =
INT_CARD_INSERTION_EN | INT_CARD_REMOVAL_EN;
else
host->default_irq_mask = 0;
host->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(host->clk_ipg)) {
ret = PTR_ERR(host->clk_ipg);
goto out_free;
}
host->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(host->clk_per)) {
ret = PTR_ERR(host->clk_per);
goto out_free;
}
ret = clk_prepare_enable(host->clk_per);
if (ret)
goto out_free;
ret = clk_prepare_enable(host->clk_ipg);
if (ret)
goto out_clk_per_put;
mxcmci_softreset(host);
host->rev_no = mxcmci_readw(host, MMC_REG_REV_NO);
if (host->rev_no != 0x400) {
ret = -ENODEV;
dev_err(mmc_dev(host->mmc), "wrong rev.no. 0x%08x. aborting.\n",
host->rev_no);
goto out_clk_put;
}
mmc->f_min = clk_get_rate(host->clk_per) >> 16;
mmc->f_max = clk_get_rate(host->clk_per) >> 1;
/* recommended in data sheet */
mxcmci_writew(host, 0x2db4, MMC_REG_READ_TO);
mxcmci_writel(host, host->default_irq_mask, MMC_REG_INT_CNTR);
if (!host->pdata) {
host->dma = dma_request_chan(&pdev->dev, "rx-tx");
if (IS_ERR(host->dma)) {
if (PTR_ERR(host->dma) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto out_clk_put;
}
/* Ignore errors to fall back to PIO mode */
host->dma = NULL;
}
} else {
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (res) {
host->dmareq = res->start;
host->dma_data.peripheral_type = IMX_DMATYPE_SDHC;
host->dma_data.priority = DMA_PRIO_LOW;
host->dma_data.dma_request = host->dmareq;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->dma = dma_request_channel(mask, filter, host);
}
}
if (host->dma)
mmc->max_seg_size = dma_get_max_seg_size(
host->dma->device->dev);
else
dev_info(mmc_dev(host->mmc), "dma not available. Using PIO\n");
INIT_WORK(&host->datawork, mxcmci_datawork);
ret = devm_request_irq(&pdev->dev, irq, mxcmci_irq, 0,
dev_name(&pdev->dev), host);
if (ret)
goto out_free_dma;
platform_set_drvdata(pdev, mmc);
if (host->pdata && host->pdata->init) {
ret = host->pdata->init(&pdev->dev, mxcmci_detect_irq,
host->mmc);
if (ret)
goto out_free_dma;
}
timer_setup(&host->watchdog, mxcmci_watchdog, 0);
ret = mmc_add_host(mmc);
if (ret)
goto out_free_dma;
return 0;
out_free_dma:
if (host->dma)
dma_release_channel(host->dma);
out_clk_put:
clk_disable_unprepare(host->clk_ipg);
out_clk_per_put:
clk_disable_unprepare(host->clk_per);
out_free:
mmc_free_host(mmc);
return ret;
}
static void mxcmci_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct mxcmci_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
if (host->pdata && host->pdata->exit)
host->pdata->exit(&pdev->dev, mmc);
if (host->dma)
dma_release_channel(host->dma);
clk_disable_unprepare(host->clk_per);
clk_disable_unprepare(host->clk_ipg);
mmc_free_host(mmc);
}
static int mxcmci_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct mxcmci_host *host = mmc_priv(mmc);
clk_disable_unprepare(host->clk_per);
clk_disable_unprepare(host->clk_ipg);
return 0;
}
static int mxcmci_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct mxcmci_host *host = mmc_priv(mmc);
int ret;
ret = clk_prepare_enable(host->clk_per);
if (ret)
return ret;
ret = clk_prepare_enable(host->clk_ipg);
if (ret)
clk_disable_unprepare(host->clk_per);
return ret;
}
static DEFINE_SIMPLE_DEV_PM_OPS(mxcmci_pm_ops, mxcmci_suspend, mxcmci_resume);
static struct platform_driver mxcmci_driver = {
.probe = mxcmci_probe,
.remove_new = mxcmci_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = pm_sleep_ptr(&mxcmci_pm_ops),
.of_match_table = mxcmci_of_match,
}
};
module_platform_driver(mxcmci_driver);
MODULE_DESCRIPTION("i.MX Multimedia Card Interface Driver");
MODULE_AUTHOR("Sascha Hauer, Pengutronix");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mxc-mmc");
| linux-master | drivers/mmc/host/mxcmmc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* MMCIF eMMC driver.
*
* Copyright (C) 2010 Renesas Solutions Corp.
* Yusuke Goda <[email protected]>
*/
/*
* The MMCIF driver is now processing MMC requests asynchronously, according
* to the Linux MMC API requirement.
*
* The MMCIF driver processes MMC requests in up to 3 stages: command, optional
* data, and optional stop. To achieve asynchronous processing each of these
* stages is split into two halves: a top and a bottom half. The top half
* initialises the hardware, installs a timeout handler to handle completion
* timeouts, and returns. In case of the command stage this immediately returns
* control to the caller, leaving all further processing to run asynchronously.
* All further request processing is performed by the bottom halves.
*
* The bottom half further consists of a "hard" IRQ handler, an IRQ handler
* thread, a DMA completion callback, if DMA is used, a timeout work, and
* request- and stage-specific handler methods.
*
* Each bottom half run begins with either a hardware interrupt, a DMA callback
* invocation, or a timeout work run. In case of an error or a successful
* processing completion, the MMC core is informed and the request processing is
* finished. In case processing has to continue, i.e., if data has to be read
* from or written to the card, or if a stop command has to be sent, the next
* top half is called, which performs the necessary hardware handling and
* reschedules the timeout work. This returns the driver state machine into the
* bottom half waiting state.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/pagemap.h>
#include <linux/platform_data/sh_mmcif.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/sh_dma.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#define DRIVER_NAME "sh_mmcif"
/* CE_CMD_SET */
#define CMD_MASK 0x3f000000
#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
#define CMD_SET_RBSY (1 << 21) /* R1b */
#define CMD_SET_CCSEN (1 << 20)
#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
#define CMD_SET_CCSH (1 << 5)
#define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
/* CE_CMD_CTRL */
#define CMD_CTRL_BREAK (1 << 0)
/* CE_BLOCK_SET */
#define BLOCK_SIZE_MASK 0x0000ffff
/* CE_INT */
#define INT_CCSDE (1 << 29)
#define INT_CMD12DRE (1 << 26)
#define INT_CMD12RBE (1 << 25)
#define INT_CMD12CRE (1 << 24)
#define INT_DTRANE (1 << 23)
#define INT_BUFRE (1 << 22)
#define INT_BUFWEN (1 << 21)
#define INT_BUFREN (1 << 20)
#define INT_CCSRCV (1 << 19)
#define INT_RBSYE (1 << 17)
#define INT_CRSPE (1 << 16)
#define INT_CMDVIO (1 << 15)
#define INT_BUFVIO (1 << 14)
#define INT_WDATERR (1 << 11)
#define INT_RDATERR (1 << 10)
#define INT_RIDXERR (1 << 9)
#define INT_RSPERR (1 << 8)
#define INT_CCSTO (1 << 5)
#define INT_CRCSTO (1 << 4)
#define INT_WDATTO (1 << 3)
#define INT_RDATTO (1 << 2)
#define INT_RBSYTO (1 << 1)
#define INT_RSPTO (1 << 0)
#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
INT_RDATTO | INT_RBSYTO | INT_RSPTO)
#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
/* CE_INT_MASK */
#define MASK_ALL 0x00000000
#define MASK_MCCSDE (1 << 29)
#define MASK_MCMD12DRE (1 << 26)
#define MASK_MCMD12RBE (1 << 25)
#define MASK_MCMD12CRE (1 << 24)
#define MASK_MDTRANE (1 << 23)
#define MASK_MBUFRE (1 << 22)
#define MASK_MBUFWEN (1 << 21)
#define MASK_MBUFREN (1 << 20)
#define MASK_MCCSRCV (1 << 19)
#define MASK_MRBSYE (1 << 17)
#define MASK_MCRSPE (1 << 16)
#define MASK_MCMDVIO (1 << 15)
#define MASK_MBUFVIO (1 << 14)
#define MASK_MWDATERR (1 << 11)
#define MASK_MRDATERR (1 << 10)
#define MASK_MRIDXERR (1 << 9)
#define MASK_MRSPERR (1 << 8)
#define MASK_MCCSTO (1 << 5)
#define MASK_MCRCSTO (1 << 4)
#define MASK_MWDATTO (1 << 3)
#define MASK_MRDATTO (1 << 2)
#define MASK_MRBSYTO (1 << 1)
#define MASK_MRSPTO (1 << 0)
#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
MASK_MCRCSTO | MASK_MWDATTO | \
MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
MASK_MBUFREN | MASK_MBUFWEN | \
MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
MASK_MCMD12RBE | MASK_MCMD12CRE)
/* CE_HOST_STS1 */
#define STS1_CMDSEQ (1 << 31)
/* CE_HOST_STS2 */
#define STS2_CRCSTE (1 << 31)
#define STS2_CRC16E (1 << 30)
#define STS2_AC12CRCE (1 << 29)
#define STS2_RSPCRC7E (1 << 28)
#define STS2_CRCSTEBE (1 << 27)
#define STS2_RDATEBE (1 << 26)
#define STS2_AC12REBE (1 << 25)
#define STS2_RSPEBE (1 << 24)
#define STS2_AC12IDXE (1 << 23)
#define STS2_RSPIDXE (1 << 22)
#define STS2_CCSTO (1 << 15)
#define STS2_RDATTO (1 << 14)
#define STS2_DATBSYTO (1 << 13)
#define STS2_CRCSTTO (1 << 12)
#define STS2_AC12BSYTO (1 << 11)
#define STS2_RSPBSYTO (1 << 10)
#define STS2_AC12RSPTO (1 << 9)
#define STS2_RSPTO (1 << 8)
#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
STS2_DATBSYTO | STS2_CRCSTTO | \
STS2_AC12BSYTO | STS2_RSPBSYTO | \
STS2_AC12RSPTO | STS2_RSPTO)
#define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */
#define CLKDEV_MMC_DATA 20000000 /* 20 MHz */
#define CLKDEV_INIT 400000 /* 400 kHz */
enum sh_mmcif_state {
STATE_IDLE,
STATE_REQUEST,
STATE_IOS,
STATE_TIMEOUT,
};
enum sh_mmcif_wait_for {
MMCIF_WAIT_FOR_REQUEST,
MMCIF_WAIT_FOR_CMD,
MMCIF_WAIT_FOR_MREAD,
MMCIF_WAIT_FOR_MWRITE,
MMCIF_WAIT_FOR_READ,
MMCIF_WAIT_FOR_WRITE,
MMCIF_WAIT_FOR_READ_END,
MMCIF_WAIT_FOR_WRITE_END,
MMCIF_WAIT_FOR_STOP,
};
/*
* difference for each SoC
*/
struct sh_mmcif_host {
struct mmc_host *mmc;
struct mmc_request *mrq;
struct platform_device *pd;
struct clk *clk;
int bus_width;
unsigned char timing;
bool sd_error;
bool dying;
long timeout;
void __iomem *addr;
u32 *pio_ptr;
spinlock_t lock; /* protect sh_mmcif_host::state */
enum sh_mmcif_state state;
enum sh_mmcif_wait_for wait_for;
struct delayed_work timeout_work;
size_t blocksize;
int sg_idx;
int sg_blkidx;
bool power;
bool ccs_enable; /* Command Completion Signal support */
bool clk_ctrl2_enable;
struct mutex thread_lock;
u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
/* DMA support */
struct dma_chan *chan_rx;
struct dma_chan *chan_tx;
struct completion dma_complete;
bool dma_active;
};
static const struct of_device_id sh_mmcif_of_match[] = {
{ .compatible = "renesas,sh-mmcif" },
{ }
};
MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
unsigned int reg, u32 val)
{
writel(val | readl(host->addr + reg), host->addr + reg);
}
static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
unsigned int reg, u32 val)
{
writel(~val & readl(host->addr + reg), host->addr + reg);
}
static void sh_mmcif_dma_complete(void *arg)
{
struct sh_mmcif_host *host = arg;
struct mmc_request *mrq = host->mrq;
struct device *dev = sh_mmcif_host_to_dev(host);
dev_dbg(dev, "Command completed\n");
if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
dev_name(dev)))
return;
complete(&host->dma_complete);
}
static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
{
struct mmc_data *data = host->mrq->data;
struct scatterlist *sg = data->sg;
struct dma_async_tx_descriptor *desc = NULL;
struct dma_chan *chan = host->chan_rx;
struct device *dev = sh_mmcif_host_to_dev(host);
dma_cookie_t cookie = -EINVAL;
int ret;
ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
DMA_FROM_DEVICE);
if (ret > 0) {
host->dma_active = true;
desc = dmaengine_prep_slave_sg(chan, sg, ret,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
if (desc) {
desc->callback = sh_mmcif_dma_complete;
desc->callback_param = host;
cookie = dmaengine_submit(desc);
sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
dma_async_issue_pending(chan);
}
dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
__func__, data->sg_len, ret, cookie);
if (!desc) {
/* DMA failed, fall back to PIO */
if (ret >= 0)
ret = -EIO;
host->chan_rx = NULL;
host->dma_active = false;
dma_release_channel(chan);
/* Free the Tx channel too */
chan = host->chan_tx;
if (chan) {
host->chan_tx = NULL;
dma_release_channel(chan);
}
dev_warn(dev,
"DMA failed: %d, falling back to PIO\n", ret);
sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
}
dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
desc, cookie, data->sg_len);
}
static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
{
struct mmc_data *data = host->mrq->data;
struct scatterlist *sg = data->sg;
struct dma_async_tx_descriptor *desc = NULL;
struct dma_chan *chan = host->chan_tx;
struct device *dev = sh_mmcif_host_to_dev(host);
dma_cookie_t cookie = -EINVAL;
int ret;
ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
DMA_TO_DEVICE);
if (ret > 0) {
host->dma_active = true;
desc = dmaengine_prep_slave_sg(chan, sg, ret,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
if (desc) {
desc->callback = sh_mmcif_dma_complete;
desc->callback_param = host;
cookie = dmaengine_submit(desc);
sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
dma_async_issue_pending(chan);
}
dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
__func__, data->sg_len, ret, cookie);
if (!desc) {
/* DMA failed, fall back to PIO */
if (ret >= 0)
ret = -EIO;
host->chan_tx = NULL;
host->dma_active = false;
dma_release_channel(chan);
/* Free the Rx channel too */
chan = host->chan_rx;
if (chan) {
host->chan_rx = NULL;
dma_release_channel(chan);
}
dev_warn(dev,
"DMA failed: %d, falling back to PIO\n", ret);
sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
}
dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
desc, cookie);
}
static struct dma_chan *
sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
{
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
if (slave_id <= 0)
return NULL;
return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
}
static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
struct dma_chan *chan,
enum dma_transfer_direction direction)
{
struct resource *res;
struct dma_slave_config cfg = { 0, };
res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
cfg.direction = direction;
if (direction == DMA_DEV_TO_MEM) {
cfg.src_addr = res->start + MMCIF_CE_DATA;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
} else {
cfg.dst_addr = res->start + MMCIF_CE_DATA;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
}
return dmaengine_slave_config(chan, &cfg);
}
static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
{
struct device *dev = sh_mmcif_host_to_dev(host);
host->dma_active = false;
/* We can only either use DMA for both Tx and Rx or not use it at all */
if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
struct sh_mmcif_plat_data *pdata = dev->platform_data;
host->chan_tx = sh_mmcif_request_dma_pdata(host,
pdata->slave_id_tx);
host->chan_rx = sh_mmcif_request_dma_pdata(host,
pdata->slave_id_rx);
} else {
host->chan_tx = dma_request_chan(dev, "tx");
if (IS_ERR(host->chan_tx))
host->chan_tx = NULL;
host->chan_rx = dma_request_chan(dev, "rx");
if (IS_ERR(host->chan_rx))
host->chan_rx = NULL;
}
dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
host->chan_rx);
if (!host->chan_tx || !host->chan_rx ||
sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
goto error;
return;
error:
if (host->chan_tx)
dma_release_channel(host->chan_tx);
if (host->chan_rx)
dma_release_channel(host->chan_rx);
host->chan_tx = host->chan_rx = NULL;
}
static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
{
sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
/* Descriptors are freed automatically */
if (host->chan_tx) {
struct dma_chan *chan = host->chan_tx;
host->chan_tx = NULL;
dma_release_channel(chan);
}
if (host->chan_rx) {
struct dma_chan *chan = host->chan_rx;
host->chan_rx = NULL;
dma_release_channel(chan);
}
host->dma_active = false;
}
static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
{
struct device *dev = sh_mmcif_host_to_dev(host);
struct sh_mmcif_plat_data *p = dev->platform_data;
bool sup_pclk = p ? p->sup_pclk : false;
unsigned int current_clk = clk_get_rate(host->clk);
unsigned int clkdiv;
sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
if (!clk)
return;
if (host->clkdiv_map) {
unsigned int freq, best_freq, myclk, div, diff_min, diff;
int i;
clkdiv = 0;
diff_min = ~0;
best_freq = 0;
for (i = 31; i >= 0; i--) {
if (!((1 << i) & host->clkdiv_map))
continue;
/*
* clk = parent_freq / div
* -> parent_freq = clk x div
*/
div = 1 << (i + 1);
freq = clk_round_rate(host->clk, clk * div);
myclk = freq / div;
diff = (myclk > clk) ? myclk - clk : clk - myclk;
if (diff <= diff_min) {
best_freq = freq;
clkdiv = i;
diff_min = diff;
}
}
dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
clk_set_rate(host->clk, best_freq);
clkdiv = clkdiv << 16;
} else if (sup_pclk && clk == current_clk) {
clkdiv = CLK_SUP_PCLK;
} else {
clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
}
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
}
static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
{
u32 tmp;
tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
if (host->ccs_enable)
tmp |= SCCSTO_29;
if (host->clk_ctrl2_enable)
sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
/* byte swap on */
sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
}
static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
{
struct device *dev = sh_mmcif_host_to_dev(host);
u32 state1, state2;
int ret, timeout;
host->sd_error = false;
state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
if (state1 & STS1_CMDSEQ) {
sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
for (timeout = 10000; timeout; timeout--) {
if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
& STS1_CMDSEQ))
break;
mdelay(1);
}
if (!timeout) {
dev_err(dev,
"Forced end of command sequence timeout err\n");
return -EIO;
}
sh_mmcif_sync_reset(host);
dev_dbg(dev, "Forced end of command sequence\n");
return -EIO;
}
if (state2 & STS2_CRC_ERR) {
dev_err(dev, " CRC error: state %u, wait %u\n",
host->state, host->wait_for);
ret = -EIO;
} else if (state2 & STS2_TIMEOUT_ERR) {
dev_err(dev, " Timeout: state %u, wait %u\n",
host->state, host->wait_for);
ret = -ETIMEDOUT;
} else {
dev_dbg(dev, " End/Index error: state %u, wait %u\n",
host->state, host->wait_for);
ret = -EIO;
}
return ret;
}
static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
{
struct mmc_data *data = host->mrq->data;
host->sg_blkidx += host->blocksize;
/* data->sg->length must be a multiple of host->blocksize? */
BUG_ON(host->sg_blkidx > data->sg->length);
if (host->sg_blkidx == data->sg->length) {
host->sg_blkidx = 0;
if (++host->sg_idx < data->sg_len)
host->pio_ptr = sg_virt(++data->sg);
} else {
host->pio_ptr = p;
}
return host->sg_idx != data->sg_len;
}
static void sh_mmcif_single_read(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
BLOCK_SIZE_MASK) + 3;
host->wait_for = MMCIF_WAIT_FOR_READ;
/* buf read enable */
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
}
static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
{
struct device *dev = sh_mmcif_host_to_dev(host);
struct mmc_data *data = host->mrq->data;
u32 *p = sg_virt(data->sg);
int i;
if (host->sd_error) {
data->error = sh_mmcif_error_manage(host);
dev_dbg(dev, "%s(): %d\n", __func__, data->error);
return false;
}
for (i = 0; i < host->blocksize / 4; i++)
*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
/* buffer read end */
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
host->wait_for = MMCIF_WAIT_FOR_READ_END;
return true;
}
static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
if (!data->sg_len || !data->sg->length)
return;
host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
BLOCK_SIZE_MASK;
host->wait_for = MMCIF_WAIT_FOR_MREAD;
host->sg_idx = 0;
host->sg_blkidx = 0;
host->pio_ptr = sg_virt(data->sg);
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
}
static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
{
struct device *dev = sh_mmcif_host_to_dev(host);
struct mmc_data *data = host->mrq->data;
u32 *p = host->pio_ptr;
int i;
if (host->sd_error) {
data->error = sh_mmcif_error_manage(host);
dev_dbg(dev, "%s(): %d\n", __func__, data->error);
return false;
}
BUG_ON(!data->sg->length);
for (i = 0; i < host->blocksize / 4; i++)
*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
if (!sh_mmcif_next_block(host, p))
return false;
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
return true;
}
static void sh_mmcif_single_write(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
BLOCK_SIZE_MASK) + 3;
host->wait_for = MMCIF_WAIT_FOR_WRITE;
/* buf write enable */
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
}
static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
{
struct device *dev = sh_mmcif_host_to_dev(host);
struct mmc_data *data = host->mrq->data;
u32 *p = sg_virt(data->sg);
int i;
if (host->sd_error) {
data->error = sh_mmcif_error_manage(host);
dev_dbg(dev, "%s(): %d\n", __func__, data->error);
return false;
}
for (i = 0; i < host->blocksize / 4; i++)
sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
/* buffer write end */
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
return true;
}
static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
if (!data->sg_len || !data->sg->length)
return;
host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
BLOCK_SIZE_MASK;
host->wait_for = MMCIF_WAIT_FOR_MWRITE;
host->sg_idx = 0;
host->sg_blkidx = 0;
host->pio_ptr = sg_virt(data->sg);
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
}
static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
{
struct device *dev = sh_mmcif_host_to_dev(host);
struct mmc_data *data = host->mrq->data;
u32 *p = host->pio_ptr;
int i;
if (host->sd_error) {
data->error = sh_mmcif_error_manage(host);
dev_dbg(dev, "%s(): %d\n", __func__, data->error);
return false;
}
BUG_ON(!data->sg->length);
for (i = 0; i < host->blocksize / 4; i++)
sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
if (!sh_mmcif_next_block(host, p))
return false;
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
return true;
}
static void sh_mmcif_get_response(struct sh_mmcif_host *host,
struct mmc_command *cmd)
{
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
} else
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
}
static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
struct mmc_command *cmd)
{
cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
}
static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct device *dev = sh_mmcif_host_to_dev(host);
struct mmc_data *data = mrq->data;
struct mmc_command *cmd = mrq->cmd;
u32 opc = cmd->opcode;
u32 tmp = 0;
/* Response Type check */
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
tmp |= CMD_SET_RTYP_NO;
break;
case MMC_RSP_R1:
case MMC_RSP_R3:
tmp |= CMD_SET_RTYP_6B;
break;
case MMC_RSP_R1B:
tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
break;
case MMC_RSP_R2:
tmp |= CMD_SET_RTYP_17B;
break;
default:
dev_err(dev, "Unsupported response type.\n");
break;
}
/* WDAT / DATW */
if (data) {
tmp |= CMD_SET_WDAT;
switch (host->bus_width) {
case MMC_BUS_WIDTH_1:
tmp |= CMD_SET_DATW_1;
break;
case MMC_BUS_WIDTH_4:
tmp |= CMD_SET_DATW_4;
break;
case MMC_BUS_WIDTH_8:
tmp |= CMD_SET_DATW_8;
break;
default:
dev_err(dev, "Unsupported bus width.\n");
break;
}
switch (host->timing) {
case MMC_TIMING_MMC_DDR52:
/*
* MMC core will only set this timing, if the host
* advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
* capability. MMCIF implementations with this
* capability, e.g. sh73a0, will have to set it
* in their platform data.
*/
tmp |= CMD_SET_DARS;
break;
}
}
/* DWEN */
if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
tmp |= CMD_SET_DWEN;
/* CMLTE/CMD12EN */
if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
data->blocks << 16);
}
/* RIDXC[1:0] check bits */
if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
tmp |= CMD_SET_RIDXC_BITS;
/* RCRC7C[1:0] check bits */
if (opc == MMC_SEND_OP_COND)
tmp |= CMD_SET_CRC7C_BITS;
/* RCRC7C[1:0] internal CRC7 */
if (opc == MMC_ALL_SEND_CID ||
opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
tmp |= CMD_SET_CRC7C_INTERNAL;
return (opc << 24) | tmp;
}
static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
struct mmc_request *mrq, u32 opc)
{
struct device *dev = sh_mmcif_host_to_dev(host);
switch (opc) {
case MMC_READ_MULTIPLE_BLOCK:
sh_mmcif_multi_read(host, mrq);
return 0;
case MMC_WRITE_MULTIPLE_BLOCK:
sh_mmcif_multi_write(host, mrq);
return 0;
case MMC_WRITE_BLOCK:
sh_mmcif_single_write(host, mrq);
return 0;
case MMC_READ_SINGLE_BLOCK:
case MMC_SEND_EXT_CSD:
sh_mmcif_single_read(host, mrq);
return 0;
default:
dev_err(dev, "Unsupported CMD%d\n", opc);
return -EINVAL;
}
}
static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
u32 opc;
u32 mask = 0;
unsigned long flags;
if (cmd->flags & MMC_RSP_BUSY)
mask = MASK_START_CMD | MASK_MRBSYE;
else
mask = MASK_START_CMD | MASK_MCRSPE;
if (host->ccs_enable)
mask |= MASK_MCCSTO;
if (mrq->data) {
sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
mrq->data->blksz);
}
opc = sh_mmcif_set_cmd(host, mrq);
if (host->ccs_enable)
sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
else
sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
/* set arg */
sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
/* set cmd */
spin_lock_irqsave(&host->lock, flags);
sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
host->wait_for = MMCIF_WAIT_FOR_CMD;
schedule_delayed_work(&host->timeout_work, host->timeout);
spin_unlock_irqrestore(&host->lock, flags);
}
static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
struct mmc_request *mrq)
{
struct device *dev = sh_mmcif_host_to_dev(host);
switch (mrq->cmd->opcode) {
case MMC_READ_MULTIPLE_BLOCK:
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
break;
case MMC_WRITE_MULTIPLE_BLOCK:
sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
break;
default:
dev_err(dev, "unsupported stop cmd\n");
mrq->stop->error = sh_mmcif_error_manage(host);
return;
}
host->wait_for = MMCIF_WAIT_FOR_STOP;
}
static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sh_mmcif_host *host = mmc_priv(mmc);
struct device *dev = sh_mmcif_host_to_dev(host);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->state != STATE_IDLE) {
dev_dbg(dev, "%s() rejected, state %u\n",
__func__, host->state);
spin_unlock_irqrestore(&host->lock, flags);
mrq->cmd->error = -EAGAIN;
mmc_request_done(mmc, mrq);
return;
}
host->state = STATE_REQUEST;
spin_unlock_irqrestore(&host->lock, flags);
host->mrq = mrq;
sh_mmcif_start_cmd(host, mrq);
}
static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
{
struct device *dev = sh_mmcif_host_to_dev(host);
if (host->mmc->f_max) {
unsigned int f_max, f_min = 0, f_min_old;
f_max = host->mmc->f_max;
for (f_min_old = f_max; f_min_old > 2;) {
f_min = clk_round_rate(host->clk, f_min_old / 2);
if (f_min == f_min_old)
break;
f_min_old = f_min;
}
/*
* This driver assumes this SoC is R-Car Gen2 or later
*/
host->clkdiv_map = 0x3ff;
host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
host->mmc->f_min = f_min >> fls(host->clkdiv_map);
} else {
unsigned int clk = clk_get_rate(host->clk);
host->mmc->f_max = clk / 2;
host->mmc->f_min = clk / 512;
}
dev_dbg(dev, "clk max/min = %d/%d\n",
host->mmc->f_max, host->mmc->f_min);
}
static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sh_mmcif_host *host = mmc_priv(mmc);
struct device *dev = sh_mmcif_host_to_dev(host);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->state != STATE_IDLE) {
dev_dbg(dev, "%s() rejected, state %u\n",
__func__, host->state);
spin_unlock_irqrestore(&host->lock, flags);
return;
}
host->state = STATE_IOS;
spin_unlock_irqrestore(&host->lock, flags);
switch (ios->power_mode) {
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
if (!host->power) {
clk_prepare_enable(host->clk);
pm_runtime_get_sync(dev);
sh_mmcif_sync_reset(host);
sh_mmcif_request_dma(host);
host->power = true;
}
break;
case MMC_POWER_OFF:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (host->power) {
sh_mmcif_clock_control(host, 0);
sh_mmcif_release_dma(host);
pm_runtime_put(dev);
clk_disable_unprepare(host->clk);
host->power = false;
}
break;
case MMC_POWER_ON:
sh_mmcif_clock_control(host, ios->clock);
break;
}
host->timing = ios->timing;
host->bus_width = ios->bus_width;
host->state = STATE_IDLE;
}
static const struct mmc_host_ops sh_mmcif_ops = {
.request = sh_mmcif_request,
.set_ios = sh_mmcif_set_ios,
.get_cd = mmc_gpio_get_cd,
};
static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
{
struct mmc_command *cmd = host->mrq->cmd;
struct mmc_data *data = host->mrq->data;
struct device *dev = sh_mmcif_host_to_dev(host);
long time;
if (host->sd_error) {
switch (cmd->opcode) {
case MMC_ALL_SEND_CID:
case MMC_SELECT_CARD:
case MMC_APP_CMD:
cmd->error = -ETIMEDOUT;
break;
default:
cmd->error = sh_mmcif_error_manage(host);
break;
}
dev_dbg(dev, "CMD%d error %d\n",
cmd->opcode, cmd->error);
host->sd_error = false;
return false;
}
if (!(cmd->flags & MMC_RSP_PRESENT)) {
cmd->error = 0;
return false;
}
sh_mmcif_get_response(host, cmd);
if (!data)
return false;
/*
* Completion can be signalled from DMA callback and error, so, have to
* reset here, before setting .dma_active
*/
init_completion(&host->dma_complete);
if (data->flags & MMC_DATA_READ) {
if (host->chan_rx)
sh_mmcif_start_dma_rx(host);
} else {
if (host->chan_tx)
sh_mmcif_start_dma_tx(host);
}
if (!host->dma_active) {
data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
return !data->error;
}
/* Running in the IRQ thread, can sleep */
time = wait_for_completion_interruptible_timeout(&host->dma_complete,
host->timeout);
if (data->flags & MMC_DATA_READ)
dma_unmap_sg(host->chan_rx->device->dev,
data->sg, data->sg_len,
DMA_FROM_DEVICE);
else
dma_unmap_sg(host->chan_tx->device->dev,
data->sg, data->sg_len,
DMA_TO_DEVICE);
if (host->sd_error) {
dev_err(host->mmc->parent,
"Error IRQ while waiting for DMA completion!\n");
/* Woken up by an error IRQ: abort DMA */
data->error = sh_mmcif_error_manage(host);
} else if (!time) {
dev_err(host->mmc->parent, "DMA timeout!\n");
data->error = -ETIMEDOUT;
} else if (time < 0) {
dev_err(host->mmc->parent,
"wait_for_completion_...() error %ld!\n", time);
data->error = time;
}
sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
host->dma_active = false;
if (data->error) {
data->bytes_xfered = 0;
/* Abort DMA */
if (data->flags & MMC_DATA_READ)
dmaengine_terminate_sync(host->chan_rx);
else
dmaengine_terminate_sync(host->chan_tx);
}
return false;
}
static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
{
struct sh_mmcif_host *host = dev_id;
struct mmc_request *mrq;
struct device *dev = sh_mmcif_host_to_dev(host);
bool wait = false;
unsigned long flags;
int wait_work;
spin_lock_irqsave(&host->lock, flags);
wait_work = host->wait_for;
spin_unlock_irqrestore(&host->lock, flags);
cancel_delayed_work_sync(&host->timeout_work);
mutex_lock(&host->thread_lock);
mrq = host->mrq;
if (!mrq) {
dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
host->state, host->wait_for);
mutex_unlock(&host->thread_lock);
return IRQ_HANDLED;
}
/*
* All handlers return true, if processing continues, and false, if the
* request has to be completed - successfully or not
*/
switch (wait_work) {
case MMCIF_WAIT_FOR_REQUEST:
/* We're too late, the timeout has already kicked in */
mutex_unlock(&host->thread_lock);
return IRQ_HANDLED;
case MMCIF_WAIT_FOR_CMD:
/* Wait for data? */
wait = sh_mmcif_end_cmd(host);
break;
case MMCIF_WAIT_FOR_MREAD:
/* Wait for more data? */
wait = sh_mmcif_mread_block(host);
break;
case MMCIF_WAIT_FOR_READ:
/* Wait for data end? */
wait = sh_mmcif_read_block(host);
break;
case MMCIF_WAIT_FOR_MWRITE:
/* Wait data to write? */
wait = sh_mmcif_mwrite_block(host);
break;
case MMCIF_WAIT_FOR_WRITE:
/* Wait for data end? */
wait = sh_mmcif_write_block(host);
break;
case MMCIF_WAIT_FOR_STOP:
if (host->sd_error) {
mrq->stop->error = sh_mmcif_error_manage(host);
dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
break;
}
sh_mmcif_get_cmd12response(host, mrq->stop);
mrq->stop->error = 0;
break;
case MMCIF_WAIT_FOR_READ_END:
case MMCIF_WAIT_FOR_WRITE_END:
if (host->sd_error) {
mrq->data->error = sh_mmcif_error_manage(host);
dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
}
break;
default:
BUG();
}
if (wait) {
schedule_delayed_work(&host->timeout_work, host->timeout);
/* Wait for more data */
mutex_unlock(&host->thread_lock);
return IRQ_HANDLED;
}
if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
struct mmc_data *data = mrq->data;
if (!mrq->cmd->error && data && !data->error)
data->bytes_xfered =
data->blocks * data->blksz;
if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
sh_mmcif_stop_cmd(host, mrq);
if (!mrq->stop->error) {
schedule_delayed_work(&host->timeout_work, host->timeout);
mutex_unlock(&host->thread_lock);
return IRQ_HANDLED;
}
}
}
host->wait_for = MMCIF_WAIT_FOR_REQUEST;
host->state = STATE_IDLE;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
mutex_unlock(&host->thread_lock);
return IRQ_HANDLED;
}
static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
{
struct sh_mmcif_host *host = dev_id;
struct device *dev = sh_mmcif_host_to_dev(host);
u32 state, mask;
state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
if (host->ccs_enable)
sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
else
sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
if (state & ~MASK_CLEAN)
dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
state);
if (state & INT_ERR_STS || state & ~INT_ALL) {
host->sd_error = true;
dev_dbg(dev, "int err state = 0x%08x\n", state);
}
if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
if (!host->mrq)
dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
if (!host->dma_active)
return IRQ_WAKE_THREAD;
else if (host->sd_error)
sh_mmcif_dma_complete(host);
} else {
dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
}
return IRQ_HANDLED;
}
static void sh_mmcif_timeout_work(struct work_struct *work)
{
struct delayed_work *d = to_delayed_work(work);
struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
struct mmc_request *mrq = host->mrq;
struct device *dev = sh_mmcif_host_to_dev(host);
unsigned long flags;
if (host->dying)
/* Don't run after mmc_remove_host() */
return;
spin_lock_irqsave(&host->lock, flags);
if (host->state == STATE_IDLE) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
dev_err(dev, "Timeout waiting for %u on CMD%u\n",
host->wait_for, mrq->cmd->opcode);
host->state = STATE_TIMEOUT;
spin_unlock_irqrestore(&host->lock, flags);
/*
* Handle races with cancel_delayed_work(), unless
* cancel_delayed_work_sync() is used
*/
switch (host->wait_for) {
case MMCIF_WAIT_FOR_CMD:
mrq->cmd->error = sh_mmcif_error_manage(host);
break;
case MMCIF_WAIT_FOR_STOP:
mrq->stop->error = sh_mmcif_error_manage(host);
break;
case MMCIF_WAIT_FOR_MREAD:
case MMCIF_WAIT_FOR_MWRITE:
case MMCIF_WAIT_FOR_READ:
case MMCIF_WAIT_FOR_WRITE:
case MMCIF_WAIT_FOR_READ_END:
case MMCIF_WAIT_FOR_WRITE_END:
mrq->data->error = sh_mmcif_error_manage(host);
break;
default:
BUG();
}
host->state = STATE_IDLE;
host->wait_for = MMCIF_WAIT_FOR_REQUEST;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
{
struct device *dev = sh_mmcif_host_to_dev(host);
struct sh_mmcif_plat_data *pd = dev->platform_data;
struct mmc_host *mmc = host->mmc;
mmc_regulator_get_supply(mmc);
if (!pd)
return;
if (!mmc->ocr_avail)
mmc->ocr_avail = pd->ocr;
else if (pd->ocr)
dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
}
static int sh_mmcif_probe(struct platform_device *pdev)
{
int ret = 0, irq[2];
struct mmc_host *mmc;
struct sh_mmcif_host *host;
struct device *dev = &pdev->dev;
struct sh_mmcif_plat_data *pd = dev->platform_data;
void __iomem *reg;
const char *name;
irq[0] = platform_get_irq(pdev, 0);
irq[1] = platform_get_irq_optional(pdev, 1);
if (irq[0] < 0)
return irq[0];
reg = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(reg))
return PTR_ERR(reg);
mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
if (!mmc)
return -ENOMEM;
ret = mmc_of_parse(mmc);
if (ret < 0)
goto err_host;
host = mmc_priv(mmc);
host->mmc = mmc;
host->addr = reg;
host->timeout = msecs_to_jiffies(10000);
host->ccs_enable = true;
host->clk_ctrl2_enable = false;
host->pd = pdev;
spin_lock_init(&host->lock);
mmc->ops = &sh_mmcif_ops;
sh_mmcif_init_ocr(host);
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
mmc->max_busy_timeout = 10000;
if (pd && pd->caps)
mmc->caps |= pd->caps;
mmc->max_segs = 32;
mmc->max_blk_size = 512;
mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
mmc->max_seg_size = mmc->max_req_size;
platform_set_drvdata(pdev, host);
host->clk = devm_clk_get(dev, NULL);
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
dev_err(dev, "cannot get clock: %d\n", ret);
goto err_host;
}
ret = clk_prepare_enable(host->clk);
if (ret < 0)
goto err_host;
sh_mmcif_clk_setup(host);
pm_runtime_enable(dev);
host->power = false;
ret = pm_runtime_get_sync(dev);
if (ret < 0)
goto err_clk;
INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
sh_mmcif_sync_reset(host);
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
sh_mmcif_irqt, 0, name, host);
if (ret) {
dev_err(dev, "request_irq error (%s)\n", name);
goto err_clk;
}
if (irq[1] >= 0) {
ret = devm_request_threaded_irq(dev, irq[1],
sh_mmcif_intr, sh_mmcif_irqt,
0, "sh_mmc:int", host);
if (ret) {
dev_err(dev, "request_irq error (sh_mmc:int)\n");
goto err_clk;
}
}
mutex_init(&host->thread_lock);
ret = mmc_add_host(mmc);
if (ret < 0)
goto err_clk;
dev_pm_qos_expose_latency_limit(dev, 100);
dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
clk_get_rate(host->clk) / 1000000UL);
pm_runtime_put(dev);
clk_disable_unprepare(host->clk);
return ret;
err_clk:
clk_disable_unprepare(host->clk);
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
err_host:
mmc_free_host(mmc);
return ret;
}
static void sh_mmcif_remove(struct platform_device *pdev)
{
struct sh_mmcif_host *host = platform_get_drvdata(pdev);
host->dying = true;
clk_prepare_enable(host->clk);
pm_runtime_get_sync(&pdev->dev);
dev_pm_qos_hide_latency_limit(&pdev->dev);
mmc_remove_host(host->mmc);
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
/*
* FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
* mmc_remove_host() call above. But swapping order doesn't help either
* (a query on the linux-mmc mailing list didn't bring any replies).
*/
cancel_delayed_work_sync(&host->timeout_work);
clk_disable_unprepare(host->clk);
mmc_free_host(host->mmc);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
#ifdef CONFIG_PM_SLEEP
static int sh_mmcif_suspend(struct device *dev)
{
struct sh_mmcif_host *host = dev_get_drvdata(dev);
pm_runtime_get_sync(dev);
sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
pm_runtime_put(dev);
return 0;
}
static int sh_mmcif_resume(struct device *dev)
{
return 0;
}
#endif
static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
};
static struct platform_driver sh_mmcif_driver = {
.probe = sh_mmcif_probe,
.remove_new = sh_mmcif_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &sh_mmcif_dev_pm_ops,
.of_match_table = sh_mmcif_of_match,
},
};
module_platform_driver(sh_mmcif_driver);
MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Yusuke Goda <[email protected]>");
| linux-master | drivers/mmc/host/sh_mmcif.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Amlogic Meson6/Meson8/Meson8b/Meson8m2 SDHC MMC host controller driver.
*
* Copyright (C) 2020 Martin Blumenstingl <[email protected]>
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include "meson-mx-sdhc.h"
#define MESON_SDHC_NUM_BULK_CLKS 4
#define MESON_SDHC_MAX_BLK_SIZE 512
#define MESON_SDHC_NUM_TUNING_TRIES 10
#define MESON_SDHC_WAIT_CMD_READY_SLEEP_US 1
#define MESON_SDHC_WAIT_CMD_READY_TIMEOUT_US 100000
#define MESON_SDHC_WAIT_BEFORE_SEND_SLEEP_US 1
#define MESON_SDHC_WAIT_BEFORE_SEND_TIMEOUT_US 200
struct meson_mx_sdhc_data {
void (*init_hw)(struct mmc_host *mmc);
void (*set_pdma)(struct mmc_host *mmc);
void (*wait_before_send)(struct mmc_host *mmc);
bool hardware_flush_all_cmds;
};
struct meson_mx_sdhc_host {
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
int error;
struct regmap *regmap;
struct clk *pclk;
struct clk *sd_clk;
struct clk_bulk_data bulk_clks[MESON_SDHC_NUM_BULK_CLKS];
bool bulk_clks_enabled;
const struct meson_mx_sdhc_data *platform;
};
static const struct regmap_config meson_mx_sdhc_regmap_config = {
.reg_bits = 8,
.val_bits = 32,
.reg_stride = 4,
.max_register = MESON_SDHC_CLK2,
};
static void meson_mx_sdhc_hw_reset(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
regmap_write(host->regmap, MESON_SDHC_SRST, MESON_SDHC_SRST_MAIN_CTRL |
MESON_SDHC_SRST_RXFIFO | MESON_SDHC_SRST_TXFIFO |
MESON_SDHC_SRST_DPHY_RX | MESON_SDHC_SRST_DPHY_TX |
MESON_SDHC_SRST_DMA_IF);
usleep_range(10, 100);
regmap_write(host->regmap, MESON_SDHC_SRST, 0);
usleep_range(10, 100);
}
static void meson_mx_sdhc_clear_fifo(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
u32 stat;
regmap_read(host->regmap, MESON_SDHC_STAT, &stat);
if (!FIELD_GET(MESON_SDHC_STAT_RXFIFO_CNT, stat) &&
!FIELD_GET(MESON_SDHC_STAT_TXFIFO_CNT, stat))
return;
regmap_write(host->regmap, MESON_SDHC_SRST, MESON_SDHC_SRST_RXFIFO |
MESON_SDHC_SRST_TXFIFO | MESON_SDHC_SRST_MAIN_CTRL);
udelay(5);
regmap_read(host->regmap, MESON_SDHC_STAT, &stat);
if (FIELD_GET(MESON_SDHC_STAT_RXFIFO_CNT, stat) ||
FIELD_GET(MESON_SDHC_STAT_TXFIFO_CNT, stat))
dev_warn(mmc_dev(host->mmc),
"Failed to clear FIFOs, RX: %lu, TX: %lu\n",
FIELD_GET(MESON_SDHC_STAT_RXFIFO_CNT, stat),
FIELD_GET(MESON_SDHC_STAT_TXFIFO_CNT, stat));
}
static void meson_mx_sdhc_wait_cmd_ready(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
u32 stat, esta;
int ret;
ret = regmap_read_poll_timeout(host->regmap, MESON_SDHC_STAT, stat,
!(stat & MESON_SDHC_STAT_CMD_BUSY),
MESON_SDHC_WAIT_CMD_READY_SLEEP_US,
MESON_SDHC_WAIT_CMD_READY_TIMEOUT_US);
if (ret) {
dev_warn(mmc_dev(mmc),
"Failed to poll for CMD_BUSY while processing CMD%d\n",
host->cmd->opcode);
meson_mx_sdhc_hw_reset(mmc);
}
ret = regmap_read_poll_timeout(host->regmap, MESON_SDHC_ESTA, esta,
!(esta & MESON_SDHC_ESTA_11_13),
MESON_SDHC_WAIT_CMD_READY_SLEEP_US,
MESON_SDHC_WAIT_CMD_READY_TIMEOUT_US);
if (ret) {
dev_warn(mmc_dev(mmc),
"Failed to poll for ESTA[13:11] while processing CMD%d\n",
host->cmd->opcode);
meson_mx_sdhc_hw_reset(mmc);
}
}
static void meson_mx_sdhc_start_cmd(struct mmc_host *mmc,
struct mmc_command *cmd)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
bool manual_stop = false;
u32 ictl, send;
int pack_len;
host->cmd = cmd;
ictl = MESON_SDHC_ICTL_DATA_TIMEOUT | MESON_SDHC_ICTL_DATA_ERR_CRC |
MESON_SDHC_ICTL_RXFIFO_FULL | MESON_SDHC_ICTL_TXFIFO_EMPTY |
MESON_SDHC_ICTL_RESP_TIMEOUT | MESON_SDHC_ICTL_RESP_ERR_CRC;
send = FIELD_PREP(MESON_SDHC_SEND_CMD_INDEX, cmd->opcode);
if (cmd->data) {
send |= MESON_SDHC_SEND_CMD_HAS_DATA;
send |= FIELD_PREP(MESON_SDHC_SEND_TOTAL_PACK,
cmd->data->blocks - 1);
if (cmd->data->blksz < MESON_SDHC_MAX_BLK_SIZE)
pack_len = cmd->data->blksz;
else
pack_len = 0;
if (cmd->data->flags & MMC_DATA_WRITE)
send |= MESON_SDHC_SEND_DATA_DIR;
/*
* If command with no data, just wait response done
* interrupt(int[0]), and if command with data transfer, just
* wait dma done interrupt(int[11]), don't need care about
* dat0 busy or not.
*/
if (host->platform->hardware_flush_all_cmds ||
cmd->data->flags & MMC_DATA_WRITE)
/* hardware flush: */
ictl |= MESON_SDHC_ICTL_DMA_DONE;
else
/* software flush: */
ictl |= MESON_SDHC_ICTL_DATA_XFER_OK;
/*
* Mimic the logic from the vendor driver where (only)
* SD_IO_RW_EXTENDED commands with more than one block set the
* MESON_SDHC_MISC_MANUAL_STOP bit. This fixes the firmware
* download in the brcmfmac driver for a BCM43362/1 card.
* Without this sdio_memcpy_toio() (with a size of 219557
* bytes) times out if MESON_SDHC_MISC_MANUAL_STOP is not set.
*/
manual_stop = cmd->data->blocks > 1 &&
cmd->opcode == SD_IO_RW_EXTENDED;
} else {
pack_len = 0;
ictl |= MESON_SDHC_ICTL_RESP_OK;
}
regmap_update_bits(host->regmap, MESON_SDHC_MISC,
MESON_SDHC_MISC_MANUAL_STOP,
manual_stop ? MESON_SDHC_MISC_MANUAL_STOP : 0);
if (cmd->opcode == MMC_STOP_TRANSMISSION)
send |= MESON_SDHC_SEND_DATA_STOP;
if (cmd->flags & MMC_RSP_PRESENT)
send |= MESON_SDHC_SEND_CMD_HAS_RESP;
if (cmd->flags & MMC_RSP_136) {
send |= MESON_SDHC_SEND_RESP_LEN;
send |= MESON_SDHC_SEND_RESP_NO_CRC;
}
if (!(cmd->flags & MMC_RSP_CRC))
send |= MESON_SDHC_SEND_RESP_NO_CRC;
if (cmd->flags & MMC_RSP_BUSY)
send |= MESON_SDHC_SEND_R1B;
/* enable the new IRQs and mask all pending ones */
regmap_write(host->regmap, MESON_SDHC_ICTL, ictl);
regmap_write(host->regmap, MESON_SDHC_ISTA, MESON_SDHC_ISTA_ALL_IRQS);
regmap_write(host->regmap, MESON_SDHC_ARGU, cmd->arg);
regmap_update_bits(host->regmap, MESON_SDHC_CTRL,
MESON_SDHC_CTRL_PACK_LEN,
FIELD_PREP(MESON_SDHC_CTRL_PACK_LEN, pack_len));
if (cmd->data)
regmap_write(host->regmap, MESON_SDHC_ADDR,
sg_dma_address(cmd->data->sg));
meson_mx_sdhc_wait_cmd_ready(mmc);
if (cmd->data)
host->platform->set_pdma(mmc);
if (host->platform->wait_before_send)
host->platform->wait_before_send(mmc);
regmap_write(host->regmap, MESON_SDHC_SEND, send);
}
static void meson_mx_sdhc_disable_clks(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
if (!host->bulk_clks_enabled)
return;
clk_bulk_disable_unprepare(MESON_SDHC_NUM_BULK_CLKS, host->bulk_clks);
host->bulk_clks_enabled = false;
}
static int meson_mx_sdhc_enable_clks(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
int ret;
if (host->bulk_clks_enabled)
return 0;
ret = clk_bulk_prepare_enable(MESON_SDHC_NUM_BULK_CLKS,
host->bulk_clks);
if (ret)
return ret;
host->bulk_clks_enabled = true;
return 0;
}
static int meson_mx_sdhc_set_clk(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
u32 rx_clk_phase;
int ret;
meson_mx_sdhc_disable_clks(mmc);
if (ios->clock) {
ret = clk_set_rate(host->sd_clk, ios->clock);
if (ret) {
dev_warn(mmc_dev(mmc),
"Failed to set MMC clock to %uHz: %d\n",
ios->clock, host->error);
return ret;
}
ret = meson_mx_sdhc_enable_clks(mmc);
if (ret)
return ret;
mmc->actual_clock = clk_get_rate(host->sd_clk);
/*
* according to Amlogic the following latching points are
* selected with empirical values, there is no (known) formula
* to calculate these.
*/
if (mmc->actual_clock > 100000000) {
rx_clk_phase = 1;
} else if (mmc->actual_clock > 45000000) {
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
rx_clk_phase = 15;
else
rx_clk_phase = 11;
} else if (mmc->actual_clock >= 25000000) {
rx_clk_phase = 15;
} else if (mmc->actual_clock > 5000000) {
rx_clk_phase = 23;
} else if (mmc->actual_clock > 1000000) {
rx_clk_phase = 55;
} else {
rx_clk_phase = 1061;
}
regmap_update_bits(host->regmap, MESON_SDHC_CLK2,
MESON_SDHC_CLK2_RX_CLK_PHASE,
FIELD_PREP(MESON_SDHC_CLK2_RX_CLK_PHASE,
rx_clk_phase));
} else {
mmc->actual_clock = 0;
}
return 0;
}
static void meson_mx_sdhc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
unsigned short vdd = ios->vdd;
switch (ios->power_mode) {
case MMC_POWER_OFF:
vdd = 0;
fallthrough;
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc)) {
host->error = mmc_regulator_set_ocr(mmc,
mmc->supply.vmmc,
vdd);
if (host->error)
return;
}
break;
case MMC_POWER_ON:
break;
}
host->error = meson_mx_sdhc_set_clk(mmc, ios);
if (host->error)
return;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
regmap_update_bits(host->regmap, MESON_SDHC_CTRL,
MESON_SDHC_CTRL_DAT_TYPE,
FIELD_PREP(MESON_SDHC_CTRL_DAT_TYPE, 0));
break;
case MMC_BUS_WIDTH_4:
regmap_update_bits(host->regmap, MESON_SDHC_CTRL,
MESON_SDHC_CTRL_DAT_TYPE,
FIELD_PREP(MESON_SDHC_CTRL_DAT_TYPE, 1));
break;
case MMC_BUS_WIDTH_8:
regmap_update_bits(host->regmap, MESON_SDHC_CTRL,
MESON_SDHC_CTRL_DAT_TYPE,
FIELD_PREP(MESON_SDHC_CTRL_DAT_TYPE, 2));
break;
default:
dev_err(mmc_dev(mmc), "unsupported bus width: %d\n",
ios->bus_width);
host->error = -EINVAL;
return;
}
}
static int meson_mx_sdhc_map_dma(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
unsigned int dma_len;
if (!data)
return 0;
dma_len = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (!dma_len) {
dev_err(mmc_dev(mmc), "dma_map_sg failed\n");
return -ENOMEM;
}
return 0;
}
static void meson_mx_sdhc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
struct mmc_command *cmd = mrq->cmd;
if (!host->error)
host->error = meson_mx_sdhc_map_dma(mmc, mrq);
if (host->error) {
cmd->error = host->error;
mmc_request_done(mmc, mrq);
return;
}
host->mrq = mrq;
meson_mx_sdhc_start_cmd(mmc, mrq->cmd);
}
static int meson_mx_sdhc_card_busy(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
u32 stat;
regmap_read(host->regmap, MESON_SDHC_STAT, &stat);
return FIELD_GET(MESON_SDHC_STAT_DAT3_0, stat) == 0;
}
static bool meson_mx_sdhc_tuning_point_matches(struct mmc_host *mmc,
u32 opcode)
{
unsigned int i, num_matches = 0;
int ret;
for (i = 0; i < MESON_SDHC_NUM_TUNING_TRIES; i++) {
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
num_matches++;
}
return num_matches == MESON_SDHC_NUM_TUNING_TRIES;
}
static int meson_mx_sdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
int div, start, len, best_start, best_len;
int curr_phase, old_phase, new_phase;
u32 val;
len = 0;
start = 0;
best_len = 0;
regmap_read(host->regmap, MESON_SDHC_CLK2, &val);
old_phase = FIELD_GET(MESON_SDHC_CLK2_RX_CLK_PHASE, val);
regmap_read(host->regmap, MESON_SDHC_CLKC, &val);
div = FIELD_GET(MESON_SDHC_CLKC_CLK_DIV, val);
for (curr_phase = 0; curr_phase <= div; curr_phase++) {
regmap_update_bits(host->regmap, MESON_SDHC_CLK2,
MESON_SDHC_CLK2_RX_CLK_PHASE,
FIELD_PREP(MESON_SDHC_CLK2_RX_CLK_PHASE,
curr_phase));
if (meson_mx_sdhc_tuning_point_matches(mmc, opcode)) {
if (!len) {
start = curr_phase;
dev_dbg(mmc_dev(mmc),
"New RX phase window starts at %u\n",
start);
}
len++;
} else {
if (len > best_len) {
best_start = start;
best_len = len;
dev_dbg(mmc_dev(mmc),
"New best RX phase window: %u - %u\n",
best_start, best_start + best_len);
}
/* reset the current window */
len = 0;
}
}
if (len > best_len)
/* the last window is the best (or possibly only) window */
new_phase = start + (len / 2);
else if (best_len)
/* there was a better window than the last */
new_phase = best_start + (best_len / 2);
else
/* no window was found at all, reset to the original phase */
new_phase = old_phase;
regmap_update_bits(host->regmap, MESON_SDHC_CLK2,
MESON_SDHC_CLK2_RX_CLK_PHASE,
FIELD_PREP(MESON_SDHC_CLK2_RX_CLK_PHASE,
new_phase));
if (!len && !best_len)
return -EIO;
dev_dbg(mmc_dev(mmc), "Tuned RX clock phase to %u\n", new_phase);
return 0;
}
static const struct mmc_host_ops meson_mx_sdhc_ops = {
.card_hw_reset = meson_mx_sdhc_hw_reset,
.request = meson_mx_sdhc_request,
.set_ios = meson_mx_sdhc_set_ios,
.card_busy = meson_mx_sdhc_card_busy,
.execute_tuning = meson_mx_sdhc_execute_tuning,
.get_cd = mmc_gpio_get_cd,
.get_ro = mmc_gpio_get_ro,
};
static void meson_mx_sdhc_request_done(struct meson_mx_sdhc_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_host *mmc = host->mmc;
/* disable interrupts and mask all pending ones */
regmap_update_bits(host->regmap, MESON_SDHC_ICTL,
MESON_SDHC_ICTL_ALL_IRQS, 0);
regmap_update_bits(host->regmap, MESON_SDHC_ISTA,
MESON_SDHC_ISTA_ALL_IRQS, MESON_SDHC_ISTA_ALL_IRQS);
host->mrq = NULL;
host->cmd = NULL;
mmc_request_done(mmc, mrq);
}
static u32 meson_mx_sdhc_read_response(struct meson_mx_sdhc_host *host, u8 idx)
{
u32 val;
regmap_update_bits(host->regmap, MESON_SDHC_PDMA,
MESON_SDHC_PDMA_DMA_MODE, 0);
regmap_update_bits(host->regmap, MESON_SDHC_PDMA,
MESON_SDHC_PDMA_PIO_RDRESP,
FIELD_PREP(MESON_SDHC_PDMA_PIO_RDRESP, idx));
regmap_read(host->regmap, MESON_SDHC_ARGU, &val);
return val;
}
static irqreturn_t meson_mx_sdhc_irq(int irq, void *data)
{
struct meson_mx_sdhc_host *host = data;
struct mmc_command *cmd = host->cmd;
u32 ictl, ista;
regmap_read(host->regmap, MESON_SDHC_ICTL, &ictl);
regmap_read(host->regmap, MESON_SDHC_ISTA, &ista);
if (!(ictl & ista))
return IRQ_NONE;
if (ista & MESON_SDHC_ISTA_RXFIFO_FULL ||
ista & MESON_SDHC_ISTA_TXFIFO_EMPTY)
cmd->error = -EIO;
else if (ista & MESON_SDHC_ISTA_RESP_ERR_CRC)
cmd->error = -EILSEQ;
else if (ista & MESON_SDHC_ISTA_RESP_TIMEOUT)
cmd->error = -ETIMEDOUT;
if (cmd->data) {
if (ista & MESON_SDHC_ISTA_DATA_ERR_CRC)
cmd->data->error = -EILSEQ;
else if (ista & MESON_SDHC_ISTA_DATA_TIMEOUT)
cmd->data->error = -ETIMEDOUT;
}
if (cmd->error || (cmd->data && cmd->data->error))
dev_dbg(mmc_dev(host->mmc), "CMD%d error, ISTA: 0x%08x\n",
cmd->opcode, ista);
return IRQ_WAKE_THREAD;
}
static irqreturn_t meson_mx_sdhc_irq_thread(int irq, void *irq_data)
{
struct meson_mx_sdhc_host *host = irq_data;
struct mmc_command *cmd;
u32 val;
cmd = host->cmd;
if (WARN_ON(!cmd))
return IRQ_HANDLED;
if (cmd->data && !cmd->data->error) {
if (!host->platform->hardware_flush_all_cmds &&
cmd->data->flags & MMC_DATA_READ) {
meson_mx_sdhc_wait_cmd_ready(host->mmc);
/*
* If MESON_SDHC_PDMA_RXFIFO_MANUAL_FLUSH was
* previously 0x1 then it has to be set to 0x3. If it
* was 0x0 before then it has to be set to 0x2. Without
* this reading SD cards sometimes transfers garbage,
* which results in cards not being detected due to:
* unrecognised SCR structure version <random number>
*/
val = FIELD_PREP(MESON_SDHC_PDMA_RXFIFO_MANUAL_FLUSH,
2);
regmap_update_bits(host->regmap, MESON_SDHC_PDMA, val,
val);
}
dma_unmap_sg(mmc_dev(host->mmc), cmd->data->sg,
cmd->data->sg_len, mmc_get_dma_dir(cmd->data));
cmd->data->bytes_xfered = cmd->data->blksz * cmd->data->blocks;
}
meson_mx_sdhc_wait_cmd_ready(host->mmc);
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = meson_mx_sdhc_read_response(host, 4);
cmd->resp[1] = meson_mx_sdhc_read_response(host, 3);
cmd->resp[2] = meson_mx_sdhc_read_response(host, 2);
cmd->resp[3] = meson_mx_sdhc_read_response(host, 1);
} else {
cmd->resp[0] = meson_mx_sdhc_read_response(host, 0);
}
if (cmd->error == -EIO || cmd->error == -ETIMEDOUT)
meson_mx_sdhc_hw_reset(host->mmc);
else if (cmd->data)
/*
* Clear the FIFOs after completing data transfers to prevent
* corrupting data on write access. It's not clear why this is
* needed (for reads and writes), but it mimics what the BSP
* kernel did.
*/
meson_mx_sdhc_clear_fifo(host->mmc);
meson_mx_sdhc_request_done(host);
return IRQ_HANDLED;
}
static void meson_mx_sdhc_init_hw_meson8(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
regmap_write(host->regmap, MESON_SDHC_MISC,
FIELD_PREP(MESON_SDHC_MISC_TXSTART_THRES, 7) |
FIELD_PREP(MESON_SDHC_MISC_WCRC_ERR_PATT, 5) |
FIELD_PREP(MESON_SDHC_MISC_WCRC_OK_PATT, 2));
regmap_write(host->regmap, MESON_SDHC_ENHC,
FIELD_PREP(MESON_SDHC_ENHC_RXFIFO_TH, 63) |
MESON_SDHC_ENHC_MESON6_DMA_WR_RESP |
FIELD_PREP(MESON_SDHC_ENHC_MESON6_RX_TIMEOUT, 255) |
FIELD_PREP(MESON_SDHC_ENHC_SDIO_IRQ_PERIOD, 12));
};
static void meson_mx_sdhc_set_pdma_meson8(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
if (host->cmd->data->flags & MMC_DATA_WRITE)
regmap_update_bits(host->regmap, MESON_SDHC_PDMA,
MESON_SDHC_PDMA_DMA_MODE |
MESON_SDHC_PDMA_RD_BURST |
MESON_SDHC_PDMA_TXFIFO_FILL,
MESON_SDHC_PDMA_DMA_MODE |
FIELD_PREP(MESON_SDHC_PDMA_RD_BURST, 31) |
MESON_SDHC_PDMA_TXFIFO_FILL);
else
regmap_update_bits(host->regmap, MESON_SDHC_PDMA,
MESON_SDHC_PDMA_DMA_MODE |
MESON_SDHC_PDMA_RXFIFO_MANUAL_FLUSH,
MESON_SDHC_PDMA_DMA_MODE |
FIELD_PREP(MESON_SDHC_PDMA_RXFIFO_MANUAL_FLUSH,
1));
if (host->cmd->data->flags & MMC_DATA_WRITE)
regmap_update_bits(host->regmap, MESON_SDHC_PDMA,
MESON_SDHC_PDMA_RD_BURST,
FIELD_PREP(MESON_SDHC_PDMA_RD_BURST, 15));
}
static void meson_mx_sdhc_wait_before_send_meson8(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
u32 val;
int ret;
ret = regmap_read_poll_timeout(host->regmap, MESON_SDHC_ESTA, val,
val == 0,
MESON_SDHC_WAIT_BEFORE_SEND_SLEEP_US,
MESON_SDHC_WAIT_BEFORE_SEND_TIMEOUT_US);
if (ret)
dev_warn(mmc_dev(mmc),
"Failed to wait for ESTA to clear: 0x%08x\n", val);
if (host->cmd->data && host->cmd->data->flags & MMC_DATA_WRITE) {
ret = regmap_read_poll_timeout(host->regmap, MESON_SDHC_STAT,
val, val & MESON_SDHC_STAT_TXFIFO_CNT,
MESON_SDHC_WAIT_BEFORE_SEND_SLEEP_US,
MESON_SDHC_WAIT_BEFORE_SEND_TIMEOUT_US);
if (ret)
dev_warn(mmc_dev(mmc),
"Failed to wait for TX FIFO to fill\n");
}
}
static void meson_mx_sdhc_init_hw_meson8m2(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
regmap_write(host->regmap, MESON_SDHC_MISC,
FIELD_PREP(MESON_SDHC_MISC_TXSTART_THRES, 6) |
FIELD_PREP(MESON_SDHC_MISC_WCRC_ERR_PATT, 5) |
FIELD_PREP(MESON_SDHC_MISC_WCRC_OK_PATT, 2));
regmap_write(host->regmap, MESON_SDHC_ENHC,
FIELD_PREP(MESON_SDHC_ENHC_RXFIFO_TH, 64) |
FIELD_PREP(MESON_SDHC_ENHC_MESON8M2_DEBUG, 1) |
MESON_SDHC_ENHC_MESON8M2_WRRSP_MODE |
FIELD_PREP(MESON_SDHC_ENHC_SDIO_IRQ_PERIOD, 12));
}
static void meson_mx_sdhc_set_pdma_meson8m2(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
regmap_update_bits(host->regmap, MESON_SDHC_PDMA,
MESON_SDHC_PDMA_DMA_MODE, MESON_SDHC_PDMA_DMA_MODE);
}
static void meson_mx_sdhc_init_hw(struct mmc_host *mmc)
{
struct meson_mx_sdhc_host *host = mmc_priv(mmc);
meson_mx_sdhc_hw_reset(mmc);
regmap_write(host->regmap, MESON_SDHC_CTRL,
FIELD_PREP(MESON_SDHC_CTRL_RX_PERIOD, 0xf) |
FIELD_PREP(MESON_SDHC_CTRL_RX_TIMEOUT, 0x7f) |
FIELD_PREP(MESON_SDHC_CTRL_RX_ENDIAN, 0x7) |
FIELD_PREP(MESON_SDHC_CTRL_TX_ENDIAN, 0x7));
/*
* start with a valid divider and enable the memory (un-setting
* MESON_SDHC_CLKC_MEM_PWR_OFF).
*/
regmap_write(host->regmap, MESON_SDHC_CLKC, MESON_SDHC_CLKC_CLK_DIV);
regmap_write(host->regmap, MESON_SDHC_CLK2,
FIELD_PREP(MESON_SDHC_CLK2_SD_CLK_PHASE, 1));
regmap_write(host->regmap, MESON_SDHC_PDMA,
MESON_SDHC_PDMA_DMA_URGENT |
FIELD_PREP(MESON_SDHC_PDMA_WR_BURST, 7) |
FIELD_PREP(MESON_SDHC_PDMA_TXFIFO_TH, 49) |
FIELD_PREP(MESON_SDHC_PDMA_RD_BURST, 15) |
FIELD_PREP(MESON_SDHC_PDMA_RXFIFO_TH, 7));
/* some initialization bits depend on the SoC: */
host->platform->init_hw(mmc);
/* disable and mask all interrupts: */
regmap_write(host->regmap, MESON_SDHC_ICTL, 0);
regmap_write(host->regmap, MESON_SDHC_ISTA, MESON_SDHC_ISTA_ALL_IRQS);
}
static void meason_mx_mmc_free_host(void *data)
{
mmc_free_host(data);
}
static int meson_mx_sdhc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct meson_mx_sdhc_host *host;
struct mmc_host *mmc;
void __iomem *base;
int ret, irq;
mmc = mmc_alloc_host(sizeof(*host), dev);
if (!mmc)
return -ENOMEM;
ret = devm_add_action_or_reset(dev, meason_mx_mmc_free_host, mmc);
if (ret) {
dev_err(dev, "Failed to register mmc_free_host action\n");
return ret;
}
host = mmc_priv(mmc);
host->mmc = mmc;
platform_set_drvdata(pdev, host);
host->platform = device_get_match_data(dev);
if (!host->platform)
return -EINVAL;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
host->regmap = devm_regmap_init_mmio(dev, base,
&meson_mx_sdhc_regmap_config);
if (IS_ERR(host->regmap))
return PTR_ERR(host->regmap);
host->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(host->pclk))
return PTR_ERR(host->pclk);
/* accessing any register requires the module clock to be enabled: */
ret = clk_prepare_enable(host->pclk);
if (ret) {
dev_err(dev, "Failed to enable 'pclk' clock\n");
return ret;
}
meson_mx_sdhc_init_hw(mmc);
ret = meson_mx_sdhc_register_clkc(dev, base, host->bulk_clks);
if (ret)
goto err_disable_pclk;
host->sd_clk = host->bulk_clks[1].clk;
/* Get regulators and the supported OCR mask */
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto err_disable_pclk;
mmc->max_req_size = SZ_128K;
mmc->max_seg_size = mmc->max_req_size;
mmc->max_blk_count = FIELD_GET(MESON_SDHC_SEND_TOTAL_PACK, ~0);
mmc->max_blk_size = MESON_SDHC_MAX_BLK_SIZE;
mmc->max_busy_timeout = 30 * MSEC_PER_SEC;
mmc->f_min = clk_round_rate(host->sd_clk, 1);
mmc->f_max = clk_round_rate(host->sd_clk, ULONG_MAX);
mmc->max_current_180 = 300;
mmc->max_current_330 = 300;
mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_HW_RESET;
mmc->ops = &meson_mx_sdhc_ops;
ret = mmc_of_parse(mmc);
if (ret)
goto err_disable_pclk;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto err_disable_pclk;
}
ret = devm_request_threaded_irq(dev, irq, meson_mx_sdhc_irq,
meson_mx_sdhc_irq_thread, IRQF_ONESHOT,
NULL, host);
if (ret)
goto err_disable_pclk;
ret = mmc_add_host(mmc);
if (ret)
goto err_disable_pclk;
return 0;
err_disable_pclk:
clk_disable_unprepare(host->pclk);
return ret;
}
static void meson_mx_sdhc_remove(struct platform_device *pdev)
{
struct meson_mx_sdhc_host *host = platform_get_drvdata(pdev);
mmc_remove_host(host->mmc);
meson_mx_sdhc_disable_clks(host->mmc);
clk_disable_unprepare(host->pclk);
}
static const struct meson_mx_sdhc_data meson_mx_sdhc_data_meson8 = {
.init_hw = meson_mx_sdhc_init_hw_meson8,
.set_pdma = meson_mx_sdhc_set_pdma_meson8,
.wait_before_send = meson_mx_sdhc_wait_before_send_meson8,
.hardware_flush_all_cmds = false,
};
static const struct meson_mx_sdhc_data meson_mx_sdhc_data_meson8m2 = {
.init_hw = meson_mx_sdhc_init_hw_meson8m2,
.set_pdma = meson_mx_sdhc_set_pdma_meson8m2,
.hardware_flush_all_cmds = true,
};
static const struct of_device_id meson_mx_sdhc_of_match[] = {
{
.compatible = "amlogic,meson8-sdhc",
.data = &meson_mx_sdhc_data_meson8
},
{
.compatible = "amlogic,meson8b-sdhc",
.data = &meson_mx_sdhc_data_meson8
},
{
.compatible = "amlogic,meson8m2-sdhc",
.data = &meson_mx_sdhc_data_meson8m2
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, meson_mx_sdhc_of_match);
static struct platform_driver meson_mx_sdhc_driver = {
.probe = meson_mx_sdhc_probe,
.remove_new = meson_mx_sdhc_remove,
.driver = {
.name = "meson-mx-sdhc",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = of_match_ptr(meson_mx_sdhc_of_match),
},
};
module_platform_driver(meson_mx_sdhc_driver);
MODULE_DESCRIPTION("Meson6, Meson8, Meson8b and Meson8m2 SDHC Host Driver");
MODULE_AUTHOR("Martin Blumenstingl <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/meson-mx-sdhc-mmc.c |
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (C) 2013 Broadcom Corporation
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/platform_device.h>
#include <linux/mmc/host.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/mmc/slot-gpio.h>
#include "sdhci-pltfm.h"
#include "sdhci.h"
#define SDHCI_SOFT_RESET 0x01000000
#define KONA_SDHOST_CORECTRL 0x8000
#define KONA_SDHOST_CD_PINCTRL 0x00000008
#define KONA_SDHOST_STOP_HCLK 0x00000004
#define KONA_SDHOST_RESET 0x00000002
#define KONA_SDHOST_EN 0x00000001
#define KONA_SDHOST_CORESTAT 0x8004
#define KONA_SDHOST_WP 0x00000002
#define KONA_SDHOST_CD_SW 0x00000001
#define KONA_SDHOST_COREIMR 0x8008
#define KONA_SDHOST_IP 0x00000001
#define KONA_SDHOST_COREISR 0x800C
#define KONA_SDHOST_COREIMSR 0x8010
#define KONA_SDHOST_COREDBG1 0x8014
#define KONA_SDHOST_COREGPO_MASK 0x8018
#define SD_DETECT_GPIO_DEBOUNCE_128MS 128
#define KONA_MMC_AUTOSUSPEND_DELAY (50)
struct sdhci_bcm_kona_dev {
struct mutex write_lock; /* protect back to back writes */
};
static int sdhci_bcm_kona_sd_reset(struct sdhci_host *host)
{
unsigned int val;
unsigned long timeout;
/* This timeout should be sufficent for core to reset */
timeout = jiffies + msecs_to_jiffies(100);
/* reset the host using the top level reset */
val = sdhci_readl(host, KONA_SDHOST_CORECTRL);
val |= KONA_SDHOST_RESET;
sdhci_writel(host, val, KONA_SDHOST_CORECTRL);
while (!(sdhci_readl(host, KONA_SDHOST_CORECTRL) & KONA_SDHOST_RESET)) {
if (time_is_before_jiffies(timeout)) {
pr_err("Error: sd host is stuck in reset!!!\n");
return -EFAULT;
}
}
/* bring the host out of reset */
val = sdhci_readl(host, KONA_SDHOST_CORECTRL);
val &= ~KONA_SDHOST_RESET;
/*
* Back-to-Back register write needs a delay of 1ms at bootup (min 10uS)
* Back-to-Back writes to same register needs delay when SD bus clock
* is very low w.r.t AHB clock, mainly during boot-time and during card
* insert-removal.
*/
usleep_range(1000, 5000);
sdhci_writel(host, val, KONA_SDHOST_CORECTRL);
return 0;
}
static void sdhci_bcm_kona_sd_init(struct sdhci_host *host)
{
unsigned int val;
/* enable the interrupt from the IP core */
val = sdhci_readl(host, KONA_SDHOST_COREIMR);
val |= KONA_SDHOST_IP;
sdhci_writel(host, val, KONA_SDHOST_COREIMR);
/* Enable the AHB clock gating module to the host */
val = sdhci_readl(host, KONA_SDHOST_CORECTRL);
val |= KONA_SDHOST_EN;
/*
* Back-to-Back register write needs a delay of 1ms at bootup (min 10uS)
* Back-to-Back writes to same register needs delay when SD bus clock
* is very low w.r.t AHB clock, mainly during boot-time and during card
* insert-removal.
*/
usleep_range(1000, 5000);
sdhci_writel(host, val, KONA_SDHOST_CORECTRL);
}
/*
* Software emulation of the SD card insertion/removal. Set insert=1 for insert
* and insert=0 for removal. The card detection is done by GPIO. For Broadcom
* IP to function properly the bit 0 of CORESTAT register needs to be set/reset
* to generate the CD IRQ handled in sdhci.c which schedules card_tasklet.
*/
static int sdhci_bcm_kona_sd_card_emulate(struct sdhci_host *host, int insert)
{
struct sdhci_pltfm_host *pltfm_priv = sdhci_priv(host);
struct sdhci_bcm_kona_dev *kona_dev = sdhci_pltfm_priv(pltfm_priv);
u32 val;
/*
* Back-to-Back register write needs a delay of min 10uS.
* Back-to-Back writes to same register needs delay when SD bus clock
* is very low w.r.t AHB clock, mainly during boot-time and during card
* insert-removal.
* We keep 20uS
*/
mutex_lock(&kona_dev->write_lock);
udelay(20);
val = sdhci_readl(host, KONA_SDHOST_CORESTAT);
if (insert) {
int ret;
ret = mmc_gpio_get_ro(host->mmc);
if (ret >= 0)
val = (val & ~KONA_SDHOST_WP) |
((ret) ? KONA_SDHOST_WP : 0);
val |= KONA_SDHOST_CD_SW;
sdhci_writel(host, val, KONA_SDHOST_CORESTAT);
} else {
val &= ~KONA_SDHOST_CD_SW;
sdhci_writel(host, val, KONA_SDHOST_CORESTAT);
}
mutex_unlock(&kona_dev->write_lock);
return 0;
}
/*
* SD card interrupt event callback
*/
static void sdhci_bcm_kona_card_event(struct sdhci_host *host)
{
if (mmc_gpio_get_cd(host->mmc) > 0) {
dev_dbg(mmc_dev(host->mmc),
"card inserted\n");
sdhci_bcm_kona_sd_card_emulate(host, 1);
} else {
dev_dbg(mmc_dev(host->mmc),
"card removed\n");
sdhci_bcm_kona_sd_card_emulate(host, 0);
}
}
static void sdhci_bcm_kona_init_74_clocks(struct sdhci_host *host,
u8 power_mode)
{
/*
* JEDEC and SD spec specify supplying 74 continuous clocks to
* device after power up. With minimum bus (100KHz) that
* translates to 740us
*/
if (power_mode != MMC_POWER_OFF)
udelay(740);
}
static const struct sdhci_ops sdhci_bcm_kona_ops = {
.set_clock = sdhci_set_clock,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.platform_send_init_74_clocks = sdhci_bcm_kona_init_74_clocks,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.card_event = sdhci_bcm_kona_card_event,
};
static const struct sdhci_pltfm_data sdhci_pltfm_data_kona = {
.ops = &sdhci_bcm_kona_ops,
.quirks = SDHCI_QUIRK_NO_CARD_NO_RESET |
SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE | SDHCI_QUIRK_32BIT_ADMA_SIZE |
SDHCI_QUIRK_FORCE_BLK_SZ_2048 |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
};
static const struct of_device_id sdhci_bcm_kona_of_match[] = {
{ .compatible = "brcm,kona-sdhci"},
{ .compatible = "bcm,kona-sdhci"}, /* deprecated name */
{}
};
MODULE_DEVICE_TABLE(of, sdhci_bcm_kona_of_match);
static int sdhci_bcm_kona_probe(struct platform_device *pdev)
{
struct sdhci_bcm_kona_dev *kona_dev = NULL;
struct sdhci_pltfm_host *pltfm_priv;
struct device *dev = &pdev->dev;
struct sdhci_host *host;
int ret;
ret = 0;
host = sdhci_pltfm_init(pdev, &sdhci_pltfm_data_kona,
sizeof(*kona_dev));
if (IS_ERR(host))
return PTR_ERR(host);
dev_dbg(dev, "%s: inited. IOADDR=%p\n", __func__, host->ioaddr);
pltfm_priv = sdhci_priv(host);
kona_dev = sdhci_pltfm_priv(pltfm_priv);
mutex_init(&kona_dev->write_lock);
ret = mmc_of_parse(host->mmc);
if (ret)
goto err_pltfm_free;
if (!host->mmc->f_max) {
dev_err(&pdev->dev, "Missing max-freq for SDHCI cfg\n");
ret = -ENXIO;
goto err_pltfm_free;
}
/* Get and enable the core clock */
pltfm_priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(pltfm_priv->clk)) {
dev_err(dev, "Failed to get core clock\n");
ret = PTR_ERR(pltfm_priv->clk);
goto err_pltfm_free;
}
ret = clk_set_rate(pltfm_priv->clk, host->mmc->f_max);
if (ret) {
dev_err(dev, "Failed to set rate core clock\n");
goto err_pltfm_free;
}
ret = clk_prepare_enable(pltfm_priv->clk);
if (ret) {
dev_err(dev, "Failed to enable core clock\n");
goto err_pltfm_free;
}
dev_dbg(dev, "non-removable=%c\n",
mmc_card_is_removable(host->mmc) ? 'N' : 'Y');
dev_dbg(dev, "cd_gpio %c, wp_gpio %c\n",
(mmc_gpio_get_cd(host->mmc) != -ENOSYS) ? 'Y' : 'N',
(mmc_gpio_get_ro(host->mmc) != -ENOSYS) ? 'Y' : 'N');
if (!mmc_card_is_removable(host->mmc))
host->quirks |= SDHCI_QUIRK_BROKEN_CARD_DETECTION;
dev_dbg(dev, "is_8bit=%c\n",
(host->mmc->caps & MMC_CAP_8_BIT_DATA) ? 'Y' : 'N');
ret = sdhci_bcm_kona_sd_reset(host);
if (ret)
goto err_clk_disable;
sdhci_bcm_kona_sd_init(host);
ret = sdhci_add_host(host);
if (ret)
goto err_reset;
/* if device is eMMC, emulate card insert right here */
if (!mmc_card_is_removable(host->mmc)) {
ret = sdhci_bcm_kona_sd_card_emulate(host, 1);
if (ret) {
dev_err(dev,
"unable to emulate card insertion\n");
goto err_remove_host;
}
}
/*
* Since the card detection GPIO interrupt is configured to be
* edge sensitive, check the initial GPIO value here, emulate
* only if the card is present
*/
if (mmc_gpio_get_cd(host->mmc) > 0)
sdhci_bcm_kona_sd_card_emulate(host, 1);
dev_dbg(dev, "initialized properly\n");
return 0;
err_remove_host:
sdhci_remove_host(host, 0);
err_reset:
sdhci_bcm_kona_sd_reset(host);
err_clk_disable:
clk_disable_unprepare(pltfm_priv->clk);
err_pltfm_free:
sdhci_pltfm_free(pdev);
dev_err(dev, "Probing of sdhci-pltfm failed: %d\n", ret);
return ret;
}
static void sdhci_bcm_kona_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct clk *clk = pltfm_host->clk;
sdhci_pltfm_remove(pdev);
clk_disable_unprepare(clk);
}
static struct platform_driver sdhci_bcm_kona_driver = {
.driver = {
.name = "sdhci-kona",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &sdhci_pltfm_pmops,
.of_match_table = sdhci_bcm_kona_of_match,
},
.probe = sdhci_bcm_kona_probe,
.remove_new = sdhci_bcm_kona_remove,
};
module_platform_driver(sdhci_bcm_kona_driver);
MODULE_DESCRIPTION("SDHCI driver for Broadcom Kona platform");
MODULE_AUTHOR("Broadcom");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-bcm-kona.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* CQHCI crypto engine (inline encryption) support
*
* Copyright 2020 Google LLC
*/
#include <linux/blk-crypto.h>
#include <linux/blk-crypto-profile.h>
#include <linux/mmc/host.h>
#include "cqhci-crypto.h"
/* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */
static const struct cqhci_crypto_alg_entry {
enum cqhci_crypto_alg alg;
enum cqhci_crypto_key_size key_size;
} cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
.alg = CQHCI_CRYPTO_ALG_AES_XTS,
.key_size = CQHCI_CRYPTO_KEY_SIZE_256,
},
};
static inline struct cqhci_host *
cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile)
{
struct mmc_host *mmc =
container_of(profile, struct mmc_host, crypto_profile);
return mmc->cqe_private;
}
static int cqhci_crypto_program_key(struct cqhci_host *cq_host,
const union cqhci_crypto_cfg_entry *cfg,
int slot)
{
u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg);
int i;
if (cq_host->ops->program_key)
return cq_host->ops->program_key(cq_host, cfg, slot);
/* Clear CFGE */
cqhci_writel(cq_host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
/* Write the key */
for (i = 0; i < 16; i++) {
cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[i]),
slot_offset + i * sizeof(cfg->reg_val[0]));
}
/* Write dword 17 */
cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[17]),
slot_offset + 17 * sizeof(cfg->reg_val[0]));
/* Write dword 16, which includes the new value of CFGE */
cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[16]),
slot_offset + 16 * sizeof(cfg->reg_val[0]));
return 0;
}
static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
const union cqhci_crypto_cap_entry *ccap_array =
cq_host->crypto_cap_array;
const struct cqhci_crypto_alg_entry *alg =
&cqhci_crypto_algs[key->crypto_cfg.crypto_mode];
u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
int i;
int cap_idx = -1;
union cqhci_crypto_cfg_entry cfg = {};
int err;
BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) {
if (ccap_array[i].algorithm_id == alg->alg &&
ccap_array[i].key_size == alg->key_size &&
(ccap_array[i].sdus_mask & data_unit_mask)) {
cap_idx = i;
break;
}
}
if (WARN_ON(cap_idx < 0))
return -EOPNOTSUPP;
cfg.data_unit_size = data_unit_mask;
cfg.crypto_cap_idx = cap_idx;
cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE;
if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) {
/* In XTS mode, the blk_crypto_key's size is already doubled */
memcpy(cfg.crypto_key, key->raw, key->size/2);
memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2,
key->raw + key->size/2, key->size/2);
} else {
memcpy(cfg.crypto_key, key->raw, key->size);
}
err = cqhci_crypto_program_key(cq_host, &cfg, slot);
memzero_explicit(&cfg, sizeof(cfg));
return err;
}
static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot)
{
/*
* Clear the crypto cfg on the device. Clearing CFGE
* might not be sufficient, so just clear the entire cfg.
*/
union cqhci_crypto_cfg_entry cfg = {};
return cqhci_crypto_program_key(cq_host, &cfg, slot);
}
static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
return cqhci_crypto_clear_keyslot(cq_host, slot);
}
/*
* The keyslot management operations for CQHCI crypto.
*
* Note that the block layer ensures that these are never called while the host
* controller is runtime-suspended. However, the CQE won't necessarily be
* "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the
* CQHCI_CFG register. But the hardware allows that.
*/
static const struct blk_crypto_ll_ops cqhci_crypto_ops = {
.keyslot_program = cqhci_crypto_keyslot_program,
.keyslot_evict = cqhci_crypto_keyslot_evict,
};
static enum blk_crypto_mode_num
cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap)
{
int i;
for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) {
BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
if (cqhci_crypto_algs[i].alg == cap.algorithm_id &&
cqhci_crypto_algs[i].key_size == cap.key_size)
return i;
}
return BLK_ENCRYPTION_MODE_INVALID;
}
/**
* cqhci_crypto_init - initialize CQHCI crypto support
* @cq_host: a cqhci host
*
* If the driver previously set MMC_CAP2_CRYPTO and the CQE declares
* CQHCI_CAP_CS, initialize the crypto support. This involves reading the
* crypto capability registers, initializing the blk_crypto_profile, clearing
* all keyslots, and enabling 128-bit task descriptors.
*
* Return: 0 if crypto was initialized or isn't supported; whether
* MMC_CAP2_CRYPTO remains set indicates which one of those cases it is.
* Also can return a negative errno value on unexpected error.
*/
int cqhci_crypto_init(struct cqhci_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
struct device *dev = mmc_dev(mmc);
struct blk_crypto_profile *profile = &mmc->crypto_profile;
unsigned int num_keyslots;
unsigned int cap_idx;
enum blk_crypto_mode_num blk_mode_num;
unsigned int slot;
int err = 0;
if (!(mmc->caps2 & MMC_CAP2_CRYPTO) ||
!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
goto out;
cq_host->crypto_capabilities.reg_val =
cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP));
cq_host->crypto_cfg_register =
(u32)cq_host->crypto_capabilities.config_array_ptr * 0x100;
cq_host->crypto_cap_array =
devm_kcalloc(dev, cq_host->crypto_capabilities.num_crypto_cap,
sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL);
if (!cq_host->crypto_cap_array) {
err = -ENOMEM;
goto out;
}
/*
* CCAP.CFGC is off by one, so the actual number of crypto
* configurations (a.k.a. keyslots) is CCAP.CFGC + 1.
*/
num_keyslots = cq_host->crypto_capabilities.config_count + 1;
err = devm_blk_crypto_profile_init(dev, profile, num_keyslots);
if (err)
goto out;
profile->ll_ops = cqhci_crypto_ops;
profile->dev = dev;
/* Unfortunately, CQHCI crypto only supports 32 DUN bits. */
profile->max_dun_bytes_supported = 4;
/*
* Cache all the crypto capabilities and advertise the supported crypto
* modes and data unit sizes to the block layer.
*/
for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap;
cap_idx++) {
cq_host->crypto_cap_array[cap_idx].reg_val =
cpu_to_le32(cqhci_readl(cq_host,
CQHCI_CRYPTOCAP +
cap_idx * sizeof(__le32)));
blk_mode_num = cqhci_find_blk_crypto_mode(
cq_host->crypto_cap_array[cap_idx]);
if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
continue;
profile->modes_supported[blk_mode_num] |=
cq_host->crypto_cap_array[cap_idx].sdus_mask * 512;
}
/* Clear all the keyslots so that we start in a known state. */
for (slot = 0; slot < num_keyslots; slot++)
cqhci_crypto_clear_keyslot(cq_host, slot);
/* CQHCI crypto requires the use of 128-bit task descriptors. */
cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
return 0;
out:
mmc->caps2 &= ~MMC_CAP2_CRYPTO;
return err;
}
| linux-master | drivers/mmc/host/cqhci-crypto.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2009-2010, Lars-Peter Clausen <[email protected]>
* Copyright (C) 2013, Imagination Technologies
*
* JZ4740 SD/MMC controller driver
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/mmc/host.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/scatterlist.h>
#include <asm/cacheflush.h>
#define JZ_REG_MMC_STRPCL 0x00
#define JZ_REG_MMC_STATUS 0x04
#define JZ_REG_MMC_CLKRT 0x08
#define JZ_REG_MMC_CMDAT 0x0C
#define JZ_REG_MMC_RESTO 0x10
#define JZ_REG_MMC_RDTO 0x14
#define JZ_REG_MMC_BLKLEN 0x18
#define JZ_REG_MMC_NOB 0x1C
#define JZ_REG_MMC_SNOB 0x20
#define JZ_REG_MMC_IMASK 0x24
#define JZ_REG_MMC_IREG 0x28
#define JZ_REG_MMC_CMD 0x2C
#define JZ_REG_MMC_ARG 0x30
#define JZ_REG_MMC_RESP_FIFO 0x34
#define JZ_REG_MMC_RXFIFO 0x38
#define JZ_REG_MMC_TXFIFO 0x3C
#define JZ_REG_MMC_LPM 0x40
#define JZ_REG_MMC_DMAC 0x44
#define JZ_MMC_STRPCL_EXIT_MULTIPLE BIT(7)
#define JZ_MMC_STRPCL_EXIT_TRANSFER BIT(6)
#define JZ_MMC_STRPCL_START_READWAIT BIT(5)
#define JZ_MMC_STRPCL_STOP_READWAIT BIT(4)
#define JZ_MMC_STRPCL_RESET BIT(3)
#define JZ_MMC_STRPCL_START_OP BIT(2)
#define JZ_MMC_STRPCL_CLOCK_CONTROL (BIT(1) | BIT(0))
#define JZ_MMC_STRPCL_CLOCK_STOP BIT(0)
#define JZ_MMC_STRPCL_CLOCK_START BIT(1)
#define JZ_MMC_STATUS_IS_RESETTING BIT(15)
#define JZ_MMC_STATUS_SDIO_INT_ACTIVE BIT(14)
#define JZ_MMC_STATUS_PRG_DONE BIT(13)
#define JZ_MMC_STATUS_DATA_TRAN_DONE BIT(12)
#define JZ_MMC_STATUS_END_CMD_RES BIT(11)
#define JZ_MMC_STATUS_DATA_FIFO_AFULL BIT(10)
#define JZ_MMC_STATUS_IS_READWAIT BIT(9)
#define JZ_MMC_STATUS_CLK_EN BIT(8)
#define JZ_MMC_STATUS_DATA_FIFO_FULL BIT(7)
#define JZ_MMC_STATUS_DATA_FIFO_EMPTY BIT(6)
#define JZ_MMC_STATUS_CRC_RES_ERR BIT(5)
#define JZ_MMC_STATUS_CRC_READ_ERROR BIT(4)
#define JZ_MMC_STATUS_TIMEOUT_WRITE BIT(3)
#define JZ_MMC_STATUS_CRC_WRITE_ERROR BIT(2)
#define JZ_MMC_STATUS_TIMEOUT_RES BIT(1)
#define JZ_MMC_STATUS_TIMEOUT_READ BIT(0)
#define JZ_MMC_STATUS_READ_ERROR_MASK (BIT(4) | BIT(0))
#define JZ_MMC_STATUS_WRITE_ERROR_MASK (BIT(3) | BIT(2))
#define JZ_MMC_CMDAT_IO_ABORT BIT(11)
#define JZ_MMC_CMDAT_BUS_WIDTH_4BIT BIT(10)
#define JZ_MMC_CMDAT_BUS_WIDTH_8BIT (BIT(10) | BIT(9))
#define JZ_MMC_CMDAT_BUS_WIDTH_MASK (BIT(10) | BIT(9))
#define JZ_MMC_CMDAT_DMA_EN BIT(8)
#define JZ_MMC_CMDAT_INIT BIT(7)
#define JZ_MMC_CMDAT_BUSY BIT(6)
#define JZ_MMC_CMDAT_STREAM BIT(5)
#define JZ_MMC_CMDAT_WRITE BIT(4)
#define JZ_MMC_CMDAT_DATA_EN BIT(3)
#define JZ_MMC_CMDAT_RESPONSE_FORMAT (BIT(2) | BIT(1) | BIT(0))
#define JZ_MMC_CMDAT_RSP_R1 1
#define JZ_MMC_CMDAT_RSP_R2 2
#define JZ_MMC_CMDAT_RSP_R3 3
#define JZ_MMC_IRQ_SDIO BIT(7)
#define JZ_MMC_IRQ_TXFIFO_WR_REQ BIT(6)
#define JZ_MMC_IRQ_RXFIFO_RD_REQ BIT(5)
#define JZ_MMC_IRQ_END_CMD_RES BIT(2)
#define JZ_MMC_IRQ_PRG_DONE BIT(1)
#define JZ_MMC_IRQ_DATA_TRAN_DONE BIT(0)
#define JZ_MMC_DMAC_DMA_SEL BIT(1)
#define JZ_MMC_DMAC_DMA_EN BIT(0)
#define JZ_MMC_LPM_DRV_RISING BIT(31)
#define JZ_MMC_LPM_DRV_RISING_QTR_PHASE_DLY BIT(31)
#define JZ_MMC_LPM_DRV_RISING_1NS_DLY BIT(30)
#define JZ_MMC_LPM_SMP_RISING_QTR_OR_HALF_PHASE_DLY BIT(29)
#define JZ_MMC_LPM_LOW_POWER_MODE_EN BIT(0)
#define JZ_MMC_CLK_RATE 24000000
#define JZ_MMC_REQ_TIMEOUT_MS 5000
enum jz4740_mmc_version {
JZ_MMC_JZ4740,
JZ_MMC_JZ4725B,
JZ_MMC_JZ4760,
JZ_MMC_JZ4780,
JZ_MMC_X1000,
};
enum jz4740_mmc_state {
JZ4740_MMC_STATE_READ_RESPONSE,
JZ4740_MMC_STATE_TRANSFER_DATA,
JZ4740_MMC_STATE_SEND_STOP,
JZ4740_MMC_STATE_DONE,
};
/*
* The MMC core allows to prepare a mmc_request while another mmc_request
* is in-flight. This is used via the pre_req/post_req hooks.
* This driver uses the pre_req/post_req hooks to map/unmap the mmc_request.
* Following what other drivers do (sdhci, dw_mmc) we use the following cookie
* flags to keep track of the mmc_request mapping state.
*
* COOKIE_UNMAPPED: the request is not mapped.
* COOKIE_PREMAPPED: the request was mapped in pre_req,
* and should be unmapped in post_req.
* COOKIE_MAPPED: the request was mapped in the irq handler,
* and should be unmapped before mmc_request_done is called..
*/
enum jz4780_cookie {
COOKIE_UNMAPPED = 0,
COOKIE_PREMAPPED,
COOKIE_MAPPED,
};
struct jz4740_mmc_host {
struct mmc_host *mmc;
struct platform_device *pdev;
struct clk *clk;
enum jz4740_mmc_version version;
int irq;
void __iomem *base;
struct resource *mem_res;
struct mmc_request *req;
struct mmc_command *cmd;
bool vqmmc_enabled;
unsigned long waiting;
uint32_t cmdat;
uint32_t irq_mask;
spinlock_t lock;
struct timer_list timeout_timer;
struct sg_mapping_iter miter;
enum jz4740_mmc_state state;
/* DMA support */
struct dma_chan *dma_rx;
struct dma_chan *dma_tx;
bool use_dma;
/* The DMA trigger level is 8 words, that is to say, the DMA read
* trigger is when data words in MSC_RXFIFO is >= 8 and the DMA write
* trigger is when data words in MSC_TXFIFO is < 8.
*/
#define JZ4740_MMC_FIFO_HALF_SIZE 8
};
static void jz4740_mmc_write_irq_mask(struct jz4740_mmc_host *host,
uint32_t val)
{
if (host->version >= JZ_MMC_JZ4725B)
return writel(val, host->base + JZ_REG_MMC_IMASK);
else
return writew(val, host->base + JZ_REG_MMC_IMASK);
}
static void jz4740_mmc_write_irq_reg(struct jz4740_mmc_host *host,
uint32_t val)
{
if (host->version >= JZ_MMC_JZ4780)
writel(val, host->base + JZ_REG_MMC_IREG);
else
writew(val, host->base + JZ_REG_MMC_IREG);
}
static uint32_t jz4740_mmc_read_irq_reg(struct jz4740_mmc_host *host)
{
if (host->version >= JZ_MMC_JZ4780)
return readl(host->base + JZ_REG_MMC_IREG);
else
return readw(host->base + JZ_REG_MMC_IREG);
}
/*----------------------------------------------------------------------------*/
/* DMA infrastructure */
static void jz4740_mmc_release_dma_channels(struct jz4740_mmc_host *host)
{
if (!host->use_dma)
return;
dma_release_channel(host->dma_tx);
if (host->dma_rx)
dma_release_channel(host->dma_rx);
}
static int jz4740_mmc_acquire_dma_channels(struct jz4740_mmc_host *host)
{
struct device *dev = mmc_dev(host->mmc);
host->dma_tx = dma_request_chan(dev, "tx-rx");
if (!IS_ERR(host->dma_tx))
return 0;
if (PTR_ERR(host->dma_tx) != -ENODEV) {
dev_err(dev, "Failed to get dma tx-rx channel\n");
return PTR_ERR(host->dma_tx);
}
host->dma_tx = dma_request_chan(mmc_dev(host->mmc), "tx");
if (IS_ERR(host->dma_tx)) {
dev_err(mmc_dev(host->mmc), "Failed to get dma_tx channel\n");
return PTR_ERR(host->dma_tx);
}
host->dma_rx = dma_request_chan(mmc_dev(host->mmc), "rx");
if (IS_ERR(host->dma_rx)) {
dev_err(mmc_dev(host->mmc), "Failed to get dma_rx channel\n");
dma_release_channel(host->dma_tx);
return PTR_ERR(host->dma_rx);
}
/*
* Limit the maximum segment size in any SG entry according to
* the parameters of the DMA engine device.
*/
if (host->dma_tx) {
struct device *dev = host->dma_tx->device->dev;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
if (max_seg_size < host->mmc->max_seg_size)
host->mmc->max_seg_size = max_seg_size;
}
if (host->dma_rx) {
struct device *dev = host->dma_rx->device->dev;
unsigned int max_seg_size = dma_get_max_seg_size(dev);
if (max_seg_size < host->mmc->max_seg_size)
host->mmc->max_seg_size = max_seg_size;
}
return 0;
}
static inline struct dma_chan *jz4740_mmc_get_dma_chan(struct jz4740_mmc_host *host,
struct mmc_data *data)
{
if ((data->flags & MMC_DATA_READ) && host->dma_rx)
return host->dma_rx;
else
return host->dma_tx;
}
static void jz4740_mmc_dma_unmap(struct jz4740_mmc_host *host,
struct mmc_data *data)
{
struct dma_chan *chan = jz4740_mmc_get_dma_chan(host, data);
enum dma_data_direction dir = mmc_get_dma_dir(data);
dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
data->host_cookie = COOKIE_UNMAPPED;
}
/* Prepares DMA data for current or next transfer.
* A request can be in-flight when this is called.
*/
static int jz4740_mmc_prepare_dma_data(struct jz4740_mmc_host *host,
struct mmc_data *data,
int cookie)
{
struct dma_chan *chan = jz4740_mmc_get_dma_chan(host, data);
enum dma_data_direction dir = mmc_get_dma_dir(data);
unsigned int sg_count;
if (data->host_cookie == COOKIE_PREMAPPED)
return data->sg_count;
sg_count = dma_map_sg(chan->device->dev,
data->sg,
data->sg_len,
dir);
if (!sg_count) {
dev_err(mmc_dev(host->mmc),
"Failed to map scatterlist for DMA operation\n");
return -EINVAL;
}
data->sg_count = sg_count;
data->host_cookie = cookie;
return data->sg_count;
}
static int jz4740_mmc_start_dma_transfer(struct jz4740_mmc_host *host,
struct mmc_data *data)
{
struct dma_chan *chan = jz4740_mmc_get_dma_chan(host, data);
struct dma_async_tx_descriptor *desc;
struct dma_slave_config conf = {
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.src_maxburst = JZ4740_MMC_FIFO_HALF_SIZE,
.dst_maxburst = JZ4740_MMC_FIFO_HALF_SIZE,
};
int sg_count;
if (data->flags & MMC_DATA_WRITE) {
conf.direction = DMA_MEM_TO_DEV;
conf.dst_addr = host->mem_res->start + JZ_REG_MMC_TXFIFO;
} else {
conf.direction = DMA_DEV_TO_MEM;
conf.src_addr = host->mem_res->start + JZ_REG_MMC_RXFIFO;
}
sg_count = jz4740_mmc_prepare_dma_data(host, data, COOKIE_MAPPED);
if (sg_count < 0)
return sg_count;
dmaengine_slave_config(chan, &conf);
desc = dmaengine_prep_slave_sg(chan, data->sg, sg_count,
conf.direction,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(mmc_dev(host->mmc),
"Failed to allocate DMA %s descriptor",
conf.direction == DMA_MEM_TO_DEV ? "TX" : "RX");
goto dma_unmap;
}
dmaengine_submit(desc);
dma_async_issue_pending(chan);
return 0;
dma_unmap:
if (data->host_cookie == COOKIE_MAPPED)
jz4740_mmc_dma_unmap(host, data);
return -ENOMEM;
}
static void jz4740_mmc_pre_request(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct jz4740_mmc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!host->use_dma)
return;
data->host_cookie = COOKIE_UNMAPPED;
if (jz4740_mmc_prepare_dma_data(host, data, COOKIE_PREMAPPED) < 0)
data->host_cookie = COOKIE_UNMAPPED;
}
static void jz4740_mmc_post_request(struct mmc_host *mmc,
struct mmc_request *mrq,
int err)
{
struct jz4740_mmc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (data && data->host_cookie != COOKIE_UNMAPPED)
jz4740_mmc_dma_unmap(host, data);
if (err) {
struct dma_chan *chan = jz4740_mmc_get_dma_chan(host, data);
dmaengine_terminate_all(chan);
}
}
/*----------------------------------------------------------------------------*/
static void jz4740_mmc_set_irq_enabled(struct jz4740_mmc_host *host,
unsigned int irq, bool enabled)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (enabled)
host->irq_mask &= ~irq;
else
host->irq_mask |= irq;
jz4740_mmc_write_irq_mask(host, host->irq_mask);
spin_unlock_irqrestore(&host->lock, flags);
}
static void jz4740_mmc_clock_enable(struct jz4740_mmc_host *host,
bool start_transfer)
{
uint16_t val = JZ_MMC_STRPCL_CLOCK_START;
if (start_transfer)
val |= JZ_MMC_STRPCL_START_OP;
writew(val, host->base + JZ_REG_MMC_STRPCL);
}
static void jz4740_mmc_clock_disable(struct jz4740_mmc_host *host)
{
uint32_t status;
unsigned int timeout = 1000;
writew(JZ_MMC_STRPCL_CLOCK_STOP, host->base + JZ_REG_MMC_STRPCL);
do {
status = readl(host->base + JZ_REG_MMC_STATUS);
} while (status & JZ_MMC_STATUS_CLK_EN && --timeout);
}
static void jz4740_mmc_reset(struct jz4740_mmc_host *host)
{
uint32_t status;
unsigned int timeout = 1000;
writew(JZ_MMC_STRPCL_RESET, host->base + JZ_REG_MMC_STRPCL);
udelay(10);
do {
status = readl(host->base + JZ_REG_MMC_STATUS);
} while (status & JZ_MMC_STATUS_IS_RESETTING && --timeout);
}
static void jz4740_mmc_request_done(struct jz4740_mmc_host *host)
{
struct mmc_request *req;
struct mmc_data *data;
req = host->req;
data = req->data;
host->req = NULL;
if (data && data->host_cookie == COOKIE_MAPPED)
jz4740_mmc_dma_unmap(host, data);
mmc_request_done(host->mmc, req);
}
static unsigned int jz4740_mmc_poll_irq(struct jz4740_mmc_host *host,
unsigned int irq)
{
unsigned int timeout = 0x800;
uint32_t status;
do {
status = jz4740_mmc_read_irq_reg(host);
} while (!(status & irq) && --timeout);
if (timeout == 0) {
set_bit(0, &host->waiting);
mod_timer(&host->timeout_timer,
jiffies + msecs_to_jiffies(JZ_MMC_REQ_TIMEOUT_MS));
jz4740_mmc_set_irq_enabled(host, irq, true);
return true;
}
return false;
}
static void jz4740_mmc_transfer_check_state(struct jz4740_mmc_host *host,
struct mmc_data *data)
{
int status;
status = readl(host->base + JZ_REG_MMC_STATUS);
if (status & JZ_MMC_STATUS_WRITE_ERROR_MASK) {
if (status & (JZ_MMC_STATUS_TIMEOUT_WRITE)) {
host->req->cmd->error = -ETIMEDOUT;
data->error = -ETIMEDOUT;
} else {
host->req->cmd->error = -EIO;
data->error = -EIO;
}
} else if (status & JZ_MMC_STATUS_READ_ERROR_MASK) {
if (status & (JZ_MMC_STATUS_TIMEOUT_READ)) {
host->req->cmd->error = -ETIMEDOUT;
data->error = -ETIMEDOUT;
} else {
host->req->cmd->error = -EIO;
data->error = -EIO;
}
}
}
static bool jz4740_mmc_write_data(struct jz4740_mmc_host *host,
struct mmc_data *data)
{
struct sg_mapping_iter *miter = &host->miter;
void __iomem *fifo_addr = host->base + JZ_REG_MMC_TXFIFO;
uint32_t *buf;
bool timeout;
size_t i, j;
while (sg_miter_next(miter)) {
buf = miter->addr;
i = miter->length / 4;
j = i / 8;
i = i & 0x7;
while (j) {
timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_TXFIFO_WR_REQ);
if (unlikely(timeout))
goto poll_timeout;
writel(buf[0], fifo_addr);
writel(buf[1], fifo_addr);
writel(buf[2], fifo_addr);
writel(buf[3], fifo_addr);
writel(buf[4], fifo_addr);
writel(buf[5], fifo_addr);
writel(buf[6], fifo_addr);
writel(buf[7], fifo_addr);
buf += 8;
--j;
}
if (unlikely(i)) {
timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_TXFIFO_WR_REQ);
if (unlikely(timeout))
goto poll_timeout;
while (i) {
writel(*buf, fifo_addr);
++buf;
--i;
}
}
data->bytes_xfered += miter->length;
}
sg_miter_stop(miter);
return false;
poll_timeout:
miter->consumed = (void *)buf - miter->addr;
data->bytes_xfered += miter->consumed;
sg_miter_stop(miter);
return true;
}
static bool jz4740_mmc_read_data(struct jz4740_mmc_host *host,
struct mmc_data *data)
{
struct sg_mapping_iter *miter = &host->miter;
void __iomem *fifo_addr = host->base + JZ_REG_MMC_RXFIFO;
uint32_t *buf;
uint32_t d;
uint32_t status;
size_t i, j;
unsigned int timeout;
while (sg_miter_next(miter)) {
buf = miter->addr;
i = miter->length;
j = i / 32;
i = i & 0x1f;
while (j) {
timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_RXFIFO_RD_REQ);
if (unlikely(timeout))
goto poll_timeout;
buf[0] = readl(fifo_addr);
buf[1] = readl(fifo_addr);
buf[2] = readl(fifo_addr);
buf[3] = readl(fifo_addr);
buf[4] = readl(fifo_addr);
buf[5] = readl(fifo_addr);
buf[6] = readl(fifo_addr);
buf[7] = readl(fifo_addr);
buf += 8;
--j;
}
if (unlikely(i)) {
timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_RXFIFO_RD_REQ);
if (unlikely(timeout))
goto poll_timeout;
while (i >= 4) {
*buf++ = readl(fifo_addr);
i -= 4;
}
if (unlikely(i > 0)) {
d = readl(fifo_addr);
memcpy(buf, &d, i);
}
}
data->bytes_xfered += miter->length;
}
sg_miter_stop(miter);
/* For whatever reason there is sometime one word more in the fifo then
* requested */
timeout = 1000;
status = readl(host->base + JZ_REG_MMC_STATUS);
while (!(status & JZ_MMC_STATUS_DATA_FIFO_EMPTY) && --timeout) {
d = readl(fifo_addr);
status = readl(host->base + JZ_REG_MMC_STATUS);
}
return false;
poll_timeout:
miter->consumed = (void *)buf - miter->addr;
data->bytes_xfered += miter->consumed;
sg_miter_stop(miter);
return true;
}
static void jz4740_mmc_timeout(struct timer_list *t)
{
struct jz4740_mmc_host *host = from_timer(host, t, timeout_timer);
if (!test_and_clear_bit(0, &host->waiting))
return;
jz4740_mmc_set_irq_enabled(host, JZ_MMC_IRQ_END_CMD_RES, false);
host->req->cmd->error = -ETIMEDOUT;
jz4740_mmc_request_done(host);
}
static void jz4740_mmc_read_response(struct jz4740_mmc_host *host,
struct mmc_command *cmd)
{
int i;
uint16_t tmp;
void __iomem *fifo_addr = host->base + JZ_REG_MMC_RESP_FIFO;
if (cmd->flags & MMC_RSP_136) {
tmp = readw(fifo_addr);
for (i = 0; i < 4; ++i) {
cmd->resp[i] = tmp << 24;
tmp = readw(fifo_addr);
cmd->resp[i] |= tmp << 8;
tmp = readw(fifo_addr);
cmd->resp[i] |= tmp >> 8;
}
} else {
cmd->resp[0] = readw(fifo_addr) << 24;
cmd->resp[0] |= readw(fifo_addr) << 8;
cmd->resp[0] |= readw(fifo_addr) & 0xff;
}
}
static void jz4740_mmc_send_command(struct jz4740_mmc_host *host,
struct mmc_command *cmd)
{
uint32_t cmdat = host->cmdat;
host->cmdat &= ~JZ_MMC_CMDAT_INIT;
jz4740_mmc_clock_disable(host);
host->cmd = cmd;
if (cmd->flags & MMC_RSP_BUSY)
cmdat |= JZ_MMC_CMDAT_BUSY;
switch (mmc_resp_type(cmd)) {
case MMC_RSP_R1B:
case MMC_RSP_R1:
cmdat |= JZ_MMC_CMDAT_RSP_R1;
break;
case MMC_RSP_R2:
cmdat |= JZ_MMC_CMDAT_RSP_R2;
break;
case MMC_RSP_R3:
cmdat |= JZ_MMC_CMDAT_RSP_R3;
break;
default:
break;
}
if (cmd->data) {
cmdat |= JZ_MMC_CMDAT_DATA_EN;
if (cmd->data->flags & MMC_DATA_WRITE)
cmdat |= JZ_MMC_CMDAT_WRITE;
if (host->use_dma) {
/*
* The JZ4780's MMC controller has integrated DMA ability
* in addition to being able to use the external DMA
* controller. It moves DMA control bits to a separate
* register. The DMA_SEL bit chooses the external
* controller over the integrated one. Earlier SoCs
* can only use the external controller, and have a
* single DMA enable bit in CMDAT.
*/
if (host->version >= JZ_MMC_JZ4780) {
writel(JZ_MMC_DMAC_DMA_EN | JZ_MMC_DMAC_DMA_SEL,
host->base + JZ_REG_MMC_DMAC);
} else {
cmdat |= JZ_MMC_CMDAT_DMA_EN;
}
} else if (host->version >= JZ_MMC_JZ4780) {
writel(0, host->base + JZ_REG_MMC_DMAC);
}
writew(cmd->data->blksz, host->base + JZ_REG_MMC_BLKLEN);
writew(cmd->data->blocks, host->base + JZ_REG_MMC_NOB);
}
writeb(cmd->opcode, host->base + JZ_REG_MMC_CMD);
writel(cmd->arg, host->base + JZ_REG_MMC_ARG);
writel(cmdat, host->base + JZ_REG_MMC_CMDAT);
jz4740_mmc_clock_enable(host, 1);
}
static void jz_mmc_prepare_data_transfer(struct jz4740_mmc_host *host)
{
struct mmc_command *cmd = host->req->cmd;
struct mmc_data *data = cmd->data;
int direction;
if (data->flags & MMC_DATA_READ)
direction = SG_MITER_TO_SG;
else
direction = SG_MITER_FROM_SG;
sg_miter_start(&host->miter, data->sg, data->sg_len, direction);
}
static irqreturn_t jz_mmc_irq_worker(int irq, void *devid)
{
struct jz4740_mmc_host *host = (struct jz4740_mmc_host *)devid;
struct mmc_command *cmd = host->req->cmd;
struct mmc_request *req = host->req;
struct mmc_data *data = cmd->data;
bool timeout = false;
if (cmd->error)
host->state = JZ4740_MMC_STATE_DONE;
switch (host->state) {
case JZ4740_MMC_STATE_READ_RESPONSE:
if (cmd->flags & MMC_RSP_PRESENT)
jz4740_mmc_read_response(host, cmd);
if (!data)
break;
jz_mmc_prepare_data_transfer(host);
fallthrough;
case JZ4740_MMC_STATE_TRANSFER_DATA:
if (host->use_dma) {
/* Use DMA if enabled.
* Data transfer direction is defined later by
* relying on data flags in
* jz4740_mmc_prepare_dma_data() and
* jz4740_mmc_start_dma_transfer().
*/
timeout = jz4740_mmc_start_dma_transfer(host, data);
data->bytes_xfered = data->blocks * data->blksz;
} else if (data->flags & MMC_DATA_READ)
/* Use PIO if DMA is not enabled.
* Data transfer direction was defined before
* by relying on data flags in
* jz_mmc_prepare_data_transfer().
*/
timeout = jz4740_mmc_read_data(host, data);
else
timeout = jz4740_mmc_write_data(host, data);
if (unlikely(timeout)) {
host->state = JZ4740_MMC_STATE_TRANSFER_DATA;
break;
}
jz4740_mmc_transfer_check_state(host, data);
timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_DATA_TRAN_DONE);
if (unlikely(timeout)) {
host->state = JZ4740_MMC_STATE_SEND_STOP;
break;
}
jz4740_mmc_write_irq_reg(host, JZ_MMC_IRQ_DATA_TRAN_DONE);
fallthrough;
case JZ4740_MMC_STATE_SEND_STOP:
if (!req->stop)
break;
jz4740_mmc_send_command(host, req->stop);
if (mmc_resp_type(req->stop) & MMC_RSP_BUSY) {
timeout = jz4740_mmc_poll_irq(host,
JZ_MMC_IRQ_PRG_DONE);
if (timeout) {
host->state = JZ4740_MMC_STATE_DONE;
break;
}
}
fallthrough;
case JZ4740_MMC_STATE_DONE:
break;
}
if (!timeout)
jz4740_mmc_request_done(host);
return IRQ_HANDLED;
}
static irqreturn_t jz_mmc_irq(int irq, void *devid)
{
struct jz4740_mmc_host *host = devid;
struct mmc_command *cmd = host->cmd;
uint32_t irq_reg, status, tmp;
status = readl(host->base + JZ_REG_MMC_STATUS);
irq_reg = jz4740_mmc_read_irq_reg(host);
tmp = irq_reg;
irq_reg &= ~host->irq_mask;
tmp &= ~(JZ_MMC_IRQ_TXFIFO_WR_REQ | JZ_MMC_IRQ_RXFIFO_RD_REQ |
JZ_MMC_IRQ_PRG_DONE | JZ_MMC_IRQ_DATA_TRAN_DONE);
if (tmp != irq_reg)
jz4740_mmc_write_irq_reg(host, tmp & ~irq_reg);
if (irq_reg & JZ_MMC_IRQ_SDIO) {
jz4740_mmc_write_irq_reg(host, JZ_MMC_IRQ_SDIO);
mmc_signal_sdio_irq(host->mmc);
irq_reg &= ~JZ_MMC_IRQ_SDIO;
}
if (host->req && cmd && irq_reg) {
if (test_and_clear_bit(0, &host->waiting)) {
del_timer(&host->timeout_timer);
if (status & JZ_MMC_STATUS_TIMEOUT_RES) {
cmd->error = -ETIMEDOUT;
} else if (status & JZ_MMC_STATUS_CRC_RES_ERR) {
cmd->error = -EIO;
} else if (status & (JZ_MMC_STATUS_CRC_READ_ERROR |
JZ_MMC_STATUS_CRC_WRITE_ERROR)) {
if (cmd->data)
cmd->data->error = -EIO;
cmd->error = -EIO;
}
jz4740_mmc_set_irq_enabled(host, irq_reg, false);
jz4740_mmc_write_irq_reg(host, irq_reg);
return IRQ_WAKE_THREAD;
}
}
return IRQ_HANDLED;
}
static int jz4740_mmc_set_clock_rate(struct jz4740_mmc_host *host, int rate)
{
int div = 0;
int real_rate;
jz4740_mmc_clock_disable(host);
clk_set_rate(host->clk, host->mmc->f_max);
real_rate = clk_get_rate(host->clk);
while (real_rate > rate && div < 7) {
++div;
real_rate >>= 1;
}
writew(div, host->base + JZ_REG_MMC_CLKRT);
if (real_rate > 25000000) {
if (host->version >= JZ_MMC_JZ4780) {
writel(JZ_MMC_LPM_DRV_RISING_QTR_PHASE_DLY |
JZ_MMC_LPM_SMP_RISING_QTR_OR_HALF_PHASE_DLY |
JZ_MMC_LPM_LOW_POWER_MODE_EN,
host->base + JZ_REG_MMC_LPM);
} else if (host->version >= JZ_MMC_JZ4760) {
writel(JZ_MMC_LPM_DRV_RISING |
JZ_MMC_LPM_LOW_POWER_MODE_EN,
host->base + JZ_REG_MMC_LPM);
} else if (host->version >= JZ_MMC_JZ4725B)
writel(JZ_MMC_LPM_LOW_POWER_MODE_EN,
host->base + JZ_REG_MMC_LPM);
}
return real_rate;
}
static void jz4740_mmc_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct jz4740_mmc_host *host = mmc_priv(mmc);
host->req = req;
jz4740_mmc_write_irq_reg(host, ~0);
jz4740_mmc_set_irq_enabled(host, JZ_MMC_IRQ_END_CMD_RES, true);
host->state = JZ4740_MMC_STATE_READ_RESPONSE;
set_bit(0, &host->waiting);
mod_timer(&host->timeout_timer,
jiffies + msecs_to_jiffies(JZ_MMC_REQ_TIMEOUT_MS));
jz4740_mmc_send_command(host, req->cmd);
}
static void jz4740_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct jz4740_mmc_host *host = mmc_priv(mmc);
int ret;
if (ios->clock)
jz4740_mmc_set_clock_rate(host, ios->clock);
switch (ios->power_mode) {
case MMC_POWER_UP:
jz4740_mmc_reset(host);
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
host->cmdat |= JZ_MMC_CMDAT_INIT;
clk_prepare_enable(host->clk);
break;
case MMC_POWER_ON:
if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret)
dev_err(&host->pdev->dev, "Failed to set vqmmc power!\n");
else
host->vqmmc_enabled = true;
}
break;
case MMC_POWER_OFF:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
}
clk_disable_unprepare(host->clk);
break;
default:
break;
}
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
host->cmdat &= ~JZ_MMC_CMDAT_BUS_WIDTH_MASK;
break;
case MMC_BUS_WIDTH_4:
host->cmdat &= ~JZ_MMC_CMDAT_BUS_WIDTH_MASK;
host->cmdat |= JZ_MMC_CMDAT_BUS_WIDTH_4BIT;
break;
case MMC_BUS_WIDTH_8:
host->cmdat &= ~JZ_MMC_CMDAT_BUS_WIDTH_MASK;
host->cmdat |= JZ_MMC_CMDAT_BUS_WIDTH_8BIT;
break;
default:
break;
}
}
static void jz4740_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct jz4740_mmc_host *host = mmc_priv(mmc);
jz4740_mmc_set_irq_enabled(host, JZ_MMC_IRQ_SDIO, enable);
}
static int jz4740_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
int ret;
/* vqmmc regulator is available */
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
return ret < 0 ? ret : 0;
}
/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return 0;
return -EINVAL;
}
static const struct mmc_host_ops jz4740_mmc_ops = {
.request = jz4740_mmc_request,
.pre_req = jz4740_mmc_pre_request,
.post_req = jz4740_mmc_post_request,
.set_ios = jz4740_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
.enable_sdio_irq = jz4740_mmc_enable_sdio_irq,
.start_signal_voltage_switch = jz4740_voltage_switch,
};
static const struct of_device_id jz4740_mmc_of_match[] = {
{ .compatible = "ingenic,jz4740-mmc", .data = (void *) JZ_MMC_JZ4740 },
{ .compatible = "ingenic,jz4725b-mmc", .data = (void *)JZ_MMC_JZ4725B },
{ .compatible = "ingenic,jz4760-mmc", .data = (void *) JZ_MMC_JZ4760 },
{ .compatible = "ingenic,jz4775-mmc", .data = (void *) JZ_MMC_JZ4780 },
{ .compatible = "ingenic,jz4780-mmc", .data = (void *) JZ_MMC_JZ4780 },
{ .compatible = "ingenic,x1000-mmc", .data = (void *) JZ_MMC_X1000 },
{},
};
MODULE_DEVICE_TABLE(of, jz4740_mmc_of_match);
static int jz4740_mmc_probe(struct platform_device* pdev)
{
int ret;
struct mmc_host *mmc;
struct jz4740_mmc_host *host;
const struct of_device_id *match;
mmc = mmc_alloc_host(sizeof(struct jz4740_mmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "Failed to alloc mmc host structure\n");
return -ENOMEM;
}
host = mmc_priv(mmc);
match = of_match_device(jz4740_mmc_of_match, &pdev->dev);
if (match) {
host->version = (enum jz4740_mmc_version)match->data;
} else {
/* JZ4740 should be the only one using legacy probe */
host->version = JZ_MMC_JZ4740;
}
ret = mmc_of_parse(mmc);
if (ret) {
dev_err_probe(&pdev->dev, ret, "could not parse device properties\n");
goto err_free_host;
}
mmc_regulator_get_supply(mmc);
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
ret = host->irq;
goto err_free_host;
}
host->clk = devm_clk_get(&pdev->dev, "mmc");
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
dev_err(&pdev->dev, "Failed to get mmc clock\n");
goto err_free_host;
}
host->base = devm_platform_get_and_ioremap_resource(pdev, 0, &host->mem_res);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto err_free_host;
}
mmc->ops = &jz4740_mmc_ops;
if (!mmc->f_max)
mmc->f_max = JZ_MMC_CLK_RATE;
/*
* There seems to be a problem with this driver on the JZ4760 and
* JZ4760B SoCs. There, when using the maximum rate supported (50 MHz),
* the communication fails with many SD cards.
* Until this bug is sorted out, limit the maximum rate to 24 MHz.
*/
if (host->version == JZ_MMC_JZ4760 && mmc->f_max > JZ_MMC_CLK_RATE)
mmc->f_max = JZ_MMC_CLK_RATE;
mmc->f_min = mmc->f_max / 128;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
/*
* We use a fixed timeout of 5s, hence inform the core about it. A
* future improvement should instead respect the cmd->busy_timeout.
*/
mmc->max_busy_timeout = JZ_MMC_REQ_TIMEOUT_MS;
mmc->max_blk_size = (1 << 10) - 1;
mmc->max_blk_count = (1 << 15) - 1;
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_segs = 128;
mmc->max_seg_size = mmc->max_req_size;
host->mmc = mmc;
host->pdev = pdev;
spin_lock_init(&host->lock);
host->irq_mask = ~0;
jz4740_mmc_reset(host);
ret = request_threaded_irq(host->irq, jz_mmc_irq, jz_mmc_irq_worker, 0,
dev_name(&pdev->dev), host);
if (ret) {
dev_err(&pdev->dev, "Failed to request irq: %d\n", ret);
goto err_free_host;
}
jz4740_mmc_clock_disable(host);
timer_setup(&host->timeout_timer, jz4740_mmc_timeout, 0);
ret = jz4740_mmc_acquire_dma_channels(host);
if (ret == -EPROBE_DEFER)
goto err_free_irq;
host->use_dma = !ret;
platform_set_drvdata(pdev, host);
ret = mmc_add_host(mmc);
if (ret) {
dev_err(&pdev->dev, "Failed to add mmc host: %d\n", ret);
goto err_release_dma;
}
dev_info(&pdev->dev, "Ingenic SD/MMC card driver registered\n");
dev_info(&pdev->dev, "Using %s, %d-bit mode\n",
host->use_dma ? "DMA" : "PIO",
(mmc->caps & MMC_CAP_8_BIT_DATA) ? 8 :
((mmc->caps & MMC_CAP_4_BIT_DATA) ? 4 : 1));
return 0;
err_release_dma:
if (host->use_dma)
jz4740_mmc_release_dma_channels(host);
err_free_irq:
free_irq(host->irq, host);
err_free_host:
mmc_free_host(mmc);
return ret;
}
static void jz4740_mmc_remove(struct platform_device *pdev)
{
struct jz4740_mmc_host *host = platform_get_drvdata(pdev);
del_timer_sync(&host->timeout_timer);
jz4740_mmc_set_irq_enabled(host, 0xff, false);
jz4740_mmc_reset(host);
mmc_remove_host(host->mmc);
free_irq(host->irq, host);
if (host->use_dma)
jz4740_mmc_release_dma_channels(host);
mmc_free_host(host->mmc);
}
static int jz4740_mmc_suspend(struct device *dev)
{
return pinctrl_pm_select_sleep_state(dev);
}
static int jz4740_mmc_resume(struct device *dev)
{
return pinctrl_select_default_state(dev);
}
static DEFINE_SIMPLE_DEV_PM_OPS(jz4740_mmc_pm_ops, jz4740_mmc_suspend,
jz4740_mmc_resume);
static struct platform_driver jz4740_mmc_driver = {
.probe = jz4740_mmc_probe,
.remove_new = jz4740_mmc_remove,
.driver = {
.name = "jz4740-mmc",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = of_match_ptr(jz4740_mmc_of_match),
.pm = pm_sleep_ptr(&jz4740_mmc_pm_ops),
},
};
module_platform_driver(jz4740_mmc_driver);
MODULE_DESCRIPTION("JZ4740 SD/MMC controller driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>");
| linux-master | drivers/mmc/host/jz4740_mmc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* bcm2835 sdhost driver.
*
* The 2835 has two SD controllers: The Arasan sdhci controller
* (supported by the iproc driver) and a custom sdhost controller
* (supported by this driver).
*
* The sdhci controller supports both sdcard and sdio. The sdhost
* controller supports the sdcard only, but has better performance.
* Also note that the rpi3 has sdio wifi, so driving the sdcard with
* the sdhost controller allows to use the sdhci controller for wifi
* support.
*
* The configuration is done by devicetree via pin muxing. Both
* SD controller are available on the same pins (2 pin groups = pin 22
* to 27 + pin 48 to 53). So it's possible to use both SD controllers
* at the same time with different pin groups.
*
* Author: Phil Elwell <[email protected]>
* Copyright (C) 2015-2016 Raspberry Pi (Trading) Ltd.
*
* Based on
* mmc-bcm2835.c by Gellert Weisz
* which is, in turn, based on
* sdhci-bcm2708.c by Broadcom
* sdhci-bcm2835.c by Stephen Warren and Oleksandr Tymoshenko
* sdhci.c and sdhci-pci.c by Pierre Ossman
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/time.h>
#include <linux/workqueue.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#define SDCMD 0x00 /* Command to SD card - 16 R/W */
#define SDARG 0x04 /* Argument to SD card - 32 R/W */
#define SDTOUT 0x08 /* Start value for timeout counter - 32 R/W */
#define SDCDIV 0x0c /* Start value for clock divider - 11 R/W */
#define SDRSP0 0x10 /* SD card response (31:0) - 32 R */
#define SDRSP1 0x14 /* SD card response (63:32) - 32 R */
#define SDRSP2 0x18 /* SD card response (95:64) - 32 R */
#define SDRSP3 0x1c /* SD card response (127:96) - 32 R */
#define SDHSTS 0x20 /* SD host status - 11 R/W */
#define SDVDD 0x30 /* SD card power control - 1 R/W */
#define SDEDM 0x34 /* Emergency Debug Mode - 13 R/W */
#define SDHCFG 0x38 /* Host configuration - 2 R/W */
#define SDHBCT 0x3c /* Host byte count (debug) - 32 R/W */
#define SDDATA 0x40 /* Data to/from SD card - 32 R/W */
#define SDHBLC 0x50 /* Host block count (SDIO/SDHC) - 9 R/W */
#define SDCMD_NEW_FLAG 0x8000
#define SDCMD_FAIL_FLAG 0x4000
#define SDCMD_BUSYWAIT 0x800
#define SDCMD_NO_RESPONSE 0x400
#define SDCMD_LONG_RESPONSE 0x200
#define SDCMD_WRITE_CMD 0x80
#define SDCMD_READ_CMD 0x40
#define SDCMD_CMD_MASK 0x3f
#define SDCDIV_MAX_CDIV 0x7ff
#define SDHSTS_BUSY_IRPT 0x400
#define SDHSTS_BLOCK_IRPT 0x200
#define SDHSTS_SDIO_IRPT 0x100
#define SDHSTS_REW_TIME_OUT 0x80
#define SDHSTS_CMD_TIME_OUT 0x40
#define SDHSTS_CRC16_ERROR 0x20
#define SDHSTS_CRC7_ERROR 0x10
#define SDHSTS_FIFO_ERROR 0x08
/* Reserved */
/* Reserved */
#define SDHSTS_DATA_FLAG 0x01
#define SDHSTS_TRANSFER_ERROR_MASK (SDHSTS_CRC7_ERROR | \
SDHSTS_CRC16_ERROR | \
SDHSTS_REW_TIME_OUT | \
SDHSTS_FIFO_ERROR)
#define SDHSTS_ERROR_MASK (SDHSTS_CMD_TIME_OUT | \
SDHSTS_TRANSFER_ERROR_MASK)
#define SDHCFG_BUSY_IRPT_EN BIT(10)
#define SDHCFG_BLOCK_IRPT_EN BIT(8)
#define SDHCFG_SDIO_IRPT_EN BIT(5)
#define SDHCFG_DATA_IRPT_EN BIT(4)
#define SDHCFG_SLOW_CARD BIT(3)
#define SDHCFG_WIDE_EXT_BUS BIT(2)
#define SDHCFG_WIDE_INT_BUS BIT(1)
#define SDHCFG_REL_CMD_LINE BIT(0)
#define SDVDD_POWER_OFF 0
#define SDVDD_POWER_ON 1
#define SDEDM_FORCE_DATA_MODE BIT(19)
#define SDEDM_CLOCK_PULSE BIT(20)
#define SDEDM_BYPASS BIT(21)
#define SDEDM_WRITE_THRESHOLD_SHIFT 9
#define SDEDM_READ_THRESHOLD_SHIFT 14
#define SDEDM_THRESHOLD_MASK 0x1f
#define SDEDM_FSM_MASK 0xf
#define SDEDM_FSM_IDENTMODE 0x0
#define SDEDM_FSM_DATAMODE 0x1
#define SDEDM_FSM_READDATA 0x2
#define SDEDM_FSM_WRITEDATA 0x3
#define SDEDM_FSM_READWAIT 0x4
#define SDEDM_FSM_READCRC 0x5
#define SDEDM_FSM_WRITECRC 0x6
#define SDEDM_FSM_WRITEWAIT1 0x7
#define SDEDM_FSM_POWERDOWN 0x8
#define SDEDM_FSM_POWERUP 0x9
#define SDEDM_FSM_WRITESTART1 0xa
#define SDEDM_FSM_WRITESTART2 0xb
#define SDEDM_FSM_GENPULSES 0xc
#define SDEDM_FSM_WRITEWAIT2 0xd
#define SDEDM_FSM_STARTPOWDOWN 0xf
#define SDDATA_FIFO_WORDS 16
#define FIFO_READ_THRESHOLD 4
#define FIFO_WRITE_THRESHOLD 4
#define SDDATA_FIFO_PIO_BURST 8
#define PIO_THRESHOLD 1 /* Maximum block count for PIO (0 = always DMA) */
struct bcm2835_host {
spinlock_t lock;
struct mutex mutex;
void __iomem *ioaddr;
u32 phys_addr;
struct platform_device *pdev;
int clock; /* Current clock speed */
unsigned int max_clk; /* Max possible freq */
struct work_struct dma_work;
struct delayed_work timeout_work; /* Timer for timeouts */
struct sg_mapping_iter sg_miter; /* SG state for PIO */
unsigned int blocks; /* remaining PIO blocks */
int irq; /* Device IRQ */
u32 ns_per_fifo_word;
/* cached registers */
u32 hcfg;
u32 cdiv;
struct mmc_request *mrq; /* Current request */
struct mmc_command *cmd; /* Current command */
struct mmc_data *data; /* Current data request */
bool data_complete:1;/* Data finished before cmd */
bool use_busy:1; /* Wait for busy interrupt */
bool use_sbc:1; /* Send CMD23 */
/* for threaded irq handler */
bool irq_block;
bool irq_busy;
bool irq_data;
/* DMA part */
struct dma_chan *dma_chan_rxtx;
struct dma_chan *dma_chan;
struct dma_slave_config dma_cfg_rx;
struct dma_slave_config dma_cfg_tx;
struct dma_async_tx_descriptor *dma_desc;
u32 dma_dir;
u32 drain_words;
struct page *drain_page;
u32 drain_offset;
bool use_dma;
};
static void bcm2835_dumpcmd(struct bcm2835_host *host, struct mmc_command *cmd,
const char *label)
{
struct device *dev = &host->pdev->dev;
if (!cmd)
return;
dev_dbg(dev, "%c%s op %d arg 0x%x flags 0x%x - resp %08x %08x %08x %08x, err %d\n",
(cmd == host->cmd) ? '>' : ' ',
label, cmd->opcode, cmd->arg, cmd->flags,
cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3],
cmd->error);
}
static void bcm2835_dumpregs(struct bcm2835_host *host)
{
struct mmc_request *mrq = host->mrq;
struct device *dev = &host->pdev->dev;
if (mrq) {
bcm2835_dumpcmd(host, mrq->sbc, "sbc");
bcm2835_dumpcmd(host, mrq->cmd, "cmd");
if (mrq->data) {
dev_dbg(dev, "data blocks %x blksz %x - err %d\n",
mrq->data->blocks,
mrq->data->blksz,
mrq->data->error);
}
bcm2835_dumpcmd(host, mrq->stop, "stop");
}
dev_dbg(dev, "=========== REGISTER DUMP ===========\n");
dev_dbg(dev, "SDCMD 0x%08x\n", readl(host->ioaddr + SDCMD));
dev_dbg(dev, "SDARG 0x%08x\n", readl(host->ioaddr + SDARG));
dev_dbg(dev, "SDTOUT 0x%08x\n", readl(host->ioaddr + SDTOUT));
dev_dbg(dev, "SDCDIV 0x%08x\n", readl(host->ioaddr + SDCDIV));
dev_dbg(dev, "SDRSP0 0x%08x\n", readl(host->ioaddr + SDRSP0));
dev_dbg(dev, "SDRSP1 0x%08x\n", readl(host->ioaddr + SDRSP1));
dev_dbg(dev, "SDRSP2 0x%08x\n", readl(host->ioaddr + SDRSP2));
dev_dbg(dev, "SDRSP3 0x%08x\n", readl(host->ioaddr + SDRSP3));
dev_dbg(dev, "SDHSTS 0x%08x\n", readl(host->ioaddr + SDHSTS));
dev_dbg(dev, "SDVDD 0x%08x\n", readl(host->ioaddr + SDVDD));
dev_dbg(dev, "SDEDM 0x%08x\n", readl(host->ioaddr + SDEDM));
dev_dbg(dev, "SDHCFG 0x%08x\n", readl(host->ioaddr + SDHCFG));
dev_dbg(dev, "SDHBCT 0x%08x\n", readl(host->ioaddr + SDHBCT));
dev_dbg(dev, "SDHBLC 0x%08x\n", readl(host->ioaddr + SDHBLC));
dev_dbg(dev, "===========================================\n");
}
static void bcm2835_reset_internal(struct bcm2835_host *host)
{
u32 temp;
writel(SDVDD_POWER_OFF, host->ioaddr + SDVDD);
writel(0, host->ioaddr + SDCMD);
writel(0, host->ioaddr + SDARG);
writel(0xf00000, host->ioaddr + SDTOUT);
writel(0, host->ioaddr + SDCDIV);
writel(0x7f8, host->ioaddr + SDHSTS); /* Write 1s to clear */
writel(0, host->ioaddr + SDHCFG);
writel(0, host->ioaddr + SDHBCT);
writel(0, host->ioaddr + SDHBLC);
/* Limit fifo usage due to silicon bug */
temp = readl(host->ioaddr + SDEDM);
temp &= ~((SDEDM_THRESHOLD_MASK << SDEDM_READ_THRESHOLD_SHIFT) |
(SDEDM_THRESHOLD_MASK << SDEDM_WRITE_THRESHOLD_SHIFT));
temp |= (FIFO_READ_THRESHOLD << SDEDM_READ_THRESHOLD_SHIFT) |
(FIFO_WRITE_THRESHOLD << SDEDM_WRITE_THRESHOLD_SHIFT);
writel(temp, host->ioaddr + SDEDM);
msleep(20);
writel(SDVDD_POWER_ON, host->ioaddr + SDVDD);
msleep(20);
host->clock = 0;
writel(host->hcfg, host->ioaddr + SDHCFG);
writel(host->cdiv, host->ioaddr + SDCDIV);
}
static void bcm2835_reset(struct mmc_host *mmc)
{
struct bcm2835_host *host = mmc_priv(mmc);
if (host->dma_chan)
dmaengine_terminate_sync(host->dma_chan);
host->dma_chan = NULL;
bcm2835_reset_internal(host);
}
static void bcm2835_finish_command(struct bcm2835_host *host);
static void bcm2835_wait_transfer_complete(struct bcm2835_host *host)
{
int timediff;
u32 alternate_idle;
alternate_idle = (host->mrq->data->flags & MMC_DATA_READ) ?
SDEDM_FSM_READWAIT : SDEDM_FSM_WRITESTART1;
timediff = 0;
while (1) {
u32 edm, fsm;
edm = readl(host->ioaddr + SDEDM);
fsm = edm & SDEDM_FSM_MASK;
if ((fsm == SDEDM_FSM_IDENTMODE) ||
(fsm == SDEDM_FSM_DATAMODE))
break;
if (fsm == alternate_idle) {
writel(edm | SDEDM_FORCE_DATA_MODE,
host->ioaddr + SDEDM);
break;
}
timediff++;
if (timediff == 100000) {
dev_err(&host->pdev->dev,
"wait_transfer_complete - still waiting after %d retries\n",
timediff);
bcm2835_dumpregs(host);
host->mrq->data->error = -ETIMEDOUT;
return;
}
cpu_relax();
}
}
static void bcm2835_dma_complete(void *param)
{
struct bcm2835_host *host = param;
schedule_work(&host->dma_work);
}
static void bcm2835_transfer_block_pio(struct bcm2835_host *host, bool is_read)
{
size_t blksize;
unsigned long wait_max;
blksize = host->data->blksz;
wait_max = jiffies + msecs_to_jiffies(500);
while (blksize) {
int copy_words;
u32 hsts = 0;
size_t len;
u32 *buf;
if (!sg_miter_next(&host->sg_miter)) {
host->data->error = -EINVAL;
break;
}
len = min(host->sg_miter.length, blksize);
if (len % 4) {
host->data->error = -EINVAL;
break;
}
blksize -= len;
host->sg_miter.consumed = len;
buf = (u32 *)host->sg_miter.addr;
copy_words = len / 4;
while (copy_words) {
int burst_words, words;
u32 edm;
burst_words = min(SDDATA_FIFO_PIO_BURST, copy_words);
edm = readl(host->ioaddr + SDEDM);
if (is_read)
words = ((edm >> 4) & 0x1f);
else
words = SDDATA_FIFO_WORDS - ((edm >> 4) & 0x1f);
if (words < burst_words) {
int fsm_state = (edm & SDEDM_FSM_MASK);
struct device *dev = &host->pdev->dev;
if ((is_read &&
(fsm_state != SDEDM_FSM_READDATA &&
fsm_state != SDEDM_FSM_READWAIT &&
fsm_state != SDEDM_FSM_READCRC)) ||
(!is_read &&
(fsm_state != SDEDM_FSM_WRITEDATA &&
fsm_state != SDEDM_FSM_WRITESTART1 &&
fsm_state != SDEDM_FSM_WRITESTART2))) {
hsts = readl(host->ioaddr + SDHSTS);
dev_err(dev, "fsm %x, hsts %08x\n",
fsm_state, hsts);
if (hsts & SDHSTS_ERROR_MASK)
break;
}
if (time_after(jiffies, wait_max)) {
dev_err(dev, "PIO %s timeout - EDM %08x\n",
is_read ? "read" : "write",
edm);
hsts = SDHSTS_REW_TIME_OUT;
break;
}
ndelay((burst_words - words) *
host->ns_per_fifo_word);
continue;
} else if (words > copy_words) {
words = copy_words;
}
copy_words -= words;
while (words) {
if (is_read)
*(buf++) = readl(host->ioaddr + SDDATA);
else
writel(*(buf++), host->ioaddr + SDDATA);
words--;
}
}
if (hsts & SDHSTS_ERROR_MASK)
break;
}
sg_miter_stop(&host->sg_miter);
}
static void bcm2835_transfer_pio(struct bcm2835_host *host)
{
struct device *dev = &host->pdev->dev;
u32 sdhsts;
bool is_read;
is_read = (host->data->flags & MMC_DATA_READ) != 0;
bcm2835_transfer_block_pio(host, is_read);
sdhsts = readl(host->ioaddr + SDHSTS);
if (sdhsts & (SDHSTS_CRC16_ERROR |
SDHSTS_CRC7_ERROR |
SDHSTS_FIFO_ERROR)) {
dev_err(dev, "%s transfer error - HSTS %08x\n",
is_read ? "read" : "write", sdhsts);
host->data->error = -EILSEQ;
} else if ((sdhsts & (SDHSTS_CMD_TIME_OUT |
SDHSTS_REW_TIME_OUT))) {
dev_err(dev, "%s timeout error - HSTS %08x\n",
is_read ? "read" : "write", sdhsts);
host->data->error = -ETIMEDOUT;
}
}
static
void bcm2835_prepare_dma(struct bcm2835_host *host, struct mmc_data *data)
{
int sg_len, dir_data, dir_slave;
struct dma_async_tx_descriptor *desc = NULL;
struct dma_chan *dma_chan;
dma_chan = host->dma_chan_rxtx;
if (data->flags & MMC_DATA_READ) {
dir_data = DMA_FROM_DEVICE;
dir_slave = DMA_DEV_TO_MEM;
} else {
dir_data = DMA_TO_DEVICE;
dir_slave = DMA_MEM_TO_DEV;
}
/* The block doesn't manage the FIFO DREQs properly for
* multi-block transfers, so don't attempt to DMA the final
* few words. Unfortunately this requires the final sg entry
* to be trimmed. N.B. This code demands that the overspill
* is contained in a single sg entry.
*/
host->drain_words = 0;
if ((data->blocks > 1) && (dir_data == DMA_FROM_DEVICE)) {
struct scatterlist *sg;
u32 len;
int i;
len = min((u32)(FIFO_READ_THRESHOLD - 1) * 4,
(u32)data->blocks * data->blksz);
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg_is_last(sg)) {
WARN_ON(sg->length < len);
sg->length -= len;
host->drain_page = sg_page(sg);
host->drain_offset = sg->offset + sg->length;
}
}
host->drain_words = len / 4;
}
/* The parameters have already been validated, so this will not fail */
(void)dmaengine_slave_config(dma_chan,
(dir_data == DMA_FROM_DEVICE) ?
&host->dma_cfg_rx :
&host->dma_cfg_tx);
sg_len = dma_map_sg(dma_chan->device->dev, data->sg, data->sg_len,
dir_data);
if (!sg_len)
return;
desc = dmaengine_prep_slave_sg(dma_chan, data->sg, sg_len, dir_slave,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dma_unmap_sg(dma_chan->device->dev, data->sg, sg_len, dir_data);
return;
}
desc->callback = bcm2835_dma_complete;
desc->callback_param = host;
host->dma_desc = desc;
host->dma_chan = dma_chan;
host->dma_dir = dir_data;
}
static void bcm2835_start_dma(struct bcm2835_host *host)
{
dmaengine_submit(host->dma_desc);
dma_async_issue_pending(host->dma_chan);
}
static void bcm2835_set_transfer_irqs(struct bcm2835_host *host)
{
u32 all_irqs = SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN |
SDHCFG_BUSY_IRPT_EN;
if (host->dma_desc) {
host->hcfg = (host->hcfg & ~all_irqs) |
SDHCFG_BUSY_IRPT_EN;
} else {
host->hcfg = (host->hcfg & ~all_irqs) |
SDHCFG_DATA_IRPT_EN |
SDHCFG_BUSY_IRPT_EN;
}
writel(host->hcfg, host->ioaddr + SDHCFG);
}
static
void bcm2835_prepare_data(struct bcm2835_host *host, struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
WARN_ON(host->data);
host->data = data;
if (!data)
return;
host->data_complete = false;
host->data->bytes_xfered = 0;
if (!host->dma_desc) {
/* Use PIO */
int flags = SG_MITER_ATOMIC;
if (data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
bcm2835_set_transfer_irqs(host);
writel(data->blksz, host->ioaddr + SDHBCT);
writel(data->blocks, host->ioaddr + SDHBLC);
}
static u32 bcm2835_read_wait_sdcmd(struct bcm2835_host *host, u32 max_ms)
{
struct device *dev = &host->pdev->dev;
u32 value;
int ret;
ret = readl_poll_timeout(host->ioaddr + SDCMD, value,
!(value & SDCMD_NEW_FLAG), 1, 10);
if (ret == -ETIMEDOUT)
/* if it takes a while make poll interval bigger */
ret = readl_poll_timeout(host->ioaddr + SDCMD, value,
!(value & SDCMD_NEW_FLAG),
10, max_ms * 1000);
if (ret == -ETIMEDOUT)
dev_err(dev, "%s: timeout (%d ms)\n", __func__, max_ms);
return value;
}
static void bcm2835_finish_request(struct bcm2835_host *host)
{
struct dma_chan *terminate_chan = NULL;
struct mmc_request *mrq;
cancel_delayed_work(&host->timeout_work);
mrq = host->mrq;
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
host->dma_desc = NULL;
terminate_chan = host->dma_chan;
host->dma_chan = NULL;
if (terminate_chan) {
int err = dmaengine_terminate_all(terminate_chan);
if (err)
dev_err(&host->pdev->dev,
"failed to terminate DMA (%d)\n", err);
}
mmc_request_done(mmc_from_priv(host), mrq);
}
static
bool bcm2835_send_command(struct bcm2835_host *host, struct mmc_command *cmd)
{
struct device *dev = &host->pdev->dev;
u32 sdcmd, sdhsts;
unsigned long timeout;
WARN_ON(host->cmd);
sdcmd = bcm2835_read_wait_sdcmd(host, 100);
if (sdcmd & SDCMD_NEW_FLAG) {
dev_err(dev, "previous command never completed.\n");
bcm2835_dumpregs(host);
cmd->error = -EILSEQ;
bcm2835_finish_request(host);
return false;
}
if (!cmd->data && cmd->busy_timeout > 9000)
timeout = DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ;
else
timeout = 10 * HZ;
schedule_delayed_work(&host->timeout_work, timeout);
host->cmd = cmd;
/* Clear any error flags */
sdhsts = readl(host->ioaddr + SDHSTS);
if (sdhsts & SDHSTS_ERROR_MASK)
writel(sdhsts, host->ioaddr + SDHSTS);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
dev_err(dev, "unsupported response type!\n");
cmd->error = -EINVAL;
bcm2835_finish_request(host);
return false;
}
bcm2835_prepare_data(host, cmd);
writel(cmd->arg, host->ioaddr + SDARG);
sdcmd = cmd->opcode & SDCMD_CMD_MASK;
host->use_busy = false;
if (!(cmd->flags & MMC_RSP_PRESENT)) {
sdcmd |= SDCMD_NO_RESPONSE;
} else {
if (cmd->flags & MMC_RSP_136)
sdcmd |= SDCMD_LONG_RESPONSE;
if (cmd->flags & MMC_RSP_BUSY) {
sdcmd |= SDCMD_BUSYWAIT;
host->use_busy = true;
}
}
if (cmd->data) {
if (cmd->data->flags & MMC_DATA_WRITE)
sdcmd |= SDCMD_WRITE_CMD;
if (cmd->data->flags & MMC_DATA_READ)
sdcmd |= SDCMD_READ_CMD;
}
writel(sdcmd | SDCMD_NEW_FLAG, host->ioaddr + SDCMD);
return true;
}
static void bcm2835_transfer_complete(struct bcm2835_host *host)
{
struct mmc_data *data;
WARN_ON(!host->data_complete);
data = host->data;
host->data = NULL;
/* Need to send CMD12 if -
* a) open-ended multiblock transfer (no CMD23)
* b) error in multiblock transfer
*/
if (host->mrq->stop && (data->error || !host->use_sbc)) {
if (bcm2835_send_command(host, host->mrq->stop)) {
/* No busy, so poll for completion */
if (!host->use_busy)
bcm2835_finish_command(host);
}
} else {
bcm2835_wait_transfer_complete(host);
bcm2835_finish_request(host);
}
}
static void bcm2835_finish_data(struct bcm2835_host *host)
{
struct device *dev = &host->pdev->dev;
struct mmc_data *data;
data = host->data;
host->hcfg &= ~(SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN);
writel(host->hcfg, host->ioaddr + SDHCFG);
data->bytes_xfered = data->error ? 0 : (data->blksz * data->blocks);
host->data_complete = true;
if (host->cmd) {
/* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
dev_dbg(dev, "Finished early - HSTS %08x\n",
readl(host->ioaddr + SDHSTS));
} else {
bcm2835_transfer_complete(host);
}
}
static void bcm2835_finish_command(struct bcm2835_host *host)
{
struct device *dev = &host->pdev->dev;
struct mmc_command *cmd = host->cmd;
u32 sdcmd;
sdcmd = bcm2835_read_wait_sdcmd(host, 100);
/* Check for errors */
if (sdcmd & SDCMD_NEW_FLAG) {
dev_err(dev, "command never completed.\n");
bcm2835_dumpregs(host);
host->cmd->error = -EIO;
bcm2835_finish_request(host);
return;
} else if (sdcmd & SDCMD_FAIL_FLAG) {
u32 sdhsts = readl(host->ioaddr + SDHSTS);
/* Clear the errors */
writel(SDHSTS_ERROR_MASK, host->ioaddr + SDHSTS);
if (!(sdhsts & SDHSTS_CRC7_ERROR) ||
(host->cmd->opcode != MMC_SEND_OP_COND)) {
u32 edm, fsm;
if (sdhsts & SDHSTS_CMD_TIME_OUT) {
host->cmd->error = -ETIMEDOUT;
} else {
dev_err(dev, "unexpected command %d error\n",
host->cmd->opcode);
bcm2835_dumpregs(host);
host->cmd->error = -EILSEQ;
}
edm = readl(host->ioaddr + SDEDM);
fsm = edm & SDEDM_FSM_MASK;
if (fsm == SDEDM_FSM_READWAIT ||
fsm == SDEDM_FSM_WRITESTART1)
/* Kick the FSM out of its wait */
writel(edm | SDEDM_FORCE_DATA_MODE,
host->ioaddr + SDEDM);
bcm2835_finish_request(host);
return;
}
}
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
int i;
for (i = 0; i < 4; i++) {
cmd->resp[3 - i] =
readl(host->ioaddr + SDRSP0 + i * 4);
}
} else {
cmd->resp[0] = readl(host->ioaddr + SDRSP0);
}
}
if (cmd == host->mrq->sbc) {
/* Finished CMD23, now send actual command. */
host->cmd = NULL;
if (bcm2835_send_command(host, host->mrq->cmd)) {
if (host->data && host->dma_desc)
/* DMA transfer starts now, PIO starts
* after irq
*/
bcm2835_start_dma(host);
if (!host->use_busy)
bcm2835_finish_command(host);
}
} else if (cmd == host->mrq->stop) {
/* Finished CMD12 */
bcm2835_finish_request(host);
} else {
/* Processed actual command. */
host->cmd = NULL;
if (!host->data)
bcm2835_finish_request(host);
else if (host->data_complete)
bcm2835_transfer_complete(host);
}
}
static void bcm2835_timeout(struct work_struct *work)
{
struct delayed_work *d = to_delayed_work(work);
struct bcm2835_host *host =
container_of(d, struct bcm2835_host, timeout_work);
struct device *dev = &host->pdev->dev;
mutex_lock(&host->mutex);
if (host->mrq) {
dev_err(dev, "timeout waiting for hardware interrupt.\n");
bcm2835_dumpregs(host);
bcm2835_reset(mmc_from_priv(host));
if (host->data) {
host->data->error = -ETIMEDOUT;
bcm2835_finish_data(host);
} else {
if (host->cmd)
host->cmd->error = -ETIMEDOUT;
else
host->mrq->cmd->error = -ETIMEDOUT;
bcm2835_finish_request(host);
}
}
mutex_unlock(&host->mutex);
}
static bool bcm2835_check_cmd_error(struct bcm2835_host *host, u32 intmask)
{
struct device *dev = &host->pdev->dev;
if (!(intmask & SDHSTS_ERROR_MASK))
return false;
if (!host->cmd)
return true;
dev_err(dev, "sdhost_busy_irq: intmask %08x\n", intmask);
if (intmask & SDHSTS_CRC7_ERROR) {
host->cmd->error = -EILSEQ;
} else if (intmask & (SDHSTS_CRC16_ERROR |
SDHSTS_FIFO_ERROR)) {
if (host->mrq->data)
host->mrq->data->error = -EILSEQ;
else
host->cmd->error = -EILSEQ;
} else if (intmask & SDHSTS_REW_TIME_OUT) {
if (host->mrq->data)
host->mrq->data->error = -ETIMEDOUT;
else
host->cmd->error = -ETIMEDOUT;
} else if (intmask & SDHSTS_CMD_TIME_OUT) {
host->cmd->error = -ETIMEDOUT;
}
bcm2835_dumpregs(host);
return true;
}
static void bcm2835_check_data_error(struct bcm2835_host *host, u32 intmask)
{
if (!host->data)
return;
if (intmask & (SDHSTS_CRC16_ERROR | SDHSTS_FIFO_ERROR))
host->data->error = -EILSEQ;
if (intmask & SDHSTS_REW_TIME_OUT)
host->data->error = -ETIMEDOUT;
}
static void bcm2835_busy_irq(struct bcm2835_host *host)
{
if (WARN_ON(!host->cmd)) {
bcm2835_dumpregs(host);
return;
}
if (WARN_ON(!host->use_busy)) {
bcm2835_dumpregs(host);
return;
}
host->use_busy = false;
bcm2835_finish_command(host);
}
static void bcm2835_data_irq(struct bcm2835_host *host, u32 intmask)
{
/* There are no dedicated data/space available interrupt
* status bits, so it is necessary to use the single shared
* data/space available FIFO status bits. It is therefore not
* an error to get here when there is no data transfer in
* progress.
*/
if (!host->data)
return;
bcm2835_check_data_error(host, intmask);
if (host->data->error)
goto finished;
if (host->data->flags & MMC_DATA_WRITE) {
/* Use the block interrupt for writes after the first block */
host->hcfg &= ~(SDHCFG_DATA_IRPT_EN);
host->hcfg |= SDHCFG_BLOCK_IRPT_EN;
writel(host->hcfg, host->ioaddr + SDHCFG);
bcm2835_transfer_pio(host);
} else {
bcm2835_transfer_pio(host);
host->blocks--;
if ((host->blocks == 0) || host->data->error)
goto finished;
}
return;
finished:
host->hcfg &= ~(SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN);
writel(host->hcfg, host->ioaddr + SDHCFG);
}
static void bcm2835_data_threaded_irq(struct bcm2835_host *host)
{
if (!host->data)
return;
if ((host->blocks == 0) || host->data->error)
bcm2835_finish_data(host);
}
static void bcm2835_block_irq(struct bcm2835_host *host)
{
if (WARN_ON(!host->data)) {
bcm2835_dumpregs(host);
return;
}
if (!host->dma_desc) {
WARN_ON(!host->blocks);
if (host->data->error || (--host->blocks == 0))
bcm2835_finish_data(host);
else
bcm2835_transfer_pio(host);
} else if (host->data->flags & MMC_DATA_WRITE) {
bcm2835_finish_data(host);
}
}
static irqreturn_t bcm2835_irq(int irq, void *dev_id)
{
irqreturn_t result = IRQ_NONE;
struct bcm2835_host *host = dev_id;
u32 intmask;
spin_lock(&host->lock);
intmask = readl(host->ioaddr + SDHSTS);
writel(SDHSTS_BUSY_IRPT |
SDHSTS_BLOCK_IRPT |
SDHSTS_SDIO_IRPT |
SDHSTS_DATA_FLAG,
host->ioaddr + SDHSTS);
if (intmask & SDHSTS_BLOCK_IRPT) {
bcm2835_check_data_error(host, intmask);
host->irq_block = true;
result = IRQ_WAKE_THREAD;
}
if (intmask & SDHSTS_BUSY_IRPT) {
if (!bcm2835_check_cmd_error(host, intmask)) {
host->irq_busy = true;
result = IRQ_WAKE_THREAD;
} else {
result = IRQ_HANDLED;
}
}
/* There is no true data interrupt status bit, so it is
* necessary to qualify the data flag with the interrupt
* enable bit.
*/
if ((intmask & SDHSTS_DATA_FLAG) &&
(host->hcfg & SDHCFG_DATA_IRPT_EN)) {
bcm2835_data_irq(host, intmask);
host->irq_data = true;
result = IRQ_WAKE_THREAD;
}
spin_unlock(&host->lock);
return result;
}
static irqreturn_t bcm2835_threaded_irq(int irq, void *dev_id)
{
struct bcm2835_host *host = dev_id;
unsigned long flags;
bool block, busy, data;
spin_lock_irqsave(&host->lock, flags);
block = host->irq_block;
busy = host->irq_busy;
data = host->irq_data;
host->irq_block = false;
host->irq_busy = false;
host->irq_data = false;
spin_unlock_irqrestore(&host->lock, flags);
mutex_lock(&host->mutex);
if (block)
bcm2835_block_irq(host);
if (busy)
bcm2835_busy_irq(host);
if (data)
bcm2835_data_threaded_irq(host);
mutex_unlock(&host->mutex);
return IRQ_HANDLED;
}
static void bcm2835_dma_complete_work(struct work_struct *work)
{
struct bcm2835_host *host =
container_of(work, struct bcm2835_host, dma_work);
struct mmc_data *data;
mutex_lock(&host->mutex);
data = host->data;
if (host->dma_chan) {
dma_unmap_sg(host->dma_chan->device->dev,
data->sg, data->sg_len,
host->dma_dir);
host->dma_chan = NULL;
}
if (host->drain_words) {
void *page;
u32 *buf;
if (host->drain_offset & PAGE_MASK) {
host->drain_page += host->drain_offset >> PAGE_SHIFT;
host->drain_offset &= ~PAGE_MASK;
}
page = kmap_local_page(host->drain_page);
buf = page + host->drain_offset;
while (host->drain_words) {
u32 edm = readl(host->ioaddr + SDEDM);
if ((edm >> 4) & 0x1f)
*(buf++) = readl(host->ioaddr + SDDATA);
host->drain_words--;
}
kunmap_local(page);
}
bcm2835_finish_data(host);
mutex_unlock(&host->mutex);
}
static void bcm2835_set_clock(struct bcm2835_host *host, unsigned int clock)
{
struct mmc_host *mmc = mmc_from_priv(host);
int div;
/* The SDCDIV register has 11 bits, and holds (div - 2). But
* in data mode the max is 50MHz wihout a minimum, and only
* the bottom 3 bits are used. Since the switch over is
* automatic (unless we have marked the card as slow...),
* chosen values have to make sense in both modes. Ident mode
* must be 100-400KHz, so can range check the requested
* clock. CMD15 must be used to return to data mode, so this
* can be monitored.
*
* clock 250MHz -> 0->125MHz, 1->83.3MHz, 2->62.5MHz, 3->50.0MHz
* 4->41.7MHz, 5->35.7MHz, 6->31.3MHz, 7->27.8MHz
*
* 623->400KHz/27.8MHz
* reset value (507)->491159/50MHz
*
* BUT, the 3-bit clock divisor in data mode is too small if
* the core clock is higher than 250MHz, so instead use the
* SLOW_CARD configuration bit to force the use of the ident
* clock divisor at all times.
*/
if (clock < 100000) {
/* Can't stop the clock, but make it as slow as possible
* to show willing
*/
host->cdiv = SDCDIV_MAX_CDIV;
writel(host->cdiv, host->ioaddr + SDCDIV);
return;
}
div = host->max_clk / clock;
if (div < 2)
div = 2;
if ((host->max_clk / div) > clock)
div++;
div -= 2;
if (div > SDCDIV_MAX_CDIV)
div = SDCDIV_MAX_CDIV;
clock = host->max_clk / (div + 2);
mmc->actual_clock = clock;
/* Calibrate some delays */
host->ns_per_fifo_word = (1000000000 / clock) *
((mmc->caps & MMC_CAP_4_BIT_DATA) ? 8 : 32);
host->cdiv = div;
writel(host->cdiv, host->ioaddr + SDCDIV);
/* Set the timeout to 500ms */
writel(mmc->actual_clock / 2, host->ioaddr + SDTOUT);
}
static void bcm2835_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct bcm2835_host *host = mmc_priv(mmc);
struct device *dev = &host->pdev->dev;
u32 edm, fsm;
/* Reset the error statuses in case this is a retry */
if (mrq->sbc)
mrq->sbc->error = 0;
if (mrq->cmd)
mrq->cmd->error = 0;
if (mrq->data)
mrq->data->error = 0;
if (mrq->stop)
mrq->stop->error = 0;
if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
dev_err(dev, "unsupported block size (%d bytes)\n",
mrq->data->blksz);
if (mrq->cmd)
mrq->cmd->error = -EINVAL;
mmc_request_done(mmc, mrq);
return;
}
mutex_lock(&host->mutex);
WARN_ON(host->mrq);
host->mrq = mrq;
edm = readl(host->ioaddr + SDEDM);
fsm = edm & SDEDM_FSM_MASK;
if ((fsm != SDEDM_FSM_IDENTMODE) &&
(fsm != SDEDM_FSM_DATAMODE)) {
dev_err(dev, "previous command (%d) not complete (EDM %08x)\n",
readl(host->ioaddr + SDCMD) & SDCMD_CMD_MASK,
edm);
bcm2835_dumpregs(host);
if (mrq->cmd)
mrq->cmd->error = -EILSEQ;
bcm2835_finish_request(host);
mutex_unlock(&host->mutex);
return;
}
if (host->use_dma && mrq->data && (mrq->data->blocks > PIO_THRESHOLD))
bcm2835_prepare_dma(host, mrq->data);
host->use_sbc = !!mrq->sbc && host->mrq->data &&
(host->mrq->data->flags & MMC_DATA_READ);
if (host->use_sbc) {
if (bcm2835_send_command(host, mrq->sbc)) {
if (!host->use_busy)
bcm2835_finish_command(host);
}
} else if (mrq->cmd && bcm2835_send_command(host, mrq->cmd)) {
if (host->data && host->dma_desc) {
/* DMA transfer starts now, PIO starts after irq */
bcm2835_start_dma(host);
}
if (!host->use_busy)
bcm2835_finish_command(host);
}
mutex_unlock(&host->mutex);
}
static void bcm2835_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct bcm2835_host *host = mmc_priv(mmc);
mutex_lock(&host->mutex);
if (!ios->clock || ios->clock != host->clock) {
bcm2835_set_clock(host, ios->clock);
host->clock = ios->clock;
}
/* set bus width */
host->hcfg &= ~SDHCFG_WIDE_EXT_BUS;
if (ios->bus_width == MMC_BUS_WIDTH_4)
host->hcfg |= SDHCFG_WIDE_EXT_BUS;
host->hcfg |= SDHCFG_WIDE_INT_BUS;
/* Disable clever clock switching, to cope with fast core clocks */
host->hcfg |= SDHCFG_SLOW_CARD;
writel(host->hcfg, host->ioaddr + SDHCFG);
mutex_unlock(&host->mutex);
}
static const struct mmc_host_ops bcm2835_ops = {
.request = bcm2835_request,
.set_ios = bcm2835_set_ios,
.card_hw_reset = bcm2835_reset,
};
static int bcm2835_add_host(struct bcm2835_host *host)
{
struct mmc_host *mmc = mmc_from_priv(host);
struct device *dev = &host->pdev->dev;
char pio_limit_string[20];
int ret;
if (!mmc->f_max || mmc->f_max > host->max_clk)
mmc->f_max = host->max_clk;
mmc->f_min = host->max_clk / SDCDIV_MAX_CDIV;
mmc->max_busy_timeout = ~0 / (mmc->f_max / 1000);
dev_dbg(dev, "f_max %d, f_min %d, max_busy_timeout %d\n",
mmc->f_max, mmc->f_min, mmc->max_busy_timeout);
/* host controller capabilities */
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED |
MMC_CAP_NEEDS_POLL | MMC_CAP_HW_RESET | MMC_CAP_CMD23;
spin_lock_init(&host->lock);
mutex_init(&host->mutex);
if (!host->dma_chan_rxtx) {
dev_warn(dev, "unable to initialise DMA channel. Falling back to PIO\n");
host->use_dma = false;
} else {
host->use_dma = true;
host->dma_cfg_tx.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_cfg_tx.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_cfg_tx.direction = DMA_MEM_TO_DEV;
host->dma_cfg_tx.src_addr = 0;
host->dma_cfg_tx.dst_addr = host->phys_addr + SDDATA;
host->dma_cfg_rx.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_cfg_rx.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_cfg_rx.direction = DMA_DEV_TO_MEM;
host->dma_cfg_rx.src_addr = host->phys_addr + SDDATA;
host->dma_cfg_rx.dst_addr = 0;
if (dmaengine_slave_config(host->dma_chan_rxtx,
&host->dma_cfg_tx) != 0 ||
dmaengine_slave_config(host->dma_chan_rxtx,
&host->dma_cfg_rx) != 0)
host->use_dma = false;
}
mmc->max_segs = 128;
mmc->max_req_size = min_t(size_t, 524288, dma_max_mapping_size(dev));
mmc->max_seg_size = mmc->max_req_size;
mmc->max_blk_size = 1024;
mmc->max_blk_count = 65535;
/* report supported voltage ranges */
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
INIT_WORK(&host->dma_work, bcm2835_dma_complete_work);
INIT_DELAYED_WORK(&host->timeout_work, bcm2835_timeout);
/* Set interrupt enables */
host->hcfg = SDHCFG_BUSY_IRPT_EN;
bcm2835_reset_internal(host);
ret = request_threaded_irq(host->irq, bcm2835_irq,
bcm2835_threaded_irq,
0, mmc_hostname(mmc), host);
if (ret) {
dev_err(dev, "failed to request IRQ %d: %d\n", host->irq, ret);
return ret;
}
ret = mmc_add_host(mmc);
if (ret) {
free_irq(host->irq, host);
return ret;
}
pio_limit_string[0] = '\0';
if (host->use_dma && (PIO_THRESHOLD > 0))
sprintf(pio_limit_string, " (>%d)", PIO_THRESHOLD);
dev_info(dev, "loaded - DMA %s%s\n",
host->use_dma ? "enabled" : "disabled", pio_limit_string);
return 0;
}
static int bcm2835_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct clk *clk;
struct bcm2835_host *host;
struct mmc_host *mmc;
const __be32 *regaddr_p;
int ret;
dev_dbg(dev, "%s\n", __func__);
mmc = mmc_alloc_host(sizeof(*host), dev);
if (!mmc)
return -ENOMEM;
mmc->ops = &bcm2835_ops;
host = mmc_priv(mmc);
host->pdev = pdev;
spin_lock_init(&host->lock);
host->ioaddr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(host->ioaddr)) {
ret = PTR_ERR(host->ioaddr);
goto err;
}
/* Parse OF address directly to get the physical address for
* DMA to our registers.
*/
regaddr_p = of_get_address(pdev->dev.of_node, 0, NULL, NULL);
if (!regaddr_p) {
dev_err(dev, "Can't get phys address\n");
ret = -EINVAL;
goto err;
}
host->phys_addr = be32_to_cpup(regaddr_p);
host->dma_chan = NULL;
host->dma_desc = NULL;
host->dma_chan_rxtx = dma_request_chan(dev, "rx-tx");
if (IS_ERR(host->dma_chan_rxtx)) {
ret = PTR_ERR(host->dma_chan_rxtx);
host->dma_chan_rxtx = NULL;
if (ret == -EPROBE_DEFER)
goto err;
/* Ignore errors to fall back to PIO mode */
}
clk = devm_clk_get(dev, NULL);
if (IS_ERR(clk)) {
ret = dev_err_probe(dev, PTR_ERR(clk), "could not get clk\n");
goto err;
}
host->max_clk = clk_get_rate(clk);
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
ret = host->irq;
goto err;
}
ret = mmc_of_parse(mmc);
if (ret)
goto err;
ret = bcm2835_add_host(host);
if (ret)
goto err;
platform_set_drvdata(pdev, host);
dev_dbg(dev, "%s -> OK\n", __func__);
return 0;
err:
dev_dbg(dev, "%s -> err %d\n", __func__, ret);
if (host->dma_chan_rxtx)
dma_release_channel(host->dma_chan_rxtx);
mmc_free_host(mmc);
return ret;
}
static void bcm2835_remove(struct platform_device *pdev)
{
struct bcm2835_host *host = platform_get_drvdata(pdev);
struct mmc_host *mmc = mmc_from_priv(host);
mmc_remove_host(mmc);
writel(SDVDD_POWER_OFF, host->ioaddr + SDVDD);
free_irq(host->irq, host);
cancel_work_sync(&host->dma_work);
cancel_delayed_work_sync(&host->timeout_work);
if (host->dma_chan_rxtx)
dma_release_channel(host->dma_chan_rxtx);
mmc_free_host(mmc);
}
static const struct of_device_id bcm2835_match[] = {
{ .compatible = "brcm,bcm2835-sdhost" },
{ }
};
MODULE_DEVICE_TABLE(of, bcm2835_match);
static struct platform_driver bcm2835_driver = {
.probe = bcm2835_probe,
.remove_new = bcm2835_remove,
.driver = {
.name = "sdhost-bcm2835",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = bcm2835_match,
},
};
module_platform_driver(bcm2835_driver);
MODULE_ALIAS("platform:sdhost-bcm2835");
MODULE_DESCRIPTION("BCM2835 SDHost driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Phil Elwell");
| linux-master | drivers/mmc/host/bcm2835.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/* Realtek PCI-Express SD/MMC Card Interface driver
*
* Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
*
* Author:
* Wei WANG <[email protected]>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/card.h>
#include <linux/rtsx_pci.h>
#include <asm/unaligned.h>
#include <linux/pm_runtime.h>
struct realtek_pci_sdmmc {
struct platform_device *pdev;
struct rtsx_pcr *pcr;
struct mmc_host *mmc;
struct mmc_request *mrq;
#define SDMMC_WORKQ_NAME "rtsx_pci_sdmmc_workq"
struct work_struct work;
struct mutex host_mutex;
u8 ssc_depth;
unsigned int clock;
bool vpclk;
bool double_clk;
bool eject;
bool initial_mode;
int prev_power_state;
int sg_count;
s32 cookie;
int cookie_sg_count;
bool using_cookie;
};
static int sdmmc_init_sd_express(struct mmc_host *mmc, struct mmc_ios *ios);
static inline struct device *sdmmc_dev(struct realtek_pci_sdmmc *host)
{
return &(host->pdev->dev);
}
static inline void sd_clear_error(struct realtek_pci_sdmmc *host)
{
rtsx_pci_write_register(host->pcr, CARD_STOP,
SD_STOP | SD_CLR_ERR, SD_STOP | SD_CLR_ERR);
}
#ifdef DEBUG
static void dump_reg_range(struct realtek_pci_sdmmc *host, u16 start, u16 end)
{
u16 len = end - start + 1;
int i;
u8 data[8];
for (i = 0; i < len; i += 8) {
int j;
int n = min(8, len - i);
memset(&data, 0, sizeof(data));
for (j = 0; j < n; j++)
rtsx_pci_read_register(host->pcr, start + i + j,
data + j);
dev_dbg(sdmmc_dev(host), "0x%04X(%d): %8ph\n",
start + i, n, data);
}
}
static void sd_print_debug_regs(struct realtek_pci_sdmmc *host)
{
dump_reg_range(host, 0xFDA0, 0xFDB3);
dump_reg_range(host, 0xFD52, 0xFD69);
}
#else
#define sd_print_debug_regs(host)
#endif /* DEBUG */
static inline int sd_get_cd_int(struct realtek_pci_sdmmc *host)
{
return rtsx_pci_readl(host->pcr, RTSX_BIPR) & SD_EXIST;
}
static void sd_cmd_set_sd_cmd(struct rtsx_pcr *pcr, struct mmc_command *cmd)
{
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CMD0, 0xFF,
SD_CMD_START | cmd->opcode);
rtsx_pci_write_be32(pcr, SD_CMD1, cmd->arg);
}
static void sd_cmd_set_data_len(struct rtsx_pcr *pcr, u16 blocks, u16 blksz)
{
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_BLOCK_CNT_L, 0xFF, blocks);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_BLOCK_CNT_H, 0xFF, blocks >> 8);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_BYTE_CNT_L, 0xFF, blksz);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_BYTE_CNT_H, 0xFF, blksz >> 8);
}
static int sd_response_type(struct mmc_command *cmd)
{
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
return SD_RSP_TYPE_R0;
case MMC_RSP_R1:
return SD_RSP_TYPE_R1;
case MMC_RSP_R1_NO_CRC:
return SD_RSP_TYPE_R1 | SD_NO_CHECK_CRC7;
case MMC_RSP_R1B:
return SD_RSP_TYPE_R1b;
case MMC_RSP_R2:
return SD_RSP_TYPE_R2;
case MMC_RSP_R3:
return SD_RSP_TYPE_R3;
default:
return -EINVAL;
}
}
static int sd_status_index(int resp_type)
{
if (resp_type == SD_RSP_TYPE_R0)
return 0;
else if (resp_type == SD_RSP_TYPE_R2)
return 16;
return 5;
}
/*
* sd_pre_dma_transfer - do dma_map_sg() or using cookie
*
* @pre: if called in pre_req()
* return:
* 0 - do dma_map_sg()
* 1 - using cookie
*/
static int sd_pre_dma_transfer(struct realtek_pci_sdmmc *host,
struct mmc_data *data, bool pre)
{
struct rtsx_pcr *pcr = host->pcr;
int read = data->flags & MMC_DATA_READ;
int count = 0;
int using_cookie = 0;
if (!pre && data->host_cookie && data->host_cookie != host->cookie) {
dev_err(sdmmc_dev(host),
"error: data->host_cookie = %d, host->cookie = %d\n",
data->host_cookie, host->cookie);
data->host_cookie = 0;
}
if (pre || data->host_cookie != host->cookie) {
count = rtsx_pci_dma_map_sg(pcr, data->sg, data->sg_len, read);
} else {
count = host->cookie_sg_count;
using_cookie = 1;
}
if (pre) {
host->cookie_sg_count = count;
if (++host->cookie < 0)
host->cookie = 1;
data->host_cookie = host->cookie;
} else {
host->sg_count = count;
}
return using_cookie;
}
static void sdmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (data->host_cookie) {
dev_err(sdmmc_dev(host),
"error: reset data->host_cookie = %d\n",
data->host_cookie);
data->host_cookie = 0;
}
sd_pre_dma_transfer(host, data, true);
dev_dbg(sdmmc_dev(host), "pre dma sg: %d\n", host->cookie_sg_count);
}
static void sdmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct rtsx_pcr *pcr = host->pcr;
struct mmc_data *data = mrq->data;
int read = data->flags & MMC_DATA_READ;
rtsx_pci_dma_unmap_sg(pcr, data->sg, data->sg_len, read);
data->host_cookie = 0;
}
static void sd_send_cmd_get_rsp(struct realtek_pci_sdmmc *host,
struct mmc_command *cmd)
{
struct rtsx_pcr *pcr = host->pcr;
u8 cmd_idx = (u8)cmd->opcode;
u32 arg = cmd->arg;
int err = 0;
int timeout = 100;
int i;
u8 *ptr;
int rsp_type;
int stat_idx;
bool clock_toggled = false;
dev_dbg(sdmmc_dev(host), "%s: SD/MMC CMD %d, arg = 0x%08x\n",
__func__, cmd_idx, arg);
rsp_type = sd_response_type(cmd);
if (rsp_type < 0)
goto out;
stat_idx = sd_status_index(rsp_type);
if (rsp_type == SD_RSP_TYPE_R1b)
timeout = cmd->busy_timeout ? cmd->busy_timeout : 3000;
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
err = rtsx_pci_write_register(pcr, SD_BUS_STAT,
0xFF, SD_CLK_TOGGLE_EN);
if (err < 0)
goto out;
clock_toggled = true;
}
rtsx_pci_init_cmd(pcr);
sd_cmd_set_sd_cmd(pcr, cmd);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CFG2, 0xFF, rsp_type);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_DATA_SOURCE,
0x01, PINGPONG_BUFFER);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_TRANSFER,
0xFF, SD_TM_CMD_RSP | SD_TRANSFER_START);
rtsx_pci_add_cmd(pcr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END | SD_STAT_IDLE,
SD_TRANSFER_END | SD_STAT_IDLE);
if (rsp_type == SD_RSP_TYPE_R2) {
/* Read data from ping-pong buffer */
for (i = PPBUF_BASE2; i < PPBUF_BASE2 + 16; i++)
rtsx_pci_add_cmd(pcr, READ_REG_CMD, (u16)i, 0, 0);
} else if (rsp_type != SD_RSP_TYPE_R0) {
/* Read data from SD_CMDx registers */
for (i = SD_CMD0; i <= SD_CMD4; i++)
rtsx_pci_add_cmd(pcr, READ_REG_CMD, (u16)i, 0, 0);
}
rtsx_pci_add_cmd(pcr, READ_REG_CMD, SD_STAT1, 0, 0);
err = rtsx_pci_send_cmd(pcr, timeout);
if (err < 0) {
sd_print_debug_regs(host);
sd_clear_error(host);
dev_dbg(sdmmc_dev(host),
"rtsx_pci_send_cmd error (err = %d)\n", err);
goto out;
}
if (rsp_type == SD_RSP_TYPE_R0) {
err = 0;
goto out;
}
/* Eliminate returned value of CHECK_REG_CMD */
ptr = rtsx_pci_get_cmd_data(pcr) + 1;
/* Check (Start,Transmission) bit of Response */
if ((ptr[0] & 0xC0) != 0) {
err = -EILSEQ;
dev_dbg(sdmmc_dev(host), "Invalid response bit\n");
goto out;
}
/* Check CRC7 */
if (!(rsp_type & SD_NO_CHECK_CRC7)) {
if (ptr[stat_idx] & SD_CRC7_ERR) {
err = -EILSEQ;
dev_dbg(sdmmc_dev(host), "CRC7 error\n");
goto out;
}
}
if (rsp_type == SD_RSP_TYPE_R2) {
/*
* The controller offloads the last byte {CRC-7, end bit 1'b1}
* of response type R2. Assign dummy CRC, 0, and end bit to the
* byte(ptr[16], goes into the LSB of resp[3] later).
*/
ptr[16] = 1;
for (i = 0; i < 4; i++) {
cmd->resp[i] = get_unaligned_be32(ptr + 1 + i * 4);
dev_dbg(sdmmc_dev(host), "cmd->resp[%d] = 0x%08x\n",
i, cmd->resp[i]);
}
} else {
cmd->resp[0] = get_unaligned_be32(ptr + 1);
dev_dbg(sdmmc_dev(host), "cmd->resp[0] = 0x%08x\n",
cmd->resp[0]);
}
out:
cmd->error = err;
if (err && clock_toggled)
rtsx_pci_write_register(pcr, SD_BUS_STAT,
SD_CLK_TOGGLE_EN | SD_CLK_FORCE_STOP, 0);
}
static int sd_read_data(struct realtek_pci_sdmmc *host, struct mmc_command *cmd,
u16 byte_cnt, u8 *buf, int buf_len, int timeout)
{
struct rtsx_pcr *pcr = host->pcr;
int err;
u8 trans_mode;
dev_dbg(sdmmc_dev(host), "%s: SD/MMC CMD %d, arg = 0x%08x\n",
__func__, cmd->opcode, cmd->arg);
if (!buf)
buf_len = 0;
if (cmd->opcode == MMC_SEND_TUNING_BLOCK)
trans_mode = SD_TM_AUTO_TUNING;
else
trans_mode = SD_TM_NORMAL_READ;
rtsx_pci_init_cmd(pcr);
sd_cmd_set_sd_cmd(pcr, cmd);
sd_cmd_set_data_len(pcr, 1, byte_cnt);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CFG2, 0xFF,
SD_CALCULATE_CRC7 | SD_CHECK_CRC16 |
SD_NO_WAIT_BUSY_END | SD_CHECK_CRC7 | SD_RSP_LEN_6);
if (trans_mode != SD_TM_AUTO_TUNING)
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD,
CARD_DATA_SOURCE, 0x01, PINGPONG_BUFFER);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_TRANSFER,
0xFF, trans_mode | SD_TRANSFER_START);
rtsx_pci_add_cmd(pcr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END, SD_TRANSFER_END);
err = rtsx_pci_send_cmd(pcr, timeout);
if (err < 0) {
sd_print_debug_regs(host);
dev_dbg(sdmmc_dev(host),
"rtsx_pci_send_cmd fail (err = %d)\n", err);
return err;
}
if (buf && buf_len) {
err = rtsx_pci_read_ppbuf(pcr, buf, buf_len);
if (err < 0) {
dev_dbg(sdmmc_dev(host),
"rtsx_pci_read_ppbuf fail (err = %d)\n", err);
return err;
}
}
return 0;
}
static int sd_write_data(struct realtek_pci_sdmmc *host,
struct mmc_command *cmd, u16 byte_cnt, u8 *buf, int buf_len,
int timeout)
{
struct rtsx_pcr *pcr = host->pcr;
int err;
dev_dbg(sdmmc_dev(host), "%s: SD/MMC CMD %d, arg = 0x%08x\n",
__func__, cmd->opcode, cmd->arg);
if (!buf)
buf_len = 0;
sd_send_cmd_get_rsp(host, cmd);
if (cmd->error)
return cmd->error;
if (buf && buf_len) {
err = rtsx_pci_write_ppbuf(pcr, buf, buf_len);
if (err < 0) {
dev_dbg(sdmmc_dev(host),
"rtsx_pci_write_ppbuf fail (err = %d)\n", err);
return err;
}
}
rtsx_pci_init_cmd(pcr);
sd_cmd_set_data_len(pcr, 1, byte_cnt);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CFG2, 0xFF,
SD_CALCULATE_CRC7 | SD_CHECK_CRC16 |
SD_NO_WAIT_BUSY_END | SD_CHECK_CRC7 | SD_RSP_LEN_0);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_TRANSFER, 0xFF,
SD_TRANSFER_START | SD_TM_AUTO_WRITE_3);
rtsx_pci_add_cmd(pcr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END, SD_TRANSFER_END);
err = rtsx_pci_send_cmd(pcr, timeout);
if (err < 0) {
sd_print_debug_regs(host);
dev_dbg(sdmmc_dev(host),
"rtsx_pci_send_cmd fail (err = %d)\n", err);
return err;
}
return 0;
}
static int sd_read_long_data(struct realtek_pci_sdmmc *host,
struct mmc_request *mrq)
{
struct rtsx_pcr *pcr = host->pcr;
struct mmc_host *mmc = host->mmc;
struct mmc_card *card = mmc->card;
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
int uhs = mmc_card_uhs(card);
u8 cfg2 = 0;
int err;
int resp_type;
size_t data_len = data->blksz * data->blocks;
dev_dbg(sdmmc_dev(host), "%s: SD/MMC CMD %d, arg = 0x%08x\n",
__func__, cmd->opcode, cmd->arg);
resp_type = sd_response_type(cmd);
if (resp_type < 0)
return resp_type;
if (!uhs)
cfg2 |= SD_NO_CHECK_WAIT_CRC_TO;
rtsx_pci_init_cmd(pcr);
sd_cmd_set_sd_cmd(pcr, cmd);
sd_cmd_set_data_len(pcr, data->blocks, data->blksz);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, IRQSTAT0,
DMA_DONE_INT, DMA_DONE_INT);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMATC3,
0xFF, (u8)(data_len >> 24));
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMATC2,
0xFF, (u8)(data_len >> 16));
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMATC1,
0xFF, (u8)(data_len >> 8));
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMATC0, 0xFF, (u8)data_len);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMACTL,
0x03 | DMA_PACK_SIZE_MASK,
DMA_DIR_FROM_CARD | DMA_EN | DMA_512);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_DATA_SOURCE,
0x01, RING_BUFFER);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CFG2, 0xFF, cfg2 | resp_type);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_TRANSFER, 0xFF,
SD_TRANSFER_START | SD_TM_AUTO_READ_2);
rtsx_pci_add_cmd(pcr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END, SD_TRANSFER_END);
rtsx_pci_send_cmd_no_wait(pcr);
err = rtsx_pci_dma_transfer(pcr, data->sg, host->sg_count, 1, 10000);
if (err < 0) {
sd_print_debug_regs(host);
sd_clear_error(host);
return err;
}
return 0;
}
static int sd_write_long_data(struct realtek_pci_sdmmc *host,
struct mmc_request *mrq)
{
struct rtsx_pcr *pcr = host->pcr;
struct mmc_host *mmc = host->mmc;
struct mmc_card *card = mmc->card;
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
int uhs = mmc_card_uhs(card);
u8 cfg2;
int err;
size_t data_len = data->blksz * data->blocks;
sd_send_cmd_get_rsp(host, cmd);
if (cmd->error)
return cmd->error;
dev_dbg(sdmmc_dev(host), "%s: SD/MMC CMD %d, arg = 0x%08x\n",
__func__, cmd->opcode, cmd->arg);
cfg2 = SD_NO_CALCULATE_CRC7 | SD_CHECK_CRC16 |
SD_NO_WAIT_BUSY_END | SD_NO_CHECK_CRC7 | SD_RSP_LEN_0;
if (!uhs)
cfg2 |= SD_NO_CHECK_WAIT_CRC_TO;
rtsx_pci_init_cmd(pcr);
sd_cmd_set_data_len(pcr, data->blocks, data->blksz);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, IRQSTAT0,
DMA_DONE_INT, DMA_DONE_INT);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMATC3,
0xFF, (u8)(data_len >> 24));
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMATC2,
0xFF, (u8)(data_len >> 16));
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMATC1,
0xFF, (u8)(data_len >> 8));
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMATC0, 0xFF, (u8)data_len);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, DMACTL,
0x03 | DMA_PACK_SIZE_MASK,
DMA_DIR_TO_CARD | DMA_EN | DMA_512);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_DATA_SOURCE,
0x01, RING_BUFFER);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CFG2, 0xFF, cfg2);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_TRANSFER, 0xFF,
SD_TRANSFER_START | SD_TM_AUTO_WRITE_3);
rtsx_pci_add_cmd(pcr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END, SD_TRANSFER_END);
rtsx_pci_send_cmd_no_wait(pcr);
err = rtsx_pci_dma_transfer(pcr, data->sg, host->sg_count, 0, 10000);
if (err < 0) {
sd_clear_error(host);
return err;
}
return 0;
}
static inline void sd_enable_initial_mode(struct realtek_pci_sdmmc *host)
{
rtsx_pci_write_register(host->pcr, SD_CFG1,
SD_CLK_DIVIDE_MASK, SD_CLK_DIVIDE_128);
}
static inline void sd_disable_initial_mode(struct realtek_pci_sdmmc *host)
{
rtsx_pci_write_register(host->pcr, SD_CFG1,
SD_CLK_DIVIDE_MASK, SD_CLK_DIVIDE_0);
}
static int sd_rw_multi(struct realtek_pci_sdmmc *host, struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
int err;
if (host->sg_count < 0) {
data->error = host->sg_count;
dev_dbg(sdmmc_dev(host), "%s: sg_count = %d is invalid\n",
__func__, host->sg_count);
return data->error;
}
if (data->flags & MMC_DATA_READ) {
if (host->initial_mode)
sd_disable_initial_mode(host);
err = sd_read_long_data(host, mrq);
if (host->initial_mode)
sd_enable_initial_mode(host);
return err;
}
return sd_write_long_data(host, mrq);
}
static void sd_normal_rw(struct realtek_pci_sdmmc *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
u8 *buf;
buf = kzalloc(data->blksz, GFP_NOIO);
if (!buf) {
cmd->error = -ENOMEM;
return;
}
if (data->flags & MMC_DATA_READ) {
if (host->initial_mode)
sd_disable_initial_mode(host);
cmd->error = sd_read_data(host, cmd, (u16)data->blksz, buf,
data->blksz, 200);
if (host->initial_mode)
sd_enable_initial_mode(host);
sg_copy_from_buffer(data->sg, data->sg_len, buf, data->blksz);
} else {
sg_copy_to_buffer(data->sg, data->sg_len, buf, data->blksz);
cmd->error = sd_write_data(host, cmd, (u16)data->blksz, buf,
data->blksz, 200);
}
kfree(buf);
}
static int sd_change_phase(struct realtek_pci_sdmmc *host,
u8 sample_point, bool rx)
{
struct rtsx_pcr *pcr = host->pcr;
u16 SD_VP_CTL = 0;
dev_dbg(sdmmc_dev(host), "%s(%s): sample_point = %d\n",
__func__, rx ? "RX" : "TX", sample_point);
rtsx_pci_write_register(pcr, CLK_CTL, CHANGE_CLK, CHANGE_CLK);
if (rx) {
SD_VP_CTL = SD_VPRX_CTL;
rtsx_pci_write_register(pcr, SD_VPRX_CTL,
PHASE_SELECT_MASK, sample_point);
} else {
SD_VP_CTL = SD_VPTX_CTL;
rtsx_pci_write_register(pcr, SD_VPTX_CTL,
PHASE_SELECT_MASK, sample_point);
}
rtsx_pci_write_register(pcr, SD_VP_CTL, PHASE_NOT_RESET, 0);
rtsx_pci_write_register(pcr, SD_VP_CTL, PHASE_NOT_RESET,
PHASE_NOT_RESET);
rtsx_pci_write_register(pcr, CLK_CTL, CHANGE_CLK, 0);
rtsx_pci_write_register(pcr, SD_CFG1, SD_ASYNC_FIFO_NOT_RST, 0);
return 0;
}
static inline u32 test_phase_bit(u32 phase_map, unsigned int bit)
{
bit %= RTSX_PHASE_MAX;
return phase_map & (1 << bit);
}
static int sd_get_phase_len(u32 phase_map, unsigned int start_bit)
{
int i;
for (i = 0; i < RTSX_PHASE_MAX; i++) {
if (test_phase_bit(phase_map, start_bit + i) == 0)
return i;
}
return RTSX_PHASE_MAX;
}
static u8 sd_search_final_phase(struct realtek_pci_sdmmc *host, u32 phase_map)
{
int start = 0, len = 0;
int start_final = 0, len_final = 0;
u8 final_phase = 0xFF;
if (phase_map == 0) {
dev_err(sdmmc_dev(host), "phase error: [map:%x]\n", phase_map);
return final_phase;
}
while (start < RTSX_PHASE_MAX) {
len = sd_get_phase_len(phase_map, start);
if (len_final < len) {
start_final = start;
len_final = len;
}
start += len ? len : 1;
}
final_phase = (start_final + len_final / 2) % RTSX_PHASE_MAX;
dev_dbg(sdmmc_dev(host), "phase: [map:%x] [maxlen:%d] [final:%d]\n",
phase_map, len_final, final_phase);
return final_phase;
}
static void sd_wait_data_idle(struct realtek_pci_sdmmc *host)
{
int i;
u8 val = 0;
for (i = 0; i < 100; i++) {
rtsx_pci_read_register(host->pcr, SD_DATA_STATE, &val);
if (val & SD_DATA_IDLE)
return;
udelay(100);
}
}
static int sd_tuning_rx_cmd(struct realtek_pci_sdmmc *host,
u8 opcode, u8 sample_point)
{
int err;
struct mmc_command cmd = {};
struct rtsx_pcr *pcr = host->pcr;
sd_change_phase(host, sample_point, true);
rtsx_pci_write_register(pcr, SD_CFG3, SD_RSP_80CLK_TIMEOUT_EN,
SD_RSP_80CLK_TIMEOUT_EN);
cmd.opcode = opcode;
err = sd_read_data(host, &cmd, 0x40, NULL, 0, 100);
if (err < 0) {
/* Wait till SD DATA IDLE */
sd_wait_data_idle(host);
sd_clear_error(host);
rtsx_pci_write_register(pcr, SD_CFG3,
SD_RSP_80CLK_TIMEOUT_EN, 0);
return err;
}
rtsx_pci_write_register(pcr, SD_CFG3, SD_RSP_80CLK_TIMEOUT_EN, 0);
return 0;
}
static int sd_tuning_phase(struct realtek_pci_sdmmc *host,
u8 opcode, u32 *phase_map)
{
int err, i;
u32 raw_phase_map = 0;
for (i = 0; i < RTSX_PHASE_MAX; i++) {
err = sd_tuning_rx_cmd(host, opcode, (u8)i);
if (err == 0)
raw_phase_map |= 1 << i;
}
if (phase_map)
*phase_map = raw_phase_map;
return 0;
}
static int sd_tuning_rx(struct realtek_pci_sdmmc *host, u8 opcode)
{
int err, i;
u32 raw_phase_map[RX_TUNING_CNT] = {0}, phase_map;
u8 final_phase;
for (i = 0; i < RX_TUNING_CNT; i++) {
err = sd_tuning_phase(host, opcode, &(raw_phase_map[i]));
if (err < 0)
return err;
if (raw_phase_map[i] == 0)
break;
}
phase_map = 0xFFFFFFFF;
for (i = 0; i < RX_TUNING_CNT; i++) {
dev_dbg(sdmmc_dev(host), "RX raw_phase_map[%d] = 0x%08x\n",
i, raw_phase_map[i]);
phase_map &= raw_phase_map[i];
}
dev_dbg(sdmmc_dev(host), "RX phase_map = 0x%08x\n", phase_map);
if (phase_map) {
final_phase = sd_search_final_phase(host, phase_map);
if (final_phase == 0xFF)
return -EINVAL;
err = sd_change_phase(host, final_phase, true);
if (err < 0)
return err;
} else {
return -EINVAL;
}
return 0;
}
static inline int sdio_extblock_cmd(struct mmc_command *cmd,
struct mmc_data *data)
{
return (cmd->opcode == SD_IO_RW_EXTENDED) && (data->blksz == 512);
}
static inline int sd_rw_cmd(struct mmc_command *cmd)
{
return mmc_op_multi(cmd->opcode) ||
(cmd->opcode == MMC_READ_SINGLE_BLOCK) ||
(cmd->opcode == MMC_WRITE_BLOCK);
}
static void sd_request(struct work_struct *work)
{
struct realtek_pci_sdmmc *host = container_of(work,
struct realtek_pci_sdmmc, work);
struct rtsx_pcr *pcr = host->pcr;
struct mmc_host *mmc = host->mmc;
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
unsigned int data_size = 0;
int err;
if (host->eject || !sd_get_cd_int(host)) {
cmd->error = -ENOMEDIUM;
goto finish;
}
err = rtsx_pci_card_exclusive_check(host->pcr, RTSX_SD_CARD);
if (err) {
cmd->error = err;
goto finish;
}
mutex_lock(&pcr->pcr_mutex);
rtsx_pci_start_run(pcr);
rtsx_pci_switch_clock(pcr, host->clock, host->ssc_depth,
host->initial_mode, host->double_clk, host->vpclk);
rtsx_pci_write_register(pcr, CARD_SELECT, 0x07, SD_MOD_SEL);
rtsx_pci_write_register(pcr, CARD_SHARE_MODE,
CARD_SHARE_MASK, CARD_SHARE_48_SD);
mutex_lock(&host->host_mutex);
host->mrq = mrq;
mutex_unlock(&host->host_mutex);
if (mrq->data)
data_size = data->blocks * data->blksz;
if (!data_size) {
sd_send_cmd_get_rsp(host, cmd);
} else if (sd_rw_cmd(cmd) || sdio_extblock_cmd(cmd, data)) {
cmd->error = sd_rw_multi(host, mrq);
if (!host->using_cookie)
sdmmc_post_req(host->mmc, host->mrq, 0);
if (mmc_op_multi(cmd->opcode) && mrq->stop)
sd_send_cmd_get_rsp(host, mrq->stop);
} else {
sd_normal_rw(host, mrq);
}
if (mrq->data) {
if (cmd->error || data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blocks * data->blksz;
}
mutex_unlock(&pcr->pcr_mutex);
finish:
if (cmd->error) {
dev_dbg(sdmmc_dev(host), "CMD %d 0x%08x error(%d)\n",
cmd->opcode, cmd->arg, cmd->error);
}
mutex_lock(&host->host_mutex);
host->mrq = NULL;
mutex_unlock(&host->host_mutex);
mmc_request_done(mmc, mrq);
}
static void sdmmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
mutex_lock(&host->host_mutex);
host->mrq = mrq;
mutex_unlock(&host->host_mutex);
if (sd_rw_cmd(mrq->cmd) || sdio_extblock_cmd(mrq->cmd, data))
host->using_cookie = sd_pre_dma_transfer(host, data, false);
schedule_work(&host->work);
}
static int sd_set_bus_width(struct realtek_pci_sdmmc *host,
unsigned char bus_width)
{
int err = 0;
u8 width[] = {
[MMC_BUS_WIDTH_1] = SD_BUS_WIDTH_1BIT,
[MMC_BUS_WIDTH_4] = SD_BUS_WIDTH_4BIT,
[MMC_BUS_WIDTH_8] = SD_BUS_WIDTH_8BIT,
};
if (bus_width <= MMC_BUS_WIDTH_8)
err = rtsx_pci_write_register(host->pcr, SD_CFG1,
0x03, width[bus_width]);
return err;
}
static int sd_power_on(struct realtek_pci_sdmmc *host, unsigned char power_mode)
{
struct rtsx_pcr *pcr = host->pcr;
struct mmc_host *mmc = host->mmc;
int err;
u32 val;
u8 test_mode;
if (host->prev_power_state == MMC_POWER_ON)
return 0;
if (host->prev_power_state == MMC_POWER_UP) {
rtsx_pci_write_register(pcr, SD_BUS_STAT, SD_CLK_TOGGLE_EN, 0);
goto finish;
}
msleep(100);
rtsx_pci_init_cmd(pcr);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_SELECT, 0x07, SD_MOD_SEL);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_SHARE_MODE,
CARD_SHARE_MASK, CARD_SHARE_48_SD);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_CLK_EN,
SD_CLK_EN, SD_CLK_EN);
err = rtsx_pci_send_cmd(pcr, 100);
if (err < 0)
return err;
err = rtsx_pci_card_pull_ctl_enable(pcr, RTSX_SD_CARD);
if (err < 0)
return err;
err = rtsx_pci_card_power_on(pcr, RTSX_SD_CARD);
if (err < 0)
return err;
mdelay(1);
err = rtsx_pci_write_register(pcr, CARD_OE, SD_OUTPUT_EN, SD_OUTPUT_EN);
if (err < 0)
return err;
/* send at least 74 clocks */
rtsx_pci_write_register(pcr, SD_BUS_STAT, SD_CLK_TOGGLE_EN, SD_CLK_TOGGLE_EN);
if (PCI_PID(pcr) == PID_5261) {
/*
* If test mode is set switch to SD Express mandatorily,
* this is only for factory testing.
*/
rtsx_pci_read_register(pcr, RTS5261_FW_CFG_INFO0, &test_mode);
if (test_mode & RTS5261_FW_EXPRESS_TEST_MASK) {
sdmmc_init_sd_express(mmc, NULL);
return 0;
}
if (pcr->extra_caps & EXTRA_CAPS_SD_EXPRESS)
mmc->caps2 |= MMC_CAP2_SD_EXP | MMC_CAP2_SD_EXP_1_2V;
/*
* HW read wp status when resuming from S3/S4,
* and then picks SD legacy interface if it's set
* in read-only mode.
*/
val = rtsx_pci_readl(pcr, RTSX_BIPR);
if (val & SD_WRITE_PROTECT) {
pcr->extra_caps &= ~EXTRA_CAPS_SD_EXPRESS;
mmc->caps2 &= ~(MMC_CAP2_SD_EXP | MMC_CAP2_SD_EXP_1_2V);
}
}
finish:
host->prev_power_state = power_mode;
return 0;
}
static int sd_power_off(struct realtek_pci_sdmmc *host)
{
struct rtsx_pcr *pcr = host->pcr;
int err;
host->prev_power_state = MMC_POWER_OFF;
rtsx_pci_init_cmd(pcr);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_CLK_EN, SD_CLK_EN, 0);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_OE, SD_OUTPUT_EN, 0);
err = rtsx_pci_send_cmd(pcr, 100);
if (err < 0)
return err;
err = rtsx_pci_card_power_off(pcr, RTSX_SD_CARD);
if (err < 0)
return err;
return rtsx_pci_card_pull_ctl_disable(pcr, RTSX_SD_CARD);
}
static int sd_set_power_mode(struct realtek_pci_sdmmc *host,
unsigned char power_mode)
{
int err;
if (power_mode == MMC_POWER_OFF)
err = sd_power_off(host);
else
err = sd_power_on(host, power_mode);
return err;
}
static int sd_set_timing(struct realtek_pci_sdmmc *host, unsigned char timing)
{
struct rtsx_pcr *pcr = host->pcr;
int err = 0;
rtsx_pci_init_cmd(pcr);
switch (timing) {
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_SDR50:
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CFG1,
0x0C | SD_ASYNC_FIFO_NOT_RST,
SD_30_MODE | SD_ASYNC_FIFO_NOT_RST);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL,
CLK_LOW_FREQ, CLK_LOW_FREQ);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_CLK_SOURCE, 0xFF,
CRC_VAR_CLK0 | SD30_FIX_CLK | SAMPLE_VAR_CLK1);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL, CLK_LOW_FREQ, 0);
break;
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CFG1,
0x0C | SD_ASYNC_FIFO_NOT_RST,
SD_DDR_MODE | SD_ASYNC_FIFO_NOT_RST);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL,
CLK_LOW_FREQ, CLK_LOW_FREQ);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_CLK_SOURCE, 0xFF,
CRC_VAR_CLK0 | SD30_FIX_CLK | SAMPLE_VAR_CLK1);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL, CLK_LOW_FREQ, 0);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_PUSH_POINT_CTL,
DDR_VAR_TX_CMD_DAT, DDR_VAR_TX_CMD_DAT);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_SAMPLE_POINT_CTL,
DDR_VAR_RX_DAT | DDR_VAR_RX_CMD,
DDR_VAR_RX_DAT | DDR_VAR_RX_CMD);
break;
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_CFG1,
0x0C, SD_20_MODE);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL,
CLK_LOW_FREQ, CLK_LOW_FREQ);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_CLK_SOURCE, 0xFF,
CRC_FIX_CLK | SD30_VAR_CLK0 | SAMPLE_VAR_CLK1);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL, CLK_LOW_FREQ, 0);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_PUSH_POINT_CTL,
SD20_TX_SEL_MASK, SD20_TX_14_AHEAD);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_SAMPLE_POINT_CTL,
SD20_RX_SEL_MASK, SD20_RX_14_DELAY);
break;
default:
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD,
SD_CFG1, 0x0C, SD_20_MODE);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL,
CLK_LOW_FREQ, CLK_LOW_FREQ);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CARD_CLK_SOURCE, 0xFF,
CRC_FIX_CLK | SD30_VAR_CLK0 | SAMPLE_VAR_CLK1);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, CLK_CTL, CLK_LOW_FREQ, 0);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD,
SD_PUSH_POINT_CTL, 0xFF, 0);
rtsx_pci_add_cmd(pcr, WRITE_REG_CMD, SD_SAMPLE_POINT_CTL,
SD20_RX_SEL_MASK, SD20_RX_POS_EDGE);
break;
}
err = rtsx_pci_send_cmd(pcr, 100);
return err;
}
static void sdmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct rtsx_pcr *pcr = host->pcr;
if (host->eject)
return;
if (rtsx_pci_card_exclusive_check(host->pcr, RTSX_SD_CARD))
return;
mutex_lock(&pcr->pcr_mutex);
rtsx_pci_start_run(pcr);
sd_set_bus_width(host, ios->bus_width);
sd_set_power_mode(host, ios->power_mode);
sd_set_timing(host, ios->timing);
host->vpclk = false;
host->double_clk = true;
switch (ios->timing) {
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_SDR50:
host->ssc_depth = RTSX_SSC_DEPTH_2M;
host->vpclk = true;
host->double_clk = false;
break;
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_UHS_SDR25:
host->ssc_depth = RTSX_SSC_DEPTH_1M;
break;
default:
host->ssc_depth = RTSX_SSC_DEPTH_500K;
break;
}
host->initial_mode = (ios->clock <= 1000000) ? true : false;
host->clock = ios->clock;
rtsx_pci_switch_clock(pcr, ios->clock, host->ssc_depth,
host->initial_mode, host->double_clk, host->vpclk);
mutex_unlock(&pcr->pcr_mutex);
}
static int sdmmc_get_ro(struct mmc_host *mmc)
{
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct rtsx_pcr *pcr = host->pcr;
int ro = 0;
u32 val;
if (host->eject)
return -ENOMEDIUM;
mutex_lock(&pcr->pcr_mutex);
rtsx_pci_start_run(pcr);
/* Check SD mechanical write-protect switch */
val = rtsx_pci_readl(pcr, RTSX_BIPR);
dev_dbg(sdmmc_dev(host), "%s: RTSX_BIPR = 0x%08x\n", __func__, val);
if (val & SD_WRITE_PROTECT)
ro = 1;
mutex_unlock(&pcr->pcr_mutex);
return ro;
}
static int sdmmc_get_cd(struct mmc_host *mmc)
{
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct rtsx_pcr *pcr = host->pcr;
int cd = 0;
u32 val;
if (host->eject)
return cd;
mutex_lock(&pcr->pcr_mutex);
rtsx_pci_start_run(pcr);
/* Check SD card detect */
val = rtsx_pci_card_exist(pcr);
dev_dbg(sdmmc_dev(host), "%s: RTSX_BIPR = 0x%08x\n", __func__, val);
if (val & SD_EXIST)
cd = 1;
mutex_unlock(&pcr->pcr_mutex);
return cd;
}
static int sd_wait_voltage_stable_1(struct realtek_pci_sdmmc *host)
{
struct rtsx_pcr *pcr = host->pcr;
int err;
u8 stat;
/* Reference to Signal Voltage Switch Sequence in SD spec.
* Wait for a period of time so that the card can drive SD_CMD and
* SD_DAT[3:0] to low after sending back CMD11 response.
*/
mdelay(1);
/* SD_CMD, SD_DAT[3:0] should be driven to low by card;
* If either one of SD_CMD,SD_DAT[3:0] is not low,
* abort the voltage switch sequence;
*/
err = rtsx_pci_read_register(pcr, SD_BUS_STAT, &stat);
if (err < 0)
return err;
if (stat & (SD_CMD_STATUS | SD_DAT3_STATUS | SD_DAT2_STATUS |
SD_DAT1_STATUS | SD_DAT0_STATUS))
return -EINVAL;
/* Stop toggle SD clock */
err = rtsx_pci_write_register(pcr, SD_BUS_STAT,
0xFF, SD_CLK_FORCE_STOP);
if (err < 0)
return err;
return 0;
}
static int sd_wait_voltage_stable_2(struct realtek_pci_sdmmc *host)
{
struct rtsx_pcr *pcr = host->pcr;
int err;
u8 stat, mask, val;
/* Wait 1.8V output of voltage regulator in card stable */
msleep(50);
/* Toggle SD clock again */
err = rtsx_pci_write_register(pcr, SD_BUS_STAT, 0xFF, SD_CLK_TOGGLE_EN);
if (err < 0)
return err;
/* Wait for a period of time so that the card can drive
* SD_DAT[3:0] to high at 1.8V
*/
msleep(20);
/* SD_CMD, SD_DAT[3:0] should be pulled high by host */
err = rtsx_pci_read_register(pcr, SD_BUS_STAT, &stat);
if (err < 0)
return err;
mask = SD_CMD_STATUS | SD_DAT3_STATUS | SD_DAT2_STATUS |
SD_DAT1_STATUS | SD_DAT0_STATUS;
val = SD_CMD_STATUS | SD_DAT3_STATUS | SD_DAT2_STATUS |
SD_DAT1_STATUS | SD_DAT0_STATUS;
if ((stat & mask) != val) {
dev_dbg(sdmmc_dev(host),
"%s: SD_BUS_STAT = 0x%x\n", __func__, stat);
rtsx_pci_write_register(pcr, SD_BUS_STAT,
SD_CLK_TOGGLE_EN | SD_CLK_FORCE_STOP, 0);
rtsx_pci_write_register(pcr, CARD_CLK_EN, 0xFF, 0);
return -EINVAL;
}
return 0;
}
static int sdmmc_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct rtsx_pcr *pcr = host->pcr;
int err = 0;
u8 voltage;
dev_dbg(sdmmc_dev(host), "%s: signal_voltage = %d\n",
__func__, ios->signal_voltage);
if (host->eject)
return -ENOMEDIUM;
err = rtsx_pci_card_exclusive_check(host->pcr, RTSX_SD_CARD);
if (err)
return err;
mutex_lock(&pcr->pcr_mutex);
rtsx_pci_start_run(pcr);
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
voltage = OUTPUT_3V3;
else
voltage = OUTPUT_1V8;
if (voltage == OUTPUT_1V8) {
err = sd_wait_voltage_stable_1(host);
if (err < 0)
goto out;
}
err = rtsx_pci_switch_output_voltage(pcr, voltage);
if (err < 0)
goto out;
if (voltage == OUTPUT_1V8) {
err = sd_wait_voltage_stable_2(host);
if (err < 0)
goto out;
}
out:
/* Stop toggle SD clock in idle */
err = rtsx_pci_write_register(pcr, SD_BUS_STAT,
SD_CLK_TOGGLE_EN | SD_CLK_FORCE_STOP, 0);
mutex_unlock(&pcr->pcr_mutex);
return err;
}
static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct rtsx_pcr *pcr = host->pcr;
int err = 0;
if (host->eject)
return -ENOMEDIUM;
err = rtsx_pci_card_exclusive_check(host->pcr, RTSX_SD_CARD);
if (err)
return err;
mutex_lock(&pcr->pcr_mutex);
rtsx_pci_start_run(pcr);
/* Set initial TX phase */
switch (mmc->ios.timing) {
case MMC_TIMING_UHS_SDR104:
err = sd_change_phase(host, SDR104_TX_PHASE(pcr), false);
break;
case MMC_TIMING_UHS_SDR50:
err = sd_change_phase(host, SDR50_TX_PHASE(pcr), false);
break;
case MMC_TIMING_UHS_DDR50:
err = sd_change_phase(host, DDR50_TX_PHASE(pcr), false);
break;
default:
err = 0;
}
if (err)
goto out;
/* Tuning RX phase */
if ((mmc->ios.timing == MMC_TIMING_UHS_SDR104) ||
(mmc->ios.timing == MMC_TIMING_UHS_SDR50))
err = sd_tuning_rx(host, opcode);
else if (mmc->ios.timing == MMC_TIMING_UHS_DDR50)
err = sd_change_phase(host, DDR50_RX_PHASE(pcr), true);
out:
mutex_unlock(&pcr->pcr_mutex);
return err;
}
static int sdmmc_init_sd_express(struct mmc_host *mmc, struct mmc_ios *ios)
{
u32 relink_time;
struct realtek_pci_sdmmc *host = mmc_priv(mmc);
struct rtsx_pcr *pcr = host->pcr;
/* Set relink_time for changing to PCIe card */
relink_time = 0x8FFF;
rtsx_pci_write_register(pcr, 0xFF01, 0xFF, relink_time);
rtsx_pci_write_register(pcr, 0xFF02, 0xFF, relink_time >> 8);
rtsx_pci_write_register(pcr, 0xFF03, 0x01, relink_time >> 16);
rtsx_pci_write_register(pcr, PETXCFG, 0x80, 0x80);
rtsx_pci_write_register(pcr, LDO_VCC_CFG0,
RTS5261_LDO1_OCP_THD_MASK,
pcr->option.sd_800mA_ocp_thd);
if (pcr->ops->disable_auto_blink)
pcr->ops->disable_auto_blink(pcr);
/* For PCIe/NVMe mode can't enter delink issue */
pcr->hw_param.interrupt_en &= ~(SD_INT_EN);
rtsx_pci_writel(pcr, RTSX_BIER, pcr->hw_param.interrupt_en);
rtsx_pci_write_register(pcr, RTS5260_AUTOLOAD_CFG4,
RTS5261_AUX_CLK_16M_EN, RTS5261_AUX_CLK_16M_EN);
rtsx_pci_write_register(pcr, RTS5261_FW_CFG0,
RTS5261_FW_ENTER_EXPRESS, RTS5261_FW_ENTER_EXPRESS);
rtsx_pci_write_register(pcr, RTS5261_FW_CFG1,
RTS5261_MCU_CLOCK_GATING, RTS5261_MCU_CLOCK_GATING);
rtsx_pci_write_register(pcr, RTS5261_FW_CFG1,
RTS5261_MCU_BUS_SEL_MASK | RTS5261_MCU_CLOCK_SEL_MASK
| RTS5261_DRIVER_ENABLE_FW,
RTS5261_MCU_CLOCK_SEL_16M | RTS5261_DRIVER_ENABLE_FW);
host->eject = true;
return 0;
}
static const struct mmc_host_ops realtek_pci_sdmmc_ops = {
.pre_req = sdmmc_pre_req,
.post_req = sdmmc_post_req,
.request = sdmmc_request,
.set_ios = sdmmc_set_ios,
.get_ro = sdmmc_get_ro,
.get_cd = sdmmc_get_cd,
.start_signal_voltage_switch = sdmmc_switch_voltage,
.execute_tuning = sdmmc_execute_tuning,
.init_sd_express = sdmmc_init_sd_express,
};
static void init_extra_caps(struct realtek_pci_sdmmc *host)
{
struct mmc_host *mmc = host->mmc;
struct rtsx_pcr *pcr = host->pcr;
dev_dbg(sdmmc_dev(host), "pcr->extra_caps = 0x%x\n", pcr->extra_caps);
if (pcr->extra_caps & EXTRA_CAPS_SD_SDR50)
mmc->caps |= MMC_CAP_UHS_SDR50;
if (pcr->extra_caps & EXTRA_CAPS_SD_SDR104)
mmc->caps |= MMC_CAP_UHS_SDR104;
if (pcr->extra_caps & EXTRA_CAPS_SD_DDR50)
mmc->caps |= MMC_CAP_UHS_DDR50;
if (pcr->extra_caps & EXTRA_CAPS_MMC_HSDDR)
mmc->caps |= MMC_CAP_1_8V_DDR;
if (pcr->extra_caps & EXTRA_CAPS_MMC_8BIT)
mmc->caps |= MMC_CAP_8_BIT_DATA;
if (pcr->extra_caps & EXTRA_CAPS_NO_MMC)
mmc->caps2 |= MMC_CAP2_NO_MMC;
if (pcr->extra_caps & EXTRA_CAPS_SD_EXPRESS)
mmc->caps2 |= MMC_CAP2_SD_EXP | MMC_CAP2_SD_EXP_1_2V;
}
static void realtek_init_host(struct realtek_pci_sdmmc *host)
{
struct mmc_host *mmc = host->mmc;
struct rtsx_pcr *pcr = host->pcr;
mmc->f_min = 250000;
mmc->f_max = 208000000;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_MMC_HIGHSPEED | MMC_CAP_BUS_WIDTH_TEST |
MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
if (pcr->rtd3_en)
mmc->caps = mmc->caps | MMC_CAP_AGGRESSIVE_PM;
mmc->caps2 = MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_FULL_PWR_CYCLE |
MMC_CAP2_NO_SDIO;
mmc->max_current_330 = 400;
mmc->max_current_180 = 800;
mmc->ops = &realtek_pci_sdmmc_ops;
init_extra_caps(host);
mmc->max_segs = 256;
mmc->max_seg_size = 65536;
mmc->max_blk_size = 512;
mmc->max_blk_count = 65535;
mmc->max_req_size = 524288;
}
static void rtsx_pci_sdmmc_card_event(struct platform_device *pdev)
{
struct realtek_pci_sdmmc *host = platform_get_drvdata(pdev);
host->cookie = -1;
mmc_detect_change(host->mmc, 0);
}
static int rtsx_pci_sdmmc_drv_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct realtek_pci_sdmmc *host;
struct rtsx_pcr *pcr;
struct pcr_handle *handle = pdev->dev.platform_data;
int ret;
if (!handle)
return -ENXIO;
pcr = handle->pcr;
if (!pcr)
return -ENXIO;
dev_dbg(&(pdev->dev), ": Realtek PCI-E SDMMC controller found\n");
mmc = mmc_alloc_host(sizeof(*host), &pdev->dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->pcr = pcr;
mmc->ios.power_delay_ms = 5;
host->mmc = mmc;
host->pdev = pdev;
host->cookie = -1;
host->prev_power_state = MMC_POWER_OFF;
INIT_WORK(&host->work, sd_request);
platform_set_drvdata(pdev, host);
pcr->slots[RTSX_SD_CARD].p_dev = pdev;
pcr->slots[RTSX_SD_CARD].card_event = rtsx_pci_sdmmc_card_event;
mutex_init(&host->host_mutex);
realtek_init_host(host);
pm_runtime_no_callbacks(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 200);
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_use_autosuspend(&pdev->dev);
ret = mmc_add_host(mmc);
if (ret) {
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_disable(&pdev->dev);
mmc_free_host(mmc);
return ret;
}
return 0;
}
static void rtsx_pci_sdmmc_drv_remove(struct platform_device *pdev)
{
struct realtek_pci_sdmmc *host = platform_get_drvdata(pdev);
struct rtsx_pcr *pcr;
struct mmc_host *mmc;
pcr = host->pcr;
pcr->slots[RTSX_SD_CARD].p_dev = NULL;
pcr->slots[RTSX_SD_CARD].card_event = NULL;
mmc = host->mmc;
cancel_work_sync(&host->work);
mutex_lock(&host->host_mutex);
if (host->mrq) {
dev_dbg(&(pdev->dev),
"%s: Controller removed during transfer\n",
mmc_hostname(mmc));
rtsx_pci_complete_unfinished_transfer(pcr);
host->mrq->cmd->error = -ENOMEDIUM;
if (host->mrq->stop)
host->mrq->stop->error = -ENOMEDIUM;
mmc_request_done(mmc, host->mrq);
}
mutex_unlock(&host->host_mutex);
mmc_remove_host(mmc);
host->eject = true;
flush_work(&host->work);
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_disable(&pdev->dev);
mmc_free_host(mmc);
dev_dbg(&(pdev->dev),
": Realtek PCI-E SDMMC controller has been removed\n");
}
static const struct platform_device_id rtsx_pci_sdmmc_ids[] = {
{
.name = DRV_NAME_RTSX_PCI_SDMMC,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, rtsx_pci_sdmmc_ids);
static struct platform_driver rtsx_pci_sdmmc_driver = {
.probe = rtsx_pci_sdmmc_drv_probe,
.remove_new = rtsx_pci_sdmmc_drv_remove,
.id_table = rtsx_pci_sdmmc_ids,
.driver = {
.name = DRV_NAME_RTSX_PCI_SDMMC,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
module_platform_driver(rtsx_pci_sdmmc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Wei WANG <[email protected]>");
MODULE_DESCRIPTION("Realtek PCI-E SD/MMC Card Host Driver");
| linux-master | drivers/mmc/host/rtsx_pci_sdmmc.c |
// SPDX-License-Identifier: GPL-2.0
/*
* sdhci_am654.c - SDHCI driver for TI's AM654 SOCs
*
* Copyright (C) 2018 Texas Instruments Incorporated - https://www.ti.com
*
*/
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/sys_soc.h>
#include "cqhci.h"
#include "sdhci-cqhci.h"
#include "sdhci-pltfm.h"
/* CTL_CFG Registers */
#define CTL_CFG_2 0x14
#define CTL_CFG_3 0x18
#define SLOTTYPE_MASK GENMASK(31, 30)
#define SLOTTYPE_EMBEDDED BIT(30)
#define TUNINGFORSDR50_MASK BIT(13)
/* PHY Registers */
#define PHY_CTRL1 0x100
#define PHY_CTRL2 0x104
#define PHY_CTRL3 0x108
#define PHY_CTRL4 0x10C
#define PHY_CTRL5 0x110
#define PHY_CTRL6 0x114
#define PHY_STAT1 0x130
#define PHY_STAT2 0x134
#define IOMUX_ENABLE_SHIFT 31
#define IOMUX_ENABLE_MASK BIT(IOMUX_ENABLE_SHIFT)
#define OTAPDLYENA_SHIFT 20
#define OTAPDLYENA_MASK BIT(OTAPDLYENA_SHIFT)
#define OTAPDLYSEL_SHIFT 12
#define OTAPDLYSEL_MASK GENMASK(15, 12)
#define STRBSEL_SHIFT 24
#define STRBSEL_4BIT_MASK GENMASK(27, 24)
#define STRBSEL_8BIT_MASK GENMASK(31, 24)
#define SEL50_SHIFT 8
#define SEL50_MASK BIT(SEL50_SHIFT)
#define SEL100_SHIFT 9
#define SEL100_MASK BIT(SEL100_SHIFT)
#define FREQSEL_SHIFT 8
#define FREQSEL_MASK GENMASK(10, 8)
#define CLKBUFSEL_SHIFT 0
#define CLKBUFSEL_MASK GENMASK(2, 0)
#define DLL_TRIM_ICP_SHIFT 4
#define DLL_TRIM_ICP_MASK GENMASK(7, 4)
#define DR_TY_SHIFT 20
#define DR_TY_MASK GENMASK(22, 20)
#define ENDLL_SHIFT 1
#define ENDLL_MASK BIT(ENDLL_SHIFT)
#define DLLRDY_SHIFT 0
#define DLLRDY_MASK BIT(DLLRDY_SHIFT)
#define PDB_SHIFT 0
#define PDB_MASK BIT(PDB_SHIFT)
#define CALDONE_SHIFT 1
#define CALDONE_MASK BIT(CALDONE_SHIFT)
#define RETRIM_SHIFT 17
#define RETRIM_MASK BIT(RETRIM_SHIFT)
#define SELDLYTXCLK_SHIFT 17
#define SELDLYTXCLK_MASK BIT(SELDLYTXCLK_SHIFT)
#define SELDLYRXCLK_SHIFT 16
#define SELDLYRXCLK_MASK BIT(SELDLYRXCLK_SHIFT)
#define ITAPDLYSEL_SHIFT 0
#define ITAPDLYSEL_MASK GENMASK(4, 0)
#define ITAPDLYENA_SHIFT 8
#define ITAPDLYENA_MASK BIT(ITAPDLYENA_SHIFT)
#define ITAPCHGWIN_SHIFT 9
#define ITAPCHGWIN_MASK BIT(ITAPCHGWIN_SHIFT)
#define DRIVER_STRENGTH_50_OHM 0x0
#define DRIVER_STRENGTH_33_OHM 0x1
#define DRIVER_STRENGTH_66_OHM 0x2
#define DRIVER_STRENGTH_100_OHM 0x3
#define DRIVER_STRENGTH_40_OHM 0x4
#define CLOCK_TOO_SLOW_HZ 50000000
#define SDHCI_AM654_AUTOSUSPEND_DELAY -1
/* Command Queue Host Controller Interface Base address */
#define SDHCI_AM654_CQE_BASE_ADDR 0x200
static struct regmap_config sdhci_am654_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.fast_io = true,
};
struct timing_data {
const char *otap_binding;
const char *itap_binding;
u32 capability;
};
static const struct timing_data td[] = {
[MMC_TIMING_LEGACY] = {"ti,otap-del-sel-legacy",
"ti,itap-del-sel-legacy",
0},
[MMC_TIMING_MMC_HS] = {"ti,otap-del-sel-mmc-hs",
"ti,itap-del-sel-mmc-hs",
MMC_CAP_MMC_HIGHSPEED},
[MMC_TIMING_SD_HS] = {"ti,otap-del-sel-sd-hs",
"ti,itap-del-sel-sd-hs",
MMC_CAP_SD_HIGHSPEED},
[MMC_TIMING_UHS_SDR12] = {"ti,otap-del-sel-sdr12",
"ti,itap-del-sel-sdr12",
MMC_CAP_UHS_SDR12},
[MMC_TIMING_UHS_SDR25] = {"ti,otap-del-sel-sdr25",
"ti,itap-del-sel-sdr25",
MMC_CAP_UHS_SDR25},
[MMC_TIMING_UHS_SDR50] = {"ti,otap-del-sel-sdr50",
NULL,
MMC_CAP_UHS_SDR50},
[MMC_TIMING_UHS_SDR104] = {"ti,otap-del-sel-sdr104",
NULL,
MMC_CAP_UHS_SDR104},
[MMC_TIMING_UHS_DDR50] = {"ti,otap-del-sel-ddr50",
NULL,
MMC_CAP_UHS_DDR50},
[MMC_TIMING_MMC_DDR52] = {"ti,otap-del-sel-ddr52",
"ti,itap-del-sel-ddr52",
MMC_CAP_DDR},
[MMC_TIMING_MMC_HS200] = {"ti,otap-del-sel-hs200",
NULL,
MMC_CAP2_HS200},
[MMC_TIMING_MMC_HS400] = {"ti,otap-del-sel-hs400",
NULL,
MMC_CAP2_HS400},
};
struct sdhci_am654_data {
struct regmap *base;
bool legacy_otapdly;
int otap_del_sel[ARRAY_SIZE(td)];
int itap_del_sel[ARRAY_SIZE(td)];
int clkbuf_sel;
int trm_icp;
int drv_strength;
int strb_sel;
u32 flags;
u32 quirks;
#define SDHCI_AM654_QUIRK_FORCE_CDTEST BIT(0)
};
struct sdhci_am654_driver_data {
const struct sdhci_pltfm_data *pdata;
u32 flags;
#define IOMUX_PRESENT (1 << 0)
#define FREQSEL_2_BIT (1 << 1)
#define STRBSEL_4_BIT (1 << 2)
#define DLL_PRESENT (1 << 3)
#define DLL_CALIB (1 << 4)
};
static void sdhci_am654_setup_dll(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_am654_data *sdhci_am654 = sdhci_pltfm_priv(pltfm_host);
int sel50, sel100, freqsel;
u32 mask, val;
int ret;
/* Disable delay chain mode */
regmap_update_bits(sdhci_am654->base, PHY_CTRL5,
SELDLYTXCLK_MASK | SELDLYRXCLK_MASK, 0);
if (sdhci_am654->flags & FREQSEL_2_BIT) {
switch (clock) {
case 200000000:
sel50 = 0;
sel100 = 0;
break;
case 100000000:
sel50 = 0;
sel100 = 1;
break;
default:
sel50 = 1;
sel100 = 0;
}
/* Configure PHY DLL frequency */
mask = SEL50_MASK | SEL100_MASK;
val = (sel50 << SEL50_SHIFT) | (sel100 << SEL100_SHIFT);
regmap_update_bits(sdhci_am654->base, PHY_CTRL5, mask, val);
} else {
switch (clock) {
case 200000000:
freqsel = 0x0;
break;
default:
freqsel = 0x4;
}
regmap_update_bits(sdhci_am654->base, PHY_CTRL5, FREQSEL_MASK,
freqsel << FREQSEL_SHIFT);
}
/* Configure DLL TRIM */
mask = DLL_TRIM_ICP_MASK;
val = sdhci_am654->trm_icp << DLL_TRIM_ICP_SHIFT;
/* Configure DLL driver strength */
mask |= DR_TY_MASK;
val |= sdhci_am654->drv_strength << DR_TY_SHIFT;
regmap_update_bits(sdhci_am654->base, PHY_CTRL1, mask, val);
/* Enable DLL */
regmap_update_bits(sdhci_am654->base, PHY_CTRL1, ENDLL_MASK,
0x1 << ENDLL_SHIFT);
/*
* Poll for DLL ready. Use a one second timeout.
* Works in all experiments done so far
*/
ret = regmap_read_poll_timeout(sdhci_am654->base, PHY_STAT1, val,
val & DLLRDY_MASK, 1000, 1000000);
if (ret) {
dev_err(mmc_dev(host->mmc), "DLL failed to relock\n");
return;
}
}
static void sdhci_am654_write_itapdly(struct sdhci_am654_data *sdhci_am654,
u32 itapdly)
{
/* Set ITAPCHGWIN before writing to ITAPDLY */
regmap_update_bits(sdhci_am654->base, PHY_CTRL4, ITAPCHGWIN_MASK,
1 << ITAPCHGWIN_SHIFT);
regmap_update_bits(sdhci_am654->base, PHY_CTRL4, ITAPDLYSEL_MASK,
itapdly << ITAPDLYSEL_SHIFT);
regmap_update_bits(sdhci_am654->base, PHY_CTRL4, ITAPCHGWIN_MASK, 0);
}
static void sdhci_am654_setup_delay_chain(struct sdhci_am654_data *sdhci_am654,
unsigned char timing)
{
u32 mask, val;
regmap_update_bits(sdhci_am654->base, PHY_CTRL1, ENDLL_MASK, 0);
val = 1 << SELDLYTXCLK_SHIFT | 1 << SELDLYRXCLK_SHIFT;
mask = SELDLYTXCLK_MASK | SELDLYRXCLK_MASK;
regmap_update_bits(sdhci_am654->base, PHY_CTRL5, mask, val);
sdhci_am654_write_itapdly(sdhci_am654,
sdhci_am654->itap_del_sel[timing]);
}
static void sdhci_am654_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_am654_data *sdhci_am654 = sdhci_pltfm_priv(pltfm_host);
unsigned char timing = host->mmc->ios.timing;
u32 otap_del_sel;
u32 otap_del_ena;
u32 mask, val;
regmap_update_bits(sdhci_am654->base, PHY_CTRL1, ENDLL_MASK, 0);
sdhci_set_clock(host, clock);
/* Setup DLL Output TAP delay */
if (sdhci_am654->legacy_otapdly)
otap_del_sel = sdhci_am654->otap_del_sel[0];
else
otap_del_sel = sdhci_am654->otap_del_sel[timing];
otap_del_ena = (timing > MMC_TIMING_UHS_SDR25) ? 1 : 0;
mask = OTAPDLYENA_MASK | OTAPDLYSEL_MASK;
val = (otap_del_ena << OTAPDLYENA_SHIFT) |
(otap_del_sel << OTAPDLYSEL_SHIFT);
/* Write to STRBSEL for HS400 speed mode */
if (timing == MMC_TIMING_MMC_HS400) {
if (sdhci_am654->flags & STRBSEL_4_BIT)
mask |= STRBSEL_4BIT_MASK;
else
mask |= STRBSEL_8BIT_MASK;
val |= sdhci_am654->strb_sel << STRBSEL_SHIFT;
}
regmap_update_bits(sdhci_am654->base, PHY_CTRL4, mask, val);
if (timing > MMC_TIMING_UHS_SDR25 && clock >= CLOCK_TOO_SLOW_HZ)
sdhci_am654_setup_dll(host, clock);
else
sdhci_am654_setup_delay_chain(sdhci_am654, timing);
regmap_update_bits(sdhci_am654->base, PHY_CTRL5, CLKBUFSEL_MASK,
sdhci_am654->clkbuf_sel);
}
static void sdhci_j721e_4bit_set_clock(struct sdhci_host *host,
unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_am654_data *sdhci_am654 = sdhci_pltfm_priv(pltfm_host);
unsigned char timing = host->mmc->ios.timing;
u32 otap_del_sel;
u32 mask, val;
/* Setup DLL Output TAP delay */
if (sdhci_am654->legacy_otapdly)
otap_del_sel = sdhci_am654->otap_del_sel[0];
else
otap_del_sel = sdhci_am654->otap_del_sel[timing];
mask = OTAPDLYENA_MASK | OTAPDLYSEL_MASK;
val = (0x1 << OTAPDLYENA_SHIFT) |
(otap_del_sel << OTAPDLYSEL_SHIFT);
regmap_update_bits(sdhci_am654->base, PHY_CTRL4, mask, val);
regmap_update_bits(sdhci_am654->base, PHY_CTRL5, CLKBUFSEL_MASK,
sdhci_am654->clkbuf_sel);
sdhci_set_clock(host, clock);
}
static u8 sdhci_am654_write_power_on(struct sdhci_host *host, u8 val, int reg)
{
writeb(val, host->ioaddr + reg);
usleep_range(1000, 10000);
return readb(host->ioaddr + reg);
}
#define MAX_POWER_ON_TIMEOUT 1500000 /* us */
static void sdhci_am654_write_b(struct sdhci_host *host, u8 val, int reg)
{
unsigned char timing = host->mmc->ios.timing;
u8 pwr;
int ret;
if (reg == SDHCI_HOST_CONTROL) {
switch (timing) {
/*
* According to the data manual, HISPD bit
* should not be set in these speed modes.
*/
case MMC_TIMING_SD_HS:
case MMC_TIMING_MMC_HS:
val &= ~SDHCI_CTRL_HISPD;
}
}
writeb(val, host->ioaddr + reg);
if (reg == SDHCI_POWER_CONTROL && (val & SDHCI_POWER_ON)) {
/*
* Power on will not happen until the card detect debounce
* timer expires. Wait at least 1.5 seconds for the power on
* bit to be set
*/
ret = read_poll_timeout(sdhci_am654_write_power_on, pwr,
pwr & SDHCI_POWER_ON, 0,
MAX_POWER_ON_TIMEOUT, false, host, val,
reg);
if (ret)
dev_info(mmc_dev(host->mmc), "Power on failed\n");
}
}
static void sdhci_am654_reset(struct sdhci_host *host, u8 mask)
{
u8 ctrl;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_am654_data *sdhci_am654 = sdhci_pltfm_priv(pltfm_host);
sdhci_and_cqhci_reset(host, mask);
if (sdhci_am654->quirks & SDHCI_AM654_QUIRK_FORCE_CDTEST) {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_CDTEST_INS | SDHCI_CTRL_CDTEST_EN;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
}
static int sdhci_am654_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err = sdhci_execute_tuning(mmc, opcode);
if (err)
return err;
/*
* Tuning data remains in the buffer after tuning.
* Do a command and data reset to get rid of it
*/
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
return 0;
}
static u32 sdhci_am654_cqhci_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
#define ITAP_MAX 32
static int sdhci_am654_platform_execute_tuning(struct sdhci_host *host,
u32 opcode)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_am654_data *sdhci_am654 = sdhci_pltfm_priv(pltfm_host);
int cur_val, prev_val = 1, fail_len = 0, pass_window = 0, pass_len;
u32 itap;
/* Enable ITAPDLY */
regmap_update_bits(sdhci_am654->base, PHY_CTRL4, ITAPDLYENA_MASK,
1 << ITAPDLYENA_SHIFT);
for (itap = 0; itap < ITAP_MAX; itap++) {
sdhci_am654_write_itapdly(sdhci_am654, itap);
cur_val = !mmc_send_tuning(host->mmc, opcode, NULL);
if (cur_val && !prev_val)
pass_window = itap;
if (!cur_val)
fail_len++;
prev_val = cur_val;
}
/*
* Having determined the length of the failing window and start of
* the passing window calculate the length of the passing window and
* set the final value halfway through it considering the range as a
* circular buffer
*/
pass_len = ITAP_MAX - fail_len;
itap = (pass_window + (pass_len >> 1)) % ITAP_MAX;
sdhci_am654_write_itapdly(sdhci_am654, itap);
return 0;
}
static struct sdhci_ops sdhci_am654_ops = {
.platform_execute_tuning = sdhci_am654_platform_execute_tuning,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.set_bus_width = sdhci_set_bus_width,
.set_power = sdhci_set_power_and_bus_voltage,
.set_clock = sdhci_am654_set_clock,
.write_b = sdhci_am654_write_b,
.irq = sdhci_am654_cqhci_irq,
.reset = sdhci_and_cqhci_reset,
};
static const struct sdhci_pltfm_data sdhci_am654_pdata = {
.ops = &sdhci_am654_ops,
.quirks = SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
};
static const struct sdhci_am654_driver_data sdhci_am654_sr1_drvdata = {
.pdata = &sdhci_am654_pdata,
.flags = IOMUX_PRESENT | FREQSEL_2_BIT | STRBSEL_4_BIT | DLL_PRESENT |
DLL_CALIB,
};
static const struct sdhci_am654_driver_data sdhci_am654_drvdata = {
.pdata = &sdhci_am654_pdata,
.flags = IOMUX_PRESENT | FREQSEL_2_BIT | STRBSEL_4_BIT | DLL_PRESENT,
};
static struct sdhci_ops sdhci_j721e_8bit_ops = {
.platform_execute_tuning = sdhci_am654_platform_execute_tuning,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.set_bus_width = sdhci_set_bus_width,
.set_power = sdhci_set_power_and_bus_voltage,
.set_clock = sdhci_am654_set_clock,
.write_b = sdhci_am654_write_b,
.irq = sdhci_am654_cqhci_irq,
.reset = sdhci_and_cqhci_reset,
};
static const struct sdhci_pltfm_data sdhci_j721e_8bit_pdata = {
.ops = &sdhci_j721e_8bit_ops,
.quirks = SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
};
static const struct sdhci_am654_driver_data sdhci_j721e_8bit_drvdata = {
.pdata = &sdhci_j721e_8bit_pdata,
.flags = DLL_PRESENT | DLL_CALIB,
};
static struct sdhci_ops sdhci_j721e_4bit_ops = {
.platform_execute_tuning = sdhci_am654_platform_execute_tuning,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.get_timeout_clock = sdhci_pltfm_clk_get_max_clock,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.set_bus_width = sdhci_set_bus_width,
.set_power = sdhci_set_power_and_bus_voltage,
.set_clock = sdhci_j721e_4bit_set_clock,
.write_b = sdhci_am654_write_b,
.irq = sdhci_am654_cqhci_irq,
.reset = sdhci_am654_reset,
};
static const struct sdhci_pltfm_data sdhci_j721e_4bit_pdata = {
.ops = &sdhci_j721e_4bit_ops,
.quirks = SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
};
static const struct sdhci_am654_driver_data sdhci_j721e_4bit_drvdata = {
.pdata = &sdhci_j721e_4bit_pdata,
.flags = IOMUX_PRESENT,
};
static const struct soc_device_attribute sdhci_am654_devices[] = {
{ .family = "AM65X",
.revision = "SR1.0",
.data = &sdhci_am654_sr1_drvdata
},
{/* sentinel */}
};
static void sdhci_am654_dumpregs(struct mmc_host *mmc)
{
sdhci_dumpregs(mmc_priv(mmc));
}
static const struct cqhci_host_ops sdhci_am654_cqhci_ops = {
.enable = sdhci_cqe_enable,
.disable = sdhci_cqe_disable,
.dumpregs = sdhci_am654_dumpregs,
};
static int sdhci_am654_cqe_add_host(struct sdhci_host *host)
{
struct cqhci_host *cq_host;
cq_host = devm_kzalloc(mmc_dev(host->mmc), sizeof(struct cqhci_host),
GFP_KERNEL);
if (!cq_host)
return -ENOMEM;
cq_host->mmio = host->ioaddr + SDHCI_AM654_CQE_BASE_ADDR;
cq_host->quirks |= CQHCI_QUIRK_SHORT_TXFR_DESC_SZ;
cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
cq_host->ops = &sdhci_am654_cqhci_ops;
host->mmc->caps2 |= MMC_CAP2_CQE;
return cqhci_init(cq_host, host->mmc, 1);
}
static int sdhci_am654_get_otap_delay(struct sdhci_host *host,
struct sdhci_am654_data *sdhci_am654)
{
struct device *dev = mmc_dev(host->mmc);
int i;
int ret;
ret = device_property_read_u32(dev, td[MMC_TIMING_LEGACY].otap_binding,
&sdhci_am654->otap_del_sel[MMC_TIMING_LEGACY]);
if (ret) {
/*
* ti,otap-del-sel-legacy is mandatory, look for old binding
* if not found.
*/
ret = device_property_read_u32(dev, "ti,otap-del-sel",
&sdhci_am654->otap_del_sel[0]);
if (ret) {
dev_err(dev, "Couldn't find otap-del-sel\n");
return ret;
}
dev_info(dev, "Using legacy binding ti,otap-del-sel\n");
sdhci_am654->legacy_otapdly = true;
return 0;
}
for (i = MMC_TIMING_MMC_HS; i <= MMC_TIMING_MMC_HS400; i++) {
ret = device_property_read_u32(dev, td[i].otap_binding,
&sdhci_am654->otap_del_sel[i]);
if (ret) {
dev_dbg(dev, "Couldn't find %s\n",
td[i].otap_binding);
/*
* Remove the corresponding capability
* if an otap-del-sel value is not found
*/
if (i <= MMC_TIMING_MMC_DDR52)
host->mmc->caps &= ~td[i].capability;
else
host->mmc->caps2 &= ~td[i].capability;
}
if (td[i].itap_binding)
device_property_read_u32(dev, td[i].itap_binding,
&sdhci_am654->itap_del_sel[i]);
}
return 0;
}
static int sdhci_am654_init(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_am654_data *sdhci_am654 = sdhci_pltfm_priv(pltfm_host);
u32 ctl_cfg_2 = 0;
u32 mask;
u32 val;
int ret;
/* Reset OTAP to default value */
mask = OTAPDLYENA_MASK | OTAPDLYSEL_MASK;
regmap_update_bits(sdhci_am654->base, PHY_CTRL4, mask, 0x0);
if (sdhci_am654->flags & DLL_CALIB) {
regmap_read(sdhci_am654->base, PHY_STAT1, &val);
if (~val & CALDONE_MASK) {
/* Calibrate IO lines */
regmap_update_bits(sdhci_am654->base, PHY_CTRL1,
PDB_MASK, PDB_MASK);
ret = regmap_read_poll_timeout(sdhci_am654->base,
PHY_STAT1, val,
val & CALDONE_MASK,
1, 20);
if (ret)
return ret;
}
}
/* Enable pins by setting IO mux to 0 */
if (sdhci_am654->flags & IOMUX_PRESENT)
regmap_update_bits(sdhci_am654->base, PHY_CTRL1,
IOMUX_ENABLE_MASK, 0);
/* Set slot type based on SD or eMMC */
if (host->mmc->caps & MMC_CAP_NONREMOVABLE)
ctl_cfg_2 = SLOTTYPE_EMBEDDED;
regmap_update_bits(sdhci_am654->base, CTL_CFG_2, SLOTTYPE_MASK,
ctl_cfg_2);
/* Enable tuning for SDR50 */
regmap_update_bits(sdhci_am654->base, CTL_CFG_3, TUNINGFORSDR50_MASK,
TUNINGFORSDR50_MASK);
ret = sdhci_setup_host(host);
if (ret)
return ret;
ret = sdhci_am654_cqe_add_host(host);
if (ret)
goto err_cleanup_host;
ret = sdhci_am654_get_otap_delay(host, sdhci_am654);
if (ret)
goto err_cleanup_host;
ret = __sdhci_add_host(host);
if (ret)
goto err_cleanup_host;
return 0;
err_cleanup_host:
sdhci_cleanup_host(host);
return ret;
}
static int sdhci_am654_get_of_property(struct platform_device *pdev,
struct sdhci_am654_data *sdhci_am654)
{
struct device *dev = &pdev->dev;
int drv_strength;
int ret;
if (sdhci_am654->flags & DLL_PRESENT) {
ret = device_property_read_u32(dev, "ti,trm-icp",
&sdhci_am654->trm_icp);
if (ret)
return ret;
ret = device_property_read_u32(dev, "ti,driver-strength-ohm",
&drv_strength);
if (ret)
return ret;
switch (drv_strength) {
case 50:
sdhci_am654->drv_strength = DRIVER_STRENGTH_50_OHM;
break;
case 33:
sdhci_am654->drv_strength = DRIVER_STRENGTH_33_OHM;
break;
case 66:
sdhci_am654->drv_strength = DRIVER_STRENGTH_66_OHM;
break;
case 100:
sdhci_am654->drv_strength = DRIVER_STRENGTH_100_OHM;
break;
case 40:
sdhci_am654->drv_strength = DRIVER_STRENGTH_40_OHM;
break;
default:
dev_err(dev, "Invalid driver strength\n");
return -EINVAL;
}
}
device_property_read_u32(dev, "ti,strobe-sel", &sdhci_am654->strb_sel);
device_property_read_u32(dev, "ti,clkbuf-sel",
&sdhci_am654->clkbuf_sel);
if (device_property_read_bool(dev, "ti,fails-without-test-cd"))
sdhci_am654->quirks |= SDHCI_AM654_QUIRK_FORCE_CDTEST;
sdhci_get_of_property(pdev);
return 0;
}
static const struct of_device_id sdhci_am654_of_match[] = {
{
.compatible = "ti,am654-sdhci-5.1",
.data = &sdhci_am654_drvdata,
},
{
.compatible = "ti,j721e-sdhci-8bit",
.data = &sdhci_j721e_8bit_drvdata,
},
{
.compatible = "ti,j721e-sdhci-4bit",
.data = &sdhci_j721e_4bit_drvdata,
},
{
.compatible = "ti,am64-sdhci-8bit",
.data = &sdhci_j721e_8bit_drvdata,
},
{
.compatible = "ti,am64-sdhci-4bit",
.data = &sdhci_j721e_4bit_drvdata,
},
{
.compatible = "ti,am62-sdhci",
.data = &sdhci_j721e_4bit_drvdata,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdhci_am654_of_match);
static int sdhci_am654_probe(struct platform_device *pdev)
{
const struct sdhci_am654_driver_data *drvdata;
const struct soc_device_attribute *soc;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_am654_data *sdhci_am654;
const struct of_device_id *match;
struct sdhci_host *host;
struct clk *clk_xin;
struct device *dev = &pdev->dev;
void __iomem *base;
int ret;
match = of_match_node(sdhci_am654_of_match, pdev->dev.of_node);
drvdata = match->data;
/* Update drvdata based on SoC revision */
soc = soc_device_match(sdhci_am654_devices);
if (soc && soc->data)
drvdata = soc->data;
host = sdhci_pltfm_init(pdev, drvdata->pdata, sizeof(*sdhci_am654));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
sdhci_am654 = sdhci_pltfm_priv(pltfm_host);
sdhci_am654->flags = drvdata->flags;
clk_xin = devm_clk_get(dev, "clk_xin");
if (IS_ERR(clk_xin)) {
dev_err(dev, "clk_xin clock not found.\n");
ret = PTR_ERR(clk_xin);
goto err_pltfm_free;
}
pltfm_host->clk = clk_xin;
base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(base)) {
ret = PTR_ERR(base);
goto err_pltfm_free;
}
sdhci_am654->base = devm_regmap_init_mmio(dev, base,
&sdhci_am654_regmap_config);
if (IS_ERR(sdhci_am654->base)) {
dev_err(dev, "Failed to initialize regmap\n");
ret = PTR_ERR(sdhci_am654->base);
goto err_pltfm_free;
}
ret = sdhci_am654_get_of_property(pdev, sdhci_am654);
if (ret)
goto err_pltfm_free;
ret = mmc_of_parse(host->mmc);
if (ret) {
dev_err_probe(dev, ret, "parsing dt failed\n");
goto err_pltfm_free;
}
host->mmc_host_ops.execute_tuning = sdhci_am654_execute_tuning;
pm_runtime_get_noresume(dev);
ret = pm_runtime_set_active(dev);
if (ret)
goto pm_put;
pm_runtime_enable(dev);
ret = clk_prepare_enable(pltfm_host->clk);
if (ret)
goto pm_disable;
ret = sdhci_am654_init(host);
if (ret)
goto clk_disable;
/* Setting up autosuspend */
pm_runtime_set_autosuspend_delay(dev, SDHCI_AM654_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
clk_disable:
clk_disable_unprepare(pltfm_host->clk);
pm_disable:
pm_runtime_disable(dev);
pm_put:
pm_runtime_put_noidle(dev);
err_pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static void sdhci_am654_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct device *dev = &pdev->dev;
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0)
dev_err(dev, "pm_runtime_get_sync() Failed\n");
sdhci_remove_host(host, true);
clk_disable_unprepare(pltfm_host->clk);
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
sdhci_pltfm_free(pdev);
}
#ifdef CONFIG_PM
static int sdhci_am654_restore(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_am654_data *sdhci_am654 = sdhci_pltfm_priv(pltfm_host);
u32 ctl_cfg_2 = 0;
u32 val;
int ret;
if (sdhci_am654->flags & DLL_CALIB) {
regmap_read(sdhci_am654->base, PHY_STAT1, &val);
if (~val & CALDONE_MASK) {
/* Calibrate IO lines */
regmap_update_bits(sdhci_am654->base, PHY_CTRL1,
PDB_MASK, PDB_MASK);
ret = regmap_read_poll_timeout(sdhci_am654->base,
PHY_STAT1, val,
val & CALDONE_MASK,
1, 20);
if (ret)
return ret;
}
}
/* Enable pins by setting IO mux to 0 */
if (sdhci_am654->flags & IOMUX_PRESENT)
regmap_update_bits(sdhci_am654->base, PHY_CTRL1,
IOMUX_ENABLE_MASK, 0);
/* Set slot type based on SD or eMMC */
if (host->mmc->caps & MMC_CAP_NONREMOVABLE)
ctl_cfg_2 = SLOTTYPE_EMBEDDED;
regmap_update_bits(sdhci_am654->base, CTL_CFG_2, SLOTTYPE_MASK,
ctl_cfg_2);
regmap_read(sdhci_am654->base, CTL_CFG_3, &val);
if (~val & TUNINGFORSDR50_MASK)
/* Enable tuning for SDR50 */
regmap_update_bits(sdhci_am654->base, CTL_CFG_3, TUNINGFORSDR50_MASK,
TUNINGFORSDR50_MASK);
return 0;
}
static int sdhci_am654_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
int ret;
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
ret = cqhci_suspend(host->mmc);
if (ret)
return ret;
ret = sdhci_runtime_suspend_host(host);
if (ret)
return ret;
/* disable the clock */
clk_disable_unprepare(pltfm_host->clk);
return 0;
}
static int sdhci_am654_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
int ret;
/* Enable the clock */
ret = clk_prepare_enable(pltfm_host->clk);
if (ret)
return ret;
ret = sdhci_am654_restore(host);
if (ret)
return ret;
ret = sdhci_runtime_resume_host(host, 0);
if (ret)
return ret;
ret = cqhci_resume(host->mmc);
if (ret)
return ret;
return 0;
}
#endif
static const struct dev_pm_ops sdhci_am654_dev_pm_ops = {
SET_RUNTIME_PM_OPS(sdhci_am654_runtime_suspend,
sdhci_am654_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static struct platform_driver sdhci_am654_driver = {
.driver = {
.name = "sdhci-am654",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &sdhci_am654_dev_pm_ops,
.of_match_table = sdhci_am654_of_match,
},
.probe = sdhci_am654_probe,
.remove_new = sdhci_am654_remove,
};
module_platform_driver(sdhci_am654_driver);
MODULE_DESCRIPTION("Driver for SDHCI Controller on TI's AM654 devices");
MODULE_AUTHOR("Faiz Abbas <[email protected]>");
MODULE_LICENSE("GPL");
| linux-master | drivers/mmc/host/sdhci_am654.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Synopsys DesignWare Cores Mobile Storage Host Controller
*
* Copyright (C) 2018 Synaptics Incorporated
*
* Author: Jisheng Zhang <[email protected]>
*/
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sizes.h>
#include "sdhci-pltfm.h"
#define SDHCI_DWCMSHC_ARG2_STUFF GENMASK(31, 16)
/* DWCMSHC specific Mode Select value */
#define DWCMSHC_CTRL_HS400 0x7
/* DWC IP vendor area 1 pointer */
#define DWCMSHC_P_VENDOR_AREA1 0xe8
#define DWCMSHC_AREA1_MASK GENMASK(11, 0)
/* Offset inside the vendor area 1 */
#define DWCMSHC_HOST_CTRL3 0x8
#define DWCMSHC_EMMC_CONTROL 0x2c
#define DWCMSHC_CARD_IS_EMMC BIT(0)
#define DWCMSHC_ENHANCED_STROBE BIT(8)
#define DWCMSHC_EMMC_ATCTRL 0x40
/* Rockchip specific Registers */
#define DWCMSHC_EMMC_DLL_CTRL 0x800
#define DWCMSHC_EMMC_DLL_RXCLK 0x804
#define DWCMSHC_EMMC_DLL_TXCLK 0x808
#define DWCMSHC_EMMC_DLL_STRBIN 0x80c
#define DECMSHC_EMMC_DLL_CMDOUT 0x810
#define DWCMSHC_EMMC_DLL_STATUS0 0x840
#define DWCMSHC_EMMC_DLL_START BIT(0)
#define DWCMSHC_EMMC_DLL_LOCKED BIT(8)
#define DWCMSHC_EMMC_DLL_TIMEOUT BIT(9)
#define DWCMSHC_EMMC_DLL_RXCLK_SRCSEL 29
#define DWCMSHC_EMMC_DLL_START_POINT 16
#define DWCMSHC_EMMC_DLL_INC 8
#define DWCMSHC_EMMC_DLL_BYPASS BIT(24)
#define DWCMSHC_EMMC_DLL_DLYENA BIT(27)
#define DLL_TXCLK_TAPNUM_DEFAULT 0x10
#define DLL_TXCLK_TAPNUM_90_DEGREES 0xA
#define DLL_TXCLK_TAPNUM_FROM_SW BIT(24)
#define DLL_STRBIN_TAPNUM_DEFAULT 0x8
#define DLL_STRBIN_TAPNUM_FROM_SW BIT(24)
#define DLL_STRBIN_DELAY_NUM_SEL BIT(26)
#define DLL_STRBIN_DELAY_NUM_OFFSET 16
#define DLL_STRBIN_DELAY_NUM_DEFAULT 0x16
#define DLL_RXCLK_NO_INVERTER 1
#define DLL_RXCLK_INVERTER 0
#define DLL_CMDOUT_TAPNUM_90_DEGREES 0x8
#define DLL_RXCLK_ORI_GATE BIT(31)
#define DLL_CMDOUT_TAPNUM_FROM_SW BIT(24)
#define DLL_CMDOUT_SRC_CLK_NEG BIT(28)
#define DLL_CMDOUT_EN_SRC_CLK_NEG BIT(29)
#define DLL_LOCK_WO_TMOUT(x) \
((((x) & DWCMSHC_EMMC_DLL_LOCKED) == DWCMSHC_EMMC_DLL_LOCKED) && \
(((x) & DWCMSHC_EMMC_DLL_TIMEOUT) == 0))
#define RK35xx_MAX_CLKS 3
#define BOUNDARY_OK(addr, len) \
((addr | (SZ_128M - 1)) == ((addr + len - 1) | (SZ_128M - 1)))
enum dwcmshc_rk_type {
DWCMSHC_RK3568,
DWCMSHC_RK3588,
};
struct rk35xx_priv {
/* Rockchip specified optional clocks */
struct clk_bulk_data rockchip_clks[RK35xx_MAX_CLKS];
struct reset_control *reset;
enum dwcmshc_rk_type devtype;
u8 txclk_tapnum;
};
struct dwcmshc_priv {
struct clk *bus_clk;
int vendor_specific_area1; /* P_VENDOR_SPECIFIC_AREA reg */
void *priv; /* pointer to SoC private stuff */
};
/*
* If DMA addr spans 128MB boundary, we split the DMA transfer into two
* so that each DMA transfer doesn't exceed the boundary.
*/
static void dwcmshc_adma_write_desc(struct sdhci_host *host, void **desc,
dma_addr_t addr, int len, unsigned int cmd)
{
int tmplen, offset;
if (likely(!len || BOUNDARY_OK(addr, len))) {
sdhci_adma_write_desc(host, desc, addr, len, cmd);
return;
}
offset = addr & (SZ_128M - 1);
tmplen = SZ_128M - offset;
sdhci_adma_write_desc(host, desc, addr, tmplen, cmd);
addr += tmplen;
len -= tmplen;
sdhci_adma_write_desc(host, desc, addr, len, cmd);
}
static unsigned int dwcmshc_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
if (pltfm_host->clk)
return sdhci_pltfm_clk_get_max_clock(host);
else
return pltfm_host->clock;
}
static unsigned int rk35xx_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
return clk_round_rate(pltfm_host->clk, ULONG_MAX);
}
static void dwcmshc_check_auto_cmd23(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
/*
* No matter V4 is enabled or not, ARGUMENT2 register is 32-bit
* block count register which doesn't support stuff bits of
* CMD23 argument on dwcmsch host controller.
*/
if (mrq->sbc && (mrq->sbc->arg & SDHCI_DWCMSHC_ARG2_STUFF))
host->flags &= ~SDHCI_AUTO_CMD23;
else
host->flags |= SDHCI_AUTO_CMD23;
}
static void dwcmshc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
dwcmshc_check_auto_cmd23(mmc, mrq);
sdhci_request(mmc, mrq);
}
static void dwcmshc_set_uhs_signaling(struct sdhci_host *host,
unsigned int timing)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host);
u16 ctrl, ctrl_2;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((timing == MMC_TIMING_MMC_HS200) ||
(timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if ((timing == MMC_TIMING_UHS_SDR25) ||
(timing == MMC_TIMING_MMC_HS))
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if ((timing == MMC_TIMING_UHS_DDR50) ||
(timing == MMC_TIMING_MMC_DDR52))
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
else if (timing == MMC_TIMING_MMC_HS400) {
/* set CARD_IS_EMMC bit to enable Data Strobe for HS400 */
ctrl = sdhci_readw(host, priv->vendor_specific_area1 + DWCMSHC_EMMC_CONTROL);
ctrl |= DWCMSHC_CARD_IS_EMMC;
sdhci_writew(host, ctrl, priv->vendor_specific_area1 + DWCMSHC_EMMC_CONTROL);
ctrl_2 |= DWCMSHC_CTRL_HS400;
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
static void dwcmshc_hs400_enhanced_strobe(struct mmc_host *mmc,
struct mmc_ios *ios)
{
u32 vendor;
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host);
int reg = priv->vendor_specific_area1 + DWCMSHC_EMMC_CONTROL;
vendor = sdhci_readl(host, reg);
if (ios->enhanced_strobe)
vendor |= DWCMSHC_ENHANCED_STROBE;
else
vendor &= ~DWCMSHC_ENHANCED_STROBE;
sdhci_writel(host, vendor, reg);
}
static void dwcmshc_rk3568_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct dwcmshc_priv *dwc_priv = sdhci_pltfm_priv(pltfm_host);
struct rk35xx_priv *priv = dwc_priv->priv;
u8 txclk_tapnum = DLL_TXCLK_TAPNUM_DEFAULT;
u32 extra, reg;
int err;
host->mmc->actual_clock = 0;
if (clock == 0) {
/* Disable interface clock at initial state. */
sdhci_set_clock(host, clock);
return;
}
/* Rockchip platform only support 375KHz for identify mode */
if (clock <= 400000)
clock = 375000;
err = clk_set_rate(pltfm_host->clk, clock);
if (err)
dev_err(mmc_dev(host->mmc), "fail to set clock %d", clock);
sdhci_set_clock(host, clock);
/* Disable cmd conflict check */
reg = dwc_priv->vendor_specific_area1 + DWCMSHC_HOST_CTRL3;
extra = sdhci_readl(host, reg);
extra &= ~BIT(0);
sdhci_writel(host, extra, reg);
if (clock <= 52000000) {
/*
* Disable DLL and reset both of sample and drive clock.
* The bypass bit and start bit need to be set if DLL is not locked.
*/
sdhci_writel(host, DWCMSHC_EMMC_DLL_BYPASS | DWCMSHC_EMMC_DLL_START, DWCMSHC_EMMC_DLL_CTRL);
sdhci_writel(host, DLL_RXCLK_ORI_GATE, DWCMSHC_EMMC_DLL_RXCLK);
sdhci_writel(host, 0, DWCMSHC_EMMC_DLL_TXCLK);
sdhci_writel(host, 0, DECMSHC_EMMC_DLL_CMDOUT);
/*
* Before switching to hs400es mode, the driver will enable
* enhanced strobe first. PHY needs to configure the parameters
* of enhanced strobe first.
*/
extra = DWCMSHC_EMMC_DLL_DLYENA |
DLL_STRBIN_DELAY_NUM_SEL |
DLL_STRBIN_DELAY_NUM_DEFAULT << DLL_STRBIN_DELAY_NUM_OFFSET;
sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_STRBIN);
return;
}
/* Reset DLL */
sdhci_writel(host, BIT(1), DWCMSHC_EMMC_DLL_CTRL);
udelay(1);
sdhci_writel(host, 0x0, DWCMSHC_EMMC_DLL_CTRL);
/*
* We shouldn't set DLL_RXCLK_NO_INVERTER for identify mode but
* we must set it in higher speed mode.
*/
extra = DWCMSHC_EMMC_DLL_DLYENA;
if (priv->devtype == DWCMSHC_RK3568)
extra |= DLL_RXCLK_NO_INVERTER << DWCMSHC_EMMC_DLL_RXCLK_SRCSEL;
sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_RXCLK);
/* Init DLL settings */
extra = 0x5 << DWCMSHC_EMMC_DLL_START_POINT |
0x2 << DWCMSHC_EMMC_DLL_INC |
DWCMSHC_EMMC_DLL_START;
sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_CTRL);
err = readl_poll_timeout(host->ioaddr + DWCMSHC_EMMC_DLL_STATUS0,
extra, DLL_LOCK_WO_TMOUT(extra), 1,
500 * USEC_PER_MSEC);
if (err) {
dev_err(mmc_dev(host->mmc), "DLL lock timeout!\n");
return;
}
extra = 0x1 << 16 | /* tune clock stop en */
0x3 << 17 | /* pre-change delay */
0x3 << 19; /* post-change delay */
sdhci_writel(host, extra, dwc_priv->vendor_specific_area1 + DWCMSHC_EMMC_ATCTRL);
if (host->mmc->ios.timing == MMC_TIMING_MMC_HS200 ||
host->mmc->ios.timing == MMC_TIMING_MMC_HS400)
txclk_tapnum = priv->txclk_tapnum;
if ((priv->devtype == DWCMSHC_RK3588) && host->mmc->ios.timing == MMC_TIMING_MMC_HS400) {
txclk_tapnum = DLL_TXCLK_TAPNUM_90_DEGREES;
extra = DLL_CMDOUT_SRC_CLK_NEG |
DLL_CMDOUT_EN_SRC_CLK_NEG |
DWCMSHC_EMMC_DLL_DLYENA |
DLL_CMDOUT_TAPNUM_90_DEGREES |
DLL_CMDOUT_TAPNUM_FROM_SW;
sdhci_writel(host, extra, DECMSHC_EMMC_DLL_CMDOUT);
}
extra = DWCMSHC_EMMC_DLL_DLYENA |
DLL_TXCLK_TAPNUM_FROM_SW |
DLL_RXCLK_NO_INVERTER << DWCMSHC_EMMC_DLL_RXCLK_SRCSEL |
txclk_tapnum;
sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_TXCLK);
extra = DWCMSHC_EMMC_DLL_DLYENA |
DLL_STRBIN_TAPNUM_DEFAULT |
DLL_STRBIN_TAPNUM_FROM_SW;
sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_STRBIN);
}
static void rk35xx_sdhci_reset(struct sdhci_host *host, u8 mask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct dwcmshc_priv *dwc_priv = sdhci_pltfm_priv(pltfm_host);
struct rk35xx_priv *priv = dwc_priv->priv;
if (mask & SDHCI_RESET_ALL && priv->reset) {
reset_control_assert(priv->reset);
udelay(1);
reset_control_deassert(priv->reset);
}
sdhci_reset(host, mask);
}
static const struct sdhci_ops sdhci_dwcmshc_ops = {
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.set_uhs_signaling = dwcmshc_set_uhs_signaling,
.get_max_clock = dwcmshc_get_max_clock,
.reset = sdhci_reset,
.adma_write_desc = dwcmshc_adma_write_desc,
};
static const struct sdhci_ops sdhci_dwcmshc_rk35xx_ops = {
.set_clock = dwcmshc_rk3568_set_clock,
.set_bus_width = sdhci_set_bus_width,
.set_uhs_signaling = dwcmshc_set_uhs_signaling,
.get_max_clock = rk35xx_get_max_clock,
.reset = rk35xx_sdhci_reset,
.adma_write_desc = dwcmshc_adma_write_desc,
};
static const struct sdhci_pltfm_data sdhci_dwcmshc_pdata = {
.ops = &sdhci_dwcmshc_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
};
#ifdef CONFIG_ACPI
static const struct sdhci_pltfm_data sdhci_dwcmshc_bf3_pdata = {
.ops = &sdhci_dwcmshc_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_ACMD23_BROKEN,
};
#endif
static const struct sdhci_pltfm_data sdhci_dwcmshc_rk35xx_pdata = {
.ops = &sdhci_dwcmshc_rk35xx_ops,
.quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_BROKEN_TIMEOUT_VAL,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN,
};
static int dwcmshc_rk35xx_init(struct sdhci_host *host, struct dwcmshc_priv *dwc_priv)
{
int err;
struct rk35xx_priv *priv = dwc_priv->priv;
priv->reset = devm_reset_control_array_get_optional_exclusive(mmc_dev(host->mmc));
if (IS_ERR(priv->reset)) {
err = PTR_ERR(priv->reset);
dev_err(mmc_dev(host->mmc), "failed to get reset control %d\n", err);
return err;
}
priv->rockchip_clks[0].id = "axi";
priv->rockchip_clks[1].id = "block";
priv->rockchip_clks[2].id = "timer";
err = devm_clk_bulk_get_optional(mmc_dev(host->mmc), RK35xx_MAX_CLKS,
priv->rockchip_clks);
if (err) {
dev_err(mmc_dev(host->mmc), "failed to get clocks %d\n", err);
return err;
}
err = clk_bulk_prepare_enable(RK35xx_MAX_CLKS, priv->rockchip_clks);
if (err) {
dev_err(mmc_dev(host->mmc), "failed to enable clocks %d\n", err);
return err;
}
if (of_property_read_u8(mmc_dev(host->mmc)->of_node, "rockchip,txclk-tapnum",
&priv->txclk_tapnum))
priv->txclk_tapnum = DLL_TXCLK_TAPNUM_DEFAULT;
/* Disable cmd conflict check */
sdhci_writel(host, 0x0, dwc_priv->vendor_specific_area1 + DWCMSHC_HOST_CTRL3);
/* Reset previous settings */
sdhci_writel(host, 0, DWCMSHC_EMMC_DLL_TXCLK);
sdhci_writel(host, 0, DWCMSHC_EMMC_DLL_STRBIN);
return 0;
}
static void dwcmshc_rk35xx_postinit(struct sdhci_host *host, struct dwcmshc_priv *dwc_priv)
{
/*
* Don't support highspeed bus mode with low clk speed as we
* cannot use DLL for this condition.
*/
if (host->mmc->f_max <= 52000000) {
dev_info(mmc_dev(host->mmc), "Disabling HS200/HS400, frequency too low (%d)\n",
host->mmc->f_max);
host->mmc->caps2 &= ~(MMC_CAP2_HS200 | MMC_CAP2_HS400);
host->mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR);
}
}
static const struct of_device_id sdhci_dwcmshc_dt_ids[] = {
{
.compatible = "rockchip,rk3588-dwcmshc",
.data = &sdhci_dwcmshc_rk35xx_pdata,
},
{
.compatible = "rockchip,rk3568-dwcmshc",
.data = &sdhci_dwcmshc_rk35xx_pdata,
},
{
.compatible = "snps,dwcmshc-sdhci",
.data = &sdhci_dwcmshc_pdata,
},
{},
};
MODULE_DEVICE_TABLE(of, sdhci_dwcmshc_dt_ids);
#ifdef CONFIG_ACPI
static const struct acpi_device_id sdhci_dwcmshc_acpi_ids[] = {
{
.id = "MLNXBF30",
.driver_data = (kernel_ulong_t)&sdhci_dwcmshc_bf3_pdata,
},
{}
};
MODULE_DEVICE_TABLE(acpi, sdhci_dwcmshc_acpi_ids);
#endif
static int dwcmshc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_host *host;
struct dwcmshc_priv *priv;
struct rk35xx_priv *rk_priv = NULL;
const struct sdhci_pltfm_data *pltfm_data;
int err;
u32 extra;
pltfm_data = device_get_match_data(&pdev->dev);
if (!pltfm_data) {
dev_err(&pdev->dev, "Error: No device match data found\n");
return -ENODEV;
}
host = sdhci_pltfm_init(pdev, pltfm_data,
sizeof(struct dwcmshc_priv));
if (IS_ERR(host))
return PTR_ERR(host);
/*
* extra adma table cnt for cross 128M boundary handling.
*/
extra = DIV_ROUND_UP_ULL(dma_get_required_mask(dev), SZ_128M);
if (extra > SDHCI_MAX_SEGS)
extra = SDHCI_MAX_SEGS;
host->adma_table_cnt += extra;
pltfm_host = sdhci_priv(host);
priv = sdhci_pltfm_priv(pltfm_host);
if (dev->of_node) {
pltfm_host->clk = devm_clk_get(dev, "core");
if (IS_ERR(pltfm_host->clk)) {
err = PTR_ERR(pltfm_host->clk);
dev_err(dev, "failed to get core clk: %d\n", err);
goto free_pltfm;
}
err = clk_prepare_enable(pltfm_host->clk);
if (err)
goto free_pltfm;
priv->bus_clk = devm_clk_get(dev, "bus");
if (!IS_ERR(priv->bus_clk))
clk_prepare_enable(priv->bus_clk);
}
err = mmc_of_parse(host->mmc);
if (err)
goto err_clk;
sdhci_get_of_property(pdev);
priv->vendor_specific_area1 =
sdhci_readl(host, DWCMSHC_P_VENDOR_AREA1) & DWCMSHC_AREA1_MASK;
host->mmc_host_ops.request = dwcmshc_request;
host->mmc_host_ops.hs400_enhanced_strobe = dwcmshc_hs400_enhanced_strobe;
if (pltfm_data == &sdhci_dwcmshc_rk35xx_pdata) {
rk_priv = devm_kzalloc(&pdev->dev, sizeof(struct rk35xx_priv), GFP_KERNEL);
if (!rk_priv) {
err = -ENOMEM;
goto err_clk;
}
if (of_device_is_compatible(pdev->dev.of_node, "rockchip,rk3588-dwcmshc"))
rk_priv->devtype = DWCMSHC_RK3588;
else
rk_priv->devtype = DWCMSHC_RK3568;
priv->priv = rk_priv;
err = dwcmshc_rk35xx_init(host, priv);
if (err)
goto err_clk;
}
#ifdef CONFIG_ACPI
if (pltfm_data == &sdhci_dwcmshc_bf3_pdata)
sdhci_enable_v4_mode(host);
#endif
host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
err = sdhci_setup_host(host);
if (err)
goto err_rpm;
if (rk_priv)
dwcmshc_rk35xx_postinit(host, priv);
err = __sdhci_add_host(host);
if (err)
goto err_setup_host;
pm_runtime_put(dev);
return 0;
err_setup_host:
sdhci_cleanup_host(host);
err_rpm:
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
err_clk:
clk_disable_unprepare(pltfm_host->clk);
clk_disable_unprepare(priv->bus_clk);
if (rk_priv)
clk_bulk_disable_unprepare(RK35xx_MAX_CLKS,
rk_priv->rockchip_clks);
free_pltfm:
sdhci_pltfm_free(pdev);
return err;
}
static void dwcmshc_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct rk35xx_priv *rk_priv = priv->priv;
sdhci_remove_host(host, 0);
clk_disable_unprepare(pltfm_host->clk);
clk_disable_unprepare(priv->bus_clk);
if (rk_priv)
clk_bulk_disable_unprepare(RK35xx_MAX_CLKS,
rk_priv->rockchip_clks);
sdhci_pltfm_free(pdev);
}
#ifdef CONFIG_PM_SLEEP
static int dwcmshc_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct rk35xx_priv *rk_priv = priv->priv;
int ret;
pm_runtime_resume(dev);
ret = sdhci_suspend_host(host);
if (ret)
return ret;
clk_disable_unprepare(pltfm_host->clk);
if (!IS_ERR(priv->bus_clk))
clk_disable_unprepare(priv->bus_clk);
if (rk_priv)
clk_bulk_disable_unprepare(RK35xx_MAX_CLKS,
rk_priv->rockchip_clks);
return ret;
}
static int dwcmshc_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct rk35xx_priv *rk_priv = priv->priv;
int ret;
ret = clk_prepare_enable(pltfm_host->clk);
if (ret)
return ret;
if (!IS_ERR(priv->bus_clk)) {
ret = clk_prepare_enable(priv->bus_clk);
if (ret)
goto disable_clk;
}
if (rk_priv) {
ret = clk_bulk_prepare_enable(RK35xx_MAX_CLKS,
rk_priv->rockchip_clks);
if (ret)
goto disable_bus_clk;
}
ret = sdhci_resume_host(host);
if (ret)
goto disable_rockchip_clks;
return 0;
disable_rockchip_clks:
if (rk_priv)
clk_bulk_disable_unprepare(RK35xx_MAX_CLKS,
rk_priv->rockchip_clks);
disable_bus_clk:
if (!IS_ERR(priv->bus_clk))
clk_disable_unprepare(priv->bus_clk);
disable_clk:
clk_disable_unprepare(pltfm_host->clk);
return ret;
}
#endif
#ifdef CONFIG_PM
static void dwcmshc_enable_card_clk(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if ((ctrl & SDHCI_CLOCK_INT_EN) && !(ctrl & SDHCI_CLOCK_CARD_EN)) {
ctrl |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, ctrl, SDHCI_CLOCK_CONTROL);
}
}
static void dwcmshc_disable_card_clk(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (ctrl & SDHCI_CLOCK_CARD_EN) {
ctrl &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, ctrl, SDHCI_CLOCK_CONTROL);
}
}
static int dwcmshc_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
dwcmshc_disable_card_clk(host);
return 0;
}
static int dwcmshc_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
dwcmshc_enable_card_clk(host);
return 0;
}
#endif
static const struct dev_pm_ops dwcmshc_pmops = {
SET_SYSTEM_SLEEP_PM_OPS(dwcmshc_suspend, dwcmshc_resume)
SET_RUNTIME_PM_OPS(dwcmshc_runtime_suspend,
dwcmshc_runtime_resume, NULL)
};
static struct platform_driver sdhci_dwcmshc_driver = {
.driver = {
.name = "sdhci-dwcmshc",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_dwcmshc_dt_ids,
.acpi_match_table = ACPI_PTR(sdhci_dwcmshc_acpi_ids),
.pm = &dwcmshc_pmops,
},
.probe = dwcmshc_probe,
.remove_new = dwcmshc_remove,
};
module_platform_driver(sdhci_dwcmshc_driver);
MODULE_DESCRIPTION("SDHCI platform driver for Synopsys DWC MSHC");
MODULE_AUTHOR("Jisheng Zhang <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-of-dwcmshc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for sunxi SD/MMC host controllers
* (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
* (C) Copyright 2007-2011 Aaron Maoye <[email protected]>
* (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
* (C) Copyright 2013-2014 David Lanzendörfer <[email protected]>
* (C) Copyright 2013-2014 Hans de Goede <[email protected]>
* (C) Copyright 2017 Sootech SA
*/
#include <linux/clk.h>
#include <linux/clk/sunxi-ng.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
/* register offset definitions */
#define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
#define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
#define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
#define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
#define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
#define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
#define SDXC_REG_CMDR (0x18) /* SMC Command Register */
#define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
#define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
#define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
#define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
#define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
#define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
#define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
#define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
#define SDXC_REG_STAS (0x3C) /* SMC Status Register */
#define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
#define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
#define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
#define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
#define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
#define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
#define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
#define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
#define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
#define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
#define SDXC_REG_CHDA (0x90)
#define SDXC_REG_CBDA (0x94)
/* New registers introduced in A64 */
#define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */
#define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */
#define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */
#define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */
#define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */
#define mmc_readl(host, reg) \
readl((host)->reg_base + SDXC_##reg)
#define mmc_writel(host, reg, value) \
writel((value), (host)->reg_base + SDXC_##reg)
/* global control register bits */
#define SDXC_SOFT_RESET BIT(0)
#define SDXC_FIFO_RESET BIT(1)
#define SDXC_DMA_RESET BIT(2)
#define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
#define SDXC_DMA_ENABLE_BIT BIT(5)
#define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
#define SDXC_POSEDGE_LATCH_DATA BIT(9)
#define SDXC_DDR_MODE BIT(10)
#define SDXC_MEMORY_ACCESS_DONE BIT(29)
#define SDXC_ACCESS_DONE_DIRECT BIT(30)
#define SDXC_ACCESS_BY_AHB BIT(31)
#define SDXC_ACCESS_BY_DMA (0 << 31)
#define SDXC_HARDWARE_RESET \
(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
/* clock control bits */
#define SDXC_MASK_DATA0 BIT(31)
#define SDXC_CARD_CLOCK_ON BIT(16)
#define SDXC_LOW_POWER_ON BIT(17)
/* bus width */
#define SDXC_WIDTH1 0
#define SDXC_WIDTH4 1
#define SDXC_WIDTH8 2
/* smc command bits */
#define SDXC_RESP_EXPIRE BIT(6)
#define SDXC_LONG_RESPONSE BIT(7)
#define SDXC_CHECK_RESPONSE_CRC BIT(8)
#define SDXC_DATA_EXPIRE BIT(9)
#define SDXC_WRITE BIT(10)
#define SDXC_SEQUENCE_MODE BIT(11)
#define SDXC_SEND_AUTO_STOP BIT(12)
#define SDXC_WAIT_PRE_OVER BIT(13)
#define SDXC_STOP_ABORT_CMD BIT(14)
#define SDXC_SEND_INIT_SEQUENCE BIT(15)
#define SDXC_UPCLK_ONLY BIT(21)
#define SDXC_READ_CEATA_DEV BIT(22)
#define SDXC_CCS_EXPIRE BIT(23)
#define SDXC_ENABLE_BIT_BOOT BIT(24)
#define SDXC_ALT_BOOT_OPTIONS BIT(25)
#define SDXC_BOOT_ACK_EXPIRE BIT(26)
#define SDXC_BOOT_ABORT BIT(27)
#define SDXC_VOLTAGE_SWITCH BIT(28)
#define SDXC_USE_HOLD_REGISTER BIT(29)
#define SDXC_START BIT(31)
/* interrupt bits */
#define SDXC_RESP_ERROR BIT(1)
#define SDXC_COMMAND_DONE BIT(2)
#define SDXC_DATA_OVER BIT(3)
#define SDXC_TX_DATA_REQUEST BIT(4)
#define SDXC_RX_DATA_REQUEST BIT(5)
#define SDXC_RESP_CRC_ERROR BIT(6)
#define SDXC_DATA_CRC_ERROR BIT(7)
#define SDXC_RESP_TIMEOUT BIT(8)
#define SDXC_DATA_TIMEOUT BIT(9)
#define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
#define SDXC_FIFO_RUN_ERROR BIT(11)
#define SDXC_HARD_WARE_LOCKED BIT(12)
#define SDXC_START_BIT_ERROR BIT(13)
#define SDXC_AUTO_COMMAND_DONE BIT(14)
#define SDXC_END_BIT_ERROR BIT(15)
#define SDXC_SDIO_INTERRUPT BIT(16)
#define SDXC_CARD_INSERT BIT(30)
#define SDXC_CARD_REMOVE BIT(31)
#define SDXC_INTERRUPT_ERROR_BIT \
(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
#define SDXC_INTERRUPT_DONE_BIT \
(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
/* status */
#define SDXC_RXWL_FLAG BIT(0)
#define SDXC_TXWL_FLAG BIT(1)
#define SDXC_FIFO_EMPTY BIT(2)
#define SDXC_FIFO_FULL BIT(3)
#define SDXC_CARD_PRESENT BIT(8)
#define SDXC_CARD_DATA_BUSY BIT(9)
#define SDXC_DATA_FSM_BUSY BIT(10)
#define SDXC_DMA_REQUEST BIT(31)
#define SDXC_FIFO_SIZE 16
/* Function select */
#define SDXC_CEATA_ON (0xceaa << 16)
#define SDXC_SEND_IRQ_RESPONSE BIT(0)
#define SDXC_SDIO_READ_WAIT BIT(1)
#define SDXC_ABORT_READ_DATA BIT(2)
#define SDXC_SEND_CCSD BIT(8)
#define SDXC_SEND_AUTO_STOPCCSD BIT(9)
#define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
/* IDMA controller bus mod bit field */
#define SDXC_IDMAC_SOFT_RESET BIT(0)
#define SDXC_IDMAC_FIX_BURST BIT(1)
#define SDXC_IDMAC_IDMA_ON BIT(7)
#define SDXC_IDMAC_REFETCH_DES BIT(31)
/* IDMA status bit field */
#define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
#define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
#define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
#define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
#define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
#define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
#define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
#define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
#define SDXC_IDMAC_IDLE (0 << 13)
#define SDXC_IDMAC_SUSPEND (1 << 13)
#define SDXC_IDMAC_DESC_READ (2 << 13)
#define SDXC_IDMAC_DESC_CHECK (3 << 13)
#define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
#define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
#define SDXC_IDMAC_READ (6 << 13)
#define SDXC_IDMAC_WRITE (7 << 13)
#define SDXC_IDMAC_DESC_CLOSE (8 << 13)
/*
* If the idma-des-size-bits of property is ie 13, bufsize bits are:
* Bits 0-12: buf1 size
* Bits 13-25: buf2 size
* Bits 26-31: not used
* Since we only ever set buf1 size, we can simply store it directly.
*/
#define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
#define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
#define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
#define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
#define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
#define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
#define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
#define SDXC_CLK_400K 0
#define SDXC_CLK_25M 1
#define SDXC_CLK_50M 2
#define SDXC_CLK_50M_DDR 3
#define SDXC_CLK_50M_DDR_8BIT 4
#define SDXC_2X_TIMING_MODE BIT(31)
#define SDXC_CAL_START BIT(15)
#define SDXC_CAL_DONE BIT(14)
#define SDXC_CAL_DL_SHIFT 8
#define SDXC_CAL_DL_SW_EN BIT(7)
#define SDXC_CAL_DL_SW_SHIFT 0
#define SDXC_CAL_DL_MASK 0x3f
#define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/
struct sunxi_mmc_clk_delay {
u32 output;
u32 sample;
};
struct sunxi_idma_des {
__le32 config;
__le32 buf_size;
__le32 buf_addr_ptr1;
__le32 buf_addr_ptr2;
};
struct sunxi_mmc_cfg {
u32 idma_des_size_bits;
u32 idma_des_shift;
const struct sunxi_mmc_clk_delay *clk_delays;
/* does the IP block support autocalibration? */
bool can_calibrate;
/* Does DATA0 needs to be masked while the clock is updated */
bool mask_data0;
/*
* hardware only supports new timing mode, either due to lack of
* a mode switch in the clock controller, or the mmc controller
* is permanently configured in the new timing mode, without the
* NTSR mode switch.
*/
bool needs_new_timings;
/* clock hardware can switch between old and new timing modes */
bool ccu_has_timings_switch;
};
struct sunxi_mmc_host {
struct device *dev;
struct mmc_host *mmc;
struct reset_control *reset;
const struct sunxi_mmc_cfg *cfg;
/* IO mapping base */
void __iomem *reg_base;
/* clock management */
struct clk *clk_ahb;
struct clk *clk_mmc;
struct clk *clk_sample;
struct clk *clk_output;
/* irq */
spinlock_t lock;
int irq;
u32 int_sum;
u32 sdio_imask;
/* dma */
dma_addr_t sg_dma;
void *sg_cpu;
bool wait_dma;
struct mmc_request *mrq;
struct mmc_request *manual_stop_mrq;
int ferror;
/* vqmmc */
bool vqmmc_enabled;
/* timings */
bool use_new_timings;
};
static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
{
unsigned long expire = jiffies + msecs_to_jiffies(250);
u32 rval;
mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
do {
rval = mmc_readl(host, REG_GCTRL);
} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
if (rval & SDXC_HARDWARE_RESET) {
dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
return -EIO;
}
return 0;
}
static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
{
u32 rval;
if (sunxi_mmc_reset_host(host))
return -EIO;
/*
* Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
*
* TODO: sun9i has a larger FIFO and supports higher trigger values
*/
mmc_writel(host, REG_FTRGL, 0x20070008);
/* Maximum timeout value */
mmc_writel(host, REG_TMOUT, 0xffffffff);
/* Unmask SDIO interrupt if needed */
mmc_writel(host, REG_IMASK, host->sdio_imask);
/* Clear all pending interrupts */
mmc_writel(host, REG_RINTR, 0xffffffff);
/* Debug register? undocumented */
mmc_writel(host, REG_DBGC, 0xdeb);
/* Enable CEATA support */
mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
/* Set DMA descriptor list base address */
mmc_writel(host, REG_DLBA, host->sg_dma >> host->cfg->idma_des_shift);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_INTERRUPT_ENABLE_BIT;
/* Undocumented, but found in Allwinner code */
rval &= ~SDXC_ACCESS_DONE_DIRECT;
mmc_writel(host, REG_GCTRL, rval);
return 0;
}
static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
dma_addr_t next_desc = host->sg_dma;
int i, max_len = (1 << host->cfg->idma_des_size_bits);
for (i = 0; i < data->sg_len; i++) {
pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
SDXC_IDMAC_DES0_OWN |
SDXC_IDMAC_DES0_DIC);
if (data->sg[i].length == max_len)
pdes[i].buf_size = 0; /* 0 == max_len */
else
pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
next_desc += sizeof(struct sunxi_idma_des);
pdes[i].buf_addr_ptr1 =
cpu_to_le32(sg_dma_address(&data->sg[i]) >>
host->cfg->idma_des_shift);
pdes[i].buf_addr_ptr2 =
cpu_to_le32(next_desc >>
host->cfg->idma_des_shift);
}
pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
SDXC_IDMAC_DES0_ER);
pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
pdes[i - 1].buf_addr_ptr2 = 0;
/*
* Avoid the io-store starting the idmac hitting io-mem before the
* descriptors hit the main-mem.
*/
wmb();
}
static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
u32 i, dma_len;
struct scatterlist *sg;
dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (dma_len == 0) {
dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
return -ENOMEM;
}
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3) {
dev_err(mmc_dev(host->mmc),
"unaligned scatterlist: os %x length %d\n",
sg->offset, sg->length);
return -EINVAL;
}
}
return 0;
}
static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
u32 rval;
sunxi_mmc_init_idma_des(host, data);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_DMA_ENABLE_BIT;
mmc_writel(host, REG_GCTRL, rval);
rval |= SDXC_DMA_RESET;
mmc_writel(host, REG_GCTRL, rval);
mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
if (!(data->flags & MMC_DATA_WRITE))
mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
mmc_writel(host, REG_DMAC,
SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
}
static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
struct mmc_request *req)
{
u32 arg, cmd_val, ri;
unsigned long expire = jiffies + msecs_to_jiffies(1000);
cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
cmd_val |= SD_IO_RW_DIRECT;
arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
((req->cmd->arg >> 28) & 0x7);
} else {
cmd_val |= MMC_STOP_TRANSMISSION;
arg = 0;
}
mmc_writel(host, REG_CARG, arg);
mmc_writel(host, REG_CMDR, cmd_val);
do {
ri = mmc_readl(host, REG_RINTR);
} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
time_before(jiffies, expire));
if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
dev_err(mmc_dev(host->mmc), "send stop command failed\n");
if (req->stop)
req->stop->resp[0] = -ETIMEDOUT;
} else {
if (req->stop)
req->stop->resp[0] = mmc_readl(host, REG_RESP0);
}
mmc_writel(host, REG_RINTR, 0xffff);
}
static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
{
struct mmc_command *cmd = host->mrq->cmd;
struct mmc_data *data = host->mrq->data;
/* For some cmds timeout is normal with sd/mmc cards */
if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
cmd->opcode == SD_IO_RW_DIRECT))
return;
dev_dbg(mmc_dev(host->mmc),
"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
host->mmc->index, cmd->opcode,
data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
);
}
/* Called in interrupt context! */
static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data = mrq->data;
u32 rval;
mmc_writel(host, REG_IMASK, host->sdio_imask);
mmc_writel(host, REG_IDIE, 0);
if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
sunxi_mmc_dump_errinfo(host);
mrq->cmd->error = -ETIMEDOUT;
if (data) {
data->error = -ETIMEDOUT;
host->manual_stop_mrq = mrq;
}
if (mrq->stop)
mrq->stop->error = -ETIMEDOUT;
} else {
if (mrq->cmd->flags & MMC_RSP_136) {
mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
} else {
mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
}
if (data)
data->bytes_xfered = data->blocks * data->blksz;
}
if (data) {
mmc_writel(host, REG_IDST, 0x337);
mmc_writel(host, REG_DMAC, 0);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_DMA_RESET;
mmc_writel(host, REG_GCTRL, rval);
rval &= ~SDXC_DMA_ENABLE_BIT;
mmc_writel(host, REG_GCTRL, rval);
rval |= SDXC_FIFO_RESET;
mmc_writel(host, REG_GCTRL, rval);
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
mmc_writel(host, REG_RINTR, 0xffff);
host->mrq = NULL;
host->int_sum = 0;
host->wait_dma = false;
return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
}
static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
struct mmc_request *mrq;
u32 msk_int, idma_int;
bool finalize = false;
bool sdio_int = false;
irqreturn_t ret = IRQ_HANDLED;
spin_lock(&host->lock);
idma_int = mmc_readl(host, REG_IDST);
msk_int = mmc_readl(host, REG_MISTA);
dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
host->mrq, msk_int, idma_int);
mrq = host->mrq;
if (mrq) {
if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
host->wait_dma = false;
host->int_sum |= msk_int;
/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
!(host->int_sum & SDXC_COMMAND_DONE))
mmc_writel(host, REG_IMASK,
host->sdio_imask | SDXC_COMMAND_DONE);
/* Don't wait for dma on error */
else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
finalize = true;
else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
!host->wait_dma)
finalize = true;
}
if (msk_int & SDXC_SDIO_INTERRUPT)
sdio_int = true;
mmc_writel(host, REG_RINTR, msk_int);
mmc_writel(host, REG_IDST, idma_int);
if (finalize)
ret = sunxi_mmc_finalize_request(host);
spin_unlock(&host->lock);
if (finalize && ret == IRQ_HANDLED)
mmc_request_done(host->mmc, mrq);
if (sdio_int)
mmc_signal_sdio_irq(host->mmc);
return ret;
}
static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
struct mmc_request *mrq;
unsigned long iflags;
spin_lock_irqsave(&host->lock, iflags);
mrq = host->manual_stop_mrq;
spin_unlock_irqrestore(&host->lock, iflags);
if (!mrq) {
dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
return IRQ_HANDLED;
}
dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
/*
* We will never have more than one outstanding request,
* and we do not complete the request until after
* we've cleared host->manual_stop_mrq so we do not need to
* spin lock this function.
* Additionally we have wait states within this function
* so having it in a lock is a very bad idea.
*/
sunxi_mmc_send_manual_stop(host, mrq);
spin_lock_irqsave(&host->lock, iflags);
host->manual_stop_mrq = NULL;
spin_unlock_irqrestore(&host->lock, iflags);
mmc_request_done(host->mmc, mrq);
return IRQ_HANDLED;
}
static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
{
unsigned long expire = jiffies + msecs_to_jiffies(750);
u32 rval;
dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
oclk_en ? "en" : "dis");
rval = mmc_readl(host, REG_CLKCR);
rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
if (oclk_en)
rval |= SDXC_CARD_CLOCK_ON;
if (host->cfg->mask_data0)
rval |= SDXC_MASK_DATA0;
mmc_writel(host, REG_CLKCR, rval);
rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
mmc_writel(host, REG_CMDR, rval);
do {
rval = mmc_readl(host, REG_CMDR);
} while (time_before(jiffies, expire) && (rval & SDXC_START));
/* clear irq status bits set by the command */
mmc_writel(host, REG_RINTR,
mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
if (rval & SDXC_START) {
dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
return -EIO;
}
if (host->cfg->mask_data0) {
rval = mmc_readl(host, REG_CLKCR);
mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
}
return 0;
}
static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
{
if (!host->cfg->can_calibrate)
return 0;
/*
* FIXME:
* This is not clear how the calibration is supposed to work
* yet. The best rate have been obtained by simply setting the
* delay to 0, as Allwinner does in its BSP.
*
* The only mode that doesn't have such a delay is HS400, that
* is in itself a TODO.
*/
writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
return 0;
}
static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
struct mmc_ios *ios, u32 rate)
{
int index;
/* clk controller delays not used under new timings mode */
if (host->use_new_timings)
return 0;
/* some old controllers don't support delays */
if (!host->cfg->clk_delays)
return 0;
/* determine delays */
if (rate <= 400000) {
index = SDXC_CLK_400K;
} else if (rate <= 25000000) {
index = SDXC_CLK_25M;
} else if (rate <= 52000000) {
if (ios->timing != MMC_TIMING_UHS_DDR50 &&
ios->timing != MMC_TIMING_MMC_DDR52) {
index = SDXC_CLK_50M;
} else if (ios->bus_width == MMC_BUS_WIDTH_8) {
index = SDXC_CLK_50M_DDR_8BIT;
} else {
index = SDXC_CLK_50M_DDR;
}
} else {
dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
return -EINVAL;
}
clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
return 0;
}
static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
struct mmc_ios *ios)
{
struct mmc_host *mmc = host->mmc;
long rate;
u32 rval, clock = ios->clock, div = 1;
int ret;
ret = sunxi_mmc_oclk_onoff(host, 0);
if (ret)
return ret;
/* Our clock is gated now */
mmc->actual_clock = 0;
if (!ios->clock)
return 0;
/*
* Under the old timing mode, 8 bit DDR requires the module
* clock to be double the card clock. Under the new timing
* mode, all DDR modes require a doubled module clock.
*
* We currently only support the standard MMC DDR52 mode.
* This block should be updated once support for other DDR
* modes is added.
*/
if (ios->timing == MMC_TIMING_MMC_DDR52 &&
(host->use_new_timings ||
ios->bus_width == MMC_BUS_WIDTH_8)) {
div = 2;
clock <<= 1;
}
if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
if (ret) {
dev_err(mmc_dev(mmc),
"error setting new timing mode\n");
return ret;
}
}
rate = clk_round_rate(host->clk_mmc, clock);
if (rate < 0) {
dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
clock, rate);
return rate;
}
dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
clock, rate);
/* setting clock rate */
ret = clk_set_rate(host->clk_mmc, rate);
if (ret) {
dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
rate, ret);
return ret;
}
/* set internal divider */
rval = mmc_readl(host, REG_CLKCR);
rval &= ~0xff;
rval |= div - 1;
mmc_writel(host, REG_CLKCR, rval);
/* update card clock rate to account for internal divider */
rate /= div;
/*
* Configure the controller to use the new timing mode if needed.
* On controllers that only support the new timing mode, such as
* the eMMC controller on the A64, this register does not exist,
* and any writes to it are ignored.
*/
if (host->use_new_timings) {
/* Don't touch the delay bits */
rval = mmc_readl(host, REG_SD_NTSR);
rval |= SDXC_2X_TIMING_MODE;
mmc_writel(host, REG_SD_NTSR, rval);
}
/* sunxi_mmc_clk_set_phase expects the actual card clock rate */
ret = sunxi_mmc_clk_set_phase(host, ios, rate);
if (ret)
return ret;
ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
if (ret)
return ret;
/*
* FIXME:
*
* In HS400 we'll also need to calibrate the data strobe
* signal. This should only happen on the MMC2 controller (at
* least on the A64).
*/
ret = sunxi_mmc_oclk_onoff(host, 1);
if (ret)
return ret;
/* And we just enabled our clock back */
mmc->actual_clock = rate;
return 0;
}
static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
unsigned char width)
{
switch (width) {
case MMC_BUS_WIDTH_1:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
break;
case MMC_BUS_WIDTH_4:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
break;
case MMC_BUS_WIDTH_8:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
break;
}
}
static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
{
u32 rval;
/* set ddr mode */
rval = mmc_readl(host, REG_GCTRL);
if (ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_MMC_DDR52)
rval |= SDXC_DDR_MODE;
else
rval &= ~SDXC_DDR_MODE;
mmc_writel(host, REG_GCTRL, rval);
host->ferror = sunxi_mmc_clk_set_rate(host, ios);
/* Android code had a usleep_range(50000, 55000); here */
}
static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
struct mmc_ios *ios)
{
struct mmc_host *mmc = host->mmc;
switch (ios->power_mode) {
case MMC_POWER_UP:
dev_dbg(mmc_dev(mmc), "Powering card up\n");
if (!IS_ERR(mmc->supply.vmmc)) {
host->ferror = mmc_regulator_set_ocr(mmc,
mmc->supply.vmmc,
ios->vdd);
if (host->ferror)
return;
}
if (!IS_ERR(mmc->supply.vqmmc)) {
host->ferror = regulator_enable(mmc->supply.vqmmc);
if (host->ferror) {
dev_err(mmc_dev(mmc),
"failed to enable vqmmc\n");
return;
}
host->vqmmc_enabled = true;
}
break;
case MMC_POWER_OFF:
dev_dbg(mmc_dev(mmc), "Powering card off\n");
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
break;
default:
dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
break;
}
}
static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
sunxi_mmc_card_power(host, ios);
sunxi_mmc_set_bus_width(host, ios->bus_width);
sunxi_mmc_set_clk(host, ios);
}
static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
int ret;
/* vqmmc regulator is available */
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
return ret < 0 ? ret : 0;
}
/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return 0;
return -EINVAL;
}
static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
unsigned long flags;
u32 imask;
if (enable)
pm_runtime_get_noresume(host->dev);
spin_lock_irqsave(&host->lock, flags);
imask = mmc_readl(host, REG_IMASK);
if (enable) {
host->sdio_imask = SDXC_SDIO_INTERRUPT;
imask |= SDXC_SDIO_INTERRUPT;
} else {
host->sdio_imask = 0;
imask &= ~SDXC_SDIO_INTERRUPT;
}
mmc_writel(host, REG_IMASK, imask);
spin_unlock_irqrestore(&host->lock, flags);
if (!enable)
pm_runtime_put_noidle(host->mmc->parent);
}
static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_writel(host, REG_HWRST, 0);
udelay(10);
mmc_writel(host, REG_HWRST, 1);
udelay(300);
}
static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
unsigned long iflags;
u32 imask = SDXC_INTERRUPT_ERROR_BIT;
u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
bool wait_dma = host->wait_dma;
int ret;
/* Check for set_ios errors (should never happen) */
if (host->ferror) {
mrq->cmd->error = host->ferror;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
ret = sunxi_mmc_map_dma(host, data);
if (ret < 0) {
dev_err(mmc_dev(mmc), "map DMA failed\n");
cmd->error = ret;
data->error = ret;
mmc_request_done(mmc, mrq);
return;
}
}
if (cmd->opcode == MMC_GO_IDLE_STATE) {
cmd_val |= SDXC_SEND_INIT_SEQUENCE;
imask |= SDXC_COMMAND_DONE;
}
if (cmd->flags & MMC_RSP_PRESENT) {
cmd_val |= SDXC_RESP_EXPIRE;
if (cmd->flags & MMC_RSP_136)
cmd_val |= SDXC_LONG_RESPONSE;
if (cmd->flags & MMC_RSP_CRC)
cmd_val |= SDXC_CHECK_RESPONSE_CRC;
if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
if (cmd->data->stop) {
imask |= SDXC_AUTO_COMMAND_DONE;
cmd_val |= SDXC_SEND_AUTO_STOP;
} else {
imask |= SDXC_DATA_OVER;
}
if (cmd->data->flags & MMC_DATA_WRITE)
cmd_val |= SDXC_WRITE;
else
wait_dma = true;
} else {
imask |= SDXC_COMMAND_DONE;
}
} else {
imask |= SDXC_COMMAND_DONE;
}
dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
cmd_val & 0x3f, cmd_val, cmd->arg, imask,
mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
spin_lock_irqsave(&host->lock, iflags);
if (host->mrq || host->manual_stop_mrq) {
spin_unlock_irqrestore(&host->lock, iflags);
if (data)
dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
dev_err(mmc_dev(mmc), "request already pending\n");
mrq->cmd->error = -EBUSY;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
mmc_writel(host, REG_BLKSZ, data->blksz);
mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
sunxi_mmc_start_dma(host, data);
}
host->mrq = mrq;
host->wait_dma = wait_dma;
mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
mmc_writel(host, REG_CARG, cmd->arg);
mmc_writel(host, REG_CMDR, cmd_val);
spin_unlock_irqrestore(&host->lock, iflags);
}
static int sunxi_mmc_card_busy(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
}
static const struct mmc_host_ops sunxi_mmc_ops = {
.request = sunxi_mmc_request,
.set_ios = sunxi_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
.start_signal_voltage_switch = sunxi_mmc_volt_switch,
.card_hw_reset = sunxi_mmc_hw_reset,
.card_busy = sunxi_mmc_card_busy,
};
static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
[SDXC_CLK_400K] = { .output = 180, .sample = 180 },
[SDXC_CLK_25M] = { .output = 180, .sample = 75 },
[SDXC_CLK_50M] = { .output = 90, .sample = 120 },
[SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
/* Value from A83T "new timing mode". Works but might not be right. */
[SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 },
};
static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
[SDXC_CLK_400K] = { .output = 180, .sample = 180 },
[SDXC_CLK_25M] = { .output = 180, .sample = 75 },
[SDXC_CLK_50M] = { .output = 150, .sample = 120 },
[SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 },
[SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 },
};
static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
.idma_des_size_bits = 13,
.clk_delays = NULL,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
.idma_des_size_bits = 16,
.clk_delays = NULL,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sunxi_mmc_clk_delays,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sunxi_mmc_clk_delays,
.can_calibrate = false,
.ccu_has_timings_switch = true,
};
static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sun9i_mmc_clk_delays,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun20i_d1_cfg = {
.idma_des_size_bits = 13,
.idma_des_shift = 2,
.can_calibrate = true,
.mask_data0 = true,
.needs_new_timings = true,
};
static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
.idma_des_size_bits = 16,
.clk_delays = NULL,
.can_calibrate = true,
.mask_data0 = true,
.needs_new_timings = true,
};
static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
.idma_des_size_bits = 13,
.clk_delays = NULL,
.can_calibrate = true,
.needs_new_timings = true,
};
static const struct sunxi_mmc_cfg sun50i_a100_cfg = {
.idma_des_size_bits = 16,
.idma_des_shift = 2,
.clk_delays = NULL,
.can_calibrate = true,
.mask_data0 = true,
.needs_new_timings = true,
};
static const struct sunxi_mmc_cfg sun50i_a100_emmc_cfg = {
.idma_des_size_bits = 13,
.idma_des_shift = 2,
.clk_delays = NULL,
.can_calibrate = true,
.needs_new_timings = true,
};
static const struct of_device_id sunxi_mmc_of_match[] = {
{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
{ .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
{ .compatible = "allwinner,sun20i-d1-mmc", .data = &sun20i_d1_cfg },
{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
{ .compatible = "allwinner,sun50i-a100-mmc", .data = &sun50i_a100_cfg },
{ .compatible = "allwinner,sun50i-a100-emmc", .data = &sun50i_a100_emmc_cfg },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
{
int ret;
if (!IS_ERR(host->reset)) {
ret = reset_control_reset(host->reset);
if (ret) {
dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
ret);
return ret;
}
}
ret = clk_prepare_enable(host->clk_ahb);
if (ret) {
dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
goto error_assert_reset;
}
ret = clk_prepare_enable(host->clk_mmc);
if (ret) {
dev_err(host->dev, "Enable mmc clk err %d\n", ret);
goto error_disable_clk_ahb;
}
ret = clk_prepare_enable(host->clk_output);
if (ret) {
dev_err(host->dev, "Enable output clk err %d\n", ret);
goto error_disable_clk_mmc;
}
ret = clk_prepare_enable(host->clk_sample);
if (ret) {
dev_err(host->dev, "Enable sample clk err %d\n", ret);
goto error_disable_clk_output;
}
/*
* Sometimes the controller asserts the irq on boot for some reason,
* make sure the controller is in a sane state before enabling irqs.
*/
ret = sunxi_mmc_reset_host(host);
if (ret)
goto error_disable_clk_sample;
return 0;
error_disable_clk_sample:
clk_disable_unprepare(host->clk_sample);
error_disable_clk_output:
clk_disable_unprepare(host->clk_output);
error_disable_clk_mmc:
clk_disable_unprepare(host->clk_mmc);
error_disable_clk_ahb:
clk_disable_unprepare(host->clk_ahb);
error_assert_reset:
if (!IS_ERR(host->reset))
reset_control_assert(host->reset);
return ret;
}
static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
{
sunxi_mmc_reset_host(host);
clk_disable_unprepare(host->clk_sample);
clk_disable_unprepare(host->clk_output);
clk_disable_unprepare(host->clk_mmc);
clk_disable_unprepare(host->clk_ahb);
if (!IS_ERR(host->reset))
reset_control_assert(host->reset);
}
static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
struct platform_device *pdev)
{
int ret;
host->cfg = of_device_get_match_data(&pdev->dev);
if (!host->cfg)
return -EINVAL;
ret = mmc_regulator_get_supply(host->mmc);
if (ret)
return ret;
host->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(host->reg_base))
return PTR_ERR(host->reg_base);
host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(host->clk_ahb)) {
dev_err(&pdev->dev, "Could not get ahb clock\n");
return PTR_ERR(host->clk_ahb);
}
host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
if (IS_ERR(host->clk_mmc)) {
dev_err(&pdev->dev, "Could not get mmc clock\n");
return PTR_ERR(host->clk_mmc);
}
if (host->cfg->clk_delays) {
host->clk_output = devm_clk_get(&pdev->dev, "output");
if (IS_ERR(host->clk_output)) {
dev_err(&pdev->dev, "Could not get output clock\n");
return PTR_ERR(host->clk_output);
}
host->clk_sample = devm_clk_get(&pdev->dev, "sample");
if (IS_ERR(host->clk_sample)) {
dev_err(&pdev->dev, "Could not get sample clock\n");
return PTR_ERR(host->clk_sample);
}
}
host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
"ahb");
if (PTR_ERR(host->reset) == -EPROBE_DEFER)
return PTR_ERR(host->reset);
ret = sunxi_mmc_enable(host);
if (ret)
return ret;
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
ret = host->irq;
goto error_disable_mmc;
}
return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
error_disable_mmc:
sunxi_mmc_disable(host);
return ret;
}
static int sunxi_mmc_probe(struct platform_device *pdev)
{
struct sunxi_mmc_host *host;
struct mmc_host *mmc;
int ret;
mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "mmc alloc host failed\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, mmc);
host = mmc_priv(mmc);
host->dev = &pdev->dev;
host->mmc = mmc;
spin_lock_init(&host->lock);
ret = sunxi_mmc_resource_request(host, pdev);
if (ret)
goto error_free_host;
host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
ret = -ENOMEM;
goto error_free_host;
}
if (host->cfg->ccu_has_timings_switch) {
/*
* Supports both old and new timing modes.
* Try setting the clk to new timing mode.
*/
sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
/* And check the result */
ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
if (ret < 0) {
/*
* For whatever reason we were not able to get
* the current active mode. Default to old mode.
*/
dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
host->use_new_timings = false;
} else {
host->use_new_timings = !!ret;
}
} else if (host->cfg->needs_new_timings) {
/* Supports new timing mode only */
host->use_new_timings = true;
}
mmc->ops = &sunxi_mmc_ops;
mmc->max_blk_count = 8192;
mmc->max_blk_size = 4096;
mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
/* 400kHz ~ 52MHz */
mmc->f_min = 400000;
mmc->f_max = 52000000;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_SDIO_IRQ;
/*
* Some H5 devices do not have signal traces precise enough to
* use HS DDR mode for their eMMC chips.
*
* We still enable HS DDR modes for all the other controller
* variants that support them.
*/
if ((host->cfg->clk_delays || host->use_new_timings) &&
!of_device_is_compatible(pdev->dev.of_node,
"allwinner,sun50i-h5-emmc"))
mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
ret = mmc_of_parse(mmc);
if (ret)
goto error_free_dma;
/*
* If we don't support delay chains in the SoC, we can't use any
* of the higher speed modes. Mask them out in case the device
* tree specifies the properties for them, which gets added to
* the caps by mmc_of_parse() above.
*/
if (!(host->cfg->clk_delays || host->use_new_timings)) {
mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
mmc->caps2 &= ~MMC_CAP2_HS200;
}
/* TODO: This driver doesn't support HS400 mode yet */
mmc->caps2 &= ~MMC_CAP2_HS400;
ret = sunxi_mmc_init_host(host);
if (ret)
goto error_free_dma;
pm_runtime_set_active(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = mmc_add_host(mmc);
if (ret)
goto error_free_dma;
dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
mmc->max_req_size >> 10,
host->use_new_timings ? ", uses new timings mode" : "");
return 0;
error_free_dma:
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
error_free_host:
mmc_free_host(mmc);
return ret;
}
static void sunxi_mmc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev)) {
disable_irq(host->irq);
sunxi_mmc_disable(host);
}
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
mmc_free_host(mmc);
}
#ifdef CONFIG_PM
static int sunxi_mmc_runtime_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
int ret;
ret = sunxi_mmc_enable(host);
if (ret)
return ret;
sunxi_mmc_init_host(host);
sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
sunxi_mmc_set_clk(host, &mmc->ios);
enable_irq(host->irq);
return 0;
}
static int sunxi_mmc_runtime_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
/*
* When clocks are off, it's possible receiving
* fake interrupts, which will stall the system.
* Disabling the irq will prevent this.
*/
disable_irq(host->irq);
sunxi_mmc_reset_host(host);
sunxi_mmc_disable(host);
return 0;
}
#endif
static const struct dev_pm_ops sunxi_mmc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
sunxi_mmc_runtime_resume,
NULL)
};
static struct platform_driver sunxi_mmc_driver = {
.driver = {
.name = "sunxi-mmc",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sunxi_mmc_of_match,
.pm = &sunxi_mmc_pm_ops,
},
.probe = sunxi_mmc_probe,
.remove_new = sunxi_mmc_remove,
};
module_platform_driver(sunxi_mmc_driver);
MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("David Lanzendörfer <[email protected]>");
MODULE_ALIAS("platform:sunxi-mmc");
| linux-master | drivers/mmc/host/sunxi-mmc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/drivers/mmc/host/wbsd.c - Winbond W83L51xD SD/MMC driver
*
* Copyright (C) 2004-2007 Pierre Ossman, All Rights Reserved.
*
* Warning!
*
* Changes to the FIFO system should be done with extreme care since
* the hardware is full of bugs related to the FIFO. Known issues are:
*
* - FIFO size field in FSR is always zero.
*
* - FIFO interrupts tend not to work as they should. Interrupts are
* triggered only for full/empty events, not for threshold values.
*
* - On APIC systems the FIFO empty interrupt is sometimes lost.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/pnp.h>
#include <linux/highmem.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <asm/dma.h>
#include "wbsd.h"
#define DRIVER_NAME "wbsd"
#define DBG(x...) \
pr_debug(DRIVER_NAME ": " x)
#define DBGF(f, x...) \
pr_debug(DRIVER_NAME " [%s()]: " f, __func__ , ##x)
/*
* Device resources
*/
#ifdef CONFIG_PNP
static const struct pnp_device_id pnp_dev_table[] = {
{ "WEC0517", 0 },
{ "WEC0518", 0 },
{ "", 0 },
};
MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
#endif /* CONFIG_PNP */
static const int config_ports[] = { 0x2E, 0x4E };
static const int unlock_codes[] = { 0x83, 0x87 };
static const int valid_ids[] = {
0x7112,
};
#ifdef CONFIG_PNP
static unsigned int param_nopnp = 0;
#else
static const unsigned int param_nopnp = 1;
#endif
static unsigned int param_io = 0x248;
static unsigned int param_irq = 6;
static int param_dma = 2;
/*
* Basic functions
*/
static inline void wbsd_unlock_config(struct wbsd_host *host)
{
BUG_ON(host->config == 0);
outb(host->unlock_code, host->config);
outb(host->unlock_code, host->config);
}
static inline void wbsd_lock_config(struct wbsd_host *host)
{
BUG_ON(host->config == 0);
outb(LOCK_CODE, host->config);
}
static inline void wbsd_write_config(struct wbsd_host *host, u8 reg, u8 value)
{
BUG_ON(host->config == 0);
outb(reg, host->config);
outb(value, host->config + 1);
}
static inline u8 wbsd_read_config(struct wbsd_host *host, u8 reg)
{
BUG_ON(host->config == 0);
outb(reg, host->config);
return inb(host->config + 1);
}
static inline void wbsd_write_index(struct wbsd_host *host, u8 index, u8 value)
{
outb(index, host->base + WBSD_IDXR);
outb(value, host->base + WBSD_DATAR);
}
static inline u8 wbsd_read_index(struct wbsd_host *host, u8 index)
{
outb(index, host->base + WBSD_IDXR);
return inb(host->base + WBSD_DATAR);
}
/*
* Common routines
*/
static void wbsd_init_device(struct wbsd_host *host)
{
u8 setup, ier;
/*
* Reset chip (SD/MMC part) and fifo.
*/
setup = wbsd_read_index(host, WBSD_IDX_SETUP);
setup |= WBSD_FIFO_RESET | WBSD_SOFT_RESET;
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
/*
* Set DAT3 to input
*/
setup &= ~WBSD_DAT3_H;
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
host->flags &= ~WBSD_FIGNORE_DETECT;
/*
* Read back default clock.
*/
host->clk = wbsd_read_index(host, WBSD_IDX_CLK);
/*
* Power down port.
*/
outb(WBSD_POWER_N, host->base + WBSD_CSR);
/*
* Set maximum timeout.
*/
wbsd_write_index(host, WBSD_IDX_TAAC, 0x7F);
/*
* Test for card presence
*/
if (inb(host->base + WBSD_CSR) & WBSD_CARDPRESENT)
host->flags |= WBSD_FCARD_PRESENT;
else
host->flags &= ~WBSD_FCARD_PRESENT;
/*
* Enable interesting interrupts.
*/
ier = 0;
ier |= WBSD_EINT_CARD;
ier |= WBSD_EINT_FIFO_THRE;
ier |= WBSD_EINT_CRC;
ier |= WBSD_EINT_TIMEOUT;
ier |= WBSD_EINT_TC;
outb(ier, host->base + WBSD_EIR);
/*
* Clear interrupts.
*/
inb(host->base + WBSD_ISR);
}
static void wbsd_reset(struct wbsd_host *host)
{
u8 setup;
pr_err("%s: Resetting chip\n", mmc_hostname(host->mmc));
/*
* Soft reset of chip (SD/MMC part).
*/
setup = wbsd_read_index(host, WBSD_IDX_SETUP);
setup |= WBSD_SOFT_RESET;
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
}
static void wbsd_request_end(struct wbsd_host *host, struct mmc_request *mrq)
{
unsigned long dmaflags;
if (host->dma >= 0) {
/*
* Release ISA DMA controller.
*/
dmaflags = claim_dma_lock();
disable_dma(host->dma);
clear_dma_ff(host->dma);
release_dma_lock(dmaflags);
/*
* Disable DMA on host.
*/
wbsd_write_index(host, WBSD_IDX_DMA, 0);
}
host->mrq = NULL;
/*
* MMC layer might call back into the driver so first unlock.
*/
spin_unlock(&host->lock);
mmc_request_done(host->mmc, mrq);
spin_lock(&host->lock);
}
/*
* Scatter/gather functions
*/
static inline void wbsd_init_sg(struct wbsd_host *host, struct mmc_data *data)
{
/*
* Get info. about SG list from data structure.
*/
host->cur_sg = data->sg;
host->num_sg = data->sg_len;
host->offset = 0;
host->remain = host->cur_sg->length;
}
static inline int wbsd_next_sg(struct wbsd_host *host)
{
/*
* Skip to next SG entry.
*/
host->cur_sg++;
host->num_sg--;
/*
* Any entries left?
*/
if (host->num_sg > 0) {
host->offset = 0;
host->remain = host->cur_sg->length;
}
return host->num_sg;
}
static inline char *wbsd_map_sg(struct wbsd_host *host)
{
return kmap_local_page(sg_page(host->cur_sg)) + host->cur_sg->offset;
}
static inline void wbsd_sg_to_dma(struct wbsd_host *host, struct mmc_data *data)
{
size_t len = 0;
int i;
for (i = 0; i < data->sg_len; i++)
len += data->sg[i].length;
sg_copy_to_buffer(data->sg, data->sg_len, host->dma_buffer, len);
}
static inline void wbsd_dma_to_sg(struct wbsd_host *host, struct mmc_data *data)
{
size_t len = 0;
int i;
for (i = 0; i < data->sg_len; i++)
len += data->sg[i].length;
sg_copy_from_buffer(data->sg, data->sg_len, host->dma_buffer, len);
}
/*
* Command handling
*/
static inline void wbsd_get_short_reply(struct wbsd_host *host,
struct mmc_command *cmd)
{
/*
* Correct response type?
*/
if (wbsd_read_index(host, WBSD_IDX_RSPLEN) != WBSD_RSP_SHORT) {
cmd->error = -EILSEQ;
return;
}
cmd->resp[0] = wbsd_read_index(host, WBSD_IDX_RESP12) << 24;
cmd->resp[0] |= wbsd_read_index(host, WBSD_IDX_RESP13) << 16;
cmd->resp[0] |= wbsd_read_index(host, WBSD_IDX_RESP14) << 8;
cmd->resp[0] |= wbsd_read_index(host, WBSD_IDX_RESP15) << 0;
cmd->resp[1] = wbsd_read_index(host, WBSD_IDX_RESP16) << 24;
}
static inline void wbsd_get_long_reply(struct wbsd_host *host,
struct mmc_command *cmd)
{
int i;
/*
* Correct response type?
*/
if (wbsd_read_index(host, WBSD_IDX_RSPLEN) != WBSD_RSP_LONG) {
cmd->error = -EILSEQ;
return;
}
for (i = 0; i < 4; i++) {
cmd->resp[i] =
wbsd_read_index(host, WBSD_IDX_RESP1 + i * 4) << 24;
cmd->resp[i] |=
wbsd_read_index(host, WBSD_IDX_RESP2 + i * 4) << 16;
cmd->resp[i] |=
wbsd_read_index(host, WBSD_IDX_RESP3 + i * 4) << 8;
cmd->resp[i] |=
wbsd_read_index(host, WBSD_IDX_RESP4 + i * 4) << 0;
}
}
static void wbsd_send_command(struct wbsd_host *host, struct mmc_command *cmd)
{
int i;
u8 status, isr;
/*
* Clear accumulated ISR. The interrupt routine
* will fill this one with events that occur during
* transfer.
*/
host->isr = 0;
/*
* Send the command (CRC calculated by host).
*/
outb(cmd->opcode, host->base + WBSD_CMDR);
for (i = 3; i >= 0; i--)
outb((cmd->arg >> (i * 8)) & 0xff, host->base + WBSD_CMDR);
cmd->error = 0;
/*
* Wait for the request to complete.
*/
do {
status = wbsd_read_index(host, WBSD_IDX_STATUS);
} while (status & WBSD_CARDTRAFFIC);
/*
* Do we expect a reply?
*/
if (cmd->flags & MMC_RSP_PRESENT) {
/*
* Read back status.
*/
isr = host->isr;
/* Card removed? */
if (isr & WBSD_INT_CARD)
cmd->error = -ENOMEDIUM;
/* Timeout? */
else if (isr & WBSD_INT_TIMEOUT)
cmd->error = -ETIMEDOUT;
/* CRC? */
else if ((cmd->flags & MMC_RSP_CRC) && (isr & WBSD_INT_CRC))
cmd->error = -EILSEQ;
/* All ok */
else {
if (cmd->flags & MMC_RSP_136)
wbsd_get_long_reply(host, cmd);
else
wbsd_get_short_reply(host, cmd);
}
}
}
/*
* Data functions
*/
static void wbsd_empty_fifo(struct wbsd_host *host)
{
struct mmc_data *data = host->mrq->cmd->data;
char *buffer;
int i, idx, fsr, fifo;
/*
* Handle excessive data.
*/
if (host->num_sg == 0)
return;
buffer = wbsd_map_sg(host) + host->offset;
idx = 0;
/*
* Drain the fifo. This has a tendency to loop longer
* than the FIFO length (usually one block).
*/
while (!((fsr = inb(host->base + WBSD_FSR)) & WBSD_FIFO_EMPTY)) {
/*
* The size field in the FSR is broken so we have to
* do some guessing.
*/
if (fsr & WBSD_FIFO_FULL)
fifo = 16;
else if (fsr & WBSD_FIFO_FUTHRE)
fifo = 8;
else
fifo = 1;
for (i = 0; i < fifo; i++) {
buffer[idx++] = inb(host->base + WBSD_DFR);
host->offset++;
host->remain--;
data->bytes_xfered++;
/*
* End of scatter list entry?
*/
if (host->remain == 0) {
kunmap_local(buffer);
/*
* Get next entry. Check if last.
*/
if (!wbsd_next_sg(host))
return;
buffer = wbsd_map_sg(host);
idx = 0;
}
}
}
kunmap_local(buffer);
/*
* This is a very dirty hack to solve a
* hardware problem. The chip doesn't trigger
* FIFO threshold interrupts properly.
*/
if ((data->blocks * data->blksz - data->bytes_xfered) < 16)
tasklet_schedule(&host->fifo_tasklet);
}
static void wbsd_fill_fifo(struct wbsd_host *host)
{
struct mmc_data *data = host->mrq->cmd->data;
char *buffer;
int i, idx, fsr, fifo;
/*
* Check that we aren't being called after the
* entire buffer has been transferred.
*/
if (host->num_sg == 0)
return;
buffer = wbsd_map_sg(host) + host->offset;
idx = 0;
/*
* Fill the fifo. This has a tendency to loop longer
* than the FIFO length (usually one block).
*/
while (!((fsr = inb(host->base + WBSD_FSR)) & WBSD_FIFO_FULL)) {
/*
* The size field in the FSR is broken so we have to
* do some guessing.
*/
if (fsr & WBSD_FIFO_EMPTY)
fifo = 0;
else if (fsr & WBSD_FIFO_EMTHRE)
fifo = 8;
else
fifo = 15;
for (i = 16; i > fifo; i--) {
outb(buffer[idx], host->base + WBSD_DFR);
host->offset++;
host->remain--;
data->bytes_xfered++;
/*
* End of scatter list entry?
*/
if (host->remain == 0) {
kunmap_local(buffer);
/*
* Get next entry. Check if last.
*/
if (!wbsd_next_sg(host))
return;
buffer = wbsd_map_sg(host);
idx = 0;
}
}
}
kunmap_local(buffer);
/*
* The controller stops sending interrupts for
* 'FIFO empty' under certain conditions. So we
* need to be a bit more pro-active.
*/
tasklet_schedule(&host->fifo_tasklet);
}
static void wbsd_prepare_data(struct wbsd_host *host, struct mmc_data *data)
{
u16 blksize;
u8 setup;
unsigned long dmaflags;
unsigned int size;
/*
* Calculate size.
*/
size = data->blocks * data->blksz;
/*
* Check timeout values for overflow.
* (Yes, some cards cause this value to overflow).
*/
if (data->timeout_ns > 127000000)
wbsd_write_index(host, WBSD_IDX_TAAC, 127);
else {
wbsd_write_index(host, WBSD_IDX_TAAC,
data->timeout_ns / 1000000);
}
if (data->timeout_clks > 255)
wbsd_write_index(host, WBSD_IDX_NSAC, 255);
else
wbsd_write_index(host, WBSD_IDX_NSAC, data->timeout_clks);
/*
* Inform the chip of how large blocks will be
* sent. It needs this to determine when to
* calculate CRC.
*
* Space for CRC must be included in the size.
* Two bytes are needed for each data line.
*/
if (host->bus_width == MMC_BUS_WIDTH_1) {
blksize = data->blksz + 2;
wbsd_write_index(host, WBSD_IDX_PBSMSB, (blksize >> 4) & 0xF0);
wbsd_write_index(host, WBSD_IDX_PBSLSB, blksize & 0xFF);
} else if (host->bus_width == MMC_BUS_WIDTH_4) {
blksize = data->blksz + 2 * 4;
wbsd_write_index(host, WBSD_IDX_PBSMSB,
((blksize >> 4) & 0xF0) | WBSD_DATA_WIDTH);
wbsd_write_index(host, WBSD_IDX_PBSLSB, blksize & 0xFF);
} else {
data->error = -EINVAL;
return;
}
/*
* Clear the FIFO. This is needed even for DMA
* transfers since the chip still uses the FIFO
* internally.
*/
setup = wbsd_read_index(host, WBSD_IDX_SETUP);
setup |= WBSD_FIFO_RESET;
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
/*
* DMA transfer?
*/
if (host->dma >= 0) {
/*
* The buffer for DMA is only 64 kB.
*/
BUG_ON(size > 0x10000);
if (size > 0x10000) {
data->error = -EINVAL;
return;
}
/*
* Transfer data from the SG list to
* the DMA buffer.
*/
if (data->flags & MMC_DATA_WRITE)
wbsd_sg_to_dma(host, data);
/*
* Initialise the ISA DMA controller.
*/
dmaflags = claim_dma_lock();
disable_dma(host->dma);
clear_dma_ff(host->dma);
if (data->flags & MMC_DATA_READ)
set_dma_mode(host->dma, DMA_MODE_READ & ~0x40);
else
set_dma_mode(host->dma, DMA_MODE_WRITE & ~0x40);
set_dma_addr(host->dma, host->dma_addr);
set_dma_count(host->dma, size);
enable_dma(host->dma);
release_dma_lock(dmaflags);
/*
* Enable DMA on the host.
*/
wbsd_write_index(host, WBSD_IDX_DMA, WBSD_DMA_ENABLE);
} else {
/*
* This flag is used to keep printk
* output to a minimum.
*/
host->firsterr = 1;
/*
* Initialise the SG list.
*/
wbsd_init_sg(host, data);
/*
* Turn off DMA.
*/
wbsd_write_index(host, WBSD_IDX_DMA, 0);
/*
* Set up FIFO threshold levels (and fill
* buffer if doing a write).
*/
if (data->flags & MMC_DATA_READ) {
wbsd_write_index(host, WBSD_IDX_FIFOEN,
WBSD_FIFOEN_FULL | 8);
} else {
wbsd_write_index(host, WBSD_IDX_FIFOEN,
WBSD_FIFOEN_EMPTY | 8);
wbsd_fill_fifo(host);
}
}
data->error = 0;
}
static void wbsd_finish_data(struct wbsd_host *host, struct mmc_data *data)
{
unsigned long dmaflags;
int count;
u8 status;
WARN_ON(host->mrq == NULL);
/*
* Send a stop command if needed.
*/
if (data->stop)
wbsd_send_command(host, data->stop);
/*
* Wait for the controller to leave data
* transfer state.
*/
do {
status = wbsd_read_index(host, WBSD_IDX_STATUS);
} while (status & (WBSD_BLOCK_READ | WBSD_BLOCK_WRITE));
/*
* DMA transfer?
*/
if (host->dma >= 0) {
/*
* Disable DMA on the host.
*/
wbsd_write_index(host, WBSD_IDX_DMA, 0);
/*
* Turn of ISA DMA controller.
*/
dmaflags = claim_dma_lock();
disable_dma(host->dma);
clear_dma_ff(host->dma);
count = get_dma_residue(host->dma);
release_dma_lock(dmaflags);
data->bytes_xfered = host->mrq->data->blocks *
host->mrq->data->blksz - count;
data->bytes_xfered -= data->bytes_xfered % data->blksz;
/*
* Any leftover data?
*/
if (count) {
pr_err("%s: Incomplete DMA transfer. "
"%d bytes left.\n",
mmc_hostname(host->mmc), count);
if (!data->error)
data->error = -EIO;
} else {
/*
* Transfer data from DMA buffer to
* SG list.
*/
if (data->flags & MMC_DATA_READ)
wbsd_dma_to_sg(host, data);
}
if (data->error) {
if (data->bytes_xfered)
data->bytes_xfered -= data->blksz;
}
}
wbsd_request_end(host, host->mrq);
}
/*****************************************************************************\
* *
* MMC layer callbacks *
* *
\*****************************************************************************/
static void wbsd_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct wbsd_host *host = mmc_priv(mmc);
struct mmc_command *cmd;
/*
* Disable tasklets to avoid a deadlock.
*/
spin_lock_bh(&host->lock);
BUG_ON(host->mrq != NULL);
cmd = mrq->cmd;
host->mrq = mrq;
/*
* Check that there is actually a card in the slot.
*/
if (!(host->flags & WBSD_FCARD_PRESENT)) {
cmd->error = -ENOMEDIUM;
goto done;
}
if (cmd->data) {
/*
* The hardware is so delightfully stupid that it has a list
* of "data" commands. If a command isn't on this list, it'll
* just go back to the idle state and won't send any data
* interrupts.
*/
switch (cmd->opcode) {
case SD_SWITCH_VOLTAGE:
case MMC_READ_SINGLE_BLOCK:
case MMC_READ_MULTIPLE_BLOCK:
case MMC_WRITE_DAT_UNTIL_STOP:
case MMC_WRITE_BLOCK:
case MMC_WRITE_MULTIPLE_BLOCK:
case MMC_PROGRAM_CID:
case MMC_PROGRAM_CSD:
case MMC_SEND_WRITE_PROT:
case MMC_LOCK_UNLOCK:
case MMC_GEN_CMD:
break;
/* ACMDs. We don't keep track of state, so we just treat them
* like any other command. */
case SD_APP_SEND_SCR:
break;
default:
pr_warn("%s: Data command %d is not supported by this controller\n",
mmc_hostname(host->mmc), cmd->opcode);
cmd->error = -EINVAL;
goto done;
}
}
/*
* Does the request include data?
*/
if (cmd->data) {
wbsd_prepare_data(host, cmd->data);
if (cmd->data->error)
goto done;
}
wbsd_send_command(host, cmd);
/*
* If this is a data transfer the request
* will be finished after the data has
* transferred.
*/
if (cmd->data && !cmd->error) {
/*
* Dirty fix for hardware bug.
*/
if (host->dma == -1)
tasklet_schedule(&host->fifo_tasklet);
spin_unlock_bh(&host->lock);
return;
}
done:
wbsd_request_end(host, mrq);
spin_unlock_bh(&host->lock);
}
static void wbsd_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct wbsd_host *host = mmc_priv(mmc);
u8 clk, setup, pwr;
spin_lock_bh(&host->lock);
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF)
wbsd_init_device(host);
if (ios->clock >= 24000000)
clk = WBSD_CLK_24M;
else if (ios->clock >= 16000000)
clk = WBSD_CLK_16M;
else if (ios->clock >= 12000000)
clk = WBSD_CLK_12M;
else
clk = WBSD_CLK_375K;
/*
* Only write to the clock register when
* there is an actual change.
*/
if (clk != host->clk) {
wbsd_write_index(host, WBSD_IDX_CLK, clk);
host->clk = clk;
}
/*
* Power up card.
*/
if (ios->power_mode != MMC_POWER_OFF) {
pwr = inb(host->base + WBSD_CSR);
pwr &= ~WBSD_POWER_N;
outb(pwr, host->base + WBSD_CSR);
}
/*
* MMC cards need to have pin 1 high during init.
* It wreaks havoc with the card detection though so
* that needs to be disabled.
*/
setup = wbsd_read_index(host, WBSD_IDX_SETUP);
if (ios->chip_select == MMC_CS_HIGH) {
BUG_ON(ios->bus_width != MMC_BUS_WIDTH_1);
setup |= WBSD_DAT3_H;
host->flags |= WBSD_FIGNORE_DETECT;
} else {
if (setup & WBSD_DAT3_H) {
setup &= ~WBSD_DAT3_H;
/*
* We cannot resume card detection immediately
* because of capacitance and delays in the chip.
*/
mod_timer(&host->ignore_timer, jiffies + HZ / 100);
}
}
wbsd_write_index(host, WBSD_IDX_SETUP, setup);
/*
* Store bus width for later. Will be used when
* setting up the data transfer.
*/
host->bus_width = ios->bus_width;
spin_unlock_bh(&host->lock);
}
static int wbsd_get_ro(struct mmc_host *mmc)
{
struct wbsd_host *host = mmc_priv(mmc);
u8 csr;
spin_lock_bh(&host->lock);
csr = inb(host->base + WBSD_CSR);
csr |= WBSD_MSLED;
outb(csr, host->base + WBSD_CSR);
mdelay(1);
csr = inb(host->base + WBSD_CSR);
csr &= ~WBSD_MSLED;
outb(csr, host->base + WBSD_CSR);
spin_unlock_bh(&host->lock);
return !!(csr & WBSD_WRPT);
}
static const struct mmc_host_ops wbsd_ops = {
.request = wbsd_request,
.set_ios = wbsd_set_ios,
.get_ro = wbsd_get_ro,
};
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
/*
* Helper function to reset detection ignore
*/
static void wbsd_reset_ignore(struct timer_list *t)
{
struct wbsd_host *host = from_timer(host, t, ignore_timer);
BUG_ON(host == NULL);
DBG("Resetting card detection ignore\n");
spin_lock_bh(&host->lock);
host->flags &= ~WBSD_FIGNORE_DETECT;
/*
* Card status might have changed during the
* blackout.
*/
tasklet_schedule(&host->card_tasklet);
spin_unlock_bh(&host->lock);
}
/*
* Tasklets
*/
static inline struct mmc_data *wbsd_get_data(struct wbsd_host *host)
{
WARN_ON(!host->mrq);
if (!host->mrq)
return NULL;
WARN_ON(!host->mrq->cmd);
if (!host->mrq->cmd)
return NULL;
WARN_ON(!host->mrq->cmd->data);
if (!host->mrq->cmd->data)
return NULL;
return host->mrq->cmd->data;
}
static void wbsd_tasklet_card(struct tasklet_struct *t)
{
struct wbsd_host *host = from_tasklet(host, t, card_tasklet);
u8 csr;
int delay = -1;
spin_lock(&host->lock);
if (host->flags & WBSD_FIGNORE_DETECT) {
spin_unlock(&host->lock);
return;
}
csr = inb(host->base + WBSD_CSR);
WARN_ON(csr == 0xff);
if (csr & WBSD_CARDPRESENT) {
if (!(host->flags & WBSD_FCARD_PRESENT)) {
DBG("Card inserted\n");
host->flags |= WBSD_FCARD_PRESENT;
delay = 500;
}
} else if (host->flags & WBSD_FCARD_PRESENT) {
DBG("Card removed\n");
host->flags &= ~WBSD_FCARD_PRESENT;
if (host->mrq) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
wbsd_reset(host);
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
delay = 0;
}
/*
* Unlock first since we might get a call back.
*/
spin_unlock(&host->lock);
if (delay != -1)
mmc_detect_change(host->mmc, msecs_to_jiffies(delay));
}
static void wbsd_tasklet_fifo(struct tasklet_struct *t)
{
struct wbsd_host *host = from_tasklet(host, t, fifo_tasklet);
struct mmc_data *data;
spin_lock(&host->lock);
if (!host->mrq)
goto end;
data = wbsd_get_data(host);
if (!data)
goto end;
if (data->flags & MMC_DATA_WRITE)
wbsd_fill_fifo(host);
else
wbsd_empty_fifo(host);
/*
* Done?
*/
if (host->num_sg == 0) {
wbsd_write_index(host, WBSD_IDX_FIFOEN, 0);
tasklet_schedule(&host->finish_tasklet);
}
end:
spin_unlock(&host->lock);
}
static void wbsd_tasklet_crc(struct tasklet_struct *t)
{
struct wbsd_host *host = from_tasklet(host, t, crc_tasklet);
struct mmc_data *data;
spin_lock(&host->lock);
if (!host->mrq)
goto end;
data = wbsd_get_data(host);
if (!data)
goto end;
DBGF("CRC error\n");
data->error = -EILSEQ;
tasklet_schedule(&host->finish_tasklet);
end:
spin_unlock(&host->lock);
}
static void wbsd_tasklet_timeout(struct tasklet_struct *t)
{
struct wbsd_host *host = from_tasklet(host, t, timeout_tasklet);
struct mmc_data *data;
spin_lock(&host->lock);
if (!host->mrq)
goto end;
data = wbsd_get_data(host);
if (!data)
goto end;
DBGF("Timeout\n");
data->error = -ETIMEDOUT;
tasklet_schedule(&host->finish_tasklet);
end:
spin_unlock(&host->lock);
}
static void wbsd_tasklet_finish(struct tasklet_struct *t)
{
struct wbsd_host *host = from_tasklet(host, t, finish_tasklet);
struct mmc_data *data;
spin_lock(&host->lock);
WARN_ON(!host->mrq);
if (!host->mrq)
goto end;
data = wbsd_get_data(host);
if (!data)
goto end;
wbsd_finish_data(host, data);
end:
spin_unlock(&host->lock);
}
/*
* Interrupt handling
*/
static irqreturn_t wbsd_irq(int irq, void *dev_id)
{
struct wbsd_host *host = dev_id;
int isr;
isr = inb(host->base + WBSD_ISR);
/*
* Was it actually our hardware that caused the interrupt?
*/
if (isr == 0xff || isr == 0x00)
return IRQ_NONE;
host->isr |= isr;
/*
* Schedule tasklets as needed.
*/
if (isr & WBSD_INT_CARD)
tasklet_schedule(&host->card_tasklet);
if (isr & WBSD_INT_FIFO_THRE)
tasklet_schedule(&host->fifo_tasklet);
if (isr & WBSD_INT_CRC)
tasklet_hi_schedule(&host->crc_tasklet);
if (isr & WBSD_INT_TIMEOUT)
tasklet_hi_schedule(&host->timeout_tasklet);
if (isr & WBSD_INT_TC)
tasklet_schedule(&host->finish_tasklet);
return IRQ_HANDLED;
}
/*****************************************************************************\
* *
* Device initialisation and shutdown *
* *
\*****************************************************************************/
/*
* Allocate/free MMC structure.
*/
static int wbsd_alloc_mmc(struct device *dev)
{
struct mmc_host *mmc;
struct wbsd_host *host;
/*
* Allocate MMC structure.
*/
mmc = mmc_alloc_host(sizeof(struct wbsd_host), dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->mmc = mmc;
host->dma = -1;
/*
* Set host parameters.
*/
mmc->ops = &wbsd_ops;
mmc->f_min = 375000;
mmc->f_max = 24000000;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->caps = MMC_CAP_4_BIT_DATA;
spin_lock_init(&host->lock);
/*
* Set up timers
*/
timer_setup(&host->ignore_timer, wbsd_reset_ignore, 0);
/*
* Maximum number of segments. Worst case is one sector per segment
* so this will be 64kB/512.
*/
mmc->max_segs = 128;
/*
* Maximum request size. Also limited by 64KiB buffer.
*/
mmc->max_req_size = 65536;
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes.
*/
mmc->max_seg_size = mmc->max_req_size;
/*
* Maximum block size. We have 12 bits (= 4095) but have to subtract
* space for CRC. So the maximum is 4095 - 4*2 = 4087.
*/
mmc->max_blk_size = 4087;
/*
* Maximum block count. There is no real limit so the maximum
* request size will be the only restriction.
*/
mmc->max_blk_count = mmc->max_req_size;
dev_set_drvdata(dev, mmc);
return 0;
}
static void wbsd_free_mmc(struct device *dev)
{
struct mmc_host *mmc;
struct wbsd_host *host;
mmc = dev_get_drvdata(dev);
if (!mmc)
return;
host = mmc_priv(mmc);
BUG_ON(host == NULL);
del_timer_sync(&host->ignore_timer);
mmc_free_host(mmc);
}
/*
* Scan for known chip id:s
*/
static int wbsd_scan(struct wbsd_host *host)
{
int i, j, k;
int id;
/*
* Iterate through all ports, all codes to
* find hardware that is in our known list.
*/
for (i = 0; i < ARRAY_SIZE(config_ports); i++) {
if (!request_region(config_ports[i], 2, DRIVER_NAME))
continue;
for (j = 0; j < ARRAY_SIZE(unlock_codes); j++) {
id = 0xFFFF;
host->config = config_ports[i];
host->unlock_code = unlock_codes[j];
wbsd_unlock_config(host);
outb(WBSD_CONF_ID_HI, config_ports[i]);
id = inb(config_ports[i] + 1) << 8;
outb(WBSD_CONF_ID_LO, config_ports[i]);
id |= inb(config_ports[i] + 1);
wbsd_lock_config(host);
for (k = 0; k < ARRAY_SIZE(valid_ids); k++) {
if (id == valid_ids[k]) {
host->chip_id = id;
return 0;
}
}
if (id != 0xFFFF) {
DBG("Unknown hardware (id %x) found at %x\n",
id, config_ports[i]);
}
}
release_region(config_ports[i], 2);
}
host->config = 0;
host->unlock_code = 0;
return -ENODEV;
}
/*
* Allocate/free io port ranges
*/
static int wbsd_request_region(struct wbsd_host *host, int base)
{
if (base & 0x7)
return -EINVAL;
if (!request_region(base, 8, DRIVER_NAME))
return -EIO;
host->base = base;
return 0;
}
static void wbsd_release_regions(struct wbsd_host *host)
{
if (host->base)
release_region(host->base, 8);
host->base = 0;
if (host->config)
release_region(host->config, 2);
host->config = 0;
}
/*
* Allocate/free DMA port and buffer
*/
static void wbsd_request_dma(struct wbsd_host *host, int dma)
{
if (dma < 0)
return;
if (request_dma(dma, DRIVER_NAME))
goto err;
/*
* We need to allocate a special buffer in
* order for ISA to be able to DMA to it.
*/
host->dma_buffer = kmalloc(WBSD_DMA_SIZE,
GFP_NOIO | GFP_DMA | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
if (!host->dma_buffer)
goto free;
/*
* Translate the address to a physical address.
*/
host->dma_addr = dma_map_single(mmc_dev(host->mmc), host->dma_buffer,
WBSD_DMA_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(mmc_dev(host->mmc), host->dma_addr))
goto kfree;
/*
* ISA DMA must be aligned on a 64k basis.
*/
if ((host->dma_addr & 0xffff) != 0)
goto unmap;
/*
* ISA cannot access memory above 16 MB.
*/
else if (host->dma_addr >= 0x1000000)
goto unmap;
host->dma = dma;
return;
unmap:
/*
* If we've gotten here then there is some kind of alignment bug
*/
BUG_ON(1);
dma_unmap_single(mmc_dev(host->mmc), host->dma_addr,
WBSD_DMA_SIZE, DMA_BIDIRECTIONAL);
host->dma_addr = 0;
kfree:
kfree(host->dma_buffer);
host->dma_buffer = NULL;
free:
free_dma(dma);
err:
pr_warn(DRIVER_NAME ": Unable to allocate DMA %d - falling back on FIFO\n",
dma);
}
static void wbsd_release_dma(struct wbsd_host *host)
{
/*
* host->dma_addr is valid here iff host->dma_buffer is not NULL.
*/
if (host->dma_buffer) {
dma_unmap_single(mmc_dev(host->mmc), host->dma_addr,
WBSD_DMA_SIZE, DMA_BIDIRECTIONAL);
kfree(host->dma_buffer);
}
if (host->dma >= 0)
free_dma(host->dma);
host->dma = -1;
host->dma_buffer = NULL;
host->dma_addr = 0;
}
/*
* Allocate/free IRQ.
*/
static int wbsd_request_irq(struct wbsd_host *host, int irq)
{
int ret;
/*
* Set up tasklets. Must be done before requesting interrupt.
*/
tasklet_setup(&host->card_tasklet, wbsd_tasklet_card);
tasklet_setup(&host->fifo_tasklet, wbsd_tasklet_fifo);
tasklet_setup(&host->crc_tasklet, wbsd_tasklet_crc);
tasklet_setup(&host->timeout_tasklet, wbsd_tasklet_timeout);
tasklet_setup(&host->finish_tasklet, wbsd_tasklet_finish);
/*
* Allocate interrupt.
*/
ret = request_irq(irq, wbsd_irq, IRQF_SHARED, DRIVER_NAME, host);
if (ret)
return ret;
host->irq = irq;
return 0;
}
static void wbsd_release_irq(struct wbsd_host *host)
{
if (!host->irq)
return;
free_irq(host->irq, host);
host->irq = 0;
tasklet_kill(&host->card_tasklet);
tasklet_kill(&host->fifo_tasklet);
tasklet_kill(&host->crc_tasklet);
tasklet_kill(&host->timeout_tasklet);
tasklet_kill(&host->finish_tasklet);
}
/*
* Allocate all resources for the host.
*/
static int wbsd_request_resources(struct wbsd_host *host,
int base, int irq, int dma)
{
int ret;
/*
* Allocate I/O ports.
*/
ret = wbsd_request_region(host, base);
if (ret)
return ret;
/*
* Allocate interrupt.
*/
ret = wbsd_request_irq(host, irq);
if (ret)
return ret;
/*
* Allocate DMA.
*/
wbsd_request_dma(host, dma);
return 0;
}
/*
* Release all resources for the host.
*/
static void wbsd_release_resources(struct wbsd_host *host)
{
wbsd_release_dma(host);
wbsd_release_irq(host);
wbsd_release_regions(host);
}
/*
* Configure the resources the chip should use.
*/
static void wbsd_chip_config(struct wbsd_host *host)
{
wbsd_unlock_config(host);
/*
* Reset the chip.
*/
wbsd_write_config(host, WBSD_CONF_SWRST, 1);
wbsd_write_config(host, WBSD_CONF_SWRST, 0);
/*
* Select SD/MMC function.
*/
wbsd_write_config(host, WBSD_CONF_DEVICE, DEVICE_SD);
/*
* Set up card detection.
*/
wbsd_write_config(host, WBSD_CONF_PINS, WBSD_PINS_DETECT_GP11);
/*
* Configure chip
*/
wbsd_write_config(host, WBSD_CONF_PORT_HI, host->base >> 8);
wbsd_write_config(host, WBSD_CONF_PORT_LO, host->base & 0xff);
wbsd_write_config(host, WBSD_CONF_IRQ, host->irq);
if (host->dma >= 0)
wbsd_write_config(host, WBSD_CONF_DRQ, host->dma);
/*
* Enable and power up chip.
*/
wbsd_write_config(host, WBSD_CONF_ENABLE, 1);
wbsd_write_config(host, WBSD_CONF_POWER, 0x20);
wbsd_lock_config(host);
}
/*
* Check that configured resources are correct.
*/
static int wbsd_chip_validate(struct wbsd_host *host)
{
int base, irq, dma;
wbsd_unlock_config(host);
/*
* Select SD/MMC function.
*/
wbsd_write_config(host, WBSD_CONF_DEVICE, DEVICE_SD);
/*
* Read configuration.
*/
base = wbsd_read_config(host, WBSD_CONF_PORT_HI) << 8;
base |= wbsd_read_config(host, WBSD_CONF_PORT_LO);
irq = wbsd_read_config(host, WBSD_CONF_IRQ);
dma = wbsd_read_config(host, WBSD_CONF_DRQ);
wbsd_lock_config(host);
/*
* Validate against given configuration.
*/
if (base != host->base)
return 0;
if (irq != host->irq)
return 0;
if ((dma != host->dma) && (host->dma != -1))
return 0;
return 1;
}
/*
* Powers down the SD function
*/
static void wbsd_chip_poweroff(struct wbsd_host *host)
{
wbsd_unlock_config(host);
wbsd_write_config(host, WBSD_CONF_DEVICE, DEVICE_SD);
wbsd_write_config(host, WBSD_CONF_ENABLE, 0);
wbsd_lock_config(host);
}
/*****************************************************************************\
* *
* Devices setup and shutdown *
* *
\*****************************************************************************/
static int wbsd_init(struct device *dev, int base, int irq, int dma,
int pnp)
{
struct wbsd_host *host = NULL;
struct mmc_host *mmc = NULL;
int ret;
ret = wbsd_alloc_mmc(dev);
if (ret)
return ret;
mmc = dev_get_drvdata(dev);
host = mmc_priv(mmc);
/*
* Scan for hardware.
*/
ret = wbsd_scan(host);
if (ret) {
if (pnp && (ret == -ENODEV)) {
pr_warn(DRIVER_NAME ": Unable to confirm device presence - you may experience lock-ups\n");
} else {
wbsd_free_mmc(dev);
return ret;
}
}
/*
* Request resources.
*/
ret = wbsd_request_resources(host, base, irq, dma);
if (ret) {
wbsd_release_resources(host);
wbsd_free_mmc(dev);
return ret;
}
/*
* See if chip needs to be configured.
*/
if (pnp) {
if ((host->config != 0) && !wbsd_chip_validate(host)) {
pr_warn(DRIVER_NAME ": PnP active but chip not configured! You probably have a buggy BIOS. Configuring chip manually.\n");
wbsd_chip_config(host);
}
} else
wbsd_chip_config(host);
/*
* Power Management stuff. No idea how this works.
* Not tested.
*/
#ifdef CONFIG_PM
if (host->config) {
wbsd_unlock_config(host);
wbsd_write_config(host, WBSD_CONF_PME, 0xA0);
wbsd_lock_config(host);
}
#endif
/*
* Allow device to initialise itself properly.
*/
mdelay(5);
/*
* Reset the chip into a known state.
*/
wbsd_init_device(host);
ret = mmc_add_host(mmc);
if (ret) {
if (!pnp)
wbsd_chip_poweroff(host);
wbsd_release_resources(host);
wbsd_free_mmc(dev);
return ret;
}
pr_info("%s: W83L51xD", mmc_hostname(mmc));
if (host->chip_id != 0)
printk(" id %x", (int)host->chip_id);
printk(" at 0x%x irq %d", (int)host->base, (int)host->irq);
if (host->dma >= 0)
printk(" dma %d", (int)host->dma);
else
printk(" FIFO");
if (pnp)
printk(" PnP");
printk("\n");
return 0;
}
static void wbsd_shutdown(struct device *dev, int pnp)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct wbsd_host *host;
if (!mmc)
return;
host = mmc_priv(mmc);
mmc_remove_host(mmc);
/*
* Power down the SD/MMC function.
*/
if (!pnp)
wbsd_chip_poweroff(host);
wbsd_release_resources(host);
wbsd_free_mmc(dev);
}
/*
* Non-PnP
*/
static int wbsd_probe(struct platform_device *dev)
{
/* Use the module parameters for resources */
return wbsd_init(&dev->dev, param_io, param_irq, param_dma, 0);
}
static void wbsd_remove(struct platform_device *dev)
{
wbsd_shutdown(&dev->dev, 0);
}
/*
* PnP
*/
#ifdef CONFIG_PNP
static int
wbsd_pnp_probe(struct pnp_dev *pnpdev, const struct pnp_device_id *dev_id)
{
int io, irq, dma;
/*
* Get resources from PnP layer.
*/
io = pnp_port_start(pnpdev, 0);
irq = pnp_irq(pnpdev, 0);
if (pnp_dma_valid(pnpdev, 0))
dma = pnp_dma(pnpdev, 0);
else
dma = -1;
DBGF("PnP resources: port %3x irq %d dma %d\n", io, irq, dma);
return wbsd_init(&pnpdev->dev, io, irq, dma, 1);
}
static void wbsd_pnp_remove(struct pnp_dev *dev)
{
wbsd_shutdown(&dev->dev, 1);
}
#endif /* CONFIG_PNP */
/*
* Power management
*/
#ifdef CONFIG_PM
static int wbsd_platform_suspend(struct platform_device *dev,
pm_message_t state)
{
struct mmc_host *mmc = platform_get_drvdata(dev);
struct wbsd_host *host;
if (mmc == NULL)
return 0;
DBGF("Suspending...\n");
host = mmc_priv(mmc);
wbsd_chip_poweroff(host);
return 0;
}
static int wbsd_platform_resume(struct platform_device *dev)
{
struct mmc_host *mmc = platform_get_drvdata(dev);
struct wbsd_host *host;
if (mmc == NULL)
return 0;
DBGF("Resuming...\n");
host = mmc_priv(mmc);
wbsd_chip_config(host);
/*
* Allow device to initialise itself properly.
*/
mdelay(5);
wbsd_init_device(host);
return 0;
}
#ifdef CONFIG_PNP
static int wbsd_pnp_suspend(struct pnp_dev *pnp_dev, pm_message_t state)
{
struct mmc_host *mmc = dev_get_drvdata(&pnp_dev->dev);
if (mmc == NULL)
return 0;
DBGF("Suspending...\n");
return 0;
}
static int wbsd_pnp_resume(struct pnp_dev *pnp_dev)
{
struct mmc_host *mmc = dev_get_drvdata(&pnp_dev->dev);
struct wbsd_host *host;
if (mmc == NULL)
return 0;
DBGF("Resuming...\n");
host = mmc_priv(mmc);
/*
* See if chip needs to be configured.
*/
if (host->config != 0) {
if (!wbsd_chip_validate(host)) {
pr_warn(DRIVER_NAME ": PnP active but chip not configured! You probably have a buggy BIOS. Configuring chip manually.\n");
wbsd_chip_config(host);
}
}
/*
* Allow device to initialise itself properly.
*/
mdelay(5);
wbsd_init_device(host);
return 0;
}
#endif /* CONFIG_PNP */
#else /* CONFIG_PM */
#define wbsd_platform_suspend NULL
#define wbsd_platform_resume NULL
#define wbsd_pnp_suspend NULL
#define wbsd_pnp_resume NULL
#endif /* CONFIG_PM */
static struct platform_device *wbsd_device;
static struct platform_driver wbsd_driver = {
.probe = wbsd_probe,
.remove_new = wbsd_remove,
.suspend = wbsd_platform_suspend,
.resume = wbsd_platform_resume,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
#ifdef CONFIG_PNP
static struct pnp_driver wbsd_pnp_driver = {
.name = DRIVER_NAME,
.id_table = pnp_dev_table,
.probe = wbsd_pnp_probe,
.remove = wbsd_pnp_remove,
.suspend = wbsd_pnp_suspend,
.resume = wbsd_pnp_resume,
};
#endif /* CONFIG_PNP */
/*
* Module loading/unloading
*/
static int __init wbsd_drv_init(void)
{
int result;
pr_info(DRIVER_NAME
": Winbond W83L51xD SD/MMC card interface driver\n");
pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n");
#ifdef CONFIG_PNP
if (!param_nopnp) {
result = pnp_register_driver(&wbsd_pnp_driver);
if (result < 0)
return result;
}
#endif /* CONFIG_PNP */
if (param_nopnp) {
result = platform_driver_register(&wbsd_driver);
if (result < 0)
return result;
wbsd_device = platform_device_alloc(DRIVER_NAME, -1);
if (!wbsd_device) {
platform_driver_unregister(&wbsd_driver);
return -ENOMEM;
}
result = platform_device_add(wbsd_device);
if (result) {
platform_device_put(wbsd_device);
platform_driver_unregister(&wbsd_driver);
return result;
}
}
return 0;
}
static void __exit wbsd_drv_exit(void)
{
#ifdef CONFIG_PNP
if (!param_nopnp)
pnp_unregister_driver(&wbsd_pnp_driver);
#endif /* CONFIG_PNP */
if (param_nopnp) {
platform_device_unregister(wbsd_device);
platform_driver_unregister(&wbsd_driver);
}
DBG("unloaded\n");
}
module_init(wbsd_drv_init);
module_exit(wbsd_drv_exit);
#ifdef CONFIG_PNP
module_param_hw_named(nopnp, param_nopnp, uint, other, 0444);
#endif
module_param_hw_named(io, param_io, uint, ioport, 0444);
module_param_hw_named(irq, param_irq, uint, irq, 0444);
module_param_hw_named(dma, param_dma, int, dma, 0444);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Pierre Ossman <[email protected]>");
MODULE_DESCRIPTION("Winbond W83L51xD SD/MMC card interface driver");
#ifdef CONFIG_PNP
MODULE_PARM_DESC(nopnp, "Scan for device instead of relying on PNP. (default 0)");
#endif
MODULE_PARM_DESC(io, "I/O base to allocate. Must be 8 byte aligned. (default 0x248)");
MODULE_PARM_DESC(irq, "IRQ to allocate. (default 6)");
MODULE_PARM_DESC(dma, "DMA channel to allocate. -1 for no DMA. (default 2)");
| linux-master | drivers/mmc/host/wbsd.c |
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*/
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/platform_device.h>
#include <linux/ktime.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include "cqhci.h"
#include "cqhci-crypto.h"
#define DCMD_SLOT 31
#define NUM_SLOTS 32
struct cqhci_slot {
struct mmc_request *mrq;
unsigned int flags;
#define CQHCI_EXTERNAL_TIMEOUT BIT(0)
#define CQHCI_COMPLETED BIT(1)
#define CQHCI_HOST_CRC BIT(2)
#define CQHCI_HOST_TIMEOUT BIT(3)
#define CQHCI_HOST_OTHER BIT(4)
};
static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
{
return cq_host->desc_base + (tag * cq_host->slot_sz);
}
static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
{
u8 *desc = get_desc(cq_host, tag);
return desc + cq_host->task_desc_len;
}
static inline size_t get_trans_desc_offset(struct cqhci_host *cq_host, u8 tag)
{
return cq_host->trans_desc_len * cq_host->mmc->max_segs * tag;
}
static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
{
size_t offset = get_trans_desc_offset(cq_host, tag);
return cq_host->trans_desc_dma_base + offset;
}
static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
{
size_t offset = get_trans_desc_offset(cq_host, tag);
return cq_host->trans_desc_base + offset;
}
static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
{
u8 *link_temp;
dma_addr_t trans_temp;
link_temp = get_link_desc(cq_host, tag);
trans_temp = get_trans_desc_dma(cq_host, tag);
memset(link_temp, 0, cq_host->link_desc_len);
if (cq_host->link_desc_len > 8)
*(link_temp + 8) = 0;
if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
return;
}
*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
if (cq_host->dma64) {
__le64 *data_addr = (__le64 __force *)(link_temp + 4);
data_addr[0] = cpu_to_le64(trans_temp);
} else {
__le32 *data_addr = (__le32 __force *)(link_temp + 4);
data_addr[0] = cpu_to_le32(trans_temp);
}
}
static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
{
cqhci_writel(cq_host, set, CQHCI_ISTE);
cqhci_writel(cq_host, set, CQHCI_ISGE);
}
#define DRV_NAME "cqhci"
#define CQHCI_DUMP(f, x...) \
pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
static void cqhci_dumpregs(struct cqhci_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CAP),
cqhci_readl(cq_host, CQHCI_VER));
CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CFG),
cqhci_readl(cq_host, CQHCI_CTL));
CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_IS),
cqhci_readl(cq_host, CQHCI_ISTE));
CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_ISGE),
cqhci_readl(cq_host, CQHCI_IC));
CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TDLBA),
cqhci_readl(cq_host, CQHCI_TDLBAU));
CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TDBR),
cqhci_readl(cq_host, CQHCI_TCN));
CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_DQS),
cqhci_readl(cq_host, CQHCI_DPT));
CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TCLR),
cqhci_readl(cq_host, CQHCI_SSC1));
CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_SSC2),
cqhci_readl(cq_host, CQHCI_CRDCT));
CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_RMEM),
cqhci_readl(cq_host, CQHCI_TERRI));
CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CRI),
cqhci_readl(cq_host, CQHCI_CRA));
if (cq_host->ops->dumpregs)
cq_host->ops->dumpregs(mmc);
else
CQHCI_DUMP(": ===========================================\n");
}
/*
* The allocated descriptor table for task, link & transfer descriptors
* looks like:
* |----------|
* |task desc | |->|----------|
* |----------| | |trans desc|
* |link desc-|->| |----------|
* |----------| .
* . .
* no. of slots max-segs
* . |----------|
* |----------|
* The idea here is to create the [task+trans] table and mark & point the
* link desc to the transfer desc table on a per slot basis.
*/
static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
{
int i = 0;
/* task descriptor can be 64/128 bit irrespective of arch */
if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
CQHCI_TASK_DESC_SZ, CQHCI_CFG);
cq_host->task_desc_len = 16;
} else {
cq_host->task_desc_len = 8;
}
/*
* 96 bits length of transfer desc instead of 128 bits which means
* ADMA would expect next valid descriptor at the 96th bit
* or 128th bit
*/
if (cq_host->dma64) {
if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
cq_host->trans_desc_len = 12;
else
cq_host->trans_desc_len = 16;
cq_host->link_desc_len = 16;
} else {
cq_host->trans_desc_len = 8;
cq_host->link_desc_len = 8;
}
/* total size of a slot: 1 task & 1 transfer (link) */
cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
cq_host->data_size = get_trans_desc_offset(cq_host, cq_host->mmc->cqe_qdepth);
pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
cq_host->slot_sz);
/*
* allocate a dma-mapped chunk of memory for the descriptors
* allocate a dma-mapped chunk of memory for link descriptors
* setup each link-desc memory offset per slot-number to
* the descriptor table.
*/
cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
cq_host->desc_size,
&cq_host->desc_dma_base,
GFP_KERNEL);
if (!cq_host->desc_base)
return -ENOMEM;
cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
cq_host->data_size,
&cq_host->trans_desc_dma_base,
GFP_KERNEL);
if (!cq_host->trans_desc_base) {
dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
cq_host->desc_base,
cq_host->desc_dma_base);
cq_host->desc_base = NULL;
cq_host->desc_dma_base = 0;
return -ENOMEM;
}
pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
(unsigned long long)cq_host->desc_dma_base,
(unsigned long long)cq_host->trans_desc_dma_base);
for (; i < (cq_host->num_slots); i++)
setup_trans_desc(cq_host, i);
return 0;
}
static void __cqhci_enable(struct cqhci_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
u32 cqcfg;
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
/* Configuration must not be changed while enabled */
if (cqcfg & CQHCI_ENABLE) {
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
}
cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
cqcfg |= CQHCI_DCMD;
if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
cqcfg |= CQHCI_TASK_DESC_SZ;
if (mmc->caps2 & MMC_CAP2_CRYPTO)
cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
CQHCI_TDLBA);
cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
CQHCI_TDLBAU);
cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
cqhci_set_irqs(cq_host, 0);
cqcfg |= CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
if (cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT)
cqhci_writel(cq_host, 0, CQHCI_CTL);
mmc->cqe_on = true;
if (cq_host->ops->enable)
cq_host->ops->enable(mmc);
/* Ensure all writes are done before interrupts are enabled */
wmb();
cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
cq_host->activated = true;
}
static void __cqhci_disable(struct cqhci_host *cq_host)
{
u32 cqcfg;
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cq_host->mmc->cqe_on = false;
cq_host->activated = false;
}
int cqhci_deactivate(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (cq_host->enabled && cq_host->activated)
__cqhci_disable(cq_host);
return 0;
}
EXPORT_SYMBOL(cqhci_deactivate);
int cqhci_resume(struct mmc_host *mmc)
{
/* Re-enable is done upon first request */
return 0;
}
EXPORT_SYMBOL(cqhci_resume);
static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int err;
if (!card->ext_csd.cmdq_en)
return -EINVAL;
if (cq_host->enabled)
return 0;
cq_host->rca = card->rca;
err = cqhci_host_alloc_tdl(cq_host);
if (err) {
pr_err("%s: Failed to enable CQE, error %d\n",
mmc_hostname(mmc), err);
return err;
}
__cqhci_enable(cq_host);
cq_host->enabled = true;
#ifdef DEBUG
cqhci_dumpregs(cq_host);
#endif
return 0;
}
/* CQHCI is idle and should halt immediately, so set a small timeout */
#define CQHCI_OFF_TIMEOUT 100
static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
{
return cqhci_readl(cq_host, CQHCI_CTL);
}
static void cqhci_off(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
u32 reg;
int err;
if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
return;
if (cq_host->ops->disable)
cq_host->ops->disable(mmc, false);
cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
if (err < 0)
pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
else
pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
if (cq_host->ops->post_disable)
cq_host->ops->post_disable(mmc);
mmc->cqe_on = false;
}
static void cqhci_disable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (!cq_host->enabled)
return;
cqhci_off(mmc);
__cqhci_disable(cq_host);
dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
cq_host->trans_desc_base,
cq_host->trans_desc_dma_base);
dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
cq_host->desc_base,
cq_host->desc_dma_base);
cq_host->trans_desc_base = NULL;
cq_host->desc_base = NULL;
cq_host->enabled = false;
}
static void cqhci_prep_task_desc(struct mmc_request *mrq,
struct cqhci_host *cq_host, int tag)
{
__le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
u32 req_flags = mrq->data->flags;
u64 desc0;
desc0 = CQHCI_VALID(1) |
CQHCI_END(1) |
CQHCI_INT(1) |
CQHCI_ACT(0x5) |
CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
CQHCI_BLK_COUNT(mrq->data->blocks) |
CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
task_desc[0] = cpu_to_le64(desc0);
if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
task_desc[1] = cpu_to_le64(desc1);
pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
} else {
pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
mmc_hostname(mrq->host), mrq->tag, desc0);
}
}
static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
{
int sg_count;
struct mmc_data *data = mrq->data;
if (!data)
return -EINVAL;
sg_count = dma_map_sg(mmc_dev(host), data->sg,
data->sg_len,
(data->flags & MMC_DATA_WRITE) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (!sg_count) {
pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
return -ENOMEM;
}
return sg_count;
}
static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
bool dma64)
{
__le32 *attr = (__le32 __force *)desc;
*attr = (CQHCI_VALID(1) |
CQHCI_END(end ? 1 : 0) |
CQHCI_INT(0) |
CQHCI_ACT(0x4) |
CQHCI_DAT_LENGTH(len));
if (dma64) {
__le64 *dataddr = (__le64 __force *)(desc + 4);
dataddr[0] = cpu_to_le64(addr);
} else {
__le32 *dataddr = (__le32 __force *)(desc + 4);
dataddr[0] = cpu_to_le32(addr);
}
}
static int cqhci_prep_tran_desc(struct mmc_request *mrq,
struct cqhci_host *cq_host, int tag)
{
struct mmc_data *data = mrq->data;
int i, sg_count, len;
bool end = false;
bool dma64 = cq_host->dma64;
dma_addr_t addr;
u8 *desc;
struct scatterlist *sg;
sg_count = cqhci_dma_map(mrq->host, mrq);
if (sg_count < 0) {
pr_err("%s: %s: unable to map sg lists, %d\n",
mmc_hostname(mrq->host), __func__, sg_count);
return sg_count;
}
desc = get_trans_desc(cq_host, tag);
for_each_sg(data->sg, sg, sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
if ((i+1) == sg_count)
end = true;
cqhci_set_tran_desc(desc, addr, len, end, dma64);
desc += cq_host->trans_desc_len;
}
return 0;
}
static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
struct mmc_request *mrq)
{
u64 *task_desc = NULL;
u64 data = 0;
u8 resp_type;
u8 *desc;
__le64 *dataddr;
struct cqhci_host *cq_host = mmc->cqe_private;
u8 timing;
if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
resp_type = 0x0;
timing = 0x1;
} else {
if (mrq->cmd->flags & MMC_RSP_R1B) {
resp_type = 0x3;
timing = 0x0;
} else {
resp_type = 0x2;
timing = 0x1;
}
}
task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
memset(task_desc, 0, cq_host->task_desc_len);
data |= (CQHCI_VALID(1) |
CQHCI_END(1) |
CQHCI_INT(1) |
CQHCI_QBAR(1) |
CQHCI_ACT(0x5) |
CQHCI_CMD_INDEX(mrq->cmd->opcode) |
CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
if (cq_host->ops->update_dcmd_desc)
cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
*task_desc |= data;
desc = (u8 *)task_desc;
pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
dataddr = (__le64 __force *)(desc + 4);
dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
}
static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
if (data) {
dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
(data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
}
static inline int cqhci_tag(struct mmc_request *mrq)
{
return mrq->cmd ? DCMD_SLOT : mrq->tag;
}
static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
int err = 0;
int tag = cqhci_tag(mrq);
struct cqhci_host *cq_host = mmc->cqe_private;
unsigned long flags;
if (!cq_host->enabled) {
pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
return -EINVAL;
}
/* First request after resume has to re-enable */
if (!cq_host->activated)
__cqhci_enable(cq_host);
if (!mmc->cqe_on) {
if (cq_host->ops->pre_enable)
cq_host->ops->pre_enable(mmc);
cqhci_writel(cq_host, 0, CQHCI_CTL);
mmc->cqe_on = true;
pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
pr_err("%s: cqhci: CQE failed to exit halt state\n",
mmc_hostname(mmc));
}
if (cq_host->ops->enable)
cq_host->ops->enable(mmc);
}
if (mrq->data) {
cqhci_prep_task_desc(mrq, cq_host, tag);
err = cqhci_prep_tran_desc(mrq, cq_host, tag);
if (err) {
pr_err("%s: cqhci: failed to setup tx desc: %d\n",
mmc_hostname(mmc), err);
return err;
}
} else {
cqhci_prep_dcmd_desc(mmc, mrq);
}
spin_lock_irqsave(&cq_host->lock, flags);
if (cq_host->recovery_halt) {
err = -EBUSY;
goto out_unlock;
}
cq_host->slot[tag].mrq = mrq;
cq_host->slot[tag].flags = 0;
cq_host->qcnt += 1;
/* Make sure descriptors are ready before ringing the doorbell */
wmb();
cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
pr_debug("%s: cqhci: doorbell not set for tag %d\n",
mmc_hostname(mmc), tag);
out_unlock:
spin_unlock_irqrestore(&cq_host->lock, flags);
if (err)
cqhci_post_req(mmc, mrq);
return err;
}
static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
bool notify)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (!cq_host->recovery_halt) {
cq_host->recovery_halt = true;
pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
wake_up(&cq_host->wait_queue);
if (notify && mrq->recovery_notifier)
mrq->recovery_notifier(mrq);
}
}
static unsigned int cqhci_error_flags(int error1, int error2)
{
int error = error1 ? error1 : error2;
switch (error) {
case -EILSEQ:
return CQHCI_HOST_CRC;
case -ETIMEDOUT:
return CQHCI_HOST_TIMEOUT;
default:
return CQHCI_HOST_OTHER;
}
}
static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
int data_error)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct cqhci_slot *slot;
u32 terri;
u32 tdpe;
int tag;
spin_lock(&cq_host->lock);
terri = cqhci_readl(cq_host, CQHCI_TERRI);
pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
mmc_hostname(mmc), status, cmd_error, data_error, terri);
/* Forget about errors when recovery has already been triggered */
if (cq_host->recovery_halt)
goto out_unlock;
if (!cq_host->qcnt) {
WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
mmc_hostname(mmc), status, cmd_error, data_error,
terri);
goto out_unlock;
}
if (CQHCI_TERRI_C_VALID(terri)) {
tag = CQHCI_TERRI_C_TASK(terri);
slot = &cq_host->slot[tag];
if (slot->mrq) {
slot->flags = cqhci_error_flags(cmd_error, data_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
}
}
if (CQHCI_TERRI_D_VALID(terri)) {
tag = CQHCI_TERRI_D_TASK(terri);
slot = &cq_host->slot[tag];
if (slot->mrq) {
slot->flags = cqhci_error_flags(data_error, cmd_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
}
}
/*
* Handle ICCE ("Invalid Crypto Configuration Error"). This should
* never happen, since the block layer ensures that all crypto-enabled
* I/O requests have a valid keyslot before they reach the driver.
*
* Note that GCE ("General Crypto Error") is different; it already got
* handled above by checking TERRI.
*/
if (status & CQHCI_IS_ICCE) {
tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
WARN_ONCE(1,
"%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
mmc_hostname(mmc), status, tdpe);
while (tdpe != 0) {
tag = __ffs(tdpe);
tdpe &= ~(1 << tag);
slot = &cq_host->slot[tag];
if (!slot->mrq)
continue;
slot->flags = cqhci_error_flags(data_error, cmd_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
}
}
if (!cq_host->recovery_halt) {
/*
* The only way to guarantee forward progress is to mark at
* least one task in error, so if none is indicated, pick one.
*/
for (tag = 0; tag < NUM_SLOTS; tag++) {
slot = &cq_host->slot[tag];
if (!slot->mrq)
continue;
slot->flags = cqhci_error_flags(data_error, cmd_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
break;
}
}
out_unlock:
spin_unlock(&cq_host->lock);
}
static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct cqhci_slot *slot = &cq_host->slot[tag];
struct mmc_request *mrq = slot->mrq;
struct mmc_data *data;
if (!mrq) {
WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
mmc_hostname(mmc), tag);
return;
}
/* No completions allowed during recovery */
if (cq_host->recovery_halt) {
slot->flags |= CQHCI_COMPLETED;
return;
}
slot->mrq = NULL;
cq_host->qcnt -= 1;
data = mrq->data;
if (data) {
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
}
mmc_cqe_request_done(mmc, mrq);
}
irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
int data_error)
{
u32 status;
unsigned long tag = 0, comp_status;
struct cqhci_host *cq_host = mmc->cqe_private;
status = cqhci_readl(cq_host, CQHCI_IS);
cqhci_writel(cq_host, status, CQHCI_IS);
pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
cmd_error || data_error) {
if (status & CQHCI_IS_RED)
mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_RED);
if (status & CQHCI_IS_GCE)
mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_GCE);
if (status & CQHCI_IS_ICCE)
mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_ICCE);
cqhci_error_irq(mmc, status, cmd_error, data_error);
}
if (status & CQHCI_IS_TCC) {
/* read TCN and complete the request */
comp_status = cqhci_readl(cq_host, CQHCI_TCN);
cqhci_writel(cq_host, comp_status, CQHCI_TCN);
pr_debug("%s: cqhci: TCN: 0x%08lx\n",
mmc_hostname(mmc), comp_status);
spin_lock(&cq_host->lock);
for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
/* complete the corresponding mrq */
pr_debug("%s: cqhci: completing tag %lu\n",
mmc_hostname(mmc), tag);
cqhci_finish_mrq(mmc, tag);
}
if (cq_host->waiting_for_idle && !cq_host->qcnt) {
cq_host->waiting_for_idle = false;
wake_up(&cq_host->wait_queue);
}
spin_unlock(&cq_host->lock);
}
if (status & CQHCI_IS_TCL)
wake_up(&cq_host->wait_queue);
if (status & CQHCI_IS_HAC)
wake_up(&cq_host->wait_queue);
return IRQ_HANDLED;
}
EXPORT_SYMBOL(cqhci_irq);
static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
{
unsigned long flags;
bool is_idle;
spin_lock_irqsave(&cq_host->lock, flags);
is_idle = !cq_host->qcnt || cq_host->recovery_halt;
*ret = cq_host->recovery_halt ? -EBUSY : 0;
cq_host->waiting_for_idle = !is_idle;
spin_unlock_irqrestore(&cq_host->lock, flags);
return is_idle;
}
static int cqhci_wait_for_idle(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int ret;
wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
return ret;
}
static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
bool *recovery_needed)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int tag = cqhci_tag(mrq);
struct cqhci_slot *slot = &cq_host->slot[tag];
unsigned long flags;
bool timed_out;
spin_lock_irqsave(&cq_host->lock, flags);
timed_out = slot->mrq == mrq;
if (timed_out) {
slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
cqhci_recovery_needed(mmc, mrq, false);
*recovery_needed = cq_host->recovery_halt;
}
spin_unlock_irqrestore(&cq_host->lock, flags);
if (timed_out) {
pr_err("%s: cqhci: timeout for tag %d, qcnt %d\n",
mmc_hostname(mmc), tag, cq_host->qcnt);
cqhci_dumpregs(cq_host);
}
return timed_out;
}
static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
{
return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
}
static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
{
struct cqhci_host *cq_host = mmc->cqe_private;
bool ret;
u32 ctl;
cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
ctl = cqhci_readl(cq_host, CQHCI_CTL);
ctl |= CQHCI_CLEAR_ALL_TASKS;
cqhci_writel(cq_host, ctl, CQHCI_CTL);
wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
msecs_to_jiffies(timeout) + 1);
cqhci_set_irqs(cq_host, 0);
ret = cqhci_tasks_cleared(cq_host);
if (!ret)
pr_debug("%s: cqhci: Failed to clear tasks\n",
mmc_hostname(mmc));
return ret;
}
static bool cqhci_halted(struct cqhci_host *cq_host)
{
return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
}
static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
{
struct cqhci_host *cq_host = mmc->cqe_private;
bool ret;
u32 ctl;
if (cqhci_halted(cq_host))
return true;
cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
ctl = cqhci_readl(cq_host, CQHCI_CTL);
ctl |= CQHCI_HALT;
cqhci_writel(cq_host, ctl, CQHCI_CTL);
wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
msecs_to_jiffies(timeout) + 1);
cqhci_set_irqs(cq_host, 0);
ret = cqhci_halted(cq_host);
if (!ret)
pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
return ret;
}
/*
* After halting we expect to be able to use the command line. We interpret the
* failure to halt to mean the data lines might still be in use (and the upper
* layers will need to send a STOP command), so we set the timeout based on a
* generous command timeout.
*/
#define CQHCI_START_HALT_TIMEOUT 5
static void cqhci_recovery_start(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
WARN_ON(!cq_host->recovery_halt);
cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
if (cq_host->ops->disable)
cq_host->ops->disable(mmc, true);
mmc->cqe_on = false;
}
static int cqhci_error_from_flags(unsigned int flags)
{
if (!flags)
return 0;
/* CRC errors might indicate re-tuning so prefer to report that */
if (flags & CQHCI_HOST_CRC)
return -EILSEQ;
if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
return -ETIMEDOUT;
return -EIO;
}
static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
{
struct cqhci_slot *slot = &cq_host->slot[tag];
struct mmc_request *mrq = slot->mrq;
struct mmc_data *data;
if (!mrq)
return;
slot->mrq = NULL;
cq_host->qcnt -= 1;
data = mrq->data;
if (data) {
data->bytes_xfered = 0;
data->error = cqhci_error_from_flags(slot->flags);
} else {
mrq->cmd->error = cqhci_error_from_flags(slot->flags);
}
mmc_cqe_request_done(cq_host->mmc, mrq);
}
static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
{
int i;
for (i = 0; i < cq_host->num_slots; i++)
cqhci_recover_mrq(cq_host, i);
}
/*
* By now the command and data lines should be unused so there is no reason for
* CQHCI to take a long time to halt, but if it doesn't halt there could be
* problems clearing tasks, so be generous.
*/
#define CQHCI_FINISH_HALT_TIMEOUT 20
/* CQHCI could be expected to clear it's internal state pretty quickly */
#define CQHCI_CLEAR_TIMEOUT 20
static void cqhci_recovery_finish(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
unsigned long flags;
u32 cqcfg;
bool ok;
pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
WARN_ON(!cq_host->recovery_halt);
ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
ok = false;
/*
* The specification contradicts itself, by saying that tasks cannot be
* cleared if CQHCI does not halt, but if CQHCI does not halt, it should
* be disabled/re-enabled, but not to disable before clearing tasks.
* Have a go anyway.
*/
if (!ok) {
pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cqcfg |= CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
/* Be sure that there are no tasks */
ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
ok = false;
WARN_ON(!ok);
}
cqhci_recover_mrqs(cq_host);
WARN_ON(cq_host->qcnt);
spin_lock_irqsave(&cq_host->lock, flags);
cq_host->qcnt = 0;
cq_host->recovery_halt = false;
mmc->cqe_on = false;
spin_unlock_irqrestore(&cq_host->lock, flags);
/* Ensure all writes are done before interrupts are re-enabled */
wmb();
cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
}
static const struct mmc_cqe_ops cqhci_cqe_ops = {
.cqe_enable = cqhci_enable,
.cqe_disable = cqhci_disable,
.cqe_request = cqhci_request,
.cqe_post_req = cqhci_post_req,
.cqe_off = cqhci_off,
.cqe_wait_for_idle = cqhci_wait_for_idle,
.cqe_timeout = cqhci_timeout,
.cqe_recovery_start = cqhci_recovery_start,
.cqe_recovery_finish = cqhci_recovery_finish,
};
struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
{
struct cqhci_host *cq_host;
struct resource *cqhci_memres = NULL;
/* check and setup CMDQ interface */
cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"cqhci");
if (!cqhci_memres) {
dev_dbg(&pdev->dev, "CMDQ not supported\n");
return ERR_PTR(-EINVAL);
}
cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
if (!cq_host)
return ERR_PTR(-ENOMEM);
cq_host->mmio = devm_ioremap(&pdev->dev,
cqhci_memres->start,
resource_size(cqhci_memres));
if (!cq_host->mmio) {
dev_err(&pdev->dev, "failed to remap cqhci regs\n");
return ERR_PTR(-EBUSY);
}
dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
return cq_host;
}
EXPORT_SYMBOL(cqhci_pltfm_init);
static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
{
return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
}
static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
{
u32 ver = cqhci_readl(cq_host, CQHCI_VER);
return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
}
int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
bool dma64)
{
int err;
cq_host->dma64 = dma64;
cq_host->mmc = mmc;
cq_host->mmc->cqe_private = cq_host;
cq_host->num_slots = NUM_SLOTS;
cq_host->dcmd_slot = DCMD_SLOT;
mmc->cqe_ops = &cqhci_cqe_ops;
mmc->cqe_qdepth = NUM_SLOTS;
if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
mmc->cqe_qdepth -= 1;
cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
sizeof(*cq_host->slot), GFP_KERNEL);
if (!cq_host->slot) {
err = -ENOMEM;
goto out_err;
}
err = cqhci_crypto_init(cq_host);
if (err) {
pr_err("%s: CQHCI crypto initialization failed\n",
mmc_hostname(mmc));
goto out_err;
}
spin_lock_init(&cq_host->lock);
init_completion(&cq_host->halt_comp);
init_waitqueue_head(&cq_host->wait_queue);
pr_info("%s: CQHCI version %u.%02u\n",
mmc_hostname(mmc), cqhci_ver_major(cq_host),
cqhci_ver_minor(cq_host));
return 0;
out_err:
pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
mmc_hostname(mmc), cqhci_ver_major(cq_host),
cqhci_ver_minor(cq_host), err);
return err;
}
EXPORT_SYMBOL(cqhci_init);
MODULE_AUTHOR("Venkat Gopalakrishnan <[email protected]>");
MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/cqhci-core.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Support for SDHCI on STMicroelectronics SoCs
*
* Copyright (C) 2014 STMicroelectronics Ltd
* Author: Giuseppe Cavallaro <[email protected]>
* Contributors: Peter Griffin <[email protected]>
*
* Based on sdhci-cns3xxx.c
*/
#include <linux/io.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/mmc/host.h>
#include <linux/reset.h>
#include "sdhci-pltfm.h"
struct st_mmc_platform_data {
struct reset_control *rstc;
struct clk *icnclk;
void __iomem *top_ioaddr;
};
/* MMCSS glue logic to setup the HC on some ST SoCs (e.g. STiH407 family) */
#define ST_MMC_CCONFIG_REG_1 0x400
#define ST_MMC_CCONFIG_TIMEOUT_CLK_UNIT BIT(24)
#define ST_MMC_CCONFIG_TIMEOUT_CLK_FREQ BIT(12)
#define ST_MMC_CCONFIG_TUNING_COUNT_DEFAULT BIT(8)
#define ST_MMC_CCONFIG_ASYNC_WAKEUP BIT(0)
#define ST_MMC_CCONFIG_1_DEFAULT \
((ST_MMC_CCONFIG_TIMEOUT_CLK_UNIT) | \
(ST_MMC_CCONFIG_TIMEOUT_CLK_FREQ) | \
(ST_MMC_CCONFIG_TUNING_COUNT_DEFAULT))
#define ST_MMC_CCONFIG_REG_2 0x404
#define ST_MMC_CCONFIG_HIGH_SPEED BIT(28)
#define ST_MMC_CCONFIG_ADMA2 BIT(24)
#define ST_MMC_CCONFIG_8BIT BIT(20)
#define ST_MMC_CCONFIG_MAX_BLK_LEN 16
#define MAX_BLK_LEN_1024 1
#define MAX_BLK_LEN_2048 2
#define BASE_CLK_FREQ_200 0xc8
#define BASE_CLK_FREQ_100 0x64
#define BASE_CLK_FREQ_50 0x32
#define ST_MMC_CCONFIG_2_DEFAULT \
(ST_MMC_CCONFIG_HIGH_SPEED | ST_MMC_CCONFIG_ADMA2 | \
ST_MMC_CCONFIG_8BIT | \
(MAX_BLK_LEN_1024 << ST_MMC_CCONFIG_MAX_BLK_LEN))
#define ST_MMC_CCONFIG_REG_3 0x408
#define ST_MMC_CCONFIG_EMMC_SLOT_TYPE BIT(28)
#define ST_MMC_CCONFIG_64BIT BIT(24)
#define ST_MMC_CCONFIG_ASYNCH_INTR_SUPPORT BIT(20)
#define ST_MMC_CCONFIG_1P8_VOLT BIT(16)
#define ST_MMC_CCONFIG_3P0_VOLT BIT(12)
#define ST_MMC_CCONFIG_3P3_VOLT BIT(8)
#define ST_MMC_CCONFIG_SUSP_RES_SUPPORT BIT(4)
#define ST_MMC_CCONFIG_SDMA BIT(0)
#define ST_MMC_CCONFIG_3_DEFAULT \
(ST_MMC_CCONFIG_ASYNCH_INTR_SUPPORT | \
ST_MMC_CCONFIG_3P3_VOLT | \
ST_MMC_CCONFIG_SUSP_RES_SUPPORT | \
ST_MMC_CCONFIG_SDMA)
#define ST_MMC_CCONFIG_REG_4 0x40c
#define ST_MMC_CCONFIG_D_DRIVER BIT(20)
#define ST_MMC_CCONFIG_C_DRIVER BIT(16)
#define ST_MMC_CCONFIG_A_DRIVER BIT(12)
#define ST_MMC_CCONFIG_DDR50 BIT(8)
#define ST_MMC_CCONFIG_SDR104 BIT(4)
#define ST_MMC_CCONFIG_SDR50 BIT(0)
#define ST_MMC_CCONFIG_4_DEFAULT 0
#define ST_MMC_CCONFIG_REG_5 0x410
#define ST_MMC_CCONFIG_TUNING_FOR_SDR50 BIT(8)
#define RETUNING_TIMER_CNT_MAX 0xf
#define ST_MMC_CCONFIG_5_DEFAULT 0
/* I/O configuration for Arasan IP */
#define ST_MMC_GP_OUTPUT 0x450
#define ST_MMC_GP_OUTPUT_CD BIT(12)
#define ST_MMC_STATUS_R 0x460
#define ST_TOP_MMC_DLY_FIX_OFF(x) (x - 0x8)
/* TOP config registers to manage static and dynamic delay */
#define ST_TOP_MMC_TX_CLK_DLY ST_TOP_MMC_DLY_FIX_OFF(0x8)
#define ST_TOP_MMC_RX_CLK_DLY ST_TOP_MMC_DLY_FIX_OFF(0xc)
/* MMC delay control register */
#define ST_TOP_MMC_DLY_CTRL ST_TOP_MMC_DLY_FIX_OFF(0x18)
#define ST_TOP_MMC_DLY_CTRL_DLL_BYPASS_CMD BIT(0)
#define ST_TOP_MMC_DLY_CTRL_DLL_BYPASS_PH_SEL BIT(1)
#define ST_TOP_MMC_DLY_CTRL_TX_DLL_ENABLE BIT(8)
#define ST_TOP_MMC_DLY_CTRL_RX_DLL_ENABLE BIT(9)
#define ST_TOP_MMC_DLY_CTRL_ATUNE_NOT_CFG_DLY BIT(10)
#define ST_TOP_MMC_START_DLL_LOCK BIT(11)
/* register to provide the phase-shift value for DLL */
#define ST_TOP_MMC_TX_DLL_STEP_DLY ST_TOP_MMC_DLY_FIX_OFF(0x1c)
#define ST_TOP_MMC_RX_DLL_STEP_DLY ST_TOP_MMC_DLY_FIX_OFF(0x20)
#define ST_TOP_MMC_RX_CMD_STEP_DLY ST_TOP_MMC_DLY_FIX_OFF(0x24)
/* phase shift delay on the tx clk 2.188ns */
#define ST_TOP_MMC_TX_DLL_STEP_DLY_VALID 0x6
#define ST_TOP_MMC_DLY_MAX 0xf
#define ST_TOP_MMC_DYN_DLY_CONF \
(ST_TOP_MMC_DLY_CTRL_TX_DLL_ENABLE | \
ST_TOP_MMC_DLY_CTRL_ATUNE_NOT_CFG_DLY | \
ST_TOP_MMC_START_DLL_LOCK)
/*
* For clock speeds greater than 90MHz, we need to check that the
* DLL procedure has finished before switching to ultra-speed modes.
*/
#define CLK_TO_CHECK_DLL_LOCK 90000000
static inline void st_mmcss_set_static_delay(void __iomem *ioaddr)
{
if (!ioaddr)
return;
writel_relaxed(0x0, ioaddr + ST_TOP_MMC_DLY_CTRL);
writel_relaxed(ST_TOP_MMC_DLY_MAX,
ioaddr + ST_TOP_MMC_TX_CLK_DLY);
}
/**
* st_mmcss_cconfig: configure the Arasan HC inside the flashSS.
* @np: dt device node.
* @host: sdhci host
* Description: this function is to configure the Arasan host controller.
* On some ST SoCs, i.e. STiH407 family, the MMC devices inside a dedicated
* flashSS sub-system which needs to be configured to be compliant to eMMC 4.5
* or eMMC4.3. This has to be done before registering the sdhci host.
*/
static void st_mmcss_cconfig(struct device_node *np, struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct mmc_host *mhost = host->mmc;
u32 cconf2, cconf3, cconf4, cconf5;
if (!of_device_is_compatible(np, "st,sdhci-stih407"))
return;
cconf2 = ST_MMC_CCONFIG_2_DEFAULT;
cconf3 = ST_MMC_CCONFIG_3_DEFAULT;
cconf4 = ST_MMC_CCONFIG_4_DEFAULT;
cconf5 = ST_MMC_CCONFIG_5_DEFAULT;
writel_relaxed(ST_MMC_CCONFIG_1_DEFAULT,
host->ioaddr + ST_MMC_CCONFIG_REG_1);
/* Set clock frequency, default to 50MHz if max-frequency is not
* provided */
switch (mhost->f_max) {
case 200000000:
clk_set_rate(pltfm_host->clk, mhost->f_max);
cconf2 |= BASE_CLK_FREQ_200;
break;
case 100000000:
clk_set_rate(pltfm_host->clk, mhost->f_max);
cconf2 |= BASE_CLK_FREQ_100;
break;
default:
clk_set_rate(pltfm_host->clk, 50000000);
cconf2 |= BASE_CLK_FREQ_50;
}
writel_relaxed(cconf2, host->ioaddr + ST_MMC_CCONFIG_REG_2);
if (!mmc_card_is_removable(mhost))
cconf3 |= ST_MMC_CCONFIG_EMMC_SLOT_TYPE;
else
/* CARD _D ET_CTRL */
writel_relaxed(ST_MMC_GP_OUTPUT_CD,
host->ioaddr + ST_MMC_GP_OUTPUT);
if (mhost->caps & MMC_CAP_UHS_SDR50) {
/* use 1.8V */
cconf3 |= ST_MMC_CCONFIG_1P8_VOLT;
cconf4 |= ST_MMC_CCONFIG_SDR50;
/* Use tuning */
cconf5 |= ST_MMC_CCONFIG_TUNING_FOR_SDR50;
/* Max timeout for retuning */
cconf5 |= RETUNING_TIMER_CNT_MAX;
}
if (mhost->caps & MMC_CAP_UHS_SDR104) {
/*
* SDR104 implies the HC can support HS200 mode, so
* it's mandatory to use 1.8V
*/
cconf3 |= ST_MMC_CCONFIG_1P8_VOLT;
cconf4 |= ST_MMC_CCONFIG_SDR104;
/* Max timeout for retuning */
cconf5 |= RETUNING_TIMER_CNT_MAX;
}
if (mhost->caps & MMC_CAP_UHS_DDR50)
cconf4 |= ST_MMC_CCONFIG_DDR50;
writel_relaxed(cconf3, host->ioaddr + ST_MMC_CCONFIG_REG_3);
writel_relaxed(cconf4, host->ioaddr + ST_MMC_CCONFIG_REG_4);
writel_relaxed(cconf5, host->ioaddr + ST_MMC_CCONFIG_REG_5);
}
static inline void st_mmcss_set_dll(void __iomem *ioaddr)
{
if (!ioaddr)
return;
writel_relaxed(ST_TOP_MMC_DYN_DLY_CONF, ioaddr + ST_TOP_MMC_DLY_CTRL);
writel_relaxed(ST_TOP_MMC_TX_DLL_STEP_DLY_VALID,
ioaddr + ST_TOP_MMC_TX_DLL_STEP_DLY);
}
static int st_mmcss_lock_dll(void __iomem *ioaddr)
{
unsigned long curr, value;
unsigned long finish = jiffies + HZ;
/* Checks if the DLL procedure is finished */
do {
curr = jiffies;
value = readl(ioaddr + ST_MMC_STATUS_R);
if (value & 0x1)
return 0;
cpu_relax();
} while (!time_after_eq(curr, finish));
return -EBUSY;
}
static int sdhci_st_set_dll_for_clock(struct sdhci_host *host)
{
int ret = 0;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct st_mmc_platform_data *pdata = sdhci_pltfm_priv(pltfm_host);
if (host->clock > CLK_TO_CHECK_DLL_LOCK) {
st_mmcss_set_dll(pdata->top_ioaddr);
ret = st_mmcss_lock_dll(host->ioaddr);
}
return ret;
}
static void sdhci_st_set_uhs_signaling(struct sdhci_host *host,
unsigned int uhs)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct st_mmc_platform_data *pdata = sdhci_pltfm_priv(pltfm_host);
u16 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
int ret = 0;
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
switch (uhs) {
/*
* Set V18_EN -- UHS modes do not work without this.
* does not change signaling voltage
*/
case MMC_TIMING_UHS_SDR12:
st_mmcss_set_static_delay(pdata->top_ioaddr);
ctrl_2 |= SDHCI_CTRL_UHS_SDR12 | SDHCI_CTRL_VDD_180;
break;
case MMC_TIMING_UHS_SDR25:
st_mmcss_set_static_delay(pdata->top_ioaddr);
ctrl_2 |= SDHCI_CTRL_UHS_SDR25 | SDHCI_CTRL_VDD_180;
break;
case MMC_TIMING_UHS_SDR50:
st_mmcss_set_static_delay(pdata->top_ioaddr);
ctrl_2 |= SDHCI_CTRL_UHS_SDR50 | SDHCI_CTRL_VDD_180;
ret = sdhci_st_set_dll_for_clock(host);
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
st_mmcss_set_static_delay(pdata->top_ioaddr);
ctrl_2 |= SDHCI_CTRL_UHS_SDR104 | SDHCI_CTRL_VDD_180;
ret = sdhci_st_set_dll_for_clock(host);
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
st_mmcss_set_static_delay(pdata->top_ioaddr);
ctrl_2 |= SDHCI_CTRL_UHS_DDR50 | SDHCI_CTRL_VDD_180;
break;
}
if (ret)
dev_warn(mmc_dev(host->mmc), "Error setting dll for clock "
"(uhs %d)\n", uhs);
dev_dbg(mmc_dev(host->mmc), "uhs %d, ctrl_2 %04X\n", uhs, ctrl_2);
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
static u32 sdhci_st_readl(struct sdhci_host *host, int reg)
{
u32 ret;
switch (reg) {
case SDHCI_CAPABILITIES:
ret = readl_relaxed(host->ioaddr + reg);
/* Support 3.3V and 1.8V */
ret &= ~SDHCI_CAN_VDD_300;
break;
default:
ret = readl_relaxed(host->ioaddr + reg);
}
return ret;
}
static const struct sdhci_ops sdhci_st_ops = {
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.read_l = sdhci_st_readl,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_st_set_uhs_signaling,
};
static const struct sdhci_pltfm_data sdhci_st_pdata = {
.ops = &sdhci_st_ops,
.quirks = SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_NO_HISPD_BIT,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_STOP_WITH_TC,
};
static int sdhci_st_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct sdhci_host *host;
struct st_mmc_platform_data *pdata;
struct sdhci_pltfm_host *pltfm_host;
struct clk *clk, *icnclk;
int ret = 0;
u16 host_version;
struct reset_control *rstc;
clk = devm_clk_get(&pdev->dev, "mmc");
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "Peripheral clk not found\n");
return PTR_ERR(clk);
}
/* ICN clock isn't compulsory, but use it if it's provided. */
icnclk = devm_clk_get(&pdev->dev, "icn");
if (IS_ERR(icnclk))
icnclk = NULL;
rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
if (IS_ERR(rstc))
return PTR_ERR(rstc);
reset_control_deassert(rstc);
host = sdhci_pltfm_init(pdev, &sdhci_st_pdata, sizeof(*pdata));
if (IS_ERR(host)) {
dev_err(&pdev->dev, "Failed sdhci_pltfm_init\n");
ret = PTR_ERR(host);
goto err_pltfm_init;
}
pltfm_host = sdhci_priv(host);
pdata = sdhci_pltfm_priv(pltfm_host);
pdata->rstc = rstc;
ret = mmc_of_parse(host->mmc);
if (ret) {
dev_err(&pdev->dev, "Failed mmc_of_parse\n");
goto err_of;
}
ret = clk_prepare_enable(clk);
if (ret) {
dev_err(&pdev->dev, "Failed to prepare clock\n");
goto err_of;
}
ret = clk_prepare_enable(icnclk);
if (ret) {
dev_err(&pdev->dev, "Failed to prepare icn clock\n");
goto err_icnclk;
}
/* Configure the FlashSS Top registers for setting eMMC TX/RX delay */
pdata->top_ioaddr = devm_platform_ioremap_resource_byname(pdev, "top-mmc-delay");
if (IS_ERR(pdata->top_ioaddr))
pdata->top_ioaddr = NULL;
pltfm_host->clk = clk;
pdata->icnclk = icnclk;
/* Configure the Arasan HC inside the flashSS */
st_mmcss_cconfig(np, host);
ret = sdhci_add_host(host);
if (ret)
goto err_out;
host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
dev_info(&pdev->dev, "SDHCI ST Initialised: Host Version: 0x%x Vendor Version 0x%x\n",
((host_version & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT),
((host_version & SDHCI_VENDOR_VER_MASK) >>
SDHCI_VENDOR_VER_SHIFT));
return 0;
err_out:
clk_disable_unprepare(icnclk);
err_icnclk:
clk_disable_unprepare(clk);
err_of:
sdhci_pltfm_free(pdev);
err_pltfm_init:
reset_control_assert(rstc);
return ret;
}
static void sdhci_st_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct st_mmc_platform_data *pdata = sdhci_pltfm_priv(pltfm_host);
struct reset_control *rstc = pdata->rstc;
struct clk *clk = pltfm_host->clk;
sdhci_pltfm_remove(pdev);
clk_disable_unprepare(pdata->icnclk);
clk_disable_unprepare(clk);
reset_control_assert(rstc);
}
#ifdef CONFIG_PM_SLEEP
static int sdhci_st_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct st_mmc_platform_data *pdata = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
ret = sdhci_suspend_host(host);
if (ret)
goto out;
reset_control_assert(pdata->rstc);
clk_disable_unprepare(pdata->icnclk);
clk_disable_unprepare(pltfm_host->clk);
out:
return ret;
}
static int sdhci_st_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct st_mmc_platform_data *pdata = sdhci_pltfm_priv(pltfm_host);
struct device_node *np = dev->of_node;
int ret;
ret = clk_prepare_enable(pltfm_host->clk);
if (ret)
return ret;
ret = clk_prepare_enable(pdata->icnclk);
if (ret) {
clk_disable_unprepare(pltfm_host->clk);
return ret;
}
reset_control_deassert(pdata->rstc);
st_mmcss_cconfig(np, host);
return sdhci_resume_host(host);
}
#endif
static SIMPLE_DEV_PM_OPS(sdhci_st_pmops, sdhci_st_suspend, sdhci_st_resume);
static const struct of_device_id st_sdhci_match[] = {
{ .compatible = "st,sdhci" },
{},
};
MODULE_DEVICE_TABLE(of, st_sdhci_match);
static struct platform_driver sdhci_st_driver = {
.probe = sdhci_st_probe,
.remove_new = sdhci_st_remove,
.driver = {
.name = "sdhci-st",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &sdhci_st_pmops,
.of_match_table = st_sdhci_match,
},
};
module_platform_driver(sdhci_st_driver);
MODULE_DESCRIPTION("SDHCI driver for STMicroelectronics SoCs");
MODULE_AUTHOR("Giuseppe Cavallaro <[email protected]>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:sdhci-st");
| linux-master | drivers/mmc/host/sdhci-st.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* PHY support for Xenon SDHC
*
* Copyright (C) 2016 Marvell, All Rights Reserved.
*
* Author: Hu Ziji <[email protected]>
* Date: 2016-8-24
*/
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/of_address.h>
#include "sdhci-pltfm.h"
#include "sdhci-xenon.h"
/* Register base for eMMC PHY 5.0 Version */
#define XENON_EMMC_5_0_PHY_REG_BASE 0x0160
/* Register base for eMMC PHY 5.1 Version */
#define XENON_EMMC_PHY_REG_BASE 0x0170
#define XENON_EMMC_PHY_TIMING_ADJUST XENON_EMMC_PHY_REG_BASE
#define XENON_EMMC_5_0_PHY_TIMING_ADJUST XENON_EMMC_5_0_PHY_REG_BASE
#define XENON_TIMING_ADJUST_SLOW_MODE BIT(29)
#define XENON_TIMING_ADJUST_SDIO_MODE BIT(28)
#define XENON_SAMPL_INV_QSP_PHASE_SELECT BIT(18)
#define XENON_SAMPL_INV_QSP_PHASE_SELECT_SHIFT 18
#define XENON_PHY_INITIALIZAION BIT(31)
#define XENON_WAIT_CYCLE_BEFORE_USING_MASK 0xF
#define XENON_WAIT_CYCLE_BEFORE_USING_SHIFT 12
#define XENON_FC_SYNC_EN_DURATION_MASK 0xF
#define XENON_FC_SYNC_EN_DURATION_SHIFT 8
#define XENON_FC_SYNC_RST_EN_DURATION_MASK 0xF
#define XENON_FC_SYNC_RST_EN_DURATION_SHIFT 4
#define XENON_FC_SYNC_RST_DURATION_MASK 0xF
#define XENON_FC_SYNC_RST_DURATION_SHIFT 0
#define XENON_EMMC_PHY_FUNC_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x4)
#define XENON_EMMC_5_0_PHY_FUNC_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x4)
#define XENON_ASYNC_DDRMODE_MASK BIT(23)
#define XENON_ASYNC_DDRMODE_SHIFT 23
#define XENON_CMD_DDR_MODE BIT(16)
#define XENON_DQ_DDR_MODE_SHIFT 8
#define XENON_DQ_DDR_MODE_MASK 0xFF
#define XENON_DQ_ASYNC_MODE BIT(4)
#define XENON_EMMC_PHY_PAD_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x8)
#define XENON_EMMC_5_0_PHY_PAD_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x8)
#define XENON_REC_EN_SHIFT 24
#define XENON_REC_EN_MASK 0xF
#define XENON_FC_DQ_RECEN BIT(24)
#define XENON_FC_CMD_RECEN BIT(25)
#define XENON_FC_QSP_RECEN BIT(26)
#define XENON_FC_QSN_RECEN BIT(27)
#define XENON_OEN_QSN BIT(28)
#define XENON_AUTO_RECEN_CTRL BIT(30)
#define XENON_FC_ALL_CMOS_RECEIVER 0xF000
#define XENON_EMMC5_FC_QSP_PD BIT(18)
#define XENON_EMMC5_FC_QSP_PU BIT(22)
#define XENON_EMMC5_FC_CMD_PD BIT(17)
#define XENON_EMMC5_FC_CMD_PU BIT(21)
#define XENON_EMMC5_FC_DQ_PD BIT(16)
#define XENON_EMMC5_FC_DQ_PU BIT(20)
#define XENON_EMMC_PHY_PAD_CONTROL1 (XENON_EMMC_PHY_REG_BASE + 0xC)
#define XENON_EMMC5_1_FC_QSP_PD BIT(9)
#define XENON_EMMC5_1_FC_QSP_PU BIT(25)
#define XENON_EMMC5_1_FC_CMD_PD BIT(8)
#define XENON_EMMC5_1_FC_CMD_PU BIT(24)
#define XENON_EMMC5_1_FC_DQ_PD 0xFF
#define XENON_EMMC5_1_FC_DQ_PU (0xFF << 16)
#define XENON_EMMC_PHY_PAD_CONTROL2 (XENON_EMMC_PHY_REG_BASE + 0x10)
#define XENON_EMMC_5_0_PHY_PAD_CONTROL2 \
(XENON_EMMC_5_0_PHY_REG_BASE + 0xC)
#define XENON_ZNR_MASK 0x1F
#define XENON_ZNR_SHIFT 8
#define XENON_ZPR_MASK 0x1F
/* Preferred ZNR and ZPR value vary between different boards.
* The specific ZNR and ZPR value should be defined here
* according to board actual timing.
*/
#define XENON_ZNR_DEF_VALUE 0xF
#define XENON_ZPR_DEF_VALUE 0xF
#define XENON_EMMC_PHY_DLL_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x14)
#define XENON_EMMC_5_0_PHY_DLL_CONTROL \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x10)
#define XENON_DLL_ENABLE BIT(31)
#define XENON_DLL_UPDATE_STROBE_5_0 BIT(30)
#define XENON_DLL_REFCLK_SEL BIT(30)
#define XENON_DLL_UPDATE BIT(23)
#define XENON_DLL_PHSEL1_SHIFT 24
#define XENON_DLL_PHSEL0_SHIFT 16
#define XENON_DLL_PHASE_MASK 0x3F
#define XENON_DLL_PHASE_90_DEGREE 0x1F
#define XENON_DLL_FAST_LOCK BIT(5)
#define XENON_DLL_GAIN2X BIT(3)
#define XENON_DLL_BYPASS_EN BIT(0)
#define XENON_EMMC_5_0_PHY_LOGIC_TIMING_ADJUST \
(XENON_EMMC_5_0_PHY_REG_BASE + 0x14)
#define XENON_EMMC_5_0_PHY_LOGIC_TIMING_VALUE 0x5A54
#define XENON_EMMC_PHY_LOGIC_TIMING_ADJUST (XENON_EMMC_PHY_REG_BASE + 0x18)
#define XENON_LOGIC_TIMING_VALUE 0x00AA8977
/*
* List offset of PHY registers and some special register values
* in eMMC PHY 5.0 or eMMC PHY 5.1
*/
struct xenon_emmc_phy_regs {
/* Offset of Timing Adjust register */
u16 timing_adj;
/* Offset of Func Control register */
u16 func_ctrl;
/* Offset of Pad Control register */
u16 pad_ctrl;
/* Offset of Pad Control register 2 */
u16 pad_ctrl2;
/* Offset of DLL Control register */
u16 dll_ctrl;
/* Offset of Logic Timing Adjust register */
u16 logic_timing_adj;
/* DLL Update Enable bit */
u32 dll_update;
/* value in Logic Timing Adjustment register */
u32 logic_timing_val;
};
static const char * const phy_types[] = {
"emmc 5.0 phy",
"emmc 5.1 phy"
};
enum xenon_phy_type_enum {
EMMC_5_0_PHY,
EMMC_5_1_PHY,
NR_PHY_TYPES
};
enum soc_pad_ctrl_type {
SOC_PAD_SD,
SOC_PAD_FIXED_1_8V,
};
struct soc_pad_ctrl {
/* Register address of SoC PHY PAD ctrl */
void __iomem *reg;
/* SoC PHY PAD ctrl type */
enum soc_pad_ctrl_type pad_type;
/* SoC specific operation to set SoC PHY PAD */
void (*set_soc_pad)(struct sdhci_host *host,
unsigned char signal_voltage);
};
static struct xenon_emmc_phy_regs xenon_emmc_5_0_phy_regs = {
.timing_adj = XENON_EMMC_5_0_PHY_TIMING_ADJUST,
.func_ctrl = XENON_EMMC_5_0_PHY_FUNC_CONTROL,
.pad_ctrl = XENON_EMMC_5_0_PHY_PAD_CONTROL,
.pad_ctrl2 = XENON_EMMC_5_0_PHY_PAD_CONTROL2,
.dll_ctrl = XENON_EMMC_5_0_PHY_DLL_CONTROL,
.logic_timing_adj = XENON_EMMC_5_0_PHY_LOGIC_TIMING_ADJUST,
.dll_update = XENON_DLL_UPDATE_STROBE_5_0,
.logic_timing_val = XENON_EMMC_5_0_PHY_LOGIC_TIMING_VALUE,
};
static struct xenon_emmc_phy_regs xenon_emmc_5_1_phy_regs = {
.timing_adj = XENON_EMMC_PHY_TIMING_ADJUST,
.func_ctrl = XENON_EMMC_PHY_FUNC_CONTROL,
.pad_ctrl = XENON_EMMC_PHY_PAD_CONTROL,
.pad_ctrl2 = XENON_EMMC_PHY_PAD_CONTROL2,
.dll_ctrl = XENON_EMMC_PHY_DLL_CONTROL,
.logic_timing_adj = XENON_EMMC_PHY_LOGIC_TIMING_ADJUST,
.dll_update = XENON_DLL_UPDATE,
.logic_timing_val = XENON_LOGIC_TIMING_VALUE,
};
/*
* eMMC PHY configuration and operations
*/
struct xenon_emmc_phy_params {
bool slow_mode;
u8 znr;
u8 zpr;
/* Nr of consecutive Sampling Points of a Valid Sampling Window */
u8 nr_tun_times;
/* Divider for calculating Tuning Step */
u8 tun_step_divider;
struct soc_pad_ctrl pad_ctrl;
};
static int xenon_alloc_emmc_phy(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params;
params = devm_kzalloc(mmc_dev(host->mmc), sizeof(*params), GFP_KERNEL);
if (!params)
return -ENOMEM;
priv->phy_params = params;
if (priv->phy_type == EMMC_5_0_PHY)
priv->emmc_phy_regs = &xenon_emmc_5_0_phy_regs;
else
priv->emmc_phy_regs = &xenon_emmc_5_1_phy_regs;
return 0;
}
/*
* eMMC 5.0/5.1 PHY init/re-init.
* eMMC PHY init should be executed after:
* 1. SDCLK frequency changes.
* 2. SDCLK is stopped and re-enabled.
* 3. config in emmc_phy_regs->timing_adj and emmc_phy_regs->func_ctrl
* are changed
*/
static int xenon_emmc_phy_init(struct sdhci_host *host)
{
u32 reg;
u32 wait, clock;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
reg = sdhci_readl(host, phy_regs->timing_adj);
reg |= XENON_PHY_INITIALIZAION;
sdhci_writel(host, reg, phy_regs->timing_adj);
/* Add duration of FC_SYNC_RST */
wait = ((reg >> XENON_FC_SYNC_RST_DURATION_SHIFT) &
XENON_FC_SYNC_RST_DURATION_MASK);
/* Add interval between FC_SYNC_EN and FC_SYNC_RST */
wait += ((reg >> XENON_FC_SYNC_RST_EN_DURATION_SHIFT) &
XENON_FC_SYNC_RST_EN_DURATION_MASK);
/* Add duration of asserting FC_SYNC_EN */
wait += ((reg >> XENON_FC_SYNC_EN_DURATION_SHIFT) &
XENON_FC_SYNC_EN_DURATION_MASK);
/* Add duration of waiting for PHY */
wait += ((reg >> XENON_WAIT_CYCLE_BEFORE_USING_SHIFT) &
XENON_WAIT_CYCLE_BEFORE_USING_MASK);
/* 4 additional bus clock and 4 AXI bus clock are required */
wait += 8;
wait <<= 20;
clock = host->clock;
if (!clock)
/* Use the possibly slowest bus frequency value */
clock = XENON_LOWEST_SDCLK_FREQ;
/* get the wait time */
wait /= clock;
wait++;
/* wait for host eMMC PHY init completes */
udelay(wait);
reg = sdhci_readl(host, phy_regs->timing_adj);
reg &= XENON_PHY_INITIALIZAION;
if (reg) {
dev_err(mmc_dev(host->mmc), "eMMC PHY init cannot complete after %d us\n",
wait);
return -ETIMEDOUT;
}
return 0;
}
#define ARMADA_3700_SOC_PAD_1_8V 0x1
#define ARMADA_3700_SOC_PAD_3_3V 0x0
static void armada_3700_soc_pad_voltage_set(struct sdhci_host *host,
unsigned char signal_voltage)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
if (params->pad_ctrl.pad_type == SOC_PAD_FIXED_1_8V) {
writel(ARMADA_3700_SOC_PAD_1_8V, params->pad_ctrl.reg);
} else if (params->pad_ctrl.pad_type == SOC_PAD_SD) {
if (signal_voltage == MMC_SIGNAL_VOLTAGE_180)
writel(ARMADA_3700_SOC_PAD_1_8V, params->pad_ctrl.reg);
else if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
writel(ARMADA_3700_SOC_PAD_3_3V, params->pad_ctrl.reg);
}
}
/*
* Set SoC PHY voltage PAD control register,
* according to the operation voltage on PAD.
* The detailed operation depends on SoC implementation.
*/
static void xenon_emmc_phy_set_soc_pad(struct sdhci_host *host,
unsigned char signal_voltage)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
if (!params->pad_ctrl.reg)
return;
if (params->pad_ctrl.set_soc_pad)
params->pad_ctrl.set_soc_pad(host, signal_voltage);
}
/*
* Enable eMMC PHY HW DLL
* DLL should be enabled and stable before HS200/SDR104 tuning,
* and before HS400 data strobe setting.
*/
static int xenon_emmc_phy_enable_dll(struct sdhci_host *host)
{
u32 reg;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
ktime_t timeout;
if (WARN_ON(host->clock <= MMC_HIGH_52_MAX_DTR))
return -EINVAL;
reg = sdhci_readl(host, phy_regs->dll_ctrl);
if (reg & XENON_DLL_ENABLE)
return 0;
/* Enable DLL */
reg = sdhci_readl(host, phy_regs->dll_ctrl);
reg |= (XENON_DLL_ENABLE | XENON_DLL_FAST_LOCK);
/*
* Set Phase as 90 degree, which is most common value.
* Might set another value if necessary.
* The granularity is 1 degree.
*/
reg &= ~((XENON_DLL_PHASE_MASK << XENON_DLL_PHSEL0_SHIFT) |
(XENON_DLL_PHASE_MASK << XENON_DLL_PHSEL1_SHIFT));
reg |= ((XENON_DLL_PHASE_90_DEGREE << XENON_DLL_PHSEL0_SHIFT) |
(XENON_DLL_PHASE_90_DEGREE << XENON_DLL_PHSEL1_SHIFT));
reg &= ~XENON_DLL_BYPASS_EN;
reg |= phy_regs->dll_update;
if (priv->phy_type == EMMC_5_1_PHY)
reg &= ~XENON_DLL_REFCLK_SEL;
sdhci_writel(host, reg, phy_regs->dll_ctrl);
/* Wait max 32 ms */
timeout = ktime_add_ms(ktime_get(), 32);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (sdhci_readw(host, XENON_SLOT_EXT_PRESENT_STATE) &
XENON_DLL_LOCK_STATE)
break;
if (timedout) {
dev_err(mmc_dev(host->mmc), "Wait for DLL Lock time-out\n");
return -ETIMEDOUT;
}
udelay(100);
}
return 0;
}
/*
* Config to eMMC PHY to prepare for tuning.
* Enable HW DLL and set the TUNING_STEP
*/
static int xenon_emmc_phy_config_tuning(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
u32 reg, tuning_step;
int ret;
if (host->clock <= MMC_HIGH_52_MAX_DTR)
return -EINVAL;
ret = xenon_emmc_phy_enable_dll(host);
if (ret)
return ret;
/* Achieve TUNING_STEP with HW DLL help */
reg = sdhci_readl(host, XENON_SLOT_DLL_CUR_DLY_VAL);
tuning_step = reg / params->tun_step_divider;
if (unlikely(tuning_step > XENON_TUNING_STEP_MASK)) {
dev_warn(mmc_dev(host->mmc),
"HS200 TUNING_STEP %d is larger than MAX value\n",
tuning_step);
tuning_step = XENON_TUNING_STEP_MASK;
}
/* Set TUNING_STEP for later tuning */
reg = sdhci_readl(host, XENON_SLOT_OP_STATUS_CTRL);
reg &= ~(XENON_TUN_CONSECUTIVE_TIMES_MASK <<
XENON_TUN_CONSECUTIVE_TIMES_SHIFT);
reg |= (params->nr_tun_times << XENON_TUN_CONSECUTIVE_TIMES_SHIFT);
reg &= ~(XENON_TUNING_STEP_MASK << XENON_TUNING_STEP_SHIFT);
reg |= (tuning_step << XENON_TUNING_STEP_SHIFT);
sdhci_writel(host, reg, XENON_SLOT_OP_STATUS_CTRL);
return 0;
}
static void xenon_emmc_phy_disable_strobe(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
u32 reg;
/* Disable both SDHC Data Strobe and Enhanced Strobe */
reg = sdhci_readl(host, XENON_SLOT_EMMC_CTRL);
reg &= ~(XENON_ENABLE_DATA_STROBE | XENON_ENABLE_RESP_STROBE);
sdhci_writel(host, reg, XENON_SLOT_EMMC_CTRL);
/* Clear Strobe line Pull down or Pull up */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg &= ~(XENON_EMMC5_FC_QSP_PD | XENON_EMMC5_FC_QSP_PU);
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg &= ~(XENON_EMMC5_1_FC_QSP_PD | XENON_EMMC5_1_FC_QSP_PU);
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
}
/* Set HS400 Data Strobe and Enhanced Strobe */
static void xenon_emmc_phy_strobe_delay_adj(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
u32 reg;
if (WARN_ON(host->timing != MMC_TIMING_MMC_HS400))
return;
if (host->clock <= MMC_HIGH_52_MAX_DTR)
return;
dev_dbg(mmc_dev(host->mmc), "starts HS400 strobe delay adjustment\n");
xenon_emmc_phy_enable_dll(host);
/* Enable SDHC Data Strobe */
reg = sdhci_readl(host, XENON_SLOT_EMMC_CTRL);
reg |= XENON_ENABLE_DATA_STROBE;
/*
* Enable SDHC Enhanced Strobe if supported
* Xenon Enhanced Strobe should be enabled only when
* 1. card is in HS400 mode and
* 2. SDCLK is higher than 52MHz
* 3. DLL is enabled
*/
if (host->mmc->ios.enhanced_strobe)
reg |= XENON_ENABLE_RESP_STROBE;
sdhci_writel(host, reg, XENON_SLOT_EMMC_CTRL);
/* Set Data Strobe Pull down */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg |= XENON_EMMC5_FC_QSP_PD;
reg &= ~XENON_EMMC5_FC_QSP_PU;
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg |= XENON_EMMC5_1_FC_QSP_PD;
reg &= ~XENON_EMMC5_1_FC_QSP_PU;
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
}
/*
* If eMMC PHY Slow Mode is required in lower speed mode (SDCLK < 55MHz)
* in SDR mode, enable Slow Mode to bypass eMMC PHY.
* SDIO slower SDR mode also requires Slow Mode.
*
* If Slow Mode is enabled, return true.
* Otherwise, return false.
*/
static bool xenon_emmc_phy_slow_mode(struct sdhci_host *host,
unsigned char timing)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
u32 reg;
int ret;
if (host->clock > MMC_HIGH_52_MAX_DTR)
return false;
reg = sdhci_readl(host, phy_regs->timing_adj);
/* When in slower SDR mode, enable Slow Mode for SDIO
* or when Slow Mode flag is set
*/
switch (timing) {
case MMC_TIMING_LEGACY:
/*
* If Slow Mode is required, enable Slow Mode by default
* in early init phase to avoid any potential issue.
*/
if (params->slow_mode) {
reg |= XENON_TIMING_ADJUST_SLOW_MODE;
ret = true;
} else {
reg &= ~XENON_TIMING_ADJUST_SLOW_MODE;
ret = false;
}
break;
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_SDR12:
case MMC_TIMING_SD_HS:
case MMC_TIMING_MMC_HS:
if ((priv->init_card_type == MMC_TYPE_SDIO) ||
params->slow_mode) {
reg |= XENON_TIMING_ADJUST_SLOW_MODE;
ret = true;
break;
}
fallthrough;
default:
reg &= ~XENON_TIMING_ADJUST_SLOW_MODE;
ret = false;
}
sdhci_writel(host, reg, phy_regs->timing_adj);
return ret;
}
/*
* Set-up eMMC 5.0/5.1 PHY.
* Specific configuration depends on the current speed mode in use.
*/
static void xenon_emmc_phy_set(struct sdhci_host *host,
unsigned char timing)
{
u32 reg;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
struct xenon_emmc_phy_params *params = priv->phy_params;
struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs;
dev_dbg(mmc_dev(host->mmc), "eMMC PHY setting starts\n");
/* Setup pad, set bit[28] and bits[26:24] */
reg = sdhci_readl(host, phy_regs->pad_ctrl);
reg |= (XENON_FC_DQ_RECEN | XENON_FC_CMD_RECEN |
XENON_FC_QSP_RECEN | XENON_OEN_QSN);
/* All FC_XX_RECEIVCE should be set as CMOS Type */
reg |= XENON_FC_ALL_CMOS_RECEIVER;
sdhci_writel(host, reg, phy_regs->pad_ctrl);
/* Set CMD and DQ Pull Up */
if (priv->phy_type == EMMC_5_0_PHY) {
reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL);
reg |= (XENON_EMMC5_FC_CMD_PU | XENON_EMMC5_FC_DQ_PU);
reg &= ~(XENON_EMMC5_FC_CMD_PD | XENON_EMMC5_FC_DQ_PD);
sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL);
} else {
reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1);
reg |= (XENON_EMMC5_1_FC_CMD_PU | XENON_EMMC5_1_FC_DQ_PU);
reg &= ~(XENON_EMMC5_1_FC_CMD_PD | XENON_EMMC5_1_FC_DQ_PD);
sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1);
}
if (timing == MMC_TIMING_LEGACY) {
xenon_emmc_phy_slow_mode(host, timing);
goto phy_init;
}
/*
* If SDIO card, set SDIO Mode
* Otherwise, clear SDIO Mode
*/
reg = sdhci_readl(host, phy_regs->timing_adj);
if (priv->init_card_type == MMC_TYPE_SDIO)
reg |= XENON_TIMING_ADJUST_SDIO_MODE;
else
reg &= ~XENON_TIMING_ADJUST_SDIO_MODE;
sdhci_writel(host, reg, phy_regs->timing_adj);
if (xenon_emmc_phy_slow_mode(host, timing))
goto phy_init;
/*
* Set preferred ZNR and ZPR value
* The ZNR and ZPR value vary between different boards.
* Define them both in sdhci-xenon-emmc-phy.h.
*/
reg = sdhci_readl(host, phy_regs->pad_ctrl2);
reg &= ~((XENON_ZNR_MASK << XENON_ZNR_SHIFT) | XENON_ZPR_MASK);
reg |= ((params->znr << XENON_ZNR_SHIFT) | params->zpr);
sdhci_writel(host, reg, phy_regs->pad_ctrl2);
/*
* When setting EMMC_PHY_FUNC_CONTROL register,
* SD clock should be disabled
*/
reg = sdhci_readl(host, SDHCI_CLOCK_CONTROL);
reg &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL);
reg = sdhci_readl(host, phy_regs->func_ctrl);
switch (timing) {
case MMC_TIMING_MMC_HS400:
reg |= (XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE;
reg &= ~XENON_DQ_ASYNC_MODE;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
reg |= (XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE | XENON_DQ_ASYNC_MODE;
break;
default:
reg &= ~((XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) |
XENON_CMD_DDR_MODE);
reg |= XENON_DQ_ASYNC_MODE;
}
sdhci_writel(host, reg, phy_regs->func_ctrl);
/* Enable bus clock */
reg = sdhci_readl(host, SDHCI_CLOCK_CONTROL);
reg |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL);
if (timing == MMC_TIMING_MMC_HS400)
/* Hardware team recommend a value for HS400 */
sdhci_writel(host, phy_regs->logic_timing_val,
phy_regs->logic_timing_adj);
else
xenon_emmc_phy_disable_strobe(host);
phy_init:
xenon_emmc_phy_init(host);
dev_dbg(mmc_dev(host->mmc), "eMMC PHY setting completes\n");
}
static int get_dt_pad_ctrl_data(struct sdhci_host *host,
struct device_node *np,
struct xenon_emmc_phy_params *params)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret = 0;
const char *name;
struct resource iomem;
if (priv->hw_version == XENON_A3700)
params->pad_ctrl.set_soc_pad = armada_3700_soc_pad_voltage_set;
else
return 0;
if (of_address_to_resource(np, 1, &iomem)) {
dev_err(mmc_dev(host->mmc), "Unable to find SoC PAD ctrl register address for %pOFn\n",
np);
return -EINVAL;
}
params->pad_ctrl.reg = devm_ioremap_resource(mmc_dev(host->mmc),
&iomem);
if (IS_ERR(params->pad_ctrl.reg))
return PTR_ERR(params->pad_ctrl.reg);
ret = of_property_read_string(np, "marvell,pad-type", &name);
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to determine SoC PHY PAD ctrl type\n");
return ret;
}
if (!strcmp(name, "sd")) {
params->pad_ctrl.pad_type = SOC_PAD_SD;
} else if (!strcmp(name, "fixed-1-8v")) {
params->pad_ctrl.pad_type = SOC_PAD_FIXED_1_8V;
} else {
dev_err(mmc_dev(host->mmc), "Unsupported SoC PHY PAD ctrl type %s\n",
name);
return -EINVAL;
}
return ret;
}
static int xenon_emmc_phy_parse_params(struct sdhci_host *host,
struct device *dev,
struct xenon_emmc_phy_params *params)
{
u32 value;
params->slow_mode = false;
if (device_property_read_bool(dev, "marvell,xenon-phy-slow-mode"))
params->slow_mode = true;
params->znr = XENON_ZNR_DEF_VALUE;
if (!device_property_read_u32(dev, "marvell,xenon-phy-znr", &value))
params->znr = value & XENON_ZNR_MASK;
params->zpr = XENON_ZPR_DEF_VALUE;
if (!device_property_read_u32(dev, "marvell,xenon-phy-zpr", &value))
params->zpr = value & XENON_ZPR_MASK;
params->nr_tun_times = XENON_TUN_CONSECUTIVE_TIMES;
if (!device_property_read_u32(dev, "marvell,xenon-phy-nr-success-tun",
&value))
params->nr_tun_times = value & XENON_TUN_CONSECUTIVE_TIMES_MASK;
params->tun_step_divider = XENON_TUNING_STEP_DIVIDER;
if (!device_property_read_u32(dev, "marvell,xenon-phy-tun-step-divider",
&value))
params->tun_step_divider = value & 0xFF;
if (dev->of_node)
return get_dt_pad_ctrl_data(host, dev->of_node, params);
return 0;
}
/* Set SoC PHY Voltage PAD */
void xenon_soc_pad_ctrl(struct sdhci_host *host,
unsigned char signal_voltage)
{
xenon_emmc_phy_set_soc_pad(host, signal_voltage);
}
/*
* Setting PHY when card is working in High Speed Mode.
* HS400 set Data Strobe and Enhanced Strobe if it is supported.
* HS200/SDR104 set tuning config to prepare for tuning.
*/
static int xenon_hs_delay_adj(struct sdhci_host *host)
{
int ret = 0;
if (WARN_ON(host->clock <= XENON_DEFAULT_SDCLK_FREQ))
return -EINVAL;
switch (host->timing) {
case MMC_TIMING_MMC_HS400:
xenon_emmc_phy_strobe_delay_adj(host);
return 0;
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
return xenon_emmc_phy_config_tuning(host);
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
/*
* DDR Mode requires driver to scan Sampling Fixed Delay Line,
* to find out a perfect operation sampling point.
* It is hard to implement such a scan in host driver
* since initiating commands by host driver is not safe.
* Thus so far just keep PHY Sampling Fixed Delay in
* default value of DDR mode.
*
* If any timing issue occurs in DDR mode on Marvell products,
* please contact maintainer for internal support in Marvell.
*/
dev_warn_once(mmc_dev(host->mmc), "Timing issue might occur in DDR mode\n");
return 0;
}
return ret;
}
/*
* Adjust PHY setting.
* PHY setting should be adjusted when SDCLK frequency, Bus Width
* or Speed Mode is changed.
* Additional config are required when card is working in High Speed mode,
* after leaving Legacy Mode.
*/
int xenon_phy_adj(struct sdhci_host *host, struct mmc_ios *ios)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret = 0;
if (!host->clock) {
priv->clock = 0;
return 0;
}
/*
* The timing, frequency or bus width is changed,
* better to set eMMC PHY based on current setting
* and adjust Xenon SDHC delay.
*/
if ((host->clock == priv->clock) &&
(ios->bus_width == priv->bus_width) &&
(ios->timing == priv->timing))
return 0;
xenon_emmc_phy_set(host, ios->timing);
/* Update the record */
priv->bus_width = ios->bus_width;
priv->timing = ios->timing;
priv->clock = host->clock;
/* Legacy mode is a special case */
if (ios->timing == MMC_TIMING_LEGACY)
return 0;
if (host->clock > XENON_DEFAULT_SDCLK_FREQ)
ret = xenon_hs_delay_adj(host);
return ret;
}
static int xenon_add_phy(struct device *dev, struct sdhci_host *host,
const char *phy_name)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret;
priv->phy_type = match_string(phy_types, NR_PHY_TYPES, phy_name);
if (priv->phy_type < 0) {
dev_err(mmc_dev(host->mmc),
"Unable to determine PHY name %s. Use default eMMC 5.1 PHY\n",
phy_name);
priv->phy_type = EMMC_5_1_PHY;
}
ret = xenon_alloc_emmc_phy(host);
if (ret)
return ret;
return xenon_emmc_phy_parse_params(host, dev, priv->phy_params);
}
int xenon_phy_parse_params(struct device *dev, struct sdhci_host *host)
{
const char *phy_type = NULL;
if (!device_property_read_string(dev, "marvell,xenon-phy-type", &phy_type))
return xenon_add_phy(dev, host, phy_type);
return xenon_add_phy(dev, host, "emmc 5.1 phy");
}
| linux-master | drivers/mmc/host/sdhci-xenon-phy.c |
// SPDX-License-Identifier: GPL-2.0-only
/* Realtek USB SD/MMC Card Interface driver
*
* Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
*
* Author:
* Roger Tseng <[email protected]>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/usb.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/card.h>
#include <linux/scatterlist.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/rtsx_usb.h>
#include <asm/unaligned.h>
#if defined(CONFIG_LEDS_CLASS) || (defined(CONFIG_LEDS_CLASS_MODULE) && \
defined(CONFIG_MMC_REALTEK_USB_MODULE))
#include <linux/leds.h>
#include <linux/workqueue.h>
#define RTSX_USB_USE_LEDS_CLASS
#endif
struct rtsx_usb_sdmmc {
struct platform_device *pdev;
struct rtsx_ucr *ucr;
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mutex host_mutex;
u8 ssc_depth;
unsigned int clock;
bool vpclk;
bool double_clk;
bool host_removal;
bool card_exist;
bool initial_mode;
bool ddr_mode;
unsigned char power_mode;
#ifdef RTSX_USB_USE_LEDS_CLASS
struct led_classdev led;
char led_name[32];
struct work_struct led_work;
#endif
};
static inline struct device *sdmmc_dev(struct rtsx_usb_sdmmc *host)
{
return &(host->pdev->dev);
}
static inline void sd_clear_error(struct rtsx_usb_sdmmc *host)
{
struct rtsx_ucr *ucr = host->ucr;
rtsx_usb_ep0_write_register(ucr, CARD_STOP,
SD_STOP | SD_CLR_ERR,
SD_STOP | SD_CLR_ERR);
rtsx_usb_clear_dma_err(ucr);
rtsx_usb_clear_fsm_err(ucr);
}
#ifdef DEBUG
static void sd_print_debug_regs(struct rtsx_usb_sdmmc *host)
{
struct rtsx_ucr *ucr = host->ucr;
u8 val = 0;
rtsx_usb_ep0_read_register(ucr, SD_STAT1, &val);
dev_dbg(sdmmc_dev(host), "SD_STAT1: 0x%x\n", val);
rtsx_usb_ep0_read_register(ucr, SD_STAT2, &val);
dev_dbg(sdmmc_dev(host), "SD_STAT2: 0x%x\n", val);
rtsx_usb_ep0_read_register(ucr, SD_BUS_STAT, &val);
dev_dbg(sdmmc_dev(host), "SD_BUS_STAT: 0x%x\n", val);
}
#else
#define sd_print_debug_regs(host)
#endif /* DEBUG */
static int sd_read_data(struct rtsx_usb_sdmmc *host, struct mmc_command *cmd,
u16 byte_cnt, u8 *buf, int buf_len, int timeout)
{
struct rtsx_ucr *ucr = host->ucr;
int err;
u8 trans_mode;
if (!buf)
buf_len = 0;
rtsx_usb_init_cmd(ucr);
if (cmd != NULL) {
dev_dbg(sdmmc_dev(host), "%s: SD/MMC CMD%d\n", __func__
, cmd->opcode);
if (cmd->opcode == MMC_SEND_TUNING_BLOCK)
trans_mode = SD_TM_AUTO_TUNING;
else
trans_mode = SD_TM_NORMAL_READ;
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD0, 0xFF, (u8)(cmd->opcode) | 0x40);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD1, 0xFF, (u8)(cmd->arg >> 24));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD2, 0xFF, (u8)(cmd->arg >> 16));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD3, 0xFF, (u8)(cmd->arg >> 8));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD4, 0xFF, (u8)cmd->arg);
} else {
trans_mode = SD_TM_AUTO_READ_3;
}
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BYTE_CNT_L, 0xFF, (u8)byte_cnt);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BYTE_CNT_H,
0xFF, (u8)(byte_cnt >> 8));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BLOCK_CNT_L, 0xFF, 1);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BLOCK_CNT_H, 0xFF, 0);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CFG2, 0xFF,
SD_CALCULATE_CRC7 | SD_CHECK_CRC16 |
SD_NO_WAIT_BUSY_END | SD_CHECK_CRC7 | SD_RSP_LEN_6);
if (trans_mode != SD_TM_AUTO_TUNING)
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
CARD_DATA_SOURCE, 0x01, PINGPONG_BUFFER);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_TRANSFER,
0xFF, trans_mode | SD_TRANSFER_START);
rtsx_usb_add_cmd(ucr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END, SD_TRANSFER_END);
if (cmd != NULL) {
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_CMD1, 0, 0);
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_CMD2, 0, 0);
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_CMD3, 0, 0);
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_CMD4, 0, 0);
}
err = rtsx_usb_send_cmd(ucr, MODE_CR, timeout);
if (err) {
dev_dbg(sdmmc_dev(host),
"rtsx_usb_send_cmd failed (err = %d)\n", err);
return err;
}
err = rtsx_usb_get_rsp(ucr, !cmd ? 1 : 5, timeout);
if (err || (ucr->rsp_buf[0] & SD_TRANSFER_ERR)) {
sd_print_debug_regs(host);
if (!err) {
dev_dbg(sdmmc_dev(host),
"Transfer failed (SD_TRANSFER = %02x)\n",
ucr->rsp_buf[0]);
err = -EIO;
} else {
dev_dbg(sdmmc_dev(host),
"rtsx_usb_get_rsp failed (err = %d)\n", err);
}
return err;
}
if (cmd != NULL) {
cmd->resp[0] = get_unaligned_be32(ucr->rsp_buf + 1);
dev_dbg(sdmmc_dev(host), "cmd->resp[0] = 0x%08x\n",
cmd->resp[0]);
}
if (buf && buf_len) {
/* 2-byte aligned part */
err = rtsx_usb_read_ppbuf(ucr, buf, byte_cnt - (byte_cnt % 2));
if (err) {
dev_dbg(sdmmc_dev(host),
"rtsx_usb_read_ppbuf failed (err = %d)\n", err);
return err;
}
/* unaligned byte */
if (byte_cnt % 2)
return rtsx_usb_read_register(ucr,
PPBUF_BASE2 + byte_cnt,
buf + byte_cnt - 1);
}
return 0;
}
static int sd_write_data(struct rtsx_usb_sdmmc *host, struct mmc_command *cmd,
u16 byte_cnt, u8 *buf, int buf_len, int timeout)
{
struct rtsx_ucr *ucr = host->ucr;
int err;
u8 trans_mode;
if (!buf)
buf_len = 0;
if (buf && buf_len) {
err = rtsx_usb_write_ppbuf(ucr, buf, buf_len);
if (err) {
dev_dbg(sdmmc_dev(host),
"rtsx_usb_write_ppbuf failed (err = %d)\n",
err);
return err;
}
}
trans_mode = (cmd != NULL) ? SD_TM_AUTO_WRITE_2 : SD_TM_AUTO_WRITE_3;
rtsx_usb_init_cmd(ucr);
if (cmd != NULL) {
dev_dbg(sdmmc_dev(host), "%s: SD/MMC CMD%d\n", __func__,
cmd->opcode);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD0, 0xFF, (u8)(cmd->opcode) | 0x40);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD1, 0xFF, (u8)(cmd->arg >> 24));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD2, 0xFF, (u8)(cmd->arg >> 16));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD3, 0xFF, (u8)(cmd->arg >> 8));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CMD4, 0xFF, (u8)cmd->arg);
}
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BYTE_CNT_L, 0xFF, (u8)byte_cnt);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BYTE_CNT_H,
0xFF, (u8)(byte_cnt >> 8));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BLOCK_CNT_L, 0xFF, 1);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BLOCK_CNT_H, 0xFF, 0);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CFG2, 0xFF,
SD_CALCULATE_CRC7 | SD_CHECK_CRC16 |
SD_NO_WAIT_BUSY_END | SD_CHECK_CRC7 | SD_RSP_LEN_6);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
CARD_DATA_SOURCE, 0x01, PINGPONG_BUFFER);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_TRANSFER, 0xFF,
trans_mode | SD_TRANSFER_START);
rtsx_usb_add_cmd(ucr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END, SD_TRANSFER_END);
if (cmd != NULL) {
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_CMD1, 0, 0);
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_CMD2, 0, 0);
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_CMD3, 0, 0);
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_CMD4, 0, 0);
}
err = rtsx_usb_send_cmd(ucr, MODE_CR, timeout);
if (err) {
dev_dbg(sdmmc_dev(host),
"rtsx_usb_send_cmd failed (err = %d)\n", err);
return err;
}
err = rtsx_usb_get_rsp(ucr, !cmd ? 1 : 5, timeout);
if (err) {
sd_print_debug_regs(host);
dev_dbg(sdmmc_dev(host),
"rtsx_usb_get_rsp failed (err = %d)\n", err);
return err;
}
if (cmd != NULL) {
cmd->resp[0] = get_unaligned_be32(ucr->rsp_buf + 1);
dev_dbg(sdmmc_dev(host), "cmd->resp[0] = 0x%08x\n",
cmd->resp[0]);
}
return 0;
}
static void sd_send_cmd_get_rsp(struct rtsx_usb_sdmmc *host,
struct mmc_command *cmd)
{
struct rtsx_ucr *ucr = host->ucr;
u8 cmd_idx = (u8)cmd->opcode;
u32 arg = cmd->arg;
int err = 0;
int timeout = 100;
int i;
u8 *ptr;
int stat_idx = 0;
int len = 2;
u8 rsp_type;
dev_dbg(sdmmc_dev(host), "%s: SD/MMC CMD %d, arg = 0x%08x\n",
__func__, cmd_idx, arg);
/* Response type:
* R0
* R1, R5, R6, R7
* R1b
* R2
* R3, R4
*/
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
rsp_type = SD_RSP_TYPE_R0;
break;
case MMC_RSP_R1:
rsp_type = SD_RSP_TYPE_R1;
break;
case MMC_RSP_R1_NO_CRC:
rsp_type = SD_RSP_TYPE_R1 | SD_NO_CHECK_CRC7;
break;
case MMC_RSP_R1B:
rsp_type = SD_RSP_TYPE_R1b;
break;
case MMC_RSP_R2:
rsp_type = SD_RSP_TYPE_R2;
break;
case MMC_RSP_R3:
rsp_type = SD_RSP_TYPE_R3;
break;
default:
dev_dbg(sdmmc_dev(host), "cmd->flag is not valid\n");
err = -EINVAL;
goto out;
}
if (rsp_type == SD_RSP_TYPE_R1b)
timeout = cmd->busy_timeout ? cmd->busy_timeout : 3000;
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
err = rtsx_usb_write_register(ucr, SD_BUS_STAT,
SD_CLK_TOGGLE_EN | SD_CLK_FORCE_STOP,
SD_CLK_TOGGLE_EN);
if (err)
goto out;
}
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CMD0, 0xFF, 0x40 | cmd_idx);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CMD1, 0xFF, (u8)(arg >> 24));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CMD2, 0xFF, (u8)(arg >> 16));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CMD3, 0xFF, (u8)(arg >> 8));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CMD4, 0xFF, (u8)arg);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CFG2, 0xFF, rsp_type);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_DATA_SOURCE,
0x01, PINGPONG_BUFFER);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_TRANSFER,
0xFF, SD_TM_CMD_RSP | SD_TRANSFER_START);
rtsx_usb_add_cmd(ucr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END | SD_STAT_IDLE,
SD_TRANSFER_END | SD_STAT_IDLE);
if (rsp_type == SD_RSP_TYPE_R2) {
/* Read data from ping-pong buffer */
for (i = PPBUF_BASE2; i < PPBUF_BASE2 + 16; i++)
rtsx_usb_add_cmd(ucr, READ_REG_CMD, (u16)i, 0, 0);
stat_idx = 16;
} else if (rsp_type != SD_RSP_TYPE_R0) {
/* Read data from SD_CMDx registers */
for (i = SD_CMD0; i <= SD_CMD4; i++)
rtsx_usb_add_cmd(ucr, READ_REG_CMD, (u16)i, 0, 0);
stat_idx = 5;
}
len += stat_idx;
rtsx_usb_add_cmd(ucr, READ_REG_CMD, SD_STAT1, 0, 0);
err = rtsx_usb_send_cmd(ucr, MODE_CR, 100);
if (err) {
dev_dbg(sdmmc_dev(host),
"rtsx_usb_send_cmd error (err = %d)\n", err);
goto out;
}
err = rtsx_usb_get_rsp(ucr, len, timeout);
if (err || (ucr->rsp_buf[0] & SD_TRANSFER_ERR)) {
sd_print_debug_regs(host);
sd_clear_error(host);
if (!err) {
dev_dbg(sdmmc_dev(host),
"Transfer failed (SD_TRANSFER = %02x)\n",
ucr->rsp_buf[0]);
err = -EIO;
} else {
dev_dbg(sdmmc_dev(host),
"rtsx_usb_get_rsp failed (err = %d)\n", err);
}
goto out;
}
if (rsp_type == SD_RSP_TYPE_R0) {
err = 0;
goto out;
}
/* Skip result of CHECK_REG_CMD */
ptr = ucr->rsp_buf + 1;
/* Check (Start,Transmission) bit of Response */
if ((ptr[0] & 0xC0) != 0) {
err = -EILSEQ;
dev_dbg(sdmmc_dev(host), "Invalid response bit\n");
goto out;
}
/* Check CRC7 */
if (!(rsp_type & SD_NO_CHECK_CRC7)) {
if (ptr[stat_idx] & SD_CRC7_ERR) {
err = -EILSEQ;
dev_dbg(sdmmc_dev(host), "CRC7 error\n");
goto out;
}
}
if (rsp_type == SD_RSP_TYPE_R2) {
/*
* The controller offloads the last byte {CRC-7, end bit 1'b1}
* of response type R2. Assign dummy CRC, 0, and end bit to the
* byte(ptr[16], goes into the LSB of resp[3] later).
*/
ptr[16] = 1;
for (i = 0; i < 4; i++) {
cmd->resp[i] = get_unaligned_be32(ptr + 1 + i * 4);
dev_dbg(sdmmc_dev(host), "cmd->resp[%d] = 0x%08x\n",
i, cmd->resp[i]);
}
} else {
cmd->resp[0] = get_unaligned_be32(ptr + 1);
dev_dbg(sdmmc_dev(host), "cmd->resp[0] = 0x%08x\n",
cmd->resp[0]);
}
out:
cmd->error = err;
}
static int sd_rw_multi(struct rtsx_usb_sdmmc *host, struct mmc_request *mrq)
{
struct rtsx_ucr *ucr = host->ucr;
struct mmc_data *data = mrq->data;
int read = (data->flags & MMC_DATA_READ) ? 1 : 0;
u8 cfg2, trans_mode;
int err;
u8 flag;
size_t data_len = data->blksz * data->blocks;
unsigned int pipe;
if (read) {
dev_dbg(sdmmc_dev(host), "%s: read %zu bytes\n",
__func__, data_len);
cfg2 = SD_CALCULATE_CRC7 | SD_CHECK_CRC16 |
SD_NO_WAIT_BUSY_END | SD_CHECK_CRC7 | SD_RSP_LEN_0;
trans_mode = SD_TM_AUTO_READ_3;
} else {
dev_dbg(sdmmc_dev(host), "%s: write %zu bytes\n",
__func__, data_len);
cfg2 = SD_NO_CALCULATE_CRC7 | SD_CHECK_CRC16 |
SD_NO_WAIT_BUSY_END | SD_NO_CHECK_CRC7 | SD_RSP_LEN_0;
trans_mode = SD_TM_AUTO_WRITE_3;
}
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BYTE_CNT_L, 0xFF, 0x00);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BYTE_CNT_H, 0xFF, 0x02);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BLOCK_CNT_L,
0xFF, (u8)data->blocks);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BLOCK_CNT_H,
0xFF, (u8)(data->blocks >> 8));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_DATA_SOURCE,
0x01, RING_BUFFER);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, MC_DMA_TC3,
0xFF, (u8)(data_len >> 24));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, MC_DMA_TC2,
0xFF, (u8)(data_len >> 16));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, MC_DMA_TC1,
0xFF, (u8)(data_len >> 8));
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, MC_DMA_TC0,
0xFF, (u8)data_len);
if (read) {
flag = MODE_CDIR;
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, MC_DMA_CTL,
0x03 | DMA_PACK_SIZE_MASK,
DMA_DIR_FROM_CARD | DMA_EN | DMA_512);
} else {
flag = MODE_CDOR;
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, MC_DMA_CTL,
0x03 | DMA_PACK_SIZE_MASK,
DMA_DIR_TO_CARD | DMA_EN | DMA_512);
}
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CFG2, 0xFF, cfg2);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_TRANSFER, 0xFF,
trans_mode | SD_TRANSFER_START);
rtsx_usb_add_cmd(ucr, CHECK_REG_CMD, SD_TRANSFER,
SD_TRANSFER_END, SD_TRANSFER_END);
err = rtsx_usb_send_cmd(ucr, flag, 100);
if (err)
return err;
if (read)
pipe = usb_rcvbulkpipe(ucr->pusb_dev, EP_BULK_IN);
else
pipe = usb_sndbulkpipe(ucr->pusb_dev, EP_BULK_OUT);
err = rtsx_usb_transfer_data(ucr, pipe, data->sg, data_len,
data->sg_len, NULL, 10000);
if (err) {
dev_dbg(sdmmc_dev(host), "rtsx_usb_transfer_data error %d\n"
, err);
sd_clear_error(host);
return err;
}
return rtsx_usb_get_rsp(ucr, 1, 2000);
}
static inline void sd_enable_initial_mode(struct rtsx_usb_sdmmc *host)
{
rtsx_usb_write_register(host->ucr, SD_CFG1,
SD_CLK_DIVIDE_MASK, SD_CLK_DIVIDE_128);
}
static inline void sd_disable_initial_mode(struct rtsx_usb_sdmmc *host)
{
rtsx_usb_write_register(host->ucr, SD_CFG1,
SD_CLK_DIVIDE_MASK, SD_CLK_DIVIDE_0);
}
static void sd_normal_rw(struct rtsx_usb_sdmmc *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
u8 *buf;
buf = kzalloc(data->blksz, GFP_NOIO);
if (!buf) {
cmd->error = -ENOMEM;
return;
}
if (data->flags & MMC_DATA_READ) {
if (host->initial_mode)
sd_disable_initial_mode(host);
cmd->error = sd_read_data(host, cmd, (u16)data->blksz, buf,
data->blksz, 200);
if (host->initial_mode)
sd_enable_initial_mode(host);
sg_copy_from_buffer(data->sg, data->sg_len, buf, data->blksz);
} else {
sg_copy_to_buffer(data->sg, data->sg_len, buf, data->blksz);
cmd->error = sd_write_data(host, cmd, (u16)data->blksz, buf,
data->blksz, 200);
}
kfree(buf);
}
static int sd_change_phase(struct rtsx_usb_sdmmc *host, u8 sample_point, int tx)
{
struct rtsx_ucr *ucr = host->ucr;
dev_dbg(sdmmc_dev(host), "%s: %s sample_point = %d\n",
__func__, tx ? "TX" : "RX", sample_point);
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CLK_DIV, CLK_CHANGE, CLK_CHANGE);
if (tx)
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_VPCLK0_CTL,
0x0F, sample_point);
else
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_VPCLK1_CTL,
0x0F, sample_point);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_VPCLK0_CTL, PHASE_NOT_RESET, 0);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_VPCLK0_CTL,
PHASE_NOT_RESET, PHASE_NOT_RESET);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CLK_DIV, CLK_CHANGE, 0);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CFG1, SD_ASYNC_FIFO_RST, 0);
return rtsx_usb_send_cmd(ucr, MODE_C, 100);
}
static inline u32 get_phase_point(u32 phase_map, unsigned int idx)
{
idx &= MAX_PHASE;
return phase_map & (1 << idx);
}
static int get_phase_len(u32 phase_map, unsigned int idx)
{
int i;
for (i = 0; i < MAX_PHASE + 1; i++) {
if (get_phase_point(phase_map, idx + i) == 0)
return i;
}
return MAX_PHASE + 1;
}
static u8 sd_search_final_phase(struct rtsx_usb_sdmmc *host, u32 phase_map)
{
int start = 0, len = 0;
int start_final = 0, len_final = 0;
u8 final_phase = 0xFF;
if (phase_map == 0) {
dev_dbg(sdmmc_dev(host), "Phase: [map:%x]\n", phase_map);
return final_phase;
}
while (start < MAX_PHASE + 1) {
len = get_phase_len(phase_map, start);
if (len_final < len) {
start_final = start;
len_final = len;
}
start += len ? len : 1;
}
final_phase = (start_final + len_final / 2) & MAX_PHASE;
dev_dbg(sdmmc_dev(host), "Phase: [map:%x] [maxlen:%d] [final:%d]\n",
phase_map, len_final, final_phase);
return final_phase;
}
static void sd_wait_data_idle(struct rtsx_usb_sdmmc *host)
{
int i;
u8 val = 0;
for (i = 0; i < 100; i++) {
rtsx_usb_ep0_read_register(host->ucr, SD_DATA_STATE, &val);
if (val & SD_DATA_IDLE)
return;
usleep_range(100, 1000);
}
}
static int sd_tuning_rx_cmd(struct rtsx_usb_sdmmc *host,
u8 opcode, u8 sample_point)
{
int err;
struct mmc_command cmd = {};
err = sd_change_phase(host, sample_point, 0);
if (err)
return err;
cmd.opcode = MMC_SEND_TUNING_BLOCK;
err = sd_read_data(host, &cmd, 0x40, NULL, 0, 100);
if (err) {
/* Wait till SD DATA IDLE */
sd_wait_data_idle(host);
sd_clear_error(host);
return err;
}
return 0;
}
static void sd_tuning_phase(struct rtsx_usb_sdmmc *host,
u8 opcode, u16 *phase_map)
{
int err, i;
u16 raw_phase_map = 0;
for (i = MAX_PHASE; i >= 0; i--) {
err = sd_tuning_rx_cmd(host, opcode, (u8)i);
if (!err)
raw_phase_map |= 1 << i;
}
if (phase_map)
*phase_map = raw_phase_map;
}
static int sd_tuning_rx(struct rtsx_usb_sdmmc *host, u8 opcode)
{
int err, i;
u16 raw_phase_map[RX_TUNING_CNT] = {0}, phase_map;
u8 final_phase;
/* setting fixed default TX phase */
err = sd_change_phase(host, 0x01, 1);
if (err) {
dev_dbg(sdmmc_dev(host), "TX phase setting failed\n");
return err;
}
/* tuning RX phase */
for (i = 0; i < RX_TUNING_CNT; i++) {
sd_tuning_phase(host, opcode, &(raw_phase_map[i]));
if (raw_phase_map[i] == 0)
break;
}
phase_map = 0xFFFF;
for (i = 0; i < RX_TUNING_CNT; i++) {
dev_dbg(sdmmc_dev(host), "RX raw_phase_map[%d] = 0x%04x\n",
i, raw_phase_map[i]);
phase_map &= raw_phase_map[i];
}
dev_dbg(sdmmc_dev(host), "RX phase_map = 0x%04x\n", phase_map);
if (phase_map) {
final_phase = sd_search_final_phase(host, phase_map);
if (final_phase == 0xFF)
return -EINVAL;
err = sd_change_phase(host, final_phase, 0);
if (err)
return err;
} else {
return -EINVAL;
}
return 0;
}
static int sdmmc_get_ro(struct mmc_host *mmc)
{
struct rtsx_usb_sdmmc *host = mmc_priv(mmc);
struct rtsx_ucr *ucr = host->ucr;
int err;
u16 val;
if (host->host_removal)
return -ENOMEDIUM;
mutex_lock(&ucr->dev_mutex);
/* Check SD card detect */
err = rtsx_usb_get_card_status(ucr, &val);
mutex_unlock(&ucr->dev_mutex);
/* Treat failed detection as non-ro */
if (err)
return 0;
if (val & SD_WP)
return 1;
return 0;
}
static int sdmmc_get_cd(struct mmc_host *mmc)
{
struct rtsx_usb_sdmmc *host = mmc_priv(mmc);
struct rtsx_ucr *ucr = host->ucr;
int err;
u16 val;
if (host->host_removal)
return -ENOMEDIUM;
mutex_lock(&ucr->dev_mutex);
/* Check SD card detect */
err = rtsx_usb_get_card_status(ucr, &val);
mutex_unlock(&ucr->dev_mutex);
/* Treat failed detection as non-exist */
if (err)
goto no_card;
if (val & SD_CD) {
host->card_exist = true;
return 1;
}
no_card:
host->card_exist = false;
return 0;
}
static void sdmmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct rtsx_usb_sdmmc *host = mmc_priv(mmc);
struct rtsx_ucr *ucr = host->ucr;
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
unsigned int data_size = 0;
dev_dbg(sdmmc_dev(host), "%s\n", __func__);
if (host->host_removal) {
cmd->error = -ENOMEDIUM;
goto finish;
}
if ((!host->card_exist)) {
cmd->error = -ENOMEDIUM;
goto finish_detect_card;
}
mutex_lock(&ucr->dev_mutex);
mutex_lock(&host->host_mutex);
host->mrq = mrq;
mutex_unlock(&host->host_mutex);
if (mrq->data)
data_size = data->blocks * data->blksz;
if (!data_size) {
sd_send_cmd_get_rsp(host, cmd);
} else if ((!(data_size % 512) && cmd->opcode != MMC_SEND_EXT_CSD) ||
mmc_op_multi(cmd->opcode)) {
sd_send_cmd_get_rsp(host, cmd);
if (!cmd->error) {
sd_rw_multi(host, mrq);
if (mmc_op_multi(cmd->opcode) && mrq->stop) {
sd_send_cmd_get_rsp(host, mrq->stop);
rtsx_usb_write_register(ucr, MC_FIFO_CTL,
FIFO_FLUSH, FIFO_FLUSH);
}
}
} else {
sd_normal_rw(host, mrq);
}
if (mrq->data) {
if (cmd->error || data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blocks * data->blksz;
}
mutex_unlock(&ucr->dev_mutex);
finish_detect_card:
if (cmd->error) {
/*
* detect card when fail to update card existence state and
* speed up card removal when retry
*/
sdmmc_get_cd(mmc);
dev_dbg(sdmmc_dev(host), "cmd->error = %d\n", cmd->error);
}
finish:
mutex_lock(&host->host_mutex);
host->mrq = NULL;
mutex_unlock(&host->host_mutex);
mmc_request_done(mmc, mrq);
}
static int sd_set_bus_width(struct rtsx_usb_sdmmc *host,
unsigned char bus_width)
{
int err = 0;
static const u8 width[] = {
[MMC_BUS_WIDTH_1] = SD_BUS_WIDTH_1BIT,
[MMC_BUS_WIDTH_4] = SD_BUS_WIDTH_4BIT,
[MMC_BUS_WIDTH_8] = SD_BUS_WIDTH_8BIT,
};
if (bus_width <= MMC_BUS_WIDTH_8)
err = rtsx_usb_write_register(host->ucr, SD_CFG1,
0x03, width[bus_width]);
return err;
}
static int sd_pull_ctl_disable_lqfp48(struct rtsx_ucr *ucr)
{
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL1, 0xFF, 0x55);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL2, 0xFF, 0x55);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL3, 0xFF, 0x95);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL4, 0xFF, 0x55);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL5, 0xFF, 0x55);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL6, 0xFF, 0xA5);
return rtsx_usb_send_cmd(ucr, MODE_C, 100);
}
static int sd_pull_ctl_disable_qfn24(struct rtsx_ucr *ucr)
{
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL1, 0xFF, 0x65);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL2, 0xFF, 0x55);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL3, 0xFF, 0x95);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL4, 0xFF, 0x55);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL5, 0xFF, 0x56);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL6, 0xFF, 0x59);
return rtsx_usb_send_cmd(ucr, MODE_C, 100);
}
static int sd_pull_ctl_enable_lqfp48(struct rtsx_ucr *ucr)
{
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL1, 0xFF, 0xAA);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL2, 0xFF, 0xAA);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL3, 0xFF, 0xA9);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL4, 0xFF, 0x55);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL5, 0xFF, 0x55);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL6, 0xFF, 0xA5);
return rtsx_usb_send_cmd(ucr, MODE_C, 100);
}
static int sd_pull_ctl_enable_qfn24(struct rtsx_ucr *ucr)
{
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL1, 0xFF, 0xA5);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL2, 0xFF, 0x9A);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL3, 0xFF, 0xA5);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL4, 0xFF, 0x9A);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL5, 0xFF, 0x65);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PULL_CTL6, 0xFF, 0x5A);
return rtsx_usb_send_cmd(ucr, MODE_C, 100);
}
static int sd_power_on(struct rtsx_usb_sdmmc *host)
{
struct rtsx_ucr *ucr = host->ucr;
int err;
dev_dbg(sdmmc_dev(host), "%s\n", __func__);
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_SELECT, 0x07, SD_MOD_SEL);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_SHARE_MODE,
CARD_SHARE_MASK, CARD_SHARE_SD);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_CLK_EN,
SD_CLK_EN, SD_CLK_EN);
err = rtsx_usb_send_cmd(ucr, MODE_C, 100);
if (err)
return err;
if (CHECK_PKG(ucr, LQFP48))
err = sd_pull_ctl_enable_lqfp48(ucr);
else
err = sd_pull_ctl_enable_qfn24(ucr);
if (err)
return err;
err = rtsx_usb_write_register(ucr, CARD_PWR_CTL,
POWER_MASK, PARTIAL_POWER_ON);
if (err)
return err;
usleep_range(800, 1000);
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PWR_CTL,
POWER_MASK|LDO3318_PWR_MASK, POWER_ON|LDO_ON);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_OE,
SD_OUTPUT_EN, SD_OUTPUT_EN);
return rtsx_usb_send_cmd(ucr, MODE_C, 100);
}
static int sd_power_off(struct rtsx_usb_sdmmc *host)
{
struct rtsx_ucr *ucr = host->ucr;
int err;
dev_dbg(sdmmc_dev(host), "%s\n", __func__);
rtsx_usb_init_cmd(ucr);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_CLK_EN, SD_CLK_EN, 0);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_OE, SD_OUTPUT_EN, 0);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PWR_CTL,
POWER_MASK, POWER_OFF);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_PWR_CTL,
POWER_MASK|LDO3318_PWR_MASK, POWER_OFF|LDO_SUSPEND);
err = rtsx_usb_send_cmd(ucr, MODE_C, 100);
if (err)
return err;
if (CHECK_PKG(ucr, LQFP48))
return sd_pull_ctl_disable_lqfp48(ucr);
return sd_pull_ctl_disable_qfn24(ucr);
}
static int sd_set_power_mode(struct rtsx_usb_sdmmc *host,
unsigned char power_mode)
{
int err;
if (power_mode != MMC_POWER_OFF)
power_mode = MMC_POWER_ON;
if (power_mode == host->power_mode)
return 0;
if (power_mode == MMC_POWER_OFF) {
err = sd_power_off(host);
pm_runtime_put_noidle(sdmmc_dev(host));
} else {
pm_runtime_get_noresume(sdmmc_dev(host));
err = sd_power_on(host);
}
if (!err)
host->power_mode = power_mode;
return err;
}
static int sd_set_timing(struct rtsx_usb_sdmmc *host,
unsigned char timing, bool *ddr_mode)
{
struct rtsx_ucr *ucr = host->ucr;
*ddr_mode = false;
rtsx_usb_init_cmd(ucr);
switch (timing) {
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_SDR50:
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CFG1,
0x0C | SD_ASYNC_FIFO_RST,
SD_30_MODE | SD_ASYNC_FIFO_RST);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_CLK_SOURCE, 0xFF,
CRC_VAR_CLK0 | SD30_FIX_CLK | SAMPLE_VAR_CLK1);
break;
case MMC_TIMING_UHS_DDR50:
*ddr_mode = true;
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CFG1,
0x0C | SD_ASYNC_FIFO_RST,
SD_DDR_MODE | SD_ASYNC_FIFO_RST);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_CLK_SOURCE, 0xFF,
CRC_VAR_CLK0 | SD30_FIX_CLK | SAMPLE_VAR_CLK1);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_PUSH_POINT_CTL,
DDR_VAR_TX_CMD_DAT, DDR_VAR_TX_CMD_DAT);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_SAMPLE_POINT_CTL,
DDR_VAR_RX_DAT | DDR_VAR_RX_CMD,
DDR_VAR_RX_DAT | DDR_VAR_RX_CMD);
break;
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_CFG1,
0x0C, SD_20_MODE);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_CLK_SOURCE, 0xFF,
CRC_FIX_CLK | SD30_VAR_CLK0 | SAMPLE_VAR_CLK1);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_PUSH_POINT_CTL,
SD20_TX_SEL_MASK, SD20_TX_14_AHEAD);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_SAMPLE_POINT_CTL,
SD20_RX_SEL_MASK, SD20_RX_14_DELAY);
break;
default:
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_CFG1, 0x0C, SD_20_MODE);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, CARD_CLK_SOURCE, 0xFF,
CRC_FIX_CLK | SD30_VAR_CLK0 | SAMPLE_VAR_CLK1);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD,
SD_PUSH_POINT_CTL, 0xFF, 0);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_SAMPLE_POINT_CTL,
SD20_RX_SEL_MASK, SD20_RX_POS_EDGE);
break;
}
return rtsx_usb_send_cmd(ucr, MODE_C, 100);
}
static void sdmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct rtsx_usb_sdmmc *host = mmc_priv(mmc);
struct rtsx_ucr *ucr = host->ucr;
dev_dbg(sdmmc_dev(host), "%s\n", __func__);
mutex_lock(&ucr->dev_mutex);
sd_set_power_mode(host, ios->power_mode);
sd_set_bus_width(host, ios->bus_width);
sd_set_timing(host, ios->timing, &host->ddr_mode);
host->vpclk = false;
host->double_clk = true;
switch (ios->timing) {
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_SDR50:
host->ssc_depth = SSC_DEPTH_2M;
host->vpclk = true;
host->double_clk = false;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_UHS_SDR25:
host->ssc_depth = SSC_DEPTH_1M;
break;
default:
host->ssc_depth = SSC_DEPTH_512K;
break;
}
host->initial_mode = (ios->clock <= 1000000) ? true : false;
host->clock = ios->clock;
rtsx_usb_switch_clock(host->ucr, host->clock, host->ssc_depth,
host->initial_mode, host->double_clk, host->vpclk);
mutex_unlock(&ucr->dev_mutex);
dev_dbg(sdmmc_dev(host), "%s end\n", __func__);
}
static int sdmmc_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct rtsx_usb_sdmmc *host = mmc_priv(mmc);
struct rtsx_ucr *ucr = host->ucr;
int err = 0;
dev_dbg(sdmmc_dev(host), "%s: signal_voltage = %d\n",
__func__, ios->signal_voltage);
if (host->host_removal)
return -ENOMEDIUM;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_120)
return -EPERM;
mutex_lock(&ucr->dev_mutex);
err = rtsx_usb_card_exclusive_check(ucr, RTSX_USB_SD_CARD);
if (err) {
mutex_unlock(&ucr->dev_mutex);
return err;
}
/* Let mmc core do the busy checking, simply stop the forced-toggle
* clock(while issuing CMD11) and switch voltage.
*/
rtsx_usb_init_cmd(ucr);
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_PAD_CTL,
SD_IO_USING_1V8, SD_IO_USING_3V3);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, LDO_POWER_CFG,
TUNE_SD18_MASK, TUNE_SD18_3V3);
} else {
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_BUS_STAT,
SD_CLK_TOGGLE_EN | SD_CLK_FORCE_STOP,
SD_CLK_FORCE_STOP);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, SD_PAD_CTL,
SD_IO_USING_1V8, SD_IO_USING_1V8);
rtsx_usb_add_cmd(ucr, WRITE_REG_CMD, LDO_POWER_CFG,
TUNE_SD18_MASK, TUNE_SD18_1V8);
}
err = rtsx_usb_send_cmd(ucr, MODE_C, 100);
mutex_unlock(&ucr->dev_mutex);
return err;
}
static int sdmmc_card_busy(struct mmc_host *mmc)
{
struct rtsx_usb_sdmmc *host = mmc_priv(mmc);
struct rtsx_ucr *ucr = host->ucr;
int err;
u8 stat;
u8 mask = SD_DAT3_STATUS | SD_DAT2_STATUS | SD_DAT1_STATUS
| SD_DAT0_STATUS;
dev_dbg(sdmmc_dev(host), "%s\n", __func__);
mutex_lock(&ucr->dev_mutex);
err = rtsx_usb_write_register(ucr, SD_BUS_STAT,
SD_CLK_TOGGLE_EN | SD_CLK_FORCE_STOP,
SD_CLK_TOGGLE_EN);
if (err)
goto out;
mdelay(1);
err = rtsx_usb_read_register(ucr, SD_BUS_STAT, &stat);
if (err)
goto out;
err = rtsx_usb_write_register(ucr, SD_BUS_STAT,
SD_CLK_TOGGLE_EN | SD_CLK_FORCE_STOP, 0);
out:
mutex_unlock(&ucr->dev_mutex);
if (err)
return err;
/* check if any pin between dat[0:3] is low */
if ((stat & mask) != mask)
return 1;
else
return 0;
}
static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct rtsx_usb_sdmmc *host = mmc_priv(mmc);
struct rtsx_ucr *ucr = host->ucr;
int err = 0;
if (host->host_removal)
return -ENOMEDIUM;
mutex_lock(&ucr->dev_mutex);
if (!host->ddr_mode)
err = sd_tuning_rx(host, MMC_SEND_TUNING_BLOCK);
mutex_unlock(&ucr->dev_mutex);
return err;
}
static const struct mmc_host_ops rtsx_usb_sdmmc_ops = {
.request = sdmmc_request,
.set_ios = sdmmc_set_ios,
.get_ro = sdmmc_get_ro,
.get_cd = sdmmc_get_cd,
.start_signal_voltage_switch = sdmmc_switch_voltage,
.card_busy = sdmmc_card_busy,
.execute_tuning = sdmmc_execute_tuning,
};
#ifdef RTSX_USB_USE_LEDS_CLASS
static void rtsx_usb_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
struct rtsx_usb_sdmmc *host = container_of(led,
struct rtsx_usb_sdmmc, led);
if (host->host_removal)
return;
host->led.brightness = brightness;
schedule_work(&host->led_work);
}
static void rtsx_usb_update_led(struct work_struct *work)
{
struct rtsx_usb_sdmmc *host =
container_of(work, struct rtsx_usb_sdmmc, led_work);
struct rtsx_ucr *ucr = host->ucr;
pm_runtime_get_noresume(sdmmc_dev(host));
mutex_lock(&ucr->dev_mutex);
if (host->power_mode == MMC_POWER_OFF)
goto out;
if (host->led.brightness == LED_OFF)
rtsx_usb_turn_off_led(ucr);
else
rtsx_usb_turn_on_led(ucr);
out:
mutex_unlock(&ucr->dev_mutex);
pm_runtime_put_sync_suspend(sdmmc_dev(host));
}
#endif
static void rtsx_usb_init_host(struct rtsx_usb_sdmmc *host)
{
struct mmc_host *mmc = host->mmc;
mmc->f_min = 250000;
mmc->f_max = 208000000;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_MMC_HIGHSPEED | MMC_CAP_BUS_WIDTH_TEST |
MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 |
MMC_CAP_SYNC_RUNTIME_PM;
mmc->caps2 = MMC_CAP2_NO_PRESCAN_POWERUP | MMC_CAP2_FULL_PWR_CYCLE |
MMC_CAP2_NO_SDIO;
mmc->max_current_330 = 400;
mmc->max_current_180 = 800;
mmc->ops = &rtsx_usb_sdmmc_ops;
mmc->max_segs = 256;
mmc->max_seg_size = 65536;
mmc->max_blk_size = 512;
mmc->max_blk_count = 65535;
mmc->max_req_size = 524288;
host->power_mode = MMC_POWER_OFF;
}
static int rtsx_usb_sdmmc_drv_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct rtsx_usb_sdmmc *host;
struct rtsx_ucr *ucr;
#ifdef RTSX_USB_USE_LEDS_CLASS
int err;
#endif
int ret;
ucr = usb_get_intfdata(to_usb_interface(pdev->dev.parent));
if (!ucr)
return -ENXIO;
dev_dbg(&(pdev->dev), ": Realtek USB SD/MMC controller found\n");
mmc = mmc_alloc_host(sizeof(*host), &pdev->dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->ucr = ucr;
host->mmc = mmc;
host->pdev = pdev;
platform_set_drvdata(pdev, host);
mutex_init(&host->host_mutex);
rtsx_usb_init_host(host);
pm_runtime_enable(&pdev->dev);
#ifdef RTSX_USB_USE_LEDS_CLASS
snprintf(host->led_name, sizeof(host->led_name),
"%s::", mmc_hostname(mmc));
host->led.name = host->led_name;
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
host->led.brightness_set = rtsx_usb_led_control;
err = led_classdev_register(mmc_dev(mmc), &host->led);
if (err)
dev_err(&(pdev->dev),
"Failed to register LED device: %d\n", err);
INIT_WORK(&host->led_work, rtsx_usb_update_led);
#endif
ret = mmc_add_host(mmc);
if (ret) {
#ifdef RTSX_USB_USE_LEDS_CLASS
led_classdev_unregister(&host->led);
#endif
mmc_free_host(mmc);
pm_runtime_disable(&pdev->dev);
return ret;
}
return 0;
}
static void rtsx_usb_sdmmc_drv_remove(struct platform_device *pdev)
{
struct rtsx_usb_sdmmc *host = platform_get_drvdata(pdev);
struct mmc_host *mmc;
if (!host)
return;
mmc = host->mmc;
host->host_removal = true;
mutex_lock(&host->host_mutex);
if (host->mrq) {
dev_dbg(&(pdev->dev),
"%s: Controller removed during transfer\n",
mmc_hostname(mmc));
host->mrq->cmd->error = -ENOMEDIUM;
if (host->mrq->stop)
host->mrq->stop->error = -ENOMEDIUM;
mmc_request_done(mmc, host->mrq);
}
mutex_unlock(&host->host_mutex);
mmc_remove_host(mmc);
#ifdef RTSX_USB_USE_LEDS_CLASS
cancel_work_sync(&host->led_work);
led_classdev_unregister(&host->led);
#endif
mmc_free_host(mmc);
pm_runtime_disable(&pdev->dev);
platform_set_drvdata(pdev, NULL);
dev_dbg(&(pdev->dev),
": Realtek USB SD/MMC module has been removed\n");
}
#ifdef CONFIG_PM
static int rtsx_usb_sdmmc_runtime_suspend(struct device *dev)
{
struct rtsx_usb_sdmmc *host = dev_get_drvdata(dev);
host->mmc->caps &= ~MMC_CAP_NEEDS_POLL;
return 0;
}
static int rtsx_usb_sdmmc_runtime_resume(struct device *dev)
{
struct rtsx_usb_sdmmc *host = dev_get_drvdata(dev);
host->mmc->caps |= MMC_CAP_NEEDS_POLL;
if (sdmmc_get_cd(host->mmc) == 1)
mmc_detect_change(host->mmc, 0);
return 0;
}
#endif
static const struct dev_pm_ops rtsx_usb_sdmmc_dev_pm_ops = {
SET_RUNTIME_PM_OPS(rtsx_usb_sdmmc_runtime_suspend,
rtsx_usb_sdmmc_runtime_resume, NULL)
};
static const struct platform_device_id rtsx_usb_sdmmc_ids[] = {
{
.name = "rtsx_usb_sdmmc",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, rtsx_usb_sdmmc_ids);
static struct platform_driver rtsx_usb_sdmmc_driver = {
.probe = rtsx_usb_sdmmc_drv_probe,
.remove_new = rtsx_usb_sdmmc_drv_remove,
.id_table = rtsx_usb_sdmmc_ids,
.driver = {
.name = "rtsx_usb_sdmmc",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &rtsx_usb_sdmmc_dev_pm_ops,
},
};
module_platform_driver(rtsx_usb_sdmmc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Roger Tseng <[email protected]>");
MODULE_DESCRIPTION("Realtek USB SD/MMC Card Host Driver");
| linux-master | drivers/mmc/host/rtsx_usb_sdmmc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/* Copyright (C) 2020 IBM Corp. */
#include <kunit/test.h>
static void aspeed_sdhci_phase_ddr52(struct kunit *test)
{
int rate = 52000000;
KUNIT_EXPECT_EQ(test, 0,
aspeed_sdhci_phase_to_tap(NULL, rate, 0));
KUNIT_EXPECT_EQ(test, 0,
aspeed_sdhci_phase_to_tap(NULL, rate, 1));
KUNIT_EXPECT_EQ(test, 1,
aspeed_sdhci_phase_to_tap(NULL, rate, 2));
KUNIT_EXPECT_EQ(test, 1,
aspeed_sdhci_phase_to_tap(NULL, rate, 3));
KUNIT_EXPECT_EQ(test, 2,
aspeed_sdhci_phase_to_tap(NULL, rate, 4));
KUNIT_EXPECT_EQ(test, 3,
aspeed_sdhci_phase_to_tap(NULL, rate, 5));
KUNIT_EXPECT_EQ(test, 14,
aspeed_sdhci_phase_to_tap(NULL, rate, 23));
KUNIT_EXPECT_EQ(test, 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 24));
KUNIT_EXPECT_EQ(test, 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 25));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 0,
aspeed_sdhci_phase_to_tap(NULL, rate, 180));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 0,
aspeed_sdhci_phase_to_tap(NULL, rate, 181));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 1,
aspeed_sdhci_phase_to_tap(NULL, rate, 182));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 1,
aspeed_sdhci_phase_to_tap(NULL, rate, 183));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 2,
aspeed_sdhci_phase_to_tap(NULL, rate, 184));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 3,
aspeed_sdhci_phase_to_tap(NULL, rate, 185));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 14,
aspeed_sdhci_phase_to_tap(NULL, rate, 203));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 204));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 205));
}
static void aspeed_sdhci_phase_hs200(struct kunit *test)
{
int rate = 200000000;
KUNIT_EXPECT_EQ(test, 0,
aspeed_sdhci_phase_to_tap(NULL, rate, 0));
KUNIT_EXPECT_EQ(test, 0,
aspeed_sdhci_phase_to_tap(NULL, rate, 5));
KUNIT_EXPECT_EQ(test, 1,
aspeed_sdhci_phase_to_tap(NULL, rate, 6));
KUNIT_EXPECT_EQ(test, 1,
aspeed_sdhci_phase_to_tap(NULL, rate, 7));
KUNIT_EXPECT_EQ(test, 14,
aspeed_sdhci_phase_to_tap(NULL, rate, 89));
KUNIT_EXPECT_EQ(test, 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 90));
KUNIT_EXPECT_EQ(test, 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 91));
KUNIT_EXPECT_EQ(test, 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 96));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK,
aspeed_sdhci_phase_to_tap(NULL, rate, 180));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK,
aspeed_sdhci_phase_to_tap(NULL, rate, 185));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 1,
aspeed_sdhci_phase_to_tap(NULL, rate, 186));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 1,
aspeed_sdhci_phase_to_tap(NULL, rate, 187));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 14,
aspeed_sdhci_phase_to_tap(NULL, rate, 269));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 270));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 271));
KUNIT_EXPECT_EQ(test, ASPEED_SDHCI_TAP_PARAM_INVERT_CLK | 15,
aspeed_sdhci_phase_to_tap(NULL, rate, 276));
}
static struct kunit_case aspeed_sdhci_test_cases[] = {
KUNIT_CASE(aspeed_sdhci_phase_ddr52),
KUNIT_CASE(aspeed_sdhci_phase_hs200),
{}
};
static struct kunit_suite aspeed_sdhci_test_suite = {
.name = "sdhci-of-aspeed",
.test_cases = aspeed_sdhci_test_cases,
};
kunit_test_suite(aspeed_sdhci_test_suite);
| linux-master | drivers/mmc/host/sdhci-of-aspeed-test.c |
/*
* Support of SDHCI platform devices for Microchip PIC32.
*
* Copyright (C) 2015 Microchip
* Andrei Pistirica, Paul Thacker
*
* Inspired by sdhci-pltfm.c
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/mmc/host.h>
#include <linux/io.h>
#include "sdhci.h"
#include "sdhci-pltfm.h"
#include <linux/platform_data/sdhci-pic32.h>
#define SDH_SHARED_BUS_CTRL 0x000000E0
#define SDH_SHARED_BUS_NR_CLK_PINS_MASK 0x7
#define SDH_SHARED_BUS_NR_IRQ_PINS_MASK 0x30
#define SDH_SHARED_BUS_CLK_PINS 0x10
#define SDH_SHARED_BUS_IRQ_PINS 0x14
#define SDH_CAPS_SDH_SLOT_TYPE_MASK 0xC0000000
#define SDH_SLOT_TYPE_REMOVABLE 0x0
#define SDH_SLOT_TYPE_EMBEDDED 0x1
#define SDH_SLOT_TYPE_SHARED_BUS 0x2
#define SDHCI_CTRL_CDSSEL 0x80
#define SDHCI_CTRL_CDTLVL 0x40
#define ADMA_FIFO_RD_THSHLD 512
#define ADMA_FIFO_WR_THSHLD 512
struct pic32_sdhci_priv {
struct platform_device *pdev;
struct clk *sys_clk;
struct clk *base_clk;
};
static unsigned int pic32_sdhci_get_max_clock(struct sdhci_host *host)
{
struct pic32_sdhci_priv *sdhci_pdata = sdhci_priv(host);
return clk_get_rate(sdhci_pdata->base_clk);
}
static void pic32_sdhci_set_bus_width(struct sdhci_host *host, int width)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
if (host->version >= SDHCI_SPEC_300)
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if (host->version >= SDHCI_SPEC_300)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
/* CD select and test bits must be set for errata workaround. */
ctrl &= ~SDHCI_CTRL_CDTLVL;
ctrl |= SDHCI_CTRL_CDSSEL;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static unsigned int pic32_sdhci_get_ro(struct sdhci_host *host)
{
/*
* The SDHCI_WRITE_PROTECT bit is unstable on current hardware so we
* can't depend on its value in any way.
*/
return 0;
}
static const struct sdhci_ops pic32_sdhci_ops = {
.get_max_clock = pic32_sdhci_get_max_clock,
.set_clock = sdhci_set_clock,
.set_bus_width = pic32_sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
.get_ro = pic32_sdhci_get_ro,
};
static const struct sdhci_pltfm_data sdhci_pic32_pdata = {
.ops = &pic32_sdhci_ops,
.quirks = SDHCI_QUIRK_NO_HISPD_BIT,
.quirks2 = SDHCI_QUIRK2_NO_1_8_V,
};
static void pic32_sdhci_shared_bus(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
u32 bus = readl(host->ioaddr + SDH_SHARED_BUS_CTRL);
u32 clk_pins = (bus & SDH_SHARED_BUS_NR_CLK_PINS_MASK) >> 0;
u32 irq_pins = (bus & SDH_SHARED_BUS_NR_IRQ_PINS_MASK) >> 4;
/* select first clock */
if (clk_pins & 1)
bus |= (1 << SDH_SHARED_BUS_CLK_PINS);
/* select first interrupt */
if (irq_pins & 1)
bus |= (1 << SDH_SHARED_BUS_IRQ_PINS);
writel(bus, host->ioaddr + SDH_SHARED_BUS_CTRL);
}
static void pic32_sdhci_probe_platform(struct platform_device *pdev,
struct pic32_sdhci_priv *pdata)
{
u32 caps_slot_type;
struct sdhci_host *host = platform_get_drvdata(pdev);
/* Check card slot connected on shared bus. */
host->caps = readl(host->ioaddr + SDHCI_CAPABILITIES);
caps_slot_type = (host->caps & SDH_CAPS_SDH_SLOT_TYPE_MASK) >> 30;
if (caps_slot_type == SDH_SLOT_TYPE_SHARED_BUS)
pic32_sdhci_shared_bus(pdev);
}
static int pic32_sdhci_probe(struct platform_device *pdev)
{
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct pic32_sdhci_priv *sdhci_pdata;
struct pic32_sdhci_platform_data *plat_data;
int ret;
host = sdhci_pltfm_init(pdev, &sdhci_pic32_pdata,
sizeof(struct pic32_sdhci_priv));
if (IS_ERR(host)) {
ret = PTR_ERR(host);
goto err;
}
pltfm_host = sdhci_priv(host);
sdhci_pdata = sdhci_pltfm_priv(pltfm_host);
plat_data = pdev->dev.platform_data;
if (plat_data && plat_data->setup_dma) {
ret = plat_data->setup_dma(ADMA_FIFO_RD_THSHLD,
ADMA_FIFO_WR_THSHLD);
if (ret)
goto err_host;
}
sdhci_pdata->sys_clk = devm_clk_get(&pdev->dev, "sys_clk");
if (IS_ERR(sdhci_pdata->sys_clk)) {
ret = PTR_ERR(sdhci_pdata->sys_clk);
dev_err(&pdev->dev, "Error getting clock\n");
goto err_host;
}
ret = clk_prepare_enable(sdhci_pdata->sys_clk);
if (ret) {
dev_err(&pdev->dev, "Error enabling clock\n");
goto err_host;
}
sdhci_pdata->base_clk = devm_clk_get(&pdev->dev, "base_clk");
if (IS_ERR(sdhci_pdata->base_clk)) {
ret = PTR_ERR(sdhci_pdata->base_clk);
dev_err(&pdev->dev, "Error getting clock\n");
goto err_sys_clk;
}
ret = clk_prepare_enable(sdhci_pdata->base_clk);
if (ret) {
dev_err(&pdev->dev, "Error enabling clock\n");
goto err_base_clk;
}
ret = mmc_of_parse(host->mmc);
if (ret)
goto err_base_clk;
pic32_sdhci_probe_platform(pdev, sdhci_pdata);
ret = sdhci_add_host(host);
if (ret)
goto err_base_clk;
dev_info(&pdev->dev, "Successfully added sdhci host\n");
return 0;
err_base_clk:
clk_disable_unprepare(sdhci_pdata->base_clk);
err_sys_clk:
clk_disable_unprepare(sdhci_pdata->sys_clk);
err_host:
sdhci_pltfm_free(pdev);
err:
dev_err(&pdev->dev, "pic32-sdhci probe failed: %d\n", ret);
return ret;
}
static void pic32_sdhci_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct pic32_sdhci_priv *sdhci_pdata = sdhci_priv(host);
u32 scratch;
scratch = readl(host->ioaddr + SDHCI_INT_STATUS);
sdhci_remove_host(host, scratch == (u32)~0);
clk_disable_unprepare(sdhci_pdata->base_clk);
clk_disable_unprepare(sdhci_pdata->sys_clk);
sdhci_pltfm_free(pdev);
}
static const struct of_device_id pic32_sdhci_id_table[] = {
{ .compatible = "microchip,pic32mzda-sdhci" },
{}
};
MODULE_DEVICE_TABLE(of, pic32_sdhci_id_table);
static struct platform_driver pic32_sdhci_driver = {
.driver = {
.name = "pic32-sdhci",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = of_match_ptr(pic32_sdhci_id_table),
},
.probe = pic32_sdhci_probe,
.remove_new = pic32_sdhci_remove,
};
module_platform_driver(pic32_sdhci_driver);
MODULE_DESCRIPTION("Microchip PIC32 SDHCI driver");
MODULE_AUTHOR("Pistirica Sorin Andrei & Sandeep Sheriker");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-pic32.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* OpenFirmware bindings for the MMC-over-SPI driver
*
* Copyright (c) MontaVista Software, Inc. 2008.
*
* Author: Anton Vorontsov <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/spi/spi.h>
#include <linux/spi/mmc_spi.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
MODULE_LICENSE("GPL");
struct of_mmc_spi {
struct mmc_spi_platform_data pdata;
int detect_irq;
};
static struct of_mmc_spi *to_of_mmc_spi(struct device *dev)
{
return container_of(dev->platform_data, struct of_mmc_spi, pdata);
}
static int of_mmc_spi_init(struct device *dev,
irqreturn_t (*irqhandler)(int, void *), void *mmc)
{
struct of_mmc_spi *oms = to_of_mmc_spi(dev);
return request_threaded_irq(oms->detect_irq, NULL, irqhandler,
IRQF_ONESHOT, dev_name(dev), mmc);
}
static void of_mmc_spi_exit(struct device *dev, void *mmc)
{
struct of_mmc_spi *oms = to_of_mmc_spi(dev);
free_irq(oms->detect_irq, mmc);
}
struct mmc_spi_platform_data *mmc_spi_get_pdata(struct spi_device *spi)
{
struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
struct device *dev = &spi->dev;
struct of_mmc_spi *oms;
if (dev->platform_data || !dev_fwnode(dev))
return dev->platform_data;
oms = kzalloc(sizeof(*oms), GFP_KERNEL);
if (!oms)
return NULL;
if (mmc_of_parse_voltage(mmc, &oms->pdata.ocr_mask) < 0)
goto err_ocr;
oms->detect_irq = spi->irq;
if (oms->detect_irq > 0) {
oms->pdata.init = of_mmc_spi_init;
oms->pdata.exit = of_mmc_spi_exit;
} else {
oms->pdata.caps |= MMC_CAP_NEEDS_POLL;
}
if (device_property_read_bool(dev, "cap-sd-highspeed"))
oms->pdata.caps |= MMC_CAP_SD_HIGHSPEED;
if (device_property_read_bool(dev, "cap-mmc-highspeed"))
oms->pdata.caps |= MMC_CAP_MMC_HIGHSPEED;
dev->platform_data = &oms->pdata;
return dev->platform_data;
err_ocr:
kfree(oms);
return NULL;
}
EXPORT_SYMBOL(mmc_spi_get_pdata);
void mmc_spi_put_pdata(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct of_mmc_spi *oms = to_of_mmc_spi(dev);
if (!dev->platform_data || !dev_fwnode(dev))
return;
kfree(oms);
dev->platform_data = NULL;
}
EXPORT_SYMBOL(mmc_spi_put_pdata);
| linux-master | drivers/mmc/host/of_mmc_spi.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver
*
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
*
* Thanks to the following companies for their support:
*
* - JMicron (hardware and technical support)
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/ktime.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/sizes.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/leds.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include "sdhci.h"
#define DRIVER_NAME "sdhci"
#define DBG(f, x...) \
pr_debug("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define SDHCI_DUMP(f, x...) \
pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define MAX_TUNING_LOOP 40
static unsigned int debug_quirks = 0;
static unsigned int debug_quirks2;
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable);
static bool sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd);
void sdhci_dumpregs(struct sdhci_host *host)
{
SDHCI_DUMP("============ SDHCI REGISTER DUMP ===========\n");
SDHCI_DUMP("Sys addr: 0x%08x | Version: 0x%08x\n",
sdhci_readl(host, SDHCI_DMA_ADDRESS),
sdhci_readw(host, SDHCI_HOST_VERSION));
SDHCI_DUMP("Blk size: 0x%08x | Blk cnt: 0x%08x\n",
sdhci_readw(host, SDHCI_BLOCK_SIZE),
sdhci_readw(host, SDHCI_BLOCK_COUNT));
SDHCI_DUMP("Argument: 0x%08x | Trn mode: 0x%08x\n",
sdhci_readl(host, SDHCI_ARGUMENT),
sdhci_readw(host, SDHCI_TRANSFER_MODE));
SDHCI_DUMP("Present: 0x%08x | Host ctl: 0x%08x\n",
sdhci_readl(host, SDHCI_PRESENT_STATE),
sdhci_readb(host, SDHCI_HOST_CONTROL));
SDHCI_DUMP("Power: 0x%08x | Blk gap: 0x%08x\n",
sdhci_readb(host, SDHCI_POWER_CONTROL),
sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL));
SDHCI_DUMP("Wake-up: 0x%08x | Clock: 0x%08x\n",
sdhci_readb(host, SDHCI_WAKE_UP_CONTROL),
sdhci_readw(host, SDHCI_CLOCK_CONTROL));
SDHCI_DUMP("Timeout: 0x%08x | Int stat: 0x%08x\n",
sdhci_readb(host, SDHCI_TIMEOUT_CONTROL),
sdhci_readl(host, SDHCI_INT_STATUS));
SDHCI_DUMP("Int enab: 0x%08x | Sig enab: 0x%08x\n",
sdhci_readl(host, SDHCI_INT_ENABLE),
sdhci_readl(host, SDHCI_SIGNAL_ENABLE));
SDHCI_DUMP("ACmd stat: 0x%08x | Slot int: 0x%08x\n",
sdhci_readw(host, SDHCI_AUTO_CMD_STATUS),
sdhci_readw(host, SDHCI_SLOT_INT_STATUS));
SDHCI_DUMP("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
SDHCI_DUMP("Cmd: 0x%08x | Max curr: 0x%08x\n",
sdhci_readw(host, SDHCI_COMMAND),
sdhci_readl(host, SDHCI_MAX_CURRENT));
SDHCI_DUMP("Resp[0]: 0x%08x | Resp[1]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE),
sdhci_readl(host, SDHCI_RESPONSE + 4));
SDHCI_DUMP("Resp[2]: 0x%08x | Resp[3]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE + 8),
sdhci_readl(host, SDHCI_RESPONSE + 12));
SDHCI_DUMP("Host ctl2: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_CONTROL2));
if (host->flags & SDHCI_USE_ADMA) {
if (host->flags & SDHCI_USE_64_BIT_DMA) {
SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x%08x\n",
sdhci_readl(host, SDHCI_ADMA_ERROR),
sdhci_readl(host, SDHCI_ADMA_ADDRESS_HI),
sdhci_readl(host, SDHCI_ADMA_ADDRESS));
} else {
SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n",
sdhci_readl(host, SDHCI_ADMA_ERROR),
sdhci_readl(host, SDHCI_ADMA_ADDRESS));
}
}
if (host->ops->dump_vendor_regs)
host->ops->dump_vendor_regs(host);
SDHCI_DUMP("============================================\n");
}
EXPORT_SYMBOL_GPL(sdhci_dumpregs);
/*****************************************************************************\
* *
* Low level functions *
* *
\*****************************************************************************/
static void sdhci_do_enable_v4_mode(struct sdhci_host *host)
{
u16 ctrl2;
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl2 & SDHCI_CTRL_V4_MODE)
return;
ctrl2 |= SDHCI_CTRL_V4_MODE;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
}
/*
* This can be called before sdhci_add_host() by Vendor's host controller
* driver to enable v4 mode if supported.
*/
void sdhci_enable_v4_mode(struct sdhci_host *host)
{
host->v4_mode = true;
sdhci_do_enable_v4_mode(host);
}
EXPORT_SYMBOL_GPL(sdhci_enable_v4_mode);
static inline bool sdhci_data_line_cmd(struct mmc_command *cmd)
{
return cmd->data || cmd->flags & MMC_RSP_BUSY;
}
static void sdhci_set_card_detection(struct sdhci_host *host, bool enable)
{
u32 present;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) ||
!mmc_card_is_removable(host->mmc) || mmc_can_gpio_cd(host->mmc))
return;
if (enable) {
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
} else {
host->ier &= ~(SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
}
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_enable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, true);
}
static void sdhci_disable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, false);
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
if (host->bus_on)
return;
host->bus_on = true;
pm_runtime_get_noresume(mmc_dev(host->mmc));
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
if (!host->bus_on)
return;
host->bus_on = false;
pm_runtime_put_noidle(mmc_dev(host->mmc));
}
void sdhci_reset(struct sdhci_host *host, u8 mask)
{
ktime_t timeout;
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
if (mask & SDHCI_RESET_ALL) {
host->clock = 0;
/* Reset-all turns off SD Bus Power */
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
}
/* Wait max 100 ms */
timeout = ktime_add_ms(ktime_get(), 100);
/* hw clears the bit when it's done */
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (!(sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask))
break;
if (timedout) {
pr_err("%s: Reset 0x%x never completed.\n",
mmc_hostname(host->mmc), (int)mask);
sdhci_err_stats_inc(host, CTRL_TIMEOUT);
sdhci_dumpregs(host);
return;
}
udelay(10);
}
}
EXPORT_SYMBOL_GPL(sdhci_reset);
static bool sdhci_do_reset(struct sdhci_host *host, u8 mask)
{
if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
struct mmc_host *mmc = host->mmc;
if (!mmc->ops->get_cd(mmc))
return false;
}
host->ops->reset(host, mask);
return true;
}
static void sdhci_reset_for_all(struct sdhci_host *host)
{
if (sdhci_do_reset(host, SDHCI_RESET_ALL)) {
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
/* Resetting the controller clears many */
host->preset_enabled = false;
}
}
enum sdhci_reset_reason {
SDHCI_RESET_FOR_INIT,
SDHCI_RESET_FOR_REQUEST_ERROR,
SDHCI_RESET_FOR_REQUEST_ERROR_DATA_ONLY,
SDHCI_RESET_FOR_TUNING_ABORT,
SDHCI_RESET_FOR_CARD_REMOVED,
SDHCI_RESET_FOR_CQE_RECOVERY,
};
static void sdhci_reset_for_reason(struct sdhci_host *host, enum sdhci_reset_reason reason)
{
if (host->quirks2 & SDHCI_QUIRK2_ISSUE_CMD_DAT_RESET_TOGETHER) {
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
return;
}
switch (reason) {
case SDHCI_RESET_FOR_INIT:
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
break;
case SDHCI_RESET_FOR_REQUEST_ERROR:
case SDHCI_RESET_FOR_TUNING_ABORT:
case SDHCI_RESET_FOR_CARD_REMOVED:
case SDHCI_RESET_FOR_CQE_RECOVERY:
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
break;
case SDHCI_RESET_FOR_REQUEST_ERROR_DATA_ONLY:
sdhci_do_reset(host, SDHCI_RESET_DATA);
break;
}
}
#define sdhci_reset_for(h, r) sdhci_reset_for_reason((h), SDHCI_RESET_FOR_##r)
static void sdhci_set_default_irqs(struct sdhci_host *host)
{
host->ier = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT |
SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC |
SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END |
SDHCI_INT_RESPONSE;
if (host->tuning_mode == SDHCI_TUNING_MODE_2 ||
host->tuning_mode == SDHCI_TUNING_MODE_3)
host->ier |= SDHCI_INT_RETUNE;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_config_dma(struct sdhci_host *host)
{
u8 ctrl;
u16 ctrl2;
if (host->version < SDHCI_SPEC_200)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
/*
* Always adjust the DMA selection as some controllers
* (e.g. JMicron) can't do PIO properly when the selection
* is ADMA.
*/
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if (!(host->flags & SDHCI_REQ_USE_DMA))
goto out;
/* Note if DMA Select is zero then SDMA is selected */
if (host->flags & SDHCI_USE_ADMA)
ctrl |= SDHCI_CTRL_ADMA32;
if (host->flags & SDHCI_USE_64_BIT_DMA) {
/*
* If v4 mode, all supported DMA can be 64-bit addressing if
* controller supports 64-bit system address, otherwise only
* ADMA can support 64-bit addressing.
*/
if (host->v4_mode) {
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl2 |= SDHCI_CTRL_64BIT_ADDR;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
} else if (host->flags & SDHCI_USE_ADMA) {
/*
* Don't need to undo SDHCI_CTRL_ADMA32 in order to
* set SDHCI_CTRL_ADMA64.
*/
ctrl |= SDHCI_CTRL_ADMA64;
}
}
out:
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void sdhci_init(struct sdhci_host *host, int soft)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
if (soft)
sdhci_reset_for(host, INIT);
else
sdhci_reset_for_all(host);
if (host->v4_mode)
sdhci_do_enable_v4_mode(host);
spin_lock_irqsave(&host->lock, flags);
sdhci_set_default_irqs(host);
spin_unlock_irqrestore(&host->lock, flags);
host->cqe_on = false;
if (soft) {
/* force clock reconfiguration */
host->clock = 0;
host->reinit_uhs = true;
mmc->ops->set_ios(mmc, &mmc->ios);
}
}
static void sdhci_reinit(struct sdhci_host *host)
{
u32 cd = host->ier & (SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
sdhci_init(host, 0);
sdhci_enable_card_detection(host);
/*
* A change to the card detect bits indicates a change in present state,
* refer sdhci_set_card_detection(). A card detect interrupt might have
* been missed while the host controller was being reset, so trigger a
* rescan to check.
*/
if (cd != (host->ier & (SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT)))
mmc_detect_change(host->mmc, msecs_to_jiffies(200));
}
static void __sdhci_led_activate(struct sdhci_host *host)
{
u8 ctrl;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void __sdhci_led_deactivate(struct sdhci_host *host)
{
u8 ctrl;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
#if IS_REACHABLE(CONFIG_LEDS_CLASS)
static void sdhci_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
struct sdhci_host *host = container_of(led, struct sdhci_host, led);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->runtime_suspended)
goto out;
if (brightness == LED_OFF)
__sdhci_led_deactivate(host);
else
__sdhci_led_activate(host);
out:
spin_unlock_irqrestore(&host->lock, flags);
}
static int sdhci_led_register(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return 0;
snprintf(host->led_name, sizeof(host->led_name),
"%s::", mmc_hostname(mmc));
host->led.name = host->led_name;
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
host->led.brightness_set = sdhci_led_control;
return led_classdev_register(mmc_dev(mmc), &host->led);
}
static void sdhci_led_unregister(struct sdhci_host *host)
{
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
led_classdev_unregister(&host->led);
}
static inline void sdhci_led_activate(struct sdhci_host *host)
{
}
static inline void sdhci_led_deactivate(struct sdhci_host *host)
{
}
#else
static inline int sdhci_led_register(struct sdhci_host *host)
{
return 0;
}
static inline void sdhci_led_unregister(struct sdhci_host *host)
{
}
static inline void sdhci_led_activate(struct sdhci_host *host)
{
__sdhci_led_activate(host);
}
static inline void sdhci_led_deactivate(struct sdhci_host *host)
{
__sdhci_led_deactivate(host);
}
#endif
static void sdhci_mod_timer(struct sdhci_host *host, struct mmc_request *mrq,
unsigned long timeout)
{
if (sdhci_data_line_cmd(mrq->cmd))
mod_timer(&host->data_timer, timeout);
else
mod_timer(&host->timer, timeout);
}
static void sdhci_del_timer(struct sdhci_host *host, struct mmc_request *mrq)
{
if (sdhci_data_line_cmd(mrq->cmd))
del_timer(&host->data_timer);
else
del_timer(&host->timer);
}
static inline bool sdhci_has_requests(struct sdhci_host *host)
{
return host->cmd || host->data_cmd;
}
/*****************************************************************************\
* *
* Core functions *
* *
\*****************************************************************************/
static void sdhci_read_block_pio(struct sdhci_host *host)
{
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO reading\n");
blksize = host->data->blksz;
chunk = 0;
while (blksize) {
BUG_ON(!sg_miter_next(&host->sg_miter));
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
if (chunk == 0) {
scratch = sdhci_readl(host, SDHCI_BUFFER);
chunk = 4;
}
*buf = scratch & 0xFF;
buf++;
scratch >>= 8;
chunk--;
len--;
}
}
sg_miter_stop(&host->sg_miter);
}
static void sdhci_write_block_pio(struct sdhci_host *host)
{
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO writing\n");
blksize = host->data->blksz;
chunk = 0;
scratch = 0;
while (blksize) {
BUG_ON(!sg_miter_next(&host->sg_miter));
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
scratch |= (u32)*buf << (chunk * 8);
buf++;
chunk++;
len--;
if ((chunk == 4) || ((len == 0) && (blksize == 0))) {
sdhci_writel(host, scratch, SDHCI_BUFFER);
chunk = 0;
scratch = 0;
}
}
}
sg_miter_stop(&host->sg_miter);
}
static void sdhci_transfer_pio(struct sdhci_host *host)
{
u32 mask;
if (host->blocks == 0)
return;
if (host->data->flags & MMC_DATA_READ)
mask = SDHCI_DATA_AVAILABLE;
else
mask = SDHCI_SPACE_AVAILABLE;
/*
* Some controllers (JMicron JMB38x) mess up the buffer bits
* for transfers < 4 bytes. As long as it is just one block,
* we can ignore the bits.
*/
if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) &&
(host->data->blocks == 1))
mask = ~0;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY)
udelay(100);
if (host->data->flags & MMC_DATA_READ)
sdhci_read_block_pio(host);
else
sdhci_write_block_pio(host);
host->blocks--;
if (host->blocks == 0)
break;
}
DBG("PIO transfer complete.\n");
}
static int sdhci_pre_dma_transfer(struct sdhci_host *host,
struct mmc_data *data, int cookie)
{
int sg_count;
/*
* If the data buffers are already mapped, return the previous
* dma_map_sg() result.
*/
if (data->host_cookie == COOKIE_PRE_MAPPED)
return data->sg_count;
/* Bounce write requests to the bounce buffer */
if (host->bounce_buffer) {
unsigned int length = data->blksz * data->blocks;
if (length > host->bounce_buffer_size) {
pr_err("%s: asked for transfer of %u bytes exceeds bounce buffer %u bytes\n",
mmc_hostname(host->mmc), length,
host->bounce_buffer_size);
return -EIO;
}
if (mmc_get_dma_dir(data) == DMA_TO_DEVICE) {
/* Copy the data to the bounce buffer */
if (host->ops->copy_to_bounce_buffer) {
host->ops->copy_to_bounce_buffer(host,
data, length);
} else {
sg_copy_to_buffer(data->sg, data->sg_len,
host->bounce_buffer, length);
}
}
/* Switch ownership to the DMA */
dma_sync_single_for_device(mmc_dev(host->mmc),
host->bounce_addr,
host->bounce_buffer_size,
mmc_get_dma_dir(data));
/* Just a dummy value */
sg_count = 1;
} else {
/* Just access the data directly from memory */
sg_count = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
if (sg_count == 0)
return -ENOSPC;
data->sg_count = sg_count;
data->host_cookie = cookie;
return sg_count;
}
static char *sdhci_kmap_atomic(struct scatterlist *sg)
{
return kmap_local_page(sg_page(sg)) + sg->offset;
}
static void sdhci_kunmap_atomic(void *buffer)
{
kunmap_local(buffer);
}
void sdhci_adma_write_desc(struct sdhci_host *host, void **desc,
dma_addr_t addr, int len, unsigned int cmd)
{
struct sdhci_adma2_64_desc *dma_desc = *desc;
/* 32-bit and 64-bit descriptors have these members in same position */
dma_desc->cmd = cpu_to_le16(cmd);
dma_desc->len = cpu_to_le16(len);
dma_desc->addr_lo = cpu_to_le32(lower_32_bits(addr));
if (host->flags & SDHCI_USE_64_BIT_DMA)
dma_desc->addr_hi = cpu_to_le32(upper_32_bits(addr));
*desc += host->desc_sz;
}
EXPORT_SYMBOL_GPL(sdhci_adma_write_desc);
static inline void __sdhci_adma_write_desc(struct sdhci_host *host,
void **desc, dma_addr_t addr,
int len, unsigned int cmd)
{
if (host->ops->adma_write_desc)
host->ops->adma_write_desc(host, desc, addr, len, cmd);
else
sdhci_adma_write_desc(host, desc, addr, len, cmd);
}
static void sdhci_adma_mark_end(void *desc)
{
struct sdhci_adma2_64_desc *dma_desc = desc;
/* 32-bit and 64-bit descriptors have 'cmd' in same position */
dma_desc->cmd |= cpu_to_le16(ADMA2_END);
}
static void sdhci_adma_table_pre(struct sdhci_host *host,
struct mmc_data *data, int sg_count)
{
struct scatterlist *sg;
dma_addr_t addr, align_addr;
void *desc, *align;
char *buffer;
int len, offset, i;
/*
* The spec does not specify endianness of descriptor table.
* We currently guess that it is LE.
*/
host->sg_count = sg_count;
desc = host->adma_table;
align = host->align_buffer;
align_addr = host->align_addr;
for_each_sg(data->sg, sg, host->sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
/*
* The SDHCI specification states that ADMA addresses must
* be 32-bit aligned. If they aren't, then we use a bounce
* buffer for the (up to three) bytes that screw up the
* alignment.
*/
offset = (SDHCI_ADMA2_ALIGN - (addr & SDHCI_ADMA2_MASK)) &
SDHCI_ADMA2_MASK;
if (offset) {
if (data->flags & MMC_DATA_WRITE) {
buffer = sdhci_kmap_atomic(sg);
memcpy(align, buffer, offset);
sdhci_kunmap_atomic(buffer);
}
/* tran, valid */
__sdhci_adma_write_desc(host, &desc, align_addr,
offset, ADMA2_TRAN_VALID);
BUG_ON(offset > 65536);
align += SDHCI_ADMA2_ALIGN;
align_addr += SDHCI_ADMA2_ALIGN;
addr += offset;
len -= offset;
}
/*
* The block layer forces a minimum segment size of PAGE_SIZE,
* so 'len' can be too big here if PAGE_SIZE >= 64KiB. Write
* multiple descriptors, noting that the ADMA table is sized
* for 4KiB chunks anyway, so it will be big enough.
*/
while (len > host->max_adma) {
int n = 32 * 1024; /* 32KiB*/
__sdhci_adma_write_desc(host, &desc, addr, n, ADMA2_TRAN_VALID);
addr += n;
len -= n;
}
/* tran, valid */
if (len)
__sdhci_adma_write_desc(host, &desc, addr, len,
ADMA2_TRAN_VALID);
/*
* If this triggers then we have a calculation bug
* somewhere. :/
*/
WARN_ON((desc - host->adma_table) >= host->adma_table_sz);
}
if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) {
/* Mark the last descriptor as the terminating descriptor */
if (desc != host->adma_table) {
desc -= host->desc_sz;
sdhci_adma_mark_end(desc);
}
} else {
/* Add a terminating entry - nop, end, valid */
__sdhci_adma_write_desc(host, &desc, 0, 0, ADMA2_NOP_END_VALID);
}
}
static void sdhci_adma_table_post(struct sdhci_host *host,
struct mmc_data *data)
{
struct scatterlist *sg;
int i, size;
void *align;
char *buffer;
if (data->flags & MMC_DATA_READ) {
bool has_unaligned = false;
/* Do a quick scan of the SG list for any unaligned mappings */
for_each_sg(data->sg, sg, host->sg_count, i)
if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) {
has_unaligned = true;
break;
}
if (has_unaligned) {
dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg,
data->sg_len, DMA_FROM_DEVICE);
align = host->align_buffer;
for_each_sg(data->sg, sg, host->sg_count, i) {
if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) {
size = SDHCI_ADMA2_ALIGN -
(sg_dma_address(sg) & SDHCI_ADMA2_MASK);
buffer = sdhci_kmap_atomic(sg);
memcpy(buffer, align, size);
sdhci_kunmap_atomic(buffer);
align += SDHCI_ADMA2_ALIGN;
}
}
}
}
}
static void sdhci_set_adma_addr(struct sdhci_host *host, dma_addr_t addr)
{
sdhci_writel(host, lower_32_bits(addr), SDHCI_ADMA_ADDRESS);
if (host->flags & SDHCI_USE_64_BIT_DMA)
sdhci_writel(host, upper_32_bits(addr), SDHCI_ADMA_ADDRESS_HI);
}
static dma_addr_t sdhci_sdma_address(struct sdhci_host *host)
{
if (host->bounce_buffer)
return host->bounce_addr;
else
return sg_dma_address(host->data->sg);
}
static void sdhci_set_sdma_addr(struct sdhci_host *host, dma_addr_t addr)
{
if (host->v4_mode)
sdhci_set_adma_addr(host, addr);
else
sdhci_writel(host, addr, SDHCI_DMA_ADDRESS);
}
static unsigned int sdhci_target_timeout(struct sdhci_host *host,
struct mmc_command *cmd,
struct mmc_data *data)
{
unsigned int target_timeout;
/* timeout in us */
if (!data) {
target_timeout = cmd->busy_timeout * 1000;
} else {
target_timeout = DIV_ROUND_UP(data->timeout_ns, 1000);
if (host->clock && data->timeout_clks) {
unsigned long long val;
/*
* data->timeout_clks is in units of clock cycles.
* host->clock is in Hz. target_timeout is in us.
* Hence, us = 1000000 * cycles / Hz. Round up.
*/
val = 1000000ULL * data->timeout_clks;
if (do_div(val, host->clock))
target_timeout++;
target_timeout += val;
}
}
return target_timeout;
}
static void sdhci_calc_sw_timeout(struct sdhci_host *host,
struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
struct mmc_host *mmc = host->mmc;
struct mmc_ios *ios = &mmc->ios;
unsigned char bus_width = 1 << ios->bus_width;
unsigned int blksz;
unsigned int freq;
u64 target_timeout;
u64 transfer_time;
target_timeout = sdhci_target_timeout(host, cmd, data);
target_timeout *= NSEC_PER_USEC;
if (data) {
blksz = data->blksz;
freq = mmc->actual_clock ? : host->clock;
transfer_time = (u64)blksz * NSEC_PER_SEC * (8 / bus_width);
do_div(transfer_time, freq);
/* multiply by '2' to account for any unknowns */
transfer_time = transfer_time * 2;
/* calculate timeout for the entire data */
host->data_timeout = data->blocks * target_timeout +
transfer_time;
} else {
host->data_timeout = target_timeout;
}
if (host->data_timeout)
host->data_timeout += MMC_CMD_TRANSFER_TIME;
}
static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd,
bool *too_big)
{
u8 count;
struct mmc_data *data;
unsigned target_timeout, current_timeout;
*too_big = false;
/*
* If the host controller provides us with an incorrect timeout
* value, just skip the check and use the maximum. The hardware may take
* longer to time out, but that's much better than having a too-short
* timeout value.
*/
if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)
return host->max_timeout_count;
/* Unspecified command, assume max */
if (cmd == NULL)
return host->max_timeout_count;
data = cmd->data;
/* Unspecified timeout, assume max */
if (!data && !cmd->busy_timeout)
return host->max_timeout_count;
/* timeout in us */
target_timeout = sdhci_target_timeout(host, cmd, data);
/*
* Figure out needed cycles.
* We do this in steps in order to fit inside a 32 bit int.
* The first step is the minimum timeout, which will have a
* minimum resolution of 6 bits:
* (1) 2^13*1000 > 2^22,
* (2) host->timeout_clk < 2^16
* =>
* (1) / (2) > 2^6
*/
count = 0;
current_timeout = (1 << 13) * 1000 / host->timeout_clk;
while (current_timeout < target_timeout) {
count++;
current_timeout <<= 1;
if (count > host->max_timeout_count) {
if (!(host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT))
DBG("Too large timeout 0x%x requested for CMD%d!\n",
count, cmd->opcode);
count = host->max_timeout_count;
*too_big = true;
break;
}
}
return count;
}
static void sdhci_set_transfer_irqs(struct sdhci_host *host)
{
u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL;
u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR;
if (host->flags & SDHCI_REQ_USE_DMA)
host->ier = (host->ier & ~pio_irqs) | dma_irqs;
else
host->ier = (host->ier & ~dma_irqs) | pio_irqs;
if (host->flags & (SDHCI_AUTO_CMD23 | SDHCI_AUTO_CMD12))
host->ier |= SDHCI_INT_AUTO_CMD_ERR;
else
host->ier &= ~SDHCI_INT_AUTO_CMD_ERR;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
void sdhci_set_data_timeout_irq(struct sdhci_host *host, bool enable)
{
if (enable)
host->ier |= SDHCI_INT_DATA_TIMEOUT;
else
host->ier &= ~SDHCI_INT_DATA_TIMEOUT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_set_data_timeout_irq);
void __sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
bool too_big = false;
u8 count = sdhci_calc_timeout(host, cmd, &too_big);
if (too_big &&
host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT) {
sdhci_calc_sw_timeout(host, cmd);
sdhci_set_data_timeout_irq(host, false);
} else if (!(host->ier & SDHCI_INT_DATA_TIMEOUT)) {
sdhci_set_data_timeout_irq(host, true);
}
sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL);
}
EXPORT_SYMBOL_GPL(__sdhci_set_timeout);
static void sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
if (host->ops->set_timeout)
host->ops->set_timeout(host, cmd);
else
__sdhci_set_timeout(host, cmd);
}
static void sdhci_initialize_data(struct sdhci_host *host,
struct mmc_data *data)
{
WARN_ON(host->data);
/* Sanity checks */
BUG_ON(data->blksz * data->blocks > 524288);
BUG_ON(data->blksz > host->mmc->max_blk_size);
BUG_ON(data->blocks > 65535);
host->data = data;
host->data_early = 0;
host->data->bytes_xfered = 0;
}
static inline void sdhci_set_block_info(struct sdhci_host *host,
struct mmc_data *data)
{
/* Set the DMA boundary value and block size */
sdhci_writew(host,
SDHCI_MAKE_BLKSZ(host->sdma_boundary, data->blksz),
SDHCI_BLOCK_SIZE);
/*
* For Version 4.10 onwards, if v4 mode is enabled, 32-bit Block Count
* can be supported, in that case 16-bit block count register must be 0.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode &&
(host->quirks2 & SDHCI_QUIRK2_USE_32BIT_BLK_CNT)) {
if (sdhci_readw(host, SDHCI_BLOCK_COUNT))
sdhci_writew(host, 0, SDHCI_BLOCK_COUNT);
sdhci_writew(host, data->blocks, SDHCI_32BIT_BLK_CNT);
} else {
sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT);
}
}
static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
sdhci_initialize_data(host, data);
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
struct scatterlist *sg;
unsigned int length_mask, offset_mask;
int i;
host->flags |= SDHCI_REQ_USE_DMA;
/*
* FIXME: This doesn't account for merging when mapping the
* scatterlist.
*
* The assumption here being that alignment and lengths are
* the same after DMA mapping to device address space.
*/
length_mask = 0;
offset_mask = 0;
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) {
length_mask = 3;
/*
* As we use up to 3 byte chunks to work
* around alignment problems, we need to
* check the offset as well.
*/
offset_mask = 3;
}
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE)
length_mask = 3;
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR)
offset_mask = 3;
}
if (unlikely(length_mask | offset_mask)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length & length_mask) {
DBG("Reverting to PIO because of transfer size (%d)\n",
sg->length);
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
if (sg->offset & offset_mask) {
DBG("Reverting to PIO because of bad alignment\n");
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
sdhci_config_dma(host);
if (host->flags & SDHCI_REQ_USE_DMA) {
int sg_cnt = sdhci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_cnt <= 0) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else if (host->flags & SDHCI_USE_ADMA) {
sdhci_adma_table_pre(host, data, sg_cnt);
sdhci_set_adma_addr(host, host->adma_addr);
} else {
WARN_ON(sg_cnt != 1);
sdhci_set_sdma_addr(host, sdhci_sdma_address(host));
}
}
if (!(host->flags & SDHCI_REQ_USE_DMA)) {
int flags;
flags = SG_MITER_ATOMIC;
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
sdhci_set_transfer_irqs(host);
sdhci_set_block_info(host, data);
}
#if IS_ENABLED(CONFIG_MMC_SDHCI_EXTERNAL_DMA)
static int sdhci_external_dma_init(struct sdhci_host *host)
{
int ret = 0;
struct mmc_host *mmc = host->mmc;
host->tx_chan = dma_request_chan(mmc_dev(mmc), "tx");
if (IS_ERR(host->tx_chan)) {
ret = PTR_ERR(host->tx_chan);
if (ret != -EPROBE_DEFER)
pr_warn("Failed to request TX DMA channel.\n");
host->tx_chan = NULL;
return ret;
}
host->rx_chan = dma_request_chan(mmc_dev(mmc), "rx");
if (IS_ERR(host->rx_chan)) {
if (host->tx_chan) {
dma_release_channel(host->tx_chan);
host->tx_chan = NULL;
}
ret = PTR_ERR(host->rx_chan);
if (ret != -EPROBE_DEFER)
pr_warn("Failed to request RX DMA channel.\n");
host->rx_chan = NULL;
}
return ret;
}
static struct dma_chan *sdhci_external_dma_channel(struct sdhci_host *host,
struct mmc_data *data)
{
return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
}
static int sdhci_external_dma_setup(struct sdhci_host *host,
struct mmc_command *cmd)
{
int ret, i;
enum dma_transfer_direction dir;
struct dma_async_tx_descriptor *desc;
struct mmc_data *data = cmd->data;
struct dma_chan *chan;
struct dma_slave_config cfg;
dma_cookie_t cookie;
int sg_cnt;
if (!host->mapbase)
return -EINVAL;
memset(&cfg, 0, sizeof(cfg));
cfg.src_addr = host->mapbase + SDHCI_BUFFER;
cfg.dst_addr = host->mapbase + SDHCI_BUFFER;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = data->blksz / 4;
cfg.dst_maxburst = data->blksz / 4;
/* Sanity check: all the SG entries must be aligned by block size. */
for (i = 0; i < data->sg_len; i++) {
if ((data->sg + i)->length % data->blksz)
return -EINVAL;
}
chan = sdhci_external_dma_channel(host, data);
ret = dmaengine_slave_config(chan, &cfg);
if (ret)
return ret;
sg_cnt = sdhci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_cnt <= 0)
return -EINVAL;
dir = data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
desc = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len, dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc)
return -EINVAL;
desc->callback = NULL;
desc->callback_param = NULL;
cookie = dmaengine_submit(desc);
if (dma_submit_error(cookie))
ret = cookie;
return ret;
}
static void sdhci_external_dma_release(struct sdhci_host *host)
{
if (host->tx_chan) {
dma_release_channel(host->tx_chan);
host->tx_chan = NULL;
}
if (host->rx_chan) {
dma_release_channel(host->rx_chan);
host->rx_chan = NULL;
}
sdhci_switch_external_dma(host, false);
}
static void __sdhci_external_dma_prepare_data(struct sdhci_host *host,
struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
sdhci_initialize_data(host, data);
host->flags |= SDHCI_REQ_USE_DMA;
sdhci_set_transfer_irqs(host);
sdhci_set_block_info(host, data);
}
static void sdhci_external_dma_prepare_data(struct sdhci_host *host,
struct mmc_command *cmd)
{
if (!sdhci_external_dma_setup(host, cmd)) {
__sdhci_external_dma_prepare_data(host, cmd);
} else {
sdhci_external_dma_release(host);
pr_err("%s: Cannot use external DMA, switch to the DMA/PIO which standard SDHCI provides.\n",
mmc_hostname(host->mmc));
sdhci_prepare_data(host, cmd);
}
}
static void sdhci_external_dma_pre_transfer(struct sdhci_host *host,
struct mmc_command *cmd)
{
struct dma_chan *chan;
if (!cmd->data)
return;
chan = sdhci_external_dma_channel(host, cmd->data);
if (chan)
dma_async_issue_pending(chan);
}
#else
static inline int sdhci_external_dma_init(struct sdhci_host *host)
{
return -EOPNOTSUPP;
}
static inline void sdhci_external_dma_release(struct sdhci_host *host)
{
}
static inline void sdhci_external_dma_prepare_data(struct sdhci_host *host,
struct mmc_command *cmd)
{
/* This should never happen */
WARN_ON_ONCE(1);
}
static inline void sdhci_external_dma_pre_transfer(struct sdhci_host *host,
struct mmc_command *cmd)
{
}
static inline struct dma_chan *sdhci_external_dma_channel(struct sdhci_host *host,
struct mmc_data *data)
{
return NULL;
}
#endif
void sdhci_switch_external_dma(struct sdhci_host *host, bool en)
{
host->use_external_dma = en;
}
EXPORT_SYMBOL_GPL(sdhci_switch_external_dma);
static inline bool sdhci_auto_cmd12(struct sdhci_host *host,
struct mmc_request *mrq)
{
return !mrq->sbc && (host->flags & SDHCI_AUTO_CMD12) &&
!mrq->cap_cmd_during_tfr;
}
static inline bool sdhci_auto_cmd23(struct sdhci_host *host,
struct mmc_request *mrq)
{
return mrq->sbc && (host->flags & SDHCI_AUTO_CMD23);
}
static inline bool sdhci_manual_cmd23(struct sdhci_host *host,
struct mmc_request *mrq)
{
return mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23);
}
static inline void sdhci_auto_cmd_select(struct sdhci_host *host,
struct mmc_command *cmd,
u16 *mode)
{
bool use_cmd12 = sdhci_auto_cmd12(host, cmd->mrq) &&
(cmd->opcode != SD_IO_RW_EXTENDED);
bool use_cmd23 = sdhci_auto_cmd23(host, cmd->mrq);
u16 ctrl2;
/*
* In case of Version 4.10 or later, use of 'Auto CMD Auto
* Select' is recommended rather than use of 'Auto CMD12
* Enable' or 'Auto CMD23 Enable'. We require Version 4 Mode
* here because some controllers (e.g sdhci-of-dwmshc) expect it.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode &&
(use_cmd12 || use_cmd23)) {
*mode |= SDHCI_TRNS_AUTO_SEL;
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (use_cmd23)
ctrl2 |= SDHCI_CMD23_ENABLE;
else
ctrl2 &= ~SDHCI_CMD23_ENABLE;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
return;
}
/*
* If we are sending CMD23, CMD12 never gets sent
* on successful completion (so no Auto-CMD12).
*/
if (use_cmd12)
*mode |= SDHCI_TRNS_AUTO_CMD12;
else if (use_cmd23)
*mode |= SDHCI_TRNS_AUTO_CMD23;
}
static void sdhci_set_transfer_mode(struct sdhci_host *host,
struct mmc_command *cmd)
{
u16 mode = 0;
struct mmc_data *data = cmd->data;
if (data == NULL) {
if (host->quirks2 &
SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD) {
/* must not clear SDHCI_TRANSFER_MODE when tuning */
if (!mmc_op_tuning(cmd->opcode))
sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE);
} else {
/* clear Auto CMD settings for no data CMDs */
mode = sdhci_readw(host, SDHCI_TRANSFER_MODE);
sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 |
SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE);
}
return;
}
WARN_ON(!host->data);
if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE))
mode = SDHCI_TRNS_BLK_CNT_EN;
if (mmc_op_multi(cmd->opcode) || data->blocks > 1) {
mode = SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_MULTI;
sdhci_auto_cmd_select(host, cmd, &mode);
if (sdhci_auto_cmd23(host, cmd->mrq))
sdhci_writel(host, cmd->mrq->sbc->arg, SDHCI_ARGUMENT2);
}
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
}
static bool sdhci_needs_reset(struct sdhci_host *host, struct mmc_request *mrq)
{
return (!(host->flags & SDHCI_DEVICE_DEAD) &&
((mrq->cmd && mrq->cmd->error) ||
(mrq->sbc && mrq->sbc->error) ||
(mrq->data && mrq->data->stop && mrq->data->stop->error) ||
(host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)));
}
static void sdhci_set_mrq_done(struct sdhci_host *host, struct mmc_request *mrq)
{
int i;
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (host->mrqs_done[i] == mrq) {
WARN_ON(1);
return;
}
}
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (!host->mrqs_done[i]) {
host->mrqs_done[i] = mrq;
break;
}
}
WARN_ON(i >= SDHCI_MAX_MRQS);
}
static void __sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq)
{
if (host->cmd && host->cmd->mrq == mrq)
host->cmd = NULL;
if (host->data_cmd && host->data_cmd->mrq == mrq)
host->data_cmd = NULL;
if (host->deferred_cmd && host->deferred_cmd->mrq == mrq)
host->deferred_cmd = NULL;
if (host->data && host->data->mrq == mrq)
host->data = NULL;
if (sdhci_needs_reset(host, mrq))
host->pending_reset = true;
sdhci_set_mrq_done(host, mrq);
sdhci_del_timer(host, mrq);
if (!sdhci_has_requests(host))
sdhci_led_deactivate(host);
}
static void sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq)
{
__sdhci_finish_mrq(host, mrq);
queue_work(host->complete_wq, &host->complete_work);
}
static void __sdhci_finish_data(struct sdhci_host *host, bool sw_data_timeout)
{
struct mmc_command *data_cmd = host->data_cmd;
struct mmc_data *data = host->data;
host->data = NULL;
host->data_cmd = NULL;
/*
* The controller needs a reset of internal state machines upon error
* conditions.
*/
if (data->error) {
if (!host->cmd || host->cmd == data_cmd)
sdhci_reset_for(host, REQUEST_ERROR);
else
sdhci_reset_for(host, REQUEST_ERROR_DATA_ONLY);
}
if ((host->flags & (SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA)) ==
(SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA))
sdhci_adma_table_post(host, data);
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
/*
* Need to send CMD12 if -
* a) open-ended multiblock transfer not using auto CMD12 (no CMD23)
* b) error in multiblock transfer
*/
if (data->stop &&
((!data->mrq->sbc && !sdhci_auto_cmd12(host, data->mrq)) ||
data->error)) {
/*
* 'cap_cmd_during_tfr' request must not use the command line
* after mmc_command_done() has been called. It is upper layer's
* responsibility to send the stop command if required.
*/
if (data->mrq->cap_cmd_during_tfr) {
__sdhci_finish_mrq(host, data->mrq);
} else {
/* Avoid triggering warning in sdhci_send_command() */
host->cmd = NULL;
if (!sdhci_send_command(host, data->stop)) {
if (sw_data_timeout) {
/*
* This is anyway a sw data timeout, so
* give up now.
*/
data->stop->error = -EIO;
__sdhci_finish_mrq(host, data->mrq);
} else {
WARN_ON(host->deferred_cmd);
host->deferred_cmd = data->stop;
}
}
}
} else {
__sdhci_finish_mrq(host, data->mrq);
}
}
static void sdhci_finish_data(struct sdhci_host *host)
{
__sdhci_finish_data(host, false);
}
static bool sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd)
{
int flags;
u32 mask;
unsigned long timeout;
WARN_ON(host->cmd);
/* Initially, a command has no error */
cmd->error = 0;
if ((host->quirks2 & SDHCI_QUIRK2_STOP_WITH_TC) &&
cmd->opcode == MMC_STOP_TRANSMISSION)
cmd->flags |= MMC_RSP_BUSY;
mask = SDHCI_CMD_INHIBIT;
if (sdhci_data_line_cmd(cmd))
mask |= SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (cmd->mrq->data && (cmd == cmd->mrq->data->stop))
mask &= ~SDHCI_DATA_INHIBIT;
if (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask)
return false;
host->cmd = cmd;
host->data_timeout = 0;
if (sdhci_data_line_cmd(cmd)) {
WARN_ON(host->data_cmd);
host->data_cmd = cmd;
sdhci_set_timeout(host, cmd);
}
if (cmd->data) {
if (host->use_external_dma)
sdhci_external_dma_prepare_data(host, cmd);
else
sdhci_prepare_data(host, cmd);
}
sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT);
sdhci_set_transfer_mode(host, cmd);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
WARN_ONCE(1, "Unsupported response type!\n");
/*
* This does not happen in practice because 136-bit response
* commands never have busy waiting, so rather than complicate
* the error path, just remove busy waiting and continue.
*/
cmd->flags &= ~MMC_RSP_BUSY;
}
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
/* CMD19 is special in that the Data Present Select should be set */
if (cmd->data || mmc_op_tuning(cmd->opcode))
flags |= SDHCI_CMD_DATA;
timeout = jiffies;
if (host->data_timeout)
timeout += nsecs_to_jiffies(host->data_timeout);
else if (!cmd->data && cmd->busy_timeout > 9000)
timeout += DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ;
else
timeout += 10 * HZ;
sdhci_mod_timer(host, cmd->mrq, timeout);
if (host->use_external_dma)
sdhci_external_dma_pre_transfer(host, cmd);
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND);
return true;
}
static bool sdhci_present_error(struct sdhci_host *host,
struct mmc_command *cmd, bool present)
{
if (!present || host->flags & SDHCI_DEVICE_DEAD) {
cmd->error = -ENOMEDIUM;
return true;
}
return false;
}
static bool sdhci_send_command_retry(struct sdhci_host *host,
struct mmc_command *cmd,
unsigned long flags)
__releases(host->lock)
__acquires(host->lock)
{
struct mmc_command *deferred_cmd = host->deferred_cmd;
int timeout = 10; /* Approx. 10 ms */
bool present;
while (!sdhci_send_command(host, cmd)) {
if (!timeout--) {
pr_err("%s: Controller never released inhibit bit(s).\n",
mmc_hostname(host->mmc));
sdhci_err_stats_inc(host, CTRL_TIMEOUT);
sdhci_dumpregs(host);
cmd->error = -EIO;
return false;
}
spin_unlock_irqrestore(&host->lock, flags);
usleep_range(1000, 1250);
present = host->mmc->ops->get_cd(host->mmc);
spin_lock_irqsave(&host->lock, flags);
/* A deferred command might disappear, handle that */
if (cmd == deferred_cmd && cmd != host->deferred_cmd)
return true;
if (sdhci_present_error(host, cmd, present))
return false;
}
if (cmd == host->deferred_cmd)
host->deferred_cmd = NULL;
return true;
}
static void sdhci_read_rsp_136(struct sdhci_host *host, struct mmc_command *cmd)
{
int i, reg;
for (i = 0; i < 4; i++) {
reg = SDHCI_RESPONSE + (3 - i) * 4;
cmd->resp[i] = sdhci_readl(host, reg);
}
if (host->quirks2 & SDHCI_QUIRK2_RSP_136_HAS_CRC)
return;
/* CRC is stripped so we need to do some shifting */
for (i = 0; i < 4; i++) {
cmd->resp[i] <<= 8;
if (i != 3)
cmd->resp[i] |= cmd->resp[i + 1] >> 24;
}
}
static void sdhci_finish_command(struct sdhci_host *host)
{
struct mmc_command *cmd = host->cmd;
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
sdhci_read_rsp_136(host, cmd);
} else {
cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
if (cmd->mrq->cap_cmd_during_tfr && cmd == cmd->mrq->cmd)
mmc_command_done(host->mmc, cmd->mrq);
/*
* The host can send and interrupt when the busy state has
* ended, allowing us to wait without wasting CPU cycles.
* The busy signal uses DAT0 so this is similar to waiting
* for data to complete.
*
* Note: The 1.0 specification is a bit ambiguous about this
* feature so there might be some problems with older
* controllers.
*/
if (cmd->flags & MMC_RSP_BUSY) {
if (cmd->data) {
DBG("Cannot wait for busy signal when also doing a data transfer");
} else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
cmd == host->data_cmd) {
/* Command complete before busy is ended */
return;
}
}
/* Finished CMD23, now send actual command. */
if (cmd == cmd->mrq->sbc) {
if (!sdhci_send_command(host, cmd->mrq->cmd)) {
WARN_ON(host->deferred_cmd);
host->deferred_cmd = cmd->mrq->cmd;
}
} else {
/* Processed actual command. */
if (host->data && host->data_early)
sdhci_finish_data(host);
if (!cmd->data)
__sdhci_finish_mrq(host, cmd->mrq);
}
}
static u16 sdhci_get_preset_value(struct sdhci_host *host)
{
u16 preset = 0;
switch (host->timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_HIGH_SPEED);
break;
case MMC_TIMING_UHS_SDR12:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
case MMC_TIMING_UHS_SDR25:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25);
break;
case MMC_TIMING_UHS_SDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50);
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104);
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50);
break;
case MMC_TIMING_MMC_HS400:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_HS400);
break;
default:
pr_warn("%s: Invalid UHS-I mode selected\n",
mmc_hostname(host->mmc));
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
}
return preset;
}
u16 sdhci_calc_clk(struct sdhci_host *host, unsigned int clock,
unsigned int *actual_clock)
{
int div = 0; /* Initialized for compiler warning */
int real_div = div, clk_mul = 1;
u16 clk = 0;
bool switch_base_clk = false;
if (host->version >= SDHCI_SPEC_300) {
if (host->preset_enabled) {
u16 pre_val;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
pre_val = sdhci_get_preset_value(host);
div = FIELD_GET(SDHCI_PRESET_SDCLK_FREQ_MASK, pre_val);
if (host->clk_mul &&
(pre_val & SDHCI_PRESET_CLKGEN_SEL)) {
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div + 1;
clk_mul = host->clk_mul;
} else {
real_div = max_t(int, 1, div << 1);
}
goto clock_set;
}
/*
* Check if the Host Controller supports Programmable Clock
* Mode.
*/
if (host->clk_mul) {
for (div = 1; div <= 1024; div++) {
if ((host->max_clk * host->clk_mul / div)
<= clock)
break;
}
if ((host->max_clk * host->clk_mul / div) <= clock) {
/*
* Set Programmable Clock Mode in the Clock
* Control register.
*/
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div;
clk_mul = host->clk_mul;
div--;
} else {
/*
* Divisor can be too small to reach clock
* speed requirement. Then use the base clock.
*/
switch_base_clk = true;
}
}
if (!host->clk_mul || switch_base_clk) {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock)
div = 1;
else {
for (div = 2; div < SDHCI_MAX_DIV_SPEC_300;
div += 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
real_div = div;
div >>= 1;
if ((host->quirks2 & SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN)
&& !div && host->max_clk <= 25000000)
div = 1;
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((host->max_clk / div) <= clock)
break;
}
real_div = div;
div >>= 1;
}
clock_set:
if (real_div)
*actual_clock = (host->max_clk * clk_mul) / real_div;
clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
return clk;
}
EXPORT_SYMBOL_GPL(sdhci_calc_clk);
void sdhci_enable_clk(struct sdhci_host *host, u16 clk)
{
ktime_t timeout;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 150 ms */
timeout = ktime_add_ms(ktime_get(), 150);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timedout) {
pr_err("%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_err_stats_inc(host, CTRL_TIMEOUT);
sdhci_dumpregs(host);
return;
}
udelay(10);
}
if (host->version >= SDHCI_SPEC_410 && host->v4_mode) {
clk |= SDHCI_CLOCK_PLL_EN;
clk &= ~SDHCI_CLOCK_INT_STABLE;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 150 ms */
timeout = ktime_add_ms(ktime_get(), 150);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timedout) {
pr_err("%s: PLL clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_err_stats_inc(host, CTRL_TIMEOUT);
sdhci_dumpregs(host);
return;
}
udelay(10);
}
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_enable_clk);
void sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
host->mmc->actual_clock = 0;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
clk = sdhci_calc_clk(host, clock, &host->mmc->actual_clock);
sdhci_enable_clk(host, clk);
}
EXPORT_SYMBOL_GPL(sdhci_set_clock);
static void sdhci_set_power_reg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
if (mode != MMC_POWER_OFF)
sdhci_writeb(host, SDHCI_POWER_ON, SDHCI_POWER_CONTROL);
else
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
}
void sdhci_set_power_noreg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
u8 pwr = 0;
if (mode != MMC_POWER_OFF) {
switch (1 << vdd) {
case MMC_VDD_165_195:
/*
* Without a regulator, SDHCI does not support 2.0v
* so we only get here if the driver deliberately
* added the 2.0v range to ocr_avail. Map it to 1.8v
* for the purpose of turning on the power.
*/
case MMC_VDD_20_21:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
/*
* 3.4 ~ 3.6V are valid only for those platforms where it's
* known that the voltage range is supported by hardware.
*/
case MMC_VDD_34_35:
case MMC_VDD_35_36:
pwr = SDHCI_POWER_330;
break;
default:
WARN(1, "%s: Invalid vdd %#x\n",
mmc_hostname(host->mmc), vdd);
break;
}
}
if (host->pwr == pwr)
return;
host->pwr = pwr;
if (pwr == 0) {
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
} else {
/*
* Spec says that we should clear the power reg before setting
* a new value. Some controllers don't seem to like this though.
*/
if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE))
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
/*
* At least the Marvell CaFe chip gets confused if we set the
* voltage and set turn on power at the same time, so set the
* voltage first.
*/
if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_on(host);
/*
* Some controllers need an extra 10ms delay of 10ms before
* they can apply clock after applying power
*/
if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)
mdelay(10);
}
}
EXPORT_SYMBOL_GPL(sdhci_set_power_noreg);
void sdhci_set_power(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
if (IS_ERR(host->mmc->supply.vmmc))
sdhci_set_power_noreg(host, mode, vdd);
else
sdhci_set_power_reg(host, mode, vdd);
}
EXPORT_SYMBOL_GPL(sdhci_set_power);
/*
* Some controllers need to configure a valid bus voltage on their power
* register regardless of whether an external regulator is taking care of power
* supply. This helper function takes care of it if set as the controller's
* sdhci_ops.set_power callback.
*/
void sdhci_set_power_and_bus_voltage(struct sdhci_host *host,
unsigned char mode,
unsigned short vdd)
{
if (!IS_ERR(host->mmc->supply.vmmc)) {
struct mmc_host *mmc = host->mmc;
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
}
sdhci_set_power_noreg(host, mode, vdd);
}
EXPORT_SYMBOL_GPL(sdhci_set_power_and_bus_voltage);
/*****************************************************************************\
* *
* MMC callbacks *
* *
\*****************************************************************************/
void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
struct mmc_command *cmd;
unsigned long flags;
bool present;
/* Firstly check card presence */
present = mmc->ops->get_cd(mmc);
spin_lock_irqsave(&host->lock, flags);
sdhci_led_activate(host);
if (sdhci_present_error(host, mrq->cmd, present))
goto out_finish;
cmd = sdhci_manual_cmd23(host, mrq) ? mrq->sbc : mrq->cmd;
if (!sdhci_send_command_retry(host, cmd, flags))
goto out_finish;
spin_unlock_irqrestore(&host->lock, flags);
return;
out_finish:
sdhci_finish_mrq(host, mrq);
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_request);
int sdhci_request_atomic(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
struct mmc_command *cmd;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&host->lock, flags);
if (sdhci_present_error(host, mrq->cmd, true)) {
sdhci_finish_mrq(host, mrq);
goto out_finish;
}
cmd = sdhci_manual_cmd23(host, mrq) ? mrq->sbc : mrq->cmd;
/*
* The HSQ may send a command in interrupt context without polling
* the busy signaling, which means we should return BUSY if controller
* has not released inhibit bits to allow HSQ trying to send request
* again in non-atomic context. So we should not finish this request
* here.
*/
if (!sdhci_send_command(host, cmd))
ret = -EBUSY;
else
sdhci_led_activate(host);
out_finish:
spin_unlock_irqrestore(&host->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_request_atomic);
void sdhci_set_bus_width(struct sdhci_host *host, int width)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if (host->mmc->caps & MMC_CAP_8_BIT_DATA)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_set_bus_width);
void sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing)
{
u16 ctrl_2;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((timing == MMC_TIMING_MMC_HS200) ||
(timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if (timing == MMC_TIMING_UHS_SDR25)
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if ((timing == MMC_TIMING_UHS_DDR50) ||
(timing == MMC_TIMING_MMC_DDR52))
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
else if (timing == MMC_TIMING_MMC_HS400)
ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_set_uhs_signaling);
static bool sdhci_timing_has_preset(unsigned char timing)
{
switch (timing) {
case MMC_TIMING_UHS_SDR12:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_SDR50:
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
return true;
}
return false;
}
static bool sdhci_preset_needed(struct sdhci_host *host, unsigned char timing)
{
return !(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) &&
sdhci_timing_has_preset(timing);
}
static bool sdhci_presetable_values_change(struct sdhci_host *host, struct mmc_ios *ios)
{
/*
* Preset Values are: Driver Strength, Clock Generator and SDCLK/RCLK
* Frequency. Check if preset values need to be enabled, or the Driver
* Strength needs updating. Note, clock changes are handled separately.
*/
return !host->preset_enabled &&
(sdhci_preset_needed(host, ios->timing) || host->drv_type != ios->drv_type);
}
void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
bool reinit_uhs = host->reinit_uhs;
bool turning_on_clk = false;
u8 ctrl;
host->reinit_uhs = false;
if (ios->power_mode == MMC_POWER_UNDEFINED)
return;
if (host->flags & SDHCI_DEVICE_DEAD) {
if (!IS_ERR(mmc->supply.vmmc) &&
ios->power_mode == MMC_POWER_OFF)
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
return;
}
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF) {
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
sdhci_reinit(host);
}
if (host->version >= SDHCI_SPEC_300 &&
(ios->power_mode == MMC_POWER_UP) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN))
sdhci_enable_preset_value(host, false);
if (!ios->clock || ios->clock != host->clock) {
turning_on_clk = ios->clock && !host->clock;
host->ops->set_clock(host, ios->clock);
host->clock = ios->clock;
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK &&
host->clock) {
host->timeout_clk = mmc->actual_clock ?
mmc->actual_clock / 1000 :
host->clock / 1000;
mmc->max_busy_timeout =
host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) :
1 << 27;
mmc->max_busy_timeout /= host->timeout_clk;
}
}
if (host->ops->set_power)
host->ops->set_power(host, ios->power_mode, ios->vdd);
else
sdhci_set_power(host, ios->power_mode, ios->vdd);
if (host->ops->platform_send_init_74_clocks)
host->ops->platform_send_init_74_clocks(host, ios->power_mode);
host->ops->set_bus_width(host, ios->bus_width);
/*
* Special case to avoid multiple clock changes during voltage
* switching.
*/
if (!reinit_uhs &&
turning_on_clk &&
host->timing == ios->timing &&
host->version >= SDHCI_SPEC_300 &&
!sdhci_presetable_values_change(host, ios))
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (!(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT)) {
if (ios->timing == MMC_TIMING_SD_HS ||
ios->timing == MMC_TIMING_MMC_HS ||
ios->timing == MMC_TIMING_MMC_HS400 ||
ios->timing == MMC_TIMING_MMC_HS200 ||
ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_SDR50 ||
ios->timing == MMC_TIMING_UHS_SDR104 ||
ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_UHS_SDR25)
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
}
if (host->version >= SDHCI_SPEC_300) {
u16 clk, ctrl_2;
/*
* According to SDHCI Spec v3.00, if the Preset Value
* Enable in the Host Control 2 register is set, we
* need to reset SD Clock Enable before changing High
* Speed Enable to avoid generating clock glitches.
*/
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_CARD_EN) {
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
if (!host->preset_enabled) {
/*
* We only need to set Driver Strength if the
* preset value enable is not set.
*/
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK;
if (ios->drv_type == MMC_SET_DRIVER_TYPE_A)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_B)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_D)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_D;
else {
pr_warn("%s: invalid driver type, default to driver type B\n",
mmc_hostname(mmc));
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
host->drv_type = ios->drv_type;
}
host->ops->set_uhs_signaling(host, ios->timing);
host->timing = ios->timing;
if (sdhci_preset_needed(host, ios->timing)) {
u16 preset;
sdhci_enable_preset_value(host, true);
preset = sdhci_get_preset_value(host);
ios->drv_type = FIELD_GET(SDHCI_PRESET_DRV_MASK,
preset);
host->drv_type = ios->drv_type;
}
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
} else
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_set_ios);
static int sdhci_get_cd(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int gpio_cd = mmc_gpio_get_cd(mmc);
if (host->flags & SDHCI_DEVICE_DEAD)
return 0;
/* If nonremovable, assume that the card is always present. */
if (!mmc_card_is_removable(mmc))
return 1;
/*
* Try slot gpio detect, if defined it take precedence
* over build in controller functionality
*/
if (gpio_cd >= 0)
return !!gpio_cd;
/* If polling, assume that the card is always present. */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
return 1;
/* Host native card detect */
return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
}
int sdhci_get_cd_nogpio(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
goto out;
ret = !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
out:
spin_unlock_irqrestore(&host->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_get_cd_nogpio);
static int sdhci_check_ro(struct sdhci_host *host)
{
unsigned long flags;
int is_readonly;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
is_readonly = 0;
else if (host->ops->get_ro)
is_readonly = host->ops->get_ro(host);
else if (mmc_can_gpio_ro(host->mmc))
is_readonly = mmc_gpio_get_ro(host->mmc);
else
is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE)
& SDHCI_WRITE_PROTECT);
spin_unlock_irqrestore(&host->lock, flags);
/* This quirk needs to be replaced by a callback-function later */
return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ?
!is_readonly : is_readonly;
}
#define SAMPLE_COUNT 5
static int sdhci_get_ro(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int i, ro_count;
if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT))
return sdhci_check_ro(host);
ro_count = 0;
for (i = 0; i < SAMPLE_COUNT; i++) {
if (sdhci_check_ro(host)) {
if (++ro_count > SAMPLE_COUNT / 2)
return 1;
}
msleep(30);
}
return 0;
}
static void sdhci_hw_reset(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
if (host->ops && host->ops->hw_reset)
host->ops->hw_reset(host);
}
static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable)
{
if (!(host->flags & SDHCI_DEVICE_DEAD)) {
if (enable)
host->ier |= SDHCI_INT_CARD_INT;
else
host->ier &= ~SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
}
void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
if (enable)
pm_runtime_get_noresume(mmc_dev(mmc));
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_sdio_irq_nolock(host, enable);
spin_unlock_irqrestore(&host->lock, flags);
if (!enable)
pm_runtime_put_noidle(mmc_dev(mmc));
}
EXPORT_SYMBOL_GPL(sdhci_enable_sdio_irq);
static void sdhci_ack_sdio_irq(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_sdio_irq_nolock(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
int sdhci_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u16 ctrl;
int ret;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
if (!(host->flags & SDHCI_SIGNALING_330))
return -EINVAL;
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
pr_warn("%s: Switching to 3.3V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/* Wait for 5ms */
usleep_range(5000, 5500);
/* 3.3V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_VDD_180))
return 0;
pr_warn("%s: 3.3V regulator output did not become stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_180:
if (!(host->flags & SDHCI_SIGNALING_180))
return -EINVAL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
pr_warn("%s: Switching to 1.8V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/*
* Enable 1.8V Signal Enable in the Host Control2
* register
*/
ctrl |= SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Some controller need to do more when switching */
if (host->ops->voltage_switch)
host->ops->voltage_switch(host);
/* 1.8V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl & SDHCI_CTRL_VDD_180)
return 0;
pr_warn("%s: 1.8V regulator output did not become stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_120:
if (!(host->flags & SDHCI_SIGNALING_120))
return -EINVAL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
pr_warn("%s: Switching to 1.2V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
return 0;
default:
/* No signal voltage switch required */
return 0;
}
}
EXPORT_SYMBOL_GPL(sdhci_start_signal_voltage_switch);
static int sdhci_card_busy(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 present_state;
/* Check whether DAT[0] is 0 */
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
return !(present_state & SDHCI_DATA_0_LVL_MASK);
}
static int sdhci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_HS400_TUNING;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
void sdhci_start_tuning(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
if (host->quirks2 & SDHCI_QUIRK2_TUNING_WORK_AROUND)
ctrl |= SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/*
* As per the Host Controller spec v3.00, tuning command
* generates Buffer Read Ready interrupt, so enable that.
*
* Note: The spec clearly says that when tuning sequence
* is being performed, the controller does not generate
* interrupts other than Buffer Read Ready interrupt. But
* to make sure we don't hit a controller bug, we _only_
* enable Buffer Read Ready interrupt here.
*/
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_start_tuning);
void sdhci_end_tuning(struct sdhci_host *host)
{
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_end_tuning);
void sdhci_reset_tuning(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
ctrl &= ~SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_reset_tuning);
void sdhci_abort_tuning(struct sdhci_host *host, u32 opcode)
{
sdhci_reset_tuning(host);
sdhci_reset_for(host, TUNING_ABORT);
sdhci_end_tuning(host);
mmc_send_abort_tuning(host->mmc, opcode);
}
EXPORT_SYMBOL_GPL(sdhci_abort_tuning);
/*
* We use sdhci_send_tuning() because mmc_send_tuning() is not a good fit. SDHCI
* tuning command does not have a data payload (or rather the hardware does it
* automatically) so mmc_send_tuning() will return -EIO. Also the tuning command
* interrupt setup is different to other commands and there is no timeout
* interrupt so special handling is needed.
*/
void sdhci_send_tuning(struct sdhci_host *host, u32 opcode)
{
struct mmc_host *mmc = host->mmc;
struct mmc_command cmd = {};
struct mmc_request mrq = {};
unsigned long flags;
u32 b = host->sdma_boundary;
spin_lock_irqsave(&host->lock, flags);
cmd.opcode = opcode;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.mrq = &mrq;
mrq.cmd = &cmd;
/*
* In response to CMD19, the card sends 64 bytes of tuning
* block to the Host Controller. So we set the block size
* to 64 here.
*/
if (cmd.opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
mmc->ios.bus_width == MMC_BUS_WIDTH_8)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 128), SDHCI_BLOCK_SIZE);
else
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 64), SDHCI_BLOCK_SIZE);
/*
* The tuning block is sent by the card to the host controller.
* So we set the TRNS_READ bit in the Transfer Mode register.
* This also takes care of setting DMA Enable and Multi Block
* Select in the same register to 0.
*/
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
if (!sdhci_send_command_retry(host, &cmd, flags)) {
spin_unlock_irqrestore(&host->lock, flags);
host->tuning_done = 0;
return;
}
host->cmd = NULL;
sdhci_del_timer(host, &mrq);
host->tuning_done = 0;
spin_unlock_irqrestore(&host->lock, flags);
/* Wait for Buffer Read Ready interrupt */
wait_event_timeout(host->buf_ready_int, (host->tuning_done == 1),
msecs_to_jiffies(50));
}
EXPORT_SYMBOL_GPL(sdhci_send_tuning);
static int __sdhci_execute_tuning(struct sdhci_host *host, u32 opcode)
{
int i;
/*
* Issue opcode repeatedly till Execute Tuning is set to 0 or the number
* of loops reaches tuning loop count.
*/
for (i = 0; i < host->tuning_loop_count; i++) {
u16 ctrl;
sdhci_send_tuning(host, opcode);
if (!host->tuning_done) {
pr_debug("%s: Tuning timeout, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_abort_tuning(host, opcode);
return -ETIMEDOUT;
}
/* Spec does not require a delay between tuning cycles */
if (host->tuning_delay > 0)
mdelay(host->tuning_delay);
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_EXEC_TUNING)) {
if (ctrl & SDHCI_CTRL_TUNED_CLK)
return 0; /* Success! */
break;
}
}
pr_info("%s: Tuning failed, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_reset_tuning(host);
return -EAGAIN;
}
int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err = 0;
unsigned int tuning_count = 0;
bool hs400_tuning;
hs400_tuning = host->flags & SDHCI_HS400_TUNING;
if (host->tuning_mode == SDHCI_TUNING_MODE_1)
tuning_count = host->tuning_count;
/*
* The Host Controller needs tuning in case of SDR104 and DDR50
* mode, and for SDR50 mode when Use Tuning for SDR50 is set in
* the Capabilities register.
* If the Host Controller supports the HS200 mode then the
* tuning function has to be executed.
*/
switch (host->timing) {
/* HS400 tuning is done in HS200 mode */
case MMC_TIMING_MMC_HS400:
err = -EINVAL;
goto out;
case MMC_TIMING_MMC_HS200:
/*
* Periodic re-tuning for HS400 is not expected to be needed, so
* disable it here.
*/
if (hs400_tuning)
tuning_count = 0;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_DDR50:
break;
case MMC_TIMING_UHS_SDR50:
if (host->flags & SDHCI_SDR50_NEEDS_TUNING)
break;
fallthrough;
default:
goto out;
}
if (host->ops->platform_execute_tuning) {
err = host->ops->platform_execute_tuning(host, opcode);
goto out;
}
mmc->retune_period = tuning_count;
if (host->tuning_delay < 0)
host->tuning_delay = opcode == MMC_SEND_TUNING_BLOCK;
sdhci_start_tuning(host);
host->tuning_err = __sdhci_execute_tuning(host, opcode);
sdhci_end_tuning(host);
out:
host->flags &= ~SDHCI_HS400_TUNING;
return err;
}
EXPORT_SYMBOL_GPL(sdhci_execute_tuning);
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable)
{
/* Host Controller v3.00 defines preset value registers */
if (host->version < SDHCI_SPEC_300)
return;
/*
* We only enable or disable Preset Value if they are not already
* enabled or disabled respectively. Otherwise, we bail out.
*/
if (host->preset_enabled != enable) {
u16 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (enable)
ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE;
else
ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (enable)
host->flags |= SDHCI_PV_ENABLED;
else
host->flags &= ~SDHCI_PV_ENABLED;
host->preset_enabled = enable;
}
}
static void sdhci_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct mmc_data *data = mrq->data;
if (data->host_cookie != COOKIE_UNMAPPED)
dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
static void sdhci_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
mrq->data->host_cookie = COOKIE_UNMAPPED;
/*
* No pre-mapping in the pre hook if we're using the bounce buffer,
* for that we would need two bounce buffers since one buffer is
* in flight when this is getting called.
*/
if (host->flags & SDHCI_REQ_USE_DMA && !host->bounce_buffer)
sdhci_pre_dma_transfer(host, mrq->data, COOKIE_PRE_MAPPED);
}
static void sdhci_error_out_mrqs(struct sdhci_host *host, int err)
{
if (host->data_cmd) {
host->data_cmd->error = err;
sdhci_finish_mrq(host, host->data_cmd->mrq);
}
if (host->cmd) {
host->cmd->error = err;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
static void sdhci_card_event(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
int present;
/* First check if client has provided their own card event */
if (host->ops->card_event)
host->ops->card_event(host);
present = mmc->ops->get_cd(mmc);
spin_lock_irqsave(&host->lock, flags);
/* Check sdhci_has_requests() first in case we are runtime suspended */
if (sdhci_has_requests(host) && !present) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(mmc));
pr_err("%s: Resetting controller.\n",
mmc_hostname(mmc));
sdhci_reset_for(host, CARD_REMOVED);
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static const struct mmc_host_ops sdhci_ops = {
.request = sdhci_request,
.post_req = sdhci_post_req,
.pre_req = sdhci_pre_req,
.set_ios = sdhci_set_ios,
.get_cd = sdhci_get_cd,
.get_ro = sdhci_get_ro,
.card_hw_reset = sdhci_hw_reset,
.enable_sdio_irq = sdhci_enable_sdio_irq,
.ack_sdio_irq = sdhci_ack_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch,
.prepare_hs400_tuning = sdhci_prepare_hs400_tuning,
.execute_tuning = sdhci_execute_tuning,
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy,
};
/*****************************************************************************\
* *
* Request done *
* *
\*****************************************************************************/
static bool sdhci_request_done(struct sdhci_host *host)
{
unsigned long flags;
struct mmc_request *mrq;
int i;
spin_lock_irqsave(&host->lock, flags);
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
mrq = host->mrqs_done[i];
if (mrq)
break;
}
if (!mrq) {
spin_unlock_irqrestore(&host->lock, flags);
return true;
}
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (sdhci_needs_reset(host, mrq)) {
/*
* Do not finish until command and data lines are available for
* reset. Note there can only be one other mrq, so it cannot
* also be in mrqs_done, otherwise host->cmd and host->data_cmd
* would both be null.
*/
if (host->cmd || host->data_cmd) {
spin_unlock_irqrestore(&host->lock, flags);
return true;
}
/* Some controllers need this kick or reset won't work here */
if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)
/* This is to force an update */
host->ops->set_clock(host, host->clock);
sdhci_reset_for(host, REQUEST_ERROR);
host->pending_reset = false;
}
/*
* Always unmap the data buffers if they were mapped by
* sdhci_prepare_data() whenever we finish with a request.
* This avoids leaking DMA mappings on error.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
struct mmc_data *data = mrq->data;
if (host->use_external_dma && data &&
(mrq->cmd->error || data->error)) {
struct dma_chan *chan = sdhci_external_dma_channel(host, data);
host->mrqs_done[i] = NULL;
spin_unlock_irqrestore(&host->lock, flags);
dmaengine_terminate_sync(chan);
spin_lock_irqsave(&host->lock, flags);
sdhci_set_mrq_done(host, mrq);
}
if (data && data->host_cookie == COOKIE_MAPPED) {
if (host->bounce_buffer) {
/*
* On reads, copy the bounced data into the
* sglist
*/
if (mmc_get_dma_dir(data) == DMA_FROM_DEVICE) {
unsigned int length = data->bytes_xfered;
if (length > host->bounce_buffer_size) {
pr_err("%s: bounce buffer is %u bytes but DMA claims to have transferred %u bytes\n",
mmc_hostname(host->mmc),
host->bounce_buffer_size,
data->bytes_xfered);
/* Cap it down and continue */
length = host->bounce_buffer_size;
}
dma_sync_single_for_cpu(
mmc_dev(host->mmc),
host->bounce_addr,
host->bounce_buffer_size,
DMA_FROM_DEVICE);
sg_copy_from_buffer(data->sg,
data->sg_len,
host->bounce_buffer,
length);
} else {
/* No copying, just switch ownership */
dma_sync_single_for_cpu(
mmc_dev(host->mmc),
host->bounce_addr,
host->bounce_buffer_size,
mmc_get_dma_dir(data));
}
} else {
/* Unmap the raw data */
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len,
mmc_get_dma_dir(data));
}
data->host_cookie = COOKIE_UNMAPPED;
}
}
host->mrqs_done[i] = NULL;
spin_unlock_irqrestore(&host->lock, flags);
if (host->ops->request_done)
host->ops->request_done(host, mrq);
else
mmc_request_done(host->mmc, mrq);
return false;
}
static void sdhci_complete_work(struct work_struct *work)
{
struct sdhci_host *host = container_of(work, struct sdhci_host,
complete_work);
while (!sdhci_request_done(host))
;
}
static void sdhci_timeout_timer(struct timer_list *t)
{
struct sdhci_host *host;
unsigned long flags;
host = from_timer(host, t, timer);
spin_lock_irqsave(&host->lock, flags);
if (host->cmd && !sdhci_data_line_cmd(host->cmd)) {
pr_err("%s: Timeout waiting for hardware cmd interrupt.\n",
mmc_hostname(host->mmc));
sdhci_err_stats_inc(host, REQ_TIMEOUT);
sdhci_dumpregs(host);
host->cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_timeout_data_timer(struct timer_list *t)
{
struct sdhci_host *host;
unsigned long flags;
host = from_timer(host, t, data_timer);
spin_lock_irqsave(&host->lock, flags);
if (host->data || host->data_cmd ||
(host->cmd && sdhci_data_line_cmd(host->cmd))) {
pr_err("%s: Timeout waiting for hardware interrupt.\n",
mmc_hostname(host->mmc));
sdhci_err_stats_inc(host, REQ_TIMEOUT);
sdhci_dumpregs(host);
if (host->data) {
host->data->error = -ETIMEDOUT;
__sdhci_finish_data(host, true);
queue_work(host->complete_wq, &host->complete_work);
} else if (host->data_cmd) {
host->data_cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->data_cmd->mrq);
} else {
host->cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask, u32 *intmask_p)
{
/* Handle auto-CMD12 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR && host->data_cmd) {
struct mmc_request *mrq = host->data_cmd->mrq;
u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int data_err_bit = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ?
SDHCI_INT_DATA_TIMEOUT :
SDHCI_INT_DATA_CRC;
/* Treat auto-CMD12 error the same as data error */
if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) {
*intmask_p |= data_err_bit;
return;
}
}
if (!host->cmd) {
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
pr_err("%s: Got command interrupt 0x%08x even though no command operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_err_stats_inc(host, UNEXPECTED_IRQ);
sdhci_dumpregs(host);
return;
}
if (intmask & (SDHCI_INT_TIMEOUT | SDHCI_INT_CRC |
SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) {
if (intmask & SDHCI_INT_TIMEOUT) {
host->cmd->error = -ETIMEDOUT;
sdhci_err_stats_inc(host, CMD_TIMEOUT);
} else {
host->cmd->error = -EILSEQ;
if (!mmc_op_tuning(host->cmd->opcode))
sdhci_err_stats_inc(host, CMD_CRC);
}
/* Treat data command CRC error the same as data CRC error */
if (host->cmd->data &&
(intmask & (SDHCI_INT_CRC | SDHCI_INT_TIMEOUT)) ==
SDHCI_INT_CRC) {
host->cmd = NULL;
*intmask_p |= SDHCI_INT_DATA_CRC;
return;
}
__sdhci_finish_mrq(host, host->cmd->mrq);
return;
}
/* Handle auto-CMD23 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR) {
struct mmc_request *mrq = host->cmd->mrq;
u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int err = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ?
-ETIMEDOUT :
-EILSEQ;
sdhci_err_stats_inc(host, AUTO_CMD);
if (sdhci_auto_cmd23(host, mrq)) {
mrq->sbc->error = err;
__sdhci_finish_mrq(host, mrq);
return;
}
}
if (intmask & SDHCI_INT_RESPONSE)
sdhci_finish_command(host);
}
static void sdhci_adma_show_error(struct sdhci_host *host)
{
void *desc = host->adma_table;
dma_addr_t dma = host->adma_addr;
sdhci_dumpregs(host);
while (true) {
struct sdhci_adma2_64_desc *dma_desc = desc;
if (host->flags & SDHCI_USE_64_BIT_DMA)
SDHCI_DUMP("%08llx: DMA 0x%08x%08x, LEN 0x%04x, Attr=0x%02x\n",
(unsigned long long)dma,
le32_to_cpu(dma_desc->addr_hi),
le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
else
SDHCI_DUMP("%08llx: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n",
(unsigned long long)dma,
le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
desc += host->desc_sz;
dma += host->desc_sz;
if (dma_desc->cmd & cpu_to_le16(ADMA2_END))
break;
}
}
static void sdhci_data_irq(struct sdhci_host *host, u32 intmask)
{
/*
* CMD19 generates _only_ Buffer Read Ready interrupt if
* use sdhci_send_tuning.
* Need to exclude this case: PIO mode and use mmc_send_tuning,
* If not, sdhci_transfer_pio will never be called, make the
* SDHCI_INT_DATA_AVAIL always there, stuck in irq storm.
*/
if (intmask & SDHCI_INT_DATA_AVAIL && !host->data) {
if (mmc_op_tuning(SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)))) {
host->tuning_done = 1;
wake_up(&host->buf_ready_int);
return;
}
}
if (!host->data) {
struct mmc_command *data_cmd = host->data_cmd;
/*
* The "data complete" interrupt is also used to
* indicate that a busy state has ended. See comment
* above in sdhci_cmd_irq().
*/
if (data_cmd && (data_cmd->flags & MMC_RSP_BUSY)) {
if (intmask & SDHCI_INT_DATA_TIMEOUT) {
host->data_cmd = NULL;
data_cmd->error = -ETIMEDOUT;
sdhci_err_stats_inc(host, CMD_TIMEOUT);
__sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
if (intmask & SDHCI_INT_DATA_END) {
host->data_cmd = NULL;
/*
* Some cards handle busy-end interrupt
* before the command completed, so make
* sure we do things in the proper order.
*/
if (host->cmd == data_cmd)
return;
__sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
}
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
pr_err("%s: Got data interrupt 0x%08x even though no data operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_err_stats_inc(host, UNEXPECTED_IRQ);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT) {
host->data->error = -ETIMEDOUT;
sdhci_err_stats_inc(host, DAT_TIMEOUT);
} else if (intmask & SDHCI_INT_DATA_END_BIT) {
host->data->error = -EILSEQ;
if (!mmc_op_tuning(SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))))
sdhci_err_stats_inc(host, DAT_CRC);
} else if ((intmask & SDHCI_INT_DATA_CRC) &&
SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))
!= MMC_BUS_TEST_R) {
host->data->error = -EILSEQ;
if (!mmc_op_tuning(SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))))
sdhci_err_stats_inc(host, DAT_CRC);
} else if (intmask & SDHCI_INT_ADMA_ERROR) {
pr_err("%s: ADMA error: 0x%08x\n", mmc_hostname(host->mmc),
intmask);
sdhci_adma_show_error(host);
sdhci_err_stats_inc(host, ADMA);
host->data->error = -EIO;
if (host->ops->adma_workaround)
host->ops->adma_workaround(host, intmask);
}
if (host->data->error)
sdhci_finish_data(host);
else {
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(host);
/*
* We currently don't do anything fancy with DMA
* boundaries, but as we can't disable the feature
* we need to at least restart the transfer.
*
* According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS)
* should return a valid address to continue from, but as
* some controllers are faulty, don't trust them.
*/
if (intmask & SDHCI_INT_DMA_END) {
dma_addr_t dmastart, dmanow;
dmastart = sdhci_sdma_address(host);
dmanow = dmastart + host->data->bytes_xfered;
/*
* Force update to the next DMA block boundary.
*/
dmanow = (dmanow &
~((dma_addr_t)SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
SDHCI_DEFAULT_BOUNDARY_SIZE;
host->data->bytes_xfered = dmanow - dmastart;
DBG("DMA base %pad, transferred 0x%06x bytes, next %pad\n",
&dmastart, host->data->bytes_xfered, &dmanow);
sdhci_set_sdma_addr(host, dmanow);
}
if (intmask & SDHCI_INT_DATA_END) {
if (host->cmd == host->data_cmd) {
/*
* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
host->data_early = 1;
} else {
sdhci_finish_data(host);
}
}
}
}
static inline bool sdhci_defer_done(struct sdhci_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
return host->pending_reset || host->always_defer_done ||
((host->flags & SDHCI_REQ_USE_DMA) && data &&
data->host_cookie == COOKIE_MAPPED);
}
static irqreturn_t sdhci_irq(int irq, void *dev_id)
{
struct mmc_request *mrqs_done[SDHCI_MAX_MRQS] = {0};
irqreturn_t result = IRQ_NONE;
struct sdhci_host *host = dev_id;
u32 intmask, mask, unexpected = 0;
int max_loops = 16;
int i;
spin_lock(&host->lock);
if (host->runtime_suspended) {
spin_unlock(&host->lock);
return IRQ_NONE;
}
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (!intmask || intmask == 0xffffffff) {
result = IRQ_NONE;
goto out;
}
do {
DBG("IRQ status 0x%08x\n", intmask);
if (host->ops->irq) {
intmask = host->ops->irq(host, intmask);
if (!intmask)
goto cont;
}
/* Clear selected interrupts. */
mask = intmask & (SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_BUS_POWER);
sdhci_writel(host, mask, SDHCI_INT_STATUS);
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
/*
* There is a observation on i.mx esdhc. INSERT
* bit will be immediately set again when it gets
* cleared, if a card is inserted. We have to mask
* the irq to prevent interrupt storm which will
* freeze the system. And the REMOVE gets the
* same situation.
*
* More testing are needed here to ensure it works
* for other platforms though.
*/
host->ier &= ~(SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);
host->thread_isr |= intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
result = IRQ_WAKE_THREAD;
}
if (intmask & SDHCI_INT_CMD_MASK)
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK, &intmask);
if (intmask & SDHCI_INT_DATA_MASK)
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK);
if (intmask & SDHCI_INT_BUS_POWER)
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
if (intmask & SDHCI_INT_RETUNE)
mmc_retune_needed(host->mmc);
if ((intmask & SDHCI_INT_CARD_INT) &&
(host->ier & SDHCI_INT_CARD_INT)) {
sdhci_enable_sdio_irq_nolock(host, false);
sdio_signal_irq(host->mmc);
}
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE |
SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_ERROR | SDHCI_INT_BUS_POWER |
SDHCI_INT_RETUNE | SDHCI_INT_CARD_INT);
if (intmask) {
unexpected |= intmask;
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
}
cont:
if (result == IRQ_NONE)
result = IRQ_HANDLED;
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
} while (intmask && --max_loops);
/* Determine if mrqs can be completed immediately */
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
struct mmc_request *mrq = host->mrqs_done[i];
if (!mrq)
continue;
if (sdhci_defer_done(host, mrq)) {
result = IRQ_WAKE_THREAD;
} else {
mrqs_done[i] = mrq;
host->mrqs_done[i] = NULL;
}
}
out:
if (host->deferred_cmd)
result = IRQ_WAKE_THREAD;
spin_unlock(&host->lock);
/* Process mrqs ready for immediate completion */
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (!mrqs_done[i])
continue;
if (host->ops->request_done)
host->ops->request_done(host, mrqs_done[i]);
else
mmc_request_done(host->mmc, mrqs_done[i]);
}
if (unexpected) {
pr_err("%s: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), unexpected);
sdhci_err_stats_inc(host, UNEXPECTED_IRQ);
sdhci_dumpregs(host);
}
return result;
}
static irqreturn_t sdhci_thread_irq(int irq, void *dev_id)
{
struct sdhci_host *host = dev_id;
struct mmc_command *cmd;
unsigned long flags;
u32 isr;
while (!sdhci_request_done(host))
;
spin_lock_irqsave(&host->lock, flags);
isr = host->thread_isr;
host->thread_isr = 0;
cmd = host->deferred_cmd;
if (cmd && !sdhci_send_command_retry(host, cmd, flags))
sdhci_finish_mrq(host, cmd->mrq);
spin_unlock_irqrestore(&host->lock, flags);
if (isr & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
struct mmc_host *mmc = host->mmc;
mmc->ops->card_event(mmc);
mmc_detect_change(mmc, msecs_to_jiffies(200));
}
return IRQ_HANDLED;
}
/*****************************************************************************\
* *
* Suspend/resume *
* *
\*****************************************************************************/
#ifdef CONFIG_PM
static bool sdhci_cd_irq_can_wakeup(struct sdhci_host *host)
{
return mmc_card_is_removable(host->mmc) &&
!(host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
!mmc_can_gpio_cd(host->mmc);
}
/*
* To enable wakeup events, the corresponding events have to be enabled in
* the Interrupt Status Enable register too. See 'Table 1-6: Wakeup Signal
* Table' in the SD Host Controller Standard Specification.
* It is useless to restore SDHCI_INT_ENABLE state in
* sdhci_disable_irq_wakeups() since it will be set by
* sdhci_enable_card_detection() or sdhci_init().
*/
static bool sdhci_enable_irq_wakeups(struct sdhci_host *host)
{
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE |
SDHCI_WAKE_ON_INT;
u32 irq_val = 0;
u8 wake_val = 0;
u8 val;
if (sdhci_cd_irq_can_wakeup(host)) {
wake_val |= SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE;
irq_val |= SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE;
}
if (mmc_card_wake_sdio_irq(host->mmc)) {
wake_val |= SDHCI_WAKE_ON_INT;
irq_val |= SDHCI_INT_CARD_INT;
}
if (!irq_val)
return false;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
val |= wake_val;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
sdhci_writel(host, irq_val, SDHCI_INT_ENABLE);
host->irq_wake_enabled = !enable_irq_wake(host->irq);
return host->irq_wake_enabled;
}
static void sdhci_disable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE
| SDHCI_WAKE_ON_INT;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
disable_irq_wake(host->irq);
host->irq_wake_enabled = false;
}
int sdhci_suspend_host(struct sdhci_host *host)
{
sdhci_disable_card_detection(host);
mmc_retune_timer_stop(host->mmc);
if (!device_may_wakeup(mmc_dev(host->mmc)) ||
!sdhci_enable_irq_wakeups(host)) {
host->ier = 0;
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
}
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_suspend_host);
int sdhci_resume_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
if ((mmc->pm_flags & MMC_PM_KEEP_POWER) &&
(host->quirks2 & SDHCI_QUIRK2_HOST_OFF_CARD_ON)) {
/* Card keeps power but host controller does not */
sdhci_init(host, 0);
host->pwr = 0;
host->clock = 0;
host->reinit_uhs = true;
mmc->ops->set_ios(mmc, &mmc->ios);
} else {
sdhci_init(host, (mmc->pm_flags & MMC_PM_KEEP_POWER));
}
if (host->irq_wake_enabled) {
sdhci_disable_irq_wakeups(host);
} else {
ret = request_threaded_irq(host->irq, sdhci_irq,
sdhci_thread_irq, IRQF_SHARED,
mmc_hostname(mmc), host);
if (ret)
return ret;
}
sdhci_enable_card_detection(host);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_resume_host);
int sdhci_runtime_suspend_host(struct sdhci_host *host)
{
unsigned long flags;
mmc_retune_timer_stop(host->mmc);
spin_lock_irqsave(&host->lock, flags);
host->ier &= SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
spin_unlock_irqrestore(&host->lock, flags);
synchronize_hardirq(host->irq);
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = true;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_suspend_host);
int sdhci_runtime_resume_host(struct sdhci_host *host, int soft_reset)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
int host_flags = host->flags;
if (host_flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
sdhci_init(host, soft_reset);
if (mmc->ios.power_mode != MMC_POWER_UNDEFINED &&
mmc->ios.power_mode != MMC_POWER_OFF) {
/* Force clock and power re-program */
host->pwr = 0;
host->clock = 0;
host->reinit_uhs = true;
mmc->ops->start_signal_voltage_switch(mmc, &mmc->ios);
mmc->ops->set_ios(mmc, &mmc->ios);
if ((host_flags & SDHCI_PV_ENABLED) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) {
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_preset_value(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
if ((mmc->caps2 & MMC_CAP2_HS400_ES) &&
mmc->ops->hs400_enhanced_strobe)
mmc->ops->hs400_enhanced_strobe(mmc, &mmc->ios);
}
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = false;
/* Enable SDIO IRQ */
if (sdio_irq_claimed(mmc))
sdhci_enable_sdio_irq_nolock(host, true);
/* Enable Card Detection */
sdhci_enable_card_detection(host);
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_resume_host);
#endif /* CONFIG_PM */
/*****************************************************************************\
* *
* Command Queue Engine (CQE) helpers *
* *
\*****************************************************************************/
void sdhci_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
u8 ctrl;
spin_lock_irqsave(&host->lock, flags);
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
/*
* Host from V4.10 supports ADMA3 DMA type.
* ADMA3 performs integrated descriptor which is more suitable
* for cmd queuing to fetch both command and transfer descriptors.
*/
if (host->v4_mode && (host->caps1 & SDHCI_CAN_DO_ADMA3))
ctrl |= SDHCI_CTRL_ADMA3;
else if (host->flags & SDHCI_USE_64_BIT_DMA)
ctrl |= SDHCI_CTRL_ADMA64;
else
ctrl |= SDHCI_CTRL_ADMA32;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, 512),
SDHCI_BLOCK_SIZE);
/* Set maximum timeout */
sdhci_set_timeout(host, NULL);
host->ier = host->cqe_ier;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
host->cqe_on = true;
pr_debug("%s: sdhci: CQE on, IRQ mask %#x, IRQ status %#x\n",
mmc_hostname(mmc), host->ier,
sdhci_readl(host, SDHCI_INT_STATUS));
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_cqe_enable);
void sdhci_cqe_disable(struct mmc_host *mmc, bool recovery)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
sdhci_set_default_irqs(host);
host->cqe_on = false;
if (recovery)
sdhci_reset_for(host, CQE_RECOVERY);
pr_debug("%s: sdhci: CQE off, IRQ mask %#x, IRQ status %#x\n",
mmc_hostname(mmc), host->ier,
sdhci_readl(host, SDHCI_INT_STATUS));
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_cqe_disable);
bool sdhci_cqe_irq(struct sdhci_host *host, u32 intmask, int *cmd_error,
int *data_error)
{
u32 mask;
if (!host->cqe_on)
return false;
if (intmask & (SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC)) {
*cmd_error = -EILSEQ;
if (!mmc_op_tuning(SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))))
sdhci_err_stats_inc(host, CMD_CRC);
} else if (intmask & SDHCI_INT_TIMEOUT) {
*cmd_error = -ETIMEDOUT;
sdhci_err_stats_inc(host, CMD_TIMEOUT);
} else
*cmd_error = 0;
if (intmask & (SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC)) {
*data_error = -EILSEQ;
if (!mmc_op_tuning(SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))))
sdhci_err_stats_inc(host, DAT_CRC);
} else if (intmask & SDHCI_INT_DATA_TIMEOUT) {
*data_error = -ETIMEDOUT;
sdhci_err_stats_inc(host, DAT_TIMEOUT);
} else if (intmask & SDHCI_INT_ADMA_ERROR) {
*data_error = -EIO;
sdhci_err_stats_inc(host, ADMA);
} else
*data_error = 0;
/* Clear selected interrupts. */
mask = intmask & host->cqe_ier;
sdhci_writel(host, mask, SDHCI_INT_STATUS);
if (intmask & SDHCI_INT_BUS_POWER)
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
intmask &= ~(host->cqe_ier | SDHCI_INT_ERROR);
if (intmask) {
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
pr_err("%s: CQE: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), intmask);
sdhci_err_stats_inc(host, UNEXPECTED_IRQ);
sdhci_dumpregs(host);
}
return true;
}
EXPORT_SYMBOL_GPL(sdhci_cqe_irq);
/*****************************************************************************\
* *
* Device allocation/registration *
* *
\*****************************************************************************/
struct sdhci_host *sdhci_alloc_host(struct device *dev,
size_t priv_size)
{
struct mmc_host *mmc;
struct sdhci_host *host;
WARN_ON(dev == NULL);
mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev);
if (!mmc)
return ERR_PTR(-ENOMEM);
host = mmc_priv(mmc);
host->mmc = mmc;
host->mmc_host_ops = sdhci_ops;
mmc->ops = &host->mmc_host_ops;
host->flags = SDHCI_SIGNALING_330;
host->cqe_ier = SDHCI_CQE_INT_MASK;
host->cqe_err_ier = SDHCI_CQE_INT_ERR_MASK;
host->tuning_delay = -1;
host->tuning_loop_count = MAX_TUNING_LOOP;
host->sdma_boundary = SDHCI_DEFAULT_BOUNDARY_ARG;
/*
* The DMA table descriptor count is calculated as the maximum
* number of segments times 2, to allow for an alignment
* descriptor for each segment, plus 1 for a nop end descriptor.
*/
host->adma_table_cnt = SDHCI_MAX_SEGS * 2 + 1;
host->max_adma = 65536;
host->max_timeout_count = 0xE;
return host;
}
EXPORT_SYMBOL_GPL(sdhci_alloc_host);
static int sdhci_set_dma_mask(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
struct device *dev = mmc_dev(mmc);
int ret = -EINVAL;
if (host->quirks2 & SDHCI_QUIRK2_BROKEN_64_BIT_DMA)
host->flags &= ~SDHCI_USE_64_BIT_DMA;
/* Try 64-bit mask if hardware is capable of it */
if (host->flags & SDHCI_USE_64_BIT_DMA) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret) {
pr_warn("%s: Failed to set 64-bit DMA mask.\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_64_BIT_DMA;
}
}
/* 32-bit mask as default & fallback */
if (ret) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
pr_warn("%s: Failed to set 32-bit DMA mask.\n",
mmc_hostname(mmc));
}
return ret;
}
void __sdhci_read_caps(struct sdhci_host *host, const u16 *ver,
const u32 *caps, const u32 *caps1)
{
u16 v;
u64 dt_caps_mask = 0;
u64 dt_caps = 0;
if (host->read_caps)
return;
host->read_caps = true;
if (debug_quirks)
host->quirks = debug_quirks;
if (debug_quirks2)
host->quirks2 = debug_quirks2;
sdhci_reset_for_all(host);
if (host->v4_mode)
sdhci_do_enable_v4_mode(host);
device_property_read_u64(mmc_dev(host->mmc),
"sdhci-caps-mask", &dt_caps_mask);
device_property_read_u64(mmc_dev(host->mmc),
"sdhci-caps", &dt_caps);
v = ver ? *ver : sdhci_readw(host, SDHCI_HOST_VERSION);
host->version = (v & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT;
if (caps) {
host->caps = *caps;
} else {
host->caps = sdhci_readl(host, SDHCI_CAPABILITIES);
host->caps &= ~lower_32_bits(dt_caps_mask);
host->caps |= lower_32_bits(dt_caps);
}
if (host->version < SDHCI_SPEC_300)
return;
if (caps1) {
host->caps1 = *caps1;
} else {
host->caps1 = sdhci_readl(host, SDHCI_CAPABILITIES_1);
host->caps1 &= ~upper_32_bits(dt_caps_mask);
host->caps1 |= upper_32_bits(dt_caps);
}
}
EXPORT_SYMBOL_GPL(__sdhci_read_caps);
static void sdhci_allocate_bounce_buffer(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
unsigned int max_blocks;
unsigned int bounce_size;
int ret;
/*
* Cap the bounce buffer at 64KB. Using a bigger bounce buffer
* has diminishing returns, this is probably because SD/MMC
* cards are usually optimized to handle this size of requests.
*/
bounce_size = SZ_64K;
/*
* Adjust downwards to maximum request size if this is less
* than our segment size, else hammer down the maximum
* request size to the maximum buffer size.
*/
if (mmc->max_req_size < bounce_size)
bounce_size = mmc->max_req_size;
max_blocks = bounce_size / 512;
/*
* When we just support one segment, we can get significant
* speedups by the help of a bounce buffer to group scattered
* reads/writes together.
*/
host->bounce_buffer = devm_kmalloc(mmc_dev(mmc),
bounce_size,
GFP_KERNEL);
if (!host->bounce_buffer) {
pr_err("%s: failed to allocate %u bytes for bounce buffer, falling back to single segments\n",
mmc_hostname(mmc),
bounce_size);
/*
* Exiting with zero here makes sure we proceed with
* mmc->max_segs == 1.
*/
return;
}
host->bounce_addr = dma_map_single(mmc_dev(mmc),
host->bounce_buffer,
bounce_size,
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(mmc_dev(mmc), host->bounce_addr);
if (ret) {
devm_kfree(mmc_dev(mmc), host->bounce_buffer);
host->bounce_buffer = NULL;
/* Again fall back to max_segs == 1 */
return;
}
host->bounce_buffer_size = bounce_size;
/* Lie about this since we're bouncing */
mmc->max_segs = max_blocks;
mmc->max_seg_size = bounce_size;
mmc->max_req_size = bounce_size;
pr_info("%s bounce up to %u segments into one, max segment size %u bytes\n",
mmc_hostname(mmc), max_blocks, bounce_size);
}
static inline bool sdhci_can_64bit_dma(struct sdhci_host *host)
{
/*
* According to SD Host Controller spec v4.10, bit[27] added from
* version 4.10 in Capabilities Register is used as 64-bit System
* Address support for V4 mode.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode)
return host->caps & SDHCI_CAN_64BIT_V4;
return host->caps & SDHCI_CAN_64BIT;
}
int sdhci_setup_host(struct sdhci_host *host)
{
struct mmc_host *mmc;
u32 max_current_caps;
unsigned int ocr_avail;
unsigned int override_timeout_clk;
u32 max_clk;
int ret = 0;
bool enable_vqmmc = false;
WARN_ON(host == NULL);
if (host == NULL)
return -EINVAL;
mmc = host->mmc;
/*
* If there are external regulators, get them. Note this must be done
* early before resetting the host and reading the capabilities so that
* the host can take the appropriate action if regulators are not
* available.
*/
if (!mmc->supply.vqmmc) {
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
enable_vqmmc = true;
}
DBG("Version: 0x%08x | Present: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_VERSION),
sdhci_readl(host, SDHCI_PRESENT_STATE));
DBG("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
sdhci_read_caps(host);
override_timeout_clk = host->timeout_clk;
if (host->version > SDHCI_SPEC_420) {
pr_err("%s: Unknown controller version (%d). You may experience problems.\n",
mmc_hostname(mmc), host->version);
}
if (host->quirks & SDHCI_QUIRK_FORCE_DMA)
host->flags |= SDHCI_USE_SDMA;
else if (!(host->caps & SDHCI_CAN_DO_SDMA))
DBG("Controller doesn't have SDMA capability\n");
else
host->flags |= SDHCI_USE_SDMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) &&
(host->flags & SDHCI_USE_SDMA)) {
DBG("Disabling DMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_SDMA;
}
if ((host->version >= SDHCI_SPEC_200) &&
(host->caps & SDHCI_CAN_DO_ADMA2))
host->flags |= SDHCI_USE_ADMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) &&
(host->flags & SDHCI_USE_ADMA)) {
DBG("Disabling ADMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_ADMA;
}
if (sdhci_can_64bit_dma(host))
host->flags |= SDHCI_USE_64_BIT_DMA;
if (host->use_external_dma) {
ret = sdhci_external_dma_init(host);
if (ret == -EPROBE_DEFER)
goto unreg;
/*
* Fall back to use the DMA/PIO integrated in standard SDHCI
* instead of external DMA devices.
*/
else if (ret)
sdhci_switch_external_dma(host, false);
/* Disable internal DMA sources */
else
host->flags &= ~(SDHCI_USE_SDMA | SDHCI_USE_ADMA);
}
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->set_dma_mask)
ret = host->ops->set_dma_mask(host);
else
ret = sdhci_set_dma_mask(host);
if (!ret && host->ops->enable_dma)
ret = host->ops->enable_dma(host);
if (ret) {
pr_warn("%s: No suitable DMA available - falling back to PIO\n",
mmc_hostname(mmc));
host->flags &= ~(SDHCI_USE_SDMA | SDHCI_USE_ADMA);
ret = 0;
}
}
/* SDMA does not support 64-bit DMA if v4 mode not set */
if ((host->flags & SDHCI_USE_64_BIT_DMA) && !host->v4_mode)
host->flags &= ~SDHCI_USE_SDMA;
if (host->flags & SDHCI_USE_ADMA) {
dma_addr_t dma;
void *buf;
if (!(host->flags & SDHCI_USE_64_BIT_DMA))
host->alloc_desc_sz = SDHCI_ADMA2_32_DESC_SZ;
else if (!host->alloc_desc_sz)
host->alloc_desc_sz = SDHCI_ADMA2_64_DESC_SZ(host);
host->desc_sz = host->alloc_desc_sz;
host->adma_table_sz = host->adma_table_cnt * host->desc_sz;
host->align_buffer_sz = SDHCI_MAX_SEGS * SDHCI_ADMA2_ALIGN;
/*
* Use zalloc to zero the reserved high 32-bits of 128-bit
* descriptors so that they never need to be written.
*/
buf = dma_alloc_coherent(mmc_dev(mmc),
host->align_buffer_sz + host->adma_table_sz,
&dma, GFP_KERNEL);
if (!buf) {
pr_warn("%s: Unable to allocate ADMA buffers - falling back to standard DMA\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
} else if ((dma + host->align_buffer_sz) &
(SDHCI_ADMA2_DESC_ALIGN - 1)) {
pr_warn("%s: unable to allocate aligned ADMA descriptor\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, buf, dma);
} else {
host->align_buffer = buf;
host->align_addr = dma;
host->adma_table = buf + host->align_buffer_sz;
host->adma_addr = dma + host->align_buffer_sz;
}
}
/*
* If we use DMA, then it's up to the caller to set the DMA
* mask, but PIO does not need the hw shim so we set a new
* mask here in that case.
*/
if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) {
host->dma_mask = DMA_BIT_MASK(64);
mmc_dev(mmc)->dma_mask = &host->dma_mask;
}
if (host->version >= SDHCI_SPEC_300)
host->max_clk = FIELD_GET(SDHCI_CLOCK_V3_BASE_MASK, host->caps);
else
host->max_clk = FIELD_GET(SDHCI_CLOCK_BASE_MASK, host->caps);
host->max_clk *= 1000000;
if (host->max_clk == 0 || host->quirks &
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) {
if (!host->ops->get_max_clock) {
pr_err("%s: Hardware doesn't specify base clock frequency.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto undma;
}
host->max_clk = host->ops->get_max_clock(host);
}
/*
* In case of Host Controller v3.00, find out whether clock
* multiplier is supported.
*/
host->clk_mul = FIELD_GET(SDHCI_CLOCK_MUL_MASK, host->caps1);
/*
* In case the value in Clock Multiplier is 0, then programmable
* clock mode is not supported, otherwise the actual clock
* multiplier is one more than the value of Clock Multiplier
* in the Capabilities Register.
*/
if (host->clk_mul)
host->clk_mul += 1;
/*
* Set host parameters.
*/
max_clk = host->max_clk;
if (host->ops->get_min_clock)
mmc->f_min = host->ops->get_min_clock(host);
else if (host->version >= SDHCI_SPEC_300) {
if (host->clk_mul)
max_clk = host->max_clk * host->clk_mul;
/*
* Divided Clock Mode minimum clock rate is always less than
* Programmable Clock Mode minimum clock rate.
*/
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300;
} else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200;
if (!mmc->f_max || mmc->f_max > max_clk)
mmc->f_max = max_clk;
if (!(host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) {
host->timeout_clk = FIELD_GET(SDHCI_TIMEOUT_CLK_MASK, host->caps);
if (host->caps & SDHCI_TIMEOUT_CLK_UNIT)
host->timeout_clk *= 1000;
if (host->timeout_clk == 0) {
if (!host->ops->get_timeout_clock) {
pr_err("%s: Hardware doesn't specify timeout clock frequency.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto undma;
}
host->timeout_clk =
DIV_ROUND_UP(host->ops->get_timeout_clock(host),
1000);
}
if (override_timeout_clk)
host->timeout_clk = override_timeout_clk;
mmc->max_busy_timeout = host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) : 1 << 27;
mmc->max_busy_timeout /= host->timeout_clk;
}
if (host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT &&
!host->ops->get_max_timeout_count)
mmc->max_busy_timeout = 0;
mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_CMD23;
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12)
host->flags |= SDHCI_AUTO_CMD12;
/*
* For v3 mode, Auto-CMD23 stuff only works in ADMA or PIO.
* For v4 mode, SDMA may use Auto-CMD23 as well.
*/
if ((host->version >= SDHCI_SPEC_300) &&
((host->flags & SDHCI_USE_ADMA) ||
!(host->flags & SDHCI_USE_SDMA) || host->v4_mode) &&
!(host->quirks2 & SDHCI_QUIRK2_ACMD23_BROKEN)) {
host->flags |= SDHCI_AUTO_CMD23;
DBG("Auto-CMD23 available\n");
} else {
DBG("Auto-CMD23 unavailable\n");
}
/*
* A controller may support 8-bit width, but the board itself
* might not have the pins brought out. Boards that support
* 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in
* their platform code before calling sdhci_add_host(), and we
* won't assume 8-bit width for hosts without that CAP.
*/
if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23)
mmc->caps &= ~MMC_CAP_CMD23;
if (host->caps & SDHCI_CAN_DO_HISPD)
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
mmc_card_is_removable(mmc) &&
mmc_gpio_get_cd(mmc) < 0)
mmc->caps |= MMC_CAP_NEEDS_POLL;
if (!IS_ERR(mmc->supply.vqmmc)) {
if (enable_vqmmc) {
ret = regulator_enable(mmc->supply.vqmmc);
host->sdhci_core_to_disable_vqmmc = !ret;
}
/* If vqmmc provides no 1.8V signalling, then there's no UHS */
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 1700000,
1950000))
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 |
SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
/* In eMMC case vqmmc might be a fixed 1.8V regulator */
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 2700000,
3600000))
host->flags &= ~SDHCI_SIGNALING_330;
if (ret) {
pr_warn("%s: Failed to enable vqmmc regulator: %d\n",
mmc_hostname(mmc), ret);
mmc->supply.vqmmc = ERR_PTR(-EINVAL);
}
}
if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V) {
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
/*
* The SDHCI controller in a SoC might support HS200/HS400
* (indicated using mmc-hs200-1_8v/mmc-hs400-1_8v dt property),
* but if the board is modeled such that the IO lines are not
* connected to 1.8v then HS200/HS400 cannot be supported.
* Disable HS200/HS400 if the board does not have 1.8v connected
* to the IO lines. (Applicable for other modes in 1.8v)
*/
mmc->caps2 &= ~(MMC_CAP2_HSX00_1_8V | MMC_CAP2_HS400_ES);
mmc->caps &= ~(MMC_CAP_1_8V_DDR | MMC_CAP_UHS);
}
/* Any UHS-I mode in caps implies SDR12 and SDR25 support. */
if (host->caps1 & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50))
mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
/* SDR104 supports also implies SDR50 support */
if (host->caps1 & SDHCI_SUPPORT_SDR104) {
mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
/* SD3.0: SDR104 is supported so (for eMMC) the caps2
* field can be promoted to support HS200.
*/
if (!(host->quirks2 & SDHCI_QUIRK2_BROKEN_HS200))
mmc->caps2 |= MMC_CAP2_HS200;
} else if (host->caps1 & SDHCI_SUPPORT_SDR50) {
mmc->caps |= MMC_CAP_UHS_SDR50;
}
if (host->quirks2 & SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 &&
(host->caps1 & SDHCI_SUPPORT_HS400))
mmc->caps2 |= MMC_CAP2_HS400;
if ((mmc->caps2 & MMC_CAP2_HSX00_1_2V) &&
(IS_ERR(mmc->supply.vqmmc) ||
!regulator_is_supported_voltage(mmc->supply.vqmmc, 1100000,
1300000)))
mmc->caps2 &= ~MMC_CAP2_HSX00_1_2V;
if ((host->caps1 & SDHCI_SUPPORT_DDR50) &&
!(host->quirks2 & SDHCI_QUIRK2_BROKEN_DDR50))
mmc->caps |= MMC_CAP_UHS_DDR50;
/* Does the host need tuning for SDR50? */
if (host->caps1 & SDHCI_USE_SDR50_TUNING)
host->flags |= SDHCI_SDR50_NEEDS_TUNING;
/* Driver Type(s) (A, C, D) supported by the host */
if (host->caps1 & SDHCI_DRIVER_TYPE_A)
mmc->caps |= MMC_CAP_DRIVER_TYPE_A;
if (host->caps1 & SDHCI_DRIVER_TYPE_C)
mmc->caps |= MMC_CAP_DRIVER_TYPE_C;
if (host->caps1 & SDHCI_DRIVER_TYPE_D)
mmc->caps |= MMC_CAP_DRIVER_TYPE_D;
/* Initial value for re-tuning timer count */
host->tuning_count = FIELD_GET(SDHCI_RETUNING_TIMER_COUNT_MASK,
host->caps1);
/*
* In case Re-tuning Timer is not disabled, the actual value of
* re-tuning timer will be 2 ^ (n - 1).
*/
if (host->tuning_count)
host->tuning_count = 1 << (host->tuning_count - 1);
/* Re-tuning mode supported by the Host Controller */
host->tuning_mode = FIELD_GET(SDHCI_RETUNING_MODE_MASK, host->caps1);
ocr_avail = 0;
/*
* According to SD Host Controller spec v3.00, if the Host System
* can afford more than 150mA, Host Driver should set XPC to 1. Also
* the value is meaningful only if Voltage Support in the Capabilities
* register is set. The actual current value is 4 times the register
* value.
*/
max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT);
if (!max_current_caps && !IS_ERR(mmc->supply.vmmc)) {
int curr = regulator_get_current_limit(mmc->supply.vmmc);
if (curr > 0) {
/* convert to SDHCI_MAX_CURRENT format */
curr = curr/1000; /* convert to mA */
curr = curr/SDHCI_MAX_CURRENT_MULTIPLIER;
curr = min_t(u32, curr, SDHCI_MAX_CURRENT_LIMIT);
max_current_caps =
FIELD_PREP(SDHCI_MAX_CURRENT_330_MASK, curr) |
FIELD_PREP(SDHCI_MAX_CURRENT_300_MASK, curr) |
FIELD_PREP(SDHCI_MAX_CURRENT_180_MASK, curr);
}
}
if (host->caps & SDHCI_CAN_VDD_330) {
ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_current_330 = FIELD_GET(SDHCI_MAX_CURRENT_330_MASK,
max_current_caps) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->caps & SDHCI_CAN_VDD_300) {
ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31;
mmc->max_current_300 = FIELD_GET(SDHCI_MAX_CURRENT_300_MASK,
max_current_caps) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->caps & SDHCI_CAN_VDD_180) {
ocr_avail |= MMC_VDD_165_195;
mmc->max_current_180 = FIELD_GET(SDHCI_MAX_CURRENT_180_MASK,
max_current_caps) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
/* If OCR set by host, use it instead. */
if (host->ocr_mask)
ocr_avail = host->ocr_mask;
/* If OCR set by external regulators, give it highest prio. */
if (mmc->ocr_avail)
ocr_avail = mmc->ocr_avail;
mmc->ocr_avail = ocr_avail;
mmc->ocr_avail_sdio = ocr_avail;
if (host->ocr_avail_sdio)
mmc->ocr_avail_sdio &= host->ocr_avail_sdio;
mmc->ocr_avail_sd = ocr_avail;
if (host->ocr_avail_sd)
mmc->ocr_avail_sd &= host->ocr_avail_sd;
else /* normal SD controllers don't support 1.8V */
mmc->ocr_avail_sd &= ~MMC_VDD_165_195;
mmc->ocr_avail_mmc = ocr_avail;
if (host->ocr_avail_mmc)
mmc->ocr_avail_mmc &= host->ocr_avail_mmc;
if (mmc->ocr_avail == 0) {
pr_err("%s: Hardware doesn't report any support voltages.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto unreg;
}
if ((mmc->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_DDR50 | MMC_CAP_1_8V_DDR)) ||
(mmc->caps2 & (MMC_CAP2_HS200_1_8V_SDR | MMC_CAP2_HS400_1_8V)))
host->flags |= SDHCI_SIGNALING_180;
if (mmc->caps2 & MMC_CAP2_HSX00_1_2V)
host->flags |= SDHCI_SIGNALING_120;
spin_lock_init(&host->lock);
/*
* Maximum number of sectors in one transfer. Limited by SDMA boundary
* size (512KiB). Note some tuning modes impose a 4MiB limit, but this
* is less anyway.
*/
mmc->max_req_size = 524288;
/*
* Maximum number of segments. Depends on if the hardware
* can do scatter/gather or not.
*/
if (host->flags & SDHCI_USE_ADMA) {
mmc->max_segs = SDHCI_MAX_SEGS;
} else if (host->flags & SDHCI_USE_SDMA) {
mmc->max_segs = 1;
mmc->max_req_size = min_t(size_t, mmc->max_req_size,
dma_max_mapping_size(mmc_dev(mmc)));
} else { /* PIO */
mmc->max_segs = SDHCI_MAX_SEGS;
}
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes. When doing hardware scatter/gather, each entry cannot
* be larger than 64 KiB though.
*/
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC) {
host->max_adma = 65532; /* 32-bit alignment */
mmc->max_seg_size = 65535;
} else {
mmc->max_seg_size = 65536;
}
} else {
mmc->max_seg_size = mmc->max_req_size;
}
/*
* Maximum block size. This varies from controller to controller and
* is specified in the capabilities register.
*/
if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) {
mmc->max_blk_size = 2;
} else {
mmc->max_blk_size = (host->caps & SDHCI_MAX_BLOCK_MASK) >>
SDHCI_MAX_BLOCK_SHIFT;
if (mmc->max_blk_size >= 3) {
pr_warn("%s: Invalid maximum block size, assuming 512 bytes\n",
mmc_hostname(mmc));
mmc->max_blk_size = 0;
}
}
mmc->max_blk_size = 512 << mmc->max_blk_size;
/*
* Maximum block count.
*/
mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535;
if (mmc->max_segs == 1)
/* This may alter mmc->*_blk_* parameters */
sdhci_allocate_bounce_buffer(host);
return 0;
unreg:
if (host->sdhci_core_to_disable_vqmmc)
regulator_disable(mmc->supply.vqmmc);
undma:
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
host->adma_table = NULL;
host->align_buffer = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_setup_host);
void sdhci_cleanup_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
if (host->sdhci_core_to_disable_vqmmc)
regulator_disable(mmc->supply.vqmmc);
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
if (host->use_external_dma)
sdhci_external_dma_release(host);
host->adma_table = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_cleanup_host);
int __sdhci_add_host(struct sdhci_host *host)
{
unsigned int flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI;
struct mmc_host *mmc = host->mmc;
int ret;
if ((mmc->caps2 & MMC_CAP2_CQE) &&
(host->quirks & SDHCI_QUIRK_BROKEN_CQE)) {
mmc->caps2 &= ~MMC_CAP2_CQE;
mmc->cqe_ops = NULL;
}
host->complete_wq = alloc_workqueue("sdhci", flags, 0);
if (!host->complete_wq)
return -ENOMEM;
INIT_WORK(&host->complete_work, sdhci_complete_work);
timer_setup(&host->timer, sdhci_timeout_timer, 0);
timer_setup(&host->data_timer, sdhci_timeout_data_timer, 0);
init_waitqueue_head(&host->buf_ready_int);
sdhci_init(host, 0);
ret = request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq,
IRQF_SHARED, mmc_hostname(mmc), host);
if (ret) {
pr_err("%s: Failed to request IRQ %d: %d\n",
mmc_hostname(mmc), host->irq, ret);
goto unwq;
}
ret = sdhci_led_register(host);
if (ret) {
pr_err("%s: Failed to register LED device: %d\n",
mmc_hostname(mmc), ret);
goto unirq;
}
ret = mmc_add_host(mmc);
if (ret)
goto unled;
pr_info("%s: SDHCI controller on %s [%s] using %s\n",
mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)),
host->use_external_dma ? "External DMA" :
(host->flags & SDHCI_USE_ADMA) ?
(host->flags & SDHCI_USE_64_BIT_DMA) ? "ADMA 64-bit" : "ADMA" :
(host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO");
sdhci_enable_card_detection(host);
return 0;
unled:
sdhci_led_unregister(host);
unirq:
sdhci_reset_for_all(host);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
unwq:
destroy_workqueue(host->complete_wq);
return ret;
}
EXPORT_SYMBOL_GPL(__sdhci_add_host);
int sdhci_add_host(struct sdhci_host *host)
{
int ret;
ret = sdhci_setup_host(host);
if (ret)
return ret;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_add_host);
void sdhci_remove_host(struct sdhci_host *host, int dead)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
if (dead) {
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_DEVICE_DEAD;
if (sdhci_has_requests(host)) {
pr_err("%s: Controller removed during "
" transfer!\n", mmc_hostname(mmc));
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
spin_unlock_irqrestore(&host->lock, flags);
}
sdhci_disable_card_detection(host);
mmc_remove_host(mmc);
sdhci_led_unregister(host);
if (!dead)
sdhci_reset_for_all(host);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
del_timer_sync(&host->timer);
del_timer_sync(&host->data_timer);
destroy_workqueue(host->complete_wq);
if (host->sdhci_core_to_disable_vqmmc)
regulator_disable(mmc->supply.vqmmc);
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
if (host->use_external_dma)
sdhci_external_dma_release(host);
host->adma_table = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_remove_host);
void sdhci_free_host(struct sdhci_host *host)
{
mmc_free_host(host->mmc);
}
EXPORT_SYMBOL_GPL(sdhci_free_host);
/*****************************************************************************\
* *
* Driver init/exit *
* *
\*****************************************************************************/
static int __init sdhci_drv_init(void)
{
pr_info(DRIVER_NAME
": Secure Digital Host Controller Interface driver\n");
pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n");
return 0;
}
static void __exit sdhci_drv_exit(void)
{
}
module_init(sdhci_drv_init);
module_exit(sdhci_drv_exit);
module_param(debug_quirks, uint, 0444);
module_param(debug_quirks2, uint, 0444);
MODULE_AUTHOR("Pierre Ossman <[email protected]>");
MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver");
MODULE_LICENSE("GPL");
MODULE_PARM_DESC(debug_quirks, "Force certain quirks.");
MODULE_PARM_DESC(debug_quirks2, "Force certain other quirks.");
| linux-master | drivers/mmc/host/sdhci.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2010 Marvell International Ltd.
* Zhangfei Gao <[email protected]>
* Kevin Wang <[email protected]>
* Mingwei Wang <[email protected]>
* Philip Rakity <[email protected]>
* Mark Brown <[email protected]>
*/
#include <linux/err.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/platform_data/pxa_sdhci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/mbus.h>
#include "sdhci.h"
#include "sdhci-pltfm.h"
#define PXAV3_RPM_DELAY_MS 50
#define SD_CLOCK_BURST_SIZE_SETUP 0x10A
#define SDCLK_SEL 0x100
#define SDCLK_DELAY_SHIFT 9
#define SDCLK_DELAY_MASK 0x1f
#define SD_CFG_FIFO_PARAM 0x100
#define SDCFG_GEN_PAD_CLK_ON (1<<6)
#define SDCFG_GEN_PAD_CLK_CNT_MASK 0xFF
#define SDCFG_GEN_PAD_CLK_CNT_SHIFT 24
#define SD_SPI_MODE 0x108
#define SD_CE_ATA_1 0x10C
#define SD_CE_ATA_2 0x10E
#define SDCE_MISC_INT (1<<2)
#define SDCE_MISC_INT_EN (1<<1)
struct sdhci_pxa {
struct clk *clk_core;
struct clk *clk_io;
u8 power_mode;
void __iomem *sdio3_conf_reg;
};
/*
* These registers are relative to the second register region, for the
* MBus bridge.
*/
#define SDHCI_WINDOW_CTRL(i) (0x80 + ((i) << 3))
#define SDHCI_WINDOW_BASE(i) (0x84 + ((i) << 3))
#define SDHCI_MAX_WIN_NUM 8
/*
* Fields below belong to SDIO3 Configuration Register (third register
* region for the Armada 38x flavor)
*/
#define SDIO3_CONF_CLK_INV BIT(0)
#define SDIO3_CONF_SD_FB_CLK BIT(2)
static int mv_conf_mbus_windows(struct platform_device *pdev,
const struct mbus_dram_target_info *dram)
{
int i;
void __iomem *regs;
struct resource *res;
if (!dram) {
dev_err(&pdev->dev, "no mbus dram info\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res) {
dev_err(&pdev->dev, "cannot get mbus registers\n");
return -EINVAL;
}
regs = ioremap(res->start, resource_size(res));
if (!regs) {
dev_err(&pdev->dev, "cannot map mbus registers\n");
return -ENOMEM;
}
for (i = 0; i < SDHCI_MAX_WIN_NUM; i++) {
writel(0, regs + SDHCI_WINDOW_CTRL(i));
writel(0, regs + SDHCI_WINDOW_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
/* Write size, attributes and target id to control register */
writel(((cs->size - 1) & 0xffff0000) |
(cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
regs + SDHCI_WINDOW_CTRL(i));
/* Write base address to base register */
writel(cs->base, regs + SDHCI_WINDOW_BASE(i));
}
iounmap(regs);
return 0;
}
static int armada_38x_quirks(struct platform_device *pdev,
struct sdhci_host *host)
{
struct device_node *np = pdev->dev.of_node;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_pxa *pxa = sdhci_pltfm_priv(pltfm_host);
struct resource *res;
host->quirks &= ~SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN;
sdhci_read_caps(host);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"conf-sdio3");
if (res) {
pxa->sdio3_conf_reg = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pxa->sdio3_conf_reg))
return PTR_ERR(pxa->sdio3_conf_reg);
} else {
/*
* According to erratum 'FE-2946959' both SDR50 and DDR50
* modes require specific clock adjustments in SDIO3
* Configuration register, if the adjustment is not done,
* remove them from the capabilities.
*/
host->caps1 &= ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50);
dev_warn(&pdev->dev, "conf-sdio3 register not found: disabling SDR50 and DDR50 modes.\nConsider updating your dtb\n");
}
/*
* According to erratum 'ERR-7878951' Armada 38x SDHCI
* controller has different capabilities than the ones shown
* in its registers
*/
if (of_property_read_bool(np, "no-1-8-v")) {
host->caps &= ~SDHCI_CAN_VDD_180;
host->mmc->caps &= ~MMC_CAP_1_8V_DDR;
} else {
host->caps &= ~SDHCI_CAN_VDD_330;
}
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_USE_SDR50_TUNING);
return 0;
}
static void pxav3_reset(struct sdhci_host *host, u8 mask)
{
struct platform_device *pdev = to_platform_device(mmc_dev(host->mmc));
struct sdhci_pxa_platdata *pdata = pdev->dev.platform_data;
sdhci_reset(host, mask);
if (mask == SDHCI_RESET_ALL) {
/*
* tune timing of read data/command when crc error happen
* no performance impact
*/
if (pdata && 0 != pdata->clk_delay_cycles) {
u16 tmp;
tmp = readw(host->ioaddr + SD_CLOCK_BURST_SIZE_SETUP);
tmp |= (pdata->clk_delay_cycles & SDCLK_DELAY_MASK)
<< SDCLK_DELAY_SHIFT;
tmp |= SDCLK_SEL;
writew(tmp, host->ioaddr + SD_CLOCK_BURST_SIZE_SETUP);
}
}
}
#define MAX_WAIT_COUNT 5
static void pxav3_gen_init_74_clocks(struct sdhci_host *host, u8 power_mode)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_pxa *pxa = sdhci_pltfm_priv(pltfm_host);
u16 tmp;
int count;
if (pxa->power_mode == MMC_POWER_UP
&& power_mode == MMC_POWER_ON) {
dev_dbg(mmc_dev(host->mmc),
"%s: slot->power_mode = %d,"
"ios->power_mode = %d\n",
__func__,
pxa->power_mode,
power_mode);
/* set we want notice of when 74 clocks are sent */
tmp = readw(host->ioaddr + SD_CE_ATA_2);
tmp |= SDCE_MISC_INT_EN;
writew(tmp, host->ioaddr + SD_CE_ATA_2);
/* start sending the 74 clocks */
tmp = readw(host->ioaddr + SD_CFG_FIFO_PARAM);
tmp |= SDCFG_GEN_PAD_CLK_ON;
writew(tmp, host->ioaddr + SD_CFG_FIFO_PARAM);
/* slowest speed is about 100KHz or 10usec per clock */
udelay(740);
count = 0;
while (count++ < MAX_WAIT_COUNT) {
if ((readw(host->ioaddr + SD_CE_ATA_2)
& SDCE_MISC_INT) == 0)
break;
udelay(10);
}
if (count == MAX_WAIT_COUNT)
dev_warn(mmc_dev(host->mmc), "74 clock interrupt not cleared\n");
/* clear the interrupt bit if posted */
tmp = readw(host->ioaddr + SD_CE_ATA_2);
tmp |= SDCE_MISC_INT;
writew(tmp, host->ioaddr + SD_CE_ATA_2);
}
pxa->power_mode = power_mode;
}
static void pxav3_set_uhs_signaling(struct sdhci_host *host, unsigned int uhs)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_pxa *pxa = sdhci_pltfm_priv(pltfm_host);
u16 ctrl_2;
/*
* Set V18_EN -- UHS modes do not work without this.
* does not change signaling voltage
*/
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
switch (uhs) {
case MMC_TIMING_UHS_SDR12:
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
break;
case MMC_TIMING_UHS_SDR25:
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
break;
case MMC_TIMING_UHS_SDR50:
ctrl_2 |= SDHCI_CTRL_UHS_SDR50 | SDHCI_CTRL_VDD_180;
break;
case MMC_TIMING_UHS_SDR104:
ctrl_2 |= SDHCI_CTRL_UHS_SDR104 | SDHCI_CTRL_VDD_180;
break;
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
ctrl_2 |= SDHCI_CTRL_UHS_DDR50 | SDHCI_CTRL_VDD_180;
break;
}
/*
* Update SDIO3 Configuration register according to erratum
* FE-2946959
*/
if (pxa->sdio3_conf_reg) {
u8 reg_val = readb(pxa->sdio3_conf_reg);
if (uhs == MMC_TIMING_UHS_SDR50 ||
uhs == MMC_TIMING_UHS_DDR50) {
reg_val &= ~SDIO3_CONF_CLK_INV;
reg_val |= SDIO3_CONF_SD_FB_CLK;
} else if (uhs == MMC_TIMING_MMC_HS) {
reg_val &= ~SDIO3_CONF_CLK_INV;
reg_val &= ~SDIO3_CONF_SD_FB_CLK;
} else {
reg_val |= SDIO3_CONF_CLK_INV;
reg_val &= ~SDIO3_CONF_SD_FB_CLK;
}
writeb(reg_val, pxa->sdio3_conf_reg);
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
dev_dbg(mmc_dev(host->mmc),
"%s uhs = %d, ctrl_2 = %04X\n",
__func__, uhs, ctrl_2);
}
static void pxav3_set_power(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
u8 pwr = host->pwr;
sdhci_set_power_noreg(host, mode, vdd);
if (host->pwr == pwr)
return;
if (host->pwr == 0)
vdd = 0;
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
}
static const struct sdhci_ops pxav3_sdhci_ops = {
.set_clock = sdhci_set_clock,
.set_power = pxav3_set_power,
.platform_send_init_74_clocks = pxav3_gen_init_74_clocks,
.get_max_clock = sdhci_pltfm_clk_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = pxav3_reset,
.set_uhs_signaling = pxav3_set_uhs_signaling,
};
static const struct sdhci_pltfm_data sdhci_pxav3_pdata = {
.quirks = SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK
| SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC
| SDHCI_QUIRK_32BIT_ADMA_SIZE
| SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.ops = &pxav3_sdhci_ops,
};
#ifdef CONFIG_OF
static const struct of_device_id sdhci_pxav3_of_match[] = {
{
.compatible = "mrvl,pxav3-mmc",
},
{
.compatible = "marvell,armada-380-sdhci",
},
{},
};
MODULE_DEVICE_TABLE(of, sdhci_pxav3_of_match);
static struct sdhci_pxa_platdata *pxav3_get_mmc_pdata(struct device *dev)
{
struct sdhci_pxa_platdata *pdata;
struct device_node *np = dev->of_node;
u32 clk_delay_cycles;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
if (!of_property_read_u32(np, "mrvl,clk-delay-cycles",
&clk_delay_cycles))
pdata->clk_delay_cycles = clk_delay_cycles;
return pdata;
}
#else
static inline struct sdhci_pxa_platdata *pxav3_get_mmc_pdata(struct device *dev)
{
return NULL;
}
#endif
static int sdhci_pxav3_probe(struct platform_device *pdev)
{
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_pxa_platdata *pdata = pdev->dev.platform_data;
struct device *dev = &pdev->dev;
struct device_node *np = pdev->dev.of_node;
struct sdhci_host *host = NULL;
struct sdhci_pxa *pxa = NULL;
const struct of_device_id *match;
int ret;
host = sdhci_pltfm_init(pdev, &sdhci_pxav3_pdata, sizeof(*pxa));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
pxa = sdhci_pltfm_priv(pltfm_host);
pxa->clk_io = devm_clk_get(dev, "io");
if (IS_ERR(pxa->clk_io))
pxa->clk_io = devm_clk_get(dev, NULL);
if (IS_ERR(pxa->clk_io)) {
dev_err(dev, "failed to get io clock\n");
ret = PTR_ERR(pxa->clk_io);
goto err_clk_get;
}
pltfm_host->clk = pxa->clk_io;
clk_prepare_enable(pxa->clk_io);
pxa->clk_core = devm_clk_get(dev, "core");
if (!IS_ERR(pxa->clk_core))
clk_prepare_enable(pxa->clk_core);
/* enable 1/8V DDR capable */
host->mmc->caps |= MMC_CAP_1_8V_DDR;
if (of_device_is_compatible(np, "marvell,armada-380-sdhci")) {
ret = armada_38x_quirks(pdev, host);
if (ret < 0)
goto err_mbus_win;
ret = mv_conf_mbus_windows(pdev, mv_mbus_dram_info());
if (ret < 0)
goto err_mbus_win;
}
match = of_match_device(of_match_ptr(sdhci_pxav3_of_match), &pdev->dev);
if (match) {
ret = mmc_of_parse(host->mmc);
if (ret)
goto err_of_parse;
sdhci_get_of_property(pdev);
pdata = pxav3_get_mmc_pdata(dev);
pdev->dev.platform_data = pdata;
} else if (pdata) {
/* on-chip device */
if (pdata->flags & PXA_FLAG_CARD_PERMANENT)
host->mmc->caps |= MMC_CAP_NONREMOVABLE;
/* If slot design supports 8 bit data, indicate this to MMC. */
if (pdata->flags & PXA_FLAG_SD_8_BIT_CAPABLE_SLOT)
host->mmc->caps |= MMC_CAP_8_BIT_DATA;
if (pdata->quirks)
host->quirks |= pdata->quirks;
if (pdata->quirks2)
host->quirks2 |= pdata->quirks2;
if (pdata->host_caps)
host->mmc->caps |= pdata->host_caps;
if (pdata->host_caps2)
host->mmc->caps2 |= pdata->host_caps2;
if (pdata->pm_caps)
host->mmc->pm_caps |= pdata->pm_caps;
}
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, PXAV3_RPM_DELAY_MS);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_suspend_ignore_children(&pdev->dev, 1);
ret = sdhci_add_host(host);
if (ret)
goto err_add_host;
if (host->mmc->pm_caps & MMC_PM_WAKE_SDIO_IRQ)
device_init_wakeup(&pdev->dev, 1);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
err_add_host:
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
err_of_parse:
err_mbus_win:
clk_disable_unprepare(pxa->clk_io);
clk_disable_unprepare(pxa->clk_core);
err_clk_get:
sdhci_pltfm_free(pdev);
return ret;
}
static void sdhci_pxav3_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_pxa *pxa = sdhci_pltfm_priv(pltfm_host);
pm_runtime_get_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
sdhci_remove_host(host, 1);
clk_disable_unprepare(pxa->clk_io);
clk_disable_unprepare(pxa->clk_core);
sdhci_pltfm_free(pdev);
}
#ifdef CONFIG_PM_SLEEP
static int sdhci_pxav3_suspend(struct device *dev)
{
int ret;
struct sdhci_host *host = dev_get_drvdata(dev);
pm_runtime_get_sync(dev);
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
ret = sdhci_suspend_host(host);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static int sdhci_pxav3_resume(struct device *dev)
{
int ret;
struct sdhci_host *host = dev_get_drvdata(dev);
pm_runtime_get_sync(dev);
ret = sdhci_resume_host(host);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
#endif
#ifdef CONFIG_PM
static int sdhci_pxav3_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_pxa *pxa = sdhci_pltfm_priv(pltfm_host);
int ret;
ret = sdhci_runtime_suspend_host(host);
if (ret)
return ret;
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
clk_disable_unprepare(pxa->clk_io);
if (!IS_ERR(pxa->clk_core))
clk_disable_unprepare(pxa->clk_core);
return 0;
}
static int sdhci_pxav3_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_pxa *pxa = sdhci_pltfm_priv(pltfm_host);
clk_prepare_enable(pxa->clk_io);
if (!IS_ERR(pxa->clk_core))
clk_prepare_enable(pxa->clk_core);
return sdhci_runtime_resume_host(host, 0);
}
#endif
static const struct dev_pm_ops sdhci_pxav3_pmops = {
SET_SYSTEM_SLEEP_PM_OPS(sdhci_pxav3_suspend, sdhci_pxav3_resume)
SET_RUNTIME_PM_OPS(sdhci_pxav3_runtime_suspend,
sdhci_pxav3_runtime_resume, NULL)
};
static struct platform_driver sdhci_pxav3_driver = {
.driver = {
.name = "sdhci-pxav3",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = of_match_ptr(sdhci_pxav3_of_match),
.pm = &sdhci_pxav3_pmops,
},
.probe = sdhci_pxav3_probe,
.remove_new = sdhci_pxav3_remove,
};
module_platform_driver(sdhci_pxav3_driver);
MODULE_DESCRIPTION("SDHCI driver for pxav3");
MODULE_AUTHOR("Marvell International Ltd.");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-pxav3.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Synopsys DesignWare Multimedia Card Interface driver
*
* Copyright (C) 2009 NXP Semiconductors
* Copyright (C) 2009, 2010 Imagination Technologies Ltd.
*/
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/of.h>
#include <linux/mfd/altera-sysmgr.h>
#include <linux/regmap.h>
#include "dw_mmc.h"
#include "dw_mmc-pltfm.h"
#define SOCFPGA_DW_MMC_CLK_PHASE_STEP 45
#define SYSMGR_SDMMC_CTRL_SET(smplsel, drvsel, reg_shift) \
((((smplsel) & 0x7) << reg_shift) | (((drvsel) & 0x7) << 0))
int dw_mci_pltfm_register(struct platform_device *pdev,
const struct dw_mci_drv_data *drv_data)
{
struct dw_mci *host;
struct resource *regs;
host = devm_kzalloc(&pdev->dev, sizeof(struct dw_mci), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0)
return host->irq;
host->drv_data = drv_data;
host->dev = &pdev->dev;
host->irq_flags = 0;
host->pdata = pdev->dev.platform_data;
host->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
if (IS_ERR(host->regs))
return PTR_ERR(host->regs);
/* Get registers' physical base address */
host->phy_regs = regs->start;
platform_set_drvdata(pdev, host);
return dw_mci_probe(host);
}
EXPORT_SYMBOL_GPL(dw_mci_pltfm_register);
const struct dev_pm_ops dw_mci_pltfm_pmops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(dw_mci_runtime_suspend,
dw_mci_runtime_resume,
NULL)
};
EXPORT_SYMBOL_GPL(dw_mci_pltfm_pmops);
static int dw_mci_socfpga_priv_init(struct dw_mci *host)
{
struct device_node *np = host->dev->of_node;
struct regmap *sys_mgr_base_addr;
u32 clk_phase[2] = {0}, reg_offset, reg_shift;
int i, rc, hs_timing;
rc = of_property_read_variable_u32_array(np, "clk-phase-sd-hs", &clk_phase[0], 2, 0);
if (rc < 0)
return 0;
sys_mgr_base_addr = altr_sysmgr_regmap_lookup_by_phandle(np, "altr,sysmgr-syscon");
if (IS_ERR(sys_mgr_base_addr)) {
dev_warn(host->dev, "clk-phase-sd-hs was specified, but failed to find altr,sys-mgr regmap!\n");
return 0;
}
of_property_read_u32_index(np, "altr,sysmgr-syscon", 1, ®_offset);
of_property_read_u32_index(np, "altr,sysmgr-syscon", 2, ®_shift);
for (i = 0; i < ARRAY_SIZE(clk_phase); i++)
clk_phase[i] /= SOCFPGA_DW_MMC_CLK_PHASE_STEP;
hs_timing = SYSMGR_SDMMC_CTRL_SET(clk_phase[0], clk_phase[1], reg_shift);
regmap_write(sys_mgr_base_addr, reg_offset, hs_timing);
return 0;
}
static const struct dw_mci_drv_data socfpga_drv_data = {
.init = dw_mci_socfpga_priv_init,
};
static const struct of_device_id dw_mci_pltfm_match[] = {
{ .compatible = "snps,dw-mshc", },
{ .compatible = "altr,socfpga-dw-mshc", .data = &socfpga_drv_data, },
{ .compatible = "img,pistachio-dw-mshc", },
{},
};
MODULE_DEVICE_TABLE(of, dw_mci_pltfm_match);
static int dw_mci_pltfm_probe(struct platform_device *pdev)
{
const struct dw_mci_drv_data *drv_data = NULL;
const struct of_device_id *match;
if (pdev->dev.of_node) {
match = of_match_node(dw_mci_pltfm_match, pdev->dev.of_node);
drv_data = match->data;
}
return dw_mci_pltfm_register(pdev, drv_data);
}
void dw_mci_pltfm_remove(struct platform_device *pdev)
{
struct dw_mci *host = platform_get_drvdata(pdev);
dw_mci_remove(host);
}
EXPORT_SYMBOL_GPL(dw_mci_pltfm_remove);
static struct platform_driver dw_mci_pltfm_driver = {
.probe = dw_mci_pltfm_probe,
.remove_new = dw_mci_pltfm_remove,
.driver = {
.name = "dw_mmc",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = dw_mci_pltfm_match,
.pm = &dw_mci_pltfm_pmops,
},
};
module_platform_driver(dw_mci_pltfm_driver);
MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
MODULE_AUTHOR("NXP Semiconductor VietNam");
MODULE_AUTHOR("Imagination Technologies Ltd");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/dw_mmc-pltfm.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
* Author: Guennadi Liakhovetski <[email protected]>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/log2.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/virtio.h>
#include <linux/workqueue.h>
#define USDHI6_SD_CMD 0x0000
#define USDHI6_SD_PORT_SEL 0x0004
#define USDHI6_SD_ARG 0x0008
#define USDHI6_SD_STOP 0x0010
#define USDHI6_SD_SECCNT 0x0014
#define USDHI6_SD_RSP10 0x0018
#define USDHI6_SD_RSP32 0x0020
#define USDHI6_SD_RSP54 0x0028
#define USDHI6_SD_RSP76 0x0030
#define USDHI6_SD_INFO1 0x0038
#define USDHI6_SD_INFO2 0x003c
#define USDHI6_SD_INFO1_MASK 0x0040
#define USDHI6_SD_INFO2_MASK 0x0044
#define USDHI6_SD_CLK_CTRL 0x0048
#define USDHI6_SD_SIZE 0x004c
#define USDHI6_SD_OPTION 0x0050
#define USDHI6_SD_ERR_STS1 0x0058
#define USDHI6_SD_ERR_STS2 0x005c
#define USDHI6_SD_BUF0 0x0060
#define USDHI6_SDIO_MODE 0x0068
#define USDHI6_SDIO_INFO1 0x006c
#define USDHI6_SDIO_INFO1_MASK 0x0070
#define USDHI6_CC_EXT_MODE 0x01b0
#define USDHI6_SOFT_RST 0x01c0
#define USDHI6_VERSION 0x01c4
#define USDHI6_HOST_MODE 0x01c8
#define USDHI6_SDIF_MODE 0x01cc
#define USDHI6_SD_CMD_APP 0x0040
#define USDHI6_SD_CMD_MODE_RSP_AUTO 0x0000
#define USDHI6_SD_CMD_MODE_RSP_NONE 0x0300
#define USDHI6_SD_CMD_MODE_RSP_R1 0x0400 /* Also R5, R6, R7 */
#define USDHI6_SD_CMD_MODE_RSP_R1B 0x0500 /* R1b */
#define USDHI6_SD_CMD_MODE_RSP_R2 0x0600
#define USDHI6_SD_CMD_MODE_RSP_R3 0x0700 /* Also R4 */
#define USDHI6_SD_CMD_DATA 0x0800
#define USDHI6_SD_CMD_READ 0x1000
#define USDHI6_SD_CMD_MULTI 0x2000
#define USDHI6_SD_CMD_CMD12_AUTO_OFF 0x4000
#define USDHI6_CC_EXT_MODE_SDRW BIT(1)
#define USDHI6_SD_INFO1_RSP_END BIT(0)
#define USDHI6_SD_INFO1_ACCESS_END BIT(2)
#define USDHI6_SD_INFO1_CARD_OUT BIT(3)
#define USDHI6_SD_INFO1_CARD_IN BIT(4)
#define USDHI6_SD_INFO1_CD BIT(5)
#define USDHI6_SD_INFO1_WP BIT(7)
#define USDHI6_SD_INFO1_D3_CARD_OUT BIT(8)
#define USDHI6_SD_INFO1_D3_CARD_IN BIT(9)
#define USDHI6_SD_INFO2_CMD_ERR BIT(0)
#define USDHI6_SD_INFO2_CRC_ERR BIT(1)
#define USDHI6_SD_INFO2_END_ERR BIT(2)
#define USDHI6_SD_INFO2_TOUT BIT(3)
#define USDHI6_SD_INFO2_IWA_ERR BIT(4)
#define USDHI6_SD_INFO2_IRA_ERR BIT(5)
#define USDHI6_SD_INFO2_RSP_TOUT BIT(6)
#define USDHI6_SD_INFO2_SDDAT0 BIT(7)
#define USDHI6_SD_INFO2_BRE BIT(8)
#define USDHI6_SD_INFO2_BWE BIT(9)
#define USDHI6_SD_INFO2_SCLKDIVEN BIT(13)
#define USDHI6_SD_INFO2_CBSY BIT(14)
#define USDHI6_SD_INFO2_ILA BIT(15)
#define USDHI6_SD_INFO1_CARD_INSERT (USDHI6_SD_INFO1_CARD_IN | USDHI6_SD_INFO1_D3_CARD_IN)
#define USDHI6_SD_INFO1_CARD_EJECT (USDHI6_SD_INFO1_CARD_OUT | USDHI6_SD_INFO1_D3_CARD_OUT)
#define USDHI6_SD_INFO1_CARD (USDHI6_SD_INFO1_CARD_INSERT | USDHI6_SD_INFO1_CARD_EJECT)
#define USDHI6_SD_INFO1_CARD_CD (USDHI6_SD_INFO1_CARD_IN | USDHI6_SD_INFO1_CARD_OUT)
#define USDHI6_SD_INFO2_ERR (USDHI6_SD_INFO2_CMD_ERR | \
USDHI6_SD_INFO2_CRC_ERR | USDHI6_SD_INFO2_END_ERR | \
USDHI6_SD_INFO2_TOUT | USDHI6_SD_INFO2_IWA_ERR | \
USDHI6_SD_INFO2_IRA_ERR | USDHI6_SD_INFO2_RSP_TOUT | \
USDHI6_SD_INFO2_ILA)
#define USDHI6_SD_INFO1_IRQ (USDHI6_SD_INFO1_RSP_END | USDHI6_SD_INFO1_ACCESS_END | \
USDHI6_SD_INFO1_CARD)
#define USDHI6_SD_INFO2_IRQ (USDHI6_SD_INFO2_ERR | USDHI6_SD_INFO2_BRE | \
USDHI6_SD_INFO2_BWE | 0x0800 | USDHI6_SD_INFO2_ILA)
#define USDHI6_SD_CLK_CTRL_SCLKEN BIT(8)
#define USDHI6_SD_STOP_STP BIT(0)
#define USDHI6_SD_STOP_SEC BIT(8)
#define USDHI6_SDIO_INFO1_IOIRQ BIT(0)
#define USDHI6_SDIO_INFO1_EXPUB52 BIT(14)
#define USDHI6_SDIO_INFO1_EXWT BIT(15)
#define USDHI6_SD_ERR_STS1_CRC_NO_ERROR BIT(13)
#define USDHI6_SOFT_RST_RESERVED (BIT(1) | BIT(2))
#define USDHI6_SOFT_RST_RESET BIT(0)
#define USDHI6_SD_OPTION_TIMEOUT_SHIFT 4
#define USDHI6_SD_OPTION_TIMEOUT_MASK (0xf << USDHI6_SD_OPTION_TIMEOUT_SHIFT)
#define USDHI6_SD_OPTION_WIDTH_1 BIT(15)
#define USDHI6_SD_PORT_SEL_PORTS_SHIFT 8
#define USDHI6_SD_CLK_CTRL_DIV_MASK 0xff
#define USDHI6_SDIO_INFO1_IRQ (USDHI6_SDIO_INFO1_IOIRQ | 3 | \
USDHI6_SDIO_INFO1_EXPUB52 | USDHI6_SDIO_INFO1_EXWT)
#define USDHI6_MIN_DMA 64
#define USDHI6_REQ_TIMEOUT_MS 4000
enum usdhi6_wait_for {
USDHI6_WAIT_FOR_REQUEST,
USDHI6_WAIT_FOR_CMD,
USDHI6_WAIT_FOR_MREAD,
USDHI6_WAIT_FOR_MWRITE,
USDHI6_WAIT_FOR_READ,
USDHI6_WAIT_FOR_WRITE,
USDHI6_WAIT_FOR_DATA_END,
USDHI6_WAIT_FOR_STOP,
USDHI6_WAIT_FOR_DMA,
};
struct usdhi6_page {
struct page *page;
void *mapped; /* mapped page */
};
struct usdhi6_host {
struct mmc_host *mmc;
struct mmc_request *mrq;
void __iomem *base;
struct clk *clk;
/* SG memory handling */
/* Common for multiple and single block requests */
struct usdhi6_page pg; /* current page from an SG */
void *blk_page; /* either a mapped page, or the bounce buffer */
size_t offset; /* offset within a page, including sg->offset */
/* Blocks, crossing a page boundary */
size_t head_len;
struct usdhi6_page head_pg;
/* A bounce buffer for unaligned blocks or blocks, crossing a page boundary */
struct scatterlist bounce_sg;
u8 bounce_buf[512];
/* Multiple block requests only */
struct scatterlist *sg; /* current SG segment */
int page_idx; /* page index within an SG segment */
enum usdhi6_wait_for wait;
u32 status_mask;
u32 status2_mask;
u32 sdio_mask;
u32 io_error;
u32 irq_status;
unsigned long imclk;
unsigned long rate;
bool app_cmd;
/* Timeout handling */
struct delayed_work timeout_work;
unsigned long timeout;
/* DMA support */
struct dma_chan *chan_rx;
struct dma_chan *chan_tx;
bool dma_active;
/* Pin control */
struct pinctrl *pinctrl;
struct pinctrl_state *pins_uhs;
};
/* I/O primitives */
static void usdhi6_write(struct usdhi6_host *host, u32 reg, u32 data)
{
iowrite32(data, host->base + reg);
dev_vdbg(mmc_dev(host->mmc), "%s(0x%p + 0x%x) = 0x%x\n", __func__,
host->base, reg, data);
}
static void usdhi6_write16(struct usdhi6_host *host, u32 reg, u16 data)
{
iowrite16(data, host->base + reg);
dev_vdbg(mmc_dev(host->mmc), "%s(0x%p + 0x%x) = 0x%x\n", __func__,
host->base, reg, data);
}
static u32 usdhi6_read(struct usdhi6_host *host, u32 reg)
{
u32 data = ioread32(host->base + reg);
dev_vdbg(mmc_dev(host->mmc), "%s(0x%p + 0x%x) = 0x%x\n", __func__,
host->base, reg, data);
return data;
}
static u16 usdhi6_read16(struct usdhi6_host *host, u32 reg)
{
u16 data = ioread16(host->base + reg);
dev_vdbg(mmc_dev(host->mmc), "%s(0x%p + 0x%x) = 0x%x\n", __func__,
host->base, reg, data);
return data;
}
static void usdhi6_irq_enable(struct usdhi6_host *host, u32 info1, u32 info2)
{
host->status_mask = USDHI6_SD_INFO1_IRQ & ~info1;
host->status2_mask = USDHI6_SD_INFO2_IRQ & ~info2;
usdhi6_write(host, USDHI6_SD_INFO1_MASK, host->status_mask);
usdhi6_write(host, USDHI6_SD_INFO2_MASK, host->status2_mask);
}
static void usdhi6_wait_for_resp(struct usdhi6_host *host)
{
usdhi6_irq_enable(host, USDHI6_SD_INFO1_RSP_END |
USDHI6_SD_INFO1_ACCESS_END | USDHI6_SD_INFO1_CARD_CD,
USDHI6_SD_INFO2_ERR);
}
static void usdhi6_wait_for_brwe(struct usdhi6_host *host, bool read)
{
usdhi6_irq_enable(host, USDHI6_SD_INFO1_ACCESS_END |
USDHI6_SD_INFO1_CARD_CD, USDHI6_SD_INFO2_ERR |
(read ? USDHI6_SD_INFO2_BRE : USDHI6_SD_INFO2_BWE));
}
static void usdhi6_only_cd(struct usdhi6_host *host)
{
/* Mask all except card hotplug */
usdhi6_irq_enable(host, USDHI6_SD_INFO1_CARD_CD, 0);
}
static void usdhi6_mask_all(struct usdhi6_host *host)
{
usdhi6_irq_enable(host, 0, 0);
}
static int usdhi6_error_code(struct usdhi6_host *host)
{
u32 err;
usdhi6_write(host, USDHI6_SD_STOP, USDHI6_SD_STOP_STP);
if (host->io_error &
(USDHI6_SD_INFO2_RSP_TOUT | USDHI6_SD_INFO2_TOUT)) {
u32 rsp54 = usdhi6_read(host, USDHI6_SD_RSP54);
int opc = host->mrq ? host->mrq->cmd->opcode : -1;
err = usdhi6_read(host, USDHI6_SD_ERR_STS2);
/* Response timeout is often normal, don't spam the log */
if (host->wait == USDHI6_WAIT_FOR_CMD)
dev_dbg(mmc_dev(host->mmc),
"T-out sts 0x%x, resp 0x%x, state %u, CMD%d\n",
err, rsp54, host->wait, opc);
else
dev_warn(mmc_dev(host->mmc),
"T-out sts 0x%x, resp 0x%x, state %u, CMD%d\n",
err, rsp54, host->wait, opc);
return -ETIMEDOUT;
}
err = usdhi6_read(host, USDHI6_SD_ERR_STS1);
if (err != USDHI6_SD_ERR_STS1_CRC_NO_ERROR)
dev_warn(mmc_dev(host->mmc), "Err sts 0x%x, state %u, CMD%d\n",
err, host->wait, host->mrq ? host->mrq->cmd->opcode : -1);
if (host->io_error & USDHI6_SD_INFO2_ILA)
return -EILSEQ;
return -EIO;
}
/* Scatter-Gather management */
/*
* In PIO mode we have to map each page separately, using kmap(). That way
* adjacent pages are mapped to non-adjacent virtual addresses. That's why we
* have to use a bounce buffer for blocks, crossing page boundaries. Such blocks
* have been observed with an SDIO WiFi card (b43 driver).
*/
static void usdhi6_blk_bounce(struct usdhi6_host *host,
struct scatterlist *sg)
{
struct mmc_data *data = host->mrq->data;
size_t blk_head = host->head_len;
dev_dbg(mmc_dev(host->mmc), "%s(): CMD%u of %u SG: %ux%u @ 0x%x\n",
__func__, host->mrq->cmd->opcode, data->sg_len,
data->blksz, data->blocks, sg->offset);
host->head_pg.page = host->pg.page;
host->head_pg.mapped = host->pg.mapped;
host->pg.page = nth_page(host->pg.page, 1);
host->pg.mapped = kmap(host->pg.page);
host->blk_page = host->bounce_buf;
host->offset = 0;
if (data->flags & MMC_DATA_READ)
return;
memcpy(host->bounce_buf, host->head_pg.mapped + PAGE_SIZE - blk_head,
blk_head);
memcpy(host->bounce_buf + blk_head, host->pg.mapped,
data->blksz - blk_head);
}
/* Only called for multiple block IO */
static void usdhi6_sg_prep(struct usdhi6_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data = mrq->data;
usdhi6_write(host, USDHI6_SD_SECCNT, data->blocks);
host->sg = data->sg;
/* TODO: if we always map, this is redundant */
host->offset = host->sg->offset;
}
/* Map the first page in an SG segment: common for multiple and single block IO */
static void *usdhi6_sg_map(struct usdhi6_host *host)
{
struct mmc_data *data = host->mrq->data;
struct scatterlist *sg = data->sg_len > 1 ? host->sg : data->sg;
size_t head = PAGE_SIZE - sg->offset;
size_t blk_head = head % data->blksz;
WARN(host->pg.page, "%p not properly unmapped!\n", host->pg.page);
if (WARN(sg_dma_len(sg) % data->blksz,
"SG size %u isn't a multiple of block size %u\n",
sg_dma_len(sg), data->blksz))
return NULL;
host->pg.page = sg_page(sg);
host->pg.mapped = kmap(host->pg.page);
host->offset = sg->offset;
/*
* Block size must be a power of 2 for multi-block transfers,
* therefore blk_head is equal for all pages in this SG
*/
host->head_len = blk_head;
if (head < data->blksz)
/*
* The first block in the SG crosses a page boundary.
* Max blksz = 512, so blocks can only span 2 pages
*/
usdhi6_blk_bounce(host, sg);
else
host->blk_page = host->pg.mapped;
dev_dbg(mmc_dev(host->mmc), "Mapped %p (%lx) at %p + %u for CMD%u @ 0x%p\n",
host->pg.page, page_to_pfn(host->pg.page), host->pg.mapped,
sg->offset, host->mrq->cmd->opcode, host->mrq);
return host->blk_page + host->offset;
}
/* Unmap the current page: common for multiple and single block IO */
static void usdhi6_sg_unmap(struct usdhi6_host *host, bool force)
{
struct mmc_data *data = host->mrq->data;
struct page *page = host->head_pg.page;
if (page) {
/* Previous block was cross-page boundary */
struct scatterlist *sg = data->sg_len > 1 ?
host->sg : data->sg;
size_t blk_head = host->head_len;
if (!data->error && data->flags & MMC_DATA_READ) {
memcpy(host->head_pg.mapped + PAGE_SIZE - blk_head,
host->bounce_buf, blk_head);
memcpy(host->pg.mapped, host->bounce_buf + blk_head,
data->blksz - blk_head);
}
flush_dcache_page(page);
kunmap(page);
host->head_pg.page = NULL;
if (!force && sg_dma_len(sg) + sg->offset >
(host->page_idx << PAGE_SHIFT) + data->blksz - blk_head)
/* More blocks in this SG, don't unmap the next page */
return;
}
page = host->pg.page;
if (!page)
return;
flush_dcache_page(page);
kunmap(page);
host->pg.page = NULL;
}
/* Called from MMC_WRITE_MULTIPLE_BLOCK or MMC_READ_MULTIPLE_BLOCK */
static void usdhi6_sg_advance(struct usdhi6_host *host)
{
struct mmc_data *data = host->mrq->data;
size_t done, total;
/* New offset: set at the end of the previous block */
if (host->head_pg.page) {
/* Finished a cross-page block, jump to the new page */
host->page_idx++;
host->offset = data->blksz - host->head_len;
host->blk_page = host->pg.mapped;
usdhi6_sg_unmap(host, false);
} else {
host->offset += data->blksz;
/* The completed block didn't cross a page boundary */
if (host->offset == PAGE_SIZE) {
/* If required, we'll map the page below */
host->offset = 0;
host->page_idx++;
}
}
/*
* Now host->blk_page + host->offset point at the end of our last block
* and host->page_idx is the index of the page, in which our new block
* is located, if any
*/
done = (host->page_idx << PAGE_SHIFT) + host->offset;
total = host->sg->offset + sg_dma_len(host->sg);
dev_dbg(mmc_dev(host->mmc), "%s(): %zu of %zu @ %zu\n", __func__,
done, total, host->offset);
if (done < total && host->offset) {
/* More blocks in this page */
if (host->offset + data->blksz > PAGE_SIZE)
/* We approached at a block, that spans 2 pages */
usdhi6_blk_bounce(host, host->sg);
return;
}
/* Finished current page or an SG segment */
usdhi6_sg_unmap(host, false);
if (done == total) {
/*
* End of an SG segment or the complete SG: jump to the next
* segment, we'll map it later in usdhi6_blk_read() or
* usdhi6_blk_write()
*/
struct scatterlist *next = sg_next(host->sg);
host->page_idx = 0;
if (!next)
host->wait = USDHI6_WAIT_FOR_DATA_END;
host->sg = next;
if (WARN(next && sg_dma_len(next) % data->blksz,
"SG size %u isn't a multiple of block size %u\n",
sg_dma_len(next), data->blksz))
data->error = -EINVAL;
return;
}
/* We cannot get here after crossing a page border */
/* Next page in the same SG */
host->pg.page = nth_page(sg_page(host->sg), host->page_idx);
host->pg.mapped = kmap(host->pg.page);
host->blk_page = host->pg.mapped;
dev_dbg(mmc_dev(host->mmc), "Mapped %p (%lx) at %p for CMD%u @ 0x%p\n",
host->pg.page, page_to_pfn(host->pg.page), host->pg.mapped,
host->mrq->cmd->opcode, host->mrq);
}
/* DMA handling */
static void usdhi6_dma_release(struct usdhi6_host *host)
{
host->dma_active = false;
if (host->chan_tx) {
struct dma_chan *chan = host->chan_tx;
host->chan_tx = NULL;
dma_release_channel(chan);
}
if (host->chan_rx) {
struct dma_chan *chan = host->chan_rx;
host->chan_rx = NULL;
dma_release_channel(chan);
}
}
static void usdhi6_dma_stop_unmap(struct usdhi6_host *host)
{
struct mmc_data *data = host->mrq->data;
if (!host->dma_active)
return;
usdhi6_write(host, USDHI6_CC_EXT_MODE, 0);
host->dma_active = false;
if (data->flags & MMC_DATA_READ)
dma_unmap_sg(host->chan_rx->device->dev, data->sg,
data->sg_len, DMA_FROM_DEVICE);
else
dma_unmap_sg(host->chan_tx->device->dev, data->sg,
data->sg_len, DMA_TO_DEVICE);
}
static void usdhi6_dma_complete(void *arg)
{
struct usdhi6_host *host = arg;
struct mmc_request *mrq = host->mrq;
if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion for %p!\n",
dev_name(mmc_dev(host->mmc)), mrq))
return;
dev_dbg(mmc_dev(host->mmc), "%s(): CMD%u DMA completed\n", __func__,
mrq->cmd->opcode);
usdhi6_dma_stop_unmap(host);
usdhi6_wait_for_brwe(host, mrq->data->flags & MMC_DATA_READ);
}
static int usdhi6_dma_setup(struct usdhi6_host *host, struct dma_chan *chan,
enum dma_transfer_direction dir)
{
struct mmc_data *data = host->mrq->data;
struct scatterlist *sg = data->sg;
struct dma_async_tx_descriptor *desc = NULL;
dma_cookie_t cookie = -EINVAL;
enum dma_data_direction data_dir;
int ret;
switch (dir) {
case DMA_MEM_TO_DEV:
data_dir = DMA_TO_DEVICE;
break;
case DMA_DEV_TO_MEM:
data_dir = DMA_FROM_DEVICE;
break;
default:
return -EINVAL;
}
ret = dma_map_sg(chan->device->dev, sg, data->sg_len, data_dir);
if (ret > 0) {
host->dma_active = true;
desc = dmaengine_prep_slave_sg(chan, sg, ret, dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
if (desc) {
desc->callback = usdhi6_dma_complete;
desc->callback_param = host;
cookie = dmaengine_submit(desc);
}
dev_dbg(mmc_dev(host->mmc), "%s(): mapped %d -> %d, cookie %d @ %p\n",
__func__, data->sg_len, ret, cookie, desc);
if (cookie < 0) {
/* DMA failed, fall back to PIO */
if (ret >= 0)
ret = cookie;
usdhi6_dma_release(host);
dev_warn(mmc_dev(host->mmc),
"DMA failed: %d, falling back to PIO\n", ret);
}
return cookie;
}
static int usdhi6_dma_start(struct usdhi6_host *host)
{
if (!host->chan_rx || !host->chan_tx)
return -ENODEV;
if (host->mrq->data->flags & MMC_DATA_READ)
return usdhi6_dma_setup(host, host->chan_rx, DMA_DEV_TO_MEM);
return usdhi6_dma_setup(host, host->chan_tx, DMA_MEM_TO_DEV);
}
static void usdhi6_dma_kill(struct usdhi6_host *host)
{
struct mmc_data *data = host->mrq->data;
dev_dbg(mmc_dev(host->mmc), "%s(): SG of %u: %ux%u\n",
__func__, data->sg_len, data->blocks, data->blksz);
/* Abort DMA */
if (data->flags & MMC_DATA_READ)
dmaengine_terminate_sync(host->chan_rx);
else
dmaengine_terminate_sync(host->chan_tx);
}
static void usdhi6_dma_check_error(struct usdhi6_host *host)
{
struct mmc_data *data = host->mrq->data;
dev_dbg(mmc_dev(host->mmc), "%s(): IO error %d, status 0x%x\n",
__func__, host->io_error, usdhi6_read(host, USDHI6_SD_INFO1));
if (host->io_error) {
data->error = usdhi6_error_code(host);
data->bytes_xfered = 0;
usdhi6_dma_kill(host);
usdhi6_dma_release(host);
dev_warn(mmc_dev(host->mmc),
"DMA failed: %d, falling back to PIO\n", data->error);
return;
}
/*
* The datasheet tells us to check a response from the card, whereas
* responses only come after the command phase, not after the data
* phase. Let's check anyway.
*/
if (host->irq_status & USDHI6_SD_INFO1_RSP_END)
dev_warn(mmc_dev(host->mmc), "Unexpected response received!\n");
}
static void usdhi6_dma_kick(struct usdhi6_host *host)
{
if (host->mrq->data->flags & MMC_DATA_READ)
dma_async_issue_pending(host->chan_rx);
else
dma_async_issue_pending(host->chan_tx);
}
static void usdhi6_dma_request(struct usdhi6_host *host, phys_addr_t start)
{
struct dma_slave_config cfg = {
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
};
int ret;
host->chan_tx = dma_request_chan(mmc_dev(host->mmc), "tx");
dev_dbg(mmc_dev(host->mmc), "%s: TX: got channel %p\n", __func__,
host->chan_tx);
if (IS_ERR(host->chan_tx)) {
host->chan_tx = NULL;
return;
}
cfg.direction = DMA_MEM_TO_DEV;
cfg.dst_addr = start + USDHI6_SD_BUF0;
cfg.dst_maxburst = 128; /* 128 words * 4 bytes = 512 bytes */
cfg.src_addr = 0;
ret = dmaengine_slave_config(host->chan_tx, &cfg);
if (ret < 0)
goto e_release_tx;
host->chan_rx = dma_request_chan(mmc_dev(host->mmc), "rx");
dev_dbg(mmc_dev(host->mmc), "%s: RX: got channel %p\n", __func__,
host->chan_rx);
if (IS_ERR(host->chan_rx)) {
host->chan_rx = NULL;
goto e_release_tx;
}
cfg.direction = DMA_DEV_TO_MEM;
cfg.src_addr = cfg.dst_addr;
cfg.src_maxburst = 128; /* 128 words * 4 bytes = 512 bytes */
cfg.dst_addr = 0;
ret = dmaengine_slave_config(host->chan_rx, &cfg);
if (ret < 0)
goto e_release_rx;
return;
e_release_rx:
dma_release_channel(host->chan_rx);
host->chan_rx = NULL;
e_release_tx:
dma_release_channel(host->chan_tx);
host->chan_tx = NULL;
}
/* API helpers */
static void usdhi6_clk_set(struct usdhi6_host *host, struct mmc_ios *ios)
{
unsigned long rate = ios->clock;
u32 val;
unsigned int i;
for (i = 1000; i; i--) {
if (usdhi6_read(host, USDHI6_SD_INFO2) & USDHI6_SD_INFO2_SCLKDIVEN)
break;
usleep_range(10, 100);
}
if (!i) {
dev_err(mmc_dev(host->mmc), "SD bus busy, clock set aborted\n");
return;
}
val = usdhi6_read(host, USDHI6_SD_CLK_CTRL) & ~USDHI6_SD_CLK_CTRL_DIV_MASK;
if (rate) {
unsigned long new_rate;
if (host->imclk <= rate) {
if (ios->timing != MMC_TIMING_UHS_DDR50) {
/* Cannot have 1-to-1 clock in DDR mode */
new_rate = host->imclk;
val |= 0xff;
} else {
new_rate = host->imclk / 2;
}
} else {
unsigned long div =
roundup_pow_of_two(DIV_ROUND_UP(host->imclk, rate));
val |= div >> 2;
new_rate = host->imclk / div;
}
if (host->rate == new_rate)
return;
host->rate = new_rate;
dev_dbg(mmc_dev(host->mmc), "target %lu, div %u, set %lu\n",
rate, (val & 0xff) << 2, new_rate);
}
/*
* if old or new rate is equal to input rate, have to switch the clock
* off before changing and on after
*/
if (host->imclk == rate || host->imclk == host->rate || !rate)
usdhi6_write(host, USDHI6_SD_CLK_CTRL,
val & ~USDHI6_SD_CLK_CTRL_SCLKEN);
if (!rate) {
host->rate = 0;
return;
}
usdhi6_write(host, USDHI6_SD_CLK_CTRL, val);
if (host->imclk == rate || host->imclk == host->rate ||
!(val & USDHI6_SD_CLK_CTRL_SCLKEN))
usdhi6_write(host, USDHI6_SD_CLK_CTRL,
val | USDHI6_SD_CLK_CTRL_SCLKEN);
}
static void usdhi6_set_power(struct usdhi6_host *host, struct mmc_ios *ios)
{
struct mmc_host *mmc = host->mmc;
if (!IS_ERR(mmc->supply.vmmc))
/* Errors ignored... */
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
ios->power_mode ? ios->vdd : 0);
}
static int usdhi6_reset(struct usdhi6_host *host)
{
int i;
usdhi6_write(host, USDHI6_SOFT_RST, USDHI6_SOFT_RST_RESERVED);
cpu_relax();
usdhi6_write(host, USDHI6_SOFT_RST, USDHI6_SOFT_RST_RESERVED | USDHI6_SOFT_RST_RESET);
for (i = 1000; i; i--)
if (usdhi6_read(host, USDHI6_SOFT_RST) & USDHI6_SOFT_RST_RESET)
break;
return i ? 0 : -ETIMEDOUT;
}
static void usdhi6_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct usdhi6_host *host = mmc_priv(mmc);
u32 option, mode;
int ret;
dev_dbg(mmc_dev(mmc), "%uHz, OCR: %u, power %u, bus-width %u, timing %u\n",
ios->clock, ios->vdd, ios->power_mode, ios->bus_width, ios->timing);
switch (ios->power_mode) {
case MMC_POWER_OFF:
usdhi6_set_power(host, ios);
usdhi6_only_cd(host);
break;
case MMC_POWER_UP:
/*
* We only also touch USDHI6_SD_OPTION from .request(), which
* cannot race with MMC_POWER_UP
*/
ret = usdhi6_reset(host);
if (ret < 0) {
dev_err(mmc_dev(mmc), "Cannot reset the interface!\n");
} else {
usdhi6_set_power(host, ios);
usdhi6_only_cd(host);
}
break;
case MMC_POWER_ON:
option = usdhi6_read(host, USDHI6_SD_OPTION);
/*
* The eMMC standard only allows 4 or 8 bits in the DDR mode,
* the same probably holds for SD cards. We check here anyway,
* since the datasheet explicitly requires 4 bits for DDR.
*/
if (ios->bus_width == MMC_BUS_WIDTH_1) {
if (ios->timing == MMC_TIMING_UHS_DDR50)
dev_err(mmc_dev(mmc),
"4 bits are required for DDR\n");
option |= USDHI6_SD_OPTION_WIDTH_1;
mode = 0;
} else {
option &= ~USDHI6_SD_OPTION_WIDTH_1;
mode = ios->timing == MMC_TIMING_UHS_DDR50;
}
usdhi6_write(host, USDHI6_SD_OPTION, option);
usdhi6_write(host, USDHI6_SDIF_MODE, mode);
break;
}
if (host->rate != ios->clock)
usdhi6_clk_set(host, ios);
}
/* This is data timeout. Response timeout is fixed to 640 clock cycles */
static void usdhi6_timeout_set(struct usdhi6_host *host)
{
struct mmc_request *mrq = host->mrq;
u32 val;
unsigned long ticks;
if (!mrq->data)
ticks = host->rate / 1000 * mrq->cmd->busy_timeout;
else
ticks = host->rate / 1000000 * (mrq->data->timeout_ns / 1000) +
mrq->data->timeout_clks;
if (!ticks || ticks > 1 << 27)
/* Max timeout */
val = 14;
else if (ticks < 1 << 13)
/* Min timeout */
val = 0;
else
val = order_base_2(ticks) - 13;
dev_dbg(mmc_dev(host->mmc), "Set %s timeout %lu ticks @ %lu Hz\n",
mrq->data ? "data" : "cmd", ticks, host->rate);
/* Timeout Counter mask: 0xf0 */
usdhi6_write(host, USDHI6_SD_OPTION, (val << USDHI6_SD_OPTION_TIMEOUT_SHIFT) |
(usdhi6_read(host, USDHI6_SD_OPTION) & ~USDHI6_SD_OPTION_TIMEOUT_MASK));
}
static void usdhi6_request_done(struct usdhi6_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data = mrq->data;
if (WARN(host->pg.page || host->head_pg.page,
"Page %p or %p not unmapped: wait %u, CMD%d(%c) @ +0x%zx %ux%u in SG%u!\n",
host->pg.page, host->head_pg.page, host->wait, mrq->cmd->opcode,
data ? (data->flags & MMC_DATA_READ ? 'R' : 'W') : '-',
data ? host->offset : 0, data ? data->blocks : 0,
data ? data->blksz : 0, data ? data->sg_len : 0))
usdhi6_sg_unmap(host, true);
if (mrq->cmd->error ||
(data && data->error) ||
(mrq->stop && mrq->stop->error))
dev_dbg(mmc_dev(host->mmc), "%s(CMD%d: %ux%u): err %d %d %d\n",
__func__, mrq->cmd->opcode, data ? data->blocks : 0,
data ? data->blksz : 0,
mrq->cmd->error,
data ? data->error : 1,
mrq->stop ? mrq->stop->error : 1);
/* Disable DMA */
usdhi6_write(host, USDHI6_CC_EXT_MODE, 0);
host->wait = USDHI6_WAIT_FOR_REQUEST;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
static int usdhi6_cmd_flags(struct usdhi6_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd = mrq->cmd;
u16 opc = cmd->opcode;
if (host->app_cmd) {
host->app_cmd = false;
opc |= USDHI6_SD_CMD_APP;
}
if (mrq->data) {
opc |= USDHI6_SD_CMD_DATA;
if (mrq->data->flags & MMC_DATA_READ)
opc |= USDHI6_SD_CMD_READ;
if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK ||
cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK ||
(cmd->opcode == SD_IO_RW_EXTENDED &&
mrq->data->blocks > 1)) {
opc |= USDHI6_SD_CMD_MULTI;
if (!mrq->stop)
opc |= USDHI6_SD_CMD_CMD12_AUTO_OFF;
}
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
opc |= USDHI6_SD_CMD_MODE_RSP_NONE;
break;
case MMC_RSP_R1:
opc |= USDHI6_SD_CMD_MODE_RSP_R1;
break;
case MMC_RSP_R1B:
opc |= USDHI6_SD_CMD_MODE_RSP_R1B;
break;
case MMC_RSP_R2:
opc |= USDHI6_SD_CMD_MODE_RSP_R2;
break;
case MMC_RSP_R3:
opc |= USDHI6_SD_CMD_MODE_RSP_R3;
break;
default:
dev_warn(mmc_dev(host->mmc),
"Unknown response type %d\n",
mmc_resp_type(cmd));
return -EINVAL;
}
}
return opc;
}
static int usdhi6_rq_start(struct usdhi6_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
int opc = usdhi6_cmd_flags(host);
int i;
if (opc < 0)
return opc;
for (i = 1000; i; i--) {
if (!(usdhi6_read(host, USDHI6_SD_INFO2) & USDHI6_SD_INFO2_CBSY))
break;
usleep_range(10, 100);
}
if (!i) {
dev_dbg(mmc_dev(host->mmc), "Command active, request aborted\n");
return -EAGAIN;
}
if (data) {
bool use_dma;
int ret = 0;
host->page_idx = 0;
if (cmd->opcode == SD_IO_RW_EXTENDED && data->blocks > 1) {
switch (data->blksz) {
case 512:
break;
case 32:
case 64:
case 128:
case 256:
if (mrq->stop)
ret = -EINVAL;
break;
default:
ret = -EINVAL;
}
} else if ((cmd->opcode == MMC_READ_MULTIPLE_BLOCK ||
cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK) &&
data->blksz != 512) {
ret = -EINVAL;
}
if (ret < 0) {
dev_warn(mmc_dev(host->mmc), "%s(): %u blocks of %u bytes\n",
__func__, data->blocks, data->blksz);
return -EINVAL;
}
if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK ||
cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK ||
(cmd->opcode == SD_IO_RW_EXTENDED &&
data->blocks > 1))
usdhi6_sg_prep(host);
usdhi6_write(host, USDHI6_SD_SIZE, data->blksz);
if ((data->blksz >= USDHI6_MIN_DMA ||
data->blocks > 1) &&
(data->blksz % 4 ||
data->sg->offset % 4))
dev_dbg(mmc_dev(host->mmc),
"Bad SG of %u: %ux%u @ %u\n", data->sg_len,
data->blksz, data->blocks, data->sg->offset);
/* Enable DMA for USDHI6_MIN_DMA bytes or more */
use_dma = data->blksz >= USDHI6_MIN_DMA &&
!(data->blksz % 4) &&
usdhi6_dma_start(host) >= DMA_MIN_COOKIE;
if (use_dma)
usdhi6_write(host, USDHI6_CC_EXT_MODE, USDHI6_CC_EXT_MODE_SDRW);
dev_dbg(mmc_dev(host->mmc),
"%s(): request opcode %u, %u blocks of %u bytes in %u segments, %s %s @+0x%x%s\n",
__func__, cmd->opcode, data->blocks, data->blksz,
data->sg_len, use_dma ? "DMA" : "PIO",
data->flags & MMC_DATA_READ ? "read" : "write",
data->sg->offset, mrq->stop ? " + stop" : "");
} else {
dev_dbg(mmc_dev(host->mmc), "%s(): request opcode %u\n",
__func__, cmd->opcode);
}
/* We have to get a command completion interrupt with DMA too */
usdhi6_wait_for_resp(host);
host->wait = USDHI6_WAIT_FOR_CMD;
schedule_delayed_work(&host->timeout_work, host->timeout);
/* SEC bit is required to enable block counting by the core */
usdhi6_write(host, USDHI6_SD_STOP,
data && data->blocks > 1 ? USDHI6_SD_STOP_SEC : 0);
usdhi6_write(host, USDHI6_SD_ARG, cmd->arg);
/* Kick command execution */
usdhi6_write(host, USDHI6_SD_CMD, opc);
return 0;
}
static void usdhi6_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct usdhi6_host *host = mmc_priv(mmc);
int ret;
cancel_delayed_work_sync(&host->timeout_work);
host->mrq = mrq;
host->sg = NULL;
usdhi6_timeout_set(host);
ret = usdhi6_rq_start(host);
if (ret < 0) {
mrq->cmd->error = ret;
usdhi6_request_done(host);
}
}
static int usdhi6_get_cd(struct mmc_host *mmc)
{
struct usdhi6_host *host = mmc_priv(mmc);
/* Read is atomic, no need to lock */
u32 status = usdhi6_read(host, USDHI6_SD_INFO1) & USDHI6_SD_INFO1_CD;
/*
* level status.CD CD_ACTIVE_HIGH card present
* 1 0 0 0
* 1 0 1 1
* 0 1 0 1
* 0 1 1 0
*/
return !status ^ !(mmc->caps2 & MMC_CAP2_CD_ACTIVE_HIGH);
}
static int usdhi6_get_ro(struct mmc_host *mmc)
{
struct usdhi6_host *host = mmc_priv(mmc);
/* No locking as above */
u32 status = usdhi6_read(host, USDHI6_SD_INFO1) & USDHI6_SD_INFO1_WP;
/*
* level status.WP RO_ACTIVE_HIGH card read-only
* 1 0 0 0
* 1 0 1 1
* 0 1 0 1
* 0 1 1 0
*/
return !status ^ !(mmc->caps2 & MMC_CAP2_RO_ACTIVE_HIGH);
}
static void usdhi6_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct usdhi6_host *host = mmc_priv(mmc);
dev_dbg(mmc_dev(mmc), "%s(): %sable\n", __func__, enable ? "en" : "dis");
if (enable) {
host->sdio_mask = USDHI6_SDIO_INFO1_IRQ & ~USDHI6_SDIO_INFO1_IOIRQ;
usdhi6_write(host, USDHI6_SDIO_INFO1_MASK, host->sdio_mask);
usdhi6_write(host, USDHI6_SDIO_MODE, 1);
} else {
usdhi6_write(host, USDHI6_SDIO_MODE, 0);
usdhi6_write(host, USDHI6_SDIO_INFO1_MASK, USDHI6_SDIO_INFO1_IRQ);
host->sdio_mask = USDHI6_SDIO_INFO1_IRQ;
}
}
static int usdhi6_set_pinstates(struct usdhi6_host *host, int voltage)
{
if (IS_ERR(host->pins_uhs))
return 0;
switch (voltage) {
case MMC_SIGNAL_VOLTAGE_180:
case MMC_SIGNAL_VOLTAGE_120:
return pinctrl_select_state(host->pinctrl,
host->pins_uhs);
default:
return pinctrl_select_default_state(mmc_dev(host->mmc));
}
}
static int usdhi6_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
int ret;
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0)
return ret;
ret = usdhi6_set_pinstates(mmc_priv(mmc), ios->signal_voltage);
if (ret)
dev_warn_once(mmc_dev(mmc),
"Failed to set pinstate err=%d\n", ret);
return ret;
}
static int usdhi6_card_busy(struct mmc_host *mmc)
{
struct usdhi6_host *host = mmc_priv(mmc);
u32 tmp = usdhi6_read(host, USDHI6_SD_INFO2);
/* Card is busy if it is pulling dat[0] low */
return !(tmp & USDHI6_SD_INFO2_SDDAT0);
}
static const struct mmc_host_ops usdhi6_ops = {
.request = usdhi6_request,
.set_ios = usdhi6_set_ios,
.get_cd = usdhi6_get_cd,
.get_ro = usdhi6_get_ro,
.enable_sdio_irq = usdhi6_enable_sdio_irq,
.start_signal_voltage_switch = usdhi6_sig_volt_switch,
.card_busy = usdhi6_card_busy,
};
/* State machine handlers */
static void usdhi6_resp_cmd12(struct usdhi6_host *host)
{
struct mmc_command *cmd = host->mrq->stop;
cmd->resp[0] = usdhi6_read(host, USDHI6_SD_RSP10);
}
static void usdhi6_resp_read(struct usdhi6_host *host)
{
struct mmc_command *cmd = host->mrq->cmd;
u32 *rsp = cmd->resp, tmp = 0;
int i;
/*
* RSP10 39-8
* RSP32 71-40
* RSP54 103-72
* RSP76 127-104
* R2-type response:
* resp[0] = r[127..96]
* resp[1] = r[95..64]
* resp[2] = r[63..32]
* resp[3] = r[31..0]
* Other responses:
* resp[0] = r[39..8]
*/
if (mmc_resp_type(cmd) == MMC_RSP_NONE)
return;
if (!(host->irq_status & USDHI6_SD_INFO1_RSP_END)) {
dev_err(mmc_dev(host->mmc),
"CMD%d: response expected but is missing!\n", cmd->opcode);
return;
}
if (mmc_resp_type(cmd) & MMC_RSP_136)
for (i = 0; i < 4; i++) {
if (i)
rsp[3 - i] = tmp >> 24;
tmp = usdhi6_read(host, USDHI6_SD_RSP10 + i * 8);
rsp[3 - i] |= tmp << 8;
}
else if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK ||
cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
/* Read RSP54 to avoid conflict with auto CMD12 */
rsp[0] = usdhi6_read(host, USDHI6_SD_RSP54);
else
rsp[0] = usdhi6_read(host, USDHI6_SD_RSP10);
dev_dbg(mmc_dev(host->mmc), "Response 0x%x\n", rsp[0]);
}
static int usdhi6_blk_read(struct usdhi6_host *host)
{
struct mmc_data *data = host->mrq->data;
u32 *p;
int i, rest;
if (host->io_error) {
data->error = usdhi6_error_code(host);
goto error;
}
if (host->pg.page) {
p = host->blk_page + host->offset;
} else {
p = usdhi6_sg_map(host);
if (!p) {
data->error = -ENOMEM;
goto error;
}
}
for (i = 0; i < data->blksz / 4; i++, p++)
*p = usdhi6_read(host, USDHI6_SD_BUF0);
rest = data->blksz % 4;
for (i = 0; i < (rest + 1) / 2; i++) {
u16 d = usdhi6_read16(host, USDHI6_SD_BUF0);
((u8 *)p)[2 * i] = ((u8 *)&d)[0];
if (rest > 1 && !i)
((u8 *)p)[2 * i + 1] = ((u8 *)&d)[1];
}
return 0;
error:
dev_dbg(mmc_dev(host->mmc), "%s(): %d\n", __func__, data->error);
host->wait = USDHI6_WAIT_FOR_REQUEST;
return data->error;
}
static int usdhi6_blk_write(struct usdhi6_host *host)
{
struct mmc_data *data = host->mrq->data;
u32 *p;
int i, rest;
if (host->io_error) {
data->error = usdhi6_error_code(host);
goto error;
}
if (host->pg.page) {
p = host->blk_page + host->offset;
} else {
p = usdhi6_sg_map(host);
if (!p) {
data->error = -ENOMEM;
goto error;
}
}
for (i = 0; i < data->blksz / 4; i++, p++)
usdhi6_write(host, USDHI6_SD_BUF0, *p);
rest = data->blksz % 4;
for (i = 0; i < (rest + 1) / 2; i++) {
u16 d;
((u8 *)&d)[0] = ((u8 *)p)[2 * i];
if (rest > 1 && !i)
((u8 *)&d)[1] = ((u8 *)p)[2 * i + 1];
else
((u8 *)&d)[1] = 0;
usdhi6_write16(host, USDHI6_SD_BUF0, d);
}
return 0;
error:
dev_dbg(mmc_dev(host->mmc), "%s(): %d\n", __func__, data->error);
host->wait = USDHI6_WAIT_FOR_REQUEST;
return data->error;
}
static int usdhi6_stop_cmd(struct usdhi6_host *host)
{
struct mmc_request *mrq = host->mrq;
switch (mrq->cmd->opcode) {
case MMC_READ_MULTIPLE_BLOCK:
case MMC_WRITE_MULTIPLE_BLOCK:
if (mrq->stop->opcode == MMC_STOP_TRANSMISSION) {
host->wait = USDHI6_WAIT_FOR_STOP;
return 0;
}
fallthrough; /* Unsupported STOP command */
default:
dev_err(mmc_dev(host->mmc),
"unsupported stop CMD%d for CMD%d\n",
mrq->stop->opcode, mrq->cmd->opcode);
mrq->stop->error = -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
static bool usdhi6_end_cmd(struct usdhi6_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd = mrq->cmd;
if (host->io_error) {
cmd->error = usdhi6_error_code(host);
return false;
}
usdhi6_resp_read(host);
if (!mrq->data)
return false;
if (host->dma_active) {
usdhi6_dma_kick(host);
if (!mrq->stop)
host->wait = USDHI6_WAIT_FOR_DMA;
else if (usdhi6_stop_cmd(host) < 0)
return false;
} else if (mrq->data->flags & MMC_DATA_READ) {
if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK ||
(cmd->opcode == SD_IO_RW_EXTENDED &&
mrq->data->blocks > 1))
host->wait = USDHI6_WAIT_FOR_MREAD;
else
host->wait = USDHI6_WAIT_FOR_READ;
} else {
if (cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK ||
(cmd->opcode == SD_IO_RW_EXTENDED &&
mrq->data->blocks > 1))
host->wait = USDHI6_WAIT_FOR_MWRITE;
else
host->wait = USDHI6_WAIT_FOR_WRITE;
}
return true;
}
static bool usdhi6_read_block(struct usdhi6_host *host)
{
/* ACCESS_END IRQ is already unmasked */
int ret = usdhi6_blk_read(host);
/*
* Have to force unmapping both pages: the single block could have been
* cross-page, in which case for single-block IO host->page_idx == 0.
* So, if we don't force, the second page won't be unmapped.
*/
usdhi6_sg_unmap(host, true);
if (ret < 0)
return false;
host->wait = USDHI6_WAIT_FOR_DATA_END;
return true;
}
static bool usdhi6_mread_block(struct usdhi6_host *host)
{
int ret = usdhi6_blk_read(host);
if (ret < 0)
return false;
usdhi6_sg_advance(host);
return !host->mrq->data->error &&
(host->wait != USDHI6_WAIT_FOR_DATA_END || !host->mrq->stop);
}
static bool usdhi6_write_block(struct usdhi6_host *host)
{
int ret = usdhi6_blk_write(host);
/* See comment in usdhi6_read_block() */
usdhi6_sg_unmap(host, true);
if (ret < 0)
return false;
host->wait = USDHI6_WAIT_FOR_DATA_END;
return true;
}
static bool usdhi6_mwrite_block(struct usdhi6_host *host)
{
int ret = usdhi6_blk_write(host);
if (ret < 0)
return false;
usdhi6_sg_advance(host);
return !host->mrq->data->error &&
(host->wait != USDHI6_WAIT_FOR_DATA_END || !host->mrq->stop);
}
/* Interrupt & timeout handlers */
static irqreturn_t usdhi6_sd_bh(int irq, void *dev_id)
{
struct usdhi6_host *host = dev_id;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
bool io_wait = false;
cancel_delayed_work_sync(&host->timeout_work);
mrq = host->mrq;
if (!mrq)
return IRQ_HANDLED;
cmd = mrq->cmd;
data = mrq->data;
switch (host->wait) {
case USDHI6_WAIT_FOR_REQUEST:
/* We're too late, the timeout has already kicked in */
return IRQ_HANDLED;
case USDHI6_WAIT_FOR_CMD:
/* Wait for data? */
io_wait = usdhi6_end_cmd(host);
break;
case USDHI6_WAIT_FOR_MREAD:
/* Wait for more data? */
io_wait = usdhi6_mread_block(host);
break;
case USDHI6_WAIT_FOR_READ:
/* Wait for data end? */
io_wait = usdhi6_read_block(host);
break;
case USDHI6_WAIT_FOR_MWRITE:
/* Wait data to write? */
io_wait = usdhi6_mwrite_block(host);
break;
case USDHI6_WAIT_FOR_WRITE:
/* Wait for data end? */
io_wait = usdhi6_write_block(host);
break;
case USDHI6_WAIT_FOR_DMA:
usdhi6_dma_check_error(host);
break;
case USDHI6_WAIT_FOR_STOP:
usdhi6_write(host, USDHI6_SD_STOP, 0);
if (host->io_error) {
int ret = usdhi6_error_code(host);
if (mrq->stop)
mrq->stop->error = ret;
else
mrq->data->error = ret;
dev_warn(mmc_dev(host->mmc), "%s(): %d\n", __func__, ret);
break;
}
usdhi6_resp_cmd12(host);
mrq->stop->error = 0;
break;
case USDHI6_WAIT_FOR_DATA_END:
if (host->io_error) {
mrq->data->error = usdhi6_error_code(host);
dev_warn(mmc_dev(host->mmc), "%s(): %d\n", __func__,
mrq->data->error);
}
break;
default:
cmd->error = -EFAULT;
dev_err(mmc_dev(host->mmc), "Invalid state %u\n", host->wait);
usdhi6_request_done(host);
return IRQ_HANDLED;
}
if (io_wait) {
schedule_delayed_work(&host->timeout_work, host->timeout);
/* Wait for more data or ACCESS_END */
if (!host->dma_active)
usdhi6_wait_for_brwe(host, mrq->data->flags & MMC_DATA_READ);
return IRQ_HANDLED;
}
if (!cmd->error) {
if (data) {
if (!data->error) {
if (host->wait != USDHI6_WAIT_FOR_STOP &&
host->mrq->stop &&
!host->mrq->stop->error &&
!usdhi6_stop_cmd(host)) {
/* Sending STOP */
usdhi6_wait_for_resp(host);
schedule_delayed_work(&host->timeout_work,
host->timeout);
return IRQ_HANDLED;
}
data->bytes_xfered = data->blocks * data->blksz;
} else {
/* Data error: might need to unmap the last page */
dev_warn(mmc_dev(host->mmc), "%s(): data error %d\n",
__func__, data->error);
usdhi6_sg_unmap(host, true);
}
} else if (cmd->opcode == MMC_APP_CMD) {
host->app_cmd = true;
}
}
usdhi6_request_done(host);
return IRQ_HANDLED;
}
static irqreturn_t usdhi6_sd(int irq, void *dev_id)
{
struct usdhi6_host *host = dev_id;
u16 status, status2, error;
status = usdhi6_read(host, USDHI6_SD_INFO1) & ~host->status_mask &
~USDHI6_SD_INFO1_CARD;
status2 = usdhi6_read(host, USDHI6_SD_INFO2) & ~host->status2_mask;
usdhi6_only_cd(host);
dev_dbg(mmc_dev(host->mmc),
"IRQ status = 0x%08x, status2 = 0x%08x\n", status, status2);
if (!status && !status2)
return IRQ_NONE;
error = status2 & USDHI6_SD_INFO2_ERR;
/* Ack / clear interrupts */
if (USDHI6_SD_INFO1_IRQ & status)
usdhi6_write(host, USDHI6_SD_INFO1,
0xffff & ~(USDHI6_SD_INFO1_IRQ & status));
if (USDHI6_SD_INFO2_IRQ & status2) {
if (error)
/* In error cases BWE and BRE aren't cleared automatically */
status2 |= USDHI6_SD_INFO2_BWE | USDHI6_SD_INFO2_BRE;
usdhi6_write(host, USDHI6_SD_INFO2,
0xffff & ~(USDHI6_SD_INFO2_IRQ & status2));
}
host->io_error = error;
host->irq_status = status;
if (error) {
/* Don't pollute the log with unsupported command timeouts */
if (host->wait != USDHI6_WAIT_FOR_CMD ||
error != USDHI6_SD_INFO2_RSP_TOUT)
dev_warn(mmc_dev(host->mmc),
"%s(): INFO2 error bits 0x%08x\n",
__func__, error);
else
dev_dbg(mmc_dev(host->mmc),
"%s(): INFO2 error bits 0x%08x\n",
__func__, error);
}
return IRQ_WAKE_THREAD;
}
static irqreturn_t usdhi6_sdio(int irq, void *dev_id)
{
struct usdhi6_host *host = dev_id;
u32 status = usdhi6_read(host, USDHI6_SDIO_INFO1) & ~host->sdio_mask;
dev_dbg(mmc_dev(host->mmc), "%s(): status 0x%x\n", __func__, status);
if (!status)
return IRQ_NONE;
usdhi6_write(host, USDHI6_SDIO_INFO1, ~status);
mmc_signal_sdio_irq(host->mmc);
return IRQ_HANDLED;
}
static irqreturn_t usdhi6_cd(int irq, void *dev_id)
{
struct usdhi6_host *host = dev_id;
struct mmc_host *mmc = host->mmc;
u16 status;
/* We're only interested in hotplug events here */
status = usdhi6_read(host, USDHI6_SD_INFO1) & ~host->status_mask &
USDHI6_SD_INFO1_CARD;
if (!status)
return IRQ_NONE;
/* Ack */
usdhi6_write(host, USDHI6_SD_INFO1, ~status);
if (!work_pending(&mmc->detect.work) &&
(((status & USDHI6_SD_INFO1_CARD_INSERT) &&
!mmc->card) ||
((status & USDHI6_SD_INFO1_CARD_EJECT) &&
mmc->card)))
mmc_detect_change(mmc, msecs_to_jiffies(100));
return IRQ_HANDLED;
}
/*
* Actually this should not be needed, if the built-in timeout works reliably in
* the both PIO cases and DMA never fails. But if DMA does fail, a timeout
* handler might be the only way to catch the error.
*/
static void usdhi6_timeout_work(struct work_struct *work)
{
struct delayed_work *d = to_delayed_work(work);
struct usdhi6_host *host = container_of(d, struct usdhi6_host, timeout_work);
struct mmc_request *mrq = host->mrq;
struct mmc_data *data = mrq ? mrq->data : NULL;
struct scatterlist *sg;
dev_warn(mmc_dev(host->mmc),
"%s timeout wait %u CMD%d: IRQ 0x%08x:0x%08x, last IRQ 0x%08x\n",
host->dma_active ? "DMA" : "PIO",
host->wait, mrq ? mrq->cmd->opcode : -1,
usdhi6_read(host, USDHI6_SD_INFO1),
usdhi6_read(host, USDHI6_SD_INFO2), host->irq_status);
if (host->dma_active) {
usdhi6_dma_kill(host);
usdhi6_dma_stop_unmap(host);
}
switch (host->wait) {
default:
dev_err(mmc_dev(host->mmc), "Invalid state %u\n", host->wait);
fallthrough; /* mrq can be NULL, but is impossible */
case USDHI6_WAIT_FOR_CMD:
usdhi6_error_code(host);
if (mrq)
mrq->cmd->error = -ETIMEDOUT;
break;
case USDHI6_WAIT_FOR_STOP:
usdhi6_error_code(host);
mrq->stop->error = -ETIMEDOUT;
break;
case USDHI6_WAIT_FOR_DMA:
case USDHI6_WAIT_FOR_MREAD:
case USDHI6_WAIT_FOR_MWRITE:
case USDHI6_WAIT_FOR_READ:
case USDHI6_WAIT_FOR_WRITE:
sg = host->sg ?: data->sg;
dev_dbg(mmc_dev(host->mmc),
"%c: page #%u @ +0x%zx %ux%u in SG%u. Current SG %u bytes @ %u\n",
data->flags & MMC_DATA_READ ? 'R' : 'W', host->page_idx,
host->offset, data->blocks, data->blksz, data->sg_len,
sg_dma_len(sg), sg->offset);
usdhi6_sg_unmap(host, true);
fallthrough; /* page unmapped in USDHI6_WAIT_FOR_DATA_END */
case USDHI6_WAIT_FOR_DATA_END:
usdhi6_error_code(host);
data->error = -ETIMEDOUT;
}
if (mrq)
usdhi6_request_done(host);
}
/* Probe / release */
static const struct of_device_id usdhi6_of_match[] = {
{.compatible = "renesas,usdhi6rol0"},
{}
};
MODULE_DEVICE_TABLE(of, usdhi6_of_match);
static int usdhi6_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mmc_host *mmc;
struct usdhi6_host *host;
struct resource *res;
int irq_cd, irq_sd, irq_sdio;
u32 version;
int ret;
if (!dev->of_node)
return -ENODEV;
irq_cd = platform_get_irq_byname(pdev, "card detect");
irq_sd = platform_get_irq_byname(pdev, "data");
irq_sdio = platform_get_irq_byname(pdev, "SDIO");
if (irq_sd < 0)
return irq_sd;
if (irq_sdio < 0)
return irq_sdio;
mmc = mmc_alloc_host(sizeof(struct usdhi6_host), dev);
if (!mmc)
return -ENOMEM;
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto e_free_mmc;
ret = mmc_of_parse(mmc);
if (ret < 0)
goto e_free_mmc;
host = mmc_priv(mmc);
host->mmc = mmc;
host->wait = USDHI6_WAIT_FOR_REQUEST;
host->timeout = msecs_to_jiffies(USDHI6_REQ_TIMEOUT_MS);
/*
* We use a fixed timeout of 4s, hence inform the core about it. A
* future improvement should instead respect the cmd->busy_timeout.
*/
mmc->max_busy_timeout = USDHI6_REQ_TIMEOUT_MS;
host->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(host->pinctrl)) {
ret = PTR_ERR(host->pinctrl);
goto e_free_mmc;
}
host->pins_uhs = pinctrl_lookup_state(host->pinctrl, "state_uhs");
host->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto e_free_mmc;
}
host->clk = devm_clk_get(dev, NULL);
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
goto e_free_mmc;
}
host->imclk = clk_get_rate(host->clk);
ret = clk_prepare_enable(host->clk);
if (ret < 0)
goto e_free_mmc;
version = usdhi6_read(host, USDHI6_VERSION);
if ((version & 0xfff) != 0xa0d) {
ret = -EPERM;
dev_err(dev, "Version not recognized %x\n", version);
goto e_clk_off;
}
dev_info(dev, "A USDHI6ROL0 SD host detected with %d ports\n",
usdhi6_read(host, USDHI6_SD_PORT_SEL) >> USDHI6_SD_PORT_SEL_PORTS_SHIFT);
usdhi6_mask_all(host);
if (irq_cd >= 0) {
ret = devm_request_irq(dev, irq_cd, usdhi6_cd, 0,
dev_name(dev), host);
if (ret < 0)
goto e_clk_off;
} else {
mmc->caps |= MMC_CAP_NEEDS_POLL;
}
ret = devm_request_threaded_irq(dev, irq_sd, usdhi6_sd, usdhi6_sd_bh, 0,
dev_name(dev), host);
if (ret < 0)
goto e_clk_off;
ret = devm_request_irq(dev, irq_sdio, usdhi6_sdio, 0,
dev_name(dev), host);
if (ret < 0)
goto e_clk_off;
INIT_DELAYED_WORK(&host->timeout_work, usdhi6_timeout_work);
usdhi6_dma_request(host, res->start);
mmc->ops = &usdhi6_ops;
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED |
MMC_CAP_SDIO_IRQ;
/* Set .max_segs to some random number. Feel free to adjust. */
mmc->max_segs = 32;
mmc->max_blk_size = 512;
mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
/*
* Setting .max_seg_size to 1 page would simplify our page-mapping code,
* But OTOH, having large segments makes DMA more efficient. We could
* check, whether we managed to get DMA and fall back to 1 page
* segments, but if we do manage to obtain DMA and then it fails at
* run-time and we fall back to PIO, we will continue getting large
* segments. So, we wouldn't be able to get rid of the code anyway.
*/
mmc->max_seg_size = mmc->max_req_size;
if (!mmc->f_max)
mmc->f_max = host->imclk;
mmc->f_min = host->imclk / 512;
platform_set_drvdata(pdev, host);
ret = mmc_add_host(mmc);
if (ret < 0)
goto e_release_dma;
return 0;
e_release_dma:
usdhi6_dma_release(host);
e_clk_off:
clk_disable_unprepare(host->clk);
e_free_mmc:
mmc_free_host(mmc);
return ret;
}
static void usdhi6_remove(struct platform_device *pdev)
{
struct usdhi6_host *host = platform_get_drvdata(pdev);
mmc_remove_host(host->mmc);
usdhi6_mask_all(host);
cancel_delayed_work_sync(&host->timeout_work);
usdhi6_dma_release(host);
clk_disable_unprepare(host->clk);
mmc_free_host(host->mmc);
}
static struct platform_driver usdhi6_driver = {
.probe = usdhi6_probe,
.remove_new = usdhi6_remove,
.driver = {
.name = "usdhi6rol0",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = usdhi6_of_match,
},
};
module_platform_driver(usdhi6_driver);
MODULE_DESCRIPTION("Renesas usdhi6rol0 SD/SDIO host driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:usdhi6rol0");
MODULE_AUTHOR("Guennadi Liakhovetski <[email protected]>");
| linux-master | drivers/mmc/host/usdhi6rol0.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) Sunplus Inc.
* Author: Tony Huang <[email protected]>
* Author: Li-hao Kuo <[email protected]>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#define SPMMC_MIN_CLK 400000
#define SPMMC_MAX_CLK 52000000
#define SPMMC_MAX_BLK_COUNT 65536
#define SPMMC_MAX_TUNABLE_DLY 7
#define SPMMC_TIMEOUT_US 500000
#define SPMMC_POLL_DELAY_US 10
#define SPMMC_CARD_MEDIATYPE_SRCDST_REG 0x0000
#define SPMMC_MEDIA_TYPE GENMASK(2, 0)
#define SPMMC_DMA_SOURCE GENMASK(6, 4)
#define SPMMC_DMA_DESTINATION GENMASK(10, 8)
#define SPMMC_MEDIA_NONE 0
#define SPMMC_MEDIA_SD 6
#define SPMMC_MEDIA_MS 7
#define SPMMC_SDRAM_SECTOR_0_SIZE_REG 0x0008
#define SPMMC_DMA_BASE_ADDR_REG 0x000C
#define SPMMC_HW_DMA_CTRL_REG 0x0010
#define SPMMC_HW_DMA_RST BIT(9)
#define SPMMC_DMAIDLE BIT(10)
#define SPMMC_MAX_DMA_MEMORY_SECTORS 8
#define SPMMC_SDRAM_SECTOR_1_ADDR_REG 0x0018
#define SPMMC_SDRAM_SECTOR_1_LENG_REG 0x001C
#define SPMMC_SDRAM_SECTOR_2_ADDR_REG 0x0020
#define SPMMC_SDRAM_SECTOR_2_LENG_REG 0x0024
#define SPMMC_SDRAM_SECTOR_3_ADDR_REG 0x0028
#define SPMMC_SDRAM_SECTOR_3_LENG_REG 0x002C
#define SPMMC_SDRAM_SECTOR_4_ADDR_REG 0x0030
#define SPMMC_SDRAM_SECTOR_4_LENG_REG 0x0034
#define SPMMC_SDRAM_SECTOR_5_ADDR_REG 0x0038
#define SPMMC_SDRAM_SECTOR_5_LENG_REG 0x003C
#define SPMMC_SDRAM_SECTOR_6_ADDR_REG 0x0040
#define SPMMC_SDRAM_SECTOR_6_LENG_REG 0x0044
#define SPMMC_SDRAM_SECTOR_7_ADDR_REG 0x0048
#define SPMMC_SDRAM_SECTOR_7_LENG_REG 0x004C
#define SPMMC_SD_INT_REG 0x0088
#define SPMMC_SDINT_SDCMPEN BIT(0)
#define SPMMC_SDINT_SDCMP BIT(1)
#define SPMMC_SDINT_SDCMPCLR BIT(2)
#define SPMMC_SDINT_SDIOEN BIT(3)
#define SPMMC_SDINT_SDIO BIT(4)
#define SPMMC_SDINT_SDIOCLR BIT(5)
#define SPMMC_SD_PAGE_NUM_REG 0x008C
#define SPMMC_SD_CONFIG0_REG 0x0090
#define SPMMC_SD_PIO_MODE BIT(0)
#define SPMMC_SD_DDR_MODE BIT(1)
#define SPMMC_SD_LEN_MODE BIT(2)
#define SPMMC_SD_TRANS_MODE GENMASK(5, 4)
#define SPMMC_SD_AUTO_RESPONSE BIT(6)
#define SPMMC_SD_CMD_DUMMY BIT(7)
#define SPMMC_SD_RSP_CHK_EN BIT(8)
#define SPMMC_SDIO_MODE BIT(9)
#define SPMMC_SD_MMC_MODE BIT(10)
#define SPMMC_SD_DATA_WD BIT(11)
#define SPMMC_RX4_EN BIT(14)
#define SPMMC_SD_RSP_TYPE BIT(15)
#define SPMMC_MMC8_EN BIT(18)
#define SPMMC_CLOCK_DIVISION GENMASK(31, 20)
#define SPMMC_SDIO_CTRL_REG 0x0094
#define SPMMC_INT_MULTI_TRIG BIT(6)
#define SPMMC_SD_RST_REG 0x0098
#define SPMMC_SD_CTRL_REG 0x009C
#define SPMMC_NEW_COMMAND_TRIGGER BIT(0)
#define SPMMC_DUMMY_CLOCK_TRIGGER BIT(1)
#define SPMMC_SD_STATUS_REG 0x00A0
#define SPMMC_SDSTATUS_DUMMY_READY BIT(0)
#define SPMMC_SDSTATUS_RSP_BUF_FULL BIT(1)
#define SPMMC_SDSTATUS_TX_DATA_BUF_EMPTY BIT(2)
#define SPMMC_SDSTATUS_RX_DATA_BUF_FULL BIT(3)
#define SPMMC_SDSTATUS_CMD_PIN_STATUS BIT(4)
#define SPMMC_SDSTATUS_DAT0_PIN_STATUS BIT(5)
#define SPMMC_SDSTATUS_RSP_TIMEOUT BIT(6)
#define SPMMC_SDSTATUS_CARD_CRC_CHECK_TIMEOUT BIT(7)
#define SPMMC_SDSTATUS_STB_TIMEOUT BIT(8)
#define SPMMC_SDSTATUS_RSP_CRC7_ERROR BIT(9)
#define SPMMC_SDSTATUS_CRC_TOKEN_CHECK_ERROR BIT(10)
#define SPMMC_SDSTATUS_RDATA_CRC16_ERROR BIT(11)
#define SPMMC_SDSTATUS_SUSPEND_STATE_READY BIT(12)
#define SPMMC_SDSTATUS_BUSY_CYCLE BIT(13)
#define SPMMC_SDSTATUS_DAT1_PIN_STATUS BIT(14)
#define SPMMC_SDSTATUS_SD_SENSE_STATUS BIT(15)
#define SPMMC_SDSTATUS_BOOT_ACK_TIMEOUT BIT(16)
#define SPMMC_SDSTATUS_BOOT_DATA_TIMEOUT BIT(17)
#define SPMMC_SDSTATUS_BOOT_ACK_ERROR BIT(18)
#define SPMMC_SD_STATE_REG 0x00A4
#define SPMMC_CRCTOKEN_CHECK_RESULT GENMASK(6, 4)
#define SPMMC_SDSTATE_ERROR BIT(13)
#define SPMMC_SDSTATE_FINISH BIT(14)
#define SPMMC_SD_HW_STATE_REG 0x00A8
#define SPMMC_SD_BLOCKSIZE_REG 0x00AC
#define SPMMC_SD_CONFIG1_REG 0x00B0
#define SPMMC_TX_DUMMY_NUM GENMASK(8, 0)
#define SPMMC_SD_HIGH_SPEED_EN BIT(31)
#define SPMMC_SD_TIMING_CONFIG0_REG 0x00B4
#define SPMMC_SD_CLOCK_DELAY GENMASK(2, 0)
#define SPMMC_SD_WRITE_DATA_DELAY GENMASK(6, 4)
#define SPMMC_SD_WRITE_COMMAND_DELAY GENMASK(10, 8)
#define SPMMC_SD_READ_RESPONSE_DELAY GENMASK(14, 12)
#define SPMMC_SD_READ_DATA_DELAY GENMASK(18, 16)
#define SPMMC_SD_READ_CRC_DELAY GENMASK(22, 20)
#define SPMMC_SD_PIODATATX_REG 0x00BC
#define SPMMC_SD_PIODATARX_REG 0x00C0
#define SPMMC_SD_CMDBUF0_3_REG 0x00C4
#define SPMMC_SD_CMDBUF4_REG 0x00C8
#define SPMMC_SD_RSPBUF0_3_REG 0x00CC
#define SPMMC_SD_RSPBUF4_5_REG 0x00D0
#define SPMMC_MAX_RETRIES (8 * 8)
struct spmmc_tuning_info {
int enable_tuning;
int need_tuning;
int retried; /* how many times has been retried */
u32 rd_crc_dly:3;
u32 rd_dat_dly:3;
u32 rd_rsp_dly:3;
u32 wr_cmd_dly:3;
u32 wr_dat_dly:3;
u32 clk_dly:3;
};
#define SPMMC_DMA_MODE 0
#define SPMMC_PIO_MODE 1
struct spmmc_host {
void __iomem *base;
struct clk *clk;
struct reset_control *rstc;
struct mmc_host *mmc;
struct mmc_request *mrq; /* current mrq */
int irq;
int dmapio_mode;
struct spmmc_tuning_info tuning_info;
int dma_int_threshold;
int dma_use_int;
};
static inline int spmmc_wait_finish(struct spmmc_host *host)
{
u32 state;
return readl_poll_timeout(host->base + SPMMC_SD_STATE_REG, state,
(state & SPMMC_SDSTATE_FINISH),
SPMMC_POLL_DELAY_US, SPMMC_TIMEOUT_US);
}
static inline int spmmc_wait_sdstatus(struct spmmc_host *host, unsigned int status_bit)
{
u32 status;
return readl_poll_timeout(host->base + SPMMC_SD_STATUS_REG, status,
(status & status_bit),
SPMMC_POLL_DELAY_US, SPMMC_TIMEOUT_US);
}
#define spmmc_wait_rspbuf_full(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_RSP_BUF_FULL)
#define spmmc_wait_rxbuf_full(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_RX_DATA_BUF_FULL)
#define spmmc_wait_txbuf_empty(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_TX_DATA_BUF_EMPTY)
static void spmmc_get_rsp(struct spmmc_host *host, struct mmc_command *cmd)
{
u32 value0_3, value4_5;
if (!(cmd->flags & MMC_RSP_PRESENT))
return;
if (cmd->flags & MMC_RSP_136) {
if (spmmc_wait_rspbuf_full(host))
return;
value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG);
value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff;
cmd->resp[0] = (value0_3 << 8) | (value4_5 >> 8);
cmd->resp[1] = value4_5 << 24;
value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG);
value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff;
cmd->resp[1] |= value0_3 >> 8;
cmd->resp[2] = value0_3 << 24;
cmd->resp[2] |= value4_5 << 8;
value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG);
value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff;
cmd->resp[2] |= value0_3 >> 24;
cmd->resp[3] = value0_3 << 8;
cmd->resp[3] |= value4_5 >> 8;
} else {
if (spmmc_wait_rspbuf_full(host))
return;
value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG);
value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff;
cmd->resp[0] = (value0_3 << 8) | (value4_5 >> 8);
cmd->resp[1] = value4_5 << 24;
}
}
static void spmmc_set_bus_clk(struct spmmc_host *host, int clk)
{
unsigned int clkdiv;
int f_min = host->mmc->f_min;
int f_max = host->mmc->f_max;
u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG);
if (clk < f_min)
clk = f_min;
if (clk > f_max)
clk = f_max;
clkdiv = (clk_get_rate(host->clk) + clk) / clk - 1;
if (clkdiv > 0xfff)
clkdiv = 0xfff;
value &= ~SPMMC_CLOCK_DIVISION;
value |= FIELD_PREP(SPMMC_CLOCK_DIVISION, clkdiv);
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
static void spmmc_set_bus_timing(struct spmmc_host *host, unsigned int timing)
{
u32 value = readl(host->base + SPMMC_SD_CONFIG1_REG);
int clkdiv = FIELD_GET(SPMMC_CLOCK_DIVISION, readl(host->base + SPMMC_SD_CONFIG0_REG));
int delay = clkdiv / 2 < 7 ? clkdiv / 2 : 7;
int hs_en = 1, ddr_enabled = 0;
switch (timing) {
case MMC_TIMING_LEGACY:
hs_en = 0;
break;
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR50:
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
hs_en = 1;
break;
case MMC_TIMING_UHS_DDR50:
ddr_enabled = 1;
break;
case MMC_TIMING_MMC_DDR52:
ddr_enabled = 1;
break;
default:
hs_en = 0;
break;
}
if (hs_en) {
value |= SPMMC_SD_HIGH_SPEED_EN;
writel(value, host->base + SPMMC_SD_CONFIG1_REG);
value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG);
value &= ~SPMMC_SD_WRITE_DATA_DELAY;
value |= FIELD_PREP(SPMMC_SD_WRITE_DATA_DELAY, delay);
value &= ~SPMMC_SD_WRITE_COMMAND_DELAY;
value |= FIELD_PREP(SPMMC_SD_WRITE_COMMAND_DELAY, delay);
writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG);
} else {
value &= ~SPMMC_SD_HIGH_SPEED_EN;
writel(value, host->base + SPMMC_SD_CONFIG1_REG);
}
if (ddr_enabled) {
value = readl(host->base + SPMMC_SD_CONFIG0_REG);
value |= SPMMC_SD_DDR_MODE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
} else {
value = readl(host->base + SPMMC_SD_CONFIG0_REG);
value &= ~SPMMC_SD_DDR_MODE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
}
static void spmmc_set_bus_width(struct spmmc_host *host, int width)
{
u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG);
switch (width) {
case MMC_BUS_WIDTH_8:
value &= ~SPMMC_SD_DATA_WD;
value |= SPMMC_MMC8_EN;
break;
case MMC_BUS_WIDTH_4:
value |= SPMMC_SD_DATA_WD;
value &= ~SPMMC_MMC8_EN;
break;
default:
value &= ~SPMMC_SD_DATA_WD;
value &= ~SPMMC_MMC8_EN;
break;
}
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
/*
* select the working mode of controller: sd/sdio/emmc
*/
static void spmmc_set_sdmmc_mode(struct spmmc_host *host)
{
u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG);
value |= SPMMC_SD_MMC_MODE;
value &= ~SPMMC_SDIO_MODE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
static void spmmc_sw_reset(struct spmmc_host *host)
{
u32 value;
/*
* Must reset dma operation first, or it will
* be stuck on sd_state == 0x1c00 because of
* a controller software reset bug
*/
value = readl(host->base + SPMMC_HW_DMA_CTRL_REG);
value |= SPMMC_DMAIDLE;
writel(value, host->base + SPMMC_HW_DMA_CTRL_REG);
value &= ~SPMMC_DMAIDLE;
writel(value, host->base + SPMMC_HW_DMA_CTRL_REG);
value = readl(host->base + SPMMC_HW_DMA_CTRL_REG);
value |= SPMMC_HW_DMA_RST;
writel(value, host->base + SPMMC_HW_DMA_CTRL_REG);
writel(0x7, host->base + SPMMC_SD_RST_REG);
readl_poll_timeout_atomic(host->base + SPMMC_SD_HW_STATE_REG, value,
!(value & BIT(6)), 1, SPMMC_TIMEOUT_US);
}
static void spmmc_prepare_cmd(struct spmmc_host *host, struct mmc_command *cmd)
{
u32 value;
/* add start bit, according to spec, command format */
value = ((cmd->opcode | 0x40) << 24) | (cmd->arg >> 8);
writel(value, host->base + SPMMC_SD_CMDBUF0_3_REG);
writeb(cmd->arg & 0xff, host->base + SPMMC_SD_CMDBUF4_REG);
/* disable interrupt if needed */
value = readl(host->base + SPMMC_SD_INT_REG);
value |= SPMMC_SDINT_SDCMPCLR;
value &= ~SPMMC_SDINT_SDCMPEN;
writel(value, host->base + SPMMC_SD_INT_REG);
value = readl(host->base + SPMMC_SD_CONFIG0_REG);
value &= ~SPMMC_SD_TRANS_MODE;
value |= SPMMC_SD_CMD_DUMMY;
if (cmd->flags & MMC_RSP_PRESENT) {
value |= SPMMC_SD_AUTO_RESPONSE;
} else {
value &= ~SPMMC_SD_AUTO_RESPONSE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
return;
}
/*
* Currently, host is not capable of checking R2's CRC7,
* thus, enable crc7 check only for 48 bit response commands
*/
if (cmd->flags & MMC_RSP_CRC && !(cmd->flags & MMC_RSP_136))
value |= SPMMC_SD_RSP_CHK_EN;
else
value &= ~SPMMC_SD_RSP_CHK_EN;
if (cmd->flags & MMC_RSP_136)
value |= SPMMC_SD_RSP_TYPE;
else
value &= ~SPMMC_SD_RSP_TYPE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
static void spmmc_prepare_data(struct spmmc_host *host, struct mmc_data *data)
{
u32 value, srcdst;
writel(data->blocks - 1, host->base + SPMMC_SD_PAGE_NUM_REG);
writel(data->blksz - 1, host->base + SPMMC_SD_BLOCKSIZE_REG);
value = readl(host->base + SPMMC_SD_CONFIG0_REG);
if (data->flags & MMC_DATA_READ) {
value &= ~SPMMC_SD_TRANS_MODE;
value |= FIELD_PREP(SPMMC_SD_TRANS_MODE, 2);
value &= ~SPMMC_SD_AUTO_RESPONSE;
value &= ~SPMMC_SD_CMD_DUMMY;
srcdst = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
srcdst &= ~SPMMC_DMA_SOURCE;
srcdst |= FIELD_PREP(SPMMC_DMA_SOURCE, 0x2);
srcdst &= ~SPMMC_DMA_DESTINATION;
srcdst |= FIELD_PREP(SPMMC_DMA_DESTINATION, 0x1);
writel(srcdst, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
} else {
value &= ~SPMMC_SD_TRANS_MODE;
value |= FIELD_PREP(SPMMC_SD_TRANS_MODE, 1);
srcdst = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
srcdst &= ~SPMMC_DMA_SOURCE;
srcdst |= FIELD_PREP(SPMMC_DMA_SOURCE, 0x1);
srcdst &= ~SPMMC_DMA_DESTINATION;
srcdst |= FIELD_PREP(SPMMC_DMA_DESTINATION, 0x2);
writel(srcdst, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
}
value |= SPMMC_SD_LEN_MODE;
if (host->dmapio_mode == SPMMC_DMA_MODE) {
struct scatterlist *sg;
dma_addr_t dma_addr;
unsigned int dma_size;
int i, count = 1;
count = dma_map_sg(host->mmc->parent, data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (!count || count > SPMMC_MAX_DMA_MEMORY_SECTORS) {
data->error = -EINVAL;
return;
}
for_each_sg(data->sg, sg, count, i) {
dma_addr = sg_dma_address(sg);
dma_size = sg_dma_len(sg) / data->blksz - 1;
if (i == 0) {
writel(dma_addr, host->base + SPMMC_DMA_BASE_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_0_SIZE_REG);
} else if (i == 1) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_1_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_1_LENG_REG);
} else if (i == 2) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_2_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_2_LENG_REG);
} else if (i == 3) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_3_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_3_LENG_REG);
} else if (i == 4) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_4_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_4_LENG_REG);
} else if (i == 5) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_5_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_5_LENG_REG);
} else if (i == 6) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_6_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_6_LENG_REG);
} else if (i == 7) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_7_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_7_LENG_REG);
}
}
value &= ~SPMMC_SD_PIO_MODE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
/* enable interrupt if needed */
if (data->blksz * data->blocks > host->dma_int_threshold) {
host->dma_use_int = 1;
value = readl(host->base + SPMMC_SD_INT_REG);
value &= ~SPMMC_SDINT_SDCMPEN;
value |= FIELD_PREP(SPMMC_SDINT_SDCMPEN, 1); /* sdcmpen */
writel(value, host->base + SPMMC_SD_INT_REG);
}
} else {
value |= SPMMC_SD_PIO_MODE;
value |= SPMMC_RX4_EN;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
}
static inline void spmmc_trigger_transaction(struct spmmc_host *host)
{
u32 value = readl(host->base + SPMMC_SD_CTRL_REG);
value |= SPMMC_NEW_COMMAND_TRIGGER;
writel(value, host->base + SPMMC_SD_CTRL_REG);
}
static void spmmc_send_stop_cmd(struct spmmc_host *host)
{
struct mmc_command stop = {};
u32 value;
stop.opcode = MMC_STOP_TRANSMISSION;
stop.arg = 0;
stop.flags = MMC_RSP_R1B;
spmmc_prepare_cmd(host, &stop);
value = readl(host->base + SPMMC_SD_INT_REG);
value &= ~SPMMC_SDINT_SDCMPEN;
value |= FIELD_PREP(SPMMC_SDINT_SDCMPEN, 0);
writel(value, host->base + SPMMC_SD_INT_REG);
spmmc_trigger_transaction(host);
readl_poll_timeout(host->base + SPMMC_SD_STATE_REG, value,
(value & SPMMC_SDSTATE_FINISH), 1, SPMMC_TIMEOUT_US);
}
static int spmmc_check_error(struct spmmc_host *host, struct mmc_request *mrq)
{
int ret = 0;
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
u32 value = readl(host->base + SPMMC_SD_STATE_REG);
u32 crc_token = FIELD_GET(SPMMC_CRCTOKEN_CHECK_RESULT, value);
if (value & SPMMC_SDSTATE_ERROR) {
u32 timing_cfg0 = 0;
value = readl(host->base + SPMMC_SD_STATUS_REG);
if (host->tuning_info.enable_tuning) {
timing_cfg0 = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG);
host->tuning_info.rd_crc_dly = FIELD_GET(SPMMC_SD_READ_CRC_DELAY,
timing_cfg0);
host->tuning_info.rd_dat_dly = FIELD_GET(SPMMC_SD_READ_DATA_DELAY,
timing_cfg0);
host->tuning_info.rd_rsp_dly = FIELD_GET(SPMMC_SD_READ_RESPONSE_DELAY,
timing_cfg0);
host->tuning_info.wr_cmd_dly = FIELD_GET(SPMMC_SD_WRITE_COMMAND_DELAY,
timing_cfg0);
host->tuning_info.wr_dat_dly = FIELD_GET(SPMMC_SD_WRITE_DATA_DELAY,
timing_cfg0);
}
if (value & SPMMC_SDSTATUS_RSP_TIMEOUT) {
ret = -ETIMEDOUT;
host->tuning_info.wr_cmd_dly++;
} else if (value & SPMMC_SDSTATUS_RSP_CRC7_ERROR) {
ret = -EILSEQ;
host->tuning_info.rd_rsp_dly++;
} else if (data) {
if ((value & SPMMC_SDSTATUS_STB_TIMEOUT)) {
ret = -ETIMEDOUT;
host->tuning_info.rd_dat_dly++;
} else if (value & SPMMC_SDSTATUS_RDATA_CRC16_ERROR) {
ret = -EILSEQ;
host->tuning_info.rd_dat_dly++;
} else if (value & SPMMC_SDSTATUS_CARD_CRC_CHECK_TIMEOUT) {
ret = -ETIMEDOUT;
host->tuning_info.rd_crc_dly++;
} else if (value & SPMMC_SDSTATUS_CRC_TOKEN_CHECK_ERROR) {
ret = -EILSEQ;
if (crc_token == 0x5)
host->tuning_info.wr_dat_dly++;
else
host->tuning_info.rd_crc_dly++;
}
}
cmd->error = ret;
if (data) {
data->error = ret;
data->bytes_xfered = 0;
}
if (!host->tuning_info.need_tuning && host->tuning_info.enable_tuning)
cmd->retries = SPMMC_MAX_RETRIES;
spmmc_sw_reset(host);
if (host->tuning_info.enable_tuning) {
timing_cfg0 &= ~SPMMC_SD_READ_CRC_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY,
host->tuning_info.rd_crc_dly);
timing_cfg0 &= ~SPMMC_SD_READ_DATA_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY,
host->tuning_info.rd_dat_dly);
timing_cfg0 &= ~SPMMC_SD_READ_RESPONSE_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY,
host->tuning_info.rd_rsp_dly);
timing_cfg0 &= ~SPMMC_SD_WRITE_COMMAND_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_WRITE_COMMAND_DELAY,
host->tuning_info.wr_cmd_dly);
timing_cfg0 &= ~SPMMC_SD_WRITE_DATA_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_WRITE_DATA_DELAY,
host->tuning_info.wr_dat_dly);
writel(timing_cfg0, host->base + SPMMC_SD_TIMING_CONFIG0_REG);
}
} else if (data) {
data->error = 0;
data->bytes_xfered = data->blocks * data->blksz;
}
host->tuning_info.need_tuning = ret;
return ret;
}
/*
* the strategy is:
* 1. if several continuous delays are acceptable, we choose a middle one;
* 2. otherwise, we choose the first one.
*/
static inline int spmmc_find_best_delay(u8 candidate_dly)
{
int f, w, value;
if (!candidate_dly)
return 0;
f = ffs(candidate_dly) - 1;
w = hweight8(candidate_dly);
value = ((1 << w) - 1) << f;
if (0xff == (value & ~candidate_dly))
return (f + w / 2);
else
return (f);
}
static void spmmc_xfer_data_pio(struct spmmc_host *host, struct mmc_data *data)
{
u32 *buf;
int data_left = data->blocks * data->blksz;
int consumed, remain;
struct sg_mapping_iter sg_miter;
unsigned int flags = 0;
if (data->flags & MMC_DATA_WRITE)
flags |= SG_MITER_FROM_SG;
else
flags |= SG_MITER_TO_SG;
sg_miter_start(&sg_miter, data->sg, data->sg_len, flags);
while (data_left > 0) {
consumed = 0;
if (!sg_miter_next(&sg_miter))
break;
buf = sg_miter.addr;
remain = sg_miter.length;
do {
if (data->flags & MMC_DATA_WRITE) {
if (spmmc_wait_txbuf_empty(host))
goto done;
writel(*buf, host->base + SPMMC_SD_PIODATATX_REG);
} else {
if (spmmc_wait_rxbuf_full(host))
goto done;
*buf = readl(host->base + SPMMC_SD_PIODATARX_REG);
}
buf++;
/* tx/rx 4 bytes one time in pio mode */
consumed += 4;
remain -= 4;
} while (remain);
sg_miter.consumed = consumed;
data_left -= consumed;
}
done:
sg_miter_stop(&sg_miter);
}
static void spmmc_controller_init(struct spmmc_host *host)
{
u32 value;
int ret = reset_control_assert(host->rstc);
if (!ret) {
usleep_range(1000, 1250);
ret = reset_control_deassert(host->rstc);
}
value = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
value &= ~SPMMC_MEDIA_TYPE;
value |= FIELD_PREP(SPMMC_MEDIA_TYPE, SPMMC_MEDIA_SD);
writel(value, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
}
/*
* 1. unmap scatterlist if needed;
* 2. get response & check error conditions;
* 3. notify mmc layer the request is done
*/
static void spmmc_finish_request(struct spmmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd;
struct mmc_data *data;
if (!mrq)
return;
cmd = mrq->cmd;
data = mrq->data;
if (data && SPMMC_DMA_MODE == host->dmapio_mode) {
dma_unmap_sg(host->mmc->parent, data->sg, data->sg_len, mmc_get_dma_dir(data));
host->dma_use_int = 0;
}
spmmc_get_rsp(host, cmd);
spmmc_check_error(host, mrq);
if (mrq->stop)
spmmc_send_stop_cmd(host);
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
/* Interrupt Service Routine */
static irqreturn_t spmmc_irq(int irq, void *dev_id)
{
struct spmmc_host *host = dev_id;
u32 value = readl(host->base + SPMMC_SD_INT_REG);
if ((value & SPMMC_SDINT_SDCMP) && (value & SPMMC_SDINT_SDCMPEN)) {
value &= ~SPMMC_SDINT_SDCMPEN;
value |= SPMMC_SDINT_SDCMPCLR;
writel(value, host->base + SPMMC_SD_INT_REG);
return IRQ_WAKE_THREAD;
}
return IRQ_HANDLED;
}
static void spmmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct spmmc_host *host = mmc_priv(mmc);
struct mmc_data *data;
struct mmc_command *cmd;
host->mrq = mrq;
data = mrq->data;
cmd = mrq->cmd;
spmmc_prepare_cmd(host, cmd);
/* we need manually read response R2. */
if (cmd->flags & MMC_RSP_136) {
spmmc_trigger_transaction(host);
spmmc_get_rsp(host, cmd);
spmmc_wait_finish(host);
spmmc_check_error(host, mrq);
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
} else {
if (data)
spmmc_prepare_data(host, data);
if (host->dmapio_mode == SPMMC_PIO_MODE && data) {
u32 value;
/* pio data transfer do not use interrupt */
value = readl(host->base + SPMMC_SD_INT_REG);
value &= ~SPMMC_SDINT_SDCMPEN;
writel(value, host->base + SPMMC_SD_INT_REG);
spmmc_trigger_transaction(host);
spmmc_xfer_data_pio(host, data);
spmmc_wait_finish(host);
spmmc_finish_request(host, mrq);
} else {
if (host->dma_use_int) {
spmmc_trigger_transaction(host);
} else {
spmmc_trigger_transaction(host);
spmmc_wait_finish(host);
spmmc_finish_request(host, mrq);
}
}
}
}
static void spmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct spmmc_host *host = (struct spmmc_host *)mmc_priv(mmc);
spmmc_set_bus_clk(host, ios->clock);
spmmc_set_bus_timing(host, ios->timing);
spmmc_set_bus_width(host, ios->bus_width);
/* ensure mode is correct, because we might have hw reset the controller */
spmmc_set_sdmmc_mode(host);
}
/*
* Return values for the get_cd callback should be:
* 0 for a absent card
* 1 for a present card
* -ENOSYS when not supported (equal to NULL callback)
* or a negative errno value when something bad happened
*/
static int spmmc_get_cd(struct mmc_host *mmc)
{
int ret = 0;
if (mmc_can_gpio_cd(mmc))
ret = mmc_gpio_get_cd(mmc);
if (ret < 0)
ret = 0;
return ret;
}
static int spmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct spmmc_host *host = mmc_priv(mmc);
u8 smpl_dly = 0, candidate_dly = 0;
u32 value;
host->tuning_info.enable_tuning = 0;
do {
value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG);
value &= ~SPMMC_SD_READ_RESPONSE_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY, smpl_dly);
value &= ~SPMMC_SD_READ_DATA_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY, smpl_dly);
value &= ~SPMMC_SD_READ_CRC_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY, smpl_dly);
writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG);
if (!mmc_send_tuning(mmc, opcode, NULL)) {
candidate_dly |= (1 << smpl_dly);
break;
}
} while (smpl_dly++ <= SPMMC_MAX_TUNABLE_DLY);
host->tuning_info.enable_tuning = 1;
if (candidate_dly) {
smpl_dly = spmmc_find_best_delay(candidate_dly);
value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG);
value &= ~SPMMC_SD_READ_RESPONSE_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY, smpl_dly);
value &= ~SPMMC_SD_READ_DATA_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY, smpl_dly);
value &= ~SPMMC_SD_READ_CRC_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY, smpl_dly);
writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG);
return 0;
}
return -EIO;
}
static const struct mmc_host_ops spmmc_ops = {
.request = spmmc_request,
.set_ios = spmmc_set_ios,
.get_cd = spmmc_get_cd,
.execute_tuning = spmmc_execute_tuning,
};
static irqreturn_t spmmc_func_finish_req(int irq, void *dev_id)
{
struct spmmc_host *host = dev_id;
spmmc_finish_request(host, host->mrq);
return IRQ_HANDLED;
}
static int spmmc_drv_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct resource *res;
struct spmmc_host *host;
int ret = 0;
mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(struct spmmc_host));
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->mmc = mmc;
host->dmapio_mode = SPMMC_DMA_MODE;
host->dma_int_threshold = 1024;
host->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(host->base))
return PTR_ERR(host->base);
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(host->clk), "clk get fail\n");
host->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(host->rstc))
return dev_err_probe(&pdev->dev, PTR_ERR(host->rstc), "rst get fail\n");
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0)
return host->irq;
ret = devm_request_threaded_irq(&pdev->dev, host->irq,
spmmc_irq, spmmc_func_finish_req, IRQF_SHARED,
NULL, host);
if (ret)
return ret;
ret = clk_prepare_enable(host->clk);
if (ret)
return dev_err_probe(&pdev->dev, ret, "failed to enable clk\n");
ret = mmc_of_parse(mmc);
if (ret)
goto clk_disable;
mmc->ops = &spmmc_ops;
mmc->f_min = SPMMC_MIN_CLK;
if (mmc->f_max > SPMMC_MAX_CLK)
mmc->f_max = SPMMC_MAX_CLK;
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto clk_disable;
if (!mmc->ocr_avail)
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_seg_size = SPMMC_MAX_BLK_COUNT * 512;
mmc->max_segs = SPMMC_MAX_DMA_MEMORY_SECTORS;
mmc->max_req_size = SPMMC_MAX_BLK_COUNT * 512;
mmc->max_blk_size = 512;
mmc->max_blk_count = SPMMC_MAX_BLK_COUNT;
dev_set_drvdata(&pdev->dev, host);
spmmc_controller_init(host);
spmmc_set_sdmmc_mode(host);
host->tuning_info.enable_tuning = 1;
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = mmc_add_host(mmc);
if (ret)
goto pm_disable;
return 0;
pm_disable:
pm_runtime_disable(&pdev->dev);
clk_disable:
clk_disable_unprepare(host->clk);
return ret;
}
static void spmmc_drv_remove(struct platform_device *dev)
{
struct spmmc_host *host = platform_get_drvdata(dev);
mmc_remove_host(host->mmc);
pm_runtime_get_sync(&dev->dev);
clk_disable_unprepare(host->clk);
pm_runtime_put_noidle(&dev->dev);
pm_runtime_disable(&dev->dev);
}
static int spmmc_pm_runtime_suspend(struct device *dev)
{
struct spmmc_host *host;
host = dev_get_drvdata(dev);
clk_disable_unprepare(host->clk);
return 0;
}
static int spmmc_pm_runtime_resume(struct device *dev)
{
struct spmmc_host *host;
host = dev_get_drvdata(dev);
return clk_prepare_enable(host->clk);
}
static DEFINE_RUNTIME_DEV_PM_OPS(spmmc_pm_ops, spmmc_pm_runtime_suspend,
spmmc_pm_runtime_resume, NULL);
static const struct of_device_id spmmc_of_table[] = {
{
.compatible = "sunplus,sp7021-mmc",
},
{/* sentinel */}
};
MODULE_DEVICE_TABLE(of, spmmc_of_table);
static struct platform_driver spmmc_driver = {
.probe = spmmc_drv_probe,
.remove_new = spmmc_drv_remove,
.driver = {
.name = "spmmc",
.pm = pm_ptr(&spmmc_pm_ops),
.of_match_table = spmmc_of_table,
},
};
module_platform_driver(spmmc_driver);
MODULE_AUTHOR("Tony Huang <[email protected]>");
MODULE_AUTHOR("Li-hao Kuo <[email protected]>");
MODULE_DESCRIPTION("Sunplus MMC controller driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/mmc/host/sunplus-mmc.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2010 Google, Inc.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/ktime.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <soc/tegra/common.h>
#include "sdhci-cqhci.h"
#include "sdhci-pltfm.h"
#include "cqhci.h"
/* Tegra SDHOST controller vendor register definitions */
#define SDHCI_TEGRA_VENDOR_CLOCK_CTRL 0x100
#define SDHCI_CLOCK_CTRL_TAP_MASK 0x00ff0000
#define SDHCI_CLOCK_CTRL_TAP_SHIFT 16
#define SDHCI_CLOCK_CTRL_TRIM_MASK 0x1f000000
#define SDHCI_CLOCK_CTRL_TRIM_SHIFT 24
#define SDHCI_CLOCK_CTRL_SDR50_TUNING_OVERRIDE BIT(5)
#define SDHCI_CLOCK_CTRL_PADPIPE_CLKEN_OVERRIDE BIT(3)
#define SDHCI_CLOCK_CTRL_SPI_MODE_CLKEN_OVERRIDE BIT(2)
#define SDHCI_TEGRA_VENDOR_SYS_SW_CTRL 0x104
#define SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE BIT(31)
#define SDHCI_TEGRA_VENDOR_CAP_OVERRIDES 0x10c
#define SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_MASK 0x00003f00
#define SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_SHIFT 8
#define SDHCI_TEGRA_VENDOR_MISC_CTRL 0x120
#define SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT BIT(0)
#define SDHCI_MISC_CTRL_ENABLE_SDR104 0x8
#define SDHCI_MISC_CTRL_ENABLE_SDR50 0x10
#define SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300 0x20
#define SDHCI_MISC_CTRL_ENABLE_DDR50 0x200
#define SDHCI_TEGRA_VENDOR_DLLCAL_CFG 0x1b0
#define SDHCI_TEGRA_DLLCAL_CALIBRATE BIT(31)
#define SDHCI_TEGRA_VENDOR_DLLCAL_STA 0x1bc
#define SDHCI_TEGRA_DLLCAL_STA_ACTIVE BIT(31)
#define SDHCI_VNDR_TUN_CTRL0_0 0x1c0
#define SDHCI_VNDR_TUN_CTRL0_TUN_HW_TAP 0x20000
#define SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_MASK 0x03fc0000
#define SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_SHIFT 18
#define SDHCI_VNDR_TUN_CTRL0_MUL_M_MASK 0x00001fc0
#define SDHCI_VNDR_TUN_CTRL0_MUL_M_SHIFT 6
#define SDHCI_VNDR_TUN_CTRL0_TUN_ITER_MASK 0x000e000
#define SDHCI_VNDR_TUN_CTRL0_TUN_ITER_SHIFT 13
#define TRIES_128 2
#define TRIES_256 4
#define SDHCI_VNDR_TUN_CTRL0_TUN_WORD_SEL_MASK 0x7
#define SDHCI_TEGRA_VNDR_TUN_CTRL1_0 0x1c4
#define SDHCI_TEGRA_VNDR_TUN_STATUS0 0x1C8
#define SDHCI_TEGRA_VNDR_TUN_STATUS1 0x1CC
#define SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK 0xFF
#define SDHCI_TEGRA_VNDR_TUN_STATUS1_END_TAP_SHIFT 0x8
#define TUNING_WORD_BIT_SIZE 32
#define SDHCI_TEGRA_AUTO_CAL_CONFIG 0x1e4
#define SDHCI_AUTO_CAL_START BIT(31)
#define SDHCI_AUTO_CAL_ENABLE BIT(29)
#define SDHCI_AUTO_CAL_PDPU_OFFSET_MASK 0x0000ffff
#define SDHCI_TEGRA_SDMEM_COMP_PADCTRL 0x1e0
#define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_MASK 0x0000000f
#define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_VAL 0x7
#define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD BIT(31)
#define SDHCI_COMP_PADCTRL_DRVUPDN_OFFSET_MASK 0x07FFF000
#define SDHCI_TEGRA_AUTO_CAL_STATUS 0x1ec
#define SDHCI_TEGRA_AUTO_CAL_ACTIVE BIT(31)
#define SDHCI_TEGRA_CIF2AXI_CTRL_0 0x1fc
#define NVQUIRK_FORCE_SDHCI_SPEC_200 BIT(0)
#define NVQUIRK_ENABLE_BLOCK_GAP_DET BIT(1)
#define NVQUIRK_ENABLE_SDHCI_SPEC_300 BIT(2)
#define NVQUIRK_ENABLE_SDR50 BIT(3)
#define NVQUIRK_ENABLE_SDR104 BIT(4)
#define NVQUIRK_ENABLE_DDR50 BIT(5)
/*
* HAS_PADCALIB NVQUIRK is for SoC's supporting auto calibration of pads
* drive strength.
*/
#define NVQUIRK_HAS_PADCALIB BIT(6)
/*
* NEEDS_PAD_CONTROL NVQUIRK is for SoC's having separate 3V3 and 1V8 pads.
* 3V3/1V8 pad selection happens through pinctrl state selection depending
* on the signaling mode.
*/
#define NVQUIRK_NEEDS_PAD_CONTROL BIT(7)
#define NVQUIRK_DIS_CARD_CLK_CONFIG_TAP BIT(8)
#define NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING BIT(9)
/*
* NVQUIRK_HAS_TMCLK is for SoC's having separate timeout clock for Tegra
* SDMMC hardware data timeout.
*/
#define NVQUIRK_HAS_TMCLK BIT(10)
#define NVQUIRK_HAS_ANDROID_GPT_SECTOR BIT(11)
#define NVQUIRK_PROGRAM_STREAMID BIT(12)
/* SDMMC CQE Base Address for Tegra Host Ver 4.1 and Higher */
#define SDHCI_TEGRA_CQE_BASE_ADDR 0xF000
#define SDHCI_TEGRA_CQE_TRNS_MODE (SDHCI_TRNS_MULTI | \
SDHCI_TRNS_BLK_CNT_EN | \
SDHCI_TRNS_DMA)
struct sdhci_tegra_soc_data {
const struct sdhci_pltfm_data *pdata;
u64 dma_mask;
u32 nvquirks;
u8 min_tap_delay;
u8 max_tap_delay;
};
/* Magic pull up and pull down pad calibration offsets */
struct sdhci_tegra_autocal_offsets {
u32 pull_up_3v3;
u32 pull_down_3v3;
u32 pull_up_3v3_timeout;
u32 pull_down_3v3_timeout;
u32 pull_up_1v8;
u32 pull_down_1v8;
u32 pull_up_1v8_timeout;
u32 pull_down_1v8_timeout;
u32 pull_up_sdr104;
u32 pull_down_sdr104;
u32 pull_up_hs400;
u32 pull_down_hs400;
};
struct sdhci_tegra {
const struct sdhci_tegra_soc_data *soc_data;
struct gpio_desc *power_gpio;
struct clk *tmclk;
bool ddr_signaling;
bool pad_calib_required;
bool pad_control_available;
struct reset_control *rst;
struct pinctrl *pinctrl_sdmmc;
struct pinctrl_state *pinctrl_state_3v3;
struct pinctrl_state *pinctrl_state_1v8;
struct pinctrl_state *pinctrl_state_3v3_drv;
struct pinctrl_state *pinctrl_state_1v8_drv;
struct sdhci_tegra_autocal_offsets autocal_offsets;
ktime_t last_calib;
u32 default_tap;
u32 default_trim;
u32 dqs_trim;
bool enable_hwcq;
unsigned long curr_clk_rate;
u8 tuned_tap_delay;
u32 stream_id;
};
static u16 tegra_sdhci_readw(struct sdhci_host *host, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (unlikely((soc_data->nvquirks & NVQUIRK_FORCE_SDHCI_SPEC_200) &&
(reg == SDHCI_HOST_VERSION))) {
/* Erratum: Version register is invalid in HW. */
return SDHCI_SPEC_200;
}
return readw(host->ioaddr + reg);
}
static void tegra_sdhci_writew(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
switch (reg) {
case SDHCI_TRANSFER_MODE:
/*
* Postpone this write, we must do it together with a
* command write that is down below.
*/
pltfm_host->xfer_mode_shadow = val;
return;
case SDHCI_COMMAND:
writel((val << 16) | pltfm_host->xfer_mode_shadow,
host->ioaddr + SDHCI_TRANSFER_MODE);
return;
}
writew(val, host->ioaddr + reg);
}
static void tegra_sdhci_writel(struct sdhci_host *host, u32 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
/* Seems like we're getting spurious timeout and crc errors, so
* disable signalling of them. In case of real errors software
* timers should take care of eventually detecting them.
*/
if (unlikely(reg == SDHCI_SIGNAL_ENABLE))
val &= ~(SDHCI_INT_TIMEOUT|SDHCI_INT_CRC);
writel(val, host->ioaddr + reg);
if (unlikely((soc_data->nvquirks & NVQUIRK_ENABLE_BLOCK_GAP_DET) &&
(reg == SDHCI_INT_ENABLE))) {
/* Erratum: Must enable block gap interrupt detection */
u8 gap_ctrl = readb(host->ioaddr + SDHCI_BLOCK_GAP_CONTROL);
if (val & SDHCI_INT_CARD_INT)
gap_ctrl |= 0x8;
else
gap_ctrl &= ~0x8;
writeb(gap_ctrl, host->ioaddr + SDHCI_BLOCK_GAP_CONTROL);
}
}
static bool tegra_sdhci_configure_card_clk(struct sdhci_host *host, bool enable)
{
bool status;
u32 reg;
reg = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
status = !!(reg & SDHCI_CLOCK_CARD_EN);
if (status == enable)
return status;
if (enable)
reg |= SDHCI_CLOCK_CARD_EN;
else
reg &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL);
return status;
}
static void tegra210_sdhci_writew(struct sdhci_host *host, u16 val, int reg)
{
bool is_tuning_cmd = 0;
bool clk_enabled;
if (reg == SDHCI_COMMAND)
is_tuning_cmd = mmc_op_tuning(SDHCI_GET_CMD(val));
if (is_tuning_cmd)
clk_enabled = tegra_sdhci_configure_card_clk(host, 0);
writew(val, host->ioaddr + reg);
if (is_tuning_cmd) {
udelay(1);
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
tegra_sdhci_configure_card_clk(host, clk_enabled);
}
}
static unsigned int tegra_sdhci_get_ro(struct sdhci_host *host)
{
/*
* Write-enable shall be assumed if GPIO is missing in a board's
* device-tree because SDHCI's WRITE_PROTECT bit doesn't work on
* Tegra.
*/
return mmc_gpio_get_ro(host->mmc);
}
static bool tegra_sdhci_is_pad_and_regulator_valid(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
int has_1v8, has_3v3;
/*
* The SoCs which have NVQUIRK_NEEDS_PAD_CONTROL require software pad
* voltage configuration in order to perform voltage switching. This
* means that valid pinctrl info is required on SDHCI instances capable
* of performing voltage switching. Whether or not an SDHCI instance is
* capable of voltage switching is determined based on the regulator.
*/
if (!(tegra_host->soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL))
return true;
if (IS_ERR(host->mmc->supply.vqmmc))
return false;
has_1v8 = regulator_is_supported_voltage(host->mmc->supply.vqmmc,
1700000, 1950000);
has_3v3 = regulator_is_supported_voltage(host->mmc->supply.vqmmc,
2700000, 3600000);
if (has_1v8 == 1 && has_3v3 == 1)
return tegra_host->pad_control_available;
/* Fixed voltage, no pad control required. */
return true;
}
static void tegra_sdhci_set_tap(struct sdhci_host *host, unsigned int tap)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
bool card_clk_enabled = false;
u32 reg;
/*
* Touching the tap values is a bit tricky on some SoC generations.
* The quirk enables a workaround for a glitch that sometimes occurs if
* the tap values are changed.
*/
if (soc_data->nvquirks & NVQUIRK_DIS_CARD_CLK_CONFIG_TAP)
card_clk_enabled = tegra_sdhci_configure_card_clk(host, false);
reg = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
reg &= ~SDHCI_CLOCK_CTRL_TAP_MASK;
reg |= tap << SDHCI_CLOCK_CTRL_TAP_SHIFT;
sdhci_writel(host, reg, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
if (soc_data->nvquirks & NVQUIRK_DIS_CARD_CLK_CONFIG_TAP &&
card_clk_enabled) {
udelay(1);
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
tegra_sdhci_configure_card_clk(host, card_clk_enabled);
}
}
static void tegra_sdhci_reset(struct sdhci_host *host, u8 mask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
u32 misc_ctrl, clk_ctrl, pad_ctrl;
sdhci_and_cqhci_reset(host, mask);
if (!(mask & SDHCI_RESET_ALL))
return;
tegra_sdhci_set_tap(host, tegra_host->default_tap);
misc_ctrl = sdhci_readl(host, SDHCI_TEGRA_VENDOR_MISC_CTRL);
clk_ctrl = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
misc_ctrl &= ~(SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300 |
SDHCI_MISC_CTRL_ENABLE_SDR50 |
SDHCI_MISC_CTRL_ENABLE_DDR50 |
SDHCI_MISC_CTRL_ENABLE_SDR104);
clk_ctrl &= ~(SDHCI_CLOCK_CTRL_TRIM_MASK |
SDHCI_CLOCK_CTRL_SPI_MODE_CLKEN_OVERRIDE);
if (tegra_sdhci_is_pad_and_regulator_valid(host)) {
/* Erratum: Enable SDHCI spec v3.00 support */
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDHCI_SPEC_300)
misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300;
/* Advertise UHS modes as supported by host */
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50)
misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDR50;
if (soc_data->nvquirks & NVQUIRK_ENABLE_DDR50)
misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_DDR50;
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR104)
misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDR104;
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50)
clk_ctrl |= SDHCI_CLOCK_CTRL_SDR50_TUNING_OVERRIDE;
}
clk_ctrl |= tegra_host->default_trim << SDHCI_CLOCK_CTRL_TRIM_SHIFT;
sdhci_writel(host, misc_ctrl, SDHCI_TEGRA_VENDOR_MISC_CTRL);
sdhci_writel(host, clk_ctrl, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB) {
pad_ctrl = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
pad_ctrl &= ~SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_MASK;
pad_ctrl |= SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_VAL;
sdhci_writel(host, pad_ctrl, SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
tegra_host->pad_calib_required = true;
}
tegra_host->ddr_signaling = false;
}
static void tegra_sdhci_configure_cal_pad(struct sdhci_host *host, bool enable)
{
u32 val;
/*
* Enable or disable the additional I/O pad used by the drive strength
* calibration process.
*/
val = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
if (enable)
val |= SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD;
else
val &= ~SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD;
sdhci_writel(host, val, SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
if (enable)
usleep_range(1, 2);
}
static void tegra_sdhci_set_pad_autocal_offset(struct sdhci_host *host,
u16 pdpu)
{
u32 reg;
reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG);
reg &= ~SDHCI_AUTO_CAL_PDPU_OFFSET_MASK;
reg |= pdpu;
sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG);
}
static int tegra_sdhci_set_padctrl(struct sdhci_host *host, int voltage,
bool state_drvupdn)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct sdhci_tegra_autocal_offsets *offsets =
&tegra_host->autocal_offsets;
struct pinctrl_state *pinctrl_drvupdn = NULL;
int ret = 0;
u8 drvup = 0, drvdn = 0;
u32 reg;
if (!state_drvupdn) {
/* PADS Drive Strength */
if (voltage == MMC_SIGNAL_VOLTAGE_180) {
if (tegra_host->pinctrl_state_1v8_drv) {
pinctrl_drvupdn =
tegra_host->pinctrl_state_1v8_drv;
} else {
drvup = offsets->pull_up_1v8_timeout;
drvdn = offsets->pull_down_1v8_timeout;
}
} else {
if (tegra_host->pinctrl_state_3v3_drv) {
pinctrl_drvupdn =
tegra_host->pinctrl_state_3v3_drv;
} else {
drvup = offsets->pull_up_3v3_timeout;
drvdn = offsets->pull_down_3v3_timeout;
}
}
if (pinctrl_drvupdn != NULL) {
ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc,
pinctrl_drvupdn);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"failed pads drvupdn, ret: %d\n", ret);
} else if ((drvup) || (drvdn)) {
reg = sdhci_readl(host,
SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
reg &= ~SDHCI_COMP_PADCTRL_DRVUPDN_OFFSET_MASK;
reg |= (drvup << 20) | (drvdn << 12);
sdhci_writel(host, reg,
SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
}
} else {
/* Dual Voltage PADS Voltage selection */
if (!tegra_host->pad_control_available)
return 0;
if (voltage == MMC_SIGNAL_VOLTAGE_180) {
ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc,
tegra_host->pinctrl_state_1v8);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"setting 1.8V failed, ret: %d\n", ret);
} else {
ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc,
tegra_host->pinctrl_state_3v3);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"setting 3.3V failed, ret: %d\n", ret);
}
}
return ret;
}
static void tegra_sdhci_pad_autocalib(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct sdhci_tegra_autocal_offsets offsets =
tegra_host->autocal_offsets;
struct mmc_ios *ios = &host->mmc->ios;
bool card_clk_enabled;
u16 pdpu;
u32 reg;
int ret;
switch (ios->timing) {
case MMC_TIMING_UHS_SDR104:
pdpu = offsets.pull_down_sdr104 << 8 | offsets.pull_up_sdr104;
break;
case MMC_TIMING_MMC_HS400:
pdpu = offsets.pull_down_hs400 << 8 | offsets.pull_up_hs400;
break;
default:
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180)
pdpu = offsets.pull_down_1v8 << 8 | offsets.pull_up_1v8;
else
pdpu = offsets.pull_down_3v3 << 8 | offsets.pull_up_3v3;
}
/* Set initial offset before auto-calibration */
tegra_sdhci_set_pad_autocal_offset(host, pdpu);
card_clk_enabled = tegra_sdhci_configure_card_clk(host, false);
tegra_sdhci_configure_cal_pad(host, true);
reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG);
reg |= SDHCI_AUTO_CAL_ENABLE | SDHCI_AUTO_CAL_START;
sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG);
usleep_range(1, 2);
/* 10 ms timeout */
ret = readl_poll_timeout(host->ioaddr + SDHCI_TEGRA_AUTO_CAL_STATUS,
reg, !(reg & SDHCI_TEGRA_AUTO_CAL_ACTIVE),
1000, 10000);
tegra_sdhci_configure_cal_pad(host, false);
tegra_sdhci_configure_card_clk(host, card_clk_enabled);
if (ret) {
dev_err(mmc_dev(host->mmc), "Pad autocal timed out\n");
/* Disable automatic cal and use fixed Drive Strengths */
reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG);
reg &= ~SDHCI_AUTO_CAL_ENABLE;
sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG);
ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, false);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"Setting drive strengths failed: %d\n", ret);
}
}
static void tegra_sdhci_parse_pad_autocal_dt(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct sdhci_tegra_autocal_offsets *autocal =
&tegra_host->autocal_offsets;
int err;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-3v3",
&autocal->pull_up_3v3);
if (err)
autocal->pull_up_3v3 = 0;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-3v3",
&autocal->pull_down_3v3);
if (err)
autocal->pull_down_3v3 = 0;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-1v8",
&autocal->pull_up_1v8);
if (err)
autocal->pull_up_1v8 = 0;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-1v8",
&autocal->pull_down_1v8);
if (err)
autocal->pull_down_1v8 = 0;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-sdr104",
&autocal->pull_up_sdr104);
if (err)
autocal->pull_up_sdr104 = autocal->pull_up_1v8;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-sdr104",
&autocal->pull_down_sdr104);
if (err)
autocal->pull_down_sdr104 = autocal->pull_down_1v8;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-hs400",
&autocal->pull_up_hs400);
if (err)
autocal->pull_up_hs400 = autocal->pull_up_1v8;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-hs400",
&autocal->pull_down_hs400);
if (err)
autocal->pull_down_hs400 = autocal->pull_down_1v8;
/*
* Different fail-safe drive strength values based on the signaling
* voltage are applicable for SoCs supporting 3V3 and 1V8 pad controls.
* So, avoid reading below device tree properties for SoCs that don't
* have NVQUIRK_NEEDS_PAD_CONTROL.
*/
if (!(tegra_host->soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL))
return;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-3v3-timeout",
&autocal->pull_up_3v3_timeout);
if (err) {
if (!IS_ERR(tegra_host->pinctrl_state_3v3) &&
(tegra_host->pinctrl_state_3v3_drv == NULL))
pr_warn("%s: Missing autocal timeout 3v3-pad drvs\n",
mmc_hostname(host->mmc));
autocal->pull_up_3v3_timeout = 0;
}
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-3v3-timeout",
&autocal->pull_down_3v3_timeout);
if (err) {
if (!IS_ERR(tegra_host->pinctrl_state_3v3) &&
(tegra_host->pinctrl_state_3v3_drv == NULL))
pr_warn("%s: Missing autocal timeout 3v3-pad drvs\n",
mmc_hostname(host->mmc));
autocal->pull_down_3v3_timeout = 0;
}
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-1v8-timeout",
&autocal->pull_up_1v8_timeout);
if (err) {
if (!IS_ERR(tegra_host->pinctrl_state_1v8) &&
(tegra_host->pinctrl_state_1v8_drv == NULL))
pr_warn("%s: Missing autocal timeout 1v8-pad drvs\n",
mmc_hostname(host->mmc));
autocal->pull_up_1v8_timeout = 0;
}
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-1v8-timeout",
&autocal->pull_down_1v8_timeout);
if (err) {
if (!IS_ERR(tegra_host->pinctrl_state_1v8) &&
(tegra_host->pinctrl_state_1v8_drv == NULL))
pr_warn("%s: Missing autocal timeout 1v8-pad drvs\n",
mmc_hostname(host->mmc));
autocal->pull_down_1v8_timeout = 0;
}
}
static void tegra_sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
ktime_t since_calib = ktime_sub(ktime_get(), tegra_host->last_calib);
/* 100 ms calibration interval is specified in the TRM */
if (ktime_to_ms(since_calib) > 100) {
tegra_sdhci_pad_autocalib(host);
tegra_host->last_calib = ktime_get();
}
sdhci_request(mmc, mrq);
}
static void tegra_sdhci_parse_tap_and_trim(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
int err;
err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,default-tap",
&tegra_host->default_tap);
if (err)
tegra_host->default_tap = 0;
err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,default-trim",
&tegra_host->default_trim);
if (err)
tegra_host->default_trim = 0;
err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,dqs-trim",
&tegra_host->dqs_trim);
if (err)
tegra_host->dqs_trim = 0x11;
}
static void tegra_sdhci_parse_dt(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
if (device_property_read_bool(mmc_dev(host->mmc), "supports-cqe"))
tegra_host->enable_hwcq = true;
else
tegra_host->enable_hwcq = false;
tegra_sdhci_parse_pad_autocal_dt(host);
tegra_sdhci_parse_tap_and_trim(host);
}
static void tegra_sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct device *dev = mmc_dev(host->mmc);
unsigned long host_clk;
int err;
if (!clock)
return sdhci_set_clock(host, clock);
/*
* In DDR50/52 modes the Tegra SDHCI controllers require the SDHCI
* divider to be configured to divided the host clock by two. The SDHCI
* clock divider is calculated as part of sdhci_set_clock() by
* sdhci_calc_clk(). The divider is calculated from host->max_clk and
* the requested clock rate.
*
* By setting the host->max_clk to clock * 2 the divider calculation
* will always result in the correct value for DDR50/52 modes,
* regardless of clock rate rounding, which may happen if the value
* from clk_get_rate() is used.
*/
host_clk = tegra_host->ddr_signaling ? clock * 2 : clock;
err = dev_pm_opp_set_rate(dev, host_clk);
if (err)
dev_err(dev, "failed to set clk rate to %luHz: %d\n",
host_clk, err);
tegra_host->curr_clk_rate = clk_get_rate(pltfm_host->clk);
if (tegra_host->ddr_signaling)
host->max_clk = host_clk;
else
host->max_clk = clk_get_rate(pltfm_host->clk);
sdhci_set_clock(host, clock);
if (tegra_host->pad_calib_required) {
tegra_sdhci_pad_autocalib(host);
tegra_host->pad_calib_required = false;
}
}
static void tegra_sdhci_hs400_enhanced_strobe(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 val;
val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_SYS_SW_CTRL);
if (ios->enhanced_strobe) {
val |= SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE;
/*
* When CMD13 is sent from mmc_select_hs400es() after
* switching to HS400ES mode, the bus is operating at
* either MMC_HIGH_26_MAX_DTR or MMC_HIGH_52_MAX_DTR.
* To meet Tegra SDHCI requirement at HS400ES mode, force SDHCI
* interface clock to MMC_HS200_MAX_DTR (200 MHz) so that host
* controller CAR clock and the interface clock are rate matched.
*/
tegra_sdhci_set_clock(host, MMC_HS200_MAX_DTR);
} else {
val &= ~SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE;
}
sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_SYS_SW_CTRL);
}
static unsigned int tegra_sdhci_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
return clk_round_rate(pltfm_host->clk, UINT_MAX);
}
static void tegra_sdhci_set_dqs_trim(struct sdhci_host *host, u8 trim)
{
u32 val;
val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CAP_OVERRIDES);
val &= ~SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_MASK;
val |= trim << SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_SHIFT;
sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_CAP_OVERRIDES);
}
static void tegra_sdhci_hs400_dll_cal(struct sdhci_host *host)
{
u32 reg;
int err;
reg = sdhci_readl(host, SDHCI_TEGRA_VENDOR_DLLCAL_CFG);
reg |= SDHCI_TEGRA_DLLCAL_CALIBRATE;
sdhci_writel(host, reg, SDHCI_TEGRA_VENDOR_DLLCAL_CFG);
/* 1 ms sleep, 5 ms timeout */
err = readl_poll_timeout(host->ioaddr + SDHCI_TEGRA_VENDOR_DLLCAL_STA,
reg, !(reg & SDHCI_TEGRA_DLLCAL_STA_ACTIVE),
1000, 5000);
if (err)
dev_err(mmc_dev(host->mmc),
"HS400 delay line calibration timed out\n");
}
static void tegra_sdhci_tap_correction(struct sdhci_host *host, u8 thd_up,
u8 thd_low, u8 fixed_tap)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
u32 val, tun_status;
u8 word, bit, edge1, tap, window;
bool tap_result;
bool start_fail = false;
bool start_pass = false;
bool end_pass = false;
bool first_fail = false;
bool first_pass = false;
u8 start_pass_tap = 0;
u8 end_pass_tap = 0;
u8 first_fail_tap = 0;
u8 first_pass_tap = 0;
u8 total_tuning_words = host->tuning_loop_count / TUNING_WORD_BIT_SIZE;
/*
* Read auto-tuned results and extract good valid passing window by
* filtering out un-wanted bubble/partial/merged windows.
*/
for (word = 0; word < total_tuning_words; word++) {
val = sdhci_readl(host, SDHCI_VNDR_TUN_CTRL0_0);
val &= ~SDHCI_VNDR_TUN_CTRL0_TUN_WORD_SEL_MASK;
val |= word;
sdhci_writel(host, val, SDHCI_VNDR_TUN_CTRL0_0);
tun_status = sdhci_readl(host, SDHCI_TEGRA_VNDR_TUN_STATUS0);
bit = 0;
while (bit < TUNING_WORD_BIT_SIZE) {
tap = word * TUNING_WORD_BIT_SIZE + bit;
tap_result = tun_status & (1 << bit);
if (!tap_result && !start_fail) {
start_fail = true;
if (!first_fail) {
first_fail_tap = tap;
first_fail = true;
}
} else if (tap_result && start_fail && !start_pass) {
start_pass_tap = tap;
start_pass = true;
if (!first_pass) {
first_pass_tap = tap;
first_pass = true;
}
} else if (!tap_result && start_fail && start_pass &&
!end_pass) {
end_pass_tap = tap - 1;
end_pass = true;
} else if (tap_result && start_pass && start_fail &&
end_pass) {
window = end_pass_tap - start_pass_tap;
/* discard merged window and bubble window */
if (window >= thd_up || window < thd_low) {
start_pass_tap = tap;
end_pass = false;
} else {
/* set tap at middle of valid window */
tap = start_pass_tap + window / 2;
tegra_host->tuned_tap_delay = tap;
return;
}
}
bit++;
}
}
if (!first_fail) {
WARN(1, "no edge detected, continue with hw tuned delay.\n");
} else if (first_pass) {
/* set tap location at fixed tap relative to the first edge */
edge1 = first_fail_tap + (first_pass_tap - first_fail_tap) / 2;
if (edge1 - 1 > fixed_tap)
tegra_host->tuned_tap_delay = edge1 - fixed_tap;
else
tegra_host->tuned_tap_delay = edge1 + fixed_tap;
}
}
static void tegra_sdhci_post_tuning(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
u32 avg_tap_dly, val, min_tap_dly, max_tap_dly;
u8 fixed_tap, start_tap, end_tap, window_width;
u8 thdupper, thdlower;
u8 num_iter;
u32 clk_rate_mhz, period_ps, bestcase, worstcase;
/* retain HW tuned tap to use incase if no correction is needed */
val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
tegra_host->tuned_tap_delay = (val & SDHCI_CLOCK_CTRL_TAP_MASK) >>
SDHCI_CLOCK_CTRL_TAP_SHIFT;
if (soc_data->min_tap_delay && soc_data->max_tap_delay) {
min_tap_dly = soc_data->min_tap_delay;
max_tap_dly = soc_data->max_tap_delay;
clk_rate_mhz = tegra_host->curr_clk_rate / USEC_PER_SEC;
period_ps = USEC_PER_SEC / clk_rate_mhz;
bestcase = period_ps / min_tap_dly;
worstcase = period_ps / max_tap_dly;
/*
* Upper and Lower bound thresholds used to detect merged and
* bubble windows
*/
thdupper = (2 * worstcase + bestcase) / 2;
thdlower = worstcase / 4;
/*
* fixed tap is used when HW tuning result contains single edge
* and tap is set at fixed tap delay relative to the first edge
*/
avg_tap_dly = (period_ps * 2) / (min_tap_dly + max_tap_dly);
fixed_tap = avg_tap_dly / 2;
val = sdhci_readl(host, SDHCI_TEGRA_VNDR_TUN_STATUS1);
start_tap = val & SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK;
end_tap = (val >> SDHCI_TEGRA_VNDR_TUN_STATUS1_END_TAP_SHIFT) &
SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK;
window_width = end_tap - start_tap;
num_iter = host->tuning_loop_count;
/*
* partial window includes edges of the tuning range.
* merged window includes more taps so window width is higher
* than upper threshold.
*/
if (start_tap == 0 || (end_tap == (num_iter - 1)) ||
(end_tap == num_iter - 2) || window_width >= thdupper) {
pr_debug("%s: Apply tuning correction\n",
mmc_hostname(host->mmc));
tegra_sdhci_tap_correction(host, thdupper, thdlower,
fixed_tap);
}
}
tegra_sdhci_set_tap(host, tegra_host->tuned_tap_delay);
}
static int tegra_sdhci_execute_hw_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err;
err = sdhci_execute_tuning(mmc, opcode);
if (!err && !host->tuning_err)
tegra_sdhci_post_tuning(host);
return err;
}
static void tegra_sdhci_set_uhs_signaling(struct sdhci_host *host,
unsigned timing)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
bool set_default_tap = false;
bool set_dqs_trim = false;
bool do_hs400_dll_cal = false;
u8 iter = TRIES_256;
u32 val;
tegra_host->ddr_signaling = false;
switch (timing) {
case MMC_TIMING_UHS_SDR50:
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* Don't set default tap on tunable modes. */
iter = TRIES_128;
break;
case MMC_TIMING_MMC_HS400:
set_dqs_trim = true;
do_hs400_dll_cal = true;
iter = TRIES_128;
break;
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
tegra_host->ddr_signaling = true;
set_default_tap = true;
break;
default:
set_default_tap = true;
break;
}
val = sdhci_readl(host, SDHCI_VNDR_TUN_CTRL0_0);
val &= ~(SDHCI_VNDR_TUN_CTRL0_TUN_ITER_MASK |
SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_MASK |
SDHCI_VNDR_TUN_CTRL0_MUL_M_MASK);
val |= (iter << SDHCI_VNDR_TUN_CTRL0_TUN_ITER_SHIFT |
0 << SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_SHIFT |
1 << SDHCI_VNDR_TUN_CTRL0_MUL_M_SHIFT);
sdhci_writel(host, val, SDHCI_VNDR_TUN_CTRL0_0);
sdhci_writel(host, 0, SDHCI_TEGRA_VNDR_TUN_CTRL1_0);
host->tuning_loop_count = (iter == TRIES_128) ? 128 : 256;
sdhci_set_uhs_signaling(host, timing);
tegra_sdhci_pad_autocalib(host);
if (tegra_host->tuned_tap_delay && !set_default_tap)
tegra_sdhci_set_tap(host, tegra_host->tuned_tap_delay);
else
tegra_sdhci_set_tap(host, tegra_host->default_tap);
if (set_dqs_trim)
tegra_sdhci_set_dqs_trim(host, tegra_host->dqs_trim);
if (do_hs400_dll_cal)
tegra_sdhci_hs400_dll_cal(host);
}
static int tegra_sdhci_execute_tuning(struct sdhci_host *host, u32 opcode)
{
unsigned int min, max;
/*
* Start search for minimum tap value at 10, as smaller values are
* may wrongly be reported as working but fail at higher speeds,
* according to the TRM.
*/
min = 10;
while (min < 255) {
tegra_sdhci_set_tap(host, min);
if (!mmc_send_tuning(host->mmc, opcode, NULL))
break;
min++;
}
/* Find the maximum tap value that still passes. */
max = min + 1;
while (max < 255) {
tegra_sdhci_set_tap(host, max);
if (mmc_send_tuning(host->mmc, opcode, NULL)) {
max--;
break;
}
max++;
}
/* The TRM states the ideal tap value is at 75% in the passing range. */
tegra_sdhci_set_tap(host, min + ((max - min) * 3 / 4));
return mmc_send_tuning(host->mmc, opcode, NULL);
}
static int sdhci_tegra_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
int ret = 0;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, true);
if (ret < 0)
return ret;
ret = sdhci_start_signal_voltage_switch(mmc, ios);
} else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
ret = sdhci_start_signal_voltage_switch(mmc, ios);
if (ret < 0)
return ret;
ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, true);
}
if (tegra_host->pad_calib_required)
tegra_sdhci_pad_autocalib(host);
return ret;
}
static int tegra_sdhci_init_pinctrl_info(struct device *dev,
struct sdhci_tegra *tegra_host)
{
tegra_host->pinctrl_sdmmc = devm_pinctrl_get(dev);
if (IS_ERR(tegra_host->pinctrl_sdmmc)) {
dev_dbg(dev, "No pinctrl info, err: %ld\n",
PTR_ERR(tegra_host->pinctrl_sdmmc));
return -1;
}
tegra_host->pinctrl_state_1v8_drv = pinctrl_lookup_state(
tegra_host->pinctrl_sdmmc, "sdmmc-1v8-drv");
if (IS_ERR(tegra_host->pinctrl_state_1v8_drv)) {
if (PTR_ERR(tegra_host->pinctrl_state_1v8_drv) == -ENODEV)
tegra_host->pinctrl_state_1v8_drv = NULL;
}
tegra_host->pinctrl_state_3v3_drv = pinctrl_lookup_state(
tegra_host->pinctrl_sdmmc, "sdmmc-3v3-drv");
if (IS_ERR(tegra_host->pinctrl_state_3v3_drv)) {
if (PTR_ERR(tegra_host->pinctrl_state_3v3_drv) == -ENODEV)
tegra_host->pinctrl_state_3v3_drv = NULL;
}
tegra_host->pinctrl_state_3v3 =
pinctrl_lookup_state(tegra_host->pinctrl_sdmmc, "sdmmc-3v3");
if (IS_ERR(tegra_host->pinctrl_state_3v3)) {
dev_warn(dev, "Missing 3.3V pad state, err: %ld\n",
PTR_ERR(tegra_host->pinctrl_state_3v3));
return -1;
}
tegra_host->pinctrl_state_1v8 =
pinctrl_lookup_state(tegra_host->pinctrl_sdmmc, "sdmmc-1v8");
if (IS_ERR(tegra_host->pinctrl_state_1v8)) {
dev_warn(dev, "Missing 1.8V pad state, err: %ld\n",
PTR_ERR(tegra_host->pinctrl_state_1v8));
return -1;
}
tegra_host->pad_control_available = true;
return 0;
}
static void tegra_sdhci_voltage_switch(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB)
tegra_host->pad_calib_required = true;
}
static void tegra_cqhci_writel(struct cqhci_host *cq_host, u32 val, int reg)
{
struct mmc_host *mmc = cq_host->mmc;
struct sdhci_host *host = mmc_priv(mmc);
u8 ctrl;
ktime_t timeout;
bool timed_out;
/*
* During CQE resume/unhalt, CQHCI driver unhalts CQE prior to
* cqhci_host_ops enable where SDHCI DMA and BLOCK_SIZE registers need
* to be re-configured.
* Tegra CQHCI/SDHCI prevents write access to block size register when
* CQE is unhalted. So handling CQE resume sequence here to configure
* SDHCI block registers prior to exiting CQE halt state.
*/
if (reg == CQHCI_CTL && !(val & CQHCI_HALT) &&
cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT) {
sdhci_writew(host, SDHCI_TEGRA_CQE_TRNS_MODE, SDHCI_TRANSFER_MODE);
sdhci_cqe_enable(mmc);
writel(val, cq_host->mmio + reg);
timeout = ktime_add_us(ktime_get(), 50);
while (1) {
timed_out = ktime_compare(ktime_get(), timeout) > 0;
ctrl = cqhci_readl(cq_host, CQHCI_CTL);
if (!(ctrl & CQHCI_HALT) || timed_out)
break;
}
/*
* CQE usually resumes very quick, but incase if Tegra CQE
* doesn't resume retry unhalt.
*/
if (timed_out)
writel(val, cq_host->mmio + reg);
} else {
writel(val, cq_host->mmio + reg);
}
}
static void sdhci_tegra_update_dcmd_desc(struct mmc_host *mmc,
struct mmc_request *mrq, u64 *data)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(mmc_priv(mmc));
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (soc_data->nvquirks & NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING &&
mrq->cmd->flags & MMC_RSP_R1B)
*data |= CQHCI_CMD_TIMING(1);
}
static void sdhci_tegra_cqe_enable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct sdhci_host *host = mmc_priv(mmc);
u32 val;
/*
* Tegra CQHCI/SDMMC design prevents write access to sdhci block size
* register when CQE is enabled and unhalted.
* CQHCI driver enables CQE prior to activation, so disable CQE before
* programming block size in sdhci controller and enable it back.
*/
if (!cq_host->activated) {
val = cqhci_readl(cq_host, CQHCI_CFG);
if (val & CQHCI_ENABLE)
cqhci_writel(cq_host, (val & ~CQHCI_ENABLE),
CQHCI_CFG);
sdhci_writew(host, SDHCI_TEGRA_CQE_TRNS_MODE, SDHCI_TRANSFER_MODE);
sdhci_cqe_enable(mmc);
if (val & CQHCI_ENABLE)
cqhci_writel(cq_host, val, CQHCI_CFG);
}
/*
* CMD CRC errors are seen sometimes with some eMMC devices when status
* command is sent during transfer of last data block which is the
* default case as send status command block counter (CBC) is 1.
* Recommended fix to set CBC to 0 allowing send status command only
* when data lines are idle.
*/
val = cqhci_readl(cq_host, CQHCI_SSC1);
val &= ~CQHCI_SSC1_CBC_MASK;
cqhci_writel(cq_host, val, CQHCI_SSC1);
}
static void sdhci_tegra_dumpregs(struct mmc_host *mmc)
{
sdhci_dumpregs(mmc_priv(mmc));
}
static u32 sdhci_tegra_cqhci_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static void tegra_sdhci_set_timeout(struct sdhci_host *host,
struct mmc_command *cmd)
{
u32 val;
/*
* HW busy detection timeout is based on programmed data timeout
* counter and maximum supported timeout is 11s which may not be
* enough for long operations like cache flush, sleep awake, erase.
*
* ERASE_TIMEOUT_LIMIT bit of VENDOR_MISC_CTRL register allows
* host controller to wait for busy state until the card is busy
* without HW timeout.
*
* So, use infinite busy wait mode for operations that may take
* more than maximum HW busy timeout of 11s otherwise use finite
* busy wait mode.
*/
val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_MISC_CTRL);
if (cmd && cmd->busy_timeout >= 11 * MSEC_PER_SEC)
val |= SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT;
else
val &= ~SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT;
sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_MISC_CTRL);
__sdhci_set_timeout(host, cmd);
}
static void sdhci_tegra_cqe_pre_enable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
u32 reg;
reg = cqhci_readl(cq_host, CQHCI_CFG);
reg |= CQHCI_ENABLE;
cqhci_writel(cq_host, reg, CQHCI_CFG);
}
static void sdhci_tegra_cqe_post_disable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct sdhci_host *host = mmc_priv(mmc);
u32 reg;
reg = cqhci_readl(cq_host, CQHCI_CFG);
reg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, reg, CQHCI_CFG);
sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE);
}
static const struct cqhci_host_ops sdhci_tegra_cqhci_ops = {
.write_l = tegra_cqhci_writel,
.enable = sdhci_tegra_cqe_enable,
.disable = sdhci_cqe_disable,
.dumpregs = sdhci_tegra_dumpregs,
.update_dcmd_desc = sdhci_tegra_update_dcmd_desc,
.pre_enable = sdhci_tegra_cqe_pre_enable,
.post_disable = sdhci_tegra_cqe_post_disable,
};
static int tegra_sdhci_set_dma_mask(struct sdhci_host *host)
{
struct sdhci_pltfm_host *platform = sdhci_priv(host);
struct sdhci_tegra *tegra = sdhci_pltfm_priv(platform);
const struct sdhci_tegra_soc_data *soc = tegra->soc_data;
struct device *dev = mmc_dev(host->mmc);
if (soc->dma_mask)
return dma_set_mask_and_coherent(dev, soc->dma_mask);
return 0;
}
static const struct sdhci_ops tegra_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.read_w = tegra_sdhci_readw,
.write_l = tegra_sdhci_writel,
.set_clock = tegra_sdhci_set_clock,
.set_dma_mask = tegra_sdhci_set_dma_mask,
.set_bus_width = sdhci_set_bus_width,
.reset = tegra_sdhci_reset,
.platform_execute_tuning = tegra_sdhci_execute_tuning,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.voltage_switch = tegra_sdhci_voltage_switch,
.get_max_clock = tegra_sdhci_get_max_clock,
};
static const struct sdhci_pltfm_data sdhci_tegra20_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.ops = &tegra_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra20 = {
.pdata = &sdhci_tegra20_pdata,
.dma_mask = DMA_BIT_MASK(32),
.nvquirks = NVQUIRK_FORCE_SDHCI_SPEC_200 |
NVQUIRK_HAS_ANDROID_GPT_SECTOR |
NVQUIRK_ENABLE_BLOCK_GAP_DET,
};
static const struct sdhci_pltfm_data sdhci_tegra30_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_BROKEN_HS200 |
/*
* Auto-CMD23 leads to "Got command interrupt 0x00010000 even
* though no command operation was in progress."
*
* The exact reason is unknown, as the same hardware seems
* to support Auto CMD23 on a downstream 3.1 kernel.
*/
SDHCI_QUIRK2_ACMD23_BROKEN,
.ops = &tegra_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra30 = {
.pdata = &sdhci_tegra30_pdata,
.dma_mask = DMA_BIT_MASK(32),
.nvquirks = NVQUIRK_ENABLE_SDHCI_SPEC_300 |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_HAS_ANDROID_GPT_SECTOR |
NVQUIRK_HAS_PADCALIB,
};
static const struct sdhci_ops tegra114_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.read_w = tegra_sdhci_readw,
.write_w = tegra_sdhci_writew,
.write_l = tegra_sdhci_writel,
.set_clock = tegra_sdhci_set_clock,
.set_dma_mask = tegra_sdhci_set_dma_mask,
.set_bus_width = sdhci_set_bus_width,
.reset = tegra_sdhci_reset,
.platform_execute_tuning = tegra_sdhci_execute_tuning,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.voltage_switch = tegra_sdhci_voltage_switch,
.get_max_clock = tegra_sdhci_get_max_clock,
};
static const struct sdhci_pltfm_data sdhci_tegra114_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &tegra114_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra114 = {
.pdata = &sdhci_tegra114_pdata,
.dma_mask = DMA_BIT_MASK(32),
.nvquirks = NVQUIRK_HAS_ANDROID_GPT_SECTOR,
};
static const struct sdhci_pltfm_data sdhci_tegra124_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &tegra114_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra124 = {
.pdata = &sdhci_tegra124_pdata,
.dma_mask = DMA_BIT_MASK(34),
.nvquirks = NVQUIRK_HAS_ANDROID_GPT_SECTOR,
};
static const struct sdhci_ops tegra210_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.read_w = tegra_sdhci_readw,
.write_w = tegra210_sdhci_writew,
.write_l = tegra_sdhci_writel,
.set_clock = tegra_sdhci_set_clock,
.set_dma_mask = tegra_sdhci_set_dma_mask,
.set_bus_width = sdhci_set_bus_width,
.reset = tegra_sdhci_reset,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.voltage_switch = tegra_sdhci_voltage_switch,
.get_max_clock = tegra_sdhci_get_max_clock,
.set_timeout = tegra_sdhci_set_timeout,
};
static const struct sdhci_pltfm_data sdhci_tegra210_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &tegra210_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra210 = {
.pdata = &sdhci_tegra210_pdata,
.dma_mask = DMA_BIT_MASK(34),
.nvquirks = NVQUIRK_NEEDS_PAD_CONTROL |
NVQUIRK_HAS_PADCALIB |
NVQUIRK_DIS_CARD_CLK_CONFIG_TAP |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_HAS_TMCLK,
.min_tap_delay = 106,
.max_tap_delay = 185,
};
static const struct sdhci_ops tegra186_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.read_w = tegra_sdhci_readw,
.write_l = tegra_sdhci_writel,
.set_clock = tegra_sdhci_set_clock,
.set_dma_mask = tegra_sdhci_set_dma_mask,
.set_bus_width = sdhci_set_bus_width,
.reset = tegra_sdhci_reset,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.voltage_switch = tegra_sdhci_voltage_switch,
.get_max_clock = tegra_sdhci_get_max_clock,
.irq = sdhci_tegra_cqhci_irq,
.set_timeout = tegra_sdhci_set_timeout,
};
static const struct sdhci_pltfm_data sdhci_tegra186_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_ISSUE_CMD_DAT_RESET_TOGETHER,
.ops = &tegra186_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra186 = {
.pdata = &sdhci_tegra186_pdata,
.dma_mask = DMA_BIT_MASK(40),
.nvquirks = NVQUIRK_NEEDS_PAD_CONTROL |
NVQUIRK_HAS_PADCALIB |
NVQUIRK_DIS_CARD_CLK_CONFIG_TAP |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_HAS_TMCLK |
NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING,
.min_tap_delay = 84,
.max_tap_delay = 136,
};
static const struct sdhci_tegra_soc_data soc_data_tegra194 = {
.pdata = &sdhci_tegra186_pdata,
.dma_mask = DMA_BIT_MASK(39),
.nvquirks = NVQUIRK_NEEDS_PAD_CONTROL |
NVQUIRK_HAS_PADCALIB |
NVQUIRK_DIS_CARD_CLK_CONFIG_TAP |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_HAS_TMCLK,
.min_tap_delay = 96,
.max_tap_delay = 139,
};
static const struct sdhci_tegra_soc_data soc_data_tegra234 = {
.pdata = &sdhci_tegra186_pdata,
.dma_mask = DMA_BIT_MASK(39),
.nvquirks = NVQUIRK_NEEDS_PAD_CONTROL |
NVQUIRK_HAS_PADCALIB |
NVQUIRK_DIS_CARD_CLK_CONFIG_TAP |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_PROGRAM_STREAMID |
NVQUIRK_HAS_TMCLK,
.min_tap_delay = 95,
.max_tap_delay = 111,
};
static const struct of_device_id sdhci_tegra_dt_match[] = {
{ .compatible = "nvidia,tegra234-sdhci", .data = &soc_data_tegra234 },
{ .compatible = "nvidia,tegra194-sdhci", .data = &soc_data_tegra194 },
{ .compatible = "nvidia,tegra186-sdhci", .data = &soc_data_tegra186 },
{ .compatible = "nvidia,tegra210-sdhci", .data = &soc_data_tegra210 },
{ .compatible = "nvidia,tegra124-sdhci", .data = &soc_data_tegra124 },
{ .compatible = "nvidia,tegra114-sdhci", .data = &soc_data_tegra114 },
{ .compatible = "nvidia,tegra30-sdhci", .data = &soc_data_tegra30 },
{ .compatible = "nvidia,tegra20-sdhci", .data = &soc_data_tegra20 },
{}
};
MODULE_DEVICE_TABLE(of, sdhci_tegra_dt_match);
static int sdhci_tegra_add_host(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct cqhci_host *cq_host;
bool dma64;
int ret;
if (!tegra_host->enable_hwcq)
return sdhci_add_host(host);
sdhci_enable_v4_mode(host);
ret = sdhci_setup_host(host);
if (ret)
return ret;
host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
cq_host = devm_kzalloc(mmc_dev(host->mmc),
sizeof(*cq_host), GFP_KERNEL);
if (!cq_host) {
ret = -ENOMEM;
goto cleanup;
}
cq_host->mmio = host->ioaddr + SDHCI_TEGRA_CQE_BASE_ADDR;
cq_host->ops = &sdhci_tegra_cqhci_ops;
dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
if (dma64)
cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
ret = cqhci_init(cq_host, host->mmc, dma64);
if (ret)
goto cleanup;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
/* Program MC streamID for DMA transfers */
static void sdhci_tegra_program_stream_id(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
if (tegra_host->soc_data->nvquirks & NVQUIRK_PROGRAM_STREAMID) {
tegra_sdhci_writel(host, FIELD_PREP(GENMASK(15, 8), tegra_host->stream_id) |
FIELD_PREP(GENMASK(7, 0), tegra_host->stream_id),
SDHCI_TEGRA_CIF2AXI_CTRL_0);
}
}
static int sdhci_tegra_probe(struct platform_device *pdev)
{
const struct sdhci_tegra_soc_data *soc_data;
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_tegra *tegra_host;
struct clk *clk;
int rc;
soc_data = of_device_get_match_data(&pdev->dev);
if (!soc_data)
return -EINVAL;
host = sdhci_pltfm_init(pdev, soc_data->pdata, sizeof(*tegra_host));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
tegra_host = sdhci_pltfm_priv(pltfm_host);
tegra_host->ddr_signaling = false;
tegra_host->pad_calib_required = false;
tegra_host->pad_control_available = false;
tegra_host->soc_data = soc_data;
if (soc_data->nvquirks & NVQUIRK_HAS_ANDROID_GPT_SECTOR)
host->mmc->caps2 |= MMC_CAP2_ALT_GPT_TEGRA;
if (soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL) {
rc = tegra_sdhci_init_pinctrl_info(&pdev->dev, tegra_host);
if (rc == 0)
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_tegra_start_signal_voltage_switch;
}
/* Hook to periodically rerun pad calibration */
if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB)
host->mmc_host_ops.request = tegra_sdhci_request;
host->mmc_host_ops.hs400_enhanced_strobe =
tegra_sdhci_hs400_enhanced_strobe;
if (!host->ops->platform_execute_tuning)
host->mmc_host_ops.execute_tuning =
tegra_sdhci_execute_hw_tuning;
rc = mmc_of_parse(host->mmc);
if (rc)
goto err_parse_dt;
if (tegra_host->soc_data->nvquirks & NVQUIRK_ENABLE_DDR50)
host->mmc->caps |= MMC_CAP_1_8V_DDR;
/* HW busy detection is supported, but R1B responses are required. */
host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
/* GPIO CD can be set as a wakeup source */
host->mmc->caps |= MMC_CAP_CD_WAKE;
tegra_sdhci_parse_dt(host);
if (tegra_host->soc_data->nvquirks & NVQUIRK_PROGRAM_STREAMID &&
!tegra_dev_iommu_get_stream_id(&pdev->dev, &tegra_host->stream_id)) {
dev_warn(mmc_dev(host->mmc), "missing IOMMU stream ID\n");
tegra_host->stream_id = 0x7f;
}
tegra_host->power_gpio = devm_gpiod_get_optional(&pdev->dev, "power",
GPIOD_OUT_HIGH);
if (IS_ERR(tegra_host->power_gpio)) {
rc = PTR_ERR(tegra_host->power_gpio);
goto err_power_req;
}
/*
* Tegra210 has a separate SDMMC_LEGACY_TM clock used for host
* timeout clock and SW can choose TMCLK or SDCLK for hardware
* data timeout through the bit USE_TMCLK_FOR_DATA_TIMEOUT of
* the register SDHCI_TEGRA_VENDOR_SYS_SW_CTRL.
*
* USE_TMCLK_FOR_DATA_TIMEOUT bit default is set to 1 and SDMMC uses
* 12Mhz TMCLK which is advertised in host capability register.
* With TMCLK of 12Mhz provides maximum data timeout period that can
* be achieved is 11s better than using SDCLK for data timeout.
*
* So, TMCLK is set to 12Mhz and kept enabled all the time on SoC's
* supporting separate TMCLK.
*/
if (soc_data->nvquirks & NVQUIRK_HAS_TMCLK) {
clk = devm_clk_get(&pdev->dev, "tmclk");
if (IS_ERR(clk)) {
rc = PTR_ERR(clk);
if (rc == -EPROBE_DEFER)
goto err_power_req;
dev_warn(&pdev->dev, "failed to get tmclk: %d\n", rc);
clk = NULL;
}
clk_set_rate(clk, 12000000);
rc = clk_prepare_enable(clk);
if (rc) {
dev_err(&pdev->dev,
"failed to enable tmclk: %d\n", rc);
goto err_power_req;
}
tegra_host->tmclk = clk;
}
clk = devm_clk_get(mmc_dev(host->mmc), NULL);
if (IS_ERR(clk)) {
rc = dev_err_probe(&pdev->dev, PTR_ERR(clk),
"failed to get clock\n");
goto err_clk_get;
}
pltfm_host->clk = clk;
tegra_host->rst = devm_reset_control_get_exclusive(&pdev->dev,
"sdhci");
if (IS_ERR(tegra_host->rst)) {
rc = PTR_ERR(tegra_host->rst);
dev_err(&pdev->dev, "failed to get reset control: %d\n", rc);
goto err_rst_get;
}
rc = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
if (rc)
goto err_rst_get;
pm_runtime_enable(&pdev->dev);
rc = pm_runtime_resume_and_get(&pdev->dev);
if (rc)
goto err_pm_get;
rc = reset_control_assert(tegra_host->rst);
if (rc)
goto err_rst_assert;
usleep_range(2000, 4000);
rc = reset_control_deassert(tegra_host->rst);
if (rc)
goto err_rst_assert;
usleep_range(2000, 4000);
rc = sdhci_tegra_add_host(host);
if (rc)
goto err_add_host;
sdhci_tegra_program_stream_id(host);
return 0;
err_add_host:
reset_control_assert(tegra_host->rst);
err_rst_assert:
pm_runtime_put_sync_suspend(&pdev->dev);
err_pm_get:
pm_runtime_disable(&pdev->dev);
err_rst_get:
err_clk_get:
clk_disable_unprepare(tegra_host->tmclk);
err_power_req:
err_parse_dt:
sdhci_pltfm_free(pdev);
return rc;
}
static void sdhci_tegra_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
sdhci_remove_host(host, 0);
reset_control_assert(tegra_host->rst);
usleep_range(2000, 4000);
pm_runtime_put_sync_suspend(&pdev->dev);
pm_runtime_force_suspend(&pdev->dev);
clk_disable_unprepare(tegra_host->tmclk);
sdhci_pltfm_free(pdev);
}
static int __maybe_unused sdhci_tegra_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
clk_disable_unprepare(pltfm_host->clk);
return 0;
}
static int __maybe_unused sdhci_tegra_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
return clk_prepare_enable(pltfm_host->clk);
}
#ifdef CONFIG_PM_SLEEP
static int sdhci_tegra_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
int ret;
if (host->mmc->caps2 & MMC_CAP2_CQE) {
ret = cqhci_suspend(host->mmc);
if (ret)
return ret;
}
ret = sdhci_suspend_host(host);
if (ret) {
cqhci_resume(host->mmc);
return ret;
}
ret = pm_runtime_force_suspend(dev);
if (ret) {
sdhci_resume_host(host);
cqhci_resume(host->mmc);
return ret;
}
return mmc_gpio_set_cd_wake(host->mmc, true);
}
static int sdhci_tegra_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
int ret;
ret = mmc_gpio_set_cd_wake(host->mmc, false);
if (ret)
return ret;
ret = pm_runtime_force_resume(dev);
if (ret)
return ret;
sdhci_tegra_program_stream_id(host);
ret = sdhci_resume_host(host);
if (ret)
goto disable_clk;
if (host->mmc->caps2 & MMC_CAP2_CQE) {
ret = cqhci_resume(host->mmc);
if (ret)
goto suspend_host;
}
return 0;
suspend_host:
sdhci_suspend_host(host);
disable_clk:
pm_runtime_force_suspend(dev);
return ret;
}
#endif
static const struct dev_pm_ops sdhci_tegra_dev_pm_ops = {
SET_RUNTIME_PM_OPS(sdhci_tegra_runtime_suspend, sdhci_tegra_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(sdhci_tegra_suspend, sdhci_tegra_resume)
};
static struct platform_driver sdhci_tegra_driver = {
.driver = {
.name = "sdhci-tegra",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_tegra_dt_match,
.pm = &sdhci_tegra_dev_pm_ops,
},
.probe = sdhci_tegra_probe,
.remove_new = sdhci_tegra_remove,
};
module_platform_driver(sdhci_tegra_driver);
MODULE_DESCRIPTION("SDHCI driver for Tegra");
MODULE_AUTHOR("Google, Inc.");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-tegra.c |
// SPDX-License-Identifier: GPL-2.0
/*
* sdhci-pci-arasan.c - Driver for Arasan PCI Controller with
* integrated phy.
*
* Copyright (C) 2017 Arasan Chip Systems Inc.
*
* Author: Atul Garg <[email protected]>
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include "sdhci.h"
#include "sdhci-pci.h"
/* Extra registers for Arasan SD/SDIO/MMC Host Controller with PHY */
#define PHY_ADDR_REG 0x300
#define PHY_DAT_REG 0x304
#define PHY_WRITE BIT(8)
#define PHY_BUSY BIT(9)
#define DATA_MASK 0xFF
/* PHY Specific Registers */
#define DLL_STATUS 0x00
#define IPAD_CTRL1 0x01
#define IPAD_CTRL2 0x02
#define IPAD_STS 0x03
#define IOREN_CTRL1 0x06
#define IOREN_CTRL2 0x07
#define IOPU_CTRL1 0x08
#define IOPU_CTRL2 0x09
#define ITAP_DELAY 0x0C
#define OTAP_DELAY 0x0D
#define STRB_SEL 0x0E
#define CLKBUF_SEL 0x0F
#define MODE_CTRL 0x11
#define DLL_TRIM 0x12
#define CMD_CTRL 0x20
#define DATA_CTRL 0x21
#define STRB_CTRL 0x22
#define CLK_CTRL 0x23
#define PHY_CTRL 0x24
#define DLL_ENBL BIT(3)
#define RTRIM_EN BIT(1)
#define PDB_ENBL BIT(1)
#define RETB_ENBL BIT(6)
#define ODEN_CMD BIT(1)
#define ODEN_DAT 0xFF
#define REN_STRB BIT(0)
#define REN_CMND BIT(1)
#define REN_DATA 0xFF
#define PU_CMD BIT(1)
#define PU_DAT 0xFF
#define ITAPDLY_EN BIT(0)
#define OTAPDLY_EN BIT(0)
#define OD_REL_CMD BIT(1)
#define OD_REL_DAT 0xFF
#define DLLTRM_ICP 0x8
#define PDB_CMND BIT(0)
#define PDB_DATA 0xFF
#define PDB_STRB BIT(0)
#define PDB_CLOCK BIT(0)
#define CALDONE_MASK 0x10
#define DLL_RDY_MASK 0x10
#define MAX_CLK_BUF 0x7
/* Mode Controls */
#define ENHSTRB_MODE BIT(0)
#define HS400_MODE BIT(1)
#define LEGACY_MODE BIT(2)
#define DDR50_MODE BIT(3)
/*
* Controller has no specific bits for HS200/HS.
* Used BIT(4), BIT(5) for software programming.
*/
#define HS200_MODE BIT(4)
#define HISPD_MODE BIT(5)
#define OTAPDLY(x) (((x) << 1) | OTAPDLY_EN)
#define ITAPDLY(x) (((x) << 1) | ITAPDLY_EN)
#define FREQSEL(x) (((x) << 5) | DLL_ENBL)
#define IOPAD(x, y) ((x) | ((y) << 2))
/* Arasan private data */
struct arasan_host {
u32 chg_clk;
};
static int arasan_phy_addr_poll(struct sdhci_host *host, u32 offset, u32 mask)
{
ktime_t timeout = ktime_add_us(ktime_get(), 100);
bool failed;
u8 val = 0;
while (1) {
failed = ktime_after(ktime_get(), timeout);
val = sdhci_readw(host, PHY_ADDR_REG);
if (!(val & mask))
return 0;
if (failed)
return -EBUSY;
}
}
static int arasan_phy_write(struct sdhci_host *host, u8 data, u8 offset)
{
sdhci_writew(host, data, PHY_DAT_REG);
sdhci_writew(host, (PHY_WRITE | offset), PHY_ADDR_REG);
return arasan_phy_addr_poll(host, PHY_ADDR_REG, PHY_BUSY);
}
static int arasan_phy_read(struct sdhci_host *host, u8 offset, u8 *data)
{
int ret;
sdhci_writew(host, 0, PHY_DAT_REG);
sdhci_writew(host, offset, PHY_ADDR_REG);
ret = arasan_phy_addr_poll(host, PHY_ADDR_REG, PHY_BUSY);
/* Masking valid data bits */
*data = sdhci_readw(host, PHY_DAT_REG) & DATA_MASK;
return ret;
}
static int arasan_phy_sts_poll(struct sdhci_host *host, u32 offset, u32 mask)
{
int ret;
ktime_t timeout = ktime_add_us(ktime_get(), 100);
bool failed;
u8 val = 0;
while (1) {
failed = ktime_after(ktime_get(), timeout);
ret = arasan_phy_read(host, offset, &val);
if (ret)
return -EBUSY;
else if (val & mask)
return 0;
if (failed)
return -EBUSY;
}
}
/* Initialize the Arasan PHY */
static int arasan_phy_init(struct sdhci_host *host)
{
int ret;
u8 val;
/* Program IOPADs and wait for calibration to be done */
if (arasan_phy_read(host, IPAD_CTRL1, &val) ||
arasan_phy_write(host, val | RETB_ENBL | PDB_ENBL, IPAD_CTRL1) ||
arasan_phy_read(host, IPAD_CTRL2, &val) ||
arasan_phy_write(host, val | RTRIM_EN, IPAD_CTRL2))
return -EBUSY;
ret = arasan_phy_sts_poll(host, IPAD_STS, CALDONE_MASK);
if (ret)
return -EBUSY;
/* Program CMD/Data lines */
if (arasan_phy_read(host, IOREN_CTRL1, &val) ||
arasan_phy_write(host, val | REN_CMND | REN_STRB, IOREN_CTRL1) ||
arasan_phy_read(host, IOPU_CTRL1, &val) ||
arasan_phy_write(host, val | PU_CMD, IOPU_CTRL1) ||
arasan_phy_read(host, CMD_CTRL, &val) ||
arasan_phy_write(host, val | PDB_CMND, CMD_CTRL) ||
arasan_phy_read(host, IOREN_CTRL2, &val) ||
arasan_phy_write(host, val | REN_DATA, IOREN_CTRL2) ||
arasan_phy_read(host, IOPU_CTRL2, &val) ||
arasan_phy_write(host, val | PU_DAT, IOPU_CTRL2) ||
arasan_phy_read(host, DATA_CTRL, &val) ||
arasan_phy_write(host, val | PDB_DATA, DATA_CTRL) ||
arasan_phy_read(host, STRB_CTRL, &val) ||
arasan_phy_write(host, val | PDB_STRB, STRB_CTRL) ||
arasan_phy_read(host, CLK_CTRL, &val) ||
arasan_phy_write(host, val | PDB_CLOCK, CLK_CTRL) ||
arasan_phy_read(host, CLKBUF_SEL, &val) ||
arasan_phy_write(host, val | MAX_CLK_BUF, CLKBUF_SEL) ||
arasan_phy_write(host, LEGACY_MODE, MODE_CTRL))
return -EBUSY;
return 0;
}
/* Set Arasan PHY for different modes */
static int arasan_phy_set(struct sdhci_host *host, u8 mode, u8 otap,
u8 drv_type, u8 itap, u8 trim, u8 clk)
{
u8 val;
int ret;
if (mode == HISPD_MODE || mode == HS200_MODE)
ret = arasan_phy_write(host, 0x0, MODE_CTRL);
else
ret = arasan_phy_write(host, mode, MODE_CTRL);
if (ret)
return ret;
if (mode == HS400_MODE || mode == HS200_MODE) {
ret = arasan_phy_read(host, IPAD_CTRL1, &val);
if (ret)
return ret;
ret = arasan_phy_write(host, IOPAD(val, drv_type), IPAD_CTRL1);
if (ret)
return ret;
}
if (mode == LEGACY_MODE) {
ret = arasan_phy_write(host, 0x0, OTAP_DELAY);
if (ret)
return ret;
ret = arasan_phy_write(host, 0x0, ITAP_DELAY);
} else {
ret = arasan_phy_write(host, OTAPDLY(otap), OTAP_DELAY);
if (ret)
return ret;
if (mode != HS200_MODE)
ret = arasan_phy_write(host, ITAPDLY(itap), ITAP_DELAY);
else
ret = arasan_phy_write(host, 0x0, ITAP_DELAY);
}
if (ret)
return ret;
if (mode != LEGACY_MODE) {
ret = arasan_phy_write(host, trim, DLL_TRIM);
if (ret)
return ret;
}
ret = arasan_phy_write(host, 0, DLL_STATUS);
if (ret)
return ret;
if (mode != LEGACY_MODE) {
ret = arasan_phy_write(host, FREQSEL(clk), DLL_STATUS);
if (ret)
return ret;
ret = arasan_phy_sts_poll(host, DLL_STATUS, DLL_RDY_MASK);
if (ret)
return -EBUSY;
}
return 0;
}
static int arasan_select_phy_clock(struct sdhci_host *host)
{
struct sdhci_pci_slot *slot = sdhci_priv(host);
struct arasan_host *arasan_host = sdhci_pci_priv(slot);
u8 clk;
if (arasan_host->chg_clk == host->mmc->ios.clock)
return 0;
arasan_host->chg_clk = host->mmc->ios.clock;
if (host->mmc->ios.clock == 200000000)
clk = 0x0;
else if (host->mmc->ios.clock == 100000000)
clk = 0x2;
else if (host->mmc->ios.clock == 50000000)
clk = 0x1;
else
clk = 0x0;
if (host->mmc_host_ops.hs400_enhanced_strobe) {
arasan_phy_set(host, ENHSTRB_MODE, 1, 0x0, 0x0,
DLLTRM_ICP, clk);
} else {
switch (host->mmc->ios.timing) {
case MMC_TIMING_LEGACY:
arasan_phy_set(host, LEGACY_MODE, 0x0, 0x0, 0x0,
0x0, 0x0);
break;
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
arasan_phy_set(host, HISPD_MODE, 0x3, 0x0, 0x2,
DLLTRM_ICP, clk);
break;
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
arasan_phy_set(host, HS200_MODE, 0x2,
host->mmc->ios.drv_type, 0x0,
DLLTRM_ICP, clk);
break;
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
arasan_phy_set(host, DDR50_MODE, 0x1, 0x0,
0x0, DLLTRM_ICP, clk);
break;
case MMC_TIMING_MMC_HS400:
arasan_phy_set(host, HS400_MODE, 0x1,
host->mmc->ios.drv_type, 0xa,
DLLTRM_ICP, clk);
break;
default:
break;
}
}
return 0;
}
static int arasan_pci_probe_slot(struct sdhci_pci_slot *slot)
{
int err;
slot->host->mmc->caps |= MMC_CAP_NONREMOVABLE | MMC_CAP_8_BIT_DATA;
err = arasan_phy_init(slot->host);
if (err)
return -ENODEV;
return 0;
}
static void arasan_sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
sdhci_set_clock(host, clock);
/* Change phy settings for the new clock */
arasan_select_phy_clock(host);
}
static const struct sdhci_ops arasan_sdhci_pci_ops = {
.set_clock = arasan_sdhci_set_clock,
.enable_dma = sdhci_pci_enable_dma,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
};
const struct sdhci_pci_fixes sdhci_arasan = {
.probe_slot = arasan_pci_probe_slot,
.ops = &arasan_sdhci_pci_ops,
.priv_size = sizeof(struct arasan_host),
};
| linux-master | drivers/mmc/host/sdhci-pci-arasan.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2013 Linaro Ltd.
* Copyright (c) 2013 HiSilicon Limited.
*/
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/mmc/host.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include "dw_mmc.h"
#include "dw_mmc-pltfm.h"
/*
* hi6220 sd only support io voltage 1.8v and 3v
* Also need config AO_SCTRL_SEL18 accordingly
*/
#define AO_SCTRL_SEL18 BIT(10)
#define AO_SCTRL_CTRL3 0x40C
#define DWMMC_SDIO_ID 2
#define SOC_SCTRL_SCPERCTRL5 (0x314)
#define SDCARD_IO_SEL18 BIT(2)
#define SDCARD_RD_THRESHOLD (512)
#define GENCLK_DIV (7)
#define GPIO_CLK_ENABLE BIT(16)
#define GPIO_CLK_DIV_MASK GENMASK(11, 8)
#define GPIO_USE_SAMPLE_DLY_MASK GENMASK(13, 13)
#define UHS_REG_EXT_SAMPLE_PHASE_MASK GENMASK(20, 16)
#define UHS_REG_EXT_SAMPLE_DRVPHASE_MASK GENMASK(25, 21)
#define UHS_REG_EXT_SAMPLE_DLY_MASK GENMASK(30, 26)
#define TIMING_MODE 3
#define TIMING_CFG_NUM 10
#define NUM_PHASES (40)
#define ENABLE_SHIFT_MIN_SMPL (4)
#define ENABLE_SHIFT_MAX_SMPL (12)
#define USE_DLY_MIN_SMPL (11)
#define USE_DLY_MAX_SMPL (14)
struct k3_priv {
int ctrl_id;
u32 cur_speed;
struct regmap *reg;
};
static unsigned long dw_mci_hi6220_caps[] = {
MMC_CAP_CMD23,
MMC_CAP_CMD23,
0
};
struct hs_timing {
u32 drv_phase;
u32 smpl_dly;
u32 smpl_phase_max;
u32 smpl_phase_min;
};
static struct hs_timing hs_timing_cfg[TIMING_MODE][TIMING_CFG_NUM] = {
{ /* reserved */ },
{ /* SD */
{7, 0, 15, 15,}, /* 0: LEGACY 400k */
{6, 0, 4, 4,}, /* 1: MMC_HS */
{6, 0, 3, 3,}, /* 2: SD_HS */
{6, 0, 15, 15,}, /* 3: SDR12 */
{6, 0, 2, 2,}, /* 4: SDR25 */
{4, 0, 11, 0,}, /* 5: SDR50 */
{6, 4, 15, 0,}, /* 6: SDR104 */
{0}, /* 7: DDR50 */
{0}, /* 8: DDR52 */
{0}, /* 9: HS200 */
},
{ /* SDIO */
{7, 0, 15, 15,}, /* 0: LEGACY 400k */
{0}, /* 1: MMC_HS */
{6, 0, 15, 15,}, /* 2: SD_HS */
{6, 0, 15, 15,}, /* 3: SDR12 */
{6, 0, 0, 0,}, /* 4: SDR25 */
{4, 0, 12, 0,}, /* 5: SDR50 */
{5, 4, 15, 0,}, /* 6: SDR104 */
{0}, /* 7: DDR50 */
{0}, /* 8: DDR52 */
{0}, /* 9: HS200 */
}
};
static void dw_mci_k3_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
int ret;
ret = clk_set_rate(host->ciu_clk, ios->clock);
if (ret)
dev_warn(host->dev, "failed to set rate %uHz\n", ios->clock);
host->bus_hz = clk_get_rate(host->ciu_clk);
}
static const struct dw_mci_drv_data k3_drv_data = {
.set_ios = dw_mci_k3_set_ios,
};
static int dw_mci_hi6220_parse_dt(struct dw_mci *host)
{
struct k3_priv *priv;
priv = devm_kzalloc(host->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->reg = syscon_regmap_lookup_by_phandle(host->dev->of_node,
"hisilicon,peripheral-syscon");
if (IS_ERR(priv->reg))
priv->reg = NULL;
priv->ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
if (priv->ctrl_id < 0)
priv->ctrl_id = 0;
if (priv->ctrl_id >= TIMING_MODE)
return -EINVAL;
host->priv = priv;
return 0;
}
static int dw_mci_hi6220_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct k3_priv *priv;
struct dw_mci *host;
int min_uv, max_uv;
int ret;
host = slot->host;
priv = host->priv;
if (!priv || !priv->reg)
return 0;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
ret = regmap_update_bits(priv->reg, AO_SCTRL_CTRL3,
AO_SCTRL_SEL18, 0);
min_uv = 3000000;
max_uv = 3000000;
} else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
ret = regmap_update_bits(priv->reg, AO_SCTRL_CTRL3,
AO_SCTRL_SEL18, AO_SCTRL_SEL18);
min_uv = 1800000;
max_uv = 1800000;
} else {
dev_dbg(host->dev, "voltage not supported\n");
return -EINVAL;
}
if (ret) {
dev_dbg(host->dev, "switch voltage failed\n");
return ret;
}
if (IS_ERR_OR_NULL(mmc->supply.vqmmc))
return 0;
ret = regulator_set_voltage(mmc->supply.vqmmc, min_uv, max_uv);
if (ret) {
dev_dbg(host->dev, "Regulator set error %d: %d - %d\n",
ret, min_uv, max_uv);
return ret;
}
return 0;
}
static void dw_mci_hi6220_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
int ret;
unsigned int clock;
clock = (ios->clock <= 25000000) ? 25000000 : ios->clock;
ret = clk_set_rate(host->biu_clk, clock);
if (ret)
dev_warn(host->dev, "failed to set rate %uHz\n", clock);
host->bus_hz = clk_get_rate(host->biu_clk);
}
static int dw_mci_hi6220_execute_tuning(struct dw_mci_slot *slot, u32 opcode)
{
return 0;
}
static const struct dw_mci_drv_data hi6220_data = {
.caps = dw_mci_hi6220_caps,
.num_caps = ARRAY_SIZE(dw_mci_hi6220_caps),
.switch_voltage = dw_mci_hi6220_switch_voltage,
.set_ios = dw_mci_hi6220_set_ios,
.parse_dt = dw_mci_hi6220_parse_dt,
.execute_tuning = dw_mci_hi6220_execute_tuning,
};
static void dw_mci_hs_set_timing(struct dw_mci *host, int timing,
int smpl_phase)
{
u32 drv_phase;
u32 smpl_dly;
u32 use_smpl_dly = 0;
u32 enable_shift = 0;
u32 reg_value;
int ctrl_id;
struct k3_priv *priv;
priv = host->priv;
ctrl_id = priv->ctrl_id;
drv_phase = hs_timing_cfg[ctrl_id][timing].drv_phase;
smpl_dly = hs_timing_cfg[ctrl_id][timing].smpl_dly;
if (smpl_phase == -1)
smpl_phase = (hs_timing_cfg[ctrl_id][timing].smpl_phase_max +
hs_timing_cfg[ctrl_id][timing].smpl_phase_min) / 2;
switch (timing) {
case MMC_TIMING_UHS_SDR104:
if (smpl_phase >= USE_DLY_MIN_SMPL &&
smpl_phase <= USE_DLY_MAX_SMPL)
use_smpl_dly = 1;
fallthrough;
case MMC_TIMING_UHS_SDR50:
if (smpl_phase >= ENABLE_SHIFT_MIN_SMPL &&
smpl_phase <= ENABLE_SHIFT_MAX_SMPL)
enable_shift = 1;
break;
}
mci_writel(host, GPIO, 0x0);
usleep_range(5, 10);
reg_value = FIELD_PREP(UHS_REG_EXT_SAMPLE_PHASE_MASK, smpl_phase) |
FIELD_PREP(UHS_REG_EXT_SAMPLE_DLY_MASK, smpl_dly) |
FIELD_PREP(UHS_REG_EXT_SAMPLE_DRVPHASE_MASK, drv_phase);
mci_writel(host, UHS_REG_EXT, reg_value);
mci_writel(host, ENABLE_SHIFT, enable_shift);
reg_value = FIELD_PREP(GPIO_CLK_DIV_MASK, GENCLK_DIV) |
FIELD_PREP(GPIO_USE_SAMPLE_DLY_MASK, use_smpl_dly);
mci_writel(host, GPIO, (unsigned int)reg_value | GPIO_CLK_ENABLE);
/* We should delay 1ms wait for timing setting finished. */
usleep_range(1000, 2000);
}
static int dw_mci_hi3660_init(struct dw_mci *host)
{
mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(SDCARD_RD_THRESHOLD,
SDMMC_CARD_RD_THR_EN));
dw_mci_hs_set_timing(host, MMC_TIMING_LEGACY, -1);
host->bus_hz /= (GENCLK_DIV + 1);
return 0;
}
static int dw_mci_set_sel18(struct dw_mci *host, bool set)
{
int ret;
unsigned int val;
struct k3_priv *priv;
priv = host->priv;
val = set ? SDCARD_IO_SEL18 : 0;
ret = regmap_update_bits(priv->reg, SOC_SCTRL_SCPERCTRL5,
SDCARD_IO_SEL18, val);
if (ret) {
dev_err(host->dev, "sel18 %u error\n", val);
return ret;
}
return 0;
}
static void dw_mci_hi3660_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
int ret;
unsigned long wanted;
unsigned long actual;
struct k3_priv *priv = host->priv;
if (!ios->clock || ios->clock == priv->cur_speed)
return;
wanted = ios->clock * (GENCLK_DIV + 1);
ret = clk_set_rate(host->ciu_clk, wanted);
if (ret) {
dev_err(host->dev, "failed to set rate %luHz\n", wanted);
return;
}
actual = clk_get_rate(host->ciu_clk);
dw_mci_hs_set_timing(host, ios->timing, -1);
host->bus_hz = actual / (GENCLK_DIV + 1);
host->current_speed = 0;
priv->cur_speed = host->bus_hz;
}
static int dw_mci_get_best_clksmpl(unsigned int sample_flag)
{
int i;
int interval;
unsigned int v;
unsigned int len;
unsigned int range_start = 0;
unsigned int range_length = 0;
unsigned int middle_range = 0;
if (!sample_flag)
return -EIO;
if (~sample_flag == 0)
return 0;
i = ffs(sample_flag) - 1;
/*
* A clock cycle is divided into 32 phases,
* each of which is represented by a bit,
* finding the optimal phase.
*/
while (i < 32) {
v = ror32(sample_flag, i);
len = ffs(~v) - 1;
if (len > range_length) {
range_length = len;
range_start = i;
}
interval = ffs(v >> len) - 1;
if (interval < 0)
break;
i += len + interval;
}
middle_range = range_start + range_length / 2;
if (middle_range >= 32)
middle_range %= 32;
return middle_range;
}
static int dw_mci_hi3660_execute_tuning(struct dw_mci_slot *slot, u32 opcode)
{
int i = 0;
struct dw_mci *host = slot->host;
struct mmc_host *mmc = slot->mmc;
int smpl_phase = 0;
u32 tuning_sample_flag = 0;
int best_clksmpl = 0;
for (i = 0; i < NUM_PHASES; ++i, ++smpl_phase) {
smpl_phase %= 32;
mci_writel(host, TMOUT, ~0);
dw_mci_hs_set_timing(host, mmc->ios.timing, smpl_phase);
if (!mmc_send_tuning(mmc, opcode, NULL))
tuning_sample_flag |= (1 << smpl_phase);
else
tuning_sample_flag &= ~(1 << smpl_phase);
}
best_clksmpl = dw_mci_get_best_clksmpl(tuning_sample_flag);
if (best_clksmpl < 0) {
dev_err(host->dev, "All phases bad!\n");
return -EIO;
}
dw_mci_hs_set_timing(host, mmc->ios.timing, best_clksmpl);
dev_info(host->dev, "tuning ok best_clksmpl %u tuning_sample_flag %x\n",
best_clksmpl, tuning_sample_flag);
return 0;
}
static int dw_mci_hi3660_switch_voltage(struct mmc_host *mmc,
struct mmc_ios *ios)
{
int ret = 0;
struct dw_mci_slot *slot = mmc_priv(mmc);
struct k3_priv *priv;
struct dw_mci *host;
host = slot->host;
priv = host->priv;
if (!priv || !priv->reg)
return 0;
if (priv->ctrl_id == DWMMC_SDIO_ID)
return 0;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
ret = dw_mci_set_sel18(host, 0);
else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180)
ret = dw_mci_set_sel18(host, 1);
if (ret)
return ret;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
dev_err(host->dev, "Regulator set error %d\n", ret);
return ret;
}
}
return 0;
}
static const struct dw_mci_drv_data hi3660_data = {
.init = dw_mci_hi3660_init,
.set_ios = dw_mci_hi3660_set_ios,
.parse_dt = dw_mci_hi6220_parse_dt,
.execute_tuning = dw_mci_hi3660_execute_tuning,
.switch_voltage = dw_mci_hi3660_switch_voltage,
};
static const struct of_device_id dw_mci_k3_match[] = {
{ .compatible = "hisilicon,hi3660-dw-mshc", .data = &hi3660_data, },
{ .compatible = "hisilicon,hi4511-dw-mshc", .data = &k3_drv_data, },
{ .compatible = "hisilicon,hi6220-dw-mshc", .data = &hi6220_data, },
{},
};
MODULE_DEVICE_TABLE(of, dw_mci_k3_match);
static int dw_mci_k3_probe(struct platform_device *pdev)
{
const struct dw_mci_drv_data *drv_data;
const struct of_device_id *match;
match = of_match_node(dw_mci_k3_match, pdev->dev.of_node);
drv_data = match->data;
return dw_mci_pltfm_register(pdev, drv_data);
}
static const struct dev_pm_ops dw_mci_k3_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(dw_mci_runtime_suspend,
dw_mci_runtime_resume,
NULL)
};
static struct platform_driver dw_mci_k3_pltfm_driver = {
.probe = dw_mci_k3_probe,
.remove_new = dw_mci_pltfm_remove,
.driver = {
.name = "dwmmc_k3",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = dw_mci_k3_match,
.pm = &dw_mci_k3_dev_pm_ops,
},
};
module_platform_driver(dw_mci_k3_pltfm_driver);
MODULE_DESCRIPTION("K3 Specific DW-MSHC Driver Extension");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:dwmmc_k3");
| linux-master | drivers/mmc/host/dw_mmc-k3.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* USB SD Host Controller (USHC) controller driver.
*
* Copyright (C) 2010 Cambridge Silicon Radio Ltd.
*
* Notes:
* - Only version 2 devices are supported.
* - Version 2 devices only support SDIO cards/devices (R2 response is
* unsupported).
*
* References:
* [USHC] USB SD Host Controller specification (CS-118793-SP)
*/
#include <linux/module.h>
#include <linux/usb.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
enum ushc_request {
USHC_GET_CAPS = 0x00,
USHC_HOST_CTRL = 0x01,
USHC_PWR_CTRL = 0x02,
USHC_CLK_FREQ = 0x03,
USHC_EXEC_CMD = 0x04,
USHC_READ_RESP = 0x05,
USHC_RESET = 0x06,
};
enum ushc_request_type {
USHC_GET_CAPS_TYPE = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
USHC_HOST_CTRL_TYPE = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
USHC_PWR_CTRL_TYPE = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
USHC_CLK_FREQ_TYPE = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
USHC_EXEC_CMD_TYPE = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
USHC_READ_RESP_TYPE = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
USHC_RESET_TYPE = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
};
#define USHC_GET_CAPS_VERSION_MASK 0xff
#define USHC_GET_CAPS_3V3 (1 << 8)
#define USHC_GET_CAPS_3V0 (1 << 9)
#define USHC_GET_CAPS_1V8 (1 << 10)
#define USHC_GET_CAPS_HIGH_SPD (1 << 16)
#define USHC_HOST_CTRL_4BIT (1 << 1)
#define USHC_HOST_CTRL_HIGH_SPD (1 << 0)
#define USHC_PWR_CTRL_OFF 0x00
#define USHC_PWR_CTRL_3V3 0x01
#define USHC_PWR_CTRL_3V0 0x02
#define USHC_PWR_CTRL_1V8 0x03
#define USHC_READ_RESP_BUSY (1 << 4)
#define USHC_READ_RESP_ERR_TIMEOUT (1 << 3)
#define USHC_READ_RESP_ERR_CRC (1 << 2)
#define USHC_READ_RESP_ERR_DAT (1 << 1)
#define USHC_READ_RESP_ERR_CMD (1 << 0)
#define USHC_READ_RESP_ERR_MASK 0x0f
struct ushc_cbw {
__u8 signature;
__u8 cmd_idx;
__le16 block_size;
__le32 arg;
} __attribute__((packed));
#define USHC_CBW_SIGNATURE 'C'
struct ushc_csw {
__u8 signature;
__u8 status;
__le32 response;
} __attribute__((packed));
#define USHC_CSW_SIGNATURE 'S'
struct ushc_int_data {
u8 status;
u8 reserved[3];
};
#define USHC_INT_STATUS_SDIO_INT (1 << 1)
#define USHC_INT_STATUS_CARD_PRESENT (1 << 0)
struct ushc_data {
struct usb_device *usb_dev;
struct mmc_host *mmc;
struct urb *int_urb;
struct ushc_int_data *int_data;
struct urb *cbw_urb;
struct ushc_cbw *cbw;
struct urb *data_urb;
struct urb *csw_urb;
struct ushc_csw *csw;
spinlock_t lock;
struct mmc_request *current_req;
u32 caps;
u16 host_ctrl;
unsigned long flags;
u8 last_status;
int clock_freq;
};
#define DISCONNECTED 0
#define INT_EN 1
#define IGNORE_NEXT_INT 2
static void data_callback(struct urb *urb);
static int ushc_hw_reset(struct ushc_data *ushc)
{
return usb_control_msg(ushc->usb_dev, usb_sndctrlpipe(ushc->usb_dev, 0),
USHC_RESET, USHC_RESET_TYPE,
0, 0, NULL, 0, 100);
}
static int ushc_hw_get_caps(struct ushc_data *ushc)
{
int ret;
int version;
ret = usb_control_msg(ushc->usb_dev, usb_rcvctrlpipe(ushc->usb_dev, 0),
USHC_GET_CAPS, USHC_GET_CAPS_TYPE,
0, 0, &ushc->caps, sizeof(ushc->caps), 100);
if (ret < 0)
return ret;
ushc->caps = le32_to_cpu(ushc->caps);
version = ushc->caps & USHC_GET_CAPS_VERSION_MASK;
if (version != 0x02) {
dev_err(&ushc->usb_dev->dev, "controller version %d is not supported\n", version);
return -EINVAL;
}
return 0;
}
static int ushc_hw_set_host_ctrl(struct ushc_data *ushc, u16 mask, u16 val)
{
u16 host_ctrl;
int ret;
host_ctrl = (ushc->host_ctrl & ~mask) | val;
ret = usb_control_msg(ushc->usb_dev, usb_sndctrlpipe(ushc->usb_dev, 0),
USHC_HOST_CTRL, USHC_HOST_CTRL_TYPE,
host_ctrl, 0, NULL, 0, 100);
if (ret < 0)
return ret;
ushc->host_ctrl = host_ctrl;
return 0;
}
static void int_callback(struct urb *urb)
{
struct ushc_data *ushc = urb->context;
u8 status, last_status;
if (urb->status < 0)
return;
status = ushc->int_data->status;
last_status = ushc->last_status;
ushc->last_status = status;
/*
* Ignore the card interrupt status on interrupt transfers that
* were submitted while card interrupts where disabled.
*
* This avoid occasional spurious interrupts when enabling
* interrupts immediately after clearing the source on the card.
*/
if (!test_and_clear_bit(IGNORE_NEXT_INT, &ushc->flags)
&& test_bit(INT_EN, &ushc->flags)
&& status & USHC_INT_STATUS_SDIO_INT) {
mmc_signal_sdio_irq(ushc->mmc);
}
if ((status ^ last_status) & USHC_INT_STATUS_CARD_PRESENT)
mmc_detect_change(ushc->mmc, msecs_to_jiffies(100));
if (!test_bit(INT_EN, &ushc->flags))
set_bit(IGNORE_NEXT_INT, &ushc->flags);
usb_submit_urb(ushc->int_urb, GFP_ATOMIC);
}
static void cbw_callback(struct urb *urb)
{
struct ushc_data *ushc = urb->context;
if (urb->status != 0) {
usb_unlink_urb(ushc->data_urb);
usb_unlink_urb(ushc->csw_urb);
}
}
static void data_callback(struct urb *urb)
{
struct ushc_data *ushc = urb->context;
if (urb->status != 0)
usb_unlink_urb(ushc->csw_urb);
}
static void csw_callback(struct urb *urb)
{
struct ushc_data *ushc = urb->context;
struct mmc_request *req = ushc->current_req;
int status;
status = ushc->csw->status;
if (urb->status != 0) {
req->cmd->error = urb->status;
} else if (status & USHC_READ_RESP_ERR_CMD) {
if (status & USHC_READ_RESP_ERR_CRC)
req->cmd->error = -EIO;
else
req->cmd->error = -ETIMEDOUT;
}
if (req->data) {
if (status & USHC_READ_RESP_ERR_DAT) {
if (status & USHC_READ_RESP_ERR_CRC)
req->data->error = -EIO;
else
req->data->error = -ETIMEDOUT;
req->data->bytes_xfered = 0;
} else {
req->data->bytes_xfered = req->data->blksz * req->data->blocks;
}
}
req->cmd->resp[0] = le32_to_cpu(ushc->csw->response);
mmc_request_done(ushc->mmc, req);
}
static void ushc_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct ushc_data *ushc = mmc_priv(mmc);
int ret;
unsigned long flags;
spin_lock_irqsave(&ushc->lock, flags);
if (test_bit(DISCONNECTED, &ushc->flags)) {
ret = -ENODEV;
goto out;
}
/* Version 2 firmware doesn't support the R2 response format. */
if (req->cmd->flags & MMC_RSP_136) {
ret = -EINVAL;
goto out;
}
/* The Astoria's data FIFOs don't work with clock speeds < 5MHz so
limit commands with data to 6MHz or more. */
if (req->data && ushc->clock_freq < 6000000) {
ret = -EINVAL;
goto out;
}
ushc->current_req = req;
/* Start cmd with CBW. */
ushc->cbw->cmd_idx = cpu_to_le16(req->cmd->opcode);
if (req->data)
ushc->cbw->block_size = cpu_to_le16(req->data->blksz);
else
ushc->cbw->block_size = 0;
ushc->cbw->arg = cpu_to_le32(req->cmd->arg);
ret = usb_submit_urb(ushc->cbw_urb, GFP_ATOMIC);
if (ret < 0)
goto out;
/* Submit data (if any). */
if (req->data) {
struct mmc_data *data = req->data;
int pipe;
if (data->flags & MMC_DATA_READ)
pipe = usb_rcvbulkpipe(ushc->usb_dev, 6);
else
pipe = usb_sndbulkpipe(ushc->usb_dev, 2);
usb_fill_bulk_urb(ushc->data_urb, ushc->usb_dev, pipe,
NULL, data->sg->length,
data_callback, ushc);
ushc->data_urb->num_sgs = 1;
ushc->data_urb->sg = data->sg;
ret = usb_submit_urb(ushc->data_urb, GFP_ATOMIC);
if (ret < 0)
goto out;
}
/* Submit CSW. */
ret = usb_submit_urb(ushc->csw_urb, GFP_ATOMIC);
out:
spin_unlock_irqrestore(&ushc->lock, flags);
if (ret < 0) {
usb_unlink_urb(ushc->cbw_urb);
usb_unlink_urb(ushc->data_urb);
req->cmd->error = ret;
mmc_request_done(mmc, req);
}
}
static int ushc_set_power(struct ushc_data *ushc, unsigned char power_mode)
{
u16 voltage;
switch (power_mode) {
case MMC_POWER_OFF:
voltage = USHC_PWR_CTRL_OFF;
break;
case MMC_POWER_UP:
case MMC_POWER_ON:
voltage = USHC_PWR_CTRL_3V3;
break;
default:
return -EINVAL;
}
return usb_control_msg(ushc->usb_dev, usb_sndctrlpipe(ushc->usb_dev, 0),
USHC_PWR_CTRL, USHC_PWR_CTRL_TYPE,
voltage, 0, NULL, 0, 100);
}
static int ushc_set_bus_width(struct ushc_data *ushc, int bus_width)
{
return ushc_hw_set_host_ctrl(ushc, USHC_HOST_CTRL_4BIT,
bus_width == 4 ? USHC_HOST_CTRL_4BIT : 0);
}
static int ushc_set_bus_freq(struct ushc_data *ushc, int clk, bool enable_hs)
{
int ret;
/* Hardware can't detect interrupts while the clock is off. */
if (clk == 0)
clk = 400000;
ret = ushc_hw_set_host_ctrl(ushc, USHC_HOST_CTRL_HIGH_SPD,
enable_hs ? USHC_HOST_CTRL_HIGH_SPD : 0);
if (ret < 0)
return ret;
ret = usb_control_msg(ushc->usb_dev, usb_sndctrlpipe(ushc->usb_dev, 0),
USHC_CLK_FREQ, USHC_CLK_FREQ_TYPE,
clk & 0xffff, (clk >> 16) & 0xffff, NULL, 0, 100);
if (ret < 0)
return ret;
ushc->clock_freq = clk;
return 0;
}
static void ushc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct ushc_data *ushc = mmc_priv(mmc);
ushc_set_power(ushc, ios->power_mode);
ushc_set_bus_width(ushc, 1 << ios->bus_width);
ushc_set_bus_freq(ushc, ios->clock, ios->timing == MMC_TIMING_SD_HS);
}
static int ushc_get_cd(struct mmc_host *mmc)
{
struct ushc_data *ushc = mmc_priv(mmc);
return !!(ushc->last_status & USHC_INT_STATUS_CARD_PRESENT);
}
static void ushc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct ushc_data *ushc = mmc_priv(mmc);
if (enable)
set_bit(INT_EN, &ushc->flags);
else
clear_bit(INT_EN, &ushc->flags);
}
static void ushc_clean_up(struct ushc_data *ushc)
{
usb_free_urb(ushc->int_urb);
usb_free_urb(ushc->csw_urb);
usb_free_urb(ushc->data_urb);
usb_free_urb(ushc->cbw_urb);
kfree(ushc->int_data);
kfree(ushc->cbw);
kfree(ushc->csw);
mmc_free_host(ushc->mmc);
}
static const struct mmc_host_ops ushc_ops = {
.request = ushc_request,
.set_ios = ushc_set_ios,
.get_cd = ushc_get_cd,
.enable_sdio_irq = ushc_enable_sdio_irq,
};
static int ushc_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *usb_dev = interface_to_usbdev(intf);
struct mmc_host *mmc;
struct ushc_data *ushc;
int ret;
if (intf->cur_altsetting->desc.bNumEndpoints < 1)
return -ENODEV;
mmc = mmc_alloc_host(sizeof(struct ushc_data), &intf->dev);
if (mmc == NULL)
return -ENOMEM;
ushc = mmc_priv(mmc);
usb_set_intfdata(intf, ushc);
ushc->usb_dev = usb_dev;
ushc->mmc = mmc;
spin_lock_init(&ushc->lock);
ret = ushc_hw_reset(ushc);
if (ret < 0)
goto err;
/* Read capabilities. */
ret = ushc_hw_get_caps(ushc);
if (ret < 0)
goto err;
mmc->ops = &ushc_ops;
mmc->f_min = 400000;
mmc->f_max = 50000000;
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
mmc->caps |= (ushc->caps & USHC_GET_CAPS_HIGH_SPD) ? MMC_CAP_SD_HIGHSPEED : 0;
mmc->max_seg_size = 512*511;
mmc->max_segs = 1;
mmc->max_req_size = 512*511;
mmc->max_blk_size = 512;
mmc->max_blk_count = 511;
ushc->int_urb = usb_alloc_urb(0, GFP_KERNEL);
if (ushc->int_urb == NULL) {
ret = -ENOMEM;
goto err;
}
ushc->int_data = kzalloc(sizeof(struct ushc_int_data), GFP_KERNEL);
if (ushc->int_data == NULL) {
ret = -ENOMEM;
goto err;
}
usb_fill_int_urb(ushc->int_urb, ushc->usb_dev,
usb_rcvintpipe(usb_dev,
intf->cur_altsetting->endpoint[0].desc.bEndpointAddress),
ushc->int_data, sizeof(struct ushc_int_data),
int_callback, ushc,
intf->cur_altsetting->endpoint[0].desc.bInterval);
ushc->cbw_urb = usb_alloc_urb(0, GFP_KERNEL);
if (ushc->cbw_urb == NULL) {
ret = -ENOMEM;
goto err;
}
ushc->cbw = kzalloc(sizeof(struct ushc_cbw), GFP_KERNEL);
if (ushc->cbw == NULL) {
ret = -ENOMEM;
goto err;
}
ushc->cbw->signature = USHC_CBW_SIGNATURE;
usb_fill_bulk_urb(ushc->cbw_urb, ushc->usb_dev, usb_sndbulkpipe(usb_dev, 2),
ushc->cbw, sizeof(struct ushc_cbw),
cbw_callback, ushc);
ushc->data_urb = usb_alloc_urb(0, GFP_KERNEL);
if (ushc->data_urb == NULL) {
ret = -ENOMEM;
goto err;
}
ushc->csw_urb = usb_alloc_urb(0, GFP_KERNEL);
if (ushc->csw_urb == NULL) {
ret = -ENOMEM;
goto err;
}
ushc->csw = kzalloc(sizeof(struct ushc_csw), GFP_KERNEL);
if (ushc->csw == NULL) {
ret = -ENOMEM;
goto err;
}
usb_fill_bulk_urb(ushc->csw_urb, ushc->usb_dev, usb_rcvbulkpipe(usb_dev, 6),
ushc->csw, sizeof(struct ushc_csw),
csw_callback, ushc);
ret = mmc_add_host(ushc->mmc);
if (ret)
goto err;
ret = usb_submit_urb(ushc->int_urb, GFP_KERNEL);
if (ret < 0) {
mmc_remove_host(ushc->mmc);
goto err;
}
return 0;
err:
ushc_clean_up(ushc);
return ret;
}
static void ushc_disconnect(struct usb_interface *intf)
{
struct ushc_data *ushc = usb_get_intfdata(intf);
spin_lock_irq(&ushc->lock);
set_bit(DISCONNECTED, &ushc->flags);
spin_unlock_irq(&ushc->lock);
usb_kill_urb(ushc->int_urb);
usb_kill_urb(ushc->cbw_urb);
usb_kill_urb(ushc->data_urb);
usb_kill_urb(ushc->csw_urb);
mmc_remove_host(ushc->mmc);
ushc_clean_up(ushc);
}
static struct usb_device_id ushc_id_table[] = {
/* CSR USB SD Host Controller */
{ USB_DEVICE(0x0a12, 0x5d10) },
{ },
};
MODULE_DEVICE_TABLE(usb, ushc_id_table);
static struct usb_driver ushc_driver = {
.name = "ushc",
.id_table = ushc_id_table,
.probe = ushc_probe,
.disconnect = ushc_disconnect,
};
module_usb_driver(ushc_driver);
MODULE_DESCRIPTION("USB SD Host Controller driver");
MODULE_AUTHOR("David Vrabel <[email protected]>");
MODULE_LICENSE("GPL");
| linux-master | drivers/mmc/host/ushc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* drivers/mmc/host/sdhci-of-hlwd.c
*
* Nintendo Wii Secure Digital Host Controller Interface.
* Copyright (C) 2009 The GameCube Linux Team
* Copyright (C) 2009 Albert Herranz
*
* Based on sdhci-of-esdhc.c
*
* Copyright (c) 2007 Freescale Semiconductor, Inc.
* Copyright (c) 2009 MontaVista Software, Inc.
*
* Authors: Xiaobo Xie <[email protected]>
* Anton Vorontsov <[email protected]>
*/
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mmc/host.h>
#include "sdhci-pltfm.h"
/*
* Ops and quirks for the Nintendo Wii SDHCI controllers.
*/
/*
* We need a small delay after each write, or things go horribly wrong.
*/
#define SDHCI_HLWD_WRITE_DELAY 5 /* usecs */
static void sdhci_hlwd_writel(struct sdhci_host *host, u32 val, int reg)
{
sdhci_be32bs_writel(host, val, reg);
udelay(SDHCI_HLWD_WRITE_DELAY);
}
static void sdhci_hlwd_writew(struct sdhci_host *host, u16 val, int reg)
{
sdhci_be32bs_writew(host, val, reg);
udelay(SDHCI_HLWD_WRITE_DELAY);
}
static void sdhci_hlwd_writeb(struct sdhci_host *host, u8 val, int reg)
{
sdhci_be32bs_writeb(host, val, reg);
udelay(SDHCI_HLWD_WRITE_DELAY);
}
static const struct sdhci_ops sdhci_hlwd_ops = {
.read_l = sdhci_be32bs_readl,
.read_w = sdhci_be32bs_readw,
.read_b = sdhci_be32bs_readb,
.write_l = sdhci_hlwd_writel,
.write_w = sdhci_hlwd_writew,
.write_b = sdhci_hlwd_writeb,
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
};
static const struct sdhci_pltfm_data sdhci_hlwd_pdata = {
.quirks = SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE,
.ops = &sdhci_hlwd_ops,
};
static int sdhci_hlwd_probe(struct platform_device *pdev)
{
return sdhci_pltfm_init_and_add_host(pdev, &sdhci_hlwd_pdata, 0);
}
static const struct of_device_id sdhci_hlwd_of_match[] = {
{ .compatible = "nintendo,hollywood-sdhci" },
{ }
};
MODULE_DEVICE_TABLE(of, sdhci_hlwd_of_match);
static struct platform_driver sdhci_hlwd_driver = {
.driver = {
.name = "sdhci-hlwd",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_hlwd_of_match,
.pm = &sdhci_pltfm_pmops,
},
.probe = sdhci_hlwd_probe,
.remove_new = sdhci_pltfm_remove,
};
module_platform_driver(sdhci_hlwd_driver);
MODULE_DESCRIPTION("Nintendo Wii SDHCI OF driver");
MODULE_AUTHOR("The GameCube Linux Team, Albert Herranz");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-of-hlwd.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Amlogic SD/eMMC driver for the GX/S905 family SoCs
*
* Copyright (c) 2016 BayLibre, SAS.
* Author: Kevin Hilman <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/interrupt.h>
#include <linux/bitfield.h>
#include <linux/pinctrl/consumer.h>
#define DRIVER_NAME "meson-gx-mmc"
#define SD_EMMC_CLOCK 0x0
#define CLK_DIV_MASK GENMASK(5, 0)
#define CLK_SRC_MASK GENMASK(7, 6)
#define CLK_CORE_PHASE_MASK GENMASK(9, 8)
#define CLK_TX_PHASE_MASK GENMASK(11, 10)
#define CLK_RX_PHASE_MASK GENMASK(13, 12)
#define CLK_PHASE_0 0
#define CLK_PHASE_180 2
#define CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
#define CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
#define CLK_V2_ALWAYS_ON BIT(24)
#define CLK_V2_IRQ_SDIO_SLEEP BIT(25)
#define CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
#define CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
#define CLK_V3_ALWAYS_ON BIT(28)
#define CLK_V3_IRQ_SDIO_SLEEP BIT(29)
#define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask)
#define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask)
#define CLK_ALWAYS_ON(h) (h->data->always_on)
#define CLK_IRQ_SDIO_SLEEP(h) (h->data->irq_sdio_sleep)
#define SD_EMMC_DELAY 0x4
#define SD_EMMC_ADJUST 0x8
#define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
#define ADJUST_DS_EN BIT(15)
#define ADJUST_ADJ_EN BIT(13)
#define SD_EMMC_DELAY1 0x4
#define SD_EMMC_DELAY2 0x8
#define SD_EMMC_V3_ADJUST 0xc
#define SD_EMMC_CALOUT 0x10
#define SD_EMMC_START 0x40
#define START_DESC_INIT BIT(0)
#define START_DESC_BUSY BIT(1)
#define START_DESC_ADDR_MASK GENMASK(31, 2)
#define SD_EMMC_CFG 0x44
#define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
#define CFG_BUS_WIDTH_1 0x0
#define CFG_BUS_WIDTH_4 0x1
#define CFG_BUS_WIDTH_8 0x2
#define CFG_DDR BIT(2)
#define CFG_BLK_LEN_MASK GENMASK(7, 4)
#define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
#define CFG_RC_CC_MASK GENMASK(15, 12)
#define CFG_STOP_CLOCK BIT(22)
#define CFG_CLK_ALWAYS_ON BIT(18)
#define CFG_CHK_DS BIT(20)
#define CFG_AUTO_CLK BIT(23)
#define CFG_ERR_ABORT BIT(27)
#define SD_EMMC_STATUS 0x48
#define STATUS_BUSY BIT(31)
#define STATUS_DESC_BUSY BIT(30)
#define STATUS_DATI GENMASK(23, 16)
#define SD_EMMC_IRQ_EN 0x4c
#define IRQ_RXD_ERR_MASK GENMASK(7, 0)
#define IRQ_TXD_ERR BIT(8)
#define IRQ_DESC_ERR BIT(9)
#define IRQ_RESP_ERR BIT(10)
#define IRQ_CRC_ERR \
(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
#define IRQ_RESP_TIMEOUT BIT(11)
#define IRQ_DESC_TIMEOUT BIT(12)
#define IRQ_TIMEOUTS \
(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
#define IRQ_END_OF_CHAIN BIT(13)
#define IRQ_RESP_STATUS BIT(14)
#define IRQ_SDIO BIT(15)
#define IRQ_EN_MASK \
(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN)
#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68
#define SD_EMMC_RXD 0x94
#define SD_EMMC_TXD 0x94
#define SD_EMMC_LAST_REG SD_EMMC_TXD
#define SD_EMMC_SRAM_DATA_BUF_LEN 1536
#define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
#define SD_EMMC_PRE_REQ_DONE BIT(0)
#define SD_EMMC_DESC_CHAIN_MODE BIT(1)
#define MUX_CLK_NUM_PARENTS 2
struct meson_mmc_data {
unsigned int tx_delay_mask;
unsigned int rx_delay_mask;
unsigned int always_on;
unsigned int adjust;
unsigned int irq_sdio_sleep;
};
struct sd_emmc_desc {
u32 cmd_cfg;
u32 cmd_arg;
u32 cmd_data;
u32 cmd_resp;
};
struct meson_host {
struct device *dev;
const struct meson_mmc_data *data;
struct mmc_host *mmc;
struct mmc_command *cmd;
void __iomem *regs;
struct clk *mux_clk;
struct clk *mmc_clk;
unsigned long req_rate;
bool ddr;
bool dram_access_quirk;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_clk_gate;
unsigned int bounce_buf_size;
void *bounce_buf;
void __iomem *bounce_iomem_buf;
dma_addr_t bounce_dma_addr;
struct sd_emmc_desc *descs;
dma_addr_t descs_dma_addr;
int irq;
bool needs_pre_post_req;
spinlock_t lock;
};
#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
#define CMD_CFG_BLOCK_MODE BIT(9)
#define CMD_CFG_R1B BIT(10)
#define CMD_CFG_END_OF_CHAIN BIT(11)
#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
#define CMD_CFG_NO_RESP BIT(16)
#define CMD_CFG_NO_CMD BIT(17)
#define CMD_CFG_DATA_IO BIT(18)
#define CMD_CFG_DATA_WR BIT(19)
#define CMD_CFG_RESP_NOCRC BIT(20)
#define CMD_CFG_RESP_128 BIT(21)
#define CMD_CFG_RESP_NUM BIT(22)
#define CMD_CFG_DATA_NUM BIT(23)
#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
#define CMD_CFG_ERROR BIT(30)
#define CMD_CFG_OWNER BIT(31)
#define CMD_DATA_MASK GENMASK(31, 2)
#define CMD_DATA_BIG_ENDIAN BIT(1)
#define CMD_DATA_SRAM BIT(0)
#define CMD_RESP_MASK GENMASK(31, 1)
#define CMD_RESP_SRAM BIT(0)
static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
{
unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
if (!timeout)
return SD_EMMC_CMD_TIMEOUT_DATA;
timeout = roundup_pow_of_two(timeout);
return min(timeout, 32768U); /* max. 2^15 ms */
}
static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
{
if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
return cmd->mrq->cmd;
else if (mmc_op_multi(cmd->opcode) &&
(!cmd->mrq->sbc || cmd->error || cmd->data->error))
return cmd->mrq->stop;
else
return NULL;
}
static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct meson_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
struct scatterlist *sg;
int i;
/*
* When Controller DMA cannot directly access DDR memory, disable
* support for Chain Mode to directly use the internal SRAM using
* the bounce buffer mode.
*/
if (host->dram_access_quirk)
return;
/* SD_IO_RW_EXTENDED (CMD53) can also use block mode under the hood */
if (data->blocks > 1 || mrq->cmd->opcode == SD_IO_RW_EXTENDED) {
/*
* In block mode DMA descriptor format, "length" field indicates
* number of blocks and there is no way to pass DMA size that
* is not multiple of SDIO block size, making it impossible to
* tie more than one memory buffer with single SDIO block.
* Block mode sg buffer size should be aligned with SDIO block
* size, otherwise chain mode could not be used.
*/
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length % data->blksz) {
dev_warn_once(mmc_dev(mmc),
"unaligned sg len %u blksize %u, disabling descriptor DMA for transfer\n",
sg->length, data->blksz);
return;
}
}
}
for_each_sg(data->sg, sg, data->sg_len, i) {
/* check for 8 byte alignment */
if (sg->offset % 8) {
dev_warn_once(mmc_dev(mmc),
"unaligned sg offset %u, disabling descriptor DMA for transfer\n",
sg->offset);
return;
}
}
data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
}
static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
{
return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
}
static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
{
return data && data->flags & MMC_DATA_READ &&
!meson_mmc_desc_chain_mode(data);
}
static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
if (!data)
return;
meson_mmc_get_transfer_mode(mmc, mrq);
data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
if (!meson_mmc_desc_chain_mode(data))
return;
data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (!data->sg_count)
dev_err(mmc_dev(mmc), "dma_map_sg failed");
}
static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct mmc_data *data = mrq->data;
if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
/*
* Gating the clock on this controller is tricky. It seems the mmc clock
* is also used by the controller. It may crash during some operation if the
* clock is stopped. The safest thing to do, whenever possible, is to keep
* clock running at stop it at the pad using the pinmux.
*/
static void meson_mmc_clk_gate(struct meson_host *host)
{
u32 cfg;
if (host->pins_clk_gate) {
pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
} else {
/*
* If the pinmux is not provided - default to the classic and
* unsafe method
*/
cfg = readl(host->regs + SD_EMMC_CFG);
cfg |= CFG_STOP_CLOCK;
writel(cfg, host->regs + SD_EMMC_CFG);
}
}
static void meson_mmc_clk_ungate(struct meson_host *host)
{
u32 cfg;
if (host->pins_clk_gate)
pinctrl_select_default_state(host->dev);
/* Make sure the clock is not stopped in the controller */
cfg = readl(host->regs + SD_EMMC_CFG);
cfg &= ~CFG_STOP_CLOCK;
writel(cfg, host->regs + SD_EMMC_CFG);
}
static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
bool ddr)
{
struct mmc_host *mmc = host->mmc;
int ret;
u32 cfg;
/* Same request - bail-out */
if (host->ddr == ddr && host->req_rate == rate)
return 0;
/* stop clock */
meson_mmc_clk_gate(host);
host->req_rate = 0;
mmc->actual_clock = 0;
/* return with clock being stopped */
if (!rate)
return 0;
/* Stop the clock during rate change to avoid glitches */
cfg = readl(host->regs + SD_EMMC_CFG);
cfg |= CFG_STOP_CLOCK;
writel(cfg, host->regs + SD_EMMC_CFG);
if (ddr) {
/* DDR modes require higher module clock */
rate <<= 1;
cfg |= CFG_DDR;
} else {
cfg &= ~CFG_DDR;
}
writel(cfg, host->regs + SD_EMMC_CFG);
host->ddr = ddr;
ret = clk_set_rate(host->mmc_clk, rate);
if (ret) {
dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
rate, ret);
return ret;
}
host->req_rate = rate;
mmc->actual_clock = clk_get_rate(host->mmc_clk);
/* We should report the real output frequency of the controller */
if (ddr) {
host->req_rate >>= 1;
mmc->actual_clock >>= 1;
}
dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
if (rate != mmc->actual_clock)
dev_dbg(host->dev, "requested rate was %lu\n", rate);
/* (re)start clock */
meson_mmc_clk_ungate(host);
return 0;
}
/*
* The SD/eMMC IP block has an internal mux and divider used for
* generating the MMC clock. Use the clock framework to create and
* manage these clocks.
*/
static int meson_mmc_clk_init(struct meson_host *host)
{
struct clk_init_data init;
struct clk_mux *mux;
struct clk_divider *div;
char clk_name[32];
int i, ret = 0;
const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
const char *clk_parent[1];
u32 clk_reg;
/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
clk_reg = CLK_ALWAYS_ON(host);
clk_reg |= CLK_DIV_MASK;
clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
clk_reg |= CLK_IRQ_SDIO_SLEEP(host);
writel(clk_reg, host->regs + SD_EMMC_CLOCK);
/* get the mux parents */
for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
struct clk *clk;
char name[16];
snprintf(name, sizeof(name), "clkin%d", i);
clk = devm_clk_get(host->dev, name);
if (IS_ERR(clk))
return dev_err_probe(host->dev, PTR_ERR(clk),
"Missing clock %s\n", name);
mux_parent_names[i] = __clk_get_name(clk);
}
/* create the mux */
mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
if (!mux)
return -ENOMEM;
snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
init.name = clk_name;
init.ops = &clk_mux_ops;
init.flags = 0;
init.parent_names = mux_parent_names;
init.num_parents = MUX_CLK_NUM_PARENTS;
mux->reg = host->regs + SD_EMMC_CLOCK;
mux->shift = __ffs(CLK_SRC_MASK);
mux->mask = CLK_SRC_MASK >> mux->shift;
mux->hw.init = &init;
host->mux_clk = devm_clk_register(host->dev, &mux->hw);
if (WARN_ON(IS_ERR(host->mux_clk)))
return PTR_ERR(host->mux_clk);
/* create the divider */
div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
if (!div)
return -ENOMEM;
snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
init.name = clk_name;
init.ops = &clk_divider_ops;
init.flags = CLK_SET_RATE_PARENT;
clk_parent[0] = __clk_get_name(host->mux_clk);
init.parent_names = clk_parent;
init.num_parents = 1;
div->reg = host->regs + SD_EMMC_CLOCK;
div->shift = __ffs(CLK_DIV_MASK);
div->width = __builtin_popcountl(CLK_DIV_MASK);
div->hw.init = &init;
div->flags = CLK_DIVIDER_ONE_BASED;
host->mmc_clk = devm_clk_register(host->dev, &div->hw);
if (WARN_ON(IS_ERR(host->mmc_clk)))
return PTR_ERR(host->mmc_clk);
/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
if (ret)
return ret;
return clk_prepare_enable(host->mmc_clk);
}
static void meson_mmc_disable_resampling(struct meson_host *host)
{
unsigned int val = readl(host->regs + host->data->adjust);
val &= ~ADJUST_ADJ_EN;
writel(val, host->regs + host->data->adjust);
}
static void meson_mmc_reset_resampling(struct meson_host *host)
{
unsigned int val;
meson_mmc_disable_resampling(host);
val = readl(host->regs + host->data->adjust);
val &= ~ADJUST_ADJ_DELAY_MASK;
writel(val, host->regs + host->data->adjust);
}
static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
{
struct meson_host *host = mmc_priv(mmc);
unsigned int val, dly, max_dly, i;
int ret;
/* Resampling is done using the source clock */
max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
clk_get_rate(host->mmc_clk));
val = readl(host->regs + host->data->adjust);
val |= ADJUST_ADJ_EN;
writel(val, host->regs + host->data->adjust);
if (mmc_doing_retune(mmc))
dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
else
dly = 0;
for (i = 0; i < max_dly; i++) {
val &= ~ADJUST_ADJ_DELAY_MASK;
val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
writel(val, host->regs + host->data->adjust);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret) {
dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
(dly + i) % max_dly);
return 0;
}
}
meson_mmc_reset_resampling(host);
return -EIO;
}
static int meson_mmc_prepare_ios_clock(struct meson_host *host,
struct mmc_ios *ios)
{
bool ddr;
switch (ios->timing) {
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
ddr = true;
break;
default:
ddr = false;
break;
}
return meson_mmc_clk_set(host, ios->clock, ddr);
}
static void meson_mmc_check_resampling(struct meson_host *host,
struct mmc_ios *ios)
{
switch (ios->timing) {
case MMC_TIMING_LEGACY:
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_MMC_DDR52:
meson_mmc_disable_resampling(host);
break;
}
}
static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct meson_host *host = mmc_priv(mmc);
u32 bus_width, val;
int err;
/*
* GPIO regulator, only controls switching between 1v8 and
* 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
*/
switch (ios->power_mode) {
case MMC_POWER_OFF:
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
mmc_regulator_disable_vqmmc(mmc);
break;
case MMC_POWER_UP:
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
break;
case MMC_POWER_ON:
mmc_regulator_enable_vqmmc(mmc);
break;
}
/* Bus width */
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
bus_width = CFG_BUS_WIDTH_1;
break;
case MMC_BUS_WIDTH_4:
bus_width = CFG_BUS_WIDTH_4;
break;
case MMC_BUS_WIDTH_8:
bus_width = CFG_BUS_WIDTH_8;
break;
default:
dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
ios->bus_width);
bus_width = CFG_BUS_WIDTH_4;
}
val = readl(host->regs + SD_EMMC_CFG);
val &= ~CFG_BUS_WIDTH_MASK;
val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
writel(val, host->regs + SD_EMMC_CFG);
meson_mmc_check_resampling(host, ios);
err = meson_mmc_prepare_ios_clock(host, ios);
if (err)
dev_err(host->dev, "Failed to set clock: %d\n,", err);
dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
}
static void meson_mmc_request_done(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct meson_host *host = mmc_priv(mmc);
host->cmd = NULL;
if (host->needs_pre_post_req)
meson_mmc_post_req(mmc, mrq, 0);
mmc_request_done(host->mmc, mrq);
}
static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
{
struct meson_host *host = mmc_priv(mmc);
u32 cfg, blksz_old;
cfg = readl(host->regs + SD_EMMC_CFG);
blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
if (!is_power_of_2(blksz))
dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
blksz = ilog2(blksz);
/* check if block-size matches, if not update */
if (blksz == blksz_old)
return;
dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
blksz_old, blksz);
cfg &= ~CFG_BLK_LEN_MASK;
cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
writel(cfg, host->regs + SD_EMMC_CFG);
}
static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
{
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
*cmd_cfg |= CMD_CFG_RESP_128;
*cmd_cfg |= CMD_CFG_RESP_NUM;
if (!(cmd->flags & MMC_RSP_CRC))
*cmd_cfg |= CMD_CFG_RESP_NOCRC;
if (cmd->flags & MMC_RSP_BUSY)
*cmd_cfg |= CMD_CFG_R1B;
} else {
*cmd_cfg |= CMD_CFG_NO_RESP;
}
}
static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
{
struct meson_host *host = mmc_priv(mmc);
struct sd_emmc_desc *desc = host->descs;
struct mmc_data *data = host->cmd->data;
struct scatterlist *sg;
u32 start;
int i;
if (data->flags & MMC_DATA_WRITE)
cmd_cfg |= CMD_CFG_DATA_WR;
if (data->blocks > 1) {
cmd_cfg |= CMD_CFG_BLOCK_MODE;
meson_mmc_set_blksz(mmc, data->blksz);
}
for_each_sg(data->sg, sg, data->sg_count, i) {
unsigned int len = sg_dma_len(sg);
if (data->blocks > 1)
len /= data->blksz;
desc[i].cmd_cfg = cmd_cfg;
desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
if (i > 0)
desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
desc[i].cmd_arg = host->cmd->arg;
desc[i].cmd_resp = 0;
desc[i].cmd_data = sg_dma_address(sg);
}
desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
dma_wmb(); /* ensure descriptor is written before kicked */
start = host->descs_dma_addr | START_DESC_BUSY;
writel(start, host->regs + SD_EMMC_START);
}
/* local sg copy for dram_access_quirk */
static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data,
size_t buflen, bool to_buffer)
{
unsigned int sg_flags = SG_MITER_ATOMIC;
struct scatterlist *sgl = data->sg;
unsigned int nents = data->sg_len;
struct sg_mapping_iter miter;
unsigned int offset = 0;
if (to_buffer)
sg_flags |= SG_MITER_FROM_SG;
else
sg_flags |= SG_MITER_TO_SG;
sg_miter_start(&miter, sgl, nents, sg_flags);
while ((offset < buflen) && sg_miter_next(&miter)) {
unsigned int buf_offset = 0;
unsigned int len, left;
u32 *buf = miter.addr;
len = min(miter.length, buflen - offset);
left = len;
if (to_buffer) {
do {
writel(*buf++, host->bounce_iomem_buf + offset + buf_offset);
buf_offset += 4;
left -= 4;
} while (left);
} else {
do {
*buf++ = readl(host->bounce_iomem_buf + offset + buf_offset);
buf_offset += 4;
left -= 4;
} while (left);
}
offset += len;
}
sg_miter_stop(&miter);
}
static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct meson_host *host = mmc_priv(mmc);
struct mmc_data *data = cmd->data;
u32 cmd_cfg = 0, cmd_data = 0;
unsigned int xfer_bytes = 0;
/* Setup descriptors */
dma_rmb();
host->cmd = cmd;
cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
meson_mmc_set_response_bits(cmd, &cmd_cfg);
/* data? */
if (data) {
data->bytes_xfered = 0;
cmd_cfg |= CMD_CFG_DATA_IO;
cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
ilog2(meson_mmc_get_timeout_msecs(data)));
if (meson_mmc_desc_chain_mode(data)) {
meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
return;
}
if (data->blocks > 1) {
cmd_cfg |= CMD_CFG_BLOCK_MODE;
cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
data->blocks);
meson_mmc_set_blksz(mmc, data->blksz);
} else {
cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
}
xfer_bytes = data->blksz * data->blocks;
if (data->flags & MMC_DATA_WRITE) {
cmd_cfg |= CMD_CFG_DATA_WR;
WARN_ON(xfer_bytes > host->bounce_buf_size);
if (host->dram_access_quirk)
meson_mmc_copy_buffer(host, data, xfer_bytes, true);
else
sg_copy_to_buffer(data->sg, data->sg_len,
host->bounce_buf, xfer_bytes);
dma_wmb();
}
cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
} else {
cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
ilog2(SD_EMMC_CMD_TIMEOUT));
}
/* Last descriptor */
cmd_cfg |= CMD_CFG_END_OF_CHAIN;
writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
writel(0, host->regs + SD_EMMC_CMD_RSP);
wmb(); /* ensure descriptor is written before kicked */
writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
}
static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data)
{
struct scatterlist *sg;
int i;
/* Reject request if any element offset or size is not 32bit aligned */
for_each_sg(data->sg, sg, data->sg_len, i) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
!IS_ALIGNED(sg->length, sizeof(u32))) {
dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n",
data->sg->offset, data->sg->length);
return -EINVAL;
}
}
return 0;
}
static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct meson_host *host = mmc_priv(mmc);
host->needs_pre_post_req = mrq->data &&
!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
/*
* The memory at the end of the controller used as bounce buffer for
* the dram_access_quirk only accepts 32bit read/write access,
* check the aligment and length of the data before starting the request.
*/
if (host->dram_access_quirk && mrq->data) {
mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data);
if (mrq->cmd->error) {
mmc_request_done(mmc, mrq);
return;
}
}
if (host->needs_pre_post_req) {
meson_mmc_get_transfer_mode(mmc, mrq);
if (!meson_mmc_desc_chain_mode(mrq->data))
host->needs_pre_post_req = false;
}
if (host->needs_pre_post_req)
meson_mmc_pre_req(mmc, mrq);
/* Stop execution */
writel(0, host->regs + SD_EMMC_START);
meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
}
static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct meson_host *host = mmc_priv(mmc);
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
} else if (cmd->flags & MMC_RSP_PRESENT) {
cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
}
}
static void __meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct meson_host *host = mmc_priv(mmc);
u32 reg_irqen = IRQ_EN_MASK;
if (enable)
reg_irqen |= IRQ_SDIO;
writel(reg_irqen, host->regs + SD_EMMC_IRQ_EN);
}
static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
{
struct meson_host *host = dev_id;
struct mmc_command *cmd;
u32 status, raw_status, irq_mask = IRQ_EN_MASK;
irqreturn_t ret = IRQ_NONE;
if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
irq_mask |= IRQ_SDIO;
raw_status = readl(host->regs + SD_EMMC_STATUS);
status = raw_status & irq_mask;
if (!status) {
dev_dbg(host->dev,
"Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
irq_mask, raw_status);
return IRQ_NONE;
}
/* ack all raised interrupts */
writel(status, host->regs + SD_EMMC_STATUS);
cmd = host->cmd;
if (status & IRQ_SDIO) {
spin_lock(&host->lock);
__meson_mmc_enable_sdio_irq(host->mmc, 0);
sdio_signal_irq(host->mmc);
spin_unlock(&host->lock);
status &= ~IRQ_SDIO;
if (!status)
return IRQ_HANDLED;
}
if (WARN_ON(!cmd))
return IRQ_NONE;
cmd->error = 0;
if (status & IRQ_CRC_ERR) {
dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
cmd->error = -EILSEQ;
ret = IRQ_WAKE_THREAD;
goto out;
}
if (status & IRQ_TIMEOUTS) {
dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
cmd->error = -ETIMEDOUT;
ret = IRQ_WAKE_THREAD;
goto out;
}
meson_mmc_read_resp(host->mmc, cmd);
if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
struct mmc_data *data = cmd->data;
if (data && !cmd->error)
data->bytes_xfered = data->blksz * data->blocks;
return IRQ_WAKE_THREAD;
}
out:
if (cmd->error) {
/* Stop desc in case of errors */
u32 start = readl(host->regs + SD_EMMC_START);
start &= ~START_DESC_BUSY;
writel(start, host->regs + SD_EMMC_START);
}
return ret;
}
static int meson_mmc_wait_desc_stop(struct meson_host *host)
{
u32 status;
/*
* It may sometimes take a while for it to actually halt. Here, we
* are giving it 5ms to comply
*
* If we don't confirm the descriptor is stopped, it might raise new
* IRQs after we have called mmc_request_done() which is bad.
*/
return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
!(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
100, 5000);
}
static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
{
struct meson_host *host = dev_id;
struct mmc_command *next_cmd, *cmd = host->cmd;
struct mmc_data *data;
unsigned int xfer_bytes;
if (WARN_ON(!cmd))
return IRQ_NONE;
if (cmd->error) {
meson_mmc_wait_desc_stop(host);
meson_mmc_request_done(host->mmc, cmd->mrq);
return IRQ_HANDLED;
}
data = cmd->data;
if (meson_mmc_bounce_buf_read(data)) {
xfer_bytes = data->blksz * data->blocks;
WARN_ON(xfer_bytes > host->bounce_buf_size);
if (host->dram_access_quirk)
meson_mmc_copy_buffer(host, data, xfer_bytes, false);
else
sg_copy_from_buffer(data->sg, data->sg_len,
host->bounce_buf, xfer_bytes);
}
next_cmd = meson_mmc_get_next_command(cmd);
if (next_cmd)
meson_mmc_start_cmd(host->mmc, next_cmd);
else
meson_mmc_request_done(host->mmc, cmd->mrq);
return IRQ_HANDLED;
}
static void meson_mmc_cfg_init(struct meson_host *host)
{
u32 cfg = 0;
cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
/* abort chain on R/W errors */
cfg |= CFG_ERR_ABORT;
writel(cfg, host->regs + SD_EMMC_CFG);
}
static int meson_mmc_card_busy(struct mmc_host *mmc)
{
struct meson_host *host = mmc_priv(mmc);
u32 regval;
regval = readl(host->regs + SD_EMMC_STATUS);
/* We are only interrested in lines 0 to 3, so mask the other ones */
return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
}
static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
int ret;
/* vqmmc regulator is available */
if (!IS_ERR(mmc->supply.vqmmc)) {
/*
* The usual amlogic setup uses a GPIO to switch from one
* regulator to the other. While the voltage ramp up is
* pretty fast, care must be taken when switching from 3.3v
* to 1.8v. Please make sure the regulator framework is aware
* of your own regulator constraints
*/
ret = mmc_regulator_set_vqmmc(mmc, ios);
return ret < 0 ? ret : 0;
}
/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return 0;
return -EINVAL;
}
static void meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct meson_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
__meson_mmc_enable_sdio_irq(mmc, enable);
spin_unlock_irqrestore(&host->lock, flags);
}
static void meson_mmc_ack_sdio_irq(struct mmc_host *mmc)
{
meson_mmc_enable_sdio_irq(mmc, 1);
}
static const struct mmc_host_ops meson_mmc_ops = {
.request = meson_mmc_request,
.set_ios = meson_mmc_set_ios,
.get_cd = mmc_gpio_get_cd,
.pre_req = meson_mmc_pre_req,
.post_req = meson_mmc_post_req,
.execute_tuning = meson_mmc_resampling_tuning,
.card_busy = meson_mmc_card_busy,
.start_signal_voltage_switch = meson_mmc_voltage_switch,
.enable_sdio_irq = meson_mmc_enable_sdio_irq,
.ack_sdio_irq = meson_mmc_ack_sdio_irq,
};
static int meson_mmc_probe(struct platform_device *pdev)
{
struct resource *res;
struct meson_host *host;
struct mmc_host *mmc;
struct clk *core_clk;
int cd_irq, ret;
mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(struct meson_host));
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
host->mmc = mmc;
host->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, host);
/* The G12A SDIO Controller needs an SRAM bounce buffer */
host->dram_access_quirk = device_property_read_bool(&pdev->dev,
"amlogic,dram-access-quirk");
/* Get regulators and the supported OCR mask */
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
ret = mmc_of_parse(mmc);
if (ret)
return dev_err_probe(&pdev->dev, ret, "error parsing DT\n");
mmc->caps |= MMC_CAP_CMD23;
if (mmc->caps & MMC_CAP_SDIO_IRQ)
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
host->data = of_device_get_match_data(&pdev->dev);
if (!host->data)
return -EINVAL;
ret = device_reset_optional(&pdev->dev);
if (ret)
return dev_err_probe(&pdev->dev, ret, "device reset failed\n");
host->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(host->regs))
return PTR_ERR(host->regs);
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0)
return host->irq;
cd_irq = platform_get_irq_optional(pdev, 1);
mmc_gpio_set_cd_irq(mmc, cd_irq);
host->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(host->pinctrl))
return PTR_ERR(host->pinctrl);
host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
"clk-gate");
if (IS_ERR(host->pins_clk_gate)) {
dev_warn(&pdev->dev,
"can't get clk-gate pinctrl, using clk_stop bit\n");
host->pins_clk_gate = NULL;
}
core_clk = devm_clk_get_enabled(&pdev->dev, "core");
if (IS_ERR(core_clk))
return PTR_ERR(core_clk);
ret = meson_mmc_clk_init(host);
if (ret)
return ret;
/* set config to sane default */
meson_mmc_cfg_init(host);
/* Stop execution */
writel(0, host->regs + SD_EMMC_START);
/* clear, ack and enable interrupts */
writel(0, host->regs + SD_EMMC_IRQ_EN);
writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
ret = request_threaded_irq(host->irq, meson_mmc_irq,
meson_mmc_irq_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), host);
if (ret)
goto err_init_clk;
spin_lock_init(&host->lock);
if (host->dram_access_quirk) {
/* Limit segments to 1 due to low available sram memory */
mmc->max_segs = 1;
/* Limit to the available sram memory */
mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
mmc->max_blk_size;
} else {
mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
sizeof(struct sd_emmc_desc);
}
mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
mmc->max_seg_size = mmc->max_req_size;
/*
* At the moment, we don't know how to reliably enable HS400.
* From the different datasheets, it is not even clear if this mode
* is officially supported by any of the SoCs
*/
mmc->caps2 &= ~MMC_CAP2_HS400;
if (host->dram_access_quirk) {
/*
* The MMC Controller embeds 1,5KiB of internal SRAM
* that can be used to be used as bounce buffer.
* In the case of the G12A SDIO controller, use these
* instead of the DDR memory
*/
host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
} else {
/* data bounce buffer */
host->bounce_buf_size = mmc->max_req_size;
host->bounce_buf =
dmam_alloc_coherent(host->dev, host->bounce_buf_size,
&host->bounce_dma_addr, GFP_KERNEL);
if (host->bounce_buf == NULL) {
dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
ret = -ENOMEM;
goto err_free_irq;
}
}
host->descs = dmam_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
&host->descs_dma_addr, GFP_KERNEL);
if (!host->descs) {
dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
ret = -ENOMEM;
goto err_free_irq;
}
mmc->ops = &meson_mmc_ops;
ret = mmc_add_host(mmc);
if (ret)
goto err_free_irq;
return 0;
err_free_irq:
free_irq(host->irq, host);
err_init_clk:
clk_disable_unprepare(host->mmc_clk);
return ret;
}
static void meson_mmc_remove(struct platform_device *pdev)
{
struct meson_host *host = dev_get_drvdata(&pdev->dev);
mmc_remove_host(host->mmc);
/* disable interrupts */
writel(0, host->regs + SD_EMMC_IRQ_EN);
free_irq(host->irq, host);
clk_disable_unprepare(host->mmc_clk);
}
static const struct meson_mmc_data meson_gx_data = {
.tx_delay_mask = CLK_V2_TX_DELAY_MASK,
.rx_delay_mask = CLK_V2_RX_DELAY_MASK,
.always_on = CLK_V2_ALWAYS_ON,
.adjust = SD_EMMC_ADJUST,
.irq_sdio_sleep = CLK_V2_IRQ_SDIO_SLEEP,
};
static const struct meson_mmc_data meson_axg_data = {
.tx_delay_mask = CLK_V3_TX_DELAY_MASK,
.rx_delay_mask = CLK_V3_RX_DELAY_MASK,
.always_on = CLK_V3_ALWAYS_ON,
.adjust = SD_EMMC_V3_ADJUST,
.irq_sdio_sleep = CLK_V3_IRQ_SDIO_SLEEP,
};
static const struct of_device_id meson_mmc_of_match[] = {
{ .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data },
{ .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data },
{ .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data },
{ .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data },
{ .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data },
{}
};
MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
static struct platform_driver meson_mmc_driver = {
.probe = meson_mmc_probe,
.remove_new = meson_mmc_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = meson_mmc_of_match,
},
};
module_platform_driver(meson_mmc_driver);
MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
MODULE_AUTHOR("Kevin Hilman <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/meson-gx-mmc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Toshiba PCI Secure Digital Host Controller Interface driver
*
* Copyright (C) 2014 Ondrej Zary
* Copyright (C) 2007 Richard Betts, All Rights Reserved.
*
* Based on asic3_mmc.c, copyright (c) 2005 SDG Systems, LLC and,
* sdhci.c, copyright (C) 2005-2006 Pierre Ossman
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include "toshsd.h"
#define DRIVER_NAME "toshsd"
static const struct pci_device_id pci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA, 0x0805) },
{ /* end: all zeroes */ },
};
MODULE_DEVICE_TABLE(pci, pci_ids);
static void toshsd_init(struct toshsd_host *host)
{
/* enable clock */
pci_write_config_byte(host->pdev, SD_PCICFG_CLKSTOP,
SD_PCICFG_CLKSTOP_ENABLE_ALL);
pci_write_config_byte(host->pdev, SD_PCICFG_CARDDETECT, 2);
/* reset */
iowrite16(0, host->ioaddr + SD_SOFTWARERESET); /* assert */
mdelay(2);
iowrite16(1, host->ioaddr + SD_SOFTWARERESET); /* deassert */
mdelay(2);
/* Clear card registers */
iowrite16(0, host->ioaddr + SD_CARDCLOCKCTRL);
iowrite32(0, host->ioaddr + SD_CARDSTATUS);
iowrite32(0, host->ioaddr + SD_ERRORSTATUS0);
iowrite16(0, host->ioaddr + SD_STOPINTERNAL);
/* SDIO clock? */
iowrite16(0x100, host->ioaddr + SDIO_BASE + SDIO_CLOCKNWAITCTRL);
/* enable LED */
pci_write_config_byte(host->pdev, SD_PCICFG_SDLED_ENABLE1,
SD_PCICFG_LED_ENABLE1_START);
pci_write_config_byte(host->pdev, SD_PCICFG_SDLED_ENABLE2,
SD_PCICFG_LED_ENABLE2_START);
/* set interrupt masks */
iowrite32(~(u32)(SD_CARD_RESP_END | SD_CARD_RW_END
| SD_CARD_CARD_REMOVED_0 | SD_CARD_CARD_INSERTED_0
| SD_BUF_READ_ENABLE | SD_BUF_WRITE_ENABLE
| SD_BUF_CMD_TIMEOUT),
host->ioaddr + SD_INTMASKCARD);
iowrite16(0x1000, host->ioaddr + SD_TRANSACTIONCTRL);
}
/* Set MMC clock / power.
* Note: This controller uses a simple divider scheme therefore it cannot run
* SD/MMC cards at full speed (24/20MHz). HCLK (=33MHz PCI clock?) is too high
* and the next slowest is 16MHz (div=2).
*/
static void __toshsd_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct toshsd_host *host = mmc_priv(mmc);
if (ios->clock) {
u16 clk;
int div = 1;
while (ios->clock < HCLK / div)
div *= 2;
clk = div >> 2;
if (div == 1) { /* disable the divider */
pci_write_config_byte(host->pdev, SD_PCICFG_CLKMODE,
SD_PCICFG_CLKMODE_DIV_DISABLE);
clk |= SD_CARDCLK_DIV_DISABLE;
} else
pci_write_config_byte(host->pdev, SD_PCICFG_CLKMODE, 0);
clk |= SD_CARDCLK_ENABLE_CLOCK;
iowrite16(clk, host->ioaddr + SD_CARDCLOCKCTRL);
mdelay(10);
} else
iowrite16(0, host->ioaddr + SD_CARDCLOCKCTRL);
switch (ios->power_mode) {
case MMC_POWER_OFF:
pci_write_config_byte(host->pdev, SD_PCICFG_POWER1,
SD_PCICFG_PWR1_OFF);
mdelay(1);
break;
case MMC_POWER_UP:
break;
case MMC_POWER_ON:
pci_write_config_byte(host->pdev, SD_PCICFG_POWER1,
SD_PCICFG_PWR1_33V);
pci_write_config_byte(host->pdev, SD_PCICFG_POWER2,
SD_PCICFG_PWR2_AUTO);
mdelay(20);
break;
}
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
iowrite16(SD_CARDOPT_REQUIRED | SD_CARDOPT_DATA_RESP_TIMEOUT(14)
| SD_CARDOPT_C2_MODULE_ABSENT
| SD_CARDOPT_DATA_XFR_WIDTH_1,
host->ioaddr + SD_CARDOPTIONSETUP);
break;
case MMC_BUS_WIDTH_4:
iowrite16(SD_CARDOPT_REQUIRED | SD_CARDOPT_DATA_RESP_TIMEOUT(14)
| SD_CARDOPT_C2_MODULE_ABSENT
| SD_CARDOPT_DATA_XFR_WIDTH_4,
host->ioaddr + SD_CARDOPTIONSETUP);
break;
}
}
static void toshsd_set_led(struct toshsd_host *host, unsigned char state)
{
iowrite16(state, host->ioaddr + SDIO_BASE + SDIO_LEDCTRL);
}
static void toshsd_finish_request(struct toshsd_host *host)
{
struct mmc_request *mrq = host->mrq;
/* Write something to end the command */
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
toshsd_set_led(host, 0);
mmc_request_done(host->mmc, mrq);
}
static irqreturn_t toshsd_thread_irq(int irq, void *dev_id)
{
struct toshsd_host *host = dev_id;
struct mmc_data *data = host->data;
struct sg_mapping_iter *sg_miter = &host->sg_miter;
unsigned short *buf;
int count;
unsigned long flags;
if (!data) {
dev_warn(&host->pdev->dev, "Spurious Data IRQ\n");
if (host->cmd) {
host->cmd->error = -EIO;
toshsd_finish_request(host);
}
return IRQ_NONE;
}
spin_lock_irqsave(&host->lock, flags);
if (!sg_miter_next(sg_miter))
goto done;
buf = sg_miter->addr;
/* Ensure we dont read more than one block. The chip will interrupt us
* When the next block is available.
*/
count = sg_miter->length;
if (count > data->blksz)
count = data->blksz;
dev_dbg(&host->pdev->dev, "count: %08x, flags %08x\n", count,
data->flags);
/* Transfer the data */
if (data->flags & MMC_DATA_READ)
ioread32_rep(host->ioaddr + SD_DATAPORT, buf, count >> 2);
else
iowrite32_rep(host->ioaddr + SD_DATAPORT, buf, count >> 2);
sg_miter->consumed = count;
sg_miter_stop(sg_miter);
done:
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_HANDLED;
}
static void toshsd_cmd_irq(struct toshsd_host *host)
{
struct mmc_command *cmd = host->cmd;
u8 *buf;
u16 data;
if (!host->cmd) {
dev_warn(&host->pdev->dev, "Spurious CMD irq\n");
return;
}
buf = (u8 *)cmd->resp;
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT && cmd->flags & MMC_RSP_136) {
/* R2 */
buf[12] = 0xff;
data = ioread16(host->ioaddr + SD_RESPONSE0);
buf[13] = data & 0xff;
buf[14] = data >> 8;
data = ioread16(host->ioaddr + SD_RESPONSE1);
buf[15] = data & 0xff;
buf[8] = data >> 8;
data = ioread16(host->ioaddr + SD_RESPONSE2);
buf[9] = data & 0xff;
buf[10] = data >> 8;
data = ioread16(host->ioaddr + SD_RESPONSE3);
buf[11] = data & 0xff;
buf[4] = data >> 8;
data = ioread16(host->ioaddr + SD_RESPONSE4);
buf[5] = data & 0xff;
buf[6] = data >> 8;
data = ioread16(host->ioaddr + SD_RESPONSE5);
buf[7] = data & 0xff;
buf[0] = data >> 8;
data = ioread16(host->ioaddr + SD_RESPONSE6);
buf[1] = data & 0xff;
buf[2] = data >> 8;
data = ioread16(host->ioaddr + SD_RESPONSE7);
buf[3] = data & 0xff;
} else if (cmd->flags & MMC_RSP_PRESENT) {
/* R1, R1B, R3, R6, R7 */
data = ioread16(host->ioaddr + SD_RESPONSE0);
buf[0] = data & 0xff;
buf[1] = data >> 8;
data = ioread16(host->ioaddr + SD_RESPONSE1);
buf[2] = data & 0xff;
buf[3] = data >> 8;
}
dev_dbg(&host->pdev->dev, "Command IRQ complete %d %d %x\n",
cmd->opcode, cmd->error, cmd->flags);
/* If there is data to handle we will
* finish the request in the mmc_data_end_irq handler.*/
if (host->data)
return;
toshsd_finish_request(host);
}
static void toshsd_data_end_irq(struct toshsd_host *host)
{
struct mmc_data *data = host->data;
host->data = NULL;
if (!data) {
dev_warn(&host->pdev->dev, "Spurious data end IRQ\n");
return;
}
if (data->error == 0)
data->bytes_xfered = data->blocks * data->blksz;
else
data->bytes_xfered = 0;
dev_dbg(&host->pdev->dev, "Completed data request xfr=%d\n",
data->bytes_xfered);
iowrite16(0, host->ioaddr + SD_STOPINTERNAL);
toshsd_finish_request(host);
}
static irqreturn_t toshsd_irq(int irq, void *dev_id)
{
struct toshsd_host *host = dev_id;
u32 int_reg, int_mask, int_status, detail;
int error = 0, ret = IRQ_HANDLED;
spin_lock(&host->lock);
int_status = ioread32(host->ioaddr + SD_CARDSTATUS);
int_mask = ioread32(host->ioaddr + SD_INTMASKCARD);
int_reg = int_status & ~int_mask & ~IRQ_DONT_CARE_BITS;
dev_dbg(&host->pdev->dev, "IRQ status:%x mask:%x\n",
int_status, int_mask);
/* nothing to do: it's not our IRQ */
if (!int_reg) {
ret = IRQ_NONE;
goto irq_end;
}
if (int_reg & SD_BUF_CMD_TIMEOUT) {
error = -ETIMEDOUT;
dev_dbg(&host->pdev->dev, "Timeout\n");
} else if (int_reg & SD_BUF_CRC_ERR) {
error = -EILSEQ;
dev_err(&host->pdev->dev, "BadCRC\n");
} else if (int_reg & (SD_BUF_ILLEGAL_ACCESS
| SD_BUF_CMD_INDEX_ERR
| SD_BUF_STOP_BIT_END_ERR
| SD_BUF_OVERFLOW
| SD_BUF_UNDERFLOW
| SD_BUF_DATA_TIMEOUT)) {
dev_err(&host->pdev->dev, "Buffer status error: { %s%s%s%s%s%s}\n",
int_reg & SD_BUF_ILLEGAL_ACCESS ? "ILLEGAL_ACC " : "",
int_reg & SD_BUF_CMD_INDEX_ERR ? "CMD_INDEX " : "",
int_reg & SD_BUF_STOP_BIT_END_ERR ? "STOPBIT_END " : "",
int_reg & SD_BUF_OVERFLOW ? "OVERFLOW " : "",
int_reg & SD_BUF_UNDERFLOW ? "UNDERFLOW " : "",
int_reg & SD_BUF_DATA_TIMEOUT ? "DATA_TIMEOUT " : "");
detail = ioread32(host->ioaddr + SD_ERRORSTATUS0);
dev_err(&host->pdev->dev, "detail error status { %s%s%s%s%s%s%s%s%s%s%s%s%s}\n",
detail & SD_ERR0_RESP_CMD_ERR ? "RESP_CMD " : "",
detail & SD_ERR0_RESP_NON_CMD12_END_BIT_ERR ? "RESP_END_BIT " : "",
detail & SD_ERR0_RESP_CMD12_END_BIT_ERR ? "RESP_END_BIT " : "",
detail & SD_ERR0_READ_DATA_END_BIT_ERR ? "READ_DATA_END_BIT " : "",
detail & SD_ERR0_WRITE_CRC_STATUS_END_BIT_ERR ? "WRITE_CMD_END_BIT " : "",
detail & SD_ERR0_RESP_NON_CMD12_CRC_ERR ? "RESP_CRC " : "",
detail & SD_ERR0_RESP_CMD12_CRC_ERR ? "RESP_CRC " : "",
detail & SD_ERR0_READ_DATA_CRC_ERR ? "READ_DATA_CRC " : "",
detail & SD_ERR0_WRITE_CMD_CRC_ERR ? "WRITE_CMD_CRC " : "",
detail & SD_ERR1_NO_CMD_RESP ? "NO_CMD_RESP " : "",
detail & SD_ERR1_TIMEOUT_READ_DATA ? "READ_DATA_TIMEOUT " : "",
detail & SD_ERR1_TIMEOUT_CRS_STATUS ? "CRS_STATUS_TIMEOUT " : "",
detail & SD_ERR1_TIMEOUT_CRC_BUSY ? "CRC_BUSY_TIMEOUT " : "");
error = -EIO;
}
if (error) {
if (host->cmd)
host->cmd->error = error;
if (error == -ETIMEDOUT) {
iowrite32(int_status &
~(SD_BUF_CMD_TIMEOUT | SD_CARD_RESP_END),
host->ioaddr + SD_CARDSTATUS);
} else {
toshsd_init(host);
__toshsd_set_ios(host->mmc, &host->mmc->ios);
goto irq_end;
}
}
/* Card insert/remove. The mmc controlling code is stateless. */
if (int_reg & (SD_CARD_CARD_INSERTED_0 | SD_CARD_CARD_REMOVED_0)) {
iowrite32(int_status &
~(SD_CARD_CARD_REMOVED_0 | SD_CARD_CARD_INSERTED_0),
host->ioaddr + SD_CARDSTATUS);
if (int_reg & SD_CARD_CARD_INSERTED_0)
toshsd_init(host);
mmc_detect_change(host->mmc, 1);
}
/* Data transfer */
if (int_reg & (SD_BUF_READ_ENABLE | SD_BUF_WRITE_ENABLE)) {
iowrite32(int_status &
~(SD_BUF_WRITE_ENABLE | SD_BUF_READ_ENABLE),
host->ioaddr + SD_CARDSTATUS);
ret = IRQ_WAKE_THREAD;
goto irq_end;
}
/* Command completion */
if (int_reg & SD_CARD_RESP_END) {
iowrite32(int_status & ~(SD_CARD_RESP_END),
host->ioaddr + SD_CARDSTATUS);
toshsd_cmd_irq(host);
}
/* Data transfer completion */
if (int_reg & SD_CARD_RW_END) {
iowrite32(int_status & ~(SD_CARD_RW_END),
host->ioaddr + SD_CARDSTATUS);
toshsd_data_end_irq(host);
}
irq_end:
spin_unlock(&host->lock);
return ret;
}
static void toshsd_start_cmd(struct toshsd_host *host, struct mmc_command *cmd)
{
struct mmc_data *data = host->data;
int c = cmd->opcode;
dev_dbg(&host->pdev->dev, "Command opcode: %d\n", cmd->opcode);
if (cmd->opcode == MMC_STOP_TRANSMISSION) {
iowrite16(SD_STOPINT_ISSUE_CMD12,
host->ioaddr + SD_STOPINTERNAL);
cmd->resp[0] = cmd->opcode;
cmd->resp[1] = 0;
cmd->resp[2] = 0;
cmd->resp[3] = 0;
toshsd_finish_request(host);
return;
}
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
c |= SD_CMD_RESP_TYPE_NONE;
break;
case MMC_RSP_R1:
c |= SD_CMD_RESP_TYPE_EXT_R1;
break;
case MMC_RSP_R1B:
c |= SD_CMD_RESP_TYPE_EXT_R1B;
break;
case MMC_RSP_R2:
c |= SD_CMD_RESP_TYPE_EXT_R2;
break;
case MMC_RSP_R3:
c |= SD_CMD_RESP_TYPE_EXT_R3;
break;
default:
dev_err(&host->pdev->dev, "Unknown response type %d\n",
mmc_resp_type(cmd));
break;
}
host->cmd = cmd;
if (cmd->opcode == MMC_APP_CMD)
c |= SD_CMD_TYPE_ACMD;
if (cmd->opcode == MMC_GO_IDLE_STATE)
c |= (3 << 8); /* removed from ipaq-asic3.h for some reason */
if (data) {
c |= SD_CMD_DATA_PRESENT;
if (data->blocks > 1) {
iowrite16(SD_STOPINT_AUTO_ISSUE_CMD12,
host->ioaddr + SD_STOPINTERNAL);
c |= SD_CMD_MULTI_BLOCK;
}
if (data->flags & MMC_DATA_READ)
c |= SD_CMD_TRANSFER_READ;
/* MMC_DATA_WRITE does not require a bit to be set */
}
/* Send the command */
iowrite32(cmd->arg, host->ioaddr + SD_ARG0);
iowrite16(c, host->ioaddr + SD_CMD);
}
static void toshsd_start_data(struct toshsd_host *host, struct mmc_data *data)
{
unsigned int flags = SG_MITER_ATOMIC;
dev_dbg(&host->pdev->dev, "setup data transfer: blocksize %08x nr_blocks %d, offset: %08x\n",
data->blksz, data->blocks, data->sg->offset);
host->data = data;
if (data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
/* Set transfer length and blocksize */
iowrite16(data->blocks, host->ioaddr + SD_BLOCKCOUNT);
iowrite16(data->blksz, host->ioaddr + SD_CARDXFERDATALEN);
}
/* Process requests from the MMC layer */
static void toshsd_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct toshsd_host *host = mmc_priv(mmc);
unsigned long flags;
/* abort if card not present */
if (!(ioread16(host->ioaddr + SD_CARDSTATUS) & SD_CARD_PRESENT_0)) {
mrq->cmd->error = -ENOMEDIUM;
mmc_request_done(mmc, mrq);
return;
}
spin_lock_irqsave(&host->lock, flags);
WARN_ON(host->mrq != NULL);
host->mrq = mrq;
if (mrq->data)
toshsd_start_data(host, mrq->data);
toshsd_set_led(host, 1);
toshsd_start_cmd(host, mrq->cmd);
spin_unlock_irqrestore(&host->lock, flags);
}
static void toshsd_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct toshsd_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
__toshsd_set_ios(mmc, ios);
spin_unlock_irqrestore(&host->lock, flags);
}
static int toshsd_get_ro(struct mmc_host *mmc)
{
struct toshsd_host *host = mmc_priv(mmc);
/* active low */
return !(ioread16(host->ioaddr + SD_CARDSTATUS) & SD_CARD_WRITE_PROTECT);
}
static int toshsd_get_cd(struct mmc_host *mmc)
{
struct toshsd_host *host = mmc_priv(mmc);
return !!(ioread16(host->ioaddr + SD_CARDSTATUS) & SD_CARD_PRESENT_0);
}
static const struct mmc_host_ops toshsd_ops = {
.request = toshsd_request,
.set_ios = toshsd_set_ios,
.get_ro = toshsd_get_ro,
.get_cd = toshsd_get_cd,
};
static void toshsd_powerdown(struct toshsd_host *host)
{
/* mask all interrupts */
iowrite32(0xffffffff, host->ioaddr + SD_INTMASKCARD);
/* disable card clock */
iowrite16(0x000, host->ioaddr + SDIO_BASE + SDIO_CLOCKNWAITCTRL);
iowrite16(0, host->ioaddr + SD_CARDCLOCKCTRL);
/* power down card */
pci_write_config_byte(host->pdev, SD_PCICFG_POWER1, SD_PCICFG_PWR1_OFF);
/* disable clock */
pci_write_config_byte(host->pdev, SD_PCICFG_CLKSTOP, 0);
}
#ifdef CONFIG_PM_SLEEP
static int toshsd_pm_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct toshsd_host *host = pci_get_drvdata(pdev);
toshsd_powerdown(host);
pci_save_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_disable_device(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
static int toshsd_pm_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct toshsd_host *host = pci_get_drvdata(pdev);
int ret;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
ret = pci_enable_device(pdev);
if (ret)
return ret;
toshsd_init(host);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static int toshsd_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int ret;
struct toshsd_host *host;
struct mmc_host *mmc;
resource_size_t base;
ret = pci_enable_device(pdev);
if (ret)
return ret;
mmc = mmc_alloc_host(sizeof(struct toshsd_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto err;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->pdev = pdev;
pci_set_drvdata(pdev, host);
ret = pci_request_regions(pdev, DRIVER_NAME);
if (ret)
goto free;
host->ioaddr = pci_iomap(pdev, 0, 0);
if (!host->ioaddr) {
ret = -ENOMEM;
goto release;
}
/* Set MMC host parameters */
mmc->ops = &toshsd_ops;
mmc->caps = MMC_CAP_4_BIT_DATA;
mmc->ocr_avail = MMC_VDD_32_33;
mmc->f_min = HCLK / 512;
mmc->f_max = HCLK;
spin_lock_init(&host->lock);
toshsd_init(host);
ret = request_threaded_irq(pdev->irq, toshsd_irq, toshsd_thread_irq,
IRQF_SHARED, DRIVER_NAME, host);
if (ret)
goto unmap;
ret = mmc_add_host(mmc);
if (ret)
goto free_irq;
base = pci_resource_start(pdev, 0);
dev_dbg(&pdev->dev, "MMIO %pa, IRQ %d\n", &base, pdev->irq);
pm_suspend_ignore_children(&pdev->dev, 1);
return 0;
free_irq:
free_irq(pdev->irq, host);
unmap:
pci_iounmap(pdev, host->ioaddr);
release:
pci_release_regions(pdev);
free:
mmc_free_host(mmc);
pci_set_drvdata(pdev, NULL);
err:
pci_disable_device(pdev);
return ret;
}
static void toshsd_remove(struct pci_dev *pdev)
{
struct toshsd_host *host = pci_get_drvdata(pdev);
mmc_remove_host(host->mmc);
toshsd_powerdown(host);
free_irq(pdev->irq, host);
pci_iounmap(pdev, host->ioaddr);
pci_release_regions(pdev);
mmc_free_host(host->mmc);
pci_set_drvdata(pdev, NULL);
pci_disable_device(pdev);
}
static const struct dev_pm_ops toshsd_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(toshsd_pm_suspend, toshsd_pm_resume)
};
static struct pci_driver toshsd_driver = {
.name = DRIVER_NAME,
.id_table = pci_ids,
.probe = toshsd_probe,
.remove = toshsd_remove,
.driver.pm = &toshsd_pm_ops,
};
module_pci_driver(toshsd_driver);
MODULE_AUTHOR("Ondrej Zary, Richard Betts");
MODULE_DESCRIPTION("Toshiba PCI Secure Digital Host Controller Interface driver");
MODULE_LICENSE("GPL");
| linux-master | drivers/mmc/host/toshsd.c |
// SPDX-License-Identifier: GPL-2.0
/*
* SDHCI driver for Synopsys DWC_MSHC controller
*
* Copyright (C) 2018 Synopsys, Inc. (www.synopsys.com)
*
* Authors:
* Prabu Thangamuthu <[email protected]>
* Manjunath M B <[email protected]>
*/
#include "sdhci.h"
#include "sdhci-pci.h"
#define SDHCI_VENDOR_PTR_R 0xE8
/* Synopsys vendor specific registers */
#define SDHC_GPIO_OUT 0x34
#define SDHC_AT_CTRL_R 0x40
#define SDHC_SW_TUNE_EN 0x00000010
/* MMCM DRP */
#define SDHC_MMCM_DIV_REG 0x1020
#define DIV_REG_100_MHZ 0x1145
#define DIV_REG_200_MHZ 0x1083
#define SDHC_MMCM_CLKFBOUT 0x1024
#define CLKFBOUT_100_MHZ 0x0000
#define CLKFBOUT_200_MHZ 0x0080
#define SDHC_CCLK_MMCM_RST 0x00000001
static void sdhci_snps_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
u32 reg, vendor_ptr;
vendor_ptr = sdhci_readw(host, SDHCI_VENDOR_PTR_R);
/* Disable software managed rx tuning */
reg = sdhci_readl(host, (SDHC_AT_CTRL_R + vendor_ptr));
reg &= ~SDHC_SW_TUNE_EN;
sdhci_writel(host, reg, (SDHC_AT_CTRL_R + vendor_ptr));
if (clock <= 52000000) {
sdhci_set_clock(host, clock);
} else {
/* Assert reset to MMCM */
reg = sdhci_readl(host, (SDHC_GPIO_OUT + vendor_ptr));
reg |= SDHC_CCLK_MMCM_RST;
sdhci_writel(host, reg, (SDHC_GPIO_OUT + vendor_ptr));
/* Configure MMCM */
if (clock == 100000000) {
sdhci_writel(host, DIV_REG_100_MHZ, SDHC_MMCM_DIV_REG);
sdhci_writel(host, CLKFBOUT_100_MHZ,
SDHC_MMCM_CLKFBOUT);
} else {
sdhci_writel(host, DIV_REG_200_MHZ, SDHC_MMCM_DIV_REG);
sdhci_writel(host, CLKFBOUT_200_MHZ,
SDHC_MMCM_CLKFBOUT);
}
/* De-assert reset to MMCM */
reg = sdhci_readl(host, (SDHC_GPIO_OUT + vendor_ptr));
reg &= ~SDHC_CCLK_MMCM_RST;
sdhci_writel(host, reg, (SDHC_GPIO_OUT + vendor_ptr));
/* Enable clock */
clk = SDHCI_PROG_CLOCK_MODE | SDHCI_CLOCK_INT_EN |
SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
}
static const struct sdhci_ops sdhci_snps_ops = {
.set_clock = sdhci_snps_set_clock,
.enable_dma = sdhci_pci_enable_dma,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
};
const struct sdhci_pci_fixes sdhci_snps = {
.ops = &sdhci_snps_ops,
};
| linux-master | drivers/mmc/host/sdhci-pci-dwc-mshc.c |
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Oleksij Rempel <[email protected]>
*
* Driver for Alcor Micro AU6601 and AU6621 controllers
*/
/* Note: this driver was created without any documentation. Based
* on sniffing, testing and in some cases mimic of original driver.
* As soon as some one with documentation or more experience in SD/MMC, or
* reverse engineering then me, please review this driver and question every
* thing what I did. 2018 Oleksij Rempel <[email protected]>
*/
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/pm.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/alcor_pci.h>
enum alcor_cookie {
COOKIE_UNMAPPED,
COOKIE_PRE_MAPPED,
COOKIE_MAPPED,
};
struct alcor_pll_conf {
unsigned int clk_src_freq;
unsigned int clk_src_reg;
unsigned int min_div;
unsigned int max_div;
};
struct alcor_sdmmc_host {
struct device *dev;
struct alcor_pci_priv *alcor_pci;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
unsigned int dma_on:1;
struct mutex cmd_mutex;
struct delayed_work timeout_work;
struct sg_mapping_iter sg_miter; /* SG state for PIO */
struct scatterlist *sg;
unsigned int blocks; /* remaining PIO blocks */
int sg_count;
u32 irq_status_sd;
unsigned char cur_power_mode;
};
static const struct alcor_pll_conf alcor_pll_cfg[] = {
/* MHZ, CLK src, max div, min div */
{ 31250000, AU6601_CLK_31_25_MHZ, 1, 511},
{ 48000000, AU6601_CLK_48_MHZ, 1, 511},
{125000000, AU6601_CLK_125_MHZ, 1, 511},
{384000000, AU6601_CLK_384_MHZ, 1, 511},
};
static inline void alcor_rmw8(struct alcor_sdmmc_host *host, unsigned int addr,
u8 clear, u8 set)
{
struct alcor_pci_priv *priv = host->alcor_pci;
u32 var;
var = alcor_read8(priv, addr);
var &= ~clear;
var |= set;
alcor_write8(priv, var, addr);
}
/* As soon as irqs are masked, some status updates may be missed.
* Use this with care.
*/
static inline void alcor_mask_sd_irqs(struct alcor_sdmmc_host *host)
{
struct alcor_pci_priv *priv = host->alcor_pci;
alcor_write32(priv, 0, AU6601_REG_INT_ENABLE);
}
static inline void alcor_unmask_sd_irqs(struct alcor_sdmmc_host *host)
{
struct alcor_pci_priv *priv = host->alcor_pci;
alcor_write32(priv, AU6601_INT_CMD_MASK | AU6601_INT_DATA_MASK |
AU6601_INT_CARD_INSERT | AU6601_INT_CARD_REMOVE |
AU6601_INT_OVER_CURRENT_ERR,
AU6601_REG_INT_ENABLE);
}
static void alcor_reset(struct alcor_sdmmc_host *host, u8 val)
{
struct alcor_pci_priv *priv = host->alcor_pci;
int i;
alcor_write8(priv, val | AU6601_BUF_CTRL_RESET,
AU6601_REG_SW_RESET);
for (i = 0; i < 100; i++) {
if (!(alcor_read8(priv, AU6601_REG_SW_RESET) & val))
return;
udelay(50);
}
dev_err(host->dev, "%s: timeout\n", __func__);
}
/*
* Perform DMA I/O of a single page.
*/
static void alcor_data_set_dma(struct alcor_sdmmc_host *host)
{
struct alcor_pci_priv *priv = host->alcor_pci;
u32 addr;
if (!host->sg_count)
return;
if (!host->sg) {
dev_err(host->dev, "have blocks, but no SG\n");
return;
}
if (!sg_dma_len(host->sg)) {
dev_err(host->dev, "DMA SG len == 0\n");
return;
}
addr = (u32)sg_dma_address(host->sg);
alcor_write32(priv, addr, AU6601_REG_SDMA_ADDR);
host->sg = sg_next(host->sg);
host->sg_count--;
}
static void alcor_trigger_data_transfer(struct alcor_sdmmc_host *host)
{
struct alcor_pci_priv *priv = host->alcor_pci;
struct mmc_data *data = host->data;
u8 ctrl = 0;
if (data->flags & MMC_DATA_WRITE)
ctrl |= AU6601_DATA_WRITE;
if (data->host_cookie == COOKIE_MAPPED) {
/*
* For DMA transfers, this function is called just once,
* at the start of the operation. The hardware can only
* perform DMA I/O on a single page at a time, so here
* we kick off the transfer with the first page, and expect
* subsequent pages to be transferred upon IRQ events
* indicating that the single-page DMA was completed.
*/
alcor_data_set_dma(host);
ctrl |= AU6601_DATA_DMA_MODE;
host->dma_on = 1;
alcor_write32(priv, data->sg_count * 0x1000,
AU6601_REG_BLOCK_SIZE);
} else {
/*
* For PIO transfers, we break down each operation
* into several sector-sized transfers. When one sector has
* complete, the IRQ handler will call this function again
* to kick off the transfer of the next sector.
*/
alcor_write32(priv, data->blksz, AU6601_REG_BLOCK_SIZE);
}
alcor_write8(priv, ctrl | AU6601_DATA_START_XFER,
AU6601_DATA_XFER_CTRL);
}
static void alcor_trf_block_pio(struct alcor_sdmmc_host *host, bool read)
{
struct alcor_pci_priv *priv = host->alcor_pci;
size_t blksize, len;
u8 *buf;
if (!host->blocks)
return;
if (host->dma_on) {
dev_err(host->dev, "configured DMA but got PIO request.\n");
return;
}
if (!!(host->data->flags & MMC_DATA_READ) != read) {
dev_err(host->dev, "got unexpected direction %i != %i\n",
!!(host->data->flags & MMC_DATA_READ), read);
}
if (!sg_miter_next(&host->sg_miter))
return;
blksize = host->data->blksz;
len = min(host->sg_miter.length, blksize);
dev_dbg(host->dev, "PIO, %s block size: 0x%zx\n",
read ? "read" : "write", blksize);
host->sg_miter.consumed = len;
host->blocks--;
buf = host->sg_miter.addr;
if (read)
ioread32_rep(priv->iobase + AU6601_REG_BUFFER, buf, len >> 2);
else
iowrite32_rep(priv->iobase + AU6601_REG_BUFFER, buf, len >> 2);
sg_miter_stop(&host->sg_miter);
}
static void alcor_prepare_sg_miter(struct alcor_sdmmc_host *host)
{
unsigned int flags = SG_MITER_ATOMIC;
struct mmc_data *data = host->data;
if (data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
}
static void alcor_prepare_data(struct alcor_sdmmc_host *host,
struct mmc_command *cmd)
{
struct alcor_pci_priv *priv = host->alcor_pci;
struct mmc_data *data = cmd->data;
if (!data)
return;
host->data = data;
host->data->bytes_xfered = 0;
host->blocks = data->blocks;
host->sg = data->sg;
host->sg_count = data->sg_count;
dev_dbg(host->dev, "prepare DATA: sg %i, blocks: %i\n",
host->sg_count, host->blocks);
if (data->host_cookie != COOKIE_MAPPED)
alcor_prepare_sg_miter(host);
alcor_write8(priv, 0, AU6601_DATA_XFER_CTRL);
}
static void alcor_send_cmd(struct alcor_sdmmc_host *host,
struct mmc_command *cmd, bool set_timeout)
{
struct alcor_pci_priv *priv = host->alcor_pci;
unsigned long timeout = 0;
u8 ctrl = 0;
host->cmd = cmd;
alcor_prepare_data(host, cmd);
dev_dbg(host->dev, "send CMD. opcode: 0x%02x, arg; 0x%08x\n",
cmd->opcode, cmd->arg);
alcor_write8(priv, cmd->opcode | 0x40, AU6601_REG_CMD_OPCODE);
alcor_write32be(priv, cmd->arg, AU6601_REG_CMD_ARG);
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
ctrl = AU6601_CMD_NO_RESP;
break;
case MMC_RSP_R1:
ctrl = AU6601_CMD_6_BYTE_CRC;
break;
case MMC_RSP_R1B:
ctrl = AU6601_CMD_6_BYTE_CRC | AU6601_CMD_STOP_WAIT_RDY;
break;
case MMC_RSP_R2:
ctrl = AU6601_CMD_17_BYTE_CRC;
break;
case MMC_RSP_R3:
ctrl = AU6601_CMD_6_BYTE_WO_CRC;
break;
default:
dev_err(host->dev, "%s: cmd->flag (0x%02x) is not valid\n",
mmc_hostname(mmc_from_priv(host)), mmc_resp_type(cmd));
break;
}
if (set_timeout) {
if (!cmd->data && cmd->busy_timeout)
timeout = cmd->busy_timeout;
else
timeout = 10000;
schedule_delayed_work(&host->timeout_work,
msecs_to_jiffies(timeout));
}
dev_dbg(host->dev, "xfer ctrl: 0x%02x; timeout: %lu\n", ctrl, timeout);
alcor_write8(priv, ctrl | AU6601_CMD_START_XFER,
AU6601_CMD_XFER_CTRL);
}
static void alcor_request_complete(struct alcor_sdmmc_host *host,
bool cancel_timeout)
{
struct mmc_request *mrq;
/*
* If this work gets rescheduled while running, it will
* be run again afterwards but without any active request.
*/
if (!host->mrq)
return;
if (cancel_timeout)
cancel_delayed_work(&host->timeout_work);
mrq = host->mrq;
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
host->dma_on = 0;
mmc_request_done(mmc_from_priv(host), mrq);
}
static void alcor_finish_data(struct alcor_sdmmc_host *host)
{
struct mmc_data *data;
data = host->data;
host->data = NULL;
host->dma_on = 0;
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
/*
* Need to send CMD12 if -
* a) open-ended multiblock transfer (no CMD23)
* b) error in multiblock transfer
*/
if (data->stop &&
(data->error ||
!host->mrq->sbc)) {
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (data->error)
alcor_reset(host, AU6601_RESET_CMD | AU6601_RESET_DATA);
alcor_unmask_sd_irqs(host);
alcor_send_cmd(host, data->stop, false);
return;
}
alcor_request_complete(host, 1);
}
static void alcor_err_irq(struct alcor_sdmmc_host *host, u32 intmask)
{
dev_dbg(host->dev, "ERR IRQ %x\n", intmask);
if (host->cmd) {
if (intmask & AU6601_INT_CMD_TIMEOUT_ERR)
host->cmd->error = -ETIMEDOUT;
else
host->cmd->error = -EILSEQ;
}
if (host->data) {
if (intmask & AU6601_INT_DATA_TIMEOUT_ERR)
host->data->error = -ETIMEDOUT;
else
host->data->error = -EILSEQ;
host->data->bytes_xfered = 0;
}
alcor_reset(host, AU6601_RESET_CMD | AU6601_RESET_DATA);
alcor_request_complete(host, 1);
}
static int alcor_cmd_irq_done(struct alcor_sdmmc_host *host, u32 intmask)
{
struct alcor_pci_priv *priv = host->alcor_pci;
intmask &= AU6601_INT_CMD_END;
if (!intmask)
return true;
/* got CMD_END but no CMD is in progress, wake thread an process the
* error
*/
if (!host->cmd)
return false;
if (host->cmd->flags & MMC_RSP_PRESENT) {
struct mmc_command *cmd = host->cmd;
cmd->resp[0] = alcor_read32be(priv, AU6601_REG_CMD_RSP0);
dev_dbg(host->dev, "RSP0: 0x%04x\n", cmd->resp[0]);
if (host->cmd->flags & MMC_RSP_136) {
cmd->resp[1] =
alcor_read32be(priv, AU6601_REG_CMD_RSP1);
cmd->resp[2] =
alcor_read32be(priv, AU6601_REG_CMD_RSP2);
cmd->resp[3] =
alcor_read32be(priv, AU6601_REG_CMD_RSP3);
dev_dbg(host->dev, "RSP1,2,3: 0x%04x 0x%04x 0x%04x\n",
cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
}
host->cmd->error = 0;
/* Processed actual command. */
if (!host->data)
return false;
alcor_trigger_data_transfer(host);
host->cmd = NULL;
return true;
}
static void alcor_cmd_irq_thread(struct alcor_sdmmc_host *host, u32 intmask)
{
intmask &= AU6601_INT_CMD_END;
if (!intmask)
return;
if (!host->cmd && intmask & AU6601_INT_CMD_END) {
dev_dbg(host->dev, "Got command interrupt 0x%08x even though no command operation was in progress.\n",
intmask);
}
/* Processed actual command. */
if (!host->data)
alcor_request_complete(host, 1);
else
alcor_trigger_data_transfer(host);
host->cmd = NULL;
}
static int alcor_data_irq_done(struct alcor_sdmmc_host *host, u32 intmask)
{
u32 tmp;
intmask &= AU6601_INT_DATA_MASK;
/* nothing here to do */
if (!intmask)
return 1;
/* we was too fast and got DATA_END after it was processed?
* lets ignore it for now.
*/
if (!host->data && intmask == AU6601_INT_DATA_END)
return 1;
/* looks like an error, so lets handle it. */
if (!host->data)
return 0;
tmp = intmask & (AU6601_INT_READ_BUF_RDY | AU6601_INT_WRITE_BUF_RDY
| AU6601_INT_DMA_END);
switch (tmp) {
case 0:
break;
case AU6601_INT_READ_BUF_RDY:
alcor_trf_block_pio(host, true);
return 1;
case AU6601_INT_WRITE_BUF_RDY:
alcor_trf_block_pio(host, false);
return 1;
case AU6601_INT_DMA_END:
if (!host->sg_count)
break;
alcor_data_set_dma(host);
break;
default:
dev_err(host->dev, "Got READ_BUF_RDY and WRITE_BUF_RDY at same time\n");
break;
}
if (intmask & AU6601_INT_DATA_END) {
if (!host->dma_on && host->blocks) {
alcor_trigger_data_transfer(host);
return 1;
} else {
return 0;
}
}
return 1;
}
static void alcor_data_irq_thread(struct alcor_sdmmc_host *host, u32 intmask)
{
intmask &= AU6601_INT_DATA_MASK;
if (!intmask)
return;
if (!host->data) {
dev_dbg(host->dev, "Got data interrupt 0x%08x even though no data operation was in progress.\n",
intmask);
alcor_reset(host, AU6601_RESET_DATA);
return;
}
if (alcor_data_irq_done(host, intmask))
return;
if ((intmask & AU6601_INT_DATA_END) || !host->blocks ||
(host->dma_on && !host->sg_count))
alcor_finish_data(host);
}
static void alcor_cd_irq(struct alcor_sdmmc_host *host, u32 intmask)
{
dev_dbg(host->dev, "card %s\n",
intmask & AU6601_INT_CARD_REMOVE ? "removed" : "inserted");
if (host->mrq) {
dev_dbg(host->dev, "cancel all pending tasks.\n");
if (host->data)
host->data->error = -ENOMEDIUM;
if (host->cmd)
host->cmd->error = -ENOMEDIUM;
else
host->mrq->cmd->error = -ENOMEDIUM;
alcor_request_complete(host, 1);
}
mmc_detect_change(mmc_from_priv(host), msecs_to_jiffies(1));
}
static irqreturn_t alcor_irq_thread(int irq, void *d)
{
struct alcor_sdmmc_host *host = d;
irqreturn_t ret = IRQ_HANDLED;
u32 intmask, tmp;
mutex_lock(&host->cmd_mutex);
intmask = host->irq_status_sd;
/* some thing bad */
if (unlikely(!intmask || AU6601_INT_ALL_MASK == intmask)) {
dev_dbg(host->dev, "unexpected IRQ: 0x%04x\n", intmask);
ret = IRQ_NONE;
goto exit;
}
tmp = intmask & (AU6601_INT_CMD_MASK | AU6601_INT_DATA_MASK);
if (tmp) {
if (tmp & AU6601_INT_ERROR_MASK)
alcor_err_irq(host, tmp);
else {
alcor_cmd_irq_thread(host, tmp);
alcor_data_irq_thread(host, tmp);
}
intmask &= ~(AU6601_INT_CMD_MASK | AU6601_INT_DATA_MASK);
}
if (intmask & (AU6601_INT_CARD_INSERT | AU6601_INT_CARD_REMOVE)) {
alcor_cd_irq(host, intmask);
intmask &= ~(AU6601_INT_CARD_INSERT | AU6601_INT_CARD_REMOVE);
}
if (intmask & AU6601_INT_OVER_CURRENT_ERR) {
dev_warn(host->dev,
"warning: over current detected!\n");
intmask &= ~AU6601_INT_OVER_CURRENT_ERR;
}
if (intmask)
dev_dbg(host->dev, "got not handled IRQ: 0x%04x\n", intmask);
exit:
mutex_unlock(&host->cmd_mutex);
alcor_unmask_sd_irqs(host);
return ret;
}
static irqreturn_t alcor_irq(int irq, void *d)
{
struct alcor_sdmmc_host *host = d;
struct alcor_pci_priv *priv = host->alcor_pci;
u32 status, tmp;
irqreturn_t ret;
int cmd_done, data_done;
status = alcor_read32(priv, AU6601_REG_INT_STATUS);
if (!status)
return IRQ_NONE;
alcor_write32(priv, status, AU6601_REG_INT_STATUS);
tmp = status & (AU6601_INT_READ_BUF_RDY | AU6601_INT_WRITE_BUF_RDY
| AU6601_INT_DATA_END | AU6601_INT_DMA_END
| AU6601_INT_CMD_END);
if (tmp == status) {
cmd_done = alcor_cmd_irq_done(host, tmp);
data_done = alcor_data_irq_done(host, tmp);
/* use fast path for simple tasks */
if (cmd_done && data_done) {
ret = IRQ_HANDLED;
goto alcor_irq_done;
}
}
host->irq_status_sd = status;
ret = IRQ_WAKE_THREAD;
alcor_mask_sd_irqs(host);
alcor_irq_done:
return ret;
}
static void alcor_set_clock(struct alcor_sdmmc_host *host, unsigned int clock)
{
struct alcor_pci_priv *priv = host->alcor_pci;
int i, diff = 0x7fffffff, tmp_clock = 0;
u16 clk_src = 0;
u8 clk_div = 0;
if (clock == 0) {
alcor_write16(priv, 0, AU6601_CLK_SELECT);
return;
}
for (i = 0; i < ARRAY_SIZE(alcor_pll_cfg); i++) {
unsigned int tmp_div, tmp_diff;
const struct alcor_pll_conf *cfg = &alcor_pll_cfg[i];
tmp_div = DIV_ROUND_UP(cfg->clk_src_freq, clock);
if (cfg->min_div > tmp_div || tmp_div > cfg->max_div)
continue;
tmp_clock = DIV_ROUND_UP(cfg->clk_src_freq, tmp_div);
tmp_diff = abs(clock - tmp_clock);
if (tmp_diff < diff) {
diff = tmp_diff;
clk_src = cfg->clk_src_reg;
clk_div = tmp_div;
}
}
clk_src |= ((clk_div - 1) << 8);
clk_src |= AU6601_CLK_ENABLE;
dev_dbg(host->dev, "set freq %d cal freq %d, use div %d, mod %x\n",
clock, tmp_clock, clk_div, clk_src);
alcor_write16(priv, clk_src, AU6601_CLK_SELECT);
}
static void alcor_set_timing(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
if (ios->timing == MMC_TIMING_LEGACY) {
alcor_rmw8(host, AU6601_CLK_DELAY,
AU6601_CLK_POSITIVE_EDGE_ALL, 0);
} else {
alcor_rmw8(host, AU6601_CLK_DELAY,
0, AU6601_CLK_POSITIVE_EDGE_ALL);
}
}
static void alcor_set_bus_width(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
struct alcor_pci_priv *priv = host->alcor_pci;
if (ios->bus_width == MMC_BUS_WIDTH_1) {
alcor_write8(priv, 0, AU6601_REG_BUS_CTRL);
} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
alcor_write8(priv, AU6601_BUS_WIDTH_4BIT,
AU6601_REG_BUS_CTRL);
} else
dev_err(host->dev, "Unknown BUS mode\n");
}
static int alcor_card_busy(struct mmc_host *mmc)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
struct alcor_pci_priv *priv = host->alcor_pci;
u8 status;
/* Check whether dat[0:3] low */
status = alcor_read8(priv, AU6601_DATA_PIN_STATE);
return !(status & AU6601_BUS_STAT_DAT_MASK);
}
static int alcor_get_cd(struct mmc_host *mmc)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
struct alcor_pci_priv *priv = host->alcor_pci;
u8 detect;
detect = alcor_read8(priv, AU6601_DETECT_STATUS)
& AU6601_DETECT_STATUS_M;
/* check if card is present then send command and data */
return (detect == AU6601_SD_DETECTED);
}
static int alcor_get_ro(struct mmc_host *mmc)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
struct alcor_pci_priv *priv = host->alcor_pci;
u8 status;
/* get write protect pin status */
status = alcor_read8(priv, AU6601_INTERFACE_MODE_CTRL);
return !!(status & AU6601_SD_CARD_WP);
}
static void alcor_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
mutex_lock(&host->cmd_mutex);
host->mrq = mrq;
/* check if card is present then send command and data */
if (alcor_get_cd(mmc))
alcor_send_cmd(host, mrq->cmd, true);
else {
mrq->cmd->error = -ENOMEDIUM;
alcor_request_complete(host, 1);
}
mutex_unlock(&host->cmd_mutex);
}
static void alcor_pre_req(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
struct mmc_command *cmd = mrq->cmd;
struct scatterlist *sg;
unsigned int i, sg_len;
if (!data || !cmd)
return;
data->host_cookie = COOKIE_UNMAPPED;
/* FIXME: looks like the DMA engine works only with CMD18 */
if (cmd->opcode != MMC_READ_MULTIPLE_BLOCK
&& cmd->opcode != MMC_WRITE_MULTIPLE_BLOCK)
return;
/*
* We don't do DMA on "complex" transfers, i.e. with
* non-word-aligned buffers or lengths. A future improvement
* could be made to use temporary DMA bounce-buffers when these
* requirements are not met.
*
* Also, we don't bother with all the DMA setup overhead for
* short transfers.
*/
if (data->blocks * data->blksz < AU6601_MAX_DMA_BLOCK_SIZE)
return;
if (data->blksz & 3)
return;
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length != AU6601_MAX_DMA_BLOCK_SIZE)
return;
if (sg->offset != 0)
return;
}
/* This data might be unmapped at this time */
sg_len = dma_map_sg(host->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (sg_len)
data->host_cookie = COOKIE_MAPPED;
data->sg_count = sg_len;
}
static void alcor_post_req(struct mmc_host *mmc,
struct mmc_request *mrq,
int err)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!data)
return;
if (data->host_cookie == COOKIE_MAPPED) {
dma_unmap_sg(host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
}
data->host_cookie = COOKIE_UNMAPPED;
}
static void alcor_set_power_mode(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
struct alcor_pci_priv *priv = host->alcor_pci;
switch (ios->power_mode) {
case MMC_POWER_OFF:
alcor_set_clock(host, ios->clock);
/* set all pins to input */
alcor_write8(priv, 0, AU6601_OUTPUT_ENABLE);
/* turn of VDD */
alcor_write8(priv, 0, AU6601_POWER_CONTROL);
break;
case MMC_POWER_UP:
break;
case MMC_POWER_ON:
/* This is most trickiest part. The order and timings of
* instructions seems to play important role. Any changes may
* confuse internal state engine if this HW.
* FIXME: If we will ever get access to documentation, then this
* part should be reviewed again.
*/
/* enable SD card mode */
alcor_write8(priv, AU6601_SD_CARD,
AU6601_ACTIVE_CTRL);
/* set signal voltage to 3.3V */
alcor_write8(priv, 0, AU6601_OPT);
/* no documentation about clk delay, for now just try to mimic
* original driver.
*/
alcor_write8(priv, 0x20, AU6601_CLK_DELAY);
/* set BUS width to 1 bit */
alcor_write8(priv, 0, AU6601_REG_BUS_CTRL);
/* set CLK first time */
alcor_set_clock(host, ios->clock);
/* power on VDD */
alcor_write8(priv, AU6601_SD_CARD,
AU6601_POWER_CONTROL);
/* wait until the CLK will get stable */
mdelay(20);
/* set CLK again, mimic original driver. */
alcor_set_clock(host, ios->clock);
/* enable output */
alcor_write8(priv, AU6601_SD_CARD,
AU6601_OUTPUT_ENABLE);
/* The clk will not work on au6621. We need to trigger data
* transfer.
*/
alcor_write8(priv, AU6601_DATA_WRITE,
AU6601_DATA_XFER_CTRL);
/* configure timeout. Not clear what exactly it means. */
alcor_write8(priv, 0x7d, AU6601_TIME_OUT_CTRL);
mdelay(100);
break;
default:
dev_err(host->dev, "Unknown power parameter\n");
}
}
static void alcor_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
mutex_lock(&host->cmd_mutex);
dev_dbg(host->dev, "set ios. bus width: %x, power mode: %x\n",
ios->bus_width, ios->power_mode);
if (ios->power_mode != host->cur_power_mode) {
alcor_set_power_mode(mmc, ios);
host->cur_power_mode = ios->power_mode;
} else {
alcor_set_timing(mmc, ios);
alcor_set_bus_width(mmc, ios);
alcor_set_clock(host, ios->clock);
}
mutex_unlock(&host->cmd_mutex);
}
static int alcor_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct alcor_sdmmc_host *host = mmc_priv(mmc);
mutex_lock(&host->cmd_mutex);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
alcor_rmw8(host, AU6601_OPT, AU6601_OPT_SD_18V, 0);
break;
case MMC_SIGNAL_VOLTAGE_180:
alcor_rmw8(host, AU6601_OPT, 0, AU6601_OPT_SD_18V);
break;
default:
/* No signal voltage switch required */
break;
}
mutex_unlock(&host->cmd_mutex);
return 0;
}
static const struct mmc_host_ops alcor_sdc_ops = {
.card_busy = alcor_card_busy,
.get_cd = alcor_get_cd,
.get_ro = alcor_get_ro,
.post_req = alcor_post_req,
.pre_req = alcor_pre_req,
.request = alcor_request,
.set_ios = alcor_set_ios,
.start_signal_voltage_switch = alcor_signal_voltage_switch,
};
static void alcor_timeout_timer(struct work_struct *work)
{
struct delayed_work *d = to_delayed_work(work);
struct alcor_sdmmc_host *host = container_of(d, struct alcor_sdmmc_host,
timeout_work);
mutex_lock(&host->cmd_mutex);
dev_dbg(host->dev, "triggered timeout\n");
if (host->mrq) {
dev_err(host->dev, "Timeout waiting for hardware interrupt.\n");
if (host->data) {
host->data->error = -ETIMEDOUT;
} else {
if (host->cmd)
host->cmd->error = -ETIMEDOUT;
else
host->mrq->cmd->error = -ETIMEDOUT;
}
alcor_reset(host, AU6601_RESET_CMD | AU6601_RESET_DATA);
alcor_request_complete(host, 0);
}
mutex_unlock(&host->cmd_mutex);
}
static void alcor_hw_init(struct alcor_sdmmc_host *host)
{
struct alcor_pci_priv *priv = host->alcor_pci;
struct alcor_dev_cfg *cfg = priv->cfg;
/* FIXME: This part is a mimics HW init of original driver.
* If we will ever get access to documentation, then this part
* should be reviewed again.
*/
/* reset command state engine */
alcor_reset(host, AU6601_RESET_CMD);
alcor_write8(priv, 0, AU6601_DMA_BOUNDARY);
/* enable sd card mode */
alcor_write8(priv, AU6601_SD_CARD, AU6601_ACTIVE_CTRL);
/* set BUS width to 1 bit */
alcor_write8(priv, 0, AU6601_REG_BUS_CTRL);
/* reset data state engine */
alcor_reset(host, AU6601_RESET_DATA);
/* Not sure if a voodoo with AU6601_DMA_BOUNDARY is really needed */
alcor_write8(priv, 0, AU6601_DMA_BOUNDARY);
alcor_write8(priv, 0, AU6601_INTERFACE_MODE_CTRL);
/* not clear what we are doing here. */
alcor_write8(priv, 0x44, AU6601_PAD_DRIVE0);
alcor_write8(priv, 0x44, AU6601_PAD_DRIVE1);
alcor_write8(priv, 0x00, AU6601_PAD_DRIVE2);
/* for 6601 - dma_boundary; for 6621 - dma_page_cnt
* exact meaning of this register is not clear.
*/
alcor_write8(priv, cfg->dma, AU6601_DMA_BOUNDARY);
/* make sure all pins are set to input and VDD is off */
alcor_write8(priv, 0, AU6601_OUTPUT_ENABLE);
alcor_write8(priv, 0, AU6601_POWER_CONTROL);
alcor_write8(priv, AU6601_DETECT_EN, AU6601_DETECT_STATUS);
/* now we should be safe to enable IRQs */
alcor_unmask_sd_irqs(host);
}
static void alcor_hw_uninit(struct alcor_sdmmc_host *host)
{
struct alcor_pci_priv *priv = host->alcor_pci;
alcor_mask_sd_irqs(host);
alcor_reset(host, AU6601_RESET_CMD | AU6601_RESET_DATA);
alcor_write8(priv, 0, AU6601_DETECT_STATUS);
alcor_write8(priv, 0, AU6601_OUTPUT_ENABLE);
alcor_write8(priv, 0, AU6601_POWER_CONTROL);
alcor_write8(priv, 0, AU6601_OPT);
}
static void alcor_init_mmc(struct alcor_sdmmc_host *host)
{
struct mmc_host *mmc = mmc_from_priv(host);
mmc->f_min = AU6601_MIN_CLOCK;
mmc->f_max = AU6601_MAX_CLOCK;
mmc->ocr_avail = MMC_VDD_33_34;
mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED
| MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50
| MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50;
mmc->caps2 = MMC_CAP2_NO_SDIO;
mmc->ops = &alcor_sdc_ops;
/* The hardware does DMA data transfer of 4096 bytes to/from a single
* buffer address. Scatterlists are not supported at the hardware
* level, however we can work with them at the driver level,
* provided that each segment is exactly 4096 bytes in size.
* Upon DMA completion of a single segment (signalled via IRQ), we
* immediately proceed to transfer the next segment from the
* scatterlist.
*
* The overall request is limited to 240 sectors, matching the
* original vendor driver.
*/
mmc->max_segs = AU6601_MAX_DMA_SEGMENTS;
mmc->max_seg_size = AU6601_MAX_DMA_BLOCK_SIZE;
mmc->max_blk_count = 240;
mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
dma_set_max_seg_size(host->dev, mmc->max_seg_size);
}
static int alcor_pci_sdmmc_drv_probe(struct platform_device *pdev)
{
struct alcor_pci_priv *priv = pdev->dev.platform_data;
struct mmc_host *mmc;
struct alcor_sdmmc_host *host;
int ret;
mmc = mmc_alloc_host(sizeof(*host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "Can't allocate MMC\n");
return -ENOMEM;
}
host = mmc_priv(mmc);
host->dev = &pdev->dev;
host->cur_power_mode = MMC_POWER_UNDEFINED;
host->alcor_pci = priv;
/* make sure irqs are disabled */
alcor_write32(priv, 0, AU6601_REG_INT_ENABLE);
alcor_write32(priv, 0, AU6601_MS_INT_ENABLE);
ret = devm_request_threaded_irq(&pdev->dev, priv->irq,
alcor_irq, alcor_irq_thread, IRQF_SHARED,
DRV_NAME_ALCOR_PCI_SDMMC, host);
if (ret) {
dev_err(&pdev->dev, "Failed to get irq for data line\n");
goto free_host;
}
mutex_init(&host->cmd_mutex);
INIT_DELAYED_WORK(&host->timeout_work, alcor_timeout_timer);
alcor_init_mmc(host);
alcor_hw_init(host);
dev_set_drvdata(&pdev->dev, host);
ret = mmc_add_host(mmc);
if (ret)
goto free_host;
return 0;
free_host:
mmc_free_host(mmc);
return ret;
}
static void alcor_pci_sdmmc_drv_remove(struct platform_device *pdev)
{
struct alcor_sdmmc_host *host = dev_get_drvdata(&pdev->dev);
struct mmc_host *mmc = mmc_from_priv(host);
if (cancel_delayed_work_sync(&host->timeout_work))
alcor_request_complete(host, 0);
alcor_hw_uninit(host);
mmc_remove_host(mmc);
mmc_free_host(mmc);
}
#ifdef CONFIG_PM_SLEEP
static int alcor_pci_sdmmc_suspend(struct device *dev)
{
struct alcor_sdmmc_host *host = dev_get_drvdata(dev);
if (cancel_delayed_work_sync(&host->timeout_work))
alcor_request_complete(host, 0);
alcor_hw_uninit(host);
return 0;
}
static int alcor_pci_sdmmc_resume(struct device *dev)
{
struct alcor_sdmmc_host *host = dev_get_drvdata(dev);
alcor_hw_init(host);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(alcor_mmc_pm_ops, alcor_pci_sdmmc_suspend,
alcor_pci_sdmmc_resume);
static const struct platform_device_id alcor_pci_sdmmc_ids[] = {
{
.name = DRV_NAME_ALCOR_PCI_SDMMC,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, alcor_pci_sdmmc_ids);
static struct platform_driver alcor_pci_sdmmc_driver = {
.probe = alcor_pci_sdmmc_drv_probe,
.remove_new = alcor_pci_sdmmc_drv_remove,
.id_table = alcor_pci_sdmmc_ids,
.driver = {
.name = DRV_NAME_ALCOR_PCI_SDMMC,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &alcor_mmc_pm_ops
},
};
module_platform_driver(alcor_pci_sdmmc_driver);
MODULE_AUTHOR("Oleksij Rempel <[email protected]>");
MODULE_DESCRIPTION("PCI driver for Alcor Micro AU6601 Secure Digital Host Controller Interface");
MODULE_LICENSE("GPL");
| linux-master | drivers/mmc/host/alcor.c |
// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2017-2018 Socionext Inc.
// Author: Masahiro Yamada <[email protected]>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/tmio.h>
#include <linux/mmc/host.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include "tmio_mmc.h"
#define UNIPHIER_SD_CLK_CTL_DIV1024 BIT(16)
#define UNIPHIER_SD_CLK_CTL_DIV1 BIT(10)
#define UNIPHIER_SD_CLKCTL_OFFEN BIT(9) // auto SDCLK stop
#define UNIPHIER_SD_CC_EXT_MODE 0x1b0
#define UNIPHIER_SD_CC_EXT_MODE_DMA BIT(1)
#define UNIPHIER_SD_HOST_MODE 0x1c8
#define UNIPHIER_SD_VOLT 0x1e4
#define UNIPHIER_SD_VOLT_MASK GENMASK(1, 0)
#define UNIPHIER_SD_VOLT_OFF 0
#define UNIPHIER_SD_VOLT_330 1 // 3.3V signal
#define UNIPHIER_SD_VOLT_180 2 // 1.8V signal
#define UNIPHIER_SD_DMA_MODE 0x410
#define UNIPHIER_SD_DMA_MODE_DIR_MASK GENMASK(17, 16)
#define UNIPHIER_SD_DMA_MODE_DIR_TO_DEV 0
#define UNIPHIER_SD_DMA_MODE_DIR_FROM_DEV 1
#define UNIPHIER_SD_DMA_MODE_WIDTH_MASK GENMASK(5, 4)
#define UNIPHIER_SD_DMA_MODE_WIDTH_8 0
#define UNIPHIER_SD_DMA_MODE_WIDTH_16 1
#define UNIPHIER_SD_DMA_MODE_WIDTH_32 2
#define UNIPHIER_SD_DMA_MODE_WIDTH_64 3
#define UNIPHIER_SD_DMA_MODE_ADDR_INC BIT(0) // 1: inc, 0: fixed
#define UNIPHIER_SD_DMA_CTL 0x414
#define UNIPHIER_SD_DMA_CTL_START BIT(0) // start DMA (auto cleared)
#define UNIPHIER_SD_DMA_RST 0x418
#define UNIPHIER_SD_DMA_RST_CH1 BIT(9)
#define UNIPHIER_SD_DMA_RST_CH0 BIT(8)
#define UNIPHIER_SD_DMA_ADDR_L 0x440
#define UNIPHIER_SD_DMA_ADDR_H 0x444
/* SD control */
#define UNIPHIER_SDCTRL_CHOFFSET 0x200
#define UNIPHIER_SDCTRL_MODE 0x30
#define UNIPHIER_SDCTRL_MODE_UHS1MOD BIT(15)
#define UNIPHIER_SDCTRL_MODE_SDRSEL BIT(14)
/*
* IP is extended to support various features: built-in DMA engine,
* 1/1024 divisor, etc.
*/
#define UNIPHIER_SD_CAP_EXTENDED_IP BIT(0)
/* RX channel of the built-in DMA controller is broken (Pro5) */
#define UNIPHIER_SD_CAP_BROKEN_DMA_RX BIT(1)
struct uniphier_sd_priv {
struct tmio_mmc_data tmio_data;
struct pinctrl *pinctrl;
struct pinctrl_state *pinstate_uhs;
struct clk *clk;
struct reset_control *rst;
struct reset_control *rst_br;
struct reset_control *rst_hw;
struct dma_chan *chan;
enum dma_data_direction dma_dir;
struct regmap *sdctrl_regmap;
u32 sdctrl_ch;
unsigned long clk_rate;
unsigned long caps;
};
static void *uniphier_sd_priv(struct tmio_mmc_host *host)
{
return container_of(host->pdata, struct uniphier_sd_priv, tmio_data);
}
static void uniphier_sd_dma_endisable(struct tmio_mmc_host *host, int enable)
{
sd_ctrl_write16(host, CTL_DMA_ENABLE, enable ? DMA_ENABLE_DMASDRW : 0);
}
/* external DMA engine */
static void uniphier_sd_external_dma_issue(struct tasklet_struct *t)
{
struct tmio_mmc_host *host = from_tasklet(host, t, dma_issue);
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
uniphier_sd_dma_endisable(host, 1);
dma_async_issue_pending(priv->chan);
}
static void uniphier_sd_external_dma_callback(void *param,
const struct dmaengine_result *result)
{
struct tmio_mmc_host *host = param;
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
unsigned long flags;
dma_unmap_sg(mmc_dev(host->mmc), host->sg_ptr, host->sg_len,
priv->dma_dir);
spin_lock_irqsave(&host->lock, flags);
if (result->result == DMA_TRANS_NOERROR) {
/*
* When the external DMA engine is enabled, strangely enough,
* the DATAEND flag can be asserted even if the DMA engine has
* not been kicked yet. Enable the TMIO_STAT_DATAEND irq only
* after we make sure the DMA engine finishes the transfer,
* hence, in this callback.
*/
tmio_mmc_enable_mmc_irqs(host, TMIO_STAT_DATAEND);
} else {
host->data->error = -ETIMEDOUT;
tmio_mmc_do_data_irq(host);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static void uniphier_sd_external_dma_start(struct tmio_mmc_host *host,
struct mmc_data *data)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
enum dma_transfer_direction dma_tx_dir;
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
int sg_len;
if (!priv->chan)
goto force_pio;
if (data->flags & MMC_DATA_READ) {
priv->dma_dir = DMA_FROM_DEVICE;
dma_tx_dir = DMA_DEV_TO_MEM;
} else {
priv->dma_dir = DMA_TO_DEVICE;
dma_tx_dir = DMA_MEM_TO_DEV;
}
sg_len = dma_map_sg(mmc_dev(host->mmc), host->sg_ptr, host->sg_len,
priv->dma_dir);
if (sg_len == 0)
goto force_pio;
desc = dmaengine_prep_slave_sg(priv->chan, host->sg_ptr, sg_len,
dma_tx_dir, DMA_CTRL_ACK);
if (!desc)
goto unmap_sg;
desc->callback_result = uniphier_sd_external_dma_callback;
desc->callback_param = host;
cookie = dmaengine_submit(desc);
if (cookie < 0)
goto unmap_sg;
host->dma_on = true;
return;
unmap_sg:
dma_unmap_sg(mmc_dev(host->mmc), host->sg_ptr, host->sg_len,
priv->dma_dir);
force_pio:
uniphier_sd_dma_endisable(host, 0);
}
static void uniphier_sd_external_dma_enable(struct tmio_mmc_host *host,
bool enable)
{
}
static void uniphier_sd_external_dma_request(struct tmio_mmc_host *host,
struct tmio_mmc_data *pdata)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
struct dma_chan *chan;
chan = dma_request_chan(mmc_dev(host->mmc), "rx-tx");
if (IS_ERR(chan)) {
dev_warn(mmc_dev(host->mmc),
"failed to request DMA channel. falling back to PIO\n");
return; /* just use PIO even for -EPROBE_DEFER */
}
/* this driver uses a single channel for both RX an TX */
priv->chan = chan;
host->chan_rx = chan;
host->chan_tx = chan;
tasklet_setup(&host->dma_issue, uniphier_sd_external_dma_issue);
}
static void uniphier_sd_external_dma_release(struct tmio_mmc_host *host)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
if (priv->chan)
dma_release_channel(priv->chan);
}
static void uniphier_sd_external_dma_abort(struct tmio_mmc_host *host)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
uniphier_sd_dma_endisable(host, 0);
if (priv->chan)
dmaengine_terminate_sync(priv->chan);
}
static void uniphier_sd_external_dma_dataend(struct tmio_mmc_host *host)
{
uniphier_sd_dma_endisable(host, 0);
tmio_mmc_do_data_irq(host);
}
static const struct tmio_mmc_dma_ops uniphier_sd_external_dma_ops = {
.start = uniphier_sd_external_dma_start,
.enable = uniphier_sd_external_dma_enable,
.request = uniphier_sd_external_dma_request,
.release = uniphier_sd_external_dma_release,
.abort = uniphier_sd_external_dma_abort,
.dataend = uniphier_sd_external_dma_dataend,
};
static void uniphier_sd_internal_dma_issue(struct tasklet_struct *t)
{
struct tmio_mmc_host *host = from_tasklet(host, t, dma_issue);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
tmio_mmc_enable_mmc_irqs(host, TMIO_STAT_DATAEND);
spin_unlock_irqrestore(&host->lock, flags);
uniphier_sd_dma_endisable(host, 1);
writel(UNIPHIER_SD_DMA_CTL_START, host->ctl + UNIPHIER_SD_DMA_CTL);
}
static void uniphier_sd_internal_dma_start(struct tmio_mmc_host *host,
struct mmc_data *data)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
struct scatterlist *sg = host->sg_ptr;
dma_addr_t dma_addr;
unsigned int dma_mode_dir;
u32 dma_mode;
int sg_len;
if ((data->flags & MMC_DATA_READ) && !host->chan_rx)
goto force_pio;
if (WARN_ON(host->sg_len != 1))
goto force_pio;
if (!IS_ALIGNED(sg->offset, 8))
goto force_pio;
if (data->flags & MMC_DATA_READ) {
priv->dma_dir = DMA_FROM_DEVICE;
dma_mode_dir = UNIPHIER_SD_DMA_MODE_DIR_FROM_DEV;
} else {
priv->dma_dir = DMA_TO_DEVICE;
dma_mode_dir = UNIPHIER_SD_DMA_MODE_DIR_TO_DEV;
}
sg_len = dma_map_sg(mmc_dev(host->mmc), sg, 1, priv->dma_dir);
if (sg_len == 0)
goto force_pio;
dma_mode = FIELD_PREP(UNIPHIER_SD_DMA_MODE_DIR_MASK, dma_mode_dir);
dma_mode |= FIELD_PREP(UNIPHIER_SD_DMA_MODE_WIDTH_MASK,
UNIPHIER_SD_DMA_MODE_WIDTH_64);
dma_mode |= UNIPHIER_SD_DMA_MODE_ADDR_INC;
writel(dma_mode, host->ctl + UNIPHIER_SD_DMA_MODE);
dma_addr = sg_dma_address(data->sg);
writel(lower_32_bits(dma_addr), host->ctl + UNIPHIER_SD_DMA_ADDR_L);
writel(upper_32_bits(dma_addr), host->ctl + UNIPHIER_SD_DMA_ADDR_H);
host->dma_on = true;
return;
force_pio:
uniphier_sd_dma_endisable(host, 0);
}
static void uniphier_sd_internal_dma_enable(struct tmio_mmc_host *host,
bool enable)
{
}
static void uniphier_sd_internal_dma_request(struct tmio_mmc_host *host,
struct tmio_mmc_data *pdata)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
/*
* Due to a hardware bug, Pro5 cannot use DMA for RX.
* We can still use DMA for TX, but PIO for RX.
*/
if (!(priv->caps & UNIPHIER_SD_CAP_BROKEN_DMA_RX))
host->chan_rx = (void *)0xdeadbeaf;
host->chan_tx = (void *)0xdeadbeaf;
tasklet_setup(&host->dma_issue, uniphier_sd_internal_dma_issue);
}
static void uniphier_sd_internal_dma_release(struct tmio_mmc_host *host)
{
/* Each value is set to zero to assume "disabling" each DMA */
host->chan_rx = NULL;
host->chan_tx = NULL;
}
static void uniphier_sd_internal_dma_abort(struct tmio_mmc_host *host)
{
u32 tmp;
uniphier_sd_dma_endisable(host, 0);
tmp = readl(host->ctl + UNIPHIER_SD_DMA_RST);
tmp &= ~(UNIPHIER_SD_DMA_RST_CH1 | UNIPHIER_SD_DMA_RST_CH0);
writel(tmp, host->ctl + UNIPHIER_SD_DMA_RST);
tmp |= UNIPHIER_SD_DMA_RST_CH1 | UNIPHIER_SD_DMA_RST_CH0;
writel(tmp, host->ctl + UNIPHIER_SD_DMA_RST);
}
static void uniphier_sd_internal_dma_dataend(struct tmio_mmc_host *host)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
uniphier_sd_dma_endisable(host, 0);
dma_unmap_sg(mmc_dev(host->mmc), host->sg_ptr, 1, priv->dma_dir);
tmio_mmc_do_data_irq(host);
}
static const struct tmio_mmc_dma_ops uniphier_sd_internal_dma_ops = {
.start = uniphier_sd_internal_dma_start,
.enable = uniphier_sd_internal_dma_enable,
.request = uniphier_sd_internal_dma_request,
.release = uniphier_sd_internal_dma_release,
.abort = uniphier_sd_internal_dma_abort,
.dataend = uniphier_sd_internal_dma_dataend,
};
static int uniphier_sd_clk_enable(struct tmio_mmc_host *host)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
struct mmc_host *mmc = host->mmc;
int ret;
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
ret = clk_set_rate(priv->clk, ULONG_MAX);
if (ret)
goto disable_clk;
priv->clk_rate = clk_get_rate(priv->clk);
/* If max-frequency property is set, use it. */
if (!mmc->f_max)
mmc->f_max = priv->clk_rate;
/*
* 1/512 is the finest divisor in the original IP. Newer versions
* also supports 1/1024 divisor. (UniPhier-specific extension)
*/
if (priv->caps & UNIPHIER_SD_CAP_EXTENDED_IP)
mmc->f_min = priv->clk_rate / 1024;
else
mmc->f_min = priv->clk_rate / 512;
ret = reset_control_deassert(priv->rst);
if (ret)
goto disable_clk;
ret = reset_control_deassert(priv->rst_br);
if (ret)
goto assert_rst;
return 0;
assert_rst:
reset_control_assert(priv->rst);
disable_clk:
clk_disable_unprepare(priv->clk);
return ret;
}
static void uniphier_sd_clk_disable(struct tmio_mmc_host *host)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
reset_control_assert(priv->rst_br);
reset_control_assert(priv->rst);
clk_disable_unprepare(priv->clk);
}
static void uniphier_sd_hw_reset(struct mmc_host *mmc)
{
struct tmio_mmc_host *host = mmc_priv(mmc);
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
reset_control_assert(priv->rst_hw);
/* For eMMC, minimum is 1us but give it 9us for good measure */
udelay(9);
reset_control_deassert(priv->rst_hw);
/* For eMMC, minimum is 200us but give it 300us for good measure */
usleep_range(300, 1000);
}
static void uniphier_sd_speed_switch(struct tmio_mmc_host *host)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
unsigned int offset;
u32 val = 0;
if (!(host->mmc->caps & MMC_CAP_UHS))
return;
if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR50 ||
host->mmc->ios.timing == MMC_TIMING_UHS_SDR104)
val = UNIPHIER_SDCTRL_MODE_SDRSEL;
offset = UNIPHIER_SDCTRL_CHOFFSET * priv->sdctrl_ch
+ UNIPHIER_SDCTRL_MODE;
regmap_write_bits(priv->sdctrl_regmap, offset,
UNIPHIER_SDCTRL_MODE_SDRSEL, val);
}
static void uniphier_sd_uhs_enable(struct tmio_mmc_host *host, bool uhs_en)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
unsigned int offset;
u32 val;
if (!(host->mmc->caps & MMC_CAP_UHS))
return;
val = (uhs_en) ? UNIPHIER_SDCTRL_MODE_UHS1MOD : 0;
offset = UNIPHIER_SDCTRL_CHOFFSET * priv->sdctrl_ch
+ UNIPHIER_SDCTRL_MODE;
regmap_write_bits(priv->sdctrl_regmap, offset,
UNIPHIER_SDCTRL_MODE_UHS1MOD, val);
}
static void uniphier_sd_set_clock(struct tmio_mmc_host *host,
unsigned int clock)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
unsigned long divisor;
u32 tmp;
tmp = readl(host->ctl + (CTL_SD_CARD_CLK_CTL << 1));
/* stop the clock before changing its rate to avoid a glitch signal */
tmp &= ~CLK_CTL_SCLKEN;
writel(tmp, host->ctl + (CTL_SD_CARD_CLK_CTL << 1));
uniphier_sd_speed_switch(host);
if (clock == 0)
return;
tmp &= ~UNIPHIER_SD_CLK_CTL_DIV1024;
tmp &= ~UNIPHIER_SD_CLK_CTL_DIV1;
tmp &= ~CLK_CTL_DIV_MASK;
divisor = priv->clk_rate / clock;
/*
* In the original IP, bit[7:0] represents the divisor.
* bit7 set: 1/512, ... bit0 set:1/4, all bits clear: 1/2
*
* The IP does not define a way to achieve 1/1. For UniPhier variants,
* bit10 is used for 1/1. Newer versions of UniPhier variants use
* bit16 for 1/1024.
*/
if (divisor <= 1)
tmp |= UNIPHIER_SD_CLK_CTL_DIV1;
else if (priv->caps & UNIPHIER_SD_CAP_EXTENDED_IP && divisor > 512)
tmp |= UNIPHIER_SD_CLK_CTL_DIV1024;
else
tmp |= roundup_pow_of_two(divisor) >> 2;
writel(tmp, host->ctl + (CTL_SD_CARD_CLK_CTL << 1));
tmp |= CLK_CTL_SCLKEN;
writel(tmp, host->ctl + (CTL_SD_CARD_CLK_CTL << 1));
}
static void uniphier_sd_host_init(struct tmio_mmc_host *host)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
u32 val;
/*
* Connected to 32bit AXI.
* This register holds settings for SoC-specific internal bus
* connection. What is worse, the register spec was changed,
* breaking the backward compatibility. Write an appropriate
* value depending on a flag associated with a compatible string.
*/
if (priv->caps & UNIPHIER_SD_CAP_EXTENDED_IP)
val = 0x00000101;
else
val = 0x00000000;
writel(val, host->ctl + UNIPHIER_SD_HOST_MODE);
val = 0;
/*
* If supported, the controller can automatically
* enable/disable the clock line to the card.
*/
if (priv->caps & UNIPHIER_SD_CAP_EXTENDED_IP)
val |= UNIPHIER_SD_CLKCTL_OFFEN;
writel(val, host->ctl + (CTL_SD_CARD_CLK_CTL << 1));
}
static int uniphier_sd_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct tmio_mmc_host *host = mmc_priv(mmc);
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
struct pinctrl_state *pinstate = NULL;
u32 val, tmp;
bool uhs_en;
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
val = UNIPHIER_SD_VOLT_330;
uhs_en = false;
break;
case MMC_SIGNAL_VOLTAGE_180:
val = UNIPHIER_SD_VOLT_180;
pinstate = priv->pinstate_uhs;
uhs_en = true;
break;
default:
return -ENOTSUPP;
}
tmp = readl(host->ctl + UNIPHIER_SD_VOLT);
tmp &= ~UNIPHIER_SD_VOLT_MASK;
tmp |= FIELD_PREP(UNIPHIER_SD_VOLT_MASK, val);
writel(tmp, host->ctl + UNIPHIER_SD_VOLT);
if (pinstate)
pinctrl_select_state(priv->pinctrl, pinstate);
else
pinctrl_select_default_state(mmc_dev(mmc));
uniphier_sd_uhs_enable(host, uhs_en);
return 0;
}
static int uniphier_sd_uhs_init(struct tmio_mmc_host *host)
{
struct uniphier_sd_priv *priv = uniphier_sd_priv(host);
struct device *dev = &host->pdev->dev;
struct device_node *np = dev->of_node;
struct of_phandle_args args;
int ret;
priv->pinctrl = devm_pinctrl_get(mmc_dev(host->mmc));
if (IS_ERR(priv->pinctrl))
return PTR_ERR(priv->pinctrl);
priv->pinstate_uhs = pinctrl_lookup_state(priv->pinctrl, "uhs");
if (IS_ERR(priv->pinstate_uhs))
return PTR_ERR(priv->pinstate_uhs);
ret = of_parse_phandle_with_fixed_args(np,
"socionext,syscon-uhs-mode",
1, 0, &args);
if (ret) {
dev_err(dev, "Can't get syscon-uhs-mode property\n");
return ret;
}
priv->sdctrl_regmap = syscon_node_to_regmap(args.np);
of_node_put(args.np);
if (IS_ERR(priv->sdctrl_regmap)) {
dev_err(dev, "Can't map syscon-uhs-mode\n");
return PTR_ERR(priv->sdctrl_regmap);
}
priv->sdctrl_ch = args.args[0];
return 0;
}
static int uniphier_sd_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct uniphier_sd_priv *priv;
struct tmio_mmc_data *tmio_data;
struct tmio_mmc_host *host;
int irq, ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->caps = (unsigned long)of_device_get_match_data(dev);
priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->clk)) {
dev_err(dev, "failed to get clock\n");
return PTR_ERR(priv->clk);
}
priv->rst = devm_reset_control_get_shared(dev, "host");
if (IS_ERR(priv->rst)) {
dev_err(dev, "failed to get host reset\n");
return PTR_ERR(priv->rst);
}
/* old version has one more reset */
if (!(priv->caps & UNIPHIER_SD_CAP_EXTENDED_IP)) {
priv->rst_br = devm_reset_control_get_shared(dev, "bridge");
if (IS_ERR(priv->rst_br)) {
dev_err(dev, "failed to get bridge reset\n");
return PTR_ERR(priv->rst_br);
}
}
tmio_data = &priv->tmio_data;
tmio_data->flags |= TMIO_MMC_32BIT_DATA_PORT;
tmio_data->flags |= TMIO_MMC_USE_BUSY_TIMEOUT;
host = tmio_mmc_host_alloc(pdev, tmio_data);
if (IS_ERR(host))
return PTR_ERR(host);
if (host->mmc->caps & MMC_CAP_HW_RESET) {
priv->rst_hw = devm_reset_control_get_exclusive(dev, "hw");
if (IS_ERR(priv->rst_hw)) {
dev_err(dev, "failed to get hw reset\n");
ret = PTR_ERR(priv->rst_hw);
goto free_host;
}
host->ops.card_hw_reset = uniphier_sd_hw_reset;
}
if (host->mmc->caps & MMC_CAP_UHS) {
ret = uniphier_sd_uhs_init(host);
if (ret) {
dev_warn(dev,
"failed to setup UHS (error %d). Disabling UHS.",
ret);
host->mmc->caps &= ~MMC_CAP_UHS;
} else {
host->ops.start_signal_voltage_switch =
uniphier_sd_start_signal_voltage_switch;
}
}
if (priv->caps & UNIPHIER_SD_CAP_EXTENDED_IP)
host->dma_ops = &uniphier_sd_internal_dma_ops;
else
host->dma_ops = &uniphier_sd_external_dma_ops;
host->bus_shift = 1;
host->clk_enable = uniphier_sd_clk_enable;
host->clk_disable = uniphier_sd_clk_disable;
host->set_clock = uniphier_sd_set_clock;
ret = uniphier_sd_clk_enable(host);
if (ret)
goto free_host;
uniphier_sd_host_init(host);
tmio_data->ocr_mask = MMC_VDD_32_33 | MMC_VDD_33_34;
if (host->mmc->caps & MMC_CAP_UHS)
tmio_data->ocr_mask |= MMC_VDD_165_195;
tmio_data->max_segs = 1;
tmio_data->max_blk_count = U16_MAX;
sd_ctrl_write32_as_16_and_16(host, CTL_IRQ_MASK, TMIO_MASK_ALL);
ret = devm_request_irq(dev, irq, tmio_mmc_irq, IRQF_SHARED,
dev_name(dev), host);
if (ret)
goto disable_clk;
ret = tmio_mmc_host_probe(host);
if (ret)
goto disable_clk;
return 0;
disable_clk:
uniphier_sd_clk_disable(host);
free_host:
tmio_mmc_host_free(host);
return ret;
}
static void uniphier_sd_remove(struct platform_device *pdev)
{
struct tmio_mmc_host *host = platform_get_drvdata(pdev);
tmio_mmc_host_remove(host);
uniphier_sd_clk_disable(host);
tmio_mmc_host_free(host);
}
static const struct of_device_id uniphier_sd_match[] = {
{
.compatible = "socionext,uniphier-sd-v2.91",
},
{
.compatible = "socionext,uniphier-sd-v3.1",
.data = (void *)(UNIPHIER_SD_CAP_EXTENDED_IP |
UNIPHIER_SD_CAP_BROKEN_DMA_RX),
},
{
.compatible = "socionext,uniphier-sd-v3.1.1",
.data = (void *)UNIPHIER_SD_CAP_EXTENDED_IP,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, uniphier_sd_match);
static struct platform_driver uniphier_sd_driver = {
.probe = uniphier_sd_probe,
.remove_new = uniphier_sd_remove,
.driver = {
.name = "uniphier-sd",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = uniphier_sd_match,
},
};
module_platform_driver(uniphier_sd_driver);
MODULE_AUTHOR("Masahiro Yamada <[email protected]>");
MODULE_DESCRIPTION("UniPhier SD/eMMC host controller driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/uniphier-sd.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/mmc/host.h>
#include <linux/of_address.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "dw_mmc.h"
#include "dw_mmc-pltfm.h"
#define RK3288_CLKGEN_DIV 2
static const unsigned int freqs[] = { 100000, 200000, 300000, 400000 };
struct dw_mci_rockchip_priv_data {
struct clk *drv_clk;
struct clk *sample_clk;
int default_sample_phase;
int num_phases;
};
static void dw_mci_rk3288_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
struct dw_mci_rockchip_priv_data *priv = host->priv;
int ret;
unsigned int cclkin;
u32 bus_hz;
if (ios->clock == 0)
return;
/*
* cclkin: source clock of mmc controller
* bus_hz: card interface clock generated by CLKGEN
* bus_hz = cclkin / RK3288_CLKGEN_DIV
* ios->clock = (div == 0) ? bus_hz : (bus_hz / (2 * div))
*
* Note: div can only be 0 or 1, but div must be set to 1 for eMMC
* DDR52 8-bit mode.
*/
if (ios->bus_width == MMC_BUS_WIDTH_8 &&
ios->timing == MMC_TIMING_MMC_DDR52)
cclkin = 2 * ios->clock * RK3288_CLKGEN_DIV;
else
cclkin = ios->clock * RK3288_CLKGEN_DIV;
ret = clk_set_rate(host->ciu_clk, cclkin);
if (ret)
dev_warn(host->dev, "failed to set rate %uHz err: %d\n", cclkin, ret);
bus_hz = clk_get_rate(host->ciu_clk) / RK3288_CLKGEN_DIV;
if (bus_hz != host->bus_hz) {
host->bus_hz = bus_hz;
/* force dw_mci_setup_bus() */
host->current_speed = 0;
}
/* Make sure we use phases which we can enumerate with */
if (!IS_ERR(priv->sample_clk) && ios->timing <= MMC_TIMING_SD_HS)
clk_set_phase(priv->sample_clk, priv->default_sample_phase);
/*
* Set the drive phase offset based on speed mode to achieve hold times.
*
* NOTE: this is _not_ a value that is dynamically tuned and is also
* _not_ a value that will vary from board to board. It is a value
* that could vary between different SoC models if they had massively
* different output clock delays inside their dw_mmc IP block (delay_o),
* but since it's OK to overshoot a little we don't need to do complex
* calculations and can pick values that will just work for everyone.
*
* When picking values we'll stick with picking 0/90/180/270 since
* those can be made very accurately on all known Rockchip SoCs.
*
* Note that these values match values from the DesignWare Databook
* tables for the most part except for SDR12 and "ID mode". For those
* two modes the databook calculations assume a clock in of 50MHz. As
* seen above, we always use a clock in rate that is exactly the
* card's input clock (times RK3288_CLKGEN_DIV, but that gets divided
* back out before the controller sees it).
*
* From measurement of a single device, it appears that delay_o is
* about .5 ns. Since we try to leave a bit of margin, it's expected
* that numbers here will be fine even with much larger delay_o
* (the 1.4 ns assumed by the DesignWare Databook would result in the
* same results, for instance).
*/
if (!IS_ERR(priv->drv_clk)) {
int phase;
/*
* In almost all cases a 90 degree phase offset will provide
* sufficient hold times across all valid input clock rates
* assuming delay_o is not absurd for a given SoC. We'll use
* that as a default.
*/
phase = 90;
switch (ios->timing) {
case MMC_TIMING_MMC_DDR52:
/*
* Since clock in rate with MMC_DDR52 is doubled when
* bus width is 8 we need to double the phase offset
* to get the same timings.
*/
if (ios->bus_width == MMC_BUS_WIDTH_8)
phase = 180;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/*
* In the case of 150 MHz clock (typical max for
* Rockchip SoCs), 90 degree offset will add a delay
* of 1.67 ns. That will meet min hold time of .8 ns
* as long as clock output delay is < .87 ns. On
* SoCs measured this seems to be OK, but it doesn't
* hurt to give margin here, so we use 180.
*/
phase = 180;
break;
}
clk_set_phase(priv->drv_clk, phase);
}
}
#define TUNING_ITERATION_TO_PHASE(i, num_phases) \
(DIV_ROUND_UP((i) * 360, num_phases))
static int dw_mci_rk3288_execute_tuning(struct dw_mci_slot *slot, u32 opcode)
{
struct dw_mci *host = slot->host;
struct dw_mci_rockchip_priv_data *priv = host->priv;
struct mmc_host *mmc = slot->mmc;
int ret = 0;
int i;
bool v, prev_v = 0, first_v;
struct range_t {
int start;
int end; /* inclusive */
};
struct range_t *ranges;
unsigned int range_count = 0;
int longest_range_len = -1;
int longest_range = -1;
int middle_phase;
if (IS_ERR(priv->sample_clk)) {
dev_err(host->dev, "Tuning clock (sample_clk) not defined.\n");
return -EIO;
}
ranges = kmalloc_array(priv->num_phases / 2 + 1,
sizeof(*ranges), GFP_KERNEL);
if (!ranges)
return -ENOMEM;
/* Try each phase and extract good ranges */
for (i = 0; i < priv->num_phases; ) {
clk_set_phase(priv->sample_clk,
TUNING_ITERATION_TO_PHASE(i, priv->num_phases));
v = !mmc_send_tuning(mmc, opcode, NULL);
if (i == 0)
first_v = v;
if ((!prev_v) && v) {
range_count++;
ranges[range_count-1].start = i;
}
if (v) {
ranges[range_count-1].end = i;
i++;
} else if (i == priv->num_phases - 1) {
/* No extra skipping rules if we're at the end */
i++;
} else {
/*
* No need to check too close to an invalid
* one since testing bad phases is slow. Skip
* 20 degrees.
*/
i += DIV_ROUND_UP(20 * priv->num_phases, 360);
/* Always test the last one */
if (i >= priv->num_phases)
i = priv->num_phases - 1;
}
prev_v = v;
}
if (range_count == 0) {
dev_warn(host->dev, "All phases bad!");
ret = -EIO;
goto free;
}
/* wrap around case, merge the end points */
if ((range_count > 1) && first_v && v) {
ranges[0].start = ranges[range_count-1].start;
range_count--;
}
if (ranges[0].start == 0 && ranges[0].end == priv->num_phases - 1) {
clk_set_phase(priv->sample_clk, priv->default_sample_phase);
dev_info(host->dev, "All phases work, using default phase %d.",
priv->default_sample_phase);
goto free;
}
/* Find the longest range */
for (i = 0; i < range_count; i++) {
int len = (ranges[i].end - ranges[i].start + 1);
if (len < 0)
len += priv->num_phases;
if (longest_range_len < len) {
longest_range_len = len;
longest_range = i;
}
dev_dbg(host->dev, "Good phase range %d-%d (%d len)\n",
TUNING_ITERATION_TO_PHASE(ranges[i].start,
priv->num_phases),
TUNING_ITERATION_TO_PHASE(ranges[i].end,
priv->num_phases),
len
);
}
dev_dbg(host->dev, "Best phase range %d-%d (%d len)\n",
TUNING_ITERATION_TO_PHASE(ranges[longest_range].start,
priv->num_phases),
TUNING_ITERATION_TO_PHASE(ranges[longest_range].end,
priv->num_phases),
longest_range_len
);
middle_phase = ranges[longest_range].start + longest_range_len / 2;
middle_phase %= priv->num_phases;
dev_info(host->dev, "Successfully tuned phase to %d\n",
TUNING_ITERATION_TO_PHASE(middle_phase, priv->num_phases));
clk_set_phase(priv->sample_clk,
TUNING_ITERATION_TO_PHASE(middle_phase,
priv->num_phases));
free:
kfree(ranges);
return ret;
}
static int dw_mci_rk3288_parse_dt(struct dw_mci *host)
{
struct device_node *np = host->dev->of_node;
struct dw_mci_rockchip_priv_data *priv;
priv = devm_kzalloc(host->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
if (of_property_read_u32(np, "rockchip,desired-num-phases",
&priv->num_phases))
priv->num_phases = 360;
if (of_property_read_u32(np, "rockchip,default-sample-phase",
&priv->default_sample_phase))
priv->default_sample_phase = 0;
priv->drv_clk = devm_clk_get(host->dev, "ciu-drive");
if (IS_ERR(priv->drv_clk))
dev_dbg(host->dev, "ciu-drive not available\n");
priv->sample_clk = devm_clk_get(host->dev, "ciu-sample");
if (IS_ERR(priv->sample_clk))
dev_dbg(host->dev, "ciu-sample not available\n");
host->priv = priv;
return 0;
}
static int dw_mci_rockchip_init(struct dw_mci *host)
{
int ret, i;
/* It is slot 8 on Rockchip SoCs */
host->sdio_id0 = 8;
if (of_device_is_compatible(host->dev->of_node, "rockchip,rk3288-dw-mshc")) {
host->bus_hz /= RK3288_CLKGEN_DIV;
/* clock driver will fail if the clock is less than the lowest source clock
* divided by the internal clock divider. Test for the lowest available
* clock and set the minimum freq to clock / clock divider.
*/
for (i = 0; i < ARRAY_SIZE(freqs); i++) {
ret = clk_round_rate(host->ciu_clk, freqs[i] * RK3288_CLKGEN_DIV);
if (ret > 0) {
host->minimum_speed = ret / RK3288_CLKGEN_DIV;
break;
}
}
if (ret < 0)
dev_warn(host->dev, "no valid minimum freq: %d\n", ret);
}
return 0;
}
static const struct dw_mci_drv_data rk2928_drv_data = {
.init = dw_mci_rockchip_init,
};
static const struct dw_mci_drv_data rk3288_drv_data = {
.common_caps = MMC_CAP_CMD23,
.set_ios = dw_mci_rk3288_set_ios,
.execute_tuning = dw_mci_rk3288_execute_tuning,
.parse_dt = dw_mci_rk3288_parse_dt,
.init = dw_mci_rockchip_init,
};
static const struct of_device_id dw_mci_rockchip_match[] = {
{ .compatible = "rockchip,rk2928-dw-mshc",
.data = &rk2928_drv_data },
{ .compatible = "rockchip,rk3288-dw-mshc",
.data = &rk3288_drv_data },
{},
};
MODULE_DEVICE_TABLE(of, dw_mci_rockchip_match);
static int dw_mci_rockchip_probe(struct platform_device *pdev)
{
const struct dw_mci_drv_data *drv_data;
const struct of_device_id *match;
int ret;
if (!pdev->dev.of_node)
return -ENODEV;
match = of_match_node(dw_mci_rockchip_match, pdev->dev.of_node);
drv_data = match->data;
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
ret = dw_mci_pltfm_register(pdev, drv_data);
if (ret) {
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
return ret;
}
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
}
static void dw_mci_rockchip_remove(struct platform_device *pdev)
{
pm_runtime_get_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
dw_mci_pltfm_remove(pdev);
}
static const struct dev_pm_ops dw_mci_rockchip_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(dw_mci_runtime_suspend,
dw_mci_runtime_resume,
NULL)
};
static struct platform_driver dw_mci_rockchip_pltfm_driver = {
.probe = dw_mci_rockchip_probe,
.remove_new = dw_mci_rockchip_remove,
.driver = {
.name = "dwmmc_rockchip",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = dw_mci_rockchip_match,
.pm = &dw_mci_rockchip_dev_pm_ops,
},
};
module_platform_driver(dw_mci_rockchip_pltfm_driver);
MODULE_AUTHOR("Addy Ke <[email protected]>");
MODULE_DESCRIPTION("Rockchip Specific DW-MSHC Driver Extension");
MODULE_ALIAS("platform:dwmmc_rockchip");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/dw_mmc-rockchip.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/host/pxa.c - PXA MMCI driver
*
* Copyright (C) 2003 Russell King, All Rights Reserved.
*
* This hardware is really sick:
* - No way to clear interrupts.
* - Have to turn off the clock whenever we touch the device.
* - Doesn't tell you how many data blocks were transferred.
* Yuck!
*
* 1 and 3 byte data transfers not supported
* max block length up to 1023
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mmc/host.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/gfp.h>
#include <linux/of.h>
#include <linux/soc/pxa/cpu.h>
#include <linux/sizes.h>
#include <linux/platform_data/mmc-pxamci.h>
#include "pxamci.h"
#define DRIVER_NAME "pxa2xx-mci"
#define NR_SG 1
#define CLKRT_OFF (~0)
#define mmc_has_26MHz() (cpu_is_pxa300() || cpu_is_pxa310() \
|| cpu_is_pxa935())
struct pxamci_host {
struct mmc_host *mmc;
spinlock_t lock;
struct resource *res;
void __iomem *base;
struct clk *clk;
unsigned long clkrate;
unsigned int clkrt;
unsigned int cmdat;
unsigned int imask;
unsigned int power_mode;
unsigned long detect_delay_ms;
bool use_ro_gpio;
struct gpio_desc *power;
struct pxamci_platform_data *pdata;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
struct dma_chan *dma_chan_rx;
struct dma_chan *dma_chan_tx;
dma_cookie_t dma_cookie;
unsigned int dma_len;
unsigned int dma_dir;
};
static int pxamci_init_ocr(struct pxamci_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret;
ret = mmc_regulator_get_supply(mmc);
if (ret < 0)
return ret;
if (IS_ERR(mmc->supply.vmmc)) {
/* fall-back to platform data */
mmc->ocr_avail = host->pdata ?
host->pdata->ocr_mask :
MMC_VDD_32_33 | MMC_VDD_33_34;
}
return 0;
}
static inline int pxamci_set_power(struct pxamci_host *host,
unsigned char power_mode,
unsigned int vdd)
{
struct mmc_host *mmc = host->mmc;
struct regulator *supply = mmc->supply.vmmc;
if (!IS_ERR(supply))
return mmc_regulator_set_ocr(mmc, supply, vdd);
if (host->power) {
bool on = !!((1 << vdd) & host->pdata->ocr_mask);
gpiod_set_value(host->power, on);
}
if (host->pdata && host->pdata->setpower)
return host->pdata->setpower(mmc_dev(host->mmc), vdd);
return 0;
}
static void pxamci_stop_clock(struct pxamci_host *host)
{
if (readl(host->base + MMC_STAT) & STAT_CLK_EN) {
unsigned long timeout = 10000;
unsigned int v;
writel(STOP_CLOCK, host->base + MMC_STRPCL);
do {
v = readl(host->base + MMC_STAT);
if (!(v & STAT_CLK_EN))
break;
udelay(1);
} while (timeout--);
if (v & STAT_CLK_EN)
dev_err(mmc_dev(host->mmc), "unable to stop clock\n");
}
}
static void pxamci_enable_irq(struct pxamci_host *host, unsigned int mask)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->imask &= ~mask;
writel(host->imask, host->base + MMC_I_MASK);
spin_unlock_irqrestore(&host->lock, flags);
}
static void pxamci_disable_irq(struct pxamci_host *host, unsigned int mask)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->imask |= mask;
writel(host->imask, host->base + MMC_I_MASK);
spin_unlock_irqrestore(&host->lock, flags);
}
static void pxamci_dma_irq(void *param);
static void pxamci_setup_data(struct pxamci_host *host, struct mmc_data *data)
{
struct dma_async_tx_descriptor *tx;
enum dma_transfer_direction direction;
struct dma_slave_config config;
struct dma_chan *chan;
unsigned int nob = data->blocks;
unsigned long long clks;
unsigned int timeout;
int ret;
host->data = data;
writel(nob, host->base + MMC_NOB);
writel(data->blksz, host->base + MMC_BLKLEN);
clks = (unsigned long long)data->timeout_ns * host->clkrate;
do_div(clks, 1000000000UL);
timeout = (unsigned int)clks + (data->timeout_clks << host->clkrt);
writel((timeout + 255) / 256, host->base + MMC_RDTO);
memset(&config, 0, sizeof(config));
config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
config.src_addr = host->res->start + MMC_RXFIFO;
config.dst_addr = host->res->start + MMC_TXFIFO;
config.src_maxburst = 32;
config.dst_maxburst = 32;
if (data->flags & MMC_DATA_READ) {
host->dma_dir = DMA_FROM_DEVICE;
direction = DMA_DEV_TO_MEM;
chan = host->dma_chan_rx;
} else {
host->dma_dir = DMA_TO_DEVICE;
direction = DMA_MEM_TO_DEV;
chan = host->dma_chan_tx;
}
config.direction = direction;
ret = dmaengine_slave_config(chan, &config);
if (ret < 0) {
dev_err(mmc_dev(host->mmc), "dma slave config failed\n");
return;
}
host->dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
host->dma_dir);
tx = dmaengine_prep_slave_sg(chan, data->sg, host->dma_len, direction,
DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
return;
}
if (!(data->flags & MMC_DATA_READ)) {
tx->callback = pxamci_dma_irq;
tx->callback_param = host;
}
host->dma_cookie = dmaengine_submit(tx);
/*
* workaround for erratum #91:
* only start DMA now if we are doing a read,
* otherwise we wait until CMD/RESP has finished
* before starting DMA.
*/
if (!cpu_is_pxa27x() || data->flags & MMC_DATA_READ)
dma_async_issue_pending(chan);
}
static void pxamci_start_cmd(struct pxamci_host *host, struct mmc_command *cmd, unsigned int cmdat)
{
WARN_ON(host->cmd != NULL);
host->cmd = cmd;
if (cmd->flags & MMC_RSP_BUSY)
cmdat |= CMDAT_BUSY;
#define RSP_TYPE(x) ((x) & ~(MMC_RSP_BUSY|MMC_RSP_OPCODE))
switch (RSP_TYPE(mmc_resp_type(cmd))) {
case RSP_TYPE(MMC_RSP_R1): /* r1, r1b, r6, r7 */
cmdat |= CMDAT_RESP_SHORT;
break;
case RSP_TYPE(MMC_RSP_R3):
cmdat |= CMDAT_RESP_R3;
break;
case RSP_TYPE(MMC_RSP_R2):
cmdat |= CMDAT_RESP_R2;
break;
default:
break;
}
writel(cmd->opcode, host->base + MMC_CMD);
writel(cmd->arg >> 16, host->base + MMC_ARGH);
writel(cmd->arg & 0xffff, host->base + MMC_ARGL);
writel(cmdat, host->base + MMC_CMDAT);
writel(host->clkrt, host->base + MMC_CLKRT);
writel(START_CLOCK, host->base + MMC_STRPCL);
pxamci_enable_irq(host, END_CMD_RES);
}
static void pxamci_finish_request(struct pxamci_host *host, struct mmc_request *mrq)
{
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
mmc_request_done(host->mmc, mrq);
}
static int pxamci_cmd_done(struct pxamci_host *host, unsigned int stat)
{
struct mmc_command *cmd = host->cmd;
int i;
u32 v;
if (!cmd)
return 0;
host->cmd = NULL;
/*
* Did I mention this is Sick. We always need to
* discard the upper 8 bits of the first 16-bit word.
*/
v = readl(host->base + MMC_RES) & 0xffff;
for (i = 0; i < 4; i++) {
u32 w1 = readl(host->base + MMC_RES) & 0xffff;
u32 w2 = readl(host->base + MMC_RES) & 0xffff;
cmd->resp[i] = v << 24 | w1 << 8 | w2 >> 8;
v = w2;
}
if (stat & STAT_TIME_OUT_RESPONSE) {
cmd->error = -ETIMEDOUT;
} else if (stat & STAT_RES_CRC_ERR && cmd->flags & MMC_RSP_CRC) {
/*
* workaround for erratum #42:
* Intel PXA27x Family Processor Specification Update Rev 001
* A bogus CRC error can appear if the msb of a 136 bit
* response is a one.
*/
if (cpu_is_pxa27x() &&
(cmd->flags & MMC_RSP_136 && cmd->resp[0] & 0x80000000))
pr_debug("ignoring CRC from command %d - *risky*\n", cmd->opcode);
else
cmd->error = -EILSEQ;
}
pxamci_disable_irq(host, END_CMD_RES);
if (host->data && !cmd->error) {
pxamci_enable_irq(host, DATA_TRAN_DONE);
/*
* workaround for erratum #91, if doing write
* enable DMA late
*/
if (cpu_is_pxa27x() && host->data->flags & MMC_DATA_WRITE)
dma_async_issue_pending(host->dma_chan_tx);
} else {
pxamci_finish_request(host, host->mrq);
}
return 1;
}
static int pxamci_data_done(struct pxamci_host *host, unsigned int stat)
{
struct mmc_data *data = host->data;
struct dma_chan *chan;
if (!data)
return 0;
if (data->flags & MMC_DATA_READ)
chan = host->dma_chan_rx;
else
chan = host->dma_chan_tx;
dma_unmap_sg(chan->device->dev,
data->sg, data->sg_len, host->dma_dir);
if (stat & STAT_READ_TIME_OUT)
data->error = -ETIMEDOUT;
else if (stat & (STAT_CRC_READ_ERROR|STAT_CRC_WRITE_ERROR))
data->error = -EILSEQ;
/*
* There appears to be a hardware design bug here. There seems to
* be no way to find out how much data was transferred to the card.
* This means that if there was an error on any block, we mark all
* data blocks as being in error.
*/
if (!data->error)
data->bytes_xfered = data->blocks * data->blksz;
else
data->bytes_xfered = 0;
pxamci_disable_irq(host, DATA_TRAN_DONE);
host->data = NULL;
if (host->mrq->stop) {
pxamci_stop_clock(host);
pxamci_start_cmd(host, host->mrq->stop, host->cmdat);
} else {
pxamci_finish_request(host, host->mrq);
}
return 1;
}
static irqreturn_t pxamci_irq(int irq, void *devid)
{
struct pxamci_host *host = devid;
unsigned int ireg;
int handled = 0;
ireg = readl(host->base + MMC_I_REG) & ~readl(host->base + MMC_I_MASK);
if (ireg) {
unsigned stat = readl(host->base + MMC_STAT);
pr_debug("PXAMCI: irq %08x stat %08x\n", ireg, stat);
if (ireg & END_CMD_RES)
handled |= pxamci_cmd_done(host, stat);
if (ireg & DATA_TRAN_DONE)
handled |= pxamci_data_done(host, stat);
if (ireg & SDIO_INT) {
mmc_signal_sdio_irq(host->mmc);
handled = 1;
}
}
return IRQ_RETVAL(handled);
}
static void pxamci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct pxamci_host *host = mmc_priv(mmc);
unsigned int cmdat;
WARN_ON(host->mrq != NULL);
host->mrq = mrq;
pxamci_stop_clock(host);
cmdat = host->cmdat;
host->cmdat &= ~CMDAT_INIT;
if (mrq->data) {
pxamci_setup_data(host, mrq->data);
cmdat &= ~CMDAT_BUSY;
cmdat |= CMDAT_DATAEN | CMDAT_DMAEN;
if (mrq->data->flags & MMC_DATA_WRITE)
cmdat |= CMDAT_WRITE;
}
pxamci_start_cmd(host, mrq->cmd, cmdat);
}
static int pxamci_get_ro(struct mmc_host *mmc)
{
struct pxamci_host *host = mmc_priv(mmc);
if (host->use_ro_gpio)
return mmc_gpio_get_ro(mmc);
if (host->pdata && host->pdata->get_ro)
return !!host->pdata->get_ro(mmc_dev(mmc));
/*
* Board doesn't support read only detection; let the mmc core
* decide what to do.
*/
return -ENOSYS;
}
static void pxamci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct pxamci_host *host = mmc_priv(mmc);
if (ios->clock) {
unsigned long rate = host->clkrate;
unsigned int clk = rate / ios->clock;
if (host->clkrt == CLKRT_OFF)
clk_prepare_enable(host->clk);
if (ios->clock == 26000000) {
/* to support 26MHz */
host->clkrt = 7;
} else {
/* to handle (19.5MHz, 26MHz) */
if (!clk)
clk = 1;
/*
* clk might result in a lower divisor than we
* desire. check for that condition and adjust
* as appropriate.
*/
if (rate / clk > ios->clock)
clk <<= 1;
host->clkrt = fls(clk) - 1;
}
/*
* we write clkrt on the next command
*/
} else {
pxamci_stop_clock(host);
if (host->clkrt != CLKRT_OFF) {
host->clkrt = CLKRT_OFF;
clk_disable_unprepare(host->clk);
}
}
if (host->power_mode != ios->power_mode) {
int ret;
host->power_mode = ios->power_mode;
ret = pxamci_set_power(host, ios->power_mode, ios->vdd);
if (ret) {
dev_err(mmc_dev(mmc), "unable to set power\n");
/*
* The .set_ios() function in the mmc_host_ops
* struct return void, and failing to set the
* power should be rare so we print an error and
* return here.
*/
return;
}
if (ios->power_mode == MMC_POWER_ON)
host->cmdat |= CMDAT_INIT;
}
if (ios->bus_width == MMC_BUS_WIDTH_4)
host->cmdat |= CMDAT_SD_4DAT;
else
host->cmdat &= ~CMDAT_SD_4DAT;
dev_dbg(mmc_dev(mmc), "PXAMCI: clkrt = %x cmdat = %x\n",
host->clkrt, host->cmdat);
}
static void pxamci_enable_sdio_irq(struct mmc_host *host, int enable)
{
struct pxamci_host *pxa_host = mmc_priv(host);
if (enable)
pxamci_enable_irq(pxa_host, SDIO_INT);
else
pxamci_disable_irq(pxa_host, SDIO_INT);
}
static const struct mmc_host_ops pxamci_ops = {
.request = pxamci_request,
.get_cd = mmc_gpio_get_cd,
.get_ro = pxamci_get_ro,
.set_ios = pxamci_set_ios,
.enable_sdio_irq = pxamci_enable_sdio_irq,
};
static void pxamci_dma_irq(void *param)
{
struct pxamci_host *host = param;
struct dma_tx_state state;
enum dma_status status;
struct dma_chan *chan;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (!host->data)
goto out_unlock;
if (host->data->flags & MMC_DATA_READ)
chan = host->dma_chan_rx;
else
chan = host->dma_chan_tx;
status = dmaengine_tx_status(chan, host->dma_cookie, &state);
if (likely(status == DMA_COMPLETE)) {
writel(BUF_PART_FULL, host->base + MMC_PRTBUF);
} else {
pr_err("%s: DMA error on %s channel\n", mmc_hostname(host->mmc),
host->data->flags & MMC_DATA_READ ? "rx" : "tx");
host->data->error = -EIO;
pxamci_data_done(host, 0);
}
out_unlock:
spin_unlock_irqrestore(&host->lock, flags);
}
static irqreturn_t pxamci_detect_irq(int irq, void *devid)
{
struct pxamci_host *host = mmc_priv(devid);
mmc_detect_change(devid, msecs_to_jiffies(host->detect_delay_ms));
return IRQ_HANDLED;
}
#ifdef CONFIG_OF
static const struct of_device_id pxa_mmc_dt_ids[] = {
{ .compatible = "marvell,pxa-mmc" },
{ }
};
MODULE_DEVICE_TABLE(of, pxa_mmc_dt_ids);
static int pxamci_of_init(struct platform_device *pdev,
struct mmc_host *mmc)
{
struct device_node *np = pdev->dev.of_node;
struct pxamci_host *host = mmc_priv(mmc);
u32 tmp;
int ret;
if (!np)
return 0;
/* pxa-mmc specific */
if (of_property_read_u32(np, "pxa-mmc,detect-delay-ms", &tmp) == 0)
host->detect_delay_ms = tmp;
ret = mmc_of_parse(mmc);
if (ret < 0)
return ret;
return 0;
}
#else
static int pxamci_of_init(struct platform_device *pdev,
struct mmc_host *mmc)
{
return 0;
}
#endif
static int pxamci_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct pxamci_host *host = NULL;
struct device *dev = &pdev->dev;
struct resource *r;
int ret, irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
mmc = mmc_alloc_host(sizeof(struct pxamci_host), dev);
if (!mmc) {
ret = -ENOMEM;
goto out;
}
mmc->ops = &pxamci_ops;
/*
* We can do SG-DMA, but we don't because we never know how much
* data we successfully wrote to the card.
*/
mmc->max_segs = NR_SG;
/*
* Our hardware DMA can handle a maximum of one page per SG entry.
*/
mmc->max_seg_size = PAGE_SIZE;
/*
* Block length register is only 10 bits before PXA27x.
*/
mmc->max_blk_size = cpu_is_pxa25x() ? 1023 : 2048;
/*
* Block count register is 16 bits.
*/
mmc->max_blk_count = 65535;
ret = pxamci_of_init(pdev, mmc);
if (ret)
goto out;
host = mmc_priv(mmc);
host->mmc = mmc;
host->pdata = pdev->dev.platform_data;
host->clkrt = CLKRT_OFF;
host->clk = devm_clk_get(dev, NULL);
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
host->clk = NULL;
goto out;
}
host->clkrate = clk_get_rate(host->clk);
/*
* Calculate minimum clock rate, rounding up.
*/
mmc->f_min = (host->clkrate + 63) / 64;
mmc->f_max = (mmc_has_26MHz()) ? 26000000 : host->clkrate;
ret = pxamci_init_ocr(host);
if (ret < 0)
goto out;
mmc->caps = 0;
host->cmdat = 0;
if (!cpu_is_pxa25x()) {
mmc->caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ;
host->cmdat |= CMDAT_SDIO_INT_EN;
if (mmc_has_26MHz())
mmc->caps |= MMC_CAP_MMC_HIGHSPEED |
MMC_CAP_SD_HIGHSPEED;
}
spin_lock_init(&host->lock);
host->imask = MMC_I_MASK_ALL;
host->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto out;
}
host->res = r;
/*
* Ensure that the host controller is shut down, and setup
* with our defaults.
*/
pxamci_stop_clock(host);
writel(0, host->base + MMC_SPI);
writel(64, host->base + MMC_RESTO);
writel(host->imask, host->base + MMC_I_MASK);
ret = devm_request_irq(dev, irq, pxamci_irq, 0,
DRIVER_NAME, host);
if (ret)
goto out;
platform_set_drvdata(pdev, mmc);
host->dma_chan_rx = dma_request_chan(dev, "rx");
if (IS_ERR(host->dma_chan_rx)) {
dev_err(dev, "unable to request rx dma channel\n");
ret = PTR_ERR(host->dma_chan_rx);
host->dma_chan_rx = NULL;
goto out;
}
host->dma_chan_tx = dma_request_chan(dev, "tx");
if (IS_ERR(host->dma_chan_tx)) {
dev_err(dev, "unable to request tx dma channel\n");
ret = PTR_ERR(host->dma_chan_tx);
host->dma_chan_tx = NULL;
goto out;
}
if (host->pdata) {
host->detect_delay_ms = host->pdata->detect_delay_ms;
host->power = devm_gpiod_get_optional(dev, "power", GPIOD_OUT_LOW);
if (IS_ERR(host->power)) {
ret = PTR_ERR(host->power);
dev_err(dev, "Failed requesting gpio_power\n");
goto out;
}
/* FIXME: should we pass detection delay to debounce? */
ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
if (ret && ret != -ENOENT) {
dev_err(dev, "Failed requesting gpio_cd\n");
goto out;
}
if (!host->pdata->gpio_card_ro_invert)
mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
if (ret && ret != -ENOENT) {
dev_err(dev, "Failed requesting gpio_ro\n");
goto out;
}
if (!ret)
host->use_ro_gpio = true;
if (host->pdata->init)
host->pdata->init(dev, pxamci_detect_irq, mmc);
if (host->power && host->pdata->setpower)
dev_warn(dev, "gpio_power and setpower() both defined\n");
if (host->use_ro_gpio && host->pdata->get_ro)
dev_warn(dev, "gpio_ro and get_ro() both defined\n");
}
ret = mmc_add_host(mmc);
if (ret) {
if (host->pdata && host->pdata->exit)
host->pdata->exit(dev, mmc);
goto out;
}
return 0;
out:
if (host) {
if (host->dma_chan_rx)
dma_release_channel(host->dma_chan_rx);
if (host->dma_chan_tx)
dma_release_channel(host->dma_chan_tx);
}
if (mmc)
mmc_free_host(mmc);
return ret;
}
static void pxamci_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
if (mmc) {
struct pxamci_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
if (host->pdata && host->pdata->exit)
host->pdata->exit(&pdev->dev, mmc);
pxamci_stop_clock(host);
writel(TXFIFO_WR_REQ|RXFIFO_RD_REQ|CLK_IS_OFF|STOP_CMD|
END_CMD_RES|PRG_DONE|DATA_TRAN_DONE,
host->base + MMC_I_MASK);
dmaengine_terminate_all(host->dma_chan_rx);
dmaengine_terminate_all(host->dma_chan_tx);
dma_release_channel(host->dma_chan_rx);
dma_release_channel(host->dma_chan_tx);
mmc_free_host(mmc);
}
}
static struct platform_driver pxamci_driver = {
.probe = pxamci_probe,
.remove_new = pxamci_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = of_match_ptr(pxa_mmc_dt_ids),
},
};
module_platform_driver(pxamci_driver);
MODULE_DESCRIPTION("PXA Multimedia Card Interface Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pxa2xx-mci");
| linux-master | drivers/mmc/host/pxamci.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the MMC / SD / SDIO IP found in:
*
* TC6393XB, TC6391XB, TC6387XB, T7L66XB, ASIC3, SH-Mobile SoCs
*
* Copyright (C) 2015-19 Renesas Electronics Corporation
* Copyright (C) 2016-19 Sang Engineering, Wolfram Sang
* Copyright (C) 2017 Horms Solutions, Simon Horman
* Copyright (C) 2011 Guennadi Liakhovetski
* Copyright (C) 2007 Ian Molton
* Copyright (C) 2004 Ian Molton
*
* This driver draws mainly on scattered spec sheets, Reverse engineering
* of the toshiba e800 SD driver and some parts of the 2.4 ASIC3 driver (4 bit
* support). (Further 4 bit support from a later datasheet).
*
* TODO:
* Investigate using a workqueue for PIO transfers
* Eliminate FIXMEs
* Better Power management
* Handle MMC errors better
* double buffer support
*
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/mfd/tmio.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/mmc/sdio.h>
#include <linux/scatterlist.h>
#include <linux/sizes.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include "tmio_mmc.h"
static inline void tmio_mmc_start_dma(struct tmio_mmc_host *host,
struct mmc_data *data)
{
if (host->dma_ops)
host->dma_ops->start(host, data);
}
static inline void tmio_mmc_end_dma(struct tmio_mmc_host *host)
{
if (host->dma_ops && host->dma_ops->end)
host->dma_ops->end(host);
}
static inline void tmio_mmc_enable_dma(struct tmio_mmc_host *host, bool enable)
{
if (host->dma_ops)
host->dma_ops->enable(host, enable);
}
static inline void tmio_mmc_request_dma(struct tmio_mmc_host *host,
struct tmio_mmc_data *pdata)
{
if (host->dma_ops) {
host->dma_ops->request(host, pdata);
} else {
host->chan_tx = NULL;
host->chan_rx = NULL;
}
}
static inline void tmio_mmc_release_dma(struct tmio_mmc_host *host)
{
if (host->dma_ops)
host->dma_ops->release(host);
}
static inline void tmio_mmc_abort_dma(struct tmio_mmc_host *host)
{
if (host->dma_ops)
host->dma_ops->abort(host);
}
static inline void tmio_mmc_dataend_dma(struct tmio_mmc_host *host)
{
if (host->dma_ops)
host->dma_ops->dataend(host);
}
void tmio_mmc_enable_mmc_irqs(struct tmio_mmc_host *host, u32 i)
{
host->sdcard_irq_mask &= ~(i & TMIO_MASK_IRQ);
sd_ctrl_write32_as_16_and_16(host, CTL_IRQ_MASK, host->sdcard_irq_mask);
}
EXPORT_SYMBOL_GPL(tmio_mmc_enable_mmc_irqs);
void tmio_mmc_disable_mmc_irqs(struct tmio_mmc_host *host, u32 i)
{
host->sdcard_irq_mask |= (i & TMIO_MASK_IRQ);
sd_ctrl_write32_as_16_and_16(host, CTL_IRQ_MASK, host->sdcard_irq_mask);
}
EXPORT_SYMBOL_GPL(tmio_mmc_disable_mmc_irqs);
static void tmio_mmc_ack_mmc_irqs(struct tmio_mmc_host *host, u32 i)
{
sd_ctrl_write32_as_16_and_16(host, CTL_STATUS, ~i);
}
static void tmio_mmc_init_sg(struct tmio_mmc_host *host, struct mmc_data *data)
{
host->sg_len = data->sg_len;
host->sg_ptr = data->sg;
host->sg_orig = data->sg;
host->sg_off = 0;
}
static int tmio_mmc_next_sg(struct tmio_mmc_host *host)
{
host->sg_ptr = sg_next(host->sg_ptr);
host->sg_off = 0;
return --host->sg_len;
}
#define CMDREQ_TIMEOUT 5000
static void tmio_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct tmio_mmc_host *host = mmc_priv(mmc);
if (enable && !host->sdio_irq_enabled) {
u16 sdio_status;
/* Keep device active while SDIO irq is enabled */
pm_runtime_get_sync(mmc_dev(mmc));
host->sdio_irq_enabled = true;
host->sdio_irq_mask = TMIO_SDIO_MASK_ALL & ~TMIO_SDIO_STAT_IOIRQ;
/* Clear obsolete interrupts before enabling */
sdio_status = sd_ctrl_read16(host, CTL_SDIO_STATUS) & ~TMIO_SDIO_MASK_ALL;
if (host->pdata->flags & TMIO_MMC_SDIO_STATUS_SETBITS)
sdio_status |= TMIO_SDIO_SETBITS_MASK;
sd_ctrl_write16(host, CTL_SDIO_STATUS, sdio_status);
sd_ctrl_write16(host, CTL_SDIO_IRQ_MASK, host->sdio_irq_mask);
} else if (!enable && host->sdio_irq_enabled) {
host->sdio_irq_mask = TMIO_SDIO_MASK_ALL;
sd_ctrl_write16(host, CTL_SDIO_IRQ_MASK, host->sdio_irq_mask);
host->sdio_irq_enabled = false;
pm_runtime_mark_last_busy(mmc_dev(mmc));
pm_runtime_put_autosuspend(mmc_dev(mmc));
}
}
static void tmio_mmc_set_bus_width(struct tmio_mmc_host *host,
unsigned char bus_width)
{
u16 reg = sd_ctrl_read16(host, CTL_SD_MEM_CARD_OPT)
& ~(CARD_OPT_WIDTH | CARD_OPT_WIDTH8);
/* reg now applies to MMC_BUS_WIDTH_4 */
if (bus_width == MMC_BUS_WIDTH_1)
reg |= CARD_OPT_WIDTH;
else if (bus_width == MMC_BUS_WIDTH_8)
reg |= CARD_OPT_WIDTH8;
sd_ctrl_write16(host, CTL_SD_MEM_CARD_OPT, reg);
}
static void tmio_mmc_reset(struct tmio_mmc_host *host, bool preserve)
{
u16 card_opt, clk_ctrl, sdif_mode;
if (preserve) {
card_opt = sd_ctrl_read16(host, CTL_SD_MEM_CARD_OPT);
clk_ctrl = sd_ctrl_read16(host, CTL_SD_CARD_CLK_CTL);
if (host->pdata->flags & TMIO_MMC_MIN_RCAR2)
sdif_mode = sd_ctrl_read16(host, CTL_SDIF_MODE);
}
/* FIXME - should we set stop clock reg here */
sd_ctrl_write16(host, CTL_RESET_SD, 0x0000);
usleep_range(10000, 11000);
sd_ctrl_write16(host, CTL_RESET_SD, 0x0001);
usleep_range(10000, 11000);
tmio_mmc_abort_dma(host);
if (host->reset)
host->reset(host, preserve);
sd_ctrl_write32_as_16_and_16(host, CTL_IRQ_MASK, host->sdcard_irq_mask_all);
host->sdcard_irq_mask = host->sdcard_irq_mask_all;
if (host->native_hotplug)
tmio_mmc_enable_mmc_irqs(host,
TMIO_STAT_CARD_REMOVE | TMIO_STAT_CARD_INSERT);
tmio_mmc_set_bus_width(host, host->mmc->ios.bus_width);
if (host->pdata->flags & TMIO_MMC_SDIO_IRQ) {
sd_ctrl_write16(host, CTL_SDIO_IRQ_MASK, host->sdio_irq_mask);
sd_ctrl_write16(host, CTL_TRANSACTION_CTL, 0x0001);
}
if (preserve) {
sd_ctrl_write16(host, CTL_SD_MEM_CARD_OPT, card_opt);
sd_ctrl_write16(host, CTL_SD_CARD_CLK_CTL, clk_ctrl);
if (host->pdata->flags & TMIO_MMC_MIN_RCAR2)
sd_ctrl_write16(host, CTL_SDIF_MODE, sdif_mode);
}
if (host->mmc->card)
mmc_retune_needed(host->mmc);
}
static void tmio_mmc_reset_work(struct work_struct *work)
{
struct tmio_mmc_host *host = container_of(work, struct tmio_mmc_host,
delayed_reset_work.work);
struct mmc_request *mrq;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
mrq = host->mrq;
/*
* is request already finished? Since we use a non-blocking
* cancel_delayed_work(), it can happen, that a .set_ios() call preempts
* us, so, have to check for IS_ERR(host->mrq)
*/
if (IS_ERR_OR_NULL(mrq) ||
time_is_after_jiffies(host->last_req_ts +
msecs_to_jiffies(CMDREQ_TIMEOUT))) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
dev_warn(&host->pdev->dev,
"timeout waiting for hardware interrupt (CMD%u)\n",
mrq->cmd->opcode);
if (host->data)
host->data->error = -ETIMEDOUT;
else if (host->cmd)
host->cmd->error = -ETIMEDOUT;
else
mrq->cmd->error = -ETIMEDOUT;
host->cmd = NULL;
host->data = NULL;
spin_unlock_irqrestore(&host->lock, flags);
tmio_mmc_reset(host, true);
/* Ready for new calls */
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
/* These are the bitmasks the tmio chip requires to implement the MMC response
* types. Note that R1 and R6 are the same in this scheme. */
#define APP_CMD 0x0040
#define RESP_NONE 0x0300
#define RESP_R1 0x0400
#define RESP_R1B 0x0500
#define RESP_R2 0x0600
#define RESP_R3 0x0700
#define DATA_PRESENT 0x0800
#define TRANSFER_READ 0x1000
#define TRANSFER_MULTI 0x2000
#define SECURITY_CMD 0x4000
#define NO_CMD12_ISSUE 0x4000 /* TMIO_MMC_HAVE_CMD12_CTRL */
static int tmio_mmc_start_command(struct tmio_mmc_host *host,
struct mmc_command *cmd)
{
struct mmc_data *data = host->data;
int c = cmd->opcode;
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE: c |= RESP_NONE; break;
case MMC_RSP_R1:
case MMC_RSP_R1_NO_CRC:
c |= RESP_R1; break;
case MMC_RSP_R1B: c |= RESP_R1B; break;
case MMC_RSP_R2: c |= RESP_R2; break;
case MMC_RSP_R3: c |= RESP_R3; break;
default:
pr_debug("Unknown response type %d\n", mmc_resp_type(cmd));
return -EINVAL;
}
host->cmd = cmd;
/* FIXME - this seems to be ok commented out but the spec suggest this bit
* should be set when issuing app commands.
* if(cmd->flags & MMC_FLAG_ACMD)
* c |= APP_CMD;
*/
if (data) {
c |= DATA_PRESENT;
if (data->blocks > 1) {
sd_ctrl_write16(host, CTL_STOP_INTERNAL_ACTION, TMIO_STOP_SEC);
c |= TRANSFER_MULTI;
/*
* Disable auto CMD12 at IO_RW_EXTENDED and
* SET_BLOCK_COUNT when doing multiple block transfer
*/
if ((host->pdata->flags & TMIO_MMC_HAVE_CMD12_CTRL) &&
(cmd->opcode == SD_IO_RW_EXTENDED || host->mrq->sbc))
c |= NO_CMD12_ISSUE;
}
if (data->flags & MMC_DATA_READ)
c |= TRANSFER_READ;
}
tmio_mmc_enable_mmc_irqs(host, TMIO_MASK_CMD);
/* Fire off the command */
sd_ctrl_write32_as_16_and_16(host, CTL_ARG_REG, cmd->arg);
sd_ctrl_write16(host, CTL_SD_CMD, c);
return 0;
}
static void tmio_mmc_transfer_data(struct tmio_mmc_host *host,
unsigned short *buf,
unsigned int count)
{
int is_read = host->data->flags & MMC_DATA_READ;
u8 *buf8;
/*
* Transfer the data
*/
if (host->pdata->flags & TMIO_MMC_32BIT_DATA_PORT) {
u32 data = 0;
u32 *buf32 = (u32 *)buf;
if (is_read)
sd_ctrl_read32_rep(host, CTL_SD_DATA_PORT, buf32,
count >> 2);
else
sd_ctrl_write32_rep(host, CTL_SD_DATA_PORT, buf32,
count >> 2);
/* if count was multiple of 4 */
if (!(count & 0x3))
return;
buf32 += count >> 2;
count %= 4;
if (is_read) {
sd_ctrl_read32_rep(host, CTL_SD_DATA_PORT, &data, 1);
memcpy(buf32, &data, count);
} else {
memcpy(&data, buf32, count);
sd_ctrl_write32_rep(host, CTL_SD_DATA_PORT, &data, 1);
}
return;
}
if (is_read)
sd_ctrl_read16_rep(host, CTL_SD_DATA_PORT, buf, count >> 1);
else
sd_ctrl_write16_rep(host, CTL_SD_DATA_PORT, buf, count >> 1);
/* if count was even number */
if (!(count & 0x1))
return;
/* if count was odd number */
buf8 = (u8 *)(buf + (count >> 1));
/*
* FIXME
*
* driver and this function are assuming that
* it is used as little endian
*/
if (is_read)
*buf8 = sd_ctrl_read16(host, CTL_SD_DATA_PORT) & 0xff;
else
sd_ctrl_write16(host, CTL_SD_DATA_PORT, *buf8);
}
/*
* This chip always returns (at least?) as much data as you ask for.
* I'm unsure what happens if you ask for less than a block. This should be
* looked into to ensure that a funny length read doesn't hose the controller.
*/
static void tmio_mmc_pio_irq(struct tmio_mmc_host *host)
{
struct mmc_data *data = host->data;
void *sg_virt;
unsigned short *buf;
unsigned int count;
if (host->dma_on) {
pr_err("PIO IRQ in DMA mode!\n");
return;
} else if (!data) {
pr_debug("Spurious PIO IRQ\n");
return;
}
sg_virt = kmap_local_page(sg_page(host->sg_ptr));
buf = (unsigned short *)(sg_virt + host->sg_ptr->offset + host->sg_off);
count = host->sg_ptr->length - host->sg_off;
if (count > data->blksz)
count = data->blksz;
pr_debug("count: %08x offset: %08x flags %08x\n",
count, host->sg_off, data->flags);
/* Transfer the data */
tmio_mmc_transfer_data(host, buf, count);
host->sg_off += count;
kunmap_local(sg_virt);
if (host->sg_off == host->sg_ptr->length)
tmio_mmc_next_sg(host);
}
static void tmio_mmc_check_bounce_buffer(struct tmio_mmc_host *host)
{
if (host->sg_ptr == &host->bounce_sg) {
void *sg_virt = kmap_local_page(sg_page(host->sg_orig));
memcpy(sg_virt + host->sg_orig->offset, host->bounce_buf,
host->bounce_sg.length);
kunmap_local(sg_virt);
}
}
/* needs to be called with host->lock held */
void tmio_mmc_do_data_irq(struct tmio_mmc_host *host)
{
struct mmc_data *data = host->data;
struct mmc_command *stop;
host->data = NULL;
if (!data) {
dev_warn(&host->pdev->dev, "Spurious data end IRQ\n");
return;
}
stop = data->stop;
/* FIXME - return correct transfer count on errors */
if (!data->error)
data->bytes_xfered = data->blocks * data->blksz;
else
data->bytes_xfered = 0;
pr_debug("Completed data request\n");
/*
* FIXME: other drivers allow an optional stop command of any given type
* which we dont do, as the chip can auto generate them.
* Perhaps we can be smarter about when to use auto CMD12 and
* only issue the auto request when we know this is the desired
* stop command, allowing fallback to the stop command the
* upper layers expect. For now, we do what works.
*/
if (data->flags & MMC_DATA_READ) {
if (host->dma_on)
tmio_mmc_check_bounce_buffer(host);
dev_dbg(&host->pdev->dev, "Complete Rx request %p\n",
host->mrq);
} else {
dev_dbg(&host->pdev->dev, "Complete Tx request %p\n",
host->mrq);
}
if (stop && !host->mrq->sbc) {
if (stop->opcode != MMC_STOP_TRANSMISSION || stop->arg)
dev_err(&host->pdev->dev, "unsupported stop: CMD%u,0x%x. We did CMD12,0\n",
stop->opcode, stop->arg);
/* fill in response from auto CMD12 */
stop->resp[0] = sd_ctrl_read16_and_16_as_32(host, CTL_RESPONSE);
sd_ctrl_write16(host, CTL_STOP_INTERNAL_ACTION, 0);
}
schedule_work(&host->done);
}
EXPORT_SYMBOL_GPL(tmio_mmc_do_data_irq);
static void tmio_mmc_data_irq(struct tmio_mmc_host *host, unsigned int stat)
{
struct mmc_data *data;
spin_lock(&host->lock);
data = host->data;
if (!data)
goto out;
if (stat & TMIO_STAT_DATATIMEOUT)
data->error = -ETIMEDOUT;
else if (stat & TMIO_STAT_CRCFAIL || stat & TMIO_STAT_STOPBIT_ERR ||
stat & TMIO_STAT_TXUNDERRUN)
data->error = -EILSEQ;
if (host->dma_on && (data->flags & MMC_DATA_WRITE)) {
u32 status = sd_ctrl_read16_and_16_as_32(host, CTL_STATUS);
bool done = false;
/*
* Has all data been written out yet? Testing on SuperH showed,
* that in most cases the first interrupt comes already with the
* BUSY status bit clear, but on some operations, like mount or
* in the beginning of a write / sync / umount, there is one
* DATAEND interrupt with the BUSY bit set, in this cases
* waiting for one more interrupt fixes the problem.
*/
if (host->pdata->flags & TMIO_MMC_HAS_IDLE_WAIT) {
if (status & TMIO_STAT_SCLKDIVEN)
done = true;
} else {
if (!(status & TMIO_STAT_CMD_BUSY))
done = true;
}
if (done) {
tmio_mmc_disable_mmc_irqs(host, TMIO_STAT_DATAEND);
tmio_mmc_dataend_dma(host);
}
} else if (host->dma_on && (data->flags & MMC_DATA_READ)) {
tmio_mmc_disable_mmc_irqs(host, TMIO_STAT_DATAEND);
tmio_mmc_dataend_dma(host);
} else {
tmio_mmc_do_data_irq(host);
tmio_mmc_disable_mmc_irqs(host, TMIO_MASK_READOP | TMIO_MASK_WRITEOP);
}
out:
spin_unlock(&host->lock);
}
static void tmio_mmc_cmd_irq(struct tmio_mmc_host *host, unsigned int stat)
{
struct mmc_command *cmd = host->cmd;
int i, addr;
spin_lock(&host->lock);
if (!host->cmd) {
pr_debug("Spurious CMD irq\n");
goto out;
}
/* This controller is sicker than the PXA one. Not only do we need to
* drop the top 8 bits of the first response word, we also need to
* modify the order of the response for short response command types.
*/
for (i = 3, addr = CTL_RESPONSE ; i >= 0 ; i--, addr += 4)
cmd->resp[i] = sd_ctrl_read16_and_16_as_32(host, addr);
if (cmd->flags & MMC_RSP_136) {
cmd->resp[0] = (cmd->resp[0] << 8) | (cmd->resp[1] >> 24);
cmd->resp[1] = (cmd->resp[1] << 8) | (cmd->resp[2] >> 24);
cmd->resp[2] = (cmd->resp[2] << 8) | (cmd->resp[3] >> 24);
cmd->resp[3] <<= 8;
} else if (cmd->flags & MMC_RSP_R3) {
cmd->resp[0] = cmd->resp[3];
}
if (stat & TMIO_STAT_CMDTIMEOUT)
cmd->error = -ETIMEDOUT;
else if ((stat & TMIO_STAT_CRCFAIL && cmd->flags & MMC_RSP_CRC) ||
stat & TMIO_STAT_STOPBIT_ERR ||
stat & TMIO_STAT_CMD_IDX_ERR)
cmd->error = -EILSEQ;
/* If there is data to handle we enable data IRQs here, and
* we will ultimatley finish the request in the data_end handler.
* If theres no data or we encountered an error, finish now.
*/
if (host->data && (!cmd->error || cmd->error == -EILSEQ)) {
if (host->data->flags & MMC_DATA_READ) {
if (!host->dma_on) {
tmio_mmc_enable_mmc_irqs(host, TMIO_MASK_READOP);
} else {
tmio_mmc_disable_mmc_irqs(host,
TMIO_MASK_READOP);
tasklet_schedule(&host->dma_issue);
}
} else {
if (!host->dma_on) {
tmio_mmc_enable_mmc_irqs(host, TMIO_MASK_WRITEOP);
} else {
tmio_mmc_disable_mmc_irqs(host,
TMIO_MASK_WRITEOP);
tasklet_schedule(&host->dma_issue);
}
}
} else {
schedule_work(&host->done);
}
out:
spin_unlock(&host->lock);
}
static bool __tmio_mmc_card_detect_irq(struct tmio_mmc_host *host,
int ireg, int status)
{
struct mmc_host *mmc = host->mmc;
/* Card insert / remove attempts */
if (ireg & (TMIO_STAT_CARD_INSERT | TMIO_STAT_CARD_REMOVE)) {
tmio_mmc_ack_mmc_irqs(host, TMIO_STAT_CARD_INSERT |
TMIO_STAT_CARD_REMOVE);
if ((((ireg & TMIO_STAT_CARD_REMOVE) && mmc->card) ||
((ireg & TMIO_STAT_CARD_INSERT) && !mmc->card)) &&
!work_pending(&mmc->detect.work))
mmc_detect_change(host->mmc, msecs_to_jiffies(100));
return true;
}
return false;
}
static bool __tmio_mmc_sdcard_irq(struct tmio_mmc_host *host, int ireg,
int status)
{
/* Command completion */
if (ireg & (TMIO_STAT_CMDRESPEND | TMIO_STAT_CMDTIMEOUT)) {
tmio_mmc_ack_mmc_irqs(host, TMIO_STAT_CMDRESPEND |
TMIO_STAT_CMDTIMEOUT);
tmio_mmc_cmd_irq(host, status);
return true;
}
/* Data transfer */
if (ireg & (TMIO_STAT_RXRDY | TMIO_STAT_TXRQ)) {
tmio_mmc_ack_mmc_irqs(host, TMIO_STAT_RXRDY | TMIO_STAT_TXRQ);
tmio_mmc_pio_irq(host);
return true;
}
/* Data transfer completion */
if (ireg & TMIO_STAT_DATAEND) {
tmio_mmc_ack_mmc_irqs(host, TMIO_STAT_DATAEND);
tmio_mmc_data_irq(host, status);
return true;
}
if (host->dma_ops && host->dma_ops->dma_irq && host->dma_ops->dma_irq(host))
return true;
return false;
}
static bool __tmio_mmc_sdio_irq(struct tmio_mmc_host *host)
{
struct mmc_host *mmc = host->mmc;
struct tmio_mmc_data *pdata = host->pdata;
unsigned int ireg, status;
unsigned int sdio_status;
if (!(pdata->flags & TMIO_MMC_SDIO_IRQ))
return false;
status = sd_ctrl_read16(host, CTL_SDIO_STATUS);
ireg = status & TMIO_SDIO_MASK_ALL & ~host->sdio_irq_mask;
sdio_status = status & ~TMIO_SDIO_MASK_ALL;
if (pdata->flags & TMIO_MMC_SDIO_STATUS_SETBITS)
sdio_status |= TMIO_SDIO_SETBITS_MASK;
sd_ctrl_write16(host, CTL_SDIO_STATUS, sdio_status);
if (mmc->caps & MMC_CAP_SDIO_IRQ && ireg & TMIO_SDIO_STAT_IOIRQ)
mmc_signal_sdio_irq(mmc);
return ireg;
}
irqreturn_t tmio_mmc_irq(int irq, void *devid)
{
struct tmio_mmc_host *host = devid;
unsigned int ireg, status;
status = sd_ctrl_read16_and_16_as_32(host, CTL_STATUS);
ireg = status & TMIO_MASK_IRQ & ~host->sdcard_irq_mask;
/* Clear the status except the interrupt status */
sd_ctrl_write32_as_16_and_16(host, CTL_STATUS, TMIO_MASK_IRQ);
if (__tmio_mmc_card_detect_irq(host, ireg, status))
return IRQ_HANDLED;
if (__tmio_mmc_sdcard_irq(host, ireg, status))
return IRQ_HANDLED;
if (__tmio_mmc_sdio_irq(host))
return IRQ_HANDLED;
return IRQ_NONE;
}
EXPORT_SYMBOL_GPL(tmio_mmc_irq);
static int tmio_mmc_start_data(struct tmio_mmc_host *host,
struct mmc_data *data)
{
struct tmio_mmc_data *pdata = host->pdata;
pr_debug("setup data transfer: blocksize %08x nr_blocks %d\n",
data->blksz, data->blocks);
/* Some hardware cannot perform 2 byte requests in 4/8 bit mode */
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4 ||
host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) {
int blksz_2bytes = pdata->flags & TMIO_MMC_BLKSZ_2BYTES;
if (data->blksz < 2 || (data->blksz < 4 && !blksz_2bytes)) {
pr_err("%s: %d byte block unsupported in 4/8 bit mode\n",
mmc_hostname(host->mmc), data->blksz);
return -EINVAL;
}
}
tmio_mmc_init_sg(host, data);
host->data = data;
host->dma_on = false;
/* Set transfer length / blocksize */
sd_ctrl_write16(host, CTL_SD_XFER_LEN, data->blksz);
if (host->mmc->max_blk_count >= SZ_64K)
sd_ctrl_write32(host, CTL_XFER_BLK_COUNT, data->blocks);
else
sd_ctrl_write16(host, CTL_XFER_BLK_COUNT, data->blocks);
tmio_mmc_start_dma(host, data);
return 0;
}
static void tmio_process_mrq(struct tmio_mmc_host *host,
struct mmc_request *mrq)
{
struct mmc_command *cmd;
int ret;
if (mrq->sbc && host->cmd != mrq->sbc) {
cmd = mrq->sbc;
} else {
cmd = mrq->cmd;
if (mrq->data) {
ret = tmio_mmc_start_data(host, mrq->data);
if (ret)
goto fail;
}
}
ret = tmio_mmc_start_command(host, cmd);
if (ret)
goto fail;
schedule_delayed_work(&host->delayed_reset_work,
msecs_to_jiffies(CMDREQ_TIMEOUT));
return;
fail:
host->mrq = NULL;
mrq->cmd->error = ret;
mmc_request_done(host->mmc, mrq);
}
/* Process requests from the MMC layer */
static void tmio_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct tmio_mmc_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->mrq) {
pr_debug("request not null\n");
if (IS_ERR(host->mrq)) {
spin_unlock_irqrestore(&host->lock, flags);
mrq->cmd->error = -EAGAIN;
mmc_request_done(mmc, mrq);
return;
}
}
host->last_req_ts = jiffies;
wmb();
host->mrq = mrq;
spin_unlock_irqrestore(&host->lock, flags);
tmio_process_mrq(host, mrq);
}
static void tmio_mmc_finish_request(struct tmio_mmc_host *host)
{
struct mmc_request *mrq;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
tmio_mmc_end_dma(host);
mrq = host->mrq;
if (IS_ERR_OR_NULL(mrq)) {
spin_unlock_irqrestore(&host->lock, flags);
return;
}
/* If not SET_BLOCK_COUNT, clear old data */
if (host->cmd != mrq->sbc) {
host->cmd = NULL;
host->data = NULL;
host->mrq = NULL;
}
cancel_delayed_work(&host->delayed_reset_work);
spin_unlock_irqrestore(&host->lock, flags);
if (mrq->cmd->error || (mrq->data && mrq->data->error)) {
tmio_mmc_ack_mmc_irqs(host, TMIO_MASK_IRQ); /* Clear all */
tmio_mmc_abort_dma(host);
}
/* Error means retune, but executed command was still successful */
if (host->check_retune && host->check_retune(host, mrq))
mmc_retune_needed(host->mmc);
/* If SET_BLOCK_COUNT, continue with main command */
if (host->mrq && !mrq->cmd->error) {
tmio_process_mrq(host, mrq);
return;
}
if (host->fixup_request)
host->fixup_request(host, mrq);
mmc_request_done(host->mmc, mrq);
}
static void tmio_mmc_done_work(struct work_struct *work)
{
struct tmio_mmc_host *host = container_of(work, struct tmio_mmc_host,
done);
tmio_mmc_finish_request(host);
}
static void tmio_mmc_power_on(struct tmio_mmc_host *host, unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
int ret = 0;
/* .set_ios() is returning void, so, no chance to report an error */
if (host->set_pwr)
host->set_pwr(host->pdev, 1);
if (!IS_ERR(mmc->supply.vmmc)) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
/*
* Attention: empiric value. With a b43 WiFi SDIO card this
* delay proved necessary for reliable card-insertion probing.
* 100us were not enough. Is this the same 140us delay, as in
* tmio_mmc_set_ios()?
*/
usleep_range(200, 300);
}
/*
* It seems, VccQ should be switched on after Vcc, this is also what the
* omap_hsmmc.c driver does.
*/
if (!IS_ERR(mmc->supply.vqmmc) && !ret) {
ret = regulator_enable(mmc->supply.vqmmc);
usleep_range(200, 300);
}
if (ret < 0)
dev_dbg(&host->pdev->dev, "Regulators failed to power up: %d\n",
ret);
}
static void tmio_mmc_power_off(struct tmio_mmc_host *host)
{
struct mmc_host *mmc = host->mmc;
if (!IS_ERR(mmc->supply.vqmmc))
regulator_disable(mmc->supply.vqmmc);
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (host->set_pwr)
host->set_pwr(host->pdev, 0);
}
static unsigned int tmio_mmc_get_timeout_cycles(struct tmio_mmc_host *host)
{
u16 val = sd_ctrl_read16(host, CTL_SD_MEM_CARD_OPT);
val = (val & CARD_OPT_TOP_MASK) >> CARD_OPT_TOP_SHIFT;
return 1 << (13 + val);
}
static void tmio_mmc_max_busy_timeout(struct tmio_mmc_host *host)
{
unsigned int clk_rate = host->mmc->actual_clock ?: host->mmc->f_max;
host->mmc->max_busy_timeout = host->get_timeout_cycles(host) /
(clk_rate / MSEC_PER_SEC);
}
/* Set MMC clock / power.
* Note: This controller uses a simple divider scheme therefore it cannot
* run a MMC card at full speed (20MHz). The max clock is 24MHz on SD, but as
* MMC wont run that fast, it has to be clocked at 12MHz which is the next
* slowest setting.
*/
static void tmio_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct tmio_mmc_host *host = mmc_priv(mmc);
struct device *dev = &host->pdev->dev;
unsigned long flags;
mutex_lock(&host->ios_lock);
spin_lock_irqsave(&host->lock, flags);
if (host->mrq) {
if (IS_ERR(host->mrq)) {
dev_dbg(dev,
"%s.%d: concurrent .set_ios(), clk %u, mode %u\n",
current->comm, task_pid_nr(current),
ios->clock, ios->power_mode);
host->mrq = ERR_PTR(-EINTR);
} else {
dev_dbg(dev,
"%s.%d: CMD%u active since %lu, now %lu!\n",
current->comm, task_pid_nr(current),
host->mrq->cmd->opcode, host->last_req_ts,
jiffies);
}
spin_unlock_irqrestore(&host->lock, flags);
mutex_unlock(&host->ios_lock);
return;
}
host->mrq = ERR_PTR(-EBUSY);
spin_unlock_irqrestore(&host->lock, flags);
switch (ios->power_mode) {
case MMC_POWER_OFF:
tmio_mmc_power_off(host);
/* For R-Car Gen2+, we need to reset SDHI specific SCC */
if (host->pdata->flags & TMIO_MMC_MIN_RCAR2)
tmio_mmc_reset(host, false);
host->set_clock(host, 0);
break;
case MMC_POWER_UP:
tmio_mmc_power_on(host, ios->vdd);
host->set_clock(host, ios->clock);
tmio_mmc_set_bus_width(host, ios->bus_width);
break;
case MMC_POWER_ON:
host->set_clock(host, ios->clock);
tmio_mmc_set_bus_width(host, ios->bus_width);
break;
}
if (host->pdata->flags & TMIO_MMC_USE_BUSY_TIMEOUT)
tmio_mmc_max_busy_timeout(host);
/* Let things settle. delay taken from winCE driver */
usleep_range(140, 200);
if (PTR_ERR(host->mrq) == -EINTR)
dev_dbg(&host->pdev->dev,
"%s.%d: IOS interrupted: clk %u, mode %u",
current->comm, task_pid_nr(current),
ios->clock, ios->power_mode);
host->mrq = NULL;
host->clk_cache = ios->clock;
mutex_unlock(&host->ios_lock);
}
static int tmio_mmc_get_ro(struct mmc_host *mmc)
{
struct tmio_mmc_host *host = mmc_priv(mmc);
return !(sd_ctrl_read16_and_16_as_32(host, CTL_STATUS) &
TMIO_STAT_WRPROTECT);
}
static int tmio_mmc_get_cd(struct mmc_host *mmc)
{
struct tmio_mmc_host *host = mmc_priv(mmc);
return !!(sd_ctrl_read16_and_16_as_32(host, CTL_STATUS) &
TMIO_STAT_SIGSTATE);
}
static int tmio_multi_io_quirk(struct mmc_card *card,
unsigned int direction, int blk_size)
{
struct tmio_mmc_host *host = mmc_priv(card->host);
if (host->multi_io_quirk)
return host->multi_io_quirk(card, direction, blk_size);
return blk_size;
}
static struct mmc_host_ops tmio_mmc_ops = {
.request = tmio_mmc_request,
.set_ios = tmio_mmc_set_ios,
.get_ro = tmio_mmc_get_ro,
.get_cd = tmio_mmc_get_cd,
.enable_sdio_irq = tmio_mmc_enable_sdio_irq,
.multi_io_quirk = tmio_multi_io_quirk,
};
static int tmio_mmc_init_ocr(struct tmio_mmc_host *host)
{
struct tmio_mmc_data *pdata = host->pdata;
struct mmc_host *mmc = host->mmc;
int err;
err = mmc_regulator_get_supply(mmc);
if (err)
return err;
/* use ocr_mask if no regulator */
if (!mmc->ocr_avail)
mmc->ocr_avail = pdata->ocr_mask;
/*
* try again.
* There is possibility that regulator has not been probed
*/
if (!mmc->ocr_avail)
return -EPROBE_DEFER;
return 0;
}
static void tmio_mmc_of_parse(struct platform_device *pdev,
struct mmc_host *mmc)
{
const struct device_node *np = pdev->dev.of_node;
if (!np)
return;
/*
* DEPRECATED:
* For new platforms, please use "disable-wp" instead of
* "toshiba,mmc-wrprotect-disable"
*/
if (of_property_read_bool(np, "toshiba,mmc-wrprotect-disable"))
mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
}
struct tmio_mmc_host *tmio_mmc_host_alloc(struct platform_device *pdev,
struct tmio_mmc_data *pdata)
{
struct tmio_mmc_host *host;
struct mmc_host *mmc;
void __iomem *ctl;
int ret;
ctl = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ctl))
return ERR_CAST(ctl);
mmc = mmc_alloc_host(sizeof(struct tmio_mmc_host), &pdev->dev);
if (!mmc)
return ERR_PTR(-ENOMEM);
host = mmc_priv(mmc);
host->ctl = ctl;
host->mmc = mmc;
host->pdev = pdev;
host->pdata = pdata;
host->ops = tmio_mmc_ops;
mmc->ops = &host->ops;
ret = mmc_of_parse(host->mmc);
if (ret) {
host = ERR_PTR(ret);
goto free;
}
tmio_mmc_of_parse(pdev, mmc);
platform_set_drvdata(pdev, host);
return host;
free:
mmc_free_host(mmc);
return host;
}
EXPORT_SYMBOL_GPL(tmio_mmc_host_alloc);
void tmio_mmc_host_free(struct tmio_mmc_host *host)
{
mmc_free_host(host->mmc);
}
EXPORT_SYMBOL_GPL(tmio_mmc_host_free);
int tmio_mmc_host_probe(struct tmio_mmc_host *_host)
{
struct platform_device *pdev = _host->pdev;
struct tmio_mmc_data *pdata = _host->pdata;
struct mmc_host *mmc = _host->mmc;
int ret;
/*
* Check the sanity of mmc->f_min to prevent host->set_clock() from
* looping forever...
*/
if (mmc->f_min == 0)
return -EINVAL;
if (!(pdata->flags & TMIO_MMC_HAS_IDLE_WAIT))
_host->write16_hook = NULL;
if (pdata->flags & TMIO_MMC_USE_BUSY_TIMEOUT && !_host->get_timeout_cycles)
_host->get_timeout_cycles = tmio_mmc_get_timeout_cycles;
_host->set_pwr = pdata->set_pwr;
ret = tmio_mmc_init_ocr(_host);
if (ret < 0)
return ret;
/*
* Look for a card detect GPIO, if it fails with anything
* else than a probe deferral, just live without it.
*/
ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
if (ret == -EPROBE_DEFER)
return ret;
mmc->caps |= MMC_CAP_4_BIT_DATA | pdata->capabilities;
mmc->caps2 |= pdata->capabilities2;
mmc->max_segs = pdata->max_segs ? : 32;
mmc->max_blk_size = TMIO_MAX_BLK_SIZE;
mmc->max_blk_count = pdata->max_blk_count ? :
(PAGE_SIZE / mmc->max_blk_size) * mmc->max_segs;
mmc->max_req_size = min_t(size_t,
mmc->max_blk_size * mmc->max_blk_count,
dma_max_mapping_size(&pdev->dev));
mmc->max_seg_size = mmc->max_req_size;
if (mmc_can_gpio_ro(mmc))
_host->ops.get_ro = mmc_gpio_get_ro;
if (mmc_can_gpio_cd(mmc))
_host->ops.get_cd = mmc_gpio_get_cd;
/* must be set before tmio_mmc_reset() */
_host->native_hotplug = !(mmc_can_gpio_cd(mmc) ||
mmc->caps & MMC_CAP_NEEDS_POLL ||
!mmc_card_is_removable(mmc));
/*
* While using internal tmio hardware logic for card detection, we need
* to ensure it stays powered for it to work.
*/
if (_host->native_hotplug)
pm_runtime_get_noresume(&pdev->dev);
_host->sdio_irq_enabled = false;
if (pdata->flags & TMIO_MMC_SDIO_IRQ)
_host->sdio_irq_mask = TMIO_SDIO_MASK_ALL;
if (!_host->sdcard_irq_mask_all)
_host->sdcard_irq_mask_all = TMIO_MASK_ALL;
_host->set_clock(_host, 0);
tmio_mmc_reset(_host, false);
spin_lock_init(&_host->lock);
mutex_init(&_host->ios_lock);
/* Init delayed work for request timeouts */
INIT_DELAYED_WORK(&_host->delayed_reset_work, tmio_mmc_reset_work);
INIT_WORK(&_host->done, tmio_mmc_done_work);
/* See if we also get DMA */
tmio_mmc_request_dma(_host, pdata);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = mmc_add_host(mmc);
if (ret)
goto remove_host;
dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
pm_runtime_put(&pdev->dev);
return 0;
remove_host:
pm_runtime_put_noidle(&pdev->dev);
tmio_mmc_host_remove(_host);
return ret;
}
EXPORT_SYMBOL_GPL(tmio_mmc_host_probe);
void tmio_mmc_host_remove(struct tmio_mmc_host *host)
{
struct platform_device *pdev = host->pdev;
struct mmc_host *mmc = host->mmc;
pm_runtime_get_sync(&pdev->dev);
if (host->pdata->flags & TMIO_MMC_SDIO_IRQ)
sd_ctrl_write16(host, CTL_TRANSACTION_CTL, 0x0000);
dev_pm_qos_hide_latency_limit(&pdev->dev);
mmc_remove_host(mmc);
cancel_work_sync(&host->done);
cancel_delayed_work_sync(&host->delayed_reset_work);
tmio_mmc_release_dma(host);
tmio_mmc_disable_mmc_irqs(host, host->sdcard_irq_mask_all);
if (host->native_hotplug)
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
}
EXPORT_SYMBOL_GPL(tmio_mmc_host_remove);
#ifdef CONFIG_PM
static int tmio_mmc_clk_enable(struct tmio_mmc_host *host)
{
if (!host->clk_enable)
return -ENOTSUPP;
return host->clk_enable(host);
}
static void tmio_mmc_clk_disable(struct tmio_mmc_host *host)
{
if (host->clk_disable)
host->clk_disable(host);
}
int tmio_mmc_host_runtime_suspend(struct device *dev)
{
struct tmio_mmc_host *host = dev_get_drvdata(dev);
tmio_mmc_disable_mmc_irqs(host, host->sdcard_irq_mask_all);
if (host->clk_cache)
host->set_clock(host, 0);
tmio_mmc_clk_disable(host);
return 0;
}
EXPORT_SYMBOL_GPL(tmio_mmc_host_runtime_suspend);
int tmio_mmc_host_runtime_resume(struct device *dev)
{
struct tmio_mmc_host *host = dev_get_drvdata(dev);
tmio_mmc_clk_enable(host);
tmio_mmc_reset(host, false);
if (host->clk_cache)
host->set_clock(host, host->clk_cache);
tmio_mmc_enable_dma(host, true);
return 0;
}
EXPORT_SYMBOL_GPL(tmio_mmc_host_runtime_resume);
#endif
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/tmio_mmc_core.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* sdhci-brcmstb.c Support for SDHCI on Broadcom BRCMSTB SoC's
*
* Copyright (C) 2015 Broadcom Corporation
*/
#include <linux/io.h>
#include <linux/mmc/host.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include "sdhci-cqhci.h"
#include "sdhci-pltfm.h"
#include "cqhci.h"
#define SDHCI_VENDOR 0x78
#define SDHCI_VENDOR_ENHANCED_STRB 0x1
#define SDHCI_VENDOR_GATE_SDCLK_EN 0x2
#define BRCMSTB_MATCH_FLAGS_NO_64BIT BIT(0)
#define BRCMSTB_MATCH_FLAGS_BROKEN_TIMEOUT BIT(1)
#define BRCMSTB_MATCH_FLAGS_HAS_CLOCK_GATE BIT(2)
#define BRCMSTB_PRIV_FLAGS_HAS_CQE BIT(0)
#define BRCMSTB_PRIV_FLAGS_GATE_CLOCK BIT(1)
#define SDHCI_ARASAN_CQE_BASE_ADDR 0x200
struct sdhci_brcmstb_priv {
void __iomem *cfg_regs;
unsigned int flags;
struct clk *base_clk;
u32 base_freq_hz;
};
struct brcmstb_match_priv {
void (*hs400es)(struct mmc_host *mmc, struct mmc_ios *ios);
struct sdhci_ops *ops;
const unsigned int flags;
};
static inline void enable_clock_gating(struct sdhci_host *host)
{
u32 reg;
reg = sdhci_readl(host, SDHCI_VENDOR);
reg |= SDHCI_VENDOR_GATE_SDCLK_EN;
sdhci_writel(host, reg, SDHCI_VENDOR);
}
static void brcmstb_reset(struct sdhci_host *host, u8 mask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_brcmstb_priv *priv = sdhci_pltfm_priv(pltfm_host);
sdhci_and_cqhci_reset(host, mask);
/* Reset will clear this, so re-enable it */
if (priv->flags & BRCMSTB_PRIV_FLAGS_GATE_CLOCK)
enable_clock_gating(host);
}
static void sdhci_brcmstb_hs400es(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 reg;
dev_dbg(mmc_dev(mmc), "%s(): Setting HS400-Enhanced-Strobe mode\n",
__func__);
reg = readl(host->ioaddr + SDHCI_VENDOR);
if (ios->enhanced_strobe)
reg |= SDHCI_VENDOR_ENHANCED_STRB;
else
reg &= ~SDHCI_VENDOR_ENHANCED_STRB;
writel(reg, host->ioaddr + SDHCI_VENDOR);
}
static void sdhci_brcmstb_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
host->mmc->actual_clock = 0;
clk = sdhci_calc_clk(host, clock, &host->mmc->actual_clock);
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
sdhci_enable_clk(host, clk);
}
static void sdhci_brcmstb_set_uhs_signaling(struct sdhci_host *host,
unsigned int timing)
{
u16 ctrl_2;
dev_dbg(mmc_dev(host->mmc), "%s: Setting UHS signaling for %d timing\n",
__func__, timing);
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((timing == MMC_TIMING_MMC_HS200) ||
(timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if (timing == MMC_TIMING_SD_HS ||
timing == MMC_TIMING_MMC_HS ||
timing == MMC_TIMING_UHS_SDR25)
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if ((timing == MMC_TIMING_UHS_DDR50) ||
(timing == MMC_TIMING_MMC_DDR52))
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
else if (timing == MMC_TIMING_MMC_HS400)
ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
static void sdhci_brcmstb_dumpregs(struct mmc_host *mmc)
{
sdhci_dumpregs(mmc_priv(mmc));
}
static void sdhci_brcmstb_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 reg;
reg = sdhci_readl(host, SDHCI_PRESENT_STATE);
while (reg & SDHCI_DATA_AVAILABLE) {
sdhci_readl(host, SDHCI_BUFFER);
reg = sdhci_readl(host, SDHCI_PRESENT_STATE);
}
sdhci_cqe_enable(mmc);
}
static const struct cqhci_host_ops sdhci_brcmstb_cqhci_ops = {
.enable = sdhci_brcmstb_cqe_enable,
.disable = sdhci_cqe_disable,
.dumpregs = sdhci_brcmstb_dumpregs,
};
static struct sdhci_ops sdhci_brcmstb_ops = {
.set_clock = sdhci_set_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = sdhci_reset,
.set_uhs_signaling = sdhci_set_uhs_signaling,
};
static struct sdhci_ops sdhci_brcmstb_ops_7216 = {
.set_clock = sdhci_brcmstb_set_clock,
.set_bus_width = sdhci_set_bus_width,
.reset = brcmstb_reset,
.set_uhs_signaling = sdhci_brcmstb_set_uhs_signaling,
};
static struct brcmstb_match_priv match_priv_7425 = {
.flags = BRCMSTB_MATCH_FLAGS_NO_64BIT |
BRCMSTB_MATCH_FLAGS_BROKEN_TIMEOUT,
.ops = &sdhci_brcmstb_ops,
};
static struct brcmstb_match_priv match_priv_7445 = {
.flags = BRCMSTB_MATCH_FLAGS_BROKEN_TIMEOUT,
.ops = &sdhci_brcmstb_ops,
};
static const struct brcmstb_match_priv match_priv_7216 = {
.flags = BRCMSTB_MATCH_FLAGS_HAS_CLOCK_GATE,
.hs400es = sdhci_brcmstb_hs400es,
.ops = &sdhci_brcmstb_ops_7216,
};
static const struct of_device_id __maybe_unused sdhci_brcm_of_match[] = {
{ .compatible = "brcm,bcm7425-sdhci", .data = &match_priv_7425 },
{ .compatible = "brcm,bcm7445-sdhci", .data = &match_priv_7445 },
{ .compatible = "brcm,bcm7216-sdhci", .data = &match_priv_7216 },
{},
};
static u32 sdhci_brcmstb_cqhci_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static int sdhci_brcmstb_add_host(struct sdhci_host *host,
struct sdhci_brcmstb_priv *priv)
{
struct cqhci_host *cq_host;
bool dma64;
int ret;
if ((priv->flags & BRCMSTB_PRIV_FLAGS_HAS_CQE) == 0)
return sdhci_add_host(host);
dev_dbg(mmc_dev(host->mmc), "CQE is enabled\n");
host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
ret = sdhci_setup_host(host);
if (ret)
return ret;
cq_host = devm_kzalloc(mmc_dev(host->mmc),
sizeof(*cq_host), GFP_KERNEL);
if (!cq_host) {
ret = -ENOMEM;
goto cleanup;
}
cq_host->mmio = host->ioaddr + SDHCI_ARASAN_CQE_BASE_ADDR;
cq_host->ops = &sdhci_brcmstb_cqhci_ops;
dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
if (dma64) {
dev_dbg(mmc_dev(host->mmc), "Using 64 bit DMA\n");
cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
}
ret = cqhci_init(cq_host, host->mmc, dma64);
if (ret)
goto cleanup;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
static int sdhci_brcmstb_probe(struct platform_device *pdev)
{
const struct brcmstb_match_priv *match_priv;
struct sdhci_pltfm_data brcmstb_pdata;
struct sdhci_pltfm_host *pltfm_host;
const struct of_device_id *match;
struct sdhci_brcmstb_priv *priv;
u32 actual_clock_mhz;
struct sdhci_host *host;
struct clk *clk;
struct clk *base_clk = NULL;
int res;
match = of_match_node(sdhci_brcm_of_match, pdev->dev.of_node);
match_priv = match->data;
dev_dbg(&pdev->dev, "Probe found match for %s\n", match->compatible);
clk = devm_clk_get_optional_enabled(&pdev->dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(&pdev->dev, PTR_ERR(clk),
"Failed to get and enable clock from Device Tree\n");
memset(&brcmstb_pdata, 0, sizeof(brcmstb_pdata));
brcmstb_pdata.ops = match_priv->ops;
host = sdhci_pltfm_init(pdev, &brcmstb_pdata,
sizeof(struct sdhci_brcmstb_priv));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
priv = sdhci_pltfm_priv(pltfm_host);
if (device_property_read_bool(&pdev->dev, "supports-cqe")) {
priv->flags |= BRCMSTB_PRIV_FLAGS_HAS_CQE;
match_priv->ops->irq = sdhci_brcmstb_cqhci_irq;
}
/* Map in the non-standard CFG registers */
priv->cfg_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
if (IS_ERR(priv->cfg_regs)) {
res = PTR_ERR(priv->cfg_regs);
goto err;
}
sdhci_get_of_property(pdev);
res = mmc_of_parse(host->mmc);
if (res)
goto err;
/*
* Automatic clock gating does not work for SD cards that may
* voltage switch so only enable it for non-removable devices.
*/
if ((match_priv->flags & BRCMSTB_MATCH_FLAGS_HAS_CLOCK_GATE) &&
(host->mmc->caps & MMC_CAP_NONREMOVABLE))
priv->flags |= BRCMSTB_PRIV_FLAGS_GATE_CLOCK;
/*
* If the chip has enhanced strobe and it's enabled, add
* callback
*/
if (match_priv->hs400es &&
(host->mmc->caps2 & MMC_CAP2_HS400_ES))
host->mmc_host_ops.hs400_enhanced_strobe = match_priv->hs400es;
/*
* Supply the existing CAPS, but clear the UHS modes. This
* will allow these modes to be specified by device tree
* properties through mmc_of_parse().
*/
sdhci_read_caps(host);
if (match_priv->flags & BRCMSTB_MATCH_FLAGS_NO_64BIT)
host->caps &= ~SDHCI_CAN_64BIT;
host->caps1 &= ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
SDHCI_SUPPORT_DDR50);
if (match_priv->flags & BRCMSTB_MATCH_FLAGS_BROKEN_TIMEOUT)
host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
/* Change the base clock frequency if the DT property exists */
if (device_property_read_u32(&pdev->dev, "clock-frequency",
&priv->base_freq_hz) != 0)
goto add_host;
base_clk = devm_clk_get_optional(&pdev->dev, "sdio_freq");
if (IS_ERR(base_clk)) {
dev_warn(&pdev->dev, "Clock for \"sdio_freq\" not found\n");
goto add_host;
}
res = clk_prepare_enable(base_clk);
if (res)
goto err;
/* set improved clock rate */
clk_set_rate(base_clk, priv->base_freq_hz);
actual_clock_mhz = clk_get_rate(base_clk) / 1000000;
host->caps &= ~SDHCI_CLOCK_V3_BASE_MASK;
host->caps |= (actual_clock_mhz << SDHCI_CLOCK_BASE_SHIFT);
/* Disable presets because they are now incorrect */
host->quirks2 |= SDHCI_QUIRK2_PRESET_VALUE_BROKEN;
dev_dbg(&pdev->dev, "Base Clock Frequency changed to %dMHz\n",
actual_clock_mhz);
priv->base_clk = base_clk;
add_host:
res = sdhci_brcmstb_add_host(host, priv);
if (res)
goto err;
pltfm_host->clk = clk;
return res;
err:
sdhci_pltfm_free(pdev);
clk_disable_unprepare(base_clk);
return res;
}
static void sdhci_brcmstb_shutdown(struct platform_device *pdev)
{
sdhci_pltfm_suspend(&pdev->dev);
}
MODULE_DEVICE_TABLE(of, sdhci_brcm_of_match);
#ifdef CONFIG_PM_SLEEP
static int sdhci_brcmstb_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_brcmstb_priv *priv = sdhci_pltfm_priv(pltfm_host);
clk_disable_unprepare(priv->base_clk);
return sdhci_pltfm_suspend(dev);
}
static int sdhci_brcmstb_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_brcmstb_priv *priv = sdhci_pltfm_priv(pltfm_host);
int ret;
ret = sdhci_pltfm_resume(dev);
if (!ret && priv->base_freq_hz) {
ret = clk_prepare_enable(priv->base_clk);
/*
* Note: using clk_get_rate() below as clk_get_rate()
* honors CLK_GET_RATE_NOCACHE attribute, but clk_set_rate()
* may do implicit get_rate() calls that do not honor
* CLK_GET_RATE_NOCACHE.
*/
if (!ret &&
(clk_get_rate(priv->base_clk) != priv->base_freq_hz))
ret = clk_set_rate(priv->base_clk, priv->base_freq_hz);
}
return ret;
}
#endif
static const struct dev_pm_ops sdhci_brcmstb_pmops = {
SET_SYSTEM_SLEEP_PM_OPS(sdhci_brcmstb_suspend, sdhci_brcmstb_resume)
};
static struct platform_driver sdhci_brcmstb_driver = {
.driver = {
.name = "sdhci-brcmstb",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &sdhci_brcmstb_pmops,
.of_match_table = of_match_ptr(sdhci_brcm_of_match),
},
.probe = sdhci_brcmstb_probe,
.remove_new = sdhci_pltfm_remove,
.shutdown = sdhci_brcmstb_shutdown,
};
module_platform_driver(sdhci_brcmstb_driver);
MODULE_DESCRIPTION("SDHCI driver for Broadcom BRCMSTB SoCs");
MODULE_AUTHOR("Broadcom");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/mmc/host/sdhci-brcmstb.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Chassis LCD/LED driver for HP-PARISC workstations
*
* (c) Copyright 2000 Red Hat Software
* (c) Copyright 2000 Helge Deller <[email protected]>
* (c) Copyright 2001 Randolph Chung <[email protected]>
* (c) Copyright 2000-2023 Helge Deller <[email protected]>
*
* The control of the LEDs and LCDs on PARISC machines has to be done
* completely in software.
*
* The LEDs can be configured at runtime in /sys/class/leds/
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/ioport.h>
#include <linux/utsname.h>
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/uaccess.h>
#include <linux/leds.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/hardware.h>
#include <asm/param.h> /* HZ */
#include <asm/led.h>
#include <asm/pdc.h>
#define LED_HAS_LCD 1
#define LED_HAS_LED 2
static unsigned char led_type; /* bitmask of LED_HAS_XXX */
static unsigned char lastleds; /* LED state from most recent update */
static unsigned char lcd_new_text;
static unsigned char lcd_text[20];
static unsigned char lcd_text_default[20];
static unsigned char lcd_no_led_support; /* KittyHawk doesn't support LED on its LCD */
struct lcd_block {
unsigned char command; /* stores the command byte */
unsigned char on; /* value for turning LED on */
unsigned char off; /* value for turning LED off */
};
/* Structure returned by PDC_RETURN_CHASSIS_INFO */
/* NOTE: we use unsigned long:16 two times, since the following member
lcd_cmd_reg_addr needs to be 64bit aligned on 64bit PA2.0-machines */
struct pdc_chassis_lcd_info_ret_block {
unsigned long model:16; /* DISPLAY_MODEL_XXXX */
unsigned long lcd_width:16; /* width of the LCD in chars (DISPLAY_MODEL_LCD only) */
unsigned long lcd_cmd_reg_addr; /* ptr to LCD cmd-register & data ptr for LED */
unsigned long lcd_data_reg_addr; /* ptr to LCD data-register (LCD only) */
unsigned int min_cmd_delay; /* delay in uS after cmd-write (LCD only) */
unsigned char reset_cmd1; /* command #1 for writing LCD string (LCD only) */
unsigned char reset_cmd2; /* command #2 for writing LCD string (LCD only) */
unsigned char act_enable; /* 0 = no activity (LCD only) */
struct lcd_block heartbeat;
struct lcd_block disk_io;
struct lcd_block lan_rcv;
struct lcd_block lan_tx;
char _pad;
};
/* LCD_CMD and LCD_DATA for KittyHawk machines */
#define KITTYHAWK_LCD_CMD F_EXTEND(0xf0190000UL)
#define KITTYHAWK_LCD_DATA (KITTYHAWK_LCD_CMD + 1)
/* lcd_info is pre-initialized to the values needed to program KittyHawk LCD's
* HP seems to have used Sharp/Hitachi HD44780 LCDs most of the time. */
static struct pdc_chassis_lcd_info_ret_block
lcd_info __attribute__((aligned(8))) =
{
.model = DISPLAY_MODEL_NONE,
.lcd_width = 16,
.lcd_cmd_reg_addr = KITTYHAWK_LCD_CMD,
.lcd_data_reg_addr = KITTYHAWK_LCD_DATA,
.min_cmd_delay = 80,
.reset_cmd1 = 0x80,
.reset_cmd2 = 0xc0,
};
/* direct access to some of the lcd_info variables */
#define LCD_CMD_REG lcd_info.lcd_cmd_reg_addr
#define LCD_DATA_REG lcd_info.lcd_data_reg_addr
#define LED_DATA_REG lcd_info.lcd_cmd_reg_addr /* LASI & ASP only */
/* ptr to LCD/LED-specific function */
static void (*led_func_ptr) (unsigned char);
static void lcd_print_now(void)
{
int i;
char *str = lcd_text;
if (lcd_info.model != DISPLAY_MODEL_LCD)
return;
if (!lcd_new_text)
return;
lcd_new_text = 0;
/* Set LCD Cursor to 1st character */
gsc_writeb(lcd_info.reset_cmd1, LCD_CMD_REG);
udelay(lcd_info.min_cmd_delay);
/* Print the string */
for (i = 0; i < lcd_info.lcd_width; i++) {
gsc_writeb(*str ? *str++ : ' ', LCD_DATA_REG);
udelay(lcd_info.min_cmd_delay);
}
}
/**
* lcd_print()
*
* @str: string to show on the LCD. If NULL, print current string again.
*
* Displays the given string on the LCD-Display of newer machines.
*/
void lcd_print(const char *str)
{
/* copy display string to buffer for procfs */
if (str)
strscpy(lcd_text, str, sizeof(lcd_text));
lcd_new_text = 1;
/* print now if LCD without any LEDs */
if (led_type == LED_HAS_LCD)
lcd_print_now();
}
#define LED_DATA 0x01 /* data to shift (0:on 1:off) */
#define LED_STROBE 0x02 /* strobe to clock data */
/**
* led_ASP_driver() - LED driver for the ASP controller chip
*
* @leds: bitmap representing the LED status
*/
static void led_ASP_driver(unsigned char leds)
{
int i;
leds = ~leds;
for (i = 0; i < 8; i++) {
unsigned char value;
value = (leds & 0x80) >> 7;
gsc_writeb( value, LED_DATA_REG );
gsc_writeb( value | LED_STROBE, LED_DATA_REG );
leds <<= 1;
}
}
/**
* led_LASI_driver() - LED driver for the LASI controller chip
*
* @leds: bitmap representing the LED status
*/
static void led_LASI_driver(unsigned char leds)
{
leds = ~leds;
gsc_writeb( leds, LED_DATA_REG );
}
/**
* led_LCD_driver() - LED & LCD driver for LCD chips
*
* @leds: bitmap representing the LED status
*/
static void led_LCD_driver(unsigned char leds)
{
static const unsigned char mask[4] = {
LED_HEARTBEAT, LED_DISK_IO,
LED_LAN_RCV, LED_LAN_TX };
static struct lcd_block * const blockp[4] = {
&lcd_info.heartbeat,
&lcd_info.disk_io,
&lcd_info.lan_rcv,
&lcd_info.lan_tx
};
static unsigned char latest_leds;
int i;
for (i = 0; i < 4; ++i) {
if ((leds & mask[i]) == (latest_leds & mask[i]))
continue;
gsc_writeb( blockp[i]->command, LCD_CMD_REG );
udelay(lcd_info.min_cmd_delay);
gsc_writeb( leds & mask[i] ? blockp[i]->on :
blockp[i]->off, LCD_DATA_REG );
udelay(lcd_info.min_cmd_delay);
}
latest_leds = leds;
lcd_print_now();
}
/**
* lcd_system_halt()
*
* @nb: pointer to the notifier_block structure
* @event: the event (SYS_RESTART, SYS_HALT or SYS_POWER_OFF)
* @buf: pointer to a buffer (not used)
*
* Called by the reboot notifier chain at shutdown. Stops all
* LED/LCD activities.
*/
static int lcd_system_halt(struct notifier_block *nb, unsigned long event, void *buf)
{
const char *txt;
switch (event) {
case SYS_RESTART: txt = "SYSTEM RESTART";
break;
case SYS_HALT: txt = "SYSTEM HALT";
break;
case SYS_POWER_OFF: txt = "SYSTEM POWER OFF";
break;
default: return NOTIFY_DONE;
}
lcd_print(txt);
return NOTIFY_OK;
}
static struct notifier_block lcd_system_halt_notifier = {
.notifier_call = lcd_system_halt,
};
static void set_led(struct led_classdev *led_cdev, enum led_brightness brightness);
struct hppa_led {
struct led_classdev led_cdev;
unsigned char led_bit;
};
#define to_hppa_led(d) container_of(d, struct hppa_led, led_cdev)
typedef void (*set_handler)(struct led_classdev *, enum led_brightness);
struct led_type {
const char *name;
set_handler handler;
const char *default_trigger;
};
#define NUM_LEDS_PER_BOARD 8
struct hppa_drvdata {
struct hppa_led leds[NUM_LEDS_PER_BOARD];
};
static void set_led(struct led_classdev *led_cdev, enum led_brightness brightness)
{
struct hppa_led *p = to_hppa_led(led_cdev);
unsigned char led_bit = p->led_bit;
if (brightness == LED_OFF)
lastleds &= ~led_bit;
else
lastleds |= led_bit;
if (led_func_ptr)
led_func_ptr(lastleds);
}
static int hppa_led_generic_probe(struct platform_device *pdev,
struct led_type *types)
{
struct hppa_drvdata *p;
int i, err;
p = devm_kzalloc(&pdev->dev, sizeof(*p), GFP_KERNEL);
if (!p)
return -ENOMEM;
for (i = 0; i < NUM_LEDS_PER_BOARD; i++) {
struct led_classdev *lp = &p->leds[i].led_cdev;
p->leds[i].led_bit = BIT(i);
lp->name = types[i].name;
lp->brightness = LED_FULL;
lp->brightness_set = types[i].handler;
lp->default_trigger = types[i].default_trigger;
err = led_classdev_register(&pdev->dev, lp);
if (err) {
dev_err(&pdev->dev, "Could not register %s LED\n",
lp->name);
for (i--; i >= 0; i--)
led_classdev_unregister(&p->leds[i].led_cdev);
return err;
}
}
platform_set_drvdata(pdev, p);
return 0;
}
static int platform_led_remove(struct platform_device *pdev)
{
struct hppa_drvdata *p = platform_get_drvdata(pdev);
int i;
for (i = 0; i < NUM_LEDS_PER_BOARD; i++)
led_classdev_unregister(&p->leds[i].led_cdev);
return 0;
}
static struct led_type mainboard_led_types[NUM_LEDS_PER_BOARD] = {
{
.name = "platform-lan-tx",
.handler = set_led,
.default_trigger = "tx",
},
{
.name = "platform-lan-rx",
.handler = set_led,
.default_trigger = "rx",
},
{
.name = "platform-disk",
.handler = set_led,
.default_trigger = "disk-activity",
},
{
.name = "platform-heartbeat",
.handler = set_led,
.default_trigger = "heartbeat",
},
{
.name = "platform-LED4",
.handler = set_led,
.default_trigger = "panic",
},
{
.name = "platform-LED5",
.handler = set_led,
.default_trigger = "panic",
},
{
.name = "platform-LED6",
.handler = set_led,
.default_trigger = "panic",
},
{
.name = "platform-LED7",
.handler = set_led,
.default_trigger = "panic",
},
};
static int platform_led_probe(struct platform_device *pdev)
{
return hppa_led_generic_probe(pdev, mainboard_led_types);
}
MODULE_ALIAS("platform:platform-leds");
static struct platform_driver hppa_mainboard_led_driver = {
.probe = platform_led_probe,
.remove = platform_led_remove,
.driver = {
.name = "platform-leds",
},
};
static struct platform_driver * const drivers[] = {
&hppa_mainboard_led_driver,
};
static struct platform_device platform_leds = {
.name = "platform-leds",
};
/**
* register_led_driver()
*
* @model: model type, one of the DISPLAY_MODEL_XXXX values
* @cmd_reg: physical address of cmd register for the LED/LCD
* @data_reg: physical address of data register for the LED/LCD
*
* Registers a chassis LED or LCD which should be driven by this driver.
* Only PDC-based, LASI- or ASP-style LEDs and LCDs are supported.
*/
int __init register_led_driver(int model, unsigned long cmd_reg, unsigned long data_reg)
{
if (led_func_ptr || !data_reg)
return 1;
/* No LEDs when running in QEMU */
if (running_on_qemu)
return 1;
lcd_info.model = model; /* store the values */
LCD_CMD_REG = (cmd_reg == LED_CMD_REG_NONE) ? 0 : cmd_reg;
switch (lcd_info.model) {
case DISPLAY_MODEL_LCD:
LCD_DATA_REG = data_reg;
pr_info("led: LCD display at %#lx and %#lx\n",
LCD_CMD_REG , LCD_DATA_REG);
led_func_ptr = led_LCD_driver;
if (lcd_no_led_support)
led_type = LED_HAS_LCD;
else
led_type = LED_HAS_LCD | LED_HAS_LED;
break;
case DISPLAY_MODEL_LASI:
LED_DATA_REG = data_reg;
led_func_ptr = led_LASI_driver;
pr_info("led: LED display at %#lx\n", LED_DATA_REG);
led_type = LED_HAS_LED;
break;
case DISPLAY_MODEL_OLD_ASP:
LED_DATA_REG = data_reg;
led_func_ptr = led_ASP_driver;
pr_info("led: LED (ASP-style) display at %#lx\n",
LED_DATA_REG);
led_type = LED_HAS_LED;
break;
default:
pr_err("led: Unknown LCD/LED model type %d\n", lcd_info.model);
return 1;
}
platform_register_drivers(drivers, ARRAY_SIZE(drivers));
return register_reboot_notifier(&lcd_system_halt_notifier);
}
/**
* early_led_init()
*
* early_led_init() is called early in the bootup-process and asks the
* PDC for an usable chassis LCD or LED. If the PDC doesn't return any
* info, then a LED might be detected by the LASI or ASP drivers later.
* KittyHawk machines have often a buggy PDC, so that we explicitly check
* for those machines here.
*/
static int __init early_led_init(void)
{
struct pdc_chassis_info chassis_info;
int ret;
snprintf(lcd_text_default, sizeof(lcd_text_default),
"Linux %s", init_utsname()->release);
strcpy(lcd_text, lcd_text_default);
lcd_new_text = 1;
/* Work around the buggy PDC of KittyHawk-machines */
switch (CPU_HVERSION) {
case 0x580: /* KittyHawk DC2-100 (K100) */
case 0x581: /* KittyHawk DC3-120 (K210) */
case 0x582: /* KittyHawk DC3 100 (K400) */
case 0x583: /* KittyHawk DC3 120 (K410) */
case 0x58B: /* KittyHawk DC2 100 (K200) */
pr_info("LCD on KittyHawk-Machine found.\n");
lcd_info.model = DISPLAY_MODEL_LCD;
/* KittyHawk has no LED support on its LCD, so skip LED detection */
lcd_no_led_support = 1;
goto found; /* use the preinitialized values of lcd_info */
}
/* initialize the struct, so that we can check for valid return values */
chassis_info.actcnt = chassis_info.maxcnt = 0;
ret = pdc_chassis_info(&chassis_info, &lcd_info, sizeof(lcd_info));
if (ret != PDC_OK) {
not_found:
lcd_info.model = DISPLAY_MODEL_NONE;
return 1;
}
/* check the results. Some machines have a buggy PDC */
if (chassis_info.actcnt <= 0 || chassis_info.actcnt != chassis_info.maxcnt)
goto not_found;
switch (lcd_info.model) {
case DISPLAY_MODEL_LCD: /* LCD display */
if (chassis_info.actcnt <
offsetof(struct pdc_chassis_lcd_info_ret_block, _pad)-1)
goto not_found;
if (!lcd_info.act_enable) {
/* PDC tells LCD should not be used. */
goto not_found;
}
break;
case DISPLAY_MODEL_NONE: /* no LED or LCD available */
goto not_found;
case DISPLAY_MODEL_LASI: /* Lasi style 8 bit LED display */
if (chassis_info.actcnt != 8 && chassis_info.actcnt != 32)
goto not_found;
break;
default:
pr_warn("PDC reported unknown LCD/LED model %d\n",
lcd_info.model);
goto not_found;
}
found:
/* register the LCD/LED driver */
return register_led_driver(lcd_info.model, LCD_CMD_REG, LCD_DATA_REG);
}
arch_initcall(early_led_init);
/**
* register_led_regions()
*
* Register_led_regions() registers the LCD/LED regions for /procfs.
* At bootup - where the initialisation of the LCD/LED often happens
* not all internal structures of request_region() are properly set up,
* so that we delay the led-registration until after busdevices_init()
* has been executed.
*/
static void __init register_led_regions(void)
{
switch (lcd_info.model) {
case DISPLAY_MODEL_LCD:
request_mem_region((unsigned long)LCD_CMD_REG, 1, "lcd_cmd");
request_mem_region((unsigned long)LCD_DATA_REG, 1, "lcd_data");
break;
case DISPLAY_MODEL_LASI:
case DISPLAY_MODEL_OLD_ASP:
request_mem_region((unsigned long)LED_DATA_REG, 1, "led_data");
break;
}
}
static int __init startup_leds(void)
{
if (platform_device_register(&platform_leds))
printk(KERN_INFO "LED: failed to register LEDs\n");
register_led_regions();
return 0;
}
device_initcall(startup_leds);
| linux-master | drivers/parisc/led.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
** System Bus Adapter (SBA) I/O MMU manager
**
** (c) Copyright 2000-2004 Grant Grundler <grundler @ parisc-linux x org>
** (c) Copyright 2004 Naresh Kumar Inna <knaresh at india x hp x com>
** (c) Copyright 2000-2004 Hewlett-Packard Company
**
** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
**
**
**
** This module initializes the IOC (I/O Controller) found on B1000/C3000/
** J5000/J7000/N-class/L-class machines and their successors.
**
** FIXME: add DMA hint support programming in both sba and lba modules.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/dma-map-ops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
/*
* The semantics of 64 register access on 32bit systems can't be guaranteed
* by the C standard, we hope the _lo_hi() macros defining readq and writeq
* here will behave as expected.
*/
#include <linux/io-64-nonatomic-lo-hi.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/dma.h> /* for DMA_CHUNK_SIZE */
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/module.h>
#include <asm/ropes.h>
#include <asm/page.h> /* for PAGE0 */
#include <asm/pdc.h> /* for PDC_MODEL_* */
#include <asm/pdcpat.h> /* for is_pdc_pat() */
#include <asm/parisc-device.h>
#include "iommu.h"
#define MODULE_NAME "SBA"
/*
** The number of debug flags is a clue - this code is fragile.
** Don't even think about messing with it unless you have
** plenty of 710's to sacrifice to the computer gods. :^)
*/
#undef DEBUG_SBA_INIT
#undef DEBUG_SBA_RUN
#undef DEBUG_SBA_RUN_SG
#undef DEBUG_SBA_RESOURCE
#undef ASSERT_PDIR_SANITY
#undef DEBUG_LARGE_SG_ENTRIES
#undef DEBUG_DMB_TRAP
#ifdef DEBUG_SBA_INIT
#define DBG_INIT(x...) printk(x)
#else
#define DBG_INIT(x...)
#endif
#ifdef DEBUG_SBA_RUN
#define DBG_RUN(x...) printk(x)
#else
#define DBG_RUN(x...)
#endif
#ifdef DEBUG_SBA_RUN_SG
#define DBG_RUN_SG(x...) printk(x)
#else
#define DBG_RUN_SG(x...)
#endif
#ifdef DEBUG_SBA_RESOURCE
#define DBG_RES(x...) printk(x)
#else
#define DBG_RES(x...)
#endif
#define DEFAULT_DMA_HINT_REG 0
struct sba_device *sba_list;
EXPORT_SYMBOL_GPL(sba_list);
static unsigned long ioc_needs_fdc = 0;
/* global count of IOMMUs in the system */
static unsigned int global_ioc_cnt = 0;
/* PA8700 (Piranha 2.2) bug workaround */
static unsigned long piranha_bad_128k = 0;
/* Looks nice and keeps the compiler happy */
#define SBA_DEV(d) ((struct sba_device *) (d))
#ifdef CONFIG_AGP_PARISC
#define SBA_AGP_SUPPORT
#endif /*CONFIG_AGP_PARISC*/
#ifdef SBA_AGP_SUPPORT
static int sba_reserve_agpgart = 1;
module_param(sba_reserve_agpgart, int, 0444);
MODULE_PARM_DESC(sba_reserve_agpgart, "Reserve half of IO pdir as AGPGART");
#endif
static struct proc_dir_entry *proc_runway_root __ro_after_init;
static struct proc_dir_entry *proc_mckinley_root __ro_after_init;
/************************************
** SBA register read and write support
**
** BE WARNED: register writes are posted.
** (ie follow writes which must reach HW with a read)
**
** Superdome (in particular, REO) allows only 64-bit CSR accesses.
*/
#define READ_REG32(addr) readl(addr)
#define READ_REG64(addr) readq(addr)
#define WRITE_REG32(val, addr) writel((val), (addr))
#define WRITE_REG64(val, addr) writeq((val), (addr))
#ifdef CONFIG_64BIT
#define READ_REG(addr) READ_REG64(addr)
#define WRITE_REG(value, addr) WRITE_REG64(value, addr)
#else
#define READ_REG(addr) READ_REG32(addr)
#define WRITE_REG(value, addr) WRITE_REG32(value, addr)
#endif
#ifdef DEBUG_SBA_INIT
/* NOTE: When CONFIG_64BIT isn't defined, READ_REG64() is two 32-bit reads */
/**
* sba_dump_ranges - debugging only - print ranges assigned to this IOA
* @hpa: base address of the sba
*
* Print the MMIO and IO Port address ranges forwarded by an Astro/Ike/RIO
* IO Adapter (aka Bus Converter).
*/
static void
sba_dump_ranges(void __iomem *hpa)
{
DBG_INIT("SBA at 0x%p\n", hpa);
DBG_INIT("IOS_DIST_BASE : %Lx\n", READ_REG64(hpa+IOS_DIST_BASE));
DBG_INIT("IOS_DIST_MASK : %Lx\n", READ_REG64(hpa+IOS_DIST_MASK));
DBG_INIT("IOS_DIST_ROUTE : %Lx\n", READ_REG64(hpa+IOS_DIST_ROUTE));
DBG_INIT("\n");
DBG_INIT("IOS_DIRECT_BASE : %Lx\n", READ_REG64(hpa+IOS_DIRECT_BASE));
DBG_INIT("IOS_DIRECT_MASK : %Lx\n", READ_REG64(hpa+IOS_DIRECT_MASK));
DBG_INIT("IOS_DIRECT_ROUTE: %Lx\n", READ_REG64(hpa+IOS_DIRECT_ROUTE));
}
/**
* sba_dump_tlb - debugging only - print IOMMU operating parameters
* @hpa: base address of the IOMMU
*
* Print the size/location of the IO MMU PDIR.
*/
static void sba_dump_tlb(void __iomem *hpa)
{
DBG_INIT("IO TLB at 0x%p\n", hpa);
DBG_INIT("IOC_IBASE : 0x%Lx\n", READ_REG64(hpa+IOC_IBASE));
DBG_INIT("IOC_IMASK : 0x%Lx\n", READ_REG64(hpa+IOC_IMASK));
DBG_INIT("IOC_TCNFG : 0x%Lx\n", READ_REG64(hpa+IOC_TCNFG));
DBG_INIT("IOC_PDIR_BASE: 0x%Lx\n", READ_REG64(hpa+IOC_PDIR_BASE));
DBG_INIT("\n");
}
#else
#define sba_dump_ranges(x)
#define sba_dump_tlb(x)
#endif /* DEBUG_SBA_INIT */
#ifdef ASSERT_PDIR_SANITY
/**
* sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @msg: text to print ont the output line.
* @pide: pdir index.
*
* Print one entry of the IO MMU PDIR in human readable form.
*/
static void
sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
{
/* start printing from lowest pde in rval */
__le64 *ptr = &(ioc->pdir_base[pide & (~0U * BITS_PER_LONG)]);
unsigned long *rptr = (unsigned long *) &(ioc->res_map[(pide >>3) & ~(sizeof(unsigned long) - 1)]);
uint rcnt;
printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
msg,
rptr, pide & (BITS_PER_LONG - 1), *rptr);
rcnt = 0;
while (rcnt < BITS_PER_LONG) {
printk(KERN_DEBUG "%s %2d %p %016Lx\n",
(rcnt == (pide & (BITS_PER_LONG - 1)))
? " -->" : " ",
rcnt, ptr, *ptr );
rcnt++;
ptr++;
}
printk(KERN_DEBUG "%s", msg);
}
/**
* sba_check_pdir - debugging only - consistency checker
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @msg: text to print ont the output line.
*
* Verify the resource map and pdir state is consistent
*/
static int
sba_check_pdir(struct ioc *ioc, char *msg)
{
u32 *rptr_end = (u32 *) &(ioc->res_map[ioc->res_size]);
u32 *rptr = (u32 *) ioc->res_map; /* resource map ptr */
u64 *pptr = ioc->pdir_base; /* pdir ptr */
uint pide = 0;
while (rptr < rptr_end) {
u32 rval = *rptr;
int rcnt = 32; /* number of bits we might check */
while (rcnt) {
/* Get last byte and highest bit from that */
u32 pde = ((u32) (((char *)pptr)[7])) << 24;
if ((rval ^ pde) & 0x80000000)
{
/*
** BUMMER! -- res_map != pdir --
** Dump rval and matching pdir entries
*/
sba_dump_pdir_entry(ioc, msg, pide);
return(1);
}
rcnt--;
rval <<= 1; /* try the next bit */
pptr++;
pide++;
}
rptr++; /* look at next word of res_map */
}
/* It'd be nice if we always got here :^) */
return 0;
}
/**
* sba_dump_sg - debugging only - print Scatter-Gather list
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @startsg: head of the SG list
* @nents: number of entries in SG list
*
* print the SG list so we can verify it's correct by hand.
*/
static void
sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
{
while (nents-- > 0) {
printk(KERN_DEBUG " %d : %08lx/%05x %p/%05x\n",
nents,
(unsigned long) sg_dma_address(startsg),
sg_dma_len(startsg),
sg_virt(startsg), startsg->length);
startsg++;
}
}
#endif /* ASSERT_PDIR_SANITY */
/**************************************************************
*
* I/O Pdir Resource Management
*
* Bits set in the resource map are in use.
* Each bit can represent a number of pages.
* LSbs represent lower addresses (IOVA's).
*
***************************************************************/
#define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */
/* Convert from IOVP to IOVA and vice versa. */
#ifdef ZX1_SUPPORT
/* Pluto (aka ZX1) boxes need to set or clear the ibase bits appropriately */
#define SBA_IOVA(ioc,iovp,offset,hint_reg) ((ioc->ibase) | (iovp) | (offset))
#define SBA_IOVP(ioc,iova) ((iova) & (ioc)->iovp_mask)
#else
/* only support Astro and ancestors. Saves a few cycles in key places */
#define SBA_IOVA(ioc,iovp,offset,hint_reg) ((iovp) | (offset))
#define SBA_IOVP(ioc,iova) (iova)
#endif
#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
#define RESMAP_MASK(n) (~0UL << (BITS_PER_LONG - (n)))
#define RESMAP_IDX_MASK (sizeof(unsigned long) - 1)
static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
unsigned int bitshiftcnt)
{
return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
+ bitshiftcnt;
}
/**
* sba_search_bitmap - find free space in IO PDIR resource bitmap
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @dev: device to query the bitmap for
* @bits_wanted: number of entries we need.
*
* Find consecutive free bits in resource bitmap.
* Each bit represents one entry in the IO Pdir.
* Cool perf optimization: search for log2(size) bits at a time.
*/
static unsigned long
sba_search_bitmap(struct ioc *ioc, struct device *dev,
unsigned long bits_wanted)
{
unsigned long *res_ptr = ioc->res_hint;
unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
unsigned long pide = ~0UL, tpide;
unsigned long boundary_size;
unsigned long shift;
int ret;
boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
#if defined(ZX1_SUPPORT)
BUG_ON(ioc->ibase & ~IOVP_MASK);
shift = ioc->ibase >> IOVP_SHIFT;
#else
shift = 0;
#endif
if (bits_wanted > (BITS_PER_LONG/2)) {
/* Search word at a time - no mask needed */
for(; res_ptr < res_end; ++res_ptr) {
tpide = ptr_to_pide(ioc, res_ptr, 0);
ret = iommu_is_span_boundary(tpide, bits_wanted,
shift,
boundary_size);
if ((*res_ptr == 0) && !ret) {
*res_ptr = RESMAP_MASK(bits_wanted);
pide = tpide;
break;
}
}
/* point to the next word on next pass */
res_ptr++;
ioc->res_bitshift = 0;
} else {
/*
** Search the resource bit map on well-aligned values.
** "o" is the alignment.
** We need the alignment to invalidate I/O TLB using
** SBA HW features in the unmap path.
*/
unsigned long o = 1 << get_order(bits_wanted << PAGE_SHIFT);
uint bitshiftcnt = ALIGN(ioc->res_bitshift, o);
unsigned long mask;
if (bitshiftcnt >= BITS_PER_LONG) {
bitshiftcnt = 0;
res_ptr++;
}
mask = RESMAP_MASK(bits_wanted) >> bitshiftcnt;
DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
while(res_ptr < res_end)
{
DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr);
WARN_ON(mask == 0);
tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
ret = iommu_is_span_boundary(tpide, bits_wanted,
shift,
boundary_size);
if ((((*res_ptr) & mask) == 0) && !ret) {
*res_ptr |= mask; /* mark resources busy! */
pide = tpide;
break;
}
mask >>= o;
bitshiftcnt += o;
if (mask == 0) {
mask = RESMAP_MASK(bits_wanted);
bitshiftcnt=0;
res_ptr++;
}
}
/* look in the same word on the next pass */
ioc->res_bitshift = bitshiftcnt + bits_wanted;
}
/* wrapped ? */
if (res_end <= res_ptr) {
ioc->res_hint = (unsigned long *) ioc->res_map;
ioc->res_bitshift = 0;
} else {
ioc->res_hint = res_ptr;
}
return (pide);
}
/**
* sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @dev: device for which pages should be alloced
* @size: number of bytes to create a mapping for
*
* Given a size, find consecutive unmarked and then mark those bits in the
* resource bit map.
*/
static int
sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
{
unsigned int pages_needed = size >> IOVP_SHIFT;
#ifdef SBA_COLLECT_STATS
unsigned long cr_start = mfctl(16);
#endif
unsigned long pide;
pide = sba_search_bitmap(ioc, dev, pages_needed);
if (pide >= (ioc->res_size << 3)) {
pide = sba_search_bitmap(ioc, dev, pages_needed);
if (pide >= (ioc->res_size << 3))
panic("%s: I/O MMU @ %p is out of mapping resources\n",
__FILE__, ioc->ioc_hpa);
}
#ifdef ASSERT_PDIR_SANITY
/* verify the first enable bit is clear */
if(0x00 != ((u8 *) ioc->pdir_base)[pide*sizeof(u64) + 7]) {
sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
}
#endif
DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
__func__, size, pages_needed, pide,
(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
ioc->res_bitshift );
#ifdef SBA_COLLECT_STATS
{
unsigned long cr_end = mfctl(16);
unsigned long tmp = cr_end - cr_start;
/* check for roll over */
cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
}
ioc->avg_search[ioc->avg_idx++] = cr_start;
ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
ioc->used_pages += pages_needed;
#endif
return (pide);
}
/**
* sba_free_range - unmark bits in IO PDIR resource bitmap
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @iova: IO virtual address which was previously allocated.
* @size: number of bytes to create a mapping for
*
* clear bits in the ioc's resource map
*/
static void
sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
{
unsigned long iovp = SBA_IOVP(ioc, iova);
unsigned int pide = PDIR_INDEX(iovp);
unsigned int ridx = pide >> 3; /* convert bit to byte address */
unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
int bits_not_wanted = size >> IOVP_SHIFT;
/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
unsigned long m = RESMAP_MASK(bits_not_wanted) >> (pide & (BITS_PER_LONG - 1));
DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n",
__func__, (uint) iova, size,
bits_not_wanted, m, pide, res_ptr, *res_ptr);
#ifdef SBA_COLLECT_STATS
ioc->used_pages -= bits_not_wanted;
#endif
*res_ptr &= ~m;
}
/**************************************************************
*
* "Dynamic DMA Mapping" support (aka "Coherent I/O")
*
***************************************************************/
#ifdef SBA_HINT_SUPPORT
#define SBA_DMA_HINT(ioc, val) ((val) << (ioc)->hint_shift_pdir)
#endif
typedef unsigned long space_t;
#define KERNEL_SPACE 0
/**
* sba_io_pdir_entry - fill in one IO PDIR entry
* @pdir_ptr: pointer to IO PDIR entry
* @sid: process Space ID - currently only support KERNEL_SPACE
* @vba: Virtual CPU address of buffer to map
* @hint: DMA hint set to use for this mapping
*
* SBA Mapping Routine
*
* Given a virtual address (vba, arg2) and space id, (sid, arg1)
* sba_io_pdir_entry() loads the I/O PDIR entry pointed to by
* pdir_ptr (arg0).
* Using the bass-ackwards HP bit numbering, Each IO Pdir entry
* for Astro/Ike looks like:
*
*
* 0 19 51 55 63
* +-+---------------------+----------------------------------+----+--------+
* |V| U | PPN[43:12] | U | VI |
* +-+---------------------+----------------------------------+----+--------+
*
* Pluto is basically identical, supports fewer physical address bits:
*
* 0 23 51 55 63
* +-+------------------------+-------------------------------+----+--------+
* |V| U | PPN[39:12] | U | VI |
* +-+------------------------+-------------------------------+----+--------+
*
* V == Valid Bit (Most Significant Bit is bit 0)
* U == Unused
* PPN == Physical Page Number
* VI == Virtual Index (aka Coherent Index)
*
* LPA instruction output is put into PPN field.
* LCI (Load Coherence Index) instruction provides the "VI" bits.
*
* We pre-swap the bytes since PCX-W is Big Endian and the
* IOMMU uses little endian for the pdir.
*/
static void
sba_io_pdir_entry(__le64 *pdir_ptr, space_t sid, unsigned long vba,
unsigned long hint)
{
u64 pa; /* physical address */
register unsigned ci; /* coherent index */
pa = lpa(vba);
pa &= IOVP_MASK;
asm("lci 0(%1), %0" : "=r" (ci) : "r" (vba));
pa |= (ci >> PAGE_SHIFT) & 0xff; /* move CI (8 bits) into lowest byte */
pa |= SBA_PDIR_VALID_BIT; /* set "valid" bit */
*pdir_ptr = cpu_to_le64(pa); /* swap and store into I/O Pdir */
/*
* If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
* (bit #61, big endian), we have to flush and sync every time
* IO-PDIR is changed in Ike/Astro.
*/
asm_io_fdc(pdir_ptr);
}
/**
* sba_mark_invalid - invalidate one or more IO PDIR entries
* @ioc: IO MMU structure which owns the pdir we are interested in.
* @iova: IO Virtual Address mapped earlier
* @byte_cnt: number of bytes this mapping covers.
*
* Marking the IO PDIR entry(ies) as Invalid and invalidate
* corresponding IO TLB entry. The Ike PCOM (Purge Command Register)
* is to purge stale entries in the IO TLB when unmapping entries.
*
* The PCOM register supports purging of multiple pages, with a minium
* of 1 page and a maximum of 2GB. Hardware requires the address be
* aligned to the size of the range being purged. The size of the range
* must be a power of 2. The "Cool perf optimization" in the
* allocation routine helps keep that true.
*/
static void
sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
{
u32 iovp = (u32) SBA_IOVP(ioc,iova);
__le64 *pdir_ptr = &ioc->pdir_base[PDIR_INDEX(iovp)];
#ifdef ASSERT_PDIR_SANITY
/* Assert first pdir entry is set.
**
** Even though this is a big-endian machine, the entries
** in the iopdir are little endian. That's why we look at
** the byte at +7 instead of at +0.
*/
if (0x80 != (((u8 *) pdir_ptr)[7])) {
sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
}
#endif
if (byte_cnt > IOVP_SIZE)
{
#if 0
unsigned long entries_per_cacheline = ioc_needs_fdc ?
L1_CACHE_ALIGN(((unsigned long) pdir_ptr))
- (unsigned long) pdir_ptr;
: 262144;
#endif
/* set "size" field for PCOM */
iovp |= get_order(byte_cnt) + PAGE_SHIFT;
do {
/* clear I/O Pdir entry "valid" bit first */
((u8 *) pdir_ptr)[7] = 0;
asm_io_fdc(pdir_ptr);
if (ioc_needs_fdc) {
#if 0
entries_per_cacheline = L1_CACHE_SHIFT - 3;
#endif
}
pdir_ptr++;
byte_cnt -= IOVP_SIZE;
} while (byte_cnt > IOVP_SIZE);
} else
iovp |= IOVP_SHIFT; /* set "size" field for PCOM */
/*
** clear I/O PDIR entry "valid" bit.
** We have to R/M/W the cacheline regardless how much of the
** pdir entry that we clobber.
** The rest of the entry would be useful for debugging if we
** could dump core on HPMC.
*/
((u8 *) pdir_ptr)[7] = 0;
asm_io_fdc(pdir_ptr);
WRITE_REG( SBA_IOVA(ioc, iovp, 0, 0), ioc->ioc_hpa+IOC_PCOM);
}
/**
* sba_dma_supported - PCI driver can query DMA support
* @dev: instance of PCI owned by the driver that's asking
* @mask: number of address bits this PCI device can handle
*
* See Documentation/core-api/dma-api-howto.rst
*/
static int sba_dma_supported( struct device *dev, u64 mask)
{
struct ioc *ioc;
if (dev == NULL) {
printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
BUG();
return(0);
}
ioc = GET_IOC(dev);
if (!ioc)
return 0;
/*
* check if mask is >= than the current max IO Virt Address
* The max IO Virt address will *always* < 30 bits.
*/
return((int)(mask >= (ioc->ibase - 1 +
(ioc->pdir_size / sizeof(u64) * IOVP_SIZE) )));
}
/**
* sba_map_single - map one buffer and return IOVA for DMA
* @dev: instance of PCI owned by the driver that's asking.
* @addr: driver buffer to map.
* @size: number of bytes to map in driver buffer.
* @direction: R/W or both.
*
* See Documentation/core-api/dma-api-howto.rst
*/
static dma_addr_t
sba_map_single(struct device *dev, void *addr, size_t size,
enum dma_data_direction direction)
{
struct ioc *ioc;
unsigned long flags;
dma_addr_t iovp;
dma_addr_t offset;
__le64 *pdir_start;
int pide;
ioc = GET_IOC(dev);
if (!ioc)
return DMA_MAPPING_ERROR;
/* save offset bits */
offset = ((dma_addr_t) (long) addr) & ~IOVP_MASK;
/* round up to nearest IOVP_SIZE */
size = (size + offset + ~IOVP_MASK) & IOVP_MASK;
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef ASSERT_PDIR_SANITY
sba_check_pdir(ioc,"Check before sba_map_single()");
#endif
#ifdef SBA_COLLECT_STATS
ioc->msingle_calls++;
ioc->msingle_pages += size >> IOVP_SHIFT;
#endif
pide = sba_alloc_range(ioc, dev, size);
iovp = (dma_addr_t) pide << IOVP_SHIFT;
DBG_RUN("%s() 0x%p -> 0x%lx\n",
__func__, addr, (long) iovp | offset);
pdir_start = &(ioc->pdir_base[pide]);
while (size > 0) {
sba_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long) addr, 0);
DBG_RUN(" pdir 0x%p %02x%02x%02x%02x%02x%02x%02x%02x\n",
pdir_start,
(u8) (((u8 *) pdir_start)[7]),
(u8) (((u8 *) pdir_start)[6]),
(u8) (((u8 *) pdir_start)[5]),
(u8) (((u8 *) pdir_start)[4]),
(u8) (((u8 *) pdir_start)[3]),
(u8) (((u8 *) pdir_start)[2]),
(u8) (((u8 *) pdir_start)[1]),
(u8) (((u8 *) pdir_start)[0])
);
addr += IOVP_SIZE;
size -= IOVP_SIZE;
pdir_start++;
}
/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
asm_io_sync();
#ifdef ASSERT_PDIR_SANITY
sba_check_pdir(ioc,"Check after sba_map_single()");
#endif
spin_unlock_irqrestore(&ioc->res_lock, flags);
/* form complete address */
return SBA_IOVA(ioc, iovp, offset, DEFAULT_DMA_HINT_REG);
}
static dma_addr_t
sba_map_page(struct device *dev, struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction,
unsigned long attrs)
{
return sba_map_single(dev, page_address(page) + offset, size,
direction);
}
/**
* sba_unmap_page - unmap one IOVA and free resources
* @dev: instance of PCI owned by the driver that's asking.
* @iova: IOVA of driver buffer previously mapped.
* @size: number of bytes mapped in driver buffer.
* @direction: R/W or both.
* @attrs: attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static void
sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
enum dma_data_direction direction, unsigned long attrs)
{
struct ioc *ioc;
#if DELAYED_RESOURCE_CNT > 0
struct sba_dma_pair *d;
#endif
unsigned long flags;
dma_addr_t offset;
DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
ioc = GET_IOC(dev);
if (!ioc) {
WARN_ON(!ioc);
return;
}
offset = iova & ~IOVP_MASK;
iova ^= offset; /* clear offset bits */
size += offset;
size = ALIGN(size, IOVP_SIZE);
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef SBA_COLLECT_STATS
ioc->usingle_calls++;
ioc->usingle_pages += size >> IOVP_SHIFT;
#endif
sba_mark_invalid(ioc, iova, size);
#if DELAYED_RESOURCE_CNT > 0
/* Delaying when we re-use a IO Pdir entry reduces the number
* of MMIO reads needed to flush writes to the PCOM register.
*/
d = &(ioc->saved[ioc->saved_cnt]);
d->iova = iova;
d->size = size;
if (++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT) {
int cnt = ioc->saved_cnt;
while (cnt--) {
sba_free_range(ioc, d->iova, d->size);
d--;
}
ioc->saved_cnt = 0;
READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
}
#else /* DELAYED_RESOURCE_CNT == 0 */
sba_free_range(ioc, iova, size);
/* If fdc's were issued, force fdc's to be visible now */
asm_io_sync();
READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */
#endif /* DELAYED_RESOURCE_CNT == 0 */
spin_unlock_irqrestore(&ioc->res_lock, flags);
/* XXX REVISIT for 2.5 Linux - need syncdma for zero-copy support.
** For Astro based systems this isn't a big deal WRT performance.
** As long as 2.4 kernels copyin/copyout data from/to userspace,
** we don't need the syncdma. The issue here is I/O MMU cachelines
** are *not* coherent in all cases. May be hwrev dependent.
** Need to investigate more.
asm volatile("syncdma");
*/
}
/**
* sba_alloc - allocate/map shared mem for DMA
* @hwdev: instance of PCI owned by the driver that's asking.
* @size: number of bytes mapped in driver buffer.
* @dma_handle: IOVA of new buffer.
* @gfp: allocation flags
* @attrs: attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static void *sba_alloc(struct device *hwdev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs)
{
void *ret;
if (!hwdev) {
/* only support PCI */
*dma_handle = 0;
return NULL;
}
ret = (void *) __get_free_pages(gfp, get_order(size));
if (ret) {
memset(ret, 0, size);
*dma_handle = sba_map_single(hwdev, ret, size, 0);
}
return ret;
}
/**
* sba_free - free/unmap shared mem for DMA
* @hwdev: instance of PCI owned by the driver that's asking.
* @size: number of bytes mapped in driver buffer.
* @vaddr: virtual address IOVA of "consistent" buffer.
* @dma_handle: IO virtual address of "consistent" buffer.
* @attrs: attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static void
sba_free(struct device *hwdev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
sba_unmap_page(hwdev, dma_handle, size, 0, 0);
free_pages((unsigned long) vaddr, get_order(size));
}
/*
** Since 0 is a valid pdir_base index value, can't use that
** to determine if a value is valid or not. Use a flag to indicate
** the SG list entry contains a valid pdir index.
*/
#define PIDE_FLAG 0x80000000UL
#ifdef SBA_COLLECT_STATS
#define IOMMU_MAP_STATS
#endif
#include "iommu-helpers.h"
#ifdef DEBUG_LARGE_SG_ENTRIES
int dump_run_sg = 0;
#endif
/**
* sba_map_sg - map Scatter/Gather list
* @dev: instance of PCI owned by the driver that's asking.
* @sglist: array of buffer/length pairs
* @nents: number of entries in list
* @direction: R/W or both.
* @attrs: attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static int
sba_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction, unsigned long attrs)
{
struct ioc *ioc;
int filled = 0;
unsigned long flags;
DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
ioc = GET_IOC(dev);
if (!ioc)
return -EINVAL;
/* Fast path single entry scatterlists. */
if (nents == 1) {
sg_dma_address(sglist) = sba_map_single(dev, sg_virt(sglist),
sglist->length, direction);
sg_dma_len(sglist) = sglist->length;
return 1;
}
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef ASSERT_PDIR_SANITY
if (sba_check_pdir(ioc,"Check before sba_map_sg()"))
{
sba_dump_sg(ioc, sglist, nents);
panic("Check before sba_map_sg()");
}
#endif
#ifdef SBA_COLLECT_STATS
ioc->msg_calls++;
#endif
/*
** First coalesce the chunks and allocate I/O pdir space
**
** If this is one DMA stream, we can properly map using the
** correct virtual address associated with each DMA page.
** w/o this association, we wouldn't have coherent DMA!
** Access to the virtual address is what forces a two pass algorithm.
*/
iommu_coalesce_chunks(ioc, dev, sglist, nents, sba_alloc_range);
/*
** Program the I/O Pdir
**
** map the virtual addresses to the I/O Pdir
** o dma_address will contain the pdir index
** o dma_len will contain the number of bytes to map
** o address contains the virtual address.
*/
filled = iommu_fill_pdir(ioc, sglist, nents, 0, sba_io_pdir_entry);
/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
asm_io_sync();
#ifdef ASSERT_PDIR_SANITY
if (sba_check_pdir(ioc,"Check after sba_map_sg()"))
{
sba_dump_sg(ioc, sglist, nents);
panic("Check after sba_map_sg()\n");
}
#endif
spin_unlock_irqrestore(&ioc->res_lock, flags);
DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
return filled;
}
/**
* sba_unmap_sg - unmap Scatter/Gather list
* @dev: instance of PCI owned by the driver that's asking.
* @sglist: array of buffer/length pairs
* @nents: number of entries in list
* @direction: R/W or both.
* @attrs: attributes
*
* See Documentation/core-api/dma-api-howto.rst
*/
static void
sba_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction, unsigned long attrs)
{
struct ioc *ioc;
#ifdef ASSERT_PDIR_SANITY
unsigned long flags;
#endif
DBG_RUN_SG("%s() START %d entries, %p,%x\n",
__func__, nents, sg_virt(sglist), sglist->length);
ioc = GET_IOC(dev);
if (!ioc) {
WARN_ON(!ioc);
return;
}
#ifdef SBA_COLLECT_STATS
ioc->usg_calls++;
#endif
#ifdef ASSERT_PDIR_SANITY
spin_lock_irqsave(&ioc->res_lock, flags);
sba_check_pdir(ioc,"Check before sba_unmap_sg()");
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif
while (nents && sg_dma_len(sglist)) {
sba_unmap_page(dev, sg_dma_address(sglist), sg_dma_len(sglist),
direction, 0);
#ifdef SBA_COLLECT_STATS
ioc->usg_pages += ((sg_dma_address(sglist) & ~IOVP_MASK) + sg_dma_len(sglist) + IOVP_SIZE - 1) >> PAGE_SHIFT;
ioc->usingle_calls--; /* kluge since call is unmap_sg() */
#endif
++sglist;
nents--;
}
DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
#ifdef ASSERT_PDIR_SANITY
spin_lock_irqsave(&ioc->res_lock, flags);
sba_check_pdir(ioc,"Check after sba_unmap_sg()");
spin_unlock_irqrestore(&ioc->res_lock, flags);
#endif
}
static const struct dma_map_ops sba_ops = {
.dma_supported = sba_dma_supported,
.alloc = sba_alloc,
.free = sba_free,
.map_page = sba_map_page,
.unmap_page = sba_unmap_page,
.map_sg = sba_map_sg,
.unmap_sg = sba_unmap_sg,
.get_sgtable = dma_common_get_sgtable,
.alloc_pages = dma_common_alloc_pages,
.free_pages = dma_common_free_pages,
};
/**************************************************************************
**
** SBA PAT PDC support
**
** o call pdc_pat_cell_module()
** o store ranges in PCI "resource" structures
**
**************************************************************************/
static void
sba_get_pat_resources(struct sba_device *sba_dev)
{
#if 0
/*
** TODO/REVISIT/FIXME: support for directed ranges requires calls to
** PAT PDC to program the SBA/LBA directed range registers...this
** burden may fall on the LBA code since it directly supports the
** PCI subsystem. It's not clear yet. - ggg
*/
PAT_MOD(mod)->mod_info.mod_pages = PAT_GET_MOD_PAGES(temp);
FIXME : ???
PAT_MOD(mod)->mod_info.dvi = PAT_GET_DVI(temp);
Tells where the dvi bits are located in the address.
PAT_MOD(mod)->mod_info.ioc = PAT_GET_IOC(temp);
FIXME : ???
#endif
}
/**************************************************************
*
* Initialization and claim
*
***************************************************************/
#define PIRANHA_ADDR_MASK 0x00160000UL /* bit 17,18,20 */
#define PIRANHA_ADDR_VAL 0x00060000UL /* bit 17,18 on */
static void *
sba_alloc_pdir(unsigned int pdir_size)
{
unsigned long pdir_base;
unsigned long pdir_order = get_order(pdir_size);
pdir_base = __get_free_pages(GFP_KERNEL, pdir_order);
if (NULL == (void *) pdir_base) {
panic("%s() could not allocate I/O Page Table\n",
__func__);
}
/* If this is not PA8700 (PCX-W2)
** OR newer than ver 2.2
** OR in a system that doesn't need VINDEX bits from SBA,
**
** then we aren't exposed to the HW bug.
*/
if ( ((boot_cpu_data.pdc.cpuid >> 5) & 0x7f) != 0x13
|| (boot_cpu_data.pdc.versions > 0x202)
|| (boot_cpu_data.pdc.capabilities & 0x08L) )
return (void *) pdir_base;
/*
* PA8700 (PCX-W2, aka piranha) silent data corruption fix
*
* An interaction between PA8700 CPU (Ver 2.2 or older) and
* Ike/Astro can cause silent data corruption. This is only
* a problem if the I/O PDIR is located in memory such that
* (little-endian) bits 17 and 18 are on and bit 20 is off.
*
* Since the max IO Pdir size is 2MB, by cleverly allocating the
* right physical address, we can either avoid (IOPDIR <= 1MB)
* or minimize (2MB IO Pdir) the problem if we restrict the
* IO Pdir to a maximum size of 2MB-128K (1902K).
*
* Because we always allocate 2^N sized IO pdirs, either of the
* "bad" regions will be the last 128K if at all. That's easy
* to test for.
*
*/
if (pdir_order <= (19-12)) {
if (((virt_to_phys(pdir_base)+pdir_size-1) & PIRANHA_ADDR_MASK) == PIRANHA_ADDR_VAL) {
/* allocate a new one on 512k alignment */
unsigned long new_pdir = __get_free_pages(GFP_KERNEL, (19-12));
/* release original */
free_pages(pdir_base, pdir_order);
pdir_base = new_pdir;
/* release excess */
while (pdir_order < (19-12)) {
new_pdir += pdir_size;
free_pages(new_pdir, pdir_order);
pdir_order +=1;
pdir_size <<=1;
}
}
} else {
/*
** 1MB or 2MB Pdir
** Needs to be aligned on an "odd" 1MB boundary.
*/
unsigned long new_pdir = __get_free_pages(GFP_KERNEL, pdir_order+1); /* 2 or 4MB */
/* release original */
free_pages( pdir_base, pdir_order);
/* release first 1MB */
free_pages(new_pdir, 20-12);
pdir_base = new_pdir + 1024*1024;
if (pdir_order > (20-12)) {
/*
** 2MB Pdir.
**
** Flag tells init_bitmap() to mark bad 128k as used
** and to reduce the size by 128k.
*/
piranha_bad_128k = 1;
new_pdir += 3*1024*1024;
/* release last 1MB */
free_pages(new_pdir, 20-12);
/* release unusable 128KB */
free_pages(new_pdir - 128*1024 , 17-12);
pdir_size -= 128*1024;
}
}
memset((void *) pdir_base, 0, pdir_size);
return (void *) pdir_base;
}
struct ibase_data_struct {
struct ioc *ioc;
int ioc_num;
};
static int setup_ibase_imask_callback(struct device *dev, void *data)
{
struct parisc_device *lba = to_parisc_device(dev);
struct ibase_data_struct *ibd = data;
int rope_num = (lba->hpa.start >> 13) & 0xf;
if (rope_num >> 3 == ibd->ioc_num)
lba_set_iregs(lba, ibd->ioc->ibase, ibd->ioc->imask);
return 0;
}
/* setup Mercury or Elroy IBASE/IMASK registers. */
static void
setup_ibase_imask(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
{
struct ibase_data_struct ibase_data = {
.ioc = ioc,
.ioc_num = ioc_num,
};
device_for_each_child(&sba->dev, &ibase_data,
setup_ibase_imask_callback);
}
#ifdef SBA_AGP_SUPPORT
static int
sba_ioc_find_quicksilver(struct device *dev, void *data)
{
int *agp_found = data;
struct parisc_device *lba = to_parisc_device(dev);
if (IS_QUICKSILVER(lba))
*agp_found = 1;
return 0;
}
#endif
static void
sba_ioc_init_pluto(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
{
u32 iova_space_mask;
u32 iova_space_size;
int iov_order, tcnfg;
#ifdef SBA_AGP_SUPPORT
int agp_found = 0;
#endif
/*
** Firmware programs the base and size of a "safe IOVA space"
** (one that doesn't overlap memory or LMMIO space) in the
** IBASE and IMASK registers.
*/
ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1fffffULL;
iova_space_size = ~(READ_REG(ioc->ioc_hpa + IOC_IMASK) & 0xFFFFFFFFUL) + 1;
if ((ioc->ibase < 0xfed00000UL) && ((ioc->ibase + iova_space_size) > 0xfee00000UL)) {
printk("WARNING: IOV space overlaps local config and interrupt message, truncating\n");
iova_space_size /= 2;
}
/*
** iov_order is always based on a 1GB IOVA space since we want to
** turn on the other half for AGP GART.
*/
iov_order = get_order(iova_space_size >> (IOVP_SHIFT - PAGE_SHIFT));
ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
DBG_INIT("%s() hpa 0x%p IOV %dMB (%d bits)\n",
__func__, ioc->ioc_hpa, iova_space_size >> 20,
iov_order + PAGE_SHIFT);
ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
get_order(ioc->pdir_size));
if (!ioc->pdir_base)
panic("Couldn't allocate I/O Page Table\n");
memset(ioc->pdir_base, 0, ioc->pdir_size);
DBG_INIT("%s() pdir %p size %x\n",
__func__, ioc->pdir_base, ioc->pdir_size);
#ifdef SBA_HINT_SUPPORT
ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
DBG_INIT(" hint_shift_pdir %x hint_mask_pdir %lx\n",
ioc->hint_shift_pdir, ioc->hint_mask_pdir);
#endif
WARN_ON((((unsigned long) ioc->pdir_base) & PAGE_MASK) != (unsigned long) ioc->pdir_base);
WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
/* build IMASK for IOC and Elroy */
iova_space_mask = 0xffffffff;
iova_space_mask <<= (iov_order + PAGE_SHIFT);
ioc->imask = iova_space_mask;
#ifdef ZX1_SUPPORT
ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
#endif
sba_dump_tlb(ioc->ioc_hpa);
setup_ibase_imask(sba, ioc, ioc_num);
WRITE_REG(ioc->imask, ioc->ioc_hpa + IOC_IMASK);
#ifdef CONFIG_64BIT
/*
** Setting the upper bits makes checking for bypass addresses
** a little faster later on.
*/
ioc->imask |= 0xFFFFFFFF00000000UL;
#endif
/* Set I/O PDIR Page size to system page size */
switch (PAGE_SHIFT) {
case 12: tcnfg = 0; break; /* 4K */
case 13: tcnfg = 1; break; /* 8K */
case 14: tcnfg = 2; break; /* 16K */
case 16: tcnfg = 3; break; /* 64K */
default:
panic(__FILE__ "Unsupported system page size %d",
1 << PAGE_SHIFT);
break;
}
WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
/*
** Program the IOC's ibase and enable IOVA translation
** Bit zero == enable bit.
*/
WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
/*
** Clear I/O TLB of any possible entries.
** (Yes. This is a bit paranoid...but so what)
*/
WRITE_REG(ioc->ibase | 31, ioc->ioc_hpa + IOC_PCOM);
#ifdef SBA_AGP_SUPPORT
/*
** If an AGP device is present, only use half of the IOV space
** for PCI DMA. Unfortunately we can't know ahead of time
** whether GART support will actually be used, for now we
** can just key on any AGP device found in the system.
** We program the next pdir index after we stop w/ a key for
** the GART code to handshake on.
*/
device_for_each_child(&sba->dev, &agp_found, sba_ioc_find_quicksilver);
if (agp_found && sba_reserve_agpgart) {
printk(KERN_INFO "%s: reserving %dMb of IOVA space for agpgart\n",
__func__, (iova_space_size/2) >> 20);
ioc->pdir_size /= 2;
ioc->pdir_base[PDIR_INDEX(iova_space_size/2)] = SBA_AGPGART_COOKIE;
}
#endif /*SBA_AGP_SUPPORT*/
}
static void
sba_ioc_init(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
{
u32 iova_space_size, iova_space_mask;
unsigned int pdir_size, iov_order, tcnfg;
/*
** Determine IOVA Space size from memory size.
**
** Ideally, PCI drivers would register the maximum number
** of DMA they can have outstanding for each device they
** own. Next best thing would be to guess how much DMA
** can be outstanding based on PCI Class/sub-class. Both
** methods still require some "extra" to support PCI
** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
**
** While we have 32-bits "IOVA" space, top two 2 bits are used
** for DMA hints - ergo only 30 bits max.
*/
iova_space_size = (u32) (totalram_pages()/global_ioc_cnt);
/* limit IOVA space size to 1MB-1GB */
if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
iova_space_size = 1 << (20 - PAGE_SHIFT);
}
else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
iova_space_size = 1 << (30 - PAGE_SHIFT);
}
/*
** iova space must be log2() in size.
** thus, pdir/res_map will also be log2().
** PIRANHA BUG: Exception is when IO Pdir is 2MB (gets reduced)
*/
iov_order = get_order(iova_space_size << PAGE_SHIFT);
/* iova_space_size is now bytes, not pages */
iova_space_size = 1 << (iov_order + PAGE_SHIFT);
ioc->pdir_size = pdir_size = (iova_space_size/IOVP_SIZE) * sizeof(u64);
DBG_INIT("%s() hpa %px mem %ldMB IOV %dMB (%d bits)\n",
__func__,
ioc->ioc_hpa,
(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
iova_space_size>>20,
iov_order + PAGE_SHIFT);
ioc->pdir_base = sba_alloc_pdir(pdir_size);
DBG_INIT("%s() pdir %p size %x\n",
__func__, ioc->pdir_base, pdir_size);
#ifdef SBA_HINT_SUPPORT
/* FIXME : DMA HINTs not used */
ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
DBG_INIT(" hint_shift_pdir %x hint_mask_pdir %lx\n",
ioc->hint_shift_pdir, ioc->hint_mask_pdir);
#endif
WRITE_REG64(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
/* build IMASK for IOC and Elroy */
iova_space_mask = 0xffffffff;
iova_space_mask <<= (iov_order + PAGE_SHIFT);
/*
** On C3000 w/512MB mem, HP-UX 10.20 reports:
** ibase=0, imask=0xFE000000, size=0x2000000.
*/
ioc->ibase = 0;
ioc->imask = iova_space_mask; /* save it */
#ifdef ZX1_SUPPORT
ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
#endif
DBG_INIT("%s() IOV base %#lx mask %#0lx\n",
__func__, ioc->ibase, ioc->imask);
/*
** FIXME: Hint registers are programmed with default hint
** values during boot, so hints should be sane even if we
** can't reprogram them the way drivers want.
*/
setup_ibase_imask(sba, ioc, ioc_num);
/*
** Program the IOC's ibase and enable IOVA translation
*/
WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa+IOC_IBASE);
WRITE_REG(ioc->imask, ioc->ioc_hpa+IOC_IMASK);
/* Set I/O PDIR Page size to system page size */
switch (PAGE_SHIFT) {
case 12: tcnfg = 0; break; /* 4K */
case 13: tcnfg = 1; break; /* 8K */
case 14: tcnfg = 2; break; /* 16K */
case 16: tcnfg = 3; break; /* 64K */
default:
panic(__FILE__ "Unsupported system page size %d",
1 << PAGE_SHIFT);
break;
}
/* Set I/O PDIR Page size to PAGE_SIZE (4k/16k/...) */
WRITE_REG(tcnfg, ioc->ioc_hpa+IOC_TCNFG);
/*
** Clear I/O TLB of any possible entries.
** (Yes. This is a bit paranoid...but so what)
*/
WRITE_REG(0 | 31, ioc->ioc_hpa+IOC_PCOM);
ioc->ibase = 0; /* used by SBA_IOVA and related macros */
DBG_INIT("%s() DONE\n", __func__);
}
/**************************************************************************
**
** SBA initialization code (HW and SW)
**
** o identify SBA chip itself
** o initialize SBA chip modes (HardFail)
** o initialize SBA chip modes (HardFail)
** o FIXME: initialize DMA hints for reasonable defaults
**
**************************************************************************/
static void __iomem *ioc_remap(struct sba_device *sba_dev, unsigned int offset)
{
return ioremap(sba_dev->dev->hpa.start + offset, SBA_FUNC_SIZE);
}
static void sba_hw_init(struct sba_device *sba_dev)
{
int i;
int num_ioc;
u64 ioc_ctl;
if (!is_pdc_pat()) {
/* Shutdown the USB controller on Astro-based workstations.
** Once we reprogram the IOMMU, the next DMA performed by
** USB will HPMC the box. USB is only enabled if a
** keyboard is present and found.
**
** With serial console, j6k v5.0 firmware says:
** mem_kbd hpa 0xfee003f8 sba 0x0 pad 0x0 cl_class 0x7
**
** FIXME: Using GFX+USB console at power up but direct
** linux to serial console is still broken.
** USB could generate DMA so we must reset USB.
** The proper sequence would be:
** o block console output
** o reset USB device
** o reprogram serial port
** o unblock console output
*/
if (PAGE0->mem_kbd.cl_class == CL_KEYBD) {
pdc_io_reset_devices();
}
}
#if 0
printk("sba_hw_init(): mem_boot 0x%x 0x%x 0x%x 0x%x\n", PAGE0->mem_boot.hpa,
PAGE0->mem_boot.spa, PAGE0->mem_boot.pad, PAGE0->mem_boot.cl_class);
/*
** Need to deal with DMA from LAN.
** Maybe use page zero boot device as a handle to talk
** to PDC about which device to shutdown.
**
** Netbooting, j6k v5.0 firmware says:
** mem_boot hpa 0xf4008000 sba 0x0 pad 0x0 cl_class 0x1002
** ARGH! invalid class.
*/
if ((PAGE0->mem_boot.cl_class != CL_RANDOM)
&& (PAGE0->mem_boot.cl_class != CL_SEQU)) {
pdc_io_reset();
}
#endif
if (!IS_PLUTO(sba_dev->dev)) {
ioc_ctl = READ_REG(sba_dev->sba_hpa+IOC_CTRL);
DBG_INIT("%s() hpa %px ioc_ctl 0x%Lx ->",
__func__, sba_dev->sba_hpa, ioc_ctl);
ioc_ctl &= ~(IOC_CTRL_RM | IOC_CTRL_NC | IOC_CTRL_CE);
ioc_ctl |= IOC_CTRL_DD | IOC_CTRL_D4 | IOC_CTRL_TC;
/* j6700 v1.6 firmware sets 0x294f */
/* A500 firmware sets 0x4d */
WRITE_REG(ioc_ctl, sba_dev->sba_hpa+IOC_CTRL);
#ifdef DEBUG_SBA_INIT
ioc_ctl = READ_REG64(sba_dev->sba_hpa+IOC_CTRL);
DBG_INIT(" 0x%Lx\n", ioc_ctl);
#endif
} /* if !PLUTO */
if (IS_ASTRO(sba_dev->dev)) {
int err;
sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, ASTRO_IOC_OFFSET);
num_ioc = 1;
sba_dev->chip_resv.name = "Astro Intr Ack";
sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfef00000UL;
sba_dev->chip_resv.end = PCI_F_EXTEND | (0xff000000UL - 1) ;
err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
BUG_ON(err < 0);
} else if (IS_PLUTO(sba_dev->dev)) {
int err;
sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, PLUTO_IOC_OFFSET);
num_ioc = 1;
sba_dev->chip_resv.name = "Pluto Intr/PIOP/VGA";
sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfee00000UL;
sba_dev->chip_resv.end = PCI_F_EXTEND | (0xff200000UL - 1);
err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
WARN_ON(err < 0);
sba_dev->iommu_resv.name = "IOVA Space";
sba_dev->iommu_resv.start = 0x40000000UL;
sba_dev->iommu_resv.end = 0x50000000UL - 1;
err = request_resource(&iomem_resource, &(sba_dev->iommu_resv));
WARN_ON(err < 0);
} else {
/* IKE, REO */
sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(0));
sba_dev->ioc[1].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(1));
num_ioc = 2;
/* TODO - LOOKUP Ike/Stretch chipset mem map */
}
/* XXX: What about Reo Grande? */
sba_dev->num_ioc = num_ioc;
for (i = 0; i < num_ioc; i++) {
void __iomem *ioc_hpa = sba_dev->ioc[i].ioc_hpa;
unsigned int j;
for (j=0; j < sizeof(u64) * ROPES_PER_IOC; j+=sizeof(u64)) {
/*
* Clear ROPE(N)_CONFIG AO bit.
* Disables "NT Ordering" (~= !"Relaxed Ordering")
* Overrides bit 1 in DMA Hint Sets.
* Improves netperf UDP_STREAM by ~10% for bcm5701.
*/
if (IS_PLUTO(sba_dev->dev)) {
void __iomem *rope_cfg;
unsigned long cfg_val;
rope_cfg = ioc_hpa + IOC_ROPE0_CFG + j;
cfg_val = READ_REG(rope_cfg);
cfg_val &= ~IOC_ROPE_AO;
WRITE_REG(cfg_val, rope_cfg);
}
/*
** Make sure the box crashes on rope errors.
*/
WRITE_REG(HF_ENABLE, ioc_hpa + ROPE0_CTL + j);
}
/* flush out the last writes */
READ_REG(sba_dev->ioc[i].ioc_hpa + ROPE7_CTL);
DBG_INIT(" ioc[%d] ROPE_CFG %#lx ROPE_DBG %lx\n",
i,
(unsigned long) READ_REG(sba_dev->ioc[i].ioc_hpa + 0x40),
(unsigned long) READ_REG(sba_dev->ioc[i].ioc_hpa + 0x50)
);
DBG_INIT(" STATUS_CONTROL %#lx FLUSH_CTRL %#lx\n",
(unsigned long) READ_REG(sba_dev->ioc[i].ioc_hpa + 0x108),
(unsigned long) READ_REG(sba_dev->ioc[i].ioc_hpa + 0x400)
);
if (IS_PLUTO(sba_dev->dev)) {
sba_ioc_init_pluto(sba_dev->dev, &(sba_dev->ioc[i]), i);
} else {
sba_ioc_init(sba_dev->dev, &(sba_dev->ioc[i]), i);
}
}
}
static void
sba_common_init(struct sba_device *sba_dev)
{
int i;
/* add this one to the head of the list (order doesn't matter)
** This will be useful for debugging - especially if we get coredumps
*/
sba_dev->next = sba_list;
sba_list = sba_dev;
for(i=0; i< sba_dev->num_ioc; i++) {
int res_size;
#ifdef DEBUG_DMB_TRAP
extern void iterate_pages(unsigned long , unsigned long ,
void (*)(pte_t * , unsigned long),
unsigned long );
void set_data_memory_break(pte_t * , unsigned long);
#endif
/* resource map size dictated by pdir_size */
res_size = sba_dev->ioc[i].pdir_size/sizeof(u64); /* entries */
/* Second part of PIRANHA BUG */
if (piranha_bad_128k) {
res_size -= (128*1024)/sizeof(u64);
}
res_size >>= 3; /* convert bit count to byte count */
DBG_INIT("%s() res_size 0x%x\n",
__func__, res_size);
sba_dev->ioc[i].res_size = res_size;
sba_dev->ioc[i].res_map = (char *) __get_free_pages(GFP_KERNEL, get_order(res_size));
#ifdef DEBUG_DMB_TRAP
iterate_pages( sba_dev->ioc[i].res_map, res_size,
set_data_memory_break, 0);
#endif
if (NULL == sba_dev->ioc[i].res_map)
{
panic("%s:%s() could not allocate resource map\n",
__FILE__, __func__ );
}
memset(sba_dev->ioc[i].res_map, 0, res_size);
/* next available IOVP - circular search */
sba_dev->ioc[i].res_hint = (unsigned long *)
&(sba_dev->ioc[i].res_map[L1_CACHE_BYTES]);
#ifdef ASSERT_PDIR_SANITY
/* Mark first bit busy - ie no IOVA 0 */
sba_dev->ioc[i].res_map[0] = 0x80;
sba_dev->ioc[i].pdir_base[0] = (__force __le64) 0xeeffc0addbba0080ULL;
#endif
/* Third (and last) part of PIRANHA BUG */
if (piranha_bad_128k) {
/* region from +1408K to +1536 is un-usable. */
int idx_start = (1408*1024/sizeof(u64)) >> 3;
int idx_end = (1536*1024/sizeof(u64)) >> 3;
long *p_start = (long *) &(sba_dev->ioc[i].res_map[idx_start]);
long *p_end = (long *) &(sba_dev->ioc[i].res_map[idx_end]);
/* mark that part of the io pdir busy */
while (p_start < p_end)
*p_start++ = -1;
}
#ifdef DEBUG_DMB_TRAP
iterate_pages( sba_dev->ioc[i].res_map, res_size,
set_data_memory_break, 0);
iterate_pages( sba_dev->ioc[i].pdir_base, sba_dev->ioc[i].pdir_size,
set_data_memory_break, 0);
#endif
DBG_INIT("%s() %d res_map %x %p\n",
__func__, i, res_size, sba_dev->ioc[i].res_map);
}
spin_lock_init(&sba_dev->sba_lock);
ioc_needs_fdc = boot_cpu_data.pdc.capabilities & PDC_MODEL_IOPDIR_FDC;
#ifdef DEBUG_SBA_INIT
/*
* If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
* (bit #61, big endian), we have to flush and sync every time
* IO-PDIR is changed in Ike/Astro.
*/
if (ioc_needs_fdc) {
printk(KERN_INFO MODULE_NAME " FDC/SYNC required.\n");
} else {
printk(KERN_INFO MODULE_NAME " IOC has cache coherent PDIR.\n");
}
#endif
}
#ifdef CONFIG_PROC_FS
static int sba_proc_info(struct seq_file *m, void *p)
{
struct sba_device *sba_dev = sba_list;
struct ioc *ioc = &sba_dev->ioc[0]; /* FIXME: Multi-IOC support! */
int total_pages = (int) (ioc->res_size << 3); /* 8 bits per byte */
#ifdef SBA_COLLECT_STATS
unsigned long avg = 0, min, max;
#endif
int i;
seq_printf(m, "%s rev %d.%d\n",
sba_dev->name,
(sba_dev->hw_rev & 0x7) + 1,
(sba_dev->hw_rev & 0x18) >> 3);
seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
(int)((ioc->res_size << 3) * sizeof(u64)), /* 8 bits/byte */
total_pages);
seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
ioc->res_size, ioc->res_size << 3); /* 8 bits per byte */
seq_printf(m, "LMMIO_BASE/MASK/ROUTE %08x %08x %08x\n",
READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_BASE),
READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_MASK),
READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_ROUTE));
for (i=0; i<4; i++)
seq_printf(m, "DIR%d_BASE/MASK/ROUTE %08x %08x %08x\n",
i,
READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_BASE + i*0x18),
READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_MASK + i*0x18),
READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_ROUTE + i*0x18));
#ifdef SBA_COLLECT_STATS
seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
total_pages - ioc->used_pages, ioc->used_pages,
(int)(ioc->used_pages * 100 / total_pages));
min = max = ioc->avg_search[0];
for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
avg += ioc->avg_search[i];
if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
}
avg /= SBA_SEARCH_SAMPLE;
seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
min, avg, max);
seq_printf(m, "pci_map_single(): %12ld calls %12ld pages (avg %d/1000)\n",
ioc->msingle_calls, ioc->msingle_pages,
(int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
/* KLUGE - unmap_sg calls unmap_single for each mapped page */
min = ioc->usingle_calls;
max = ioc->usingle_pages - ioc->usg_pages;
seq_printf(m, "pci_unmap_single: %12ld calls %12ld pages (avg %d/1000)\n",
min, max, (int)((max * 1000)/min));
seq_printf(m, "pci_map_sg() : %12ld calls %12ld pages (avg %d/1000)\n",
ioc->msg_calls, ioc->msg_pages,
(int)((ioc->msg_pages * 1000)/ioc->msg_calls));
seq_printf(m, "pci_unmap_sg() : %12ld calls %12ld pages (avg %d/1000)\n",
ioc->usg_calls, ioc->usg_pages,
(int)((ioc->usg_pages * 1000)/ioc->usg_calls));
#endif
return 0;
}
static int
sba_proc_bitmap_info(struct seq_file *m, void *p)
{
struct sba_device *sba_dev = sba_list;
struct ioc *ioc = &sba_dev->ioc[0]; /* FIXME: Multi-IOC support! */
seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
ioc->res_size, false);
seq_putc(m, '\n');
return 0;
}
#endif /* CONFIG_PROC_FS */
static const struct parisc_device_id sba_tbl[] __initconst = {
{ HPHW_IOA, HVERSION_REV_ANY_ID, ASTRO_RUNWAY_PORT, 0xb },
{ HPHW_BCPORT, HVERSION_REV_ANY_ID, IKE_MERCED_PORT, 0xc },
{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REO_MERCED_PORT, 0xc },
{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REOG_MERCED_PORT, 0xc },
{ HPHW_IOA, HVERSION_REV_ANY_ID, PLUTO_MCKINLEY_PORT, 0xc },
{ 0, }
};
static int sba_driver_callback(struct parisc_device *);
static struct parisc_driver sba_driver __refdata = {
.name = MODULE_NAME,
.id_table = sba_tbl,
.probe = sba_driver_callback,
};
/*
** Determine if sba should claim this chip (return 0) or not (return 1).
** If so, initialize the chip and tell other partners in crime they
** have work to do.
*/
static int __init sba_driver_callback(struct parisc_device *dev)
{
struct sba_device *sba_dev;
u32 func_class;
int i;
char *version;
void __iomem *sba_addr = ioremap(dev->hpa.start, SBA_FUNC_SIZE);
struct proc_dir_entry *root __maybe_unused;
sba_dump_ranges(sba_addr);
/* Read HW Rev First */
func_class = READ_REG(sba_addr + SBA_FCLASS);
if (IS_ASTRO(dev)) {
unsigned long fclass;
static char astro_rev[]="Astro ?.?";
/* Astro is broken...Read HW Rev First */
fclass = READ_REG(sba_addr);
astro_rev[6] = '1' + (char) (fclass & 0x7);
astro_rev[8] = '0' + (char) ((fclass & 0x18) >> 3);
version = astro_rev;
} else if (IS_IKE(dev)) {
static char ike_rev[] = "Ike rev ?";
ike_rev[8] = '0' + (char) (func_class & 0xff);
version = ike_rev;
} else if (IS_PLUTO(dev)) {
static char pluto_rev[]="Pluto ?.?";
pluto_rev[6] = '0' + (char) ((func_class & 0xf0) >> 4);
pluto_rev[8] = '0' + (char) (func_class & 0x0f);
version = pluto_rev;
} else {
static char reo_rev[] = "REO rev ?";
reo_rev[8] = '0' + (char) (func_class & 0xff);
version = reo_rev;
}
if (!global_ioc_cnt) {
global_ioc_cnt = count_parisc_driver(&sba_driver);
/* Astro and Pluto have one IOC per SBA */
if ((!IS_ASTRO(dev)) || (!IS_PLUTO(dev)))
global_ioc_cnt *= 2;
}
printk(KERN_INFO "%s found %s at 0x%llx\n",
MODULE_NAME, version, (unsigned long long)dev->hpa.start);
sba_dev = kzalloc(sizeof(struct sba_device), GFP_KERNEL);
if (!sba_dev) {
printk(KERN_ERR MODULE_NAME " - couldn't alloc sba_device\n");
return -ENOMEM;
}
parisc_set_drvdata(dev, sba_dev);
for(i=0; i<MAX_IOC; i++)
spin_lock_init(&(sba_dev->ioc[i].res_lock));
sba_dev->dev = dev;
sba_dev->hw_rev = func_class;
sba_dev->name = dev->name;
sba_dev->sba_hpa = sba_addr;
sba_get_pat_resources(sba_dev);
sba_hw_init(sba_dev);
sba_common_init(sba_dev);
hppa_dma_ops = &sba_ops;
switch (dev->id.hversion) {
case PLUTO_MCKINLEY_PORT:
if (!proc_mckinley_root)
proc_mckinley_root = proc_mkdir("bus/mckinley", NULL);
root = proc_mckinley_root;
break;
case ASTRO_RUNWAY_PORT:
case IKE_MERCED_PORT:
default:
if (!proc_runway_root)
proc_runway_root = proc_mkdir("bus/runway", NULL);
root = proc_runway_root;
break;
}
proc_create_single("sba_iommu", 0, root, sba_proc_info);
proc_create_single("sba_iommu-bitmap", 0, root, sba_proc_bitmap_info);
return 0;
}
/*
** One time initialization to let the world know the SBA was found.
** This is the only routine which is NOT static.
** Must be called exactly once before pci_init().
*/
static int __init sba_init(void)
{
return register_parisc_driver(&sba_driver);
}
arch_initcall(sba_init);
/**
* sba_get_iommu - Assign the iommu pointer for the pci bus controller.
* @pci_hba: The parisc device.
*
* Returns the appropriate IOMMU data for the given parisc PCI controller.
* This is cached and used later for PCI DMA Mapping.
*/
void * sba_get_iommu(struct parisc_device *pci_hba)
{
struct parisc_device *sba_dev = parisc_parent(pci_hba);
struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
char t = sba_dev->id.hw_type;
int iocnum = (pci_hba->hw_path >> 3); /* rope # */
WARN_ON((t != HPHW_IOA) && (t != HPHW_BCPORT));
return &(sba->ioc[iocnum]);
}
/**
* sba_directed_lmmio - return first directed LMMIO range routed to rope
* @pci_hba: The parisc device.
* @r: resource PCI host controller wants start/end fields assigned.
*
* For the given parisc PCI controller, determine if any direct ranges
* are routed down the corresponding rope.
*/
void sba_directed_lmmio(struct parisc_device *pci_hba, struct resource *r)
{
struct parisc_device *sba_dev = parisc_parent(pci_hba);
struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
char t = sba_dev->id.hw_type;
int i;
int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1)); /* rope # */
BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
r->start = r->end = 0;
/* Astro has 4 directed ranges. Not sure about Ike/Pluto/et al */
for (i=0; i<4; i++) {
int base, size;
void __iomem *reg = sba->sba_hpa + i*0x18;
base = READ_REG32(reg + LMMIO_DIRECT0_BASE);
if ((base & 1) == 0)
continue; /* not enabled */
size = READ_REG32(reg + LMMIO_DIRECT0_ROUTE);
if ((size & (ROPES_PER_IOC-1)) != rope)
continue; /* directed down different rope */
r->start = (base & ~1UL) | PCI_F_EXTEND;
size = ~ READ_REG32(reg + LMMIO_DIRECT0_MASK);
r->end = r->start + size;
r->flags = IORESOURCE_MEM;
}
}
/**
* sba_distributed_lmmio - return portion of distributed LMMIO range
* @pci_hba: The parisc device.
* @r: resource PCI host controller wants start/end fields assigned.
*
* For the given parisc PCI controller, return portion of distributed LMMIO
* range. The distributed LMMIO is always present and it's just a question
* of the base address and size of the range.
*/
void sba_distributed_lmmio(struct parisc_device *pci_hba, struct resource *r )
{
struct parisc_device *sba_dev = parisc_parent(pci_hba);
struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
char t = sba_dev->id.hw_type;
int base, size;
int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1)); /* rope # */
BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
r->start = r->end = 0;
base = READ_REG32(sba->sba_hpa + LMMIO_DIST_BASE);
if ((base & 1) == 0) {
BUG(); /* Gah! Distr Range wasn't enabled! */
return;
}
r->start = (base & ~1UL) | PCI_F_EXTEND;
size = (~READ_REG32(sba->sba_hpa + LMMIO_DIST_MASK)) / ROPES_PER_IOC;
r->start += rope * (size + 1); /* adjust base for this rope */
r->end = r->start + size;
r->flags = IORESOURCE_MEM;
}
| linux-master | drivers/parisc/sba_iommu.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ASP Device Driver
*
* (c) Copyright 2000 The Puffin Group Inc.
*
* (c) 2000-2023 by Helge Deller <[email protected]>
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/types.h>
#include <asm/io.h>
#include <asm/led.h>
#include "gsc.h"
#define ASP_GSC_IRQ 3 /* hardcoded interrupt for GSC */
#define ASP_VER_OFFSET 0x20 /* offset of ASP version */
#define ASP_LED_ADDR 0xf0800020
#define VIPER_INT_WORD 0xFFFBF088 /* addr of viper interrupt word */
static struct gsc_asic asp;
static void asp_choose_irq(struct parisc_device *dev, void *ctrl)
{
int irq;
switch (dev->id.sversion) {
case 0x71: irq = 9; break; /* SCSI */
case 0x72: irq = 8; break; /* LAN */
case 0x73: irq = 1; break; /* HIL */
case 0x74: irq = 7; break; /* Centronics */
case 0x75: irq = (dev->hw_path == 4) ? 5 : 6; break; /* RS232 */
case 0x76: irq = 10; break; /* EISA BA */
case 0x77: irq = 11; break; /* Graphics1 */
case 0x7a: irq = 13; break; /* Audio (Bushmaster) */
case 0x7b: irq = 13; break; /* Audio (Scorpio) */
case 0x7c: irq = 3; break; /* FW SCSI */
case 0x7d: irq = 4; break; /* FDDI */
case 0x7f: irq = 13; break; /* Audio (Outfield) */
default: return; /* Unknown */
}
gsc_asic_assign_irq(ctrl, irq, &dev->irq);
switch (dev->id.sversion) {
case 0x73: irq = 2; break; /* i8042 High-priority */
case 0x76: irq = 0; break; /* EISA BA */
default: return; /* Other */
}
gsc_asic_assign_irq(ctrl, irq, &dev->aux_irq);
}
/* There are two register ranges we're interested in. Interrupt /
* Status / LED are at 0xf080xxxx and Asp special registers are at
* 0xf082fxxx. PDC only tells us that Asp is at 0xf082f000, so for
* the purposes of interrupt handling, we have to tell other bits of
* the kernel to look at the other registers.
*/
#define ASP_INTERRUPT_ADDR 0xf0800000
static int __init asp_init_chip(struct parisc_device *dev)
{
struct gsc_irq gsc_irq;
int ret;
asp.version = gsc_readb(dev->hpa.start + ASP_VER_OFFSET) & 0xf;
asp.name = (asp.version == 1) ? "Asp" : "Cutoff";
asp.hpa = ASP_INTERRUPT_ADDR;
printk(KERN_INFO "%s version %d at 0x%lx found.\n",
asp.name, asp.version, (unsigned long)dev->hpa.start);
/* the IRQ ASP should use */
ret = -EBUSY;
dev->irq = gsc_claim_irq(&gsc_irq, ASP_GSC_IRQ);
if (dev->irq < 0) {
printk(KERN_ERR "%s(): cannot get GSC irq\n", __func__);
goto out;
}
asp.eim = ((u32) gsc_irq.txn_addr) | gsc_irq.txn_data;
ret = request_irq(gsc_irq.irq, gsc_asic_intr, 0, "asp", &asp);
if (ret < 0)
goto out;
/* Program VIPER to interrupt on the ASP irq */
gsc_writel((1 << (31 - ASP_GSC_IRQ)),VIPER_INT_WORD);
/* Done init'ing, register this driver */
ret = gsc_common_setup(dev, &asp);
if (ret)
goto out;
gsc_fixup_irqs(dev, &asp, asp_choose_irq);
/* Mongoose is a sibling of Asp, not a child... */
gsc_fixup_irqs(parisc_parent(dev), &asp, asp_choose_irq);
/* initialize the chassis LEDs */
#ifdef CONFIG_CHASSIS_LCD_LED
register_led_driver(DISPLAY_MODEL_OLD_ASP, LED_CMD_REG_NONE,
ASP_LED_ADDR);
#endif
out:
return ret;
}
static const struct parisc_device_id asp_tbl[] __initconst = {
{ HPHW_BA, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x00070 },
{ 0, }
};
MODULE_DEVICE_TABLE(parisc, asp_tbl);
static struct parisc_driver asp_driver __refdata = {
.name = "asp",
.id_table = asp_tbl,
.probe = asp_init_chip,
};
static int __init asp_init(void)
{
return register_parisc_driver(&asp_driver);
}
arch_initcall(asp_init);
| linux-master | drivers/parisc/asp.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* LASI Device Driver
*
* (c) Copyright 1999 Red Hat Software
* Portions (c) Copyright 1999 The Puffin Group Inc.
* Portions (c) Copyright 1999 Hewlett-Packard
*
* by Alan Cox <[email protected]> and
* Alex deVries <[email protected]>
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/types.h>
#include <linux/reboot.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/led.h>
#include "gsc.h"
#define LASI_VER 0xC008 /* LASI Version */
#define LASI_IO_CONF 0x7FFFE /* LASI primary configuration register */
#define LASI_IO_CONF2 0x7FFFF /* LASI secondary configuration register */
static void lasi_choose_irq(struct parisc_device *dev, void *ctrl)
{
int irq;
switch (dev->id.sversion) {
case 0x74: irq = 7; break; /* Centronics */
case 0x7B: irq = 13; break; /* Audio */
case 0x81: irq = 14; break; /* Lasi itself */
case 0x82: irq = 9; break; /* SCSI */
case 0x83: irq = 20; break; /* Floppy */
case 0x84: irq = 26; break; /* PS/2 Keyboard */
case 0x87: irq = 18; break; /* ISDN */
case 0x8A: irq = 8; break; /* LAN */
case 0x8C: irq = 5; break; /* RS232 */
case 0x8D: irq = (dev->hw_path == 13) ? 16 : 17; break;
/* Telephone */
default: return; /* unknown */
}
gsc_asic_assign_irq(ctrl, irq, &dev->irq);
}
static void __init
lasi_init_irq(struct gsc_asic *this_lasi)
{
unsigned long lasi_base = this_lasi->hpa;
/* Stop LASI barking for a bit */
gsc_writel(0x00000000, lasi_base+OFFSET_IMR);
/* clear pending interrupts */
gsc_readl(lasi_base+OFFSET_IRR);
/* We're not really convinced we want to reset the onboard
* devices. Firmware does it for us...
*/
/* Resets */
/* gsc_writel(0xFFFFFFFF, lasi_base+0x2000);*/ /* Parallel */
if(pdc_add_valid(lasi_base+0x4004) == PDC_OK)
gsc_writel(0xFFFFFFFF, lasi_base+0x4004); /* Audio */
/* gsc_writel(0xFFFFFFFF, lasi_base+0x5000);*/ /* Serial */
/* gsc_writel(0xFFFFFFFF, lasi_base+0x6000);*/ /* SCSI */
gsc_writel(0xFFFFFFFF, lasi_base+0x7000); /* LAN */
gsc_writel(0xFFFFFFFF, lasi_base+0x8000); /* Keyboard */
gsc_writel(0xFFFFFFFF, lasi_base+0xA000); /* FDC */
/* Ok we hit it on the head with a hammer, our Dog is now
** comatose and muzzled. Devices will now unmask LASI
** interrupts as they are registered as irq's in the LASI range.
*/
/* XXX: I thought it was `awks that got `it on the `ead with an
* `ammer. -- willy
*/
}
/*
** lasi_led_init()
**
** lasi_led_init() initializes the LED controller on the LASI.
**
** Since Mirage and Electra machines use a different LED
** address register, we need to check for these machines
** explicitly.
*/
#ifndef CONFIG_CHASSIS_LCD_LED
#define lasi_led_init(x) /* nothing */
#else
static void __init lasi_led_init(unsigned long lasi_hpa)
{
unsigned long datareg;
switch (CPU_HVERSION) {
/* Gecko machines have only one single LED, which can be permanently
turned on by writing a zero into the power control register. */
case 0x600: /* Gecko (712/60) */
case 0x601: /* Gecko (712/80) */
case 0x602: /* Gecko (712/100) */
case 0x603: /* Anole 64 (743/64) */
case 0x604: /* Anole 100 (743/100) */
case 0x605: /* Gecko (712/120) */
datareg = lasi_hpa + 0x0000C000;
gsc_writeb(0, datareg);
return; /* no need to register the LED interrupt-function */
/* Mirage and Electra machines need special offsets */
case 0x60A: /* Mirage Jr (715/64) */
case 0x60B: /* Mirage 100 */
case 0x60C: /* Mirage 100+ */
case 0x60D: /* Electra 100 */
case 0x60E: /* Electra 120 */
datareg = lasi_hpa - 0x00020000;
break;
default:
datareg = lasi_hpa + 0x0000C000;
break;
}
register_led_driver(DISPLAY_MODEL_LASI, LED_CMD_REG_NONE, datareg);
}
#endif
/*
* lasi_power_off
*
* Function for lasi to turn off the power. This is accomplished by setting a
* 1 to PWR_ON_L in the Power Control Register
*
*/
static int lasi_power_off(struct sys_off_data *data)
{
struct gsc_asic *lasi = data->cb_data;
/* Power down the machine via Power Control Register */
gsc_writel(0x02, lasi->hpa + 0x0000C000);
/* might not be reached: */
return NOTIFY_DONE;
}
static int __init lasi_init_chip(struct parisc_device *dev)
{
struct gsc_asic *lasi;
int ret;
lasi = kzalloc(sizeof(*lasi), GFP_KERNEL);
if (!lasi)
return -ENOMEM;
lasi->name = "Lasi";
lasi->hpa = dev->hpa.start;
/* Check the 4-bit (yes, only 4) version register */
lasi->version = gsc_readl(lasi->hpa + LASI_VER) & 0xf;
printk(KERN_INFO "%s version %d at 0x%lx found.\n",
lasi->name, lasi->version, lasi->hpa);
/* initialize the chassis LEDs really early */
lasi_led_init(lasi->hpa);
/* Stop LASI barking for a bit */
lasi_init_irq(lasi);
/* the IRQ lasi should use */
dev->irq = gsc_alloc_irq(&lasi->gsc_irq);
if (dev->irq < 0) {
printk(KERN_ERR "%s(): cannot get GSC irq\n",
__func__);
kfree(lasi);
return -EBUSY;
}
lasi->eim = ((u32) lasi->gsc_irq.txn_addr) | lasi->gsc_irq.txn_data;
ret = request_irq(lasi->gsc_irq.irq, gsc_asic_intr, 0, "lasi", lasi);
if (ret < 0) {
kfree(lasi);
return ret;
}
/* enable IRQ's for devices below LASI */
gsc_writel(lasi->eim, lasi->hpa + OFFSET_IAR);
/* Done init'ing, register this driver */
ret = gsc_common_setup(dev, lasi);
if (ret) {
kfree(lasi);
return ret;
}
gsc_fixup_irqs(dev, lasi, lasi_choose_irq);
/* register the LASI power off function */
register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
SYS_OFF_PRIO_DEFAULT, lasi_power_off, lasi);
return ret;
}
static struct parisc_device_id lasi_tbl[] __initdata = {
{ HPHW_BA, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x00081 },
{ 0, }
};
MODULE_DEVICE_TABLE(parisc, lasi_tbl);
static struct parisc_driver lasi_driver __refdata = {
.name = "lasi",
.id_table = lasi_tbl,
.probe = lasi_init_chip,
};
static int __init lasi_init(void)
{
return register_parisc_driver(&lasi_driver);
}
arch_initcall(lasi_init);
| linux-master | drivers/parisc/lasi.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/* National Semiconductor NS87560UBD Super I/O controller used in
* HP [BCJ]x000 workstations.
*
* This chip is a horrid piece of engineering, and National
* denies any knowledge of its existence. Thus no datasheet is
* available off www.national.com.
*
* (C) Copyright 2000 Linuxcare, Inc.
* (C) Copyright 2000 Linuxcare Canada, Inc.
* (C) Copyright 2000 Martin K. Petersen <[email protected]>
* (C) Copyright 2000 Alex deVries <[email protected]>
* (C) Copyright 2001 John Marvin <jsm fc hp com>
* (C) Copyright 2003 Grant Grundler <grundler parisc-linux org>
* (C) Copyright 2005 Kyle McMartin <[email protected]>
* (C) Copyright 2006 Helge Deller <[email protected]>
*
* The initial version of this is by Martin Peterson. Alex deVries
* has spent a bit of time trying to coax it into working.
*
* Major changes to get basic interrupt infrastructure working to
* hopefully be able to support all SuperIO devices. Currently
* works with serial. -- John Marvin <[email protected]>
*
* Converted superio_init() to be a PCI_FIXUP_FINAL callee.
* -- Kyle McMartin <[email protected]>
*/
/* NOTES:
*
* Function 0 is an IDE controller. It is identical to a PC87415 IDE
* controller (and identifies itself as such).
*
* Function 1 is a "Legacy I/O" controller. Under this function is a
* whole mess of legacy I/O peripherals. Of course, HP hasn't enabled
* all the functionality in hardware, but the following is available:
*
* Two 16550A compatible serial controllers
* An IEEE 1284 compatible parallel port
* A floppy disk controller
*
* Function 2 is a USB controller.
*
* We must be incredibly careful during initialization. Since all
* interrupts are routed through function 1 (which is not allowed by
* the PCI spec), we need to program the PICs on the legacy I/O port
* *before* we attempt to set up IDE and USB. @#$!&
*
* According to HP, devices are only enabled by firmware if they have
* a physical device connected.
*
* Configuration register bits:
* 0x5A: FDC, SP1, IDE1, SP2, IDE2, PAR, Reserved, P92
* 0x5B: RTC, 8259, 8254, DMA1, DMA2, KBC, P61, APM
*
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/serial.h>
#include <linux/pci.h>
#include <linux/parport.h>
#include <linux/parport_pc.h>
#include <linux/termios.h>
#include <linux/tty.h>
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/superio.h>
static struct superio_device sio_dev;
#undef DEBUG_SUPERIO_INIT
#ifdef DEBUG_SUPERIO_INIT
#define DBG_INIT(x...) printk(x)
#else
#define DBG_INIT(x...)
#endif
#define SUPERIO "SuperIO"
#define PFX SUPERIO ": "
static irqreturn_t
superio_interrupt(int parent_irq, void *devp)
{
u8 results;
u8 local_irq;
/* Poll the 8259 to see if there's an interrupt. */
outb (OCW3_POLL,IC_PIC1+0);
results = inb(IC_PIC1+0);
/*
* Bit 7: 1 = active Interrupt; 0 = no Interrupt pending
* Bits 6-3: zero
* Bits 2-0: highest priority, active requesting interrupt ID (0-7)
*/
if ((results & 0x80) == 0) {
/* I suspect "spurious" interrupts are from unmasking an IRQ.
* We don't know if an interrupt was/is pending and thus
* just call the handler for that IRQ as if it were pending.
*/
return IRQ_NONE;
}
/* Check to see which device is interrupting */
local_irq = results & 0x0f;
if (local_irq == 2 || local_irq > 7) {
printk(KERN_ERR PFX "slave interrupted!\n");
return IRQ_HANDLED;
}
if (local_irq == 7) {
/* Could be spurious. Check in service bits */
outb(OCW3_ISR,IC_PIC1+0);
results = inb(IC_PIC1+0);
if ((results & 0x80) == 0) { /* if ISR7 not set: spurious */
printk(KERN_WARNING PFX "spurious interrupt!\n");
return IRQ_HANDLED;
}
}
/* Call the appropriate device's interrupt */
generic_handle_irq(local_irq);
/* set EOI - forces a new interrupt if a lower priority device
* still needs service.
*/
outb((OCW2_SEOI|local_irq),IC_PIC1 + 0);
return IRQ_HANDLED;
}
/* Initialize Super I/O device */
static void
superio_init(struct pci_dev *pcidev)
{
struct superio_device *sio = &sio_dev;
struct pci_dev *pdev = sio->lio_pdev;
u16 word;
int ret;
if (sio->suckyio_irq_enabled)
return;
BUG_ON(!pdev);
BUG_ON(!sio->usb_pdev);
/* use the IRQ iosapic found for USB INT D... */
pdev->irq = sio->usb_pdev->irq;
/* ...then properly fixup the USB to point at suckyio PIC */
sio->usb_pdev->irq = superio_fixup_irq(sio->usb_pdev);
printk(KERN_INFO PFX "Found NS87560 Legacy I/O device at %s (IRQ %i)\n",
pci_name(pdev), pdev->irq);
pci_read_config_dword (pdev, SIO_SP1BAR, &sio->sp1_base);
sio->sp1_base &= ~1;
printk(KERN_INFO PFX "Serial port 1 at 0x%x\n", sio->sp1_base);
pci_read_config_dword (pdev, SIO_SP2BAR, &sio->sp2_base);
sio->sp2_base &= ~1;
printk(KERN_INFO PFX "Serial port 2 at 0x%x\n", sio->sp2_base);
pci_read_config_dword (pdev, SIO_PPBAR, &sio->pp_base);
sio->pp_base &= ~1;
printk(KERN_INFO PFX "Parallel port at 0x%x\n", sio->pp_base);
pci_read_config_dword (pdev, SIO_FDCBAR, &sio->fdc_base);
sio->fdc_base &= ~1;
printk(KERN_INFO PFX "Floppy controller at 0x%x\n", sio->fdc_base);
pci_read_config_dword (pdev, SIO_ACPIBAR, &sio->acpi_base);
sio->acpi_base &= ~1;
printk(KERN_INFO PFX "ACPI at 0x%x\n", sio->acpi_base);
request_region (IC_PIC1, 0x1f, "pic1");
request_region (IC_PIC2, 0x1f, "pic2");
request_region (sio->acpi_base, 0x1f, "acpi");
/* Enable the legacy I/O function */
pci_read_config_word (pdev, PCI_COMMAND, &word);
word |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | PCI_COMMAND_IO;
pci_write_config_word (pdev, PCI_COMMAND, word);
pci_set_master (pdev);
ret = pci_enable_device(pdev);
BUG_ON(ret < 0); /* not too much we can do about this... */
/*
* Next project is programming the onboard interrupt controllers.
* PDC hasn't done this for us, since it's using polled I/O.
*
* XXX Use dword writes to avoid bugs in Elroy or Suckyio Config
* space access. PCI is by nature a 32-bit bus and config
* space can be sensitive to that.
*/
/* 0x64 - 0x67 :
DMA Rtg 2
DMA Rtg 3
DMA Chan Ctl
TRIGGER_1 == 0x82 USB & IDE level triggered, rest to edge
*/
pci_write_config_dword (pdev, 0x64, 0x82000000U);
/* 0x68 - 0x6b :
TRIGGER_2 == 0x00 all edge triggered (not used)
CFG_IR_SER == 0x43 SerPort1 = IRQ3, SerPort2 = IRQ4
CFG_IR_PF == 0x65 ParPort = IRQ5, FloppyCtlr = IRQ6
CFG_IR_IDE == 0x07 IDE1 = IRQ7, reserved
*/
pci_write_config_dword (pdev, TRIGGER_2, 0x07654300U);
/* 0x6c - 0x6f :
CFG_IR_INTAB == 0x00
CFG_IR_INTCD == 0x10 USB = IRQ1
CFG_IR_PS2 == 0x00
CFG_IR_FXBUS == 0x00
*/
pci_write_config_dword (pdev, CFG_IR_INTAB, 0x00001000U);
/* 0x70 - 0x73 :
CFG_IR_USB == 0x00 not used. USB is connected to INTD.
CFG_IR_ACPI == 0x00 not used.
DMA Priority == 0x4c88 Power on default value. NFC.
*/
pci_write_config_dword (pdev, CFG_IR_USB, 0x4c880000U);
/* PIC1 Initialization Command Word register programming */
outb (0x11,IC_PIC1+0); /* ICW1: ICW4 write req | ICW1 */
outb (0x00,IC_PIC1+1); /* ICW2: interrupt vector table - not used */
outb (0x04,IC_PIC1+1); /* ICW3: Cascade */
outb (0x01,IC_PIC1+1); /* ICW4: x86 mode */
/* PIC1 Program Operational Control Words */
outb (0xff,IC_PIC1+1); /* OCW1: Mask all interrupts */
outb (0xc2,IC_PIC1+0); /* OCW2: priority (3-7,0-2) */
/* PIC2 Initialization Command Word register programming */
outb (0x11,IC_PIC2+0); /* ICW1: ICW4 write req | ICW1 */
outb (0x00,IC_PIC2+1); /* ICW2: N/A */
outb (0x02,IC_PIC2+1); /* ICW3: Slave ID code */
outb (0x01,IC_PIC2+1); /* ICW4: x86 mode */
/* Program Operational Control Words */
outb (0xff,IC_PIC1+1); /* OCW1: Mask all interrupts */
outb (0x68,IC_PIC1+0); /* OCW3: OCW3 select | ESMM | SMM */
/* Write master mask reg */
outb (0xff,IC_PIC1+1);
/* Setup USB power regulation */
outb(1, sio->acpi_base + USB_REG_CR);
if (inb(sio->acpi_base + USB_REG_CR) & 1)
printk(KERN_INFO PFX "USB regulator enabled\n");
else
printk(KERN_ERR PFX "USB regulator not initialized!\n");
if (request_irq(pdev->irq, superio_interrupt, 0,
SUPERIO, (void *)sio)) {
printk(KERN_ERR PFX "could not get irq\n");
BUG();
return;
}
sio->suckyio_irq_enabled = 1;
}
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87560_LIO, superio_init);
static void superio_mask_irq(struct irq_data *d)
{
unsigned int irq = d->irq;
u8 r8;
if ((irq < 1) || (irq == 2) || (irq > 7)) {
printk(KERN_ERR PFX "Illegal irq number.\n");
BUG();
return;
}
/* Mask interrupt */
r8 = inb(IC_PIC1+1);
r8 |= (1 << irq);
outb (r8,IC_PIC1+1);
}
static void superio_unmask_irq(struct irq_data *d)
{
unsigned int irq = d->irq;
u8 r8;
if ((irq < 1) || (irq == 2) || (irq > 7)) {
printk(KERN_ERR PFX "Illegal irq number (%d).\n", irq);
BUG();
return;
}
/* Unmask interrupt */
r8 = inb(IC_PIC1+1);
r8 &= ~(1 << irq);
outb (r8,IC_PIC1+1);
}
static struct irq_chip superio_interrupt_type = {
.name = SUPERIO,
.irq_unmask = superio_unmask_irq,
.irq_mask = superio_mask_irq,
};
#ifdef DEBUG_SUPERIO_INIT
static unsigned short expected_device[3] = {
PCI_DEVICE_ID_NS_87415,
PCI_DEVICE_ID_NS_87560_LIO,
PCI_DEVICE_ID_NS_87560_USB
};
#endif
int superio_fixup_irq(struct pci_dev *pcidev)
{
int local_irq, i;
#ifdef DEBUG_SUPERIO_INIT
int fn;
fn = PCI_FUNC(pcidev->devfn);
/* Verify the function number matches the expected device id. */
if (expected_device[fn] != pcidev->device) {
BUG();
return -1;
}
printk(KERN_DEBUG "superio_fixup_irq(%s) ven 0x%x dev 0x%x from %ps\n",
pci_name(pcidev),
pcidev->vendor, pcidev->device,
__builtin_return_address(0));
#endif
for (i = 0; i < 16; i++) {
irq_set_chip_and_handler(i, &superio_interrupt_type,
handle_simple_irq);
}
/*
* We don't allocate a SuperIO irq for the legacy IO function,
* since it is a "bridge". Instead, we will allocate irq's for
* each legacy device as they are initialized.
*/
switch(pcidev->device) {
case PCI_DEVICE_ID_NS_87415: /* Function 0 */
local_irq = IDE_IRQ;
break;
case PCI_DEVICE_ID_NS_87560_LIO: /* Function 1 */
sio_dev.lio_pdev = pcidev; /* save for superio_init() */
return -1;
case PCI_DEVICE_ID_NS_87560_USB: /* Function 2 */
sio_dev.usb_pdev = pcidev; /* save for superio_init() */
local_irq = USB_IRQ;
break;
default:
local_irq = -1;
BUG();
break;
}
return local_irq;
}
static void __init superio_serial_init(void)
{
#ifdef CONFIG_SERIAL_8250
int retval;
struct uart_port serial_port;
memset(&serial_port, 0, sizeof(serial_port));
serial_port.iotype = UPIO_PORT;
serial_port.type = PORT_16550A;
serial_port.uartclk = 115200*16;
serial_port.flags = UPF_FIXED_PORT | UPF_FIXED_TYPE |
UPF_BOOT_AUTOCONF;
/* serial port #1 */
serial_port.iobase = sio_dev.sp1_base;
serial_port.irq = SP1_IRQ;
serial_port.line = 0;
retval = early_serial_setup(&serial_port);
if (retval < 0) {
printk(KERN_WARNING PFX "Register Serial #0 failed.\n");
return;
}
/* serial port #2 */
serial_port.iobase = sio_dev.sp2_base;
serial_port.irq = SP2_IRQ;
serial_port.line = 1;
retval = early_serial_setup(&serial_port);
if (retval < 0)
printk(KERN_WARNING PFX "Register Serial #1 failed.\n");
#endif /* CONFIG_SERIAL_8250 */
}
static void __init superio_parport_init(void)
{
#ifdef CONFIG_PARPORT_PC
if (!parport_pc_probe_port(sio_dev.pp_base,
0 /*base_hi*/,
PAR_IRQ,
PARPORT_DMA_NONE /* dma */,
NULL /*struct pci_dev* */,
0 /* shared irq flags */))
printk(KERN_WARNING PFX "Probing parallel port failed.\n");
#endif /* CONFIG_PARPORT_PC */
}
static void superio_fixup_pci(struct pci_dev *pdev)
{
u8 prog;
pdev->class |= 0x5;
pci_write_config_byte(pdev, PCI_CLASS_PROG, pdev->class);
pci_read_config_byte(pdev, PCI_CLASS_PROG, &prog);
printk("PCI: Enabled native mode for NS87415 (pif=0x%x)\n", prog);
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87415, superio_fixup_pci);
static int __init
superio_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
struct superio_device *sio = &sio_dev;
/*
** superio_probe(00:0e.0) ven 0x100b dev 0x2 sv 0x0 sd 0x0 class 0x1018a
** superio_probe(00:0e.1) ven 0x100b dev 0xe sv 0x0 sd 0x0 class 0x68000
** superio_probe(00:0e.2) ven 0x100b dev 0x12 sv 0x0 sd 0x0 class 0xc0310
*/
DBG_INIT("superio_probe(%s) ven 0x%x dev 0x%x sv 0x%x sd 0x%x class 0x%x\n",
pci_name(dev),
dev->vendor, dev->device,
dev->subsystem_vendor, dev->subsystem_device,
dev->class);
BUG_ON(!sio->suckyio_irq_enabled); /* Enabled by PCI_FIXUP_FINAL */
if (dev->device == PCI_DEVICE_ID_NS_87560_LIO) { /* Function 1 */
superio_parport_init();
superio_serial_init();
/* REVISIT XXX : superio_fdc_init() ? */
return 0;
} else if (dev->device == PCI_DEVICE_ID_NS_87415) { /* Function 0 */
DBG_INIT("superio_probe: ignoring IDE 87415\n");
} else if (dev->device == PCI_DEVICE_ID_NS_87560_USB) { /* Function 2 */
DBG_INIT("superio_probe: ignoring USB OHCI controller\n");
} else {
DBG_INIT("superio_probe: WTF? Fire Extinguisher?\n");
}
/* Let appropriate other driver claim this device. */
return -ENODEV;
}
static const struct pci_device_id superio_tbl[] __initconst = {
{ PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87560_LIO) },
{ PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87560_USB) },
{ PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87415) },
{ 0, }
};
static struct pci_driver superio_driver __refdata = {
.name = SUPERIO,
.id_table = superio_tbl,
.probe = superio_probe,
};
module_pci_driver(superio_driver);
| linux-master | drivers/parisc/superio.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* EISA "eeprom" support routines
*
* Copyright (C) 2001 Thomas Bogendoerfer <tsbogend at parisc-linux.org>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <asm/eisa_eeprom.h>
#define EISA_EEPROM_MINOR 241
static loff_t eisa_eeprom_llseek(struct file *file, loff_t offset, int origin)
{
return fixed_size_llseek(file, offset, origin, HPEE_MAX_LENGTH);
}
static ssize_t eisa_eeprom_read(struct file * file,
char __user *buf, size_t count, loff_t *ppos )
{
unsigned char *tmp;
ssize_t ret;
int i;
if (*ppos < 0 || *ppos >= HPEE_MAX_LENGTH)
return 0;
count = *ppos + count < HPEE_MAX_LENGTH ? count : HPEE_MAX_LENGTH - *ppos;
tmp = kmalloc(count, GFP_KERNEL);
if (tmp) {
for (i = 0; i < count; i++)
tmp[i] = readb(eisa_eeprom_addr+(*ppos)++);
if (copy_to_user (buf, tmp, count))
ret = -EFAULT;
else
ret = count;
kfree (tmp);
} else
ret = -ENOMEM;
return ret;
}
static int eisa_eeprom_open(struct inode *inode, struct file *file)
{
if (file->f_mode & FMODE_WRITE)
return -EINVAL;
return 0;
}
static int eisa_eeprom_release(struct inode *inode, struct file *file)
{
return 0;
}
/*
* The various file operations we support.
*/
static const struct file_operations eisa_eeprom_fops = {
.owner = THIS_MODULE,
.llseek = eisa_eeprom_llseek,
.read = eisa_eeprom_read,
.open = eisa_eeprom_open,
.release = eisa_eeprom_release,
};
static struct miscdevice eisa_eeprom_dev = {
EISA_EEPROM_MINOR,
"eisa_eeprom",
&eisa_eeprom_fops
};
static int __init eisa_eeprom_init(void)
{
int retval;
if (!eisa_eeprom_addr)
return -ENODEV;
retval = misc_register(&eisa_eeprom_dev);
if (retval < 0) {
printk(KERN_ERR "EISA EEPROM: cannot register misc device.\n");
return retval;
}
printk(KERN_INFO "EISA EEPROM at 0x%px\n", eisa_eeprom_addr);
return 0;
}
MODULE_LICENSE("GPL");
module_init(eisa_eeprom_init);
| linux-master | drivers/parisc/eisa_eeprom.c |
/*
* linux/drivers/parisc/power.c
* HP PARISC soft power switch support driver
*
* Copyright (c) 2001-2007 Helge Deller <[email protected]>
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
*
*
* HINT:
* Support of the soft power switch button may be enabled or disabled at
* runtime through the "/proc/sys/kernel/power" procfs entry.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/panic_notifier.h>
#include <linux/reboot.h>
#include <linux/sched/signal.h>
#include <linux/kthread.h>
#include <linux/pm.h>
#include <asm/pdc.h>
#include <asm/io.h>
#include <asm/led.h>
#define DRIVER_NAME "powersw"
#define KTHREAD_NAME "kpowerswd"
/* how often should the power button be polled ? */
#define POWERSWITCH_POLL_PER_SEC 2
/* how long does the power button needs to be down until we react ? */
#define POWERSWITCH_DOWN_SEC 2
/* assembly code to access special registers */
/* taken from PCXL ERS page 82 */
#define DIAG_CODE(code) (0x14000000 + ((code)<<5))
#define MFCPU_X(rDiagReg, t_ch, t_th, code) \
(DIAG_CODE(code) + ((rDiagReg)<<21) + ((t_ch)<<16) + ((t_th)<<0) )
#define MTCPU(dr, gr) MFCPU_X(dr, gr, 0, 0x12) /* move value of gr to dr[dr] */
#define MFCPU_C(dr, gr) MFCPU_X(dr, gr, 0, 0x30) /* for dr0 and dr8 only ! */
#define MFCPU_T(dr, gr) MFCPU_X(dr, 0, gr, 0xa0) /* all dr except dr0 and dr8 */
#define __getDIAG(dr) ( { \
register unsigned long __res asm("r28");\
__asm__ __volatile__ ( \
".word %1" : "=&r" (__res) : "i" (MFCPU_T(dr,28) ) \
); \
__res; \
} )
/* local shutdown counter */
static int shutdown_timer __read_mostly;
/* check, give feedback and start shutdown after one second */
static void process_shutdown(void)
{
if (shutdown_timer == 0)
printk(KERN_ALERT KTHREAD_NAME ": Shutdown requested...\n");
shutdown_timer++;
/* wait until the button was pressed for 1 second */
if (shutdown_timer == (POWERSWITCH_DOWN_SEC*POWERSWITCH_POLL_PER_SEC)) {
static const char msg[] = "Shutting down...";
printk(KERN_INFO KTHREAD_NAME ": %s\n", msg);
lcd_print(msg);
/* send kill signal */
if (kill_cad_pid(SIGINT, 1)) {
/* just in case killing init process failed */
machine_power_off();
}
}
}
/* main power switch task struct */
static struct task_struct *power_task;
/* filename in /proc which can be used to enable/disable the power switch */
#define SYSCTL_FILENAME "sys/kernel/power"
/* soft power switch enabled/disabled */
int pwrsw_enabled __read_mostly = 1;
/* main kernel thread worker. It polls the button state */
static int kpowerswd(void *param)
{
__set_current_state(TASK_RUNNING);
do {
int button_not_pressed;
unsigned long soft_power_reg = (unsigned long) param;
schedule_timeout_interruptible(pwrsw_enabled ? HZ : HZ/POWERSWITCH_POLL_PER_SEC);
if (unlikely(!pwrsw_enabled))
continue;
if (soft_power_reg) {
/*
* Non-Gecko-style machines:
* Check the power switch status which is read from the
* real I/O location at soft_power_reg.
* Bit 31 ("the lowest bit) is the status of the power switch.
* This bit is "1" if the button is NOT pressed.
*/
button_not_pressed = (gsc_readl(soft_power_reg) & 0x1);
} else {
/*
* On gecko style machines (e.g. 712/xx and 715/xx)
* the power switch status is stored in Bit 0 ("the highest bit")
* of CPU diagnose register 25.
* Warning: Some machines never reset the DIAG flag, even if
* the button has been released again.
*/
button_not_pressed = (__getDIAG(25) & 0x80000000);
}
if (likely(button_not_pressed)) {
if (unlikely(shutdown_timer && /* avoid writing if not necessary */
shutdown_timer < (POWERSWITCH_DOWN_SEC*POWERSWITCH_POLL_PER_SEC))) {
shutdown_timer = 0;
printk(KERN_INFO KTHREAD_NAME ": Shutdown request aborted.\n");
}
} else
process_shutdown();
} while (!kthread_should_stop());
return 0;
}
/*
* powerfail interruption handler (irq IRQ_FROM_REGION(CPU_IRQ_REGION)+2)
*/
#if 0
static void powerfail_interrupt(int code, void *x)
{
printk(KERN_CRIT "POWERFAIL INTERRUPTION !\n");
poweroff();
}
#endif
/*
* parisc_panic_event() is called by the panic handler.
*
* As soon as a panic occurs, our tasklets above will not
* be executed any longer. This function then re-enables
* the soft-power switch and allows the user to switch off
* the system. We rely in pdc_soft_power_button_panic()
* since this version spin_trylocks (instead of regular
* spinlock), preventing deadlocks on panic path.
*/
static int parisc_panic_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
/* re-enable the soft-power switch */
pdc_soft_power_button_panic(0);
return NOTIFY_DONE;
}
static struct notifier_block parisc_panic_block = {
.notifier_call = parisc_panic_event,
.priority = INT_MAX,
};
static int __init power_init(void)
{
unsigned long ret;
unsigned long soft_power_reg;
#if 0
request_irq( IRQ_FROM_REGION(CPU_IRQ_REGION)+2, &powerfail_interrupt,
0, "powerfail", NULL);
#endif
/* enable the soft power switch if possible */
ret = pdc_soft_power_info(&soft_power_reg);
if (ret == PDC_OK)
ret = pdc_soft_power_button(1);
if (ret != PDC_OK)
soft_power_reg = -1UL;
switch (soft_power_reg) {
case 0: printk(KERN_INFO DRIVER_NAME ": Gecko-style soft power switch enabled.\n");
break;
case -1UL: printk(KERN_INFO DRIVER_NAME ": Soft power switch support not available.\n");
return -ENODEV;
default: printk(KERN_INFO DRIVER_NAME ": Soft power switch at 0x%08lx enabled.\n",
soft_power_reg);
}
power_task = kthread_run(kpowerswd, (void*)soft_power_reg, KTHREAD_NAME);
if (IS_ERR(power_task)) {
printk(KERN_ERR DRIVER_NAME ": thread creation failed. Driver not loaded.\n");
pdc_soft_power_button(0);
return -EIO;
}
/* Register a call for panic conditions. */
atomic_notifier_chain_register(&panic_notifier_list,
&parisc_panic_block);
return 0;
}
static void __exit power_exit(void)
{
kthread_stop(power_task);
atomic_notifier_chain_unregister(&panic_notifier_list,
&parisc_panic_block);
pdc_soft_power_button(0);
}
arch_initcall(power_init);
module_exit(power_exit);
MODULE_AUTHOR("Helge Deller <[email protected]>");
MODULE_DESCRIPTION("Soft power switch driver");
MODULE_LICENSE("Dual BSD/GPL");
| linux-master | drivers/parisc/power.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* eisa_enumerator.c - provide support for EISA adapters in PA-RISC machines
*
* Copyright (c) 2002 Daniel Engstrom <[email protected]>
*/
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <asm/byteorder.h>
#include <asm/eisa_bus.h>
#include <asm/eisa_eeprom.h>
/*
* Todo:
*
* PORT init with MASK attr and other size than byte
* MEMORY with other decode than 20 bit
* CRC stuff
* FREEFORM stuff
*/
#define EPI 0xc80
#define NUM_SLOT 16
#define SLOT2PORT(x) (x<<12)
/* macros to handle unaligned accesses and
* byte swapping. The data in the EEPROM is
* little-endian on the big-endian PAROSC */
#define get_8(x) (*(u_int8_t*)(x))
static inline u_int16_t get_16(const unsigned char *x)
{
return (x[1] << 8) | x[0];
}
static inline u_int32_t get_32(const unsigned char *x)
{
return (x[3] << 24) | (x[2] << 16) | (x[1] << 8) | x[0];
}
static inline u_int32_t get_24(const unsigned char *x)
{
return (x[2] << 24) | (x[1] << 16) | (x[0] << 8);
}
static void print_eisa_id(char *s, u_int32_t id)
{
char vendor[4];
int rev;
int device;
rev = id & 0xff;
id >>= 8;
device = id & 0xff;
id >>= 8;
vendor[3] = '\0';
vendor[2] = '@' + (id & 0x1f);
id >>= 5;
vendor[1] = '@' + (id & 0x1f);
id >>= 5;
vendor[0] = '@' + (id & 0x1f);
id >>= 5;
sprintf(s, "%s%02X%02X", vendor, device, rev);
}
static int configure_memory(const unsigned char *buf,
struct resource *mem_parent,
char *name)
{
int len;
u_int8_t c;
int i;
struct resource *res;
len=0;
for (i=0;i<HPEE_MEMORY_MAX_ENT;i++) {
c = get_8(buf+len);
if (NULL != (res = kzalloc(sizeof(struct resource), GFP_KERNEL))) {
int result;
res->name = name;
res->start = mem_parent->start + get_24(buf+len+2);
res->end = res->start + get_16(buf+len+5)*1024;
res->flags = IORESOURCE_MEM;
pr_cont("memory %pR ", res);
result = request_resource(mem_parent, res);
if (result < 0) {
printk(KERN_ERR "EISA Enumerator: failed to claim EISA Bus address space!\n");
return result;
}
}
len+=7;
if (!(c & HPEE_MEMORY_MORE)) {
break;
}
}
return len;
}
static int configure_irq(const unsigned char *buf)
{
int len;
u_int8_t c;
int i;
len=0;
for (i=0;i<HPEE_IRQ_MAX_ENT;i++) {
c = get_8(buf+len);
pr_cont("IRQ %d ", c & HPEE_IRQ_CHANNEL_MASK);
if (c & HPEE_IRQ_TRIG_LEVEL) {
eisa_make_irq_level(c & HPEE_IRQ_CHANNEL_MASK);
} else {
eisa_make_irq_edge(c & HPEE_IRQ_CHANNEL_MASK);
}
len+=2;
/* hpux seems to allow for
* two bytes of irq data but only defines one of
* them, I think */
if (!(c & HPEE_IRQ_MORE)) {
break;
}
}
return len;
}
static int configure_dma(const unsigned char *buf)
{
int len;
u_int8_t c;
int i;
len=0;
for (i=0;i<HPEE_DMA_MAX_ENT;i++) {
c = get_8(buf+len);
pr_cont("DMA %d ", c&HPEE_DMA_CHANNEL_MASK);
/* fixme: maybe initialize the dma channel withthe timing ? */
len+=2;
if (!(c & HPEE_DMA_MORE)) {
break;
}
}
return len;
}
static int configure_port(const unsigned char *buf, struct resource *io_parent,
char *board)
{
int len;
u_int8_t c;
int i;
struct resource *res;
int result;
len=0;
for (i=0;i<HPEE_PORT_MAX_ENT;i++) {
c = get_8(buf+len);
if (NULL != (res = kzalloc(sizeof(struct resource), GFP_KERNEL))) {
res->name = board;
res->start = get_16(buf+len+1);
res->end = get_16(buf+len+1)+(c&HPEE_PORT_SIZE_MASK)+1;
res->flags = IORESOURCE_IO;
pr_cont("ioports %pR ", res);
result = request_resource(io_parent, res);
if (result < 0) {
printk(KERN_ERR "EISA Enumerator: failed to claim EISA Bus address space!\n");
return result;
}
}
len+=3;
if (!(c & HPEE_PORT_MORE)) {
break;
}
}
return len;
}
/* byte 1 and 2 is the port number to write
* and at byte 3 the value to write starts.
* I assume that there are and- and or- masks
* here when HPEE_PORT_INIT_MASK is set but I have
* not yet encountered this. */
static int configure_port_init(const unsigned char *buf)
{
int len=0;
u_int8_t c;
while (len<HPEE_PORT_INIT_MAX_LEN) {
int s=0;
c = get_8(buf+len);
switch (c & HPEE_PORT_INIT_WIDTH_MASK) {
case HPEE_PORT_INIT_WIDTH_BYTE:
s=1;
if (c & HPEE_PORT_INIT_MASK) {
printk(KERN_WARNING "port_init: unverified mask attribute\n");
outb((inb(get_16(buf+len+1) &
get_8(buf+len+3)) |
get_8(buf+len+4)), get_16(buf+len+1));
} else {
outb(get_8(buf+len+3), get_16(buf+len+1));
}
break;
case HPEE_PORT_INIT_WIDTH_WORD:
s=2;
if (c & HPEE_PORT_INIT_MASK) {
printk(KERN_WARNING "port_init: unverified mask attribute\n");
outw((inw(get_16(buf+len+1)) &
get_16(buf+len+3)) |
get_16(buf+len+5),
get_16(buf+len+1));
} else {
outw(cpu_to_le16(get_16(buf+len+3)), get_16(buf+len+1));
}
break;
case HPEE_PORT_INIT_WIDTH_DWORD:
s=4;
if (c & HPEE_PORT_INIT_MASK) {
printk(KERN_WARNING "port_init: unverified mask attribute\n");
outl((inl(get_16(buf+len+1) &
get_32(buf+len+3)) |
get_32(buf+len+7)), get_16(buf+len+1));
} else {
outl(cpu_to_le32(get_32(buf+len+3)), get_16(buf+len+1));
}
break;
default:
printk(KERN_ERR "Invalid port init word %02x\n", c);
return 0;
}
if (c & HPEE_PORT_INIT_MASK) {
s*=2;
}
len+=s+3;
if (!(c & HPEE_PORT_INIT_MORE)) {
break;
}
}
return len;
}
static int configure_choise(const unsigned char *buf, u_int8_t *info)
{
int len;
/* theis record contain the value of the functions
* configuration choises and an info byte which
* describes which other records to expect in this
* function */
len = get_8(buf);
*info=get_8(buf+len+1);
return len+2;
}
static int configure_type_string(const unsigned char *buf)
{
int len;
/* just skip past the type field */
len = get_8(buf);
if (len > 80) {
printk(KERN_ERR "eisa_enumerator: type info field too long (%d, max is 80)\n", len);
}
return 1+len;
}
static int configure_function(const unsigned char *buf, int *more)
{
/* the init field seems to be a two-byte field
* which is non-zero if there are an other function following
* I think it is the length of the function def
*/
*more = get_16(buf);
return 2;
}
static int parse_slot_config(int slot,
const unsigned char *buf,
struct eeprom_eisa_slot_info *es,
struct resource *io_parent,
struct resource *mem_parent)
{
int res=0;
int function_len;
unsigned int pos=0;
unsigned int maxlen;
int num_func=0;
u_int8_t flags;
int p0;
char *board;
int id_string_used=0;
if (NULL == (board = kmalloc(8, GFP_KERNEL))) {
return -1;
}
print_eisa_id(board, es->eisa_slot_id);
printk(KERN_INFO "EISA slot %d: %s %s ",
slot, board, es->flags&HPEE_FLAG_BOARD_IS_ISA ? "ISA" : "EISA");
maxlen = es->config_data_length < HPEE_MAX_LENGTH ?
es->config_data_length : HPEE_MAX_LENGTH;
while ((pos < maxlen) && (num_func <= es->num_functions)) {
pos+=configure_function(buf+pos, &function_len);
if (!function_len) {
break;
}
num_func++;
p0 = pos;
pos += configure_choise(buf+pos, &flags);
if (flags & HPEE_FUNCTION_INFO_F_DISABLED) {
/* function disabled, skip silently */
pos = p0 + function_len;
continue;
}
if (flags & HPEE_FUNCTION_INFO_CFG_FREE_FORM) {
/* I have no idea how to handle this */
printk("function %d have free-form configuration, skipping ",
num_func);
pos = p0 + function_len;
continue;
}
/* the ordering of the sections need
* more investigation.
* Currently I think that memory comaed before IRQ
* I assume the order is LSB to MSB in the
* info flags
* eg type, memory, irq, dma, port, HPEE_PORT_init
*/
if (flags & HPEE_FUNCTION_INFO_HAVE_TYPE) {
pos += configure_type_string(buf+pos);
}
if (flags & HPEE_FUNCTION_INFO_HAVE_MEMORY) {
id_string_used=1;
pos += configure_memory(buf+pos, mem_parent, board);
}
if (flags & HPEE_FUNCTION_INFO_HAVE_IRQ) {
pos += configure_irq(buf+pos);
}
if (flags & HPEE_FUNCTION_INFO_HAVE_DMA) {
pos += configure_dma(buf+pos);
}
if (flags & HPEE_FUNCTION_INFO_HAVE_PORT) {
id_string_used=1;
pos += configure_port(buf+pos, io_parent, board);
}
if (flags & HPEE_FUNCTION_INFO_HAVE_PORT_INIT) {
pos += configure_port_init(buf+pos);
}
if (p0 + function_len < pos) {
printk(KERN_ERR "eisa_enumerator: function %d length mismatch "
"got %d, expected %d\n",
num_func, pos-p0, function_len);
res=-1;
break;
}
pos = p0 + function_len;
}
pr_cont("\n");
if (!id_string_used) {
kfree(board);
}
if (pos != es->config_data_length) {
printk(KERN_ERR "eisa_enumerator: config data length mismatch got %d, expected %d\n",
pos, es->config_data_length);
res=-1;
}
if (num_func != es->num_functions) {
printk(KERN_ERR "eisa_enumerator: number of functions mismatch got %d, expected %d\n",
num_func, es->num_functions);
res=-2;
}
return res;
}
static int init_slot(int slot, struct eeprom_eisa_slot_info *es)
{
unsigned int id;
char id_string[8];
if (!(es->slot_info&HPEE_SLOT_INFO_NO_READID)) {
/* try to read the id of the board in the slot */
id = le32_to_cpu(inl(SLOT2PORT(slot)+EPI));
if (0xffffffff == id) {
/* Maybe we didn't expect a card to be here... */
if (es->eisa_slot_id == 0xffffffff)
return -1;
/* this board is not here or it does not
* support readid
*/
printk(KERN_ERR "EISA slot %d a configured board was not detected (",
slot);
print_eisa_id(id_string, es->eisa_slot_id);
printk(" expected %s)\n", id_string);
return -1;
}
if (es->eisa_slot_id != id) {
print_eisa_id(id_string, id);
printk(KERN_ERR "EISA slot %d id mismatch: got %s",
slot, id_string);
print_eisa_id(id_string, es->eisa_slot_id);
printk(" expected %s\n", id_string);
return -1;
}
}
/* now: we need to enable the board if
* it supports enabling and run through
* the port init sction if present
* and finally record any interrupt polarity
*/
if (es->slot_features & HPEE_SLOT_FEATURES_ENABLE) {
/* enable board */
outb(0x01| inb(SLOT2PORT(slot)+EPI+4),
SLOT2PORT(slot)+EPI+4);
}
return 0;
}
int eisa_enumerator(unsigned long eeprom_addr,
struct resource *io_parent, struct resource *mem_parent)
{
int i;
struct eeprom_header *eh;
static char eeprom_buf[HPEE_MAX_LENGTH];
for (i=0; i < HPEE_MAX_LENGTH; i++) {
eeprom_buf[i] = gsc_readb(eeprom_addr+i);
}
printk(KERN_INFO "Enumerating EISA bus\n");
eh = (struct eeprom_header*)(eeprom_buf);
for (i=0;i<eh->num_slots;i++) {
struct eeprom_eisa_slot_info *es;
es = (struct eeprom_eisa_slot_info*)
(&eeprom_buf[HPEE_SLOT_INFO(i)]);
if (-1==init_slot(i+1, es)) {
continue;
}
if (es->config_data_offset < HPEE_MAX_LENGTH) {
if (parse_slot_config(i+1, &eeprom_buf[es->config_data_offset],
es, io_parent, mem_parent)) {
return -1;
}
} else {
printk (KERN_WARNING "EISA EEPROM offset 0x%x out of range\n",es->config_data_offset);
return -1;
}
}
return eh->num_slots;
}
| linux-master | drivers/parisc/eisa_enumerator.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
** hppb.c:
** HP-PB bus driver for the NOVA and K-Class systems.
**
** (c) Copyright 2002 Ryan Bradetich
** (c) Copyright 2002 Hewlett-Packard Company
**
**
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/ioport.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/parisc-device.h>
#include "iommu.h"
struct hppb_card {
unsigned long hpa;
struct resource mmio_region;
struct hppb_card *next;
};
static struct hppb_card hppb_card_head = {
.hpa = 0,
.next = NULL,
};
#define IO_IO_LOW offsetof(struct bc_module, io_io_low)
#define IO_IO_HIGH offsetof(struct bc_module, io_io_high)
/**
* hppb_probe - Determine if the hppb driver should claim this device.
* @dev: The device which has been found
*
* Determine if hppb driver should claim this chip (return 0) or not
* (return 1). If so, initialize the chip and tell other partners in crime
* they have work to do.
*/
static int __init hppb_probe(struct parisc_device *dev)
{
int status;
struct hppb_card *card = &hppb_card_head;
while(card->next) {
card = card->next;
}
if(card->hpa) {
card->next = kzalloc(sizeof(struct hppb_card), GFP_KERNEL);
if(!card->next) {
printk(KERN_ERR "HP-PB: Unable to allocate memory.\n");
return 1;
}
card = card->next;
}
card->hpa = dev->hpa.start;
card->mmio_region.name = "HP-PB Bus";
card->mmio_region.flags = IORESOURCE_MEM;
card->mmio_region.start = gsc_readl(dev->hpa.start + IO_IO_LOW);
card->mmio_region.end = gsc_readl(dev->hpa.start + IO_IO_HIGH) - 1;
status = ccio_request_resource(dev, &card->mmio_region);
pr_info("Found GeckoBoa at %pap, bus space %pR,%s claimed.\n",
&dev->hpa.start,
&card->mmio_region,
(status < 0) ? " not":"" );
return 0;
}
static const struct parisc_device_id hppb_tbl[] __initconst = {
{ HPHW_BCPORT, HVERSION_REV_ANY_ID, 0x500, 0xc }, /* E25 and K */
{ HPHW_BCPORT, 0x0, 0x501, 0xc }, /* E35 */
{ HPHW_BCPORT, 0x0, 0x502, 0xc }, /* E45 */
{ HPHW_BCPORT, 0x0, 0x503, 0xc }, /* E55 */
{ 0, }
};
static struct parisc_driver hppb_driver __refdata = {
.name = "gecko_boa",
.id_table = hppb_tbl,
.probe = hppb_probe,
};
/**
* hppb_init - HP-PB bus initialization procedure.
*
* Register this driver.
*/
static int __init hppb_init(void)
{
return register_parisc_driver(&hppb_driver);
}
arch_initcall(hppb_init);
| linux-master | drivers/parisc/hppb.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
**
** PCI Lower Bus Adapter (LBA) manager
**
** (c) Copyright 1999,2000 Grant Grundler
** (c) Copyright 1999,2000 Hewlett-Packard Company
**
**
**
** This module primarily provides access to PCI bus (config/IOport
** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class
** with 4 digit model numbers - eg C3000 (and A400...sigh).
**
** LBA driver isn't as simple as the Dino driver because:
** (a) this chip has substantial bug fixes between revisions
** (Only one Dino bug has a software workaround :^( )
** (b) has more options which we don't (yet) support (DMA hints, OLARD)
** (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver)
** (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC).
** (dino only deals with "Legacy" PDC)
**
** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver.
** (I/O SAPIC is integratd in the LBA chip).
**
** FIXME: Add support to SBA and LBA drivers for DMA hint sets
** FIXME: Add support for PCI card hot-plug (OLARD).
*/
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/init.h> /* for __init */
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/page.h>
#include <asm/ropes.h>
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <asm/parisc-device.h>
#include <asm/io.h> /* read/write stuff */
#include "iommu.h"
#undef DEBUG_LBA /* general stuff */
#undef DEBUG_LBA_PORT /* debug I/O Port access */
#undef DEBUG_LBA_CFG /* debug Config Space Access (ie PCI Bus walk) */
#undef DEBUG_LBA_PAT /* debug PCI Resource Mgt code - PDC PAT only */
#undef FBB_SUPPORT /* Fast Back-Back xfers - NOT READY YET */
#ifdef DEBUG_LBA
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
#ifdef DEBUG_LBA_PORT
#define DBG_PORT(x...) printk(x)
#else
#define DBG_PORT(x...)
#endif
#ifdef DEBUG_LBA_CFG
#define DBG_CFG(x...) printk(x)
#else
#define DBG_CFG(x...)
#endif
#ifdef DEBUG_LBA_PAT
#define DBG_PAT(x...) printk(x)
#else
#define DBG_PAT(x...)
#endif
/*
** Config accessor functions only pass in the 8-bit bus number and not
** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus
** number based on what firmware wrote into the scratch register.
**
** The "secondary" bus number is set to this before calling
** pci_register_ops(). If any PPB's are present, the scan will
** discover them and update the "secondary" and "subordinate"
** fields in the pci_bus structure.
**
** Changes in the configuration *may* result in a different
** bus number for each LBA depending on what firmware does.
*/
#define MODULE_NAME "LBA"
/* non-postable I/O port space, densely packed */
#define LBA_PORT_BASE (PCI_F_EXTEND | 0xfee00000UL)
static void __iomem *astro_iop_base __read_mostly;
static u32 lba_t32;
/* lba flags */
#define LBA_FLAG_SKIP_PROBE 0x10
#define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE)
static inline struct lba_device *LBA_DEV(struct pci_hba_data *hba)
{
return container_of(hba, struct lba_device, hba);
}
/*
** Only allow 8 subsidiary busses per LBA
** Problem is the PCI bus numbering is globally shared.
*/
#define LBA_MAX_NUM_BUSES 8
/************************************
* LBA register read and write support
*
* BE WARNED: register writes are posted.
* (ie follow writes which must reach HW with a read)
*/
#define READ_U8(addr) __raw_readb(addr)
#define READ_U16(addr) __raw_readw(addr)
#define READ_U32(addr) __raw_readl(addr)
#define WRITE_U8(value, addr) __raw_writeb(value, addr)
#define WRITE_U16(value, addr) __raw_writew(value, addr)
#define WRITE_U32(value, addr) __raw_writel(value, addr)
#define READ_REG8(addr) readb(addr)
#define READ_REG16(addr) readw(addr)
#define READ_REG32(addr) readl(addr)
#define READ_REG64(addr) readq(addr)
#define WRITE_REG8(value, addr) writeb(value, addr)
#define WRITE_REG16(value, addr) writew(value, addr)
#define WRITE_REG32(value, addr) writel(value, addr)
#define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8))
#define LBA_CFG_BUS(tok) ((u8) ((tok)>>16))
#define LBA_CFG_DEV(tok) ((u8) ((tok)>>11) & 0x1f)
#define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7)
/*
** Extract LBA (Rope) number from HPA
** REVISIT: 16 ropes for Stretch/Ike?
*/
#define ROPES_PER_IOC 8
#define LBA_NUM(x) ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1))
static void
lba_dump_res(struct resource *r, int d)
{
int i;
if (NULL == r)
return;
printk(KERN_DEBUG "(%p)", r->parent);
for (i = d; i ; --i) printk(" ");
printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r,
(long)r->start, (long)r->end, r->flags);
lba_dump_res(r->child, d+2);
lba_dump_res(r->sibling, d);
}
/*
** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex
** workaround for cfg cycles:
** -- preserve LBA state
** -- prevent any DMA from occurring
** -- turn on smart mode
** -- probe with config writes before doing config reads
** -- check ERROR_STATUS
** -- clear ERROR_STATUS
** -- restore LBA state
**
** The workaround is only used for device discovery.
*/
static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d)
{
u8 first_bus = d->hba.hba_bus->busn_res.start;
u8 last_sub_bus = d->hba.hba_bus->busn_res.end;
if ((bus < first_bus) ||
(bus > last_sub_bus) ||
((bus - first_bus) >= LBA_MAX_NUM_BUSES)) {
return 0;
}
return 1;
}
#define LBA_CFG_SETUP(d, tok) { \
/* Save contents of error config register. */ \
error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); \
\
/* Save contents of status control register. */ \
status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); \
\
/* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA \
** arbitration for full bus walks. \
*/ \
/* Save contents of arb mask register. */ \
arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK); \
\
/* \
* Turn off all device arbitration bits (i.e. everything \
* except arbitration enable bit). \
*/ \
WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK); \
\
/* \
* Set the smart mode bit so that master aborts don't cause \
* LBA to go into PCI fatal mode (required). \
*/ \
WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG); \
}
#define LBA_CFG_PROBE(d, tok) { \
/* \
* Setup Vendor ID write and read back the address register \
* to make sure that LBA is the bus master. \
*/ \
WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\
/* \
* Read address register to ensure that LBA is the bus master, \
* which implies that DMA traffic has stopped when DMA arb is off. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
/* \
* Generate a cfg write cycle (will have no affect on \
* Vendor ID register since read-only). \
*/ \
WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA); \
/* \
* Make sure write has completed before proceeding further, \
* i.e. before setting clear enable. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
}
/*
* HPREVISIT:
* -- Can't tell if config cycle got the error.
*
* OV bit is broken until rev 4.0, so can't use OV bit and
* LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle.
*
* As of rev 4.0, no longer need the error check.
*
* -- Even if we could tell, we still want to return -1
* for **ANY** error (not just master abort).
*
* -- Only clear non-fatal errors (we don't want to bring
* LBA out of pci-fatal mode).
*
* Actually, there is still a race in which
* we could be clearing a fatal error. We will
* live with this during our initial bus walk
* until rev 4.0 (no driver activity during
* initial bus walk). The initial bus walk
* has race conditions concerning the use of
* smart mode as well.
*/
#define LBA_MASTER_ABORT_ERROR 0xc
#define LBA_FATAL_ERROR 0x10
#define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) { \
u32 error_status = 0; \
/* \
* Set clear enable (CE) bit. Unset by HW when new \
* errors are logged -- LBA HW ERS section 14.3.3). \
*/ \
WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \
error_status = READ_REG32(base + LBA_ERROR_STATUS); \
if ((error_status & 0x1f) != 0) { \
/* \
* Fail the config read request. \
*/ \
error = 1; \
if ((error_status & LBA_FATAL_ERROR) == 0) { \
/* \
* Clear error status (if fatal bit not set) by setting \
* clear error log bit (CL). \
*/ \
WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \
} \
} \
}
#define LBA_CFG_TR4_ADDR_SETUP(d, addr) \
WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR);
#define LBA_CFG_ADDR_SETUP(d, addr) { \
WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
/* \
* Read address register to ensure that LBA is the bus master, \
* which implies that DMA traffic has stopped when DMA arb is off. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
}
#define LBA_CFG_RESTORE(d, base) { \
/* \
* Restore status control register (turn off clear enable). \
*/ \
WRITE_REG32(status_control, base + LBA_STAT_CTL); \
/* \
* Restore error config register (turn off smart mode). \
*/ \
WRITE_REG32(error_config, base + LBA_ERROR_CONFIG); \
/* \
* Restore arb mask register (reenables DMA arbitration). \
*/ \
WRITE_REG32(arb_mask, base + LBA_ARB_MASK); \
}
static unsigned int
lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size)
{
u32 data = ~0U;
int error = 0;
u32 arb_mask = 0; /* used by LBA_CFG_SETUP/RESTORE */
u32 error_config = 0; /* used by LBA_CFG_SETUP/RESTORE */
u32 status_control = 0; /* used by LBA_CFG_SETUP/RESTORE */
LBA_CFG_SETUP(d, tok);
LBA_CFG_PROBE(d, tok);
LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
if (!error) {
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
LBA_CFG_ADDR_SETUP(d, tok | reg);
switch (size) {
case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break;
case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break;
case 4: data = READ_REG32(data_reg); break;
}
}
LBA_CFG_RESTORE(d, d->hba.base_addr);
return(data);
}
static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus, devfn);
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
if ((pos > 255) || (devfn > 255))
return -EINVAL;
/* FIXME: B2K/C3600 workaround is always use old method... */
/* if (!LBA_SKIP_PROBE(d)) */ {
/* original - Generate config cycle on broken elroy
with risk we will miss PCI bus errors. */
*data = lba_rd_cfg(d, tok, pos, size);
DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __func__, tok, pos, *data);
return 0;
}
if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->busn_res.start, devfn, d)) {
DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __func__, tok, pos);
/* either don't want to look or know device isn't present. */
*data = ~0U;
return(0);
}
/* Basic Algorithm
** Should only get here on fully working LBA rev.
** This is how simple the code should have been.
*/
LBA_CFG_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1: *data = READ_REG8 (data_reg + (pos & 3)); break;
case 2: *data = READ_REG16(data_reg + (pos & 2)); break;
case 4: *data = READ_REG32(data_reg); break;
}
DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __func__, tok, pos, *data);
return 0;
}
static void
lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size)
{
int error __maybe_unused = 0;
u32 arb_mask = 0;
u32 error_config = 0;
u32 status_control = 0;
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
LBA_CFG_SETUP(d, tok);
LBA_CFG_ADDR_SETUP(d, tok | reg);
switch (size) {
case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break;
case 2: WRITE_REG16(data, data_reg + (reg & 2)); break;
case 4: WRITE_REG32(data, data_reg); break;
}
LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
LBA_CFG_RESTORE(d, d->hba.base_addr);
}
/*
* LBA 4.0 config write code implements non-postable semantics
* by doing a read of CONFIG ADDR after the write.
*/
static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus,devfn);
if ((pos > 255) || (devfn > 255))
return -EINVAL;
if (!LBA_SKIP_PROBE(d)) {
/* Original Workaround */
lba_wr_cfg(d, tok, pos, (u32) data, size);
DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __func__, tok, pos,data);
return 0;
}
if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->busn_res.start, devfn, d))) {
DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __func__, tok, pos,data);
return 1; /* New Workaround */
}
DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __func__, tok, pos, data);
/* Basic Algorithm */
LBA_CFG_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3));
break;
case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2));
break;
case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA);
break;
}
/* flush posted write */
lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
return 0;
}
static struct pci_ops elroy_cfg_ops = {
.read = elroy_cfg_read,
.write = elroy_cfg_write,
};
/*
* The mercury_cfg_ops are slightly misnamed; they're also used for Elroy
* TR4.0 as no additional bugs were found in this areea between Elroy and
* Mercury
*/
static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus, devfn);
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
if ((pos > 255) || (devfn > 255))
return -EINVAL;
LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1:
*data = READ_REG8(data_reg + (pos & 3));
break;
case 2:
*data = READ_REG16(data_reg + (pos & 2));
break;
case 4:
*data = READ_REG32(data_reg); break;
break;
}
DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data);
return 0;
}
/*
* LBA 4.0 config write code implements non-postable semantics
* by doing a read of CONFIG ADDR after the write.
*/
static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus,devfn);
if ((pos > 255) || (devfn > 255))
return -EINVAL;
DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __func__, tok, pos, data);
LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1:
WRITE_REG8 (data, data_reg + (pos & 3));
break;
case 2:
WRITE_REG16(data, data_reg + (pos & 2));
break;
case 4:
WRITE_REG32(data, data_reg);
break;
}
/* flush posted write */
lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
return 0;
}
static struct pci_ops mercury_cfg_ops = {
.read = mercury_cfg_read,
.write = mercury_cfg_write,
};
static void
lba_bios_init(void)
{
DBG(MODULE_NAME ": lba_bios_init\n");
}
#ifdef CONFIG_64BIT
/*
* truncate_pat_collision: Deal with overlaps or outright collisions
* between PAT PDC reported ranges.
*
* Broken PA8800 firmware will report lmmio range that
* overlaps with CPU HPA. Just truncate the lmmio range.
*
* BEWARE: conflicts with this lmmio range may be an
* elmmio range which is pointing down another rope.
*
* FIXME: only deals with one collision per range...theoretically we
* could have several. Supporting more than one collision will get messy.
*/
static unsigned long
truncate_pat_collision(struct resource *root, struct resource *new)
{
unsigned long start = new->start;
unsigned long end = new->end;
struct resource *tmp = root->child;
if (end <= start || start < root->start || !tmp)
return 0;
/* find first overlap */
while (tmp && tmp->end < start)
tmp = tmp->sibling;
/* no entries overlap */
if (!tmp) return 0;
/* found one that starts behind the new one
** Don't need to do anything.
*/
if (tmp->start >= end) return 0;
if (tmp->start <= start) {
/* "front" of new one overlaps */
new->start = tmp->end + 1;
if (tmp->end >= end) {
/* AACCKK! totally overlaps! drop this range. */
return 1;
}
}
if (tmp->end < end ) {
/* "end" of new one overlaps */
new->end = tmp->start - 1;
}
printk(KERN_WARNING "LBA: Truncating lmmio_space [%lx/%lx] "
"to [%lx,%lx]\n",
start, end,
(long)new->start, (long)new->end );
return 0; /* truncation successful */
}
/*
* extend_lmmio_len: extend lmmio range to maximum length
*
* This is needed at least on C8000 systems to get the ATI FireGL card
* working. On other systems we will currently not extend the lmmio space.
*/
static unsigned long
extend_lmmio_len(unsigned long start, unsigned long end, unsigned long lba_len)
{
struct resource *tmp;
/* exit if not a C8000 */
if (boot_cpu_data.cpu_type < mako)
return end;
pr_debug("LMMIO mismatch: PAT length = 0x%lx, MASK register = 0x%lx\n",
end - start, lba_len);
lba_len = min(lba_len+1, 256UL*1024*1024); /* limit to 256 MB */
pr_debug("LBA: lmmio_space [0x%lx-0x%lx] - original\n", start, end);
end += lba_len;
if (end < start) /* fix overflow */
end = -1ULL;
pr_debug("LBA: lmmio_space [0x%lx-0x%lx] - current\n", start, end);
/* first overlap */
for (tmp = iomem_resource.child; tmp; tmp = tmp->sibling) {
pr_debug("LBA: testing %pR\n", tmp);
if (tmp->start == start)
continue; /* ignore ourself */
if (tmp->end < start)
continue;
if (tmp->start > end)
continue;
if (end >= tmp->start)
end = tmp->start - 1;
}
pr_info("LBA: lmmio_space [0x%lx-0x%lx] - new\n", start, end);
/* return new end */
return end;
}
#else
#define truncate_pat_collision(r,n) (0)
#endif
static void pcibios_allocate_bridge_resources(struct pci_dev *dev)
{
int idx;
struct resource *r;
for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
r = &dev->resource[idx];
if (!r->flags)
continue;
if (r->parent) /* Already allocated */
continue;
if (!r->start || pci_claim_bridge_resource(dev, idx) < 0) {
/*
* Something is wrong with the region.
* Invalidate the resource to prevent
* child resource allocations in this
* range.
*/
r->start = r->end = 0;
r->flags = 0;
}
}
}
static void pcibios_allocate_bus_resources(struct pci_bus *bus)
{
struct pci_bus *child;
/* Depth-First Search on bus tree */
if (bus->self)
pcibios_allocate_bridge_resources(bus->self);
list_for_each_entry(child, &bus->children, node)
pcibios_allocate_bus_resources(child);
}
/*
** The algorithm is generic code.
** But it needs to access local data structures to get the IRQ base.
** Could make this a "pci_fixup_irq(bus, region)" but not sure
** it's worth it.
**
** Called by do_pci_scan_bus() immediately after each PCI bus is walked.
** Resources aren't allocated until recursive buswalk below HBA is completed.
*/
static void
lba_fixup_bus(struct pci_bus *bus)
{
struct pci_dev *dev;
#ifdef FBB_SUPPORT
u16 status;
#endif
struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge));
DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n",
bus, (int)bus->busn_res.start, bus->bridge->platform_data);
/*
** Properly Setup MMIO resources for this bus.
** pci_alloc_primary_bus() mangles this.
*/
if (bus->parent) {
/* PCI-PCI Bridge */
pci_read_bridge_bases(bus);
/* check and allocate bridge resources */
pcibios_allocate_bus_resources(bus);
} else {
/* Host-PCI Bridge */
int err;
DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
ldev->hba.io_space.name,
ldev->hba.io_space.start, ldev->hba.io_space.end,
ldev->hba.io_space.flags);
DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
ldev->hba.lmmio_space.name,
ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end,
ldev->hba.lmmio_space.flags);
err = request_resource(&ioport_resource, &(ldev->hba.io_space));
if (err < 0) {
lba_dump_res(&ioport_resource, 2);
BUG();
}
if (ldev->hba.elmmio_space.flags) {
err = request_resource(&iomem_resource,
&(ldev->hba.elmmio_space));
if (err < 0) {
printk("FAILED: lba_fixup_bus() request for "
"elmmio_space [%lx/%lx]\n",
(long)ldev->hba.elmmio_space.start,
(long)ldev->hba.elmmio_space.end);
/* lba_dump_res(&iomem_resource, 2); */
/* BUG(); */
}
}
if (ldev->hba.lmmio_space.flags) {
err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space));
if (err < 0) {
printk(KERN_ERR "FAILED: lba_fixup_bus() request for "
"lmmio_space [%lx/%lx]\n",
(long)ldev->hba.lmmio_space.start,
(long)ldev->hba.lmmio_space.end);
}
}
#ifdef CONFIG_64BIT
/* GMMIO is distributed range. Every LBA/Rope gets part it. */
if (ldev->hba.gmmio_space.flags) {
err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space));
if (err < 0) {
printk("FAILED: lba_fixup_bus() request for "
"gmmio_space [%lx/%lx]\n",
(long)ldev->hba.gmmio_space.start,
(long)ldev->hba.gmmio_space.end);
lba_dump_res(&iomem_resource, 2);
BUG();
}
}
#endif
}
list_for_each_entry(dev, &bus->devices, bus_list) {
int i;
DBG("lba_fixup_bus() %s\n", pci_name(dev));
/* Virtualize Device/Bridge Resources. */
for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
struct resource *res = &dev->resource[i];
/* If resource not allocated - skip it */
if (!res->start)
continue;
/*
** FIXME: this will result in whinging for devices
** that share expansion ROMs (think quad tulip), but
** isn't harmful.
*/
pci_claim_resource(dev, i);
}
#ifdef FBB_SUPPORT
/*
** If one device does not support FBB transfers,
** No one on the bus can be allowed to use them.
*/
(void) pci_read_config_word(dev, PCI_STATUS, &status);
bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK);
#endif
/*
** P2PB's have no IRQs. ignore them.
*/
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
pcibios_init_bridge(dev);
continue;
}
/* Adjust INTERRUPT_LINE for this dev */
iosapic_fixup_irq(ldev->iosapic_obj, dev);
}
#ifdef FBB_SUPPORT
/* FIXME/REVISIT - finish figuring out to set FBB on both
** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL.
** Can't fixup here anyway....garr...
*/
if (fbb_enable) {
if (bus->parent) {
u8 control;
/* enable on PPB */
(void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control);
(void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK);
} else {
/* enable on LBA */
}
fbb_enable = PCI_COMMAND_FAST_BACK;
}
/* Lastly enable FBB/PERR/SERR on all devices too */
list_for_each_entry(dev, &bus->devices, bus_list) {
(void) pci_read_config_word(dev, PCI_COMMAND, &status);
status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable;
(void) pci_write_config_word(dev, PCI_COMMAND, status);
}
#endif
}
static struct pci_bios_ops lba_bios_ops = {
.init = lba_bios_init,
.fixup_bus = lba_fixup_bus,
};
/*******************************************************
**
** LBA Sprockets "I/O Port" Space Accessor Functions
**
** This set of accessor functions is intended for use with
** "legacy firmware" (ie Sprockets on Allegro/Forte boxes).
**
** Many PCI devices don't require use of I/O port space (eg Tulip,
** NCR720) since they export the same registers to both MMIO and
** I/O port space. In general I/O port space is slower than
** MMIO since drivers are designed so PIO writes can be posted.
**
********************************************************/
#define LBA_PORT_IN(size, mask) \
static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \
{ \
u##size t; \
t = READ_REG##size(astro_iop_base + addr); \
DBG_PORT(" 0x%x\n", t); \
return (t); \
}
LBA_PORT_IN( 8, 3)
LBA_PORT_IN(16, 2)
LBA_PORT_IN(32, 0)
/*
** BUG X4107: Ordering broken - DMA RD return can bypass PIO WR
**
** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is
** guarantee non-postable completion semantics - not avoid X4107.
** The READ_U32 only guarantees the write data gets to elroy but
** out to the PCI bus. We can't read stuff from I/O port space
** since we don't know what has side-effects. Attempting to read
** from configuration space would be suicidal given the number of
** bugs in that elroy functionality.
**
** Description:
** DMA read results can improperly pass PIO writes (X4107). The
** result of this bug is that if a processor modifies a location in
** memory after having issued PIO writes, the PIO writes are not
** guaranteed to be completed before a PCI device is allowed to see
** the modified data in a DMA read.
**
** Note that IKE bug X3719 in TR1 IKEs will result in the same
** symptom.
**
** Workaround:
** The workaround for this bug is to always follow a PIO write with
** a PIO read to the same bus before starting DMA on that PCI bus.
**
*/
#define LBA_PORT_OUT(size, mask) \
static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \
{ \
DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, d, addr, val); \
WRITE_REG##size(val, astro_iop_base + addr); \
if (LBA_DEV(d)->hw_rev < 3) \
lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \
}
LBA_PORT_OUT( 8, 3)
LBA_PORT_OUT(16, 2)
LBA_PORT_OUT(32, 0)
static struct pci_port_ops lba_astro_port_ops = {
.inb = lba_astro_in8,
.inw = lba_astro_in16,
.inl = lba_astro_in32,
.outb = lba_astro_out8,
.outw = lba_astro_out16,
.outl = lba_astro_out32
};
#ifdef CONFIG_64BIT
#define PIOP_TO_GMMIO(lba, addr) \
((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3))
/*******************************************************
**
** LBA PAT "I/O Port" Space Accessor Functions
**
** This set of accessor functions is intended for use with
** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes).
**
** This uses the PIOP space located in the first 64MB of GMMIO.
** Each rope gets a full 64*KB* (ie 4 bytes per page) this way.
** bits 1:0 stay the same. bits 15:2 become 25:12.
** Then add the base and we can generate an I/O Port cycle.
********************************************************/
#undef LBA_PORT_IN
#define LBA_PORT_IN(size, mask) \
static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \
{ \
u##size t; \
DBG_PORT("%s(0x%p, 0x%x) ->", __func__, l, addr); \
t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \
DBG_PORT(" 0x%x\n", t); \
return (t); \
}
LBA_PORT_IN( 8, 3)
LBA_PORT_IN(16, 2)
LBA_PORT_IN(32, 0)
#undef LBA_PORT_OUT
#define LBA_PORT_OUT(size, mask) \
static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \
{ \
void __iomem *where = PIOP_TO_GMMIO(LBA_DEV(l), addr); \
DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, l, addr, val); \
WRITE_REG##size(val, where); \
/* flush the I/O down to the elroy at least */ \
lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \
}
LBA_PORT_OUT( 8, 3)
LBA_PORT_OUT(16, 2)
LBA_PORT_OUT(32, 0)
static struct pci_port_ops lba_pat_port_ops = {
.inb = lba_pat_in8,
.inw = lba_pat_in16,
.inl = lba_pat_in32,
.outb = lba_pat_out8,
.outw = lba_pat_out16,
.outl = lba_pat_out32
};
/*
** make range information from PDC available to PCI subsystem.
** We make the PDC call here in order to get the PCI bus range
** numbers. The rest will get forwarded in pcibios_fixup_bus().
** We don't have a struct pci_bus assigned to us yet.
*/
static void
lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
{
unsigned long bytecnt;
long io_count __maybe_unused;
long status; /* PDC return status */
long pa_count;
pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell; /* PA_VIEW */
pdc_pat_cell_mod_maddr_block_t *io_pdc_cell; /* IO_VIEW */
int i;
pa_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL);
if (!pa_pdc_cell)
return;
io_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL);
if (!io_pdc_cell) {
kfree(pa_pdc_cell);
return;
}
/* return cell module (IO view) */
status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
PA_VIEW, pa_pdc_cell);
pa_count = pa_pdc_cell->mod[1];
status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
IO_VIEW, io_pdc_cell);
io_count = io_pdc_cell->mod[1];
/* We've already done this once for device discovery...*/
if (status != PDC_OK) {
panic("pdc_pat_cell_module() call failed for LBA!\n");
}
if (PAT_GET_ENTITY(pa_pdc_cell->mod_info) != PAT_ENTITY_LBA) {
panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n");
}
/*
** Inspect the resources PAT tells us about
*/
for (i = 0; i < pa_count; i++) {
struct {
unsigned long type;
unsigned long start;
unsigned long end; /* aka finish */
} *p, *io;
struct resource *r;
p = (void *) &(pa_pdc_cell->mod[2+i*3]);
io = (void *) &(io_pdc_cell->mod[2+i*3]);
/* Convert the PAT range data to PCI "struct resource" */
switch(p->type & 0xff) {
case PAT_PBNUM:
lba_dev->hba.bus_num.start = p->start;
lba_dev->hba.bus_num.end = p->end;
lba_dev->hba.bus_num.flags = IORESOURCE_BUS;
break;
case PAT_LMMIO:
/* used to fix up pre-initialized MEM BARs */
if (!lba_dev->hba.lmmio_space.flags) {
unsigned long lba_len;
lba_len = ~READ_REG32(lba_dev->hba.base_addr
+ LBA_LMMIO_MASK);
if ((p->end - p->start) != lba_len)
p->end = extend_lmmio_len(p->start,
p->end, lba_len);
sprintf(lba_dev->hba.lmmio_name,
"PCI%02x LMMIO",
(int)lba_dev->hba.bus_num.start);
lba_dev->hba.lmmio_space_offset = p->start -
io->start;
r = &lba_dev->hba.lmmio_space;
r->name = lba_dev->hba.lmmio_name;
} else if (!lba_dev->hba.elmmio_space.flags) {
sprintf(lba_dev->hba.elmmio_name,
"PCI%02x ELMMIO",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.elmmio_space;
r->name = lba_dev->hba.elmmio_name;
} else {
printk(KERN_WARNING MODULE_NAME
" only supports 2 LMMIO resources!\n");
break;
}
r->start = p->start;
r->end = p->end;
r->flags = IORESOURCE_MEM;
r->parent = r->sibling = r->child = NULL;
break;
case PAT_GMMIO:
/* MMIO space > 4GB phys addr; for 64-bit BAR */
sprintf(lba_dev->hba.gmmio_name, "PCI%02x GMMIO",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.gmmio_space;
r->name = lba_dev->hba.gmmio_name;
r->start = p->start;
r->end = p->end;
r->flags = IORESOURCE_MEM;
r->parent = r->sibling = r->child = NULL;
break;
case PAT_NPIOP:
printk(KERN_WARNING MODULE_NAME
" range[%d] : ignoring NPIOP (0x%lx)\n",
i, p->start);
break;
case PAT_PIOP:
/*
** Postable I/O port space is per PCI host adapter.
** base of 64MB PIOP region
*/
lba_dev->iop_base = ioremap(p->start, 64 * 1024 * 1024);
sprintf(lba_dev->hba.io_name, "PCI%02x Ports",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.io_space;
r->name = lba_dev->hba.io_name;
r->start = HBA_PORT_BASE(lba_dev->hba.hba_num);
r->end = r->start + HBA_PORT_SPACE_SIZE - 1;
r->flags = IORESOURCE_IO;
r->parent = r->sibling = r->child = NULL;
break;
default:
printk(KERN_WARNING MODULE_NAME
" range[%d] : unknown pat range type (0x%lx)\n",
i, p->type & 0xff);
break;
}
}
kfree(pa_pdc_cell);
kfree(io_pdc_cell);
}
#else
/* keep compiler from complaining about missing declarations */
#define lba_pat_port_ops lba_astro_port_ops
#define lba_pat_resources(pa_dev, lba_dev)
#endif /* CONFIG_64BIT */
static void
lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
{
struct resource *r;
int lba_num;
lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND;
/*
** With "legacy" firmware, the lowest byte of FW_SCRATCH
** represents bus->secondary and the second byte represents
** bus->subsidiary (i.e. highest PPB programmed by firmware).
** PCI bus walk *should* end up with the same result.
** FIXME: But we don't have sanity checks in PCI or LBA.
*/
lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH);
r = &(lba_dev->hba.bus_num);
r->name = "LBA PCI Busses";
r->start = lba_num & 0xff;
r->end = (lba_num>>8) & 0xff;
r->flags = IORESOURCE_BUS;
/* Set up local PCI Bus resources - we don't need them for
** Legacy boxes but it's nice to see in /proc/iomem.
*/
r = &(lba_dev->hba.lmmio_space);
sprintf(lba_dev->hba.lmmio_name, "PCI%02x LMMIO",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.lmmio_name;
#if 1
/* We want the CPU -> IO routing of addresses.
* The SBA BASE/MASK registers control CPU -> IO routing.
* Ask SBA what is routed to this rope/LBA.
*/
sba_distributed_lmmio(pa_dev, r);
#else
/*
* The LBA BASE/MASK registers control IO -> System routing.
*
* The following code works but doesn't get us what we want.
* Well, only because firmware (v5.0) on C3000 doesn't program
* the LBA BASE/MASE registers to be the exact inverse of
* the corresponding SBA registers. Other Astro/Pluto
* based platform firmware may do it right.
*
* Should someone want to mess with MSI, they may need to
* reprogram LBA BASE/MASK registers. Thus preserve the code
* below until MSI is known to work on C3000/A500/N4000/RP3440.
*
* Using the code below, /proc/iomem shows:
* ...
* f0000000-f0ffffff : PCI00 LMMIO
* f05d0000-f05d0000 : lcd_data
* f05d0008-f05d0008 : lcd_cmd
* f1000000-f1ffffff : PCI01 LMMIO
* f4000000-f4ffffff : PCI02 LMMIO
* f4000000-f4001fff : sym53c8xx
* f4002000-f4003fff : sym53c8xx
* f4004000-f40043ff : sym53c8xx
* f4005000-f40053ff : sym53c8xx
* f4007000-f4007fff : ohci_hcd
* f4008000-f40083ff : tulip
* f6000000-f6ffffff : PCI03 LMMIO
* f8000000-fbffffff : PCI00 ELMMIO
* fa100000-fa4fffff : stifb mmio
* fb000000-fb1fffff : stifb fb
*
* But everything listed under PCI02 actually lives under PCI00.
* This is clearly wrong.
*
* Asking SBA how things are routed tells the correct story:
* LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000
* DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006
* DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004
* DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000
* DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000
*
* Which looks like this in /proc/iomem:
* f4000000-f47fffff : PCI00 LMMIO
* f4000000-f4001fff : sym53c8xx
* ...[deteled core devices - same as above]...
* f4008000-f40083ff : tulip
* f4800000-f4ffffff : PCI01 LMMIO
* f6000000-f67fffff : PCI02 LMMIO
* f7000000-f77fffff : PCI03 LMMIO
* f9000000-f9ffffff : PCI02 ELMMIO
* fa000000-fbffffff : PCI03 ELMMIO
* fa100000-fa4fffff : stifb mmio
* fb000000-fb1fffff : stifb fb
*
* ie all Built-in core are under now correctly under PCI00.
* The "PCI02 ELMMIO" directed range is for:
* +-[02]---03.0 3Dfx Interactive, Inc. Voodoo 2
*
* All is well now.
*/
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE);
if (r->start & 1) {
unsigned long rsize;
r->flags = IORESOURCE_MEM;
/* mmio_mask also clears Enable bit */
r->start &= mmio_mask;
r->start = PCI_HOST_ADDR(&lba_dev->hba, r->start);
rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK);
/*
** Each rope only gets part of the distributed range.
** Adjust "window" for this rope.
*/
rsize /= ROPES_PER_IOC;
r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start);
r->end = r->start + rsize;
} else {
r->end = r->start = 0; /* Not enabled. */
}
#endif
/*
** "Directed" ranges are used when the "distributed range" isn't
** sufficient for all devices below a given LBA. Typically devices
** like graphics cards or X25 may need a directed range when the
** bus has multiple slots (ie multiple devices) or the device
** needs more than the typical 4 or 8MB a distributed range offers.
**
** The main reason for ignoring it now frigging complications.
** Directed ranges may overlap (and have precedence) over
** distributed ranges. Or a distributed range assigned to a unused
** rope may be used by a directed range on a different rope.
** Support for graphics devices may require fixing this
** since they may be assigned a directed range which overlaps
** an existing (but unused portion of) distributed range.
*/
r = &(lba_dev->hba.elmmio_space);
sprintf(lba_dev->hba.elmmio_name, "PCI%02x ELMMIO",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.elmmio_name;
#if 1
/* See comment which precedes call to sba_directed_lmmio() */
sba_directed_lmmio(pa_dev, r);
#else
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE);
if (r->start & 1) {
unsigned long rsize;
r->flags = IORESOURCE_MEM;
/* mmio_mask also clears Enable bit */
r->start &= mmio_mask;
r->start = PCI_HOST_ADDR(&lba_dev->hba, r->start);
rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK);
r->end = r->start + ~rsize;
}
#endif
r = &(lba_dev->hba.io_space);
sprintf(lba_dev->hba.io_name, "PCI%02x Ports",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.io_name;
r->flags = IORESOURCE_IO;
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L;
r->end = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1));
/* Virtualize the I/O Port space ranges */
lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num);
r->start |= lba_num;
r->end |= lba_num;
}
/**************************************************************************
**
** LBA initialization code (HW and SW)
**
** o identify LBA chip itself
** o initialize LBA chip modes (HardFail)
** o FIXME: initialize DMA hints for reasonable defaults
** o enable configuration functions
** o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked)
**
**************************************************************************/
static int __init
lba_hw_init(struct lba_device *d)
{
u32 stat;
u32 bus_reset; /* PDC_PAT_BUG */
#if 0
printk(KERN_DEBUG "LBA %lx STAT_CTL %Lx ERROR_CFG %Lx STATUS %Lx DMA_CTL %Lx\n",
d->hba.base_addr,
READ_REG64(d->hba.base_addr + LBA_STAT_CTL),
READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG),
READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS),
READ_REG64(d->hba.base_addr + LBA_DMA_CTL) );
printk(KERN_DEBUG " ARB mask %Lx pri %Lx mode %Lx mtlt %Lx\n",
READ_REG64(d->hba.base_addr + LBA_ARB_MASK),
READ_REG64(d->hba.base_addr + LBA_ARB_PRI),
READ_REG64(d->hba.base_addr + LBA_ARB_MODE),
READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) );
printk(KERN_DEBUG " HINT cfg 0x%Lx\n",
READ_REG64(d->hba.base_addr + LBA_HINT_CFG));
printk(KERN_DEBUG " HINT reg ");
{ int i;
for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8)
printk(" %Lx", READ_REG64(d->hba.base_addr + i));
}
printk("\n");
#endif /* DEBUG_LBA_PAT */
#ifdef CONFIG_64BIT
/*
* FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support
* Only N-Class and up can really make use of Get slot status.
* maybe L-class too but I've never played with it there.
*/
#endif
/* PDC_PAT_BUG: exhibited in rev 40.48 on L2000 */
bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1;
if (bus_reset) {
printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n");
}
stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG);
if (stat & LBA_SMART_MODE) {
printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n");
stat &= ~LBA_SMART_MODE;
WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG);
}
/*
* Hard Fail vs. Soft Fail on PCI "Master Abort".
*
* "Master Abort" means the MMIO transaction timed out - usually due to
* the device not responding to an MMIO read. We would like HF to be
* enabled to find driver problems, though it means the system will
* crash with a HPMC.
*
* In SoftFail mode "~0L" is returned as a result of a timeout on the
* pci bus. This is like how PCI busses on x86 and most other
* architectures behave. In order to increase compatibility with
* existing (x86) PCI hardware and existing Linux drivers we enable
* Soft Faul mode on PA-RISC now too.
*/
stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);
#if defined(ENABLE_HARDFAIL)
WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
#else
WRITE_REG32(stat & ~HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
#endif
/*
** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal
** if it's not already set. If we just cleared the PCI Bus Reset
** signal, wait a bit for the PCI devices to recover and setup.
*/
if (bus_reset)
mdelay(pci_post_reset_delay);
if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) {
/*
** PDC_PAT_BUG: PDC rev 40.48 on L2000.
** B2000/C3600/J6000 also have this problem?
**
** Elroys with hot pluggable slots don't get configured
** correctly if the slot is empty. ARB_MASK is set to 0
** and we can't master transactions on the bus if it's
** not at least one. 0x3 enables elroy and first slot.
*/
printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n");
WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK);
}
/*
** FIXME: Hint registers are programmed with default hint
** values by firmware. Hints should be sane even if we
** can't reprogram them the way drivers want.
*/
return 0;
}
/*
* Unfortunately, when firmware numbers busses, it doesn't take into account
* Cardbus bridges. So we have to renumber the busses to suit ourselves.
* Elroy/Mercury don't actually know what bus number they're attached to;
* we use bus 0 to indicate the directly attached bus and any other bus
* number will be taken care of by the PCI-PCI bridge.
*/
static unsigned int lba_next_bus = 0;
/*
* Determine if lba should claim this chip (return 0) or not (return 1).
* If so, initialize the chip and tell other partners in crime they
* have work to do.
*/
static int __init
lba_driver_probe(struct parisc_device *dev)
{
struct lba_device *lba_dev;
LIST_HEAD(resources);
struct pci_bus *lba_bus;
struct pci_ops *cfg_ops;
u32 func_class;
void *tmp_obj;
char *version;
void __iomem *addr;
int max;
addr = ioremap(dev->hpa.start, 4096);
if (addr == NULL)
return -ENOMEM;
/* Read HW Rev First */
func_class = READ_REG32(addr + LBA_FCLASS);
if (IS_ELROY(dev)) {
func_class &= 0xf;
switch (func_class) {
case 0: version = "TR1.0"; break;
case 1: version = "TR2.0"; break;
case 2: version = "TR2.1"; break;
case 3: version = "TR2.2"; break;
case 4: version = "TR3.0"; break;
case 5: version = "TR4.0"; break;
default: version = "TR4+";
}
printk(KERN_INFO "Elroy version %s (0x%x) found at 0x%lx\n",
version, func_class & 0xf, (long)dev->hpa.start);
if (func_class < 2) {
printk(KERN_WARNING "Can't support LBA older than "
"TR2.1 - continuing under adversity.\n");
}
#if 0
/* Elroy TR4.0 should work with simple algorithm.
But it doesn't. Still missing something. *sigh*
*/
if (func_class > 4) {
cfg_ops = &mercury_cfg_ops;
} else
#endif
{
cfg_ops = &elroy_cfg_ops;
}
} else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) {
int major, minor;
func_class &= 0xff;
major = func_class >> 4, minor = func_class & 0xf;
/* We could use one printk for both Elroy and Mercury,
* but for the mask for func_class.
*/
printk(KERN_INFO "%s version TR%d.%d (0x%x) found at 0x%lx\n",
IS_MERCURY(dev) ? "Mercury" : "Quicksilver", major,
minor, func_class, (long)dev->hpa.start);
cfg_ops = &mercury_cfg_ops;
} else {
printk(KERN_ERR "Unknown LBA found at 0x%lx\n",
(long)dev->hpa.start);
return -ENODEV;
}
/* Tell I/O SAPIC driver we have a IRQ handler/region. */
tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE,
addr + LBA_IOSAPIC_BASE);
/* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't
** have an IRT entry will get NULL back from iosapic code.
*/
lba_dev = kzalloc(sizeof(struct lba_device), GFP_KERNEL);
if (!lba_dev) {
printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n");
return(1);
}
/* ---------- First : initialize data we already have --------- */
lba_dev->hw_rev = func_class;
lba_dev->hba.base_addr = addr;
lba_dev->hba.dev = dev;
lba_dev->iosapic_obj = tmp_obj; /* save interrupt handle */
lba_dev->hba.iommu = sba_get_iommu(dev); /* get iommu data */
parisc_set_drvdata(dev, lba_dev);
/* ------------ Second : initialize common stuff ---------- */
pci_bios = &lba_bios_ops;
pcibios_register_hba(&lba_dev->hba);
spin_lock_init(&lba_dev->lba_lock);
if (lba_hw_init(lba_dev))
return(1);
/* ---------- Third : setup I/O Port and MMIO resources --------- */
if (is_pdc_pat()) {
/* PDC PAT firmware uses PIOP region of GMMIO space. */
pci_port = &lba_pat_port_ops;
/* Go ask PDC PAT what resources this LBA has */
lba_pat_resources(dev, lba_dev);
} else {
if (!astro_iop_base) {
/* Sprockets PDC uses NPIOP region */
astro_iop_base = ioremap(LBA_PORT_BASE, 64 * 1024);
pci_port = &lba_astro_port_ops;
}
/* Poke the chip a bit for /proc output */
lba_legacy_resources(dev, lba_dev);
}
if (lba_dev->hba.bus_num.start < lba_next_bus)
lba_dev->hba.bus_num.start = lba_next_bus;
/* Overlaps with elmmio can (and should) fail here.
* We will prune (or ignore) the distributed range.
*
* FIXME: SBA code should register all elmmio ranges first.
* that would take care of elmmio ranges routed
* to a different rope (already discovered) from
* getting registered *after* LBA code has already
* registered it's distributed lmmio range.
*/
if (truncate_pat_collision(&iomem_resource,
&(lba_dev->hba.lmmio_space))) {
printk(KERN_WARNING "LBA: lmmio_space [%lx/%lx] duplicate!\n",
(long)lba_dev->hba.lmmio_space.start,
(long)lba_dev->hba.lmmio_space.end);
lba_dev->hba.lmmio_space.flags = 0;
}
pci_add_resource_offset(&resources, &lba_dev->hba.io_space,
HBA_PORT_BASE(lba_dev->hba.hba_num));
if (lba_dev->hba.elmmio_space.flags)
pci_add_resource_offset(&resources, &lba_dev->hba.elmmio_space,
lba_dev->hba.lmmio_space_offset);
if (lba_dev->hba.lmmio_space.flags)
pci_add_resource_offset(&resources, &lba_dev->hba.lmmio_space,
lba_dev->hba.lmmio_space_offset);
if (lba_dev->hba.gmmio_space.flags) {
/* Not registering GMMIO space - according to docs it's not
* even used on HP-UX. */
/* pci_add_resource(&resources, &lba_dev->hba.gmmio_space); */
}
pci_add_resource(&resources, &lba_dev->hba.bus_num);
dev->dev.platform_data = lba_dev;
lba_bus = lba_dev->hba.hba_bus =
pci_create_root_bus(&dev->dev, lba_dev->hba.bus_num.start,
cfg_ops, NULL, &resources);
if (!lba_bus) {
pci_free_resource_list(&resources);
return 0;
}
max = pci_scan_child_bus(lba_bus);
/* This is in lieu of calling pci_assign_unassigned_resources() */
if (is_pdc_pat()) {
/* assign resources to un-initialized devices */
DBG_PAT("LBA pci_bus_size_bridges()\n");
pci_bus_size_bridges(lba_bus);
DBG_PAT("LBA pci_bus_assign_resources()\n");
pci_bus_assign_resources(lba_bus);
#ifdef DEBUG_LBA_PAT
DBG_PAT("\nLBA PIOP resource tree\n");
lba_dump_res(&lba_dev->hba.io_space, 2);
DBG_PAT("\nLBA LMMIO resource tree\n");
lba_dump_res(&lba_dev->hba.lmmio_space, 2);
#endif
}
/*
** Once PCI register ops has walked the bus, access to config
** space is restricted. Avoids master aborts on config cycles.
** Early LBA revs go fatal on *any* master abort.
*/
if (cfg_ops == &elroy_cfg_ops) {
lba_dev->flags |= LBA_FLAG_SKIP_PROBE;
}
lba_next_bus = max + 1;
pci_bus_add_devices(lba_bus);
/* Whew! Finally done! Tell services we got this one covered. */
return 0;
}
static const struct parisc_device_id lba_tbl[] __initconst = {
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa },
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa },
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa },
{ 0, }
};
static struct parisc_driver lba_driver __refdata = {
.name = MODULE_NAME,
.id_table = lba_tbl,
.probe = lba_driver_probe,
};
/*
** One time initialization to let the world know the LBA was found.
** Must be called exactly once before pci_init().
*/
static int __init lba_init(void)
{
return register_parisc_driver(&lba_driver);
}
arch_initcall(lba_init);
/*
** Initialize the IBASE/IMASK registers for LBA (Elroy).
** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA).
** sba_iommu is responsible for locking (none needed at init time).
*/
void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask)
{
void __iomem * base_addr = ioremap(lba->hpa.start, 4096);
imask <<= 2; /* adjust for hints - 2 more bits */
/* Make sure we aren't trying to set bits that aren't writeable. */
WARN_ON((ibase & 0x001fffff) != 0);
WARN_ON((imask & 0x001fffff) != 0);
DBG("%s() ibase 0x%x imask 0x%x\n", __func__, ibase, imask);
WRITE_REG32( imask, base_addr + LBA_IMASK);
WRITE_REG32( ibase, base_addr + LBA_IBASE);
iounmap(base_addr);
}
/*
* The design of the Diva management card in rp34x0 machines (rp3410, rp3440)
* seems rushed, so that many built-in components simply don't work.
* The following quirks disable the serial AUX port and the built-in ATI RV100
* Radeon 7000 graphics card which both don't have any external connectors and
* thus are useless, and even worse, e.g. the AUX port occupies ttyS0 and as
* such makes those machines the only PARISC machines on which we can't use
* ttyS0 as boot console.
*/
static void quirk_diva_ati_card(struct pci_dev *dev)
{
if (dev->subsystem_vendor != PCI_VENDOR_ID_HP ||
dev->subsystem_device != 0x1292)
return;
dev_info(&dev->dev, "Hiding Diva built-in ATI card");
dev->device = 0;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RADEON_QY,
quirk_diva_ati_card);
static void quirk_diva_aux_disable(struct pci_dev *dev)
{
if (dev->subsystem_vendor != PCI_VENDOR_ID_HP ||
dev->subsystem_device != 0x1291)
return;
dev_info(&dev->dev, "Hiding Diva built-in AUX serial device");
dev->device = 0;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_DIVA_AUX,
quirk_diva_aux_disable);
static void quirk_tosca_aux_disable(struct pci_dev *dev)
{
if (dev->subsystem_vendor != PCI_VENDOR_ID_HP ||
dev->subsystem_device != 0x104a)
return;
dev_info(&dev->dev, "Hiding Tosca secondary built-in AUX serial device");
dev->device = 0;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_DIVA,
quirk_tosca_aux_disable);
| linux-master | drivers/parisc/lba_pci.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Interfaces to retrieve and set PDC Stable options (firmware)
*
* Copyright (C) 2005-2006 Thibaut VARENE <[email protected]>
*
* DEV NOTE: the PDC Procedures reference states that:
* "A minimum of 96 bytes of Stable Storage is required. Providing more than
* 96 bytes of Stable Storage is optional [...]. Failure to provide the
* optional locations from 96 to 192 results in the loss of certain
* functionality during boot."
*
* Since locations between 96 and 192 are the various paths, most (if not
* all) PA-RISC machines should have them. Anyway, for safety reasons, the
* following code can deal with just 96 bytes of Stable Storage, and all
* sizes between 96 and 192 bytes (provided they are multiple of struct
* pdc_module_path size, eg: 128, 160 and 192) to provide full information.
* One last word: there's one path we can always count on: the primary path.
* Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
*
* The first OS-dependent area should always be available. Obviously, this is
* not true for the other one. Also bear in mind that reading/writing from/to
* osdep2 is much more expensive than from/to osdep1.
* NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
* 2 bytes of storage available right after OSID. That's a total of 4 bytes
* sacrificed: -ETOOLAZY :P
*
* The current policy wrt file permissions is:
* - write: root only
* - read: (reading triggers PDC calls) ? root only : everyone
* The rationale is that PDC calls could hog (DoS) the machine.
*
* TODO:
* - timer/fastsize write calls
*/
#undef PDCS_DEBUG
#ifdef PDCS_DEBUG
#define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args)
#else
#define DPRINTK(fmt, args...)
#endif
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/capability.h>
#include <linux/ctype.h>
#include <linux/sysfs.h>
#include <linux/kobject.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <asm/pdc.h>
#include <asm/page.h>
#include <linux/uaccess.h>
#include <asm/hardware.h>
#define PDCS_VERSION "0.30"
#define PDCS_PREFIX "PDC Stable Storage"
#define PDCS_ADDR_PPRI 0x00
#define PDCS_ADDR_OSID 0x40
#define PDCS_ADDR_OSD1 0x48
#define PDCS_ADDR_DIAG 0x58
#define PDCS_ADDR_FSIZ 0x5C
#define PDCS_ADDR_PCON 0x60
#define PDCS_ADDR_PALT 0x80
#define PDCS_ADDR_PKBD 0xA0
#define PDCS_ADDR_OSD2 0xE0
MODULE_AUTHOR("Thibaut VARENE <[email protected]>");
MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
MODULE_LICENSE("GPL");
MODULE_VERSION(PDCS_VERSION);
/* holds Stable Storage size. Initialized once and for all, no lock needed */
static unsigned long pdcs_size __read_mostly;
/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
static u16 pdcs_osid __read_mostly;
/* This struct defines what we need to deal with a parisc pdc path entry */
struct pdcspath_entry {
rwlock_t rw_lock; /* to protect path entry access */
short ready; /* entry record is valid if != 0 */
unsigned long addr; /* entry address in stable storage */
char *name; /* entry name */
struct pdc_module_path devpath; /* device path in parisc representation */
struct device *dev; /* corresponding device */
struct kobject kobj;
};
struct pdcspath_attribute {
struct attribute attr;
ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
};
#define PDCSPATH_ENTRY(_addr, _name) \
struct pdcspath_entry pdcspath_entry_##_name = { \
.ready = 0, \
.addr = _addr, \
.name = __stringify(_name), \
};
#define PDCS_ATTR(_name, _mode, _show, _store) \
struct kobj_attribute pdcs_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode}, \
.show = _show, \
.store = _store, \
};
#define PATHS_ATTR(_name, _mode, _show, _store) \
struct pdcspath_attribute paths_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode}, \
.show = _show, \
.store = _store, \
};
#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
#define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj)
/**
* pdcspath_fetch - This function populates the path entry structs.
* @entry: A pointer to an allocated pdcspath_entry.
*
* The general idea is that you don't read from the Stable Storage every time
* you access the files provided by the facilities. We store a copy of the
* content of the stable storage WRT various paths in these structs. We read
* these structs when reading the files, and we will write to these structs when
* writing to the files, and only then write them back to the Stable Storage.
*
* This function expects to be called with @entry->rw_lock write-hold.
*/
static int
pdcspath_fetch(struct pdcspath_entry *entry)
{
struct pdc_module_path *devpath;
if (!entry)
return -EINVAL;
devpath = &entry->devpath;
DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
entry, devpath, entry->addr);
/* addr, devpath and count must be word aligned */
if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
return -EIO;
/* Find the matching device.
NOTE: hardware_path overlays with pdc_module_path, so the nice cast can
be used */
entry->dev = hwpath_to_device((struct hardware_path *)devpath);
entry->ready = 1;
DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
return 0;
}
/**
* pdcspath_store - This function writes a path to stable storage.
* @entry: A pointer to an allocated pdcspath_entry.
*
* It can be used in two ways: either by passing it a preset devpath struct
* containing an already computed hardware path, or by passing it a device
* pointer, from which it'll find out the corresponding hardware path.
* For now we do not handle the case where there's an error in writing to the
* Stable Storage area, so you'd better not mess up the data :P
*
* This function expects to be called with @entry->rw_lock write-hold.
*/
static void
pdcspath_store(struct pdcspath_entry *entry)
{
struct pdc_module_path *devpath;
BUG_ON(!entry);
devpath = &entry->devpath;
/* We expect the caller to set the ready flag to 0 if the hardware
path struct provided is invalid, so that we know we have to fill it.
First case, we don't have a preset hwpath... */
if (!entry->ready) {
/* ...but we have a device, map it */
BUG_ON(!entry->dev);
device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
}
/* else, we expect the provided hwpath to be valid. */
DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
entry, devpath, entry->addr);
/* addr, devpath and count must be word aligned */
if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
"It is likely that the Stable Storage data has been corrupted.\n"
"Please check it carefully upon next reboot.\n", __func__);
/* kobject is already registered */
entry->ready = 2;
DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
}
/**
* pdcspath_hwpath_read - This function handles hardware path pretty printing.
* @entry: An allocated and populated pdscpath_entry struct.
* @buf: The output buffer to write to.
*
* We will call this function to format the output of the hwpath attribute file.
*/
static ssize_t
pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
{
char *out = buf;
struct pdc_module_path *devpath;
short i;
if (!entry || !buf)
return -EINVAL;
read_lock(&entry->rw_lock);
devpath = &entry->devpath;
i = entry->ready;
read_unlock(&entry->rw_lock);
if (!i) /* entry is not ready */
return -ENODATA;
for (i = 0; i < 6; i++) {
if (devpath->path.bc[i] < 0)
continue;
out += sprintf(out, "%d/", devpath->path.bc[i]);
}
out += sprintf(out, "%u\n", (unsigned char)devpath->path.mod);
return out - buf;
}
/**
* pdcspath_hwpath_write - This function handles hardware path modifying.
* @entry: An allocated and populated pdscpath_entry struct.
* @buf: The input buffer to read from.
* @count: The number of bytes to be read.
*
* We will call this function to change the current hardware path.
* Hardware paths are to be given '/'-delimited, without brackets.
* We make sure that the provided path actually maps to an existing
* device, BUT nothing would prevent some foolish user to set the path to some
* PCI bridge or even a CPU...
* A better work around would be to make sure we are at the end of a device tree
* for instance, but it would be IMHO beyond the simple scope of that driver.
* The aim is to provide a facility. Data correctness is left to userland.
*/
static ssize_t
pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
{
struct hardware_path hwpath;
unsigned short i;
char in[64], *temp;
struct device *dev;
int ret;
if (!entry || !buf || !count)
return -EINVAL;
/* We'll use a local copy of buf */
count = min_t(size_t, count, sizeof(in)-1);
strscpy(in, buf, count + 1);
/* Let's clean up the target. 0xff is a blank pattern */
memset(&hwpath, 0xff, sizeof(hwpath));
/* First, pick the mod field (the last one of the input string) */
if (!(temp = strrchr(in, '/')))
return -EINVAL;
hwpath.mod = simple_strtoul(temp+1, NULL, 10);
in[temp-in] = '\0'; /* truncate the remaining string. just precaution */
DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
/* Then, loop for each delimiter, making sure we don't have too many.
we write the bc fields in a down-top way. No matter what, we stop
before writing the last field. If there are too many fields anyway,
then the user is a moron and it'll be caught up later when we'll
check the consistency of the given hwpath. */
for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
in[temp-in] = '\0';
DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
}
/* Store the final field */
hwpath.bc[i] = simple_strtoul(in, NULL, 10);
DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]);
/* Now we check that the user isn't trying to lure us */
if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
"hardware path: %s\n", __func__, entry->name, buf);
return -EINVAL;
}
/* So far so good, let's get in deep */
write_lock(&entry->rw_lock);
entry->ready = 0;
entry->dev = dev;
/* Now, dive in. Write back to the hardware */
pdcspath_store(entry);
/* Update the symlink to the real device */
sysfs_remove_link(&entry->kobj, "device");
write_unlock(&entry->rw_lock);
ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
WARN_ON(ret);
printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
entry->name, buf);
return count;
}
/**
* pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
* @entry: An allocated and populated pdscpath_entry struct.
* @buf: The output buffer to write to.
*
* We will call this function to format the output of the layer attribute file.
*/
static ssize_t
pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
{
char *out = buf;
struct pdc_module_path *devpath;
short i;
if (!entry || !buf)
return -EINVAL;
read_lock(&entry->rw_lock);
devpath = &entry->devpath;
i = entry->ready;
read_unlock(&entry->rw_lock);
if (!i) /* entry is not ready */
return -ENODATA;
for (i = 0; i < 6 && devpath->layers[i]; i++)
out += sprintf(out, "%u ", devpath->layers[i]);
out += sprintf(out, "\n");
return out - buf;
}
/**
* pdcspath_layer_write - This function handles extended layer modifying.
* @entry: An allocated and populated pdscpath_entry struct.
* @buf: The input buffer to read from.
* @count: The number of bytes to be read.
*
* We will call this function to change the current layer value.
* Layers are to be given '.'-delimited, without brackets.
* XXX beware we are far less checky WRT input data provided than for hwpath.
* Potential harm can be done, since there's no way to check the validity of
* the layer fields.
*/
static ssize_t
pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
{
unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
unsigned short i;
char in[64], *temp;
if (!entry || !buf || !count)
return -EINVAL;
/* We'll use a local copy of buf */
count = min_t(size_t, count, sizeof(in)-1);
strscpy(in, buf, count + 1);
/* Let's clean up the target. 0 is a blank pattern */
memset(&layers, 0, sizeof(layers));
/* First, pick the first layer */
if (unlikely(!isdigit(*in)))
return -EINVAL;
layers[0] = simple_strtoul(in, NULL, 10);
DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
temp = in;
for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
if (unlikely(!isdigit(*(++temp))))
return -EINVAL;
layers[i] = simple_strtoul(temp, NULL, 10);
DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
}
/* So far so good, let's get in deep */
write_lock(&entry->rw_lock);
/* First, overwrite the current layers with the new ones, not touching
the hardware path. */
memcpy(&entry->devpath.layers, &layers, sizeof(layers));
/* Now, dive in. Write back to the hardware */
pdcspath_store(entry);
write_unlock(&entry->rw_lock);
printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
entry->name, buf);
return count;
}
/**
* pdcspath_attr_show - Generic read function call wrapper.
* @kobj: The kobject to get info from.
* @attr: The attribute looked upon.
* @buf: The output buffer.
*/
static ssize_t
pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
ssize_t ret = 0;
if (pdcs_attr->show)
ret = pdcs_attr->show(entry, buf);
return ret;
}
/**
* pdcspath_attr_store - Generic write function call wrapper.
* @kobj: The kobject to write info to.
* @attr: The attribute to be modified.
* @buf: The input buffer.
* @count: The size of the buffer.
*/
static ssize_t
pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
ssize_t ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (pdcs_attr->store)
ret = pdcs_attr->store(entry, buf, count);
return ret;
}
static const struct sysfs_ops pdcspath_attr_ops = {
.show = pdcspath_attr_show,
.store = pdcspath_attr_store,
};
/* These are the two attributes of any PDC path. */
static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
static struct attribute *paths_subsys_attrs[] = {
&paths_attr_hwpath.attr,
&paths_attr_layer.attr,
NULL,
};
ATTRIBUTE_GROUPS(paths_subsys);
/* Specific kobject type for our PDC paths */
static struct kobj_type ktype_pdcspath = {
.sysfs_ops = &pdcspath_attr_ops,
.default_groups = paths_subsys_groups,
};
/* We hard define the 4 types of path we expect to find */
static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
/* An array containing all PDC paths we will deal with */
static struct pdcspath_entry *pdcspath_entries[] = {
&pdcspath_entry_primary,
&pdcspath_entry_alternative,
&pdcspath_entry_console,
&pdcspath_entry_keyboard,
NULL,
};
/* For more insight of what's going on here, refer to PDC Procedures doc,
* Section PDC_STABLE */
/**
* pdcs_size_read - Stable Storage size output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*/
static ssize_t pdcs_size_read(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
char *out = buf;
if (!buf)
return -EINVAL;
/* show the size of the stable storage */
out += sprintf(out, "%ld\n", pdcs_size);
return out - buf;
}
/**
* pdcs_auto_read - Stable Storage autoboot/search flag output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
* @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
*/
static ssize_t pdcs_auto_read(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf, int knob)
{
char *out = buf;
struct pdcspath_entry *pathentry;
if (!buf)
return -EINVAL;
/* Current flags are stored in primary boot path entry */
pathentry = &pdcspath_entry_primary;
read_lock(&pathentry->rw_lock);
out += sprintf(out, "%s\n", (pathentry->devpath.path.flags & knob) ?
"On" : "Off");
read_unlock(&pathentry->rw_lock);
return out - buf;
}
/**
* pdcs_autoboot_read - Stable Storage autoboot flag output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*/
static ssize_t pdcs_autoboot_read(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
}
/**
* pdcs_autosearch_read - Stable Storage autoboot flag output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*/
static ssize_t pdcs_autosearch_read(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
}
/**
* pdcs_timer_read - Stable Storage timer count output (in seconds).
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*
* The value of the timer field correponds to a number of seconds in powers of 2.
*/
static ssize_t pdcs_timer_read(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
char *out = buf;
struct pdcspath_entry *pathentry;
if (!buf)
return -EINVAL;
/* Current flags are stored in primary boot path entry */
pathentry = &pdcspath_entry_primary;
/* print the timer value in seconds */
read_lock(&pathentry->rw_lock);
out += sprintf(out, "%u\n", (pathentry->devpath.path.flags & PF_TIMER) ?
(1 << (pathentry->devpath.path.flags & PF_TIMER)) : 0);
read_unlock(&pathentry->rw_lock);
return out - buf;
}
/**
* pdcs_osid_read - Stable Storage OS ID register output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*/
static ssize_t pdcs_osid_read(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
char *out = buf;
if (!buf)
return -EINVAL;
out += sprintf(out, "%s dependent data (0x%.4x)\n",
os_id_to_string(pdcs_osid), pdcs_osid);
return out - buf;
}
/**
* pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*
* This can hold 16 bytes of OS-Dependent data.
*/
static ssize_t pdcs_osdep1_read(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
char *out = buf;
u32 result[4];
if (!buf)
return -EINVAL;
if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
return -EIO;
out += sprintf(out, "0x%.8x\n", result[0]);
out += sprintf(out, "0x%.8x\n", result[1]);
out += sprintf(out, "0x%.8x\n", result[2]);
out += sprintf(out, "0x%.8x\n", result[3]);
return out - buf;
}
/**
* pdcs_diagnostic_read - Stable Storage Diagnostic register output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*
* I have NFC how to interpret the content of that register ;-).
*/
static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
char *out = buf;
u32 result;
if (!buf)
return -EINVAL;
/* get diagnostic */
if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
return -EIO;
out += sprintf(out, "0x%.4x\n", (result >> 16));
return out - buf;
}
/**
* pdcs_fastsize_read - Stable Storage FastSize register output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*
* This register holds the amount of system RAM to be tested during boot sequence.
*/
static ssize_t pdcs_fastsize_read(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
char *out = buf;
u32 result;
if (!buf)
return -EINVAL;
/* get fast-size */
if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
return -EIO;
if ((result & 0x0F) < 0x0E)
out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
else
out += sprintf(out, "All");
out += sprintf(out, "\n");
return out - buf;
}
/**
* pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The output buffer to write to.
*
* This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
*/
static ssize_t pdcs_osdep2_read(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
char *out = buf;
unsigned long size;
unsigned short i;
u32 result;
if (unlikely(pdcs_size <= 224))
return -ENODATA;
size = pdcs_size - 224;
if (!buf)
return -EINVAL;
for (i=0; i<size; i+=4) {
if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
sizeof(result)) != PDC_OK))
return -EIO;
out += sprintf(out, "0x%.8x\n", result);
}
return out - buf;
}
/**
* pdcs_auto_write - This function handles autoboot/search flag modifying.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The input buffer to read from.
* @count: The number of bytes to be read.
* @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
*
* We will call this function to change the current autoboot flag.
* We expect a precise syntax:
* \"n\" (n == 0 or 1) to toggle AutoBoot Off or On
*/
static ssize_t pdcs_auto_write(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf,
size_t count, int knob)
{
struct pdcspath_entry *pathentry;
unsigned char flags;
char in[8], *temp;
char c;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (!buf || !count)
return -EINVAL;
/* We'll use a local copy of buf */
count = min_t(size_t, count, sizeof(in)-1);
strscpy(in, buf, count + 1);
/* Current flags are stored in primary boot path entry */
pathentry = &pdcspath_entry_primary;
/* Be nice to the existing flag record */
read_lock(&pathentry->rw_lock);
flags = pathentry->devpath.path.flags;
read_unlock(&pathentry->rw_lock);
DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
temp = skip_spaces(in);
c = *temp++ - '0';
if ((c != 0) && (c != 1))
goto parse_error;
if (c == 0)
flags &= ~knob;
else
flags |= knob;
DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
/* So far so good, let's get in deep */
write_lock(&pathentry->rw_lock);
/* Change the path entry flags first */
pathentry->devpath.path.flags = flags;
/* Now, dive in. Write back to the hardware */
pdcspath_store(pathentry);
write_unlock(&pathentry->rw_lock);
printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
(flags & knob) ? "On" : "Off");
return count;
parse_error:
printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
return -EINVAL;
}
/**
* pdcs_autoboot_write - This function handles autoboot flag modifying.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The input buffer to read from.
* @count: The number of bytes to be read.
*
* We will call this function to change the current boot flags.
* We expect a precise syntax:
* \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
*/
static ssize_t pdcs_autoboot_write(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
}
/**
* pdcs_autosearch_write - This function handles autosearch flag modifying.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The input buffer to read from.
* @count: The number of bytes to be read.
*
* We will call this function to change the current boot flags.
* We expect a precise syntax:
* \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
*/
static ssize_t pdcs_autosearch_write(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
}
/**
* pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The input buffer to read from.
* @count: The number of bytes to be read.
*
* This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
* write approach. It's up to userspace to deal with it when constructing
* its input buffer.
*/
static ssize_t pdcs_osdep1_write(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
u8 in[16];
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (!buf || !count)
return -EINVAL;
if (unlikely(pdcs_osid != OS_ID_LINUX))
return -EPERM;
if (count > 16)
return -EMSGSIZE;
/* We'll use a local copy of buf */
memset(in, 0, 16);
memcpy(in, buf, count);
if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
return -EIO;
return count;
}
/**
* pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
* @kobj: The kobject used to share data with userspace.
* @attr: The kobject attributes.
* @buf: The input buffer to read from.
* @count: The number of bytes to be read.
*
* This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
* byte-by-byte write approach. It's up to userspace to deal with it when
* constructing its input buffer.
*/
static ssize_t pdcs_osdep2_write(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
unsigned long size;
unsigned short i;
u8 in[4];
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (!buf || !count)
return -EINVAL;
if (unlikely(pdcs_size <= 224))
return -ENOSYS;
if (unlikely(pdcs_osid != OS_ID_LINUX))
return -EPERM;
size = pdcs_size - 224;
if (count > size)
return -EMSGSIZE;
/* We'll use a local copy of buf */
for (i=0; i<count; i+=4) {
memset(in, 0, 4);
memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
sizeof(in)) != PDC_OK))
return -EIO;
}
return count;
}
/* The remaining attributes. */
static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
static struct attribute *pdcs_subsys_attrs[] = {
&pdcs_attr_size.attr,
&pdcs_attr_autoboot.attr,
&pdcs_attr_autosearch.attr,
&pdcs_attr_timer.attr,
&pdcs_attr_osid.attr,
&pdcs_attr_osdep1.attr,
&pdcs_attr_diagnostic.attr,
&pdcs_attr_fastsize.attr,
&pdcs_attr_osdep2.attr,
NULL,
};
static const struct attribute_group pdcs_attr_group = {
.attrs = pdcs_subsys_attrs,
};
static struct kobject *stable_kobj;
static struct kset *paths_kset;
/**
* pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
*
* It creates kobjects corresponding to each path entry with nice sysfs
* links to the real device. This is where the magic takes place: when
* registering the subsystem attributes during module init, each kobject hereby
* created will show in the sysfs tree as a folder containing files as defined
* by path_subsys_attr[].
*/
static inline int __init
pdcs_register_pathentries(void)
{
unsigned short i;
struct pdcspath_entry *entry;
int err;
/* Initialize the entries rw_lock before anything else */
for (i = 0; (entry = pdcspath_entries[i]); i++)
rwlock_init(&entry->rw_lock);
for (i = 0; (entry = pdcspath_entries[i]); i++) {
write_lock(&entry->rw_lock);
err = pdcspath_fetch(entry);
write_unlock(&entry->rw_lock);
if (err < 0)
continue;
entry->kobj.kset = paths_kset;
err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
"%s", entry->name);
if (err) {
kobject_put(&entry->kobj);
return err;
}
/* kobject is now registered */
write_lock(&entry->rw_lock);
entry->ready = 2;
write_unlock(&entry->rw_lock);
/* Add a nice symlink to the real device */
if (entry->dev) {
err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
WARN_ON(err);
}
kobject_uevent(&entry->kobj, KOBJ_ADD);
}
return 0;
}
/**
* pdcs_unregister_pathentries - Routine called when unregistering the module.
*/
static inline void
pdcs_unregister_pathentries(void)
{
unsigned short i;
struct pdcspath_entry *entry;
for (i = 0; (entry = pdcspath_entries[i]); i++) {
read_lock(&entry->rw_lock);
if (entry->ready >= 2)
kobject_put(&entry->kobj);
read_unlock(&entry->rw_lock);
}
}
/*
* For now we register the stable subsystem with the firmware subsystem
* and the paths subsystem with the stable subsystem
*/
static int __init
pdc_stable_init(void)
{
int rc = 0, error;
u32 result;
/* find the size of the stable storage */
if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
return -ENODEV;
/* make sure we have enough data */
if (pdcs_size < 96)
return -ENODATA;
printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
/* get OSID */
if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
return -EIO;
/* the actual result is 16 bits away */
pdcs_osid = (u16)(result >> 16);
/* For now we'll register the directory at /sys/firmware/stable */
stable_kobj = kobject_create_and_add("stable", firmware_kobj);
if (!stable_kobj) {
rc = -ENOMEM;
goto fail_firmreg;
}
/* Don't forget the root entries */
error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
if (error) {
rc = -ENOMEM;
goto fail_ksetreg;
}
/* register the paths kset as a child of the stable kset */
paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
if (!paths_kset) {
rc = -ENOMEM;
goto fail_ksetreg;
}
/* now we create all "files" for the paths kset */
if ((rc = pdcs_register_pathentries()))
goto fail_pdcsreg;
return rc;
fail_pdcsreg:
pdcs_unregister_pathentries();
kset_unregister(paths_kset);
fail_ksetreg:
kobject_put(stable_kobj);
fail_firmreg:
printk(KERN_INFO PDCS_PREFIX " bailing out\n");
return rc;
}
static void __exit
pdc_stable_exit(void)
{
pdcs_unregister_pathentries();
kset_unregister(paths_kset);
kobject_put(stable_kobj);
}
module_init(pdc_stable_init);
module_exit(pdc_stable_exit);
| linux-master | drivers/parisc/pdc_stable.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
** DINO manager
**
** (c) Copyright 1999 Red Hat Software
** (c) Copyright 1999 SuSE GmbH
** (c) Copyright 1999,2000 Hewlett-Packard Company
** (c) Copyright 2000 Grant Grundler
** (c) Copyright 2006-2019 Helge Deller
**
**
** This module provides access to Dino PCI bus (config/IOport spaces)
** and helps manage Dino IRQ lines.
**
** Dino interrupt handling is a bit complicated.
** Dino always writes to the broadcast EIR via irr0 for now.
** (BIG WARNING: using broadcast EIR is a really bad thing for SMP!)
** Only one processor interrupt is used for the 11 IRQ line
** inputs to dino.
**
** The different between Built-in Dino and Card-Mode
** dino is in chip initialization and pci device initialization.
**
** Linux drivers can only use Card-Mode Dino if pci devices I/O port
** BARs are configured and used by the driver. Programming MMIO address
** requires substantial knowledge of available Host I/O address ranges
** is currently not supported. Port/Config accessor functions are the
** same. "BIOS" differences are handled within the existing routines.
*/
/* Changes :
** 2001-06-14 : Clement Moyroud ([email protected])
** - added support for the integrated RS232.
*/
/*
** TODO: create a virtual address for each Dino HPA.
** GSC code might be able to do this since IODC data tells us
** how many pages are used. PCI subsystem could (must?) do this
** for PCI drivers devices which implement/use MMIO registers.
*/
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h> /* for struct irqaction */
#include <linux/spinlock.h> /* for spinlock_t and prototypes */
#include <asm/pdc.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include "gsc.h"
#include "iommu.h"
#undef DINO_DEBUG
#ifdef DINO_DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
/*
** Config accessor functions only pass in the 8-bit bus number
** and not the 8-bit "PCI Segment" number. Each Dino will be
** assigned a PCI bus number based on "when" it's discovered.
**
** The "secondary" bus number is set to this before calling
** pci_scan_bus(). If any PPB's are present, the scan will
** discover them and update the "secondary" and "subordinate"
** fields in Dino's pci_bus structure.
**
** Changes in the configuration *will* result in a different
** bus number for each dino.
*/
#define is_card_dino(id) ((id)->hw_type == HPHW_A_DMA)
#define is_cujo(id) ((id)->hversion == 0x682)
#define DINO_IAR0 0x004
#define DINO_IODC_ADDR 0x008
#define DINO_IODC_DATA_0 0x008
#define DINO_IODC_DATA_1 0x008
#define DINO_IRR0 0x00C
#define DINO_IAR1 0x010
#define DINO_IRR1 0x014
#define DINO_IMR 0x018
#define DINO_IPR 0x01C
#define DINO_TOC_ADDR 0x020
#define DINO_ICR 0x024
#define DINO_ILR 0x028
#define DINO_IO_COMMAND 0x030
#define DINO_IO_STATUS 0x034
#define DINO_IO_CONTROL 0x038
#define DINO_IO_GSC_ERR_RESP 0x040
#define DINO_IO_ERR_INFO 0x044
#define DINO_IO_PCI_ERR_RESP 0x048
#define DINO_IO_FBB_EN 0x05c
#define DINO_IO_ADDR_EN 0x060
#define DINO_PCI_ADDR 0x064
#define DINO_CONFIG_DATA 0x068
#define DINO_IO_DATA 0x06c
#define DINO_MEM_DATA 0x070 /* Dino 3.x only */
#define DINO_GSC2X_CONFIG 0x7b4
#define DINO_GMASK 0x800
#define DINO_PAMR 0x804
#define DINO_PAPR 0x808
#define DINO_DAMODE 0x80c
#define DINO_PCICMD 0x810
#define DINO_PCISTS 0x814
#define DINO_MLTIM 0x81c
#define DINO_BRDG_FEAT 0x820
#define DINO_PCIROR 0x824
#define DINO_PCIWOR 0x828
#define DINO_TLTIM 0x830
#define DINO_IRQS 11 /* bits 0-10 are architected */
#define DINO_IRR_MASK 0x5ff /* only 10 bits are implemented */
#define DINO_LOCAL_IRQS (DINO_IRQS+1)
#define DINO_MASK_IRQ(x) (1<<(x))
#define PCIINTA 0x001
#define PCIINTB 0x002
#define PCIINTC 0x004
#define PCIINTD 0x008
#define PCIINTE 0x010
#define PCIINTF 0x020
#define GSCEXTINT 0x040
/* #define xxx 0x080 - bit 7 is "default" */
/* #define xxx 0x100 - bit 8 not used */
/* #define xxx 0x200 - bit 9 not used */
#define RS232INT 0x400
struct dino_device
{
struct pci_hba_data hba; /* 'C' inheritance - must be first */
spinlock_t dinosaur_pen;
u32 imr; /* IRQ's which are enabled */
struct gsc_irq gsc_irq;
int global_irq[DINO_LOCAL_IRQS]; /* map IMR bit to global irq */
#ifdef DINO_DEBUG
unsigned int dino_irr0; /* save most recent IRQ line stat */
#endif
};
static inline struct dino_device *DINO_DEV(struct pci_hba_data *hba)
{
return container_of(hba, struct dino_device, hba);
}
/*
* Dino Configuration Space Accessor Functions
*/
#define DINO_CFG_TOK(bus,dfn,pos) ((u32) ((bus)<<16 | (dfn)<<8 | (pos)))
/*
* keep the current highest bus count to assist in allocating busses. This
* tries to keep a global bus count total so that when we discover an
* entirely new bus, it can be given a unique bus number.
*/
static int dino_current_bus = 0;
static int dino_cfg_read(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *val)
{
struct dino_device *d = DINO_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 v = DINO_CFG_TOK(local_bus, devfn, where & ~3);
void __iomem *base_addr = d->hba.base_addr;
unsigned long flags;
DBG("%s: %p, %d, %d, %d\n", __func__, base_addr, devfn, where,
size);
spin_lock_irqsave(&d->dinosaur_pen, flags);
/* tell HW which CFG address */
__raw_writel(v, base_addr + DINO_PCI_ADDR);
/* generate cfg read cycle */
if (size == 1) {
*val = readb(base_addr + DINO_CONFIG_DATA + (where & 3));
} else if (size == 2) {
*val = readw(base_addr + DINO_CONFIG_DATA + (where & 2));
} else if (size == 4) {
*val = readl(base_addr + DINO_CONFIG_DATA);
}
spin_unlock_irqrestore(&d->dinosaur_pen, flags);
return 0;
}
/*
* Dino address stepping "feature":
* When address stepping, Dino attempts to drive the bus one cycle too soon
* even though the type of cycle (config vs. MMIO) might be different.
* The read of Ven/Prod ID is harmless and avoids Dino's address stepping.
*/
static int dino_cfg_write(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 val)
{
struct dino_device *d = DINO_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 v = DINO_CFG_TOK(local_bus, devfn, where & ~3);
void __iomem *base_addr = d->hba.base_addr;
unsigned long flags;
DBG("%s: %p, %d, %d, %d\n", __func__, base_addr, devfn, where,
size);
spin_lock_irqsave(&d->dinosaur_pen, flags);
/* avoid address stepping feature */
__raw_writel(v & 0xffffff00, base_addr + DINO_PCI_ADDR);
__raw_readl(base_addr + DINO_CONFIG_DATA);
/* tell HW which CFG address */
__raw_writel(v, base_addr + DINO_PCI_ADDR);
/* generate cfg read cycle */
if (size == 1) {
writeb(val, base_addr + DINO_CONFIG_DATA + (where & 3));
} else if (size == 2) {
writew(val, base_addr + DINO_CONFIG_DATA + (where & 2));
} else if (size == 4) {
writel(val, base_addr + DINO_CONFIG_DATA);
}
spin_unlock_irqrestore(&d->dinosaur_pen, flags);
return 0;
}
static struct pci_ops dino_cfg_ops = {
.read = dino_cfg_read,
.write = dino_cfg_write,
};
/*
* Dino "I/O Port" Space Accessor Functions
*
* Many PCI devices don't require use of I/O port space (eg Tulip,
* NCR720) since they export the same registers to both MMIO and
* I/O port space. Performance is going to stink if drivers use
* I/O port instead of MMIO.
*/
#define DINO_PORT_IN(type, size, mask) \
static u##size dino_in##size (struct pci_hba_data *d, u16 addr) \
{ \
u##size v; \
unsigned long flags; \
spin_lock_irqsave(&(DINO_DEV(d)->dinosaur_pen), flags); \
/* tell HW which IO Port address */ \
__raw_writel((u32) addr, d->base_addr + DINO_PCI_ADDR); \
/* generate I/O PORT read cycle */ \
v = read##type(d->base_addr+DINO_IO_DATA+(addr&mask)); \
spin_unlock_irqrestore(&(DINO_DEV(d)->dinosaur_pen), flags); \
return v; \
}
DINO_PORT_IN(b, 8, 3)
DINO_PORT_IN(w, 16, 2)
DINO_PORT_IN(l, 32, 0)
#define DINO_PORT_OUT(type, size, mask) \
static void dino_out##size (struct pci_hba_data *d, u16 addr, u##size val) \
{ \
unsigned long flags; \
spin_lock_irqsave(&(DINO_DEV(d)->dinosaur_pen), flags); \
/* tell HW which IO port address */ \
__raw_writel((u32) addr, d->base_addr + DINO_PCI_ADDR); \
/* generate cfg write cycle */ \
write##type(val, d->base_addr+DINO_IO_DATA+(addr&mask)); \
spin_unlock_irqrestore(&(DINO_DEV(d)->dinosaur_pen), flags); \
}
DINO_PORT_OUT(b, 8, 3)
DINO_PORT_OUT(w, 16, 2)
DINO_PORT_OUT(l, 32, 0)
static struct pci_port_ops dino_port_ops = {
.inb = dino_in8,
.inw = dino_in16,
.inl = dino_in32,
.outb = dino_out8,
.outw = dino_out16,
.outl = dino_out32
};
static void dino_mask_irq(struct irq_data *d)
{
struct dino_device *dino_dev = irq_data_get_irq_chip_data(d);
int local_irq = gsc_find_local_irq(d->irq, dino_dev->global_irq, DINO_LOCAL_IRQS);
DBG(KERN_WARNING "%s(0x%px, %d)\n", __func__, dino_dev, d->irq);
/* Clear the matching bit in the IMR register */
dino_dev->imr &= ~(DINO_MASK_IRQ(local_irq));
__raw_writel(dino_dev->imr, dino_dev->hba.base_addr+DINO_IMR);
}
static void dino_unmask_irq(struct irq_data *d)
{
struct dino_device *dino_dev = irq_data_get_irq_chip_data(d);
int local_irq = gsc_find_local_irq(d->irq, dino_dev->global_irq, DINO_LOCAL_IRQS);
u32 tmp;
DBG(KERN_WARNING "%s(0x%px, %d)\n", __func__, dino_dev, d->irq);
/*
** clear pending IRQ bits
**
** This does NOT change ILR state!
** See comment below for ILR usage.
*/
__raw_readl(dino_dev->hba.base_addr+DINO_IPR);
/* set the matching bit in the IMR register */
dino_dev->imr |= DINO_MASK_IRQ(local_irq); /* used in dino_isr() */
__raw_writel( dino_dev->imr, dino_dev->hba.base_addr+DINO_IMR);
/* Emulate "Level Triggered" Interrupt
** Basically, a driver is blowing it if the IRQ line is asserted
** while the IRQ is disabled. But tulip.c seems to do that....
** Give 'em a kluge award and a nice round of applause!
**
** The gsc_write will generate an interrupt which invokes dino_isr().
** dino_isr() will read IPR and find nothing. But then catch this
** when it also checks ILR.
*/
tmp = __raw_readl(dino_dev->hba.base_addr+DINO_ILR);
if (tmp & DINO_MASK_IRQ(local_irq)) {
DBG(KERN_WARNING "%s(): IRQ asserted! (ILR 0x%x)\n",
__func__, tmp);
gsc_writel(dino_dev->gsc_irq.txn_data, dino_dev->gsc_irq.txn_addr);
}
}
#ifdef CONFIG_SMP
static int dino_set_affinity_irq(struct irq_data *d, const struct cpumask *dest,
bool force)
{
struct dino_device *dino_dev = irq_data_get_irq_chip_data(d);
struct cpumask tmask;
int cpu_irq;
u32 eim;
if (!cpumask_and(&tmask, dest, cpu_online_mask))
return -EINVAL;
cpu_irq = cpu_check_affinity(d, &tmask);
if (cpu_irq < 0)
return cpu_irq;
dino_dev->gsc_irq.txn_addr = txn_affinity_addr(d->irq, cpu_irq);
eim = ((u32) dino_dev->gsc_irq.txn_addr) | dino_dev->gsc_irq.txn_data;
__raw_writel(eim, dino_dev->hba.base_addr+DINO_IAR0);
irq_data_update_effective_affinity(d, &tmask);
return IRQ_SET_MASK_OK;
}
#endif
static struct irq_chip dino_interrupt_type = {
.name = "GSC-PCI",
.irq_unmask = dino_unmask_irq,
.irq_mask = dino_mask_irq,
#ifdef CONFIG_SMP
.irq_set_affinity = dino_set_affinity_irq,
#endif
};
/*
* Handle a Processor interrupt generated by Dino.
*
* ilr_loop counter is a kluge to prevent a "stuck" IRQ line from
* wedging the CPU. Could be removed or made optional at some point.
*/
static irqreturn_t dino_isr(int irq, void *intr_dev)
{
struct dino_device *dino_dev = intr_dev;
u32 mask;
int ilr_loop = 100;
/* read and acknowledge pending interrupts */
#ifdef DINO_DEBUG
dino_dev->dino_irr0 =
#endif
mask = __raw_readl(dino_dev->hba.base_addr+DINO_IRR0) & DINO_IRR_MASK;
if (mask == 0)
return IRQ_NONE;
ilr_again:
do {
int local_irq = __ffs(mask);
int irq = dino_dev->global_irq[local_irq];
DBG(KERN_DEBUG "%s(%d, %p) mask 0x%x\n",
__func__, irq, intr_dev, mask);
generic_handle_irq(irq);
mask &= ~DINO_MASK_IRQ(local_irq);
} while (mask);
/* Support for level triggered IRQ lines.
**
** Dropping this support would make this routine *much* faster.
** But since PCI requires level triggered IRQ line to share lines...
** device drivers may assume lines are level triggered (and not
** edge triggered like EISA/ISA can be).
*/
mask = __raw_readl(dino_dev->hba.base_addr+DINO_ILR) & dino_dev->imr;
if (mask) {
if (--ilr_loop > 0)
goto ilr_again;
pr_warn_ratelimited("Dino 0x%px: stuck interrupt %d\n",
dino_dev->hba.base_addr, mask);
}
return IRQ_HANDLED;
}
static void dino_assign_irq(struct dino_device *dino, int local_irq, int *irqp)
{
int irq = gsc_assign_irq(&dino_interrupt_type, dino);
if (irq == NO_IRQ)
return;
*irqp = irq;
dino->global_irq[local_irq] = irq;
}
static void dino_choose_irq(struct parisc_device *dev, void *ctrl)
{
int irq;
struct dino_device *dino = ctrl;
switch (dev->id.sversion) {
case 0x00084: irq = 8; break; /* PS/2 */
case 0x0008c: irq = 10; break; /* RS232 */
case 0x00096: irq = 8; break; /* PS/2 */
default: return; /* Unknown */
}
dino_assign_irq(dino, irq, &dev->irq);
}
/*
* Cirrus 6832 Cardbus reports wrong irq on RDI Tadpole PARISC Laptop ([email protected])
* (the irqs are off-by-one, not sure yet if this is a cirrus, dino-hardware or dino-driver problem...)
*/
static void quirk_cirrus_cardbus(struct pci_dev *dev)
{
u8 new_irq = dev->irq - 1;
printk(KERN_INFO "PCI: Cirrus Cardbus IRQ fixup for %s, from %d to %d\n",
pci_name(dev), dev->irq, new_irq);
dev->irq = new_irq;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CIRRUS_6832, quirk_cirrus_cardbus );
#ifdef CONFIG_TULIP
/* Check if PCI device is behind a Card-mode Dino. */
static int pci_dev_is_behind_card_dino(struct pci_dev *dev)
{
struct dino_device *dino_dev;
dino_dev = DINO_DEV(parisc_walk_tree(dev->bus->bridge));
return is_card_dino(&dino_dev->hba.dev->id);
}
static void pci_fixup_tulip(struct pci_dev *dev)
{
if (!pci_dev_is_behind_card_dino(dev))
return;
if (!(pci_resource_flags(dev, 1) & IORESOURCE_MEM))
return;
pr_warn("%s: HP HSC-PCI Cards with card-mode Dino not yet supported.\n",
pci_name(dev));
/* Disable this card by zeroing the PCI resources */
memset(&dev->resource[0], 0, sizeof(dev->resource[0]));
memset(&dev->resource[1], 0, sizeof(dev->resource[1]));
}
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_DEC, PCI_ANY_ID, pci_fixup_tulip);
#endif /* CONFIG_TULIP */
static void __init
dino_bios_init(void)
{
DBG("dino_bios_init\n");
}
/*
* dino_card_setup - Set up the memory space for a Dino in card mode.
* @bus: the bus under this dino
*
* Claim an 8MB chunk of unused IO space and call the generic PCI routines
* to set up the addresses of the devices on this bus.
*/
#define _8MB 0x00800000UL
static void __init
dino_card_setup(struct pci_bus *bus, void __iomem *base_addr)
{
int i;
struct dino_device *dino_dev = DINO_DEV(parisc_walk_tree(bus->bridge));
struct resource *res;
char name[128];
int size;
res = &dino_dev->hba.lmmio_space;
res->flags = IORESOURCE_MEM;
size = scnprintf(name, sizeof(name), "Dino LMMIO (%s)",
dev_name(bus->bridge));
res->name = kmalloc(size+1, GFP_KERNEL);
if(res->name)
strcpy((char *)res->name, name);
else
res->name = dino_dev->hba.lmmio_space.name;
if (ccio_allocate_resource(dino_dev->hba.dev, res, _8MB,
F_EXTEND(0xf0000000UL) | _8MB,
F_EXTEND(0xffffffffUL) &~ _8MB, _8MB) < 0) {
struct pci_dev *dev, *tmp;
printk(KERN_ERR "Dino: cannot attach bus %s\n",
dev_name(bus->bridge));
/* kill the bus, we can't do anything with it */
list_for_each_entry_safe(dev, tmp, &bus->devices, bus_list) {
list_del(&dev->bus_list);
}
return;
}
bus->resource[1] = res;
bus->resource[0] = &(dino_dev->hba.io_space);
/* Now tell dino what range it has */
for (i = 1; i < 31; i++) {
if (res->start == F_EXTEND(0xf0000000UL | (i * _8MB)))
break;
}
DBG("DINO GSC WRITE i=%d, start=%lx, dino addr = %p\n",
i, res->start, base_addr + DINO_IO_ADDR_EN);
__raw_writel(1 << i, base_addr + DINO_IO_ADDR_EN);
}
static void __init
dino_card_fixup(struct pci_dev *dev)
{
u32 irq_pin;
/*
** REVISIT: card-mode PCI-PCI expansion chassis do exist.
** Not sure they were ever productized.
** Die here since we'll die later in dino_inb() anyway.
*/
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
panic("Card-Mode Dino: PCI-PCI Bridge not supported\n");
}
/*
** Set Latency Timer to 0xff (not a shared bus)
** Set CACHELINE_SIZE.
*/
dino_cfg_write(dev->bus, dev->devfn,
PCI_CACHE_LINE_SIZE, 2, 0xff00 | L1_CACHE_BYTES/4);
/*
** Program INT_LINE for card-mode devices.
** The cards are hardwired according to this algorithm.
** And it doesn't matter if PPB's are present or not since
** the IRQ lines bypass the PPB.
**
** "-1" converts INTA-D (1-4) to PCIINTA-D (0-3) range.
** The additional "-1" adjusts for skewing the IRQ<->slot.
*/
dino_cfg_read(dev->bus, dev->devfn, PCI_INTERRUPT_PIN, 1, &irq_pin);
dev->irq = pci_swizzle_interrupt_pin(dev, irq_pin) - 1;
/* Shouldn't really need to do this but it's in case someone tries
** to bypass PCI services and look at the card themselves.
*/
dino_cfg_write(dev->bus, dev->devfn, PCI_INTERRUPT_LINE, 1, dev->irq);
}
/* The alignment contraints for PCI bridges under dino */
#define DINO_BRIDGE_ALIGN 0x100000
static void __init
dino_fixup_bus(struct pci_bus *bus)
{
struct pci_dev *dev;
struct dino_device *dino_dev = DINO_DEV(parisc_walk_tree(bus->bridge));
DBG(KERN_WARNING "%s(0x%px) bus %d platform_data 0x%px\n",
__func__, bus, bus->busn_res.start,
bus->bridge->platform_data);
/* Firmware doesn't set up card-mode dino, so we have to */
if (is_card_dino(&dino_dev->hba.dev->id)) {
dino_card_setup(bus, dino_dev->hba.base_addr);
} else if (bus->parent) {
int i;
pci_read_bridge_bases(bus);
for(i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
if((bus->self->resource[i].flags &
(IORESOURCE_IO | IORESOURCE_MEM)) == 0)
continue;
if(bus->self->resource[i].flags & IORESOURCE_MEM) {
/* There's a quirk to alignment of
* bridge memory resources: the start
* is the alignment and start-end is
* the size. However, firmware will
* have assigned start and end, so we
* need to take this into account */
bus->self->resource[i].end = bus->self->resource[i].end - bus->self->resource[i].start + DINO_BRIDGE_ALIGN;
bus->self->resource[i].start = DINO_BRIDGE_ALIGN;
}
DBG("DEBUG %s assigning %d [%pR]\n",
dev_name(&bus->self->dev), i,
&bus->self->resource[i]);
WARN_ON(pci_assign_resource(bus->self, i));
DBG("DEBUG %s after assign %d [%pR]\n",
dev_name(&bus->self->dev), i,
&bus->self->resource[i]);
}
}
list_for_each_entry(dev, &bus->devices, bus_list) {
if (is_card_dino(&dino_dev->hba.dev->id))
dino_card_fixup(dev);
/*
** P2PB's only have 2 BARs, no IRQs.
** I'd like to just ignore them for now.
*/
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
pcibios_init_bridge(dev);
continue;
}
/* null out the ROM resource if there is one (we don't
* care about an expansion rom on parisc, since it
* usually contains (x86) bios code) */
dev->resource[PCI_ROM_RESOURCE].flags = 0;
if(dev->irq == 255) {
#define DINO_FIX_UNASSIGNED_INTERRUPTS
#ifdef DINO_FIX_UNASSIGNED_INTERRUPTS
/* This code tries to assign an unassigned
* interrupt. Leave it disabled unless you
* *really* know what you're doing since the
* pin<->interrupt line mapping varies by bus
* and machine */
u32 irq_pin;
dino_cfg_read(dev->bus, dev->devfn,
PCI_INTERRUPT_PIN, 1, &irq_pin);
irq_pin = pci_swizzle_interrupt_pin(dev, irq_pin) - 1;
printk(KERN_WARNING "Device %s has undefined IRQ, "
"setting to %d\n", pci_name(dev), irq_pin);
dino_cfg_write(dev->bus, dev->devfn,
PCI_INTERRUPT_LINE, 1, irq_pin);
dino_assign_irq(dino_dev, irq_pin, &dev->irq);
#else
dev->irq = 65535;
printk(KERN_WARNING "Device %s has unassigned IRQ\n", pci_name(dev));
#endif
} else {
/* Adjust INT_LINE for that busses region */
dino_assign_irq(dino_dev, dev->irq, &dev->irq);
}
}
}
static struct pci_bios_ops dino_bios_ops = {
.init = dino_bios_init,
.fixup_bus = dino_fixup_bus
};
/*
* Initialise a DINO controller chip
*/
static void __init
dino_card_init(struct dino_device *dino_dev)
{
u32 brdg_feat = 0x00784e05;
unsigned long status;
status = __raw_readl(dino_dev->hba.base_addr+DINO_IO_STATUS);
if (status & 0x0000ff80) {
__raw_writel(0x00000005,
dino_dev->hba.base_addr+DINO_IO_COMMAND);
udelay(1);
}
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_GMASK);
__raw_writel(0x00000001, dino_dev->hba.base_addr+DINO_IO_FBB_EN);
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_ICR);
#if 1
/* REVISIT - should be a runtime check (eg if (CPU_IS_PCX_L) ...) */
/*
** PCX-L processors don't support XQL like Dino wants it.
** PCX-L2 ignore XQL signal and it doesn't matter.
*/
brdg_feat &= ~0x4; /* UXQL */
#endif
__raw_writel( brdg_feat, dino_dev->hba.base_addr+DINO_BRDG_FEAT);
/*
** Don't enable address decoding until we know which I/O range
** currently is available from the host. Only affects MMIO
** and not I/O port space.
*/
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_IO_ADDR_EN);
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_DAMODE);
__raw_writel(0x00222222, dino_dev->hba.base_addr+DINO_PCIROR);
__raw_writel(0x00222222, dino_dev->hba.base_addr+DINO_PCIWOR);
__raw_writel(0x00000040, dino_dev->hba.base_addr+DINO_MLTIM);
__raw_writel(0x00000080, dino_dev->hba.base_addr+DINO_IO_CONTROL);
__raw_writel(0x0000008c, dino_dev->hba.base_addr+DINO_TLTIM);
/* Disable PAMR before writing PAPR */
__raw_writel(0x0000007e, dino_dev->hba.base_addr+DINO_PAMR);
__raw_writel(0x0000007f, dino_dev->hba.base_addr+DINO_PAPR);
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_PAMR);
/*
** Dino ERS encourages enabling FBB (0x6f).
** We can't until we know *all* devices below us can support it.
** (Something in device configuration header tells us).
*/
__raw_writel(0x0000004f, dino_dev->hba.base_addr+DINO_PCICMD);
/* Somewhere, the PCI spec says give devices 1 second
** to recover from the #RESET being de-asserted.
** Experience shows most devices only need 10ms.
** This short-cut speeds up booting significantly.
*/
mdelay(pci_post_reset_delay);
}
static int __init
dino_bridge_init(struct dino_device *dino_dev, const char *name)
{
unsigned long io_addr;
int result, i, count=0;
struct resource *res, *prevres = NULL;
/*
* Decoding IO_ADDR_EN only works for Built-in Dino
* since PDC has already initialized this.
*/
io_addr = __raw_readl(dino_dev->hba.base_addr + DINO_IO_ADDR_EN);
if (io_addr == 0) {
printk(KERN_WARNING "%s: No PCI devices enabled.\n", name);
return -ENODEV;
}
res = &dino_dev->hba.lmmio_space;
for (i = 0; i < 32; i++) {
unsigned long start, end;
if((io_addr & (1 << i)) == 0)
continue;
start = F_EXTEND(0xf0000000UL) | (i << 23);
end = start + 8 * 1024 * 1024 - 1;
DBG("DINO RANGE %d is at 0x%lx-0x%lx\n", count,
start, end);
if(prevres && prevres->end + 1 == start) {
prevres->end = end;
} else {
if(count >= DINO_MAX_LMMIO_RESOURCES) {
printk(KERN_ERR "%s is out of resource windows for range %d (0x%lx-0x%lx)\n", name, count, start, end);
break;
}
prevres = res;
res->start = start;
res->end = end;
res->flags = IORESOURCE_MEM;
res->name = kmalloc(64, GFP_KERNEL);
if(res->name)
snprintf((char *)res->name, 64, "%s LMMIO %d",
name, count);
res++;
count++;
}
}
res = &dino_dev->hba.lmmio_space;
for(i = 0; i < DINO_MAX_LMMIO_RESOURCES; i++) {
if(res[i].flags == 0)
break;
result = ccio_request_resource(dino_dev->hba.dev, &res[i]);
if (result < 0) {
printk(KERN_ERR "%s: failed to claim PCI Bus address "
"space %d (%pR)!\n", name, i, &res[i]);
return result;
}
}
return 0;
}
static int __init dino_common_init(struct parisc_device *dev,
struct dino_device *dino_dev, const char *name)
{
int status;
u32 eim;
struct resource *res;
pcibios_register_hba(&dino_dev->hba);
pci_bios = &dino_bios_ops; /* used by pci_scan_bus() */
pci_port = &dino_port_ops;
/*
** Note: SMP systems can make use of IRR1/IAR1 registers
** But it won't buy much performance except in very
** specific applications/configurations. Note Dino
** still only has 11 IRQ input lines - just map some of them
** to a different processor.
*/
dev->irq = gsc_alloc_irq(&dino_dev->gsc_irq);
eim = ((u32) dino_dev->gsc_irq.txn_addr) | dino_dev->gsc_irq.txn_data;
/*
** Dino needs a PA "IRQ" to get a processor's attention.
** arch/parisc/kernel/irq.c returns an EIRR bit.
*/
if (dev->irq < 0) {
printk(KERN_WARNING "%s: gsc_alloc_irq() failed\n", name);
return 1;
}
status = request_irq(dev->irq, dino_isr, 0, name, dino_dev);
if (status) {
printk(KERN_WARNING "%s: request_irq() failed with %d\n",
name, status);
return 1;
}
/* Support the serial port which is sometimes attached on built-in
* Dino / Cujo chips.
*/
gsc_fixup_irqs(dev, dino_dev, dino_choose_irq);
/*
** This enables DINO to generate interrupts when it sees
** any of its inputs *change*. Just asserting an IRQ
** before it's enabled (ie unmasked) isn't good enough.
*/
__raw_writel(eim, dino_dev->hba.base_addr+DINO_IAR0);
/*
** Some platforms don't clear Dino's IRR0 register at boot time.
** Reading will clear it now.
*/
__raw_readl(dino_dev->hba.base_addr+DINO_IRR0);
/* allocate I/O Port resource region */
res = &dino_dev->hba.io_space;
if (!is_cujo(&dev->id)) {
res->name = "Dino I/O Port";
} else {
res->name = "Cujo I/O Port";
}
res->start = HBA_PORT_BASE(dino_dev->hba.hba_num);
res->end = res->start + (HBA_PORT_SPACE_SIZE - 1);
res->flags = IORESOURCE_IO; /* do not mark it busy ! */
if (request_resource(&ioport_resource, res) < 0) {
printk(KERN_ERR "%s: request I/O Port region failed "
"0x%lx/%lx (hpa 0x%px)\n",
name, (unsigned long)res->start, (unsigned long)res->end,
dino_dev->hba.base_addr);
return 1;
}
return 0;
}
#define CUJO_RAVEN_ADDR F_EXTEND(0xf1000000UL)
#define CUJO_FIREHAWK_ADDR F_EXTEND(0xf1604000UL)
#define CUJO_RAVEN_BADPAGE 0x01003000UL
#define CUJO_FIREHAWK_BADPAGE 0x01607000UL
static const char dino_vers[][4] = {
"2.0",
"2.1",
"3.0",
"3.1"
};
static const char cujo_vers[][4] = {
"1.0",
"2.0"
};
/*
** Determine if dino should claim this chip (return 0) or not (return 1).
** If so, initialize the chip appropriately (card-mode vs bridge mode).
** Much of the initialization is common though.
*/
static int __init dino_probe(struct parisc_device *dev)
{
struct dino_device *dino_dev; // Dino specific control struct
const char *version = "unknown";
char *name;
int is_cujo = 0;
LIST_HEAD(resources);
struct pci_bus *bus;
unsigned long hpa = dev->hpa.start;
int max;
name = "Dino";
if (is_card_dino(&dev->id)) {
version = "3.x (card mode)";
} else {
if (!is_cujo(&dev->id)) {
if (dev->id.hversion_rev < 4) {
version = dino_vers[dev->id.hversion_rev];
}
} else {
name = "Cujo";
is_cujo = 1;
if (dev->id.hversion_rev < 2) {
version = cujo_vers[dev->id.hversion_rev];
}
}
}
printk("%s version %s found at 0x%lx\n", name, version, hpa);
if (!request_mem_region(hpa, PAGE_SIZE, name)) {
printk(KERN_ERR "DINO: Hey! Someone took my MMIO space (0x%lx)!\n",
hpa);
return 1;
}
/* Check for bugs */
if (is_cujo && dev->id.hversion_rev == 1) {
#ifdef CONFIG_IOMMU_CCIO
printk(KERN_WARNING "Enabling Cujo 2.0 bug workaround\n");
if (hpa == (unsigned long)CUJO_RAVEN_ADDR) {
ccio_cujo20_fixup(dev, CUJO_RAVEN_BADPAGE);
} else if (hpa == (unsigned long)CUJO_FIREHAWK_ADDR) {
ccio_cujo20_fixup(dev, CUJO_FIREHAWK_BADPAGE);
} else {
printk("Don't recognise Cujo at address 0x%lx, not enabling workaround\n", hpa);
}
#endif
} else if (!is_cujo && !is_card_dino(&dev->id) &&
dev->id.hversion_rev < 3) {
printk(KERN_WARNING
"The GSCtoPCI (Dino hrev %d) bus converter found may exhibit\n"
"data corruption. See Service Note Numbers: A4190A-01, A4191A-01.\n"
"Systems shipped after Aug 20, 1997 will not exhibit this problem.\n"
"Models affected: C180, C160, C160L, B160L, and B132L workstations.\n\n",
dev->id.hversion_rev);
/* REVISIT: why are C200/C240 listed in the README table but not
** "Models affected"? Could be an omission in the original literature.
*/
}
dino_dev = kzalloc(sizeof(struct dino_device), GFP_KERNEL);
if (!dino_dev) {
printk("dino_init_chip - couldn't alloc dino_device\n");
return 1;
}
dino_dev->hba.dev = dev;
dino_dev->hba.base_addr = ioremap(hpa, 4096);
dino_dev->hba.lmmio_space_offset = PCI_F_EXTEND;
spin_lock_init(&dino_dev->dinosaur_pen);
dino_dev->hba.iommu = ccio_get_iommu(dev);
if (is_card_dino(&dev->id)) {
dino_card_init(dino_dev);
} else {
dino_bridge_init(dino_dev, name);
}
if (dino_common_init(dev, dino_dev, name))
return 1;
dev->dev.platform_data = dino_dev;
pci_add_resource_offset(&resources, &dino_dev->hba.io_space,
HBA_PORT_BASE(dino_dev->hba.hba_num));
if (dino_dev->hba.lmmio_space.flags)
pci_add_resource_offset(&resources, &dino_dev->hba.lmmio_space,
dino_dev->hba.lmmio_space_offset);
if (dino_dev->hba.elmmio_space.flags)
pci_add_resource_offset(&resources, &dino_dev->hba.elmmio_space,
dino_dev->hba.lmmio_space_offset);
if (dino_dev->hba.gmmio_space.flags)
pci_add_resource(&resources, &dino_dev->hba.gmmio_space);
dino_dev->hba.bus_num.start = dino_current_bus;
dino_dev->hba.bus_num.end = 255;
dino_dev->hba.bus_num.flags = IORESOURCE_BUS;
pci_add_resource(&resources, &dino_dev->hba.bus_num);
/*
** It's not used to avoid chicken/egg problems
** with configuration accessor functions.
*/
dino_dev->hba.hba_bus = bus = pci_create_root_bus(&dev->dev,
dino_current_bus, &dino_cfg_ops, NULL, &resources);
if (!bus) {
printk(KERN_ERR "ERROR: failed to scan PCI bus on %s (duplicate bus number %d?)\n",
dev_name(&dev->dev), dino_current_bus);
pci_free_resource_list(&resources);
/* increment the bus number in case of duplicates */
dino_current_bus++;
return 0;
}
max = pci_scan_child_bus(bus);
pci_bus_update_busn_res_end(bus, max);
/* This code *depends* on scanning being single threaded
* if it isn't, this global bus number count will fail
*/
dino_current_bus = max + 1;
pci_bus_assign_resources(bus);
pci_bus_add_devices(bus);
return 0;
}
/*
* Normally, we would just test sversion. But the Elroy PCI adapter has
* the same sversion as Dino, so we have to check hversion as well.
* Unfortunately, the J2240 PDC reports the wrong hversion for the first
* Dino, so we have to test for Dino, Cujo and Dino-in-a-J2240.
* For card-mode Dino, most machines report an sversion of 9D. But 715
* and 725 firmware misreport it as 0x08080 for no adequately explained
* reason.
*/
static const struct parisc_device_id dino_tbl[] __initconst = {
{ HPHW_A_DMA, HVERSION_REV_ANY_ID, 0x004, 0x0009D },/* Card-mode Dino */
{ HPHW_A_DMA, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x08080 }, /* XXX */
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x680, 0xa }, /* Bridge-mode Dino */
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x682, 0xa }, /* Bridge-mode Cujo */
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x05d, 0xa }, /* Dino in a J2240 */
{ 0, }
};
static struct parisc_driver dino_driver __refdata = {
.name = "dino",
.id_table = dino_tbl,
.probe = dino_probe,
};
/*
* One time initialization to let the world know Dino is here.
* This is the only routine which is NOT static.
* Must be called exactly once before pci_init().
*/
static int __init dino_init(void)
{
return register_parisc_driver(&dino_driver);
}
arch_initcall(dino_init);
| linux-master | drivers/parisc/dino.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* WAX Device Driver
*
* (c) Copyright 2000 The Puffin Group Inc.
*
* (c) 2000-2023 by Helge Deller <[email protected]>
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/types.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include "gsc.h"
#define WAX_GSC_IRQ 7 /* Hardcoded Interrupt for GSC */
static void wax_choose_irq(struct parisc_device *dev, void *ctrl)
{
int irq;
switch (dev->id.sversion) {
case 0x73: irq = 1; break; /* i8042 General */
case 0x8c: irq = 6; break; /* Serial */
case 0x90: irq = 10; break; /* EISA */
default: return; /* Unknown */
}
gsc_asic_assign_irq(ctrl, irq, &dev->irq);
switch (dev->id.sversion) {
case 0x73: irq = 2; break; /* i8042 High-priority */
case 0x90: irq = 0; break; /* EISA NMI */
default: return; /* No secondary IRQ */
}
gsc_asic_assign_irq(ctrl, irq, &dev->aux_irq);
}
static void __init
wax_init_irq(struct gsc_asic *wax)
{
unsigned long base = wax->hpa;
/* Wax-off */
gsc_writel(0x00000000, base+OFFSET_IMR);
/* clear pending interrupts */
gsc_readl(base+OFFSET_IRR);
/* We're not really convinced we want to reset the onboard
* devices. Firmware does it for us...
*/
/* Resets */
// gsc_writel(0xFFFFFFFF, base+0x1000); /* HIL */
// gsc_writel(0xFFFFFFFF, base+0x2000); /* RS232-B on Wax */
}
static int __init wax_init_chip(struct parisc_device *dev)
{
struct gsc_asic *wax;
struct parisc_device *parent;
int ret;
wax = kzalloc(sizeof(*wax), GFP_KERNEL);
if (!wax)
return -ENOMEM;
wax->name = "wax";
wax->hpa = dev->hpa.start;
wax->version = 0; /* gsc_readb(wax->hpa+WAX_VER); */
printk(KERN_INFO "%s at 0x%lx found.\n", wax->name, wax->hpa);
/* Stop wax hissing for a bit */
wax_init_irq(wax);
/* the IRQ wax should use */
dev->irq = gsc_claim_irq(&wax->gsc_irq, WAX_GSC_IRQ);
if (dev->irq < 0) {
printk(KERN_ERR "%s(): cannot get GSC irq\n",
__func__);
kfree(wax);
return -EBUSY;
}
wax->eim = ((u32) wax->gsc_irq.txn_addr) | wax->gsc_irq.txn_data;
ret = request_irq(wax->gsc_irq.irq, gsc_asic_intr, 0, "wax", wax);
if (ret < 0) {
kfree(wax);
return ret;
}
/* enable IRQ's for devices below WAX */
gsc_writel(wax->eim, wax->hpa + OFFSET_IAR);
/* Done init'ing, register this driver */
ret = gsc_common_setup(dev, wax);
if (ret) {
kfree(wax);
return ret;
}
gsc_fixup_irqs(dev, wax, wax_choose_irq);
/* On 715-class machines, Wax EISA is a sibling of Wax, not a child. */
parent = parisc_parent(dev);
if (parent->id.hw_type != HPHW_IOA) {
gsc_fixup_irqs(parent, wax, wax_choose_irq);
}
return ret;
}
static const struct parisc_device_id wax_tbl[] __initconst = {
{ HPHW_BA, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0008e },
{ 0, }
};
MODULE_DEVICE_TABLE(parisc, wax_tbl);
static struct parisc_driver wax_driver __refdata = {
.name = "wax",
.id_table = wax_tbl,
.probe = wax_init_chip,
};
static int __init wax_init(void)
{
return register_parisc_driver(&wax_driver);
}
arch_initcall(wax_init);
| linux-master | drivers/parisc/wax.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Interrupt management for most GSC and related devices.
*
* (c) Copyright 1999 Alex deVries for The Puffin Group
* (c) Copyright 1999 Grant Grundler for Hewlett-Packard
* (c) Copyright 1999 Matthew Wilcox
* (c) Copyright 2000 Helge Deller
* (c) Copyright 2001 Matthew Wilcox for Hewlett-Packard
*/
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/types.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include "gsc.h"
#undef DEBUG
#ifdef DEBUG
#define DEBPRINTK printk
#else
#define DEBPRINTK(x,...)
#endif
int gsc_alloc_irq(struct gsc_irq *i)
{
int irq = txn_alloc_irq(GSC_EIM_WIDTH);
if (irq < 0) {
printk("cannot get irq\n");
return irq;
}
i->txn_addr = txn_alloc_addr(irq);
i->txn_data = txn_alloc_data(irq);
i->irq = irq;
return irq;
}
int gsc_claim_irq(struct gsc_irq *i, int irq)
{
int c = irq;
irq += CPU_IRQ_BASE; /* virtualize the IRQ first */
irq = txn_claim_irq(irq);
if (irq < 0) {
printk("cannot claim irq %d\n", c);
return irq;
}
i->txn_addr = txn_alloc_addr(irq);
i->txn_data = txn_alloc_data(irq);
i->irq = irq;
return irq;
}
EXPORT_SYMBOL(gsc_alloc_irq);
EXPORT_SYMBOL(gsc_claim_irq);
/* Common interrupt demultiplexer used by Asp, Lasi & Wax. */
irqreturn_t gsc_asic_intr(int gsc_asic_irq, void *dev)
{
unsigned long irr;
struct gsc_asic *gsc_asic = dev;
irr = gsc_readl(gsc_asic->hpa + OFFSET_IRR);
if (irr == 0)
return IRQ_NONE;
DEBPRINTK("%s intr, mask=0x%x\n", gsc_asic->name, irr);
do {
int local_irq = __ffs(irr);
unsigned int irq = gsc_asic->global_irq[local_irq];
generic_handle_irq(irq);
irr &= ~(1 << local_irq);
} while (irr);
return IRQ_HANDLED;
}
int gsc_find_local_irq(unsigned int irq, int *global_irqs, int limit)
{
int local_irq;
for (local_irq = 0; local_irq < limit; local_irq++) {
if (global_irqs[local_irq] == irq)
return local_irq;
}
return NO_IRQ;
}
static void gsc_asic_mask_irq(struct irq_data *d)
{
struct gsc_asic *irq_dev = irq_data_get_irq_chip_data(d);
int local_irq = gsc_find_local_irq(d->irq, irq_dev->global_irq, 32);
u32 imr;
DEBPRINTK(KERN_DEBUG "%s(%d) %s: IMR 0x%x\n", __func__, d->irq,
irq_dev->name, imr);
/* Disable the IRQ line by clearing the bit in the IMR */
imr = gsc_readl(irq_dev->hpa + OFFSET_IMR);
imr &= ~(1 << local_irq);
gsc_writel(imr, irq_dev->hpa + OFFSET_IMR);
}
static void gsc_asic_unmask_irq(struct irq_data *d)
{
struct gsc_asic *irq_dev = irq_data_get_irq_chip_data(d);
int local_irq = gsc_find_local_irq(d->irq, irq_dev->global_irq, 32);
u32 imr;
DEBPRINTK(KERN_DEBUG "%s(%d) %s: IMR 0x%x\n", __func__, d->irq,
irq_dev->name, imr);
/* Enable the IRQ line by setting the bit in the IMR */
imr = gsc_readl(irq_dev->hpa + OFFSET_IMR);
imr |= 1 << local_irq;
gsc_writel(imr, irq_dev->hpa + OFFSET_IMR);
/*
* FIXME: read IPR to make sure the IRQ isn't already pending.
* If so, we need to read IRR and manually call do_irq().
*/
}
#ifdef CONFIG_SMP
static int gsc_set_affinity_irq(struct irq_data *d, const struct cpumask *dest,
bool force)
{
struct gsc_asic *gsc_dev = irq_data_get_irq_chip_data(d);
struct cpumask tmask;
int cpu_irq;
if (!cpumask_and(&tmask, dest, cpu_online_mask))
return -EINVAL;
cpu_irq = cpu_check_affinity(d, &tmask);
if (cpu_irq < 0)
return cpu_irq;
gsc_dev->gsc_irq.txn_addr = txn_affinity_addr(d->irq, cpu_irq);
gsc_dev->eim = ((u32) gsc_dev->gsc_irq.txn_addr) | gsc_dev->gsc_irq.txn_data;
/* switch IRQ's for devices below LASI/WAX to other CPU */
gsc_writel(gsc_dev->eim, gsc_dev->hpa + OFFSET_IAR);
irq_data_update_effective_affinity(d, &tmask);
return IRQ_SET_MASK_OK;
}
#endif
static struct irq_chip gsc_asic_interrupt_type = {
.name = "GSC-ASIC",
.irq_unmask = gsc_asic_unmask_irq,
.irq_mask = gsc_asic_mask_irq,
#ifdef CONFIG_SMP
.irq_set_affinity = gsc_set_affinity_irq,
#endif
};
int gsc_assign_irq(struct irq_chip *type, void *data)
{
static int irq = GSC_IRQ_BASE;
if (irq > GSC_IRQ_MAX)
return NO_IRQ;
irq_set_chip_and_handler(irq, type, handle_simple_irq);
irq_set_chip_data(irq, data);
return irq++;
}
void gsc_asic_assign_irq(struct gsc_asic *asic, int local_irq, int *irqp)
{
int irq = asic->global_irq[local_irq];
if (irq <= 0) {
irq = gsc_assign_irq(&gsc_asic_interrupt_type, asic);
if (irq == NO_IRQ)
return;
asic->global_irq[local_irq] = irq;
}
*irqp = irq;
}
struct gsc_fixup_struct {
void (*choose_irq)(struct parisc_device *, void *);
void *ctrl;
};
static int gsc_fixup_irqs_callback(struct device *dev, void *data)
{
struct parisc_device *padev = to_parisc_device(dev);
struct gsc_fixup_struct *gf = data;
/* work-around for 715/64 and others which have parent
at path [5] and children at path [5/0/x] */
if (padev->id.hw_type == HPHW_FAULTY)
gsc_fixup_irqs(padev, gf->ctrl, gf->choose_irq);
gf->choose_irq(padev, gf->ctrl);
return 0;
}
void gsc_fixup_irqs(struct parisc_device *parent, void *ctrl,
void (*choose_irq)(struct parisc_device *, void *))
{
struct gsc_fixup_struct data = {
.choose_irq = choose_irq,
.ctrl = ctrl,
};
device_for_each_child(&parent->dev, &data, gsc_fixup_irqs_callback);
}
int gsc_common_setup(struct parisc_device *parent, struct gsc_asic *gsc_asic)
{
struct resource *res;
int i;
gsc_asic->gsc = parent;
/* Initialise local irq -> global irq mapping */
for (i = 0; i < 32; i++) {
gsc_asic->global_irq[i] = NO_IRQ;
}
/* allocate resource region */
res = request_mem_region(gsc_asic->hpa, 0x100000, gsc_asic->name);
if (res) {
res->flags = IORESOURCE_MEM; /* do not mark it busy ! */
}
#if 0
printk(KERN_WARNING "%s IRQ %d EIM 0x%x", gsc_asic->name,
parent->irq, gsc_asic->eim);
if (gsc_readl(gsc_asic->hpa + OFFSET_IMR))
printk(" IMR is non-zero! (0x%x)",
gsc_readl(gsc_asic->hpa + OFFSET_IMR));
printk("\n");
#endif
return 0;
}
| linux-master | drivers/parisc/gsc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* eisa.c - provide support for EISA adapters in PA-RISC machines
*
* Copyright (c) 2001 Matthew Wilcox for Hewlett Packard
* Copyright (c) 2001 Daniel Engstrom <[email protected]>
*
* There are two distinct EISA adapters. Mongoose is found in machines
* before the 712; then the Wax ASIC is used. To complicate matters, the
* Wax ASIC also includes a PS/2 and RS-232 controller, but those are
* dealt with elsewhere; this file is concerned only with the EISA portions
* of Wax.
*
* HINT:
* -----
* To allow an ISA card to work properly in the EISA slot you need to
* set an edge trigger level. This may be done on the palo command line
* by adding the kernel parameter "eisa_irq_edge=n,n2,[...]]", with
* n and n2 as the irq levels you want to use.
*
* Example: "eisa_irq_edge=10,11" allows ISA cards to operate at
* irq levels 10 and 11.
*/
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/eisa.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/processor.h>
#include <asm/parisc-device.h>
#include <asm/delay.h>
#include <asm/eisa_bus.h>
#include <asm/eisa_eeprom.h>
#include "iommu.h"
#if 0
#define EISA_DBG(msg, arg...) printk(KERN_DEBUG "eisa: " msg, ## arg)
#else
#define EISA_DBG(msg, arg...)
#endif
#define SNAKES_EEPROM_BASE_ADDR 0xF0810400
#define MIRAGE_EEPROM_BASE_ADDR 0xF00C0400
static DEFINE_SPINLOCK(eisa_irq_lock);
void __iomem *eisa_eeprom_addr __read_mostly;
/* We can only have one EISA adapter in the system because neither
* implementation can be flexed.
*/
static struct eisa_ba {
struct pci_hba_data hba;
unsigned long eeprom_addr;
struct eisa_root_device root;
} eisa_dev;
/* Port ops */
static inline unsigned long eisa_permute(unsigned short port)
{
if (port & 0x300) {
return 0xfc000000 | ((port & 0xfc00) >> 6)
| ((port & 0x3f8) << 9) | (port & 7);
} else {
return 0xfc000000 | port;
}
}
unsigned char eisa_in8(unsigned short port)
{
if (EISA_bus)
return gsc_readb(eisa_permute(port));
return 0xff;
}
unsigned short eisa_in16(unsigned short port)
{
if (EISA_bus)
return le16_to_cpu(gsc_readw(eisa_permute(port)));
return 0xffff;
}
unsigned int eisa_in32(unsigned short port)
{
if (EISA_bus)
return le32_to_cpu(gsc_readl(eisa_permute(port)));
return 0xffffffff;
}
void eisa_out8(unsigned char data, unsigned short port)
{
if (EISA_bus)
gsc_writeb(data, eisa_permute(port));
}
void eisa_out16(unsigned short data, unsigned short port)
{
if (EISA_bus)
gsc_writew(cpu_to_le16(data), eisa_permute(port));
}
void eisa_out32(unsigned int data, unsigned short port)
{
if (EISA_bus)
gsc_writel(cpu_to_le32(data), eisa_permute(port));
}
#ifndef CONFIG_PCI
/* We call these directly without PCI. See asm/io.h. */
EXPORT_SYMBOL(eisa_in8);
EXPORT_SYMBOL(eisa_in16);
EXPORT_SYMBOL(eisa_in32);
EXPORT_SYMBOL(eisa_out8);
EXPORT_SYMBOL(eisa_out16);
EXPORT_SYMBOL(eisa_out32);
#endif
/* Interrupt handling */
/* cached interrupt mask registers */
static int master_mask;
static int slave_mask;
/* the trig level can be set with the
* eisa_irq_edge=n,n,n commandline parameter
* We should really read this from the EEPROM
* in the furure.
*/
/* irq 13,8,2,1,0 must be edge */
static unsigned int eisa_irq_level __read_mostly; /* default to edge triggered */
/* called by free irq */
static void eisa_mask_irq(struct irq_data *d)
{
unsigned int irq = d->irq;
unsigned long flags;
EISA_DBG("disable irq %d\n", irq);
/* just mask for now */
spin_lock_irqsave(&eisa_irq_lock, flags);
if (irq & 8) {
slave_mask |= (1 << (irq&7));
eisa_out8(slave_mask, 0xa1);
} else {
master_mask |= (1 << (irq&7));
eisa_out8(master_mask, 0x21);
}
spin_unlock_irqrestore(&eisa_irq_lock, flags);
EISA_DBG("pic0 mask %02x\n", eisa_in8(0x21));
EISA_DBG("pic1 mask %02x\n", eisa_in8(0xa1));
}
/* called by request irq */
static void eisa_unmask_irq(struct irq_data *d)
{
unsigned int irq = d->irq;
unsigned long flags;
EISA_DBG("enable irq %d\n", irq);
spin_lock_irqsave(&eisa_irq_lock, flags);
if (irq & 8) {
slave_mask &= ~(1 << (irq&7));
eisa_out8(slave_mask, 0xa1);
} else {
master_mask &= ~(1 << (irq&7));
eisa_out8(master_mask, 0x21);
}
spin_unlock_irqrestore(&eisa_irq_lock, flags);
EISA_DBG("pic0 mask %02x\n", eisa_in8(0x21));
EISA_DBG("pic1 mask %02x\n", eisa_in8(0xa1));
}
static struct irq_chip eisa_interrupt_type = {
.name = "EISA",
.irq_unmask = eisa_unmask_irq,
.irq_mask = eisa_mask_irq,
};
static irqreturn_t eisa_irq(int wax_irq, void *intr_dev)
{
int irq = gsc_readb(0xfc01f000); /* EISA supports 16 irqs */
unsigned long flags;
spin_lock_irqsave(&eisa_irq_lock, flags);
/* read IRR command */
eisa_out8(0x0a, 0x20);
eisa_out8(0x0a, 0xa0);
EISA_DBG("irq IAR %02x 8259-1 irr %02x 8259-2 irr %02x\n",
irq, eisa_in8(0x20), eisa_in8(0xa0));
/* read ISR command */
eisa_out8(0x0a, 0x20);
eisa_out8(0x0a, 0xa0);
EISA_DBG("irq 8259-1 isr %02x imr %02x 8259-2 isr %02x imr %02x\n",
eisa_in8(0x20), eisa_in8(0x21), eisa_in8(0xa0), eisa_in8(0xa1));
irq &= 0xf;
/* mask irq and write eoi */
if (irq & 8) {
slave_mask |= (1 << (irq&7));
eisa_out8(slave_mask, 0xa1);
eisa_out8(0x60 | (irq&7),0xa0);/* 'Specific EOI' to slave */
eisa_out8(0x62, 0x20); /* 'Specific EOI' to master-IRQ2 */
} else {
master_mask |= (1 << (irq&7));
eisa_out8(master_mask, 0x21);
eisa_out8(0x60|irq, 0x20); /* 'Specific EOI' to master */
}
spin_unlock_irqrestore(&eisa_irq_lock, flags);
generic_handle_irq(irq);
spin_lock_irqsave(&eisa_irq_lock, flags);
/* unmask */
if (irq & 8) {
slave_mask &= ~(1 << (irq&7));
eisa_out8(slave_mask, 0xa1);
} else {
master_mask &= ~(1 << (irq&7));
eisa_out8(master_mask, 0x21);
}
spin_unlock_irqrestore(&eisa_irq_lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t dummy_irq2_handler(int _, void *dev)
{
printk(KERN_ALERT "eisa: uhh, irq2?\n");
return IRQ_HANDLED;
}
static void init_eisa_pic(void)
{
unsigned long flags;
spin_lock_irqsave(&eisa_irq_lock, flags);
eisa_out8(0xff, 0x21); /* mask during init */
eisa_out8(0xff, 0xa1); /* mask during init */
/* master pic */
eisa_out8(0x11, 0x20); /* ICW1 */
eisa_out8(0x00, 0x21); /* ICW2 */
eisa_out8(0x04, 0x21); /* ICW3 */
eisa_out8(0x01, 0x21); /* ICW4 */
eisa_out8(0x40, 0x20); /* OCW2 */
/* slave pic */
eisa_out8(0x11, 0xa0); /* ICW1 */
eisa_out8(0x08, 0xa1); /* ICW2 */
eisa_out8(0x02, 0xa1); /* ICW3 */
eisa_out8(0x01, 0xa1); /* ICW4 */
eisa_out8(0x40, 0xa0); /* OCW2 */
udelay(100);
slave_mask = 0xff;
master_mask = 0xfb;
eisa_out8(slave_mask, 0xa1); /* OCW1 */
eisa_out8(master_mask, 0x21); /* OCW1 */
/* setup trig level */
EISA_DBG("EISA edge/level %04x\n", eisa_irq_level);
eisa_out8(eisa_irq_level&0xff, 0x4d0); /* Set all irq's to edge */
eisa_out8((eisa_irq_level >> 8) & 0xff, 0x4d1);
EISA_DBG("pic0 mask %02x\n", eisa_in8(0x21));
EISA_DBG("pic1 mask %02x\n", eisa_in8(0xa1));
EISA_DBG("pic0 edge/level %02x\n", eisa_in8(0x4d0));
EISA_DBG("pic1 edge/level %02x\n", eisa_in8(0x4d1));
spin_unlock_irqrestore(&eisa_irq_lock, flags);
}
/* Device initialisation */
#define is_mongoose(dev) (dev->id.sversion == 0x00076)
static int __init eisa_probe(struct parisc_device *dev)
{
int i, result;
char *name = is_mongoose(dev) ? "Mongoose" : "Wax";
printk(KERN_INFO "%s EISA Adapter found at 0x%08lx\n",
name, (unsigned long)dev->hpa.start);
eisa_dev.hba.dev = dev;
eisa_dev.hba.iommu = ccio_get_iommu(dev);
eisa_dev.hba.lmmio_space.name = "EISA";
eisa_dev.hba.lmmio_space.start = F_EXTEND(0xfc000000);
eisa_dev.hba.lmmio_space.end = F_EXTEND(0xffbfffff);
eisa_dev.hba.lmmio_space.flags = IORESOURCE_MEM;
result = ccio_request_resource(dev, &eisa_dev.hba.lmmio_space);
if (result < 0) {
printk(KERN_ERR "EISA: failed to claim EISA Bus address space!\n");
return result;
}
eisa_dev.hba.io_space.name = "EISA";
eisa_dev.hba.io_space.start = 0;
eisa_dev.hba.io_space.end = 0xffff;
eisa_dev.hba.lmmio_space.flags = IORESOURCE_IO;
result = request_resource(&ioport_resource, &eisa_dev.hba.io_space);
if (result < 0) {
printk(KERN_ERR "EISA: failed to claim EISA Bus port space!\n");
return result;
}
pcibios_register_hba(&eisa_dev.hba);
result = request_irq(dev->irq, eisa_irq, IRQF_SHARED, "EISA", &eisa_dev);
if (result) {
printk(KERN_ERR "EISA: request_irq failed!\n");
goto error_release;
}
/* Reserve IRQ2 */
if (request_irq(2, dummy_irq2_handler, 0, "cascade", NULL))
pr_err("Failed to request irq 2 (cascade)\n");
for (i = 0; i < 16; i++) {
irq_set_chip_and_handler(i, &eisa_interrupt_type,
handle_simple_irq);
}
EISA_bus = 1;
if (dev->num_addrs) {
/* newer firmware hand out the eeprom address */
eisa_dev.eeprom_addr = dev->addr[0];
} else {
/* old firmware, need to figure out the box */
if (is_mongoose(dev)) {
eisa_dev.eeprom_addr = SNAKES_EEPROM_BASE_ADDR;
} else {
eisa_dev.eeprom_addr = MIRAGE_EEPROM_BASE_ADDR;
}
}
eisa_eeprom_addr = ioremap(eisa_dev.eeprom_addr, HPEE_MAX_LENGTH);
if (!eisa_eeprom_addr) {
result = -ENOMEM;
printk(KERN_ERR "EISA: ioremap failed!\n");
goto error_free_irq;
}
result = eisa_enumerator(eisa_dev.eeprom_addr, &eisa_dev.hba.io_space,
&eisa_dev.hba.lmmio_space);
init_eisa_pic();
if (result >= 0) {
/* FIXME : Don't enumerate the bus twice. */
eisa_dev.root.dev = &dev->dev;
dev_set_drvdata(&dev->dev, &eisa_dev.root);
eisa_dev.root.bus_base_addr = 0;
eisa_dev.root.res = &eisa_dev.hba.io_space;
eisa_dev.root.slots = result;
eisa_dev.root.dma_mask = 0xffffffff; /* wild guess */
if (eisa_root_register (&eisa_dev.root)) {
printk(KERN_ERR "EISA: Failed to register EISA root\n");
result = -ENOMEM;
goto error_iounmap;
}
}
return 0;
error_iounmap:
iounmap(eisa_eeprom_addr);
error_free_irq:
free_irq(dev->irq, &eisa_dev);
error_release:
release_resource(&eisa_dev.hba.io_space);
return result;
}
static const struct parisc_device_id eisa_tbl[] __initconst = {
{ HPHW_BA, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x00076 }, /* Mongoose */
{ HPHW_BA, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x00090 }, /* Wax EISA */
{ 0, }
};
MODULE_DEVICE_TABLE(parisc, eisa_tbl);
static struct parisc_driver eisa_driver __refdata = {
.name = "eisa_ba",
.id_table = eisa_tbl,
.probe = eisa_probe,
};
static int __init parisc_eisa_init(void)
{
return register_parisc_driver(&eisa_driver);
}
arch_initcall(parisc_eisa_init);
static unsigned int eisa_irq_configured;
void eisa_make_irq_level(int num)
{
if (eisa_irq_configured& (1<<num)) {
printk(KERN_WARNING
"IRQ %d polarity configured twice (last to level)\n",
num);
}
eisa_irq_level |= (1<<num); /* set the corresponding bit */
eisa_irq_configured |= (1<<num); /* set the corresponding bit */
}
void eisa_make_irq_edge(int num)
{
if (eisa_irq_configured& (1<<num)) {
printk(KERN_WARNING
"IRQ %d polarity configured twice (last to edge)\n",
num);
}
eisa_irq_level &= ~(1<<num); /* clear the corresponding bit */
eisa_irq_configured |= (1<<num); /* set the corresponding bit */
}
static int __init eisa_irq_setup(char *str)
{
char *cur = str;
int val;
EISA_DBG("IRQ setup\n");
while (cur != NULL) {
char *pe;
val = (int) simple_strtoul(cur, &pe, 0);
if (val > 15 || val < 0) {
printk(KERN_ERR "eisa: EISA irq value are 0-15\n");
continue;
}
if (val == 2) {
val = 9;
}
eisa_make_irq_edge(val); /* clear the corresponding bit */
EISA_DBG("setting IRQ %d to edge-triggered mode\n", val);
if ((cur = strchr(cur, ','))) {
cur++;
} else {
break;
}
}
return 1;
}
__setup("eisa_irq_edge=", eisa_irq_setup);
| linux-master | drivers/parisc/eisa.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
** I/O Sapic Driver - PCI interrupt line support
**
** (c) Copyright 1999 Grant Grundler
** (c) Copyright 1999 Hewlett-Packard Company
**
**
** The I/O sapic driver manages the Interrupt Redirection Table which is
** the control logic to convert PCI line based interrupts into a Message
** Signaled Interrupt (aka Transaction Based Interrupt, TBI).
**
** Acronyms
** --------
** HPA Hard Physical Address (aka MMIO address)
** IRQ Interrupt ReQuest. Implies Line based interrupt.
** IRT Interrupt Routing Table (provided by PAT firmware)
** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA
** table which is implemented in I/O SAPIC.
** ISR Interrupt Service Routine. aka Interrupt handler.
** MSI Message Signaled Interrupt. PCI 2.2 functionality.
** aka Transaction Based Interrupt (or TBI).
** PA Precision Architecture. HP's RISC architecture.
** RISC Reduced Instruction Set Computer.
**
**
** What's a Message Signalled Interrupt?
** -------------------------------------
** MSI is a write transaction which targets a processor and is similar
** to a processor write to memory or MMIO. MSIs can be generated by I/O
** devices as well as processors and require *architecture* to work.
**
** PA only supports MSI. So I/O subsystems must either natively generate
** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs
** (e.g. PCI and EISA). IA64 supports MSIs via a "local SAPIC" which
** acts on behalf of a processor.
**
** MSI allows any I/O device to interrupt any processor. This makes
** load balancing of the interrupt processing possible on an SMP platform.
** Interrupts are also ordered WRT to DMA data. It's possible on I/O
** coherent systems to completely eliminate PIO reads from the interrupt
** path. The device and driver must be designed and implemented to
** guarantee all DMA has been issued (issues about atomicity here)
** before the MSI is issued. I/O status can then safely be read from
** DMA'd data by the ISR.
**
**
** PA Firmware
** -----------
** PA-RISC platforms have two fundamentally different types of firmware.
** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register
** and BARs similar to a traditional PC BIOS.
** The newer "PAT" firmware supports PDC calls which return tables.
** PAT firmware only initializes the PCI Console and Boot interface.
** With these tables, the OS can program all other PCI devices.
**
** One such PAT PDC call returns the "Interrupt Routing Table" (IRT).
** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC
** input line. If the IRT is not available, this driver assumes
** INTERRUPT_LINE register has been programmed by firmware. The latter
** case also means online addition of PCI cards can NOT be supported
** even if HW support is present.
**
** All platforms with PAT firmware to date (Oct 1999) use one Interrupt
** Routing Table for the entire platform.
**
** Where's the iosapic?
** --------------------
** I/O sapic is part of the "Core Electronics Complex". And on HP platforms
** it's integrated as part of the PCI bus adapter, "lba". So no bus walk
** will discover I/O Sapic. I/O Sapic driver learns about each device
** when lba driver advertises the presence of the I/O sapic by calling
** iosapic_register().
**
**
** IRQ handling notes
** ------------------
** The IO-SAPIC can indicate to the CPU which interrupt was asserted.
** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per
** IO-SAPIC interrupt and call the device driver's handler directly.
** The IO-SAPIC driver hijacks the CPU interrupt handler so it can
** issue the End Of Interrupt command to the IO-SAPIC.
**
** Overview of exported iosapic functions
** --------------------------------------
** (caveat: code isn't finished yet - this is just the plan)
**
** iosapic_init:
** o initialize globals (lock, etc)
** o try to read IRT. Presence of IRT determines if this is
** a PAT platform or not.
**
** iosapic_register():
** o create iosapic_info instance data structure
** o allocate vector_info array for this iosapic
** o initialize vector_info - read corresponding IRdT?
**
** iosapic_xlate_pin: (only called by fixup_irq for PAT platform)
** o intr_pin = read cfg (INTERRUPT_PIN);
** o if (device under PCI-PCI bridge)
** translate slot/pin
**
** iosapic_fixup_irq:
** o if PAT platform (IRT present)
** intr_pin = iosapic_xlate_pin(isi,pcidev):
** intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin)
** save IRT entry into vector_info later
** write cfg INTERRUPT_LINE (with intr_line)?
** else
** intr_line = pcidev->irq
** IRT pointer = NULL
** endif
** o locate vector_info (needs: isi, intr_line)
** o allocate processor "irq" and get txn_addr/data
** o request_irq(processor_irq, iosapic_interrupt, vector_info,...)
**
** iosapic_enable_irq:
** o clear any pending IRQ on that line
** o enable IRdT - call enable_irq(vector[line]->processor_irq)
** o write EOI in case line is already asserted.
**
** iosapic_disable_irq:
** o disable IRdT - call disable_irq(vector[line]->processor_irq)
*/
#include <linux/pci.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#ifdef CONFIG_SUPERIO
#include <asm/superio.h>
#endif
#include <asm/ropes.h>
#include "iosapic_private.h"
#define MODULE_NAME "iosapic"
/* "local" compile flags */
#undef PCI_BRIDGE_FUNCS
#undef DEBUG_IOSAPIC
#undef DEBUG_IOSAPIC_IRT
#ifdef DEBUG_IOSAPIC
#define DBG(x...) printk(x)
#else /* DEBUG_IOSAPIC */
#define DBG(x...)
#endif /* DEBUG_IOSAPIC */
#ifdef DEBUG_IOSAPIC_IRT
#define DBG_IRT(x...) printk(x)
#else
#define DBG_IRT(x...)
#endif
#ifdef CONFIG_64BIT
#define COMPARE_IRTE_ADDR(irte, hpa) ((irte)->dest_iosapic_addr == (hpa))
#else
#define COMPARE_IRTE_ADDR(irte, hpa) \
((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL))
#endif
#define IOSAPIC_REG_SELECT 0x00
#define IOSAPIC_REG_WINDOW 0x10
#define IOSAPIC_REG_EOI 0x40
#define IOSAPIC_REG_VERSION 0x1
#define IOSAPIC_IRDT_ENTRY(idx) (0x10+(idx)*2)
#define IOSAPIC_IRDT_ENTRY_HI(idx) (0x11+(idx)*2)
static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg)
{
writel(reg, iosapic + IOSAPIC_REG_SELECT);
return readl(iosapic + IOSAPIC_REG_WINDOW);
}
static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val)
{
writel(reg, iosapic + IOSAPIC_REG_SELECT);
writel(val, iosapic + IOSAPIC_REG_WINDOW);
}
#define IOSAPIC_VERSION_MASK 0x000000ff
#define IOSAPIC_VERSION(ver) ((int) (ver & IOSAPIC_VERSION_MASK))
#define IOSAPIC_MAX_ENTRY_MASK 0x00ff0000
#define IOSAPIC_MAX_ENTRY_SHIFT 0x10
#define IOSAPIC_IRDT_MAX_ENTRY(ver) \
(int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT)
/* bits in the "low" I/O Sapic IRdT entry */
#define IOSAPIC_IRDT_ENABLE 0x10000
#define IOSAPIC_IRDT_PO_LOW 0x02000
#define IOSAPIC_IRDT_LEVEL_TRIG 0x08000
#define IOSAPIC_IRDT_MODE_LPRI 0x00100
/* bits in the "high" I/O Sapic IRdT entry */
#define IOSAPIC_IRDT_ID_EID_SHIFT 0x10
static DEFINE_SPINLOCK(iosapic_lock);
static inline void iosapic_eoi(__le32 __iomem *addr, __le32 data)
{
__raw_writel((__force u32)data, addr);
}
/*
** REVISIT: future platforms may have more than one IRT.
** If so, the following three fields form a structure which
** then be linked into a list. Names are chosen to make searching
** for them easy - not necessarily accurate (eg "cell").
**
** Alternative: iosapic_info could point to the IRT it's in.
** iosapic_register() could search a list of IRT's.
*/
static struct irt_entry *irt_cell;
static size_t irt_num_entry;
static struct irt_entry *iosapic_alloc_irt(int num_entries)
{
return kcalloc(num_entries, sizeof(struct irt_entry), GFP_KERNEL);
}
/**
* iosapic_load_irt - Fill in the interrupt routing table
* @cell_num: The cell number of the CPU we're currently executing on
* @irt: The address to place the new IRT at
* @return The number of entries found
*
* The "Get PCI INT Routing Table Size" option returns the number of
* entries in the PCI interrupt routing table for the cell specified
* in the cell_number argument. The cell number must be for a cell
* within the caller's protection domain.
*
* The "Get PCI INT Routing Table" option returns, for the cell
* specified in the cell_number argument, the PCI interrupt routing
* table in the caller allocated memory pointed to by mem_addr.
* We assume the IRT only contains entries for I/O SAPIC and
* calculate the size based on the size of I/O sapic entries.
*
* The PCI interrupt routing table entry format is derived from the
* IA64 SAL Specification 2.4. The PCI interrupt routing table defines
* the routing of PCI interrupt signals between the PCI device output
* "pins" and the IO SAPICs' input "lines" (including core I/O PCI
* devices). This table does NOT include information for devices/slots
* behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec.
* for the architected method of routing of IRQ's behind PPB's.
*/
static int __init
iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt)
{
long status; /* PDC return value status */
struct irt_entry *table; /* start of interrupt routing tbl */
unsigned long num_entries = 0UL;
BUG_ON(!irt);
if (is_pdc_pat()) {
/* Use pat pdc routine to get interrupt routing table size */
DBG("calling get_irt_size (cell %ld)\n", cell_num);
status = pdc_pat_get_irt_size(&num_entries, cell_num);
DBG("get_irt_size: %ld\n", status);
BUG_ON(status != PDC_OK);
BUG_ON(num_entries == 0);
/*
** allocate memory for interrupt routing table
** This interface isn't really right. We are assuming
** the contents of the table are exclusively
** for I/O sapic devices.
*/
table = iosapic_alloc_irt(num_entries);
if (table == NULL) {
printk(KERN_WARNING MODULE_NAME ": read_irt : can "
"not alloc mem for IRT\n");
return 0;
}
/* get PCI INT routing table */
status = pdc_pat_get_irt(table, cell_num);
DBG("pdc_pat_get_irt: %ld\n", status);
WARN_ON(status != PDC_OK);
} else {
/*
** C3000/J5000 (and similar) platforms with Sprockets PDC
** will return exactly one IRT for all iosapics.
** So if we have one, don't need to get it again.
*/
if (irt_cell)
return 0;
/* Should be using the Elroy's HPA, but it's ignored anyway */
status = pdc_pci_irt_size(&num_entries, 0);
DBG("pdc_pci_irt_size: %ld\n", status);
if (status != PDC_OK) {
/* Not a "legacy" system with I/O SAPIC either */
return 0;
}
BUG_ON(num_entries == 0);
table = iosapic_alloc_irt(num_entries);
if (!table) {
printk(KERN_WARNING MODULE_NAME ": read_irt : can "
"not alloc mem for IRT\n");
return 0;
}
/* HPA ignored by this call too. */
status = pdc_pci_irt(num_entries, 0, table);
BUG_ON(status != PDC_OK);
}
/* return interrupt table address */
*irt = table;
#ifdef DEBUG_IOSAPIC_IRT
{
struct irt_entry *p = table;
int i;
printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num);
printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n",
table,
num_entries,
(int) sizeof(struct irt_entry));
for (i = 0 ; i < num_entries ; i++, p++) {
printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n",
p->entry_type, p->entry_length, p->interrupt_type,
p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id,
p->src_seg_id, p->dest_iosapic_intin,
((u32 *) p)[2],
((u32 *) p)[3]
);
}
}
#endif /* DEBUG_IOSAPIC_IRT */
return num_entries;
}
static int __init iosapic_init(void)
{
unsigned long cell = 0;
#ifdef __LP64__
if (is_pdc_pat()) {
int status;
struct pdc_pat_cell_num cell_info;
status = pdc_pat_cell_get_number(&cell_info);
if (status == PDC_OK) {
cell = cell_info.cell_num;
}
}
#endif
/* get interrupt routing table for this cell */
irt_num_entry = iosapic_load_irt(cell, &irt_cell);
if (irt_num_entry == 0)
irt_cell = NULL; /* old PDC w/o iosapic */
return 0;
}
arch_initcall(iosapic_init);
/*
** Return the IRT entry in case we need to look something else up.
*/
static struct irt_entry *
irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin)
{
struct irt_entry *i = irt_cell;
int cnt; /* track how many entries we've looked at */
u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1);
DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin);
for (cnt=0; cnt < irt_num_entry; cnt++, i++) {
/*
** Validate: entry_type, entry_length, interrupt_type
**
** Difference between validate vs compare is the former
** should print debug info and is not expected to "fail"
** on current platforms.
*/
if (i->entry_type != IRT_IOSAPIC_TYPE) {
DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type);
continue;
}
if (i->entry_length != IRT_IOSAPIC_LENGTH) {
DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d length %d\n", i, cnt, i->entry_length);
continue;
}
if (i->interrupt_type != IRT_VECTORED_INTR) {
DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d interrupt_type %d\n", i, cnt, i->interrupt_type);
continue;
}
if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa))
continue;
if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno)
continue;
/*
** Ignore: src_bus_id and rc_seg_id correlate with
** iosapic_info->isi_hpa on HP platforms.
** If needed, pass in "PFA" (aka config space addr)
** instead of slot.
*/
/* Found it! */
return i;
}
printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n",
isi->isi_hpa, slot, intr_pin);
return NULL;
}
/*
** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges.
** Legacy PDC already does this translation for us and stores it in INTR_LINE.
**
** PAT PDC needs to basically do what legacy PDC does:
** o read PIN
** o adjust PIN in case device is "behind" a PPB
** (eg 4-port 100BT and SCSI/LAN "Combo Card")
** o convert slot/pin to I/O SAPIC input line.
**
** HP platforms only support:
** o one level of skewing for any number of PPBs
** o only support PCI-PCI Bridges.
*/
static struct irt_entry *
iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev)
{
u8 intr_pin, intr_slot;
pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin);
DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n",
pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin);
if (intr_pin == 0) {
/* The device does NOT support/use IRQ lines. */
return NULL;
}
/* Check if pcidev behind a PPB */
if (pcidev->bus->parent) {
/* Convert pcidev INTR_PIN into something we
** can lookup in the IRT.
*/
#ifdef PCI_BRIDGE_FUNCS
/*
** Proposal #1:
**
** call implementation specific translation function
** This is architecturally "cleaner". HP-UX doesn't
** support other secondary bus types (eg. E/ISA) directly.
** May be needed for other processor (eg IA64) architectures
** or by some ambitous soul who wants to watch TV.
*/
if (pci_bridge_funcs->xlate_intr_line) {
intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev);
}
#else /* PCI_BRIDGE_FUNCS */
struct pci_bus *p = pcidev->bus;
/*
** Proposal #2:
** The "pin" is skewed ((pin + dev - 1) % 4).
**
** This isn't very clean since I/O SAPIC must assume:
** - all platforms only have PCI busses.
** - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA)
** - IRQ routing is only skewed once regardless of
** the number of PPB's between iosapic and device.
** (Bit3 expansion chassis follows this rule)
**
** Advantage is it's really easy to implement.
*/
intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin);
#endif /* PCI_BRIDGE_FUNCS */
/*
* Locate the host slot of the PPB.
*/
while (p->parent->parent)
p = p->parent;
intr_slot = PCI_SLOT(p->self->devfn);
} else {
intr_slot = PCI_SLOT(pcidev->devfn);
}
DBG_IRT("iosapic_xlate_pin: bus %d slot %d pin %d\n",
pcidev->bus->busn_res.start, intr_slot, intr_pin);
return irt_find_irqline(isi, intr_slot, intr_pin);
}
static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1)
{
struct iosapic_info *isp = vi->iosapic;
u8 idx = vi->irqline;
*dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx));
*dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx));
}
static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1)
{
struct iosapic_info *isp = vi->iosapic;
DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n",
vi->irqline, isp->isi_hpa, dp0, dp1);
iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0);
/* Read the window register to flush the writes down to HW */
dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW);
iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1);
/* Read the window register to flush the writes down to HW */
dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW);
}
/*
** set_irt prepares the data (dp0, dp1) according to the vector_info
** and target cpu (id_eid). dp0/dp1 are then used to program I/O SAPIC
** IRdT for the given "vector" (aka IRQ line).
*/
static void
iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1)
{
u32 mode = 0;
struct irt_entry *p = vi->irte;
if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO)
mode |= IOSAPIC_IRDT_PO_LOW;
if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG)
mode |= IOSAPIC_IRDT_LEVEL_TRIG;
/*
** IA64 REVISIT
** PA doesn't support EXTINT or LPRIO bits.
*/
*dp0 = mode | (u32) vi->txn_data;
/*
** Extracting id_eid isn't a real clean way of getting it.
** But the encoding is the same for both PA and IA64 platforms.
*/
if (is_pdc_pat()) {
/*
** PAT PDC just hands it to us "right".
** txn_addr comes from cpu_data[x].txn_addr.
*/
*dp1 = (u32) (vi->txn_addr);
} else {
/*
** eg if base_addr == 0xfffa0000),
** we want to get 0xa0ff0000.
**
** eid 0x0ff00000 -> 0x00ff0000
** id 0x000ff000 -> 0xff000000
*/
*dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) |
(((u32)vi->txn_addr & 0x000ff000) << 12);
}
DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1);
}
static void iosapic_mask_irq(struct irq_data *d)
{
unsigned long flags;
struct vector_info *vi = irq_data_get_irq_chip_data(d);
u32 d0, d1;
spin_lock_irqsave(&iosapic_lock, flags);
iosapic_rd_irt_entry(vi, &d0, &d1);
d0 |= IOSAPIC_IRDT_ENABLE;
iosapic_wr_irt_entry(vi, d0, d1);
spin_unlock_irqrestore(&iosapic_lock, flags);
}
static void iosapic_unmask_irq(struct irq_data *d)
{
struct vector_info *vi = irq_data_get_irq_chip_data(d);
u32 d0, d1;
/* data is initialized by fixup_irq */
WARN_ON(vi->txn_irq == 0);
iosapic_set_irt_data(vi, &d0, &d1);
iosapic_wr_irt_entry(vi, d0, d1);
#ifdef DEBUG_IOSAPIC_IRT
{
u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL);
printk("iosapic_enable_irq(): regs %p", vi->eoi_addr);
for ( ; t < vi->eoi_addr; t++)
printk(" %x", readl(t));
printk("\n");
}
printk("iosapic_enable_irq(): sel ");
{
struct iosapic_info *isp = vi->iosapic;
for (d0=0x10; d0<0x1e; d0++) {
d1 = iosapic_read(isp->addr, d0);
printk(" %x", d1);
}
}
printk("\n");
#endif
/*
* Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is
* asserted. IRQ generally should not be asserted when a driver
* enables their IRQ. It can lead to "interesting" race conditions
* in the driver initialization sequence.
*/
DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", d->irq,
vi->eoi_addr, vi->eoi_data);
iosapic_eoi(vi->eoi_addr, vi->eoi_data);
}
static void iosapic_eoi_irq(struct irq_data *d)
{
struct vector_info *vi = irq_data_get_irq_chip_data(d);
iosapic_eoi(vi->eoi_addr, vi->eoi_data);
cpu_eoi_irq(d);
}
#ifdef CONFIG_SMP
static int iosapic_set_affinity_irq(struct irq_data *d,
const struct cpumask *dest, bool force)
{
struct vector_info *vi = irq_data_get_irq_chip_data(d);
u32 d0, d1, dummy_d0;
unsigned long flags;
int dest_cpu;
dest_cpu = cpu_check_affinity(d, dest);
if (dest_cpu < 0)
return -1;
irq_data_update_affinity(d, cpumask_of(dest_cpu));
vi->txn_addr = txn_affinity_addr(d->irq, dest_cpu);
spin_lock_irqsave(&iosapic_lock, flags);
/* d1 contains the destination CPU, so only want to set that
* entry */
iosapic_rd_irt_entry(vi, &d0, &d1);
iosapic_set_irt_data(vi, &dummy_d0, &d1);
iosapic_wr_irt_entry(vi, d0, d1);
spin_unlock_irqrestore(&iosapic_lock, flags);
return 0;
}
#endif
static struct irq_chip iosapic_interrupt_type = {
.name = "IO-SAPIC-level",
.irq_unmask = iosapic_unmask_irq,
.irq_mask = iosapic_mask_irq,
.irq_ack = cpu_ack_irq,
.irq_eoi = iosapic_eoi_irq,
#ifdef CONFIG_SMP
.irq_set_affinity = iosapic_set_affinity_irq,
#endif
};
int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev)
{
struct iosapic_info *isi = isi_obj;
struct irt_entry *irte = NULL; /* only used if PAT PDC */
struct vector_info *vi;
int isi_line; /* line used by device */
if (!isi) {
printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n",
pci_name(pcidev));
return -1;
}
#ifdef CONFIG_SUPERIO
/*
* HACK ALERT! (non-compliant PCI device support)
*
* All SuckyIO interrupts are routed through the PIC's on function 1.
* But SuckyIO OHCI USB controller gets an IRT entry anyway because
* it advertises INT D for INT_PIN. Use that IRT entry to get the
* SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*).
*/
if (is_superio_device(pcidev)) {
/* We must call superio_fixup_irq() to register the pdev */
pcidev->irq = superio_fixup_irq(pcidev);
/* Don't return if need to program the IOSAPIC's IRT... */
if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN)
return pcidev->irq;
}
#endif /* CONFIG_SUPERIO */
/* lookup IRT entry for isi/slot/pin set */
irte = iosapic_xlate_pin(isi, pcidev);
if (!irte) {
printk("iosapic: no IRTE for %s (IRQ not connected?)\n",
pci_name(pcidev));
return -1;
}
DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n",
irte,
irte->entry_type,
irte->entry_length,
irte->polarity_trigger,
irte->src_bus_irq_devno,
irte->src_bus_id,
irte->src_seg_id,
irte->dest_iosapic_intin,
(u32) irte->dest_iosapic_addr);
isi_line = irte->dest_iosapic_intin;
/* get vector info for this input line */
vi = isi->isi_vector + isi_line;
DBG_IRT("iosapic_fixup_irq: line %d vi 0x%p\n", isi_line, vi);
/* If this IRQ line has already been setup, skip it */
if (vi->irte)
goto out;
vi->irte = irte;
/*
* Allocate processor IRQ
*
* XXX/FIXME The txn_alloc_irq() code and related code should be
* moved to enable_irq(). That way we only allocate processor IRQ
* bits for devices that actually have drivers claiming them.
* Right now we assign an IRQ to every PCI device present,
* regardless of whether it's used or not.
*/
vi->txn_irq = txn_alloc_irq(8);
if (vi->txn_irq < 0)
panic("I/O sapic: couldn't get TXN IRQ\n");
/* enable_irq() will use txn_* to program IRdT */
vi->txn_addr = txn_alloc_addr(vi->txn_irq);
vi->txn_data = txn_alloc_data(vi->txn_irq);
vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
vi->eoi_data = cpu_to_le32(vi->txn_data);
cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
out:
pcidev->irq = vi->txn_irq;
DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n",
PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn),
pcidev->vendor, pcidev->device, isi_line, pcidev->irq);
return pcidev->irq;
}
static struct iosapic_info *iosapic_list;
#ifdef CONFIG_64BIT
int iosapic_serial_irq(struct parisc_device *dev)
{
struct iosapic_info *isi;
struct irt_entry *irte;
struct vector_info *vi;
int cnt;
int intin;
intin = (dev->mod_info >> 24) & 15;
/* lookup IRT entry for isi/slot/pin set */
for (cnt = 0; cnt < irt_num_entry; cnt++) {
irte = &irt_cell[cnt];
if (COMPARE_IRTE_ADDR(irte, dev->mod0) &&
irte->dest_iosapic_intin == intin)
break;
}
if (cnt >= irt_num_entry)
return 0; /* no irq found, force polling */
DBG_IRT("iosapic_serial_irq(): irte %p %x %x %x %x %x %x %x %x\n",
irte,
irte->entry_type,
irte->entry_length,
irte->polarity_trigger,
irte->src_bus_irq_devno,
irte->src_bus_id,
irte->src_seg_id,
irte->dest_iosapic_intin,
(u32) irte->dest_iosapic_addr);
/* search for iosapic */
for (isi = iosapic_list; isi; isi = isi->isi_next)
if (isi->isi_hpa == dev->mod0)
break;
if (!isi)
return 0; /* no iosapic found, force polling */
/* get vector info for this input line */
vi = isi->isi_vector + intin;
DBG_IRT("iosapic_serial_irq: line %d vi 0x%p\n", iosapic_intin, vi);
/* If this IRQ line has already been setup, skip it */
if (vi->irte)
goto out;
vi->irte = irte;
/*
* Allocate processor IRQ
*
* XXX/FIXME The txn_alloc_irq() code and related code should be
* moved to enable_irq(). That way we only allocate processor IRQ
* bits for devices that actually have drivers claiming them.
* Right now we assign an IRQ to every PCI device present,
* regardless of whether it's used or not.
*/
vi->txn_irq = txn_alloc_irq(8);
if (vi->txn_irq < 0)
panic("I/O sapic: couldn't get TXN IRQ\n");
/* enable_irq() will use txn_* to program IRdT */
vi->txn_addr = txn_alloc_addr(vi->txn_irq);
vi->txn_data = txn_alloc_data(vi->txn_irq);
vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
vi->eoi_data = cpu_to_le32(vi->txn_data);
cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
out:
return vi->txn_irq;
}
EXPORT_SYMBOL(iosapic_serial_irq);
#endif
/*
** squirrel away the I/O Sapic Version
*/
static unsigned int
iosapic_rd_version(struct iosapic_info *isi)
{
return iosapic_read(isi->addr, IOSAPIC_REG_VERSION);
}
/*
** iosapic_register() is called by "drivers" with an integrated I/O SAPIC.
** Caller must be certain they have an I/O SAPIC and know its MMIO address.
**
** o allocate iosapic_info and add it to the list
** o read iosapic version and squirrel that away
** o read size of IRdT.
** o allocate and initialize isi_vector[]
** o allocate irq region
*/
void *iosapic_register(unsigned long hpa, void __iomem *vaddr)
{
struct iosapic_info *isi = NULL;
struct irt_entry *irte = irt_cell;
struct vector_info *vip;
int cnt; /* track how many entries we've looked at */
/*
* Astro based platforms can only support PCI OLARD if they implement
* PAT PDC. Legacy PDC omits LBAs with no PCI devices from the IRT.
* Search the IRT and ignore iosapic's which aren't in the IRT.
*/
for (cnt=0; cnt < irt_num_entry; cnt++, irte++) {
WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type);
if (COMPARE_IRTE_ADDR(irte, hpa))
break;
}
if (cnt >= irt_num_entry) {
DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa);
return NULL;
}
isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL);
if (!isi) {
BUG();
return NULL;
}
isi->addr = vaddr;
isi->isi_hpa = hpa;
isi->isi_version = iosapic_rd_version(isi);
isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1;
vip = isi->isi_vector = kcalloc(isi->isi_num_vectors,
sizeof(struct vector_info), GFP_KERNEL);
if (vip == NULL) {
kfree(isi);
return NULL;
}
for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) {
vip->irqline = (unsigned char) cnt;
vip->iosapic = isi;
}
isi->isi_next = iosapic_list;
iosapic_list = isi;
return isi;
}
#ifdef DEBUG_IOSAPIC
static void
iosapic_prt_irt(void *irt, long num_entry)
{
unsigned int i, *irp = (unsigned int *) irt;
printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry);
for (i=0; i<num_entry; i++, irp += 4) {
printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n",
irp, i, irp[0], irp[1], irp[2], irp[3]);
}
}
static void
iosapic_prt_vi(struct vector_info *vi)
{
printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi);
printk(KERN_DEBUG "\t\tstatus: %.4x\n", vi->status);
printk(KERN_DEBUG "\t\ttxn_irq: %d\n", vi->txn_irq);
printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr);
printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data);
printk(KERN_DEBUG "\t\teoi_addr: %p\n", vi->eoi_addr);
printk(KERN_DEBUG "\t\teoi_data: %x\n", vi->eoi_data);
}
static void
iosapic_prt_isi(struct iosapic_info *isi)
{
printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi);
printk(KERN_DEBUG "\t\tisi_hpa: %lx\n", isi->isi_hpa);
printk(KERN_DEBUG "\t\tisi_status: %x\n", isi->isi_status);
printk(KERN_DEBUG "\t\tisi_version: %x\n", isi->isi_version);
printk(KERN_DEBUG "\t\tisi_vector: %p\n", isi->isi_vector);
}
#endif /* DEBUG_IOSAPIC */
| linux-master | drivers/parisc/iosapic.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
** ccio-dma.c:
** DMA management routines for first generation cache-coherent machines.
** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
**
** (c) Copyright 2000 Grant Grundler
** (c) Copyright 2000 Ryan Bradetich
** (c) Copyright 2000 Hewlett-Packard Company
**
** "Real Mode" operation refers to U2/Uturn chip operation.
** U2/Uturn were designed to perform coherency checks w/o using
** the I/O MMU - basically what x86 does.
**
** Drawbacks of using Real Mode are:
** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
** o Ability to do scatter/gather in HW is lost.
** o Doesn't work under PCX-U/U+ machines since they didn't follow
** the coherency design originally worked out. Only PCX-W does.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/reboot.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/dma-map-ops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <linux/export.h>
#include <asm/byteorder.h>
#include <asm/cache.h> /* for L1_CACHE_BYTES */
#include <linux/uaccess.h>
#include <asm/page.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/hardware.h> /* for register_module() */
#include <asm/parisc-device.h>
#include "iommu.h"
/*
** Choose "ccio" since that's what HP-UX calls it.
** Make it easier for folks to migrate from one to the other :^)
*/
#define MODULE_NAME "ccio"
#undef DEBUG_CCIO_RES
#undef DEBUG_CCIO_RUN
#undef DEBUG_CCIO_INIT
#undef DEBUG_CCIO_RUN_SG
#ifdef CONFIG_PROC_FS
/* depends on proc fs support. But costs CPU performance. */
#undef CCIO_COLLECT_STATS
#endif
#ifdef DEBUG_CCIO_INIT
#define DBG_INIT(x...) printk(x)
#else
#define DBG_INIT(x...)
#endif
#ifdef DEBUG_CCIO_RUN
#define DBG_RUN(x...) printk(x)
#else
#define DBG_RUN(x...)
#endif
#ifdef DEBUG_CCIO_RES
#define DBG_RES(x...) printk(x)
#else
#define DBG_RES(x...)
#endif
#ifdef DEBUG_CCIO_RUN_SG
#define DBG_RUN_SG(x...) printk(x)
#else
#define DBG_RUN_SG(x...)
#endif
#define WRITE_U32(value, addr) __raw_writel(value, addr)
#define READ_U32(addr) __raw_readl(addr)
#define U2_IOA_RUNWAY 0x580
#define U2_BC_GSC 0x501
#define UTURN_IOA_RUNWAY 0x581
#define UTURN_BC_GSC 0x502
#define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
#define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
#define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
struct ioa_registers {
/* Runway Supervisory Set */
int32_t unused1[12];
uint32_t io_command; /* Offset 12 */
uint32_t io_status; /* Offset 13 */
uint32_t io_control; /* Offset 14 */
int32_t unused2[1];
/* Runway Auxiliary Register Set */
uint32_t io_err_resp; /* Offset 0 */
uint32_t io_err_info; /* Offset 1 */
uint32_t io_err_req; /* Offset 2 */
uint32_t io_err_resp_hi; /* Offset 3 */
uint32_t io_tlb_entry_m; /* Offset 4 */
uint32_t io_tlb_entry_l; /* Offset 5 */
uint32_t unused3[1];
uint32_t io_pdir_base; /* Offset 7 */
uint32_t io_io_low_hv; /* Offset 8 */
uint32_t io_io_high_hv; /* Offset 9 */
uint32_t unused4[1];
uint32_t io_chain_id_mask; /* Offset 11 */
uint32_t unused5[2];
uint32_t io_io_low; /* Offset 14 */
uint32_t io_io_high; /* Offset 15 */
};
/*
** IOA Registers
** -------------
**
** Runway IO_CONTROL Register (+0x38)
**
** The Runway IO_CONTROL register controls the forwarding of transactions.
**
** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
** | HV | TLB | reserved | HV | mode | reserved |
**
** o mode field indicates the address translation of transactions
** forwarded from Runway to GSC+:
** Mode Name Value Definition
** Off (default) 0 Opaque to matching addresses.
** Include 1 Transparent for matching addresses.
** Peek 3 Map matching addresses.
**
** + "Off" mode: Runway transactions which match the I/O range
** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
** + "Include" mode: all addresses within the I/O range specified
** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
** forwarded. This is the I/O Adapter's normal operating mode.
** + "Peek" mode: used during system configuration to initialize the
** GSC+ bus. Runway Write_Shorts in the address range specified by
** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
** *AND* the GSC+ address is remapped to the Broadcast Physical
** Address space by setting the 14 high order address bits of the
** 32 bit GSC+ address to ones.
**
** o TLB field affects transactions which are forwarded from GSC+ to Runway.
** "Real" mode is the poweron default.
**
** TLB Mode Value Description
** Real 0 No TLB translation. Address is directly mapped and the
** virtual address is composed of selected physical bits.
** Error 1 Software fills the TLB manually.
** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
**
**
** IO_IO_LOW_HV +0x60 (HV dependent)
** IO_IO_HIGH_HV +0x64 (HV dependent)
** IO_IO_LOW +0x78 (Architected register)
** IO_IO_HIGH +0x7c (Architected register)
**
** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
** I/O Adapter address space, respectively.
**
** 0 ... 7 | 8 ... 15 | 16 ... 31 |
** 11111111 | 11111111 | address |
**
** Each LOW/HIGH pair describes a disjoint address space region.
** (2 per GSC+ port). Each incoming Runway transaction address is compared
** with both sets of LOW/HIGH registers. If the address is in the range
** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
** for forwarded to the respective GSC+ bus.
** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
** an address space region.
**
** In order for a Runway address to reside within GSC+ extended address space:
** Runway Address [0:7] must identically compare to 8'b11111111
** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
** Runway Address [12:23] must be greater than or equal to
** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
** Runway Address [24:39] is not used in the comparison.
**
** When the Runway transaction is forwarded to GSC+, the GSC+ address is
** as follows:
** GSC+ Address[0:3] 4'b1111
** GSC+ Address[4:29] Runway Address[12:37]
** GSC+ Address[30:31] 2'b00
**
** All 4 Low/High registers must be initialized (by PDC) once the lower bus
** is interrogated and address space is defined. The operating system will
** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
** the PDC initialization. However, the hardware version dependent IO_IO_LOW
** and IO_IO_HIGH registers should not be subsequently altered by the OS.
**
** Writes to both sets of registers will take effect immediately, bypassing
** the queues, which ensures that subsequent Runway transactions are checked
** against the updated bounds values. However reads are queued, introducing
** the possibility of a read being bypassed by a subsequent write to the same
** register. This sequence can be avoided by having software wait for read
** returns before issuing subsequent writes.
*/
struct ioc {
struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
u8 *res_map; /* resource map, bit == pdir entry */
__le64 *pdir_base; /* physical base address */
u32 pdir_size; /* bytes, function of IOV Space size */
u32 res_hint; /* next available IOVP -
circular search */
u32 res_size; /* size of resource map in bytes */
spinlock_t res_lock;
#ifdef CCIO_COLLECT_STATS
#define CCIO_SEARCH_SAMPLE 0x100
unsigned long avg_search[CCIO_SEARCH_SAMPLE];
unsigned long avg_idx; /* current index into avg_search */
unsigned long used_pages;
unsigned long msingle_calls;
unsigned long msingle_pages;
unsigned long msg_calls;
unsigned long msg_pages;
unsigned long usingle_calls;
unsigned long usingle_pages;
unsigned long usg_calls;
unsigned long usg_pages;
#endif
unsigned short cujo20_bug;
/* STUFF We don't need in performance path */
u32 chainid_shift; /* specify bit location of chain_id */
struct ioc *next; /* Linked list of discovered iocs */
const char *name; /* device name from firmware */
unsigned int hw_path; /* the hardware path this ioc is associatd with */
struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
struct resource mmio_region[2]; /* The "routed" MMIO regions */
};
static struct ioc *ioc_list;
static int ioc_count;
/**************************************************************
*
* I/O Pdir Resource Management
*
* Bits set in the resource map are in use.
* Each bit can represent a number of pages.
* LSbs represent lower addresses (IOVA's).
*
* This was copied from sba_iommu.c. Don't try to unify
* the two resource managers unless a way to have different
* allocation policies is also adjusted. We'd like to avoid
* I/O TLB thrashing by having resource allocation policy
* match the I/O TLB replacement policy.
*
***************************************************************/
#define IOVP_SIZE PAGE_SIZE
#define IOVP_SHIFT PAGE_SHIFT
#define IOVP_MASK PAGE_MASK
/* Convert from IOVP to IOVA and vice versa. */
#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
#define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
/*
** Don't worry about the 150% average search length on a miss.
** If the search wraps around, and passes the res_hint, it will
** cause the kernel to panic anyhow.
*/
#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
for (; res_ptr < res_end; ++res_ptr) { \
int ret;\
unsigned int idx;\
idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
if ((0 == (*res_ptr & mask)) && !ret) { \
*res_ptr |= mask; \
res_idx = idx;\
ioc->res_hint = res_idx + (size >> 3); \
goto resource_found; \
} \
}
#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
res_ptr = (u##size *)&(ioc)->res_map[0]; \
CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
/*
** Find available bit in this ioa's resource map.
** Use a "circular" search:
** o Most IOVA's are "temporary" - avg search time should be small.
** o keep a history of what happened for debugging
** o KISS.
**
** Perf optimizations:
** o search for log2(size) bits at a time.
** o search for available resource bits using byte/word/whatever.
** o use different search for "large" (eg > 4 pages) or "very large"
** (eg > 16 pages) mappings.
*/
/**
* ccio_alloc_range - Allocate pages in the ioc's resource map.
* @ioc: The I/O Controller.
* @dev: The PCI device.
* @size: The requested number of bytes to be mapped into the
* I/O Pdir...
*
* This function searches the resource map of the ioc to locate a range
* of available pages for the requested size.
*/
static int
ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
{
unsigned int pages_needed = size >> IOVP_SHIFT;
unsigned int res_idx;
unsigned long boundary_size;
#ifdef CCIO_COLLECT_STATS
unsigned long cr_start = mfctl(16);
#endif
BUG_ON(pages_needed == 0);
BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
DBG_RES("%s() size: %zu pages_needed %d\n",
__func__, size, pages_needed);
/*
** "seek and ye shall find"...praying never hurts either...
** ggg sacrifices another 710 to the computer gods.
*/
boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
if (pages_needed <= 8) {
/*
* LAN traffic will not thrash the TLB IFF the same NIC
* uses 8 adjacent pages to map separate payload data.
* ie the same byte in the resource bit map.
*/
#if 0
/* FIXME: bit search should shift it's way through
* an unsigned long - not byte at a time. As it is now,
* we effectively allocate this byte to this mapping.
*/
unsigned long mask = ~(~0UL >> pages_needed);
CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
#else
CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
#endif
} else if (pages_needed <= 16) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
} else if (pages_needed <= 32) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
#ifdef __LP64__
} else if (pages_needed <= 64) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
#endif
} else {
panic("%s: %s() Too many pages to map. pages_needed: %u\n",
__FILE__, __func__, pages_needed);
}
panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
__func__);
resource_found:
DBG_RES("%s() res_idx %d res_hint: %d\n",
__func__, res_idx, ioc->res_hint);
#ifdef CCIO_COLLECT_STATS
{
unsigned long cr_end = mfctl(16);
unsigned long tmp = cr_end - cr_start;
/* check for roll over */
cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
}
ioc->avg_search[ioc->avg_idx++] = cr_start;
ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
ioc->used_pages += pages_needed;
#endif
/*
** return the bit address.
*/
return res_idx << 3;
}
#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
BUG_ON((*res_ptr & mask) != mask); \
*res_ptr &= ~(mask);
/**
* ccio_free_range - Free pages from the ioc's resource map.
* @ioc: The I/O Controller.
* @iova: The I/O Virtual Address.
* @pages_mapped: The requested number of pages to be freed from the
* I/O Pdir.
*
* This function frees the resouces allocated for the iova.
*/
static void
ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
{
unsigned long iovp = CCIO_IOVP(iova);
unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
BUG_ON(pages_mapped == 0);
BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
BUG_ON(pages_mapped > BITS_PER_LONG);
DBG_RES("%s(): res_idx: %d pages_mapped %lu\n",
__func__, res_idx, pages_mapped);
#ifdef CCIO_COLLECT_STATS
ioc->used_pages -= pages_mapped;
#endif
if(pages_mapped <= 8) {
#if 0
/* see matching comments in alloc_range */
unsigned long mask = ~(~0UL >> pages_mapped);
CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
#else
CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
#endif
} else if(pages_mapped <= 16) {
CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
} else if(pages_mapped <= 32) {
CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
#ifdef __LP64__
} else if(pages_mapped <= 64) {
CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
#endif
} else {
panic("%s:%s() Too many pages to unmap.\n", __FILE__,
__func__);
}
}
/****************************************************************
**
** CCIO dma_ops support routines
**
*****************************************************************/
typedef unsigned long space_t;
#define KERNEL_SPACE 0
/*
** DMA "Page Type" and Hints
** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
** set for subcacheline DMA transfers since we don't want to damage the
** other part of a cacheline.
** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
** data can avoid this if the mapping covers full cache lines.
** o STOP_MOST is needed for atomicity across cachelines.
** Apparently only "some EISA devices" need this.
** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
** to use this hint iff the EISA devices needs this feature.
** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
** o PREFETCH should *not* be set for cases like Multiple PCI devices
** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
** device can be fetched and multiply DMA streams will thrash the
** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
** and Invalidation of Prefetch Entries".
**
** FIXME: the default hints need to be per GSC device - not global.
**
** HP-UX dorks: linux device driver programming model is totally different
** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
** do special things to work on non-coherent platforms...linux has to
** be much more careful with this.
*/
#define IOPDIR_VALID 0x01UL
#define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
#ifdef CONFIG_EISA
#define HINT_STOP_MOST 0x04UL /* LSL support */
#else
#define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
#endif
#define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
#define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
/*
** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
** ccio_alloc_consistent() depends on this to get SAFE_DMA
** when it passes in BIDIRECTIONAL flag.
*/
static u32 hint_lookup[] = {
[DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
[DMA_TO_DEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
[DMA_FROM_DEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
};
/**
* ccio_io_pdir_entry - Initialize an I/O Pdir.
* @pdir_ptr: A pointer into I/O Pdir.
* @sid: The Space Identifier.
* @vba: The virtual address.
* @hints: The DMA Hint.
*
* Given a virtual address (vba, arg2) and space id, (sid, arg1),
* load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
* entry consists of 8 bytes as shown below (MSB == bit 0):
*
*
* WORD 0:
* +------+----------------+-----------------------------------------------+
* | Phys | Virtual Index | Phys |
* | 0:3 | 0:11 | 4:19 |
* |4 bits| 12 bits | 16 bits |
* +------+----------------+-----------------------------------------------+
* WORD 1:
* +-----------------------+-----------------------------------------------+
* | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
* | 20:39 | | Enable |Enable | |Enable|DMA | |
* | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
* +-----------------------+-----------------------------------------------+
*
* The virtual index field is filled with the results of the LCI
* (Load Coherence Index) instruction. The 8 bits used for the virtual
* index are bits 12:19 of the value returned by LCI.
*/
static void
ccio_io_pdir_entry(__le64 *pdir_ptr, space_t sid, unsigned long vba,
unsigned long hints)
{
register unsigned long pa;
register unsigned long ci; /* coherent index */
/* We currently only support kernel addresses */
BUG_ON(sid != KERNEL_SPACE);
/*
** WORD 1 - low order word
** "hints" parm includes the VALID bit!
** "dep" clobbers the physical address offset bits as well.
*/
pa = lpa(vba);
asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
((u32 *)pdir_ptr)[1] = (u32) pa;
/*
** WORD 0 - high order word
*/
#ifdef __LP64__
/*
** get bits 12:15 of physical address
** shift bits 16:31 of physical address
** and deposit them
*/
asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
#else
pa = 0;
#endif
/*
** get CPU coherency index bits
** Grab virtual index [0:11]
** Deposit virt_idx bits into I/O PDIR word
*/
asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
((u32 *)pdir_ptr)[0] = (u32) pa;
/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
** PCX-U/U+ do. (eg C200/C240)
** PCX-T'? Don't know. (eg C110 or similar K-class)
**
** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
**
** "Since PCX-U employs an offset hash that is incompatible with
** the real mode coherence index generation of U2, the PDIR entry
** must be flushed to memory to retain coherence."
*/
asm_io_fdc(pdir_ptr);
asm_io_sync();
}
/**
* ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
* @ioc: The I/O Controller.
* @iovp: The I/O Virtual Page.
* @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
*
* Purge invalid I/O PDIR entries from the I/O TLB.
*
* FIXME: Can we change the byte_cnt to pages_mapped?
*/
static void
ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
{
u32 chain_size = 1 << ioc->chainid_shift;
iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
byte_cnt += chain_size;
while(byte_cnt > chain_size) {
WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
iovp += chain_size;
byte_cnt -= chain_size;
}
}
/**
* ccio_mark_invalid - Mark the I/O Pdir entries invalid.
* @ioc: The I/O Controller.
* @iova: The I/O Virtual Address.
* @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
*
* Mark the I/O Pdir entries invalid and blow away the corresponding I/O
* TLB entries.
*
* FIXME: at some threshold it might be "cheaper" to just blow
* away the entire I/O TLB instead of individual entries.
*
* FIXME: Uturn has 256 TLB entries. We don't need to purge every
* PDIR entry - just once for each possible TLB entry.
* (We do need to maker I/O PDIR entries invalid regardless).
*
* FIXME: Can we change byte_cnt to pages_mapped?
*/
static void
ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
{
u32 iovp = (u32)CCIO_IOVP(iova);
size_t saved_byte_cnt;
/* round up to nearest page size */
saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
while(byte_cnt > 0) {
/* invalidate one page at a time */
unsigned int idx = PDIR_INDEX(iovp);
char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
pdir_ptr[7] = 0; /* clear only VALID bit */
/*
** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
** PCX-U/U+ do. (eg C200/C240)
** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
*/
asm_io_fdc(pdir_ptr);
iovp += IOVP_SIZE;
byte_cnt -= IOVP_SIZE;
}
asm_io_sync();
ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
}
/****************************************************************
**
** CCIO dma_ops
**
*****************************************************************/
/**
* ccio_dma_supported - Verify the IOMMU supports the DMA address range.
* @dev: The PCI device.
* @mask: A bit mask describing the DMA address range of the device.
*/
static int
ccio_dma_supported(struct device *dev, u64 mask)
{
if(dev == NULL) {
printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
BUG();
return 0;
}
/* only support 32-bit or better devices (ie PCI/GSC) */
return (int)(mask >= 0xffffffffUL);
}
/**
* ccio_map_single - Map an address range into the IOMMU.
* @dev: The PCI device.
* @addr: The start address of the DMA region.
* @size: The length of the DMA region.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_map_single function.
*/
static dma_addr_t
ccio_map_single(struct device *dev, void *addr, size_t size,
enum dma_data_direction direction)
{
int idx;
struct ioc *ioc;
unsigned long flags;
dma_addr_t iovp;
dma_addr_t offset;
__le64 *pdir_start;
unsigned long hint = hint_lookup[(int)direction];
BUG_ON(!dev);
ioc = GET_IOC(dev);
if (!ioc)
return DMA_MAPPING_ERROR;
BUG_ON(size <= 0);
/* save offset bits */
offset = ((unsigned long) addr) & ~IOVP_MASK;
/* round up to nearest IOVP_SIZE */
size = ALIGN(size + offset, IOVP_SIZE);
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CCIO_COLLECT_STATS
ioc->msingle_calls++;
ioc->msingle_pages += size >> IOVP_SHIFT;
#endif
idx = ccio_alloc_range(ioc, dev, size);
iovp = (dma_addr_t)MKIOVP(idx);
pdir_start = &(ioc->pdir_base[idx]);
DBG_RUN("%s() %px -> %#lx size: %zu\n",
__func__, addr, (long)(iovp | offset), size);
/* If not cacheline aligned, force SAFE_DMA on the whole mess */
if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
hint |= HINT_SAFE_DMA;
while(size > 0) {
ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
DBG_RUN(" pdir %p %08x%08x\n",
pdir_start,
(u32) (((u32 *) pdir_start)[0]),
(u32) (((u32 *) pdir_start)[1]));
++pdir_start;
addr += IOVP_SIZE;
size -= IOVP_SIZE;
}
spin_unlock_irqrestore(&ioc->res_lock, flags);
/* form complete address */
return CCIO_IOVA(iovp, offset);
}
static dma_addr_t
ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction,
unsigned long attrs)
{
return ccio_map_single(dev, page_address(page) + offset, size,
direction);
}
/**
* ccio_unmap_page - Unmap an address range from the IOMMU.
* @dev: The PCI device.
* @iova: The start address of the DMA region.
* @size: The length of the DMA region.
* @direction: The direction of the DMA transaction (to/from device).
* @attrs: attributes
*/
static void
ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
enum dma_data_direction direction, unsigned long attrs)
{
struct ioc *ioc;
unsigned long flags;
dma_addr_t offset = iova & ~IOVP_MASK;
BUG_ON(!dev);
ioc = GET_IOC(dev);
if (!ioc) {
WARN_ON(!ioc);
return;
}
DBG_RUN("%s() iovp %#lx/%zx\n",
__func__, (long)iova, size);
iova ^= offset; /* clear offset bits */
size += offset;
size = ALIGN(size, IOVP_SIZE);
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CCIO_COLLECT_STATS
ioc->usingle_calls++;
ioc->usingle_pages += size >> IOVP_SHIFT;
#endif
ccio_mark_invalid(ioc, iova, size);
ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
spin_unlock_irqrestore(&ioc->res_lock, flags);
}
/**
* ccio_alloc - Allocate a consistent DMA mapping.
* @dev: The PCI device.
* @size: The length of the DMA region.
* @dma_handle: The DMA address handed back to the device (not the cpu).
* @flag: allocation flags
* @attrs: attributes
*
* This function implements the pci_alloc_consistent function.
*/
static void *
ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
unsigned long attrs)
{
void *ret;
#if 0
/* GRANT Need to establish hierarchy for non-PCI devs as well
** and then provide matching gsc_map_xxx() functions for them as well.
*/
if(!hwdev) {
/* only support PCI */
*dma_handle = 0;
return 0;
}
#endif
ret = (void *) __get_free_pages(flag, get_order(size));
if (ret) {
memset(ret, 0, size);
*dma_handle = ccio_map_single(dev, ret, size, DMA_BIDIRECTIONAL);
}
return ret;
}
/**
* ccio_free - Free a consistent DMA mapping.
* @dev: The PCI device.
* @size: The length of the DMA region.
* @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
* @dma_handle: The device address returned from the ccio_alloc_consistent.
* @attrs: attributes
*
* This function implements the pci_free_consistent function.
*/
static void
ccio_free(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle, unsigned long attrs)
{
ccio_unmap_page(dev, dma_handle, size, 0, 0);
free_pages((unsigned long)cpu_addr, get_order(size));
}
/*
** Since 0 is a valid pdir_base index value, can't use that
** to determine if a value is valid or not. Use a flag to indicate
** the SG list entry contains a valid pdir index.
*/
#define PIDE_FLAG 0x80000000UL
#ifdef CCIO_COLLECT_STATS
#define IOMMU_MAP_STATS
#endif
#include "iommu-helpers.h"
/**
* ccio_map_sg - Map the scatter/gather list into the IOMMU.
* @dev: The PCI device.
* @sglist: The scatter/gather list to be mapped in the IOMMU.
* @nents: The number of entries in the scatter/gather list.
* @direction: The direction of the DMA transaction (to/from device).
* @attrs: attributes
*
* This function implements the pci_map_sg function.
*/
static int
ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction, unsigned long attrs)
{
struct ioc *ioc;
int coalesced, filled = 0;
unsigned long flags;
unsigned long hint = hint_lookup[(int)direction];
unsigned long prev_len = 0, current_len = 0;
int i;
BUG_ON(!dev);
ioc = GET_IOC(dev);
if (!ioc)
return -EINVAL;
DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
/* Fast path single entry scatterlists. */
if (nents == 1) {
sg_dma_address(sglist) = ccio_map_single(dev,
sg_virt(sglist), sglist->length,
direction);
sg_dma_len(sglist) = sglist->length;
return 1;
}
for(i = 0; i < nents; i++)
prev_len += sglist[i].length;
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CCIO_COLLECT_STATS
ioc->msg_calls++;
#endif
/*
** First coalesce the chunks and allocate I/O pdir space
**
** If this is one DMA stream, we can properly map using the
** correct virtual address associated with each DMA page.
** w/o this association, we wouldn't have coherent DMA!
** Access to the virtual address is what forces a two pass algorithm.
*/
coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
/*
** Program the I/O Pdir
**
** map the virtual addresses to the I/O Pdir
** o dma_address will contain the pdir index
** o dma_len will contain the number of bytes to map
** o page/offset contain the virtual address.
*/
filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
spin_unlock_irqrestore(&ioc->res_lock, flags);
BUG_ON(coalesced != filled);
DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
for (i = 0; i < filled; i++)
current_len += sg_dma_len(sglist + i);
BUG_ON(current_len != prev_len);
return filled;
}
/**
* ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
* @dev: The PCI device.
* @sglist: The scatter/gather list to be unmapped from the IOMMU.
* @nents: The number of entries in the scatter/gather list.
* @direction: The direction of the DMA transaction (to/from device).
* @attrs: attributes
*
* This function implements the pci_unmap_sg function.
*/
static void
ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction, unsigned long attrs)
{
struct ioc *ioc;
BUG_ON(!dev);
ioc = GET_IOC(dev);
if (!ioc) {
WARN_ON(!ioc);
return;
}
DBG_RUN_SG("%s() START %d entries, %p,%x\n",
__func__, nents, sg_virt(sglist), sglist->length);
#ifdef CCIO_COLLECT_STATS
ioc->usg_calls++;
#endif
while (nents && sg_dma_len(sglist)) {
#ifdef CCIO_COLLECT_STATS
ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
#endif
ccio_unmap_page(dev, sg_dma_address(sglist),
sg_dma_len(sglist), direction, 0);
++sglist;
nents--;
}
DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
}
static const struct dma_map_ops ccio_ops = {
.dma_supported = ccio_dma_supported,
.alloc = ccio_alloc,
.free = ccio_free,
.map_page = ccio_map_page,
.unmap_page = ccio_unmap_page,
.map_sg = ccio_map_sg,
.unmap_sg = ccio_unmap_sg,
.get_sgtable = dma_common_get_sgtable,
.alloc_pages = dma_common_alloc_pages,
.free_pages = dma_common_free_pages,
};
#ifdef CONFIG_PROC_FS
static int ccio_proc_info(struct seq_file *m, void *p)
{
struct ioc *ioc = ioc_list;
while (ioc != NULL) {
unsigned int total_pages = ioc->res_size << 3;
#ifdef CCIO_COLLECT_STATS
unsigned long avg = 0, min, max;
int j;
#endif
seq_printf(m, "%s\n", ioc->name);
seq_printf(m, "Cujo 2.0 bug : %s\n",
(ioc->cujo20_bug ? "yes" : "no"));
seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
total_pages * 8, total_pages);
#ifdef CCIO_COLLECT_STATS
seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
total_pages - ioc->used_pages, ioc->used_pages,
(int)(ioc->used_pages * 100 / total_pages));
#endif
seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
ioc->res_size, total_pages);
#ifdef CCIO_COLLECT_STATS
min = max = ioc->avg_search[0];
for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
avg += ioc->avg_search[j];
if(ioc->avg_search[j] > max)
max = ioc->avg_search[j];
if(ioc->avg_search[j] < min)
min = ioc->avg_search[j];
}
avg /= CCIO_SEARCH_SAMPLE;
seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
min, avg, max);
seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
ioc->msingle_calls, ioc->msingle_pages,
(int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
/* KLUGE - unmap_sg calls unmap_page for each mapped page */
min = ioc->usingle_calls - ioc->usg_calls;
max = ioc->usingle_pages - ioc->usg_pages;
seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
min, max, (int)((max * 1000)/min));
seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
ioc->msg_calls, ioc->msg_pages,
(int)((ioc->msg_pages * 1000)/ioc->msg_calls));
seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
ioc->usg_calls, ioc->usg_pages,
(int)((ioc->usg_pages * 1000)/ioc->usg_calls));
#endif /* CCIO_COLLECT_STATS */
ioc = ioc->next;
}
return 0;
}
static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
{
struct ioc *ioc = ioc_list;
while (ioc != NULL) {
seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
ioc->res_size, false);
seq_putc(m, '\n');
ioc = ioc->next;
break; /* XXX - remove me */
}
return 0;
}
#endif /* CONFIG_PROC_FS */
/**
* ccio_find_ioc - Find the ioc in the ioc_list
* @hw_path: The hardware path of the ioc.
*
* This function searches the ioc_list for an ioc that matches
* the provide hardware path.
*/
static struct ioc * ccio_find_ioc(int hw_path)
{
int i;
struct ioc *ioc;
ioc = ioc_list;
for (i = 0; i < ioc_count; i++) {
if (ioc->hw_path == hw_path)
return ioc;
ioc = ioc->next;
}
return NULL;
}
/**
* ccio_get_iommu - Find the iommu which controls this device
* @dev: The parisc device.
*
* This function searches through the registered IOMMU's and returns
* the appropriate IOMMU for the device based on its hardware path.
*/
void * ccio_get_iommu(const struct parisc_device *dev)
{
dev = find_pa_parent_type(dev, HPHW_IOA);
if (!dev)
return NULL;
return ccio_find_ioc(dev->hw_path);
}
#define CUJO_20_STEP 0x10000000 /* inc upper nibble */
/* Cujo 2.0 has a bug which will silently corrupt data being transferred
* to/from certain pages. To avoid this happening, we mark these pages
* as `used', and ensure that nothing will try to allocate from them.
*/
void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
{
unsigned int idx;
struct parisc_device *dev = parisc_parent(cujo);
struct ioc *ioc = ccio_get_iommu(dev);
u8 *res_ptr;
ioc->cujo20_bug = 1;
res_ptr = ioc->res_map;
idx = PDIR_INDEX(iovp) >> 3;
while (idx < ioc->res_size) {
res_ptr[idx] |= 0xff;
idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
}
}
#if 0
/* GRANT - is this needed for U2 or not? */
/*
** Get the size of the I/O TLB for this I/O MMU.
**
** If spa_shift is non-zero (ie probably U2),
** then calculate the I/O TLB size using spa_shift.
**
** Otherwise we are supposed to get the IODC entry point ENTRY TLB
** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
** I think only Java (K/D/R-class too?) systems don't do this.
*/
static int
ccio_get_iotlb_size(struct parisc_device *dev)
{
if (dev->spa_shift == 0) {
panic("%s() : Can't determine I/O TLB size.\n", __func__);
}
return (1 << dev->spa_shift);
}
#else
/* Uturn supports 256 TLB entries */
#define CCIO_CHAINID_SHIFT 8
#define CCIO_CHAINID_MASK 0xff
#endif /* 0 */
/* We *can't* support JAVA (T600). Venture there at your own risk. */
static const struct parisc_device_id ccio_tbl[] __initconst = {
{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
{ 0, }
};
static int ccio_probe(struct parisc_device *dev);
static struct parisc_driver ccio_driver __refdata = {
.name = "ccio",
.id_table = ccio_tbl,
.probe = ccio_probe,
};
/**
* ccio_ioc_init - Initialize the I/O Controller
* @ioc: The I/O Controller.
*
* Initialize the I/O Controller which includes setting up the
* I/O Page Directory, the resource map, and initalizing the
* U2/Uturn chip into virtual mode.
*/
static void __init
ccio_ioc_init(struct ioc *ioc)
{
int i;
unsigned int iov_order;
u32 iova_space_size;
/*
** Determine IOVA Space size from memory size.
**
** Ideally, PCI drivers would register the maximum number
** of DMA they can have outstanding for each device they
** own. Next best thing would be to guess how much DMA
** can be outstanding based on PCI Class/sub-class. Both
** methods still require some "extra" to support PCI
** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
*/
iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
/* limit IOVA space size to 1MB-1GB */
if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
iova_space_size = 1 << (20 - PAGE_SHIFT);
#ifdef __LP64__
} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
iova_space_size = 1 << (30 - PAGE_SHIFT);
#endif
}
/*
** iova space must be log2() in size.
** thus, pdir/res_map will also be log2().
*/
/* We could use larger page sizes in order to *decrease* the number
** of mappings needed. (ie 8k pages means 1/2 the mappings).
**
** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
** since the pages must also be physically contiguous - typically
** this is the case under linux."
*/
iov_order = get_order(iova_space_size << PAGE_SHIFT);
/* iova_space_size is now bytes, not pages */
iova_space_size = 1 << (iov_order + PAGE_SHIFT);
ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
/* Verify it's a power of two */
BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
__func__, ioc->ioc_regs,
(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
iova_space_size>>20,
iov_order + PAGE_SHIFT);
ioc->pdir_base = (__le64 *)__get_free_pages(GFP_KERNEL,
get_order(ioc->pdir_size));
if(NULL == ioc->pdir_base) {
panic("%s() could not allocate I/O Page Table\n", __func__);
}
memset(ioc->pdir_base, 0, ioc->pdir_size);
BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
DBG_INIT(" base %p\n", ioc->pdir_base);
/* resource map size dictated by pdir_size */
ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
get_order(ioc->res_size));
if(NULL == ioc->res_map) {
panic("%s() could not allocate resource map\n", __func__);
}
memset(ioc->res_map, 0, ioc->res_size);
/* Initialize the res_hint to 16 */
ioc->res_hint = 16;
/* Initialize the spinlock */
spin_lock_init(&ioc->res_lock);
/*
** Chainid is the upper most bits of an IOVP used to determine
** which TLB entry an IOVP will use.
*/
ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
/*
** Initialize IOA hardware
*/
WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
&ioc->ioc_regs->io_chain_id_mask);
WRITE_U32(virt_to_phys(ioc->pdir_base),
&ioc->ioc_regs->io_pdir_base);
/*
** Go to "Virtual Mode"
*/
WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
/*
** Initialize all I/O TLB entries to 0 (Valid bit off).
*/
WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
&ioc->ioc_regs->io_command);
}
}
static void __init
ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
{
int result;
res->parent = NULL;
res->flags = IORESOURCE_MEM;
/*
* bracing ((signed) ...) are required for 64bit kernel because
* we only want to sign extend the lower 16 bits of the register.
* The upper 16-bits of range registers are hardcoded to 0xffff.
*/
res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
res->name = name;
/*
* Check if this MMIO range is disable
*/
if (res->end + 1 == res->start)
return;
/* On some platforms (e.g. K-Class), we have already registered
* resources for devices reported by firmware. Some are children
* of ccio.
* "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
*/
result = insert_resource(&iomem_resource, res);
if (result < 0) {
printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
__func__, (unsigned long)res->start, (unsigned long)res->end);
}
}
static int __init ccio_init_resources(struct ioc *ioc)
{
struct resource *res = ioc->mmio_region;
char *name = kmalloc(14, GFP_KERNEL);
if (unlikely(!name))
return -ENOMEM;
snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
return 0;
}
static int new_ioc_area(struct resource *res, unsigned long size,
unsigned long min, unsigned long max, unsigned long align)
{
if (max <= min)
return -EBUSY;
res->start = (max - size + 1) &~ (align - 1);
res->end = res->start + size;
/* We might be trying to expand the MMIO range to include
* a child device that has already registered it's MMIO space.
* Use "insert" instead of request_resource().
*/
if (!insert_resource(&iomem_resource, res))
return 0;
return new_ioc_area(res, size, min, max - size, align);
}
static int expand_ioc_area(struct resource *res, unsigned long size,
unsigned long min, unsigned long max, unsigned long align)
{
unsigned long start, len;
if (!res->parent)
return new_ioc_area(res, size, min, max, align);
start = (res->start - size) &~ (align - 1);
len = res->end - start + 1;
if (start >= min) {
if (!adjust_resource(res, start, len))
return 0;
}
start = res->start;
len = ((size + res->end + align) &~ (align - 1)) - start;
if (start + len <= max) {
if (!adjust_resource(res, start, len))
return 0;
}
return -EBUSY;
}
/*
* Dino calls this function. Beware that we may get called on systems
* which have no IOC (725, B180, C160L, etc) but do have a Dino.
* So it's legal to find no parent IOC.
*
* Some other issues: one of the resources in the ioc may be unassigned.
*/
int ccio_allocate_resource(const struct parisc_device *dev,
struct resource *res, unsigned long size,
unsigned long min, unsigned long max, unsigned long align)
{
struct resource *parent = &iomem_resource;
struct ioc *ioc = ccio_get_iommu(dev);
if (!ioc)
goto out;
parent = ioc->mmio_region;
if (parent->parent &&
!allocate_resource(parent, res, size, min, max, align, NULL, NULL))
return 0;
if ((parent + 1)->parent &&
!allocate_resource(parent + 1, res, size, min, max, align,
NULL, NULL))
return 0;
if (!expand_ioc_area(parent, size, min, max, align)) {
__raw_writel(((parent->start)>>16) | 0xffff0000,
&ioc->ioc_regs->io_io_low);
__raw_writel(((parent->end)>>16) | 0xffff0000,
&ioc->ioc_regs->io_io_high);
} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
parent++;
__raw_writel(((parent->start)>>16) | 0xffff0000,
&ioc->ioc_regs->io_io_low_hv);
__raw_writel(((parent->end)>>16) | 0xffff0000,
&ioc->ioc_regs->io_io_high_hv);
} else {
return -EBUSY;
}
out:
return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
}
int ccio_request_resource(const struct parisc_device *dev,
struct resource *res)
{
struct resource *parent;
struct ioc *ioc = ccio_get_iommu(dev);
if (!ioc) {
parent = &iomem_resource;
} else if ((ioc->mmio_region->start <= res->start) &&
(res->end <= ioc->mmio_region->end)) {
parent = ioc->mmio_region;
} else if (((ioc->mmio_region + 1)->start <= res->start) &&
(res->end <= (ioc->mmio_region + 1)->end)) {
parent = ioc->mmio_region + 1;
} else {
return -EBUSY;
}
/* "transparent" bus bridges need to register MMIO resources
* firmware assigned them. e.g. children of hppb.c (e.g. K-class)
* registered their resources in the PDC "bus walk" (See
* arch/parisc/kernel/inventory.c).
*/
return insert_resource(parent, res);
}
/**
* ccio_probe - Determine if ccio should claim this device.
* @dev: The device which has been found
*
* Determine if ccio should claim this chip (return 0) or not (return 1).
* If so, initialize the chip and tell other partners in crime they
* have work to do.
*/
static int __init ccio_probe(struct parisc_device *dev)
{
int i;
struct ioc *ioc, **ioc_p = &ioc_list;
struct pci_hba_data *hba;
ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
if (ioc == NULL) {
printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
return -ENOMEM;
}
ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
(unsigned long)dev->hpa.start);
for (i = 0; i < ioc_count; i++) {
ioc_p = &(*ioc_p)->next;
}
*ioc_p = ioc;
ioc->hw_path = dev->hw_path;
ioc->ioc_regs = ioremap(dev->hpa.start, 4096);
if (!ioc->ioc_regs) {
kfree(ioc);
return -ENOMEM;
}
ccio_ioc_init(ioc);
if (ccio_init_resources(ioc)) {
iounmap(ioc->ioc_regs);
kfree(ioc);
return -ENOMEM;
}
hppa_dma_ops = &ccio_ops;
hba = kzalloc(sizeof(*hba), GFP_KERNEL);
/* if this fails, no I/O cards will work, so may as well bug */
BUG_ON(hba == NULL);
hba->iommu = ioc;
dev->dev.platform_data = hba;
#ifdef CONFIG_PROC_FS
if (ioc_count == 0) {
struct proc_dir_entry *runway;
runway = proc_mkdir("bus/runway", NULL);
if (runway) {
proc_create_single(MODULE_NAME, 0, runway,
ccio_proc_info);
proc_create_single(MODULE_NAME"-bitmap", 0, runway,
ccio_proc_bitmap_info);
}
}
#endif
ioc_count++;
return 0;
}
/**
* ccio_init - ccio initialization procedure.
*
* Register this driver.
*/
static int __init ccio_init(void)
{
return register_parisc_driver(&ccio_driver);
}
arch_initcall(ccio_init);
| linux-master | drivers/parisc/ccio-dma.c |
// SPDX-License-Identifier: GPL-2.0
/*
* K3 SA2UL crypto accelerator driver
*
* Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com
*
* Authors: Keerthy
* Vitaly Andrianov
* Tero Kristo
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <crypto/aes.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include "sa2ul.h"
/* Byte offset for key in encryption security context */
#define SC_ENC_KEY_OFFSET (1 + 27 + 4)
/* Byte offset for Aux-1 in encryption security context */
#define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32)
#define SA_CMDL_UPD_ENC 0x0001
#define SA_CMDL_UPD_AUTH 0x0002
#define SA_CMDL_UPD_ENC_IV 0x0004
#define SA_CMDL_UPD_AUTH_IV 0x0008
#define SA_CMDL_UPD_AUX_KEY 0x0010
#define SA_AUTH_SUBKEY_LEN 16
#define SA_CMDL_PAYLOAD_LENGTH_MASK 0xFFFF
#define SA_CMDL_SOP_BYPASS_LEN_MASK 0xFF000000
#define MODE_CONTROL_BYTES 27
#define SA_HASH_PROCESSING 0
#define SA_CRYPTO_PROCESSING 0
#define SA_UPLOAD_HASH_TO_TLR BIT(6)
#define SA_SW0_FLAGS_MASK 0xF0000
#define SA_SW0_CMDL_INFO_MASK 0x1F00000
#define SA_SW0_CMDL_PRESENT BIT(4)
#define SA_SW0_ENG_ID_MASK 0x3E000000
#define SA_SW0_DEST_INFO_PRESENT BIT(30)
#define SA_SW2_EGRESS_LENGTH 0xFF000000
#define SA_BASIC_HASH 0x10
#define SHA256_DIGEST_WORDS 8
/* Make 32-bit word from 4 bytes */
#define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \
((b2) << 8) | (b3))
/* size of SCCTL structure in bytes */
#define SA_SCCTL_SZ 16
/* Max Authentication tag size */
#define SA_MAX_AUTH_TAG_SZ 64
enum sa_algo_id {
SA_ALG_CBC_AES = 0,
SA_ALG_EBC_AES,
SA_ALG_CBC_DES3,
SA_ALG_ECB_DES3,
SA_ALG_SHA1,
SA_ALG_SHA256,
SA_ALG_SHA512,
SA_ALG_AUTHENC_SHA1_AES,
SA_ALG_AUTHENC_SHA256_AES,
};
struct sa_match_data {
u8 priv;
u8 priv_id;
u32 supported_algos;
};
static struct device *sa_k3_dev;
/**
* struct sa_cmdl_cfg - Command label configuration descriptor
* @aalg: authentication algorithm ID
* @enc_eng_id: Encryption Engine ID supported by the SA hardware
* @auth_eng_id: Authentication Engine ID
* @iv_size: Initialization Vector size
* @akey: Authentication key
* @akey_len: Authentication key length
* @enc: True, if this is an encode request
*/
struct sa_cmdl_cfg {
int aalg;
u8 enc_eng_id;
u8 auth_eng_id;
u8 iv_size;
const u8 *akey;
u16 akey_len;
bool enc;
};
/**
* struct algo_data - Crypto algorithm specific data
* @enc_eng: Encryption engine info structure
* @auth_eng: Authentication engine info structure
* @auth_ctrl: Authentication control word
* @hash_size: Size of digest
* @iv_idx: iv index in psdata
* @iv_out_size: iv out size
* @ealg_id: Encryption Algorithm ID
* @aalg_id: Authentication algorithm ID
* @mci_enc: Mode Control Instruction for Encryption algorithm
* @mci_dec: Mode Control Instruction for Decryption
* @inv_key: Whether the encryption algorithm demands key inversion
* @ctx: Pointer to the algorithm context
* @keyed_mac: Whether the authentication algorithm has key
* @prep_iopad: Function pointer to generate intermediate ipad/opad
*/
struct algo_data {
struct sa_eng_info enc_eng;
struct sa_eng_info auth_eng;
u8 auth_ctrl;
u8 hash_size;
u8 iv_idx;
u8 iv_out_size;
u8 ealg_id;
u8 aalg_id;
u8 *mci_enc;
u8 *mci_dec;
bool inv_key;
struct sa_tfm_ctx *ctx;
bool keyed_mac;
void (*prep_iopad)(struct algo_data *algo, const u8 *key,
u16 key_sz, __be32 *ipad, __be32 *opad);
};
/**
* struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms
* @type: Type of the crypto algorithm.
* @alg: Union of crypto algorithm definitions.
* @registered: Flag indicating if the crypto algorithm is already registered
*/
struct sa_alg_tmpl {
u32 type; /* CRYPTO_ALG_TYPE from <linux/crypto.h> */
union {
struct skcipher_alg skcipher;
struct ahash_alg ahash;
struct aead_alg aead;
} alg;
bool registered;
};
/**
* struct sa_mapped_sg: scatterlist information for tx and rx
* @mapped: Set to true if the @sgt is mapped
* @dir: mapping direction used for @sgt
* @split_sg: Set if the sg is split and needs to be freed up
* @static_sg: Static scatterlist entry for overriding data
* @sgt: scatterlist table for DMA API use
*/
struct sa_mapped_sg {
bool mapped;
enum dma_data_direction dir;
struct scatterlist static_sg;
struct scatterlist *split_sg;
struct sg_table sgt;
};
/**
* struct sa_rx_data: RX Packet miscellaneous data place holder
* @req: crypto request data pointer
* @ddev: pointer to the DMA device
* @tx_in: dma_async_tx_descriptor pointer for rx channel
* @mapped_sg: Information on tx (0) and rx (1) scatterlist DMA mapping
* @enc: Flag indicating either encryption or decryption
* @enc_iv_size: Initialisation vector size
* @iv_idx: Initialisation vector index
*/
struct sa_rx_data {
void *req;
struct device *ddev;
struct dma_async_tx_descriptor *tx_in;
struct sa_mapped_sg mapped_sg[2];
u8 enc;
u8 enc_iv_size;
u8 iv_idx;
};
/**
* struct sa_req: SA request definition
* @dev: device for the request
* @size: total data to the xmitted via DMA
* @enc_offset: offset of cipher data
* @enc_size: data to be passed to cipher engine
* @enc_iv: cipher IV
* @auth_offset: offset of the authentication data
* @auth_size: size of the authentication data
* @auth_iv: authentication IV
* @type: algorithm type for the request
* @cmdl: command label pointer
* @base: pointer to the base request
* @ctx: pointer to the algorithm context data
* @enc: true if this is an encode request
* @src: source data
* @dst: destination data
* @callback: DMA callback for the request
* @mdata_size: metadata size passed to DMA
*/
struct sa_req {
struct device *dev;
u16 size;
u8 enc_offset;
u16 enc_size;
u8 *enc_iv;
u8 auth_offset;
u16 auth_size;
u8 *auth_iv;
u32 type;
u32 *cmdl;
struct crypto_async_request *base;
struct sa_tfm_ctx *ctx;
bool enc;
struct scatterlist *src;
struct scatterlist *dst;
dma_async_tx_callback callback;
u16 mdata_size;
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For CBC (Cipher Block Chaining) mode for encryption
*/
static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = {
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For CBC (Cipher Block Chaining) mode for decryption
*/
static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = {
{ 0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For CBC (Cipher Block Chaining) mode for encryption
*/
static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = {
{ 0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For CBC (Cipher Block Chaining) mode for decryption
*/
static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = {
{ 0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For ECB (Electronic Code Book) mode for encryption
*/
static u8 mci_ecb_enc_array[3][27] = {
{ 0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For ECB (Electronic Code Book) mode for decryption
*/
static u8 mci_ecb_dec_array[3][27] = {
{ 0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for DES algorithm
* For CBC (Cipher Block Chaining) mode and ECB mode
* encryption and for decryption respectively
*/
static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = {
0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = {
0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = {
0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = {
0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
/*
* Perform 16 byte or 128 bit swizzling
* The SA2UL Expects the security context to
* be in little Endian and the bus width is 128 bits or 16 bytes
* Hence swap 16 bytes at a time from higher to lower address
*/
static void sa_swiz_128(u8 *in, u16 len)
{
u8 data[16];
int i, j;
for (i = 0; i < len; i += 16) {
memcpy(data, &in[i], 16);
for (j = 0; j < 16; j++)
in[i + j] = data[15 - j];
}
}
/* Prepare the ipad and opad from key as per SHA algorithm step 1*/
static void prepare_kipad(u8 *k_ipad, const u8 *key, u16 key_sz)
{
int i;
for (i = 0; i < key_sz; i++)
k_ipad[i] = key[i] ^ 0x36;
/* Instead of XOR with 0 */
for (; i < SHA1_BLOCK_SIZE; i++)
k_ipad[i] = 0x36;
}
static void prepare_kopad(u8 *k_opad, const u8 *key, u16 key_sz)
{
int i;
for (i = 0; i < key_sz; i++)
k_opad[i] = key[i] ^ 0x5c;
/* Instead of XOR with 0 */
for (; i < SHA1_BLOCK_SIZE; i++)
k_opad[i] = 0x5c;
}
static void sa_export_shash(void *state, struct shash_desc *hash,
int digest_size, __be32 *out)
{
struct sha1_state *sha1;
struct sha256_state *sha256;
u32 *result;
switch (digest_size) {
case SHA1_DIGEST_SIZE:
sha1 = state;
result = sha1->state;
break;
case SHA256_DIGEST_SIZE:
sha256 = state;
result = sha256->state;
break;
default:
dev_err(sa_k3_dev, "%s: bad digest_size=%d\n", __func__,
digest_size);
return;
}
crypto_shash_export(hash, state);
cpu_to_be32_array(out, result, digest_size / 4);
}
static void sa_prepare_iopads(struct algo_data *data, const u8 *key,
u16 key_sz, __be32 *ipad, __be32 *opad)
{
SHASH_DESC_ON_STACK(shash, data->ctx->shash);
int block_size = crypto_shash_blocksize(data->ctx->shash);
int digest_size = crypto_shash_digestsize(data->ctx->shash);
union {
struct sha1_state sha1;
struct sha256_state sha256;
u8 k_pad[SHA1_BLOCK_SIZE];
} sha;
shash->tfm = data->ctx->shash;
prepare_kipad(sha.k_pad, key, key_sz);
crypto_shash_init(shash);
crypto_shash_update(shash, sha.k_pad, block_size);
sa_export_shash(&sha, shash, digest_size, ipad);
prepare_kopad(sha.k_pad, key, key_sz);
crypto_shash_init(shash);
crypto_shash_update(shash, sha.k_pad, block_size);
sa_export_shash(&sha, shash, digest_size, opad);
memzero_explicit(&sha, sizeof(sha));
}
/* Derive the inverse key used in AES-CBC decryption operation */
static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz)
{
struct crypto_aes_ctx ctx;
int key_pos;
if (aes_expandkey(&ctx, key, key_sz)) {
dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
return -EINVAL;
}
/* work around to get the right inverse for AES_KEYSIZE_192 size keys */
if (key_sz == AES_KEYSIZE_192) {
ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46];
ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47];
}
/* Based crypto_aes_expand_key logic */
switch (key_sz) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
key_pos = key_sz + 24;
break;
case AES_KEYSIZE_256:
key_pos = key_sz + 24 - 4;
break;
default:
dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
return -EINVAL;
}
memcpy(inv_key, &ctx.key_enc[key_pos], key_sz);
return 0;
}
/* Set Security context for the encryption engine */
static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz,
u8 enc, u8 *sc_buf)
{
const u8 *mci = NULL;
/* Set Encryption mode selector to crypto processing */
sc_buf[0] = SA_CRYPTO_PROCESSING;
if (enc)
mci = ad->mci_enc;
else
mci = ad->mci_dec;
/* Set the mode control instructions in security context */
if (mci)
memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES);
/* For AES-CBC decryption get the inverse key */
if (ad->inv_key && !enc) {
if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz))
return -EINVAL;
/* For all other cases: key is used */
} else {
memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz);
}
return 0;
}
/* Set Security context for the authentication engine */
static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz,
u8 *sc_buf)
{
__be32 *ipad = (void *)(sc_buf + 32);
__be32 *opad = (void *)(sc_buf + 64);
/* Set Authentication mode selector to hash processing */
sc_buf[0] = SA_HASH_PROCESSING;
/* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */
sc_buf[1] = SA_UPLOAD_HASH_TO_TLR;
sc_buf[1] |= ad->auth_ctrl;
/* Copy the keys or ipad/opad */
if (ad->keyed_mac)
ad->prep_iopad(ad, key, key_sz, ipad, opad);
else {
/* basic hash */
sc_buf[1] |= SA_BASIC_HASH;
}
}
static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16)
{
int j;
for (j = 0; j < ((size16) ? 4 : 2); j++) {
*out = cpu_to_be32(*((u32 *)iv));
iv += 4;
out++;
}
}
/* Format general command label */
static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl,
struct sa_cmdl_upd_info *upd_info)
{
u8 enc_offset = 0, auth_offset = 0, total = 0;
u8 enc_next_eng = SA_ENG_ID_OUTPORT2;
u8 auth_next_eng = SA_ENG_ID_OUTPORT2;
u32 *word_ptr = (u32 *)cmdl;
int i;
/* Clear the command label */
memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32)));
/* Iniialize the command update structure */
memzero_explicit(upd_info, sizeof(*upd_info));
if (cfg->enc_eng_id && cfg->auth_eng_id) {
if (cfg->enc) {
auth_offset = SA_CMDL_HEADER_SIZE_BYTES;
enc_next_eng = cfg->auth_eng_id;
if (cfg->iv_size)
auth_offset += cfg->iv_size;
} else {
enc_offset = SA_CMDL_HEADER_SIZE_BYTES;
auth_next_eng = cfg->enc_eng_id;
}
}
if (cfg->enc_eng_id) {
upd_info->flags |= SA_CMDL_UPD_ENC;
upd_info->enc_size.index = enc_offset >> 2;
upd_info->enc_offset.index = upd_info->enc_size.index + 1;
/* Encryption command label */
cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng;
/* Encryption modes requiring IV */
if (cfg->iv_size) {
upd_info->flags |= SA_CMDL_UPD_ENC_IV;
upd_info->enc_iv.index =
(enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2;
upd_info->enc_iv.size = cfg->iv_size;
cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] =
(SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3));
total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
} else {
cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
SA_CMDL_HEADER_SIZE_BYTES;
total += SA_CMDL_HEADER_SIZE_BYTES;
}
}
if (cfg->auth_eng_id) {
upd_info->flags |= SA_CMDL_UPD_AUTH;
upd_info->auth_size.index = auth_offset >> 2;
upd_info->auth_offset.index = upd_info->auth_size.index + 1;
cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng;
cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] =
SA_CMDL_HEADER_SIZE_BYTES;
total += SA_CMDL_HEADER_SIZE_BYTES;
}
total = roundup(total, 8);
for (i = 0; i < total / 4; i++)
word_ptr[i] = swab32(word_ptr[i]);
return total;
}
/* Update Command label */
static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl,
struct sa_cmdl_upd_info *upd_info)
{
int i = 0, j;
if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) {
cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
cmdl[upd_info->enc_size.index] |= req->enc_size;
cmdl[upd_info->enc_offset.index] &=
~SA_CMDL_SOP_BYPASS_LEN_MASK;
cmdl[upd_info->enc_offset.index] |=
FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK,
req->enc_offset);
if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) {
__be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index];
u32 *enc_iv = (u32 *)req->enc_iv;
for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) {
data[j] = cpu_to_be32(*enc_iv);
enc_iv++;
}
}
}
if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) {
cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
cmdl[upd_info->auth_size.index] |= req->auth_size;
cmdl[upd_info->auth_offset.index] &=
~SA_CMDL_SOP_BYPASS_LEN_MASK;
cmdl[upd_info->auth_offset.index] |=
FIELD_PREP(SA_CMDL_SOP_BYPASS_LEN_MASK,
req->auth_offset);
if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) {
sa_copy_iv((void *)&cmdl[upd_info->auth_iv.index],
req->auth_iv,
(upd_info->auth_iv.size > 8));
}
if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) {
int offset = (req->auth_size & 0xF) ? 4 : 0;
memcpy(&cmdl[upd_info->aux_key_info.index],
&upd_info->aux_key[offset], 16);
}
}
}
/* Format SWINFO words to be sent to SA */
static
void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys,
u8 cmdl_present, u8 cmdl_offset, u8 flags,
u8 hash_size, u32 *swinfo)
{
swinfo[0] = sc_id;
swinfo[0] |= FIELD_PREP(SA_SW0_FLAGS_MASK, flags);
if (likely(cmdl_present))
swinfo[0] |= FIELD_PREP(SA_SW0_CMDL_INFO_MASK,
cmdl_offset | SA_SW0_CMDL_PRESENT);
swinfo[0] |= FIELD_PREP(SA_SW0_ENG_ID_MASK, eng_id);
swinfo[0] |= SA_SW0_DEST_INFO_PRESENT;
swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL);
swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32);
swinfo[2] |= FIELD_PREP(SA_SW2_EGRESS_LENGTH, hash_size);
}
/* Dump the security context */
static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr)
{
#ifdef DEBUG
dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr);
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1, buf, SA_CTX_MAX_SZ, false);
#endif
}
static
int sa_init_sc(struct sa_ctx_info *ctx, const struct sa_match_data *match_data,
const u8 *enc_key, u16 enc_key_sz,
const u8 *auth_key, u16 auth_key_sz,
struct algo_data *ad, u8 enc, u32 *swinfo)
{
int enc_sc_offset = 0;
int auth_sc_offset = 0;
u8 *sc_buf = ctx->sc;
u16 sc_id = ctx->sc_id;
u8 first_engine = 0;
memzero_explicit(sc_buf, SA_CTX_MAX_SZ);
if (ad->auth_eng.eng_id) {
if (enc)
first_engine = ad->enc_eng.eng_id;
else
first_engine = ad->auth_eng.eng_id;
enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size;
sc_buf[1] = SA_SCCTL_FE_AUTH_ENC;
if (!ad->hash_size)
return -EINVAL;
ad->hash_size = roundup(ad->hash_size, 8);
} else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) {
enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
first_engine = ad->enc_eng.eng_id;
sc_buf[1] = SA_SCCTL_FE_ENC;
ad->hash_size = ad->iv_out_size;
}
/* SCCTL Owner info: 0=host, 1=CP_ACE */
sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0;
memcpy(&sc_buf[2], &sc_id, 2);
sc_buf[4] = 0x0;
sc_buf[5] = match_data->priv_id;
sc_buf[6] = match_data->priv;
sc_buf[7] = 0x0;
/* Prepare context for encryption engine */
if (ad->enc_eng.sc_size) {
if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc,
&sc_buf[enc_sc_offset]))
return -EINVAL;
}
/* Prepare context for authentication engine */
if (ad->auth_eng.sc_size)
sa_set_sc_auth(ad, auth_key, auth_key_sz,
&sc_buf[auth_sc_offset]);
/* Set the ownership of context to CP_ACE */
sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80;
/* swizzle the security context */
sa_swiz_128(sc_buf, SA_CTX_MAX_SZ);
sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0,
SA_SW_INFO_FLAG_EVICT, ad->hash_size, swinfo);
sa_dump_sc(sc_buf, ctx->sc_phys);
return 0;
}
/* Free the per direction context memory */
static void sa_free_ctx_info(struct sa_ctx_info *ctx,
struct sa_crypto_data *data)
{
unsigned long bn;
bn = ctx->sc_id - data->sc_id_start;
spin_lock(&data->scid_lock);
__clear_bit(bn, data->ctx_bm);
data->sc_id--;
spin_unlock(&data->scid_lock);
if (ctx->sc) {
dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys);
ctx->sc = NULL;
}
}
static int sa_init_ctx_info(struct sa_ctx_info *ctx,
struct sa_crypto_data *data)
{
unsigned long bn;
int err;
spin_lock(&data->scid_lock);
bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX);
__set_bit(bn, data->ctx_bm);
data->sc_id++;
spin_unlock(&data->scid_lock);
ctx->sc_id = (u16)(data->sc_id_start + bn);
ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys);
if (!ctx->sc) {
dev_err(&data->pdev->dev, "Failed to allocate SC memory\n");
err = -ENOMEM;
goto scid_rollback;
}
return 0;
scid_rollback:
spin_lock(&data->scid_lock);
__clear_bit(bn, data->ctx_bm);
data->sc_id--;
spin_unlock(&data->scid_lock);
return err;
}
static void sa_cipher_cra_exit(struct crypto_skcipher *tfm)
{
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
sa_free_ctx_info(&ctx->enc, data);
sa_free_ctx_info(&ctx->dec, data);
crypto_free_skcipher(ctx->fallback.skcipher);
}
static int sa_cipher_cra_init(struct crypto_skcipher *tfm)
{
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
const char *name = crypto_tfm_alg_name(&tfm->base);
struct crypto_skcipher *child;
int ret;
memzero_explicit(ctx, sizeof(*ctx));
ctx->dev_data = data;
ret = sa_init_ctx_info(&ctx->enc, data);
if (ret)
return ret;
ret = sa_init_ctx_info(&ctx->dec, data);
if (ret) {
sa_free_ctx_info(&ctx->enc, data);
return ret;
}
child = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(child)) {
dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name);
return PTR_ERR(child);
}
ctx->fallback.skcipher = child;
crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) +
sizeof(struct skcipher_request));
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
return 0;
}
static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen, struct algo_data *ad)
{
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *child = ctx->fallback.skcipher;
int cmdl_len;
struct sa_cmdl_cfg cfg;
int ret;
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
ad->enc_eng.eng_id = SA_ENG_ID_EM1;
ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
memzero_explicit(&cfg, sizeof(cfg));
cfg.enc_eng_id = ad->enc_eng.eng_id;
cfg.iv_size = crypto_skcipher_ivsize(tfm);
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
ret = crypto_skcipher_setkey(child, key, keylen);
if (ret)
return ret;
/* Setup Encryption Security Context & Command label template */
if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, key, keylen, NULL, 0,
ad, 1, &ctx->enc.epib[1]))
goto badkey;
cmdl_len = sa_format_cmdl_gen(&cfg,
(u8 *)ctx->enc.cmdl,
&ctx->enc.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
goto badkey;
ctx->enc.cmdl_size = cmdl_len;
/* Setup Decryption Security Context & Command label template */
if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, key, keylen, NULL, 0,
ad, 0, &ctx->dec.epib[1]))
goto badkey;
cfg.enc_eng_id = ad->enc_eng.eng_id;
cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
&ctx->dec.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
goto badkey;
ctx->dec.cmdl_size = cmdl_len;
ctx->iv_idx = ad->iv_idx;
return 0;
badkey:
dev_err(sa_k3_dev, "%s: badkey\n", __func__);
return -EINVAL;
}
static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct algo_data ad = { 0 };
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
int key_idx = (keylen >> 3) - 2;
if (key_idx >= 3)
return -EINVAL;
ad.mci_enc = mci_cbc_enc_array[key_idx];
ad.mci_dec = mci_cbc_dec_array[key_idx];
ad.inv_key = true;
ad.ealg_id = SA_EALG_ID_AES_CBC;
ad.iv_idx = 4;
ad.iv_out_size = 16;
return sa_cipher_setkey(tfm, key, keylen, &ad);
}
static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct algo_data ad = { 0 };
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
int key_idx = (keylen >> 3) - 2;
if (key_idx >= 3)
return -EINVAL;
ad.mci_enc = mci_ecb_enc_array[key_idx];
ad.mci_dec = mci_ecb_dec_array[key_idx];
ad.inv_key = true;
ad.ealg_id = SA_EALG_ID_AES_ECB;
return sa_cipher_setkey(tfm, key, keylen, &ad);
}
static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct algo_data ad = { 0 };
ad.mci_enc = mci_cbc_3des_enc_array;
ad.mci_dec = mci_cbc_3des_dec_array;
ad.ealg_id = SA_EALG_ID_3DES_CBC;
ad.iv_idx = 6;
ad.iv_out_size = 8;
return sa_cipher_setkey(tfm, key, keylen, &ad);
}
static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct algo_data ad = { 0 };
ad.mci_enc = mci_ecb_3des_enc_array;
ad.mci_dec = mci_ecb_3des_dec_array;
return sa_cipher_setkey(tfm, key, keylen, &ad);
}
static void sa_sync_from_device(struct sa_rx_data *rxd)
{
struct sg_table *sgt;
if (rxd->mapped_sg[0].dir == DMA_BIDIRECTIONAL)
sgt = &rxd->mapped_sg[0].sgt;
else
sgt = &rxd->mapped_sg[1].sgt;
dma_sync_sgtable_for_cpu(rxd->ddev, sgt, DMA_FROM_DEVICE);
}
static void sa_free_sa_rx_data(struct sa_rx_data *rxd)
{
int i;
for (i = 0; i < ARRAY_SIZE(rxd->mapped_sg); i++) {
struct sa_mapped_sg *mapped_sg = &rxd->mapped_sg[i];
if (mapped_sg->mapped) {
dma_unmap_sgtable(rxd->ddev, &mapped_sg->sgt,
mapped_sg->dir, 0);
kfree(mapped_sg->split_sg);
}
}
kfree(rxd);
}
static void sa_aes_dma_in_callback(void *data)
{
struct sa_rx_data *rxd = data;
struct skcipher_request *req;
u32 *result;
__be32 *mdptr;
size_t ml, pl;
int i;
sa_sync_from_device(rxd);
req = container_of(rxd->req, struct skcipher_request, base);
if (req->iv) {
mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl,
&ml);
result = (u32 *)req->iv;
for (i = 0; i < (rxd->enc_iv_size / 4); i++)
result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]);
}
sa_free_sa_rx_data(rxd);
skcipher_request_complete(req, 0);
}
static void
sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib)
{
u32 *out, *in;
int i;
for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++)
*out++ = *in++;
mdptr[4] = (0xFFFF << 16);
for (out = &mdptr[5], in = psdata, i = 0;
i < pslen / sizeof(u32); i++)
*out++ = *in++;
}
static int sa_run(struct sa_req *req)
{
struct sa_rx_data *rxd;
gfp_t gfp_flags;
u32 cmdl[SA_MAX_CMDL_WORDS];
struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev);
struct device *ddev;
struct dma_chan *dma_rx;
int sg_nents, src_nents, dst_nents;
struct scatterlist *src, *dst;
size_t pl, ml, split_size;
struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec;
int ret;
struct dma_async_tx_descriptor *tx_out;
u32 *mdptr;
bool diff_dst;
enum dma_data_direction dir_src;
struct sa_mapped_sg *mapped_sg;
gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
rxd = kzalloc(sizeof(*rxd), gfp_flags);
if (!rxd)
return -ENOMEM;
if (req->src != req->dst) {
diff_dst = true;
dir_src = DMA_TO_DEVICE;
} else {
diff_dst = false;
dir_src = DMA_BIDIRECTIONAL;
}
/*
* SA2UL has an interesting feature where the receive DMA channel
* is selected based on the data passed to the engine. Within the
* transition range, there is also a space where it is impossible
* to determine where the data will end up, and this should be
* avoided. This will be handled by the SW fallback mechanism by
* the individual algorithm implementations.
*/
if (req->size >= 256)
dma_rx = pdata->dma_rx2;
else
dma_rx = pdata->dma_rx1;
ddev = dmaengine_get_dma_device(pdata->dma_tx);
rxd->ddev = ddev;
memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size);
sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info);
if (req->type != CRYPTO_ALG_TYPE_AHASH) {
if (req->enc)
req->type |=
(SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT);
else
req->type |=
(SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT);
}
cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type;
/*
* Map the packets, first we check if the data fits into a single
* sg entry and use that if possible. If it does not fit, we check
* if we need to do sg_split to align the scatterlist data on the
* actual data size being processed by the crypto engine.
*/
src = req->src;
sg_nents = sg_nents_for_len(src, req->size);
split_size = req->size;
mapped_sg = &rxd->mapped_sg[0];
if (sg_nents == 1 && split_size <= req->src->length) {
src = &mapped_sg->static_sg;
src_nents = 1;
sg_init_table(src, 1);
sg_set_page(src, sg_page(req->src), split_size,
req->src->offset);
mapped_sg->sgt.sgl = src;
mapped_sg->sgt.orig_nents = src_nents;
ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0);
if (ret) {
kfree(rxd);
return ret;
}
mapped_sg->dir = dir_src;
mapped_sg->mapped = true;
} else {
mapped_sg->sgt.sgl = req->src;
mapped_sg->sgt.orig_nents = sg_nents;
ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0);
if (ret) {
kfree(rxd);
return ret;
}
mapped_sg->dir = dir_src;
mapped_sg->mapped = true;
ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, 0, 1,
&split_size, &src, &src_nents, gfp_flags);
if (ret) {
src_nents = mapped_sg->sgt.nents;
src = mapped_sg->sgt.sgl;
} else {
mapped_sg->split_sg = src;
}
}
dma_sync_sgtable_for_device(ddev, &mapped_sg->sgt, DMA_TO_DEVICE);
if (!diff_dst) {
dst_nents = src_nents;
dst = src;
} else {
dst_nents = sg_nents_for_len(req->dst, req->size);
mapped_sg = &rxd->mapped_sg[1];
if (dst_nents == 1 && split_size <= req->dst->length) {
dst = &mapped_sg->static_sg;
dst_nents = 1;
sg_init_table(dst, 1);
sg_set_page(dst, sg_page(req->dst), split_size,
req->dst->offset);
mapped_sg->sgt.sgl = dst;
mapped_sg->sgt.orig_nents = dst_nents;
ret = dma_map_sgtable(ddev, &mapped_sg->sgt,
DMA_FROM_DEVICE, 0);
if (ret)
goto err_cleanup;
mapped_sg->dir = DMA_FROM_DEVICE;
mapped_sg->mapped = true;
} else {
mapped_sg->sgt.sgl = req->dst;
mapped_sg->sgt.orig_nents = dst_nents;
ret = dma_map_sgtable(ddev, &mapped_sg->sgt,
DMA_FROM_DEVICE, 0);
if (ret)
goto err_cleanup;
mapped_sg->dir = DMA_FROM_DEVICE;
mapped_sg->mapped = true;
ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents,
0, 1, &split_size, &dst, &dst_nents,
gfp_flags);
if (ret) {
dst_nents = mapped_sg->sgt.nents;
dst = mapped_sg->sgt.sgl;
} else {
mapped_sg->split_sg = dst;
}
}
}
rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxd->tx_in) {
dev_err(pdata->dev, "IN prep_slave_sg() failed\n");
ret = -EINVAL;
goto err_cleanup;
}
rxd->req = (void *)req->base;
rxd->enc = req->enc;
rxd->iv_idx = req->ctx->iv_idx;
rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size;
rxd->tx_in->callback = req->callback;
rxd->tx_in->callback_param = rxd;
tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src,
src_nents, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_out) {
dev_err(pdata->dev, "OUT prep_slave_sg() failed\n");
ret = -EINVAL;
goto err_cleanup;
}
/*
* Prepare metadata for DMA engine. This essentially describes the
* crypto algorithm to be used, data sizes, different keys etc.
*/
mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml);
sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS *
sizeof(u32))), cmdl, sizeof(sa_ctx->epib),
sa_ctx->epib);
ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32));
dmaengine_desc_set_metadata_len(tx_out, req->mdata_size);
dmaengine_submit(tx_out);
dmaengine_submit(rxd->tx_in);
dma_async_issue_pending(dma_rx);
dma_async_issue_pending(pdata->dma_tx);
return -EINPROGRESS;
err_cleanup:
sa_free_sa_rx_data(rxd);
return ret;
}
static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc)
{
struct sa_tfm_ctx *ctx =
crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
struct crypto_alg *alg = req->base.tfm->__crt_alg;
struct sa_req sa_req = { 0 };
if (!req->cryptlen)
return 0;
if (req->cryptlen % alg->cra_blocksize)
return -EINVAL;
/* Use SW fallback if the data size is not supported */
if (req->cryptlen > SA_MAX_DATA_SZ ||
(req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN &&
req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) {
struct skcipher_request *subreq = skcipher_request_ctx(req);
skcipher_request_set_tfm(subreq, ctx->fallback.skcipher);
skcipher_request_set_callback(subreq, req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen, req->iv);
if (enc)
return crypto_skcipher_encrypt(subreq);
else
return crypto_skcipher_decrypt(subreq);
}
sa_req.size = req->cryptlen;
sa_req.enc_size = req->cryptlen;
sa_req.src = req->src;
sa_req.dst = req->dst;
sa_req.enc_iv = iv;
sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER;
sa_req.enc = enc;
sa_req.callback = sa_aes_dma_in_callback;
sa_req.mdata_size = 44;
sa_req.base = &req->base;
sa_req.ctx = ctx;
return sa_run(&sa_req);
}
static int sa_encrypt(struct skcipher_request *req)
{
return sa_cipher_run(req, req->iv, 1);
}
static int sa_decrypt(struct skcipher_request *req)
{
return sa_cipher_run(req, req->iv, 0);
}
static void sa_sha_dma_in_callback(void *data)
{
struct sa_rx_data *rxd = data;
struct ahash_request *req;
struct crypto_ahash *tfm;
unsigned int authsize;
int i;
size_t ml, pl;
u32 *result;
__be32 *mdptr;
sa_sync_from_device(rxd);
req = container_of(rxd->req, struct ahash_request, base);
tfm = crypto_ahash_reqtfm(req);
authsize = crypto_ahash_digestsize(tfm);
mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
result = (u32 *)req->result;
for (i = 0; i < (authsize / 4); i++)
result[i] = be32_to_cpu(mdptr[i + 4]);
sa_free_sa_rx_data(rxd);
ahash_request_complete(req, 0);
}
static int zero_message_process(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
int sa_digest_size = crypto_ahash_digestsize(tfm);
switch (sa_digest_size) {
case SHA1_DIGEST_SIZE:
memcpy(req->result, sha1_zero_message_hash, sa_digest_size);
break;
case SHA256_DIGEST_SIZE:
memcpy(req->result, sha256_zero_message_hash, sa_digest_size);
break;
case SHA512_DIGEST_SIZE:
memcpy(req->result, sha512_zero_message_hash, sa_digest_size);
break;
default:
return -EINVAL;
}
return 0;
}
static int sa_sha_run(struct ahash_request *req)
{
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_req sa_req = { 0 };
size_t auth_len;
auth_len = req->nbytes;
if (!auth_len)
return zero_message_process(req);
if (auth_len > SA_MAX_DATA_SZ ||
(auth_len >= SA_UNSAFE_DATA_SZ_MIN &&
auth_len <= SA_UNSAFE_DATA_SZ_MAX)) {
struct ahash_request *subreq = &rctx->fallback_req;
int ret = 0;
ahash_request_set_tfm(subreq, ctx->fallback.ahash);
subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
crypto_ahash_init(subreq);
subreq->nbytes = auth_len;
subreq->src = req->src;
subreq->result = req->result;
ret |= crypto_ahash_update(subreq);
subreq->nbytes = 0;
ret |= crypto_ahash_final(subreq);
return ret;
}
sa_req.size = auth_len;
sa_req.auth_size = auth_len;
sa_req.src = req->src;
sa_req.dst = req->src;
sa_req.enc = true;
sa_req.type = CRYPTO_ALG_TYPE_AHASH;
sa_req.callback = sa_sha_dma_in_callback;
sa_req.mdata_size = 28;
sa_req.ctx = ctx;
sa_req.base = &req->base;
return sa_run(&sa_req);
}
static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct algo_data *ad)
{
int bs = crypto_shash_blocksize(ctx->shash);
int cmdl_len;
struct sa_cmdl_cfg cfg;
ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
ad->auth_eng.eng_id = SA_ENG_ID_AM1;
ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
memset(ctx->authkey, 0, bs);
memset(&cfg, 0, sizeof(cfg));
cfg.aalg = ad->aalg_id;
cfg.enc_eng_id = ad->enc_eng.eng_id;
cfg.auth_eng_id = ad->auth_eng.eng_id;
cfg.iv_size = 0;
cfg.akey = NULL;
cfg.akey_len = 0;
ctx->dev_data = dev_get_drvdata(sa_k3_dev);
/* Setup Encryption Security Context & Command label template */
if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, NULL, 0, NULL, 0,
ad, 0, &ctx->enc.epib[1]))
goto badkey;
cmdl_len = sa_format_cmdl_gen(&cfg,
(u8 *)ctx->enc.cmdl,
&ctx->enc.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
goto badkey;
ctx->enc.cmdl_size = cmdl_len;
return 0;
badkey:
dev_err(sa_k3_dev, "%s: badkey\n", __func__);
return -EINVAL;
}
static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
{
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
int ret;
memset(ctx, 0, sizeof(*ctx));
ctx->dev_data = data;
ret = sa_init_ctx_info(&ctx->enc, data);
if (ret)
return ret;
if (alg_base) {
ctx->shash = crypto_alloc_shash(alg_base, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->shash)) {
dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n",
alg_base);
return PTR_ERR(ctx->shash);
}
/* for fallback */
ctx->fallback.ahash =
crypto_alloc_ahash(alg_base, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback.ahash)) {
dev_err(ctx->dev_data->dev,
"Could not load fallback driver\n");
return PTR_ERR(ctx->fallback.ahash);
}
}
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct sa_sha_req_ctx) +
crypto_ahash_reqsize(ctx->fallback.ahash));
return 0;
}
static int sa_sha_digest(struct ahash_request *req)
{
return sa_sha_run(req);
}
static int sa_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
dev_dbg(sa_k3_dev, "init: digest size: %u, rctx=%p\n",
crypto_ahash_digestsize(tfm), rctx);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_init(&rctx->fallback_req);
}
static int sa_sha_update(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
return crypto_ahash_update(&rctx->fallback_req);
}
static int sa_sha_final(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.result = req->result;
return crypto_ahash_final(&rctx->fallback_req);
}
static int sa_sha_finup(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_finup(&rctx->fallback_req);
}
static int sa_sha_import(struct ahash_request *req, const void *in)
{
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_import(&rctx->fallback_req, in);
}
static int sa_sha_export(struct ahash_request *req, void *out)
{
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = &rctx->fallback_req;
ahash_request_set_tfm(subreq, ctx->fallback.ahash);
subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_export(subreq, out);
}
static int sa_sha1_cra_init(struct crypto_tfm *tfm)
{
struct algo_data ad = { 0 };
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
sa_sha_cra_init_alg(tfm, "sha1");
ad.aalg_id = SA_AALG_ID_SHA1;
ad.hash_size = SHA1_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;
sa_sha_setup(ctx, &ad);
return 0;
}
static int sa_sha256_cra_init(struct crypto_tfm *tfm)
{
struct algo_data ad = { 0 };
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
sa_sha_cra_init_alg(tfm, "sha256");
ad.aalg_id = SA_AALG_ID_SHA2_256;
ad.hash_size = SHA256_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;
sa_sha_setup(ctx, &ad);
return 0;
}
static int sa_sha512_cra_init(struct crypto_tfm *tfm)
{
struct algo_data ad = { 0 };
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
sa_sha_cra_init_alg(tfm, "sha512");
ad.aalg_id = SA_AALG_ID_SHA2_512;
ad.hash_size = SHA512_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512;
sa_sha_setup(ctx, &ad);
return 0;
}
static void sa_sha_cra_exit(struct crypto_tfm *tfm)
{
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH)
sa_free_ctx_info(&ctx->enc, data);
crypto_free_shash(ctx->shash);
crypto_free_ahash(ctx->fallback.ahash);
}
static void sa_aead_dma_in_callback(void *data)
{
struct sa_rx_data *rxd = data;
struct aead_request *req;
struct crypto_aead *tfm;
unsigned int start;
unsigned int authsize;
u8 auth_tag[SA_MAX_AUTH_TAG_SZ];
size_t pl, ml;
int i;
int err = 0;
u32 *mdptr;
sa_sync_from_device(rxd);
req = container_of(rxd->req, struct aead_request, base);
tfm = crypto_aead_reqtfm(req);
start = req->assoclen + req->cryptlen;
authsize = crypto_aead_authsize(tfm);
mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
for (i = 0; i < (authsize / 4); i++)
mdptr[i + 4] = swab32(mdptr[i + 4]);
if (rxd->enc) {
scatterwalk_map_and_copy(&mdptr[4], req->dst, start, authsize,
1);
} else {
start -= authsize;
scatterwalk_map_and_copy(auth_tag, req->src, start, authsize,
0);
err = memcmp(&mdptr[4], auth_tag, authsize) ? -EBADMSG : 0;
}
sa_free_sa_rx_data(rxd);
aead_request_complete(req, err);
}
static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash,
const char *fallback)
{
struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
int ret;
memzero_explicit(ctx, sizeof(*ctx));
ctx->dev_data = data;
ctx->shash = crypto_alloc_shash(hash, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->shash)) {
dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", hash);
return PTR_ERR(ctx->shash);
}
ctx->fallback.aead = crypto_alloc_aead(fallback, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback.aead)) {
dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n",
fallback);
return PTR_ERR(ctx->fallback.aead);
}
crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) +
crypto_aead_reqsize(ctx->fallback.aead));
ret = sa_init_ctx_info(&ctx->enc, data);
if (ret)
return ret;
ret = sa_init_ctx_info(&ctx->dec, data);
if (ret) {
sa_free_ctx_info(&ctx->enc, data);
return ret;
}
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
return ret;
}
static int sa_cra_init_aead_sha1(struct crypto_aead *tfm)
{
return sa_cra_init_aead(tfm, "sha1",
"authenc(hmac(sha1-ce),cbc(aes-ce))");
}
static int sa_cra_init_aead_sha256(struct crypto_aead *tfm)
{
return sa_cra_init_aead(tfm, "sha256",
"authenc(hmac(sha256-ce),cbc(aes-ce))");
}
static void sa_exit_tfm_aead(struct crypto_aead *tfm)
{
struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
crypto_free_shash(ctx->shash);
crypto_free_aead(ctx->fallback.aead);
sa_free_ctx_info(&ctx->enc, data);
sa_free_ctx_info(&ctx->dec, data);
}
/* AEAD algorithm configuration interface function */
static int sa_aead_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen,
struct algo_data *ad)
{
struct sa_tfm_ctx *ctx = crypto_aead_ctx(authenc);
struct crypto_authenc_keys keys;
int cmdl_len;
struct sa_cmdl_cfg cfg;
int key_idx;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
return -EINVAL;
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
key_idx = (keys.enckeylen >> 3) - 2;
if (key_idx >= 3)
return -EINVAL;
ad->ctx = ctx;
ad->enc_eng.eng_id = SA_ENG_ID_EM1;
ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
ad->auth_eng.eng_id = SA_ENG_ID_AM1;
ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx];
ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx];
ad->inv_key = true;
ad->keyed_mac = true;
ad->ealg_id = SA_EALG_ID_AES_CBC;
ad->prep_iopad = sa_prepare_iopads;
memset(&cfg, 0, sizeof(cfg));
cfg.enc = true;
cfg.aalg = ad->aalg_id;
cfg.enc_eng_id = ad->enc_eng.eng_id;
cfg.auth_eng_id = ad->auth_eng.eng_id;
cfg.iv_size = crypto_aead_ivsize(authenc);
cfg.akey = keys.authkey;
cfg.akey_len = keys.authkeylen;
/* Setup Encryption Security Context & Command label template */
if (sa_init_sc(&ctx->enc, ctx->dev_data->match_data, keys.enckey,
keys.enckeylen, keys.authkey, keys.authkeylen,
ad, 1, &ctx->enc.epib[1]))
return -EINVAL;
cmdl_len = sa_format_cmdl_gen(&cfg,
(u8 *)ctx->enc.cmdl,
&ctx->enc.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
return -EINVAL;
ctx->enc.cmdl_size = cmdl_len;
/* Setup Decryption Security Context & Command label template */
if (sa_init_sc(&ctx->dec, ctx->dev_data->match_data, keys.enckey,
keys.enckeylen, keys.authkey, keys.authkeylen,
ad, 0, &ctx->dec.epib[1]))
return -EINVAL;
cfg.enc = false;
cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
&ctx->dec.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
return -EINVAL;
ctx->dec.cmdl_size = cmdl_len;
crypto_aead_clear_flags(ctx->fallback.aead, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(ctx->fallback.aead,
crypto_aead_get_flags(authenc) &
CRYPTO_TFM_REQ_MASK);
crypto_aead_setkey(ctx->fallback.aead, key, keylen);
return 0;
}
static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
return crypto_aead_setauthsize(ctx->fallback.aead, authsize);
}
static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct algo_data ad = { 0 };
ad.ealg_id = SA_EALG_ID_AES_CBC;
ad.aalg_id = SA_AALG_ID_HMAC_SHA1;
ad.hash_size = SHA1_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;
return sa_aead_setkey(authenc, key, keylen, &ad);
}
static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct algo_data ad = { 0 };
ad.ealg_id = SA_EALG_ID_AES_CBC;
ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256;
ad.hash_size = SHA256_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;
return sa_aead_setkey(authenc, key, keylen, &ad);
}
static int sa_aead_run(struct aead_request *req, u8 *iv, int enc)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
struct sa_req sa_req = { 0 };
size_t auth_size, enc_size;
enc_size = req->cryptlen;
auth_size = req->assoclen + req->cryptlen;
if (!enc) {
enc_size -= crypto_aead_authsize(tfm);
auth_size -= crypto_aead_authsize(tfm);
}
if (auth_size > SA_MAX_DATA_SZ ||
(auth_size >= SA_UNSAFE_DATA_SZ_MIN &&
auth_size <= SA_UNSAFE_DATA_SZ_MAX)) {
struct aead_request *subreq = aead_request_ctx(req);
int ret;
aead_request_set_tfm(subreq, ctx->fallback.aead);
aead_request_set_callback(subreq, req->base.flags,
req->base.complete, req->base.data);
aead_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen, req->iv);
aead_request_set_ad(subreq, req->assoclen);
ret = enc ? crypto_aead_encrypt(subreq) :
crypto_aead_decrypt(subreq);
return ret;
}
sa_req.enc_offset = req->assoclen;
sa_req.enc_size = enc_size;
sa_req.auth_size = auth_size;
sa_req.size = auth_size;
sa_req.enc_iv = iv;
sa_req.type = CRYPTO_ALG_TYPE_AEAD;
sa_req.enc = enc;
sa_req.callback = sa_aead_dma_in_callback;
sa_req.mdata_size = 52;
sa_req.base = &req->base;
sa_req.ctx = ctx;
sa_req.src = req->src;
sa_req.dst = req->dst;
return sa_run(&sa_req);
}
/* AEAD algorithm encrypt interface function */
static int sa_aead_encrypt(struct aead_request *req)
{
return sa_aead_run(req, req->iv, 1);
}
/* AEAD algorithm decrypt interface function */
static int sa_aead_decrypt(struct aead_request *req)
{
return sa_aead_run(req, req->iv, 0);
}
static struct sa_alg_tmpl sa_algs[] = {
[SA_ALG_CBC_AES] = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-sa2ul",
.base.cra_priority = 30000,
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.base.cra_module = THIS_MODULE,
.init = sa_cipher_cra_init,
.exit = sa_cipher_cra_exit,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sa_aes_cbc_setkey,
.encrypt = sa_encrypt,
.decrypt = sa_decrypt,
}
},
[SA_ALG_EBC_AES] = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-sa2ul",
.base.cra_priority = 30000,
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.base.cra_module = THIS_MODULE,
.init = sa_cipher_cra_init,
.exit = sa_cipher_cra_exit,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = sa_aes_ecb_setkey,
.encrypt = sa_encrypt,
.decrypt = sa_decrypt,
}
},
[SA_ALG_CBC_DES3] = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "cbc-des3-sa2ul",
.base.cra_priority = 30000,
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.base.cra_module = THIS_MODULE,
.init = sa_cipher_cra_init,
.exit = sa_cipher_cra_exit,
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = sa_3des_cbc_setkey,
.encrypt = sa_encrypt,
.decrypt = sa_decrypt,
}
},
[SA_ALG_ECB_DES3] = {
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "ecb-des3-sa2ul",
.base.cra_priority = 30000,
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.base.cra_module = THIS_MODULE,
.init = sa_cipher_cra_init,
.exit = sa_cipher_cra_exit,
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.setkey = sa_3des_ecb_setkey,
.encrypt = sa_encrypt,
.decrypt = sa_decrypt,
}
},
[SA_ALG_SHA1] = {
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.ahash = {
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-sa2ul",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sa_sha1_cra_init,
.cra_exit = sa_sha_cra_exit,
},
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct sa_sha_req_ctx) +
sizeof(struct sha1_state),
.init = sa_sha_init,
.update = sa_sha_update,
.final = sa_sha_final,
.finup = sa_sha_finup,
.digest = sa_sha_digest,
.export = sa_sha_export,
.import = sa_sha_import,
},
},
[SA_ALG_SHA256] = {
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.ahash = {
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-sa2ul",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sa_sha256_cra_init,
.cra_exit = sa_sha_cra_exit,
},
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct sa_sha_req_ctx) +
sizeof(struct sha256_state),
.init = sa_sha_init,
.update = sa_sha_update,
.final = sa_sha_final,
.finup = sa_sha_finup,
.digest = sa_sha_digest,
.export = sa_sha_export,
.import = sa_sha_import,
},
},
[SA_ALG_SHA512] = {
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.ahash = {
.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-sa2ul",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sa_sha512_cra_init,
.cra_exit = sa_sha_cra_exit,
},
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.statesize = sizeof(struct sa_sha_req_ctx) +
sizeof(struct sha512_state),
.init = sa_sha_init,
.update = sa_sha_update,
.final = sa_sha_final,
.finup = sa_sha_finup,
.digest = sa_sha_digest,
.export = sa_sha_export,
.import = sa_sha_import,
},
},
[SA_ALG_AUTHENC_SHA1_AES] = {
.type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name =
"authenc(hmac(sha1),cbc(aes))-sa2ul",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_priority = 3000,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.init = sa_cra_init_aead_sha1,
.exit = sa_exit_tfm_aead,
.setkey = sa_aead_cbc_sha1_setkey,
.setauthsize = sa_aead_setauthsize,
.encrypt = sa_aead_encrypt,
.decrypt = sa_aead_decrypt,
},
},
[SA_ALG_AUTHENC_SHA256_AES] = {
.type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name =
"authenc(hmac(sha256),cbc(aes))-sa2ul",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0,
.cra_priority = 3000,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.init = sa_cra_init_aead_sha256,
.exit = sa_exit_tfm_aead,
.setkey = sa_aead_cbc_sha256_setkey,
.setauthsize = sa_aead_setauthsize,
.encrypt = sa_aead_encrypt,
.decrypt = sa_aead_decrypt,
},
},
};
/* Register the algorithms in crypto framework */
static void sa_register_algos(struct sa_crypto_data *dev_data)
{
const struct sa_match_data *match_data = dev_data->match_data;
struct device *dev = dev_data->dev;
char *alg_name;
u32 type;
int i, err;
for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
/* Skip unsupported algos */
if (!(match_data->supported_algos & BIT(i)))
continue;
type = sa_algs[i].type;
if (type == CRYPTO_ALG_TYPE_SKCIPHER) {
alg_name = sa_algs[i].alg.skcipher.base.cra_name;
err = crypto_register_skcipher(&sa_algs[i].alg.skcipher);
} else if (type == CRYPTO_ALG_TYPE_AHASH) {
alg_name = sa_algs[i].alg.ahash.halg.base.cra_name;
err = crypto_register_ahash(&sa_algs[i].alg.ahash);
} else if (type == CRYPTO_ALG_TYPE_AEAD) {
alg_name = sa_algs[i].alg.aead.base.cra_name;
err = crypto_register_aead(&sa_algs[i].alg.aead);
} else {
dev_err(dev,
"un-supported crypto algorithm (%d)",
sa_algs[i].type);
continue;
}
if (err)
dev_err(dev, "Failed to register '%s'\n", alg_name);
else
sa_algs[i].registered = true;
}
}
/* Unregister the algorithms in crypto framework */
static void sa_unregister_algos(const struct device *dev)
{
u32 type;
int i;
for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
type = sa_algs[i].type;
if (!sa_algs[i].registered)
continue;
if (type == CRYPTO_ALG_TYPE_SKCIPHER)
crypto_unregister_skcipher(&sa_algs[i].alg.skcipher);
else if (type == CRYPTO_ALG_TYPE_AHASH)
crypto_unregister_ahash(&sa_algs[i].alg.ahash);
else if (type == CRYPTO_ALG_TYPE_AEAD)
crypto_unregister_aead(&sa_algs[i].alg.aead);
sa_algs[i].registered = false;
}
}
static int sa_init_mem(struct sa_crypto_data *dev_data)
{
struct device *dev = &dev_data->pdev->dev;
/* Setup dma pool for security context buffers */
dev_data->sc_pool = dma_pool_create("keystone-sc", dev,
SA_CTX_MAX_SZ, 64, 0);
if (!dev_data->sc_pool) {
dev_err(dev, "Failed to create dma pool");
return -ENOMEM;
}
return 0;
}
static int sa_dma_init(struct sa_crypto_data *dd)
{
int ret;
struct dma_slave_config cfg;
dd->dma_rx1 = NULL;
dd->dma_tx = NULL;
dd->dma_rx2 = NULL;
ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48));
if (ret)
return ret;
dd->dma_rx1 = dma_request_chan(dd->dev, "rx1");
if (IS_ERR(dd->dma_rx1))
return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx1),
"Unable to request rx1 DMA channel\n");
dd->dma_rx2 = dma_request_chan(dd->dev, "rx2");
if (IS_ERR(dd->dma_rx2)) {
ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx2),
"Unable to request rx2 DMA channel\n");
goto err_dma_rx2;
}
dd->dma_tx = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->dma_tx)) {
ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_tx),
"Unable to request tx DMA channel\n");
goto err_dma_tx;
}
memzero_explicit(&cfg, sizeof(cfg));
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = 4;
cfg.dst_maxburst = 4;
ret = dmaengine_slave_config(dd->dma_rx1, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
ret);
goto err_dma_config;
}
ret = dmaengine_slave_config(dd->dma_rx2, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
ret);
goto err_dma_config;
}
ret = dmaengine_slave_config(dd->dma_tx, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
ret);
goto err_dma_config;
}
return 0;
err_dma_config:
dma_release_channel(dd->dma_tx);
err_dma_tx:
dma_release_channel(dd->dma_rx2);
err_dma_rx2:
dma_release_channel(dd->dma_rx1);
return ret;
}
static int sa_link_child(struct device *dev, void *data)
{
struct device *parent = data;
device_link_add(dev, parent, DL_FLAG_AUTOPROBE_CONSUMER);
return 0;
}
static struct sa_match_data am654_match_data = {
.priv = 1,
.priv_id = 1,
.supported_algos = BIT(SA_ALG_CBC_AES) |
BIT(SA_ALG_EBC_AES) |
BIT(SA_ALG_CBC_DES3) |
BIT(SA_ALG_ECB_DES3) |
BIT(SA_ALG_SHA1) |
BIT(SA_ALG_SHA256) |
BIT(SA_ALG_SHA512) |
BIT(SA_ALG_AUTHENC_SHA1_AES) |
BIT(SA_ALG_AUTHENC_SHA256_AES),
};
static struct sa_match_data am64_match_data = {
.priv = 0,
.priv_id = 0,
.supported_algos = BIT(SA_ALG_CBC_AES) |
BIT(SA_ALG_EBC_AES) |
BIT(SA_ALG_SHA256) |
BIT(SA_ALG_SHA512) |
BIT(SA_ALG_AUTHENC_SHA256_AES),
};
static const struct of_device_id of_match[] = {
{ .compatible = "ti,j721e-sa2ul", .data = &am654_match_data, },
{ .compatible = "ti,am654-sa2ul", .data = &am654_match_data, },
{ .compatible = "ti,am64-sa2ul", .data = &am64_match_data, },
{ .compatible = "ti,am62-sa3ul", .data = &am64_match_data, },
{},
};
MODULE_DEVICE_TABLE(of, of_match);
static int sa_ul_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
static void __iomem *saul_base;
struct sa_crypto_data *dev_data;
u32 status, val;
int ret;
dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL);
if (!dev_data)
return -ENOMEM;
dev_data->match_data = of_device_get_match_data(dev);
if (!dev_data->match_data)
return -ENODEV;
saul_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(saul_base))
return PTR_ERR(saul_base);
sa_k3_dev = dev;
dev_data->dev = dev;
dev_data->pdev = pdev;
dev_data->base = saul_base;
platform_set_drvdata(pdev, dev_data);
dev_set_drvdata(sa_k3_dev, dev_data);
pm_runtime_enable(dev);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "%s: failed to get sync: %d\n", __func__, ret);
pm_runtime_disable(dev);
return ret;
}
sa_init_mem(dev_data);
ret = sa_dma_init(dev_data);
if (ret)
goto destroy_dma_pool;
spin_lock_init(&dev_data->scid_lock);
val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN |
SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN |
SA_EEC_TRNG_EN;
status = readl_relaxed(saul_base + SA_ENGINE_STATUS);
/* Only enable engines if all are not already enabled */
if (val & ~status)
writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL);
sa_register_algos(dev_data);
ret = of_platform_populate(node, NULL, NULL, dev);
if (ret)
goto release_dma;
device_for_each_child(dev, dev, sa_link_child);
return 0;
release_dma:
sa_unregister_algos(dev);
dma_release_channel(dev_data->dma_rx2);
dma_release_channel(dev_data->dma_rx1);
dma_release_channel(dev_data->dma_tx);
destroy_dma_pool:
dma_pool_destroy(dev_data->sc_pool);
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
return ret;
}
static int sa_ul_remove(struct platform_device *pdev)
{
struct sa_crypto_data *dev_data = platform_get_drvdata(pdev);
of_platform_depopulate(&pdev->dev);
sa_unregister_algos(&pdev->dev);
dma_release_channel(dev_data->dma_rx2);
dma_release_channel(dev_data->dma_rx1);
dma_release_channel(dev_data->dma_tx);
dma_pool_destroy(dev_data->sc_pool);
platform_set_drvdata(pdev, NULL);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static struct platform_driver sa_ul_driver = {
.probe = sa_ul_probe,
.remove = sa_ul_remove,
.driver = {
.name = "saul-crypto",
.of_match_table = of_match,
},
};
module_platform_driver(sa_ul_driver);
MODULE_LICENSE("GPL v2");
| linux-master | drivers/crypto/sa2ul.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* talitos - Freescale Integrated Security Engine (SEC) device driver
*
* Copyright (c) 2008-2011 Freescale Semiconductor, Inc.
*
* Scatterlist Crypto API glue code copied from files with the following:
* Copyright (c) 2006-2007 Herbert Xu <[email protected]>
*
* Crypto algorithm registration code copied from hifn driver:
* 2007+ Copyright (c) Evgeniy Polyakov <[email protected]>
* All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>
#include <linux/hw_random.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/internal/des.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/md5.h>
#include <crypto/internal/aead.h>
#include <crypto/authenc.h>
#include <crypto/internal/skcipher.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include "talitos.h"
static void to_talitos_ptr(struct talitos_ptr *ptr, dma_addr_t dma_addr,
unsigned int len, bool is_sec1)
{
ptr->ptr = cpu_to_be32(lower_32_bits(dma_addr));
if (is_sec1) {
ptr->len1 = cpu_to_be16(len);
} else {
ptr->len = cpu_to_be16(len);
ptr->eptr = upper_32_bits(dma_addr);
}
}
static void copy_talitos_ptr(struct talitos_ptr *dst_ptr,
struct talitos_ptr *src_ptr, bool is_sec1)
{
dst_ptr->ptr = src_ptr->ptr;
if (is_sec1) {
dst_ptr->len1 = src_ptr->len1;
} else {
dst_ptr->len = src_ptr->len;
dst_ptr->eptr = src_ptr->eptr;
}
}
static unsigned short from_talitos_ptr_len(struct talitos_ptr *ptr,
bool is_sec1)
{
if (is_sec1)
return be16_to_cpu(ptr->len1);
else
return be16_to_cpu(ptr->len);
}
static void to_talitos_ptr_ext_set(struct talitos_ptr *ptr, u8 val,
bool is_sec1)
{
if (!is_sec1)
ptr->j_extent = val;
}
static void to_talitos_ptr_ext_or(struct talitos_ptr *ptr, u8 val, bool is_sec1)
{
if (!is_sec1)
ptr->j_extent |= val;
}
/*
* map virtual single (contiguous) pointer to h/w descriptor pointer
*/
static void __map_single_talitos_ptr(struct device *dev,
struct talitos_ptr *ptr,
unsigned int len, void *data,
enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t dma_addr = dma_map_single_attrs(dev, data, len, dir, attrs);
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
to_talitos_ptr(ptr, dma_addr, len, is_sec1);
}
static void map_single_talitos_ptr(struct device *dev,
struct talitos_ptr *ptr,
unsigned int len, void *data,
enum dma_data_direction dir)
{
__map_single_talitos_ptr(dev, ptr, len, data, dir, 0);
}
static void map_single_talitos_ptr_nosync(struct device *dev,
struct talitos_ptr *ptr,
unsigned int len, void *data,
enum dma_data_direction dir)
{
__map_single_talitos_ptr(dev, ptr, len, data, dir,
DMA_ATTR_SKIP_CPU_SYNC);
}
/*
* unmap bus single (contiguous) h/w descriptor pointer
*/
static void unmap_single_talitos_ptr(struct device *dev,
struct talitos_ptr *ptr,
enum dma_data_direction dir)
{
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
dma_unmap_single(dev, be32_to_cpu(ptr->ptr),
from_talitos_ptr_len(ptr, is_sec1), dir);
}
static int reset_channel(struct device *dev, int ch)
{
struct talitos_private *priv = dev_get_drvdata(dev);
unsigned int timeout = TALITOS_TIMEOUT;
bool is_sec1 = has_ftr_sec1(priv);
if (is_sec1) {
setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO,
TALITOS1_CCCR_LO_RESET);
while ((in_be32(priv->chan[ch].reg + TALITOS_CCCR_LO) &
TALITOS1_CCCR_LO_RESET) && --timeout)
cpu_relax();
} else {
setbits32(priv->chan[ch].reg + TALITOS_CCCR,
TALITOS2_CCCR_RESET);
while ((in_be32(priv->chan[ch].reg + TALITOS_CCCR) &
TALITOS2_CCCR_RESET) && --timeout)
cpu_relax();
}
if (timeout == 0) {
dev_err(dev, "failed to reset channel %d\n", ch);
return -EIO;
}
/* set 36-bit addressing, done writeback enable and done IRQ enable */
setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO, TALITOS_CCCR_LO_EAE |
TALITOS_CCCR_LO_CDWE | TALITOS_CCCR_LO_CDIE);
/* enable chaining descriptors */
if (is_sec1)
setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO,
TALITOS_CCCR_LO_NE);
/* and ICCR writeback, if available */
if (priv->features & TALITOS_FTR_HW_AUTH_CHECK)
setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO,
TALITOS_CCCR_LO_IWSE);
return 0;
}
static int reset_device(struct device *dev)
{
struct talitos_private *priv = dev_get_drvdata(dev);
unsigned int timeout = TALITOS_TIMEOUT;
bool is_sec1 = has_ftr_sec1(priv);
u32 mcr = is_sec1 ? TALITOS1_MCR_SWR : TALITOS2_MCR_SWR;
setbits32(priv->reg + TALITOS_MCR, mcr);
while ((in_be32(priv->reg + TALITOS_MCR) & mcr)
&& --timeout)
cpu_relax();
if (priv->irq[1]) {
mcr = TALITOS_MCR_RCA1 | TALITOS_MCR_RCA3;
setbits32(priv->reg + TALITOS_MCR, mcr);
}
if (timeout == 0) {
dev_err(dev, "failed to reset device\n");
return -EIO;
}
return 0;
}
/*
* Reset and initialize the device
*/
static int init_device(struct device *dev)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int ch, err;
bool is_sec1 = has_ftr_sec1(priv);
/*
* Master reset
* errata documentation: warning: certain SEC interrupts
* are not fully cleared by writing the MCR:SWR bit,
* set bit twice to completely reset
*/
err = reset_device(dev);
if (err)
return err;
err = reset_device(dev);
if (err)
return err;
/* reset channels */
for (ch = 0; ch < priv->num_channels; ch++) {
err = reset_channel(dev, ch);
if (err)
return err;
}
/* enable channel done and error interrupts */
if (is_sec1) {
clrbits32(priv->reg + TALITOS_IMR, TALITOS1_IMR_INIT);
clrbits32(priv->reg + TALITOS_IMR_LO, TALITOS1_IMR_LO_INIT);
/* disable parity error check in DEU (erroneous? test vect.) */
setbits32(priv->reg_deu + TALITOS_EUICR, TALITOS1_DEUICR_KPE);
} else {
setbits32(priv->reg + TALITOS_IMR, TALITOS2_IMR_INIT);
setbits32(priv->reg + TALITOS_IMR_LO, TALITOS2_IMR_LO_INIT);
}
/* disable integrity check error interrupts (use writeback instead) */
if (priv->features & TALITOS_FTR_HW_AUTH_CHECK)
setbits32(priv->reg_mdeu + TALITOS_EUICR_LO,
TALITOS_MDEUICR_LO_ICE);
return 0;
}
/**
* talitos_submit - submits a descriptor to the device for processing
* @dev: the SEC device to be used
* @ch: the SEC device channel to be used
* @desc: the descriptor to be processed by the device
* @callback: whom to call when processing is complete
* @context: a handle for use by caller (optional)
*
* desc must contain valid dma-mapped (bus physical) address pointers.
* callback must check err and feedback in descriptor header
* for device processing status.
*/
static int talitos_submit(struct device *dev, int ch, struct talitos_desc *desc,
void (*callback)(struct device *dev,
struct talitos_desc *desc,
void *context, int error),
void *context)
{
struct talitos_private *priv = dev_get_drvdata(dev);
struct talitos_request *request;
unsigned long flags;
int head;
bool is_sec1 = has_ftr_sec1(priv);
spin_lock_irqsave(&priv->chan[ch].head_lock, flags);
if (!atomic_inc_not_zero(&priv->chan[ch].submit_count)) {
/* h/w fifo is full */
spin_unlock_irqrestore(&priv->chan[ch].head_lock, flags);
return -EAGAIN;
}
head = priv->chan[ch].head;
request = &priv->chan[ch].fifo[head];
/* map descriptor and save caller data */
if (is_sec1) {
desc->hdr1 = desc->hdr;
request->dma_desc = dma_map_single(dev, &desc->hdr1,
TALITOS_DESC_SIZE,
DMA_BIDIRECTIONAL);
} else {
request->dma_desc = dma_map_single(dev, desc,
TALITOS_DESC_SIZE,
DMA_BIDIRECTIONAL);
}
request->callback = callback;
request->context = context;
/* increment fifo head */
priv->chan[ch].head = (priv->chan[ch].head + 1) & (priv->fifo_len - 1);
smp_wmb();
request->desc = desc;
/* GO! */
wmb();
out_be32(priv->chan[ch].reg + TALITOS_FF,
upper_32_bits(request->dma_desc));
out_be32(priv->chan[ch].reg + TALITOS_FF_LO,
lower_32_bits(request->dma_desc));
spin_unlock_irqrestore(&priv->chan[ch].head_lock, flags);
return -EINPROGRESS;
}
static __be32 get_request_hdr(struct talitos_request *request, bool is_sec1)
{
struct talitos_edesc *edesc;
if (!is_sec1)
return request->desc->hdr;
if (!request->desc->next_desc)
return request->desc->hdr1;
edesc = container_of(request->desc, struct talitos_edesc, desc);
return ((struct talitos_desc *)(edesc->buf + edesc->dma_len))->hdr1;
}
/*
* process what was done, notify callback of error if not
*/
static void flush_channel(struct device *dev, int ch, int error, int reset_ch)
{
struct talitos_private *priv = dev_get_drvdata(dev);
struct talitos_request *request, saved_req;
unsigned long flags;
int tail, status;
bool is_sec1 = has_ftr_sec1(priv);
spin_lock_irqsave(&priv->chan[ch].tail_lock, flags);
tail = priv->chan[ch].tail;
while (priv->chan[ch].fifo[tail].desc) {
__be32 hdr;
request = &priv->chan[ch].fifo[tail];
/* descriptors with their done bits set don't get the error */
rmb();
hdr = get_request_hdr(request, is_sec1);
if ((hdr & DESC_HDR_DONE) == DESC_HDR_DONE)
status = 0;
else
if (!error)
break;
else
status = error;
dma_unmap_single(dev, request->dma_desc,
TALITOS_DESC_SIZE,
DMA_BIDIRECTIONAL);
/* copy entries so we can call callback outside lock */
saved_req.desc = request->desc;
saved_req.callback = request->callback;
saved_req.context = request->context;
/* release request entry in fifo */
smp_wmb();
request->desc = NULL;
/* increment fifo tail */
priv->chan[ch].tail = (tail + 1) & (priv->fifo_len - 1);
spin_unlock_irqrestore(&priv->chan[ch].tail_lock, flags);
atomic_dec(&priv->chan[ch].submit_count);
saved_req.callback(dev, saved_req.desc, saved_req.context,
status);
/* channel may resume processing in single desc error case */
if (error && !reset_ch && status == error)
return;
spin_lock_irqsave(&priv->chan[ch].tail_lock, flags);
tail = priv->chan[ch].tail;
}
spin_unlock_irqrestore(&priv->chan[ch].tail_lock, flags);
}
/*
* process completed requests for channels that have done status
*/
#define DEF_TALITOS1_DONE(name, ch_done_mask) \
static void talitos1_done_##name(unsigned long data) \
{ \
struct device *dev = (struct device *)data; \
struct talitos_private *priv = dev_get_drvdata(dev); \
unsigned long flags; \
\
if (ch_done_mask & 0x10000000) \
flush_channel(dev, 0, 0, 0); \
if (ch_done_mask & 0x40000000) \
flush_channel(dev, 1, 0, 0); \
if (ch_done_mask & 0x00010000) \
flush_channel(dev, 2, 0, 0); \
if (ch_done_mask & 0x00040000) \
flush_channel(dev, 3, 0, 0); \
\
/* At this point, all completed channels have been processed */ \
/* Unmask done interrupts for channels completed later on. */ \
spin_lock_irqsave(&priv->reg_lock, flags); \
clrbits32(priv->reg + TALITOS_IMR, ch_done_mask); \
clrbits32(priv->reg + TALITOS_IMR_LO, TALITOS1_IMR_LO_INIT); \
spin_unlock_irqrestore(&priv->reg_lock, flags); \
}
DEF_TALITOS1_DONE(4ch, TALITOS1_ISR_4CHDONE)
DEF_TALITOS1_DONE(ch0, TALITOS1_ISR_CH_0_DONE)
#define DEF_TALITOS2_DONE(name, ch_done_mask) \
static void talitos2_done_##name(unsigned long data) \
{ \
struct device *dev = (struct device *)data; \
struct talitos_private *priv = dev_get_drvdata(dev); \
unsigned long flags; \
\
if (ch_done_mask & 1) \
flush_channel(dev, 0, 0, 0); \
if (ch_done_mask & (1 << 2)) \
flush_channel(dev, 1, 0, 0); \
if (ch_done_mask & (1 << 4)) \
flush_channel(dev, 2, 0, 0); \
if (ch_done_mask & (1 << 6)) \
flush_channel(dev, 3, 0, 0); \
\
/* At this point, all completed channels have been processed */ \
/* Unmask done interrupts for channels completed later on. */ \
spin_lock_irqsave(&priv->reg_lock, flags); \
setbits32(priv->reg + TALITOS_IMR, ch_done_mask); \
setbits32(priv->reg + TALITOS_IMR_LO, TALITOS2_IMR_LO_INIT); \
spin_unlock_irqrestore(&priv->reg_lock, flags); \
}
DEF_TALITOS2_DONE(4ch, TALITOS2_ISR_4CHDONE)
DEF_TALITOS2_DONE(ch0, TALITOS2_ISR_CH_0_DONE)
DEF_TALITOS2_DONE(ch0_2, TALITOS2_ISR_CH_0_2_DONE)
DEF_TALITOS2_DONE(ch1_3, TALITOS2_ISR_CH_1_3_DONE)
/*
* locate current (offending) descriptor
*/
static __be32 current_desc_hdr(struct device *dev, int ch)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int tail, iter;
dma_addr_t cur_desc;
cur_desc = ((u64)in_be32(priv->chan[ch].reg + TALITOS_CDPR)) << 32;
cur_desc |= in_be32(priv->chan[ch].reg + TALITOS_CDPR_LO);
if (!cur_desc) {
dev_err(dev, "CDPR is NULL, giving up search for offending descriptor\n");
return 0;
}
tail = priv->chan[ch].tail;
iter = tail;
while (priv->chan[ch].fifo[iter].dma_desc != cur_desc &&
priv->chan[ch].fifo[iter].desc->next_desc != cpu_to_be32(cur_desc)) {
iter = (iter + 1) & (priv->fifo_len - 1);
if (iter == tail) {
dev_err(dev, "couldn't locate current descriptor\n");
return 0;
}
}
if (priv->chan[ch].fifo[iter].desc->next_desc == cpu_to_be32(cur_desc)) {
struct talitos_edesc *edesc;
edesc = container_of(priv->chan[ch].fifo[iter].desc,
struct talitos_edesc, desc);
return ((struct talitos_desc *)
(edesc->buf + edesc->dma_len))->hdr;
}
return priv->chan[ch].fifo[iter].desc->hdr;
}
/*
* user diagnostics; report root cause of error based on execution unit status
*/
static void report_eu_error(struct device *dev, int ch, __be32 desc_hdr)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int i;
if (!desc_hdr)
desc_hdr = cpu_to_be32(in_be32(priv->chan[ch].reg + TALITOS_DESCBUF));
switch (desc_hdr & DESC_HDR_SEL0_MASK) {
case DESC_HDR_SEL0_AFEU:
dev_err(dev, "AFEUISR 0x%08x_%08x\n",
in_be32(priv->reg_afeu + TALITOS_EUISR),
in_be32(priv->reg_afeu + TALITOS_EUISR_LO));
break;
case DESC_HDR_SEL0_DEU:
dev_err(dev, "DEUISR 0x%08x_%08x\n",
in_be32(priv->reg_deu + TALITOS_EUISR),
in_be32(priv->reg_deu + TALITOS_EUISR_LO));
break;
case DESC_HDR_SEL0_MDEUA:
case DESC_HDR_SEL0_MDEUB:
dev_err(dev, "MDEUISR 0x%08x_%08x\n",
in_be32(priv->reg_mdeu + TALITOS_EUISR),
in_be32(priv->reg_mdeu + TALITOS_EUISR_LO));
break;
case DESC_HDR_SEL0_RNG:
dev_err(dev, "RNGUISR 0x%08x_%08x\n",
in_be32(priv->reg_rngu + TALITOS_ISR),
in_be32(priv->reg_rngu + TALITOS_ISR_LO));
break;
case DESC_HDR_SEL0_PKEU:
dev_err(dev, "PKEUISR 0x%08x_%08x\n",
in_be32(priv->reg_pkeu + TALITOS_EUISR),
in_be32(priv->reg_pkeu + TALITOS_EUISR_LO));
break;
case DESC_HDR_SEL0_AESU:
dev_err(dev, "AESUISR 0x%08x_%08x\n",
in_be32(priv->reg_aesu + TALITOS_EUISR),
in_be32(priv->reg_aesu + TALITOS_EUISR_LO));
break;
case DESC_HDR_SEL0_CRCU:
dev_err(dev, "CRCUISR 0x%08x_%08x\n",
in_be32(priv->reg_crcu + TALITOS_EUISR),
in_be32(priv->reg_crcu + TALITOS_EUISR_LO));
break;
case DESC_HDR_SEL0_KEU:
dev_err(dev, "KEUISR 0x%08x_%08x\n",
in_be32(priv->reg_pkeu + TALITOS_EUISR),
in_be32(priv->reg_pkeu + TALITOS_EUISR_LO));
break;
}
switch (desc_hdr & DESC_HDR_SEL1_MASK) {
case DESC_HDR_SEL1_MDEUA:
case DESC_HDR_SEL1_MDEUB:
dev_err(dev, "MDEUISR 0x%08x_%08x\n",
in_be32(priv->reg_mdeu + TALITOS_EUISR),
in_be32(priv->reg_mdeu + TALITOS_EUISR_LO));
break;
case DESC_HDR_SEL1_CRCU:
dev_err(dev, "CRCUISR 0x%08x_%08x\n",
in_be32(priv->reg_crcu + TALITOS_EUISR),
in_be32(priv->reg_crcu + TALITOS_EUISR_LO));
break;
}
for (i = 0; i < 8; i++)
dev_err(dev, "DESCBUF 0x%08x_%08x\n",
in_be32(priv->chan[ch].reg + TALITOS_DESCBUF + 8*i),
in_be32(priv->chan[ch].reg + TALITOS_DESCBUF_LO + 8*i));
}
/*
* recover from error interrupts
*/
static void talitos_error(struct device *dev, u32 isr, u32 isr_lo)
{
struct talitos_private *priv = dev_get_drvdata(dev);
unsigned int timeout = TALITOS_TIMEOUT;
int ch, error, reset_dev = 0;
u32 v_lo;
bool is_sec1 = has_ftr_sec1(priv);
int reset_ch = is_sec1 ? 1 : 0; /* only SEC2 supports continuation */
for (ch = 0; ch < priv->num_channels; ch++) {
/* skip channels without errors */
if (is_sec1) {
/* bits 29, 31, 17, 19 */
if (!(isr & (1 << (29 + (ch & 1) * 2 - (ch & 2) * 6))))
continue;
} else {
if (!(isr & (1 << (ch * 2 + 1))))
continue;
}
error = -EINVAL;
v_lo = in_be32(priv->chan[ch].reg + TALITOS_CCPSR_LO);
if (v_lo & TALITOS_CCPSR_LO_DOF) {
dev_err(dev, "double fetch fifo overflow error\n");
error = -EAGAIN;
reset_ch = 1;
}
if (v_lo & TALITOS_CCPSR_LO_SOF) {
/* h/w dropped descriptor */
dev_err(dev, "single fetch fifo overflow error\n");
error = -EAGAIN;
}
if (v_lo & TALITOS_CCPSR_LO_MDTE)
dev_err(dev, "master data transfer error\n");
if (v_lo & TALITOS_CCPSR_LO_SGDLZ)
dev_err(dev, is_sec1 ? "pointer not complete error\n"
: "s/g data length zero error\n");
if (v_lo & TALITOS_CCPSR_LO_FPZ)
dev_err(dev, is_sec1 ? "parity error\n"
: "fetch pointer zero error\n");
if (v_lo & TALITOS_CCPSR_LO_IDH)
dev_err(dev, "illegal descriptor header error\n");
if (v_lo & TALITOS_CCPSR_LO_IEU)
dev_err(dev, is_sec1 ? "static assignment error\n"
: "invalid exec unit error\n");
if (v_lo & TALITOS_CCPSR_LO_EU)
report_eu_error(dev, ch, current_desc_hdr(dev, ch));
if (!is_sec1) {
if (v_lo & TALITOS_CCPSR_LO_GB)
dev_err(dev, "gather boundary error\n");
if (v_lo & TALITOS_CCPSR_LO_GRL)
dev_err(dev, "gather return/length error\n");
if (v_lo & TALITOS_CCPSR_LO_SB)
dev_err(dev, "scatter boundary error\n");
if (v_lo & TALITOS_CCPSR_LO_SRL)
dev_err(dev, "scatter return/length error\n");
}
flush_channel(dev, ch, error, reset_ch);
if (reset_ch) {
reset_channel(dev, ch);
} else {
setbits32(priv->chan[ch].reg + TALITOS_CCCR,
TALITOS2_CCCR_CONT);
setbits32(priv->chan[ch].reg + TALITOS_CCCR_LO, 0);
while ((in_be32(priv->chan[ch].reg + TALITOS_CCCR) &
TALITOS2_CCCR_CONT) && --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to restart channel %d\n",
ch);
reset_dev = 1;
}
}
}
if (reset_dev || (is_sec1 && isr & ~TALITOS1_ISR_4CHERR) ||
(!is_sec1 && isr & ~TALITOS2_ISR_4CHERR) || isr_lo) {
if (is_sec1 && (isr_lo & TALITOS1_ISR_TEA_ERR))
dev_err(dev, "TEA error: ISR 0x%08x_%08x\n",
isr, isr_lo);
else
dev_err(dev, "done overflow, internal time out, or "
"rngu error: ISR 0x%08x_%08x\n", isr, isr_lo);
/* purge request queues */
for (ch = 0; ch < priv->num_channels; ch++)
flush_channel(dev, ch, -EIO, 1);
/* reset and reinitialize the device */
init_device(dev);
}
}
#define DEF_TALITOS1_INTERRUPT(name, ch_done_mask, ch_err_mask, tlet) \
static irqreturn_t talitos1_interrupt_##name(int irq, void *data) \
{ \
struct device *dev = data; \
struct talitos_private *priv = dev_get_drvdata(dev); \
u32 isr, isr_lo; \
unsigned long flags; \
\
spin_lock_irqsave(&priv->reg_lock, flags); \
isr = in_be32(priv->reg + TALITOS_ISR); \
isr_lo = in_be32(priv->reg + TALITOS_ISR_LO); \
/* Acknowledge interrupt */ \
out_be32(priv->reg + TALITOS_ICR, isr & (ch_done_mask | ch_err_mask)); \
out_be32(priv->reg + TALITOS_ICR_LO, isr_lo); \
\
if (unlikely(isr & ch_err_mask || isr_lo & TALITOS1_IMR_LO_INIT)) { \
spin_unlock_irqrestore(&priv->reg_lock, flags); \
talitos_error(dev, isr & ch_err_mask, isr_lo); \
} \
else { \
if (likely(isr & ch_done_mask)) { \
/* mask further done interrupts. */ \
setbits32(priv->reg + TALITOS_IMR, ch_done_mask); \
/* done_task will unmask done interrupts at exit */ \
tasklet_schedule(&priv->done_task[tlet]); \
} \
spin_unlock_irqrestore(&priv->reg_lock, flags); \
} \
\
return (isr & (ch_done_mask | ch_err_mask) || isr_lo) ? IRQ_HANDLED : \
IRQ_NONE; \
}
DEF_TALITOS1_INTERRUPT(4ch, TALITOS1_ISR_4CHDONE, TALITOS1_ISR_4CHERR, 0)
#define DEF_TALITOS2_INTERRUPT(name, ch_done_mask, ch_err_mask, tlet) \
static irqreturn_t talitos2_interrupt_##name(int irq, void *data) \
{ \
struct device *dev = data; \
struct talitos_private *priv = dev_get_drvdata(dev); \
u32 isr, isr_lo; \
unsigned long flags; \
\
spin_lock_irqsave(&priv->reg_lock, flags); \
isr = in_be32(priv->reg + TALITOS_ISR); \
isr_lo = in_be32(priv->reg + TALITOS_ISR_LO); \
/* Acknowledge interrupt */ \
out_be32(priv->reg + TALITOS_ICR, isr & (ch_done_mask | ch_err_mask)); \
out_be32(priv->reg + TALITOS_ICR_LO, isr_lo); \
\
if (unlikely(isr & ch_err_mask || isr_lo)) { \
spin_unlock_irqrestore(&priv->reg_lock, flags); \
talitos_error(dev, isr & ch_err_mask, isr_lo); \
} \
else { \
if (likely(isr & ch_done_mask)) { \
/* mask further done interrupts. */ \
clrbits32(priv->reg + TALITOS_IMR, ch_done_mask); \
/* done_task will unmask done interrupts at exit */ \
tasklet_schedule(&priv->done_task[tlet]); \
} \
spin_unlock_irqrestore(&priv->reg_lock, flags); \
} \
\
return (isr & (ch_done_mask | ch_err_mask) || isr_lo) ? IRQ_HANDLED : \
IRQ_NONE; \
}
DEF_TALITOS2_INTERRUPT(4ch, TALITOS2_ISR_4CHDONE, TALITOS2_ISR_4CHERR, 0)
DEF_TALITOS2_INTERRUPT(ch0_2, TALITOS2_ISR_CH_0_2_DONE, TALITOS2_ISR_CH_0_2_ERR,
0)
DEF_TALITOS2_INTERRUPT(ch1_3, TALITOS2_ISR_CH_1_3_DONE, TALITOS2_ISR_CH_1_3_ERR,
1)
/*
* hwrng
*/
static int talitos_rng_data_present(struct hwrng *rng, int wait)
{
struct device *dev = (struct device *)rng->priv;
struct talitos_private *priv = dev_get_drvdata(dev);
u32 ofl;
int i;
for (i = 0; i < 20; i++) {
ofl = in_be32(priv->reg_rngu + TALITOS_EUSR_LO) &
TALITOS_RNGUSR_LO_OFL;
if (ofl || !wait)
break;
udelay(10);
}
return !!ofl;
}
static int talitos_rng_data_read(struct hwrng *rng, u32 *data)
{
struct device *dev = (struct device *)rng->priv;
struct talitos_private *priv = dev_get_drvdata(dev);
/* rng fifo requires 64-bit accesses */
*data = in_be32(priv->reg_rngu + TALITOS_EU_FIFO);
*data = in_be32(priv->reg_rngu + TALITOS_EU_FIFO_LO);
return sizeof(u32);
}
static int talitos_rng_init(struct hwrng *rng)
{
struct device *dev = (struct device *)rng->priv;
struct talitos_private *priv = dev_get_drvdata(dev);
unsigned int timeout = TALITOS_TIMEOUT;
setbits32(priv->reg_rngu + TALITOS_EURCR_LO, TALITOS_RNGURCR_LO_SR);
while (!(in_be32(priv->reg_rngu + TALITOS_EUSR_LO)
& TALITOS_RNGUSR_LO_RD)
&& --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to reset rng hw\n");
return -ENODEV;
}
/* start generating */
setbits32(priv->reg_rngu + TALITOS_EUDSR_LO, 0);
return 0;
}
static int talitos_register_rng(struct device *dev)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int err;
priv->rng.name = dev_driver_string(dev);
priv->rng.init = talitos_rng_init;
priv->rng.data_present = talitos_rng_data_present;
priv->rng.data_read = talitos_rng_data_read;
priv->rng.priv = (unsigned long)dev;
err = hwrng_register(&priv->rng);
if (!err)
priv->rng_registered = true;
return err;
}
static void talitos_unregister_rng(struct device *dev)
{
struct talitos_private *priv = dev_get_drvdata(dev);
if (!priv->rng_registered)
return;
hwrng_unregister(&priv->rng);
priv->rng_registered = false;
}
/*
* crypto alg
*/
#define TALITOS_CRA_PRIORITY 3000
/*
* Defines a priority for doing AEAD with descriptors type
* HMAC_SNOOP_NO_AFEA (HSNA) instead of type IPSEC_ESP
*/
#define TALITOS_CRA_PRIORITY_AEAD_HSNA (TALITOS_CRA_PRIORITY - 1)
#ifdef CONFIG_CRYPTO_DEV_TALITOS2
#define TALITOS_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + SHA512_BLOCK_SIZE)
#else
#define TALITOS_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + SHA256_BLOCK_SIZE)
#endif
#define TALITOS_MAX_IV_LENGTH 16 /* max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
struct talitos_ctx {
struct device *dev;
int ch;
__be32 desc_hdr_template;
u8 key[TALITOS_MAX_KEY_SIZE];
u8 iv[TALITOS_MAX_IV_LENGTH];
dma_addr_t dma_key;
unsigned int keylen;
unsigned int enckeylen;
unsigned int authkeylen;
};
#define HASH_MAX_BLOCK_SIZE SHA512_BLOCK_SIZE
#define TALITOS_MDEU_MAX_CONTEXT_SIZE TALITOS_MDEU_CONTEXT_SIZE_SHA384_SHA512
struct talitos_ahash_req_ctx {
u32 hw_context[TALITOS_MDEU_MAX_CONTEXT_SIZE / sizeof(u32)];
unsigned int hw_context_size;
u8 buf[2][HASH_MAX_BLOCK_SIZE];
int buf_idx;
unsigned int swinit;
unsigned int first;
unsigned int last;
unsigned int to_hash_later;
unsigned int nbuf;
struct scatterlist bufsl[2];
struct scatterlist *psrc;
};
struct talitos_export_state {
u32 hw_context[TALITOS_MDEU_MAX_CONTEXT_SIZE / sizeof(u32)];
u8 buf[HASH_MAX_BLOCK_SIZE];
unsigned int swinit;
unsigned int first;
unsigned int last;
unsigned int to_hash_later;
unsigned int nbuf;
};
static int aead_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct device *dev = ctx->dev;
struct crypto_authenc_keys keys;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
if (keys.authkeylen + keys.enckeylen > TALITOS_MAX_KEY_SIZE)
goto badkey;
if (ctx->keylen)
dma_unmap_single(dev, ctx->dma_key, ctx->keylen, DMA_TO_DEVICE);
memcpy(ctx->key, keys.authkey, keys.authkeylen);
memcpy(&ctx->key[keys.authkeylen], keys.enckey, keys.enckeylen);
ctx->keylen = keys.authkeylen + keys.enckeylen;
ctx->enckeylen = keys.enckeylen;
ctx->authkeylen = keys.authkeylen;
ctx->dma_key = dma_map_single(dev, ctx->key, ctx->keylen,
DMA_TO_DEVICE);
memzero_explicit(&keys, sizeof(keys));
return 0;
badkey:
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int aead_des3_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct device *dev = ctx->dev;
struct crypto_authenc_keys keys;
int err;
err = crypto_authenc_extractkeys(&keys, key, keylen);
if (unlikely(err))
goto out;
err = -EINVAL;
if (keys.authkeylen + keys.enckeylen > TALITOS_MAX_KEY_SIZE)
goto out;
err = verify_aead_des3_key(authenc, keys.enckey, keys.enckeylen);
if (err)
goto out;
if (ctx->keylen)
dma_unmap_single(dev, ctx->dma_key, ctx->keylen, DMA_TO_DEVICE);
memcpy(ctx->key, keys.authkey, keys.authkeylen);
memcpy(&ctx->key[keys.authkeylen], keys.enckey, keys.enckeylen);
ctx->keylen = keys.authkeylen + keys.enckeylen;
ctx->enckeylen = keys.enckeylen;
ctx->authkeylen = keys.authkeylen;
ctx->dma_key = dma_map_single(dev, ctx->key, ctx->keylen,
DMA_TO_DEVICE);
out:
memzero_explicit(&keys, sizeof(keys));
return err;
}
static void talitos_sg_unmap(struct device *dev,
struct talitos_edesc *edesc,
struct scatterlist *src,
struct scatterlist *dst,
unsigned int len, unsigned int offset)
{
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
unsigned int src_nents = edesc->src_nents ? : 1;
unsigned int dst_nents = edesc->dst_nents ? : 1;
if (is_sec1 && dst && dst_nents > 1) {
dma_sync_single_for_device(dev, edesc->dma_link_tbl + offset,
len, DMA_FROM_DEVICE);
sg_pcopy_from_buffer(dst, dst_nents, edesc->buf + offset, len,
offset);
}
if (src != dst) {
if (src_nents == 1 || !is_sec1)
dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
if (dst && (dst_nents == 1 || !is_sec1))
dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
} else if (src_nents == 1 || !is_sec1) {
dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
}
}
static void ipsec_esp_unmap(struct device *dev,
struct talitos_edesc *edesc,
struct aead_request *areq, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct talitos_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
unsigned int authsize = crypto_aead_authsize(aead);
unsigned int cryptlen = areq->cryptlen - (encrypt ? 0 : authsize);
bool is_ipsec_esp = edesc->desc.hdr & DESC_HDR_TYPE_IPSEC_ESP;
struct talitos_ptr *civ_ptr = &edesc->desc.ptr[is_ipsec_esp ? 2 : 3];
if (is_ipsec_esp)
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[6],
DMA_FROM_DEVICE);
unmap_single_talitos_ptr(dev, civ_ptr, DMA_TO_DEVICE);
talitos_sg_unmap(dev, edesc, areq->src, areq->dst,
cryptlen + authsize, areq->assoclen);
if (edesc->dma_len)
dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len,
DMA_BIDIRECTIONAL);
if (!is_ipsec_esp) {
unsigned int dst_nents = edesc->dst_nents ? : 1;
sg_pcopy_to_buffer(areq->dst, dst_nents, ctx->iv, ivsize,
areq->assoclen + cryptlen - ivsize);
}
}
/*
* ipsec_esp descriptor callbacks
*/
static void ipsec_esp_encrypt_done(struct device *dev,
struct talitos_desc *desc, void *context,
int err)
{
struct aead_request *areq = context;
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
unsigned int ivsize = crypto_aead_ivsize(authenc);
struct talitos_edesc *edesc;
edesc = container_of(desc, struct talitos_edesc, desc);
ipsec_esp_unmap(dev, edesc, areq, true);
dma_unmap_single(dev, edesc->iv_dma, ivsize, DMA_TO_DEVICE);
kfree(edesc);
aead_request_complete(areq, err);
}
static void ipsec_esp_decrypt_swauth_done(struct device *dev,
struct talitos_desc *desc,
void *context, int err)
{
struct aead_request *req = context;
struct crypto_aead *authenc = crypto_aead_reqtfm(req);
unsigned int authsize = crypto_aead_authsize(authenc);
struct talitos_edesc *edesc;
char *oicv, *icv;
edesc = container_of(desc, struct talitos_edesc, desc);
ipsec_esp_unmap(dev, edesc, req, false);
if (!err) {
/* auth check */
oicv = edesc->buf + edesc->dma_len;
icv = oicv - authsize;
err = crypto_memneq(oicv, icv, authsize) ? -EBADMSG : 0;
}
kfree(edesc);
aead_request_complete(req, err);
}
static void ipsec_esp_decrypt_hwauth_done(struct device *dev,
struct talitos_desc *desc,
void *context, int err)
{
struct aead_request *req = context;
struct talitos_edesc *edesc;
edesc = container_of(desc, struct talitos_edesc, desc);
ipsec_esp_unmap(dev, edesc, req, false);
/* check ICV auth status */
if (!err && ((desc->hdr_lo & DESC_HDR_LO_ICCR1_MASK) !=
DESC_HDR_LO_ICCR1_PASS))
err = -EBADMSG;
kfree(edesc);
aead_request_complete(req, err);
}
/*
* convert scatterlist to SEC h/w link table format
* stop at cryptlen bytes
*/
static int sg_to_link_tbl_offset(struct scatterlist *sg, int sg_count,
unsigned int offset, int datalen, int elen,
struct talitos_ptr *link_tbl_ptr, int align)
{
int n_sg = elen ? sg_count + 1 : sg_count;
int count = 0;
int cryptlen = datalen + elen;
int padding = ALIGN(cryptlen, align) - cryptlen;
while (cryptlen && sg && n_sg--) {
unsigned int len = sg_dma_len(sg);
if (offset >= len) {
offset -= len;
goto next;
}
len -= offset;
if (len > cryptlen)
len = cryptlen;
if (datalen > 0 && len > datalen) {
to_talitos_ptr(link_tbl_ptr + count,
sg_dma_address(sg) + offset, datalen, 0);
to_talitos_ptr_ext_set(link_tbl_ptr + count, 0, 0);
count++;
len -= datalen;
offset += datalen;
}
to_talitos_ptr(link_tbl_ptr + count,
sg_dma_address(sg) + offset, sg_next(sg) ? len : len + padding, 0);
to_talitos_ptr_ext_set(link_tbl_ptr + count, 0, 0);
count++;
cryptlen -= len;
datalen -= len;
offset = 0;
next:
sg = sg_next(sg);
}
/* tag end of link table */
if (count > 0)
to_talitos_ptr_ext_set(link_tbl_ptr + count - 1,
DESC_PTR_LNKTBL_RET, 0);
return count;
}
static int talitos_sg_map_ext(struct device *dev, struct scatterlist *src,
unsigned int len, struct talitos_edesc *edesc,
struct talitos_ptr *ptr, int sg_count,
unsigned int offset, int tbl_off, int elen,
bool force, int align)
{
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
int aligned_len = ALIGN(len, align);
if (!src) {
to_talitos_ptr(ptr, 0, 0, is_sec1);
return 1;
}
to_talitos_ptr_ext_set(ptr, elen, is_sec1);
if (sg_count == 1 && !force) {
to_talitos_ptr(ptr, sg_dma_address(src) + offset, aligned_len, is_sec1);
return sg_count;
}
if (is_sec1) {
to_talitos_ptr(ptr, edesc->dma_link_tbl + offset, aligned_len, is_sec1);
return sg_count;
}
sg_count = sg_to_link_tbl_offset(src, sg_count, offset, len, elen,
&edesc->link_tbl[tbl_off], align);
if (sg_count == 1 && !force) {
/* Only one segment now, so no link tbl needed*/
copy_talitos_ptr(ptr, &edesc->link_tbl[tbl_off], is_sec1);
return sg_count;
}
to_talitos_ptr(ptr, edesc->dma_link_tbl +
tbl_off * sizeof(struct talitos_ptr), aligned_len, is_sec1);
to_talitos_ptr_ext_or(ptr, DESC_PTR_LNKTBL_JUMP, is_sec1);
return sg_count;
}
static int talitos_sg_map(struct device *dev, struct scatterlist *src,
unsigned int len, struct talitos_edesc *edesc,
struct talitos_ptr *ptr, int sg_count,
unsigned int offset, int tbl_off)
{
return talitos_sg_map_ext(dev, src, len, edesc, ptr, sg_count, offset,
tbl_off, 0, false, 1);
}
/*
* fill in and submit ipsec_esp descriptor
*/
static int ipsec_esp(struct talitos_edesc *edesc, struct aead_request *areq,
bool encrypt,
void (*callback)(struct device *dev,
struct talitos_desc *desc,
void *context, int error))
{
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
unsigned int authsize = crypto_aead_authsize(aead);
struct talitos_ctx *ctx = crypto_aead_ctx(aead);
struct device *dev = ctx->dev;
struct talitos_desc *desc = &edesc->desc;
unsigned int cryptlen = areq->cryptlen - (encrypt ? 0 : authsize);
unsigned int ivsize = crypto_aead_ivsize(aead);
int tbl_off = 0;
int sg_count, ret;
int elen = 0;
bool sync_needed = false;
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
bool is_ipsec_esp = desc->hdr & DESC_HDR_TYPE_IPSEC_ESP;
struct talitos_ptr *civ_ptr = &desc->ptr[is_ipsec_esp ? 2 : 3];
struct talitos_ptr *ckey_ptr = &desc->ptr[is_ipsec_esp ? 3 : 2];
dma_addr_t dma_icv = edesc->dma_link_tbl + edesc->dma_len - authsize;
/* hmac key */
to_talitos_ptr(&desc->ptr[0], ctx->dma_key, ctx->authkeylen, is_sec1);
sg_count = edesc->src_nents ?: 1;
if (is_sec1 && sg_count > 1)
sg_copy_to_buffer(areq->src, sg_count, edesc->buf,
areq->assoclen + cryptlen);
else
sg_count = dma_map_sg(dev, areq->src, sg_count,
(areq->src == areq->dst) ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
/* hmac data */
ret = talitos_sg_map(dev, areq->src, areq->assoclen, edesc,
&desc->ptr[1], sg_count, 0, tbl_off);
if (ret > 1) {
tbl_off += ret;
sync_needed = true;
}
/* cipher iv */
to_talitos_ptr(civ_ptr, edesc->iv_dma, ivsize, is_sec1);
/* cipher key */
to_talitos_ptr(ckey_ptr, ctx->dma_key + ctx->authkeylen,
ctx->enckeylen, is_sec1);
/*
* cipher in
* map and adjust cipher len to aead request cryptlen.
* extent is bytes of HMAC postpended to ciphertext,
* typically 12 for ipsec
*/
if (is_ipsec_esp && (desc->hdr & DESC_HDR_MODE1_MDEU_CICV))
elen = authsize;
ret = talitos_sg_map_ext(dev, areq->src, cryptlen, edesc, &desc->ptr[4],
sg_count, areq->assoclen, tbl_off, elen,
false, 1);
if (ret > 1) {
tbl_off += ret;
sync_needed = true;
}
/* cipher out */
if (areq->src != areq->dst) {
sg_count = edesc->dst_nents ? : 1;
if (!is_sec1 || sg_count == 1)
dma_map_sg(dev, areq->dst, sg_count, DMA_FROM_DEVICE);
}
if (is_ipsec_esp && encrypt)
elen = authsize;
else
elen = 0;
ret = talitos_sg_map_ext(dev, areq->dst, cryptlen, edesc, &desc->ptr[5],
sg_count, areq->assoclen, tbl_off, elen,
is_ipsec_esp && !encrypt, 1);
tbl_off += ret;
if (!encrypt && is_ipsec_esp) {
struct talitos_ptr *tbl_ptr = &edesc->link_tbl[tbl_off];
/* Add an entry to the link table for ICV data */
to_talitos_ptr_ext_set(tbl_ptr - 1, 0, is_sec1);
to_talitos_ptr_ext_set(tbl_ptr, DESC_PTR_LNKTBL_RET, is_sec1);
/* icv data follows link tables */
to_talitos_ptr(tbl_ptr, dma_icv, authsize, is_sec1);
to_talitos_ptr_ext_or(&desc->ptr[5], authsize, is_sec1);
sync_needed = true;
} else if (!encrypt) {
to_talitos_ptr(&desc->ptr[6], dma_icv, authsize, is_sec1);
sync_needed = true;
} else if (!is_ipsec_esp) {
talitos_sg_map(dev, areq->dst, authsize, edesc, &desc->ptr[6],
sg_count, areq->assoclen + cryptlen, tbl_off);
}
/* iv out */
if (is_ipsec_esp)
map_single_talitos_ptr(dev, &desc->ptr[6], ivsize, ctx->iv,
DMA_FROM_DEVICE);
if (sync_needed)
dma_sync_single_for_device(dev, edesc->dma_link_tbl,
edesc->dma_len,
DMA_BIDIRECTIONAL);
ret = talitos_submit(dev, ctx->ch, desc, callback, areq);
if (ret != -EINPROGRESS) {
ipsec_esp_unmap(dev, edesc, areq, encrypt);
kfree(edesc);
}
return ret;
}
/*
* allocate and map the extended descriptor
*/
static struct talitos_edesc *talitos_edesc_alloc(struct device *dev,
struct scatterlist *src,
struct scatterlist *dst,
u8 *iv,
unsigned int assoclen,
unsigned int cryptlen,
unsigned int authsize,
unsigned int ivsize,
int icv_stashing,
u32 cryptoflags,
bool encrypt)
{
struct talitos_edesc *edesc;
int src_nents, dst_nents, alloc_len, dma_len, src_len, dst_len;
dma_addr_t iv_dma = 0;
gfp_t flags = cryptoflags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
int max_len = is_sec1 ? TALITOS1_MAX_DATA_LEN : TALITOS2_MAX_DATA_LEN;
if (cryptlen + authsize > max_len) {
dev_err(dev, "length exceeds h/w max limit\n");
return ERR_PTR(-EINVAL);
}
if (!dst || dst == src) {
src_len = assoclen + cryptlen + authsize;
src_nents = sg_nents_for_len(src, src_len);
if (src_nents < 0) {
dev_err(dev, "Invalid number of src SG.\n");
return ERR_PTR(-EINVAL);
}
src_nents = (src_nents == 1) ? 0 : src_nents;
dst_nents = dst ? src_nents : 0;
dst_len = 0;
} else { /* dst && dst != src*/
src_len = assoclen + cryptlen + (encrypt ? 0 : authsize);
src_nents = sg_nents_for_len(src, src_len);
if (src_nents < 0) {
dev_err(dev, "Invalid number of src SG.\n");
return ERR_PTR(-EINVAL);
}
src_nents = (src_nents == 1) ? 0 : src_nents;
dst_len = assoclen + cryptlen + (encrypt ? authsize : 0);
dst_nents = sg_nents_for_len(dst, dst_len);
if (dst_nents < 0) {
dev_err(dev, "Invalid number of dst SG.\n");
return ERR_PTR(-EINVAL);
}
dst_nents = (dst_nents == 1) ? 0 : dst_nents;
}
/*
* allocate space for base edesc plus the link tables,
* allowing for two separate entries for AD and generated ICV (+ 2),
* and space for two sets of ICVs (stashed and generated)
*/
alloc_len = sizeof(struct talitos_edesc);
if (src_nents || dst_nents || !encrypt) {
if (is_sec1)
dma_len = (src_nents ? src_len : 0) +
(dst_nents ? dst_len : 0) + authsize;
else
dma_len = (src_nents + dst_nents + 2) *
sizeof(struct talitos_ptr) + authsize;
alloc_len += dma_len;
} else {
dma_len = 0;
}
alloc_len += icv_stashing ? authsize : 0;
/* if its a ahash, add space for a second desc next to the first one */
if (is_sec1 && !dst)
alloc_len += sizeof(struct talitos_desc);
alloc_len += ivsize;
edesc = kmalloc(ALIGN(alloc_len, dma_get_cache_alignment()), flags);
if (!edesc)
return ERR_PTR(-ENOMEM);
if (ivsize) {
iv = memcpy(((u8 *)edesc) + alloc_len - ivsize, iv, ivsize);
iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE);
}
memset(&edesc->desc, 0, sizeof(edesc->desc));
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->dma_len = dma_len;
if (dma_len)
edesc->dma_link_tbl = dma_map_single(dev, &edesc->link_tbl[0],
edesc->dma_len,
DMA_BIDIRECTIONAL);
return edesc;
}
static struct talitos_edesc *aead_edesc_alloc(struct aead_request *areq, u8 *iv,
int icv_stashing, bool encrypt)
{
struct crypto_aead *authenc = crypto_aead_reqtfm(areq);
unsigned int authsize = crypto_aead_authsize(authenc);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
unsigned int ivsize = crypto_aead_ivsize(authenc);
unsigned int cryptlen = areq->cryptlen - (encrypt ? 0 : authsize);
return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst,
iv, areq->assoclen, cryptlen,
authsize, ivsize, icv_stashing,
areq->base.flags, encrypt);
}
static int aead_encrypt(struct aead_request *req)
{
struct crypto_aead *authenc = crypto_aead_reqtfm(req);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct talitos_edesc *edesc;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, req->iv, 0, true);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* set encrypt */
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
return ipsec_esp(edesc, req, true, ipsec_esp_encrypt_done);
}
static int aead_decrypt(struct aead_request *req)
{
struct crypto_aead *authenc = crypto_aead_reqtfm(req);
unsigned int authsize = crypto_aead_authsize(authenc);
struct talitos_ctx *ctx = crypto_aead_ctx(authenc);
struct talitos_private *priv = dev_get_drvdata(ctx->dev);
struct talitos_edesc *edesc;
void *icvdata;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, req->iv, 1, false);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
if ((edesc->desc.hdr & DESC_HDR_TYPE_IPSEC_ESP) &&
(priv->features & TALITOS_FTR_HW_AUTH_CHECK) &&
((!edesc->src_nents && !edesc->dst_nents) ||
priv->features & TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT)) {
/* decrypt and check the ICV */
edesc->desc.hdr = ctx->desc_hdr_template |
DESC_HDR_DIR_INBOUND |
DESC_HDR_MODE1_MDEU_CICV;
/* reset integrity check result bits */
return ipsec_esp(edesc, req, false,
ipsec_esp_decrypt_hwauth_done);
}
/* Have to check the ICV with software */
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND;
/* stash incoming ICV for later cmp with ICV generated by the h/w */
icvdata = edesc->buf + edesc->dma_len;
sg_pcopy_to_buffer(req->src, edesc->src_nents ? : 1, icvdata, authsize,
req->assoclen + req->cryptlen - authsize);
return ipsec_esp(edesc, req, false, ipsec_esp_decrypt_swauth_done);
}
static int skcipher_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct talitos_ctx *ctx = crypto_skcipher_ctx(cipher);
struct device *dev = ctx->dev;
if (ctx->keylen)
dma_unmap_single(dev, ctx->dma_key, ctx->keylen, DMA_TO_DEVICE);
memcpy(&ctx->key, key, keylen);
ctx->keylen = keylen;
ctx->dma_key = dma_map_single(dev, ctx->key, keylen, DMA_TO_DEVICE);
return 0;
}
static int skcipher_des_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
return verify_skcipher_des_key(cipher, key) ?:
skcipher_setkey(cipher, key, keylen);
}
static int skcipher_des3_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
return verify_skcipher_des3_key(cipher, key) ?:
skcipher_setkey(cipher, key, keylen);
}
static int skcipher_aes_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
if (keylen == AES_KEYSIZE_128 || keylen == AES_KEYSIZE_192 ||
keylen == AES_KEYSIZE_256)
return skcipher_setkey(cipher, key, keylen);
return -EINVAL;
}
static void common_nonsnoop_unmap(struct device *dev,
struct talitos_edesc *edesc,
struct skcipher_request *areq)
{
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[5], DMA_FROM_DEVICE);
talitos_sg_unmap(dev, edesc, areq->src, areq->dst, areq->cryptlen, 0);
unmap_single_talitos_ptr(dev, &edesc->desc.ptr[1], DMA_TO_DEVICE);
if (edesc->dma_len)
dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len,
DMA_BIDIRECTIONAL);
}
static void skcipher_done(struct device *dev,
struct talitos_desc *desc, void *context,
int err)
{
struct skcipher_request *areq = context;
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_skcipher_ctx(cipher);
unsigned int ivsize = crypto_skcipher_ivsize(cipher);
struct talitos_edesc *edesc;
edesc = container_of(desc, struct talitos_edesc, desc);
common_nonsnoop_unmap(dev, edesc, areq);
memcpy(areq->iv, ctx->iv, ivsize);
kfree(edesc);
skcipher_request_complete(areq, err);
}
static int common_nonsnoop(struct talitos_edesc *edesc,
struct skcipher_request *areq,
void (*callback) (struct device *dev,
struct talitos_desc *desc,
void *context, int error))
{
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_skcipher_ctx(cipher);
struct device *dev = ctx->dev;
struct talitos_desc *desc = &edesc->desc;
unsigned int cryptlen = areq->cryptlen;
unsigned int ivsize = crypto_skcipher_ivsize(cipher);
int sg_count, ret;
bool sync_needed = false;
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
bool is_ctr = (desc->hdr & DESC_HDR_SEL0_MASK) == DESC_HDR_SEL0_AESU &&
(desc->hdr & DESC_HDR_MODE0_AESU_MASK) == DESC_HDR_MODE0_AESU_CTR;
/* first DWORD empty */
/* cipher iv */
to_talitos_ptr(&desc->ptr[1], edesc->iv_dma, ivsize, is_sec1);
/* cipher key */
to_talitos_ptr(&desc->ptr[2], ctx->dma_key, ctx->keylen, is_sec1);
sg_count = edesc->src_nents ?: 1;
if (is_sec1 && sg_count > 1)
sg_copy_to_buffer(areq->src, sg_count, edesc->buf,
cryptlen);
else
sg_count = dma_map_sg(dev, areq->src, sg_count,
(areq->src == areq->dst) ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
/*
* cipher in
*/
sg_count = talitos_sg_map_ext(dev, areq->src, cryptlen, edesc, &desc->ptr[3],
sg_count, 0, 0, 0, false, is_ctr ? 16 : 1);
if (sg_count > 1)
sync_needed = true;
/* cipher out */
if (areq->src != areq->dst) {
sg_count = edesc->dst_nents ? : 1;
if (!is_sec1 || sg_count == 1)
dma_map_sg(dev, areq->dst, sg_count, DMA_FROM_DEVICE);
}
ret = talitos_sg_map(dev, areq->dst, cryptlen, edesc, &desc->ptr[4],
sg_count, 0, (edesc->src_nents + 1));
if (ret > 1)
sync_needed = true;
/* iv out */
map_single_talitos_ptr(dev, &desc->ptr[5], ivsize, ctx->iv,
DMA_FROM_DEVICE);
/* last DWORD empty */
if (sync_needed)
dma_sync_single_for_device(dev, edesc->dma_link_tbl,
edesc->dma_len, DMA_BIDIRECTIONAL);
ret = talitos_submit(dev, ctx->ch, desc, callback, areq);
if (ret != -EINPROGRESS) {
common_nonsnoop_unmap(dev, edesc, areq);
kfree(edesc);
}
return ret;
}
static struct talitos_edesc *skcipher_edesc_alloc(struct skcipher_request *
areq, bool encrypt)
{
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_skcipher_ctx(cipher);
unsigned int ivsize = crypto_skcipher_ivsize(cipher);
return talitos_edesc_alloc(ctx->dev, areq->src, areq->dst,
areq->iv, 0, areq->cryptlen, 0, ivsize, 0,
areq->base.flags, encrypt);
}
static int skcipher_encrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_skcipher_ctx(cipher);
struct talitos_edesc *edesc;
unsigned int blocksize =
crypto_tfm_alg_blocksize(crypto_skcipher_tfm(cipher));
if (!areq->cryptlen)
return 0;
if (areq->cryptlen % blocksize)
return -EINVAL;
/* allocate extended descriptor */
edesc = skcipher_edesc_alloc(areq, true);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* set encrypt */
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_MODE0_ENCRYPT;
return common_nonsnoop(edesc, areq, skcipher_done);
}
static int skcipher_decrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
struct talitos_ctx *ctx = crypto_skcipher_ctx(cipher);
struct talitos_edesc *edesc;
unsigned int blocksize =
crypto_tfm_alg_blocksize(crypto_skcipher_tfm(cipher));
if (!areq->cryptlen)
return 0;
if (areq->cryptlen % blocksize)
return -EINVAL;
/* allocate extended descriptor */
edesc = skcipher_edesc_alloc(areq, false);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
edesc->desc.hdr = ctx->desc_hdr_template | DESC_HDR_DIR_INBOUND;
return common_nonsnoop(edesc, areq, skcipher_done);
}
static void common_nonsnoop_hash_unmap(struct device *dev,
struct talitos_edesc *edesc,
struct ahash_request *areq)
{
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
struct talitos_desc *desc = &edesc->desc;
struct talitos_desc *desc2 = (struct talitos_desc *)
(edesc->buf + edesc->dma_len);
unmap_single_talitos_ptr(dev, &desc->ptr[5], DMA_FROM_DEVICE);
if (desc->next_desc &&
desc->ptr[5].ptr != desc2->ptr[5].ptr)
unmap_single_talitos_ptr(dev, &desc2->ptr[5], DMA_FROM_DEVICE);
if (req_ctx->last)
memcpy(areq->result, req_ctx->hw_context,
crypto_ahash_digestsize(tfm));
if (req_ctx->psrc)
talitos_sg_unmap(dev, edesc, req_ctx->psrc, NULL, 0, 0);
/* When using hashctx-in, must unmap it. */
if (from_talitos_ptr_len(&desc->ptr[1], is_sec1))
unmap_single_talitos_ptr(dev, &desc->ptr[1],
DMA_TO_DEVICE);
else if (desc->next_desc)
unmap_single_talitos_ptr(dev, &desc2->ptr[1],
DMA_TO_DEVICE);
if (is_sec1 && req_ctx->nbuf)
unmap_single_talitos_ptr(dev, &desc->ptr[3],
DMA_TO_DEVICE);
if (edesc->dma_len)
dma_unmap_single(dev, edesc->dma_link_tbl, edesc->dma_len,
DMA_BIDIRECTIONAL);
if (desc->next_desc)
dma_unmap_single(dev, be32_to_cpu(desc->next_desc),
TALITOS_DESC_SIZE, DMA_BIDIRECTIONAL);
}
static void ahash_done(struct device *dev,
struct talitos_desc *desc, void *context,
int err)
{
struct ahash_request *areq = context;
struct talitos_edesc *edesc =
container_of(desc, struct talitos_edesc, desc);
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
if (!req_ctx->last && req_ctx->to_hash_later) {
/* Position any partial block for next update/final/finup */
req_ctx->buf_idx = (req_ctx->buf_idx + 1) & 1;
req_ctx->nbuf = req_ctx->to_hash_later;
}
common_nonsnoop_hash_unmap(dev, edesc, areq);
kfree(edesc);
ahash_request_complete(areq, err);
}
/*
* SEC1 doesn't like hashing of 0 sized message, so we do the padding
* ourself and submit a padded block
*/
static void talitos_handle_buggy_hash(struct talitos_ctx *ctx,
struct talitos_edesc *edesc,
struct talitos_ptr *ptr)
{
static u8 padded_hash[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
pr_err_once("Bug in SEC1, padding ourself\n");
edesc->desc.hdr &= ~DESC_HDR_MODE0_MDEU_PAD;
map_single_talitos_ptr(ctx->dev, ptr, sizeof(padded_hash),
(char *)padded_hash, DMA_TO_DEVICE);
}
static int common_nonsnoop_hash(struct talitos_edesc *edesc,
struct ahash_request *areq, unsigned int length,
void (*callback) (struct device *dev,
struct talitos_desc *desc,
void *context, int error))
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ahash_ctx(tfm);
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct device *dev = ctx->dev;
struct talitos_desc *desc = &edesc->desc;
int ret;
bool sync_needed = false;
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
int sg_count;
/* first DWORD empty */
/* hash context in */
if (!req_ctx->first || req_ctx->swinit) {
map_single_talitos_ptr_nosync(dev, &desc->ptr[1],
req_ctx->hw_context_size,
req_ctx->hw_context,
DMA_TO_DEVICE);
req_ctx->swinit = 0;
}
/* Indicate next op is not the first. */
req_ctx->first = 0;
/* HMAC key */
if (ctx->keylen)
to_talitos_ptr(&desc->ptr[2], ctx->dma_key, ctx->keylen,
is_sec1);
if (is_sec1 && req_ctx->nbuf)
length -= req_ctx->nbuf;
sg_count = edesc->src_nents ?: 1;
if (is_sec1 && sg_count > 1)
sg_copy_to_buffer(req_ctx->psrc, sg_count, edesc->buf, length);
else if (length)
sg_count = dma_map_sg(dev, req_ctx->psrc, sg_count,
DMA_TO_DEVICE);
/*
* data in
*/
if (is_sec1 && req_ctx->nbuf) {
map_single_talitos_ptr(dev, &desc->ptr[3], req_ctx->nbuf,
req_ctx->buf[req_ctx->buf_idx],
DMA_TO_DEVICE);
} else {
sg_count = talitos_sg_map(dev, req_ctx->psrc, length, edesc,
&desc->ptr[3], sg_count, 0, 0);
if (sg_count > 1)
sync_needed = true;
}
/* fifth DWORD empty */
/* hash/HMAC out -or- hash context out */
if (req_ctx->last)
map_single_talitos_ptr(dev, &desc->ptr[5],
crypto_ahash_digestsize(tfm),
req_ctx->hw_context, DMA_FROM_DEVICE);
else
map_single_talitos_ptr_nosync(dev, &desc->ptr[5],
req_ctx->hw_context_size,
req_ctx->hw_context,
DMA_FROM_DEVICE);
/* last DWORD empty */
if (is_sec1 && from_talitos_ptr_len(&desc->ptr[3], true) == 0)
talitos_handle_buggy_hash(ctx, edesc, &desc->ptr[3]);
if (is_sec1 && req_ctx->nbuf && length) {
struct talitos_desc *desc2 = (struct talitos_desc *)
(edesc->buf + edesc->dma_len);
dma_addr_t next_desc;
memset(desc2, 0, sizeof(*desc2));
desc2->hdr = desc->hdr;
desc2->hdr &= ~DESC_HDR_MODE0_MDEU_INIT;
desc2->hdr1 = desc2->hdr;
desc->hdr &= ~DESC_HDR_MODE0_MDEU_PAD;
desc->hdr |= DESC_HDR_MODE0_MDEU_CONT;
desc->hdr &= ~DESC_HDR_DONE_NOTIFY;
if (desc->ptr[1].ptr)
copy_talitos_ptr(&desc2->ptr[1], &desc->ptr[1],
is_sec1);
else
map_single_talitos_ptr_nosync(dev, &desc2->ptr[1],
req_ctx->hw_context_size,
req_ctx->hw_context,
DMA_TO_DEVICE);
copy_talitos_ptr(&desc2->ptr[2], &desc->ptr[2], is_sec1);
sg_count = talitos_sg_map(dev, req_ctx->psrc, length, edesc,
&desc2->ptr[3], sg_count, 0, 0);
if (sg_count > 1)
sync_needed = true;
copy_talitos_ptr(&desc2->ptr[5], &desc->ptr[5], is_sec1);
if (req_ctx->last)
map_single_talitos_ptr_nosync(dev, &desc->ptr[5],
req_ctx->hw_context_size,
req_ctx->hw_context,
DMA_FROM_DEVICE);
next_desc = dma_map_single(dev, &desc2->hdr1, TALITOS_DESC_SIZE,
DMA_BIDIRECTIONAL);
desc->next_desc = cpu_to_be32(next_desc);
}
if (sync_needed)
dma_sync_single_for_device(dev, edesc->dma_link_tbl,
edesc->dma_len, DMA_BIDIRECTIONAL);
ret = talitos_submit(dev, ctx->ch, desc, callback, areq);
if (ret != -EINPROGRESS) {
common_nonsnoop_hash_unmap(dev, edesc, areq);
kfree(edesc);
}
return ret;
}
static struct talitos_edesc *ahash_edesc_alloc(struct ahash_request *areq,
unsigned int nbytes)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ahash_ctx(tfm);
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct talitos_private *priv = dev_get_drvdata(ctx->dev);
bool is_sec1 = has_ftr_sec1(priv);
if (is_sec1)
nbytes -= req_ctx->nbuf;
return talitos_edesc_alloc(ctx->dev, req_ctx->psrc, NULL, NULL, 0,
nbytes, 0, 0, 0, areq->base.flags, false);
}
static int ahash_init(struct ahash_request *areq)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = ctx->dev;
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
unsigned int size;
dma_addr_t dma;
/* Initialize the context */
req_ctx->buf_idx = 0;
req_ctx->nbuf = 0;
req_ctx->first = 1; /* first indicates h/w must init its context */
req_ctx->swinit = 0; /* assume h/w init of context */
size = (crypto_ahash_digestsize(tfm) <= SHA256_DIGEST_SIZE)
? TALITOS_MDEU_CONTEXT_SIZE_MD5_SHA1_SHA256
: TALITOS_MDEU_CONTEXT_SIZE_SHA384_SHA512;
req_ctx->hw_context_size = size;
dma = dma_map_single(dev, req_ctx->hw_context, req_ctx->hw_context_size,
DMA_TO_DEVICE);
dma_unmap_single(dev, dma, req_ctx->hw_context_size, DMA_TO_DEVICE);
return 0;
}
/*
* on h/w without explicit sha224 support, we initialize h/w context
* manually with sha224 constants, and tell it to run sha256.
*/
static int ahash_init_sha224_swinit(struct ahash_request *areq)
{
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
req_ctx->hw_context[0] = SHA224_H0;
req_ctx->hw_context[1] = SHA224_H1;
req_ctx->hw_context[2] = SHA224_H2;
req_ctx->hw_context[3] = SHA224_H3;
req_ctx->hw_context[4] = SHA224_H4;
req_ctx->hw_context[5] = SHA224_H5;
req_ctx->hw_context[6] = SHA224_H6;
req_ctx->hw_context[7] = SHA224_H7;
/* init 64-bit count */
req_ctx->hw_context[8] = 0;
req_ctx->hw_context[9] = 0;
ahash_init(areq);
req_ctx->swinit = 1;/* prevent h/w initting context with sha256 values*/
return 0;
}
static int ahash_process_req(struct ahash_request *areq, unsigned int nbytes)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ahash_ctx(tfm);
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct talitos_edesc *edesc;
unsigned int blocksize =
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
unsigned int nbytes_to_hash;
unsigned int to_hash_later;
unsigned int nsg;
int nents;
struct device *dev = ctx->dev;
struct talitos_private *priv = dev_get_drvdata(dev);
bool is_sec1 = has_ftr_sec1(priv);
u8 *ctx_buf = req_ctx->buf[req_ctx->buf_idx];
if (!req_ctx->last && (nbytes + req_ctx->nbuf <= blocksize)) {
/* Buffer up to one whole block */
nents = sg_nents_for_len(areq->src, nbytes);
if (nents < 0) {
dev_err(dev, "Invalid number of src SG.\n");
return nents;
}
sg_copy_to_buffer(areq->src, nents,
ctx_buf + req_ctx->nbuf, nbytes);
req_ctx->nbuf += nbytes;
return 0;
}
/* At least (blocksize + 1) bytes are available to hash */
nbytes_to_hash = nbytes + req_ctx->nbuf;
to_hash_later = nbytes_to_hash & (blocksize - 1);
if (req_ctx->last)
to_hash_later = 0;
else if (to_hash_later)
/* There is a partial block. Hash the full block(s) now */
nbytes_to_hash -= to_hash_later;
else {
/* Keep one block buffered */
nbytes_to_hash -= blocksize;
to_hash_later = blocksize;
}
/* Chain in any previously buffered data */
if (!is_sec1 && req_ctx->nbuf) {
nsg = (req_ctx->nbuf < nbytes_to_hash) ? 2 : 1;
sg_init_table(req_ctx->bufsl, nsg);
sg_set_buf(req_ctx->bufsl, ctx_buf, req_ctx->nbuf);
if (nsg > 1)
sg_chain(req_ctx->bufsl, 2, areq->src);
req_ctx->psrc = req_ctx->bufsl;
} else if (is_sec1 && req_ctx->nbuf && req_ctx->nbuf < blocksize) {
int offset;
if (nbytes_to_hash > blocksize)
offset = blocksize - req_ctx->nbuf;
else
offset = nbytes_to_hash - req_ctx->nbuf;
nents = sg_nents_for_len(areq->src, offset);
if (nents < 0) {
dev_err(dev, "Invalid number of src SG.\n");
return nents;
}
sg_copy_to_buffer(areq->src, nents,
ctx_buf + req_ctx->nbuf, offset);
req_ctx->nbuf += offset;
req_ctx->psrc = scatterwalk_ffwd(req_ctx->bufsl, areq->src,
offset);
} else
req_ctx->psrc = areq->src;
if (to_hash_later) {
nents = sg_nents_for_len(areq->src, nbytes);
if (nents < 0) {
dev_err(dev, "Invalid number of src SG.\n");
return nents;
}
sg_pcopy_to_buffer(areq->src, nents,
req_ctx->buf[(req_ctx->buf_idx + 1) & 1],
to_hash_later,
nbytes - to_hash_later);
}
req_ctx->to_hash_later = to_hash_later;
/* Allocate extended descriptor */
edesc = ahash_edesc_alloc(areq, nbytes_to_hash);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
edesc->desc.hdr = ctx->desc_hdr_template;
/* On last one, request SEC to pad; otherwise continue */
if (req_ctx->last)
edesc->desc.hdr |= DESC_HDR_MODE0_MDEU_PAD;
else
edesc->desc.hdr |= DESC_HDR_MODE0_MDEU_CONT;
/* request SEC to INIT hash. */
if (req_ctx->first && !req_ctx->swinit)
edesc->desc.hdr |= DESC_HDR_MODE0_MDEU_INIT;
/* When the tfm context has a keylen, it's an HMAC.
* A first or last (ie. not middle) descriptor must request HMAC.
*/
if (ctx->keylen && (req_ctx->first || req_ctx->last))
edesc->desc.hdr |= DESC_HDR_MODE0_MDEU_HMAC;
return common_nonsnoop_hash(edesc, areq, nbytes_to_hash, ahash_done);
}
static int ahash_update(struct ahash_request *areq)
{
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
req_ctx->last = 0;
return ahash_process_req(areq, areq->nbytes);
}
static int ahash_final(struct ahash_request *areq)
{
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
req_ctx->last = 1;
return ahash_process_req(areq, 0);
}
static int ahash_finup(struct ahash_request *areq)
{
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
req_ctx->last = 1;
return ahash_process_req(areq, areq->nbytes);
}
static int ahash_digest(struct ahash_request *areq)
{
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
ahash->init(areq);
req_ctx->last = 1;
return ahash_process_req(areq, areq->nbytes);
}
static int ahash_export(struct ahash_request *areq, void *out)
{
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct talitos_export_state *export = out;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = ctx->dev;
dma_addr_t dma;
dma = dma_map_single(dev, req_ctx->hw_context, req_ctx->hw_context_size,
DMA_FROM_DEVICE);
dma_unmap_single(dev, dma, req_ctx->hw_context_size, DMA_FROM_DEVICE);
memcpy(export->hw_context, req_ctx->hw_context,
req_ctx->hw_context_size);
memcpy(export->buf, req_ctx->buf[req_ctx->buf_idx], req_ctx->nbuf);
export->swinit = req_ctx->swinit;
export->first = req_ctx->first;
export->last = req_ctx->last;
export->to_hash_later = req_ctx->to_hash_later;
export->nbuf = req_ctx->nbuf;
return 0;
}
static int ahash_import(struct ahash_request *areq, const void *in)
{
struct talitos_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct talitos_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = ctx->dev;
const struct talitos_export_state *export = in;
unsigned int size;
dma_addr_t dma;
memset(req_ctx, 0, sizeof(*req_ctx));
size = (crypto_ahash_digestsize(tfm) <= SHA256_DIGEST_SIZE)
? TALITOS_MDEU_CONTEXT_SIZE_MD5_SHA1_SHA256
: TALITOS_MDEU_CONTEXT_SIZE_SHA384_SHA512;
req_ctx->hw_context_size = size;
memcpy(req_ctx->hw_context, export->hw_context, size);
memcpy(req_ctx->buf[0], export->buf, export->nbuf);
req_ctx->swinit = export->swinit;
req_ctx->first = export->first;
req_ctx->last = export->last;
req_ctx->to_hash_later = export->to_hash_later;
req_ctx->nbuf = export->nbuf;
dma = dma_map_single(dev, req_ctx->hw_context, req_ctx->hw_context_size,
DMA_TO_DEVICE);
dma_unmap_single(dev, dma, req_ctx->hw_context_size, DMA_TO_DEVICE);
return 0;
}
static int keyhash(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen,
u8 *hash)
{
struct talitos_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct scatterlist sg[1];
struct ahash_request *req;
struct crypto_wait wait;
int ret;
crypto_init_wait(&wait);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req)
return -ENOMEM;
/* Keep tfm keylen == 0 during hash of the long key */
ctx->keylen = 0;
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
sg_init_one(&sg[0], key, keylen);
ahash_request_set_crypt(req, sg, hash, keylen);
ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
ahash_request_free(req);
return ret;
}
static int ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct talitos_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct device *dev = ctx->dev;
unsigned int blocksize =
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
unsigned int digestsize = crypto_ahash_digestsize(tfm);
unsigned int keysize = keylen;
u8 hash[SHA512_DIGEST_SIZE];
int ret;
if (keylen <= blocksize)
memcpy(ctx->key, key, keysize);
else {
/* Must get the hash of the long key */
ret = keyhash(tfm, key, keylen, hash);
if (ret)
return -EINVAL;
keysize = digestsize;
memcpy(ctx->key, hash, digestsize);
}
if (ctx->keylen)
dma_unmap_single(dev, ctx->dma_key, ctx->keylen, DMA_TO_DEVICE);
ctx->keylen = keysize;
ctx->dma_key = dma_map_single(dev, ctx->key, keysize, DMA_TO_DEVICE);
return 0;
}
struct talitos_alg_template {
u32 type;
u32 priority;
union {
struct skcipher_alg skcipher;
struct ahash_alg hash;
struct aead_alg aead;
} alg;
__be32 desc_hdr_template;
};
static struct talitos_alg_template driver_algs[] = {
/* AEAD algorithms. These use a single-pass ipsec_esp descriptor */
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA1_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.priority = TALITOS_CRA_PRIORITY_AEAD_HSNA,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-aes-talitos-hsna",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA1_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA1_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.priority = TALITOS_CRA_PRIORITY_AEAD_HSNA,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-3des-talitos-hsna",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA1_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA224_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.priority = TALITOS_CRA_PRIORITY_AEAD_HSNA,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-aes-talitos-hsna",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA224_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA224_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.priority = TALITOS_CRA_PRIORITY_AEAD_HSNA,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-3des-talitos-hsna",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA224_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA256_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.priority = TALITOS_CRA_PRIORITY_AEAD_HSNA,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-aes-talitos-hsna",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA256_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA256_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.priority = TALITOS_CRA_PRIORITY_AEAD_HSNA,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-3des-talitos-hsna",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_SHA256_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUB |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEUB_SHA384_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUB |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEUB_SHA384_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUB |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEUB_SHA512_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUB |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEUB_SHA512_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-aes-talitos",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_MD5_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.priority = TALITOS_CRA_PRIORITY_AEAD_HSNA,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-aes-talitos-hsna",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.desc_hdr_template = DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_MD5_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-3des-talitos",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_IPSEC_ESP |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_MD5_HMAC,
},
{ .type = CRYPTO_ALG_TYPE_AEAD,
.priority = TALITOS_CRA_PRIORITY_AEAD_HSNA,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-3des-talitos-hsna",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
},
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
.setkey = aead_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_HMAC_SNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES |
DESC_HDR_SEL1_MDEUA |
DESC_HDR_MODE1_MDEU_INIT |
DESC_HDR_MODE1_MDEU_PAD |
DESC_HDR_MODE1_MDEU_MD5_HMAC,
},
/* SKCIPHER algorithms. */
{ .type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-talitos",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = skcipher_aes_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_AESU,
},
{ .type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-talitos",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CBC,
},
{ .type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "ctr-aes-talitos",
.base.cra_blocksize = 1,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_AESU_CTR_NONSNOOP |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CTR,
},
{ .type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "ctr-aes-talitos",
.base.cra_blocksize = 1,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_AESU |
DESC_HDR_MODE0_AESU_CTR,
},
{ .type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(des)",
.base.cra_driver_name = "ecb-des-talitos",
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = skcipher_des_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU,
},
{ .type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(des)",
.base.cra_driver_name = "cbc-des-talitos",
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = skcipher_des_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC,
},
{ .type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "ecb-3des-talitos",
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = skcipher_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_3DES,
},
{ .type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "cbc-3des-talitos",
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = skcipher_des3_setkey,
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_DEU |
DESC_HDR_MODE0_DEU_CBC |
DESC_HDR_MODE0_DEU_3DES,
},
/* AHASH algorithms. */
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = MD5_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "md5",
.cra_driver_name = "md5-talitos",
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_MD5,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-talitos",
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_SHA1,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-talitos",
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_SHA224,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-talitos",
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_SHA256,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "sha384",
.cra_driver_name = "sha384-talitos",
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUB |
DESC_HDR_MODE0_MDEUB_SHA384,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-talitos",
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUB |
DESC_HDR_MODE0_MDEUB_SHA512,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = MD5_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "hmac(md5)",
.cra_driver_name = "hmac-md5-talitos",
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_MD5,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "hmac-sha1-talitos",
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_SHA1,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "hmac-sha224-talitos",
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_SHA224,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "hmac-sha256-talitos",
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_SHA256,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "hmac-sha384-talitos",
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUB |
DESC_HDR_MODE0_MDEUB_SHA384,
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.alg.hash = {
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.statesize = sizeof(struct talitos_export_state),
.halg.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "hmac-sha512-talitos",
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
}
},
.desc_hdr_template = DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUB |
DESC_HDR_MODE0_MDEUB_SHA512,
}
};
struct talitos_crypto_alg {
struct list_head entry;
struct device *dev;
struct talitos_alg_template algt;
};
static int talitos_init_common(struct talitos_ctx *ctx,
struct talitos_crypto_alg *talitos_alg)
{
struct talitos_private *priv;
/* update context with ptr to dev */
ctx->dev = talitos_alg->dev;
/* assign SEC channel to tfm in round-robin fashion */
priv = dev_get_drvdata(ctx->dev);
ctx->ch = atomic_inc_return(&priv->last_chan) &
(priv->num_channels - 1);
/* copy descriptor header template value */
ctx->desc_hdr_template = talitos_alg->algt.desc_hdr_template;
/* select done notification */
ctx->desc_hdr_template |= DESC_HDR_DONE_NOTIFY;
return 0;
}
static int talitos_cra_init_aead(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct talitos_crypto_alg *talitos_alg;
struct talitos_ctx *ctx = crypto_aead_ctx(tfm);
talitos_alg = container_of(alg, struct talitos_crypto_alg,
algt.alg.aead);
return talitos_init_common(ctx, talitos_alg);
}
static int talitos_cra_init_skcipher(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct talitos_crypto_alg *talitos_alg;
struct talitos_ctx *ctx = crypto_skcipher_ctx(tfm);
talitos_alg = container_of(alg, struct talitos_crypto_alg,
algt.alg.skcipher);
return talitos_init_common(ctx, talitos_alg);
}
static int talitos_cra_init_ahash(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct talitos_crypto_alg *talitos_alg;
struct talitos_ctx *ctx = crypto_tfm_ctx(tfm);
talitos_alg = container_of(__crypto_ahash_alg(alg),
struct talitos_crypto_alg,
algt.alg.hash);
ctx->keylen = 0;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct talitos_ahash_req_ctx));
return talitos_init_common(ctx, talitos_alg);
}
static void talitos_cra_exit(struct crypto_tfm *tfm)
{
struct talitos_ctx *ctx = crypto_tfm_ctx(tfm);
struct device *dev = ctx->dev;
if (ctx->keylen)
dma_unmap_single(dev, ctx->dma_key, ctx->keylen, DMA_TO_DEVICE);
}
/*
* given the alg's descriptor header template, determine whether descriptor
* type and primary/secondary execution units required match the hw
* capabilities description provided in the device tree node.
*/
static int hw_supports(struct device *dev, __be32 desc_hdr_template)
{
struct talitos_private *priv = dev_get_drvdata(dev);
int ret;
ret = (1 << DESC_TYPE(desc_hdr_template) & priv->desc_types) &&
(1 << PRIMARY_EU(desc_hdr_template) & priv->exec_units);
if (SECONDARY_EU(desc_hdr_template))
ret = ret && (1 << SECONDARY_EU(desc_hdr_template)
& priv->exec_units);
return ret;
}
static int talitos_remove(struct platform_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct talitos_private *priv = dev_get_drvdata(dev);
struct talitos_crypto_alg *t_alg, *n;
int i;
list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
switch (t_alg->algt.type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
crypto_unregister_skcipher(&t_alg->algt.alg.skcipher);
break;
case CRYPTO_ALG_TYPE_AEAD:
crypto_unregister_aead(&t_alg->algt.alg.aead);
break;
case CRYPTO_ALG_TYPE_AHASH:
crypto_unregister_ahash(&t_alg->algt.alg.hash);
break;
}
list_del(&t_alg->entry);
}
if (hw_supports(dev, DESC_HDR_SEL0_RNG))
talitos_unregister_rng(dev);
for (i = 0; i < 2; i++)
if (priv->irq[i]) {
free_irq(priv->irq[i], dev);
irq_dispose_mapping(priv->irq[i]);
}
tasklet_kill(&priv->done_task[0]);
if (priv->irq[1])
tasklet_kill(&priv->done_task[1]);
return 0;
}
static struct talitos_crypto_alg *talitos_alg_alloc(struct device *dev,
struct talitos_alg_template
*template)
{
struct talitos_private *priv = dev_get_drvdata(dev);
struct talitos_crypto_alg *t_alg;
struct crypto_alg *alg;
t_alg = devm_kzalloc(dev, sizeof(struct talitos_crypto_alg),
GFP_KERNEL);
if (!t_alg)
return ERR_PTR(-ENOMEM);
t_alg->algt = *template;
switch (t_alg->algt.type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
alg = &t_alg->algt.alg.skcipher.base;
alg->cra_exit = talitos_cra_exit;
t_alg->algt.alg.skcipher.init = talitos_cra_init_skcipher;
t_alg->algt.alg.skcipher.setkey =
t_alg->algt.alg.skcipher.setkey ?: skcipher_setkey;
t_alg->algt.alg.skcipher.encrypt = skcipher_encrypt;
t_alg->algt.alg.skcipher.decrypt = skcipher_decrypt;
if (!strcmp(alg->cra_name, "ctr(aes)") && !has_ftr_sec1(priv) &&
DESC_TYPE(t_alg->algt.desc_hdr_template) !=
DESC_TYPE(DESC_HDR_TYPE_AESU_CTR_NONSNOOP)) {
devm_kfree(dev, t_alg);
return ERR_PTR(-ENOTSUPP);
}
break;
case CRYPTO_ALG_TYPE_AEAD:
alg = &t_alg->algt.alg.aead.base;
alg->cra_exit = talitos_cra_exit;
t_alg->algt.alg.aead.init = talitos_cra_init_aead;
t_alg->algt.alg.aead.setkey = t_alg->algt.alg.aead.setkey ?:
aead_setkey;
t_alg->algt.alg.aead.encrypt = aead_encrypt;
t_alg->algt.alg.aead.decrypt = aead_decrypt;
if (!(priv->features & TALITOS_FTR_SHA224_HWINIT) &&
!strncmp(alg->cra_name, "authenc(hmac(sha224)", 20)) {
devm_kfree(dev, t_alg);
return ERR_PTR(-ENOTSUPP);
}
break;
case CRYPTO_ALG_TYPE_AHASH:
alg = &t_alg->algt.alg.hash.halg.base;
alg->cra_init = talitos_cra_init_ahash;
alg->cra_exit = talitos_cra_exit;
t_alg->algt.alg.hash.init = ahash_init;
t_alg->algt.alg.hash.update = ahash_update;
t_alg->algt.alg.hash.final = ahash_final;
t_alg->algt.alg.hash.finup = ahash_finup;
t_alg->algt.alg.hash.digest = ahash_digest;
if (!strncmp(alg->cra_name, "hmac", 4))
t_alg->algt.alg.hash.setkey = ahash_setkey;
t_alg->algt.alg.hash.import = ahash_import;
t_alg->algt.alg.hash.export = ahash_export;
if (!(priv->features & TALITOS_FTR_HMAC_OK) &&
!strncmp(alg->cra_name, "hmac", 4)) {
devm_kfree(dev, t_alg);
return ERR_PTR(-ENOTSUPP);
}
if (!(priv->features & TALITOS_FTR_SHA224_HWINIT) &&
(!strcmp(alg->cra_name, "sha224") ||
!strcmp(alg->cra_name, "hmac(sha224)"))) {
t_alg->algt.alg.hash.init = ahash_init_sha224_swinit;
t_alg->algt.desc_hdr_template =
DESC_HDR_TYPE_COMMON_NONSNOOP_NO_AFEU |
DESC_HDR_SEL0_MDEUA |
DESC_HDR_MODE0_MDEU_SHA256;
}
break;
default:
dev_err(dev, "unknown algorithm type %d\n", t_alg->algt.type);
devm_kfree(dev, t_alg);
return ERR_PTR(-EINVAL);
}
alg->cra_module = THIS_MODULE;
if (t_alg->algt.priority)
alg->cra_priority = t_alg->algt.priority;
else
alg->cra_priority = TALITOS_CRA_PRIORITY;
if (has_ftr_sec1(priv))
alg->cra_alignmask = 3;
else
alg->cra_alignmask = 0;
alg->cra_ctxsize = sizeof(struct talitos_ctx);
alg->cra_flags |= CRYPTO_ALG_KERN_DRIVER_ONLY;
t_alg->dev = dev;
return t_alg;
}
static int talitos_probe_irq(struct platform_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct device_node *np = ofdev->dev.of_node;
struct talitos_private *priv = dev_get_drvdata(dev);
int err;
bool is_sec1 = has_ftr_sec1(priv);
priv->irq[0] = irq_of_parse_and_map(np, 0);
if (!priv->irq[0]) {
dev_err(dev, "failed to map irq\n");
return -EINVAL;
}
if (is_sec1) {
err = request_irq(priv->irq[0], talitos1_interrupt_4ch, 0,
dev_driver_string(dev), dev);
goto primary_out;
}
priv->irq[1] = irq_of_parse_and_map(np, 1);
/* get the primary irq line */
if (!priv->irq[1]) {
err = request_irq(priv->irq[0], talitos2_interrupt_4ch, 0,
dev_driver_string(dev), dev);
goto primary_out;
}
err = request_irq(priv->irq[0], talitos2_interrupt_ch0_2, 0,
dev_driver_string(dev), dev);
if (err)
goto primary_out;
/* get the secondary irq line */
err = request_irq(priv->irq[1], talitos2_interrupt_ch1_3, 0,
dev_driver_string(dev), dev);
if (err) {
dev_err(dev, "failed to request secondary irq\n");
irq_dispose_mapping(priv->irq[1]);
priv->irq[1] = 0;
}
return err;
primary_out:
if (err) {
dev_err(dev, "failed to request primary irq\n");
irq_dispose_mapping(priv->irq[0]);
priv->irq[0] = 0;
}
return err;
}
static int talitos_probe(struct platform_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct device_node *np = ofdev->dev.of_node;
struct talitos_private *priv;
int i, err;
int stride;
struct resource *res;
priv = devm_kzalloc(dev, sizeof(struct talitos_private), GFP_KERNEL);
if (!priv)
return -ENOMEM;
INIT_LIST_HEAD(&priv->alg_list);
dev_set_drvdata(dev, priv);
priv->ofdev = ofdev;
spin_lock_init(&priv->reg_lock);
res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
if (!res)
return -ENXIO;
priv->reg = devm_ioremap(dev, res->start, resource_size(res));
if (!priv->reg) {
dev_err(dev, "failed to of_iomap\n");
err = -ENOMEM;
goto err_out;
}
/* get SEC version capabilities from device tree */
of_property_read_u32(np, "fsl,num-channels", &priv->num_channels);
of_property_read_u32(np, "fsl,channel-fifo-len", &priv->chfifo_len);
of_property_read_u32(np, "fsl,exec-units-mask", &priv->exec_units);
of_property_read_u32(np, "fsl,descriptor-types-mask",
&priv->desc_types);
if (!is_power_of_2(priv->num_channels) || !priv->chfifo_len ||
!priv->exec_units || !priv->desc_types) {
dev_err(dev, "invalid property data in device tree node\n");
err = -EINVAL;
goto err_out;
}
if (of_device_is_compatible(np, "fsl,sec3.0"))
priv->features |= TALITOS_FTR_SRC_LINK_TBL_LEN_INCLUDES_EXTENT;
if (of_device_is_compatible(np, "fsl,sec2.1"))
priv->features |= TALITOS_FTR_HW_AUTH_CHECK |
TALITOS_FTR_SHA224_HWINIT |
TALITOS_FTR_HMAC_OK;
if (of_device_is_compatible(np, "fsl,sec1.0"))
priv->features |= TALITOS_FTR_SEC1;
if (of_device_is_compatible(np, "fsl,sec1.2")) {
priv->reg_deu = priv->reg + TALITOS12_DEU;
priv->reg_aesu = priv->reg + TALITOS12_AESU;
priv->reg_mdeu = priv->reg + TALITOS12_MDEU;
stride = TALITOS1_CH_STRIDE;
} else if (of_device_is_compatible(np, "fsl,sec1.0")) {
priv->reg_deu = priv->reg + TALITOS10_DEU;
priv->reg_aesu = priv->reg + TALITOS10_AESU;
priv->reg_mdeu = priv->reg + TALITOS10_MDEU;
priv->reg_afeu = priv->reg + TALITOS10_AFEU;
priv->reg_rngu = priv->reg + TALITOS10_RNGU;
priv->reg_pkeu = priv->reg + TALITOS10_PKEU;
stride = TALITOS1_CH_STRIDE;
} else {
priv->reg_deu = priv->reg + TALITOS2_DEU;
priv->reg_aesu = priv->reg + TALITOS2_AESU;
priv->reg_mdeu = priv->reg + TALITOS2_MDEU;
priv->reg_afeu = priv->reg + TALITOS2_AFEU;
priv->reg_rngu = priv->reg + TALITOS2_RNGU;
priv->reg_pkeu = priv->reg + TALITOS2_PKEU;
priv->reg_keu = priv->reg + TALITOS2_KEU;
priv->reg_crcu = priv->reg + TALITOS2_CRCU;
stride = TALITOS2_CH_STRIDE;
}
err = talitos_probe_irq(ofdev);
if (err)
goto err_out;
if (has_ftr_sec1(priv)) {
if (priv->num_channels == 1)
tasklet_init(&priv->done_task[0], talitos1_done_ch0,
(unsigned long)dev);
else
tasklet_init(&priv->done_task[0], talitos1_done_4ch,
(unsigned long)dev);
} else {
if (priv->irq[1]) {
tasklet_init(&priv->done_task[0], talitos2_done_ch0_2,
(unsigned long)dev);
tasklet_init(&priv->done_task[1], talitos2_done_ch1_3,
(unsigned long)dev);
} else if (priv->num_channels == 1) {
tasklet_init(&priv->done_task[0], talitos2_done_ch0,
(unsigned long)dev);
} else {
tasklet_init(&priv->done_task[0], talitos2_done_4ch,
(unsigned long)dev);
}
}
priv->chan = devm_kcalloc(dev,
priv->num_channels,
sizeof(struct talitos_channel),
GFP_KERNEL);
if (!priv->chan) {
dev_err(dev, "failed to allocate channel management space\n");
err = -ENOMEM;
goto err_out;
}
priv->fifo_len = roundup_pow_of_two(priv->chfifo_len);
for (i = 0; i < priv->num_channels; i++) {
priv->chan[i].reg = priv->reg + stride * (i + 1);
if (!priv->irq[1] || !(i & 1))
priv->chan[i].reg += TALITOS_CH_BASE_OFFSET;
spin_lock_init(&priv->chan[i].head_lock);
spin_lock_init(&priv->chan[i].tail_lock);
priv->chan[i].fifo = devm_kcalloc(dev,
priv->fifo_len,
sizeof(struct talitos_request),
GFP_KERNEL);
if (!priv->chan[i].fifo) {
dev_err(dev, "failed to allocate request fifo %d\n", i);
err = -ENOMEM;
goto err_out;
}
atomic_set(&priv->chan[i].submit_count,
-(priv->chfifo_len - 1));
}
dma_set_mask(dev, DMA_BIT_MASK(36));
/* reset and initialize the h/w */
err = init_device(dev);
if (err) {
dev_err(dev, "failed to initialize device\n");
goto err_out;
}
/* register the RNG, if available */
if (hw_supports(dev, DESC_HDR_SEL0_RNG)) {
err = talitos_register_rng(dev);
if (err) {
dev_err(dev, "failed to register hwrng: %d\n", err);
goto err_out;
} else
dev_info(dev, "hwrng\n");
}
/* register crypto algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
if (hw_supports(dev, driver_algs[i].desc_hdr_template)) {
struct talitos_crypto_alg *t_alg;
struct crypto_alg *alg = NULL;
t_alg = talitos_alg_alloc(dev, &driver_algs[i]);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
if (err == -ENOTSUPP)
continue;
goto err_out;
}
switch (t_alg->algt.type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
err = crypto_register_skcipher(
&t_alg->algt.alg.skcipher);
alg = &t_alg->algt.alg.skcipher.base;
break;
case CRYPTO_ALG_TYPE_AEAD:
err = crypto_register_aead(
&t_alg->algt.alg.aead);
alg = &t_alg->algt.alg.aead.base;
break;
case CRYPTO_ALG_TYPE_AHASH:
err = crypto_register_ahash(
&t_alg->algt.alg.hash);
alg = &t_alg->algt.alg.hash.halg.base;
break;
}
if (err) {
dev_err(dev, "%s alg registration failed\n",
alg->cra_driver_name);
devm_kfree(dev, t_alg);
} else
list_add_tail(&t_alg->entry, &priv->alg_list);
}
}
if (!list_empty(&priv->alg_list))
dev_info(dev, "%s algorithms registered in /proc/crypto\n",
(char *)of_get_property(np, "compatible", NULL));
return 0;
err_out:
talitos_remove(ofdev);
return err;
}
static const struct of_device_id talitos_match[] = {
#ifdef CONFIG_CRYPTO_DEV_TALITOS1
{
.compatible = "fsl,sec1.0",
},
#endif
#ifdef CONFIG_CRYPTO_DEV_TALITOS2
{
.compatible = "fsl,sec2.0",
},
#endif
{},
};
MODULE_DEVICE_TABLE(of, talitos_match);
static struct platform_driver talitos_driver = {
.driver = {
.name = "talitos",
.of_match_table = talitos_match,
},
.probe = talitos_probe,
.remove = talitos_remove,
};
module_platform_driver(talitos_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kim Phillips <[email protected]>");
MODULE_DESCRIPTION("Freescale integrated security engine (SEC) driver");
| linux-master | drivers/crypto/talitos.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip / Atmel SHA204A (I2C) driver.
*
* Copyright (c) 2019 Linaro, Ltd. <[email protected]>
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "atmel-i2c.h"
static void atmel_sha204a_rng_done(struct atmel_i2c_work_data *work_data,
void *areq, int status)
{
struct atmel_i2c_client_priv *i2c_priv = work_data->ctx;
struct hwrng *rng = areq;
if (status)
dev_warn_ratelimited(&i2c_priv->client->dev,
"i2c transaction failed (%d)\n",
status);
rng->priv = (unsigned long)work_data;
atomic_dec(&i2c_priv->tfm_count);
}
static int atmel_sha204a_rng_read_nonblocking(struct hwrng *rng, void *data,
size_t max)
{
struct atmel_i2c_client_priv *i2c_priv;
struct atmel_i2c_work_data *work_data;
i2c_priv = container_of(rng, struct atmel_i2c_client_priv, hwrng);
/* keep maximum 1 asynchronous read in flight at any time */
if (!atomic_add_unless(&i2c_priv->tfm_count, 1, 1))
return 0;
if (rng->priv) {
work_data = (struct atmel_i2c_work_data *)rng->priv;
max = min(sizeof(work_data->cmd.data), max);
memcpy(data, &work_data->cmd.data, max);
rng->priv = 0;
} else {
work_data = kmalloc(sizeof(*work_data), GFP_ATOMIC);
if (!work_data)
return -ENOMEM;
work_data->ctx = i2c_priv;
work_data->client = i2c_priv->client;
max = 0;
}
atmel_i2c_init_random_cmd(&work_data->cmd);
atmel_i2c_enqueue(work_data, atmel_sha204a_rng_done, rng);
return max;
}
static int atmel_sha204a_rng_read(struct hwrng *rng, void *data, size_t max,
bool wait)
{
struct atmel_i2c_client_priv *i2c_priv;
struct atmel_i2c_cmd cmd;
int ret;
if (!wait)
return atmel_sha204a_rng_read_nonblocking(rng, data, max);
i2c_priv = container_of(rng, struct atmel_i2c_client_priv, hwrng);
atmel_i2c_init_random_cmd(&cmd);
ret = atmel_i2c_send_receive(i2c_priv->client, &cmd);
if (ret)
return ret;
max = min(sizeof(cmd.data), max);
memcpy(data, cmd.data, max);
return max;
}
static int atmel_sha204a_probe(struct i2c_client *client)
{
struct atmel_i2c_client_priv *i2c_priv;
int ret;
ret = atmel_i2c_probe(client);
if (ret)
return ret;
i2c_priv = i2c_get_clientdata(client);
memset(&i2c_priv->hwrng, 0, sizeof(i2c_priv->hwrng));
i2c_priv->hwrng.name = dev_name(&client->dev);
i2c_priv->hwrng.read = atmel_sha204a_rng_read;
ret = devm_hwrng_register(&client->dev, &i2c_priv->hwrng);
if (ret)
dev_warn(&client->dev, "failed to register RNG (%d)\n", ret);
return ret;
}
static void atmel_sha204a_remove(struct i2c_client *client)
{
struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
if (atomic_read(&i2c_priv->tfm_count)) {
dev_emerg(&client->dev, "Device is busy, will remove it anyhow\n");
return;
}
kfree((void *)i2c_priv->hwrng.priv);
}
static const struct of_device_id atmel_sha204a_dt_ids[] __maybe_unused = {
{ .compatible = "atmel,atsha204", },
{ .compatible = "atmel,atsha204a", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_sha204a_dt_ids);
static const struct i2c_device_id atmel_sha204a_id[] = {
{ "atsha204", 0 },
{ "atsha204a", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, atmel_sha204a_id);
static struct i2c_driver atmel_sha204a_driver = {
.probe = atmel_sha204a_probe,
.remove = atmel_sha204a_remove,
.id_table = atmel_sha204a_id,
.driver.name = "atmel-sha204a",
.driver.of_match_table = of_match_ptr(atmel_sha204a_dt_ids),
};
static int __init atmel_sha204a_init(void)
{
return i2c_add_driver(&atmel_sha204a_driver);
}
static void __exit atmel_sha204a_exit(void)
{
atmel_i2c_flush_queue();
i2c_del_driver(&atmel_sha204a_driver);
}
module_init(atmel_sha204a_init);
module_exit(atmel_sha204a_exit);
MODULE_AUTHOR("Ard Biesheuvel <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/crypto/atmel-sha204a.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Cryptographic API.
*
* Support for SAHARA cryptographic accelerator.
*
* Copyright (c) 2014 Steffen Trumtrar <[email protected]>
* Copyright (c) 2013 Vista Silicon S.L.
* Author: Javier Martin <[email protected]>
*
* Based on omap-aes.c and tegra-aes.c
*/
#include <crypto/aes.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#define SHA_BUFFER_LEN PAGE_SIZE
#define SAHARA_MAX_SHA_BLOCK_SIZE SHA256_BLOCK_SIZE
#define SAHARA_NAME "sahara"
#define SAHARA_VERSION_3 3
#define SAHARA_VERSION_4 4
#define SAHARA_TIMEOUT_MS 1000
#define SAHARA_MAX_HW_DESC 2
#define SAHARA_MAX_HW_LINK 20
#define FLAGS_MODE_MASK 0x000f
#define FLAGS_ENCRYPT BIT(0)
#define FLAGS_CBC BIT(1)
#define FLAGS_NEW_KEY BIT(3)
#define SAHARA_HDR_BASE 0x00800000
#define SAHARA_HDR_SKHA_ALG_AES 0
#define SAHARA_HDR_SKHA_OP_ENC (1 << 2)
#define SAHARA_HDR_SKHA_MODE_ECB (0 << 3)
#define SAHARA_HDR_SKHA_MODE_CBC (1 << 3)
#define SAHARA_HDR_FORM_DATA (5 << 16)
#define SAHARA_HDR_FORM_KEY (8 << 16)
#define SAHARA_HDR_LLO (1 << 24)
#define SAHARA_HDR_CHA_SKHA (1 << 28)
#define SAHARA_HDR_CHA_MDHA (2 << 28)
#define SAHARA_HDR_PARITY_BIT (1 << 31)
#define SAHARA_HDR_MDHA_SET_MODE_MD_KEY 0x20880000
#define SAHARA_HDR_MDHA_SET_MODE_HASH 0x208D0000
#define SAHARA_HDR_MDHA_HASH 0xA0850000
#define SAHARA_HDR_MDHA_STORE_DIGEST 0x20820000
#define SAHARA_HDR_MDHA_ALG_SHA1 0
#define SAHARA_HDR_MDHA_ALG_MD5 1
#define SAHARA_HDR_MDHA_ALG_SHA256 2
#define SAHARA_HDR_MDHA_ALG_SHA224 3
#define SAHARA_HDR_MDHA_PDATA (1 << 2)
#define SAHARA_HDR_MDHA_HMAC (1 << 3)
#define SAHARA_HDR_MDHA_INIT (1 << 5)
#define SAHARA_HDR_MDHA_IPAD (1 << 6)
#define SAHARA_HDR_MDHA_OPAD (1 << 7)
#define SAHARA_HDR_MDHA_SWAP (1 << 8)
#define SAHARA_HDR_MDHA_MAC_FULL (1 << 9)
#define SAHARA_HDR_MDHA_SSL (1 << 10)
/* SAHARA can only process one request at a time */
#define SAHARA_QUEUE_LENGTH 1
#define SAHARA_REG_VERSION 0x00
#define SAHARA_REG_DAR 0x04
#define SAHARA_REG_CONTROL 0x08
#define SAHARA_CONTROL_SET_THROTTLE(x) (((x) & 0xff) << 24)
#define SAHARA_CONTROL_SET_MAXBURST(x) (((x) & 0xff) << 16)
#define SAHARA_CONTROL_RNG_AUTORSD (1 << 7)
#define SAHARA_CONTROL_ENABLE_INT (1 << 4)
#define SAHARA_REG_CMD 0x0C
#define SAHARA_CMD_RESET (1 << 0)
#define SAHARA_CMD_CLEAR_INT (1 << 8)
#define SAHARA_CMD_CLEAR_ERR (1 << 9)
#define SAHARA_CMD_SINGLE_STEP (1 << 10)
#define SAHARA_CMD_MODE_BATCH (1 << 16)
#define SAHARA_CMD_MODE_DEBUG (1 << 18)
#define SAHARA_REG_STATUS 0x10
#define SAHARA_STATUS_GET_STATE(x) ((x) & 0x7)
#define SAHARA_STATE_IDLE 0
#define SAHARA_STATE_BUSY 1
#define SAHARA_STATE_ERR 2
#define SAHARA_STATE_FAULT 3
#define SAHARA_STATE_COMPLETE 4
#define SAHARA_STATE_COMP_FLAG (1 << 2)
#define SAHARA_STATUS_DAR_FULL (1 << 3)
#define SAHARA_STATUS_ERROR (1 << 4)
#define SAHARA_STATUS_SECURE (1 << 5)
#define SAHARA_STATUS_FAIL (1 << 6)
#define SAHARA_STATUS_INIT (1 << 7)
#define SAHARA_STATUS_RNG_RESEED (1 << 8)
#define SAHARA_STATUS_ACTIVE_RNG (1 << 9)
#define SAHARA_STATUS_ACTIVE_MDHA (1 << 10)
#define SAHARA_STATUS_ACTIVE_SKHA (1 << 11)
#define SAHARA_STATUS_MODE_BATCH (1 << 16)
#define SAHARA_STATUS_MODE_DEDICATED (1 << 17)
#define SAHARA_STATUS_MODE_DEBUG (1 << 18)
#define SAHARA_STATUS_GET_ISTATE(x) (((x) >> 24) & 0xff)
#define SAHARA_REG_ERRSTATUS 0x14
#define SAHARA_ERRSTATUS_GET_SOURCE(x) ((x) & 0xf)
#define SAHARA_ERRSOURCE_CHA 14
#define SAHARA_ERRSOURCE_DMA 15
#define SAHARA_ERRSTATUS_DMA_DIR (1 << 8)
#define SAHARA_ERRSTATUS_GET_DMASZ(x)(((x) >> 9) & 0x3)
#define SAHARA_ERRSTATUS_GET_DMASRC(x) (((x) >> 13) & 0x7)
#define SAHARA_ERRSTATUS_GET_CHASRC(x) (((x) >> 16) & 0xfff)
#define SAHARA_ERRSTATUS_GET_CHAERR(x) (((x) >> 28) & 0x3)
#define SAHARA_REG_FADDR 0x18
#define SAHARA_REG_CDAR 0x1C
#define SAHARA_REG_IDAR 0x20
struct sahara_hw_desc {
u32 hdr;
u32 len1;
u32 p1;
u32 len2;
u32 p2;
u32 next;
};
struct sahara_hw_link {
u32 len;
u32 p;
u32 next;
};
struct sahara_ctx {
unsigned long flags;
/* AES-specific context */
int keylen;
u8 key[AES_KEYSIZE_128];
struct crypto_skcipher *fallback;
};
struct sahara_aes_reqctx {
unsigned long mode;
struct skcipher_request fallback_req; // keep at the end
};
/*
* struct sahara_sha_reqctx - private data per request
* @buf: holds data for requests smaller than block_size
* @rembuf: used to prepare one block_size-aligned request
* @context: hw-specific context for request. Digest is extracted from this
* @mode: specifies what type of hw-descriptor needs to be built
* @digest_size: length of digest for this request
* @context_size: length of hw-context for this request.
* Always digest_size + 4
* @buf_cnt: number of bytes saved in buf
* @sg_in_idx: number of hw links
* @in_sg: scatterlist for input data
* @in_sg_chain: scatterlists for chained input data
* @total: total number of bytes for transfer
* @last: is this the last block
* @first: is this the first block
* @active: inside a transfer
*/
struct sahara_sha_reqctx {
u8 buf[SAHARA_MAX_SHA_BLOCK_SIZE];
u8 rembuf[SAHARA_MAX_SHA_BLOCK_SIZE];
u8 context[SHA256_DIGEST_SIZE + 4];
unsigned int mode;
unsigned int digest_size;
unsigned int context_size;
unsigned int buf_cnt;
unsigned int sg_in_idx;
struct scatterlist *in_sg;
struct scatterlist in_sg_chain[2];
size_t total;
unsigned int last;
unsigned int first;
unsigned int active;
};
struct sahara_dev {
struct device *device;
unsigned int version;
void __iomem *regs_base;
struct clk *clk_ipg;
struct clk *clk_ahb;
spinlock_t queue_spinlock;
struct task_struct *kthread;
struct completion dma_completion;
struct sahara_ctx *ctx;
struct crypto_queue queue;
unsigned long flags;
struct sahara_hw_desc *hw_desc[SAHARA_MAX_HW_DESC];
dma_addr_t hw_phys_desc[SAHARA_MAX_HW_DESC];
u8 *key_base;
dma_addr_t key_phys_base;
u8 *iv_base;
dma_addr_t iv_phys_base;
u8 *context_base;
dma_addr_t context_phys_base;
struct sahara_hw_link *hw_link[SAHARA_MAX_HW_LINK];
dma_addr_t hw_phys_link[SAHARA_MAX_HW_LINK];
size_t total;
struct scatterlist *in_sg;
int nb_in_sg;
struct scatterlist *out_sg;
int nb_out_sg;
u32 error;
};
static struct sahara_dev *dev_ptr;
static inline void sahara_write(struct sahara_dev *dev, u32 data, u32 reg)
{
writel(data, dev->regs_base + reg);
}
static inline unsigned int sahara_read(struct sahara_dev *dev, u32 reg)
{
return readl(dev->regs_base + reg);
}
static u32 sahara_aes_key_hdr(struct sahara_dev *dev)
{
u32 hdr = SAHARA_HDR_BASE | SAHARA_HDR_SKHA_ALG_AES |
SAHARA_HDR_FORM_KEY | SAHARA_HDR_LLO |
SAHARA_HDR_CHA_SKHA | SAHARA_HDR_PARITY_BIT;
if (dev->flags & FLAGS_CBC) {
hdr |= SAHARA_HDR_SKHA_MODE_CBC;
hdr ^= SAHARA_HDR_PARITY_BIT;
}
if (dev->flags & FLAGS_ENCRYPT) {
hdr |= SAHARA_HDR_SKHA_OP_ENC;
hdr ^= SAHARA_HDR_PARITY_BIT;
}
return hdr;
}
static u32 sahara_aes_data_link_hdr(struct sahara_dev *dev)
{
return SAHARA_HDR_BASE | SAHARA_HDR_FORM_DATA |
SAHARA_HDR_CHA_SKHA | SAHARA_HDR_PARITY_BIT;
}
static const char *sahara_err_src[16] = {
"No error",
"Header error",
"Descriptor length error",
"Descriptor length or pointer error",
"Link length error",
"Link pointer error",
"Input buffer error",
"Output buffer error",
"Output buffer starvation",
"Internal state fault",
"General descriptor problem",
"Reserved",
"Descriptor address error",
"Link address error",
"CHA error",
"DMA error"
};
static const char *sahara_err_dmasize[4] = {
"Byte transfer",
"Half-word transfer",
"Word transfer",
"Reserved"
};
static const char *sahara_err_dmasrc[8] = {
"No error",
"AHB bus error",
"Internal IP bus error",
"Parity error",
"DMA crosses 256 byte boundary",
"DMA is busy",
"Reserved",
"DMA HW error"
};
static const char *sahara_cha_errsrc[12] = {
"Input buffer non-empty",
"Illegal address",
"Illegal mode",
"Illegal data size",
"Illegal key size",
"Write during processing",
"CTX read during processing",
"HW error",
"Input buffer disabled/underflow",
"Output buffer disabled/overflow",
"DES key parity error",
"Reserved"
};
static const char *sahara_cha_err[4] = { "No error", "SKHA", "MDHA", "RNG" };
static void sahara_decode_error(struct sahara_dev *dev, unsigned int error)
{
u8 source = SAHARA_ERRSTATUS_GET_SOURCE(error);
u16 chasrc = ffs(SAHARA_ERRSTATUS_GET_CHASRC(error));
dev_err(dev->device, "%s: Error Register = 0x%08x\n", __func__, error);
dev_err(dev->device, " - %s.\n", sahara_err_src[source]);
if (source == SAHARA_ERRSOURCE_DMA) {
if (error & SAHARA_ERRSTATUS_DMA_DIR)
dev_err(dev->device, " * DMA read.\n");
else
dev_err(dev->device, " * DMA write.\n");
dev_err(dev->device, " * %s.\n",
sahara_err_dmasize[SAHARA_ERRSTATUS_GET_DMASZ(error)]);
dev_err(dev->device, " * %s.\n",
sahara_err_dmasrc[SAHARA_ERRSTATUS_GET_DMASRC(error)]);
} else if (source == SAHARA_ERRSOURCE_CHA) {
dev_err(dev->device, " * %s.\n",
sahara_cha_errsrc[chasrc]);
dev_err(dev->device, " * %s.\n",
sahara_cha_err[SAHARA_ERRSTATUS_GET_CHAERR(error)]);
}
dev_err(dev->device, "\n");
}
static const char *sahara_state[4] = { "Idle", "Busy", "Error", "HW Fault" };
static void sahara_decode_status(struct sahara_dev *dev, unsigned int status)
{
u8 state;
if (!__is_defined(DEBUG))
return;
state = SAHARA_STATUS_GET_STATE(status);
dev_dbg(dev->device, "%s: Status Register = 0x%08x\n",
__func__, status);
dev_dbg(dev->device, " - State = %d:\n", state);
if (state & SAHARA_STATE_COMP_FLAG)
dev_dbg(dev->device, " * Descriptor completed. IRQ pending.\n");
dev_dbg(dev->device, " * %s.\n",
sahara_state[state & ~SAHARA_STATE_COMP_FLAG]);
if (status & SAHARA_STATUS_DAR_FULL)
dev_dbg(dev->device, " - DAR Full.\n");
if (status & SAHARA_STATUS_ERROR)
dev_dbg(dev->device, " - Error.\n");
if (status & SAHARA_STATUS_SECURE)
dev_dbg(dev->device, " - Secure.\n");
if (status & SAHARA_STATUS_FAIL)
dev_dbg(dev->device, " - Fail.\n");
if (status & SAHARA_STATUS_RNG_RESEED)
dev_dbg(dev->device, " - RNG Reseed Request.\n");
if (status & SAHARA_STATUS_ACTIVE_RNG)
dev_dbg(dev->device, " - RNG Active.\n");
if (status & SAHARA_STATUS_ACTIVE_MDHA)
dev_dbg(dev->device, " - MDHA Active.\n");
if (status & SAHARA_STATUS_ACTIVE_SKHA)
dev_dbg(dev->device, " - SKHA Active.\n");
if (status & SAHARA_STATUS_MODE_BATCH)
dev_dbg(dev->device, " - Batch Mode.\n");
else if (status & SAHARA_STATUS_MODE_DEDICATED)
dev_dbg(dev->device, " - Dedicated Mode.\n");
else if (status & SAHARA_STATUS_MODE_DEBUG)
dev_dbg(dev->device, " - Debug Mode.\n");
dev_dbg(dev->device, " - Internal state = 0x%02x\n",
SAHARA_STATUS_GET_ISTATE(status));
dev_dbg(dev->device, "Current DAR: 0x%08x\n",
sahara_read(dev, SAHARA_REG_CDAR));
dev_dbg(dev->device, "Initial DAR: 0x%08x\n\n",
sahara_read(dev, SAHARA_REG_IDAR));
}
static void sahara_dump_descriptors(struct sahara_dev *dev)
{
int i;
if (!__is_defined(DEBUG))
return;
for (i = 0; i < SAHARA_MAX_HW_DESC; i++) {
dev_dbg(dev->device, "Descriptor (%d) (%pad):\n",
i, &dev->hw_phys_desc[i]);
dev_dbg(dev->device, "\thdr = 0x%08x\n", dev->hw_desc[i]->hdr);
dev_dbg(dev->device, "\tlen1 = %u\n", dev->hw_desc[i]->len1);
dev_dbg(dev->device, "\tp1 = 0x%08x\n", dev->hw_desc[i]->p1);
dev_dbg(dev->device, "\tlen2 = %u\n", dev->hw_desc[i]->len2);
dev_dbg(dev->device, "\tp2 = 0x%08x\n", dev->hw_desc[i]->p2);
dev_dbg(dev->device, "\tnext = 0x%08x\n",
dev->hw_desc[i]->next);
}
dev_dbg(dev->device, "\n");
}
static void sahara_dump_links(struct sahara_dev *dev)
{
int i;
if (!__is_defined(DEBUG))
return;
for (i = 0; i < SAHARA_MAX_HW_LINK; i++) {
dev_dbg(dev->device, "Link (%d) (%pad):\n",
i, &dev->hw_phys_link[i]);
dev_dbg(dev->device, "\tlen = %u\n", dev->hw_link[i]->len);
dev_dbg(dev->device, "\tp = 0x%08x\n", dev->hw_link[i]->p);
dev_dbg(dev->device, "\tnext = 0x%08x\n",
dev->hw_link[i]->next);
}
dev_dbg(dev->device, "\n");
}
static int sahara_hw_descriptor_create(struct sahara_dev *dev)
{
struct sahara_ctx *ctx = dev->ctx;
struct scatterlist *sg;
int ret;
int i, j;
int idx = 0;
/* Copy new key if necessary */
if (ctx->flags & FLAGS_NEW_KEY) {
memcpy(dev->key_base, ctx->key, ctx->keylen);
ctx->flags &= ~FLAGS_NEW_KEY;
if (dev->flags & FLAGS_CBC) {
dev->hw_desc[idx]->len1 = AES_BLOCK_SIZE;
dev->hw_desc[idx]->p1 = dev->iv_phys_base;
} else {
dev->hw_desc[idx]->len1 = 0;
dev->hw_desc[idx]->p1 = 0;
}
dev->hw_desc[idx]->len2 = ctx->keylen;
dev->hw_desc[idx]->p2 = dev->key_phys_base;
dev->hw_desc[idx]->next = dev->hw_phys_desc[1];
dev->hw_desc[idx]->hdr = sahara_aes_key_hdr(dev);
idx++;
}
dev->nb_in_sg = sg_nents_for_len(dev->in_sg, dev->total);
if (dev->nb_in_sg < 0) {
dev_err(dev->device, "Invalid numbers of src SG.\n");
return dev->nb_in_sg;
}
dev->nb_out_sg = sg_nents_for_len(dev->out_sg, dev->total);
if (dev->nb_out_sg < 0) {
dev_err(dev->device, "Invalid numbers of dst SG.\n");
return dev->nb_out_sg;
}
if ((dev->nb_in_sg + dev->nb_out_sg) > SAHARA_MAX_HW_LINK) {
dev_err(dev->device, "not enough hw links (%d)\n",
dev->nb_in_sg + dev->nb_out_sg);
return -EINVAL;
}
ret = dma_map_sg(dev->device, dev->in_sg, dev->nb_in_sg,
DMA_TO_DEVICE);
if (!ret) {
dev_err(dev->device, "couldn't map in sg\n");
goto unmap_in;
}
ret = dma_map_sg(dev->device, dev->out_sg, dev->nb_out_sg,
DMA_FROM_DEVICE);
if (!ret) {
dev_err(dev->device, "couldn't map out sg\n");
goto unmap_out;
}
/* Create input links */
dev->hw_desc[idx]->p1 = dev->hw_phys_link[0];
sg = dev->in_sg;
for (i = 0; i < dev->nb_in_sg; i++) {
dev->hw_link[i]->len = sg->length;
dev->hw_link[i]->p = sg->dma_address;
if (i == (dev->nb_in_sg - 1)) {
dev->hw_link[i]->next = 0;
} else {
dev->hw_link[i]->next = dev->hw_phys_link[i + 1];
sg = sg_next(sg);
}
}
/* Create output links */
dev->hw_desc[idx]->p2 = dev->hw_phys_link[i];
sg = dev->out_sg;
for (j = i; j < dev->nb_out_sg + i; j++) {
dev->hw_link[j]->len = sg->length;
dev->hw_link[j]->p = sg->dma_address;
if (j == (dev->nb_out_sg + i - 1)) {
dev->hw_link[j]->next = 0;
} else {
dev->hw_link[j]->next = dev->hw_phys_link[j + 1];
sg = sg_next(sg);
}
}
/* Fill remaining fields of hw_desc[1] */
dev->hw_desc[idx]->hdr = sahara_aes_data_link_hdr(dev);
dev->hw_desc[idx]->len1 = dev->total;
dev->hw_desc[idx]->len2 = dev->total;
dev->hw_desc[idx]->next = 0;
sahara_dump_descriptors(dev);
sahara_dump_links(dev);
sahara_write(dev, dev->hw_phys_desc[0], SAHARA_REG_DAR);
return 0;
unmap_out:
dma_unmap_sg(dev->device, dev->out_sg, dev->nb_out_sg,
DMA_FROM_DEVICE);
unmap_in:
dma_unmap_sg(dev->device, dev->in_sg, dev->nb_in_sg,
DMA_TO_DEVICE);
return -EINVAL;
}
static int sahara_aes_process(struct skcipher_request *req)
{
struct sahara_dev *dev = dev_ptr;
struct sahara_ctx *ctx;
struct sahara_aes_reqctx *rctx;
int ret;
unsigned long timeout;
/* Request is ready to be dispatched by the device */
dev_dbg(dev->device,
"dispatch request (nbytes=%d, src=%p, dst=%p)\n",
req->cryptlen, req->src, req->dst);
/* assign new request to device */
dev->total = req->cryptlen;
dev->in_sg = req->src;
dev->out_sg = req->dst;
rctx = skcipher_request_ctx(req);
ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
rctx->mode &= FLAGS_MODE_MASK;
dev->flags = (dev->flags & ~FLAGS_MODE_MASK) | rctx->mode;
if ((dev->flags & FLAGS_CBC) && req->iv)
memcpy(dev->iv_base, req->iv, AES_KEYSIZE_128);
/* assign new context to device */
dev->ctx = ctx;
reinit_completion(&dev->dma_completion);
ret = sahara_hw_descriptor_create(dev);
if (ret)
return -EINVAL;
timeout = wait_for_completion_timeout(&dev->dma_completion,
msecs_to_jiffies(SAHARA_TIMEOUT_MS));
if (!timeout) {
dev_err(dev->device, "AES timeout\n");
return -ETIMEDOUT;
}
dma_unmap_sg(dev->device, dev->out_sg, dev->nb_out_sg,
DMA_FROM_DEVICE);
dma_unmap_sg(dev->device, dev->in_sg, dev->nb_in_sg,
DMA_TO_DEVICE);
return 0;
}
static int sahara_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sahara_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->keylen = keylen;
/* SAHARA only supports 128bit keys */
if (keylen == AES_KEYSIZE_128) {
memcpy(ctx->key, key, keylen);
ctx->flags |= FLAGS_NEW_KEY;
return 0;
}
if (keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_256)
return -EINVAL;
/*
* The requested key size is not supported by HW, do a fallback.
*/
crypto_skcipher_clear_flags(ctx->fallback, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
return crypto_skcipher_setkey(ctx->fallback, key, keylen);
}
static int sahara_aes_crypt(struct skcipher_request *req, unsigned long mode)
{
struct sahara_aes_reqctx *rctx = skcipher_request_ctx(req);
struct sahara_dev *dev = dev_ptr;
int err = 0;
dev_dbg(dev->device, "nbytes: %d, enc: %d, cbc: %d\n",
req->cryptlen, !!(mode & FLAGS_ENCRYPT), !!(mode & FLAGS_CBC));
if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE)) {
dev_err(dev->device,
"request size is not exact amount of AES blocks\n");
return -EINVAL;
}
rctx->mode = mode;
spin_lock_bh(&dev->queue_spinlock);
err = crypto_enqueue_request(&dev->queue, &req->base);
spin_unlock_bh(&dev->queue_spinlock);
wake_up_process(dev->kthread);
return err;
}
static int sahara_aes_ecb_encrypt(struct skcipher_request *req)
{
struct sahara_aes_reqctx *rctx = skcipher_request_ctx(req);
struct sahara_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
if (unlikely(ctx->keylen != AES_KEYSIZE_128)) {
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req,
req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src,
req->dst, req->cryptlen, req->iv);
return crypto_skcipher_encrypt(&rctx->fallback_req);
}
return sahara_aes_crypt(req, FLAGS_ENCRYPT);
}
static int sahara_aes_ecb_decrypt(struct skcipher_request *req)
{
struct sahara_aes_reqctx *rctx = skcipher_request_ctx(req);
struct sahara_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
if (unlikely(ctx->keylen != AES_KEYSIZE_128)) {
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req,
req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src,
req->dst, req->cryptlen, req->iv);
return crypto_skcipher_decrypt(&rctx->fallback_req);
}
return sahara_aes_crypt(req, 0);
}
static int sahara_aes_cbc_encrypt(struct skcipher_request *req)
{
struct sahara_aes_reqctx *rctx = skcipher_request_ctx(req);
struct sahara_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
if (unlikely(ctx->keylen != AES_KEYSIZE_128)) {
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req,
req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src,
req->dst, req->cryptlen, req->iv);
return crypto_skcipher_encrypt(&rctx->fallback_req);
}
return sahara_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
}
static int sahara_aes_cbc_decrypt(struct skcipher_request *req)
{
struct sahara_aes_reqctx *rctx = skcipher_request_ctx(req);
struct sahara_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
if (unlikely(ctx->keylen != AES_KEYSIZE_128)) {
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req,
req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src,
req->dst, req->cryptlen, req->iv);
return crypto_skcipher_decrypt(&rctx->fallback_req);
}
return sahara_aes_crypt(req, FLAGS_CBC);
}
static int sahara_aes_init_tfm(struct crypto_skcipher *tfm)
{
const char *name = crypto_tfm_alg_name(&tfm->base);
struct sahara_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->fallback = crypto_alloc_skcipher(name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback)) {
pr_err("Error allocating fallback algo %s\n", name);
return PTR_ERR(ctx->fallback);
}
crypto_skcipher_set_reqsize(tfm, sizeof(struct sahara_aes_reqctx) +
crypto_skcipher_reqsize(ctx->fallback));
return 0;
}
static void sahara_aes_exit_tfm(struct crypto_skcipher *tfm)
{
struct sahara_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(ctx->fallback);
}
static u32 sahara_sha_init_hdr(struct sahara_dev *dev,
struct sahara_sha_reqctx *rctx)
{
u32 hdr = 0;
hdr = rctx->mode;
if (rctx->first) {
hdr |= SAHARA_HDR_MDHA_SET_MODE_HASH;
hdr |= SAHARA_HDR_MDHA_INIT;
} else {
hdr |= SAHARA_HDR_MDHA_SET_MODE_MD_KEY;
}
if (rctx->last)
hdr |= SAHARA_HDR_MDHA_PDATA;
if (hweight_long(hdr) % 2 == 0)
hdr |= SAHARA_HDR_PARITY_BIT;
return hdr;
}
static int sahara_sha_hw_links_create(struct sahara_dev *dev,
struct sahara_sha_reqctx *rctx,
int start)
{
struct scatterlist *sg;
unsigned int i;
int ret;
dev->in_sg = rctx->in_sg;
dev->nb_in_sg = sg_nents_for_len(dev->in_sg, rctx->total);
if (dev->nb_in_sg < 0) {
dev_err(dev->device, "Invalid numbers of src SG.\n");
return dev->nb_in_sg;
}
if ((dev->nb_in_sg) > SAHARA_MAX_HW_LINK) {
dev_err(dev->device, "not enough hw links (%d)\n",
dev->nb_in_sg + dev->nb_out_sg);
return -EINVAL;
}
sg = dev->in_sg;
ret = dma_map_sg(dev->device, dev->in_sg, dev->nb_in_sg, DMA_TO_DEVICE);
if (!ret)
return -EFAULT;
for (i = start; i < dev->nb_in_sg + start; i++) {
dev->hw_link[i]->len = sg->length;
dev->hw_link[i]->p = sg->dma_address;
if (i == (dev->nb_in_sg + start - 1)) {
dev->hw_link[i]->next = 0;
} else {
dev->hw_link[i]->next = dev->hw_phys_link[i + 1];
sg = sg_next(sg);
}
}
return i;
}
static int sahara_sha_hw_data_descriptor_create(struct sahara_dev *dev,
struct sahara_sha_reqctx *rctx,
struct ahash_request *req,
int index)
{
unsigned result_len;
int i = index;
if (rctx->first)
/* Create initial descriptor: #8*/
dev->hw_desc[index]->hdr = sahara_sha_init_hdr(dev, rctx);
else
/* Create hash descriptor: #10. Must follow #6. */
dev->hw_desc[index]->hdr = SAHARA_HDR_MDHA_HASH;
dev->hw_desc[index]->len1 = rctx->total;
if (dev->hw_desc[index]->len1 == 0) {
/* if len1 is 0, p1 must be 0, too */
dev->hw_desc[index]->p1 = 0;
rctx->sg_in_idx = 0;
} else {
/* Create input links */
dev->hw_desc[index]->p1 = dev->hw_phys_link[index];
i = sahara_sha_hw_links_create(dev, rctx, index);
rctx->sg_in_idx = index;
if (i < 0)
return i;
}
dev->hw_desc[index]->p2 = dev->hw_phys_link[i];
/* Save the context for the next operation */
result_len = rctx->context_size;
dev->hw_link[i]->p = dev->context_phys_base;
dev->hw_link[i]->len = result_len;
dev->hw_desc[index]->len2 = result_len;
dev->hw_link[i]->next = 0;
return 0;
}
/*
* Load descriptor aka #6
*
* To load a previously saved context back to the MDHA unit
*
* p1: Saved Context
* p2: NULL
*
*/
static int sahara_sha_hw_context_descriptor_create(struct sahara_dev *dev,
struct sahara_sha_reqctx *rctx,
struct ahash_request *req,
int index)
{
dev->hw_desc[index]->hdr = sahara_sha_init_hdr(dev, rctx);
dev->hw_desc[index]->len1 = rctx->context_size;
dev->hw_desc[index]->p1 = dev->hw_phys_link[index];
dev->hw_desc[index]->len2 = 0;
dev->hw_desc[index]->p2 = 0;
dev->hw_link[index]->len = rctx->context_size;
dev->hw_link[index]->p = dev->context_phys_base;
dev->hw_link[index]->next = 0;
return 0;
}
static int sahara_walk_and_recalc(struct scatterlist *sg, unsigned int nbytes)
{
if (!sg || !sg->length)
return nbytes;
while (nbytes && sg) {
if (nbytes <= sg->length) {
sg->length = nbytes;
sg_mark_end(sg);
break;
}
nbytes -= sg->length;
sg = sg_next(sg);
}
return nbytes;
}
static int sahara_sha_prepare_request(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sahara_sha_reqctx *rctx = ahash_request_ctx(req);
unsigned int hash_later;
unsigned int block_size;
unsigned int len;
block_size = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
/* append bytes from previous operation */
len = rctx->buf_cnt + req->nbytes;
/* only the last transfer can be padded in hardware */
if (!rctx->last && (len < block_size)) {
/* to few data, save for next operation */
scatterwalk_map_and_copy(rctx->buf + rctx->buf_cnt, req->src,
0, req->nbytes, 0);
rctx->buf_cnt += req->nbytes;
return 0;
}
/* add data from previous operation first */
if (rctx->buf_cnt)
memcpy(rctx->rembuf, rctx->buf, rctx->buf_cnt);
/* data must always be a multiple of block_size */
hash_later = rctx->last ? 0 : len & (block_size - 1);
if (hash_later) {
unsigned int offset = req->nbytes - hash_later;
/* Save remaining bytes for later use */
scatterwalk_map_and_copy(rctx->buf, req->src, offset,
hash_later, 0);
}
/* nbytes should now be multiple of blocksize */
req->nbytes = req->nbytes - hash_later;
sahara_walk_and_recalc(req->src, req->nbytes);
/* have data from previous operation and current */
if (rctx->buf_cnt && req->nbytes) {
sg_init_table(rctx->in_sg_chain, 2);
sg_set_buf(rctx->in_sg_chain, rctx->rembuf, rctx->buf_cnt);
sg_chain(rctx->in_sg_chain, 2, req->src);
rctx->total = req->nbytes + rctx->buf_cnt;
rctx->in_sg = rctx->in_sg_chain;
req->src = rctx->in_sg_chain;
/* only data from previous operation */
} else if (rctx->buf_cnt) {
if (req->src)
rctx->in_sg = req->src;
else
rctx->in_sg = rctx->in_sg_chain;
/* buf was copied into rembuf above */
sg_init_one(rctx->in_sg, rctx->rembuf, rctx->buf_cnt);
rctx->total = rctx->buf_cnt;
/* no data from previous operation */
} else {
rctx->in_sg = req->src;
rctx->total = req->nbytes;
req->src = rctx->in_sg;
}
/* on next call, we only have the remaining data in the buffer */
rctx->buf_cnt = hash_later;
return -EINPROGRESS;
}
static int sahara_sha_process(struct ahash_request *req)
{
struct sahara_dev *dev = dev_ptr;
struct sahara_sha_reqctx *rctx = ahash_request_ctx(req);
int ret;
unsigned long timeout;
ret = sahara_sha_prepare_request(req);
if (!ret)
return ret;
if (rctx->first) {
sahara_sha_hw_data_descriptor_create(dev, rctx, req, 0);
dev->hw_desc[0]->next = 0;
rctx->first = 0;
} else {
memcpy(dev->context_base, rctx->context, rctx->context_size);
sahara_sha_hw_context_descriptor_create(dev, rctx, req, 0);
dev->hw_desc[0]->next = dev->hw_phys_desc[1];
sahara_sha_hw_data_descriptor_create(dev, rctx, req, 1);
dev->hw_desc[1]->next = 0;
}
sahara_dump_descriptors(dev);
sahara_dump_links(dev);
reinit_completion(&dev->dma_completion);
sahara_write(dev, dev->hw_phys_desc[0], SAHARA_REG_DAR);
timeout = wait_for_completion_timeout(&dev->dma_completion,
msecs_to_jiffies(SAHARA_TIMEOUT_MS));
if (!timeout) {
dev_err(dev->device, "SHA timeout\n");
return -ETIMEDOUT;
}
if (rctx->sg_in_idx)
dma_unmap_sg(dev->device, dev->in_sg, dev->nb_in_sg,
DMA_TO_DEVICE);
memcpy(rctx->context, dev->context_base, rctx->context_size);
if (req->result)
memcpy(req->result, rctx->context, rctx->digest_size);
return 0;
}
static int sahara_queue_manage(void *data)
{
struct sahara_dev *dev = data;
struct crypto_async_request *async_req;
struct crypto_async_request *backlog;
int ret = 0;
do {
__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_bh(&dev->queue_spinlock);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
spin_unlock_bh(&dev->queue_spinlock);
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
if (async_req) {
if (crypto_tfm_alg_type(async_req->tfm) ==
CRYPTO_ALG_TYPE_AHASH) {
struct ahash_request *req =
ahash_request_cast(async_req);
ret = sahara_sha_process(req);
} else {
struct skcipher_request *req =
skcipher_request_cast(async_req);
ret = sahara_aes_process(req);
}
crypto_request_complete(async_req, ret);
continue;
}
schedule();
} while (!kthread_should_stop());
return 0;
}
static int sahara_sha_enqueue(struct ahash_request *req, int last)
{
struct sahara_sha_reqctx *rctx = ahash_request_ctx(req);
struct sahara_dev *dev = dev_ptr;
int ret;
if (!req->nbytes && !last)
return 0;
rctx->last = last;
if (!rctx->active) {
rctx->active = 1;
rctx->first = 1;
}
spin_lock_bh(&dev->queue_spinlock);
ret = crypto_enqueue_request(&dev->queue, &req->base);
spin_unlock_bh(&dev->queue_spinlock);
wake_up_process(dev->kthread);
return ret;
}
static int sahara_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sahara_sha_reqctx *rctx = ahash_request_ctx(req);
memset(rctx, 0, sizeof(*rctx));
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
rctx->mode |= SAHARA_HDR_MDHA_ALG_SHA1;
rctx->digest_size = SHA1_DIGEST_SIZE;
break;
case SHA256_DIGEST_SIZE:
rctx->mode |= SAHARA_HDR_MDHA_ALG_SHA256;
rctx->digest_size = SHA256_DIGEST_SIZE;
break;
default:
return -EINVAL;
}
rctx->context_size = rctx->digest_size + 4;
rctx->active = 0;
return 0;
}
static int sahara_sha_update(struct ahash_request *req)
{
return sahara_sha_enqueue(req, 0);
}
static int sahara_sha_final(struct ahash_request *req)
{
req->nbytes = 0;
return sahara_sha_enqueue(req, 1);
}
static int sahara_sha_finup(struct ahash_request *req)
{
return sahara_sha_enqueue(req, 1);
}
static int sahara_sha_digest(struct ahash_request *req)
{
sahara_sha_init(req);
return sahara_sha_finup(req);
}
static int sahara_sha_export(struct ahash_request *req, void *out)
{
struct sahara_sha_reqctx *rctx = ahash_request_ctx(req);
memcpy(out, rctx, sizeof(struct sahara_sha_reqctx));
return 0;
}
static int sahara_sha_import(struct ahash_request *req, const void *in)
{
struct sahara_sha_reqctx *rctx = ahash_request_ctx(req);
memcpy(rctx, in, sizeof(struct sahara_sha_reqctx));
return 0;
}
static int sahara_sha_cra_init(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct sahara_sha_reqctx) +
SHA_BUFFER_LEN + SHA256_BLOCK_SIZE);
return 0;
}
static struct skcipher_alg aes_algs[] = {
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "sahara-ecb-aes",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sahara_ctx),
.base.cra_alignmask = 0x0,
.base.cra_module = THIS_MODULE,
.init = sahara_aes_init_tfm,
.exit = sahara_aes_exit_tfm,
.min_keysize = AES_MIN_KEY_SIZE ,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = sahara_aes_setkey,
.encrypt = sahara_aes_ecb_encrypt,
.decrypt = sahara_aes_ecb_decrypt,
}, {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "sahara-cbc-aes",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sahara_ctx),
.base.cra_alignmask = 0x0,
.base.cra_module = THIS_MODULE,
.init = sahara_aes_init_tfm,
.exit = sahara_aes_exit_tfm,
.min_keysize = AES_MIN_KEY_SIZE ,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sahara_aes_setkey,
.encrypt = sahara_aes_cbc_encrypt,
.decrypt = sahara_aes_cbc_decrypt,
}
};
static struct ahash_alg sha_v3_algs[] = {
{
.init = sahara_sha_init,
.update = sahara_sha_update,
.final = sahara_sha_final,
.finup = sahara_sha_finup,
.digest = sahara_sha_digest,
.export = sahara_sha_export,
.import = sahara_sha_import,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct sahara_sha_reqctx),
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sahara-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sahara_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = sahara_sha_cra_init,
}
},
};
static struct ahash_alg sha_v4_algs[] = {
{
.init = sahara_sha_init,
.update = sahara_sha_update,
.final = sahara_sha_final,
.finup = sahara_sha_finup,
.digest = sahara_sha_digest,
.export = sahara_sha_export,
.import = sahara_sha_import,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct sahara_sha_reqctx),
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sahara-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sahara_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = sahara_sha_cra_init,
}
},
};
static irqreturn_t sahara_irq_handler(int irq, void *data)
{
struct sahara_dev *dev = data;
unsigned int stat = sahara_read(dev, SAHARA_REG_STATUS);
unsigned int err = sahara_read(dev, SAHARA_REG_ERRSTATUS);
sahara_write(dev, SAHARA_CMD_CLEAR_INT | SAHARA_CMD_CLEAR_ERR,
SAHARA_REG_CMD);
sahara_decode_status(dev, stat);
if (SAHARA_STATUS_GET_STATE(stat) == SAHARA_STATE_BUSY) {
return IRQ_NONE;
} else if (SAHARA_STATUS_GET_STATE(stat) == SAHARA_STATE_COMPLETE) {
dev->error = 0;
} else {
sahara_decode_error(dev, err);
dev->error = -EINVAL;
}
complete(&dev->dma_completion);
return IRQ_HANDLED;
}
static int sahara_register_algs(struct sahara_dev *dev)
{
int err;
unsigned int i, j, k, l;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
err = crypto_register_skcipher(&aes_algs[i]);
if (err)
goto err_aes_algs;
}
for (k = 0; k < ARRAY_SIZE(sha_v3_algs); k++) {
err = crypto_register_ahash(&sha_v3_algs[k]);
if (err)
goto err_sha_v3_algs;
}
if (dev->version > SAHARA_VERSION_3)
for (l = 0; l < ARRAY_SIZE(sha_v4_algs); l++) {
err = crypto_register_ahash(&sha_v4_algs[l]);
if (err)
goto err_sha_v4_algs;
}
return 0;
err_sha_v4_algs:
for (j = 0; j < l; j++)
crypto_unregister_ahash(&sha_v4_algs[j]);
err_sha_v3_algs:
for (j = 0; j < k; j++)
crypto_unregister_ahash(&sha_v3_algs[j]);
err_aes_algs:
for (j = 0; j < i; j++)
crypto_unregister_skcipher(&aes_algs[j]);
return err;
}
static void sahara_unregister_algs(struct sahara_dev *dev)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
crypto_unregister_skcipher(&aes_algs[i]);
for (i = 0; i < ARRAY_SIZE(sha_v3_algs); i++)
crypto_unregister_ahash(&sha_v3_algs[i]);
if (dev->version > SAHARA_VERSION_3)
for (i = 0; i < ARRAY_SIZE(sha_v4_algs); i++)
crypto_unregister_ahash(&sha_v4_algs[i]);
}
static const struct of_device_id sahara_dt_ids[] = {
{ .compatible = "fsl,imx53-sahara" },
{ .compatible = "fsl,imx27-sahara" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sahara_dt_ids);
static int sahara_probe(struct platform_device *pdev)
{
struct sahara_dev *dev;
u32 version;
int irq;
int err;
int i;
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->device = &pdev->dev;
platform_set_drvdata(pdev, dev);
/* Get the base address */
dev->regs_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dev->regs_base))
return PTR_ERR(dev->regs_base);
/* Get the IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, sahara_irq_handler,
0, dev_name(&pdev->dev), dev);
if (err) {
dev_err(&pdev->dev, "failed to request irq\n");
return err;
}
/* clocks */
dev->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(dev->clk_ipg)) {
dev_err(&pdev->dev, "Could not get ipg clock\n");
return PTR_ERR(dev->clk_ipg);
}
dev->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(dev->clk_ahb)) {
dev_err(&pdev->dev, "Could not get ahb clock\n");
return PTR_ERR(dev->clk_ahb);
}
/* Allocate HW descriptors */
dev->hw_desc[0] = dmam_alloc_coherent(&pdev->dev,
SAHARA_MAX_HW_DESC * sizeof(struct sahara_hw_desc),
&dev->hw_phys_desc[0], GFP_KERNEL);
if (!dev->hw_desc[0]) {
dev_err(&pdev->dev, "Could not allocate hw descriptors\n");
return -ENOMEM;
}
dev->hw_desc[1] = dev->hw_desc[0] + 1;
dev->hw_phys_desc[1] = dev->hw_phys_desc[0] +
sizeof(struct sahara_hw_desc);
/* Allocate space for iv and key */
dev->key_base = dmam_alloc_coherent(&pdev->dev, 2 * AES_KEYSIZE_128,
&dev->key_phys_base, GFP_KERNEL);
if (!dev->key_base) {
dev_err(&pdev->dev, "Could not allocate memory for key\n");
return -ENOMEM;
}
dev->iv_base = dev->key_base + AES_KEYSIZE_128;
dev->iv_phys_base = dev->key_phys_base + AES_KEYSIZE_128;
/* Allocate space for context: largest digest + message length field */
dev->context_base = dmam_alloc_coherent(&pdev->dev,
SHA256_DIGEST_SIZE + 4,
&dev->context_phys_base, GFP_KERNEL);
if (!dev->context_base) {
dev_err(&pdev->dev, "Could not allocate memory for MDHA context\n");
return -ENOMEM;
}
/* Allocate space for HW links */
dev->hw_link[0] = dmam_alloc_coherent(&pdev->dev,
SAHARA_MAX_HW_LINK * sizeof(struct sahara_hw_link),
&dev->hw_phys_link[0], GFP_KERNEL);
if (!dev->hw_link[0]) {
dev_err(&pdev->dev, "Could not allocate hw links\n");
return -ENOMEM;
}
for (i = 1; i < SAHARA_MAX_HW_LINK; i++) {
dev->hw_phys_link[i] = dev->hw_phys_link[i - 1] +
sizeof(struct sahara_hw_link);
dev->hw_link[i] = dev->hw_link[i - 1] + 1;
}
crypto_init_queue(&dev->queue, SAHARA_QUEUE_LENGTH);
spin_lock_init(&dev->queue_spinlock);
dev_ptr = dev;
dev->kthread = kthread_run(sahara_queue_manage, dev, "sahara_crypto");
if (IS_ERR(dev->kthread)) {
return PTR_ERR(dev->kthread);
}
init_completion(&dev->dma_completion);
err = clk_prepare_enable(dev->clk_ipg);
if (err)
return err;
err = clk_prepare_enable(dev->clk_ahb);
if (err)
goto clk_ipg_disable;
version = sahara_read(dev, SAHARA_REG_VERSION);
if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx27-sahara")) {
if (version != SAHARA_VERSION_3)
err = -ENODEV;
} else if (of_device_is_compatible(pdev->dev.of_node,
"fsl,imx53-sahara")) {
if (((version >> 8) & 0xff) != SAHARA_VERSION_4)
err = -ENODEV;
version = (version >> 8) & 0xff;
}
if (err == -ENODEV) {
dev_err(&pdev->dev, "SAHARA version %d not supported\n",
version);
goto err_algs;
}
dev->version = version;
sahara_write(dev, SAHARA_CMD_RESET | SAHARA_CMD_MODE_BATCH,
SAHARA_REG_CMD);
sahara_write(dev, SAHARA_CONTROL_SET_THROTTLE(0) |
SAHARA_CONTROL_SET_MAXBURST(8) |
SAHARA_CONTROL_RNG_AUTORSD |
SAHARA_CONTROL_ENABLE_INT,
SAHARA_REG_CONTROL);
err = sahara_register_algs(dev);
if (err)
goto err_algs;
dev_info(&pdev->dev, "SAHARA version %d initialized\n", version);
return 0;
err_algs:
kthread_stop(dev->kthread);
dev_ptr = NULL;
clk_disable_unprepare(dev->clk_ahb);
clk_ipg_disable:
clk_disable_unprepare(dev->clk_ipg);
return err;
}
static int sahara_remove(struct platform_device *pdev)
{
struct sahara_dev *dev = platform_get_drvdata(pdev);
kthread_stop(dev->kthread);
sahara_unregister_algs(dev);
clk_disable_unprepare(dev->clk_ipg);
clk_disable_unprepare(dev->clk_ahb);
dev_ptr = NULL;
return 0;
}
static struct platform_driver sahara_driver = {
.probe = sahara_probe,
.remove = sahara_remove,
.driver = {
.name = SAHARA_NAME,
.of_match_table = sahara_dt_ids,
},
};
module_platform_driver(sahara_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Javier Martin <[email protected]>");
MODULE_AUTHOR("Steffen Trumtrar <[email protected]>");
MODULE_DESCRIPTION("SAHARA2 HW crypto accelerator");
| linux-master | drivers/crypto/sahara.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Cryptographic API.
*
* Support for VIA PadLock hardware crypto engine.
*
* Copyright (c) 2006 Michal Ludvig <[email protected]>
*/
#include <crypto/internal/hash.h>
#include <crypto/padlock.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/scatterlist.h>
#include <asm/cpu_device_id.h>
#include <asm/fpu/api.h>
struct padlock_sha_desc {
struct shash_desc fallback;
};
struct padlock_sha_ctx {
struct crypto_shash *fallback;
};
static int padlock_sha_init(struct shash_desc *desc)
{
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
dctx->fallback.tfm = ctx->fallback;
return crypto_shash_init(&dctx->fallback);
}
static int padlock_sha_update(struct shash_desc *desc,
const u8 *data, unsigned int length)
{
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
return crypto_shash_update(&dctx->fallback, data, length);
}
static int padlock_sha_export(struct shash_desc *desc, void *out)
{
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
return crypto_shash_export(&dctx->fallback, out);
}
static int padlock_sha_import(struct shash_desc *desc, const void *in)
{
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
dctx->fallback.tfm = ctx->fallback;
return crypto_shash_import(&dctx->fallback, in);
}
static inline void padlock_output_block(uint32_t *src,
uint32_t *dst, size_t count)
{
while (count--)
*dst++ = swab32(*src++);
}
static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
unsigned int count, u8 *out)
{
/* We can't store directly to *out as it may be unaligned. */
/* BTW Don't reduce the buffer size below 128 Bytes!
* PadLock microcode needs it that big. */
char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
struct sha1_state state;
unsigned int space;
unsigned int leftover;
int err;
err = crypto_shash_export(&dctx->fallback, &state);
if (err)
goto out;
if (state.count + count > ULONG_MAX)
return crypto_shash_finup(&dctx->fallback, in, count, out);
leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
space = SHA1_BLOCK_SIZE - leftover;
if (space) {
if (count > space) {
err = crypto_shash_update(&dctx->fallback, in, space) ?:
crypto_shash_export(&dctx->fallback, &state);
if (err)
goto out;
count -= space;
in += space;
} else {
memcpy(state.buffer + leftover, in, count);
in = state.buffer;
count += leftover;
state.count &= ~(SHA1_BLOCK_SIZE - 1);
}
}
memcpy(result, &state.state, SHA1_DIGEST_SIZE);
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
: \
: "c"((unsigned long)state.count + count), \
"a"((unsigned long)state.count), \
"S"(in), "D"(result));
padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
out:
return err;
}
static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
{
u8 buf[4];
return padlock_sha1_finup(desc, buf, 0, out);
}
static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
unsigned int count, u8 *out)
{
/* We can't store directly to *out as it may be unaligned. */
/* BTW Don't reduce the buffer size below 128 Bytes!
* PadLock microcode needs it that big. */
char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
struct sha256_state state;
unsigned int space;
unsigned int leftover;
int err;
err = crypto_shash_export(&dctx->fallback, &state);
if (err)
goto out;
if (state.count + count > ULONG_MAX)
return crypto_shash_finup(&dctx->fallback, in, count, out);
leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
space = SHA256_BLOCK_SIZE - leftover;
if (space) {
if (count > space) {
err = crypto_shash_update(&dctx->fallback, in, space) ?:
crypto_shash_export(&dctx->fallback, &state);
if (err)
goto out;
count -= space;
in += space;
} else {
memcpy(state.buf + leftover, in, count);
in = state.buf;
count += leftover;
state.count &= ~(SHA1_BLOCK_SIZE - 1);
}
}
memcpy(result, &state.state, SHA256_DIGEST_SIZE);
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
: \
: "c"((unsigned long)state.count + count), \
"a"((unsigned long)state.count), \
"S"(in), "D"(result));
padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
out:
return err;
}
static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
{
u8 buf[4];
return padlock_sha256_finup(desc, buf, 0, out);
}
static int padlock_init_tfm(struct crypto_shash *hash)
{
const char *fallback_driver_name = crypto_shash_alg_name(hash);
struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
struct crypto_shash *fallback_tfm;
/* Allocate a fallback and abort if it failed. */
fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback_tfm)) {
printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
fallback_driver_name);
return PTR_ERR(fallback_tfm);
}
ctx->fallback = fallback_tfm;
hash->descsize += crypto_shash_descsize(fallback_tfm);
return 0;
}
static void padlock_exit_tfm(struct crypto_shash *hash)
{
struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
crypto_free_shash(ctx->fallback);
}
static struct shash_alg sha1_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = padlock_sha_init,
.update = padlock_sha_update,
.finup = padlock_sha1_finup,
.final = padlock_sha1_final,
.export = padlock_sha_export,
.import = padlock_sha_import,
.init_tfm = padlock_init_tfm,
.exit_tfm = padlock_exit_tfm,
.descsize = sizeof(struct padlock_sha_desc),
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-padlock",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct padlock_sha_ctx),
.cra_module = THIS_MODULE,
}
};
static struct shash_alg sha256_alg = {
.digestsize = SHA256_DIGEST_SIZE,
.init = padlock_sha_init,
.update = padlock_sha_update,
.finup = padlock_sha256_finup,
.final = padlock_sha256_final,
.export = padlock_sha_export,
.import = padlock_sha_import,
.init_tfm = padlock_init_tfm,
.exit_tfm = padlock_exit_tfm,
.descsize = sizeof(struct padlock_sha_desc),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-padlock",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct padlock_sha_ctx),
.cra_module = THIS_MODULE,
}
};
/* Add two shash_alg instance for hardware-implemented *
* multiple-parts hash supported by VIA Nano Processor.*/
static int padlock_sha1_init_nano(struct shash_desc *desc)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
*sctx = (struct sha1_state){
.state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
};
return 0;
}
static int padlock_sha1_update_nano(struct shash_desc *desc,
const u8 *data, unsigned int len)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
unsigned int partial, done;
const u8 *src;
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
partial = sctx->count & 0x3f;
sctx->count += len;
done = 0;
src = data;
memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
if ((partial + len) >= SHA1_BLOCK_SIZE) {
/* Append the bytes in state's buffer to a block to handle */
if (partial) {
done = -partial;
memcpy(sctx->buffer + partial, data,
done + SHA1_BLOCK_SIZE);
src = sctx->buffer;
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
: "+S"(src), "+D"(dst) \
: "a"((long)-1), "c"((unsigned long)1));
done += SHA1_BLOCK_SIZE;
src = data + done;
}
/* Process the left bytes from the input data */
if (len - done >= SHA1_BLOCK_SIZE) {
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
: "+S"(src), "+D"(dst)
: "a"((long)-1),
"c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
src = data + done;
}
partial = 0;
}
memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
memcpy(sctx->buffer + partial, src, len - done);
return 0;
}
static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
{
struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
unsigned int partial, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(state->count << 3);
/* Pad out to 56 mod 64 */
partial = state->count & 0x3f;
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
padlock_sha1_update_nano(desc, padding, padlen);
/* Append length field bytes */
padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
/* Swap to output */
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
return 0;
}
static int padlock_sha256_init_nano(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
*sctx = (struct sha256_state){
.state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
};
return 0;
}
static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int partial, done;
const u8 *src;
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
partial = sctx->count & 0x3f;
sctx->count += len;
done = 0;
src = data;
memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
if ((partial + len) >= SHA256_BLOCK_SIZE) {
/* Append the bytes in state's buffer to a block to handle */
if (partial) {
done = -partial;
memcpy(sctx->buf + partial, data,
done + SHA256_BLOCK_SIZE);
src = sctx->buf;
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
: "+S"(src), "+D"(dst)
: "a"((long)-1), "c"((unsigned long)1));
done += SHA256_BLOCK_SIZE;
src = data + done;
}
/* Process the left bytes from input data*/
if (len - done >= SHA256_BLOCK_SIZE) {
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
: "+S"(src), "+D"(dst)
: "a"((long)-1),
"c"((unsigned long)((len - done) / 64)));
done += ((len - done) - (len - done) % 64);
src = data + done;
}
partial = 0;
}
memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
memcpy(sctx->buf + partial, src, len - done);
return 0;
}
static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
{
struct sha256_state *state =
(struct sha256_state *)shash_desc_ctx(desc);
unsigned int partial, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(state->count << 3);
/* Pad out to 56 mod 64 */
partial = state->count & 0x3f;
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
padlock_sha256_update_nano(desc, padding, padlen);
/* Append length field bytes */
padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
/* Swap to output */
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
return 0;
}
static int padlock_sha_export_nano(struct shash_desc *desc,
void *out)
{
int statesize = crypto_shash_statesize(desc->tfm);
void *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, statesize);
return 0;
}
static int padlock_sha_import_nano(struct shash_desc *desc,
const void *in)
{
int statesize = crypto_shash_statesize(desc->tfm);
void *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, statesize);
return 0;
}
static struct shash_alg sha1_alg_nano = {
.digestsize = SHA1_DIGEST_SIZE,
.init = padlock_sha1_init_nano,
.update = padlock_sha1_update_nano,
.final = padlock_sha1_final_nano,
.export = padlock_sha_export_nano,
.import = padlock_sha_import_nano,
.descsize = sizeof(struct sha1_state),
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-padlock-nano",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static struct shash_alg sha256_alg_nano = {
.digestsize = SHA256_DIGEST_SIZE,
.init = padlock_sha256_init_nano,
.update = padlock_sha256_update_nano,
.final = padlock_sha256_final_nano,
.export = padlock_sha_export_nano,
.import = padlock_sha_import_nano,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-padlock-nano",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static const struct x86_cpu_id padlock_sha_ids[] = {
X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
static int __init padlock_init(void)
{
int rc = -ENODEV;
struct cpuinfo_x86 *c = &cpu_data(0);
struct shash_alg *sha1;
struct shash_alg *sha256;
if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
return -ENODEV;
/* Register the newly added algorithm module if on *
* VIA Nano processor, or else just do as before */
if (c->x86_model < 0x0f) {
sha1 = &sha1_alg;
sha256 = &sha256_alg;
} else {
sha1 = &sha1_alg_nano;
sha256 = &sha256_alg_nano;
}
rc = crypto_register_shash(sha1);
if (rc)
goto out;
rc = crypto_register_shash(sha256);
if (rc)
goto out_unreg1;
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
return 0;
out_unreg1:
crypto_unregister_shash(sha1);
out:
printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
return rc;
}
static void __exit padlock_fini(void)
{
struct cpuinfo_x86 *c = &cpu_data(0);
if (c->x86_model >= 0x0f) {
crypto_unregister_shash(&sha1_alg_nano);
crypto_unregister_shash(&sha256_alg_nano);
} else {
crypto_unregister_shash(&sha1_alg);
crypto_unregister_shash(&sha256_alg);
}
}
module_init(padlock_init);
module_exit(padlock_fini);
MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");
MODULE_ALIAS_CRYPTO("sha1-all");
MODULE_ALIAS_CRYPTO("sha256-all");
MODULE_ALIAS_CRYPTO("sha1-padlock");
MODULE_ALIAS_CRYPTO("sha256-padlock");
| linux-master | drivers/crypto/padlock-sha.c |
// SPDX-License-Identifier: GPL-2.0-only
/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
*
* Copyright (C) 2010, 2011 David S. Miller <[email protected]>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/cpumask.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>
#include <crypto/md5.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/aes.h>
#include <crypto/internal/des.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <asm/hypervisor.h>
#include <asm/mdesc.h>
#include "n2_core.h"
#define DRV_MODULE_NAME "n2_crypto"
#define DRV_MODULE_VERSION "0.2"
#define DRV_MODULE_RELDATE "July 28, 2011"
static const char version[] =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("David S. Miller ([email protected])");
MODULE_DESCRIPTION("Niagara2 Crypto driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
#define N2_CRA_PRIORITY 200
static DEFINE_MUTEX(spu_lock);
struct spu_queue {
cpumask_t sharing;
unsigned long qhandle;
spinlock_t lock;
u8 q_type;
void *q;
unsigned long head;
unsigned long tail;
struct list_head jobs;
unsigned long devino;
char irq_name[32];
unsigned int irq;
struct list_head list;
};
struct spu_qreg {
struct spu_queue *queue;
unsigned long type;
};
static struct spu_queue **cpu_to_cwq;
static struct spu_queue **cpu_to_mau;
static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
{
if (q->q_type == HV_NCS_QTYPE_MAU) {
off += MAU_ENTRY_SIZE;
if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
off = 0;
} else {
off += CWQ_ENTRY_SIZE;
if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
off = 0;
}
return off;
}
struct n2_request_common {
struct list_head entry;
unsigned int offset;
};
#define OFFSET_NOT_RUNNING (~(unsigned int)0)
/* An async job request records the final tail value it used in
* n2_request_common->offset, test to see if that offset is in
* the range old_head, new_head, inclusive.
*/
static inline bool job_finished(struct spu_queue *q, unsigned int offset,
unsigned long old_head, unsigned long new_head)
{
if (old_head <= new_head) {
if (offset > old_head && offset <= new_head)
return true;
} else {
if (offset > old_head || offset <= new_head)
return true;
}
return false;
}
/* When the HEAD marker is unequal to the actual HEAD, we get
* a virtual device INO interrupt. We should process the
* completed CWQ entries and adjust the HEAD marker to clear
* the IRQ.
*/
static irqreturn_t cwq_intr(int irq, void *dev_id)
{
unsigned long off, new_head, hv_ret;
struct spu_queue *q = dev_id;
pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
smp_processor_id(), q->qhandle);
spin_lock(&q->lock);
hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
smp_processor_id(), new_head, hv_ret);
for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
/* XXX ... XXX */
}
hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
if (hv_ret == HV_EOK)
q->head = new_head;
spin_unlock(&q->lock);
return IRQ_HANDLED;
}
static irqreturn_t mau_intr(int irq, void *dev_id)
{
struct spu_queue *q = dev_id;
unsigned long head, hv_ret;
spin_lock(&q->lock);
pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
smp_processor_id(), q->qhandle);
hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
smp_processor_id(), head, hv_ret);
sun4v_ncs_sethead_marker(q->qhandle, head);
spin_unlock(&q->lock);
return IRQ_HANDLED;
}
static void *spu_queue_next(struct spu_queue *q, void *cur)
{
return q->q + spu_next_offset(q, cur - q->q);
}
static int spu_queue_num_free(struct spu_queue *q)
{
unsigned long head = q->head;
unsigned long tail = q->tail;
unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
unsigned long diff;
if (head > tail)
diff = head - tail;
else
diff = (end - tail) + head;
return (diff / CWQ_ENTRY_SIZE) - 1;
}
static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
{
int avail = spu_queue_num_free(q);
if (avail >= num_entries)
return q->q + q->tail;
return NULL;
}
static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
{
unsigned long hv_ret, new_tail;
new_tail = spu_next_offset(q, last - q->q);
hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
if (hv_ret == HV_EOK)
q->tail = new_tail;
return hv_ret;
}
static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
int enc_type, int auth_type,
unsigned int hash_len,
bool sfas, bool sob, bool eob, bool encrypt,
int opcode)
{
u64 word = (len - 1) & CONTROL_LEN;
word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
if (sfas)
word |= CONTROL_STORE_FINAL_AUTH_STATE;
if (sob)
word |= CONTROL_START_OF_BLOCK;
if (eob)
word |= CONTROL_END_OF_BLOCK;
if (encrypt)
word |= CONTROL_ENCRYPT;
if (hmac_key_len)
word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
if (hash_len)
word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
return word;
}
#if 0
static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
{
if (this_len >= 64 ||
qp->head != qp->tail)
return true;
return false;
}
#endif
struct n2_ahash_alg {
struct list_head entry;
const u8 *hash_zero;
const u8 *hash_init;
u8 hw_op_hashsz;
u8 digest_size;
u8 auth_type;
u8 hmac_type;
struct ahash_alg alg;
};
static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct ahash_alg *ahash_alg;
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
return container_of(ahash_alg, struct n2_ahash_alg, alg);
}
struct n2_hmac_alg {
const char *child_alg;
struct n2_ahash_alg derived;
};
static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct ahash_alg *ahash_alg;
ahash_alg = container_of(alg, struct ahash_alg, halg.base);
return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
}
struct n2_hash_ctx {
struct crypto_ahash *fallback_tfm;
};
#define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
struct n2_hmac_ctx {
struct n2_hash_ctx base;
struct crypto_shash *child_shash;
int hash_key_len;
unsigned char hash_key[N2_HASH_KEY_MAX];
};
struct n2_hash_req_ctx {
union {
struct md5_state md5;
struct sha1_state sha1;
struct sha256_state sha256;
} u;
struct ahash_request fallback_req;
};
static int n2_hash_async_init(struct ahash_request *req)
{
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_init(&rctx->fallback_req);
}
static int n2_hash_async_update(struct ahash_request *req)
{
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
return crypto_ahash_update(&rctx->fallback_req);
}
static int n2_hash_async_final(struct ahash_request *req)
{
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.result = req->result;
return crypto_ahash_final(&rctx->fallback_req);
}
static int n2_hash_async_finup(struct ahash_request *req)
{
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_finup(&rctx->fallback_req);
}
static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
{
return -ENOSYS;
}
static int n2_hash_async_noexport(struct ahash_request *req, void *out)
{
return -ENOSYS;
}
static int n2_hash_cra_init(struct crypto_tfm *tfm)
{
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct crypto_ahash *fallback_tfm;
int err;
fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback_tfm)) {
pr_warn("Fallback driver '%s' could not be loaded!\n",
fallback_driver_name);
err = PTR_ERR(fallback_tfm);
goto out;
}
crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
crypto_ahash_reqsize(fallback_tfm)));
ctx->fallback_tfm = fallback_tfm;
return 0;
out:
return err;
}
static void n2_hash_cra_exit(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
crypto_free_ahash(ctx->fallback_tfm);
}
static int n2_hmac_cra_init(struct crypto_tfm *tfm)
{
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
struct crypto_ahash *fallback_tfm;
struct crypto_shash *child_shash;
int err;
fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback_tfm)) {
pr_warn("Fallback driver '%s' could not be loaded!\n",
fallback_driver_name);
err = PTR_ERR(fallback_tfm);
goto out;
}
child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
if (IS_ERR(child_shash)) {
pr_warn("Child shash '%s' could not be loaded!\n",
n2alg->child_alg);
err = PTR_ERR(child_shash);
goto out_free_fallback;
}
crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
crypto_ahash_reqsize(fallback_tfm)));
ctx->child_shash = child_shash;
ctx->base.fallback_tfm = fallback_tfm;
return 0;
out_free_fallback:
crypto_free_ahash(fallback_tfm);
out:
return err;
}
static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
{
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
crypto_free_ahash(ctx->base.fallback_tfm);
crypto_free_shash(ctx->child_shash);
}
static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct crypto_shash *child_shash = ctx->child_shash;
struct crypto_ahash *fallback_tfm;
int err, bs, ds;
fallback_tfm = ctx->base.fallback_tfm;
err = crypto_ahash_setkey(fallback_tfm, key, keylen);
if (err)
return err;
bs = crypto_shash_blocksize(child_shash);
ds = crypto_shash_digestsize(child_shash);
BUG_ON(ds > N2_HASH_KEY_MAX);
if (keylen > bs) {
err = crypto_shash_tfm_digest(child_shash, key, keylen,
ctx->hash_key);
if (err)
return err;
keylen = ds;
} else if (keylen <= N2_HASH_KEY_MAX)
memcpy(ctx->hash_key, key, keylen);
ctx->hash_key_len = keylen;
return err;
}
static unsigned long wait_for_tail(struct spu_queue *qp)
{
unsigned long head, hv_ret;
do {
hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
if (hv_ret != HV_EOK) {
pr_err("Hypervisor error on gethead\n");
break;
}
if (head == qp->tail) {
qp->head = head;
break;
}
} while (1);
return hv_ret;
}
static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
struct cwq_initial_entry *ent)
{
unsigned long hv_ret = spu_queue_submit(qp, ent);
if (hv_ret == HV_EOK)
hv_ret = wait_for_tail(qp);
return hv_ret;
}
static int n2_do_async_digest(struct ahash_request *req,
unsigned int auth_type, unsigned int digest_size,
unsigned int result_size, void *hash_loc,
unsigned long auth_key, unsigned int auth_key_len)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cwq_initial_entry *ent;
struct crypto_hash_walk walk;
struct spu_queue *qp;
unsigned long flags;
int err = -ENODEV;
int nbytes, cpu;
/* The total effective length of the operation may not
* exceed 2^16.
*/
if (unlikely(req->nbytes > (1 << 16))) {
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_digest(&rctx->fallback_req);
}
nbytes = crypto_hash_walk_first(req, &walk);
cpu = get_cpu();
qp = cpu_to_cwq[cpu];
if (!qp)
goto out;
spin_lock_irqsave(&qp->lock, flags);
/* XXX can do better, improve this later by doing a by-hand scatterlist
* XXX walk, etc.
*/
ent = qp->q + qp->tail;
ent->control = control_word_base(nbytes, auth_key_len, 0,
auth_type, digest_size,
false, true, false, false,
OPCODE_INPLACE_BIT |
OPCODE_AUTH_MAC);
ent->src_addr = __pa(walk.data);
ent->auth_key_addr = auth_key;
ent->auth_iv_addr = __pa(hash_loc);
ent->final_auth_state_addr = 0UL;
ent->enc_key_addr = 0UL;
ent->enc_iv_addr = 0UL;
ent->dest_addr = __pa(hash_loc);
nbytes = crypto_hash_walk_done(&walk, 0);
while (nbytes > 0) {
ent = spu_queue_next(qp, ent);
ent->control = (nbytes - 1);
ent->src_addr = __pa(walk.data);
ent->auth_key_addr = 0UL;
ent->auth_iv_addr = 0UL;
ent->final_auth_state_addr = 0UL;
ent->enc_key_addr = 0UL;
ent->enc_iv_addr = 0UL;
ent->dest_addr = 0UL;
nbytes = crypto_hash_walk_done(&walk, 0);
}
ent->control |= CONTROL_END_OF_BLOCK;
if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
err = -EINVAL;
else
err = 0;
spin_unlock_irqrestore(&qp->lock, flags);
if (!err)
memcpy(req->result, hash_loc, result_size);
out:
put_cpu();
return err;
}
static int n2_hash_async_digest(struct ahash_request *req)
{
struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
int ds;
ds = n2alg->digest_size;
if (unlikely(req->nbytes == 0)) {
memcpy(req->result, n2alg->hash_zero, ds);
return 0;
}
memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
return n2_do_async_digest(req, n2alg->auth_type,
n2alg->hw_op_hashsz, ds,
&rctx->u, 0UL, 0);
}
static int n2_hmac_async_digest(struct ahash_request *req)
{
struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
int ds;
ds = n2alg->derived.digest_size;
if (unlikely(req->nbytes == 0) ||
unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_digest(&rctx->fallback_req);
}
memcpy(&rctx->u, n2alg->derived.hash_init,
n2alg->derived.hw_op_hashsz);
return n2_do_async_digest(req, n2alg->derived.hmac_type,
n2alg->derived.hw_op_hashsz, ds,
&rctx->u,
__pa(&ctx->hash_key),
ctx->hash_key_len);
}
struct n2_skcipher_context {
int key_len;
int enc_type;
union {
u8 aes[AES_MAX_KEY_SIZE];
u8 des[DES_KEY_SIZE];
u8 des3[3 * DES_KEY_SIZE];
} key;
};
#define N2_CHUNK_ARR_LEN 16
struct n2_crypto_chunk {
struct list_head entry;
unsigned long iv_paddr : 44;
unsigned long arr_len : 20;
unsigned long dest_paddr;
unsigned long dest_final;
struct {
unsigned long src_paddr : 44;
unsigned long src_len : 20;
} arr[N2_CHUNK_ARR_LEN];
};
struct n2_request_context {
struct skcipher_walk walk;
struct list_head chunk_list;
struct n2_crypto_chunk chunk;
u8 temp_iv[16];
};
/* The SPU allows some level of flexibility for partial cipher blocks
* being specified in a descriptor.
*
* It merely requires that every descriptor's length field is at least
* as large as the cipher block size. This means that a cipher block
* can span at most 2 descriptors. However, this does not allow a
* partial block to span into the final descriptor as that would
* violate the rule (since every descriptor's length must be at lest
* the block size). So, for example, assuming an 8 byte block size:
*
* 0xe --> 0xa --> 0x8
*
* is a valid length sequence, whereas:
*
* 0xe --> 0xb --> 0x7
*
* is not a valid sequence.
*/
struct n2_skcipher_alg {
struct list_head entry;
u8 enc_type;
struct skcipher_alg skcipher;
};
static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
return container_of(alg, struct n2_skcipher_alg, skcipher);
}
struct n2_skcipher_request_context {
struct skcipher_walk walk;
};
static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
switch (keylen) {
case AES_KEYSIZE_128:
ctx->enc_type |= ENC_TYPE_ALG_AES128;
break;
case AES_KEYSIZE_192:
ctx->enc_type |= ENC_TYPE_ALG_AES192;
break;
case AES_KEYSIZE_256:
ctx->enc_type |= ENC_TYPE_ALG_AES256;
break;
default:
return -EINVAL;
}
ctx->key_len = keylen;
memcpy(ctx->key.aes, key, keylen);
return 0;
}
static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
int err;
err = verify_skcipher_des_key(skcipher, key);
if (err)
return err;
ctx->enc_type = n2alg->enc_type;
ctx->key_len = keylen;
memcpy(ctx->key.des, key, keylen);
return 0;
}
static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
int err;
err = verify_skcipher_des3_key(skcipher, key);
if (err)
return err;
ctx->enc_type = n2alg->enc_type;
ctx->key_len = keylen;
memcpy(ctx->key.des3, key, keylen);
return 0;
}
static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
{
int this_len = nbytes;
this_len -= (nbytes & (block_size - 1));
return this_len > (1 << 16) ? (1 << 16) : this_len;
}
static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
struct n2_crypto_chunk *cp,
struct spu_queue *qp, bool encrypt)
{
struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
struct cwq_initial_entry *ent;
bool in_place;
int i;
ent = spu_queue_alloc(qp, cp->arr_len);
if (!ent) {
pr_info("queue_alloc() of %d fails\n",
cp->arr_len);
return -EBUSY;
}
in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
ent->control = control_word_base(cp->arr[0].src_len,
0, ctx->enc_type, 0, 0,
false, true, false, encrypt,
OPCODE_ENCRYPT |
(in_place ? OPCODE_INPLACE_BIT : 0));
ent->src_addr = cp->arr[0].src_paddr;
ent->auth_key_addr = 0UL;
ent->auth_iv_addr = 0UL;
ent->final_auth_state_addr = 0UL;
ent->enc_key_addr = __pa(&ctx->key);
ent->enc_iv_addr = cp->iv_paddr;
ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
for (i = 1; i < cp->arr_len; i++) {
ent = spu_queue_next(qp, ent);
ent->control = cp->arr[i].src_len - 1;
ent->src_addr = cp->arr[i].src_paddr;
ent->auth_key_addr = 0UL;
ent->auth_iv_addr = 0UL;
ent->final_auth_state_addr = 0UL;
ent->enc_key_addr = 0UL;
ent->enc_iv_addr = 0UL;
ent->dest_addr = 0UL;
}
ent->control |= CONTROL_END_OF_BLOCK;
return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
}
static int n2_compute_chunks(struct skcipher_request *req)
{
struct n2_request_context *rctx = skcipher_request_ctx(req);
struct skcipher_walk *walk = &rctx->walk;
struct n2_crypto_chunk *chunk;
unsigned long dest_prev;
unsigned int tot_len;
bool prev_in_place;
int err, nbytes;
err = skcipher_walk_async(walk, req);
if (err)
return err;
INIT_LIST_HEAD(&rctx->chunk_list);
chunk = &rctx->chunk;
INIT_LIST_HEAD(&chunk->entry);
chunk->iv_paddr = 0UL;
chunk->arr_len = 0;
chunk->dest_paddr = 0UL;
prev_in_place = false;
dest_prev = ~0UL;
tot_len = 0;
while ((nbytes = walk->nbytes) != 0) {
unsigned long dest_paddr, src_paddr;
bool in_place;
int this_len;
src_paddr = (page_to_phys(walk->src.phys.page) +
walk->src.phys.offset);
dest_paddr = (page_to_phys(walk->dst.phys.page) +
walk->dst.phys.offset);
in_place = (src_paddr == dest_paddr);
this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
if (chunk->arr_len != 0) {
if (in_place != prev_in_place ||
(!prev_in_place &&
dest_paddr != dest_prev) ||
chunk->arr_len == N2_CHUNK_ARR_LEN ||
tot_len + this_len > (1 << 16)) {
chunk->dest_final = dest_prev;
list_add_tail(&chunk->entry,
&rctx->chunk_list);
chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
if (!chunk) {
err = -ENOMEM;
break;
}
INIT_LIST_HEAD(&chunk->entry);
}
}
if (chunk->arr_len == 0) {
chunk->dest_paddr = dest_paddr;
tot_len = 0;
}
chunk->arr[chunk->arr_len].src_paddr = src_paddr;
chunk->arr[chunk->arr_len].src_len = this_len;
chunk->arr_len++;
dest_prev = dest_paddr + this_len;
prev_in_place = in_place;
tot_len += this_len;
err = skcipher_walk_done(walk, nbytes - this_len);
if (err)
break;
}
if (!err && chunk->arr_len != 0) {
chunk->dest_final = dest_prev;
list_add_tail(&chunk->entry, &rctx->chunk_list);
}
return err;
}
static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
{
struct n2_request_context *rctx = skcipher_request_ctx(req);
struct n2_crypto_chunk *c, *tmp;
if (final_iv)
memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
list_del(&c->entry);
if (unlikely(c != &rctx->chunk))
kfree(c);
}
}
static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
{
struct n2_request_context *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
int err = n2_compute_chunks(req);
struct n2_crypto_chunk *c, *tmp;
unsigned long flags, hv_ret;
struct spu_queue *qp;
if (err)
return err;
qp = cpu_to_cwq[get_cpu()];
err = -ENODEV;
if (!qp)
goto out;
spin_lock_irqsave(&qp->lock, flags);
list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
err = __n2_crypt_chunk(tfm, c, qp, encrypt);
if (err)
break;
list_del(&c->entry);
if (unlikely(c != &rctx->chunk))
kfree(c);
}
if (!err) {
hv_ret = wait_for_tail(qp);
if (hv_ret != HV_EOK)
err = -EINVAL;
}
spin_unlock_irqrestore(&qp->lock, flags);
out:
put_cpu();
n2_chunk_complete(req, NULL);
return err;
}
static int n2_encrypt_ecb(struct skcipher_request *req)
{
return n2_do_ecb(req, true);
}
static int n2_decrypt_ecb(struct skcipher_request *req)
{
return n2_do_ecb(req, false);
}
static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
{
struct n2_request_context *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
unsigned long flags, hv_ret, iv_paddr;
int err = n2_compute_chunks(req);
struct n2_crypto_chunk *c, *tmp;
struct spu_queue *qp;
void *final_iv_addr;
final_iv_addr = NULL;
if (err)
return err;
qp = cpu_to_cwq[get_cpu()];
err = -ENODEV;
if (!qp)
goto out;
spin_lock_irqsave(&qp->lock, flags);
if (encrypt) {
iv_paddr = __pa(rctx->walk.iv);
list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
entry) {
c->iv_paddr = iv_paddr;
err = __n2_crypt_chunk(tfm, c, qp, true);
if (err)
break;
iv_paddr = c->dest_final - rctx->walk.blocksize;
list_del(&c->entry);
if (unlikely(c != &rctx->chunk))
kfree(c);
}
final_iv_addr = __va(iv_paddr);
} else {
list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
entry) {
if (c == &rctx->chunk) {
iv_paddr = __pa(rctx->walk.iv);
} else {
iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
tmp->arr[tmp->arr_len-1].src_len -
rctx->walk.blocksize);
}
if (!final_iv_addr) {
unsigned long pa;
pa = (c->arr[c->arr_len-1].src_paddr +
c->arr[c->arr_len-1].src_len -
rctx->walk.blocksize);
final_iv_addr = rctx->temp_iv;
memcpy(rctx->temp_iv, __va(pa),
rctx->walk.blocksize);
}
c->iv_paddr = iv_paddr;
err = __n2_crypt_chunk(tfm, c, qp, false);
if (err)
break;
list_del(&c->entry);
if (unlikely(c != &rctx->chunk))
kfree(c);
}
}
if (!err) {
hv_ret = wait_for_tail(qp);
if (hv_ret != HV_EOK)
err = -EINVAL;
}
spin_unlock_irqrestore(&qp->lock, flags);
out:
put_cpu();
n2_chunk_complete(req, err ? NULL : final_iv_addr);
return err;
}
static int n2_encrypt_chaining(struct skcipher_request *req)
{
return n2_do_chaining(req, true);
}
static int n2_decrypt_chaining(struct skcipher_request *req)
{
return n2_do_chaining(req, false);
}
struct n2_skcipher_tmpl {
const char *name;
const char *drv_name;
u8 block_size;
u8 enc_type;
struct skcipher_alg skcipher;
};
static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
/* DES: ECB CBC and CFB are supported */
{ .name = "ecb(des)",
.drv_name = "ecb-des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_DES |
ENC_TYPE_CHAINING_ECB),
.skcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = n2_des_setkey,
.encrypt = n2_encrypt_ecb,
.decrypt = n2_decrypt_ecb,
},
},
{ .name = "cbc(des)",
.drv_name = "cbc-des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_DES |
ENC_TYPE_CHAINING_CBC),
.skcipher = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = n2_des_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
{ .name = "cfb(des)",
.drv_name = "cfb-des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_DES |
ENC_TYPE_CHAINING_CFB),
.skcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = n2_des_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
/* 3DES: ECB CBC and CFB are supported */
{ .name = "ecb(des3_ede)",
.drv_name = "ecb-3des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_3DES |
ENC_TYPE_CHAINING_ECB),
.skcipher = {
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.setkey = n2_3des_setkey,
.encrypt = n2_encrypt_ecb,
.decrypt = n2_decrypt_ecb,
},
},
{ .name = "cbc(des3_ede)",
.drv_name = "cbc-3des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_3DES |
ENC_TYPE_CHAINING_CBC),
.skcipher = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.setkey = n2_3des_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
{ .name = "cfb(des3_ede)",
.drv_name = "cfb-3des",
.block_size = DES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_3DES |
ENC_TYPE_CHAINING_CFB),
.skcipher = {
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.setkey = n2_3des_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
/* AES: ECB CBC and CTR are supported */
{ .name = "ecb(aes)",
.drv_name = "ecb-aes",
.block_size = AES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_AES128 |
ENC_TYPE_CHAINING_ECB),
.skcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = n2_aes_setkey,
.encrypt = n2_encrypt_ecb,
.decrypt = n2_decrypt_ecb,
},
},
{ .name = "cbc(aes)",
.drv_name = "cbc-aes",
.block_size = AES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_AES128 |
ENC_TYPE_CHAINING_CBC),
.skcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = n2_aes_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_decrypt_chaining,
},
},
{ .name = "ctr(aes)",
.drv_name = "ctr-aes",
.block_size = AES_BLOCK_SIZE,
.enc_type = (ENC_TYPE_ALG_AES128 |
ENC_TYPE_CHAINING_COUNTER),
.skcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = n2_aes_setkey,
.encrypt = n2_encrypt_chaining,
.decrypt = n2_encrypt_chaining,
},
},
};
#define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
static LIST_HEAD(skcipher_algs);
struct n2_hash_tmpl {
const char *name;
const u8 *hash_zero;
const u8 *hash_init;
u8 hw_op_hashsz;
u8 digest_size;
u8 statesize;
u8 block_size;
u8 auth_type;
u8 hmac_type;
};
static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
cpu_to_le32(MD5_H0),
cpu_to_le32(MD5_H1),
cpu_to_le32(MD5_H2),
cpu_to_le32(MD5_H3),
};
static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
};
static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
};
static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
};
static const struct n2_hash_tmpl hash_tmpls[] = {
{ .name = "md5",
.hash_zero = md5_zero_message_hash,
.hash_init = (u8 *)n2_md5_init,
.auth_type = AUTH_TYPE_MD5,
.hmac_type = AUTH_TYPE_HMAC_MD5,
.hw_op_hashsz = MD5_DIGEST_SIZE,
.digest_size = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
.block_size = MD5_HMAC_BLOCK_SIZE },
{ .name = "sha1",
.hash_zero = sha1_zero_message_hash,
.hash_init = (u8 *)n2_sha1_init,
.auth_type = AUTH_TYPE_SHA1,
.hmac_type = AUTH_TYPE_HMAC_SHA1,
.hw_op_hashsz = SHA1_DIGEST_SIZE,
.digest_size = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.block_size = SHA1_BLOCK_SIZE },
{ .name = "sha256",
.hash_zero = sha256_zero_message_hash,
.hash_init = (u8 *)n2_sha256_init,
.auth_type = AUTH_TYPE_SHA256,
.hmac_type = AUTH_TYPE_HMAC_SHA256,
.hw_op_hashsz = SHA256_DIGEST_SIZE,
.digest_size = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.block_size = SHA256_BLOCK_SIZE },
{ .name = "sha224",
.hash_zero = sha224_zero_message_hash,
.hash_init = (u8 *)n2_sha224_init,
.auth_type = AUTH_TYPE_SHA256,
.hmac_type = AUTH_TYPE_RESERVED,
.hw_op_hashsz = SHA256_DIGEST_SIZE,
.digest_size = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.block_size = SHA224_BLOCK_SIZE },
};
#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
static LIST_HEAD(ahash_algs);
static LIST_HEAD(hmac_algs);
static int algs_registered;
static void __n2_unregister_algs(void)
{
struct n2_skcipher_alg *skcipher, *skcipher_tmp;
struct n2_ahash_alg *alg, *alg_tmp;
struct n2_hmac_alg *hmac, *hmac_tmp;
list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
crypto_unregister_skcipher(&skcipher->skcipher);
list_del(&skcipher->entry);
kfree(skcipher);
}
list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
crypto_unregister_ahash(&hmac->derived.alg);
list_del(&hmac->derived.entry);
kfree(hmac);
}
list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
crypto_unregister_ahash(&alg->alg);
list_del(&alg->entry);
kfree(alg);
}
}
static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
{
crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
return 0;
}
static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
{
struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
struct skcipher_alg *alg;
int err;
if (!p)
return -ENOMEM;
alg = &p->skcipher;
*alg = tmpl->skcipher;
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
alg->base.cra_priority = N2_CRA_PRIORITY;
alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY;
alg->base.cra_blocksize = tmpl->block_size;
p->enc_type = tmpl->enc_type;
alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
alg->base.cra_module = THIS_MODULE;
alg->init = n2_skcipher_init_tfm;
list_add(&p->entry, &skcipher_algs);
err = crypto_register_skcipher(alg);
if (err) {
pr_err("%s alg registration failed\n", alg->base.cra_name);
list_del(&p->entry);
kfree(p);
} else {
pr_info("%s alg registered\n", alg->base.cra_name);
}
return err;
}
static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
{
struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
struct ahash_alg *ahash;
struct crypto_alg *base;
int err;
if (!p)
return -ENOMEM;
p->child_alg = n2ahash->alg.halg.base.cra_name;
memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
INIT_LIST_HEAD(&p->derived.entry);
ahash = &p->derived.alg;
ahash->digest = n2_hmac_async_digest;
ahash->setkey = n2_hmac_async_setkey;
base = &ahash->halg.base;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
base->cra_init = n2_hmac_cra_init;
base->cra_exit = n2_hmac_cra_exit;
list_add(&p->derived.entry, &hmac_algs);
err = crypto_register_ahash(ahash);
if (err) {
pr_err("%s alg registration failed\n", base->cra_name);
list_del(&p->derived.entry);
kfree(p);
} else {
pr_info("%s alg registered\n", base->cra_name);
}
return err;
}
static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
{
struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
struct hash_alg_common *halg;
struct crypto_alg *base;
struct ahash_alg *ahash;
int err;
if (!p)
return -ENOMEM;
p->hash_zero = tmpl->hash_zero;
p->hash_init = tmpl->hash_init;
p->auth_type = tmpl->auth_type;
p->hmac_type = tmpl->hmac_type;
p->hw_op_hashsz = tmpl->hw_op_hashsz;
p->digest_size = tmpl->digest_size;
ahash = &p->alg;
ahash->init = n2_hash_async_init;
ahash->update = n2_hash_async_update;
ahash->final = n2_hash_async_final;
ahash->finup = n2_hash_async_finup;
ahash->digest = n2_hash_async_digest;
ahash->export = n2_hash_async_noexport;
ahash->import = n2_hash_async_noimport;
halg = &ahash->halg;
halg->digestsize = tmpl->digest_size;
halg->statesize = tmpl->statesize;
base = &halg->base;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
base->cra_priority = N2_CRA_PRIORITY;
base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK;
base->cra_blocksize = tmpl->block_size;
base->cra_ctxsize = sizeof(struct n2_hash_ctx);
base->cra_module = THIS_MODULE;
base->cra_init = n2_hash_cra_init;
base->cra_exit = n2_hash_cra_exit;
list_add(&p->entry, &ahash_algs);
err = crypto_register_ahash(ahash);
if (err) {
pr_err("%s alg registration failed\n", base->cra_name);
list_del(&p->entry);
kfree(p);
} else {
pr_info("%s alg registered\n", base->cra_name);
}
if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
err = __n2_register_one_hmac(p);
return err;
}
static int n2_register_algs(void)
{
int i, err = 0;
mutex_lock(&spu_lock);
if (algs_registered++)
goto out;
for (i = 0; i < NUM_HASH_TMPLS; i++) {
err = __n2_register_one_ahash(&hash_tmpls[i]);
if (err) {
__n2_unregister_algs();
goto out;
}
}
for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
if (err) {
__n2_unregister_algs();
goto out;
}
}
out:
mutex_unlock(&spu_lock);
return err;
}
static void n2_unregister_algs(void)
{
mutex_lock(&spu_lock);
if (!--algs_registered)
__n2_unregister_algs();
mutex_unlock(&spu_lock);
}
/* To map CWQ queues to interrupt sources, the hypervisor API provides
* a devino. This isn't very useful to us because all of the
* interrupts listed in the device_node have been translated to
* Linux virtual IRQ cookie numbers.
*
* So we have to back-translate, going through the 'intr' and 'ino'
* property tables of the n2cp MDESC node, matching it with the OF
* 'interrupts' property entries, in order to figure out which
* devino goes to which already-translated IRQ.
*/
static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
unsigned long dev_ino)
{
const unsigned int *dev_intrs;
unsigned int intr;
int i;
for (i = 0; i < ip->num_intrs; i++) {
if (ip->ino_table[i].ino == dev_ino)
break;
}
if (i == ip->num_intrs)
return -ENODEV;
intr = ip->ino_table[i].intr;
dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
if (!dev_intrs)
return -ENODEV;
for (i = 0; i < dev->archdata.num_irqs; i++) {
if (dev_intrs[i] == intr)
return i;
}
return -ENODEV;
}
static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
const char *irq_name, struct spu_queue *p,
irq_handler_t handler)
{
unsigned long herr;
int index;
herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
if (herr)
return -EINVAL;
index = find_devino_index(dev, ip, p->devino);
if (index < 0)
return index;
p->irq = dev->archdata.irqs[index];
sprintf(p->irq_name, "%s-%d", irq_name, index);
return request_irq(p->irq, handler, 0, p->irq_name, p);
}
static struct kmem_cache *queue_cache[2];
static void *new_queue(unsigned long q_type)
{
return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
}
static void free_queue(void *p, unsigned long q_type)
{
kmem_cache_free(queue_cache[q_type - 1], p);
}
static int queue_cache_init(void)
{
if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
queue_cache[HV_NCS_QTYPE_MAU - 1] =
kmem_cache_create("mau_queue",
(MAU_NUM_ENTRIES *
MAU_ENTRY_SIZE),
MAU_ENTRY_SIZE, 0, NULL);
if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
return -ENOMEM;
if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
queue_cache[HV_NCS_QTYPE_CWQ - 1] =
kmem_cache_create("cwq_queue",
(CWQ_NUM_ENTRIES *
CWQ_ENTRY_SIZE),
CWQ_ENTRY_SIZE, 0, NULL);
if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
return -ENOMEM;
}
return 0;
}
static void queue_cache_destroy(void)
{
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
}
static long spu_queue_register_workfn(void *arg)
{
struct spu_qreg *qr = arg;
struct spu_queue *p = qr->queue;
unsigned long q_type = qr->type;
unsigned long hv_ret;
hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
CWQ_NUM_ENTRIES, &p->qhandle);
if (!hv_ret)
sun4v_ncs_sethead_marker(p->qhandle, 0);
return hv_ret ? -EINVAL : 0;
}
static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
{
int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
struct spu_qreg qr = { .queue = p, .type = q_type };
return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
}
static int spu_queue_setup(struct spu_queue *p)
{
int err;
p->q = new_queue(p->q_type);
if (!p->q)
return -ENOMEM;
err = spu_queue_register(p, p->q_type);
if (err) {
free_queue(p->q, p->q_type);
p->q = NULL;
}
return err;
}
static void spu_queue_destroy(struct spu_queue *p)
{
unsigned long hv_ret;
if (!p->q)
return;
hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
if (!hv_ret)
free_queue(p->q, p->q_type);
}
static void spu_list_destroy(struct list_head *list)
{
struct spu_queue *p, *n;
list_for_each_entry_safe(p, n, list, list) {
int i;
for (i = 0; i < NR_CPUS; i++) {
if (cpu_to_cwq[i] == p)
cpu_to_cwq[i] = NULL;
}
if (p->irq) {
free_irq(p->irq, p);
p->irq = 0;
}
spu_queue_destroy(p);
list_del(&p->list);
kfree(p);
}
}
/* Walk the backward arcs of a CWQ 'exec-unit' node,
* gathering cpu membership information.
*/
static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
struct platform_device *dev,
u64 node, struct spu_queue *p,
struct spu_queue **table)
{
u64 arc;
mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
u64 tgt = mdesc_arc_target(mdesc, arc);
const char *name = mdesc_node_name(mdesc, tgt);
const u64 *id;
if (strcmp(name, "cpu"))
continue;
id = mdesc_get_property(mdesc, tgt, "id", NULL);
if (table[*id] != NULL) {
dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
dev->dev.of_node);
return -EINVAL;
}
cpumask_set_cpu(*id, &p->sharing);
table[*id] = p;
}
return 0;
}
/* Process an 'exec-unit' MDESC node of type 'cwq'. */
static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
struct platform_device *dev, struct mdesc_handle *mdesc,
u64 node, const char *iname, unsigned long q_type,
irq_handler_t handler, struct spu_queue **table)
{
struct spu_queue *p;
int err;
p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
if (!p) {
dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
dev->dev.of_node);
return -ENOMEM;
}
cpumask_clear(&p->sharing);
spin_lock_init(&p->lock);
p->q_type = q_type;
INIT_LIST_HEAD(&p->jobs);
list_add(&p->list, list);
err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
if (err)
return err;
err = spu_queue_setup(p);
if (err)
return err;
return spu_map_ino(dev, ip, iname, p, handler);
}
static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
struct spu_mdesc_info *ip, struct list_head *list,
const char *exec_name, unsigned long q_type,
irq_handler_t handler, struct spu_queue **table)
{
int err = 0;
u64 node;
mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
const char *type;
type = mdesc_get_property(mdesc, node, "type", NULL);
if (!type || strcmp(type, exec_name))
continue;
err = handle_exec_unit(ip, list, dev, mdesc, node,
exec_name, q_type, handler, table);
if (err) {
spu_list_destroy(list);
break;
}
}
return err;
}
static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
struct spu_mdesc_info *ip)
{
const u64 *ino;
int ino_len;
int i;
ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
if (!ino) {
printk("NO 'ino'\n");
return -ENODEV;
}
ip->num_intrs = ino_len / sizeof(u64);
ip->ino_table = kzalloc((sizeof(struct ino_blob) *
ip->num_intrs),
GFP_KERNEL);
if (!ip->ino_table)
return -ENOMEM;
for (i = 0; i < ip->num_intrs; i++) {
struct ino_blob *b = &ip->ino_table[i];
b->intr = i + 1;
b->ino = ino[i];
}
return 0;
}
static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
struct platform_device *dev,
struct spu_mdesc_info *ip,
const char *node_name)
{
u64 node, reg;
if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0)
return -ENODEV;
mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
const char *name;
const u64 *chdl;
name = mdesc_get_property(mdesc, node, "name", NULL);
if (!name || strcmp(name, node_name))
continue;
chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
if (!chdl || (*chdl != reg))
continue;
ip->cfg_handle = *chdl;
return get_irq_props(mdesc, node, ip);
}
return -ENODEV;
}
static unsigned long n2_spu_hvapi_major;
static unsigned long n2_spu_hvapi_minor;
static int n2_spu_hvapi_register(void)
{
int err;
n2_spu_hvapi_major = 2;
n2_spu_hvapi_minor = 0;
err = sun4v_hvapi_register(HV_GRP_NCS,
n2_spu_hvapi_major,
&n2_spu_hvapi_minor);
if (!err)
pr_info("Registered NCS HVAPI version %lu.%lu\n",
n2_spu_hvapi_major,
n2_spu_hvapi_minor);
return err;
}
static void n2_spu_hvapi_unregister(void)
{
sun4v_hvapi_unregister(HV_GRP_NCS);
}
static int global_ref;
static int grab_global_resources(void)
{
int err = 0;
mutex_lock(&spu_lock);
if (global_ref++)
goto out;
err = n2_spu_hvapi_register();
if (err)
goto out;
err = queue_cache_init();
if (err)
goto out_hvapi_release;
err = -ENOMEM;
cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
GFP_KERNEL);
if (!cpu_to_cwq)
goto out_queue_cache_destroy;
cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
GFP_KERNEL);
if (!cpu_to_mau)
goto out_free_cwq_table;
err = 0;
out:
if (err)
global_ref--;
mutex_unlock(&spu_lock);
return err;
out_free_cwq_table:
kfree(cpu_to_cwq);
cpu_to_cwq = NULL;
out_queue_cache_destroy:
queue_cache_destroy();
out_hvapi_release:
n2_spu_hvapi_unregister();
goto out;
}
static void release_global_resources(void)
{
mutex_lock(&spu_lock);
if (!--global_ref) {
kfree(cpu_to_cwq);
cpu_to_cwq = NULL;
kfree(cpu_to_mau);
cpu_to_mau = NULL;
queue_cache_destroy();
n2_spu_hvapi_unregister();
}
mutex_unlock(&spu_lock);
}
static struct n2_crypto *alloc_n2cp(void)
{
struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
if (np)
INIT_LIST_HEAD(&np->cwq_list);
return np;
}
static void free_n2cp(struct n2_crypto *np)
{
kfree(np->cwq_info.ino_table);
np->cwq_info.ino_table = NULL;
kfree(np);
}
static void n2_spu_driver_version(void)
{
static int n2_spu_version_printed;
if (n2_spu_version_printed++ == 0)
pr_info("%s", version);
}
static int n2_crypto_probe(struct platform_device *dev)
{
struct mdesc_handle *mdesc;
struct n2_crypto *np;
int err;
n2_spu_driver_version();
pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
np = alloc_n2cp();
if (!np) {
dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
dev->dev.of_node);
return -ENOMEM;
}
err = grab_global_resources();
if (err) {
dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
dev->dev.of_node);
goto out_free_n2cp;
}
mdesc = mdesc_grab();
if (!mdesc) {
dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
dev->dev.of_node);
err = -ENODEV;
goto out_free_global;
}
err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
if (err) {
dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
dev->dev.of_node);
mdesc_release(mdesc);
goto out_free_global;
}
err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
"cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
cpu_to_cwq);
mdesc_release(mdesc);
if (err) {
dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
dev->dev.of_node);
goto out_free_global;
}
err = n2_register_algs();
if (err) {
dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
dev->dev.of_node);
goto out_free_spu_list;
}
dev_set_drvdata(&dev->dev, np);
return 0;
out_free_spu_list:
spu_list_destroy(&np->cwq_list);
out_free_global:
release_global_resources();
out_free_n2cp:
free_n2cp(np);
return err;
}
static int n2_crypto_remove(struct platform_device *dev)
{
struct n2_crypto *np = dev_get_drvdata(&dev->dev);
n2_unregister_algs();
spu_list_destroy(&np->cwq_list);
release_global_resources();
free_n2cp(np);
return 0;
}
static struct n2_mau *alloc_ncp(void)
{
struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
if (mp)
INIT_LIST_HEAD(&mp->mau_list);
return mp;
}
static void free_ncp(struct n2_mau *mp)
{
kfree(mp->mau_info.ino_table);
mp->mau_info.ino_table = NULL;
kfree(mp);
}
static int n2_mau_probe(struct platform_device *dev)
{
struct mdesc_handle *mdesc;
struct n2_mau *mp;
int err;
n2_spu_driver_version();
pr_info("Found NCP at %pOF\n", dev->dev.of_node);
mp = alloc_ncp();
if (!mp) {
dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
dev->dev.of_node);
return -ENOMEM;
}
err = grab_global_resources();
if (err) {
dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
dev->dev.of_node);
goto out_free_ncp;
}
mdesc = mdesc_grab();
if (!mdesc) {
dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
dev->dev.of_node);
err = -ENODEV;
goto out_free_global;
}
err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
if (err) {
dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
dev->dev.of_node);
mdesc_release(mdesc);
goto out_free_global;
}
err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
"mau", HV_NCS_QTYPE_MAU, mau_intr,
cpu_to_mau);
mdesc_release(mdesc);
if (err) {
dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
dev->dev.of_node);
goto out_free_global;
}
dev_set_drvdata(&dev->dev, mp);
return 0;
out_free_global:
release_global_resources();
out_free_ncp:
free_ncp(mp);
return err;
}
static int n2_mau_remove(struct platform_device *dev)
{
struct n2_mau *mp = dev_get_drvdata(&dev->dev);
spu_list_destroy(&mp->mau_list);
release_global_resources();
free_ncp(mp);
return 0;
}
static const struct of_device_id n2_crypto_match[] = {
{
.name = "n2cp",
.compatible = "SUNW,n2-cwq",
},
{
.name = "n2cp",
.compatible = "SUNW,vf-cwq",
},
{
.name = "n2cp",
.compatible = "SUNW,kt-cwq",
},
{},
};
MODULE_DEVICE_TABLE(of, n2_crypto_match);
static struct platform_driver n2_crypto_driver = {
.driver = {
.name = "n2cp",
.of_match_table = n2_crypto_match,
},
.probe = n2_crypto_probe,
.remove = n2_crypto_remove,
};
static const struct of_device_id n2_mau_match[] = {
{
.name = "ncp",
.compatible = "SUNW,n2-mau",
},
{
.name = "ncp",
.compatible = "SUNW,vf-mau",
},
{
.name = "ncp",
.compatible = "SUNW,kt-mau",
},
{},
};
MODULE_DEVICE_TABLE(of, n2_mau_match);
static struct platform_driver n2_mau_driver = {
.driver = {
.name = "ncp",
.of_match_table = n2_mau_match,
},
.probe = n2_mau_probe,
.remove = n2_mau_remove,
};
static struct platform_driver * const drivers[] = {
&n2_crypto_driver,
&n2_mau_driver,
};
static int __init n2_init(void)
{
return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
}
static void __exit n2_exit(void)
{
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
}
module_init(n2_init);
module_exit(n2_exit);
| linux-master | drivers/crypto/n2_core.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/* Copyright (C) 2004-2006, Advanced Micro Devices, Inc.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/crypto.h>
#include <linux/spinlock.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/skcipher.h>
#include <linux/io.h>
#include <linux/delay.h>
#include "geode-aes.h"
/* Static structures */
static void __iomem *_iobase;
static DEFINE_SPINLOCK(lock);
/* Write a 128 bit field (either a writable key or IV) */
static inline void
_writefield(u32 offset, const void *value)
{
int i;
for (i = 0; i < 4; i++)
iowrite32(((const u32 *) value)[i], _iobase + offset + (i * 4));
}
/* Read a 128 bit field (either a writable key or IV) */
static inline void
_readfield(u32 offset, void *value)
{
int i;
for (i = 0; i < 4; i++)
((u32 *) value)[i] = ioread32(_iobase + offset + (i * 4));
}
static int
do_crypt(const void *src, void *dst, u32 len, u32 flags)
{
u32 status;
u32 counter = AES_OP_TIMEOUT;
iowrite32(virt_to_phys((void *)src), _iobase + AES_SOURCEA_REG);
iowrite32(virt_to_phys(dst), _iobase + AES_DSTA_REG);
iowrite32(len, _iobase + AES_LENA_REG);
/* Start the operation */
iowrite32(AES_CTRL_START | flags, _iobase + AES_CTRLA_REG);
do {
status = ioread32(_iobase + AES_INTR_REG);
cpu_relax();
} while (!(status & AES_INTRA_PENDING) && --counter);
/* Clear the event */
iowrite32((status & 0xFF) | AES_INTRA_PENDING, _iobase + AES_INTR_REG);
return counter ? 0 : 1;
}
static void
geode_aes_crypt(const struct geode_aes_tfm_ctx *tctx, const void *src,
void *dst, u32 len, u8 *iv, int mode, int dir)
{
u32 flags = 0;
unsigned long iflags;
int ret;
/* If the source and destination is the same, then
* we need to turn on the coherent flags, otherwise
* we don't need to worry
*/
flags |= (AES_CTRL_DCA | AES_CTRL_SCA);
if (dir == AES_DIR_ENCRYPT)
flags |= AES_CTRL_ENCRYPT;
/* Start the critical section */
spin_lock_irqsave(&lock, iflags);
if (mode == AES_MODE_CBC) {
flags |= AES_CTRL_CBC;
_writefield(AES_WRITEIV0_REG, iv);
}
flags |= AES_CTRL_WRKEY;
_writefield(AES_WRITEKEY0_REG, tctx->key);
ret = do_crypt(src, dst, len, flags);
BUG_ON(ret);
if (mode == AES_MODE_CBC)
_readfield(AES_WRITEIV0_REG, iv);
spin_unlock_irqrestore(&lock, iflags);
}
/* CRYPTO-API Functions */
static int geode_setkey_cip(struct crypto_tfm *tfm, const u8 *key,
unsigned int len)
{
struct geode_aes_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
tctx->keylen = len;
if (len == AES_KEYSIZE_128) {
memcpy(tctx->key, key, len);
return 0;
}
if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256)
/* not supported at all */
return -EINVAL;
/*
* The requested key size is not supported by HW, do a fallback
*/
tctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
tctx->fallback.cip->base.crt_flags |=
(tfm->crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_cipher_setkey(tctx->fallback.cip, key, len);
}
static int geode_setkey_skcipher(struct crypto_skcipher *tfm, const u8 *key,
unsigned int len)
{
struct geode_aes_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
tctx->keylen = len;
if (len == AES_KEYSIZE_128) {
memcpy(tctx->key, key, len);
return 0;
}
if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256)
/* not supported at all */
return -EINVAL;
/*
* The requested key size is not supported by HW, do a fallback
*/
crypto_skcipher_clear_flags(tctx->fallback.skcipher,
CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(tctx->fallback.skcipher,
crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
return crypto_skcipher_setkey(tctx->fallback.skcipher, key, len);
}
static void
geode_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
const struct geode_aes_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
if (unlikely(tctx->keylen != AES_KEYSIZE_128)) {
crypto_cipher_encrypt_one(tctx->fallback.cip, out, in);
return;
}
geode_aes_crypt(tctx, in, out, AES_BLOCK_SIZE, NULL,
AES_MODE_ECB, AES_DIR_ENCRYPT);
}
static void
geode_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
const struct geode_aes_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
if (unlikely(tctx->keylen != AES_KEYSIZE_128)) {
crypto_cipher_decrypt_one(tctx->fallback.cip, out, in);
return;
}
geode_aes_crypt(tctx, in, out, AES_BLOCK_SIZE, NULL,
AES_MODE_ECB, AES_DIR_DECRYPT);
}
static int fallback_init_cip(struct crypto_tfm *tfm)
{
const char *name = crypto_tfm_alg_name(tfm);
struct geode_aes_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
tctx->fallback.cip = crypto_alloc_cipher(name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(tctx->fallback.cip)) {
printk(KERN_ERR "Error allocating fallback algo %s\n", name);
return PTR_ERR(tctx->fallback.cip);
}
return 0;
}
static void fallback_exit_cip(struct crypto_tfm *tfm)
{
struct geode_aes_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
crypto_free_cipher(tctx->fallback.cip);
}
static struct crypto_alg geode_alg = {
.cra_name = "aes",
.cra_driver_name = "geode-aes",
.cra_priority = 300,
.cra_alignmask = 15,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER |
CRYPTO_ALG_NEED_FALLBACK,
.cra_init = fallback_init_cip,
.cra_exit = fallback_exit_cip,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct geode_aes_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = geode_setkey_cip,
.cia_encrypt = geode_encrypt,
.cia_decrypt = geode_decrypt
}
}
};
static int geode_init_skcipher(struct crypto_skcipher *tfm)
{
const char *name = crypto_tfm_alg_name(&tfm->base);
struct geode_aes_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
tctx->fallback.skcipher =
crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC);
if (IS_ERR(tctx->fallback.skcipher)) {
printk(KERN_ERR "Error allocating fallback algo %s\n", name);
return PTR_ERR(tctx->fallback.skcipher);
}
crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
crypto_skcipher_reqsize(tctx->fallback.skcipher));
return 0;
}
static void geode_exit_skcipher(struct crypto_skcipher *tfm)
{
struct geode_aes_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(tctx->fallback.skcipher);
}
static int geode_skcipher_crypt(struct skcipher_request *req, int mode, int dir)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct geode_aes_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
if (unlikely(tctx->keylen != AES_KEYSIZE_128)) {
struct skcipher_request *subreq = skcipher_request_ctx(req);
*subreq = *req;
skcipher_request_set_tfm(subreq, tctx->fallback.skcipher);
if (dir == AES_DIR_DECRYPT)
return crypto_skcipher_decrypt(subreq);
else
return crypto_skcipher_encrypt(subreq);
}
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
geode_aes_crypt(tctx, walk.src.virt.addr, walk.dst.virt.addr,
round_down(nbytes, AES_BLOCK_SIZE),
walk.iv, mode, dir);
err = skcipher_walk_done(&walk, nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int geode_cbc_encrypt(struct skcipher_request *req)
{
return geode_skcipher_crypt(req, AES_MODE_CBC, AES_DIR_ENCRYPT);
}
static int geode_cbc_decrypt(struct skcipher_request *req)
{
return geode_skcipher_crypt(req, AES_MODE_CBC, AES_DIR_DECRYPT);
}
static int geode_ecb_encrypt(struct skcipher_request *req)
{
return geode_skcipher_crypt(req, AES_MODE_ECB, AES_DIR_ENCRYPT);
}
static int geode_ecb_decrypt(struct skcipher_request *req)
{
return geode_skcipher_crypt(req, AES_MODE_ECB, AES_DIR_DECRYPT);
}
static struct skcipher_alg geode_skcipher_algs[] = {
{
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-geode",
.base.cra_priority = 400,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct geode_aes_tfm_ctx),
.base.cra_alignmask = 15,
.base.cra_module = THIS_MODULE,
.init = geode_init_skcipher,
.exit = geode_exit_skcipher,
.setkey = geode_setkey_skcipher,
.encrypt = geode_cbc_encrypt,
.decrypt = geode_cbc_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
}, {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-geode",
.base.cra_priority = 400,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct geode_aes_tfm_ctx),
.base.cra_alignmask = 15,
.base.cra_module = THIS_MODULE,
.init = geode_init_skcipher,
.exit = geode_exit_skcipher,
.setkey = geode_setkey_skcipher,
.encrypt = geode_ecb_encrypt,
.decrypt = geode_ecb_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
};
static void geode_aes_remove(struct pci_dev *dev)
{
crypto_unregister_alg(&geode_alg);
crypto_unregister_skciphers(geode_skcipher_algs,
ARRAY_SIZE(geode_skcipher_algs));
pci_iounmap(dev, _iobase);
_iobase = NULL;
pci_release_regions(dev);
pci_disable_device(dev);
}
static int geode_aes_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int ret;
ret = pci_enable_device(dev);
if (ret)
return ret;
ret = pci_request_regions(dev, "geode-aes");
if (ret)
goto eenable;
_iobase = pci_iomap(dev, 0, 0);
if (_iobase == NULL) {
ret = -ENOMEM;
goto erequest;
}
/* Clear any pending activity */
iowrite32(AES_INTR_PENDING | AES_INTR_MASK, _iobase + AES_INTR_REG);
ret = crypto_register_alg(&geode_alg);
if (ret)
goto eiomap;
ret = crypto_register_skciphers(geode_skcipher_algs,
ARRAY_SIZE(geode_skcipher_algs));
if (ret)
goto ealg;
dev_notice(&dev->dev, "GEODE AES engine enabled.\n");
return 0;
ealg:
crypto_unregister_alg(&geode_alg);
eiomap:
pci_iounmap(dev, _iobase);
erequest:
pci_release_regions(dev);
eenable:
pci_disable_device(dev);
dev_err(&dev->dev, "GEODE AES initialization failed.\n");
return ret;
}
static struct pci_device_id geode_aes_tbl[] = {
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_LX_AES), },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, geode_aes_tbl);
static struct pci_driver geode_aes_driver = {
.name = "Geode LX AES",
.id_table = geode_aes_tbl,
.probe = geode_aes_probe,
.remove = geode_aes_remove,
};
module_pci_driver(geode_aes_driver);
MODULE_AUTHOR("Advanced Micro Devices, Inc.");
MODULE_DESCRIPTION("Geode LX Hardware AES driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
| linux-master | drivers/crypto/geode-aes.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Cryptographic API.
*
* Support for ATMEL SHA1/SHA256 HW acceleration.
*
* Copyright (c) 2012 Eukréa Electromatique - ATMEL
* Author: Nicolas Royer <[email protected]>
*
* Some ideas are from omap-sham.c drivers.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/mod_devicetable.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include "atmel-sha-regs.h"
#include "atmel-authenc.h"
#define ATMEL_SHA_PRIORITY 300
/* SHA flags */
#define SHA_FLAGS_BUSY BIT(0)
#define SHA_FLAGS_FINAL BIT(1)
#define SHA_FLAGS_DMA_ACTIVE BIT(2)
#define SHA_FLAGS_OUTPUT_READY BIT(3)
#define SHA_FLAGS_INIT BIT(4)
#define SHA_FLAGS_CPU BIT(5)
#define SHA_FLAGS_DMA_READY BIT(6)
#define SHA_FLAGS_DUMP_REG BIT(7)
/* bits[11:8] are reserved. */
#define SHA_FLAGS_FINUP BIT(16)
#define SHA_FLAGS_SG BIT(17)
#define SHA_FLAGS_ERROR BIT(23)
#define SHA_FLAGS_PAD BIT(24)
#define SHA_FLAGS_RESTORE BIT(25)
#define SHA_FLAGS_IDATAR0 BIT(26)
#define SHA_FLAGS_WAIT_DATARDY BIT(27)
#define SHA_OP_INIT 0
#define SHA_OP_UPDATE 1
#define SHA_OP_FINAL 2
#define SHA_OP_DIGEST 3
#define SHA_BUFFER_LEN (PAGE_SIZE / 16)
#define ATMEL_SHA_DMA_THRESHOLD 56
struct atmel_sha_caps {
bool has_dma;
bool has_dualbuff;
bool has_sha224;
bool has_sha_384_512;
bool has_uihv;
bool has_hmac;
};
struct atmel_sha_dev;
/*
* .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
* tested by the ahash_prepare_alg() function.
*/
struct atmel_sha_reqctx {
struct atmel_sha_dev *dd;
unsigned long flags;
unsigned long op;
u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
u64 digcnt[2];
size_t bufcnt;
size_t buflen;
dma_addr_t dma_addr;
/* walk state */
struct scatterlist *sg;
unsigned int offset; /* offset in current sg */
unsigned int total; /* total request */
size_t block_size;
size_t hash_size;
u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
};
typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
struct atmel_sha_ctx {
struct atmel_sha_dev *dd;
atmel_sha_fn_t start;
unsigned long flags;
};
#define ATMEL_SHA_QUEUE_LENGTH 50
struct atmel_sha_dma {
struct dma_chan *chan;
struct dma_slave_config dma_conf;
struct scatterlist *sg;
int nents;
unsigned int last_sg_length;
};
struct atmel_sha_dev {
struct list_head list;
unsigned long phys_base;
struct device *dev;
struct clk *iclk;
int irq;
void __iomem *io_base;
spinlock_t lock;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
unsigned long flags;
struct crypto_queue queue;
struct ahash_request *req;
bool is_async;
bool force_complete;
atmel_sha_fn_t resume;
atmel_sha_fn_t cpu_transfer_complete;
struct atmel_sha_dma dma_lch_in;
struct atmel_sha_caps caps;
struct scatterlist tmp;
u32 hw_version;
};
struct atmel_sha_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct atmel_sha_drv atmel_sha = {
.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
};
#ifdef VERBOSE_DEBUG
static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
{
switch (offset) {
case SHA_CR:
return "CR";
case SHA_MR:
return "MR";
case SHA_IER:
return "IER";
case SHA_IDR:
return "IDR";
case SHA_IMR:
return "IMR";
case SHA_ISR:
return "ISR";
case SHA_MSR:
return "MSR";
case SHA_BCR:
return "BCR";
case SHA_REG_DIN(0):
case SHA_REG_DIN(1):
case SHA_REG_DIN(2):
case SHA_REG_DIN(3):
case SHA_REG_DIN(4):
case SHA_REG_DIN(5):
case SHA_REG_DIN(6):
case SHA_REG_DIN(7):
case SHA_REG_DIN(8):
case SHA_REG_DIN(9):
case SHA_REG_DIN(10):
case SHA_REG_DIN(11):
case SHA_REG_DIN(12):
case SHA_REG_DIN(13):
case SHA_REG_DIN(14):
case SHA_REG_DIN(15):
snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
break;
case SHA_REG_DIGEST(0):
case SHA_REG_DIGEST(1):
case SHA_REG_DIGEST(2):
case SHA_REG_DIGEST(3):
case SHA_REG_DIGEST(4):
case SHA_REG_DIGEST(5):
case SHA_REG_DIGEST(6):
case SHA_REG_DIGEST(7):
case SHA_REG_DIGEST(8):
case SHA_REG_DIGEST(9):
case SHA_REG_DIGEST(10):
case SHA_REG_DIGEST(11):
case SHA_REG_DIGEST(12):
case SHA_REG_DIGEST(13):
case SHA_REG_DIGEST(14):
case SHA_REG_DIGEST(15):
if (wr)
snprintf(tmp, sz, "IDATAR[%u]",
16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
else
snprintf(tmp, sz, "ODATAR[%u]",
(offset - SHA_REG_DIGEST(0)) >> 2);
break;
case SHA_HW_VERSION:
return "HWVER";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
{
u32 value = readl_relaxed(dd->io_base + offset);
#ifdef VERBOSE_DEBUG
if (dd->flags & SHA_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
}
#endif /* VERBOSE_DEBUG */
return value;
}
static inline void atmel_sha_write(struct atmel_sha_dev *dd,
u32 offset, u32 value)
{
#ifdef VERBOSE_DEBUG
if (dd->flags & SHA_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
}
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, dd->io_base + offset);
}
static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
{
struct ahash_request *req = dd->req;
dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
SHA_FLAGS_DUMP_REG);
clk_disable(dd->iclk);
if ((dd->is_async || dd->force_complete) && req->base.complete)
ahash_request_complete(req, err);
/* handle new request */
tasklet_schedule(&dd->queue_task);
return err;
}
static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
{
size_t count;
while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
count = min(ctx->sg->length - ctx->offset, ctx->total);
count = min(count, ctx->buflen - ctx->bufcnt);
if (count <= 0) {
/*
* Check if count <= 0 because the buffer is full or
* because the sg length is 0. In the latest case,
* check if there is another sg in the list, a 0 length
* sg doesn't necessarily mean the end of the sg list.
*/
if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
ctx->sg = sg_next(ctx->sg);
continue;
} else {
break;
}
}
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
ctx->offset, count, 0);
ctx->bufcnt += count;
ctx->offset += count;
ctx->total -= count;
if (ctx->offset == ctx->sg->length) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
else
ctx->total = 0;
}
}
return 0;
}
/*
* The purpose of this padding is to ensure that the padded message is a
* multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
* The bit "1" is appended at the end of the message followed by
* "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
* 128 bits block (SHA384/SHA512) equals to the message length in bits
* is appended.
*
* For SHA1/SHA224/SHA256, padlen is calculated as followed:
* - if message length < 56 bytes then padlen = 56 - message length
* - else padlen = 64 + 56 - message length
*
* For SHA384/SHA512, padlen is calculated as followed:
* - if message length < 112 bytes then padlen = 112 - message length
* - else padlen = 128 + 112 - message length
*/
static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
{
unsigned int index, padlen;
__be64 bits[2];
u64 size[2];
size[0] = ctx->digcnt[0];
size[1] = ctx->digcnt[1];
size[0] += ctx->bufcnt;
if (size[0] < ctx->bufcnt)
size[1]++;
size[0] += length;
if (size[0] < length)
size[1]++;
bits[1] = cpu_to_be64(size[0] << 3);
bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA384:
case SHA_FLAGS_SHA512:
index = ctx->bufcnt & 0x7f;
padlen = (index < 112) ? (112 - index) : ((128+112) - index);
*(ctx->buffer + ctx->bufcnt) = 0x80;
memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
ctx->bufcnt += padlen + 16;
ctx->flags |= SHA_FLAGS_PAD;
break;
default:
index = ctx->bufcnt & 0x3f;
padlen = (index < 56) ? (56 - index) : ((64+56) - index);
*(ctx->buffer + ctx->bufcnt) = 0x80;
memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
ctx->bufcnt += padlen + 8;
ctx->flags |= SHA_FLAGS_PAD;
break;
}
}
static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
{
struct atmel_sha_dev *dd = NULL;
struct atmel_sha_dev *tmp;
spin_lock_bh(&atmel_sha.lock);
if (!tctx->dd) {
list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
dd = tmp;
break;
}
tctx->dd = dd;
} else {
dd = tctx->dd;
}
spin_unlock_bh(&atmel_sha.lock);
return dd;
}
static int atmel_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
ctx->dd = dd;
ctx->flags = 0;
dev_dbg(dd->dev, "init: digest size: %u\n",
crypto_ahash_digestsize(tfm));
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA1;
ctx->block_size = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA224;
ctx->block_size = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA256;
ctx->block_size = SHA256_BLOCK_SIZE;
break;
case SHA384_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA384;
ctx->block_size = SHA384_BLOCK_SIZE;
break;
case SHA512_DIGEST_SIZE:
ctx->flags |= SHA_FLAGS_SHA512;
ctx->block_size = SHA512_BLOCK_SIZE;
break;
default:
return -EINVAL;
}
ctx->bufcnt = 0;
ctx->digcnt[0] = 0;
ctx->digcnt[1] = 0;
ctx->buflen = SHA_BUFFER_LEN;
return 0;
}
static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
u32 valmr = SHA_MR_MODE_AUTO;
unsigned int i, hashsize = 0;
if (likely(dma)) {
if (!dd->caps.has_dma)
atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
valmr = SHA_MR_MODE_PDC;
if (dd->caps.has_dualbuff)
valmr |= SHA_MR_DUALBUFF;
} else {
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
}
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
valmr |= SHA_MR_ALGO_SHA1;
hashsize = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
valmr |= SHA_MR_ALGO_SHA224;
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
valmr |= SHA_MR_ALGO_SHA256;
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
valmr |= SHA_MR_ALGO_SHA384;
hashsize = SHA512_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
valmr |= SHA_MR_ALGO_SHA512;
hashsize = SHA512_DIGEST_SIZE;
break;
default:
break;
}
/* Setting CR_FIRST only for the first iteration */
if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
const u32 *hash = (const u32 *)ctx->digest;
/*
* Restore the hardware context: update the User Initialize
* Hash Value (UIHV) with the value saved when the latest
* 'update' operation completed on this very same crypto
* request.
*/
ctx->flags &= ~SHA_FLAGS_RESTORE;
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < hashsize / sizeof(u32); ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
valmr |= SHA_MR_UIHV;
}
/*
* WARNING: If the UIHV feature is not available, the hardware CANNOT
* process concurrent requests: the internal registers used to store
* the hash/digest are still set to the partial digest output values
* computed during the latest round.
*/
atmel_sha_write(dd, SHA_MR, valmr);
}
static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume)
{
u32 isr = atmel_sha_read(dd, SHA_ISR);
if (unlikely(isr & SHA_INT_DATARDY))
return resume(dd);
dd->resume = resume;
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
return -EINPROGRESS;
}
static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
size_t length, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int count, len32;
const u32 *buffer = (const u32 *)buf;
dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length, final);
atmel_sha_write_ctrl(dd, 0);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length;
if (ctx->digcnt[0] < length)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
len32 = DIV_ROUND_UP(length, sizeof(u32));
dd->flags |= SHA_FLAGS_CPU;
for (count = 0; count < len32; count++)
atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
return -EINPROGRESS;
}
static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int len32;
dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length1, final);
len32 = DIV_ROUND_UP(length1, sizeof(u32));
atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
atmel_sha_write(dd, SHA_TPR, dma_addr1);
atmel_sha_write(dd, SHA_TCR, len32);
len32 = DIV_ROUND_UP(length2, sizeof(u32));
atmel_sha_write(dd, SHA_TNPR, dma_addr2);
atmel_sha_write(dd, SHA_TNCR, len32);
atmel_sha_write_ctrl(dd, 1);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length1;
if (ctx->digcnt[0] < length1)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
/* Start DMA transfer */
atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
return -EINPROGRESS;
}
static void atmel_sha_dma_callback(void *data)
{
struct atmel_sha_dev *dd = data;
dd->is_async = true;
/* dma_lch_in - completed - wait DATRDY */
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
}
static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
struct dma_async_tx_descriptor *in_desc;
struct scatterlist sg[2];
dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
ctx->digcnt[1], ctx->digcnt[0], length1, final);
dd->dma_lch_in.dma_conf.src_maxburst = 16;
dd->dma_lch_in.dma_conf.dst_maxburst = 16;
dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
if (length2) {
sg_init_table(sg, 2);
sg_dma_address(&sg[0]) = dma_addr1;
sg_dma_len(&sg[0]) = length1;
sg_dma_address(&sg[1]) = dma_addr2;
sg_dma_len(&sg[1]) = length2;
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
} else {
sg_init_table(sg, 1);
sg_dma_address(&sg[0]) = dma_addr1;
sg_dma_len(&sg[0]) = length1;
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}
if (!in_desc)
return atmel_sha_complete(dd, -EINVAL);
in_desc->callback = atmel_sha_dma_callback;
in_desc->callback_param = dd;
atmel_sha_write_ctrl(dd, 1);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt[0] += length1;
if (ctx->digcnt[0] < length1)
ctx->digcnt[1]++;
if (final)
dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
dd->flags |= SHA_FLAGS_DMA_ACTIVE;
/* Start DMA transfer */
dmaengine_submit(in_desc);
dma_async_issue_pending(dd->dma_lch_in.chan);
return -EINPROGRESS;
}
static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
{
if (dd->caps.has_dma)
return atmel_sha_xmit_dma(dd, dma_addr1, length1,
dma_addr2, length2, final);
else
return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
dma_addr2, length2, final);
}
static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
int bufcnt;
atmel_sha_append_sg(ctx);
atmel_sha_fill_padding(ctx, 0);
bufcnt = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
}
static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
struct atmel_sha_reqctx *ctx,
size_t length, int final)
{
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
ctx->block_size);
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags &= ~SHA_FLAGS_SG;
/* next call does not fail... so no unmap in the case of error */
return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
}
static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int final;
size_t count;
atmel_sha_append_sg(ctx);
final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
if (final)
atmel_sha_fill_padding(ctx, 0);
if (final || (ctx->bufcnt == ctx->buflen)) {
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_dma_map(dd, ctx, count, final);
}
return 0;
}
static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
unsigned int length, final, tail;
struct scatterlist *sg;
unsigned int count;
if (!ctx->total)
return 0;
if (ctx->bufcnt || ctx->offset)
return atmel_sha_update_dma_slow(dd);
dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
sg = ctx->sg;
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return atmel_sha_update_dma_slow(dd);
if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
/* size is not ctx->block_size aligned */
return atmel_sha_update_dma_slow(dd);
length = min(ctx->total, sg->length);
if (sg_is_last(sg)) {
if (!(ctx->flags & SHA_FLAGS_FINUP)) {
/* not last sg must be ctx->block_size aligned */
tail = length & (ctx->block_size - 1);
length -= tail;
}
}
ctx->total -= length;
ctx->offset = length; /* offset where to start slow */
final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
/* Add padding */
if (final) {
tail = length & (ctx->block_size - 1);
length -= tail;
ctx->total += tail;
ctx->offset = length; /* offset where to start slow */
sg = ctx->sg;
atmel_sha_append_sg(ctx);
atmel_sha_fill_padding(ctx, length);
ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
dev_err(dd->dev, "dma %zu bytes error\n",
ctx->buflen + ctx->block_size);
return atmel_sha_complete(dd, -EINVAL);
}
if (length == 0) {
ctx->flags &= ~SHA_FLAGS_SG;
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
0, final);
} else {
ctx->sg = sg;
if (!dma_map_sg(dd->dev, ctx->sg, 1,
DMA_TO_DEVICE)) {
dev_err(dd->dev, "dma_map_sg error\n");
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags |= SHA_FLAGS_SG;
count = ctx->bufcnt;
ctx->bufcnt = 0;
return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
length, ctx->dma_addr, count, final);
}
}
if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
dev_err(dd->dev, "dma_map_sg error\n");
return atmel_sha_complete(dd, -EINVAL);
}
ctx->flags |= SHA_FLAGS_SG;
/* next call does not fail... so no unmap in the case of error */
return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
0, final);
}
static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
if (ctx->flags & SHA_FLAGS_SG) {
dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
if (ctx->sg->length == ctx->offset) {
ctx->sg = sg_next(ctx->sg);
if (ctx->sg)
ctx->offset = 0;
}
if (ctx->flags & SHA_FLAGS_PAD) {
dma_unmap_single(dd->dev, ctx->dma_addr,
ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
}
} else {
dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
ctx->block_size, DMA_TO_DEVICE);
}
}
static int atmel_sha_update_req(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
if (ctx->flags & SHA_FLAGS_CPU)
err = atmel_sha_update_cpu(dd);
else
err = atmel_sha_update_dma_start(dd);
/* wait for dma completion before can take more data */
dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
err, ctx->digcnt[1], ctx->digcnt[0]);
return err;
}
static int atmel_sha_final_req(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err = 0;
int count;
if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
atmel_sha_fill_padding(ctx, 0);
count = ctx->bufcnt;
ctx->bufcnt = 0;
err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
}
/* faster to handle last block with cpu */
else {
atmel_sha_fill_padding(ctx, 0);
count = ctx->bufcnt;
ctx->bufcnt = 0;
err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
}
dev_dbg(dd->dev, "final_req: err: %d\n", err);
return err;
}
static void atmel_sha_copy_hash(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
u32 *hash = (u32 *)ctx->digest;
unsigned int i, hashsize;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
hashsize = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
case SHA_FLAGS_SHA256:
hashsize = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
case SHA_FLAGS_SHA512:
hashsize = SHA512_DIGEST_SIZE;
break;
default:
/* Should not happen... */
return;
}
for (i = 0; i < hashsize / sizeof(u32); ++i)
hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
ctx->flags |= SHA_FLAGS_RESTORE;
}
static void atmel_sha_copy_ready_hash(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->result)
return;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
default:
case SHA_FLAGS_SHA1:
memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA224:
memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA256:
memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA384:
memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
break;
case SHA_FLAGS_SHA512:
memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
break;
}
}
static int atmel_sha_finish(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = ctx->dd;
if (ctx->digcnt[0] || ctx->digcnt[1])
atmel_sha_copy_ready_hash(req);
dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
ctx->digcnt[0], ctx->bufcnt);
return 0;
}
static void atmel_sha_finish_req(struct ahash_request *req, int err)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_dev *dd = ctx->dd;
if (!err) {
atmel_sha_copy_hash(req);
if (SHA_FLAGS_FINAL & dd->flags)
err = atmel_sha_finish(req);
} else {
ctx->flags |= SHA_FLAGS_ERROR;
}
/* atomic operation is not needed here */
(void)atmel_sha_complete(dd, err);
}
static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
{
int err;
err = clk_enable(dd->iclk);
if (err)
return err;
if (!(SHA_FLAGS_INIT & dd->flags)) {
atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
dd->flags |= SHA_FLAGS_INIT;
}
return 0;
}
static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
{
return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
}
static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
{
int err;
err = atmel_sha_hw_init(dd);
if (err)
return err;
dd->hw_version = atmel_sha_get_version(dd);
dev_info(dd->dev,
"version: 0x%x\n", dd->hw_version);
clk_disable(dd->iclk);
return 0;
}
static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
struct ahash_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct atmel_sha_ctx *ctx;
unsigned long flags;
bool start_async;
int err = 0, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = ahash_enqueue_request(&dd->queue, req);
if (SHA_FLAGS_BUSY & dd->flags) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
dd->flags |= SHA_FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req)
return ret;
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(async_req->tfm);
dd->req = ahash_request_cast(async_req);
start_async = (dd->req != req);
dd->is_async = start_async;
dd->force_complete = false;
/* WARNING: ctx->start() MAY change dd->is_async. */
err = ctx->start(dd);
return (start_async) ? ret : err;
}
static int atmel_sha_done(struct atmel_sha_dev *dd);
static int atmel_sha_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
ctx->op, req->nbytes);
err = atmel_sha_hw_init(dd);
if (err)
return atmel_sha_complete(dd, err);
/*
* atmel_sha_update_req() and atmel_sha_final_req() can return either:
* -EINPROGRESS: the hardware is busy and the SHA driver will resume
* its job later in the done_task.
* This is the main path.
*
* 0: the SHA driver can continue its job then release the hardware
* later, if needed, with atmel_sha_finish_req().
* This is the alternate path.
*
* < 0: an error has occurred so atmel_sha_complete(dd, err) has already
* been called, hence the hardware has been released.
* The SHA driver must stop its job without calling
* atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
* called a second time.
*
* Please note that currently, atmel_sha_final_req() never returns 0.
*/
dd->resume = atmel_sha_done;
if (ctx->op == SHA_OP_UPDATE) {
err = atmel_sha_update_req(dd);
if (!err && (ctx->flags & SHA_FLAGS_FINUP))
/* no final() after finup() */
err = atmel_sha_final_req(dd);
} else if (ctx->op == SHA_OP_FINAL) {
err = atmel_sha_final_req(dd);
}
if (!err)
/* done_task will not finish it, so do it here */
atmel_sha_finish_req(req, err);
dev_dbg(dd->dev, "exit, err: %d\n", err);
return err;
}
static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct atmel_sha_dev *dd = tctx->dd;
ctx->op = op;
return atmel_sha_handle_queue(dd, req);
}
static int atmel_sha_update(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!req->nbytes)
return 0;
ctx->total = req->nbytes;
ctx->sg = req->src;
ctx->offset = 0;
if (ctx->flags & SHA_FLAGS_FINUP) {
if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
/* faster to use CPU for short transfers */
ctx->flags |= SHA_FLAGS_CPU;
} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
atmel_sha_append_sg(ctx);
return 0;
}
return atmel_sha_enqueue(req, SHA_OP_UPDATE);
}
static int atmel_sha_final(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
ctx->flags |= SHA_FLAGS_FINUP;
if (ctx->flags & SHA_FLAGS_ERROR)
return 0; /* uncompleted hash is not needed */
if (ctx->flags & SHA_FLAGS_PAD)
/* copy ready hash (+ finalize hmac) */
return atmel_sha_finish(req);
return atmel_sha_enqueue(req, SHA_OP_FINAL);
}
static int atmel_sha_finup(struct ahash_request *req)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err1, err2;
ctx->flags |= SHA_FLAGS_FINUP;
err1 = atmel_sha_update(req);
if (err1 == -EINPROGRESS ||
(err1 == -EBUSY && (ahash_request_flags(req) &
CRYPTO_TFM_REQ_MAY_BACKLOG)))
return err1;
/*
* final() has to be always called to cleanup resources
* even if udpate() failed, except EINPROGRESS
*/
err2 = atmel_sha_final(req);
return err1 ?: err2;
}
static int atmel_sha_digest(struct ahash_request *req)
{
return atmel_sha_init(req) ?: atmel_sha_finup(req);
}
static int atmel_sha_export(struct ahash_request *req, void *out)
{
const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
memcpy(out, ctx, sizeof(*ctx));
return 0;
}
static int atmel_sha_import(struct ahash_request *req, const void *in)
{
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
memcpy(ctx, in, sizeof(*ctx));
return 0;
}
static int atmel_sha_cra_init(struct crypto_tfm *tfm)
{
struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct atmel_sha_reqctx));
ctx->start = atmel_sha_start;
return 0;
}
static void atmel_sha_alg_init(struct ahash_alg *alg)
{
alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
alg->halg.base.cra_module = THIS_MODULE;
alg->halg.base.cra_init = atmel_sha_cra_init;
alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
alg->init = atmel_sha_init;
alg->update = atmel_sha_update;
alg->final = atmel_sha_final;
alg->finup = atmel_sha_finup;
alg->digest = atmel_sha_digest;
alg->export = atmel_sha_export;
alg->import = atmel_sha_import;
}
static struct ahash_alg sha_1_256_algs[] = {
{
.halg.base.cra_name = "sha1",
.halg.base.cra_driver_name = "atmel-sha1",
.halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
.halg.digestsize = SHA1_DIGEST_SIZE,
},
{
.halg.base.cra_name = "sha256",
.halg.base.cra_driver_name = "atmel-sha256",
.halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
.halg.digestsize = SHA256_DIGEST_SIZE,
},
};
static struct ahash_alg sha_224_alg = {
.halg.base.cra_name = "sha224",
.halg.base.cra_driver_name = "atmel-sha224",
.halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
.halg.digestsize = SHA224_DIGEST_SIZE,
};
static struct ahash_alg sha_384_512_algs[] = {
{
.halg.base.cra_name = "sha384",
.halg.base.cra_driver_name = "atmel-sha384",
.halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
.halg.base.cra_alignmask = 0x3,
.halg.digestsize = SHA384_DIGEST_SIZE,
},
{
.halg.base.cra_name = "sha512",
.halg.base.cra_driver_name = "atmel-sha512",
.halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
.halg.base.cra_alignmask = 0x3,
.halg.digestsize = SHA512_DIGEST_SIZE,
},
};
static void atmel_sha_queue_task(unsigned long data)
{
struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
atmel_sha_handle_queue(dd, NULL);
}
static int atmel_sha_done(struct atmel_sha_dev *dd)
{
int err = 0;
if (SHA_FLAGS_CPU & dd->flags) {
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
goto finish;
}
} else if (SHA_FLAGS_DMA_READY & dd->flags) {
if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
atmel_sha_update_dma_stop(dd);
}
if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
/* hash or semi-hash ready */
dd->flags &= ~(SHA_FLAGS_DMA_READY |
SHA_FLAGS_OUTPUT_READY);
err = atmel_sha_update_dma_start(dd);
if (err != -EINPROGRESS)
goto finish;
}
}
return err;
finish:
/* finish curent request */
atmel_sha_finish_req(dd->req, err);
return err;
}
static void atmel_sha_done_task(unsigned long data)
{
struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
dd->is_async = true;
(void)dd->resume(dd);
}
static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
{
struct atmel_sha_dev *sha_dd = dev_id;
u32 reg;
reg = atmel_sha_read(sha_dd, SHA_ISR);
if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
atmel_sha_write(sha_dd, SHA_IDR, reg);
if (SHA_FLAGS_BUSY & sha_dd->flags) {
sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
if (!(SHA_FLAGS_CPU & sha_dd->flags))
sha_dd->flags |= SHA_FLAGS_DMA_READY;
tasklet_schedule(&sha_dd->done_task);
} else {
dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* DMA transfer functions */
static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
struct scatterlist *sg,
size_t len)
{
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
int nents;
for (nents = 0; sg; sg = sg_next(sg), ++nents) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return false;
/*
* This is the last sg, the only one that is allowed to
* have an unaligned length.
*/
if (len <= sg->length) {
dma->nents = nents + 1;
dma->last_sg_length = sg->length;
sg->length = ALIGN(len, sizeof(u32));
return true;
}
/* All other sg lengths MUST be aligned to the block size. */
if (!IS_ALIGNED(sg->length, bs))
return false;
len -= sg->length;
}
return false;
}
static void atmel_sha_dma_callback2(void *data)
{
struct atmel_sha_dev *dd = data;
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct scatterlist *sg;
int nents;
dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
sg = dma->sg;
for (nents = 0; nents < dma->nents - 1; ++nents)
sg = sg_next(sg);
sg->length = dma->last_sg_length;
dd->is_async = true;
(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
}
static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
struct scatterlist *src,
size_t len,
atmel_sha_fn_t resume)
{
struct atmel_sha_dma *dma = &dd->dma_lch_in;
struct dma_slave_config *config = &dma->dma_conf;
struct dma_chan *chan = dma->chan;
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
unsigned int sg_len;
int err;
dd->resume = resume;
/*
* dma->nents has already been initialized by
* atmel_sha_dma_check_aligned().
*/
dma->sg = src;
sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
if (!sg_len) {
err = -ENOMEM;
goto exit;
}
config->src_maxburst = 16;
config->dst_maxburst = 16;
err = dmaengine_slave_config(chan, config);
if (err)
goto unmap_sg;
desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
err = -ENOMEM;
goto unmap_sg;
}
desc->callback = atmel_sha_dma_callback2;
desc->callback_param = dd;
cookie = dmaengine_submit(desc);
err = dma_submit_error(cookie);
if (err)
goto unmap_sg;
dma_async_issue_pending(chan);
return -EINPROGRESS;
unmap_sg:
dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
exit:
return atmel_sha_complete(dd, err);
}
/* CPU transfer functions */
static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
const u32 *words = (const u32 *)ctx->buffer;
size_t i, num_words;
u32 isr, din, din_inc;
din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
for (;;) {
/* Write data into the Input Data Registers. */
num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
ctx->offset += ctx->bufcnt;
ctx->total -= ctx->bufcnt;
if (!ctx->total)
break;
/*
* Prepare next block:
* Fill ctx->buffer now with the next data to be written into
* IDATARx: it gives time for the SHA hardware to process
* the current data so the SHA_INT_DATARDY flag might be set
* in SHA_ISR when polling this register at the beginning of
* the next loop.
*/
ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
ctx->offset, ctx->bufcnt, 0);
/* Wait for hardware to be ready again. */
isr = atmel_sha_read(dd, SHA_ISR);
if (!(isr & SHA_INT_DATARDY)) {
/* Not ready yet. */
dd->resume = atmel_sha_cpu_transfer;
atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
return -EINPROGRESS;
}
}
if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
return dd->cpu_transfer_complete(dd);
return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
}
static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
struct scatterlist *sg,
unsigned int len,
bool idatar0_only,
bool wait_data_ready,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
if (!len)
return resume(dd);
ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
if (idatar0_only)
ctx->flags |= SHA_FLAGS_IDATAR0;
if (wait_data_ready)
ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
ctx->sg = sg;
ctx->total = len;
ctx->offset = 0;
/* Prepare the first block to be written. */
ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
ctx->offset, ctx->bufcnt, 0);
dd->cpu_transfer_complete = resume;
return atmel_sha_cpu_transfer(dd);
}
static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
const void *data, unsigned int datalen,
bool auto_padding,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
u32 msglen = (auto_padding) ? datalen : 0;
u32 mr = SHA_MR_MODE_AUTO;
if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
return atmel_sha_complete(dd, -EINVAL);
mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, msglen);
atmel_sha_write(dd, SHA_BCR, msglen);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
sg_init_one(&dd->tmp, data, datalen);
return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
}
/* hmac functions */
struct atmel_sha_hmac_key {
bool valid;
unsigned int keylen;
u8 buffer[SHA512_BLOCK_SIZE];
u8 *keydup;
};
static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
{
memset(hkey, 0, sizeof(*hkey));
}
static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
{
kfree(hkey->keydup);
memset(hkey, 0, sizeof(*hkey));
}
static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
const u8 *key,
unsigned int keylen)
{
atmel_sha_hmac_key_release(hkey);
if (keylen > sizeof(hkey->buffer)) {
hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
if (!hkey->keydup)
return -ENOMEM;
} else {
memcpy(hkey->buffer, key, keylen);
}
hkey->valid = true;
hkey->keylen = keylen;
return 0;
}
static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
const u8 **key,
unsigned int *keylen)
{
if (!hkey->valid)
return false;
*keylen = hkey->keylen;
*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
return true;
}
struct atmel_sha_hmac_ctx {
struct atmel_sha_ctx base;
struct atmel_sha_hmac_key hkey;
u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
atmel_sha_fn_t resume;
};
static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume);
static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
const u8 *key, unsigned int keylen);
static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
atmel_sha_fn_t resume)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
unsigned int keylen;
const u8 *key;
size_t bs;
hmac->resume = resume;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
ctx->block_size = SHA1_BLOCK_SIZE;
ctx->hash_size = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
ctx->block_size = SHA224_BLOCK_SIZE;
ctx->hash_size = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
ctx->block_size = SHA256_BLOCK_SIZE;
ctx->hash_size = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
ctx->block_size = SHA384_BLOCK_SIZE;
ctx->hash_size = SHA512_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
ctx->block_size = SHA512_BLOCK_SIZE;
ctx->hash_size = SHA512_DIGEST_SIZE;
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
bs = ctx->block_size;
if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
return resume(dd);
/* Compute K' from K. */
if (unlikely(keylen > bs))
return atmel_sha_hmac_prehash_key(dd, key, keylen);
/* Prepare ipad. */
memcpy((u8 *)hmac->ipad, key, keylen);
memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
return atmel_sha_hmac_compute_ipad_hash(dd);
}
static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
const u8 *key, unsigned int keylen)
{
return atmel_sha_cpu_hash(dd, key, keylen, true,
atmel_sha_hmac_prehash_key_done);
}
static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t ds = crypto_ahash_digestsize(tfm);
size_t bs = ctx->block_size;
size_t i, num_words = ds / sizeof(u32);
/* Prepare ipad. */
for (i = 0; i < num_words; ++i)
hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
memset((u8 *)hmac->ipad + ds, 0, bs - ds);
return atmel_sha_hmac_compute_ipad_hash(dd);
}
static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
size_t i, num_words = bs / sizeof(u32);
unsafe_memcpy(hmac->opad, hmac->ipad, bs,
"fortified memcpy causes -Wrestrict warning");
for (i = 0; i < num_words; ++i) {
hmac->ipad[i] ^= 0x36363636;
hmac->opad[i] ^= 0x5c5c5c5c;
}
return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
atmel_sha_hmac_compute_opad_hash);
}
static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
atmel_sha_hmac_setup_done);
}
static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
atmel_sha_hmac_key_release(&hmac->hkey);
return hmac->resume(dd);
}
static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
int err;
err = atmel_sha_hw_init(dd);
if (err)
return atmel_sha_complete(dd, err);
switch (ctx->op) {
case SHA_OP_INIT:
err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
break;
case SHA_OP_UPDATE:
dd->resume = atmel_sha_done;
err = atmel_sha_update_req(dd);
break;
case SHA_OP_FINAL:
dd->resume = atmel_sha_hmac_final;
err = atmel_sha_final_req(dd);
break;
case SHA_OP_DIGEST:
err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
return err;
}
static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
}
static int atmel_sha_hmac_init(struct ahash_request *req)
{
int err;
err = atmel_sha_init(req);
if (err)
return err;
return atmel_sha_enqueue(req, SHA_OP_INIT);
}
static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
ctx->bufcnt = 0;
ctx->digcnt[0] = bs;
ctx->digcnt[1] = 0;
ctx->flags |= SHA_FLAGS_RESTORE;
memcpy(ctx->digest, hmac->ipad, hs);
return atmel_sha_complete(dd, 0);
}
static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
u32 *digest = (u32 *)ctx->digest;
size_t ds = crypto_ahash_digestsize(tfm);
size_t bs = ctx->block_size;
size_t hs = ctx->hash_size;
size_t i, num_words;
u32 mr;
/* Save d = SHA((K' + ipad) | msg). */
num_words = ds / sizeof(u32);
for (i = 0; i < num_words; ++i)
digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
/* Restore context to finish computing SHA((K' + opad) | d). */
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
num_words = hs / sizeof(u32);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, bs + ds);
atmel_sha_write(dd, SHA_BCR, ds);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
sg_init_one(&dd->tmp, digest, ds);
return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
atmel_sha_hmac_final_done);
}
static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
{
/*
* req->result might not be sizeof(u32) aligned, so copy the
* digest into ctx->digest[] before memcpy() the data into
* req->result.
*/
atmel_sha_copy_hash(dd->req);
atmel_sha_copy_ready_hash(dd->req);
return atmel_sha_complete(dd, 0);
}
static int atmel_sha_hmac_digest(struct ahash_request *req)
{
int err;
err = atmel_sha_init(req);
if (err)
return err;
return atmel_sha_enqueue(req, SHA_OP_DIGEST);
}
static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct scatterlist *sgbuf;
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
bool use_dma = false;
u32 mr;
/* Special case for empty message. */
if (!req->nbytes) {
req->nbytes = 0;
ctx->bufcnt = 0;
ctx->digcnt[0] = 0;
ctx->digcnt[1] = 0;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
case SHA_FLAGS_SHA224:
case SHA_FLAGS_SHA256:
atmel_sha_fill_padding(ctx, 64);
break;
case SHA_FLAGS_SHA384:
case SHA_FLAGS_SHA512:
atmel_sha_fill_padding(ctx, 128);
break;
}
sg_init_one(&dd->tmp, ctx->buffer, ctx->bufcnt);
}
/* Check DMA threshold and alignment. */
if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
use_dma = true;
/* Write both initial hash values to compute a HMAC. */
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
/* Write the Mode, Message Size, Bytes Count then Control Registers. */
mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
if (use_dma)
mr |= SHA_MR_MODE_IDATAR0;
else
mr |= SHA_MR_MODE_AUTO;
atmel_sha_write(dd, SHA_MR, mr);
atmel_sha_write(dd, SHA_MSR, req->nbytes);
atmel_sha_write(dd, SHA_BCR, req->nbytes);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
/* Special case for empty message. */
if (!req->nbytes) {
sgbuf = &dd->tmp;
req->nbytes = ctx->bufcnt;
} else {
sgbuf = req->src;
}
/* Process data. */
if (use_dma)
return atmel_sha_dma_start(dd, sgbuf, req->nbytes,
atmel_sha_hmac_final_done);
return atmel_sha_cpu_start(dd, sgbuf, req->nbytes, false, true,
atmel_sha_hmac_final_done);
}
static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
{
struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct atmel_sha_reqctx));
hmac->base.start = atmel_sha_hmac_start;
atmel_sha_hmac_key_init(&hmac->hkey);
return 0;
}
static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
{
struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
atmel_sha_hmac_key_release(&hmac->hkey);
}
static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
{
alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
alg->halg.base.cra_module = THIS_MODULE;
alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
alg->init = atmel_sha_hmac_init;
alg->update = atmel_sha_update;
alg->final = atmel_sha_final;
alg->digest = atmel_sha_hmac_digest;
alg->setkey = atmel_sha_hmac_setkey;
alg->export = atmel_sha_export;
alg->import = atmel_sha_import;
}
static struct ahash_alg sha_hmac_algs[] = {
{
.halg.base.cra_name = "hmac(sha1)",
.halg.base.cra_driver_name = "atmel-hmac-sha1",
.halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
.halg.digestsize = SHA1_DIGEST_SIZE,
},
{
.halg.base.cra_name = "hmac(sha224)",
.halg.base.cra_driver_name = "atmel-hmac-sha224",
.halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
.halg.digestsize = SHA224_DIGEST_SIZE,
},
{
.halg.base.cra_name = "hmac(sha256)",
.halg.base.cra_driver_name = "atmel-hmac-sha256",
.halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
.halg.digestsize = SHA256_DIGEST_SIZE,
},
{
.halg.base.cra_name = "hmac(sha384)",
.halg.base.cra_driver_name = "atmel-hmac-sha384",
.halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
.halg.digestsize = SHA384_DIGEST_SIZE,
},
{
.halg.base.cra_name = "hmac(sha512)",
.halg.base.cra_driver_name = "atmel-hmac-sha512",
.halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
.halg.digestsize = SHA512_DIGEST_SIZE,
},
};
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
/* authenc functions */
static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
struct atmel_sha_authenc_ctx {
struct crypto_ahash *tfm;
};
struct atmel_sha_authenc_reqctx {
struct atmel_sha_reqctx base;
atmel_aes_authenc_fn_t cb;
struct atmel_aes_dev *aes_dev;
/* _init() parameters. */
struct scatterlist *assoc;
u32 assoclen;
u32 textlen;
/* _final() parameters. */
u32 *digest;
unsigned int digestlen;
};
static void atmel_sha_authenc_complete(void *data, int err)
{
struct ahash_request *req = data;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
}
static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
int err;
/*
* Force atmel_sha_complete() to call req->base.complete(), ie
* atmel_sha_authenc_complete(), which in turn calls authctx->cb().
*/
dd->force_complete = true;
err = atmel_sha_hw_init(dd);
return authctx->cb(authctx->aes_dev, err, dd->is_async);
}
bool atmel_sha_authenc_is_ready(void)
{
struct atmel_sha_ctx dummy;
dummy.dd = NULL;
return (atmel_sha_find_dev(&dummy) != NULL);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
unsigned int atmel_sha_authenc_get_reqsize(void)
{
return sizeof(struct atmel_sha_authenc_reqctx);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
{
struct atmel_sha_authenc_ctx *auth;
struct crypto_ahash *tfm;
struct atmel_sha_ctx *tctx;
const char *name;
int err = -EINVAL;
switch (mode & SHA_FLAGS_MODE_MASK) {
case SHA_FLAGS_HMAC_SHA1:
name = "atmel-hmac-sha1";
break;
case SHA_FLAGS_HMAC_SHA224:
name = "atmel-hmac-sha224";
break;
case SHA_FLAGS_HMAC_SHA256:
name = "atmel-hmac-sha256";
break;
case SHA_FLAGS_HMAC_SHA384:
name = "atmel-hmac-sha384";
break;
case SHA_FLAGS_HMAC_SHA512:
name = "atmel-hmac-sha512";
break;
default:
goto error;
}
tfm = crypto_alloc_ahash(name, 0, 0);
if (IS_ERR(tfm)) {
err = PTR_ERR(tfm);
goto error;
}
tctx = crypto_ahash_ctx(tfm);
tctx->start = atmel_sha_authenc_start;
tctx->flags = mode;
auth = kzalloc(sizeof(*auth), GFP_KERNEL);
if (!auth) {
err = -ENOMEM;
goto err_free_ahash;
}
auth->tfm = tfm;
return auth;
err_free_ahash:
crypto_free_ahash(tfm);
error:
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
{
if (auth)
crypto_free_ahash(auth->tfm);
kfree(auth);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
const u8 *key, unsigned int keylen, u32 flags)
{
struct crypto_ahash *tfm = auth->tfm;
crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
return crypto_ahash_setkey(tfm, key, keylen);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
int atmel_sha_authenc_schedule(struct ahash_request *req,
struct atmel_sha_authenc_ctx *auth,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = auth->tfm;
struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
struct atmel_sha_dev *dd;
/* Reset request context (MUST be done first). */
memset(authctx, 0, sizeof(*authctx));
/* Get SHA device. */
dd = atmel_sha_find_dev(tctx);
if (!dd)
return cb(aes_dev, -ENODEV, false);
/* Init request context. */
ctx->dd = dd;
ctx->buflen = SHA_BUFFER_LEN;
authctx->cb = cb;
authctx->aes_dev = aes_dev;
ahash_request_set_tfm(req, tfm);
ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
return atmel_sha_handle_queue(dd, req);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
int atmel_sha_authenc_init(struct ahash_request *req,
struct scatterlist *assoc, unsigned int assoclen,
unsigned int textlen,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
struct atmel_sha_dev *dd = ctx->dd;
if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
return atmel_sha_complete(dd, -EINVAL);
authctx->cb = cb;
authctx->aes_dev = aes_dev;
authctx->assoc = assoc;
authctx->assoclen = assoclen;
authctx->textlen = textlen;
ctx->flags = hmac->base.flags;
return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
size_t hs = ctx->hash_size;
size_t i, num_words = hs / sizeof(u32);
u32 mr, msg_size;
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
for (i = 0; i < num_words; ++i)
atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
mr = (SHA_MR_MODE_IDATAR0 |
SHA_MR_HMAC |
SHA_MR_DUALBUFF);
mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
atmel_sha_write(dd, SHA_MR, mr);
msg_size = authctx->assoclen + authctx->textlen;
atmel_sha_write(dd, SHA_MSR, msg_size);
atmel_sha_write(dd, SHA_BCR, msg_size);
atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
/* Process assoc data. */
return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
true, false,
atmel_sha_authenc_init_done);
}
static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
return authctx->cb(authctx->aes_dev, 0, dd->is_async);
}
int atmel_sha_authenc_final(struct ahash_request *req,
u32 *digest, unsigned int digestlen,
atmel_aes_authenc_fn_t cb,
struct atmel_aes_dev *aes_dev)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct atmel_sha_dev *dd = ctx->dd;
switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
case SHA_FLAGS_SHA1:
authctx->digestlen = SHA1_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA224:
authctx->digestlen = SHA224_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA256:
authctx->digestlen = SHA256_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA384:
authctx->digestlen = SHA384_DIGEST_SIZE;
break;
case SHA_FLAGS_SHA512:
authctx->digestlen = SHA512_DIGEST_SIZE;
break;
default:
return atmel_sha_complete(dd, -EINVAL);
}
if (authctx->digestlen > digestlen)
authctx->digestlen = digestlen;
authctx->cb = cb;
authctx->aes_dev = aes_dev;
authctx->digest = digest;
return atmel_sha_wait_for_data_ready(dd,
atmel_sha_authenc_final_done);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
{
struct ahash_request *req = dd->req;
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
size_t i, num_words = authctx->digestlen / sizeof(u32);
for (i = 0; i < num_words; ++i)
authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
return atmel_sha_complete(dd, 0);
}
void atmel_sha_authenc_abort(struct ahash_request *req)
{
struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
struct atmel_sha_reqctx *ctx = &authctx->base;
struct atmel_sha_dev *dd = ctx->dd;
/* Prevent atmel_sha_complete() from calling req->base.complete(). */
dd->is_async = false;
dd->force_complete = false;
(void)atmel_sha_complete(dd, 0);
}
EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
{
int i;
if (dd->caps.has_hmac)
for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
crypto_unregister_ahash(&sha_hmac_algs[i]);
for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
crypto_unregister_ahash(&sha_1_256_algs[i]);
if (dd->caps.has_sha224)
crypto_unregister_ahash(&sha_224_alg);
if (dd->caps.has_sha_384_512) {
for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
crypto_unregister_ahash(&sha_384_512_algs[i]);
}
}
static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
{
int err, i, j;
for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
atmel_sha_alg_init(&sha_1_256_algs[i]);
err = crypto_register_ahash(&sha_1_256_algs[i]);
if (err)
goto err_sha_1_256_algs;
}
if (dd->caps.has_sha224) {
atmel_sha_alg_init(&sha_224_alg);
err = crypto_register_ahash(&sha_224_alg);
if (err)
goto err_sha_224_algs;
}
if (dd->caps.has_sha_384_512) {
for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
atmel_sha_alg_init(&sha_384_512_algs[i]);
err = crypto_register_ahash(&sha_384_512_algs[i]);
if (err)
goto err_sha_384_512_algs;
}
}
if (dd->caps.has_hmac) {
for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
err = crypto_register_ahash(&sha_hmac_algs[i]);
if (err)
goto err_sha_hmac_algs;
}
}
return 0;
/*i = ARRAY_SIZE(sha_hmac_algs);*/
err_sha_hmac_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_hmac_algs[j]);
i = ARRAY_SIZE(sha_384_512_algs);
err_sha_384_512_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_384_512_algs[j]);
crypto_unregister_ahash(&sha_224_alg);
err_sha_224_algs:
i = ARRAY_SIZE(sha_1_256_algs);
err_sha_1_256_algs:
for (j = 0; j < i; j++)
crypto_unregister_ahash(&sha_1_256_algs[j]);
return err;
}
static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
{
dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->dma_lch_in.chan)) {
return dev_err_probe(dd->dev, PTR_ERR(dd->dma_lch_in.chan),
"DMA channel is not available\n");
}
dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
SHA_REG_DIN(0);
dd->dma_lch_in.dma_conf.src_maxburst = 1;
dd->dma_lch_in.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.dst_maxburst = 1;
dd->dma_lch_in.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.device_fc = false;
return 0;
}
static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
{
dma_release_channel(dd->dma_lch_in.chan);
}
static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
{
dd->caps.has_dma = 0;
dd->caps.has_dualbuff = 0;
dd->caps.has_sha224 = 0;
dd->caps.has_sha_384_512 = 0;
dd->caps.has_uihv = 0;
dd->caps.has_hmac = 0;
/* keep only major version number */
switch (dd->hw_version & 0xff0) {
case 0x700:
case 0x600:
case 0x510:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
dd->caps.has_uihv = 1;
dd->caps.has_hmac = 1;
break;
case 0x420:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
dd->caps.has_uihv = 1;
break;
case 0x410:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
dd->caps.has_sha_384_512 = 1;
break;
case 0x400:
dd->caps.has_dma = 1;
dd->caps.has_dualbuff = 1;
dd->caps.has_sha224 = 1;
break;
case 0x320:
break;
default:
dev_warn(dd->dev,
"Unmanaged sha version, set minimum capabilities\n");
break;
}
}
static const struct of_device_id atmel_sha_dt_ids[] = {
{ .compatible = "atmel,at91sam9g46-sha" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
static int atmel_sha_probe(struct platform_device *pdev)
{
struct atmel_sha_dev *sha_dd;
struct device *dev = &pdev->dev;
struct resource *sha_res;
int err;
sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
if (!sha_dd)
return -ENOMEM;
sha_dd->dev = dev;
platform_set_drvdata(pdev, sha_dd);
INIT_LIST_HEAD(&sha_dd->list);
spin_lock_init(&sha_dd->lock);
tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
(unsigned long)sha_dd);
tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
(unsigned long)sha_dd);
crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
sha_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &sha_res);
if (IS_ERR(sha_dd->io_base)) {
err = PTR_ERR(sha_dd->io_base);
goto err_tasklet_kill;
}
sha_dd->phys_base = sha_res->start;
/* Get the IRQ */
sha_dd->irq = platform_get_irq(pdev, 0);
if (sha_dd->irq < 0) {
err = sha_dd->irq;
goto err_tasklet_kill;
}
err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
IRQF_SHARED, "atmel-sha", sha_dd);
if (err) {
dev_err(dev, "unable to request sha irq.\n");
goto err_tasklet_kill;
}
/* Initializing the clock */
sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
if (IS_ERR(sha_dd->iclk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(sha_dd->iclk);
goto err_tasklet_kill;
}
err = clk_prepare(sha_dd->iclk);
if (err)
goto err_tasklet_kill;
err = atmel_sha_hw_version_init(sha_dd);
if (err)
goto err_iclk_unprepare;
atmel_sha_get_cap(sha_dd);
if (sha_dd->caps.has_dma) {
err = atmel_sha_dma_init(sha_dd);
if (err)
goto err_iclk_unprepare;
dev_info(dev, "using %s for DMA transfers\n",
dma_chan_name(sha_dd->dma_lch_in.chan));
}
spin_lock(&atmel_sha.lock);
list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
spin_unlock(&atmel_sha.lock);
err = atmel_sha_register_algs(sha_dd);
if (err)
goto err_algs;
dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
sha_dd->caps.has_sha224 ? "/SHA224" : "",
sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
return 0;
err_algs:
spin_lock(&atmel_sha.lock);
list_del(&sha_dd->list);
spin_unlock(&atmel_sha.lock);
if (sha_dd->caps.has_dma)
atmel_sha_dma_cleanup(sha_dd);
err_iclk_unprepare:
clk_unprepare(sha_dd->iclk);
err_tasklet_kill:
tasklet_kill(&sha_dd->queue_task);
tasklet_kill(&sha_dd->done_task);
return err;
}
static int atmel_sha_remove(struct platform_device *pdev)
{
struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
spin_lock(&atmel_sha.lock);
list_del(&sha_dd->list);
spin_unlock(&atmel_sha.lock);
atmel_sha_unregister_algs(sha_dd);
tasklet_kill(&sha_dd->queue_task);
tasklet_kill(&sha_dd->done_task);
if (sha_dd->caps.has_dma)
atmel_sha_dma_cleanup(sha_dd);
clk_unprepare(sha_dd->iclk);
return 0;
}
static struct platform_driver atmel_sha_driver = {
.probe = atmel_sha_probe,
.remove = atmel_sha_remove,
.driver = {
.name = "atmel_sha",
.of_match_table = atmel_sha_dt_ids,
},
};
module_platform_driver(atmel_sha_driver);
MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
| linux-master | drivers/crypto/atmel-sha.c |
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017-18 Linaro Limited
//
// Based on msm-rng.c and downstream driver
#include <crypto/internal/rng.h>
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
/* Device specific register offsets */
#define PRNG_DATA_OUT 0x0000
#define PRNG_STATUS 0x0004
#define PRNG_LFSR_CFG 0x0100
#define PRNG_CONFIG 0x0104
/* Device specific register masks and config values */
#define PRNG_LFSR_CFG_MASK 0x0000ffff
#define PRNG_LFSR_CFG_CLOCKS 0x0000dddd
#define PRNG_CONFIG_HW_ENABLE BIT(1)
#define PRNG_STATUS_DATA_AVAIL BIT(0)
#define WORD_SZ 4
struct qcom_rng {
struct mutex lock;
void __iomem *base;
struct clk *clk;
unsigned int skip_init;
};
struct qcom_rng_ctx {
struct qcom_rng *rng;
};
static struct qcom_rng *qcom_rng_dev;
static int qcom_rng_read(struct qcom_rng *rng, u8 *data, unsigned int max)
{
unsigned int currsize = 0;
u32 val;
int ret;
/* read random data from hardware */
do {
ret = readl_poll_timeout(rng->base + PRNG_STATUS, val,
val & PRNG_STATUS_DATA_AVAIL,
200, 10000);
if (ret)
return ret;
val = readl_relaxed(rng->base + PRNG_DATA_OUT);
if (!val)
return -EINVAL;
if ((max - currsize) >= WORD_SZ) {
memcpy(data, &val, WORD_SZ);
data += WORD_SZ;
currsize += WORD_SZ;
} else {
/* copy only remaining bytes */
memcpy(data, &val, max - currsize);
break;
}
} while (currsize < max);
return 0;
}
static int qcom_rng_generate(struct crypto_rng *tfm,
const u8 *src, unsigned int slen,
u8 *dstn, unsigned int dlen)
{
struct qcom_rng_ctx *ctx = crypto_rng_ctx(tfm);
struct qcom_rng *rng = ctx->rng;
int ret;
ret = clk_prepare_enable(rng->clk);
if (ret)
return ret;
mutex_lock(&rng->lock);
ret = qcom_rng_read(rng, dstn, dlen);
mutex_unlock(&rng->lock);
clk_disable_unprepare(rng->clk);
return ret;
}
static int qcom_rng_seed(struct crypto_rng *tfm, const u8 *seed,
unsigned int slen)
{
return 0;
}
static int qcom_rng_enable(struct qcom_rng *rng)
{
u32 val;
int ret;
ret = clk_prepare_enable(rng->clk);
if (ret)
return ret;
/* Enable PRNG only if it is not already enabled */
val = readl_relaxed(rng->base + PRNG_CONFIG);
if (val & PRNG_CONFIG_HW_ENABLE)
goto already_enabled;
val = readl_relaxed(rng->base + PRNG_LFSR_CFG);
val &= ~PRNG_LFSR_CFG_MASK;
val |= PRNG_LFSR_CFG_CLOCKS;
writel(val, rng->base + PRNG_LFSR_CFG);
val = readl_relaxed(rng->base + PRNG_CONFIG);
val |= PRNG_CONFIG_HW_ENABLE;
writel(val, rng->base + PRNG_CONFIG);
already_enabled:
clk_disable_unprepare(rng->clk);
return 0;
}
static int qcom_rng_init(struct crypto_tfm *tfm)
{
struct qcom_rng_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->rng = qcom_rng_dev;
if (!ctx->rng->skip_init)
return qcom_rng_enable(ctx->rng);
return 0;
}
static struct rng_alg qcom_rng_alg = {
.generate = qcom_rng_generate,
.seed = qcom_rng_seed,
.seedsize = 0,
.base = {
.cra_name = "stdrng",
.cra_driver_name = "qcom-rng",
.cra_flags = CRYPTO_ALG_TYPE_RNG,
.cra_priority = 300,
.cra_ctxsize = sizeof(struct qcom_rng_ctx),
.cra_module = THIS_MODULE,
.cra_init = qcom_rng_init,
}
};
static int qcom_rng_probe(struct platform_device *pdev)
{
struct qcom_rng *rng;
int ret;
rng = devm_kzalloc(&pdev->dev, sizeof(*rng), GFP_KERNEL);
if (!rng)
return -ENOMEM;
platform_set_drvdata(pdev, rng);
mutex_init(&rng->lock);
rng->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rng->base))
return PTR_ERR(rng->base);
rng->clk = devm_clk_get_optional(&pdev->dev, "core");
if (IS_ERR(rng->clk))
return PTR_ERR(rng->clk);
rng->skip_init = (unsigned long)device_get_match_data(&pdev->dev);
qcom_rng_dev = rng;
ret = crypto_register_rng(&qcom_rng_alg);
if (ret) {
dev_err(&pdev->dev, "Register crypto rng failed: %d\n", ret);
qcom_rng_dev = NULL;
}
return ret;
}
static int qcom_rng_remove(struct platform_device *pdev)
{
crypto_unregister_rng(&qcom_rng_alg);
qcom_rng_dev = NULL;
return 0;
}
static const struct acpi_device_id __maybe_unused qcom_rng_acpi_match[] = {
{ .id = "QCOM8160", .driver_data = 1 },
{}
};
MODULE_DEVICE_TABLE(acpi, qcom_rng_acpi_match);
static const struct of_device_id __maybe_unused qcom_rng_of_match[] = {
{ .compatible = "qcom,prng", .data = (void *)0},
{ .compatible = "qcom,prng-ee", .data = (void *)1},
{}
};
MODULE_DEVICE_TABLE(of, qcom_rng_of_match);
static struct platform_driver qcom_rng_driver = {
.probe = qcom_rng_probe,
.remove = qcom_rng_remove,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = of_match_ptr(qcom_rng_of_match),
.acpi_match_table = ACPI_PTR(qcom_rng_acpi_match),
}
};
module_platform_driver(qcom_rng_driver);
MODULE_ALIAS("platform:" KBUILD_MODNAME);
MODULE_DESCRIPTION("Qualcomm random number generator driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/crypto/qcom-rng.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip / Atmel ECC (I2C) driver.
*
* Copyright (c) 2017, Microchip Technology Inc.
* Author: Tudor Ambarus
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <crypto/internal/kpp.h>
#include <crypto/ecdh.h>
#include <crypto/kpp.h>
#include "atmel-i2c.h"
static struct atmel_ecc_driver_data driver_data;
/**
* struct atmel_ecdh_ctx - transformation context
* @client : pointer to i2c client device
* @fallback : used for unsupported curves or when user wants to use its own
* private key.
* @public_key : generated when calling set_secret(). It's the responsibility
* of the user to not call set_secret() while
* generate_public_key() or compute_shared_secret() are in flight.
* @curve_id : elliptic curve id
* @do_fallback: true when the device doesn't support the curve or when the user
* wants to use its own private key.
*/
struct atmel_ecdh_ctx {
struct i2c_client *client;
struct crypto_kpp *fallback;
const u8 *public_key;
unsigned int curve_id;
bool do_fallback;
};
static void atmel_ecdh_done(struct atmel_i2c_work_data *work_data, void *areq,
int status)
{
struct kpp_request *req = areq;
struct atmel_i2c_cmd *cmd = &work_data->cmd;
size_t copied, n_sz;
if (status)
goto free_work_data;
/* might want less than we've got */
n_sz = min_t(size_t, ATMEL_ECC_NIST_P256_N_SIZE, req->dst_len);
/* copy the shared secret */
copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz),
&cmd->data[RSP_DATA_IDX], n_sz);
if (copied != n_sz)
status = -EINVAL;
/* fall through */
free_work_data:
kfree_sensitive(work_data);
kpp_request_complete(req, status);
}
/*
* A random private key is generated and stored in the device. The device
* returns the pair public key.
*/
static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
unsigned int len)
{
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
struct atmel_i2c_cmd *cmd;
void *public_key;
struct ecdh params;
int ret = -ENOMEM;
/* free the old public key, if any */
kfree(ctx->public_key);
/* make sure you don't free the old public key twice */
ctx->public_key = NULL;
if (crypto_ecdh_decode_key(buf, len, ¶ms) < 0) {
dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
return -EINVAL;
}
if (params.key_size) {
/* fallback to ecdh software implementation */
ctx->do_fallback = true;
return crypto_kpp_set_secret(ctx->fallback, buf, len);
}
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
/*
* The device only supports NIST P256 ECC keys. The public key size will
* always be the same. Use a macro for the key size to avoid unnecessary
* computations.
*/
public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
if (!public_key)
goto free_cmd;
ctx->do_fallback = false;
atmel_i2c_init_genkey_cmd(cmd, DATA_SLOT_2);
ret = atmel_i2c_send_receive(ctx->client, cmd);
if (ret)
goto free_public_key;
/* save the public key */
memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
ctx->public_key = public_key;
kfree(cmd);
return 0;
free_public_key:
kfree(public_key);
free_cmd:
kfree(cmd);
return ret;
}
static int atmel_ecdh_generate_public_key(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
size_t copied, nbytes;
int ret = 0;
if (ctx->do_fallback) {
kpp_request_set_tfm(req, ctx->fallback);
return crypto_kpp_generate_public_key(req);
}
if (!ctx->public_key)
return -EINVAL;
/* might want less than we've got */
nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len);
/* public key was saved at private key generation */
copied = sg_copy_from_buffer(req->dst,
sg_nents_for_len(req->dst, nbytes),
ctx->public_key, nbytes);
if (copied != nbytes)
ret = -EINVAL;
return ret;
}
static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
struct atmel_i2c_work_data *work_data;
gfp_t gfp;
int ret;
if (ctx->do_fallback) {
kpp_request_set_tfm(req, ctx->fallback);
return crypto_kpp_compute_shared_secret(req);
}
/* must have exactly two points to be on the curve */
if (req->src_len != ATMEL_ECC_PUBKEY_SIZE)
return -EINVAL;
gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
GFP_ATOMIC;
work_data = kmalloc(sizeof(*work_data), gfp);
if (!work_data)
return -ENOMEM;
work_data->ctx = ctx;
work_data->client = ctx->client;
ret = atmel_i2c_init_ecdh_cmd(&work_data->cmd, req->src);
if (ret)
goto free_work_data;
atmel_i2c_enqueue(work_data, atmel_ecdh_done, req);
return -EINPROGRESS;
free_work_data:
kfree(work_data);
return ret;
}
static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
{
struct atmel_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
struct i2c_client *client = ERR_PTR(-ENODEV);
int min_tfm_cnt = INT_MAX;
int tfm_cnt;
spin_lock(&driver_data.i2c_list_lock);
if (list_empty(&driver_data.i2c_client_list)) {
spin_unlock(&driver_data.i2c_list_lock);
return ERR_PTR(-ENODEV);
}
list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
i2c_client_list_node) {
tfm_cnt = atomic_read(&i2c_priv->tfm_count);
if (tfm_cnt < min_tfm_cnt) {
min_tfm_cnt = tfm_cnt;
min_i2c_priv = i2c_priv;
}
if (!min_tfm_cnt)
break;
}
if (min_i2c_priv) {
atomic_inc(&min_i2c_priv->tfm_count);
client = min_i2c_priv->client;
}
spin_unlock(&driver_data.i2c_list_lock);
return client;
}
static void atmel_ecc_i2c_client_free(struct i2c_client *client)
{
struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
atomic_dec(&i2c_priv->tfm_count);
}
static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
{
const char *alg = kpp_alg_name(tfm);
struct crypto_kpp *fallback;
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
ctx->curve_id = ECC_CURVE_NIST_P256;
ctx->client = atmel_ecc_i2c_client_alloc();
if (IS_ERR(ctx->client)) {
pr_err("tfm - i2c_client binding failed\n");
return PTR_ERR(ctx->client);
}
fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback)) {
dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
alg, PTR_ERR(fallback));
return PTR_ERR(fallback);
}
crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
ctx->fallback = fallback;
return 0;
}
static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
{
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
kfree(ctx->public_key);
crypto_free_kpp(ctx->fallback);
atmel_ecc_i2c_client_free(ctx->client);
}
static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
{
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
if (ctx->fallback)
return crypto_kpp_maxsize(ctx->fallback);
/*
* The device only supports NIST P256 ECC keys. The public key size will
* always be the same. Use a macro for the key size to avoid unnecessary
* computations.
*/
return ATMEL_ECC_PUBKEY_SIZE;
}
static struct kpp_alg atmel_ecdh_nist_p256 = {
.set_secret = atmel_ecdh_set_secret,
.generate_public_key = atmel_ecdh_generate_public_key,
.compute_shared_secret = atmel_ecdh_compute_shared_secret,
.init = atmel_ecdh_init_tfm,
.exit = atmel_ecdh_exit_tfm,
.max_size = atmel_ecdh_max_size,
.base = {
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.cra_name = "ecdh-nist-p256",
.cra_driver_name = "atmel-ecdh",
.cra_priority = ATMEL_ECC_PRIORITY,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
},
};
static int atmel_ecc_probe(struct i2c_client *client)
{
struct atmel_i2c_client_priv *i2c_priv;
int ret;
ret = atmel_i2c_probe(client);
if (ret)
return ret;
i2c_priv = i2c_get_clientdata(client);
spin_lock(&driver_data.i2c_list_lock);
list_add_tail(&i2c_priv->i2c_client_list_node,
&driver_data.i2c_client_list);
spin_unlock(&driver_data.i2c_list_lock);
ret = crypto_register_kpp(&atmel_ecdh_nist_p256);
if (ret) {
spin_lock(&driver_data.i2c_list_lock);
list_del(&i2c_priv->i2c_client_list_node);
spin_unlock(&driver_data.i2c_list_lock);
dev_err(&client->dev, "%s alg registration failed\n",
atmel_ecdh_nist_p256.base.cra_driver_name);
} else {
dev_info(&client->dev, "atmel ecc algorithms registered in /proc/crypto\n");
}
return ret;
}
static void atmel_ecc_remove(struct i2c_client *client)
{
struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
/* Return EBUSY if i2c client already allocated. */
if (atomic_read(&i2c_priv->tfm_count)) {
/*
* After we return here, the memory backing the device is freed.
* That happens no matter what the return value of this function
* is because in the Linux device model there is no error
* handling for unbinding a driver.
* If there is still some action pending, it probably involves
* accessing the freed memory.
*/
dev_emerg(&client->dev, "Device is busy, expect memory corruption.\n");
return;
}
crypto_unregister_kpp(&atmel_ecdh_nist_p256);
spin_lock(&driver_data.i2c_list_lock);
list_del(&i2c_priv->i2c_client_list_node);
spin_unlock(&driver_data.i2c_list_lock);
}
#ifdef CONFIG_OF
static const struct of_device_id atmel_ecc_dt_ids[] = {
{
.compatible = "atmel,atecc508a",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
#endif
static const struct i2c_device_id atmel_ecc_id[] = {
{ "atecc508a", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
static struct i2c_driver atmel_ecc_driver = {
.driver = {
.name = "atmel-ecc",
.of_match_table = of_match_ptr(atmel_ecc_dt_ids),
},
.probe = atmel_ecc_probe,
.remove = atmel_ecc_remove,
.id_table = atmel_ecc_id,
};
static int __init atmel_ecc_init(void)
{
spin_lock_init(&driver_data.i2c_list_lock);
INIT_LIST_HEAD(&driver_data.i2c_client_list);
return i2c_add_driver(&atmel_ecc_driver);
}
static void __exit atmel_ecc_exit(void)
{
atmel_i2c_flush_queue();
i2c_del_driver(&atmel_ecc_driver);
}
module_init(atmel_ecc_init);
module_exit(atmel_ecc_exit);
MODULE_AUTHOR("Tudor Ambarus");
MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/crypto/atmel-ecc.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Cryptographic API.
*
* Support for OMAP SHA1/MD5 HW acceleration.
*
* Copyright (c) 2010 Nokia Corporation
* Author: Dmitry Kasatkin <[email protected]>
* Copyright (c) 2011 Texas Instruments Incorporated
*
* Some ideas are from old omap-sha1-md5.c driver.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <crypto/engine.h>
#include <crypto/hmac.h>
#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/string.h>
#define MD5_DIGEST_SIZE 16
#define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04))
#define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04))
#define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs)
#define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04))
#define SHA_REG_CTRL 0x18
#define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5)
#define SHA_REG_CTRL_CLOSE_HASH (1 << 4)
#define SHA_REG_CTRL_ALGO_CONST (1 << 3)
#define SHA_REG_CTRL_ALGO (1 << 2)
#define SHA_REG_CTRL_INPUT_READY (1 << 1)
#define SHA_REG_CTRL_OUTPUT_READY (1 << 0)
#define SHA_REG_REV(dd) ((dd)->pdata->rev_ofs)
#define SHA_REG_MASK(dd) ((dd)->pdata->mask_ofs)
#define SHA_REG_MASK_DMA_EN (1 << 3)
#define SHA_REG_MASK_IT_EN (1 << 2)
#define SHA_REG_MASK_SOFTRESET (1 << 1)
#define SHA_REG_AUTOIDLE (1 << 0)
#define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs)
#define SHA_REG_SYSSTATUS_RESETDONE (1 << 0)
#define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs)
#define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7)
#define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5)
#define SHA_REG_MODE_CLOSE_HASH (1 << 4)
#define SHA_REG_MODE_ALGO_CONSTANT (1 << 3)
#define SHA_REG_MODE_ALGO_MASK (7 << 0)
#define SHA_REG_MODE_ALGO_MD5_128 (0 << 1)
#define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1)
#define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1)
#define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1)
#define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0)
#define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0)
#define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs)
#define SHA_REG_IRQSTATUS 0x118
#define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3)
#define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
#define SHA_REG_IRQSTATUS_INPUT_RDY (1 << 1)
#define SHA_REG_IRQSTATUS_OUTPUT_RDY (1 << 0)
#define SHA_REG_IRQENA 0x11C
#define SHA_REG_IRQENA_CTX_RDY (1 << 3)
#define SHA_REG_IRQENA_PARTHASH_RDY (1 << 2)
#define SHA_REG_IRQENA_INPUT_RDY (1 << 1)
#define SHA_REG_IRQENA_OUTPUT_RDY (1 << 0)
#define DEFAULT_TIMEOUT_INTERVAL HZ
#define DEFAULT_AUTOSUSPEND_DELAY 1000
/* mostly device flags */
#define FLAGS_FINAL 1
#define FLAGS_DMA_ACTIVE 2
#define FLAGS_OUTPUT_READY 3
#define FLAGS_CPU 5
#define FLAGS_DMA_READY 6
#define FLAGS_AUTO_XOR 7
#define FLAGS_BE32_SHA1 8
#define FLAGS_SGS_COPIED 9
#define FLAGS_SGS_ALLOCED 10
#define FLAGS_HUGE 11
/* context flags */
#define FLAGS_FINUP 16
#define FLAGS_MODE_SHIFT 18
#define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
#define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
#define FLAGS_HMAC 21
#define FLAGS_ERROR 22
#define OP_UPDATE 1
#define OP_FINAL 2
#define OMAP_ALIGN_MASK (sizeof(u32)-1)
#define OMAP_ALIGNED __attribute__((aligned(sizeof(u32))))
#define BUFLEN SHA512_BLOCK_SIZE
#define OMAP_SHA_DMA_THRESHOLD 256
#define OMAP_SHA_MAX_DMA_LEN (1024 * 2048)
struct omap_sham_dev;
struct omap_sham_reqctx {
struct omap_sham_dev *dd;
unsigned long flags;
u8 op;
u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
size_t digcnt;
size_t bufcnt;
size_t buflen;
/* walk state */
struct scatterlist *sg;
struct scatterlist sgl[2];
int offset; /* offset in current sg */
int sg_len;
unsigned int total; /* total request */
u8 buffer[] OMAP_ALIGNED;
};
struct omap_sham_hmac_ctx {
struct crypto_shash *shash;
u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
};
struct omap_sham_ctx {
unsigned long flags;
/* fallback stuff */
struct crypto_shash *fallback;
struct omap_sham_hmac_ctx base[];
};
#define OMAP_SHAM_QUEUE_LENGTH 10
struct omap_sham_algs_info {
struct ahash_engine_alg *algs_list;
unsigned int size;
unsigned int registered;
};
struct omap_sham_pdata {
struct omap_sham_algs_info *algs_info;
unsigned int algs_info_size;
unsigned long flags;
int digest_size;
void (*copy_hash)(struct ahash_request *req, int out);
void (*write_ctrl)(struct omap_sham_dev *dd, size_t length,
int final, int dma);
void (*trigger)(struct omap_sham_dev *dd, size_t length);
int (*poll_irq)(struct omap_sham_dev *dd);
irqreturn_t (*intr_hdlr)(int irq, void *dev_id);
u32 odigest_ofs;
u32 idigest_ofs;
u32 din_ofs;
u32 digcnt_ofs;
u32 rev_ofs;
u32 mask_ofs;
u32 sysstatus_ofs;
u32 mode_ofs;
u32 length_ofs;
u32 major_mask;
u32 major_shift;
u32 minor_mask;
u32 minor_shift;
};
struct omap_sham_dev {
struct list_head list;
unsigned long phys_base;
struct device *dev;
void __iomem *io_base;
int irq;
int err;
struct dma_chan *dma_lch;
struct tasklet_struct done_task;
u8 polling_mode;
u8 xmit_buf[BUFLEN] OMAP_ALIGNED;
unsigned long flags;
int fallback_sz;
struct crypto_queue queue;
struct ahash_request *req;
struct crypto_engine *engine;
const struct omap_sham_pdata *pdata;
};
struct omap_sham_drv {
struct list_head dev_list;
spinlock_t lock;
unsigned long flags;
};
static struct omap_sham_drv sham = {
.dev_list = LIST_HEAD_INIT(sham.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(sham.lock),
};
static int omap_sham_enqueue(struct ahash_request *req, unsigned int op);
static void omap_sham_finish_req(struct ahash_request *req, int err);
static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
{
return __raw_readl(dd->io_base + offset);
}
static inline void omap_sham_write(struct omap_sham_dev *dd,
u32 offset, u32 value)
{
__raw_writel(value, dd->io_base + offset);
}
static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
u32 value, u32 mask)
{
u32 val;
val = omap_sham_read(dd, address);
val &= ~mask;
val |= value;
omap_sham_write(dd, address, val);
}
static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
{
unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
while (!(omap_sham_read(dd, offset) & bit)) {
if (time_is_before_jiffies(timeout))
return -ETIMEDOUT;
}
return 0;
}
static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
u32 *hash = (u32 *)ctx->digest;
int i;
for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
if (out)
hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
else
omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
}
}
static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int i;
if (ctx->flags & BIT(FLAGS_HMAC)) {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
u32 *opad = (u32 *)bctx->opad;
for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
if (out)
opad[i] = omap_sham_read(dd,
SHA_REG_ODIGEST(dd, i));
else
omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
opad[i]);
}
}
omap_sham_copy_hash_omap2(req, out);
}
static void omap_sham_copy_ready_hash(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
u32 *in = (u32 *)ctx->digest;
u32 *hash = (u32 *)req->result;
int i, d, big_endian = 0;
if (!hash)
return;
switch (ctx->flags & FLAGS_MODE_MASK) {
case FLAGS_MODE_MD5:
d = MD5_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA1:
/* OMAP2 SHA1 is big endian */
if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
big_endian = 1;
d = SHA1_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA224:
d = SHA224_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA256:
d = SHA256_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA384:
d = SHA384_DIGEST_SIZE / sizeof(u32);
break;
case FLAGS_MODE_SHA512:
d = SHA512_DIGEST_SIZE / sizeof(u32);
break;
default:
d = 0;
}
if (big_endian)
for (i = 0; i < d; i++)
hash[i] = be32_to_cpup((__be32 *)in + i);
else
for (i = 0; i < d; i++)
hash[i] = le32_to_cpup((__le32 *)in + i);
}
static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
int final, int dma)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
u32 val = length << 5, mask;
if (likely(ctx->digcnt))
omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
omap_sham_write_mask(dd, SHA_REG_MASK(dd),
SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
/*
* Setting ALGO_CONST only for the first iteration
* and CLOSE_HASH only for the last one.
*/
if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
val |= SHA_REG_CTRL_ALGO;
if (!ctx->digcnt)
val |= SHA_REG_CTRL_ALGO_CONST;
if (final)
val |= SHA_REG_CTRL_CLOSE_HASH;
mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
}
static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
{
}
static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
{
return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
}
static int get_block_size(struct omap_sham_reqctx *ctx)
{
int d;
switch (ctx->flags & FLAGS_MODE_MASK) {
case FLAGS_MODE_MD5:
case FLAGS_MODE_SHA1:
d = SHA1_BLOCK_SIZE;
break;
case FLAGS_MODE_SHA224:
case FLAGS_MODE_SHA256:
d = SHA256_BLOCK_SIZE;
break;
case FLAGS_MODE_SHA384:
case FLAGS_MODE_SHA512:
d = SHA512_BLOCK_SIZE;
break;
default:
d = 0;
}
return d;
}
static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
omap_sham_write(dd, offset, *value);
}
static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
int final, int dma)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
u32 val, mask;
if (likely(ctx->digcnt))
omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
/*
* Setting ALGO_CONST only for the first iteration and
* CLOSE_HASH only for the last one. Note that flags mode bits
* correspond to algorithm encoding in mode register.
*/
val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
if (!ctx->digcnt) {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs, nr_dr;
val |= SHA_REG_MODE_ALGO_CONSTANT;
if (ctx->flags & BIT(FLAGS_HMAC)) {
bs = get_block_size(ctx);
nr_dr = bs / (2 * sizeof(u32));
val |= SHA_REG_MODE_HMAC_KEY_PROC;
omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
(u32 *)bctx->ipad, nr_dr);
omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
(u32 *)bctx->ipad + nr_dr, nr_dr);
ctx->digcnt += bs;
}
}
if (final) {
val |= SHA_REG_MODE_CLOSE_HASH;
if (ctx->flags & BIT(FLAGS_HMAC))
val |= SHA_REG_MODE_HMAC_OUTER_HASH;
}
mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
SHA_REG_MODE_HMAC_KEY_PROC;
dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
omap_sham_write_mask(dd, SHA_REG_MASK(dd),
SHA_REG_MASK_IT_EN |
(dma ? SHA_REG_MASK_DMA_EN : 0),
SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
}
static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
{
omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
}
static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
{
return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
SHA_REG_IRQSTATUS_INPUT_RDY);
}
static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
int final)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
int count, len32, bs32, offset = 0;
const u32 *buffer;
int mlen;
struct sg_mapping_iter mi;
dev_dbg(dd->dev, "xmit_cpu: digcnt: %zd, length: %zd, final: %d\n",
ctx->digcnt, length, final);
dd->pdata->write_ctrl(dd, length, final, 0);
dd->pdata->trigger(dd, length);
/* should be non-zero before next lines to disable clocks later */
ctx->digcnt += length;
ctx->total -= length;
if (final)
set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
set_bit(FLAGS_CPU, &dd->flags);
len32 = DIV_ROUND_UP(length, sizeof(u32));
bs32 = get_block_size(ctx) / sizeof(u32);
sg_miter_start(&mi, ctx->sg, ctx->sg_len,
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
mlen = 0;
while (len32) {
if (dd->pdata->poll_irq(dd))
return -ETIMEDOUT;
for (count = 0; count < min(len32, bs32); count++, offset++) {
if (!mlen) {
sg_miter_next(&mi);
mlen = mi.length;
if (!mlen) {
pr_err("sg miter failure.\n");
return -EINVAL;
}
offset = 0;
buffer = mi.addr;
}
omap_sham_write(dd, SHA_REG_DIN(dd, count),
buffer[offset]);
mlen -= 4;
}
len32 -= min(len32, bs32);
}
sg_miter_stop(&mi);
return -EINPROGRESS;
}
static void omap_sham_dma_callback(void *param)
{
struct omap_sham_dev *dd = param;
set_bit(FLAGS_DMA_READY, &dd->flags);
tasklet_schedule(&dd->done_task);
}
static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
int final)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
struct dma_async_tx_descriptor *tx;
struct dma_slave_config cfg;
int ret;
dev_dbg(dd->dev, "xmit_dma: digcnt: %zd, length: %zd, final: %d\n",
ctx->digcnt, length, final);
if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
dev_err(dd->dev, "dma_map_sg error\n");
return -EINVAL;
}
memset(&cfg, 0, sizeof(cfg));
cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
ret = dmaengine_slave_config(dd->dma_lch, &cfg);
if (ret) {
pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
return ret;
}
tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx) {
dev_err(dd->dev, "prep_slave_sg failed\n");
return -EINVAL;
}
tx->callback = omap_sham_dma_callback;
tx->callback_param = dd;
dd->pdata->write_ctrl(dd, length, final, 1);
ctx->digcnt += length;
ctx->total -= length;
if (final)
set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
dmaengine_submit(tx);
dma_async_issue_pending(dd->dma_lch);
dd->pdata->trigger(dd, length);
return -EINPROGRESS;
}
static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
struct scatterlist *sg, int bs, int new_len)
{
int n = sg_nents(sg);
struct scatterlist *tmp;
int offset = ctx->offset;
ctx->total = new_len;
if (ctx->bufcnt)
n++;
ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
if (!ctx->sg)
return -ENOMEM;
sg_init_table(ctx->sg, n);
tmp = ctx->sg;
ctx->sg_len = 0;
if (ctx->bufcnt) {
sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
tmp = sg_next(tmp);
ctx->sg_len++;
new_len -= ctx->bufcnt;
}
while (sg && new_len) {
int len = sg->length - offset;
if (len <= 0) {
offset -= sg->length;
sg = sg_next(sg);
continue;
}
if (new_len < len)
len = new_len;
if (len > 0) {
new_len -= len;
sg_set_page(tmp, sg_page(sg), len, sg->offset + offset);
offset = 0;
ctx->offset = 0;
ctx->sg_len++;
if (new_len <= 0)
break;
tmp = sg_next(tmp);
}
sg = sg_next(sg);
}
if (tmp)
sg_mark_end(tmp);
set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
ctx->offset += new_len - ctx->bufcnt;
ctx->bufcnt = 0;
return 0;
}
static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
struct scatterlist *sg, int bs,
unsigned int new_len)
{
int pages;
void *buf;
pages = get_order(new_len);
buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
if (!buf) {
pr_err("Couldn't allocate pages for unaligned cases.\n");
return -ENOMEM;
}
if (ctx->bufcnt)
memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
min(new_len, ctx->total) - ctx->bufcnt, 0);
sg_init_table(ctx->sgl, 1);
sg_set_buf(ctx->sgl, buf, new_len);
ctx->sg = ctx->sgl;
set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
ctx->sg_len = 1;
ctx->offset += new_len - ctx->bufcnt;
ctx->bufcnt = 0;
ctx->total = new_len;
return 0;
}
static int omap_sham_align_sgs(struct scatterlist *sg,
int nbytes, int bs, bool final,
struct omap_sham_reqctx *rctx)
{
int n = 0;
bool aligned = true;
bool list_ok = true;
struct scatterlist *sg_tmp = sg;
int new_len;
int offset = rctx->offset;
int bufcnt = rctx->bufcnt;
if (!sg || !sg->length || !nbytes) {
if (bufcnt) {
bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs;
sg_init_table(rctx->sgl, 1);
sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, bufcnt);
rctx->sg = rctx->sgl;
rctx->sg_len = 1;
}
return 0;
}
new_len = nbytes;
if (offset)
list_ok = false;
if (final)
new_len = DIV_ROUND_UP(new_len, bs) * bs;
else
new_len = (new_len - 1) / bs * bs;
if (!new_len)
return 0;
if (nbytes != new_len)
list_ok = false;
while (nbytes > 0 && sg_tmp) {
n++;
if (bufcnt) {
if (!IS_ALIGNED(bufcnt, bs)) {
aligned = false;
break;
}
nbytes -= bufcnt;
bufcnt = 0;
if (!nbytes)
list_ok = false;
continue;
}
#ifdef CONFIG_ZONE_DMA
if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) {
aligned = false;
break;
}
#endif
if (offset < sg_tmp->length) {
if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
aligned = false;
break;
}
if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
aligned = false;
break;
}
}
if (offset) {
offset -= sg_tmp->length;
if (offset < 0) {
nbytes += offset;
offset = 0;
}
} else {
nbytes -= sg_tmp->length;
}
sg_tmp = sg_next(sg_tmp);
if (nbytes < 0) {
list_ok = false;
break;
}
}
if (new_len > OMAP_SHA_MAX_DMA_LEN) {
new_len = OMAP_SHA_MAX_DMA_LEN;
aligned = false;
}
if (!aligned)
return omap_sham_copy_sgs(rctx, sg, bs, new_len);
else if (!list_ok)
return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
rctx->total = new_len;
rctx->offset += new_len;
rctx->sg_len = n;
if (rctx->bufcnt) {
sg_init_table(rctx->sgl, 2);
sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
sg_chain(rctx->sgl, 2, sg);
rctx->sg = rctx->sgl;
} else {
rctx->sg = sg;
}
return 0;
}
static int omap_sham_prepare_request(struct crypto_engine *engine, void *areq)
{
struct ahash_request *req = container_of(areq, struct ahash_request,
base);
struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
int bs;
int ret;
unsigned int nbytes;
bool final = rctx->flags & BIT(FLAGS_FINUP);
bool update = rctx->op == OP_UPDATE;
int hash_later;
bs = get_block_size(rctx);
nbytes = rctx->bufcnt;
if (update)
nbytes += req->nbytes - rctx->offset;
dev_dbg(rctx->dd->dev,
"%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%zd\n",
__func__, nbytes, bs, rctx->total, rctx->offset,
rctx->bufcnt);
if (!nbytes)
return 0;
rctx->total = nbytes;
if (update && req->nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
int len = bs - rctx->bufcnt % bs;
if (len > req->nbytes)
len = req->nbytes;
scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
0, len, 0);
rctx->bufcnt += len;
rctx->offset = len;
}
if (rctx->bufcnt)
memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
if (ret)
return ret;
hash_later = nbytes - rctx->total;
if (hash_later < 0)
hash_later = 0;
if (hash_later && hash_later <= rctx->buflen) {
scatterwalk_map_and_copy(rctx->buffer,
req->src,
req->nbytes - hash_later,
hash_later, 0);
rctx->bufcnt = hash_later;
} else {
rctx->bufcnt = 0;
}
if (hash_later > rctx->buflen)
set_bit(FLAGS_HUGE, &rctx->dd->flags);
rctx->total = min(nbytes, rctx->total);
return 0;
}
static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
return 0;
}
static struct omap_sham_dev *omap_sham_find_dev(struct omap_sham_reqctx *ctx)
{
struct omap_sham_dev *dd;
if (ctx->dd)
return ctx->dd;
spin_lock_bh(&sham.lock);
dd = list_first_entry(&sham.dev_list, struct omap_sham_dev, list);
list_move_tail(&dd->list, &sham.dev_list);
ctx->dd = dd;
spin_unlock_bh(&sham.lock);
return dd;
}
static int omap_sham_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd;
int bs = 0;
ctx->dd = NULL;
dd = omap_sham_find_dev(ctx);
if (!dd)
return -ENODEV;
ctx->flags = 0;
dev_dbg(dd->dev, "init: digest size: %d\n",
crypto_ahash_digestsize(tfm));
switch (crypto_ahash_digestsize(tfm)) {
case MD5_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_MD5;
bs = SHA1_BLOCK_SIZE;
break;
case SHA1_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA1;
bs = SHA1_BLOCK_SIZE;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA224;
bs = SHA224_BLOCK_SIZE;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA256;
bs = SHA256_BLOCK_SIZE;
break;
case SHA384_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA384;
bs = SHA384_BLOCK_SIZE;
break;
case SHA512_DIGEST_SIZE:
ctx->flags |= FLAGS_MODE_SHA512;
bs = SHA512_BLOCK_SIZE;
break;
}
ctx->bufcnt = 0;
ctx->digcnt = 0;
ctx->total = 0;
ctx->offset = 0;
ctx->buflen = BUFLEN;
if (tctx->flags & BIT(FLAGS_HMAC)) {
if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
struct omap_sham_hmac_ctx *bctx = tctx->base;
memcpy(ctx->buffer, bctx->ipad, bs);
ctx->bufcnt = bs;
}
ctx->flags |= BIT(FLAGS_HMAC);
}
return 0;
}
static int omap_sham_update_req(struct omap_sham_dev *dd)
{
struct ahash_request *req = dd->req;
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err;
bool final = (ctx->flags & BIT(FLAGS_FINUP)) &&
!(dd->flags & BIT(FLAGS_HUGE));
dev_dbg(dd->dev, "update_req: total: %u, digcnt: %zd, final: %d",
ctx->total, ctx->digcnt, final);
if (ctx->total < get_block_size(ctx) ||
ctx->total < dd->fallback_sz)
ctx->flags |= BIT(FLAGS_CPU);
if (ctx->flags & BIT(FLAGS_CPU))
err = omap_sham_xmit_cpu(dd, ctx->total, final);
else
err = omap_sham_xmit_dma(dd, ctx->total, final);
/* wait for dma completion before can take more data */
dev_dbg(dd->dev, "update: err: %d, digcnt: %zd\n", err, ctx->digcnt);
return err;
}
static int omap_sham_final_req(struct omap_sham_dev *dd)
{
struct ahash_request *req = dd->req;
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err = 0, use_dma = 1;
if (dd->flags & BIT(FLAGS_HUGE))
return 0;
if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
/*
* faster to handle last block with cpu or
* use cpu when dma is not present.
*/
use_dma = 0;
if (use_dma)
err = omap_sham_xmit_dma(dd, ctx->total, 1);
else
err = omap_sham_xmit_cpu(dd, ctx->total, 1);
ctx->bufcnt = 0;
dev_dbg(dd->dev, "final_req: err: %d\n", err);
return err;
}
static int omap_sham_hash_one_req(struct crypto_engine *engine, void *areq)
{
struct ahash_request *req = container_of(areq, struct ahash_request,
base);
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int err;
bool final = (ctx->flags & BIT(FLAGS_FINUP)) &&
!(dd->flags & BIT(FLAGS_HUGE));
dev_dbg(dd->dev, "hash-one: op: %u, total: %u, digcnt: %zd, final: %d",
ctx->op, ctx->total, ctx->digcnt, final);
err = omap_sham_prepare_request(engine, areq);
if (err)
return err;
err = pm_runtime_resume_and_get(dd->dev);
if (err < 0) {
dev_err(dd->dev, "failed to get sync: %d\n", err);
return err;
}
dd->err = 0;
dd->req = req;
if (ctx->digcnt)
dd->pdata->copy_hash(req, 0);
if (ctx->op == OP_UPDATE)
err = omap_sham_update_req(dd);
else if (ctx->op == OP_FINAL)
err = omap_sham_final_req(dd);
if (err != -EINPROGRESS)
omap_sham_finish_req(req, err);
return 0;
}
static int omap_sham_finish_hmac(struct ahash_request *req)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs = crypto_shash_blocksize(bctx->shash);
int ds = crypto_shash_digestsize(bctx->shash);
SHASH_DESC_ON_STACK(shash, bctx->shash);
shash->tfm = bctx->shash;
return crypto_shash_init(shash) ?:
crypto_shash_update(shash, bctx->opad, bs) ?:
crypto_shash_finup(shash, req->result, ds, req->result);
}
static int omap_sham_finish(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int err = 0;
if (ctx->digcnt) {
omap_sham_copy_ready_hash(req);
if ((ctx->flags & BIT(FLAGS_HMAC)) &&
!test_bit(FLAGS_AUTO_XOR, &dd->flags))
err = omap_sham_finish_hmac(req);
}
dev_dbg(dd->dev, "digcnt: %zd, bufcnt: %zd\n", ctx->digcnt, ctx->bufcnt);
return err;
}
static void omap_sham_finish_req(struct ahash_request *req, int err)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
free_pages((unsigned long)sg_virt(ctx->sg),
get_order(ctx->sg->length));
if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
kfree(ctx->sg);
ctx->sg = NULL;
dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED) |
BIT(FLAGS_CPU) | BIT(FLAGS_DMA_READY) |
BIT(FLAGS_OUTPUT_READY));
if (!err)
dd->pdata->copy_hash(req, 1);
if (dd->flags & BIT(FLAGS_HUGE)) {
/* Re-enqueue the request */
omap_sham_enqueue(req, ctx->op);
return;
}
if (!err) {
if (test_bit(FLAGS_FINAL, &dd->flags))
err = omap_sham_finish(req);
} else {
ctx->flags |= BIT(FLAGS_ERROR);
}
/* atomic operation is not needed here */
dd->flags &= ~(BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
ctx->offset = 0;
crypto_finalize_hash_request(dd->engine, req, err);
}
static int omap_sham_handle_queue(struct omap_sham_dev *dd,
struct ahash_request *req)
{
return crypto_transfer_hash_request_to_engine(dd->engine, req);
}
static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
ctx->op = op;
return omap_sham_handle_queue(dd, req);
}
static int omap_sham_update(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = omap_sham_find_dev(ctx);
if (!req->nbytes)
return 0;
if (ctx->bufcnt + req->nbytes <= ctx->buflen) {
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
0, req->nbytes, 0);
ctx->bufcnt += req->nbytes;
return 0;
}
if (dd->polling_mode)
ctx->flags |= BIT(FLAGS_CPU);
return omap_sham_enqueue(req, OP_UPDATE);
}
static int omap_sham_final_shash(struct ahash_request *req)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int offset = 0;
/*
* If we are running HMAC on limited hardware support, skip
* the ipad in the beginning of the buffer if we are going for
* software fallback algorithm.
*/
if (test_bit(FLAGS_HMAC, &ctx->flags) &&
!test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
offset = get_block_size(ctx);
return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer + offset,
ctx->bufcnt - offset, req->result);
}
static int omap_sham_final(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
ctx->flags |= BIT(FLAGS_FINUP);
if (ctx->flags & BIT(FLAGS_ERROR))
return 0; /* uncompleted hash is not needed */
/*
* OMAP HW accel works only with buffers >= 9.
* HMAC is always >= 9 because ipad == block size.
* If buffersize is less than fallback_sz, we use fallback
* SW encoding, as using DMA + HW in this case doesn't provide
* any benefit.
*/
if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz)
return omap_sham_final_shash(req);
else if (ctx->bufcnt)
return omap_sham_enqueue(req, OP_FINAL);
/* copy ready hash (+ finalize hmac) */
return omap_sham_finish(req);
}
static int omap_sham_finup(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err1, err2;
ctx->flags |= BIT(FLAGS_FINUP);
err1 = omap_sham_update(req);
if (err1 == -EINPROGRESS || err1 == -EBUSY)
return err1;
/*
* final() has to be always called to cleanup resources
* even if udpate() failed, except EINPROGRESS
*/
err2 = omap_sham_final(req);
return err1 ?: err2;
}
static int omap_sham_digest(struct ahash_request *req)
{
return omap_sham_init(req) ?: omap_sham_finup(req);
}
static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs = crypto_shash_blocksize(bctx->shash);
int ds = crypto_shash_digestsize(bctx->shash);
int err, i;
err = crypto_shash_setkey(tctx->fallback, key, keylen);
if (err)
return err;
if (keylen > bs) {
err = crypto_shash_tfm_digest(bctx->shash, key, keylen,
bctx->ipad);
if (err)
return err;
keylen = ds;
} else {
memcpy(bctx->ipad, key, keylen);
}
memset(bctx->ipad + keylen, 0, bs - keylen);
if (!test_bit(FLAGS_AUTO_XOR, &sham.flags)) {
memcpy(bctx->opad, bctx->ipad, bs);
for (i = 0; i < bs; i++) {
bctx->ipad[i] ^= HMAC_IPAD_VALUE;
bctx->opad[i] ^= HMAC_OPAD_VALUE;
}
}
return err;
}
static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(tfm);
/* Allocate a fallback and abort if it failed. */
tctx->fallback = crypto_alloc_shash(alg_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(tctx->fallback)) {
pr_err("omap-sham: fallback driver '%s' "
"could not be loaded.\n", alg_name);
return PTR_ERR(tctx->fallback);
}
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct omap_sham_reqctx) + BUFLEN);
if (alg_base) {
struct omap_sham_hmac_ctx *bctx = tctx->base;
tctx->flags |= BIT(FLAGS_HMAC);
bctx->shash = crypto_alloc_shash(alg_base, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(bctx->shash)) {
pr_err("omap-sham: base driver '%s' "
"could not be loaded.\n", alg_base);
crypto_free_shash(tctx->fallback);
return PTR_ERR(bctx->shash);
}
}
return 0;
}
static int omap_sham_cra_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, NULL);
}
static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha1");
}
static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha224");
}
static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha256");
}
static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "md5");
}
static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha384");
}
static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
{
return omap_sham_cra_init_alg(tfm, "sha512");
}
static void omap_sham_cra_exit(struct crypto_tfm *tfm)
{
struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
crypto_free_shash(tctx->fallback);
tctx->fallback = NULL;
if (tctx->flags & BIT(FLAGS_HMAC)) {
struct omap_sham_hmac_ctx *bctx = tctx->base;
crypto_free_shash(bctx->shash);
}
}
static int omap_sham_export(struct ahash_request *req, void *out)
{
struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
return 0;
}
static int omap_sham_import(struct ahash_request *req, const void *in)
{
struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
const struct omap_sham_reqctx *ctx_in = in;
memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
return 0;
}
static struct ahash_engine_alg algs_sha1_md5[] = {
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.halg.digestsize = SHA1_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "omap-sha1",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.halg.digestsize = MD5_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "md5",
.cra_driver_name = "omap-md5",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.setkey = omap_sham_setkey,
.base.halg.digestsize = SHA1_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "omap-hmac-sha1",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha1_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.setkey = omap_sham_setkey,
.base.halg.digestsize = MD5_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "hmac(md5)",
.cra_driver_name = "omap-hmac-md5",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_md5_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
}
};
/* OMAP4 has some algs in addition to what OMAP2 has */
static struct ahash_engine_alg algs_sha224_sha256[] = {
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.halg.digestsize = SHA224_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "sha224",
.cra_driver_name = "omap-sha224",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.halg.digestsize = SHA256_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "omap-sha256",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.setkey = omap_sham_setkey,
.base.halg.digestsize = SHA224_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "omap-hmac-sha224",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha224_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.setkey = omap_sham_setkey,
.base.halg.digestsize = SHA256_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "omap-hmac-sha256",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha256_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
};
static struct ahash_engine_alg algs_sha384_sha512[] = {
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.halg.digestsize = SHA384_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "sha384",
.cra_driver_name = "omap-sha384",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.halg.digestsize = SHA512_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "omap-sha512",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.setkey = omap_sham_setkey,
.base.halg.digestsize = SHA384_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "omap-hmac-sha384",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha384_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
{
.base.init = omap_sham_init,
.base.update = omap_sham_update,
.base.final = omap_sham_final,
.base.finup = omap_sham_finup,
.base.digest = omap_sham_digest,
.base.setkey = omap_sham_setkey,
.base.halg.digestsize = SHA512_DIGEST_SIZE,
.base.halg.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "omap-hmac-sha512",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_sham_ctx) +
sizeof(struct omap_sham_hmac_ctx),
.cra_alignmask = OMAP_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = omap_sham_cra_sha512_init,
.cra_exit = omap_sham_cra_exit,
},
.op.do_one_request = omap_sham_hash_one_req,
},
};
static void omap_sham_done_task(unsigned long data)
{
struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
int err = 0;
dev_dbg(dd->dev, "%s: flags=%lx\n", __func__, dd->flags);
if (test_bit(FLAGS_CPU, &dd->flags)) {
if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
goto finish;
} else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
if (test_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
omap_sham_update_dma_stop(dd);
if (dd->err) {
err = dd->err;
goto finish;
}
}
if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
/* hash or semi-hash ready */
clear_bit(FLAGS_DMA_READY, &dd->flags);
goto finish;
}
}
return;
finish:
dev_dbg(dd->dev, "update done: err: %d\n", err);
/* finish curent request */
omap_sham_finish_req(dd->req, err);
}
static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
{
set_bit(FLAGS_OUTPUT_READY, &dd->flags);
tasklet_schedule(&dd->done_task);
return IRQ_HANDLED;
}
static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
{
struct omap_sham_dev *dd = dev_id;
if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
/* final -> allow device to go to power-saving mode */
omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
SHA_REG_CTRL_OUTPUT_READY);
omap_sham_read(dd, SHA_REG_CTRL);
return omap_sham_irq_common(dd);
}
static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
{
struct omap_sham_dev *dd = dev_id;
omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
return omap_sham_irq_common(dd);
}
static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
{
.algs_list = algs_sha1_md5,
.size = ARRAY_SIZE(algs_sha1_md5),
},
};
static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
.algs_info = omap_sham_algs_info_omap2,
.algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap2),
.flags = BIT(FLAGS_BE32_SHA1),
.digest_size = SHA1_DIGEST_SIZE,
.copy_hash = omap_sham_copy_hash_omap2,
.write_ctrl = omap_sham_write_ctrl_omap2,
.trigger = omap_sham_trigger_omap2,
.poll_irq = omap_sham_poll_irq_omap2,
.intr_hdlr = omap_sham_irq_omap2,
.idigest_ofs = 0x00,
.din_ofs = 0x1c,
.digcnt_ofs = 0x14,
.rev_ofs = 0x5c,
.mask_ofs = 0x60,
.sysstatus_ofs = 0x64,
.major_mask = 0xf0,
.major_shift = 4,
.minor_mask = 0x0f,
.minor_shift = 0,
};
#ifdef CONFIG_OF
static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
{
.algs_list = algs_sha1_md5,
.size = ARRAY_SIZE(algs_sha1_md5),
},
{
.algs_list = algs_sha224_sha256,
.size = ARRAY_SIZE(algs_sha224_sha256),
},
};
static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
.algs_info = omap_sham_algs_info_omap4,
.algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap4),
.flags = BIT(FLAGS_AUTO_XOR),
.digest_size = SHA256_DIGEST_SIZE,
.copy_hash = omap_sham_copy_hash_omap4,
.write_ctrl = omap_sham_write_ctrl_omap4,
.trigger = omap_sham_trigger_omap4,
.poll_irq = omap_sham_poll_irq_omap4,
.intr_hdlr = omap_sham_irq_omap4,
.idigest_ofs = 0x020,
.odigest_ofs = 0x0,
.din_ofs = 0x080,
.digcnt_ofs = 0x040,
.rev_ofs = 0x100,
.mask_ofs = 0x110,
.sysstatus_ofs = 0x114,
.mode_ofs = 0x44,
.length_ofs = 0x48,
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
.minor_shift = 0,
};
static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
{
.algs_list = algs_sha1_md5,
.size = ARRAY_SIZE(algs_sha1_md5),
},
{
.algs_list = algs_sha224_sha256,
.size = ARRAY_SIZE(algs_sha224_sha256),
},
{
.algs_list = algs_sha384_sha512,
.size = ARRAY_SIZE(algs_sha384_sha512),
},
};
static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
.algs_info = omap_sham_algs_info_omap5,
.algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5),
.flags = BIT(FLAGS_AUTO_XOR),
.digest_size = SHA512_DIGEST_SIZE,
.copy_hash = omap_sham_copy_hash_omap4,
.write_ctrl = omap_sham_write_ctrl_omap4,
.trigger = omap_sham_trigger_omap4,
.poll_irq = omap_sham_poll_irq_omap4,
.intr_hdlr = omap_sham_irq_omap4,
.idigest_ofs = 0x240,
.odigest_ofs = 0x200,
.din_ofs = 0x080,
.digcnt_ofs = 0x280,
.rev_ofs = 0x100,
.mask_ofs = 0x110,
.sysstatus_ofs = 0x114,
.mode_ofs = 0x284,
.length_ofs = 0x288,
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
.minor_shift = 0,
};
static const struct of_device_id omap_sham_of_match[] = {
{
.compatible = "ti,omap2-sham",
.data = &omap_sham_pdata_omap2,
},
{
.compatible = "ti,omap3-sham",
.data = &omap_sham_pdata_omap2,
},
{
.compatible = "ti,omap4-sham",
.data = &omap_sham_pdata_omap4,
},
{
.compatible = "ti,omap5-sham",
.data = &omap_sham_pdata_omap5,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_sham_of_match);
static int omap_sham_get_res_of(struct omap_sham_dev *dd,
struct device *dev, struct resource *res)
{
struct device_node *node = dev->of_node;
int err = 0;
dd->pdata = of_device_get_match_data(dev);
if (!dd->pdata) {
dev_err(dev, "no compatible OF match\n");
err = -EINVAL;
goto err;
}
err = of_address_to_resource(node, 0, res);
if (err < 0) {
dev_err(dev, "can't translate OF node address\n");
err = -EINVAL;
goto err;
}
dd->irq = irq_of_parse_and_map(node, 0);
if (!dd->irq) {
dev_err(dev, "can't translate OF irq value\n");
err = -EINVAL;
goto err;
}
err:
return err;
}
#else
static const struct of_device_id omap_sham_of_match[] = {
{},
};
static int omap_sham_get_res_of(struct omap_sham_dev *dd,
struct device *dev, struct resource *res)
{
return -EINVAL;
}
#endif
static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
struct platform_device *pdev, struct resource *res)
{
struct device *dev = &pdev->dev;
struct resource *r;
int err = 0;
/* Get the base address */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(dev, "no MEM resource info\n");
err = -ENODEV;
goto err;
}
memcpy(res, r, sizeof(*res));
/* Get the IRQ */
dd->irq = platform_get_irq(pdev, 0);
if (dd->irq < 0) {
err = dd->irq;
goto err;
}
/* Only OMAP2/3 can be non-DT */
dd->pdata = &omap_sham_pdata_omap2;
err:
return err;
}
static ssize_t fallback_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct omap_sham_dev *dd = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", dd->fallback_sz);
}
static ssize_t fallback_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct omap_sham_dev *dd = dev_get_drvdata(dev);
ssize_t status;
long value;
status = kstrtol(buf, 0, &value);
if (status)
return status;
/* HW accelerator only works with buffers > 9 */
if (value < 9) {
dev_err(dev, "minimum fallback size 9\n");
return -EINVAL;
}
dd->fallback_sz = value;
return size;
}
static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct omap_sham_dev *dd = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", dd->queue.max_qlen);
}
static ssize_t queue_len_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct omap_sham_dev *dd = dev_get_drvdata(dev);
ssize_t status;
long value;
status = kstrtol(buf, 0, &value);
if (status)
return status;
if (value < 1)
return -EINVAL;
/*
* Changing the queue size in fly is safe, if size becomes smaller
* than current size, it will just not accept new entries until
* it has shrank enough.
*/
dd->queue.max_qlen = value;
return size;
}
static DEVICE_ATTR_RW(queue_len);
static DEVICE_ATTR_RW(fallback);
static struct attribute *omap_sham_attrs[] = {
&dev_attr_queue_len.attr,
&dev_attr_fallback.attr,
NULL,
};
static const struct attribute_group omap_sham_attr_group = {
.attrs = omap_sham_attrs,
};
static int omap_sham_probe(struct platform_device *pdev)
{
struct omap_sham_dev *dd;
struct device *dev = &pdev->dev;
struct resource res;
dma_cap_mask_t mask;
int err, i, j;
u32 rev;
dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
err = -ENOMEM;
goto data_err;
}
dd->dev = dev;
platform_set_drvdata(pdev, dd);
INIT_LIST_HEAD(&dd->list);
tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
omap_sham_get_res_pdev(dd, pdev, &res);
if (err)
goto data_err;
dd->io_base = devm_ioremap_resource(dev, &res);
if (IS_ERR(dd->io_base)) {
err = PTR_ERR(dd->io_base);
goto data_err;
}
dd->phys_base = res.start;
err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
IRQF_TRIGGER_NONE, dev_name(dev), dd);
if (err) {
dev_err(dev, "unable to request irq %d, err = %d\n",
dd->irq, err);
goto data_err;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dd->dma_lch = dma_request_chan(dev, "rx");
if (IS_ERR(dd->dma_lch)) {
err = PTR_ERR(dd->dma_lch);
if (err == -EPROBE_DEFER)
goto data_err;
dd->polling_mode = 1;
dev_dbg(dev, "using polling mode instead of dma\n");
}
dd->flags |= dd->pdata->flags;
sham.flags |= dd->pdata->flags;
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD;
pm_runtime_enable(dev);
err = pm_runtime_resume_and_get(dev);
if (err < 0) {
dev_err(dev, "failed to get sync: %d\n", err);
goto err_pm;
}
rev = omap_sham_read(dd, SHA_REG_REV(dd));
pm_runtime_put_sync(&pdev->dev);
dev_info(dev, "hw accel on OMAP rev %u.%u\n",
(rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
(rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
spin_lock_bh(&sham.lock);
list_add_tail(&dd->list, &sham.dev_list);
spin_unlock_bh(&sham.lock);
dd->engine = crypto_engine_alloc_init(dev, 1);
if (!dd->engine) {
err = -ENOMEM;
goto err_engine;
}
err = crypto_engine_start(dd->engine);
if (err)
goto err_engine_start;
for (i = 0; i < dd->pdata->algs_info_size; i++) {
if (dd->pdata->algs_info[i].registered)
break;
for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
struct ahash_engine_alg *ealg;
struct ahash_alg *alg;
ealg = &dd->pdata->algs_info[i].algs_list[j];
alg = &ealg->base;
alg->export = omap_sham_export;
alg->import = omap_sham_import;
alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
BUFLEN;
err = crypto_engine_register_ahash(ealg);
if (err)
goto err_algs;
dd->pdata->algs_info[i].registered++;
}
}
err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group);
if (err) {
dev_err(dev, "could not create sysfs device attrs\n");
goto err_algs;
}
return 0;
err_algs:
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_engine_unregister_ahash(
&dd->pdata->algs_info[i].algs_list[j]);
err_engine_start:
crypto_engine_exit(dd->engine);
err_engine:
spin_lock_bh(&sham.lock);
list_del(&dd->list);
spin_unlock_bh(&sham.lock);
err_pm:
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_disable(dev);
if (!dd->polling_mode)
dma_release_channel(dd->dma_lch);
data_err:
dev_err(dev, "initialization failed.\n");
return err;
}
static int omap_sham_remove(struct platform_device *pdev)
{
struct omap_sham_dev *dd;
int i, j;
dd = platform_get_drvdata(pdev);
spin_lock_bh(&sham.lock);
list_del(&dd->list);
spin_unlock_bh(&sham.lock);
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) {
crypto_engine_unregister_ahash(
&dd->pdata->algs_info[i].algs_list[j]);
dd->pdata->algs_info[i].registered--;
}
tasklet_kill(&dd->done_task);
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_disable(&pdev->dev);
if (!dd->polling_mode)
dma_release_channel(dd->dma_lch);
sysfs_remove_group(&dd->dev->kobj, &omap_sham_attr_group);
return 0;
}
static struct platform_driver omap_sham_driver = {
.probe = omap_sham_probe,
.remove = omap_sham_remove,
.driver = {
.name = "omap-sham",
.of_match_table = omap_sham_of_match,
},
};
module_platform_driver(omap_sham_driver);
MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Dmitry Kasatkin");
MODULE_ALIAS("platform:omap-sham");
| linux-master | drivers/crypto/omap-sham.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Cryptographic API.
*
* Support for ATMEL DES/TDES HW acceleration.
*
* Copyright (c) 2012 Eukréa Electromatique - ATMEL
* Author: Nicolas Royer <[email protected]>
*
* Some ideas are from omap-aes.c drivers.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/mod_devicetable.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
#include "atmel-tdes-regs.h"
#define ATMEL_TDES_PRIORITY 300
/* TDES flags */
/* Reserve bits [17:16], [13:12], [2:0] for AES Mode Register */
#define TDES_FLAGS_ENCRYPT TDES_MR_CYPHER_ENC
#define TDES_FLAGS_OPMODE_MASK (TDES_MR_OPMOD_MASK | TDES_MR_CFBS_MASK)
#define TDES_FLAGS_ECB TDES_MR_OPMOD_ECB
#define TDES_FLAGS_CBC TDES_MR_OPMOD_CBC
#define TDES_FLAGS_OFB TDES_MR_OPMOD_OFB
#define TDES_FLAGS_CFB64 (TDES_MR_OPMOD_CFB | TDES_MR_CFBS_64b)
#define TDES_FLAGS_CFB32 (TDES_MR_OPMOD_CFB | TDES_MR_CFBS_32b)
#define TDES_FLAGS_CFB16 (TDES_MR_OPMOD_CFB | TDES_MR_CFBS_16b)
#define TDES_FLAGS_CFB8 (TDES_MR_OPMOD_CFB | TDES_MR_CFBS_8b)
#define TDES_FLAGS_MODE_MASK (TDES_FLAGS_OPMODE_MASK | TDES_FLAGS_ENCRYPT)
#define TDES_FLAGS_INIT BIT(3)
#define TDES_FLAGS_FAST BIT(4)
#define TDES_FLAGS_BUSY BIT(5)
#define TDES_FLAGS_DMA BIT(6)
#define ATMEL_TDES_QUEUE_LENGTH 50
#define CFB8_BLOCK_SIZE 1
#define CFB16_BLOCK_SIZE 2
#define CFB32_BLOCK_SIZE 4
struct atmel_tdes_caps {
bool has_dma;
u32 has_cfb_3keys;
};
struct atmel_tdes_dev;
struct atmel_tdes_ctx {
struct atmel_tdes_dev *dd;
int keylen;
u32 key[DES3_EDE_KEY_SIZE / sizeof(u32)];
unsigned long flags;
u16 block_size;
};
struct atmel_tdes_reqctx {
unsigned long mode;
u8 lastc[DES_BLOCK_SIZE];
};
struct atmel_tdes_dma {
struct dma_chan *chan;
struct dma_slave_config dma_conf;
};
struct atmel_tdes_dev {
struct list_head list;
unsigned long phys_base;
void __iomem *io_base;
struct atmel_tdes_ctx *ctx;
struct device *dev;
struct clk *iclk;
int irq;
unsigned long flags;
spinlock_t lock;
struct crypto_queue queue;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
struct skcipher_request *req;
size_t total;
struct scatterlist *in_sg;
unsigned int nb_in_sg;
size_t in_offset;
struct scatterlist *out_sg;
unsigned int nb_out_sg;
size_t out_offset;
size_t buflen;
size_t dma_size;
void *buf_in;
int dma_in;
dma_addr_t dma_addr_in;
struct atmel_tdes_dma dma_lch_in;
void *buf_out;
int dma_out;
dma_addr_t dma_addr_out;
struct atmel_tdes_dma dma_lch_out;
struct atmel_tdes_caps caps;
u32 hw_version;
};
struct atmel_tdes_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct atmel_tdes_drv atmel_tdes = {
.dev_list = LIST_HEAD_INIT(atmel_tdes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(atmel_tdes.lock),
};
static int atmel_tdes_sg_copy(struct scatterlist **sg, size_t *offset,
void *buf, size_t buflen, size_t total, int out)
{
size_t count, off = 0;
while (buflen && total) {
count = min((*sg)->length - *offset, total);
count = min(count, buflen);
if (!count)
return off;
scatterwalk_map_and_copy(buf + off, *sg, *offset, count, out);
off += count;
buflen -= count;
*offset += count;
total -= count;
if (*offset == (*sg)->length) {
*sg = sg_next(*sg);
if (*sg)
*offset = 0;
else
total = 0;
}
}
return off;
}
static inline u32 atmel_tdes_read(struct atmel_tdes_dev *dd, u32 offset)
{
return readl_relaxed(dd->io_base + offset);
}
static inline void atmel_tdes_write(struct atmel_tdes_dev *dd,
u32 offset, u32 value)
{
writel_relaxed(value, dd->io_base + offset);
}
static void atmel_tdes_write_n(struct atmel_tdes_dev *dd, u32 offset,
const u32 *value, int count)
{
for (; count--; value++, offset += 4)
atmel_tdes_write(dd, offset, *value);
}
static struct atmel_tdes_dev *atmel_tdes_dev_alloc(void)
{
struct atmel_tdes_dev *tdes_dd;
spin_lock_bh(&atmel_tdes.lock);
/* One TDES IP per SoC. */
tdes_dd = list_first_entry_or_null(&atmel_tdes.dev_list,
struct atmel_tdes_dev, list);
spin_unlock_bh(&atmel_tdes.lock);
return tdes_dd;
}
static int atmel_tdes_hw_init(struct atmel_tdes_dev *dd)
{
int err;
err = clk_prepare_enable(dd->iclk);
if (err)
return err;
if (!(dd->flags & TDES_FLAGS_INIT)) {
atmel_tdes_write(dd, TDES_CR, TDES_CR_SWRST);
dd->flags |= TDES_FLAGS_INIT;
}
return 0;
}
static inline unsigned int atmel_tdes_get_version(struct atmel_tdes_dev *dd)
{
return atmel_tdes_read(dd, TDES_HW_VERSION) & 0x00000fff;
}
static int atmel_tdes_hw_version_init(struct atmel_tdes_dev *dd)
{
int err;
err = atmel_tdes_hw_init(dd);
if (err)
return err;
dd->hw_version = atmel_tdes_get_version(dd);
dev_info(dd->dev,
"version: 0x%x\n", dd->hw_version);
clk_disable_unprepare(dd->iclk);
return 0;
}
static void atmel_tdes_dma_callback(void *data)
{
struct atmel_tdes_dev *dd = data;
/* dma_lch_out - completed */
tasklet_schedule(&dd->done_task);
}
static int atmel_tdes_write_ctrl(struct atmel_tdes_dev *dd)
{
int err;
u32 valmr = TDES_MR_SMOD_PDC;
err = atmel_tdes_hw_init(dd);
if (err)
return err;
if (!dd->caps.has_dma)
atmel_tdes_write(dd, TDES_PTCR,
TDES_PTCR_TXTDIS | TDES_PTCR_RXTDIS);
/* MR register must be set before IV registers */
if (dd->ctx->keylen > (DES_KEY_SIZE << 1)) {
valmr |= TDES_MR_KEYMOD_3KEY;
valmr |= TDES_MR_TDESMOD_TDES;
} else if (dd->ctx->keylen > DES_KEY_SIZE) {
valmr |= TDES_MR_KEYMOD_2KEY;
valmr |= TDES_MR_TDESMOD_TDES;
} else {
valmr |= TDES_MR_TDESMOD_DES;
}
valmr |= dd->flags & TDES_FLAGS_MODE_MASK;
atmel_tdes_write(dd, TDES_MR, valmr);
atmel_tdes_write_n(dd, TDES_KEY1W1R, dd->ctx->key,
dd->ctx->keylen >> 2);
if (dd->req->iv && (valmr & TDES_MR_OPMOD_MASK) != TDES_MR_OPMOD_ECB)
atmel_tdes_write_n(dd, TDES_IV1R, (void *)dd->req->iv, 2);
return 0;
}
static int atmel_tdes_crypt_pdc_stop(struct atmel_tdes_dev *dd)
{
int err = 0;
size_t count;
atmel_tdes_write(dd, TDES_PTCR, TDES_PTCR_TXTDIS|TDES_PTCR_RXTDIS);
if (dd->flags & TDES_FLAGS_FAST) {
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
} else {
dma_sync_single_for_device(dd->dev, dd->dma_addr_out,
dd->dma_size, DMA_FROM_DEVICE);
/* copy data */
count = atmel_tdes_sg_copy(&dd->out_sg, &dd->out_offset,
dd->buf_out, dd->buflen, dd->dma_size, 1);
if (count != dd->dma_size) {
err = -EINVAL;
dev_dbg(dd->dev, "not all data converted: %zu\n", count);
}
}
return err;
}
static int atmel_tdes_buff_init(struct atmel_tdes_dev *dd)
{
int err = -ENOMEM;
dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->buflen = PAGE_SIZE;
dd->buflen &= ~(DES_BLOCK_SIZE - 1);
if (!dd->buf_in || !dd->buf_out) {
dev_dbg(dd->dev, "unable to alloc pages.\n");
goto err_alloc;
}
/* MAP here */
dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in,
dd->buflen, DMA_TO_DEVICE);
err = dma_mapping_error(dd->dev, dd->dma_addr_in);
if (err) {
dev_dbg(dd->dev, "dma %zd bytes error\n", dd->buflen);
goto err_map_in;
}
dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out,
dd->buflen, DMA_FROM_DEVICE);
err = dma_mapping_error(dd->dev, dd->dma_addr_out);
if (err) {
dev_dbg(dd->dev, "dma %zd bytes error\n", dd->buflen);
goto err_map_out;
}
return 0;
err_map_out:
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
DMA_TO_DEVICE);
err_map_in:
err_alloc:
free_page((unsigned long)dd->buf_out);
free_page((unsigned long)dd->buf_in);
return err;
}
static void atmel_tdes_buff_cleanup(struct atmel_tdes_dev *dd)
{
dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
DMA_FROM_DEVICE);
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
DMA_TO_DEVICE);
free_page((unsigned long)dd->buf_out);
free_page((unsigned long)dd->buf_in);
}
static int atmel_tdes_crypt_pdc(struct atmel_tdes_dev *dd,
dma_addr_t dma_addr_in,
dma_addr_t dma_addr_out, int length)
{
struct atmel_tdes_reqctx *rctx = skcipher_request_ctx(dd->req);
int len32;
dd->dma_size = length;
if (!(dd->flags & TDES_FLAGS_FAST)) {
dma_sync_single_for_device(dd->dev, dma_addr_in, length,
DMA_TO_DEVICE);
}
switch (rctx->mode & TDES_FLAGS_OPMODE_MASK) {
case TDES_FLAGS_CFB8:
len32 = DIV_ROUND_UP(length, sizeof(u8));
break;
case TDES_FLAGS_CFB16:
len32 = DIV_ROUND_UP(length, sizeof(u16));
break;
default:
len32 = DIV_ROUND_UP(length, sizeof(u32));
break;
}
atmel_tdes_write(dd, TDES_PTCR, TDES_PTCR_TXTDIS|TDES_PTCR_RXTDIS);
atmel_tdes_write(dd, TDES_TPR, dma_addr_in);
atmel_tdes_write(dd, TDES_TCR, len32);
atmel_tdes_write(dd, TDES_RPR, dma_addr_out);
atmel_tdes_write(dd, TDES_RCR, len32);
/* Enable Interrupt */
atmel_tdes_write(dd, TDES_IER, TDES_INT_ENDRX);
/* Start DMA transfer */
atmel_tdes_write(dd, TDES_PTCR, TDES_PTCR_TXTEN | TDES_PTCR_RXTEN);
return 0;
}
static int atmel_tdes_crypt_dma(struct atmel_tdes_dev *dd,
dma_addr_t dma_addr_in,
dma_addr_t dma_addr_out, int length)
{
struct atmel_tdes_reqctx *rctx = skcipher_request_ctx(dd->req);
struct scatterlist sg[2];
struct dma_async_tx_descriptor *in_desc, *out_desc;
enum dma_slave_buswidth addr_width;
dd->dma_size = length;
if (!(dd->flags & TDES_FLAGS_FAST)) {
dma_sync_single_for_device(dd->dev, dma_addr_in, length,
DMA_TO_DEVICE);
}
switch (rctx->mode & TDES_FLAGS_OPMODE_MASK) {
case TDES_FLAGS_CFB8:
addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
case TDES_FLAGS_CFB16:
addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
default:
addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
}
dd->dma_lch_in.dma_conf.dst_addr_width = addr_width;
dd->dma_lch_out.dma_conf.src_addr_width = addr_width;
dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
dmaengine_slave_config(dd->dma_lch_out.chan, &dd->dma_lch_out.dma_conf);
dd->flags |= TDES_FLAGS_DMA;
sg_init_table(&sg[0], 1);
sg_dma_address(&sg[0]) = dma_addr_in;
sg_dma_len(&sg[0]) = length;
sg_init_table(&sg[1], 1);
sg_dma_address(&sg[1]) = dma_addr_out;
sg_dma_len(&sg[1]) = length;
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, &sg[0],
1, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!in_desc)
return -EINVAL;
out_desc = dmaengine_prep_slave_sg(dd->dma_lch_out.chan, &sg[1],
1, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!out_desc)
return -EINVAL;
out_desc->callback = atmel_tdes_dma_callback;
out_desc->callback_param = dd;
dmaengine_submit(out_desc);
dma_async_issue_pending(dd->dma_lch_out.chan);
dmaengine_submit(in_desc);
dma_async_issue_pending(dd->dma_lch_in.chan);
return 0;
}
static int atmel_tdes_crypt_start(struct atmel_tdes_dev *dd)
{
int err, fast = 0, in, out;
size_t count;
dma_addr_t addr_in, addr_out;
if ((!dd->in_offset) && (!dd->out_offset)) {
/* check for alignment */
in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32)) &&
IS_ALIGNED(dd->in_sg->length, dd->ctx->block_size);
out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32)) &&
IS_ALIGNED(dd->out_sg->length, dd->ctx->block_size);
fast = in && out;
if (sg_dma_len(dd->in_sg) != sg_dma_len(dd->out_sg))
fast = 0;
}
if (fast) {
count = min_t(size_t, dd->total, sg_dma_len(dd->in_sg));
count = min_t(size_t, count, sg_dma_len(dd->out_sg));
err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
if (!err) {
dev_dbg(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
err = dma_map_sg(dd->dev, dd->out_sg, 1,
DMA_FROM_DEVICE);
if (!err) {
dev_dbg(dd->dev, "dma_map_sg() error\n");
dma_unmap_sg(dd->dev, dd->in_sg, 1,
DMA_TO_DEVICE);
return -EINVAL;
}
addr_in = sg_dma_address(dd->in_sg);
addr_out = sg_dma_address(dd->out_sg);
dd->flags |= TDES_FLAGS_FAST;
} else {
/* use cache buffers */
count = atmel_tdes_sg_copy(&dd->in_sg, &dd->in_offset,
dd->buf_in, dd->buflen, dd->total, 0);
addr_in = dd->dma_addr_in;
addr_out = dd->dma_addr_out;
dd->flags &= ~TDES_FLAGS_FAST;
}
dd->total -= count;
if (dd->caps.has_dma)
err = atmel_tdes_crypt_dma(dd, addr_in, addr_out, count);
else
err = atmel_tdes_crypt_pdc(dd, addr_in, addr_out, count);
if (err && (dd->flags & TDES_FLAGS_FAST)) {
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE);
}
return err;
}
static void
atmel_tdes_set_iv_as_last_ciphertext_block(struct atmel_tdes_dev *dd)
{
struct skcipher_request *req = dd->req;
struct atmel_tdes_reqctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
if (req->cryptlen < ivsize)
return;
if (rctx->mode & TDES_FLAGS_ENCRYPT)
scatterwalk_map_and_copy(req->iv, req->dst,
req->cryptlen - ivsize, ivsize, 0);
else
memcpy(req->iv, rctx->lastc, ivsize);
}
static void atmel_tdes_finish_req(struct atmel_tdes_dev *dd, int err)
{
struct skcipher_request *req = dd->req;
struct atmel_tdes_reqctx *rctx = skcipher_request_ctx(req);
clk_disable_unprepare(dd->iclk);
dd->flags &= ~TDES_FLAGS_BUSY;
if (!err && (rctx->mode & TDES_FLAGS_OPMODE_MASK) != TDES_FLAGS_ECB)
atmel_tdes_set_iv_as_last_ciphertext_block(dd);
skcipher_request_complete(req, err);
}
static int atmel_tdes_handle_queue(struct atmel_tdes_dev *dd,
struct skcipher_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct atmel_tdes_ctx *ctx;
struct atmel_tdes_reqctx *rctx;
unsigned long flags;
int err, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = crypto_enqueue_request(&dd->queue, &req->base);
if (dd->flags & TDES_FLAGS_BUSY) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
dd->flags |= TDES_FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req)
return ret;
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
req = skcipher_request_cast(async_req);
/* assign new request to device */
dd->req = req;
dd->total = req->cryptlen;
dd->in_offset = 0;
dd->in_sg = req->src;
dd->out_offset = 0;
dd->out_sg = req->dst;
rctx = skcipher_request_ctx(req);
ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
rctx->mode &= TDES_FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~TDES_FLAGS_MODE_MASK) | rctx->mode;
dd->ctx = ctx;
err = atmel_tdes_write_ctrl(dd);
if (!err)
err = atmel_tdes_crypt_start(dd);
if (err) {
/* des_task will not finish it, so do it here */
atmel_tdes_finish_req(dd, err);
tasklet_schedule(&dd->queue_task);
}
return ret;
}
static int atmel_tdes_crypt_dma_stop(struct atmel_tdes_dev *dd)
{
int err = -EINVAL;
size_t count;
if (dd->flags & TDES_FLAGS_DMA) {
err = 0;
if (dd->flags & TDES_FLAGS_FAST) {
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
} else {
dma_sync_single_for_device(dd->dev, dd->dma_addr_out,
dd->dma_size, DMA_FROM_DEVICE);
/* copy data */
count = atmel_tdes_sg_copy(&dd->out_sg, &dd->out_offset,
dd->buf_out, dd->buflen, dd->dma_size, 1);
if (count != dd->dma_size) {
err = -EINVAL;
dev_dbg(dd->dev, "not all data converted: %zu\n", count);
}
}
}
return err;
}
static int atmel_tdes_crypt(struct skcipher_request *req, unsigned long mode)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct atmel_tdes_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct atmel_tdes_reqctx *rctx = skcipher_request_ctx(req);
struct device *dev = ctx->dd->dev;
if (!req->cryptlen)
return 0;
switch (mode & TDES_FLAGS_OPMODE_MASK) {
case TDES_FLAGS_CFB8:
if (!IS_ALIGNED(req->cryptlen, CFB8_BLOCK_SIZE)) {
dev_dbg(dev, "request size is not exact amount of CFB8 blocks\n");
return -EINVAL;
}
ctx->block_size = CFB8_BLOCK_SIZE;
break;
case TDES_FLAGS_CFB16:
if (!IS_ALIGNED(req->cryptlen, CFB16_BLOCK_SIZE)) {
dev_dbg(dev, "request size is not exact amount of CFB16 blocks\n");
return -EINVAL;
}
ctx->block_size = CFB16_BLOCK_SIZE;
break;
case TDES_FLAGS_CFB32:
if (!IS_ALIGNED(req->cryptlen, CFB32_BLOCK_SIZE)) {
dev_dbg(dev, "request size is not exact amount of CFB32 blocks\n");
return -EINVAL;
}
ctx->block_size = CFB32_BLOCK_SIZE;
break;
default:
if (!IS_ALIGNED(req->cryptlen, DES_BLOCK_SIZE)) {
dev_dbg(dev, "request size is not exact amount of DES blocks\n");
return -EINVAL;
}
ctx->block_size = DES_BLOCK_SIZE;
break;
}
rctx->mode = mode;
if ((mode & TDES_FLAGS_OPMODE_MASK) != TDES_FLAGS_ECB &&
!(mode & TDES_FLAGS_ENCRYPT)) {
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
if (req->cryptlen >= ivsize)
scatterwalk_map_and_copy(rctx->lastc, req->src,
req->cryptlen - ivsize,
ivsize, 0);
}
return atmel_tdes_handle_queue(ctx->dd, req);
}
static int atmel_tdes_dma_init(struct atmel_tdes_dev *dd)
{
int ret;
/* Try to grab 2 DMA channels */
dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->dma_lch_in.chan)) {
ret = PTR_ERR(dd->dma_lch_in.chan);
goto err_dma_in;
}
dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
TDES_IDATA1R;
dd->dma_lch_in.dma_conf.src_maxburst = 1;
dd->dma_lch_in.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.dst_maxburst = 1;
dd->dma_lch_in.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.device_fc = false;
dd->dma_lch_out.chan = dma_request_chan(dd->dev, "rx");
if (IS_ERR(dd->dma_lch_out.chan)) {
ret = PTR_ERR(dd->dma_lch_out.chan);
goto err_dma_out;
}
dd->dma_lch_out.dma_conf.src_addr = dd->phys_base +
TDES_ODATA1R;
dd->dma_lch_out.dma_conf.src_maxburst = 1;
dd->dma_lch_out.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_out.dma_conf.dst_maxburst = 1;
dd->dma_lch_out.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_out.dma_conf.device_fc = false;
return 0;
err_dma_out:
dma_release_channel(dd->dma_lch_in.chan);
err_dma_in:
dev_err(dd->dev, "no DMA channel available\n");
return ret;
}
static void atmel_tdes_dma_cleanup(struct atmel_tdes_dev *dd)
{
dma_release_channel(dd->dma_lch_in.chan);
dma_release_channel(dd->dma_lch_out.chan);
}
static int atmel_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_tdes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err;
err = verify_skcipher_des_key(tfm, key);
if (err)
return err;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int atmel_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_tdes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err;
err = verify_skcipher_des3_key(tfm, key);
if (err)
return err;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int atmel_tdes_ecb_encrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_ECB | TDES_FLAGS_ENCRYPT);
}
static int atmel_tdes_ecb_decrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_ECB);
}
static int atmel_tdes_cbc_encrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CBC | TDES_FLAGS_ENCRYPT);
}
static int atmel_tdes_cbc_decrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CBC);
}
static int atmel_tdes_cfb_encrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CFB64 | TDES_FLAGS_ENCRYPT);
}
static int atmel_tdes_cfb_decrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CFB64);
}
static int atmel_tdes_cfb8_encrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CFB8 | TDES_FLAGS_ENCRYPT);
}
static int atmel_tdes_cfb8_decrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CFB8);
}
static int atmel_tdes_cfb16_encrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CFB16 | TDES_FLAGS_ENCRYPT);
}
static int atmel_tdes_cfb16_decrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CFB16);
}
static int atmel_tdes_cfb32_encrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CFB32 | TDES_FLAGS_ENCRYPT);
}
static int atmel_tdes_cfb32_decrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_CFB32);
}
static int atmel_tdes_ofb_encrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_OFB | TDES_FLAGS_ENCRYPT);
}
static int atmel_tdes_ofb_decrypt(struct skcipher_request *req)
{
return atmel_tdes_crypt(req, TDES_FLAGS_OFB);
}
static int atmel_tdes_init_tfm(struct crypto_skcipher *tfm)
{
struct atmel_tdes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->dd = atmel_tdes_dev_alloc();
if (!ctx->dd)
return -ENODEV;
crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_tdes_reqctx));
return 0;
}
static void atmel_tdes_skcipher_alg_init(struct skcipher_alg *alg)
{
alg->base.cra_priority = ATMEL_TDES_PRIORITY;
alg->base.cra_flags = CRYPTO_ALG_ASYNC;
alg->base.cra_ctxsize = sizeof(struct atmel_tdes_ctx);
alg->base.cra_module = THIS_MODULE;
alg->init = atmel_tdes_init_tfm;
}
static struct skcipher_alg tdes_algs[] = {
{
.base.cra_name = "ecb(des)",
.base.cra_driver_name = "atmel-ecb-des",
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_alignmask = 0x7,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = atmel_des_setkey,
.encrypt = atmel_tdes_ecb_encrypt,
.decrypt = atmel_tdes_ecb_decrypt,
},
{
.base.cra_name = "cbc(des)",
.base.cra_driver_name = "atmel-cbc-des",
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_alignmask = 0x7,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = atmel_des_setkey,
.encrypt = atmel_tdes_cbc_encrypt,
.decrypt = atmel_tdes_cbc_decrypt,
},
{
.base.cra_name = "cfb(des)",
.base.cra_driver_name = "atmel-cfb-des",
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_alignmask = 0x7,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = atmel_des_setkey,
.encrypt = atmel_tdes_cfb_encrypt,
.decrypt = atmel_tdes_cfb_decrypt,
},
{
.base.cra_name = "cfb8(des)",
.base.cra_driver_name = "atmel-cfb8-des",
.base.cra_blocksize = CFB8_BLOCK_SIZE,
.base.cra_alignmask = 0,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = atmel_des_setkey,
.encrypt = atmel_tdes_cfb8_encrypt,
.decrypt = atmel_tdes_cfb8_decrypt,
},
{
.base.cra_name = "cfb16(des)",
.base.cra_driver_name = "atmel-cfb16-des",
.base.cra_blocksize = CFB16_BLOCK_SIZE,
.base.cra_alignmask = 0x1,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = atmel_des_setkey,
.encrypt = atmel_tdes_cfb16_encrypt,
.decrypt = atmel_tdes_cfb16_decrypt,
},
{
.base.cra_name = "cfb32(des)",
.base.cra_driver_name = "atmel-cfb32-des",
.base.cra_blocksize = CFB32_BLOCK_SIZE,
.base.cra_alignmask = 0x3,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = atmel_des_setkey,
.encrypt = atmel_tdes_cfb32_encrypt,
.decrypt = atmel_tdes_cfb32_decrypt,
},
{
.base.cra_name = "ofb(des)",
.base.cra_driver_name = "atmel-ofb-des",
.base.cra_blocksize = 1,
.base.cra_alignmask = 0x7,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = atmel_des_setkey,
.encrypt = atmel_tdes_ofb_encrypt,
.decrypt = atmel_tdes_ofb_decrypt,
},
{
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "atmel-ecb-tdes",
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_alignmask = 0x7,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = atmel_tdes_setkey,
.encrypt = atmel_tdes_ecb_encrypt,
.decrypt = atmel_tdes_ecb_decrypt,
},
{
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "atmel-cbc-tdes",
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_alignmask = 0x7,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = atmel_tdes_setkey,
.encrypt = atmel_tdes_cbc_encrypt,
.decrypt = atmel_tdes_cbc_decrypt,
.ivsize = DES_BLOCK_SIZE,
},
{
.base.cra_name = "ofb(des3_ede)",
.base.cra_driver_name = "atmel-ofb-tdes",
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_alignmask = 0x7,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = atmel_tdes_setkey,
.encrypt = atmel_tdes_ofb_encrypt,
.decrypt = atmel_tdes_ofb_decrypt,
.ivsize = DES_BLOCK_SIZE,
},
};
static void atmel_tdes_queue_task(unsigned long data)
{
struct atmel_tdes_dev *dd = (struct atmel_tdes_dev *)data;
atmel_tdes_handle_queue(dd, NULL);
}
static void atmel_tdes_done_task(unsigned long data)
{
struct atmel_tdes_dev *dd = (struct atmel_tdes_dev *) data;
int err;
if (!(dd->flags & TDES_FLAGS_DMA))
err = atmel_tdes_crypt_pdc_stop(dd);
else
err = atmel_tdes_crypt_dma_stop(dd);
if (dd->total && !err) {
if (dd->flags & TDES_FLAGS_FAST) {
dd->in_sg = sg_next(dd->in_sg);
dd->out_sg = sg_next(dd->out_sg);
if (!dd->in_sg || !dd->out_sg)
err = -EINVAL;
}
if (!err)
err = atmel_tdes_crypt_start(dd);
if (!err)
return; /* DMA started. Not fininishing. */
}
atmel_tdes_finish_req(dd, err);
atmel_tdes_handle_queue(dd, NULL);
}
static irqreturn_t atmel_tdes_irq(int irq, void *dev_id)
{
struct atmel_tdes_dev *tdes_dd = dev_id;
u32 reg;
reg = atmel_tdes_read(tdes_dd, TDES_ISR);
if (reg & atmel_tdes_read(tdes_dd, TDES_IMR)) {
atmel_tdes_write(tdes_dd, TDES_IDR, reg);
if (TDES_FLAGS_BUSY & tdes_dd->flags)
tasklet_schedule(&tdes_dd->done_task);
else
dev_warn(tdes_dd->dev, "TDES interrupt when no active requests.\n");
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static void atmel_tdes_unregister_algs(struct atmel_tdes_dev *dd)
{
int i;
for (i = 0; i < ARRAY_SIZE(tdes_algs); i++)
crypto_unregister_skcipher(&tdes_algs[i]);
}
static int atmel_tdes_register_algs(struct atmel_tdes_dev *dd)
{
int err, i, j;
for (i = 0; i < ARRAY_SIZE(tdes_algs); i++) {
atmel_tdes_skcipher_alg_init(&tdes_algs[i]);
err = crypto_register_skcipher(&tdes_algs[i]);
if (err)
goto err_tdes_algs;
}
return 0;
err_tdes_algs:
for (j = 0; j < i; j++)
crypto_unregister_skcipher(&tdes_algs[j]);
return err;
}
static void atmel_tdes_get_cap(struct atmel_tdes_dev *dd)
{
dd->caps.has_dma = 0;
dd->caps.has_cfb_3keys = 0;
/* keep only major version number */
switch (dd->hw_version & 0xf00) {
case 0x800:
case 0x700:
dd->caps.has_dma = 1;
dd->caps.has_cfb_3keys = 1;
break;
case 0x600:
break;
default:
dev_warn(dd->dev,
"Unmanaged tdes version, set minimum capabilities\n");
break;
}
}
static const struct of_device_id atmel_tdes_dt_ids[] = {
{ .compatible = "atmel,at91sam9g46-tdes" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_tdes_dt_ids);
static int atmel_tdes_probe(struct platform_device *pdev)
{
struct atmel_tdes_dev *tdes_dd;
struct device *dev = &pdev->dev;
struct resource *tdes_res;
int err;
tdes_dd = devm_kmalloc(&pdev->dev, sizeof(*tdes_dd), GFP_KERNEL);
if (!tdes_dd)
return -ENOMEM;
tdes_dd->dev = dev;
platform_set_drvdata(pdev, tdes_dd);
INIT_LIST_HEAD(&tdes_dd->list);
spin_lock_init(&tdes_dd->lock);
tasklet_init(&tdes_dd->done_task, atmel_tdes_done_task,
(unsigned long)tdes_dd);
tasklet_init(&tdes_dd->queue_task, atmel_tdes_queue_task,
(unsigned long)tdes_dd);
crypto_init_queue(&tdes_dd->queue, ATMEL_TDES_QUEUE_LENGTH);
tdes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &tdes_res);
if (IS_ERR(tdes_dd->io_base)) {
err = PTR_ERR(tdes_dd->io_base);
goto err_tasklet_kill;
}
tdes_dd->phys_base = tdes_res->start;
/* Get the IRQ */
tdes_dd->irq = platform_get_irq(pdev, 0);
if (tdes_dd->irq < 0) {
err = tdes_dd->irq;
goto err_tasklet_kill;
}
err = devm_request_irq(&pdev->dev, tdes_dd->irq, atmel_tdes_irq,
IRQF_SHARED, "atmel-tdes", tdes_dd);
if (err) {
dev_err(dev, "unable to request tdes irq.\n");
goto err_tasklet_kill;
}
/* Initializing the clock */
tdes_dd->iclk = devm_clk_get(&pdev->dev, "tdes_clk");
if (IS_ERR(tdes_dd->iclk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(tdes_dd->iclk);
goto err_tasklet_kill;
}
err = atmel_tdes_hw_version_init(tdes_dd);
if (err)
goto err_tasklet_kill;
atmel_tdes_get_cap(tdes_dd);
err = atmel_tdes_buff_init(tdes_dd);
if (err)
goto err_tasklet_kill;
if (tdes_dd->caps.has_dma) {
err = atmel_tdes_dma_init(tdes_dd);
if (err)
goto err_buff_cleanup;
dev_info(dev, "using %s, %s for DMA transfers\n",
dma_chan_name(tdes_dd->dma_lch_in.chan),
dma_chan_name(tdes_dd->dma_lch_out.chan));
}
spin_lock(&atmel_tdes.lock);
list_add_tail(&tdes_dd->list, &atmel_tdes.dev_list);
spin_unlock(&atmel_tdes.lock);
err = atmel_tdes_register_algs(tdes_dd);
if (err)
goto err_algs;
dev_info(dev, "Atmel DES/TDES\n");
return 0;
err_algs:
spin_lock(&atmel_tdes.lock);
list_del(&tdes_dd->list);
spin_unlock(&atmel_tdes.lock);
if (tdes_dd->caps.has_dma)
atmel_tdes_dma_cleanup(tdes_dd);
err_buff_cleanup:
atmel_tdes_buff_cleanup(tdes_dd);
err_tasklet_kill:
tasklet_kill(&tdes_dd->done_task);
tasklet_kill(&tdes_dd->queue_task);
return err;
}
static int atmel_tdes_remove(struct platform_device *pdev)
{
struct atmel_tdes_dev *tdes_dd = platform_get_drvdata(pdev);
spin_lock(&atmel_tdes.lock);
list_del(&tdes_dd->list);
spin_unlock(&atmel_tdes.lock);
atmel_tdes_unregister_algs(tdes_dd);
tasklet_kill(&tdes_dd->done_task);
tasklet_kill(&tdes_dd->queue_task);
if (tdes_dd->caps.has_dma)
atmel_tdes_dma_cleanup(tdes_dd);
atmel_tdes_buff_cleanup(tdes_dd);
return 0;
}
static struct platform_driver atmel_tdes_driver = {
.probe = atmel_tdes_probe,
.remove = atmel_tdes_remove,
.driver = {
.name = "atmel_tdes",
.of_match_table = atmel_tdes_dt_ids,
},
};
module_platform_driver(atmel_tdes_driver);
MODULE_DESCRIPTION("Atmel DES/TDES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
| linux-master | drivers/crypto/atmel-tdes.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* 2007+ Copyright (c) Evgeniy Polyakov <[email protected]>
* All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/crypto.h>
#include <linux/hw_random.h>
#include <linux/ktime.h>
#include <crypto/algapi.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
static char hifn_pll_ref[sizeof("extNNN")] = "ext";
module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
MODULE_PARM_DESC(hifn_pll_ref,
"PLL reference clock (pci[freq] or ext[freq], default ext)");
static atomic_t hifn_dev_number;
#define ACRYPTO_OP_DECRYPT 0
#define ACRYPTO_OP_ENCRYPT 1
#define ACRYPTO_OP_HMAC 2
#define ACRYPTO_OP_RNG 3
#define ACRYPTO_MODE_ECB 0
#define ACRYPTO_MODE_CBC 1
#define ACRYPTO_MODE_CFB 2
#define ACRYPTO_MODE_OFB 3
#define ACRYPTO_TYPE_AES_128 0
#define ACRYPTO_TYPE_AES_192 1
#define ACRYPTO_TYPE_AES_256 2
#define ACRYPTO_TYPE_3DES 3
#define ACRYPTO_TYPE_DES 4
#define PCI_VENDOR_ID_HIFN 0x13A3
#define PCI_DEVICE_ID_HIFN_7955 0x0020
#define PCI_DEVICE_ID_HIFN_7956 0x001d
/* I/O region sizes */
#define HIFN_BAR0_SIZE 0x1000
#define HIFN_BAR1_SIZE 0x2000
#define HIFN_BAR2_SIZE 0x8000
/* DMA registres */
#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
#define HIFN_CHIP_ID 0x98 /* Chip ID */
/*
* Processing Unit Registers (offset from BASEREG0)
*/
#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
#define HIFN_0_SPACESIZE 0x20 /* Register space size */
/* Processing Unit Control Register (HIFN_0_PUCTRL) */
#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
/* FIFO Status Register (HIFN_0_FIFOSTAT) */
#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
/*
* DMA Interface Registers (offset from BASEREG1)
*/
#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
#define HIFN_1_PLL 0x4c /* 795x: PLL config */
#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
#define HIFN_1_REVID 0x98 /* Revision ID */
#define HIFN_1_UNLOCK_SECRET1 0xf4
#define HIFN_1_UNLOCK_SECRET2 0xfc
#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
#define HIFN_1_PUB_OP 0x308 /* Public Operand */
#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
#define HIFN_1_RNG_DATA 0x318 /* RNG data */
#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
#define HIFN_DMACNFG_UNLOCK 0x00000800
#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
/* PLL configuration register */
#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
/* Public key reset register (HIFN_1_PUB_RESET) */
#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
/* Public base address register (HIFN_1_PUB_BASE) */
#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
/* Public operand length register (HIFN_1_PUB_OPLEN) */
#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
#define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
/* Public operation register (HIFN_1_PUB_OP) */
#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
/* Public status register (HIFN_1_PUB_STATUS) */
#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
/* Public interrupt enable register (HIFN_1_PUB_IEN) */
#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
/* Random number generator config register (HIFN_1_RNG_CONFIG) */
#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
#define HIFN_NAMESIZE 32
#define HIFN_MAX_RESULT_ORDER 5
#define HIFN_D_CMD_RSIZE (24 * 1)
#define HIFN_D_SRC_RSIZE (80 * 1)
#define HIFN_D_DST_RSIZE (80 * 1)
#define HIFN_D_RES_RSIZE (24 * 1)
#define HIFN_D_DST_DALIGN 4
#define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
#define AES_MIN_KEY_SIZE 16
#define AES_MAX_KEY_SIZE 32
#define HIFN_DES_KEY_LENGTH 8
#define HIFN_3DES_KEY_LENGTH 24
#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
#define HIFN_IV_LENGTH 8
#define HIFN_AES_IV_LENGTH 16
#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
#define HIFN_MAC_KEY_LENGTH 64
#define HIFN_MD5_LENGTH 16
#define HIFN_SHA1_LENGTH 20
#define HIFN_MAC_TRUNC_LENGTH 12
#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
#define HIFN_USED_RESULT 12
struct hifn_desc {
volatile __le32 l;
volatile __le32 p;
};
struct hifn_dma {
struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
/*
* Our current positions for insertion and removal from the descriptor
* rings.
*/
volatile int cmdi, srci, dsti, resi;
volatile int cmdu, srcu, dstu, resu;
int cmdk, srck, dstk, resk;
};
#define HIFN_FLAG_CMD_BUSY (1 << 0)
#define HIFN_FLAG_SRC_BUSY (1 << 1)
#define HIFN_FLAG_DST_BUSY (1 << 2)
#define HIFN_FLAG_RES_BUSY (1 << 3)
#define HIFN_FLAG_OLD_KEY (1 << 4)
#define HIFN_DEFAULT_ACTIVE_NUM 5
struct hifn_device {
char name[HIFN_NAMESIZE];
int irq;
struct pci_dev *pdev;
void __iomem *bar[3];
void *desc_virt;
dma_addr_t desc_dma;
u32 dmareg;
void *sa[HIFN_D_RES_RSIZE];
spinlock_t lock;
u32 flags;
int active, started;
struct delayed_work work;
unsigned long reset;
unsigned long success;
unsigned long prev_success;
u8 snum;
struct tasklet_struct tasklet;
struct crypto_queue queue;
struct list_head alg_list;
unsigned int pk_clk_freq;
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
unsigned int rng_wait_time;
ktime_t rngtime;
struct hwrng rng;
#endif
};
#define HIFN_D_LENGTH 0x0000ffff
#define HIFN_D_NOINVALID 0x01000000
#define HIFN_D_MASKDONEIRQ 0x02000000
#define HIFN_D_DESTOVER 0x04000000
#define HIFN_D_OVER 0x08000000
#define HIFN_D_LAST 0x20000000
#define HIFN_D_JUMP 0x40000000
#define HIFN_D_VALID 0x80000000
struct hifn_base_command {
volatile __le16 masks;
volatile __le16 session_num;
volatile __le16 total_source_count;
volatile __le16 total_dest_count;
};
#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
#define HIFN_BASE_CMD_DECODE 0x2000
#define HIFN_BASE_CMD_SRCLEN_M 0xc000
#define HIFN_BASE_CMD_SRCLEN_S 14
#define HIFN_BASE_CMD_DSTLEN_M 0x3000
#define HIFN_BASE_CMD_DSTLEN_S 12
#define HIFN_BASE_CMD_LENMASK_HI 0x30000
#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
/*
* Structure to help build up the command data structure.
*/
struct hifn_crypt_command {
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
#define HIFN_CRYPT_CMD_SRCLEN_S 14
/*
* Structure to help build up the command data structure.
*/
struct hifn_mac_command {
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_MAC_CMD_ALG_MASK 0x0001
#define HIFN_MAC_CMD_ALG_SHA1 0x0000
#define HIFN_MAC_CMD_ALG_MD5 0x0001
#define HIFN_MAC_CMD_MODE_MASK 0x000c
#define HIFN_MAC_CMD_MODE_HMAC 0x0000
#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
#define HIFN_MAC_CMD_MODE_HASH 0x0008
#define HIFN_MAC_CMD_MODE_FULL 0x0004
#define HIFN_MAC_CMD_TRUNC 0x0010
#define HIFN_MAC_CMD_RESULT 0x0020
#define HIFN_MAC_CMD_APPEND 0x0040
#define HIFN_MAC_CMD_SRCLEN_M 0xc000
#define HIFN_MAC_CMD_SRCLEN_S 14
/*
* MAC POS IPsec initiates authentication after encryption on encodes
* and before decryption on decodes.
*/
#define HIFN_MAC_CMD_POS_IPSEC 0x0200
#define HIFN_MAC_CMD_NEW_KEY 0x0800
struct hifn_comp_command {
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_COMP_CMD_SRCLEN_M 0xc000
#define HIFN_COMP_CMD_SRCLEN_S 14
#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
struct hifn_base_result {
volatile __le16 flags;
volatile __le16 session;
volatile __le16 src_cnt; /* 15:0 of source count */
volatile __le16 dst_cnt; /* 15:0 of dest count */
};
#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
#define HIFN_BASE_RES_SRCLEN_S 14
#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
#define HIFN_BASE_RES_DSTLEN_S 12
struct hifn_comp_result {
volatile __le16 flags;
volatile __le16 crc;
};
#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
#define HIFN_COMP_RES_LCB_S 8
#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
struct hifn_mac_result {
volatile __le16 flags;
volatile __le16 reserved;
/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
};
#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
struct hifn_crypt_result {
volatile __le16 flags;
volatile __le16 reserved;
};
#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
#ifndef HIFN_POLL_FREQUENCY
#define HIFN_POLL_FREQUENCY 0x1
#endif
#ifndef HIFN_POLL_SCALAR
#define HIFN_POLL_SCALAR 0x0
#endif
#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
struct hifn_crypto_alg {
struct list_head entry;
struct skcipher_alg alg;
struct hifn_device *dev;
};
#define ASYNC_SCATTERLIST_CACHE 16
#define ASYNC_FLAGS_MISALIGNED (1 << 0)
struct hifn_cipher_walk {
struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
u32 flags;
int num;
};
struct hifn_context {
u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
struct hifn_device *dev;
unsigned int keysize;
};
struct hifn_request_context {
u8 *iv;
unsigned int ivsize;
u8 op, type, mode, unused;
struct hifn_cipher_walk walk;
};
#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
{
return readl(dev->bar[0] + reg);
}
static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
{
return readl(dev->bar[1] + reg);
}
static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
{
writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
}
static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
{
writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
}
static void hifn_wait_puc(struct hifn_device *dev)
{
int i;
u32 ret;
for (i = 10000; i > 0; --i) {
ret = hifn_read_0(dev, HIFN_0_PUCTRL);
if (!(ret & HIFN_PUCTRL_RESET))
break;
udelay(1);
}
if (!i)
dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
}
static void hifn_reset_puc(struct hifn_device *dev)
{
hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
hifn_wait_puc(dev);
}
static void hifn_stop_device(struct hifn_device *dev)
{
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
hifn_write_0(dev, HIFN_0_PUIER, 0);
hifn_write_1(dev, HIFN_1_DMA_IER, 0);
}
static void hifn_reset_dma(struct hifn_device *dev, int full)
{
hifn_stop_device(dev);
/*
* Setting poll frequency and others to 0.
*/
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
mdelay(1);
/*
* Reset DMA.
*/
if (full) {
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
mdelay(1);
} else {
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
HIFN_DMACNFG_MSTRESET);
hifn_reset_puc(dev);
}
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
hifn_reset_puc(dev);
}
static u32 hifn_next_signature(u32 a, u_int cnt)
{
int i;
u32 v;
for (i = 0; i < cnt; i++) {
/* get the parity */
v = a & 0x80080125;
v ^= v >> 16;
v ^= v >> 8;
v ^= v >> 4;
v ^= v >> 2;
v ^= v >> 1;
a = (v & 1) ^ (a << 1);
}
return a;
}
static struct pci2id {
u_short pci_vendor;
u_short pci_prod;
char card_id[13];
} pci2id[] = {
{
PCI_VENDOR_ID_HIFN,
PCI_DEVICE_ID_HIFN_7955,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
},
{
PCI_VENDOR_ID_HIFN,
PCI_DEVICE_ID_HIFN_7956,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}
};
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
static int hifn_rng_data_present(struct hwrng *rng, int wait)
{
struct hifn_device *dev = (struct hifn_device *)rng->priv;
s64 nsec;
nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
nsec -= dev->rng_wait_time;
if (nsec <= 0)
return 1;
if (!wait)
return 0;
ndelay(nsec);
return 1;
}
static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
{
struct hifn_device *dev = (struct hifn_device *)rng->priv;
*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
dev->rngtime = ktime_get();
return 4;
}
static int hifn_register_rng(struct hifn_device *dev)
{
/*
* We must wait at least 256 Pk_clk cycles between two reads of the rng.
*/
dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
dev->pk_clk_freq) * 256;
dev->rng.name = dev->name;
dev->rng.data_present = hifn_rng_data_present;
dev->rng.data_read = hifn_rng_data_read;
dev->rng.priv = (unsigned long)dev;
return hwrng_register(&dev->rng);
}
static void hifn_unregister_rng(struct hifn_device *dev)
{
hwrng_unregister(&dev->rng);
}
#else
#define hifn_register_rng(dev) 0
#define hifn_unregister_rng(dev)
#endif
static int hifn_init_pubrng(struct hifn_device *dev)
{
int i;
hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
HIFN_PUBRST_RESET);
for (i = 100; i > 0; --i) {
mdelay(1);
if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
break;
}
if (!i) {
dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
} else {
hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
dev->dmareg |= HIFN_DMAIER_PUBDONE;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
}
/* Enable RNG engine. */
hifn_write_1(dev, HIFN_1_RNG_CONFIG,
hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
/* First value must be discarded */
hifn_read_1(dev, HIFN_1_RNG_DATA);
dev->rngtime = ktime_get();
#endif
return 0;
}
static int hifn_enable_crypto(struct hifn_device *dev)
{
u32 dmacfg, addr;
char *offtbl = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
if (pci2id[i].pci_vendor == dev->pdev->vendor &&
pci2id[i].pci_prod == dev->pdev->device) {
offtbl = pci2id[i].card_id;
break;
}
}
if (!offtbl) {
dev_err(&dev->pdev->dev, "Unknown card!\n");
return -ENODEV;
}
dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
hifn_write_1(dev, HIFN_1_DMA_CNFG,
HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
mdelay(1);
addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
mdelay(1);
hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
mdelay(1);
for (i = 0; i < 12; ++i) {
addr = hifn_next_signature(addr, offtbl[i] + 0x101);
hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
mdelay(1);
}
hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
return 0;
}
static void hifn_init_dma(struct hifn_device *dev)
{
struct hifn_dma *dma = dev->desc_virt;
u32 dptr = dev->desc_dma;
int i;
for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
dma->cmdr[i].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, command_bufs[i][0]));
for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
dma->resr[i].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, result_bufs[i][0]));
/* Setup LAST descriptors. */
dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, cmdr[0]));
dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, srcr[0]));
dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, dstr[0]));
dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, resr[0]));
dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
}
/*
* Initialize the PLL. We need to know the frequency of the reference clock
* to calculate the optimal multiplier. For PCI we assume 66MHz, since that
* allows us to operate without the risk of overclocking the chip. If it
* actually uses 33MHz, the chip will operate at half the speed, this can be
* overridden by specifying the frequency as module parameter (pci33).
*
* Unfortunately the PCI clock is not very suitable since the HIFN needs a
* stable clock and the PCI clock frequency may vary, so the default is the
* external clock. There is no way to find out its frequency, we default to
* 66MHz since according to Mike Ham of HiFn, almost every board in existence
* has an external crystal populated at 66MHz.
*/
static void hifn_init_pll(struct hifn_device *dev)
{
unsigned int freq, m;
u32 pllcfg;
pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
if (strncmp(hifn_pll_ref, "ext", 3) == 0)
pllcfg |= HIFN_PLL_REF_CLK_PLL;
else
pllcfg |= HIFN_PLL_REF_CLK_HBI;
if (hifn_pll_ref[3] != '\0')
freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
else {
freq = 66;
dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
freq, hifn_pll_ref);
}
m = HIFN_PLL_FCK_MAX / freq;
pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
if (m <= 8)
pllcfg |= HIFN_PLL_IS_1_8;
else
pllcfg |= HIFN_PLL_IS_9_12;
/* Select clock source and enable clock bypass */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
/* Let the chip lock to the input clock */
mdelay(10);
/* Disable clock bypass */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
/* Switch the engines to the PLL */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
/*
* The Fpk_clk runs at half the total speed. Its frequency is needed to
* calculate the minimum time between two reads of the rng. Since 33MHz
* is actually 33.333... we overestimate the frequency here, resulting
* in slightly larger intervals.
*/
dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
}
static void hifn_init_registers(struct hifn_device *dev)
{
u32 dptr = dev->desc_dma;
/* Initialization magic... */
hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
/* write all 4 ring address registers */
hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
offsetof(struct hifn_dma, cmdr[0]));
hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
offsetof(struct hifn_dma, srcr[0]));
hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
offsetof(struct hifn_dma, dstr[0]));
hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
offsetof(struct hifn_dma, resr[0]));
mdelay(2);
#if 0
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
HIFN_DMACSR_S_WAIT |
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
HIFN_DMACSR_C_WAIT |
HIFN_DMACSR_ENGINE |
HIFN_DMACSR_PUBDONE);
#else
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
HIFN_DMACSR_S_WAIT |
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
HIFN_DMACSR_C_WAIT |
HIFN_DMACSR_ENGINE |
HIFN_DMACSR_PUBDONE);
#endif
hifn_read_1(dev, HIFN_1_DMA_CSR);
dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
HIFN_DMAIER_ENGINE;
dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
hifn_read_1(dev, HIFN_1_DMA_IER);
#if 0
hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
HIFN_PUCNFG_DRAM);
#else
hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
#endif
hifn_init_pll(dev);
hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
}
static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
unsigned dlen, unsigned slen, u16 mask, u8 snum)
{
struct hifn_base_command *base_cmd;
u8 *buf_pos = buf;
base_cmd = (struct hifn_base_command *)buf_pos;
base_cmd->masks = __cpu_to_le16(mask);
base_cmd->total_source_count =
__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
base_cmd->total_dest_count =
__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
dlen >>= 16;
slen >>= 16;
base_cmd->session_num = __cpu_to_le16(snum |
((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
return sizeof(struct hifn_base_command);
}
static int hifn_setup_crypto_command(struct hifn_device *dev,
u8 *buf, unsigned dlen, unsigned slen,
u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
{
struct hifn_dma *dma = dev->desc_virt;
struct hifn_crypt_command *cry_cmd;
u8 *buf_pos = buf;
u16 cmd_len;
cry_cmd = (struct hifn_crypt_command *)buf_pos;
cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
dlen >>= 16;
cry_cmd->masks = __cpu_to_le16(mode |
((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
HIFN_CRYPT_CMD_SRCLEN_M));
cry_cmd->header_skip = 0;
cry_cmd->reserved = 0;
buf_pos += sizeof(struct hifn_crypt_command);
dma->cmdu++;
if (dma->cmdu > 1) {
dev->dmareg |= HIFN_DMAIER_C_WAIT;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
}
if (keylen) {
memcpy(buf_pos, key, keylen);
buf_pos += keylen;
}
if (ivsize) {
memcpy(buf_pos, iv, ivsize);
buf_pos += ivsize;
}
cmd_len = buf_pos - buf;
return cmd_len;
}
static int hifn_setup_cmd_desc(struct hifn_device *dev,
struct hifn_context *ctx, struct hifn_request_context *rctx,
void *priv, unsigned int nbytes)
{
struct hifn_dma *dma = dev->desc_virt;
int cmd_len, sa_idx;
u8 *buf, *buf_pos;
u16 mask;
sa_idx = dma->cmdi;
buf_pos = buf = dma->command_bufs[dma->cmdi];
mask = 0;
switch (rctx->op) {
case ACRYPTO_OP_DECRYPT:
mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
break;
case ACRYPTO_OP_ENCRYPT:
mask = HIFN_BASE_CMD_CRYPT;
break;
case ACRYPTO_OP_HMAC:
mask = HIFN_BASE_CMD_MAC;
break;
default:
goto err_out;
}
buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
nbytes, mask, dev->snum);
if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
u16 md = 0;
if (ctx->keysize)
md |= HIFN_CRYPT_CMD_NEW_KEY;
if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
md |= HIFN_CRYPT_CMD_NEW_IV;
switch (rctx->mode) {
case ACRYPTO_MODE_ECB:
md |= HIFN_CRYPT_CMD_MODE_ECB;
break;
case ACRYPTO_MODE_CBC:
md |= HIFN_CRYPT_CMD_MODE_CBC;
break;
case ACRYPTO_MODE_CFB:
md |= HIFN_CRYPT_CMD_MODE_CFB;
break;
case ACRYPTO_MODE_OFB:
md |= HIFN_CRYPT_CMD_MODE_OFB;
break;
default:
goto err_out;
}
switch (rctx->type) {
case ACRYPTO_TYPE_AES_128:
if (ctx->keysize != 16)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_128 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_AES_192:
if (ctx->keysize != 24)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_192 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_AES_256:
if (ctx->keysize != 32)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_256 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_3DES:
if (ctx->keysize != 24)
goto err_out;
md |= HIFN_CRYPT_CMD_ALG_3DES;
break;
case ACRYPTO_TYPE_DES:
if (ctx->keysize != 8)
goto err_out;
md |= HIFN_CRYPT_CMD_ALG_DES;
break;
default:
goto err_out;
}
buf_pos += hifn_setup_crypto_command(dev, buf_pos,
nbytes, nbytes, ctx->key, ctx->keysize,
rctx->iv, rctx->ivsize, md);
}
dev->sa[sa_idx] = priv;
dev->started++;
cmd_len = buf_pos - buf;
dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
dma->cmdr[dma->cmdi].l = __cpu_to_le32(
HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
dma->cmdi = 0;
} else {
dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
}
if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
dev->flags |= HIFN_FLAG_CMD_BUSY;
}
return 0;
err_out:
return -EINVAL;
}
static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
unsigned int offset, unsigned int size, int last)
{
struct hifn_dma *dma = dev->desc_virt;
int idx;
dma_addr_t addr;
addr = dma_map_page(&dev->pdev->dev, page, offset, size,
DMA_TO_DEVICE);
idx = dma->srci;
dma->srcr[idx].p = __cpu_to_le32(addr);
dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
if (++idx == HIFN_D_SRC_RSIZE) {
dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
(last ? HIFN_D_LAST : 0));
idx = 0;
}
dma->srci = idx;
dma->srcu++;
if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
dev->flags |= HIFN_FLAG_SRC_BUSY;
}
return size;
}
static void hifn_setup_res_desc(struct hifn_device *dev)
{
struct hifn_dma *dma = dev->desc_virt;
dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
HIFN_D_VALID | HIFN_D_LAST);
/*
* dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
* HIFN_D_LAST);
*/
if (++dma->resi == HIFN_D_RES_RSIZE) {
dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
dma->resi = 0;
}
dma->resu++;
if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
dev->flags |= HIFN_FLAG_RES_BUSY;
}
}
static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
unsigned offset, unsigned size, int last)
{
struct hifn_dma *dma = dev->desc_virt;
int idx;
dma_addr_t addr;
addr = dma_map_page(&dev->pdev->dev, page, offset, size,
DMA_FROM_DEVICE);
idx = dma->dsti;
dma->dstr[idx].p = __cpu_to_le32(addr);
dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
if (++idx == HIFN_D_DST_RSIZE) {
dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
(last ? HIFN_D_LAST : 0));
idx = 0;
}
dma->dsti = idx;
dma->dstu++;
if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
dev->flags |= HIFN_FLAG_DST_BUSY;
}
}
static int hifn_setup_dma(struct hifn_device *dev,
struct hifn_context *ctx, struct hifn_request_context *rctx,
struct scatterlist *src, struct scatterlist *dst,
unsigned int nbytes, void *priv)
{
struct scatterlist *t;
struct page *spage, *dpage;
unsigned int soff, doff;
unsigned int n, len;
n = nbytes;
while (n) {
spage = sg_page(src);
soff = src->offset;
len = min(src->length, n);
hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
src++;
n -= len;
}
t = &rctx->walk.cache[0];
n = nbytes;
while (n) {
if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
BUG_ON(!sg_page(t));
dpage = sg_page(t);
doff = 0;
len = t->length;
} else {
BUG_ON(!sg_page(dst));
dpage = sg_page(dst);
doff = dst->offset;
len = dst->length;
}
len = min(len, n);
hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
dst++;
t++;
n -= len;
}
hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
hifn_setup_res_desc(dev);
return 0;
}
static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
int num, gfp_t gfp_flags)
{
int i;
num = min(ASYNC_SCATTERLIST_CACHE, num);
sg_init_table(w->cache, num);
w->num = 0;
for (i = 0; i < num; ++i) {
struct page *page = alloc_page(gfp_flags);
struct scatterlist *s;
if (!page)
break;
s = &w->cache[i];
sg_set_page(s, page, PAGE_SIZE, 0);
w->num++;
}
return i;
}
static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
{
int i;
for (i = 0; i < w->num; ++i) {
struct scatterlist *s = &w->cache[i];
__free_page(sg_page(s));
s->length = 0;
}
w->num = 0;
}
static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
unsigned int size, unsigned int *nbytesp)
{
unsigned int copy, drest = *drestp, nbytes = *nbytesp;
int idx = 0;
if (drest < size || size > nbytes)
return -EINVAL;
while (size) {
copy = min3(drest, size, dst->length);
size -= copy;
drest -= copy;
nbytes -= copy;
pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
__func__, copy, size, drest, nbytes);
dst++;
idx++;
}
*nbytesp = nbytes;
*drestp = drest;
return idx;
}
static int hifn_cipher_walk(struct skcipher_request *req,
struct hifn_cipher_walk *w)
{
struct scatterlist *dst, *t;
unsigned int nbytes = req->cryptlen, offset, copy, diff;
int idx, tidx, err;
tidx = idx = 0;
offset = 0;
while (nbytes) {
if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
return -EINVAL;
dst = &req->dst[idx];
pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
__func__, dst->length, dst->offset, offset, nbytes);
if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
!IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
offset) {
unsigned slen = min(dst->length - offset, nbytes);
unsigned dlen = PAGE_SIZE;
t = &w->cache[idx];
err = skcipher_add(&dlen, dst, slen, &nbytes);
if (err < 0)
return err;
idx += err;
copy = slen & ~(HIFN_D_DST_DALIGN - 1);
diff = slen & (HIFN_D_DST_DALIGN - 1);
if (dlen < nbytes) {
/*
* Destination page does not have enough space
* to put there additional blocksized chunk,
* so we mark that page as containing only
* blocksize aligned chunks:
* t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
* and increase number of bytes to be processed
* in next chunk:
* nbytes += diff;
*/
nbytes += diff;
/*
* Temporary of course...
* Kick author if you will catch this one.
*/
pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
__func__, dlen, nbytes, slen, offset);
pr_err("%s: please contact author to fix this "
"issue, generally you should not catch "
"this path under any condition but who "
"knows how did you use crypto code.\n"
"Thank you.\n", __func__);
BUG();
} else {
copy += diff + nbytes;
dst = &req->dst[idx];
err = skcipher_add(&dlen, dst, nbytes, &nbytes);
if (err < 0)
return err;
idx += err;
}
t->length = copy;
t->offset = offset;
} else {
nbytes -= min(dst->length, nbytes);
idx++;
}
tidx++;
}
return tidx;
}
static int hifn_setup_session(struct skcipher_request *req)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_request_context *rctx = skcipher_request_ctx(req);
struct hifn_device *dev = ctx->dev;
unsigned long dlen, flags;
unsigned int nbytes = req->cryptlen, idx = 0;
int err = -EINVAL, sg_num;
struct scatterlist *dst;
if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
goto err_out_exit;
rctx->walk.flags = 0;
while (nbytes) {
dst = &req->dst[idx];
dlen = min(dst->length, nbytes);
if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
!IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
nbytes -= dlen;
idx++;
}
if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
if (err < 0)
return err;
}
sg_num = hifn_cipher_walk(req, &rctx->walk);
if (sg_num < 0) {
err = sg_num;
goto err_out_exit;
}
spin_lock_irqsave(&dev->lock, flags);
if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
err = -EAGAIN;
goto err_out;
}
err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
if (err)
goto err_out;
dev->snum++;
dev->active = HIFN_DEFAULT_ACTIVE_NUM;
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
err_out:
spin_unlock_irqrestore(&dev->lock, flags);
err_out_exit:
if (err) {
dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
"type: %u, err: %d.\n",
rctx->iv, rctx->ivsize,
ctx->key, ctx->keysize,
rctx->mode, rctx->op, rctx->type, err);
}
return err;
}
static int hifn_start_device(struct hifn_device *dev)
{
int err;
dev->started = dev->active = 0;
hifn_reset_dma(dev, 1);
err = hifn_enable_crypto(dev);
if (err)
return err;
hifn_reset_puc(dev);
hifn_init_dma(dev);
hifn_init_registers(dev);
hifn_init_pubrng(dev);
return 0;
}
static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
{
unsigned int srest = *srestp, nbytes = *nbytesp, copy;
void *daddr;
int idx = 0;
if (srest < size || size > nbytes)
return -EINVAL;
while (size) {
copy = min3(srest, dst->length, size);
daddr = kmap_atomic(sg_page(dst));
memcpy(daddr + dst->offset + offset, saddr, copy);
kunmap_atomic(daddr);
nbytes -= copy;
size -= copy;
srest -= copy;
saddr += copy;
offset = 0;
pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
__func__, copy, size, srest, nbytes);
dst++;
idx++;
}
*nbytesp = nbytes;
*srestp = srest;
return idx;
}
static inline void hifn_complete_sa(struct hifn_device *dev, int i)
{
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
dev->sa[i] = NULL;
dev->started--;
if (dev->started < 0)
dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
dev->started);
spin_unlock_irqrestore(&dev->lock, flags);
BUG_ON(dev->started < 0);
}
static void hifn_process_ready(struct skcipher_request *req, int error)
{
struct hifn_request_context *rctx = skcipher_request_ctx(req);
if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
unsigned int nbytes = req->cryptlen;
int idx = 0, err;
struct scatterlist *dst, *t;
void *saddr;
while (nbytes) {
t = &rctx->walk.cache[idx];
dst = &req->dst[idx];
pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
"sg_page(dst): %p, dst->length: %u, "
"nbytes: %u.\n",
__func__, sg_page(t), t->length,
sg_page(dst), dst->length, nbytes);
if (!t->length) {
nbytes -= min(dst->length, nbytes);
idx++;
continue;
}
saddr = kmap_atomic(sg_page(t));
err = skcipher_get(saddr, &t->length, t->offset,
dst, nbytes, &nbytes);
if (err < 0) {
kunmap_atomic(saddr);
break;
}
idx += err;
kunmap_atomic(saddr);
}
hifn_cipher_walk_exit(&rctx->walk);
}
skcipher_request_complete(req, error);
}
static void hifn_clear_rings(struct hifn_device *dev, int error)
{
struct hifn_dma *dma = dev->desc_virt;
int i, u;
dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
"k: %d.%d.%d.%d.\n",
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
dma->cmdk, dma->srck, dma->dstk, dma->resk);
i = dma->resk; u = dma->resu;
while (u != 0) {
if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (dev->sa[i]) {
dev->success++;
dev->reset = 0;
hifn_process_ready(dev->sa[i], error);
hifn_complete_sa(dev, i);
}
if (++i == HIFN_D_RES_RSIZE)
i = 0;
u--;
}
dma->resk = i; dma->resu = u;
i = dma->srck; u = dma->srcu;
while (u != 0) {
if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_SRC_RSIZE)
i = 0;
u--;
}
dma->srck = i; dma->srcu = u;
i = dma->cmdk; u = dma->cmdu;
while (u != 0) {
if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_CMD_RSIZE)
i = 0;
u--;
}
dma->cmdk = i; dma->cmdu = u;
i = dma->dstk; u = dma->dstu;
while (u != 0) {
if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_DST_RSIZE)
i = 0;
u--;
}
dma->dstk = i; dma->dstu = u;
dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
"k: %d.%d.%d.%d.\n",
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
dma->cmdk, dma->srck, dma->dstk, dma->resk);
}
static void hifn_work(struct work_struct *work)
{
struct delayed_work *dw = to_delayed_work(work);
struct hifn_device *dev = container_of(dw, struct hifn_device, work);
unsigned long flags;
int reset = 0;
u32 r = 0;
spin_lock_irqsave(&dev->lock, flags);
if (dev->active == 0) {
struct hifn_dma *dma = dev->desc_virt;
if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
dev->flags &= ~HIFN_FLAG_CMD_BUSY;
r |= HIFN_DMACSR_C_CTRL_DIS;
}
if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
dev->flags &= ~HIFN_FLAG_SRC_BUSY;
r |= HIFN_DMACSR_S_CTRL_DIS;
}
if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
dev->flags &= ~HIFN_FLAG_DST_BUSY;
r |= HIFN_DMACSR_D_CTRL_DIS;
}
if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
dev->flags &= ~HIFN_FLAG_RES_BUSY;
r |= HIFN_DMACSR_R_CTRL_DIS;
}
if (r)
hifn_write_1(dev, HIFN_1_DMA_CSR, r);
} else
dev->active--;
if ((dev->prev_success == dev->success) && dev->started)
reset = 1;
dev->prev_success = dev->success;
spin_unlock_irqrestore(&dev->lock, flags);
if (reset) {
if (++dev->reset >= 5) {
int i;
struct hifn_dma *dma = dev->desc_virt;
dev_info(&dev->pdev->dev,
"r: %08x, active: %d, started: %d, "
"success: %lu: qlen: %u/%u, reset: %d.\n",
r, dev->active, dev->started,
dev->success, dev->queue.qlen, dev->queue.max_qlen,
reset);
dev_info(&dev->pdev->dev, "%s: res: ", __func__);
for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
if (dev->sa[i]) {
hifn_process_ready(dev->sa[i], -ENODEV);
hifn_complete_sa(dev, i);
}
}
pr_info("\n");
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
hifn_start_device(dev);
dev->reset = 0;
}
tasklet_schedule(&dev->tasklet);
}
schedule_delayed_work(&dev->work, HZ);
}
static irqreturn_t hifn_interrupt(int irq, void *data)
{
struct hifn_device *dev = data;
struct hifn_dma *dma = dev->desc_virt;
u32 dmacsr, restart;
dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu);
if ((dmacsr & dev->dmareg) == 0)
return IRQ_NONE;
hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
if (dmacsr & HIFN_DMACSR_ENGINE)
hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
if (dmacsr & HIFN_DMACSR_PUBDONE)
hifn_write_1(dev, HIFN_1_PUB_STATUS,
hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
if (restart) {
u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
!!(dmacsr & HIFN_DMACSR_R_OVER),
!!(dmacsr & HIFN_DMACSR_D_OVER),
puisr, !!(puisr & HIFN_PUISR_DSTOVER));
if (!!(puisr & HIFN_PUISR_DSTOVER))
hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
HIFN_DMACSR_D_OVER));
}
restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
if (restart) {
dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
!!(dmacsr & HIFN_DMACSR_C_ABORT),
!!(dmacsr & HIFN_DMACSR_S_ABORT),
!!(dmacsr & HIFN_DMACSR_D_ABORT),
!!(dmacsr & HIFN_DMACSR_R_ABORT));
hifn_reset_dma(dev, 1);
hifn_init_dma(dev);
hifn_init_registers(dev);
}
if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
dev_dbg(&dev->pdev->dev, "wait on command.\n");
dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
}
tasklet_schedule(&dev->tasklet);
return IRQ_HANDLED;
}
static void hifn_flush(struct hifn_device *dev)
{
unsigned long flags;
struct crypto_async_request *async_req;
struct skcipher_request *req;
struct hifn_dma *dma = dev->desc_virt;
int i;
for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
struct hifn_desc *d = &dma->resr[i];
if (dev->sa[i]) {
hifn_process_ready(dev->sa[i],
(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
hifn_complete_sa(dev, i);
}
}
spin_lock_irqsave(&dev->lock, flags);
while ((async_req = crypto_dequeue_request(&dev->queue))) {
req = skcipher_request_cast(async_req);
spin_unlock_irqrestore(&dev->lock, flags);
hifn_process_ready(req, -ENODEV);
spin_lock_irqsave(&dev->lock, flags);
}
spin_unlock_irqrestore(&dev->lock, flags);
}
static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
unsigned int len)
{
struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
struct hifn_device *dev = ctx->dev;
int err;
err = verify_skcipher_des_key(cipher, key);
if (err)
return err;
dev->flags &= ~HIFN_FLAG_OLD_KEY;
memcpy(ctx->key, key, len);
ctx->keysize = len;
return 0;
}
static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
unsigned int len)
{
struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
struct hifn_device *dev = ctx->dev;
int err;
err = verify_skcipher_des3_key(cipher, key);
if (err)
return err;
dev->flags &= ~HIFN_FLAG_OLD_KEY;
memcpy(ctx->key, key, len);
ctx->keysize = len;
return 0;
}
static int hifn_handle_req(struct skcipher_request *req)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_device *dev = ctx->dev;
int err = -EAGAIN;
if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
err = hifn_setup_session(req);
if (err == -EAGAIN) {
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
err = crypto_enqueue_request(&dev->queue, &req->base);
spin_unlock_irqrestore(&dev->lock, flags);
}
return err;
}
static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
u8 type, u8 mode)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_request_context *rctx = skcipher_request_ctx(req);
unsigned ivsize;
ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
if (req->iv && mode != ACRYPTO_MODE_ECB) {
if (type == ACRYPTO_TYPE_AES_128)
ivsize = HIFN_AES_IV_LENGTH;
else if (type == ACRYPTO_TYPE_DES)
ivsize = HIFN_DES_KEY_LENGTH;
else if (type == ACRYPTO_TYPE_3DES)
ivsize = HIFN_3DES_KEY_LENGTH;
}
if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
if (ctx->keysize == 24)
type = ACRYPTO_TYPE_AES_192;
else if (ctx->keysize == 32)
type = ACRYPTO_TYPE_AES_256;
}
rctx->op = op;
rctx->mode = mode;
rctx->type = type;
rctx->iv = req->iv;
rctx->ivsize = ivsize;
/*
* HEAVY TODO: needs to kick Herbert XU to write documentation.
* HEAVY TODO: needs to kick Herbert XU to write documentation.
* HEAVY TODO: needs to kick Herbert XU to write documentation.
*/
return hifn_handle_req(req);
}
static int hifn_process_queue(struct hifn_device *dev)
{
struct crypto_async_request *async_req, *backlog;
struct skcipher_request *req;
unsigned long flags;
int err = 0;
while (dev->started < HIFN_QUEUE_LENGTH) {
spin_lock_irqsave(&dev->lock, flags);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
spin_unlock_irqrestore(&dev->lock, flags);
if (!async_req)
break;
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
req = skcipher_request_cast(async_req);
err = hifn_handle_req(req);
if (err)
break;
}
return err;
}
static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
u8 type, u8 mode)
{
int err;
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_device *dev = ctx->dev;
err = hifn_setup_crypto_req(req, op, type, mode);
if (err)
return err;
if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
hifn_process_queue(dev);
return -EINPROGRESS;
}
/*
* AES ecryption functions.
*/
static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
}
/*
* AES decryption functions.
*/
static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
}
/*
* DES ecryption functions.
*/
static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
}
/*
* DES decryption functions.
*/
static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
}
/*
* 3DES ecryption functions.
*/
static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
}
/* 3DES decryption functions. */
static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
}
struct hifn_alg_template {
char name[CRYPTO_MAX_ALG_NAME];
char drv_name[CRYPTO_MAX_ALG_NAME];
unsigned int bsize;
struct skcipher_alg skcipher;
};
static const struct hifn_alg_template hifn_alg_templates[] = {
/*
* 3DES ECB, CBC, CFB and OFB modes.
*/
{
.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
.skcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_des3_setkey,
.encrypt = hifn_encrypt_3des_cfb,
.decrypt = hifn_decrypt_3des_cfb,
},
},
{
.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
.skcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_des3_setkey,
.encrypt = hifn_encrypt_3des_ofb,
.decrypt = hifn_decrypt_3des_ofb,
},
},
{
.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
.skcipher = {
.ivsize = HIFN_IV_LENGTH,
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_des3_setkey,
.encrypt = hifn_encrypt_3des_cbc,
.decrypt = hifn_decrypt_3des_cbc,
},
},
{
.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
.skcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_des3_setkey,
.encrypt = hifn_encrypt_3des_ecb,
.decrypt = hifn_decrypt_3des_ecb,
},
},
/*
* DES ECB, CBC, CFB and OFB modes.
*/
{
.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
.skcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_cfb,
.decrypt = hifn_decrypt_des_cfb,
},
},
{
.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
.skcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_ofb,
.decrypt = hifn_decrypt_des_ofb,
},
},
{
.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
.skcipher = {
.ivsize = HIFN_IV_LENGTH,
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_cbc,
.decrypt = hifn_decrypt_des_cbc,
},
},
{
.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
.skcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_ecb,
.decrypt = hifn_decrypt_des_ecb,
},
},
/*
* AES ECB, CBC, CFB and OFB modes.
*/
{
.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
.skcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_ecb,
.decrypt = hifn_decrypt_aes_ecb,
},
},
{
.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
.skcipher = {
.ivsize = HIFN_AES_IV_LENGTH,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_cbc,
.decrypt = hifn_decrypt_aes_cbc,
},
},
{
.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
.skcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_cfb,
.decrypt = hifn_decrypt_aes_cfb,
},
},
{
.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
.skcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_ofb,
.decrypt = hifn_decrypt_aes_ofb,
},
},
};
static int hifn_init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
ctx->dev = ha->dev;
crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
return 0;
}
static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
{
struct hifn_crypto_alg *alg;
int err;
alg = kzalloc(sizeof(*alg), GFP_KERNEL);
if (!alg)
return -ENOMEM;
alg->alg = t->skcipher;
alg->alg.init = hifn_init_tfm;
snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
t->drv_name, dev->name);
alg->alg.base.cra_priority = 300;
alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
alg->alg.base.cra_blocksize = t->bsize;
alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
alg->alg.base.cra_alignmask = 0;
alg->alg.base.cra_module = THIS_MODULE;
alg->dev = dev;
list_add_tail(&alg->entry, &dev->alg_list);
err = crypto_register_skcipher(&alg->alg);
if (err) {
list_del(&alg->entry);
kfree(alg);
}
return err;
}
static void hifn_unregister_alg(struct hifn_device *dev)
{
struct hifn_crypto_alg *a, *n;
list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
list_del(&a->entry);
crypto_unregister_skcipher(&a->alg);
kfree(a);
}
}
static int hifn_register_alg(struct hifn_device *dev)
{
int i, err;
for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
if (err)
goto err_out_exit;
}
return 0;
err_out_exit:
hifn_unregister_alg(dev);
return err;
}
static void hifn_tasklet_callback(unsigned long data)
{
struct hifn_device *dev = (struct hifn_device *)data;
/*
* This is ok to call this without lock being held,
* althogh it modifies some parameters used in parallel,
* (like dev->success), but they are used in process
* context or update is atomic (like setting dev->sa[i] to NULL).
*/
hifn_clear_rings(dev, 0);
if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
hifn_process_queue(dev);
}
static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int err, i;
struct hifn_device *dev;
char name[8];
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (err)
goto err_out_disable_pci_device;
snprintf(name, sizeof(name), "hifn%d",
atomic_inc_return(&hifn_dev_number) - 1);
err = pci_request_regions(pdev, name);
if (err)
goto err_out_disable_pci_device;
if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
err = -ENODEV;
goto err_out_free_regions;
}
dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
GFP_KERNEL);
if (!dev) {
err = -ENOMEM;
goto err_out_free_regions;
}
INIT_LIST_HEAD(&dev->alg_list);
snprintf(dev->name, sizeof(dev->name), "%s", name);
spin_lock_init(&dev->lock);
for (i = 0; i < 3; ++i) {
unsigned long addr, size;
addr = pci_resource_start(pdev, i);
size = pci_resource_len(pdev, i);
dev->bar[i] = ioremap(addr, size);
if (!dev->bar[i]) {
err = -ENOMEM;
goto err_out_unmap_bars;
}
}
dev->desc_virt = dma_alloc_coherent(&pdev->dev,
sizeof(struct hifn_dma),
&dev->desc_dma, GFP_KERNEL);
if (!dev->desc_virt) {
dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
err = -ENOMEM;
goto err_out_unmap_bars;
}
dev->pdev = pdev;
dev->irq = pdev->irq;
for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
dev->sa[i] = NULL;
pci_set_drvdata(pdev, dev);
tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
crypto_init_queue(&dev->queue, 1);
err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
if (err) {
dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
dev->irq, err);
dev->irq = 0;
goto err_out_free_desc;
}
err = hifn_start_device(dev);
if (err)
goto err_out_free_irq;
err = hifn_register_rng(dev);
if (err)
goto err_out_stop_device;
err = hifn_register_alg(dev);
if (err)
goto err_out_unregister_rng;
INIT_DELAYED_WORK(&dev->work, hifn_work);
schedule_delayed_work(&dev->work, HZ);
dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
"successfully registered as %s.\n",
pci_name(pdev), dev->name);
return 0;
err_out_unregister_rng:
hifn_unregister_rng(dev);
err_out_stop_device:
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
err_out_free_irq:
free_irq(dev->irq, dev);
tasklet_kill(&dev->tasklet);
err_out_free_desc:
dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
dev->desc_dma);
err_out_unmap_bars:
for (i = 0; i < 3; ++i)
if (dev->bar[i])
iounmap(dev->bar[i]);
kfree(dev);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable_pci_device:
pci_disable_device(pdev);
return err;
}
static void hifn_remove(struct pci_dev *pdev)
{
int i;
struct hifn_device *dev;
dev = pci_get_drvdata(pdev);
if (dev) {
cancel_delayed_work_sync(&dev->work);
hifn_unregister_rng(dev);
hifn_unregister_alg(dev);
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
free_irq(dev->irq, dev);
tasklet_kill(&dev->tasklet);
hifn_flush(dev);
dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
dev->desc_virt, dev->desc_dma);
for (i = 0; i < 3; ++i)
if (dev->bar[i])
iounmap(dev->bar[i]);
kfree(dev);
}
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_device_id hifn_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
static struct pci_driver hifn_pci_driver = {
.name = "hifn795x",
.id_table = hifn_pci_tbl,
.probe = hifn_probe,
.remove = hifn_remove,
};
static int __init hifn_init(void)
{
unsigned int freq;
int err;
if (strncmp(hifn_pll_ref, "ext", 3) &&
strncmp(hifn_pll_ref, "pci", 3)) {
pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
return -EINVAL;
}
/*
* For the 7955/7956 the reference clock frequency must be in the
* range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
* but this chip is currently not supported.
*/
if (hifn_pll_ref[3] != '\0') {
freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
if (freq < 20 || freq > 100) {
pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
"be in the range of 20-100");
return -EINVAL;
}
}
err = pci_register_driver(&hifn_pci_driver);
if (err < 0) {
pr_err("Failed to register PCI driver for %s device.\n",
hifn_pci_driver.name);
return -ENODEV;
}
pr_info("Driver for HIFN 795x crypto accelerator chip "
"has been successfully registered.\n");
return 0;
}
static void __exit hifn_fini(void)
{
pci_unregister_driver(&hifn_pci_driver);
pr_info("Driver for HIFN 795x crypto accelerator chip "
"has been successfully unregistered.\n");
}
module_init(hifn_init);
module_exit(hifn_fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Evgeniy Polyakov <[email protected]>");
MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
| linux-master | drivers/crypto/hifn_795x.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip / Atmel ECC (I2C) driver.
*
* Copyright (c) 2017, Microchip Technology Inc.
* Author: Tudor Ambarus
*/
#include <linux/bitrev.h>
#include <linux/crc16.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "atmel-i2c.h"
static const struct {
u8 value;
const char *error_text;
} error_list[] = {
{ 0x01, "CheckMac or Verify miscompare" },
{ 0x03, "Parse Error" },
{ 0x05, "ECC Fault" },
{ 0x0F, "Execution Error" },
{ 0xEE, "Watchdog about to expire" },
{ 0xFF, "CRC or other communication error" },
};
/**
* atmel_i2c_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
* CRC16 verification of the count, opcode, param1, param2 and data bytes.
* The checksum is saved in little-endian format in the least significant
* two bytes of the command. CRC polynomial is 0x8005 and the initial register
* value should be zero.
*
* @cmd : structure used for communicating with the device.
*/
static void atmel_i2c_checksum(struct atmel_i2c_cmd *cmd)
{
u8 *data = &cmd->count;
size_t len = cmd->count - CRC_SIZE;
__le16 *__crc16 = (__le16 *)(data + len);
*__crc16 = cpu_to_le16(bitrev16(crc16(0, data, len)));
}
void atmel_i2c_init_read_cmd(struct atmel_i2c_cmd *cmd)
{
cmd->word_addr = COMMAND;
cmd->opcode = OPCODE_READ;
/*
* Read the word from Configuration zone that contains the lock bytes
* (UserExtra, Selector, LockValue, LockConfig).
*/
cmd->param1 = CONFIGURATION_ZONE;
cmd->param2 = cpu_to_le16(DEVICE_LOCK_ADDR);
cmd->count = READ_COUNT;
atmel_i2c_checksum(cmd);
cmd->msecs = MAX_EXEC_TIME_READ;
cmd->rxsize = READ_RSP_SIZE;
}
EXPORT_SYMBOL(atmel_i2c_init_read_cmd);
void atmel_i2c_init_random_cmd(struct atmel_i2c_cmd *cmd)
{
cmd->word_addr = COMMAND;
cmd->opcode = OPCODE_RANDOM;
cmd->param1 = 0;
cmd->param2 = 0;
cmd->count = RANDOM_COUNT;
atmel_i2c_checksum(cmd);
cmd->msecs = MAX_EXEC_TIME_RANDOM;
cmd->rxsize = RANDOM_RSP_SIZE;
}
EXPORT_SYMBOL(atmel_i2c_init_random_cmd);
void atmel_i2c_init_genkey_cmd(struct atmel_i2c_cmd *cmd, u16 keyid)
{
cmd->word_addr = COMMAND;
cmd->count = GENKEY_COUNT;
cmd->opcode = OPCODE_GENKEY;
cmd->param1 = GENKEY_MODE_PRIVATE;
/* a random private key will be generated and stored in slot keyID */
cmd->param2 = cpu_to_le16(keyid);
atmel_i2c_checksum(cmd);
cmd->msecs = MAX_EXEC_TIME_GENKEY;
cmd->rxsize = GENKEY_RSP_SIZE;
}
EXPORT_SYMBOL(atmel_i2c_init_genkey_cmd);
int atmel_i2c_init_ecdh_cmd(struct atmel_i2c_cmd *cmd,
struct scatterlist *pubkey)
{
size_t copied;
cmd->word_addr = COMMAND;
cmd->count = ECDH_COUNT;
cmd->opcode = OPCODE_ECDH;
cmd->param1 = ECDH_PREFIX_MODE;
/* private key slot */
cmd->param2 = cpu_to_le16(DATA_SLOT_2);
/*
* The device only supports NIST P256 ECC keys. The public key size will
* always be the same. Use a macro for the key size to avoid unnecessary
* computations.
*/
copied = sg_copy_to_buffer(pubkey,
sg_nents_for_len(pubkey,
ATMEL_ECC_PUBKEY_SIZE),
cmd->data, ATMEL_ECC_PUBKEY_SIZE);
if (copied != ATMEL_ECC_PUBKEY_SIZE)
return -EINVAL;
atmel_i2c_checksum(cmd);
cmd->msecs = MAX_EXEC_TIME_ECDH;
cmd->rxsize = ECDH_RSP_SIZE;
return 0;
}
EXPORT_SYMBOL(atmel_i2c_init_ecdh_cmd);
/*
* After wake and after execution of a command, there will be error, status, or
* result bytes in the device's output register that can be retrieved by the
* system. When the length of that group is four bytes, the codes returned are
* detailed in error_list.
*/
static int atmel_i2c_status(struct device *dev, u8 *status)
{
size_t err_list_len = ARRAY_SIZE(error_list);
int i;
u8 err_id = status[1];
if (*status != STATUS_SIZE)
return 0;
if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
return 0;
for (i = 0; i < err_list_len; i++)
if (error_list[i].value == err_id)
break;
/* if err_id is not in the error_list then ignore it */
if (i != err_list_len) {
dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
return err_id;
}
return 0;
}
static int atmel_i2c_wakeup(struct i2c_client *client)
{
struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
u8 status[STATUS_RSP_SIZE];
int ret;
/*
* The device ignores any levels or transitions on the SCL pin when the
* device is idle, asleep or during waking up. Don't check for error
* when waking up the device.
*/
i2c_transfer_buffer_flags(client, i2c_priv->wake_token,
i2c_priv->wake_token_sz, I2C_M_IGNORE_NAK);
/*
* Wait to wake the device. Typical execution times for ecdh and genkey
* are around tens of milliseconds. Delta is chosen to 50 microseconds.
*/
usleep_range(TWHI_MIN, TWHI_MAX);
ret = i2c_master_recv(client, status, STATUS_SIZE);
if (ret < 0)
return ret;
return atmel_i2c_status(&client->dev, status);
}
static int atmel_i2c_sleep(struct i2c_client *client)
{
u8 sleep = SLEEP_TOKEN;
return i2c_master_send(client, &sleep, 1);
}
/*
* atmel_i2c_send_receive() - send a command to the device and receive its
* response.
* @client: i2c client device
* @cmd : structure used to communicate with the device
*
* After the device receives a Wake token, a watchdog counter starts within the
* device. After the watchdog timer expires, the device enters sleep mode
* regardless of whether some I/O transmission or command execution is in
* progress. If a command is attempted when insufficient time remains prior to
* watchdog timer execution, the device will return the watchdog timeout error
* code without attempting to execute the command. There is no way to reset the
* counter other than to put the device into sleep or idle mode and then
* wake it up again.
*/
int atmel_i2c_send_receive(struct i2c_client *client, struct atmel_i2c_cmd *cmd)
{
struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
int ret;
mutex_lock(&i2c_priv->lock);
ret = atmel_i2c_wakeup(client);
if (ret)
goto err;
/* send the command */
ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
if (ret < 0)
goto err;
/* delay the appropriate amount of time for command to execute */
msleep(cmd->msecs);
/* receive the response */
ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
if (ret < 0)
goto err;
/* put the device into low-power mode */
ret = atmel_i2c_sleep(client);
if (ret < 0)
goto err;
mutex_unlock(&i2c_priv->lock);
return atmel_i2c_status(&client->dev, cmd->data);
err:
mutex_unlock(&i2c_priv->lock);
return ret;
}
EXPORT_SYMBOL(atmel_i2c_send_receive);
static void atmel_i2c_work_handler(struct work_struct *work)
{
struct atmel_i2c_work_data *work_data =
container_of(work, struct atmel_i2c_work_data, work);
struct atmel_i2c_cmd *cmd = &work_data->cmd;
struct i2c_client *client = work_data->client;
int status;
status = atmel_i2c_send_receive(client, cmd);
work_data->cbk(work_data, work_data->areq, status);
}
static struct workqueue_struct *atmel_wq;
void atmel_i2c_enqueue(struct atmel_i2c_work_data *work_data,
void (*cbk)(struct atmel_i2c_work_data *work_data,
void *areq, int status),
void *areq)
{
work_data->cbk = (void *)cbk;
work_data->areq = areq;
INIT_WORK(&work_data->work, atmel_i2c_work_handler);
queue_work(atmel_wq, &work_data->work);
}
EXPORT_SYMBOL(atmel_i2c_enqueue);
void atmel_i2c_flush_queue(void)
{
flush_workqueue(atmel_wq);
}
EXPORT_SYMBOL(atmel_i2c_flush_queue);
static inline size_t atmel_i2c_wake_token_sz(u32 bus_clk_rate)
{
u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
/* return the size of the wake_token in bytes */
return DIV_ROUND_UP(no_of_bits, 8);
}
static int device_sanity_check(struct i2c_client *client)
{
struct atmel_i2c_cmd *cmd;
int ret;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
atmel_i2c_init_read_cmd(cmd);
ret = atmel_i2c_send_receive(client, cmd);
if (ret)
goto free_cmd;
/*
* It is vital that the Configuration, Data and OTP zones be locked
* prior to release into the field of the system containing the device.
* Failure to lock these zones may permit modification of any secret
* keys and may lead to other security problems.
*/
if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
ret = -ENOTSUPP;
}
/* fall through */
free_cmd:
kfree(cmd);
return ret;
}
int atmel_i2c_probe(struct i2c_client *client)
{
struct atmel_i2c_client_priv *i2c_priv;
struct device *dev = &client->dev;
int ret;
u32 bus_clk_rate;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "I2C_FUNC_I2C not supported\n");
return -ENODEV;
}
bus_clk_rate = i2c_acpi_find_bus_speed(&client->adapter->dev);
if (!bus_clk_rate) {
ret = device_property_read_u32(&client->adapter->dev,
"clock-frequency", &bus_clk_rate);
if (ret) {
dev_err(dev, "failed to read clock-frequency property\n");
return ret;
}
}
if (bus_clk_rate > 1000000L) {
dev_err(dev, "%u exceeds maximum supported clock frequency (1MHz)\n",
bus_clk_rate);
return -EINVAL;
}
i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
if (!i2c_priv)
return -ENOMEM;
i2c_priv->client = client;
mutex_init(&i2c_priv->lock);
/*
* WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
* 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
* will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
*/
i2c_priv->wake_token_sz = atmel_i2c_wake_token_sz(bus_clk_rate);
memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
atomic_set(&i2c_priv->tfm_count, 0);
i2c_set_clientdata(client, i2c_priv);
return device_sanity_check(client);
}
EXPORT_SYMBOL(atmel_i2c_probe);
static int __init atmel_i2c_init(void)
{
atmel_wq = alloc_workqueue("atmel_wq", 0, 0);
return atmel_wq ? 0 : -ENOMEM;
}
static void __exit atmel_i2c_exit(void)
{
destroy_workqueue(atmel_wq);
}
module_init(atmel_i2c_init);
module_exit(atmel_i2c_exit);
MODULE_AUTHOR("Tudor Ambarus");
MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/crypto/atmel-i2c.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 Imagination Technologies
* Authors: Will Thomas, James Hartley
*
* Interface structure taken from omap-sham driver
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <crypto/internal/hash.h>
#include <crypto/md5.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#define CR_RESET 0
#define CR_RESET_SET 1
#define CR_RESET_UNSET 0
#define CR_MESSAGE_LENGTH_H 0x4
#define CR_MESSAGE_LENGTH_L 0x8
#define CR_CONTROL 0xc
#define CR_CONTROL_BYTE_ORDER_3210 0
#define CR_CONTROL_BYTE_ORDER_0123 1
#define CR_CONTROL_BYTE_ORDER_2310 2
#define CR_CONTROL_BYTE_ORDER_1032 3
#define CR_CONTROL_BYTE_ORDER_SHIFT 8
#define CR_CONTROL_ALGO_MD5 0
#define CR_CONTROL_ALGO_SHA1 1
#define CR_CONTROL_ALGO_SHA224 2
#define CR_CONTROL_ALGO_SHA256 3
#define CR_INTSTAT 0x10
#define CR_INTENAB 0x14
#define CR_INTCLEAR 0x18
#define CR_INT_RESULTS_AVAILABLE BIT(0)
#define CR_INT_NEW_RESULTS_SET BIT(1)
#define CR_INT_RESULT_READ_ERR BIT(2)
#define CR_INT_MESSAGE_WRITE_ERROR BIT(3)
#define CR_INT_STATUS BIT(8)
#define CR_RESULT_QUEUE 0x1c
#define CR_RSD0 0x40
#define CR_CORE_REV 0x50
#define CR_CORE_DES1 0x60
#define CR_CORE_DES2 0x70
#define DRIVER_FLAGS_BUSY BIT(0)
#define DRIVER_FLAGS_FINAL BIT(1)
#define DRIVER_FLAGS_DMA_ACTIVE BIT(2)
#define DRIVER_FLAGS_OUTPUT_READY BIT(3)
#define DRIVER_FLAGS_INIT BIT(4)
#define DRIVER_FLAGS_CPU BIT(5)
#define DRIVER_FLAGS_DMA_READY BIT(6)
#define DRIVER_FLAGS_ERROR BIT(7)
#define DRIVER_FLAGS_SG BIT(8)
#define DRIVER_FLAGS_SHA1 BIT(18)
#define DRIVER_FLAGS_SHA224 BIT(19)
#define DRIVER_FLAGS_SHA256 BIT(20)
#define DRIVER_FLAGS_MD5 BIT(21)
#define IMG_HASH_QUEUE_LENGTH 20
#define IMG_HASH_DMA_BURST 4
#define IMG_HASH_DMA_THRESHOLD 64
#ifdef __LITTLE_ENDIAN
#define IMG_HASH_BYTE_ORDER CR_CONTROL_BYTE_ORDER_3210
#else
#define IMG_HASH_BYTE_ORDER CR_CONTROL_BYTE_ORDER_0123
#endif
struct img_hash_dev;
struct img_hash_request_ctx {
struct img_hash_dev *hdev;
u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
unsigned long flags;
size_t digsize;
dma_addr_t dma_addr;
size_t dma_ct;
/* sg root */
struct scatterlist *sgfirst;
/* walk state */
struct scatterlist *sg;
size_t nents;
size_t offset;
unsigned int total;
size_t sent;
unsigned long op;
size_t bufcnt;
struct ahash_request fallback_req;
/* Zero length buffer must remain last member of struct */
u8 buffer[] __aligned(sizeof(u32));
};
struct img_hash_ctx {
struct img_hash_dev *hdev;
unsigned long flags;
struct crypto_ahash *fallback;
};
struct img_hash_dev {
struct list_head list;
struct device *dev;
struct clk *hash_clk;
struct clk *sys_clk;
void __iomem *io_base;
phys_addr_t bus_addr;
void __iomem *cpu_addr;
spinlock_t lock;
int err;
struct tasklet_struct done_task;
struct tasklet_struct dma_task;
unsigned long flags;
struct crypto_queue queue;
struct ahash_request *req;
struct dma_chan *dma_lch;
};
struct img_hash_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct img_hash_drv img_hash = {
.dev_list = LIST_HEAD_INIT(img_hash.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(img_hash.lock),
};
static inline u32 img_hash_read(struct img_hash_dev *hdev, u32 offset)
{
return readl_relaxed(hdev->io_base + offset);
}
static inline void img_hash_write(struct img_hash_dev *hdev,
u32 offset, u32 value)
{
writel_relaxed(value, hdev->io_base + offset);
}
static inline __be32 img_hash_read_result_queue(struct img_hash_dev *hdev)
{
return cpu_to_be32(img_hash_read(hdev, CR_RESULT_QUEUE));
}
static void img_hash_start(struct img_hash_dev *hdev, bool dma)
{
struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
u32 cr = IMG_HASH_BYTE_ORDER << CR_CONTROL_BYTE_ORDER_SHIFT;
if (ctx->flags & DRIVER_FLAGS_MD5)
cr |= CR_CONTROL_ALGO_MD5;
else if (ctx->flags & DRIVER_FLAGS_SHA1)
cr |= CR_CONTROL_ALGO_SHA1;
else if (ctx->flags & DRIVER_FLAGS_SHA224)
cr |= CR_CONTROL_ALGO_SHA224;
else if (ctx->flags & DRIVER_FLAGS_SHA256)
cr |= CR_CONTROL_ALGO_SHA256;
dev_dbg(hdev->dev, "Starting hash process\n");
img_hash_write(hdev, CR_CONTROL, cr);
/*
* The hardware block requires two cycles between writing the control
* register and writing the first word of data in non DMA mode, to
* ensure the first data write is not grouped in burst with the control
* register write a read is issued to 'flush' the bus.
*/
if (!dma)
img_hash_read(hdev, CR_CONTROL);
}
static int img_hash_xmit_cpu(struct img_hash_dev *hdev, const u8 *buf,
size_t length, int final)
{
u32 count, len32;
const u32 *buffer = (const u32 *)buf;
dev_dbg(hdev->dev, "xmit_cpu: length: %zu bytes\n", length);
if (final)
hdev->flags |= DRIVER_FLAGS_FINAL;
len32 = DIV_ROUND_UP(length, sizeof(u32));
for (count = 0; count < len32; count++)
writel_relaxed(buffer[count], hdev->cpu_addr);
return -EINPROGRESS;
}
static void img_hash_dma_callback(void *data)
{
struct img_hash_dev *hdev = data;
struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
if (ctx->bufcnt) {
img_hash_xmit_cpu(hdev, ctx->buffer, ctx->bufcnt, 0);
ctx->bufcnt = 0;
}
if (ctx->sg)
tasklet_schedule(&hdev->dma_task);
}
static int img_hash_xmit_dma(struct img_hash_dev *hdev, struct scatterlist *sg)
{
struct dma_async_tx_descriptor *desc;
struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
ctx->dma_ct = dma_map_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
if (ctx->dma_ct == 0) {
dev_err(hdev->dev, "Invalid DMA sg\n");
hdev->err = -EINVAL;
return -EINVAL;
}
desc = dmaengine_prep_slave_sg(hdev->dma_lch,
sg,
ctx->dma_ct,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(hdev->dev, "Null DMA descriptor\n");
hdev->err = -EINVAL;
dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
return -EINVAL;
}
desc->callback = img_hash_dma_callback;
desc->callback_param = hdev;
dmaengine_submit(desc);
dma_async_issue_pending(hdev->dma_lch);
return 0;
}
static int img_hash_write_via_cpu(struct img_hash_dev *hdev)
{
struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
ctx->bufcnt = sg_copy_to_buffer(hdev->req->src, sg_nents(ctx->sg),
ctx->buffer, hdev->req->nbytes);
ctx->total = hdev->req->nbytes;
ctx->bufcnt = 0;
hdev->flags |= (DRIVER_FLAGS_CPU | DRIVER_FLAGS_FINAL);
img_hash_start(hdev, false);
return img_hash_xmit_cpu(hdev, ctx->buffer, ctx->total, 1);
}
static int img_hash_finish(struct ahash_request *req)
{
struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
if (!req->result)
return -EINVAL;
memcpy(req->result, ctx->digest, ctx->digsize);
return 0;
}
static void img_hash_copy_hash(struct ahash_request *req)
{
struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
__be32 *hash = (__be32 *)ctx->digest;
int i;
for (i = (ctx->digsize / sizeof(*hash)) - 1; i >= 0; i--)
hash[i] = img_hash_read_result_queue(ctx->hdev);
}
static void img_hash_finish_req(struct ahash_request *req, int err)
{
struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
struct img_hash_dev *hdev = ctx->hdev;
if (!err) {
img_hash_copy_hash(req);
if (DRIVER_FLAGS_FINAL & hdev->flags)
err = img_hash_finish(req);
} else {
dev_warn(hdev->dev, "Hash failed with error %d\n", err);
ctx->flags |= DRIVER_FLAGS_ERROR;
}
hdev->flags &= ~(DRIVER_FLAGS_DMA_READY | DRIVER_FLAGS_OUTPUT_READY |
DRIVER_FLAGS_CPU | DRIVER_FLAGS_BUSY | DRIVER_FLAGS_FINAL);
if (req->base.complete)
ahash_request_complete(req, err);
}
static int img_hash_write_via_dma(struct img_hash_dev *hdev)
{
struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
img_hash_start(hdev, true);
dev_dbg(hdev->dev, "xmit dma size: %d\n", ctx->total);
if (!ctx->total)
hdev->flags |= DRIVER_FLAGS_FINAL;
hdev->flags |= DRIVER_FLAGS_DMA_ACTIVE | DRIVER_FLAGS_FINAL;
tasklet_schedule(&hdev->dma_task);
return -EINPROGRESS;
}
static int img_hash_dma_init(struct img_hash_dev *hdev)
{
struct dma_slave_config dma_conf;
int err;
hdev->dma_lch = dma_request_chan(hdev->dev, "tx");
if (IS_ERR(hdev->dma_lch)) {
dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
return PTR_ERR(hdev->dma_lch);
}
dma_conf.direction = DMA_MEM_TO_DEV;
dma_conf.dst_addr = hdev->bus_addr;
dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_conf.dst_maxburst = IMG_HASH_DMA_BURST;
dma_conf.device_fc = false;
err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
if (err) {
dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
dma_release_channel(hdev->dma_lch);
return err;
}
return 0;
}
static void img_hash_dma_task(unsigned long d)
{
struct img_hash_dev *hdev = (struct img_hash_dev *)d;
struct img_hash_request_ctx *ctx;
u8 *addr;
size_t nbytes, bleft, wsend, len, tbc;
struct scatterlist tsg;
if (!hdev->req)
return;
ctx = ahash_request_ctx(hdev->req);
if (!ctx->sg)
return;
addr = sg_virt(ctx->sg);
nbytes = ctx->sg->length - ctx->offset;
/*
* The hash accelerator does not support a data valid mask. This means
* that if each dma (i.e. per page) is not a multiple of 4 bytes, the
* padding bytes in the last word written by that dma would erroneously
* be included in the hash. To avoid this we round down the transfer,
* and add the excess to the start of the next dma. It does not matter
* that the final dma may not be a multiple of 4 bytes as the hashing
* block is programmed to accept the correct number of bytes.
*/
bleft = nbytes % 4;
wsend = (nbytes / 4);
if (wsend) {
sg_init_one(&tsg, addr + ctx->offset, wsend * 4);
if (img_hash_xmit_dma(hdev, &tsg)) {
dev_err(hdev->dev, "DMA failed, falling back to CPU");
ctx->flags |= DRIVER_FLAGS_CPU;
hdev->err = 0;
img_hash_xmit_cpu(hdev, addr + ctx->offset,
wsend * 4, 0);
ctx->sent += wsend * 4;
wsend = 0;
} else {
ctx->sent += wsend * 4;
}
}
if (bleft) {
ctx->bufcnt = sg_pcopy_to_buffer(ctx->sgfirst, ctx->nents,
ctx->buffer, bleft, ctx->sent);
tbc = 0;
ctx->sg = sg_next(ctx->sg);
while (ctx->sg && (ctx->bufcnt < 4)) {
len = ctx->sg->length;
if (likely(len > (4 - ctx->bufcnt)))
len = 4 - ctx->bufcnt;
tbc = sg_pcopy_to_buffer(ctx->sgfirst, ctx->nents,
ctx->buffer + ctx->bufcnt, len,
ctx->sent + ctx->bufcnt);
ctx->bufcnt += tbc;
if (tbc >= ctx->sg->length) {
ctx->sg = sg_next(ctx->sg);
tbc = 0;
}
}
ctx->sent += ctx->bufcnt;
ctx->offset = tbc;
if (!wsend)
img_hash_dma_callback(hdev);
} else {
ctx->offset = 0;
ctx->sg = sg_next(ctx->sg);
}
}
static int img_hash_write_via_dma_stop(struct img_hash_dev *hdev)
{
struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req);
if (ctx->flags & DRIVER_FLAGS_SG)
dma_unmap_sg(hdev->dev, ctx->sg, ctx->dma_ct, DMA_TO_DEVICE);
return 0;
}
static int img_hash_process_data(struct img_hash_dev *hdev)
{
struct ahash_request *req = hdev->req;
struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
int err = 0;
ctx->bufcnt = 0;
if (req->nbytes >= IMG_HASH_DMA_THRESHOLD) {
dev_dbg(hdev->dev, "process data request(%d bytes) using DMA\n",
req->nbytes);
err = img_hash_write_via_dma(hdev);
} else {
dev_dbg(hdev->dev, "process data request(%d bytes) using CPU\n",
req->nbytes);
err = img_hash_write_via_cpu(hdev);
}
return err;
}
static int img_hash_hw_init(struct img_hash_dev *hdev)
{
unsigned long long nbits;
u32 u, l;
img_hash_write(hdev, CR_RESET, CR_RESET_SET);
img_hash_write(hdev, CR_RESET, CR_RESET_UNSET);
img_hash_write(hdev, CR_INTENAB, CR_INT_NEW_RESULTS_SET);
nbits = (u64)hdev->req->nbytes << 3;
u = nbits >> 32;
l = nbits;
img_hash_write(hdev, CR_MESSAGE_LENGTH_H, u);
img_hash_write(hdev, CR_MESSAGE_LENGTH_L, l);
if (!(DRIVER_FLAGS_INIT & hdev->flags)) {
hdev->flags |= DRIVER_FLAGS_INIT;
hdev->err = 0;
}
dev_dbg(hdev->dev, "hw initialized, nbits: %llx\n", nbits);
return 0;
}
static int img_hash_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
rctx->fallback_req.base.flags = req->base.flags
& CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_init(&rctx->fallback_req);
}
static int img_hash_handle_queue(struct img_hash_dev *hdev,
struct ahash_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct img_hash_request_ctx *ctx;
unsigned long flags;
int err = 0, res = 0;
spin_lock_irqsave(&hdev->lock, flags);
if (req)
res = ahash_enqueue_request(&hdev->queue, req);
if (DRIVER_FLAGS_BUSY & hdev->flags) {
spin_unlock_irqrestore(&hdev->lock, flags);
return res;
}
backlog = crypto_get_backlog(&hdev->queue);
async_req = crypto_dequeue_request(&hdev->queue);
if (async_req)
hdev->flags |= DRIVER_FLAGS_BUSY;
spin_unlock_irqrestore(&hdev->lock, flags);
if (!async_req)
return res;
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
req = ahash_request_cast(async_req);
hdev->req = req;
ctx = ahash_request_ctx(req);
dev_info(hdev->dev, "processing req, op: %lu, bytes: %d\n",
ctx->op, req->nbytes);
err = img_hash_hw_init(hdev);
if (!err)
err = img_hash_process_data(hdev);
if (err != -EINPROGRESS) {
/* done_task will not finish so do it here */
img_hash_finish_req(req, err);
}
return res;
}
static int img_hash_update(struct ahash_request *req)
{
struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
rctx->fallback_req.base.flags = req->base.flags
& CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
return crypto_ahash_update(&rctx->fallback_req);
}
static int img_hash_final(struct ahash_request *req)
{
struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
rctx->fallback_req.base.flags = req->base.flags
& CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.result = req->result;
return crypto_ahash_final(&rctx->fallback_req);
}
static int img_hash_finup(struct ahash_request *req)
{
struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
rctx->fallback_req.base.flags = req->base.flags
& CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_finup(&rctx->fallback_req);
}
static int img_hash_import(struct ahash_request *req, const void *in)
{
struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
rctx->fallback_req.base.flags = req->base.flags
& CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_import(&rctx->fallback_req, in);
}
static int img_hash_export(struct ahash_request *req, void *out)
{
struct img_hash_request_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback);
rctx->fallback_req.base.flags = req->base.flags
& CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_export(&rctx->fallback_req, out);
}
static int img_hash_digest(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct img_hash_ctx *tctx = crypto_ahash_ctx(tfm);
struct img_hash_request_ctx *ctx = ahash_request_ctx(req);
struct img_hash_dev *hdev = NULL;
struct img_hash_dev *tmp;
int err;
spin_lock(&img_hash.lock);
if (!tctx->hdev) {
list_for_each_entry(tmp, &img_hash.dev_list, list) {
hdev = tmp;
break;
}
tctx->hdev = hdev;
} else {
hdev = tctx->hdev;
}
spin_unlock(&img_hash.lock);
ctx->hdev = hdev;
ctx->flags = 0;
ctx->digsize = crypto_ahash_digestsize(tfm);
switch (ctx->digsize) {
case SHA1_DIGEST_SIZE:
ctx->flags |= DRIVER_FLAGS_SHA1;
break;
case SHA256_DIGEST_SIZE:
ctx->flags |= DRIVER_FLAGS_SHA256;
break;
case SHA224_DIGEST_SIZE:
ctx->flags |= DRIVER_FLAGS_SHA224;
break;
case MD5_DIGEST_SIZE:
ctx->flags |= DRIVER_FLAGS_MD5;
break;
default:
return -EINVAL;
}
ctx->bufcnt = 0;
ctx->offset = 0;
ctx->sent = 0;
ctx->total = req->nbytes;
ctx->sg = req->src;
ctx->sgfirst = req->src;
ctx->nents = sg_nents(ctx->sg);
err = img_hash_handle_queue(tctx->hdev, req);
return err;
}
static int img_hash_cra_init(struct crypto_tfm *tfm, const char *alg_name)
{
struct img_hash_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->fallback = crypto_alloc_ahash(alg_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback)) {
pr_err("img_hash: Could not load fallback driver.\n");
return PTR_ERR(ctx->fallback);
}
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct img_hash_request_ctx) +
crypto_ahash_reqsize(ctx->fallback) +
IMG_HASH_DMA_THRESHOLD);
return 0;
}
static int img_hash_cra_md5_init(struct crypto_tfm *tfm)
{
return img_hash_cra_init(tfm, "md5-generic");
}
static int img_hash_cra_sha1_init(struct crypto_tfm *tfm)
{
return img_hash_cra_init(tfm, "sha1-generic");
}
static int img_hash_cra_sha224_init(struct crypto_tfm *tfm)
{
return img_hash_cra_init(tfm, "sha224-generic");
}
static int img_hash_cra_sha256_init(struct crypto_tfm *tfm)
{
return img_hash_cra_init(tfm, "sha256-generic");
}
static void img_hash_cra_exit(struct crypto_tfm *tfm)
{
struct img_hash_ctx *tctx = crypto_tfm_ctx(tfm);
crypto_free_ahash(tctx->fallback);
}
static irqreturn_t img_irq_handler(int irq, void *dev_id)
{
struct img_hash_dev *hdev = dev_id;
u32 reg;
reg = img_hash_read(hdev, CR_INTSTAT);
img_hash_write(hdev, CR_INTCLEAR, reg);
if (reg & CR_INT_NEW_RESULTS_SET) {
dev_dbg(hdev->dev, "IRQ CR_INT_NEW_RESULTS_SET\n");
if (DRIVER_FLAGS_BUSY & hdev->flags) {
hdev->flags |= DRIVER_FLAGS_OUTPUT_READY;
if (!(DRIVER_FLAGS_CPU & hdev->flags))
hdev->flags |= DRIVER_FLAGS_DMA_READY;
tasklet_schedule(&hdev->done_task);
} else {
dev_warn(hdev->dev,
"HASH interrupt when no active requests.\n");
}
} else if (reg & CR_INT_RESULTS_AVAILABLE) {
dev_warn(hdev->dev,
"IRQ triggered before the hash had completed\n");
} else if (reg & CR_INT_RESULT_READ_ERR) {
dev_warn(hdev->dev,
"Attempt to read from an empty result queue\n");
} else if (reg & CR_INT_MESSAGE_WRITE_ERROR) {
dev_warn(hdev->dev,
"Data written before the hardware was configured\n");
}
return IRQ_HANDLED;
}
static struct ahash_alg img_algs[] = {
{
.init = img_hash_init,
.update = img_hash_update,
.final = img_hash_final,
.finup = img_hash_finup,
.export = img_hash_export,
.import = img_hash_import,
.digest = img_hash_digest,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
.base = {
.cra_name = "md5",
.cra_driver_name = "img-md5",
.cra_priority = 300,
.cra_flags =
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct img_hash_ctx),
.cra_init = img_hash_cra_md5_init,
.cra_exit = img_hash_cra_exit,
.cra_module = THIS_MODULE,
}
}
},
{
.init = img_hash_init,
.update = img_hash_update,
.final = img_hash_final,
.finup = img_hash_finup,
.export = img_hash_export,
.import = img_hash_import,
.digest = img_hash_digest,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "img-sha1",
.cra_priority = 300,
.cra_flags =
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct img_hash_ctx),
.cra_init = img_hash_cra_sha1_init,
.cra_exit = img_hash_cra_exit,
.cra_module = THIS_MODULE,
}
}
},
{
.init = img_hash_init,
.update = img_hash_update,
.final = img_hash_final,
.finup = img_hash_finup,
.export = img_hash_export,
.import = img_hash_import,
.digest = img_hash_digest,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha224",
.cra_driver_name = "img-sha224",
.cra_priority = 300,
.cra_flags =
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct img_hash_ctx),
.cra_init = img_hash_cra_sha224_init,
.cra_exit = img_hash_cra_exit,
.cra_module = THIS_MODULE,
}
}
},
{
.init = img_hash_init,
.update = img_hash_update,
.final = img_hash_final,
.finup = img_hash_finup,
.export = img_hash_export,
.import = img_hash_import,
.digest = img_hash_digest,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "img-sha256",
.cra_priority = 300,
.cra_flags =
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct img_hash_ctx),
.cra_init = img_hash_cra_sha256_init,
.cra_exit = img_hash_cra_exit,
.cra_module = THIS_MODULE,
}
}
}
};
static int img_register_algs(struct img_hash_dev *hdev)
{
int i, err;
for (i = 0; i < ARRAY_SIZE(img_algs); i++) {
err = crypto_register_ahash(&img_algs[i]);
if (err)
goto err_reg;
}
return 0;
err_reg:
for (; i--; )
crypto_unregister_ahash(&img_algs[i]);
return err;
}
static int img_unregister_algs(struct img_hash_dev *hdev)
{
int i;
for (i = 0; i < ARRAY_SIZE(img_algs); i++)
crypto_unregister_ahash(&img_algs[i]);
return 0;
}
static void img_hash_done_task(unsigned long data)
{
struct img_hash_dev *hdev = (struct img_hash_dev *)data;
int err = 0;
if (hdev->err == -EINVAL) {
err = hdev->err;
goto finish;
}
if (!(DRIVER_FLAGS_BUSY & hdev->flags)) {
img_hash_handle_queue(hdev, NULL);
return;
}
if (DRIVER_FLAGS_CPU & hdev->flags) {
if (DRIVER_FLAGS_OUTPUT_READY & hdev->flags) {
hdev->flags &= ~DRIVER_FLAGS_OUTPUT_READY;
goto finish;
}
} else if (DRIVER_FLAGS_DMA_READY & hdev->flags) {
if (DRIVER_FLAGS_DMA_ACTIVE & hdev->flags) {
hdev->flags &= ~DRIVER_FLAGS_DMA_ACTIVE;
img_hash_write_via_dma_stop(hdev);
if (hdev->err) {
err = hdev->err;
goto finish;
}
}
if (DRIVER_FLAGS_OUTPUT_READY & hdev->flags) {
hdev->flags &= ~(DRIVER_FLAGS_DMA_READY |
DRIVER_FLAGS_OUTPUT_READY);
goto finish;
}
}
return;
finish:
img_hash_finish_req(hdev->req, err);
}
static const struct of_device_id img_hash_match[] __maybe_unused = {
{ .compatible = "img,hash-accelerator" },
{}
};
MODULE_DEVICE_TABLE(of, img_hash_match);
static int img_hash_probe(struct platform_device *pdev)
{
struct img_hash_dev *hdev;
struct device *dev = &pdev->dev;
struct resource *hash_res;
int irq;
int err;
hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
if (hdev == NULL)
return -ENOMEM;
spin_lock_init(&hdev->lock);
hdev->dev = dev;
platform_set_drvdata(pdev, hdev);
INIT_LIST_HEAD(&hdev->list);
tasklet_init(&hdev->done_task, img_hash_done_task, (unsigned long)hdev);
tasklet_init(&hdev->dma_task, img_hash_dma_task, (unsigned long)hdev);
crypto_init_queue(&hdev->queue, IMG_HASH_QUEUE_LENGTH);
/* Register bank */
hdev->io_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hdev->io_base)) {
err = PTR_ERR(hdev->io_base);
goto res_err;
}
/* Write port (DMA or CPU) */
hdev->cpu_addr = devm_platform_get_and_ioremap_resource(pdev, 1, &hash_res);
if (IS_ERR(hdev->cpu_addr)) {
err = PTR_ERR(hdev->cpu_addr);
goto res_err;
}
hdev->bus_addr = hash_res->start;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto res_err;
}
err = devm_request_irq(dev, irq, img_irq_handler, 0,
dev_name(dev), hdev);
if (err) {
dev_err(dev, "unable to request irq\n");
goto res_err;
}
dev_dbg(dev, "using IRQ channel %d\n", irq);
hdev->hash_clk = devm_clk_get(&pdev->dev, "hash");
if (IS_ERR(hdev->hash_clk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(hdev->hash_clk);
goto res_err;
}
hdev->sys_clk = devm_clk_get(&pdev->dev, "sys");
if (IS_ERR(hdev->sys_clk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(hdev->sys_clk);
goto res_err;
}
err = clk_prepare_enable(hdev->hash_clk);
if (err)
goto res_err;
err = clk_prepare_enable(hdev->sys_clk);
if (err)
goto clk_err;
err = img_hash_dma_init(hdev);
if (err)
goto dma_err;
dev_dbg(dev, "using %s for DMA transfers\n",
dma_chan_name(hdev->dma_lch));
spin_lock(&img_hash.lock);
list_add_tail(&hdev->list, &img_hash.dev_list);
spin_unlock(&img_hash.lock);
err = img_register_algs(hdev);
if (err)
goto err_algs;
dev_info(dev, "Img MD5/SHA1/SHA224/SHA256 Hardware accelerator initialized\n");
return 0;
err_algs:
spin_lock(&img_hash.lock);
list_del(&hdev->list);
spin_unlock(&img_hash.lock);
dma_release_channel(hdev->dma_lch);
dma_err:
clk_disable_unprepare(hdev->sys_clk);
clk_err:
clk_disable_unprepare(hdev->hash_clk);
res_err:
tasklet_kill(&hdev->done_task);
tasklet_kill(&hdev->dma_task);
return err;
}
static int img_hash_remove(struct platform_device *pdev)
{
struct img_hash_dev *hdev;
hdev = platform_get_drvdata(pdev);
spin_lock(&img_hash.lock);
list_del(&hdev->list);
spin_unlock(&img_hash.lock);
img_unregister_algs(hdev);
tasklet_kill(&hdev->done_task);
tasklet_kill(&hdev->dma_task);
dma_release_channel(hdev->dma_lch);
clk_disable_unprepare(hdev->hash_clk);
clk_disable_unprepare(hdev->sys_clk);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int img_hash_suspend(struct device *dev)
{
struct img_hash_dev *hdev = dev_get_drvdata(dev);
clk_disable_unprepare(hdev->hash_clk);
clk_disable_unprepare(hdev->sys_clk);
return 0;
}
static int img_hash_resume(struct device *dev)
{
struct img_hash_dev *hdev = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(hdev->hash_clk);
if (ret)
return ret;
ret = clk_prepare_enable(hdev->sys_clk);
if (ret) {
clk_disable_unprepare(hdev->hash_clk);
return ret;
}
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops img_hash_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(img_hash_suspend, img_hash_resume)
};
static struct platform_driver img_hash_driver = {
.probe = img_hash_probe,
.remove = img_hash_remove,
.driver = {
.name = "img-hash-accelerator",
.pm = &img_hash_pm_ops,
.of_match_table = img_hash_match,
}
};
module_platform_driver(img_hash_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Imgtec SHA1/224/256 & MD5 hw accelerator driver");
MODULE_AUTHOR("Will Thomas.");
MODULE_AUTHOR("James Hartley <[email protected]>");
| linux-master | drivers/crypto/img-hash.c |
// SPDX-License-Identifier: GPL-2.0
//
// Cryptographic API.
//
// Support for Samsung S5PV210 and Exynos HW acceleration.
//
// Copyright (C) 2011 NetUP Inc. All rights reserved.
// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
//
// Hash part based on omap-sham.c driver.
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <crypto/ctr.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/scatterwalk.h>
#include <crypto/hash.h>
#include <crypto/md5.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/internal/hash.h>
#define _SBF(s, v) ((v) << (s))
/* Feed control registers */
#define SSS_REG_FCINTSTAT 0x0000
#define SSS_FCINTSTAT_HPARTINT BIT(7)
#define SSS_FCINTSTAT_HDONEINT BIT(5)
#define SSS_FCINTSTAT_BRDMAINT BIT(3)
#define SSS_FCINTSTAT_BTDMAINT BIT(2)
#define SSS_FCINTSTAT_HRDMAINT BIT(1)
#define SSS_FCINTSTAT_PKDMAINT BIT(0)
#define SSS_REG_FCINTENSET 0x0004
#define SSS_FCINTENSET_HPARTINTENSET BIT(7)
#define SSS_FCINTENSET_HDONEINTENSET BIT(5)
#define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
#define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
#define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
#define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
#define SSS_REG_FCINTENCLR 0x0008
#define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
#define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
#define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
#define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
#define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
#define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
#define SSS_REG_FCINTPEND 0x000C
#define SSS_FCINTPEND_HPARTINTP BIT(7)
#define SSS_FCINTPEND_HDONEINTP BIT(5)
#define SSS_FCINTPEND_BRDMAINTP BIT(3)
#define SSS_FCINTPEND_BTDMAINTP BIT(2)
#define SSS_FCINTPEND_HRDMAINTP BIT(1)
#define SSS_FCINTPEND_PKDMAINTP BIT(0)
#define SSS_REG_FCFIFOSTAT 0x0010
#define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
#define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
#define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
#define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
#define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
#define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
#define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
#define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
#define SSS_REG_FCFIFOCTRL 0x0014
#define SSS_FCFIFOCTRL_DESSEL BIT(2)
#define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
#define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
#define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
#define SSS_HASHIN_MASK _SBF(0, 0x03)
#define SSS_REG_FCBRDMAS 0x0020
#define SSS_REG_FCBRDMAL 0x0024
#define SSS_REG_FCBRDMAC 0x0028
#define SSS_FCBRDMAC_BYTESWAP BIT(1)
#define SSS_FCBRDMAC_FLUSH BIT(0)
#define SSS_REG_FCBTDMAS 0x0030
#define SSS_REG_FCBTDMAL 0x0034
#define SSS_REG_FCBTDMAC 0x0038
#define SSS_FCBTDMAC_BYTESWAP BIT(1)
#define SSS_FCBTDMAC_FLUSH BIT(0)
#define SSS_REG_FCHRDMAS 0x0040
#define SSS_REG_FCHRDMAL 0x0044
#define SSS_REG_FCHRDMAC 0x0048
#define SSS_FCHRDMAC_BYTESWAP BIT(1)
#define SSS_FCHRDMAC_FLUSH BIT(0)
#define SSS_REG_FCPKDMAS 0x0050
#define SSS_REG_FCPKDMAL 0x0054
#define SSS_REG_FCPKDMAC 0x0058
#define SSS_FCPKDMAC_BYTESWAP BIT(3)
#define SSS_FCPKDMAC_DESCEND BIT(2)
#define SSS_FCPKDMAC_TRANSMIT BIT(1)
#define SSS_FCPKDMAC_FLUSH BIT(0)
#define SSS_REG_FCPKDMAO 0x005C
/* AES registers */
#define SSS_REG_AES_CONTROL 0x00
#define SSS_AES_BYTESWAP_DI BIT(11)
#define SSS_AES_BYTESWAP_DO BIT(10)
#define SSS_AES_BYTESWAP_IV BIT(9)
#define SSS_AES_BYTESWAP_CNT BIT(8)
#define SSS_AES_BYTESWAP_KEY BIT(7)
#define SSS_AES_KEY_CHANGE_MODE BIT(6)
#define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
#define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
#define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
#define SSS_AES_FIFO_MODE BIT(3)
#define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
#define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
#define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
#define SSS_AES_MODE_DECRYPT BIT(0)
#define SSS_REG_AES_STATUS 0x04
#define SSS_AES_BUSY BIT(2)
#define SSS_AES_INPUT_READY BIT(1)
#define SSS_AES_OUTPUT_READY BIT(0)
#define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
#define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
#define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
#define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
#define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
#define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
#define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
#define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
#define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
#define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
SSS_AES_REG(dev, reg))
/* HW engine modes */
#define FLAGS_AES_DECRYPT BIT(0)
#define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
#define FLAGS_AES_CBC _SBF(1, 0x01)
#define FLAGS_AES_CTR _SBF(1, 0x02)
#define AES_KEY_LEN 16
#define CRYPTO_QUEUE_LEN 1
/* HASH registers */
#define SSS_REG_HASH_CTRL 0x00
#define SSS_HASH_USER_IV_EN BIT(5)
#define SSS_HASH_INIT_BIT BIT(4)
#define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
#define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
#define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
#define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
#define SSS_REG_HASH_CTRL_PAUSE 0x04
#define SSS_HASH_PAUSE BIT(0)
#define SSS_REG_HASH_CTRL_FIFO 0x08
#define SSS_HASH_FIFO_MODE_DMA BIT(0)
#define SSS_HASH_FIFO_MODE_CPU 0
#define SSS_REG_HASH_CTRL_SWAP 0x0C
#define SSS_HASH_BYTESWAP_DI BIT(3)
#define SSS_HASH_BYTESWAP_DO BIT(2)
#define SSS_HASH_BYTESWAP_IV BIT(1)
#define SSS_HASH_BYTESWAP_KEY BIT(0)
#define SSS_REG_HASH_STATUS 0x10
#define SSS_HASH_STATUS_MSG_DONE BIT(6)
#define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
#define SSS_HASH_STATUS_BUFFER_READY BIT(0)
#define SSS_REG_HASH_MSG_SIZE_LOW 0x20
#define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
#define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
#define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
#define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
#define HASH_BLOCK_SIZE 64
#define HASH_REG_SIZEOF 4
#define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
#define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
#define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
/*
* HASH bit numbers, used by device, setting in dev->hash_flags with
* functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
* to keep HASH state BUSY or FREE, or to signal state from irq_handler
* to hash_tasklet. SGS keep track of allocated memory for scatterlist
*/
#define HASH_FLAGS_BUSY 0
#define HASH_FLAGS_FINAL 1
#define HASH_FLAGS_DMA_ACTIVE 2
#define HASH_FLAGS_OUTPUT_READY 3
#define HASH_FLAGS_DMA_READY 4
#define HASH_FLAGS_SGS_COPIED 5
#define HASH_FLAGS_SGS_ALLOCED 6
/* HASH HW constants */
#define BUFLEN HASH_BLOCK_SIZE
#define SSS_HASH_DMA_LEN_ALIGN 8
#define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
#define SSS_HASH_QUEUE_LENGTH 10
/**
* struct samsung_aes_variant - platform specific SSS driver data
* @aes_offset: AES register offset from SSS module's base.
* @hash_offset: HASH register offset from SSS module's base.
* @clk_names: names of clocks needed to run SSS IP
*
* Specifies platform specific configuration of SSS module.
* Note: A structure for driver specific platform data is used for future
* expansion of its usage.
*/
struct samsung_aes_variant {
unsigned int aes_offset;
unsigned int hash_offset;
const char *clk_names[2];
};
struct s5p_aes_reqctx {
unsigned long mode;
};
struct s5p_aes_ctx {
struct s5p_aes_dev *dev;
u8 aes_key[AES_MAX_KEY_SIZE];
u8 nonce[CTR_RFC3686_NONCE_SIZE];
int keylen;
};
/**
* struct s5p_aes_dev - Crypto device state container
* @dev: Associated device
* @clk: Clock for accessing hardware
* @pclk: APB bus clock necessary to access the hardware
* @ioaddr: Mapped IO memory region
* @aes_ioaddr: Per-varian offset for AES block IO memory
* @irq_fc: Feed control interrupt line
* @req: Crypto request currently handled by the device
* @ctx: Configuration for currently handled crypto request
* @sg_src: Scatter list with source data for currently handled block
* in device. This is DMA-mapped into device.
* @sg_dst: Scatter list with destination data for currently handled block
* in device. This is DMA-mapped into device.
* @sg_src_cpy: In case of unaligned access, copied scatter list
* with source data.
* @sg_dst_cpy: In case of unaligned access, copied scatter list
* with destination data.
* @tasklet: New request scheduling jib
* @queue: Crypto queue
* @busy: Indicates whether the device is currently handling some request
* thus it uses some of the fields from this state, like:
* req, ctx, sg_src/dst (and copies). This essentially
* protects against concurrent access to these fields.
* @lock: Lock for protecting both access to device hardware registers
* and fields related to current request (including the busy field).
* @res: Resources for hash.
* @io_hash_base: Per-variant offset for HASH block IO memory.
* @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
* variable.
* @hash_flags: Flags for current HASH op.
* @hash_queue: Async hash queue.
* @hash_tasklet: New HASH request scheduling job.
* @xmit_buf: Buffer for current HASH request transfer into SSS block.
* @hash_req: Current request sending to SSS HASH block.
* @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
* @hash_sg_cnt: Counter for hash_sg_iter.
*
* @use_hash: true if HASH algs enabled
*/
struct s5p_aes_dev {
struct device *dev;
struct clk *clk;
struct clk *pclk;
void __iomem *ioaddr;
void __iomem *aes_ioaddr;
int irq_fc;
struct skcipher_request *req;
struct s5p_aes_ctx *ctx;
struct scatterlist *sg_src;
struct scatterlist *sg_dst;
struct scatterlist *sg_src_cpy;
struct scatterlist *sg_dst_cpy;
struct tasklet_struct tasklet;
struct crypto_queue queue;
bool busy;
spinlock_t lock;
struct resource *res;
void __iomem *io_hash_base;
spinlock_t hash_lock; /* protect hash_ vars */
unsigned long hash_flags;
struct crypto_queue hash_queue;
struct tasklet_struct hash_tasklet;
u8 xmit_buf[BUFLEN];
struct ahash_request *hash_req;
struct scatterlist *hash_sg_iter;
unsigned int hash_sg_cnt;
bool use_hash;
};
/**
* struct s5p_hash_reqctx - HASH request context
* @dd: Associated device
* @op_update: Current request operation (OP_UPDATE or OP_FINAL)
* @digcnt: Number of bytes processed by HW (without buffer[] ones)
* @digest: Digest message or IV for partial result
* @nregs: Number of HW registers for digest or IV read/write
* @engine: Bits for selecting type of HASH in SSS block
* @sg: sg for DMA transfer
* @sg_len: Length of sg for DMA transfer
* @sgl: sg for joining buffer and req->src scatterlist
* @skip: Skip offset in req->src for current op
* @total: Total number of bytes for current request
* @finup: Keep state for finup or final.
* @error: Keep track of error.
* @bufcnt: Number of bytes holded in buffer[]
* @buffer: For byte(s) from end of req->src in UPDATE op
*/
struct s5p_hash_reqctx {
struct s5p_aes_dev *dd;
bool op_update;
u64 digcnt;
u8 digest[SHA256_DIGEST_SIZE];
unsigned int nregs; /* digest_size / sizeof(reg) */
u32 engine;
struct scatterlist *sg;
unsigned int sg_len;
struct scatterlist sgl[2];
unsigned int skip;
unsigned int total;
bool finup;
bool error;
u32 bufcnt;
u8 buffer[];
};
/**
* struct s5p_hash_ctx - HASH transformation context
* @dd: Associated device
* @flags: Bits for algorithm HASH.
* @fallback: Software transformation for zero message or size < BUFLEN.
*/
struct s5p_hash_ctx {
struct s5p_aes_dev *dd;
unsigned long flags;
struct crypto_shash *fallback;
};
static const struct samsung_aes_variant s5p_aes_data = {
.aes_offset = 0x4000,
.hash_offset = 0x6000,
.clk_names = { "secss", },
};
static const struct samsung_aes_variant exynos_aes_data = {
.aes_offset = 0x200,
.hash_offset = 0x400,
.clk_names = { "secss", },
};
static const struct samsung_aes_variant exynos5433_slim_aes_data = {
.aes_offset = 0x400,
.hash_offset = 0x800,
.clk_names = { "aclk", "pclk", },
};
static const struct of_device_id s5p_sss_dt_match[] = {
{
.compatible = "samsung,s5pv210-secss",
.data = &s5p_aes_data,
},
{
.compatible = "samsung,exynos4210-secss",
.data = &exynos_aes_data,
},
{
.compatible = "samsung,exynos5433-slim-sss",
.data = &exynos5433_slim_aes_data,
},
{ },
};
MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
static inline const struct samsung_aes_variant *find_s5p_sss_version
(const struct platform_device *pdev)
{
if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
return of_device_get_match_data(&pdev->dev);
return (const struct samsung_aes_variant *)
platform_get_device_id(pdev)->driver_data;
}
static struct s5p_aes_dev *s5p_dev;
static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
const struct scatterlist *sg)
{
SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
}
static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
const struct scatterlist *sg)
{
SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
}
static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
{
int len;
if (!*sg)
return;
len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
free_pages((unsigned long)sg_virt(*sg), get_order(len));
kfree(*sg);
*sg = NULL;
}
static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
unsigned int nbytes, int out)
{
struct scatter_walk walk;
if (!nbytes)
return;
scatterwalk_start(&walk, sg);
scatterwalk_copychunks(buf, &walk, nbytes, out);
scatterwalk_done(&walk, out, 0);
}
static void s5p_sg_done(struct s5p_aes_dev *dev)
{
struct skcipher_request *req = dev->req;
struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
if (dev->sg_dst_cpy) {
dev_dbg(dev->dev,
"Copying %d bytes of output data back to original place\n",
dev->req->cryptlen);
s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
dev->req->cryptlen, 1);
}
s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
if (reqctx->mode & FLAGS_AES_CBC)
memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
else if (reqctx->mode & FLAGS_AES_CTR)
memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
}
/* Calls the completion. Cannot be called with dev->lock hold. */
static void s5p_aes_complete(struct skcipher_request *req, int err)
{
skcipher_request_complete(req, err);
}
static void s5p_unset_outdata(struct s5p_aes_dev *dev)
{
dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
}
static void s5p_unset_indata(struct s5p_aes_dev *dev)
{
dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
}
static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
struct scatterlist **dst)
{
void *pages;
int len;
*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
if (!*dst)
return -ENOMEM;
len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
if (!pages) {
kfree(*dst);
*dst = NULL;
return -ENOMEM;
}
s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
sg_init_table(*dst, 1);
sg_set_buf(*dst, pages, len);
return 0;
}
static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
if (!sg->length)
return -EINVAL;
if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
return -ENOMEM;
dev->sg_dst = sg;
return 0;
}
static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
if (!sg->length)
return -EINVAL;
if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
return -ENOMEM;
dev->sg_src = sg;
return 0;
}
/*
* Returns -ERRNO on error (mapping of new data failed).
* On success returns:
* - 0 if there is no more data,
* - 1 if new transmitting (output) data is ready and its address+length
* have to be written to device (by calling s5p_set_dma_outdata()).
*/
static int s5p_aes_tx(struct s5p_aes_dev *dev)
{
int ret = 0;
s5p_unset_outdata(dev);
if (!sg_is_last(dev->sg_dst)) {
ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
if (!ret)
ret = 1;
}
return ret;
}
/*
* Returns -ERRNO on error (mapping of new data failed).
* On success returns:
* - 0 if there is no more data,
* - 1 if new receiving (input) data is ready and its address+length
* have to be written to device (by calling s5p_set_dma_indata()).
*/
static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
{
int ret = 0;
s5p_unset_indata(dev);
if (!sg_is_last(dev->sg_src)) {
ret = s5p_set_indata(dev, sg_next(dev->sg_src));
if (!ret)
ret = 1;
}
return ret;
}
static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
{
return __raw_readl(dd->io_hash_base + offset);
}
static inline void s5p_hash_write(struct s5p_aes_dev *dd,
u32 offset, u32 value)
{
__raw_writel(value, dd->io_hash_base + offset);
}
/**
* s5p_set_dma_hashdata() - start DMA with sg
* @dev: device
* @sg: scatterlist ready to DMA transmit
*/
static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
const struct scatterlist *sg)
{
dev->hash_sg_cnt--;
SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
}
/**
* s5p_hash_rx() - get next hash_sg_iter
* @dev: device
*
* Return:
* 2 if there is no more data and it is UPDATE op
* 1 if new receiving (input) data is ready and can be written to device
* 0 if there is no more data and it is FINAL op
*/
static int s5p_hash_rx(struct s5p_aes_dev *dev)
{
if (dev->hash_sg_cnt > 0) {
dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
return 1;
}
set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
return 0;
return 2;
}
static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = dev_id;
struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
struct skcipher_request *req;
int err_dma_tx = 0;
int err_dma_rx = 0;
int err_dma_hx = 0;
bool tx_end = false;
bool hx_end = false;
unsigned long flags;
u32 status, st_bits;
int err;
spin_lock_irqsave(&dev->lock, flags);
/*
* Handle rx or tx interrupt. If there is still data (scatterlist did not
* reach end), then map next scatterlist entry.
* In case of such mapping error, s5p_aes_complete() should be called.
*
* If there is no more data in tx scatter list, call s5p_aes_complete()
* and schedule new tasklet.
*
* Handle hx interrupt. If there is still data map next entry.
*/
status = SSS_READ(dev, FCINTSTAT);
if (status & SSS_FCINTSTAT_BRDMAINT)
err_dma_rx = s5p_aes_rx(dev);
if (status & SSS_FCINTSTAT_BTDMAINT) {
if (sg_is_last(dev->sg_dst))
tx_end = true;
err_dma_tx = s5p_aes_tx(dev);
}
if (status & SSS_FCINTSTAT_HRDMAINT)
err_dma_hx = s5p_hash_rx(dev);
st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
SSS_FCINTSTAT_HRDMAINT);
/* clear DMA bits */
SSS_WRITE(dev, FCINTPEND, st_bits);
/* clear HASH irq bits */
if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
/* cannot have both HPART and HDONE */
if (status & SSS_FCINTSTAT_HPARTINT)
st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
if (status & SSS_FCINTSTAT_HDONEINT)
st_bits = SSS_HASH_STATUS_MSG_DONE;
set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
hx_end = true;
/* when DONE or PART, do not handle HASH DMA */
err_dma_hx = 0;
}
if (err_dma_rx < 0) {
err = err_dma_rx;
goto error;
}
if (err_dma_tx < 0) {
err = err_dma_tx;
goto error;
}
if (tx_end) {
s5p_sg_done(dev);
if (err_dma_hx == 1)
s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
spin_unlock_irqrestore(&dev->lock, flags);
s5p_aes_complete(dev->req, 0);
/* Device is still busy */
tasklet_schedule(&dev->tasklet);
} else {
/*
* Writing length of DMA block (either receiving or
* transmitting) will start the operation immediately, so this
* should be done at the end (even after clearing pending
* interrupts to not miss the interrupt).
*/
if (err_dma_tx == 1)
s5p_set_dma_outdata(dev, dev->sg_dst);
if (err_dma_rx == 1)
s5p_set_dma_indata(dev, dev->sg_src);
if (err_dma_hx == 1)
s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
spin_unlock_irqrestore(&dev->lock, flags);
}
goto hash_irq_end;
error:
s5p_sg_done(dev);
dev->busy = false;
req = dev->req;
if (err_dma_hx == 1)
s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
spin_unlock_irqrestore(&dev->lock, flags);
s5p_aes_complete(req, err);
hash_irq_end:
/*
* Note about else if:
* when hash_sg_iter reaches end and its UPDATE op,
* issue SSS_HASH_PAUSE and wait for HPART irq
*/
if (hx_end)
tasklet_schedule(&dev->hash_tasklet);
else if (err_dma_hx == 2)
s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
SSS_HASH_PAUSE);
return IRQ_HANDLED;
}
/**
* s5p_hash_read_msg() - read message or IV from HW
* @req: AHASH request
*/
static void s5p_hash_read_msg(struct ahash_request *req)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
struct s5p_aes_dev *dd = ctx->dd;
u32 *hash = (u32 *)ctx->digest;
unsigned int i;
for (i = 0; i < ctx->nregs; i++)
hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
}
/**
* s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
* @dd: device
* @ctx: request context
*/
static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
const struct s5p_hash_reqctx *ctx)
{
const u32 *hash = (const u32 *)ctx->digest;
unsigned int i;
for (i = 0; i < ctx->nregs; i++)
s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
}
/**
* s5p_hash_write_iv() - write IV for next partial/finup op.
* @req: AHASH request
*/
static void s5p_hash_write_iv(struct ahash_request *req)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
s5p_hash_write_ctx_iv(ctx->dd, ctx);
}
/**
* s5p_hash_copy_result() - copy digest into req->result
* @req: AHASH request
*/
static void s5p_hash_copy_result(struct ahash_request *req)
{
const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
if (!req->result)
return;
memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
}
/**
* s5p_hash_dma_flush() - flush HASH DMA
* @dev: secss device
*/
static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
{
SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
}
/**
* s5p_hash_dma_enable() - enable DMA mode for HASH
* @dev: secss device
*
* enable DMA mode for HASH
*/
static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
{
s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
}
/**
* s5p_hash_irq_disable() - disable irq HASH signals
* @dev: secss device
* @flags: bitfield with irq's to be disabled
*/
static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
{
SSS_WRITE(dev, FCINTENCLR, flags);
}
/**
* s5p_hash_irq_enable() - enable irq signals
* @dev: secss device
* @flags: bitfield with irq's to be enabled
*/
static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
{
SSS_WRITE(dev, FCINTENSET, flags);
}
/**
* s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
* @dev: secss device
* @hashflow: HASH stream flow with/without crypto AES/DES
*/
static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
{
unsigned long flags;
u32 flow;
spin_lock_irqsave(&dev->lock, flags);
flow = SSS_READ(dev, FCFIFOCTRL);
flow &= ~SSS_HASHIN_MASK;
flow |= hashflow;
SSS_WRITE(dev, FCFIFOCTRL, flow);
spin_unlock_irqrestore(&dev->lock, flags);
}
/**
* s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
* @dev: secss device
* @hashflow: HASH stream flow with/without AES/DES
*
* flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
* enable HASH irq's HRDMA, HDONE, HPART
*/
static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
{
s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
SSS_FCINTENCLR_HDONEINTENCLR |
SSS_FCINTENCLR_HPARTINTENCLR);
s5p_hash_dma_flush(dev);
s5p_hash_dma_enable(dev);
s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
SSS_FCINTENSET_HDONEINTENSET |
SSS_FCINTENSET_HPARTINTENSET);
}
/**
* s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
* @dd: secss device
* @length: length for request
* @final: true if final op
*
* Prepare SSS HASH block for processing bytes in DMA mode. If it is called
* after previous updates, fill up IV words. For final, calculate and set
* lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
* length as 2^63 so it will be never reached and set to zero prelow and
* prehigh.
*
* This function does not start DMA transfer.
*/
static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
bool final)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
u32 prelow, prehigh, low, high;
u32 configflags, swapflags;
u64 tmplen;
configflags = ctx->engine | SSS_HASH_INIT_BIT;
if (likely(ctx->digcnt)) {
s5p_hash_write_ctx_iv(dd, ctx);
configflags |= SSS_HASH_USER_IV_EN;
}
if (final) {
/* number of bytes for last part */
low = length;
high = 0;
/* total number of bits prev hashed */
tmplen = ctx->digcnt * 8;
prelow = (u32)tmplen;
prehigh = (u32)(tmplen >> 32);
} else {
prelow = 0;
prehigh = 0;
low = 0;
high = BIT(31);
}
swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
}
/**
* s5p_hash_xmit_dma() - start DMA hash processing
* @dd: secss device
* @length: length for request
* @final: true if final op
*
* Update digcnt here, as it is needed for finup/final op.
*/
static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
bool final)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
unsigned int cnt;
cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
if (!cnt) {
dev_err(dd->dev, "dma_map_sg error\n");
ctx->error = true;
return -EINVAL;
}
set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
dd->hash_sg_iter = ctx->sg;
dd->hash_sg_cnt = cnt;
s5p_hash_write_ctrl(dd, length, final);
ctx->digcnt += length;
ctx->total -= length;
/* catch last interrupt */
if (final)
set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
return -EINPROGRESS;
}
/**
* s5p_hash_copy_sgs() - copy request's bytes into new buffer
* @ctx: request context
* @sg: source scatterlist request
* @new_len: number of bytes to process from sg
*
* Allocate new buffer, copy data for HASH into it. If there was xmit_buf
* filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
* with allocated buffer.
*
* Set bit in dd->hash_flag so we can free it after irq ends processing.
*/
static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
struct scatterlist *sg, unsigned int new_len)
{
unsigned int pages, len;
void *buf;
len = new_len + ctx->bufcnt;
pages = get_order(len);
buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
if (!buf) {
dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
ctx->error = true;
return -ENOMEM;
}
if (ctx->bufcnt)
memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
new_len, 0);
sg_init_table(ctx->sgl, 1);
sg_set_buf(ctx->sgl, buf, len);
ctx->sg = ctx->sgl;
ctx->sg_len = 1;
ctx->bufcnt = 0;
ctx->skip = 0;
set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
return 0;
}
/**
* s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
* @ctx: request context
* @sg: source scatterlist request
* @new_len: number of bytes to process from sg
*
* Allocate new scatterlist table, copy data for HASH into it. If there was
* xmit_buf filled, prepare it first, then copy page, length and offset from
* source sg into it, adjusting begin and/or end for skip offset and
* hash_later value.
*
* Resulting sg table will be assigned to ctx->sg. Set flag so we can free
* it after irq ends processing.
*/
static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
struct scatterlist *sg, unsigned int new_len)
{
unsigned int skip = ctx->skip, n = sg_nents(sg);
struct scatterlist *tmp;
unsigned int len;
if (ctx->bufcnt)
n++;
ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
if (!ctx->sg) {
ctx->error = true;
return -ENOMEM;
}
sg_init_table(ctx->sg, n);
tmp = ctx->sg;
ctx->sg_len = 0;
if (ctx->bufcnt) {
sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
tmp = sg_next(tmp);
ctx->sg_len++;
}
while (sg && skip >= sg->length) {
skip -= sg->length;
sg = sg_next(sg);
}
while (sg && new_len) {
len = sg->length - skip;
if (new_len < len)
len = new_len;
new_len -= len;
sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
skip = 0;
if (new_len <= 0)
sg_mark_end(tmp);
tmp = sg_next(tmp);
ctx->sg_len++;
sg = sg_next(sg);
}
set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
return 0;
}
/**
* s5p_hash_prepare_sgs() - prepare sg for processing
* @ctx: request context
* @sg: source scatterlist request
* @new_len: number of bytes to process from sg
* @final: final flag
*
* Check two conditions: (1) if buffers in sg have len aligned data, and (2)
* sg table have good aligned elements (list_ok). If one of this checks fails,
* then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
* data into this buffer and prepare request in sgl, or (2) allocates new sg
* table and prepare sg elements.
*
* For digest or finup all conditions can be good, and we may not need any
* fixes.
*/
static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
struct scatterlist *sg,
unsigned int new_len, bool final)
{
unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
bool aligned = true, list_ok = true;
struct scatterlist *sg_tmp = sg;
if (!sg || !sg->length || !new_len)
return 0;
if (skip || !final)
list_ok = false;
while (nbytes > 0 && sg_tmp) {
n++;
if (skip >= sg_tmp->length) {
skip -= sg_tmp->length;
if (!sg_tmp->length) {
aligned = false;
break;
}
} else {
if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
aligned = false;
break;
}
if (nbytes < sg_tmp->length - skip) {
list_ok = false;
break;
}
nbytes -= sg_tmp->length - skip;
skip = 0;
}
sg_tmp = sg_next(sg_tmp);
}
if (!aligned)
return s5p_hash_copy_sgs(ctx, sg, new_len);
else if (!list_ok)
return s5p_hash_copy_sg_lists(ctx, sg, new_len);
/*
* Have aligned data from previous operation and/or current
* Note: will enter here only if (digest or finup) and aligned
*/
if (ctx->bufcnt) {
ctx->sg_len = n;
sg_init_table(ctx->sgl, 2);
sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
sg_chain(ctx->sgl, 2, sg);
ctx->sg = ctx->sgl;
ctx->sg_len++;
} else {
ctx->sg = sg;
ctx->sg_len = n;
}
return 0;
}
/**
* s5p_hash_prepare_request() - prepare request for processing
* @req: AHASH request
* @update: true if UPDATE op
*
* Note 1: we can have update flag _and_ final flag at the same time.
* Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
* either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
* we have final op
*/
static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
bool final = ctx->finup;
int xmit_len, hash_later, nbytes;
int ret;
if (update)
nbytes = req->nbytes;
else
nbytes = 0;
ctx->total = nbytes + ctx->bufcnt;
if (!ctx->total)
return 0;
if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
/* bytes left from previous request, so fill up to BUFLEN */
int len = BUFLEN - ctx->bufcnt % BUFLEN;
if (len > nbytes)
len = nbytes;
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
0, len, 0);
ctx->bufcnt += len;
nbytes -= len;
ctx->skip = len;
} else {
ctx->skip = 0;
}
if (ctx->bufcnt)
memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
xmit_len = ctx->total;
if (final) {
hash_later = 0;
} else {
if (IS_ALIGNED(xmit_len, BUFLEN))
xmit_len -= BUFLEN;
else
xmit_len -= xmit_len & (BUFLEN - 1);
hash_later = ctx->total - xmit_len;
/* copy hash_later bytes from end of req->src */
/* previous bytes are in xmit_buf, so no overwrite */
scatterwalk_map_and_copy(ctx->buffer, req->src,
req->nbytes - hash_later,
hash_later, 0);
}
if (xmit_len > BUFLEN) {
ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
final);
if (ret)
return ret;
} else {
/* have buffered data only */
if (unlikely(!ctx->bufcnt)) {
/* first update didn't fill up buffer */
scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
0, xmit_len, 0);
}
sg_init_table(ctx->sgl, 1);
sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
ctx->sg = ctx->sgl;
ctx->sg_len = 1;
}
ctx->bufcnt = hash_later;
if (!final)
ctx->total = xmit_len;
return 0;
}
/**
* s5p_hash_update_dma_stop() - unmap DMA
* @dd: secss device
*
* Unmap scatterlist ctx->sg.
*/
static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
{
const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
}
/**
* s5p_hash_finish() - copy calculated digest to crypto layer
* @req: AHASH request
*/
static void s5p_hash_finish(struct ahash_request *req)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
struct s5p_aes_dev *dd = ctx->dd;
if (ctx->digcnt)
s5p_hash_copy_result(req);
dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
}
/**
* s5p_hash_finish_req() - finish request
* @req: AHASH request
* @err: error
*/
static void s5p_hash_finish_req(struct ahash_request *req, int err)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
struct s5p_aes_dev *dd = ctx->dd;
unsigned long flags;
if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
free_pages((unsigned long)sg_virt(ctx->sg),
get_order(ctx->sg->length));
if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
kfree(ctx->sg);
ctx->sg = NULL;
dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
BIT(HASH_FLAGS_SGS_COPIED));
if (!err && !ctx->error) {
s5p_hash_read_msg(req);
if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
s5p_hash_finish(req);
} else {
ctx->error = true;
}
spin_lock_irqsave(&dd->hash_lock, flags);
dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
BIT(HASH_FLAGS_DMA_READY) |
BIT(HASH_FLAGS_OUTPUT_READY));
spin_unlock_irqrestore(&dd->hash_lock, flags);
if (req->base.complete)
ahash_request_complete(req, err);
}
/**
* s5p_hash_handle_queue() - handle hash queue
* @dd: device s5p_aes_dev
* @req: AHASH request
*
* If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
* device then processes the first request from the dd->queue
*
* Returns: see s5p_hash_final below.
*/
static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
struct ahash_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct s5p_hash_reqctx *ctx;
unsigned long flags;
int err = 0, ret = 0;
retry:
spin_lock_irqsave(&dd->hash_lock, flags);
if (req)
ret = ahash_enqueue_request(&dd->hash_queue, req);
if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
spin_unlock_irqrestore(&dd->hash_lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->hash_queue);
async_req = crypto_dequeue_request(&dd->hash_queue);
if (async_req)
set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
spin_unlock_irqrestore(&dd->hash_lock, flags);
if (!async_req)
return ret;
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
req = ahash_request_cast(async_req);
dd->hash_req = req;
ctx = ahash_request_ctx(req);
err = s5p_hash_prepare_request(req, ctx->op_update);
if (err || !ctx->total)
goto out;
dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
ctx->op_update, req->nbytes);
s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
if (ctx->digcnt)
s5p_hash_write_iv(req); /* restore hash IV */
if (ctx->op_update) { /* HASH_OP_UPDATE */
err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
if (err != -EINPROGRESS && ctx->finup && !ctx->error)
/* no final() after finup() */
err = s5p_hash_xmit_dma(dd, ctx->total, true);
} else { /* HASH_OP_FINAL */
err = s5p_hash_xmit_dma(dd, ctx->total, true);
}
out:
if (err != -EINPROGRESS) {
/* hash_tasklet_cb will not finish it, so do it here */
s5p_hash_finish_req(req, err);
req = NULL;
/*
* Execute next request immediately if there is anything
* in queue.
*/
goto retry;
}
return ret;
}
/**
* s5p_hash_tasklet_cb() - hash tasklet
* @data: ptr to s5p_aes_dev
*/
static void s5p_hash_tasklet_cb(unsigned long data)
{
struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
s5p_hash_handle_queue(dd, NULL);
return;
}
if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
&dd->hash_flags)) {
s5p_hash_update_dma_stop(dd);
}
if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
&dd->hash_flags)) {
/* hash or semi-hash ready */
clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
goto finish;
}
}
return;
finish:
/* finish curent request */
s5p_hash_finish_req(dd->hash_req, 0);
/* If we are not busy, process next req */
if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
s5p_hash_handle_queue(dd, NULL);
}
/**
* s5p_hash_enqueue() - enqueue request
* @req: AHASH request
* @op: operation UPDATE (true) or FINAL (false)
*
* Returns: see s5p_hash_final below.
*/
static int s5p_hash_enqueue(struct ahash_request *req, bool op)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
ctx->op_update = op;
return s5p_hash_handle_queue(tctx->dd, req);
}
/**
* s5p_hash_update() - process the hash input data
* @req: AHASH request
*
* If request will fit in buffer, copy it and return immediately
* else enqueue it with OP_UPDATE.
*
* Returns: see s5p_hash_final below.
*/
static int s5p_hash_update(struct ahash_request *req)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
if (!req->nbytes)
return 0;
if (ctx->bufcnt + req->nbytes <= BUFLEN) {
scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
0, req->nbytes, 0);
ctx->bufcnt += req->nbytes;
return 0;
}
return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
}
/**
* s5p_hash_final() - close up hash and calculate digest
* @req: AHASH request
*
* Note: in final req->src do not have any data, and req->nbytes can be
* non-zero.
*
* If there were no input data processed yet and the buffered hash data is
* less than BUFLEN (64) then calculate the final hash immediately by using
* SW algorithm fallback.
*
* Otherwise enqueues the current AHASH request with OP_FINAL operation op
* and finalize hash message in HW. Note that if digcnt!=0 then there were
* previous update op, so there are always some buffered bytes in ctx->buffer,
* which means that ctx->bufcnt!=0
*
* Returns:
* 0 if the request has been processed immediately,
* -EINPROGRESS if the operation has been queued for later execution or is set
* to processing by HW,
* -EBUSY if queue is full and request should be resubmitted later,
* other negative values denotes an error.
*/
static int s5p_hash_final(struct ahash_request *req)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
ctx->finup = true;
if (ctx->error)
return -EINVAL; /* uncompleted hash is not needed */
if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
ctx->bufcnt, req->result);
}
return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
}
/**
* s5p_hash_finup() - process last req->src and calculate digest
* @req: AHASH request containing the last update data
*
* Return values: see s5p_hash_final above.
*/
static int s5p_hash_finup(struct ahash_request *req)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
int err1, err2;
ctx->finup = true;
err1 = s5p_hash_update(req);
if (err1 == -EINPROGRESS || err1 == -EBUSY)
return err1;
/*
* final() has to be always called to cleanup resources even if
* update() failed, except EINPROGRESS or calculate digest for small
* size
*/
err2 = s5p_hash_final(req);
return err1 ?: err2;
}
/**
* s5p_hash_init() - initialize AHASH request contex
* @req: AHASH request
*
* Init async hash request context.
*/
static int s5p_hash_init(struct ahash_request *req)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
ctx->dd = tctx->dd;
ctx->error = false;
ctx->finup = false;
ctx->bufcnt = 0;
ctx->digcnt = 0;
ctx->total = 0;
ctx->skip = 0;
dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
crypto_ahash_digestsize(tfm));
switch (crypto_ahash_digestsize(tfm)) {
case MD5_DIGEST_SIZE:
ctx->engine = SSS_HASH_ENGINE_MD5;
ctx->nregs = HASH_MD5_MAX_REG;
break;
case SHA1_DIGEST_SIZE:
ctx->engine = SSS_HASH_ENGINE_SHA1;
ctx->nregs = HASH_SHA1_MAX_REG;
break;
case SHA256_DIGEST_SIZE:
ctx->engine = SSS_HASH_ENGINE_SHA256;
ctx->nregs = HASH_SHA256_MAX_REG;
break;
default:
ctx->error = true;
return -EINVAL;
}
return 0;
}
/**
* s5p_hash_digest - calculate digest from req->src
* @req: AHASH request
*
* Return values: see s5p_hash_final above.
*/
static int s5p_hash_digest(struct ahash_request *req)
{
return s5p_hash_init(req) ?: s5p_hash_finup(req);
}
/**
* s5p_hash_cra_init_alg - init crypto alg transformation
* @tfm: crypto transformation
*/
static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
{
struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(tfm);
tctx->dd = s5p_dev;
/* Allocate a fallback and abort if it failed. */
tctx->fallback = crypto_alloc_shash(alg_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(tctx->fallback)) {
pr_err("fallback alloc fails for '%s'\n", alg_name);
return PTR_ERR(tctx->fallback);
}
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct s5p_hash_reqctx) + BUFLEN);
return 0;
}
/**
* s5p_hash_cra_init - init crypto tfm
* @tfm: crypto transformation
*/
static int s5p_hash_cra_init(struct crypto_tfm *tfm)
{
return s5p_hash_cra_init_alg(tfm);
}
/**
* s5p_hash_cra_exit - exit crypto tfm
* @tfm: crypto transformation
*
* free allocated fallback
*/
static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
{
struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
crypto_free_shash(tctx->fallback);
tctx->fallback = NULL;
}
/**
* s5p_hash_export - export hash state
* @req: AHASH request
* @out: buffer for exported state
*/
static int s5p_hash_export(struct ahash_request *req, void *out)
{
const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
return 0;
}
/**
* s5p_hash_import - import hash state
* @req: AHASH request
* @in: buffer with state to be imported from
*/
static int s5p_hash_import(struct ahash_request *req, const void *in)
{
struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
const struct s5p_hash_reqctx *ctx_in = in;
memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
if (ctx_in->bufcnt > BUFLEN) {
ctx->error = true;
return -EINVAL;
}
ctx->dd = tctx->dd;
ctx->error = false;
return 0;
}
static struct ahash_alg algs_sha1_md5_sha256[] = {
{
.init = s5p_hash_init,
.update = s5p_hash_update,
.final = s5p_hash_final,
.finup = s5p_hash_finup,
.digest = s5p_hash_digest,
.export = s5p_hash_export,
.import = s5p_hash_import,
.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "exynos-sha1",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = HASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_hash_ctx),
.cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = s5p_hash_cra_init,
.cra_exit = s5p_hash_cra_exit,
}
},
{
.init = s5p_hash_init,
.update = s5p_hash_update,
.final = s5p_hash_final,
.finup = s5p_hash_finup,
.digest = s5p_hash_digest,
.export = s5p_hash_export,
.import = s5p_hash_import,
.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
.halg.digestsize = MD5_DIGEST_SIZE,
.halg.base = {
.cra_name = "md5",
.cra_driver_name = "exynos-md5",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = HASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_hash_ctx),
.cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = s5p_hash_cra_init,
.cra_exit = s5p_hash_cra_exit,
}
},
{
.init = s5p_hash_init,
.update = s5p_hash_update,
.final = s5p_hash_final,
.finup = s5p_hash_finup,
.digest = s5p_hash_digest,
.export = s5p_hash_export,
.import = s5p_hash_import,
.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "exynos-sha256",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = HASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_hash_ctx),
.cra_alignmask = SSS_HASH_DMA_ALIGN_MASK,
.cra_module = THIS_MODULE,
.cra_init = s5p_hash_cra_init,
.cra_exit = s5p_hash_cra_exit,
}
}
};
static void s5p_set_aes(struct s5p_aes_dev *dev,
const u8 *key, const u8 *iv, const u8 *ctr,
unsigned int keylen)
{
void __iomem *keystart;
if (iv)
memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
AES_BLOCK_SIZE);
if (ctr)
memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
AES_BLOCK_SIZE);
if (keylen == AES_KEYSIZE_256)
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
else if (keylen == AES_KEYSIZE_192)
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
else
keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
memcpy_toio(keystart, key, keylen);
}
static bool s5p_is_sg_aligned(struct scatterlist *sg)
{
while (sg) {
if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
return false;
sg = sg_next(sg);
}
return true;
}
static int s5p_set_indata_start(struct s5p_aes_dev *dev,
struct skcipher_request *req)
{
struct scatterlist *sg;
int err;
dev->sg_src_cpy = NULL;
sg = req->src;
if (!s5p_is_sg_aligned(sg)) {
dev_dbg(dev->dev,
"At least one unaligned source scatter list, making a copy\n");
err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
if (err)
return err;
sg = dev->sg_src_cpy;
}
err = s5p_set_indata(dev, sg);
if (err) {
s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
return err;
}
return 0;
}
static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
struct skcipher_request *req)
{
struct scatterlist *sg;
int err;
dev->sg_dst_cpy = NULL;
sg = req->dst;
if (!s5p_is_sg_aligned(sg)) {
dev_dbg(dev->dev,
"At least one unaligned dest scatter list, making a copy\n");
err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
if (err)
return err;
sg = dev->sg_dst_cpy;
}
err = s5p_set_outdata(dev, sg);
if (err) {
s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
return err;
}
return 0;
}
static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
{
struct skcipher_request *req = dev->req;
u32 aes_control;
unsigned long flags;
int err;
u8 *iv, *ctr;
/* This sets bit [13:12] to 00, which selects 128-bit counter */
aes_control = SSS_AES_KEY_CHANGE_MODE;
if (mode & FLAGS_AES_DECRYPT)
aes_control |= SSS_AES_MODE_DECRYPT;
if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
aes_control |= SSS_AES_CHAIN_MODE_CBC;
iv = req->iv;
ctr = NULL;
} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
aes_control |= SSS_AES_CHAIN_MODE_CTR;
iv = NULL;
ctr = req->iv;
} else {
iv = NULL; /* AES_ECB */
ctr = NULL;
}
if (dev->ctx->keylen == AES_KEYSIZE_192)
aes_control |= SSS_AES_KEY_SIZE_192;
else if (dev->ctx->keylen == AES_KEYSIZE_256)
aes_control |= SSS_AES_KEY_SIZE_256;
aes_control |= SSS_AES_FIFO_MODE;
/* as a variant it is possible to use byte swapping on DMA side */
aes_control |= SSS_AES_BYTESWAP_DI
| SSS_AES_BYTESWAP_DO
| SSS_AES_BYTESWAP_IV
| SSS_AES_BYTESWAP_KEY
| SSS_AES_BYTESWAP_CNT;
spin_lock_irqsave(&dev->lock, flags);
SSS_WRITE(dev, FCINTENCLR,
SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
SSS_WRITE(dev, FCFIFOCTRL, 0x00);
err = s5p_set_indata_start(dev, req);
if (err)
goto indata_error;
err = s5p_set_outdata_start(dev, req);
if (err)
goto outdata_error;
SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
s5p_set_dma_indata(dev, dev->sg_src);
s5p_set_dma_outdata(dev, dev->sg_dst);
SSS_WRITE(dev, FCINTENSET,
SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
spin_unlock_irqrestore(&dev->lock, flags);
return;
outdata_error:
s5p_unset_indata(dev);
indata_error:
s5p_sg_done(dev);
dev->busy = false;
spin_unlock_irqrestore(&dev->lock, flags);
s5p_aes_complete(req, err);
}
static void s5p_tasklet_cb(unsigned long data)
{
struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
struct crypto_async_request *async_req, *backlog;
struct s5p_aes_reqctx *reqctx;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
if (!async_req) {
dev->busy = false;
spin_unlock_irqrestore(&dev->lock, flags);
return;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
dev->req = skcipher_request_cast(async_req);
dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
reqctx = skcipher_request_ctx(dev->req);
s5p_aes_crypt_start(dev, reqctx->mode);
}
static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
struct skcipher_request *req)
{
unsigned long flags;
int err;
spin_lock_irqsave(&dev->lock, flags);
err = crypto_enqueue_request(&dev->queue, &req->base);
if (dev->busy) {
spin_unlock_irqrestore(&dev->lock, flags);
return err;
}
dev->busy = true;
spin_unlock_irqrestore(&dev->lock, flags);
tasklet_schedule(&dev->tasklet);
return err;
}
static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct s5p_aes_dev *dev = ctx->dev;
if (!req->cryptlen)
return 0;
if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
return -EINVAL;
}
reqctx->mode = mode;
return s5p_aes_handle_req(dev, req);
}
static int s5p_aes_setkey(struct crypto_skcipher *cipher,
const u8 *key, unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (keylen != AES_KEYSIZE_128 &&
keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->aes_key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
{
return s5p_aes_crypt(req, 0);
}
static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
}
static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_CBC);
}
static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
}
static int s5p_aes_ctr_crypt(struct skcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_CTR);
}
static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
{
struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->dev = s5p_dev;
crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
return 0;
}
static struct skcipher_alg algs[] = {
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-s5p",
.base.cra_priority = 100,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.base.cra_alignmask = 0x0f,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_ecb_encrypt,
.decrypt = s5p_aes_ecb_decrypt,
.init = s5p_aes_init_tfm,
},
{
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-s5p",
.base.cra_priority = 100,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.base.cra_alignmask = 0x0f,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_cbc_encrypt,
.decrypt = s5p_aes_cbc_decrypt,
.init = s5p_aes_init_tfm,
},
{
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "ctr-aes-s5p",
.base.cra_priority = 100,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.base.cra_alignmask = 0x0f,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_ctr_crypt,
.decrypt = s5p_aes_ctr_crypt,
.init = s5p_aes_init_tfm,
},
};
static int s5p_aes_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
int i, j, err;
const struct samsung_aes_variant *variant;
struct s5p_aes_dev *pdata;
struct resource *res;
unsigned int hash_i;
if (s5p_dev)
return -EEXIST;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
variant = find_s5p_sss_version(pdev);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
/*
* Note: HASH and PRNG uses the same registers in secss, avoid
* overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
* is enabled in config. We need larger size for HASH registers in
* secss, current describe only AES/DES
*/
if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
if (variant == &exynos_aes_data) {
res->end += 0x300;
pdata->use_hash = true;
}
}
pdata->res = res;
pdata->ioaddr = devm_ioremap_resource(dev, res);
if (IS_ERR(pdata->ioaddr)) {
if (!pdata->use_hash)
return PTR_ERR(pdata->ioaddr);
/* try AES without HASH */
res->end -= 0x300;
pdata->use_hash = false;
pdata->ioaddr = devm_ioremap_resource(dev, res);
if (IS_ERR(pdata->ioaddr))
return PTR_ERR(pdata->ioaddr);
}
pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
if (IS_ERR(pdata->clk))
return dev_err_probe(dev, PTR_ERR(pdata->clk),
"failed to find secss clock %s\n",
variant->clk_names[0]);
err = clk_prepare_enable(pdata->clk);
if (err < 0) {
dev_err(dev, "Enabling clock %s failed, err %d\n",
variant->clk_names[0], err);
return err;
}
if (variant->clk_names[1]) {
pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
if (IS_ERR(pdata->pclk)) {
err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
"failed to find clock %s\n",
variant->clk_names[1]);
goto err_clk;
}
err = clk_prepare_enable(pdata->pclk);
if (err < 0) {
dev_err(dev, "Enabling clock %s failed, err %d\n",
variant->clk_names[0], err);
goto err_clk;
}
} else {
pdata->pclk = NULL;
}
spin_lock_init(&pdata->lock);
spin_lock_init(&pdata->hash_lock);
pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
pdata->irq_fc = platform_get_irq(pdev, 0);
if (pdata->irq_fc < 0) {
err = pdata->irq_fc;
dev_warn(dev, "feed control interrupt is not available.\n");
goto err_irq;
}
err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
s5p_aes_interrupt, IRQF_ONESHOT,
pdev->name, pdev);
if (err < 0) {
dev_warn(dev, "feed control interrupt is not available.\n");
goto err_irq;
}
pdata->busy = false;
pdata->dev = dev;
platform_set_drvdata(pdev, pdata);
s5p_dev = pdata;
tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
for (i = 0; i < ARRAY_SIZE(algs); i++) {
err = crypto_register_skcipher(&algs[i]);
if (err)
goto err_algs;
}
if (pdata->use_hash) {
tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
(unsigned long)pdata);
crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
hash_i++) {
struct ahash_alg *alg;
alg = &algs_sha1_md5_sha256[hash_i];
err = crypto_register_ahash(alg);
if (err) {
dev_err(dev, "can't register '%s': %d\n",
alg->halg.base.cra_driver_name, err);
goto err_hash;
}
}
}
dev_info(dev, "s5p-sss driver registered\n");
return 0;
err_hash:
for (j = hash_i - 1; j >= 0; j--)
crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
tasklet_kill(&pdata->hash_tasklet);
res->end -= 0x300;
err_algs:
if (i < ARRAY_SIZE(algs))
dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
err);
for (j = 0; j < i; j++)
crypto_unregister_skcipher(&algs[j]);
tasklet_kill(&pdata->tasklet);
err_irq:
clk_disable_unprepare(pdata->pclk);
err_clk:
clk_disable_unprepare(pdata->clk);
s5p_dev = NULL;
return err;
}
static int s5p_aes_remove(struct platform_device *pdev)
{
struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
int i;
for (i = 0; i < ARRAY_SIZE(algs); i++)
crypto_unregister_skcipher(&algs[i]);
tasklet_kill(&pdata->tasklet);
if (pdata->use_hash) {
for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
pdata->res->end -= 0x300;
tasklet_kill(&pdata->hash_tasklet);
pdata->use_hash = false;
}
clk_disable_unprepare(pdata->pclk);
clk_disable_unprepare(pdata->clk);
s5p_dev = NULL;
return 0;
}
static struct platform_driver s5p_aes_crypto = {
.probe = s5p_aes_probe,
.remove = s5p_aes_remove,
.driver = {
.name = "s5p-secss",
.of_match_table = s5p_sss_dt_match,
},
};
module_platform_driver(s5p_aes_crypto);
MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Vladimir Zapolskiy <[email protected]>");
MODULE_AUTHOR("Kamil Konieczny <[email protected]>");
| linux-master | drivers/crypto/s5p-sss.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Cryptographic API.
*
* Support for OMAP AES GCM HW acceleration.
*
* Copyright (c) 2016 Texas Instruments Incorporated
*/
#include <crypto/aes.h>
#include <crypto/engine.h>
#include <crypto/gcm.h>
#include <crypto/internal/aead.h>
#include <crypto/scatterwalk.h>
#include <crypto/skcipher.h>
#include <linux/errno.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/omap-dma.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>
#include <linux/string.h>
#include "omap-crypto.h"
#include "omap-aes.h"
static int omap_aes_gcm_handle_queue(struct omap_aes_dev *dd,
struct aead_request *req);
static void omap_aes_gcm_finish_req(struct omap_aes_dev *dd, int ret)
{
struct aead_request *req = dd->aead_req;
dd->in_sg = NULL;
dd->out_sg = NULL;
crypto_finalize_aead_request(dd->engine, req, ret);
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
}
static void omap_aes_gcm_done_task(struct omap_aes_dev *dd)
{
u8 *tag;
int alen, clen, i, ret = 0, nsg;
struct omap_aes_reqctx *rctx;
alen = ALIGN(dd->assoc_len, AES_BLOCK_SIZE);
clen = ALIGN(dd->total, AES_BLOCK_SIZE);
rctx = aead_request_ctx(dd->aead_req);
nsg = !!(dd->assoc_len && dd->total);
dma_sync_sg_for_device(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len, DMA_FROM_DEVICE);
omap_aes_crypt_dma_stop(dd);
omap_crypto_cleanup(dd->out_sg, dd->orig_out,
dd->aead_req->assoclen, dd->total,
FLAGS_OUT_DATA_ST_SHIFT, dd->flags);
if (dd->flags & FLAGS_ENCRYPT)
scatterwalk_map_and_copy(rctx->auth_tag,
dd->aead_req->dst,
dd->total + dd->aead_req->assoclen,
dd->authsize, 1);
omap_crypto_cleanup(&dd->in_sgl[0], NULL, 0, alen,
FLAGS_ASSOC_DATA_ST_SHIFT, dd->flags);
omap_crypto_cleanup(&dd->in_sgl[nsg], NULL, 0, clen,
FLAGS_IN_DATA_ST_SHIFT, dd->flags);
if (!(dd->flags & FLAGS_ENCRYPT)) {
tag = (u8 *)rctx->auth_tag;
for (i = 0; i < dd->authsize; i++) {
if (tag[i]) {
ret = -EBADMSG;
}
}
}
omap_aes_gcm_finish_req(dd, ret);
}
static int omap_aes_gcm_copy_buffers(struct omap_aes_dev *dd,
struct aead_request *req)
{
int alen, clen, cryptlen, assoclen, ret;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
unsigned int authlen = crypto_aead_authsize(aead);
struct scatterlist *tmp, sg_arr[2];
int nsg;
u16 flags;
assoclen = req->assoclen;
cryptlen = req->cryptlen;
if (dd->flags & FLAGS_RFC4106_GCM)
assoclen -= 8;
if (!(dd->flags & FLAGS_ENCRYPT))
cryptlen -= authlen;
alen = ALIGN(assoclen, AES_BLOCK_SIZE);
clen = ALIGN(cryptlen, AES_BLOCK_SIZE);
nsg = !!(assoclen && cryptlen);
omap_aes_clear_copy_flags(dd);
sg_init_table(dd->in_sgl, nsg + 1);
if (assoclen) {
tmp = req->src;
ret = omap_crypto_align_sg(&tmp, assoclen,
AES_BLOCK_SIZE, dd->in_sgl,
OMAP_CRYPTO_COPY_DATA |
OMAP_CRYPTO_ZERO_BUF |
OMAP_CRYPTO_FORCE_SINGLE_ENTRY,
FLAGS_ASSOC_DATA_ST_SHIFT,
&dd->flags);
if (ret)
return ret;
}
if (cryptlen) {
tmp = scatterwalk_ffwd(sg_arr, req->src, req->assoclen);
if (nsg)
sg_unmark_end(dd->in_sgl);
ret = omap_crypto_align_sg(&tmp, cryptlen,
AES_BLOCK_SIZE, &dd->in_sgl[nsg],
OMAP_CRYPTO_COPY_DATA |
OMAP_CRYPTO_ZERO_BUF |
OMAP_CRYPTO_FORCE_SINGLE_ENTRY,
FLAGS_IN_DATA_ST_SHIFT,
&dd->flags);
if (ret)
return ret;
}
dd->in_sg = dd->in_sgl;
dd->total = cryptlen;
dd->assoc_len = assoclen;
dd->authsize = authlen;
dd->out_sg = req->dst;
dd->orig_out = req->dst;
dd->out_sg = scatterwalk_ffwd(sg_arr, req->dst, req->assoclen);
flags = 0;
if (req->src == req->dst || dd->out_sg == sg_arr)
flags |= OMAP_CRYPTO_FORCE_COPY;
if (cryptlen) {
ret = omap_crypto_align_sg(&dd->out_sg, cryptlen,
AES_BLOCK_SIZE, &dd->out_sgl,
flags,
FLAGS_OUT_DATA_ST_SHIFT, &dd->flags);
if (ret)
return ret;
}
dd->in_sg_len = sg_nents_for_len(dd->in_sg, alen + clen);
dd->out_sg_len = sg_nents_for_len(dd->out_sg, clen);
return 0;
}
static int do_encrypt_iv(struct aead_request *req, u32 *tag, u32 *iv)
{
struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
aes_encrypt(&ctx->actx, (u8 *)tag, (u8 *)iv);
return 0;
}
void omap_aes_gcm_dma_out_callback(void *data)
{
struct omap_aes_dev *dd = data;
struct omap_aes_reqctx *rctx;
int i, val;
u32 *auth_tag, tag[4];
if (!(dd->flags & FLAGS_ENCRYPT))
scatterwalk_map_and_copy(tag, dd->aead_req->src,
dd->total + dd->aead_req->assoclen,
dd->authsize, 0);
rctx = aead_request_ctx(dd->aead_req);
auth_tag = (u32 *)rctx->auth_tag;
for (i = 0; i < 4; i++) {
val = omap_aes_read(dd, AES_REG_TAG_N(dd, i));
auth_tag[i] = val ^ auth_tag[i];
if (!(dd->flags & FLAGS_ENCRYPT))
auth_tag[i] = auth_tag[i] ^ tag[i];
}
omap_aes_gcm_done_task(dd);
}
static int omap_aes_gcm_handle_queue(struct omap_aes_dev *dd,
struct aead_request *req)
{
if (req)
return crypto_transfer_aead_request_to_engine(dd->engine, req);
return 0;
}
static int omap_aes_gcm_prepare_req(struct aead_request *req,
struct omap_aes_dev *dd)
{
struct omap_aes_reqctx *rctx = aead_request_ctx(req);
struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
int err;
dd->aead_req = req;
rctx->mode &= FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
err = omap_aes_gcm_copy_buffers(dd, req);
if (err)
return err;
dd->ctx = &ctx->octx;
return omap_aes_write_ctrl(dd);
}
static int omap_aes_gcm_crypt(struct aead_request *req, unsigned long mode)
{
struct omap_aes_reqctx *rctx = aead_request_ctx(req);
struct crypto_aead *aead = crypto_aead_reqtfm(req);
unsigned int authlen = crypto_aead_authsize(aead);
struct omap_aes_dev *dd;
__be32 counter = cpu_to_be32(1);
int err, assoclen;
memset(rctx->auth_tag, 0, sizeof(rctx->auth_tag));
memcpy(rctx->iv + GCM_AES_IV_SIZE, &counter, 4);
err = do_encrypt_iv(req, (u32 *)rctx->auth_tag, (u32 *)rctx->iv);
if (err)
return err;
if (mode & FLAGS_RFC4106_GCM)
assoclen = req->assoclen - 8;
else
assoclen = req->assoclen;
if (assoclen + req->cryptlen == 0) {
scatterwalk_map_and_copy(rctx->auth_tag, req->dst, 0, authlen,
1);
return 0;
}
dd = omap_aes_find_dev(rctx);
if (!dd)
return -ENODEV;
rctx->mode = mode;
return omap_aes_gcm_handle_queue(dd, req);
}
int omap_aes_gcm_encrypt(struct aead_request *req)
{
struct omap_aes_reqctx *rctx = aead_request_ctx(req);
memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
return omap_aes_gcm_crypt(req, FLAGS_ENCRYPT | FLAGS_GCM);
}
int omap_aes_gcm_decrypt(struct aead_request *req)
{
struct omap_aes_reqctx *rctx = aead_request_ctx(req);
memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
return omap_aes_gcm_crypt(req, FLAGS_GCM);
}
int omap_aes_4106gcm_encrypt(struct aead_request *req)
{
struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct omap_aes_reqctx *rctx = aead_request_ctx(req);
memcpy(rctx->iv, ctx->octx.nonce, 4);
memcpy(rctx->iv + 4, req->iv, 8);
return crypto_ipsec_check_assoclen(req->assoclen) ?:
omap_aes_gcm_crypt(req, FLAGS_ENCRYPT | FLAGS_GCM |
FLAGS_RFC4106_GCM);
}
int omap_aes_4106gcm_decrypt(struct aead_request *req)
{
struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct omap_aes_reqctx *rctx = aead_request_ctx(req);
memcpy(rctx->iv, ctx->octx.nonce, 4);
memcpy(rctx->iv + 4, req->iv, 8);
return crypto_ipsec_check_assoclen(req->assoclen) ?:
omap_aes_gcm_crypt(req, FLAGS_GCM | FLAGS_RFC4106_GCM);
}
int omap_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
ret = aes_expandkey(&ctx->actx, key, keylen);
if (ret)
return ret;
memcpy(ctx->octx.key, key, keylen);
ctx->octx.keylen = keylen;
return 0;
}
int omap_aes_4106gcm_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct omap_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
if (keylen < 4)
return -EINVAL;
keylen -= 4;
ret = aes_expandkey(&ctx->actx, key, keylen);
if (ret)
return ret;
memcpy(ctx->octx.key, key, keylen);
memcpy(ctx->octx.nonce, key + keylen, 4);
ctx->octx.keylen = keylen;
return 0;
}
int omap_aes_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
return crypto_gcm_check_authsize(authsize);
}
int omap_aes_4106gcm_setauthsize(struct crypto_aead *parent,
unsigned int authsize)
{
return crypto_rfc4106_check_authsize(authsize);
}
int omap_aes_gcm_crypt_req(struct crypto_engine *engine, void *areq)
{
struct aead_request *req = container_of(areq, struct aead_request,
base);
struct omap_aes_reqctx *rctx = aead_request_ctx(req);
struct omap_aes_dev *dd = rctx->dd;
int ret;
if (!dd)
return -ENODEV;
ret = omap_aes_gcm_prepare_req(req, dd);
if (ret)
return ret;
if (dd->in_sg_len)
ret = omap_aes_crypt_dma_start(dd);
else
omap_aes_gcm_dma_out_callback(dd);
return ret;
}
int omap_aes_gcm_cra_init(struct crypto_aead *tfm)
{
crypto_aead_set_reqsize(tfm, sizeof(struct omap_aes_reqctx));
return 0;
}
| linux-master | drivers/crypto/omap-aes-gcm.c |
// SPDX-License-Identifier: GPL-2.0
/*
* exynos-rng.c - Random Number Generator driver for the Exynos
*
* Copyright (c) 2017 Krzysztof Kozlowski <[email protected]>
*
* Loosely based on old driver from drivers/char/hw_random/exynos-rng.c:
* Copyright (C) 2012 Samsung Electronics
* Jonghwa Lee <[email protected]>
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <crypto/internal/rng.h>
#define EXYNOS_RNG_CONTROL 0x0
#define EXYNOS_RNG_STATUS 0x10
#define EXYNOS_RNG_SEED_CONF 0x14
#define EXYNOS_RNG_GEN_PRNG BIT(1)
#define EXYNOS_RNG_SEED_BASE 0x140
#define EXYNOS_RNG_SEED(n) (EXYNOS_RNG_SEED_BASE + (n * 0x4))
#define EXYNOS_RNG_OUT_BASE 0x160
#define EXYNOS_RNG_OUT(n) (EXYNOS_RNG_OUT_BASE + (n * 0x4))
/* EXYNOS_RNG_CONTROL bit fields */
#define EXYNOS_RNG_CONTROL_START 0x18
/* EXYNOS_RNG_STATUS bit fields */
#define EXYNOS_RNG_STATUS_SEED_SETTING_DONE BIT(1)
#define EXYNOS_RNG_STATUS_RNG_DONE BIT(5)
/* Five seed and output registers, each 4 bytes */
#define EXYNOS_RNG_SEED_REGS 5
#define EXYNOS_RNG_SEED_SIZE (EXYNOS_RNG_SEED_REGS * 4)
enum exynos_prng_type {
EXYNOS_PRNG_UNKNOWN = 0,
EXYNOS_PRNG_EXYNOS4,
EXYNOS_PRNG_EXYNOS5,
};
/*
* Driver re-seeds itself with generated random numbers to hinder
* backtracking of the original seed.
*
* Time for next re-seed in ms.
*/
#define EXYNOS_RNG_RESEED_TIME 1000
#define EXYNOS_RNG_RESEED_BYTES 65536
/*
* In polling mode, do not wait infinitely for the engine to finish the work.
*/
#define EXYNOS_RNG_WAIT_RETRIES 100
/* Context for crypto */
struct exynos_rng_ctx {
struct exynos_rng_dev *rng;
};
/* Device associated memory */
struct exynos_rng_dev {
struct device *dev;
enum exynos_prng_type type;
void __iomem *mem;
struct clk *clk;
struct mutex lock;
/* Generated numbers stored for seeding during resume */
u8 seed_save[EXYNOS_RNG_SEED_SIZE];
unsigned int seed_save_len;
/* Time of last seeding in jiffies */
unsigned long last_seeding;
/* Bytes generated since last seeding */
unsigned long bytes_seeding;
};
static struct exynos_rng_dev *exynos_rng_dev;
static u32 exynos_rng_readl(struct exynos_rng_dev *rng, u32 offset)
{
return readl_relaxed(rng->mem + offset);
}
static void exynos_rng_writel(struct exynos_rng_dev *rng, u32 val, u32 offset)
{
writel_relaxed(val, rng->mem + offset);
}
static int exynos_rng_set_seed(struct exynos_rng_dev *rng,
const u8 *seed, unsigned int slen)
{
u32 val;
int i;
/* Round seed length because loop iterates over full register size */
slen = ALIGN_DOWN(slen, 4);
if (slen < EXYNOS_RNG_SEED_SIZE)
return -EINVAL;
for (i = 0; i < slen ; i += 4) {
unsigned int seed_reg = (i / 4) % EXYNOS_RNG_SEED_REGS;
val = seed[i] << 24;
val |= seed[i + 1] << 16;
val |= seed[i + 2] << 8;
val |= seed[i + 3] << 0;
exynos_rng_writel(rng, val, EXYNOS_RNG_SEED(seed_reg));
}
val = exynos_rng_readl(rng, EXYNOS_RNG_STATUS);
if (!(val & EXYNOS_RNG_STATUS_SEED_SETTING_DONE)) {
dev_warn(rng->dev, "Seed setting not finished\n");
return -EIO;
}
rng->last_seeding = jiffies;
rng->bytes_seeding = 0;
return 0;
}
/*
* Start the engine and poll for finish. Then read from output registers
* filling the 'dst' buffer up to 'dlen' bytes or up to size of generated
* random data (EXYNOS_RNG_SEED_SIZE).
*
* On success: return 0 and store number of read bytes under 'read' address.
* On error: return -ERRNO.
*/
static int exynos_rng_get_random(struct exynos_rng_dev *rng,
u8 *dst, unsigned int dlen,
unsigned int *read)
{
int retry = EXYNOS_RNG_WAIT_RETRIES;
if (rng->type == EXYNOS_PRNG_EXYNOS4) {
exynos_rng_writel(rng, EXYNOS_RNG_CONTROL_START,
EXYNOS_RNG_CONTROL);
} else if (rng->type == EXYNOS_PRNG_EXYNOS5) {
exynos_rng_writel(rng, EXYNOS_RNG_GEN_PRNG,
EXYNOS_RNG_SEED_CONF);
}
while (!(exynos_rng_readl(rng,
EXYNOS_RNG_STATUS) & EXYNOS_RNG_STATUS_RNG_DONE) && --retry)
cpu_relax();
if (!retry)
return -ETIMEDOUT;
/* Clear status bit */
exynos_rng_writel(rng, EXYNOS_RNG_STATUS_RNG_DONE,
EXYNOS_RNG_STATUS);
*read = min_t(size_t, dlen, EXYNOS_RNG_SEED_SIZE);
memcpy_fromio(dst, rng->mem + EXYNOS_RNG_OUT_BASE, *read);
rng->bytes_seeding += *read;
return 0;
}
/* Re-seed itself from time to time */
static void exynos_rng_reseed(struct exynos_rng_dev *rng)
{
unsigned long next_seeding = rng->last_seeding + \
msecs_to_jiffies(EXYNOS_RNG_RESEED_TIME);
unsigned long now = jiffies;
unsigned int read = 0;
u8 seed[EXYNOS_RNG_SEED_SIZE];
if (time_before(now, next_seeding) &&
rng->bytes_seeding < EXYNOS_RNG_RESEED_BYTES)
return;
if (exynos_rng_get_random(rng, seed, sizeof(seed), &read))
return;
exynos_rng_set_seed(rng, seed, read);
/* Let others do some of their job. */
mutex_unlock(&rng->lock);
mutex_lock(&rng->lock);
}
static int exynos_rng_generate(struct crypto_rng *tfm,
const u8 *src, unsigned int slen,
u8 *dst, unsigned int dlen)
{
struct exynos_rng_ctx *ctx = crypto_rng_ctx(tfm);
struct exynos_rng_dev *rng = ctx->rng;
unsigned int read = 0;
int ret;
ret = clk_prepare_enable(rng->clk);
if (ret)
return ret;
mutex_lock(&rng->lock);
do {
ret = exynos_rng_get_random(rng, dst, dlen, &read);
if (ret)
break;
dlen -= read;
dst += read;
exynos_rng_reseed(rng);
} while (dlen > 0);
mutex_unlock(&rng->lock);
clk_disable_unprepare(rng->clk);
return ret;
}
static int exynos_rng_seed(struct crypto_rng *tfm, const u8 *seed,
unsigned int slen)
{
struct exynos_rng_ctx *ctx = crypto_rng_ctx(tfm);
struct exynos_rng_dev *rng = ctx->rng;
int ret;
ret = clk_prepare_enable(rng->clk);
if (ret)
return ret;
mutex_lock(&rng->lock);
ret = exynos_rng_set_seed(ctx->rng, seed, slen);
mutex_unlock(&rng->lock);
clk_disable_unprepare(rng->clk);
return ret;
}
static int exynos_rng_kcapi_init(struct crypto_tfm *tfm)
{
struct exynos_rng_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->rng = exynos_rng_dev;
return 0;
}
static struct rng_alg exynos_rng_alg = {
.generate = exynos_rng_generate,
.seed = exynos_rng_seed,
.seedsize = EXYNOS_RNG_SEED_SIZE,
.base = {
.cra_name = "stdrng",
.cra_driver_name = "exynos_rng",
.cra_priority = 300,
.cra_ctxsize = sizeof(struct exynos_rng_ctx),
.cra_module = THIS_MODULE,
.cra_init = exynos_rng_kcapi_init,
}
};
static int exynos_rng_probe(struct platform_device *pdev)
{
struct exynos_rng_dev *rng;
int ret;
if (exynos_rng_dev)
return -EEXIST;
rng = devm_kzalloc(&pdev->dev, sizeof(*rng), GFP_KERNEL);
if (!rng)
return -ENOMEM;
rng->type = (uintptr_t)of_device_get_match_data(&pdev->dev);
mutex_init(&rng->lock);
rng->dev = &pdev->dev;
rng->clk = devm_clk_get(&pdev->dev, "secss");
if (IS_ERR(rng->clk)) {
dev_err(&pdev->dev, "Couldn't get clock.\n");
return PTR_ERR(rng->clk);
}
rng->mem = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rng->mem))
return PTR_ERR(rng->mem);
platform_set_drvdata(pdev, rng);
exynos_rng_dev = rng;
ret = crypto_register_rng(&exynos_rng_alg);
if (ret) {
dev_err(&pdev->dev,
"Couldn't register rng crypto alg: %d\n", ret);
exynos_rng_dev = NULL;
}
return ret;
}
static int exynos_rng_remove(struct platform_device *pdev)
{
crypto_unregister_rng(&exynos_rng_alg);
exynos_rng_dev = NULL;
return 0;
}
static int __maybe_unused exynos_rng_suspend(struct device *dev)
{
struct exynos_rng_dev *rng = dev_get_drvdata(dev);
int ret;
/* If we were never seeded then after resume it will be the same */
if (!rng->last_seeding)
return 0;
rng->seed_save_len = 0;
ret = clk_prepare_enable(rng->clk);
if (ret)
return ret;
mutex_lock(&rng->lock);
/* Get new random numbers and store them for seeding on resume. */
exynos_rng_get_random(rng, rng->seed_save, sizeof(rng->seed_save),
&(rng->seed_save_len));
mutex_unlock(&rng->lock);
dev_dbg(rng->dev, "Stored %u bytes for seeding on system resume\n",
rng->seed_save_len);
clk_disable_unprepare(rng->clk);
return 0;
}
static int __maybe_unused exynos_rng_resume(struct device *dev)
{
struct exynos_rng_dev *rng = dev_get_drvdata(dev);
int ret;
/* Never seeded so nothing to do */
if (!rng->last_seeding)
return 0;
ret = clk_prepare_enable(rng->clk);
if (ret)
return ret;
mutex_lock(&rng->lock);
ret = exynos_rng_set_seed(rng, rng->seed_save, rng->seed_save_len);
mutex_unlock(&rng->lock);
clk_disable_unprepare(rng->clk);
return ret;
}
static SIMPLE_DEV_PM_OPS(exynos_rng_pm_ops, exynos_rng_suspend,
exynos_rng_resume);
static const struct of_device_id exynos_rng_dt_match[] = {
{
.compatible = "samsung,exynos4-rng",
.data = (const void *)EXYNOS_PRNG_EXYNOS4,
}, {
.compatible = "samsung,exynos5250-prng",
.data = (const void *)EXYNOS_PRNG_EXYNOS5,
},
{ },
};
MODULE_DEVICE_TABLE(of, exynos_rng_dt_match);
static struct platform_driver exynos_rng_driver = {
.driver = {
.name = "exynos-rng",
.pm = &exynos_rng_pm_ops,
.of_match_table = exynos_rng_dt_match,
},
.probe = exynos_rng_probe,
.remove = exynos_rng_remove,
};
module_platform_driver(exynos_rng_driver);
MODULE_DESCRIPTION("Exynos H/W Random Number Generator driver");
MODULE_AUTHOR("Krzysztof Kozlowski <[email protected]>");
MODULE_LICENSE("GPL v2");
| linux-master | drivers/crypto/exynos-rng.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Cryptographic API.
*
* Support for OMAP AES HW acceleration.
*
* Copyright (c) 2010 Nokia Corporation
* Author: Dmitry Kasatkin <[email protected]>
* Copyright (c) 2011 Texas Instruments Incorporated
*/
#define pr_fmt(fmt) "%20s: " fmt, __func__
#define prn(num) pr_debug(#num "=%d\n", num)
#define prx(num) pr_debug(#num "=%x\n", num)
#include <crypto/aes.h>
#include <crypto/gcm.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/engine.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>
#include <linux/string.h>
#include "omap-crypto.h"
#include "omap-aes.h"
/* keep registered devices data here */
static LIST_HEAD(dev_list);
static DEFINE_SPINLOCK(list_lock);
static int aes_fallback_sz = 200;
#ifdef DEBUG
#define omap_aes_read(dd, offset) \
({ \
int _read_ret; \
_read_ret = __raw_readl(dd->io_base + offset); \
pr_debug("omap_aes_read(" #offset "=%#x)= %#x\n", \
offset, _read_ret); \
_read_ret; \
})
#else
inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset)
{
return __raw_readl(dd->io_base + offset);
}
#endif
#ifdef DEBUG
#define omap_aes_write(dd, offset, value) \
do { \
pr_debug("omap_aes_write(" #offset "=%#x) value=%#x\n", \
offset, value); \
__raw_writel(value, dd->io_base + offset); \
} while (0)
#else
inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset,
u32 value)
{
__raw_writel(value, dd->io_base + offset);
}
#endif
static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset,
u32 value, u32 mask)
{
u32 val;
val = omap_aes_read(dd, offset);
val &= ~mask;
val |= value;
omap_aes_write(dd, offset, val);
}
static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
omap_aes_write(dd, offset, *value);
}
static int omap_aes_hw_init(struct omap_aes_dev *dd)
{
int err;
if (!(dd->flags & FLAGS_INIT)) {
dd->flags |= FLAGS_INIT;
dd->err = 0;
}
err = pm_runtime_resume_and_get(dd->dev);
if (err < 0) {
dev_err(dd->dev, "failed to get sync: %d\n", err);
return err;
}
return 0;
}
void omap_aes_clear_copy_flags(struct omap_aes_dev *dd)
{
dd->flags &= ~(OMAP_CRYPTO_COPY_MASK << FLAGS_IN_DATA_ST_SHIFT);
dd->flags &= ~(OMAP_CRYPTO_COPY_MASK << FLAGS_OUT_DATA_ST_SHIFT);
dd->flags &= ~(OMAP_CRYPTO_COPY_MASK << FLAGS_ASSOC_DATA_ST_SHIFT);
}
int omap_aes_write_ctrl(struct omap_aes_dev *dd)
{
struct omap_aes_reqctx *rctx;
unsigned int key32;
int i, err;
u32 val;
err = omap_aes_hw_init(dd);
if (err)
return err;
key32 = dd->ctx->keylen / sizeof(u32);
/* RESET the key as previous HASH keys should not get affected*/
if (dd->flags & FLAGS_GCM)
for (i = 0; i < 0x40; i = i + 4)
omap_aes_write(dd, i, 0x0);
for (i = 0; i < key32; i++) {
omap_aes_write(dd, AES_REG_KEY(dd, i),
(__force u32)cpu_to_le32(dd->ctx->key[i]));
}
if ((dd->flags & (FLAGS_CBC | FLAGS_CTR)) && dd->req->iv)
omap_aes_write_n(dd, AES_REG_IV(dd, 0), (void *)dd->req->iv, 4);
if ((dd->flags & (FLAGS_GCM)) && dd->aead_req->iv) {
rctx = aead_request_ctx(dd->aead_req);
omap_aes_write_n(dd, AES_REG_IV(dd, 0), (u32 *)rctx->iv, 4);
}
val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3);
if (dd->flags & FLAGS_CBC)
val |= AES_REG_CTRL_CBC;
if (dd->flags & (FLAGS_CTR | FLAGS_GCM))
val |= AES_REG_CTRL_CTR | AES_REG_CTRL_CTR_WIDTH_128;
if (dd->flags & FLAGS_GCM)
val |= AES_REG_CTRL_GCM;
if (dd->flags & FLAGS_ENCRYPT)
val |= AES_REG_CTRL_DIRECTION;
omap_aes_write_mask(dd, AES_REG_CTRL(dd), val, AES_REG_CTRL_MASK);
return 0;
}
static void omap_aes_dma_trigger_omap2(struct omap_aes_dev *dd, int length)
{
u32 mask, val;
val = dd->pdata->dma_start;
if (dd->dma_lch_out != NULL)
val |= dd->pdata->dma_enable_out;
if (dd->dma_lch_in != NULL)
val |= dd->pdata->dma_enable_in;
mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
dd->pdata->dma_start;
omap_aes_write_mask(dd, AES_REG_MASK(dd), val, mask);
}
static void omap_aes_dma_trigger_omap4(struct omap_aes_dev *dd, int length)
{
omap_aes_write(dd, AES_REG_LENGTH_N(0), length);
omap_aes_write(dd, AES_REG_LENGTH_N(1), 0);
if (dd->flags & FLAGS_GCM)
omap_aes_write(dd, AES_REG_A_LEN, dd->assoc_len);
omap_aes_dma_trigger_omap2(dd, length);
}
static void omap_aes_dma_stop(struct omap_aes_dev *dd)
{
u32 mask;
mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
dd->pdata->dma_start;
omap_aes_write_mask(dd, AES_REG_MASK(dd), 0, mask);
}
struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_reqctx *rctx)
{
struct omap_aes_dev *dd;
spin_lock_bh(&list_lock);
dd = list_first_entry(&dev_list, struct omap_aes_dev, list);
list_move_tail(&dd->list, &dev_list);
rctx->dd = dd;
spin_unlock_bh(&list_lock);
return dd;
}
static void omap_aes_dma_out_callback(void *data)
{
struct omap_aes_dev *dd = data;
/* dma_lch_out - completed */
tasklet_schedule(&dd->done_task);
}
static int omap_aes_dma_init(struct omap_aes_dev *dd)
{
int err;
dd->dma_lch_out = NULL;
dd->dma_lch_in = NULL;
dd->dma_lch_in = dma_request_chan(dd->dev, "rx");
if (IS_ERR(dd->dma_lch_in)) {
dev_err(dd->dev, "Unable to request in DMA channel\n");
return PTR_ERR(dd->dma_lch_in);
}
dd->dma_lch_out = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->dma_lch_out)) {
dev_err(dd->dev, "Unable to request out DMA channel\n");
err = PTR_ERR(dd->dma_lch_out);
goto err_dma_out;
}
return 0;
err_dma_out:
dma_release_channel(dd->dma_lch_in);
return err;
}
static void omap_aes_dma_cleanup(struct omap_aes_dev *dd)
{
if (dd->pio_only)
return;
dma_release_channel(dd->dma_lch_out);
dma_release_channel(dd->dma_lch_in);
}
static int omap_aes_crypt_dma(struct omap_aes_dev *dd,
struct scatterlist *in_sg,
struct scatterlist *out_sg,
int in_sg_len, int out_sg_len)
{
struct dma_async_tx_descriptor *tx_in, *tx_out = NULL, *cb_desc;
struct dma_slave_config cfg;
int ret;
if (dd->pio_only) {
scatterwalk_start(&dd->in_walk, dd->in_sg);
if (out_sg_len)
scatterwalk_start(&dd->out_walk, dd->out_sg);
/* Enable DATAIN interrupt and let it take
care of the rest */
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x2);
return 0;
}
dma_sync_sg_for_device(dd->dev, dd->in_sg, in_sg_len, DMA_TO_DEVICE);
memset(&cfg, 0, sizeof(cfg));
cfg.src_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
cfg.dst_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = DST_MAXBURST;
cfg.dst_maxburst = DST_MAXBURST;
/* IN */
ret = dmaengine_slave_config(dd->dma_lch_in, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
ret);
return ret;
}
tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, in_sg_len,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_in) {
dev_err(dd->dev, "IN prep_slave_sg() failed\n");
return -EINVAL;
}
/* No callback necessary */
tx_in->callback_param = dd;
tx_in->callback = NULL;
/* OUT */
if (out_sg_len) {
ret = dmaengine_slave_config(dd->dma_lch_out, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
ret);
return ret;
}
tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg,
out_sg_len,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_out) {
dev_err(dd->dev, "OUT prep_slave_sg() failed\n");
return -EINVAL;
}
cb_desc = tx_out;
} else {
cb_desc = tx_in;
}
if (dd->flags & FLAGS_GCM)
cb_desc->callback = omap_aes_gcm_dma_out_callback;
else
cb_desc->callback = omap_aes_dma_out_callback;
cb_desc->callback_param = dd;
dmaengine_submit(tx_in);
if (tx_out)
dmaengine_submit(tx_out);
dma_async_issue_pending(dd->dma_lch_in);
if (out_sg_len)
dma_async_issue_pending(dd->dma_lch_out);
/* start DMA */
dd->pdata->trigger(dd, dd->total);
return 0;
}
int omap_aes_crypt_dma_start(struct omap_aes_dev *dd)
{
int err;
pr_debug("total: %zu\n", dd->total);
if (!dd->pio_only) {
err = dma_map_sg(dd->dev, dd->in_sg, dd->in_sg_len,
DMA_TO_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
if (dd->out_sg_len) {
err = dma_map_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
}
}
err = omap_aes_crypt_dma(dd, dd->in_sg, dd->out_sg, dd->in_sg_len,
dd->out_sg_len);
if (err && !dd->pio_only) {
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
if (dd->out_sg_len)
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
}
return err;
}
static void omap_aes_finish_req(struct omap_aes_dev *dd, int err)
{
struct skcipher_request *req = dd->req;
pr_debug("err: %d\n", err);
crypto_finalize_skcipher_request(dd->engine, req, err);
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
}
int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
{
pr_debug("total: %zu\n", dd->total);
omap_aes_dma_stop(dd);
return 0;
}
static int omap_aes_handle_queue(struct omap_aes_dev *dd,
struct skcipher_request *req)
{
if (req)
return crypto_transfer_skcipher_request_to_engine(dd->engine, req);
return 0;
}
static int omap_aes_prepare_req(struct skcipher_request *req,
struct omap_aes_dev *dd)
{
struct omap_aes_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
struct omap_aes_reqctx *rctx = skcipher_request_ctx(req);
int ret;
u16 flags;
/* assign new request to device */
dd->req = req;
dd->total = req->cryptlen;
dd->total_save = req->cryptlen;
dd->in_sg = req->src;
dd->out_sg = req->dst;
dd->orig_out = req->dst;
flags = OMAP_CRYPTO_COPY_DATA;
if (req->src == req->dst)
flags |= OMAP_CRYPTO_FORCE_COPY;
ret = omap_crypto_align_sg(&dd->in_sg, dd->total, AES_BLOCK_SIZE,
dd->in_sgl, flags,
FLAGS_IN_DATA_ST_SHIFT, &dd->flags);
if (ret)
return ret;
ret = omap_crypto_align_sg(&dd->out_sg, dd->total, AES_BLOCK_SIZE,
&dd->out_sgl, 0,
FLAGS_OUT_DATA_ST_SHIFT, &dd->flags);
if (ret)
return ret;
dd->in_sg_len = sg_nents_for_len(dd->in_sg, dd->total);
if (dd->in_sg_len < 0)
return dd->in_sg_len;
dd->out_sg_len = sg_nents_for_len(dd->out_sg, dd->total);
if (dd->out_sg_len < 0)
return dd->out_sg_len;
rctx->mode &= FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
dd->ctx = ctx;
rctx->dd = dd;
return omap_aes_write_ctrl(dd);
}
static int omap_aes_crypt_req(struct crypto_engine *engine,
void *areq)
{
struct skcipher_request *req = container_of(areq, struct skcipher_request, base);
struct omap_aes_reqctx *rctx = skcipher_request_ctx(req);
struct omap_aes_dev *dd = rctx->dd;
if (!dd)
return -ENODEV;
return omap_aes_prepare_req(req, dd) ?:
omap_aes_crypt_dma_start(dd);
}
static void omap_aes_copy_ivout(struct omap_aes_dev *dd, u8 *ivbuf)
{
int i;
for (i = 0; i < 4; i++)
((u32 *)ivbuf)[i] = omap_aes_read(dd, AES_REG_IV(dd, i));
}
static void omap_aes_done_task(unsigned long data)
{
struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
pr_debug("enter done_task\n");
if (!dd->pio_only) {
dma_sync_sg_for_device(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
omap_aes_crypt_dma_stop(dd);
}
omap_crypto_cleanup(dd->in_sg, NULL, 0, dd->total_save,
FLAGS_IN_DATA_ST_SHIFT, dd->flags);
omap_crypto_cleanup(dd->out_sg, dd->orig_out, 0, dd->total_save,
FLAGS_OUT_DATA_ST_SHIFT, dd->flags);
/* Update IV output */
if (dd->flags & (FLAGS_CBC | FLAGS_CTR))
omap_aes_copy_ivout(dd, dd->req->iv);
omap_aes_finish_req(dd, 0);
pr_debug("exit\n");
}
static int omap_aes_crypt(struct skcipher_request *req, unsigned long mode)
{
struct omap_aes_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
struct omap_aes_reqctx *rctx = skcipher_request_ctx(req);
struct omap_aes_dev *dd;
int ret;
if ((req->cryptlen % AES_BLOCK_SIZE) && !(mode & FLAGS_CTR))
return -EINVAL;
pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->cryptlen,
!!(mode & FLAGS_ENCRYPT),
!!(mode & FLAGS_CBC));
if (req->cryptlen < aes_fallback_sz) {
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req,
req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src,
req->dst, req->cryptlen, req->iv);
if (mode & FLAGS_ENCRYPT)
ret = crypto_skcipher_encrypt(&rctx->fallback_req);
else
ret = crypto_skcipher_decrypt(&rctx->fallback_req);
return ret;
}
dd = omap_aes_find_dev(rctx);
if (!dd)
return -ENODEV;
rctx->mode = mode;
return omap_aes_handle_queue(dd, req);
}
/* ********************** ALG API ************************************ */
static int omap_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct omap_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
pr_debug("enter, keylen: %d\n", keylen);
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
crypto_skcipher_clear_flags(ctx->fallback, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
ret = crypto_skcipher_setkey(ctx->fallback, key, keylen);
if (!ret)
return 0;
return 0;
}
static int omap_aes_ecb_encrypt(struct skcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_ENCRYPT);
}
static int omap_aes_ecb_decrypt(struct skcipher_request *req)
{
return omap_aes_crypt(req, 0);
}
static int omap_aes_cbc_encrypt(struct skcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
}
static int omap_aes_cbc_decrypt(struct skcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_CBC);
}
static int omap_aes_ctr_encrypt(struct skcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CTR);
}
static int omap_aes_ctr_decrypt(struct skcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_CTR);
}
static int omap_aes_init_tfm(struct crypto_skcipher *tfm)
{
const char *name = crypto_tfm_alg_name(&tfm->base);
struct omap_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *blk;
blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(blk))
return PTR_ERR(blk);
ctx->fallback = blk;
crypto_skcipher_set_reqsize(tfm, sizeof(struct omap_aes_reqctx) +
crypto_skcipher_reqsize(blk));
return 0;
}
static void omap_aes_exit_tfm(struct crypto_skcipher *tfm)
{
struct omap_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
if (ctx->fallback)
crypto_free_skcipher(ctx->fallback);
ctx->fallback = NULL;
}
/* ********************** ALGS ************************************ */
static struct skcipher_engine_alg algs_ecb_cbc[] = {
{
.base = {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-omap",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct omap_aes_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = omap_aes_setkey,
.encrypt = omap_aes_ecb_encrypt,
.decrypt = omap_aes_ecb_decrypt,
.init = omap_aes_init_tfm,
.exit = omap_aes_exit_tfm,
},
.op.do_one_request = omap_aes_crypt_req,
},
{
.base = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-omap",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct omap_aes_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = omap_aes_setkey,
.encrypt = omap_aes_cbc_encrypt,
.decrypt = omap_aes_cbc_decrypt,
.init = omap_aes_init_tfm,
.exit = omap_aes_exit_tfm,
},
.op.do_one_request = omap_aes_crypt_req,
}
};
static struct skcipher_engine_alg algs_ctr[] = {
{
.base = {
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "ctr-aes-omap",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct omap_aes_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = omap_aes_setkey,
.encrypt = omap_aes_ctr_encrypt,
.decrypt = omap_aes_ctr_decrypt,
.init = omap_aes_init_tfm,
.exit = omap_aes_exit_tfm,
},
.op.do_one_request = omap_aes_crypt_req,
}
};
static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc[] = {
{
.algs_list = algs_ecb_cbc,
.size = ARRAY_SIZE(algs_ecb_cbc),
},
};
static struct aead_engine_alg algs_aead_gcm[] = {
{
.base = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-omap",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct omap_aes_gcm_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
.init = omap_aes_gcm_cra_init,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setkey = omap_aes_gcm_setkey,
.setauthsize = omap_aes_gcm_setauthsize,
.encrypt = omap_aes_gcm_encrypt,
.decrypt = omap_aes_gcm_decrypt,
},
.op.do_one_request = omap_aes_gcm_crypt_req,
},
{
.base = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-omap",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct omap_aes_gcm_ctx),
.cra_alignmask = 0xf,
.cra_module = THIS_MODULE,
},
.init = omap_aes_gcm_cra_init,
.maxauthsize = AES_BLOCK_SIZE,
.ivsize = GCM_RFC4106_IV_SIZE,
.setkey = omap_aes_4106gcm_setkey,
.setauthsize = omap_aes_4106gcm_setauthsize,
.encrypt = omap_aes_4106gcm_encrypt,
.decrypt = omap_aes_4106gcm_decrypt,
},
.op.do_one_request = omap_aes_gcm_crypt_req,
},
};
static struct omap_aes_aead_algs omap_aes_aead_info = {
.algs_list = algs_aead_gcm,
.size = ARRAY_SIZE(algs_aead_gcm),
};
static const struct omap_aes_pdata omap_aes_pdata_omap2 = {
.algs_info = omap_aes_algs_info_ecb_cbc,
.algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc),
.trigger = omap_aes_dma_trigger_omap2,
.key_ofs = 0x1c,
.iv_ofs = 0x20,
.ctrl_ofs = 0x30,
.data_ofs = 0x34,
.rev_ofs = 0x44,
.mask_ofs = 0x48,
.dma_enable_in = BIT(2),
.dma_enable_out = BIT(3),
.dma_start = BIT(5),
.major_mask = 0xf0,
.major_shift = 4,
.minor_mask = 0x0f,
.minor_shift = 0,
};
#ifdef CONFIG_OF
static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc_ctr[] = {
{
.algs_list = algs_ecb_cbc,
.size = ARRAY_SIZE(algs_ecb_cbc),
},
{
.algs_list = algs_ctr,
.size = ARRAY_SIZE(algs_ctr),
},
};
static const struct omap_aes_pdata omap_aes_pdata_omap3 = {
.algs_info = omap_aes_algs_info_ecb_cbc_ctr,
.algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr),
.trigger = omap_aes_dma_trigger_omap2,
.key_ofs = 0x1c,
.iv_ofs = 0x20,
.ctrl_ofs = 0x30,
.data_ofs = 0x34,
.rev_ofs = 0x44,
.mask_ofs = 0x48,
.dma_enable_in = BIT(2),
.dma_enable_out = BIT(3),
.dma_start = BIT(5),
.major_mask = 0xf0,
.major_shift = 4,
.minor_mask = 0x0f,
.minor_shift = 0,
};
static const struct omap_aes_pdata omap_aes_pdata_omap4 = {
.algs_info = omap_aes_algs_info_ecb_cbc_ctr,
.algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr),
.aead_algs_info = &omap_aes_aead_info,
.trigger = omap_aes_dma_trigger_omap4,
.key_ofs = 0x3c,
.iv_ofs = 0x40,
.ctrl_ofs = 0x50,
.data_ofs = 0x60,
.rev_ofs = 0x80,
.mask_ofs = 0x84,
.irq_status_ofs = 0x8c,
.irq_enable_ofs = 0x90,
.dma_enable_in = BIT(5),
.dma_enable_out = BIT(6),
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
.minor_shift = 0,
};
static irqreturn_t omap_aes_irq(int irq, void *dev_id)
{
struct omap_aes_dev *dd = dev_id;
u32 status, i;
u32 *src, *dst;
status = omap_aes_read(dd, AES_REG_IRQ_STATUS(dd));
if (status & AES_REG_IRQ_DATA_IN) {
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x0);
BUG_ON(!dd->in_sg);
BUG_ON(_calc_walked(in) > dd->in_sg->length);
src = sg_virt(dd->in_sg) + _calc_walked(in);
for (i = 0; i < AES_BLOCK_WORDS; i++) {
omap_aes_write(dd, AES_REG_DATA_N(dd, i), *src);
scatterwalk_advance(&dd->in_walk, 4);
if (dd->in_sg->length == _calc_walked(in)) {
dd->in_sg = sg_next(dd->in_sg);
if (dd->in_sg) {
scatterwalk_start(&dd->in_walk,
dd->in_sg);
src = sg_virt(dd->in_sg) +
_calc_walked(in);
}
} else {
src++;
}
}
/* Clear IRQ status */
status &= ~AES_REG_IRQ_DATA_IN;
omap_aes_write(dd, AES_REG_IRQ_STATUS(dd), status);
/* Enable DATA_OUT interrupt */
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x4);
} else if (status & AES_REG_IRQ_DATA_OUT) {
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x0);
BUG_ON(!dd->out_sg);
BUG_ON(_calc_walked(out) > dd->out_sg->length);
dst = sg_virt(dd->out_sg) + _calc_walked(out);
for (i = 0; i < AES_BLOCK_WORDS; i++) {
*dst = omap_aes_read(dd, AES_REG_DATA_N(dd, i));
scatterwalk_advance(&dd->out_walk, 4);
if (dd->out_sg->length == _calc_walked(out)) {
dd->out_sg = sg_next(dd->out_sg);
if (dd->out_sg) {
scatterwalk_start(&dd->out_walk,
dd->out_sg);
dst = sg_virt(dd->out_sg) +
_calc_walked(out);
}
} else {
dst++;
}
}
dd->total -= min_t(size_t, AES_BLOCK_SIZE, dd->total);
/* Clear IRQ status */
status &= ~AES_REG_IRQ_DATA_OUT;
omap_aes_write(dd, AES_REG_IRQ_STATUS(dd), status);
if (!dd->total)
/* All bytes read! */
tasklet_schedule(&dd->done_task);
else
/* Enable DATA_IN interrupt for next block */
omap_aes_write(dd, AES_REG_IRQ_ENABLE(dd), 0x2);
}
return IRQ_HANDLED;
}
static const struct of_device_id omap_aes_of_match[] = {
{
.compatible = "ti,omap2-aes",
.data = &omap_aes_pdata_omap2,
},
{
.compatible = "ti,omap3-aes",
.data = &omap_aes_pdata_omap3,
},
{
.compatible = "ti,omap4-aes",
.data = &omap_aes_pdata_omap4,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_aes_of_match);
static int omap_aes_get_res_of(struct omap_aes_dev *dd,
struct device *dev, struct resource *res)
{
struct device_node *node = dev->of_node;
int err = 0;
dd->pdata = of_device_get_match_data(dev);
if (!dd->pdata) {
dev_err(dev, "no compatible OF match\n");
err = -EINVAL;
goto err;
}
err = of_address_to_resource(node, 0, res);
if (err < 0) {
dev_err(dev, "can't translate OF node address\n");
err = -EINVAL;
goto err;
}
err:
return err;
}
#else
static const struct of_device_id omap_aes_of_match[] = {
{},
};
static int omap_aes_get_res_of(struct omap_aes_dev *dd,
struct device *dev, struct resource *res)
{
return -EINVAL;
}
#endif
static int omap_aes_get_res_pdev(struct omap_aes_dev *dd,
struct platform_device *pdev, struct resource *res)
{
struct device *dev = &pdev->dev;
struct resource *r;
int err = 0;
/* Get the base address */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(dev, "no MEM resource info\n");
err = -ENODEV;
goto err;
}
memcpy(res, r, sizeof(*res));
/* Only OMAP2/3 can be non-DT */
dd->pdata = &omap_aes_pdata_omap2;
err:
return err;
}
static ssize_t fallback_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", aes_fallback_sz);
}
static ssize_t fallback_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
ssize_t status;
long value;
status = kstrtol(buf, 0, &value);
if (status)
return status;
/* HW accelerator only works with buffers > 9 */
if (value < 9) {
dev_err(dev, "minimum fallback size 9\n");
return -EINVAL;
}
aes_fallback_sz = value;
return size;
}
static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct omap_aes_dev *dd = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", dd->engine->queue.max_qlen);
}
static ssize_t queue_len_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct omap_aes_dev *dd;
ssize_t status;
long value;
unsigned long flags;
status = kstrtol(buf, 0, &value);
if (status)
return status;
if (value < 1)
return -EINVAL;
/*
* Changing the queue size in fly is safe, if size becomes smaller
* than current size, it will just not accept new entries until
* it has shrank enough.
*/
spin_lock_bh(&list_lock);
list_for_each_entry(dd, &dev_list, list) {
spin_lock_irqsave(&dd->lock, flags);
dd->engine->queue.max_qlen = value;
dd->aead_queue.base.max_qlen = value;
spin_unlock_irqrestore(&dd->lock, flags);
}
spin_unlock_bh(&list_lock);
return size;
}
static DEVICE_ATTR_RW(queue_len);
static DEVICE_ATTR_RW(fallback);
static struct attribute *omap_aes_attrs[] = {
&dev_attr_queue_len.attr,
&dev_attr_fallback.attr,
NULL,
};
static const struct attribute_group omap_aes_attr_group = {
.attrs = omap_aes_attrs,
};
static int omap_aes_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct omap_aes_dev *dd;
struct skcipher_engine_alg *algp;
struct aead_engine_alg *aalg;
struct resource res;
int err = -ENOMEM, i, j, irq = -1;
u32 reg;
dd = devm_kzalloc(dev, sizeof(struct omap_aes_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
goto err_data;
}
dd->dev = dev;
platform_set_drvdata(pdev, dd);
aead_init_queue(&dd->aead_queue, OMAP_AES_QUEUE_LENGTH);
err = (dev->of_node) ? omap_aes_get_res_of(dd, dev, &res) :
omap_aes_get_res_pdev(dd, pdev, &res);
if (err)
goto err_res;
dd->io_base = devm_ioremap_resource(dev, &res);
if (IS_ERR(dd->io_base)) {
err = PTR_ERR(dd->io_base);
goto err_res;
}
dd->phys_base = res.start;
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
pm_runtime_enable(dev);
err = pm_runtime_resume_and_get(dev);
if (err < 0) {
dev_err(dev, "%s: failed to get_sync(%d)\n",
__func__, err);
goto err_pm_disable;
}
omap_aes_dma_stop(dd);
reg = omap_aes_read(dd, AES_REG_REV(dd));
pm_runtime_put_sync(dev);
dev_info(dev, "OMAP AES hw accel rev: %u.%u\n",
(reg & dd->pdata->major_mask) >> dd->pdata->major_shift,
(reg & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd);
err = omap_aes_dma_init(dd);
if (err == -EPROBE_DEFER) {
goto err_irq;
} else if (err && AES_REG_IRQ_STATUS(dd) && AES_REG_IRQ_ENABLE(dd)) {
dd->pio_only = 1;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto err_irq;
}
err = devm_request_irq(dev, irq, omap_aes_irq, 0,
dev_name(dev), dd);
if (err) {
dev_err(dev, "Unable to grab omap-aes IRQ\n");
goto err_irq;
}
}
spin_lock_init(&dd->lock);
INIT_LIST_HEAD(&dd->list);
spin_lock_bh(&list_lock);
list_add_tail(&dd->list, &dev_list);
spin_unlock_bh(&list_lock);
/* Initialize crypto engine */
dd->engine = crypto_engine_alloc_init(dev, 1);
if (!dd->engine) {
err = -ENOMEM;
goto err_engine;
}
err = crypto_engine_start(dd->engine);
if (err)
goto err_engine;
for (i = 0; i < dd->pdata->algs_info_size; i++) {
if (!dd->pdata->algs_info[i].registered) {
for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
algp = &dd->pdata->algs_info[i].algs_list[j];
pr_debug("reg alg: %s\n", algp->base.base.cra_name);
err = crypto_engine_register_skcipher(algp);
if (err)
goto err_algs;
dd->pdata->algs_info[i].registered++;
}
}
}
if (dd->pdata->aead_algs_info &&
!dd->pdata->aead_algs_info->registered) {
for (i = 0; i < dd->pdata->aead_algs_info->size; i++) {
aalg = &dd->pdata->aead_algs_info->algs_list[i];
pr_debug("reg alg: %s\n", aalg->base.base.cra_name);
err = crypto_engine_register_aead(aalg);
if (err)
goto err_aead_algs;
dd->pdata->aead_algs_info->registered++;
}
}
err = sysfs_create_group(&dev->kobj, &omap_aes_attr_group);
if (err) {
dev_err(dev, "could not create sysfs device attrs\n");
goto err_aead_algs;
}
return 0;
err_aead_algs:
for (i = dd->pdata->aead_algs_info->registered - 1; i >= 0; i--) {
aalg = &dd->pdata->aead_algs_info->algs_list[i];
crypto_engine_unregister_aead(aalg);
}
err_algs:
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_engine_unregister_skcipher(
&dd->pdata->algs_info[i].algs_list[j]);
err_engine:
if (dd->engine)
crypto_engine_exit(dd->engine);
omap_aes_dma_cleanup(dd);
err_irq:
tasklet_kill(&dd->done_task);
err_pm_disable:
pm_runtime_disable(dev);
err_res:
dd = NULL;
err_data:
dev_err(dev, "initialization failed.\n");
return err;
}
static int omap_aes_remove(struct platform_device *pdev)
{
struct omap_aes_dev *dd = platform_get_drvdata(pdev);
struct aead_engine_alg *aalg;
int i, j;
spin_lock_bh(&list_lock);
list_del(&dd->list);
spin_unlock_bh(&list_lock);
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) {
crypto_engine_unregister_skcipher(
&dd->pdata->algs_info[i].algs_list[j]);
dd->pdata->algs_info[i].registered--;
}
for (i = dd->pdata->aead_algs_info->registered - 1; i >= 0; i--) {
aalg = &dd->pdata->aead_algs_info->algs_list[i];
crypto_engine_unregister_aead(aalg);
dd->pdata->aead_algs_info->registered--;
}
crypto_engine_exit(dd->engine);
tasklet_kill(&dd->done_task);
omap_aes_dma_cleanup(dd);
pm_runtime_disable(dd->dev);
sysfs_remove_group(&dd->dev->kobj, &omap_aes_attr_group);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int omap_aes_suspend(struct device *dev)
{
pm_runtime_put_sync(dev);
return 0;
}
static int omap_aes_resume(struct device *dev)
{
pm_runtime_get_sync(dev);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(omap_aes_pm_ops, omap_aes_suspend, omap_aes_resume);
static struct platform_driver omap_aes_driver = {
.probe = omap_aes_probe,
.remove = omap_aes_remove,
.driver = {
.name = "omap-aes",
.pm = &omap_aes_pm_ops,
.of_match_table = omap_aes_of_match,
},
};
module_platform_driver(omap_aes_driver);
MODULE_DESCRIPTION("OMAP AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Dmitry Kasatkin");
| linux-master | drivers/crypto/omap-aes.c |
// SPDX-License-Identifier: GPL-2.0
/*
* Cryptographic API.
*
* Support for ATMEL AES HW acceleration.
*
* Copyright (c) 2012 Eukréa Electromatique - ATMEL
* Author: Nicolas Royer <[email protected]>
*
* Some ideas are from omap-aes.c driver.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/mod_devicetable.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/gcm.h>
#include <crypto/xts.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include "atmel-aes-regs.h"
#include "atmel-authenc.h"
#define ATMEL_AES_PRIORITY 300
#define ATMEL_AES_BUFFER_ORDER 2
#define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
#define CFB8_BLOCK_SIZE 1
#define CFB16_BLOCK_SIZE 2
#define CFB32_BLOCK_SIZE 4
#define CFB64_BLOCK_SIZE 8
#define SIZE_IN_WORDS(x) ((x) >> 2)
/* AES flags */
/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
#define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
#define AES_FLAGS_GTAGEN AES_MR_GTAGEN
#define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
#define AES_FLAGS_ECB AES_MR_OPMOD_ECB
#define AES_FLAGS_CBC AES_MR_OPMOD_CBC
#define AES_FLAGS_OFB AES_MR_OPMOD_OFB
#define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
#define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
#define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
#define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
#define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
#define AES_FLAGS_CTR AES_MR_OPMOD_CTR
#define AES_FLAGS_GCM AES_MR_OPMOD_GCM
#define AES_FLAGS_XTS AES_MR_OPMOD_XTS
#define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
AES_FLAGS_ENCRYPT | \
AES_FLAGS_GTAGEN)
#define AES_FLAGS_BUSY BIT(3)
#define AES_FLAGS_DUMP_REG BIT(4)
#define AES_FLAGS_OWN_SHA BIT(5)
#define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
#define ATMEL_AES_QUEUE_LENGTH 50
#define ATMEL_AES_DMA_THRESHOLD 256
struct atmel_aes_caps {
bool has_dualbuff;
bool has_cfb64;
bool has_gcm;
bool has_xts;
bool has_authenc;
u32 max_burst_size;
};
struct atmel_aes_dev;
typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
struct atmel_aes_base_ctx {
struct atmel_aes_dev *dd;
atmel_aes_fn_t start;
int keylen;
u32 key[AES_KEYSIZE_256 / sizeof(u32)];
u16 block_size;
bool is_aead;
};
struct atmel_aes_ctx {
struct atmel_aes_base_ctx base;
};
struct atmel_aes_ctr_ctx {
struct atmel_aes_base_ctx base;
__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
size_t offset;
struct scatterlist src[2];
struct scatterlist dst[2];
u32 blocks;
};
struct atmel_aes_gcm_ctx {
struct atmel_aes_base_ctx base;
struct scatterlist src[2];
struct scatterlist dst[2];
__be32 j0[AES_BLOCK_SIZE / sizeof(u32)];
u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
__be32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
size_t textlen;
const __be32 *ghash_in;
__be32 *ghash_out;
atmel_aes_fn_t ghash_resume;
};
struct atmel_aes_xts_ctx {
struct atmel_aes_base_ctx base;
u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
struct crypto_skcipher *fallback_tfm;
};
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
struct atmel_aes_authenc_ctx {
struct atmel_aes_base_ctx base;
struct atmel_sha_authenc_ctx *auth;
};
#endif
struct atmel_aes_reqctx {
unsigned long mode;
u8 lastc[AES_BLOCK_SIZE];
struct skcipher_request fallback_req;
};
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
struct atmel_aes_authenc_reqctx {
struct atmel_aes_reqctx base;
struct scatterlist src[2];
struct scatterlist dst[2];
size_t textlen;
u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
/* auth_req MUST be place last. */
struct ahash_request auth_req;
};
#endif
struct atmel_aes_dma {
struct dma_chan *chan;
struct scatterlist *sg;
int nents;
unsigned int remainder;
unsigned int sg_len;
};
struct atmel_aes_dev {
struct list_head list;
unsigned long phys_base;
void __iomem *io_base;
struct crypto_async_request *areq;
struct atmel_aes_base_ctx *ctx;
bool is_async;
atmel_aes_fn_t resume;
atmel_aes_fn_t cpu_transfer_complete;
struct device *dev;
struct clk *iclk;
int irq;
unsigned long flags;
spinlock_t lock;
struct crypto_queue queue;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
size_t total;
size_t datalen;
u32 *data;
struct atmel_aes_dma src;
struct atmel_aes_dma dst;
size_t buflen;
void *buf;
struct scatterlist aligned_sg;
struct scatterlist *real_dst;
struct atmel_aes_caps caps;
u32 hw_version;
};
struct atmel_aes_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct atmel_aes_drv atmel_aes = {
.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
};
#ifdef VERBOSE_DEBUG
static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
{
switch (offset) {
case AES_CR:
return "CR";
case AES_MR:
return "MR";
case AES_ISR:
return "ISR";
case AES_IMR:
return "IMR";
case AES_IER:
return "IER";
case AES_IDR:
return "IDR";
case AES_KEYWR(0):
case AES_KEYWR(1):
case AES_KEYWR(2):
case AES_KEYWR(3):
case AES_KEYWR(4):
case AES_KEYWR(5):
case AES_KEYWR(6):
case AES_KEYWR(7):
snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
break;
case AES_IDATAR(0):
case AES_IDATAR(1):
case AES_IDATAR(2):
case AES_IDATAR(3):
snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
break;
case AES_ODATAR(0):
case AES_ODATAR(1):
case AES_ODATAR(2):
case AES_ODATAR(3):
snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
break;
case AES_IVR(0):
case AES_IVR(1):
case AES_IVR(2):
case AES_IVR(3):
snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
break;
case AES_AADLENR:
return "AADLENR";
case AES_CLENR:
return "CLENR";
case AES_GHASHR(0):
case AES_GHASHR(1):
case AES_GHASHR(2):
case AES_GHASHR(3):
snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
break;
case AES_TAGR(0):
case AES_TAGR(1):
case AES_TAGR(2):
case AES_TAGR(3):
snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
break;
case AES_CTRR:
return "CTRR";
case AES_GCMHR(0):
case AES_GCMHR(1):
case AES_GCMHR(2):
case AES_GCMHR(3):
snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
break;
case AES_EMR:
return "EMR";
case AES_TWR(0):
case AES_TWR(1):
case AES_TWR(2):
case AES_TWR(3):
snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
break;
case AES_ALPHAR(0):
case AES_ALPHAR(1):
case AES_ALPHAR(2):
case AES_ALPHAR(3):
snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
break;
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
/* Shared functions */
static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
{
u32 value = readl_relaxed(dd->io_base + offset);
#ifdef VERBOSE_DEBUG
if (dd->flags & AES_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
}
#endif /* VERBOSE_DEBUG */
return value;
}
static inline void atmel_aes_write(struct atmel_aes_dev *dd,
u32 offset, u32 value)
{
#ifdef VERBOSE_DEBUG
if (dd->flags & AES_FLAGS_DUMP_REG) {
char tmp[16];
dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
}
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, dd->io_base + offset);
}
static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
*value = atmel_aes_read(dd, offset);
}
static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
const u32 *value, int count)
{
for (; count--; value++, offset += 4)
atmel_aes_write(dd, offset, *value);
}
static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
void *value)
{
atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
}
static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
const void *value)
{
atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
}
static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
atmel_aes_fn_t resume)
{
u32 isr = atmel_aes_read(dd, AES_ISR);
if (unlikely(isr & AES_INT_DATARDY))
return resume(dd);
dd->resume = resume;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
return -EINPROGRESS;
}
static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
{
len &= block_size - 1;
return len ? block_size - len : 0;
}
static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
{
struct atmel_aes_dev *aes_dd;
spin_lock_bh(&atmel_aes.lock);
/* One AES IP per SoC. */
aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
struct atmel_aes_dev, list);
spin_unlock_bh(&atmel_aes.lock);
return aes_dd;
}
static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
{
int err;
err = clk_enable(dd->iclk);
if (err)
return err;
atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
return 0;
}
static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
{
return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
}
static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
{
int err;
err = atmel_aes_hw_init(dd);
if (err)
return err;
dd->hw_version = atmel_aes_get_version(dd);
dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
clk_disable(dd->iclk);
return 0;
}
static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
const struct atmel_aes_reqctx *rctx)
{
/* Clear all but persistent flags and set request flags. */
dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
}
static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
{
return (dd->flags & AES_FLAGS_ENCRYPT);
}
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
#endif
static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
{
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
if (req->cryptlen < ivsize)
return;
if (rctx->mode & AES_FLAGS_ENCRYPT)
scatterwalk_map_and_copy(req->iv, req->dst,
req->cryptlen - ivsize, ivsize, 0);
else
memcpy(req->iv, rctx->lastc, ivsize);
}
static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
return container_of(ctx, struct atmel_aes_ctr_ctx, base);
}
static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
{
struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
int i;
/*
* The CTR transfer works in fragments of data of maximum 1 MByte
* because of the 16 bit CTR counter embedded in the IP. When reaching
* here, ctx->blocks contains the number of blocks of the last fragment
* processed, there is no need to explicit cast it to u16.
*/
for (i = 0; i < ctx->blocks; i++)
crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
memcpy(req->iv, ctx->iv, ivsize);
}
static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
{
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
if (dd->ctx->is_aead)
atmel_aes_authenc_complete(dd, err);
#endif
clk_disable(dd->iclk);
dd->flags &= ~AES_FLAGS_BUSY;
if (!err && !dd->ctx->is_aead &&
(rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
atmel_aes_set_iv_as_last_ciphertext_block(dd);
else
atmel_aes_ctr_update_req_iv(dd);
}
if (dd->is_async)
crypto_request_complete(dd->areq, err);
tasklet_schedule(&dd->queue_task);
return err;
}
static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
const __be32 *iv, const u32 *key, int keylen)
{
u32 valmr = 0;
/* MR register must be set before IV registers */
if (keylen == AES_KEYSIZE_128)
valmr |= AES_MR_KEYSIZE_128;
else if (keylen == AES_KEYSIZE_192)
valmr |= AES_MR_KEYSIZE_192;
else
valmr |= AES_MR_KEYSIZE_256;
valmr |= dd->flags & AES_FLAGS_MODE_MASK;
if (use_dma) {
valmr |= AES_MR_SMOD_IDATAR0;
if (dd->caps.has_dualbuff)
valmr |= AES_MR_DUALBUFF;
} else {
valmr |= AES_MR_SMOD_AUTO;
}
atmel_aes_write(dd, AES_MR, valmr);
atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
atmel_aes_write_block(dd, AES_IVR(0), iv);
}
static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
const __be32 *iv)
{
atmel_aes_write_ctrl_key(dd, use_dma, iv,
dd->ctx->key, dd->ctx->keylen);
}
/* CPU transfer */
static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
{
int err = 0;
u32 isr;
for (;;) {
atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
dd->data += 4;
dd->datalen -= AES_BLOCK_SIZE;
if (dd->datalen < AES_BLOCK_SIZE)
break;
atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
isr = atmel_aes_read(dd, AES_ISR);
if (!(isr & AES_INT_DATARDY)) {
dd->resume = atmel_aes_cpu_transfer;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
return -EINPROGRESS;
}
}
if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
dd->buf, dd->total))
err = -EINVAL;
if (err)
return atmel_aes_complete(dd, err);
return dd->cpu_transfer_complete(dd);
}
static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
struct scatterlist *src,
struct scatterlist *dst,
size_t len,
atmel_aes_fn_t resume)
{
size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
if (unlikely(len == 0))
return -EINVAL;
sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
dd->total = len;
dd->real_dst = dst;
dd->cpu_transfer_complete = resume;
dd->datalen = len + padlen;
dd->data = (u32 *)dd->buf;
atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
}
/* DMA transfer */
static void atmel_aes_dma_callback(void *data);
static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
struct scatterlist *sg,
size_t len,
struct atmel_aes_dma *dma)
{
int nents;
if (!IS_ALIGNED(len, dd->ctx->block_size))
return false;
for (nents = 0; sg; sg = sg_next(sg), ++nents) {
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
return false;
if (len <= sg->length) {
if (!IS_ALIGNED(len, dd->ctx->block_size))
return false;
dma->nents = nents+1;
dma->remainder = sg->length - len;
sg->length = len;
return true;
}
if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
return false;
len -= sg->length;
}
return false;
}
static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
{
struct scatterlist *sg = dma->sg;
int nents = dma->nents;
if (!dma->remainder)
return;
while (--nents > 0 && sg)
sg = sg_next(sg);
if (!sg)
return;
sg->length += dma->remainder;
}
static int atmel_aes_map(struct atmel_aes_dev *dd,
struct scatterlist *src,
struct scatterlist *dst,
size_t len)
{
bool src_aligned, dst_aligned;
size_t padlen;
dd->total = len;
dd->src.sg = src;
dd->dst.sg = dst;
dd->real_dst = dst;
src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
if (src == dst)
dst_aligned = src_aligned;
else
dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
if (!src_aligned || !dst_aligned) {
padlen = atmel_aes_padlen(len, dd->ctx->block_size);
if (dd->buflen < len + padlen)
return -ENOMEM;
if (!src_aligned) {
sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
dd->src.sg = &dd->aligned_sg;
dd->src.nents = 1;
dd->src.remainder = 0;
}
if (!dst_aligned) {
dd->dst.sg = &dd->aligned_sg;
dd->dst.nents = 1;
dd->dst.remainder = 0;
}
sg_init_table(&dd->aligned_sg, 1);
sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
}
if (dd->src.sg == dd->dst.sg) {
dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_BIDIRECTIONAL);
dd->dst.sg_len = dd->src.sg_len;
if (!dd->src.sg_len)
return -EFAULT;
} else {
dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_TO_DEVICE);
if (!dd->src.sg_len)
return -EFAULT;
dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
DMA_FROM_DEVICE);
if (!dd->dst.sg_len) {
dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_TO_DEVICE);
return -EFAULT;
}
}
return 0;
}
static void atmel_aes_unmap(struct atmel_aes_dev *dd)
{
if (dd->src.sg == dd->dst.sg) {
dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_BIDIRECTIONAL);
if (dd->src.sg != &dd->aligned_sg)
atmel_aes_restore_sg(&dd->src);
} else {
dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
DMA_FROM_DEVICE);
if (dd->dst.sg != &dd->aligned_sg)
atmel_aes_restore_sg(&dd->dst);
dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
DMA_TO_DEVICE);
if (dd->src.sg != &dd->aligned_sg)
atmel_aes_restore_sg(&dd->src);
}
if (dd->dst.sg == &dd->aligned_sg)
sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
dd->buf, dd->total);
}
static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
enum dma_slave_buswidth addr_width,
enum dma_transfer_direction dir,
u32 maxburst)
{
struct dma_async_tx_descriptor *desc;
struct dma_slave_config config;
dma_async_tx_callback callback;
struct atmel_aes_dma *dma;
int err;
memset(&config, 0, sizeof(config));
config.src_addr_width = addr_width;
config.dst_addr_width = addr_width;
config.src_maxburst = maxburst;
config.dst_maxburst = maxburst;
switch (dir) {
case DMA_MEM_TO_DEV:
dma = &dd->src;
callback = NULL;
config.dst_addr = dd->phys_base + AES_IDATAR(0);
break;
case DMA_DEV_TO_MEM:
dma = &dd->dst;
callback = atmel_aes_dma_callback;
config.src_addr = dd->phys_base + AES_ODATAR(0);
break;
default:
return -EINVAL;
}
err = dmaengine_slave_config(dma->chan, &config);
if (err)
return err;
desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc)
return -ENOMEM;
desc->callback = callback;
desc->callback_param = dd;
dmaengine_submit(desc);
dma_async_issue_pending(dma->chan);
return 0;
}
static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
struct scatterlist *src,
struct scatterlist *dst,
size_t len,
atmel_aes_fn_t resume)
{
enum dma_slave_buswidth addr_width;
u32 maxburst;
int err;
switch (dd->ctx->block_size) {
case CFB8_BLOCK_SIZE:
addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
maxburst = 1;
break;
case CFB16_BLOCK_SIZE:
addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
maxburst = 1;
break;
case CFB32_BLOCK_SIZE:
case CFB64_BLOCK_SIZE:
addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
maxburst = 1;
break;
case AES_BLOCK_SIZE:
addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
maxburst = dd->caps.max_burst_size;
break;
default:
err = -EINVAL;
goto exit;
}
err = atmel_aes_map(dd, src, dst, len);
if (err)
goto exit;
dd->resume = resume;
/* Set output DMA transfer first */
err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
maxburst);
if (err)
goto unmap;
/* Then set input DMA transfer */
err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
maxburst);
if (err)
goto output_transfer_stop;
return -EINPROGRESS;
output_transfer_stop:
dmaengine_terminate_sync(dd->dst.chan);
unmap:
atmel_aes_unmap(dd);
exit:
return atmel_aes_complete(dd, err);
}
static void atmel_aes_dma_callback(void *data)
{
struct atmel_aes_dev *dd = data;
atmel_aes_unmap(dd);
dd->is_async = true;
(void)dd->resume(dd);
}
static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
struct crypto_async_request *new_areq)
{
struct crypto_async_request *areq, *backlog;
struct atmel_aes_base_ctx *ctx;
unsigned long flags;
bool start_async;
int err, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (new_areq)
ret = crypto_enqueue_request(&dd->queue, new_areq);
if (dd->flags & AES_FLAGS_BUSY) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
areq = crypto_dequeue_request(&dd->queue);
if (areq)
dd->flags |= AES_FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!areq)
return ret;
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(areq->tfm);
dd->areq = areq;
dd->ctx = ctx;
start_async = (areq != new_areq);
dd->is_async = start_async;
/* WARNING: ctx->start() MAY change dd->is_async. */
err = ctx->start(dd);
return (start_async) ? ret : err;
}
/* AES async block ciphers */
static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
{
return atmel_aes_complete(dd, 0);
}
static int atmel_aes_start(struct atmel_aes_dev *dd)
{
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
dd->ctx->block_size != AES_BLOCK_SIZE);
int err;
atmel_aes_set_mode(dd, rctx);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
if (use_dma)
return atmel_aes_dma_start(dd, req->src, req->dst,
req->cryptlen,
atmel_aes_transfer_complete);
return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
atmel_aes_transfer_complete);
}
static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
{
struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct scatterlist *src, *dst;
size_t datalen;
u32 ctr;
u16 start, end;
bool use_dma, fragmented = false;
/* Check for transfer completion. */
ctx->offset += dd->total;
if (ctx->offset >= req->cryptlen)
return atmel_aes_transfer_complete(dd);
/* Compute data length. */
datalen = req->cryptlen - ctx->offset;
ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
ctr = be32_to_cpu(ctx->iv[3]);
/* Check 16bit counter overflow. */
start = ctr & 0xffff;
end = start + ctx->blocks - 1;
if (ctx->blocks >> 16 || end < start) {
ctr |= 0xffff;
datalen = AES_BLOCK_SIZE * (0x10000 - start);
fragmented = true;
}
use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
/* Jump to offset. */
src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
dst = ((req->src == req->dst) ? src :
scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
/* Configure hardware. */
atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
if (unlikely(fragmented)) {
/*
* Increment the counter manually to cope with the hardware
* counter overflow.
*/
ctx->iv[3] = cpu_to_be32(ctr);
crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
}
if (use_dma)
return atmel_aes_dma_start(dd, src, dst, datalen,
atmel_aes_ctr_transfer);
return atmel_aes_cpu_start(dd, src, dst, datalen,
atmel_aes_ctr_transfer);
}
static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
{
struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
int err;
atmel_aes_set_mode(dd, rctx);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
ctx->offset = 0;
dd->total = 0;
return atmel_aes_ctr_transfer(dd);
}
static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
{
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
req->base.complete, req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
req->cryptlen, req->iv);
return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
crypto_skcipher_decrypt(&rctx->fallback_req);
}
static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct atmel_aes_reqctx *rctx;
u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
if (opmode == AES_FLAGS_XTS) {
if (req->cryptlen < XTS_BLOCK_SIZE)
return -EINVAL;
if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
return atmel_aes_xts_fallback(req,
mode & AES_FLAGS_ENCRYPT);
}
/*
* ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
* to have a positve integer length.
*/
if (!req->cryptlen && opmode != AES_FLAGS_XTS)
return 0;
if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
!IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
return -EINVAL;
switch (mode & AES_FLAGS_OPMODE_MASK) {
case AES_FLAGS_CFB8:
ctx->block_size = CFB8_BLOCK_SIZE;
break;
case AES_FLAGS_CFB16:
ctx->block_size = CFB16_BLOCK_SIZE;
break;
case AES_FLAGS_CFB32:
ctx->block_size = CFB32_BLOCK_SIZE;
break;
case AES_FLAGS_CFB64:
ctx->block_size = CFB64_BLOCK_SIZE;
break;
default:
ctx->block_size = AES_BLOCK_SIZE;
break;
}
ctx->is_aead = false;
rctx = skcipher_request_ctx(req);
rctx->mode = mode;
if (opmode != AES_FLAGS_ECB &&
!(mode & AES_FLAGS_ENCRYPT)) {
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
if (req->cryptlen >= ivsize)
scatterwalk_map_and_copy(rctx->lastc, req->src,
req->cryptlen - ivsize,
ivsize, 0);
}
return atmel_aes_handle_queue(ctx->dd, &req->base);
}
static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
if (keylen != AES_KEYSIZE_128 &&
keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_ECB);
}
static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CBC);
}
static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_OFB);
}
static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB128);
}
static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB64);
}
static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB32);
}
static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB16);
}
static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CFB8);
}
static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_CTR);
}
static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
{
struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct atmel_aes_dev *dd;
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_start;
return 0;
}
static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
{
struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct atmel_aes_dev *dd;
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_ctr_start;
return 0;
}
static struct skcipher_alg aes_algs[] = {
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "atmel-ecb-aes",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ecb_encrypt,
.decrypt = atmel_aes_ecb_decrypt,
},
{
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "atmel-cbc-aes",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cbc_encrypt,
.decrypt = atmel_aes_cbc_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "ofb(aes)",
.base.cra_driver_name = "atmel-ofb-aes",
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ofb_encrypt,
.decrypt = atmel_aes_ofb_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "cfb(aes)",
.base.cra_driver_name = "atmel-cfb-aes",
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb_encrypt,
.decrypt = atmel_aes_cfb_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "cfb32(aes)",
.base.cra_driver_name = "atmel-cfb32-aes",
.base.cra_blocksize = CFB32_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb32_encrypt,
.decrypt = atmel_aes_cfb32_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "cfb16(aes)",
.base.cra_driver_name = "atmel-cfb16-aes",
.base.cra_blocksize = CFB16_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb16_encrypt,
.decrypt = atmel_aes_cfb16_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "cfb8(aes)",
.base.cra_driver_name = "atmel-cfb8-aes",
.base.cra_blocksize = CFB8_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb8_encrypt,
.decrypt = atmel_aes_cfb8_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
{
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "atmel-ctr-aes",
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
.init = atmel_aes_ctr_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ctr_encrypt,
.decrypt = atmel_aes_ctr_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
};
static struct skcipher_alg aes_cfb64_alg = {
.base.cra_name = "cfb64(aes)",
.base.cra_driver_name = "atmel-cfb64-aes",
.base.cra_blocksize = CFB64_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.init = atmel_aes_init_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb64_encrypt,
.decrypt = atmel_aes_cfb64_decrypt,
.ivsize = AES_BLOCK_SIZE,
};
/* gcm aead functions */
static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
const u32 *data, size_t datalen,
const __be32 *ghash_in, __be32 *ghash_out,
atmel_aes_fn_t resume);
static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
return container_of(ctx, struct atmel_aes_gcm_ctx, base);
}
static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
const u32 *data, size_t datalen,
const __be32 *ghash_in, __be32 *ghash_out,
atmel_aes_fn_t resume)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
dd->data = (u32 *)data;
dd->datalen = datalen;
ctx->ghash_in = ghash_in;
ctx->ghash_out = ghash_out;
ctx->ghash_resume = resume;
atmel_aes_write_ctrl(dd, false, NULL);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
}
static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
/* Set the data length. */
atmel_aes_write(dd, AES_AADLENR, dd->total);
atmel_aes_write(dd, AES_CLENR, 0);
/* If needed, overwrite the GCM Intermediate Hash Word Registers */
if (ctx->ghash_in)
atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
return atmel_aes_gcm_ghash_finalize(dd);
}
static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
u32 isr;
/* Write data into the Input Data Registers. */
while (dd->datalen > 0) {
atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
dd->data += 4;
dd->datalen -= AES_BLOCK_SIZE;
isr = atmel_aes_read(dd, AES_ISR);
if (!(isr & AES_INT_DATARDY)) {
dd->resume = atmel_aes_gcm_ghash_finalize;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
return -EINPROGRESS;
}
}
/* Read the computed hash from GHASHRx. */
atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
return ctx->ghash_resume(dd);
}
static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
size_t ivsize = crypto_aead_ivsize(tfm);
size_t datalen, padlen;
const void *iv = req->iv;
u8 *data = dd->buf;
int err;
atmel_aes_set_mode(dd, rctx);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
if (likely(ivsize == GCM_AES_IV_SIZE)) {
memcpy(ctx->j0, iv, ivsize);
ctx->j0[3] = cpu_to_be32(1);
return atmel_aes_gcm_process(dd);
}
padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
datalen = ivsize + padlen + AES_BLOCK_SIZE;
if (datalen > dd->buflen)
return atmel_aes_complete(dd, -EINVAL);
memcpy(data, iv, ivsize);
memset(data + ivsize, 0, padlen + sizeof(u64));
((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
NULL, ctx->j0, atmel_aes_gcm_process);
}
static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
bool enc = atmel_aes_is_encrypt(dd);
u32 authsize;
/* Compute text length. */
authsize = crypto_aead_authsize(tfm);
ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
/*
* According to tcrypt test suite, the GCM Automatic Tag Generation
* fails when both the message and its associated data are empty.
*/
if (likely(req->assoclen != 0 || ctx->textlen != 0))
dd->flags |= AES_FLAGS_GTAGEN;
atmel_aes_write_ctrl(dd, false, NULL);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
}
static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
__be32 j0_lsw, *j0 = ctx->j0;
size_t padlen;
/* Write incr32(J0) into IV. */
j0_lsw = j0[3];
be32_add_cpu(&j0[3], 1);
atmel_aes_write_block(dd, AES_IVR(0), j0);
j0[3] = j0_lsw;
/* Set aad and text lengths. */
atmel_aes_write(dd, AES_AADLENR, req->assoclen);
atmel_aes_write(dd, AES_CLENR, ctx->textlen);
/* Check whether AAD are present. */
if (unlikely(req->assoclen == 0)) {
dd->datalen = 0;
return atmel_aes_gcm_data(dd);
}
/* Copy assoc data and add padding. */
padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
if (unlikely(req->assoclen + padlen > dd->buflen))
return atmel_aes_complete(dd, -EINVAL);
sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
/* Write assoc data into the Input Data register. */
dd->data = (u32 *)dd->buf;
dd->datalen = req->assoclen + padlen;
return atmel_aes_gcm_data(dd);
}
static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
struct scatterlist *src, *dst;
u32 isr, mr;
/* Write AAD first. */
while (dd->datalen > 0) {
atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
dd->data += 4;
dd->datalen -= AES_BLOCK_SIZE;
isr = atmel_aes_read(dd, AES_ISR);
if (!(isr & AES_INT_DATARDY)) {
dd->resume = atmel_aes_gcm_data;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
return -EINPROGRESS;
}
}
/* GMAC only. */
if (unlikely(ctx->textlen == 0))
return atmel_aes_gcm_tag_init(dd);
/* Prepare src and dst scatter lists to transfer cipher/plain texts */
src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
dst = ((req->src == req->dst) ? src :
scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
if (use_dma) {
/* Update the Mode Register for DMA transfers. */
mr = atmel_aes_read(dd, AES_MR);
mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
mr |= AES_MR_SMOD_IDATAR0;
if (dd->caps.has_dualbuff)
mr |= AES_MR_DUALBUFF;
atmel_aes_write(dd, AES_MR, mr);
return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
atmel_aes_gcm_tag_init);
}
return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
atmel_aes_gcm_tag_init);
}
static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
__be64 *data = dd->buf;
if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
dd->resume = atmel_aes_gcm_tag_init;
atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
return -EINPROGRESS;
}
return atmel_aes_gcm_finalize(dd);
}
/* Read the GCM Intermediate Hash Word Registers. */
atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
data[0] = cpu_to_be64(req->assoclen * 8);
data[1] = cpu_to_be64(ctx->textlen * 8);
return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
}
static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
unsigned long flags;
/*
* Change mode to CTR to complete the tag generation.
* Use J0 as Initialization Vector.
*/
flags = dd->flags;
dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
dd->flags |= AES_FLAGS_CTR;
atmel_aes_write_ctrl(dd, false, ctx->j0);
dd->flags = flags;
atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
}
static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
{
struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
struct aead_request *req = aead_request_cast(dd->areq);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
bool enc = atmel_aes_is_encrypt(dd);
u32 offset, authsize, itag[4], *otag = ctx->tag;
int err;
/* Read the computed tag. */
if (likely(dd->flags & AES_FLAGS_GTAGEN))
atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
else
atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
offset = req->assoclen + ctx->textlen;
authsize = crypto_aead_authsize(tfm);
if (enc) {
scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
err = 0;
} else {
scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
}
return atmel_aes_complete(dd, err);
}
static int atmel_aes_gcm_crypt(struct aead_request *req,
unsigned long mode)
{
struct atmel_aes_base_ctx *ctx;
struct atmel_aes_reqctx *rctx;
ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
ctx->block_size = AES_BLOCK_SIZE;
ctx->is_aead = true;
rctx = aead_request_ctx(req);
rctx->mode = AES_FLAGS_GCM | mode;
return atmel_aes_handle_queue(ctx->dd, &req->base);
}
static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
if (keylen != AES_KEYSIZE_256 &&
keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_128)
return -EINVAL;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
return crypto_gcm_check_authsize(authsize);
}
static int atmel_aes_gcm_encrypt(struct aead_request *req)
{
return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
}
static int atmel_aes_gcm_decrypt(struct aead_request *req)
{
return atmel_aes_gcm_crypt(req, 0);
}
static int atmel_aes_gcm_init(struct crypto_aead *tfm)
{
struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
struct atmel_aes_dev *dd;
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_gcm_start;
return 0;
}
static struct aead_alg aes_gcm_alg = {
.setkey = atmel_aes_gcm_setkey,
.setauthsize = atmel_aes_gcm_setauthsize,
.encrypt = atmel_aes_gcm_encrypt,
.decrypt = atmel_aes_gcm_decrypt,
.init = atmel_aes_gcm_init,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "atmel-gcm-aes",
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
},
};
/* xts functions */
static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
{
return container_of(ctx, struct atmel_aes_xts_ctx, base);
}
static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
{
struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
struct skcipher_request *req = skcipher_request_cast(dd->areq);
struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
unsigned long flags;
int err;
atmel_aes_set_mode(dd, rctx);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
/* Compute the tweak value from req->iv with ecb(aes). */
flags = dd->flags;
dd->flags &= ~AES_FLAGS_MODE_MASK;
dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
atmel_aes_write_ctrl_key(dd, false, NULL,
ctx->key2, ctx->base.keylen);
dd->flags = flags;
atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
}
static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
{
struct skcipher_request *req = skcipher_request_cast(dd->areq);
bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
u8 *tweak_bytes = (u8 *)tweak;
int i;
/* Read the computed ciphered tweak value. */
atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
/*
* Hardware quirk:
* the order of the ciphered tweak bytes need to be reversed before
* writing them into the ODATARx registers.
*/
for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
/* Process the data. */
atmel_aes_write_ctrl(dd, use_dma, NULL);
atmel_aes_write_block(dd, AES_TWR(0), tweak);
atmel_aes_write_block(dd, AES_ALPHAR(0), one);
if (use_dma)
return atmel_aes_dma_start(dd, req->src, req->dst,
req->cryptlen,
atmel_aes_transfer_complete);
return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
atmel_aes_transfer_complete);
}
static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int err;
err = xts_verify_key(tfm, key, keylen);
if (err)
return err;
crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
if (err)
return err;
memcpy(ctx->base.key, key, keylen/2);
memcpy(ctx->key2, key + keylen/2, keylen/2);
ctx->base.keylen = keylen/2;
return 0;
}
static int atmel_aes_xts_encrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_xts_decrypt(struct skcipher_request *req)
{
return atmel_aes_crypt(req, AES_FLAGS_XTS);
}
static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
{
struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
struct atmel_aes_dev *dd;
const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_tfm))
return PTR_ERR(ctx->fallback_tfm);
crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
crypto_skcipher_reqsize(ctx->fallback_tfm));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_xts_start;
return 0;
}
static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
{
struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(ctx->fallback_tfm);
}
static struct skcipher_alg aes_xts_alg = {
.base.cra_name = "xts(aes)",
.base.cra_driver_name = "atmel-xts-aes",
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
.base.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_xts_setkey,
.encrypt = atmel_aes_xts_encrypt,
.decrypt = atmel_aes_xts_decrypt,
.init = atmel_aes_xts_init_tfm,
.exit = atmel_aes_xts_exit_tfm,
};
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
/* authenc aead functions */
static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
bool is_async);
static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
bool is_async);
static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
bool is_async);
static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
if (err && (dd->flags & AES_FLAGS_OWN_SHA))
atmel_sha_authenc_abort(&rctx->auth_req);
dd->flags &= ~AES_FLAGS_OWN_SHA;
}
static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
int err;
atmel_aes_set_mode(dd, &rctx->base);
err = atmel_aes_hw_init(dd);
if (err)
return atmel_aes_complete(dd, err);
return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
atmel_aes_authenc_init, dd);
}
static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
bool is_async)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
if (is_async)
dd->is_async = true;
if (err)
return atmel_aes_complete(dd, err);
/* If here, we've got the ownership of the SHA device. */
dd->flags |= AES_FLAGS_OWN_SHA;
/* Configure the SHA device. */
return atmel_sha_authenc_init(&rctx->auth_req,
req->src, req->assoclen,
rctx->textlen,
atmel_aes_authenc_transfer, dd);
}
static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
bool is_async)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
bool enc = atmel_aes_is_encrypt(dd);
struct scatterlist *src, *dst;
__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
u32 emr;
if (is_async)
dd->is_async = true;
if (err)
return atmel_aes_complete(dd, err);
/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
dst = src;
if (req->src != req->dst)
dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
/* Configure the AES device. */
memcpy(iv, req->iv, sizeof(iv));
/*
* Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
* 'true' even if the data transfer is actually performed by the CPU (so
* not by the DMA) because we must force the AES_MR_SMOD bitfield to the
* value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
* must be set to *_MR_SMOD_IDATAR0.
*/
atmel_aes_write_ctrl(dd, true, iv);
emr = AES_EMR_PLIPEN;
if (!enc)
emr |= AES_EMR_PLIPD;
atmel_aes_write(dd, AES_EMR, emr);
/* Transfer data. */
return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
atmel_aes_authenc_digest);
}
static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
/* atmel_sha_authenc_final() releases the SHA device. */
dd->flags &= ~AES_FLAGS_OWN_SHA;
return atmel_sha_authenc_final(&rctx->auth_req,
rctx->digest, sizeof(rctx->digest),
atmel_aes_authenc_final, dd);
}
static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
bool is_async)
{
struct aead_request *req = aead_request_cast(dd->areq);
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
bool enc = atmel_aes_is_encrypt(dd);
u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
u32 offs, authsize;
if (is_async)
dd->is_async = true;
if (err)
goto complete;
offs = req->assoclen + rctx->textlen;
authsize = crypto_aead_authsize(tfm);
if (enc) {
scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
} else {
scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
if (crypto_memneq(idigest, odigest, authsize))
err = -EBADMSG;
}
complete:
return atmel_aes_complete(dd, err);
}
static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_authenc_keys keys;
int err;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
if (keys.enckeylen > sizeof(ctx->base.key))
goto badkey;
/* Save auth key. */
err = atmel_sha_authenc_setkey(ctx->auth,
keys.authkey, keys.authkeylen,
crypto_aead_get_flags(tfm));
if (err) {
memzero_explicit(&keys, sizeof(keys));
return err;
}
/* Save enc key. */
ctx->base.keylen = keys.enckeylen;
memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
memzero_explicit(&keys, sizeof(keys));
return 0;
badkey:
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
unsigned long auth_mode)
{
struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
struct atmel_aes_dev *dd;
dd = atmel_aes_dev_alloc(&ctx->base);
if (!dd)
return -ENODEV;
ctx->auth = atmel_sha_authenc_spawn(auth_mode);
if (IS_ERR(ctx->auth))
return PTR_ERR(ctx->auth);
crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
auth_reqsize));
ctx->base.dd = dd;
ctx->base.start = atmel_aes_authenc_start;
return 0;
}
static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
}
static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
}
static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
}
static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
}
static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
{
return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
}
static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
{
struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
atmel_sha_authenc_free(ctx->auth);
}
static int atmel_aes_authenc_crypt(struct aead_request *req,
unsigned long mode)
{
struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
u32 authsize = crypto_aead_authsize(tfm);
bool enc = (mode & AES_FLAGS_ENCRYPT);
/* Compute text length. */
if (!enc && req->cryptlen < authsize)
return -EINVAL;
rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
/*
* Currently, empty messages are not supported yet:
* the SHA auto-padding can be used only on non-empty messages.
* Hence a special case needs to be implemented for empty message.
*/
if (!rctx->textlen && !req->assoclen)
return -EINVAL;
rctx->base.mode = mode;
ctx->block_size = AES_BLOCK_SIZE;
ctx->is_aead = true;
return atmel_aes_handle_queue(ctx->dd, &req->base);
}
static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
{
return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
}
static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
{
return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
}
static struct aead_alg aes_authenc_algs[] = {
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha1_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha224_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha256_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha384_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
{
.setkey = atmel_aes_authenc_setkey,
.encrypt = atmel_aes_authenc_cbc_aes_encrypt,
.decrypt = atmel_aes_authenc_cbc_aes_decrypt,
.init = atmel_aes_authenc_hmac_sha512_init_tfm,
.exit = atmel_aes_authenc_exit_tfm,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
},
},
};
#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
/* Probe functions */
static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
{
dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
dd->buflen = ATMEL_AES_BUFFER_SIZE;
dd->buflen &= ~(AES_BLOCK_SIZE - 1);
if (!dd->buf) {
dev_err(dd->dev, "unable to alloc pages.\n");
return -ENOMEM;
}
return 0;
}
static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
{
free_page((unsigned long)dd->buf);
}
static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
{
int ret;
/* Try to grab 2 DMA channels */
dd->src.chan = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->src.chan)) {
ret = PTR_ERR(dd->src.chan);
goto err_dma_in;
}
dd->dst.chan = dma_request_chan(dd->dev, "rx");
if (IS_ERR(dd->dst.chan)) {
ret = PTR_ERR(dd->dst.chan);
goto err_dma_out;
}
return 0;
err_dma_out:
dma_release_channel(dd->src.chan);
err_dma_in:
dev_err(dd->dev, "no DMA channel available\n");
return ret;
}
static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
{
dma_release_channel(dd->dst.chan);
dma_release_channel(dd->src.chan);
}
static void atmel_aes_queue_task(unsigned long data)
{
struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
atmel_aes_handle_queue(dd, NULL);
}
static void atmel_aes_done_task(unsigned long data)
{
struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
dd->is_async = true;
(void)dd->resume(dd);
}
static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
{
struct atmel_aes_dev *aes_dd = dev_id;
u32 reg;
reg = atmel_aes_read(aes_dd, AES_ISR);
if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
atmel_aes_write(aes_dd, AES_IDR, reg);
if (AES_FLAGS_BUSY & aes_dd->flags)
tasklet_schedule(&aes_dd->done_task);
else
dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
{
int i;
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
if (dd->caps.has_authenc)
for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
crypto_unregister_aead(&aes_authenc_algs[i]);
#endif
if (dd->caps.has_xts)
crypto_unregister_skcipher(&aes_xts_alg);
if (dd->caps.has_gcm)
crypto_unregister_aead(&aes_gcm_alg);
if (dd->caps.has_cfb64)
crypto_unregister_skcipher(&aes_cfb64_alg);
for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
crypto_unregister_skcipher(&aes_algs[i]);
}
static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
{
alg->cra_flags |= CRYPTO_ALG_ASYNC;
alg->cra_alignmask = 0xf;
alg->cra_priority = ATMEL_AES_PRIORITY;
alg->cra_module = THIS_MODULE;
}
static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
{
int err, i, j;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
atmel_aes_crypto_alg_init(&aes_algs[i].base);
err = crypto_register_skcipher(&aes_algs[i]);
if (err)
goto err_aes_algs;
}
if (dd->caps.has_cfb64) {
atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
err = crypto_register_skcipher(&aes_cfb64_alg);
if (err)
goto err_aes_cfb64_alg;
}
if (dd->caps.has_gcm) {
atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
err = crypto_register_aead(&aes_gcm_alg);
if (err)
goto err_aes_gcm_alg;
}
if (dd->caps.has_xts) {
atmel_aes_crypto_alg_init(&aes_xts_alg.base);
err = crypto_register_skcipher(&aes_xts_alg);
if (err)
goto err_aes_xts_alg;
}
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
if (dd->caps.has_authenc) {
for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
err = crypto_register_aead(&aes_authenc_algs[i]);
if (err)
goto err_aes_authenc_alg;
}
}
#endif
return 0;
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
/* i = ARRAY_SIZE(aes_authenc_algs); */
err_aes_authenc_alg:
for (j = 0; j < i; j++)
crypto_unregister_aead(&aes_authenc_algs[j]);
crypto_unregister_skcipher(&aes_xts_alg);
#endif
err_aes_xts_alg:
crypto_unregister_aead(&aes_gcm_alg);
err_aes_gcm_alg:
crypto_unregister_skcipher(&aes_cfb64_alg);
err_aes_cfb64_alg:
i = ARRAY_SIZE(aes_algs);
err_aes_algs:
for (j = 0; j < i; j++)
crypto_unregister_skcipher(&aes_algs[j]);
return err;
}
static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
{
dd->caps.has_dualbuff = 0;
dd->caps.has_cfb64 = 0;
dd->caps.has_gcm = 0;
dd->caps.has_xts = 0;
dd->caps.has_authenc = 0;
dd->caps.max_burst_size = 1;
/* keep only major version number */
switch (dd->hw_version & 0xff0) {
case 0x700:
case 0x600:
case 0x500:
dd->caps.has_dualbuff = 1;
dd->caps.has_cfb64 = 1;
dd->caps.has_gcm = 1;
dd->caps.has_xts = 1;
dd->caps.has_authenc = 1;
dd->caps.max_burst_size = 4;
break;
case 0x200:
dd->caps.has_dualbuff = 1;
dd->caps.has_cfb64 = 1;
dd->caps.has_gcm = 1;
dd->caps.max_burst_size = 4;
break;
case 0x130:
dd->caps.has_dualbuff = 1;
dd->caps.has_cfb64 = 1;
dd->caps.max_burst_size = 4;
break;
case 0x120:
break;
default:
dev_warn(dd->dev,
"Unmanaged aes version, set minimum capabilities\n");
break;
}
}
static const struct of_device_id atmel_aes_dt_ids[] = {
{ .compatible = "atmel,at91sam9g46-aes" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
static int atmel_aes_probe(struct platform_device *pdev)
{
struct atmel_aes_dev *aes_dd;
struct device *dev = &pdev->dev;
struct resource *aes_res;
int err;
aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
if (!aes_dd)
return -ENOMEM;
aes_dd->dev = dev;
platform_set_drvdata(pdev, aes_dd);
INIT_LIST_HEAD(&aes_dd->list);
spin_lock_init(&aes_dd->lock);
tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
(unsigned long)aes_dd);
tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
(unsigned long)aes_dd);
crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
if (IS_ERR(aes_dd->io_base)) {
err = PTR_ERR(aes_dd->io_base);
goto err_tasklet_kill;
}
aes_dd->phys_base = aes_res->start;
/* Get the IRQ */
aes_dd->irq = platform_get_irq(pdev, 0);
if (aes_dd->irq < 0) {
err = aes_dd->irq;
goto err_tasklet_kill;
}
err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
IRQF_SHARED, "atmel-aes", aes_dd);
if (err) {
dev_err(dev, "unable to request aes irq.\n");
goto err_tasklet_kill;
}
/* Initializing the clock */
aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
if (IS_ERR(aes_dd->iclk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(aes_dd->iclk);
goto err_tasklet_kill;
}
err = clk_prepare(aes_dd->iclk);
if (err)
goto err_tasklet_kill;
err = atmel_aes_hw_version_init(aes_dd);
if (err)
goto err_iclk_unprepare;
atmel_aes_get_cap(aes_dd);
#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
err = -EPROBE_DEFER;
goto err_iclk_unprepare;
}
#endif
err = atmel_aes_buff_init(aes_dd);
if (err)
goto err_iclk_unprepare;
err = atmel_aes_dma_init(aes_dd);
if (err)
goto err_buff_cleanup;
spin_lock(&atmel_aes.lock);
list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
spin_unlock(&atmel_aes.lock);
err = atmel_aes_register_algs(aes_dd);
if (err)
goto err_algs;
dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
dma_chan_name(aes_dd->src.chan),
dma_chan_name(aes_dd->dst.chan));
return 0;
err_algs:
spin_lock(&atmel_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&atmel_aes.lock);
atmel_aes_dma_cleanup(aes_dd);
err_buff_cleanup:
atmel_aes_buff_cleanup(aes_dd);
err_iclk_unprepare:
clk_unprepare(aes_dd->iclk);
err_tasklet_kill:
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
return err;
}
static int atmel_aes_remove(struct platform_device *pdev)
{
struct atmel_aes_dev *aes_dd;
aes_dd = platform_get_drvdata(pdev);
spin_lock(&atmel_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&atmel_aes.lock);
atmel_aes_unregister_algs(aes_dd);
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
atmel_aes_dma_cleanup(aes_dd);
atmel_aes_buff_cleanup(aes_dd);
clk_unprepare(aes_dd->iclk);
return 0;
}
static struct platform_driver atmel_aes_driver = {
.probe = atmel_aes_probe,
.remove = atmel_aes_remove,
.driver = {
.name = "atmel_aes",
.of_match_table = atmel_aes_dt_ids,
},
};
module_platform_driver(atmel_aes_driver);
MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
| linux-master | drivers/crypto/atmel-aes.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Support for OMAP DES and Triple DES HW acceleration.
*
* Copyright (c) 2013 Texas Instruments Incorporated
* Author: Joel Fernandes <[email protected]>
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#ifdef DEBUG
#define prn(num) printk(#num "=%d\n", num)
#define prx(num) printk(#num "=%x\n", num)
#else
#define prn(num) do { } while (0)
#define prx(num) do { } while (0)
#endif
#include <crypto/engine.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>
#include <linux/string.h>
#include "omap-crypto.h"
#define DST_MAXBURST 2
#define DES_BLOCK_WORDS (DES_BLOCK_SIZE >> 2)
#define _calc_walked(inout) (dd->inout##_walk.offset - dd->inout##_sg->offset)
#define DES_REG_KEY(dd, x) ((dd)->pdata->key_ofs - \
((x ^ 0x01) * 0x04))
#define DES_REG_IV(dd, x) ((dd)->pdata->iv_ofs + ((x) * 0x04))
#define DES_REG_CTRL(dd) ((dd)->pdata->ctrl_ofs)
#define DES_REG_CTRL_CBC BIT(4)
#define DES_REG_CTRL_TDES BIT(3)
#define DES_REG_CTRL_DIRECTION BIT(2)
#define DES_REG_CTRL_INPUT_READY BIT(1)
#define DES_REG_CTRL_OUTPUT_READY BIT(0)
#define DES_REG_DATA_N(dd, x) ((dd)->pdata->data_ofs + ((x) * 0x04))
#define DES_REG_REV(dd) ((dd)->pdata->rev_ofs)
#define DES_REG_MASK(dd) ((dd)->pdata->mask_ofs)
#define DES_REG_LENGTH_N(x) (0x24 + ((x) * 0x04))
#define DES_REG_IRQ_STATUS(dd) ((dd)->pdata->irq_status_ofs)
#define DES_REG_IRQ_ENABLE(dd) ((dd)->pdata->irq_enable_ofs)
#define DES_REG_IRQ_DATA_IN BIT(1)
#define DES_REG_IRQ_DATA_OUT BIT(2)
#define FLAGS_MODE_MASK 0x000f
#define FLAGS_ENCRYPT BIT(0)
#define FLAGS_CBC BIT(1)
#define FLAGS_INIT BIT(4)
#define FLAGS_BUSY BIT(6)
#define DEFAULT_AUTOSUSPEND_DELAY 1000
#define FLAGS_IN_DATA_ST_SHIFT 8
#define FLAGS_OUT_DATA_ST_SHIFT 10
struct omap_des_ctx {
struct omap_des_dev *dd;
int keylen;
__le32 key[(3 * DES_KEY_SIZE) / sizeof(u32)];
unsigned long flags;
};
struct omap_des_reqctx {
unsigned long mode;
};
#define OMAP_DES_QUEUE_LENGTH 1
#define OMAP_DES_CACHE_SIZE 0
struct omap_des_algs_info {
struct skcipher_engine_alg *algs_list;
unsigned int size;
unsigned int registered;
};
struct omap_des_pdata {
struct omap_des_algs_info *algs_info;
unsigned int algs_info_size;
void (*trigger)(struct omap_des_dev *dd, int length);
u32 key_ofs;
u32 iv_ofs;
u32 ctrl_ofs;
u32 data_ofs;
u32 rev_ofs;
u32 mask_ofs;
u32 irq_enable_ofs;
u32 irq_status_ofs;
u32 dma_enable_in;
u32 dma_enable_out;
u32 dma_start;
u32 major_mask;
u32 major_shift;
u32 minor_mask;
u32 minor_shift;
};
struct omap_des_dev {
struct list_head list;
unsigned long phys_base;
void __iomem *io_base;
struct omap_des_ctx *ctx;
struct device *dev;
unsigned long flags;
int err;
struct tasklet_struct done_task;
struct skcipher_request *req;
struct crypto_engine *engine;
/*
* total is used by PIO mode for book keeping so introduce
* variable total_save as need it to calc page_order
*/
size_t total;
size_t total_save;
struct scatterlist *in_sg;
struct scatterlist *out_sg;
/* Buffers for copying for unaligned cases */
struct scatterlist in_sgl;
struct scatterlist out_sgl;
struct scatterlist *orig_out;
struct scatter_walk in_walk;
struct scatter_walk out_walk;
struct dma_chan *dma_lch_in;
struct dma_chan *dma_lch_out;
int in_sg_len;
int out_sg_len;
int pio_only;
const struct omap_des_pdata *pdata;
};
/* keep registered devices data here */
static LIST_HEAD(dev_list);
static DEFINE_SPINLOCK(list_lock);
#ifdef DEBUG
#define omap_des_read(dd, offset) \
({ \
int _read_ret; \
_read_ret = __raw_readl(dd->io_base + offset); \
pr_err("omap_des_read(" #offset "=%#x)= %#x\n", \
offset, _read_ret); \
_read_ret; \
})
#else
static inline u32 omap_des_read(struct omap_des_dev *dd, u32 offset)
{
return __raw_readl(dd->io_base + offset);
}
#endif
#ifdef DEBUG
#define omap_des_write(dd, offset, value) \
do { \
pr_err("omap_des_write(" #offset "=%#x) value=%#x\n", \
offset, value); \
__raw_writel(value, dd->io_base + offset); \
} while (0)
#else
static inline void omap_des_write(struct omap_des_dev *dd, u32 offset,
u32 value)
{
__raw_writel(value, dd->io_base + offset);
}
#endif
static inline void omap_des_write_mask(struct omap_des_dev *dd, u32 offset,
u32 value, u32 mask)
{
u32 val;
val = omap_des_read(dd, offset);
val &= ~mask;
val |= value;
omap_des_write(dd, offset, val);
}
static void omap_des_write_n(struct omap_des_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
omap_des_write(dd, offset, *value);
}
static int omap_des_hw_init(struct omap_des_dev *dd)
{
int err;
/*
* clocks are enabled when request starts and disabled when finished.
* It may be long delays between requests.
* Device might go to off mode to save power.
*/
err = pm_runtime_resume_and_get(dd->dev);
if (err < 0) {
dev_err(dd->dev, "%s: failed to get_sync(%d)\n", __func__, err);
return err;
}
if (!(dd->flags & FLAGS_INIT)) {
dd->flags |= FLAGS_INIT;
dd->err = 0;
}
return 0;
}
static int omap_des_write_ctrl(struct omap_des_dev *dd)
{
unsigned int key32;
int i, err;
u32 val = 0, mask = 0;
err = omap_des_hw_init(dd);
if (err)
return err;
key32 = dd->ctx->keylen / sizeof(u32);
/* it seems a key should always be set even if it has not changed */
for (i = 0; i < key32; i++) {
omap_des_write(dd, DES_REG_KEY(dd, i),
__le32_to_cpu(dd->ctx->key[i]));
}
if ((dd->flags & FLAGS_CBC) && dd->req->iv)
omap_des_write_n(dd, DES_REG_IV(dd, 0), (void *)dd->req->iv, 2);
if (dd->flags & FLAGS_CBC)
val |= DES_REG_CTRL_CBC;
if (dd->flags & FLAGS_ENCRYPT)
val |= DES_REG_CTRL_DIRECTION;
if (key32 == 6)
val |= DES_REG_CTRL_TDES;
mask |= DES_REG_CTRL_CBC | DES_REG_CTRL_DIRECTION | DES_REG_CTRL_TDES;
omap_des_write_mask(dd, DES_REG_CTRL(dd), val, mask);
return 0;
}
static void omap_des_dma_trigger_omap4(struct omap_des_dev *dd, int length)
{
u32 mask, val;
omap_des_write(dd, DES_REG_LENGTH_N(0), length);
val = dd->pdata->dma_start;
if (dd->dma_lch_out != NULL)
val |= dd->pdata->dma_enable_out;
if (dd->dma_lch_in != NULL)
val |= dd->pdata->dma_enable_in;
mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
dd->pdata->dma_start;
omap_des_write_mask(dd, DES_REG_MASK(dd), val, mask);
}
static void omap_des_dma_stop(struct omap_des_dev *dd)
{
u32 mask;
mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
dd->pdata->dma_start;
omap_des_write_mask(dd, DES_REG_MASK(dd), 0, mask);
}
static struct omap_des_dev *omap_des_find_dev(struct omap_des_ctx *ctx)
{
struct omap_des_dev *dd = NULL, *tmp;
spin_lock_bh(&list_lock);
if (!ctx->dd) {
list_for_each_entry(tmp, &dev_list, list) {
/* FIXME: take fist available des core */
dd = tmp;
break;
}
ctx->dd = dd;
} else {
/* already found before */
dd = ctx->dd;
}
spin_unlock_bh(&list_lock);
return dd;
}
static void omap_des_dma_out_callback(void *data)
{
struct omap_des_dev *dd = data;
/* dma_lch_out - completed */
tasklet_schedule(&dd->done_task);
}
static int omap_des_dma_init(struct omap_des_dev *dd)
{
int err;
dd->dma_lch_out = NULL;
dd->dma_lch_in = NULL;
dd->dma_lch_in = dma_request_chan(dd->dev, "rx");
if (IS_ERR(dd->dma_lch_in)) {
dev_err(dd->dev, "Unable to request in DMA channel\n");
return PTR_ERR(dd->dma_lch_in);
}
dd->dma_lch_out = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->dma_lch_out)) {
dev_err(dd->dev, "Unable to request out DMA channel\n");
err = PTR_ERR(dd->dma_lch_out);
goto err_dma_out;
}
return 0;
err_dma_out:
dma_release_channel(dd->dma_lch_in);
return err;
}
static void omap_des_dma_cleanup(struct omap_des_dev *dd)
{
if (dd->pio_only)
return;
dma_release_channel(dd->dma_lch_out);
dma_release_channel(dd->dma_lch_in);
}
static int omap_des_crypt_dma(struct crypto_tfm *tfm,
struct scatterlist *in_sg, struct scatterlist *out_sg,
int in_sg_len, int out_sg_len)
{
struct omap_des_ctx *ctx = crypto_tfm_ctx(tfm);
struct omap_des_dev *dd = ctx->dd;
struct dma_async_tx_descriptor *tx_in, *tx_out;
struct dma_slave_config cfg;
int ret;
if (dd->pio_only) {
scatterwalk_start(&dd->in_walk, dd->in_sg);
scatterwalk_start(&dd->out_walk, dd->out_sg);
/* Enable DATAIN interrupt and let it take
care of the rest */
omap_des_write(dd, DES_REG_IRQ_ENABLE(dd), 0x2);
return 0;
}
dma_sync_sg_for_device(dd->dev, dd->in_sg, in_sg_len, DMA_TO_DEVICE);
memset(&cfg, 0, sizeof(cfg));
cfg.src_addr = dd->phys_base + DES_REG_DATA_N(dd, 0);
cfg.dst_addr = dd->phys_base + DES_REG_DATA_N(dd, 0);
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = DST_MAXBURST;
cfg.dst_maxburst = DST_MAXBURST;
/* IN */
ret = dmaengine_slave_config(dd->dma_lch_in, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
ret);
return ret;
}
tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, in_sg_len,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_in) {
dev_err(dd->dev, "IN prep_slave_sg() failed\n");
return -EINVAL;
}
/* No callback necessary */
tx_in->callback_param = dd;
/* OUT */
ret = dmaengine_slave_config(dd->dma_lch_out, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
ret);
return ret;
}
tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg, out_sg_len,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_out) {
dev_err(dd->dev, "OUT prep_slave_sg() failed\n");
return -EINVAL;
}
tx_out->callback = omap_des_dma_out_callback;
tx_out->callback_param = dd;
dmaengine_submit(tx_in);
dmaengine_submit(tx_out);
dma_async_issue_pending(dd->dma_lch_in);
dma_async_issue_pending(dd->dma_lch_out);
/* start DMA */
dd->pdata->trigger(dd, dd->total);
return 0;
}
static int omap_des_crypt_dma_start(struct omap_des_dev *dd)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(
crypto_skcipher_reqtfm(dd->req));
int err;
pr_debug("total: %zd\n", dd->total);
if (!dd->pio_only) {
err = dma_map_sg(dd->dev, dd->in_sg, dd->in_sg_len,
DMA_TO_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
err = dma_map_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
}
err = omap_des_crypt_dma(tfm, dd->in_sg, dd->out_sg, dd->in_sg_len,
dd->out_sg_len);
if (err && !dd->pio_only) {
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
}
return err;
}
static void omap_des_finish_req(struct omap_des_dev *dd, int err)
{
struct skcipher_request *req = dd->req;
pr_debug("err: %d\n", err);
crypto_finalize_skcipher_request(dd->engine, req, err);
pm_runtime_mark_last_busy(dd->dev);
pm_runtime_put_autosuspend(dd->dev);
}
static int omap_des_crypt_dma_stop(struct omap_des_dev *dd)
{
pr_debug("total: %zd\n", dd->total);
omap_des_dma_stop(dd);
dmaengine_terminate_all(dd->dma_lch_in);
dmaengine_terminate_all(dd->dma_lch_out);
return 0;
}
static int omap_des_handle_queue(struct omap_des_dev *dd,
struct skcipher_request *req)
{
if (req)
return crypto_transfer_skcipher_request_to_engine(dd->engine, req);
return 0;
}
static int omap_des_prepare_req(struct skcipher_request *req,
struct omap_des_dev *dd)
{
struct omap_des_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
struct omap_des_reqctx *rctx;
int ret;
u16 flags;
/* assign new request to device */
dd->req = req;
dd->total = req->cryptlen;
dd->total_save = req->cryptlen;
dd->in_sg = req->src;
dd->out_sg = req->dst;
dd->orig_out = req->dst;
flags = OMAP_CRYPTO_COPY_DATA;
if (req->src == req->dst)
flags |= OMAP_CRYPTO_FORCE_COPY;
ret = omap_crypto_align_sg(&dd->in_sg, dd->total, DES_BLOCK_SIZE,
&dd->in_sgl, flags,
FLAGS_IN_DATA_ST_SHIFT, &dd->flags);
if (ret)
return ret;
ret = omap_crypto_align_sg(&dd->out_sg, dd->total, DES_BLOCK_SIZE,
&dd->out_sgl, 0,
FLAGS_OUT_DATA_ST_SHIFT, &dd->flags);
if (ret)
return ret;
dd->in_sg_len = sg_nents_for_len(dd->in_sg, dd->total);
if (dd->in_sg_len < 0)
return dd->in_sg_len;
dd->out_sg_len = sg_nents_for_len(dd->out_sg, dd->total);
if (dd->out_sg_len < 0)
return dd->out_sg_len;
rctx = skcipher_request_ctx(req);
ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
rctx->mode &= FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
dd->ctx = ctx;
ctx->dd = dd;
return omap_des_write_ctrl(dd);
}
static int omap_des_crypt_req(struct crypto_engine *engine,
void *areq)
{
struct skcipher_request *req = container_of(areq, struct skcipher_request, base);
struct omap_des_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
struct omap_des_dev *dd = omap_des_find_dev(ctx);
if (!dd)
return -ENODEV;
return omap_des_prepare_req(req, dd) ?:
omap_des_crypt_dma_start(dd);
}
static void omap_des_done_task(unsigned long data)
{
struct omap_des_dev *dd = (struct omap_des_dev *)data;
int i;
pr_debug("enter done_task\n");
if (!dd->pio_only) {
dma_sync_sg_for_device(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
omap_des_crypt_dma_stop(dd);
}
omap_crypto_cleanup(&dd->in_sgl, NULL, 0, dd->total_save,
FLAGS_IN_DATA_ST_SHIFT, dd->flags);
omap_crypto_cleanup(&dd->out_sgl, dd->orig_out, 0, dd->total_save,
FLAGS_OUT_DATA_ST_SHIFT, dd->flags);
if ((dd->flags & FLAGS_CBC) && dd->req->iv)
for (i = 0; i < 2; i++)
((u32 *)dd->req->iv)[i] =
omap_des_read(dd, DES_REG_IV(dd, i));
omap_des_finish_req(dd, 0);
pr_debug("exit\n");
}
static int omap_des_crypt(struct skcipher_request *req, unsigned long mode)
{
struct omap_des_ctx *ctx = crypto_skcipher_ctx(
crypto_skcipher_reqtfm(req));
struct omap_des_reqctx *rctx = skcipher_request_ctx(req);
struct omap_des_dev *dd;
pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->cryptlen,
!!(mode & FLAGS_ENCRYPT),
!!(mode & FLAGS_CBC));
if (!req->cryptlen)
return 0;
if (!IS_ALIGNED(req->cryptlen, DES_BLOCK_SIZE))
return -EINVAL;
dd = omap_des_find_dev(ctx);
if (!dd)
return -ENODEV;
rctx->mode = mode;
return omap_des_handle_queue(dd, req);
}
/* ********************** ALG API ************************************ */
static int omap_des_setkey(struct crypto_skcipher *cipher, const u8 *key,
unsigned int keylen)
{
struct omap_des_ctx *ctx = crypto_skcipher_ctx(cipher);
int err;
pr_debug("enter, keylen: %d\n", keylen);
err = verify_skcipher_des_key(cipher, key);
if (err)
return err;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int omap_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
unsigned int keylen)
{
struct omap_des_ctx *ctx = crypto_skcipher_ctx(cipher);
int err;
pr_debug("enter, keylen: %d\n", keylen);
err = verify_skcipher_des3_key(cipher, key);
if (err)
return err;
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int omap_des_ecb_encrypt(struct skcipher_request *req)
{
return omap_des_crypt(req, FLAGS_ENCRYPT);
}
static int omap_des_ecb_decrypt(struct skcipher_request *req)
{
return omap_des_crypt(req, 0);
}
static int omap_des_cbc_encrypt(struct skcipher_request *req)
{
return omap_des_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
}
static int omap_des_cbc_decrypt(struct skcipher_request *req)
{
return omap_des_crypt(req, FLAGS_CBC);
}
static int omap_des_init_tfm(struct crypto_skcipher *tfm)
{
pr_debug("enter\n");
crypto_skcipher_set_reqsize(tfm, sizeof(struct omap_des_reqctx));
return 0;
}
/* ********************** ALGS ************************************ */
static struct skcipher_engine_alg algs_ecb_cbc[] = {
{
.base = {
.base.cra_name = "ecb(des)",
.base.cra_driver_name = "ecb-des-omap",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct omap_des_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = omap_des_setkey,
.encrypt = omap_des_ecb_encrypt,
.decrypt = omap_des_ecb_decrypt,
.init = omap_des_init_tfm,
},
.op.do_one_request = omap_des_crypt_req,
},
{
.base = {
.base.cra_name = "cbc(des)",
.base.cra_driver_name = "cbc-des-omap",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct omap_des_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = omap_des_setkey,
.encrypt = omap_des_cbc_encrypt,
.decrypt = omap_des_cbc_decrypt,
.init = omap_des_init_tfm,
},
.op.do_one_request = omap_des_crypt_req,
},
{
.base = {
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "ecb-des3-omap",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct omap_des_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = omap_des3_setkey,
.encrypt = omap_des_ecb_encrypt,
.decrypt = omap_des_ecb_decrypt,
.init = omap_des_init_tfm,
},
.op.do_one_request = omap_des_crypt_req,
},
{
.base = {
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "cbc-des3-omap",
.base.cra_priority = 300,
.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct omap_des_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = omap_des3_setkey,
.encrypt = omap_des_cbc_encrypt,
.decrypt = omap_des_cbc_decrypt,
.init = omap_des_init_tfm,
},
.op.do_one_request = omap_des_crypt_req,
}
};
static struct omap_des_algs_info omap_des_algs_info_ecb_cbc[] = {
{
.algs_list = algs_ecb_cbc,
.size = ARRAY_SIZE(algs_ecb_cbc),
},
};
#ifdef CONFIG_OF
static const struct omap_des_pdata omap_des_pdata_omap4 = {
.algs_info = omap_des_algs_info_ecb_cbc,
.algs_info_size = ARRAY_SIZE(omap_des_algs_info_ecb_cbc),
.trigger = omap_des_dma_trigger_omap4,
.key_ofs = 0x14,
.iv_ofs = 0x18,
.ctrl_ofs = 0x20,
.data_ofs = 0x28,
.rev_ofs = 0x30,
.mask_ofs = 0x34,
.irq_status_ofs = 0x3c,
.irq_enable_ofs = 0x40,
.dma_enable_in = BIT(5),
.dma_enable_out = BIT(6),
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
.minor_shift = 0,
};
static irqreturn_t omap_des_irq(int irq, void *dev_id)
{
struct omap_des_dev *dd = dev_id;
u32 status, i;
u32 *src, *dst;
status = omap_des_read(dd, DES_REG_IRQ_STATUS(dd));
if (status & DES_REG_IRQ_DATA_IN) {
omap_des_write(dd, DES_REG_IRQ_ENABLE(dd), 0x0);
BUG_ON(!dd->in_sg);
BUG_ON(_calc_walked(in) > dd->in_sg->length);
src = sg_virt(dd->in_sg) + _calc_walked(in);
for (i = 0; i < DES_BLOCK_WORDS; i++) {
omap_des_write(dd, DES_REG_DATA_N(dd, i), *src);
scatterwalk_advance(&dd->in_walk, 4);
if (dd->in_sg->length == _calc_walked(in)) {
dd->in_sg = sg_next(dd->in_sg);
if (dd->in_sg) {
scatterwalk_start(&dd->in_walk,
dd->in_sg);
src = sg_virt(dd->in_sg) +
_calc_walked(in);
}
} else {
src++;
}
}
/* Clear IRQ status */
status &= ~DES_REG_IRQ_DATA_IN;
omap_des_write(dd, DES_REG_IRQ_STATUS(dd), status);
/* Enable DATA_OUT interrupt */
omap_des_write(dd, DES_REG_IRQ_ENABLE(dd), 0x4);
} else if (status & DES_REG_IRQ_DATA_OUT) {
omap_des_write(dd, DES_REG_IRQ_ENABLE(dd), 0x0);
BUG_ON(!dd->out_sg);
BUG_ON(_calc_walked(out) > dd->out_sg->length);
dst = sg_virt(dd->out_sg) + _calc_walked(out);
for (i = 0; i < DES_BLOCK_WORDS; i++) {
*dst = omap_des_read(dd, DES_REG_DATA_N(dd, i));
scatterwalk_advance(&dd->out_walk, 4);
if (dd->out_sg->length == _calc_walked(out)) {
dd->out_sg = sg_next(dd->out_sg);
if (dd->out_sg) {
scatterwalk_start(&dd->out_walk,
dd->out_sg);
dst = sg_virt(dd->out_sg) +
_calc_walked(out);
}
} else {
dst++;
}
}
BUG_ON(dd->total < DES_BLOCK_SIZE);
dd->total -= DES_BLOCK_SIZE;
/* Clear IRQ status */
status &= ~DES_REG_IRQ_DATA_OUT;
omap_des_write(dd, DES_REG_IRQ_STATUS(dd), status);
if (!dd->total)
/* All bytes read! */
tasklet_schedule(&dd->done_task);
else
/* Enable DATA_IN interrupt for next block */
omap_des_write(dd, DES_REG_IRQ_ENABLE(dd), 0x2);
}
return IRQ_HANDLED;
}
static const struct of_device_id omap_des_of_match[] = {
{
.compatible = "ti,omap4-des",
.data = &omap_des_pdata_omap4,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_des_of_match);
static int omap_des_get_of(struct omap_des_dev *dd,
struct platform_device *pdev)
{
dd->pdata = of_device_get_match_data(&pdev->dev);
if (!dd->pdata) {
dev_err(&pdev->dev, "no compatible OF match\n");
return -EINVAL;
}
return 0;
}
#else
static int omap_des_get_of(struct omap_des_dev *dd,
struct device *dev)
{
return -EINVAL;
}
#endif
static int omap_des_get_pdev(struct omap_des_dev *dd,
struct platform_device *pdev)
{
/* non-DT devices get pdata from pdev */
dd->pdata = pdev->dev.platform_data;
return 0;
}
static int omap_des_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct omap_des_dev *dd;
struct skcipher_engine_alg *algp;
struct resource *res;
int err = -ENOMEM, i, j, irq = -1;
u32 reg;
dd = devm_kzalloc(dev, sizeof(struct omap_des_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
goto err_data;
}
dd->dev = dev;
platform_set_drvdata(pdev, dd);
err = (dev->of_node) ? omap_des_get_of(dd, pdev) :
omap_des_get_pdev(dd, pdev);
if (err)
goto err_res;
dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(dd->io_base)) {
err = PTR_ERR(dd->io_base);
goto err_res;
}
dd->phys_base = res->start;
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
pm_runtime_enable(dev);
err = pm_runtime_resume_and_get(dev);
if (err < 0) {
dev_err(dd->dev, "%s: failed to get_sync(%d)\n", __func__, err);
goto err_get;
}
omap_des_dma_stop(dd);
reg = omap_des_read(dd, DES_REG_REV(dd));
pm_runtime_put_sync(dev);
dev_info(dev, "OMAP DES hw accel rev: %u.%u\n",
(reg & dd->pdata->major_mask) >> dd->pdata->major_shift,
(reg & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
tasklet_init(&dd->done_task, omap_des_done_task, (unsigned long)dd);
err = omap_des_dma_init(dd);
if (err == -EPROBE_DEFER) {
goto err_irq;
} else if (err && DES_REG_IRQ_STATUS(dd) && DES_REG_IRQ_ENABLE(dd)) {
dd->pio_only = 1;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto err_irq;
}
err = devm_request_irq(dev, irq, omap_des_irq, 0,
dev_name(dev), dd);
if (err) {
dev_err(dev, "Unable to grab omap-des IRQ\n");
goto err_irq;
}
}
INIT_LIST_HEAD(&dd->list);
spin_lock_bh(&list_lock);
list_add_tail(&dd->list, &dev_list);
spin_unlock_bh(&list_lock);
/* Initialize des crypto engine */
dd->engine = crypto_engine_alloc_init(dev, 1);
if (!dd->engine) {
err = -ENOMEM;
goto err_engine;
}
err = crypto_engine_start(dd->engine);
if (err)
goto err_engine;
for (i = 0; i < dd->pdata->algs_info_size; i++) {
for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
algp = &dd->pdata->algs_info[i].algs_list[j];
pr_debug("reg alg: %s\n", algp->base.base.cra_name);
err = crypto_engine_register_skcipher(algp);
if (err)
goto err_algs;
dd->pdata->algs_info[i].registered++;
}
}
return 0;
err_algs:
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_engine_unregister_skcipher(
&dd->pdata->algs_info[i].algs_list[j]);
err_engine:
if (dd->engine)
crypto_engine_exit(dd->engine);
omap_des_dma_cleanup(dd);
err_irq:
tasklet_kill(&dd->done_task);
err_get:
pm_runtime_disable(dev);
err_res:
dd = NULL;
err_data:
dev_err(dev, "initialization failed.\n");
return err;
}
static int omap_des_remove(struct platform_device *pdev)
{
struct omap_des_dev *dd = platform_get_drvdata(pdev);
int i, j;
spin_lock_bh(&list_lock);
list_del(&dd->list);
spin_unlock_bh(&list_lock);
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_engine_unregister_skcipher(
&dd->pdata->algs_info[i].algs_list[j]);
tasklet_kill(&dd->done_task);
omap_des_dma_cleanup(dd);
pm_runtime_disable(dd->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int omap_des_suspend(struct device *dev)
{
pm_runtime_put_sync(dev);
return 0;
}
static int omap_des_resume(struct device *dev)
{
int err;
err = pm_runtime_resume_and_get(dev);
if (err < 0) {
dev_err(dev, "%s: failed to get_sync(%d)\n", __func__, err);
return err;
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(omap_des_pm_ops, omap_des_suspend, omap_des_resume);
static struct platform_driver omap_des_driver = {
.probe = omap_des_probe,
.remove = omap_des_remove,
.driver = {
.name = "omap-des",
.pm = &omap_des_pm_ops,
.of_match_table = of_match_ptr(omap_des_of_match),
},
};
module_platform_driver(omap_des_driver);
MODULE_DESCRIPTION("OMAP DES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Joel Fernandes <[email protected]>");
| linux-master | drivers/crypto/omap-des.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* OMAP Crypto driver common support routines.
*
* Copyright (c) 2017 Texas Instruments Incorporated
* Tero Kristo <[email protected]>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/scatterlist.h>
#include <crypto/scatterwalk.h>
#include "omap-crypto.h"
static int omap_crypto_copy_sg_lists(int total, int bs,
struct scatterlist **sg,
struct scatterlist *new_sg, u16 flags)
{
int n = sg_nents(*sg);
struct scatterlist *tmp;
if (!(flags & OMAP_CRYPTO_FORCE_SINGLE_ENTRY)) {
new_sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
if (!new_sg)
return -ENOMEM;
sg_init_table(new_sg, n);
}
tmp = new_sg;
while (*sg && total) {
int len = (*sg)->length;
if (total < len)
len = total;
if (len > 0) {
total -= len;
sg_set_page(tmp, sg_page(*sg), len, (*sg)->offset);
if (total <= 0)
sg_mark_end(tmp);
tmp = sg_next(tmp);
}
*sg = sg_next(*sg);
}
*sg = new_sg;
return 0;
}
static int omap_crypto_copy_sgs(int total, int bs, struct scatterlist **sg,
struct scatterlist *new_sg, u16 flags)
{
void *buf;
int pages;
int new_len;
new_len = ALIGN(total, bs);
pages = get_order(new_len);
buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
if (!buf) {
pr_err("%s: Couldn't allocate pages for unaligned cases.\n",
__func__);
return -ENOMEM;
}
if (flags & OMAP_CRYPTO_COPY_DATA) {
scatterwalk_map_and_copy(buf, *sg, 0, total, 0);
if (flags & OMAP_CRYPTO_ZERO_BUF)
memset(buf + total, 0, new_len - total);
}
if (!(flags & OMAP_CRYPTO_FORCE_SINGLE_ENTRY))
sg_init_table(new_sg, 1);
sg_set_buf(new_sg, buf, new_len);
*sg = new_sg;
return 0;
}
static int omap_crypto_check_sg(struct scatterlist *sg, int total, int bs,
u16 flags)
{
int len = 0;
int num_sg = 0;
if (!IS_ALIGNED(total, bs))
return OMAP_CRYPTO_NOT_ALIGNED;
while (sg) {
num_sg++;
if (!IS_ALIGNED(sg->offset, 4))
return OMAP_CRYPTO_NOT_ALIGNED;
if (!IS_ALIGNED(sg->length, bs))
return OMAP_CRYPTO_NOT_ALIGNED;
#ifdef CONFIG_ZONE_DMA
if (page_zonenum(sg_page(sg)) != ZONE_DMA)
return OMAP_CRYPTO_NOT_ALIGNED;
#endif
len += sg->length;
sg = sg_next(sg);
if (len >= total)
break;
}
if ((flags & OMAP_CRYPTO_FORCE_SINGLE_ENTRY) && num_sg > 1)
return OMAP_CRYPTO_NOT_ALIGNED;
if (len != total)
return OMAP_CRYPTO_BAD_DATA_LENGTH;
return 0;
}
int omap_crypto_align_sg(struct scatterlist **sg, int total, int bs,
struct scatterlist *new_sg, u16 flags,
u8 flags_shift, unsigned long *dd_flags)
{
int ret;
*dd_flags &= ~(OMAP_CRYPTO_COPY_MASK << flags_shift);
if (flags & OMAP_CRYPTO_FORCE_COPY)
ret = OMAP_CRYPTO_NOT_ALIGNED;
else
ret = omap_crypto_check_sg(*sg, total, bs, flags);
if (ret == OMAP_CRYPTO_NOT_ALIGNED) {
ret = omap_crypto_copy_sgs(total, bs, sg, new_sg, flags);
if (ret)
return ret;
*dd_flags |= OMAP_CRYPTO_DATA_COPIED << flags_shift;
} else if (ret == OMAP_CRYPTO_BAD_DATA_LENGTH) {
ret = omap_crypto_copy_sg_lists(total, bs, sg, new_sg, flags);
if (ret)
return ret;
if (!(flags & OMAP_CRYPTO_FORCE_SINGLE_ENTRY))
*dd_flags |= OMAP_CRYPTO_SG_COPIED << flags_shift;
} else if (flags & OMAP_CRYPTO_FORCE_SINGLE_ENTRY) {
sg_set_buf(new_sg, sg_virt(*sg), (*sg)->length);
}
return 0;
}
EXPORT_SYMBOL_GPL(omap_crypto_align_sg);
static void omap_crypto_copy_data(struct scatterlist *src,
struct scatterlist *dst,
int offset, int len)
{
int amt;
void *srcb, *dstb;
int srco = 0, dsto = offset;
while (src && dst && len) {
if (srco >= src->length) {
srco -= src->length;
src = sg_next(src);
continue;
}
if (dsto >= dst->length) {
dsto -= dst->length;
dst = sg_next(dst);
continue;
}
amt = min(src->length - srco, dst->length - dsto);
amt = min(len, amt);
srcb = kmap_atomic(sg_page(src)) + srco + src->offset;
dstb = kmap_atomic(sg_page(dst)) + dsto + dst->offset;
memcpy(dstb, srcb, amt);
flush_dcache_page(sg_page(dst));
kunmap_atomic(srcb);
kunmap_atomic(dstb);
srco += amt;
dsto += amt;
len -= amt;
}
}
void omap_crypto_cleanup(struct scatterlist *sg, struct scatterlist *orig,
int offset, int len, u8 flags_shift,
unsigned long flags)
{
void *buf;
int pages;
flags >>= flags_shift;
flags &= OMAP_CRYPTO_COPY_MASK;
if (!flags)
return;
buf = sg_virt(sg);
pages = get_order(len);
if (orig && (flags & OMAP_CRYPTO_DATA_COPIED))
omap_crypto_copy_data(sg, orig, offset, len);
if (flags & OMAP_CRYPTO_DATA_COPIED)
free_pages((unsigned long)buf, pages);
else if (flags & OMAP_CRYPTO_SG_COPIED)
kfree(sg);
}
EXPORT_SYMBOL_GPL(omap_crypto_cleanup);
MODULE_DESCRIPTION("OMAP crypto support library.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tero Kristo <[email protected]>");
| linux-master | drivers/crypto/omap-crypto.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Cryptographic API.
*
* Support for VIA PadLock hardware crypto engine.
*
* Copyright (c) 2004 Michal Ludvig <[email protected]>
*
*/
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/internal/skcipher.h>
#include <crypto/padlock.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/percpu.h>
#include <linux/smp.h>
#include <linux/slab.h>
#include <asm/cpu_device_id.h>
#include <asm/byteorder.h>
#include <asm/processor.h>
#include <asm/fpu/api.h>
/*
* Number of data blocks actually fetched for each xcrypt insn.
* Processors with prefetch errata will fetch extra blocks.
*/
static unsigned int ecb_fetch_blocks = 2;
#define MAX_ECB_FETCH_BLOCKS (8)
#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
static unsigned int cbc_fetch_blocks = 1;
#define MAX_CBC_FETCH_BLOCKS (4)
#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
/* Control word. */
struct cword {
unsigned int __attribute__ ((__packed__))
rounds:4,
algo:3,
keygen:1,
interm:1,
encdec:1,
ksize:2;
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
/* Whenever making any changes to the following
* structure *make sure* you keep E, d_data
* and cword aligned on 16 Bytes boundaries and
* the Hardware can access 16 * 16 bytes of E and d_data
* (only the first 15 * 16 bytes matter but the HW reads
* more).
*/
struct aes_ctx {
u32 E[AES_MAX_KEYLENGTH_U32]
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
u32 d_data[AES_MAX_KEYLENGTH_U32]
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
struct {
struct cword encrypt;
struct cword decrypt;
} cword;
u32 *D;
};
static DEFINE_PER_CPU(struct cword *, paes_last_cword);
/* Tells whether the ACE is capable to generate
the extended key for a given key_len. */
static inline int
aes_hw_extkey_available(uint8_t key_len)
{
/* TODO: We should check the actual CPU model/stepping
as it's possible that the capability will be
added in the next CPU revisions. */
if (key_len == 16)
return 1;
return 0;
}
static inline struct aes_ctx *aes_ctx_common(void *ctx)
{
unsigned long addr = (unsigned long)ctx;
unsigned long align = PADLOCK_ALIGNMENT;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return (struct aes_ctx *)ALIGN(addr, align);
}
static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
{
return aes_ctx_common(crypto_tfm_ctx(tfm));
}
static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
{
return aes_ctx_common(crypto_skcipher_ctx(tfm));
}
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct aes_ctx *ctx = aes_ctx(tfm);
const __le32 *key = (const __le32 *)in_key;
struct crypto_aes_ctx gen_aes;
int cpu;
if (key_len % 8)
return -EINVAL;
/*
* If the hardware is capable of generating the extended key
* itself we must supply the plain key for both encryption
* and decryption.
*/
ctx->D = ctx->E;
ctx->E[0] = le32_to_cpu(key[0]);
ctx->E[1] = le32_to_cpu(key[1]);
ctx->E[2] = le32_to_cpu(key[2]);
ctx->E[3] = le32_to_cpu(key[3]);
/* Prepare control words. */
memset(&ctx->cword, 0, sizeof(ctx->cword));
ctx->cword.decrypt.encdec = 1;
ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
ctx->cword.encrypt.ksize = (key_len - 16) / 8;
ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
/* Don't generate extended keys if the hardware can do it. */
if (aes_hw_extkey_available(key_len))
goto ok;
ctx->D = ctx->d_data;
ctx->cword.encrypt.keygen = 1;
ctx->cword.decrypt.keygen = 1;
if (aes_expandkey(&gen_aes, in_key, key_len))
return -EINVAL;
memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
ok:
for_each_online_cpu(cpu)
if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
&ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
per_cpu(paes_last_cword, cpu) = NULL;
return 0;
}
static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
}
/* ====== Encryption/decryption routines ====== */
/* These are the real call to PadLock. */
static inline void padlock_reset_key(struct cword *cword)
{
int cpu = raw_smp_processor_id();
if (cword != per_cpu(paes_last_cword, cpu))
#ifndef CONFIG_X86_64
asm volatile ("pushfl; popfl");
#else
asm volatile ("pushfq; popfq");
#endif
}
static inline void padlock_store_cword(struct cword *cword)
{
per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
}
/*
* While the padlock instructions don't use FP/SSE registers, they
* generate a spurious DNA fault when CR0.TS is '1'. Fortunately,
* the kernel doesn't use CR0.TS.
*/
static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
struct cword *control_word, int count)
{
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
: "+S"(input), "+D"(output)
: "d"(control_word), "b"(key), "c"(count));
}
static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
u8 *iv, struct cword *control_word, int count)
{
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
: "+S" (input), "+D" (output), "+a" (iv)
: "d" (control_word), "b" (key), "c" (count));
return iv;
}
static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
struct cword *cword, int count)
{
/*
* Padlock prefetches extra data so we must provide mapped input buffers.
* Assume there are at least 16 bytes of stack already in use.
*/
u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
memcpy(tmp, in, count * AES_BLOCK_SIZE);
rep_xcrypt_ecb(tmp, out, key, cword, count);
}
static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
u8 *iv, struct cword *cword, int count)
{
/*
* Padlock prefetches extra data so we must provide mapped input buffers.
* Assume there are at least 16 bytes of stack already in use.
*/
u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
memcpy(tmp, in, count * AES_BLOCK_SIZE);
return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
}
static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
struct cword *cword, int count)
{
/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
* We could avoid some copying here but it's probably not worth it.
*/
if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
ecb_crypt_copy(in, out, key, cword, count);
return;
}
rep_xcrypt_ecb(in, out, key, cword, count);
}
static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
u8 *iv, struct cword *cword, int count)
{
/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
return cbc_crypt_copy(in, out, key, iv, cword, count);
return rep_xcrypt_cbc(in, out, key, iv, cword, count);
}
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
void *control_word, u32 count)
{
u32 initial = count & (ecb_fetch_blocks - 1);
if (count < ecb_fetch_blocks) {
ecb_crypt(input, output, key, control_word, count);
return;
}
count -= initial;
if (initial)
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
: "+S"(input), "+D"(output)
: "d"(control_word), "b"(key), "c"(initial));
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
: "+S"(input), "+D"(output)
: "d"(control_word), "b"(key), "c"(count));
}
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
u8 *iv, void *control_word, u32 count)
{
u32 initial = count & (cbc_fetch_blocks - 1);
if (count < cbc_fetch_blocks)
return cbc_crypt(input, output, key, iv, control_word, count);
count -= initial;
if (initial)
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
: "+S" (input), "+D" (output), "+a" (iv)
: "d" (control_word), "b" (key), "c" (initial));
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
: "+S" (input), "+D" (output), "+a" (iv)
: "d" (control_word), "b" (key), "c" (count));
return iv;
}
static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct aes_ctx *ctx = aes_ctx(tfm);
padlock_reset_key(&ctx->cword.encrypt);
ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
padlock_store_cword(&ctx->cword.encrypt);
}
static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct aes_ctx *ctx = aes_ctx(tfm);
padlock_reset_key(&ctx->cword.encrypt);
ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
padlock_store_cword(&ctx->cword.encrypt);
}
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-padlock",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = padlock_aes_encrypt,
.cia_decrypt = padlock_aes_decrypt,
}
}
};
static int ecb_aes_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
padlock_reset_key(&ctx->cword.encrypt);
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
ctx->E, &ctx->cword.encrypt,
nbytes / AES_BLOCK_SIZE);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
padlock_store_cword(&ctx->cword.encrypt);
return err;
}
static int ecb_aes_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
padlock_reset_key(&ctx->cword.decrypt);
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
ctx->D, &ctx->cword.decrypt,
nbytes / AES_BLOCK_SIZE);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
padlock_store_cword(&ctx->cword.encrypt);
return err;
}
static struct skcipher_alg ecb_aes_alg = {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-padlock",
.base.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct aes_ctx),
.base.cra_alignmask = PADLOCK_ALIGNMENT - 1,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key_skcipher,
.encrypt = ecb_aes_encrypt,
.decrypt = ecb_aes_decrypt,
};
static int cbc_aes_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
padlock_reset_key(&ctx->cword.encrypt);
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
walk.dst.virt.addr, ctx->E,
walk.iv, &ctx->cword.encrypt,
nbytes / AES_BLOCK_SIZE);
memcpy(walk.iv, iv, AES_BLOCK_SIZE);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
padlock_store_cword(&ctx->cword.decrypt);
return err;
}
static int cbc_aes_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
padlock_reset_key(&ctx->cword.encrypt);
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
ctx->D, walk.iv, &ctx->cword.decrypt,
nbytes / AES_BLOCK_SIZE);
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
padlock_store_cword(&ctx->cword.encrypt);
return err;
}
static struct skcipher_alg cbc_aes_alg = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-padlock",
.base.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct aes_ctx),
.base.cra_alignmask = PADLOCK_ALIGNMENT - 1,
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aes_set_key_skcipher,
.encrypt = cbc_aes_encrypt,
.decrypt = cbc_aes_decrypt,
};
static const struct x86_cpu_id padlock_cpu_id[] = {
X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
static int __init padlock_init(void)
{
int ret;
struct cpuinfo_x86 *c = &cpu_data(0);
if (!x86_match_cpu(padlock_cpu_id))
return -ENODEV;
if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
return -ENODEV;
}
if ((ret = crypto_register_alg(&aes_alg)) != 0)
goto aes_err;
if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
goto ecb_aes_err;
if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
goto cbc_aes_err;
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
}
out:
return ret;
cbc_aes_err:
crypto_unregister_skcipher(&ecb_aes_alg);
ecb_aes_err:
crypto_unregister_alg(&aes_alg);
aes_err:
printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
goto out;
}
static void __exit padlock_fini(void)
{
crypto_unregister_skcipher(&cbc_aes_alg);
crypto_unregister_skcipher(&ecb_aes_alg);
crypto_unregister_alg(&aes_alg);
}
module_init(padlock_init);
module_exit(padlock_fini);
MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");
MODULE_ALIAS_CRYPTO("aes");
| linux-master | drivers/crypto/padlock-aes.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Freescale i.MX23/i.MX28 Data Co-Processor driver
*
* Copyright (C) 2013 Marek Vasut <[email protected]>
*/
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/stmp_device.h>
#include <linux/clk.h>
#include <crypto/aes.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#define DCP_MAX_CHANS 4
#define DCP_BUF_SZ PAGE_SIZE
#define DCP_SHA_PAY_SZ 64
#define DCP_ALIGNMENT 64
/*
* Null hashes to align with hw behavior on imx6sl and ull
* these are flipped for consistency with hw output
*/
static const uint8_t sha1_null_hash[] =
"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
static const uint8_t sha256_null_hash[] =
"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
/* DCP DMA descriptor. */
struct dcp_dma_desc {
uint32_t next_cmd_addr;
uint32_t control0;
uint32_t control1;
uint32_t source;
uint32_t destination;
uint32_t size;
uint32_t payload;
uint32_t status;
};
/* Coherent aligned block for bounce buffering. */
struct dcp_coherent_block {
uint8_t aes_in_buf[DCP_BUF_SZ];
uint8_t aes_out_buf[DCP_BUF_SZ];
uint8_t sha_in_buf[DCP_BUF_SZ];
uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
uint8_t aes_key[2 * AES_KEYSIZE_128];
struct dcp_dma_desc desc[DCP_MAX_CHANS];
};
struct dcp {
struct device *dev;
void __iomem *base;
uint32_t caps;
struct dcp_coherent_block *coh;
struct completion completion[DCP_MAX_CHANS];
spinlock_t lock[DCP_MAX_CHANS];
struct task_struct *thread[DCP_MAX_CHANS];
struct crypto_queue queue[DCP_MAX_CHANS];
struct clk *dcp_clk;
};
enum dcp_chan {
DCP_CHAN_HASH_SHA = 0,
DCP_CHAN_CRYPTO = 2,
};
struct dcp_async_ctx {
/* Common context */
enum dcp_chan chan;
uint32_t fill;
/* SHA Hash-specific context */
struct mutex mutex;
uint32_t alg;
unsigned int hot:1;
/* Crypto-specific context */
struct crypto_skcipher *fallback;
unsigned int key_len;
uint8_t key[AES_KEYSIZE_128];
};
struct dcp_aes_req_ctx {
unsigned int enc:1;
unsigned int ecb:1;
struct skcipher_request fallback_req; // keep at the end
};
struct dcp_sha_req_ctx {
unsigned int init:1;
unsigned int fini:1;
};
struct dcp_export_state {
struct dcp_sha_req_ctx req_ctx;
struct dcp_async_ctx async_ctx;
};
/*
* There can even be only one instance of the MXS DCP due to the
* design of Linux Crypto API.
*/
static struct dcp *global_sdcp;
/* DCP register layout. */
#define MXS_DCP_CTRL 0x00
#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
#define MXS_DCP_STAT 0x10
#define MXS_DCP_STAT_CLR 0x18
#define MXS_DCP_STAT_IRQ_MASK 0xf
#define MXS_DCP_CHANNELCTRL 0x20
#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
#define MXS_DCP_CAPABILITY1 0x40
#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
#define MXS_DCP_CONTEXT 0x50
#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
/* DMA descriptor bits. */
#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
{
int dma_err;
struct dcp *sdcp = global_sdcp;
const int chan = actx->chan;
uint32_t stat;
unsigned long ret;
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
DMA_TO_DEVICE);
dma_err = dma_mapping_error(sdcp->dev, desc_phys);
if (dma_err)
return dma_err;
reinit_completion(&sdcp->completion[chan]);
/* Clear status register. */
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
/* Load the DMA descriptor. */
writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
/* Increment the semaphore to start the DMA transfer. */
writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
ret = wait_for_completion_timeout(&sdcp->completion[chan],
msecs_to_jiffies(1000));
if (!ret) {
dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
chan, readl(sdcp->base + MXS_DCP_STAT));
return -ETIMEDOUT;
}
stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
if (stat & 0xff) {
dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
chan, stat);
return -EINVAL;
}
dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
return 0;
}
/*
* Encryption (AES128)
*/
static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
struct skcipher_request *req, int init)
{
dma_addr_t key_phys, src_phys, dst_phys;
struct dcp *sdcp = global_sdcp;
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
int ret;
key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
ret = dma_mapping_error(sdcp->dev, key_phys);
if (ret)
return ret;
src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
DCP_BUF_SZ, DMA_TO_DEVICE);
ret = dma_mapping_error(sdcp->dev, src_phys);
if (ret)
goto err_src;
dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
DCP_BUF_SZ, DMA_FROM_DEVICE);
ret = dma_mapping_error(sdcp->dev, dst_phys);
if (ret)
goto err_dst;
if (actx->fill % AES_BLOCK_SIZE) {
dev_err(sdcp->dev, "Invalid block size!\n");
ret = -EINVAL;
goto aes_done_run;
}
/* Fill in the DMA descriptor. */
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
MXS_DCP_CONTROL0_INTERRUPT |
MXS_DCP_CONTROL0_ENABLE_CIPHER;
/* Payload contains the key. */
desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
if (rctx->enc)
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
if (init)
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
if (rctx->ecb)
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
else
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
desc->next_cmd_addr = 0;
desc->source = src_phys;
desc->destination = dst_phys;
desc->size = actx->fill;
desc->payload = key_phys;
desc->status = 0;
ret = mxs_dcp_start_dma(actx);
aes_done_run:
dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
err_dst:
dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
err_src:
dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
DMA_TO_DEVICE);
return ret;
}
static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
{
struct dcp *sdcp = global_sdcp;
struct skcipher_request *req = skcipher_request_cast(arq);
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
int dst_nents = sg_nents(dst);
const int out_off = DCP_BUF_SZ;
uint8_t *in_buf = sdcp->coh->aes_in_buf;
uint8_t *out_buf = sdcp->coh->aes_out_buf;
uint32_t dst_off = 0;
uint8_t *src_buf = NULL;
uint32_t last_out_len = 0;
uint8_t *key = sdcp->coh->aes_key;
int ret = 0;
unsigned int i, len, clen, tlen = 0;
int init = 0;
bool limit_hit = false;
actx->fill = 0;
/* Copy the key from the temporary location. */
memcpy(key, actx->key, actx->key_len);
if (!rctx->ecb) {
/* Copy the CBC IV just past the key. */
memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
/* CBC needs the INIT set. */
init = 1;
} else {
memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
}
for_each_sg(req->src, src, sg_nents(req->src), i) {
src_buf = sg_virt(src);
len = sg_dma_len(src);
tlen += len;
limit_hit = tlen > req->cryptlen;
if (limit_hit)
len = req->cryptlen - (tlen - len);
do {
if (actx->fill + len > out_off)
clen = out_off - actx->fill;
else
clen = len;
memcpy(in_buf + actx->fill, src_buf, clen);
len -= clen;
src_buf += clen;
actx->fill += clen;
/*
* If we filled the buffer or this is the last SG,
* submit the buffer.
*/
if (actx->fill == out_off || sg_is_last(src) ||
limit_hit) {
ret = mxs_dcp_run_aes(actx, req, init);
if (ret)
return ret;
init = 0;
sg_pcopy_from_buffer(dst, dst_nents, out_buf,
actx->fill, dst_off);
dst_off += actx->fill;
last_out_len = actx->fill;
actx->fill = 0;
}
} while (len);
if (limit_hit)
break;
}
/* Copy the IV for CBC for chaining */
if (!rctx->ecb) {
if (rctx->enc)
memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
AES_BLOCK_SIZE);
else
memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
AES_BLOCK_SIZE);
}
return ret;
}
static int dcp_chan_thread_aes(void *data)
{
struct dcp *sdcp = global_sdcp;
const int chan = DCP_CHAN_CRYPTO;
struct crypto_async_request *backlog;
struct crypto_async_request *arq;
int ret;
while (!kthread_should_stop()) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock(&sdcp->lock[chan]);
backlog = crypto_get_backlog(&sdcp->queue[chan]);
arq = crypto_dequeue_request(&sdcp->queue[chan]);
spin_unlock(&sdcp->lock[chan]);
if (!backlog && !arq) {
schedule();
continue;
}
set_current_state(TASK_RUNNING);
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
if (arq) {
ret = mxs_dcp_aes_block_crypt(arq);
crypto_request_complete(arq, ret);
}
}
return 0;
}
static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
req->base.complete, req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
req->cryptlen, req->iv);
if (enc)
ret = crypto_skcipher_encrypt(&rctx->fallback_req);
else
ret = crypto_skcipher_decrypt(&rctx->fallback_req);
return ret;
}
static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
{
struct dcp *sdcp = global_sdcp;
struct crypto_async_request *arq = &req->base;
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
int ret;
if (unlikely(actx->key_len != AES_KEYSIZE_128))
return mxs_dcp_block_fallback(req, enc);
rctx->enc = enc;
rctx->ecb = ecb;
actx->chan = DCP_CHAN_CRYPTO;
spin_lock(&sdcp->lock[actx->chan]);
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
spin_unlock(&sdcp->lock[actx->chan]);
wake_up_process(sdcp->thread[actx->chan]);
return ret;
}
static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 0, 1);
}
static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 1, 1);
}
static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 0, 0);
}
static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 1, 0);
}
static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int len)
{
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
/*
* AES 128 is supposed by the hardware, store key into temporary
* buffer and exit. We must use the temporary buffer here, since
* there can still be an operation in progress.
*/
actx->key_len = len;
if (len == AES_KEYSIZE_128) {
memcpy(actx->key, key, len);
return 0;
}
/*
* If the requested AES key size is not supported by the hardware,
* but is supported by in-kernel software implementation, we use
* software fallback.
*/
crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(actx->fallback,
tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_skcipher_setkey(actx->fallback, key, len);
}
static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
{
const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *blk;
blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(blk))
return PTR_ERR(blk);
actx->fallback = blk;
crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
crypto_skcipher_reqsize(blk));
return 0;
}
static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
{
struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
crypto_free_skcipher(actx->fallback);
}
/*
* Hashing (SHA1/SHA256)
*/
static int mxs_dcp_run_sha(struct ahash_request *req)
{
struct dcp *sdcp = global_sdcp;
int ret;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
dma_addr_t digest_phys = 0;
dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
DCP_BUF_SZ, DMA_TO_DEVICE);
ret = dma_mapping_error(sdcp->dev, buf_phys);
if (ret)
return ret;
/* Fill in the DMA descriptor. */
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
MXS_DCP_CONTROL0_INTERRUPT |
MXS_DCP_CONTROL0_ENABLE_HASH;
if (rctx->init)
desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
desc->control1 = actx->alg;
desc->next_cmd_addr = 0;
desc->source = buf_phys;
desc->destination = 0;
desc->size = actx->fill;
desc->payload = 0;
desc->status = 0;
/*
* Align driver with hw behavior when generating null hashes
*/
if (rctx->init && rctx->fini && desc->size == 0) {
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
const uint8_t *sha_buf =
(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
sha1_null_hash : sha256_null_hash;
memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
ret = 0;
goto done_run;
}
/* Set HASH_TERM bit for last transfer block. */
if (rctx->fini) {
digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
ret = dma_mapping_error(sdcp->dev, digest_phys);
if (ret)
goto done_run;
desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
desc->payload = digest_phys;
}
ret = mxs_dcp_start_dma(actx);
if (rctx->fini)
dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
DMA_FROM_DEVICE);
done_run:
dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
return ret;
}
static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
{
struct dcp *sdcp = global_sdcp;
struct ahash_request *req = ahash_request_cast(arq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
uint8_t *in_buf = sdcp->coh->sha_in_buf;
uint8_t *out_buf = sdcp->coh->sha_out_buf;
struct scatterlist *src;
unsigned int i, len, clen, oft = 0;
int ret;
int fin = rctx->fini;
if (fin)
rctx->fini = 0;
src = req->src;
len = req->nbytes;
while (len) {
if (actx->fill + len > DCP_BUF_SZ)
clen = DCP_BUF_SZ - actx->fill;
else
clen = len;
scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
0);
len -= clen;
oft += clen;
actx->fill += clen;
/*
* If we filled the buffer and still have some
* more data, submit the buffer.
*/
if (len && actx->fill == DCP_BUF_SZ) {
ret = mxs_dcp_run_sha(req);
if (ret)
return ret;
actx->fill = 0;
rctx->init = 0;
}
}
if (fin) {
rctx->fini = 1;
/* Submit whatever is left. */
if (!req->result)
return -EINVAL;
ret = mxs_dcp_run_sha(req);
if (ret)
return ret;
actx->fill = 0;
/* For some reason the result is flipped */
for (i = 0; i < halg->digestsize; i++)
req->result[i] = out_buf[halg->digestsize - i - 1];
}
return 0;
}
static int dcp_chan_thread_sha(void *data)
{
struct dcp *sdcp = global_sdcp;
const int chan = DCP_CHAN_HASH_SHA;
struct crypto_async_request *backlog;
struct crypto_async_request *arq;
int ret;
while (!kthread_should_stop()) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock(&sdcp->lock[chan]);
backlog = crypto_get_backlog(&sdcp->queue[chan]);
arq = crypto_dequeue_request(&sdcp->queue[chan]);
spin_unlock(&sdcp->lock[chan]);
if (!backlog && !arq) {
schedule();
continue;
}
set_current_state(TASK_RUNNING);
if (backlog)
crypto_request_complete(backlog, -EINPROGRESS);
if (arq) {
ret = dcp_sha_req_to_buf(arq);
crypto_request_complete(arq, ret);
}
}
return 0;
}
static int dcp_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
/*
* Start hashing session. The code below only inits the
* hashing session context, nothing more.
*/
memset(actx, 0, sizeof(*actx));
if (strcmp(halg->base.cra_name, "sha1") == 0)
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
else
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
actx->fill = 0;
actx->hot = 0;
actx->chan = DCP_CHAN_HASH_SHA;
mutex_init(&actx->mutex);
return 0;
}
static int dcp_sha_update_fx(struct ahash_request *req, int fini)
{
struct dcp *sdcp = global_sdcp;
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
int ret;
/*
* Ignore requests that have no data in them and are not
* the trailing requests in the stream of requests.
*/
if (!req->nbytes && !fini)
return 0;
mutex_lock(&actx->mutex);
rctx->fini = fini;
if (!actx->hot) {
actx->hot = 1;
rctx->init = 1;
}
spin_lock(&sdcp->lock[actx->chan]);
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
spin_unlock(&sdcp->lock[actx->chan]);
wake_up_process(sdcp->thread[actx->chan]);
mutex_unlock(&actx->mutex);
return ret;
}
static int dcp_sha_update(struct ahash_request *req)
{
return dcp_sha_update_fx(req, 0);
}
static int dcp_sha_final(struct ahash_request *req)
{
ahash_request_set_crypt(req, NULL, req->result, 0);
req->nbytes = 0;
return dcp_sha_update_fx(req, 1);
}
static int dcp_sha_finup(struct ahash_request *req)
{
return dcp_sha_update_fx(req, 1);
}
static int dcp_sha_digest(struct ahash_request *req)
{
int ret;
ret = dcp_sha_init(req);
if (ret)
return ret;
return dcp_sha_finup(req);
}
static int dcp_sha_import(struct ahash_request *req, const void *in)
{
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
const struct dcp_export_state *export = in;
memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
memset(actx, 0, sizeof(struct dcp_async_ctx));
memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
return 0;
}
static int dcp_sha_export(struct ahash_request *req, void *out)
{
struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
struct dcp_export_state *export = out;
memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
return 0;
}
static int dcp_sha_cra_init(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct dcp_sha_req_ctx));
return 0;
}
static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
{
}
/* AES 128 ECB and AES 128 CBC */
static struct skcipher_alg dcp_aes_algs[] = {
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-dcp",
.base.cra_priority = 400,
.base.cra_alignmask = 15,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct dcp_async_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mxs_dcp_aes_setkey,
.encrypt = mxs_dcp_aes_ecb_encrypt,
.decrypt = mxs_dcp_aes_ecb_decrypt,
.init = mxs_dcp_aes_fallback_init_tfm,
.exit = mxs_dcp_aes_fallback_exit_tfm,
}, {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-dcp",
.base.cra_priority = 400,
.base.cra_alignmask = 15,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct dcp_async_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mxs_dcp_aes_setkey,
.encrypt = mxs_dcp_aes_cbc_encrypt,
.decrypt = mxs_dcp_aes_cbc_decrypt,
.ivsize = AES_BLOCK_SIZE,
.init = mxs_dcp_aes_fallback_init_tfm,
.exit = mxs_dcp_aes_fallback_exit_tfm,
},
};
/* SHA1 */
static struct ahash_alg dcp_sha1_alg = {
.init = dcp_sha_init,
.update = dcp_sha_update,
.final = dcp_sha_final,
.finup = dcp_sha_finup,
.digest = dcp_sha_digest,
.import = dcp_sha_import,
.export = dcp_sha_export,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct dcp_export_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-dcp",
.cra_priority = 400,
.cra_alignmask = 63,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_module = THIS_MODULE,
.cra_init = dcp_sha_cra_init,
.cra_exit = dcp_sha_cra_exit,
},
},
};
/* SHA256 */
static struct ahash_alg dcp_sha256_alg = {
.init = dcp_sha_init,
.update = dcp_sha_update,
.final = dcp_sha_final,
.finup = dcp_sha_finup,
.digest = dcp_sha_digest,
.import = dcp_sha_import,
.export = dcp_sha_export,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct dcp_export_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-dcp",
.cra_priority = 400,
.cra_alignmask = 63,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_module = THIS_MODULE,
.cra_init = dcp_sha_cra_init,
.cra_exit = dcp_sha_cra_exit,
},
},
};
static irqreturn_t mxs_dcp_irq(int irq, void *context)
{
struct dcp *sdcp = context;
uint32_t stat;
int i;
stat = readl(sdcp->base + MXS_DCP_STAT);
stat &= MXS_DCP_STAT_IRQ_MASK;
if (!stat)
return IRQ_NONE;
/* Clear the interrupts. */
writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
/* Complete the DMA requests that finished. */
for (i = 0; i < DCP_MAX_CHANS; i++)
if (stat & (1 << i))
complete(&sdcp->completion[i]);
return IRQ_HANDLED;
}
static int mxs_dcp_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct dcp *sdcp = NULL;
int i, ret;
int dcp_vmi_irq, dcp_irq;
if (global_sdcp) {
dev_err(dev, "Only one DCP instance allowed!\n");
return -ENODEV;
}
dcp_vmi_irq = platform_get_irq(pdev, 0);
if (dcp_vmi_irq < 0)
return dcp_vmi_irq;
dcp_irq = platform_get_irq(pdev, 1);
if (dcp_irq < 0)
return dcp_irq;
sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
if (!sdcp)
return -ENOMEM;
sdcp->dev = dev;
sdcp->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(sdcp->base))
return PTR_ERR(sdcp->base);
ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
"dcp-vmi-irq", sdcp);
if (ret) {
dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
return ret;
}
ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
"dcp-irq", sdcp);
if (ret) {
dev_err(dev, "Failed to claim DCP IRQ!\n");
return ret;
}
/* Allocate coherent helper block. */
sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
GFP_KERNEL);
if (!sdcp->coh)
return -ENOMEM;
/* Re-align the structure so it fits the DCP constraints. */
sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
/* DCP clock is optional, only used on some SOCs */
sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
if (IS_ERR(sdcp->dcp_clk))
return PTR_ERR(sdcp->dcp_clk);
/* Restart the DCP block. */
ret = stmp_reset_block(sdcp->base);
if (ret) {
dev_err(dev, "Failed reset\n");
return ret;
}
/* Initialize control register. */
writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
sdcp->base + MXS_DCP_CTRL);
/* Enable all DCP DMA channels. */
writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
sdcp->base + MXS_DCP_CHANNELCTRL);
/*
* We do not enable context switching. Give the context buffer a
* pointer to an illegal address so if context switching is
* inadvertantly enabled, the DCP will return an error instead of
* trashing good memory. The DCP DMA cannot access ROM, so any ROM
* address will do.
*/
writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
for (i = 0; i < DCP_MAX_CHANS; i++)
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
global_sdcp = sdcp;
platform_set_drvdata(pdev, sdcp);
for (i = 0; i < DCP_MAX_CHANS; i++) {
spin_lock_init(&sdcp->lock[i]);
init_completion(&sdcp->completion[i]);
crypto_init_queue(&sdcp->queue[i], 50);
}
/* Create the SHA and AES handler threads. */
sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
NULL, "mxs_dcp_chan/sha");
if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
dev_err(dev, "Error starting SHA thread!\n");
ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
return ret;
}
sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
NULL, "mxs_dcp_chan/aes");
if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
dev_err(dev, "Error starting SHA thread!\n");
ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
goto err_destroy_sha_thread;
}
/* Register the various crypto algorithms. */
sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
ret = crypto_register_skciphers(dcp_aes_algs,
ARRAY_SIZE(dcp_aes_algs));
if (ret) {
/* Failed to register algorithm. */
dev_err(dev, "Failed to register AES crypto!\n");
goto err_destroy_aes_thread;
}
}
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
ret = crypto_register_ahash(&dcp_sha1_alg);
if (ret) {
dev_err(dev, "Failed to register %s hash!\n",
dcp_sha1_alg.halg.base.cra_name);
goto err_unregister_aes;
}
}
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
ret = crypto_register_ahash(&dcp_sha256_alg);
if (ret) {
dev_err(dev, "Failed to register %s hash!\n",
dcp_sha256_alg.halg.base.cra_name);
goto err_unregister_sha1;
}
}
return 0;
err_unregister_sha1:
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
crypto_unregister_ahash(&dcp_sha1_alg);
err_unregister_aes:
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
err_destroy_aes_thread:
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
err_destroy_sha_thread:
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
return ret;
}
static int mxs_dcp_remove(struct platform_device *pdev)
{
struct dcp *sdcp = platform_get_drvdata(pdev);
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
crypto_unregister_ahash(&dcp_sha256_alg);
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
crypto_unregister_ahash(&dcp_sha1_alg);
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
platform_set_drvdata(pdev, NULL);
global_sdcp = NULL;
return 0;
}
static const struct of_device_id mxs_dcp_dt_ids[] = {
{ .compatible = "fsl,imx23-dcp", .data = NULL, },
{ .compatible = "fsl,imx28-dcp", .data = NULL, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
static struct platform_driver mxs_dcp_driver = {
.probe = mxs_dcp_probe,
.remove = mxs_dcp_remove,
.driver = {
.name = "mxs-dcp",
.of_match_table = mxs_dcp_dt_ids,
},
};
module_platform_driver(mxs_dcp_driver);
MODULE_AUTHOR("Marek Vasut <[email protected]>");
MODULE_DESCRIPTION("Freescale MXS DCP Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mxs-dcp");
| linux-master | drivers/crypto/mxs-dcp.c |
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2020 - 2021 Intel Corporation */
#include <linux/iopoll.h>
#include <adf_accel_devices.h>
#include <adf_cfg.h>
#include <adf_clock.h>
#include <adf_common_drv.h>
#include <adf_gen4_dc.h>
#include <adf_gen4_hw_data.h>
#include <adf_gen4_pfvf.h>
#include <adf_gen4_pm.h>
#include <adf_gen4_timer.h>
#include "adf_4xxx_hw_data.h"
#include "icp_qat_hw.h"
enum adf_fw_objs {
ADF_FW_SYM_OBJ,
ADF_FW_ASYM_OBJ,
ADF_FW_DC_OBJ,
ADF_FW_ADMIN_OBJ,
};
static const char * const adf_4xxx_fw_objs[] = {
[ADF_FW_SYM_OBJ] = ADF_4XXX_SYM_OBJ,
[ADF_FW_ASYM_OBJ] = ADF_4XXX_ASYM_OBJ,
[ADF_FW_DC_OBJ] = ADF_4XXX_DC_OBJ,
[ADF_FW_ADMIN_OBJ] = ADF_4XXX_ADMIN_OBJ,
};
static const char * const adf_402xx_fw_objs[] = {
[ADF_FW_SYM_OBJ] = ADF_402XX_SYM_OBJ,
[ADF_FW_ASYM_OBJ] = ADF_402XX_ASYM_OBJ,
[ADF_FW_DC_OBJ] = ADF_402XX_DC_OBJ,
[ADF_FW_ADMIN_OBJ] = ADF_402XX_ADMIN_OBJ,
};
struct adf_fw_config {
u32 ae_mask;
enum adf_fw_objs obj;
};
static const struct adf_fw_config adf_fw_cy_config[] = {
{0xF0, ADF_FW_SYM_OBJ},
{0xF, ADF_FW_ASYM_OBJ},
{0x100, ADF_FW_ADMIN_OBJ},
};
static const struct adf_fw_config adf_fw_dc_config[] = {
{0xF0, ADF_FW_DC_OBJ},
{0xF, ADF_FW_DC_OBJ},
{0x100, ADF_FW_ADMIN_OBJ},
};
static const struct adf_fw_config adf_fw_sym_config[] = {
{0xF0, ADF_FW_SYM_OBJ},
{0xF, ADF_FW_SYM_OBJ},
{0x100, ADF_FW_ADMIN_OBJ},
};
static const struct adf_fw_config adf_fw_asym_config[] = {
{0xF0, ADF_FW_ASYM_OBJ},
{0xF, ADF_FW_ASYM_OBJ},
{0x100, ADF_FW_ADMIN_OBJ},
};
static const struct adf_fw_config adf_fw_asym_dc_config[] = {
{0xF0, ADF_FW_ASYM_OBJ},
{0xF, ADF_FW_DC_OBJ},
{0x100, ADF_FW_ADMIN_OBJ},
};
static const struct adf_fw_config adf_fw_sym_dc_config[] = {
{0xF0, ADF_FW_SYM_OBJ},
{0xF, ADF_FW_DC_OBJ},
{0x100, ADF_FW_ADMIN_OBJ},
};
static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_dc_config));
static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_sym_config));
static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_asym_config));
static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_asym_dc_config));
static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_sym_dc_config));
/* Worker thread to service arbiter mappings */
static const u32 default_thrd_to_arb_map[ADF_4XXX_MAX_ACCELENGINES] = {
0x5555555, 0x5555555, 0x5555555, 0x5555555,
0xAAAAAAA, 0xAAAAAAA, 0xAAAAAAA, 0xAAAAAAA,
0x0
};
static const u32 thrd_to_arb_map_dc[ADF_4XXX_MAX_ACCELENGINES] = {
0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF,
0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF,
0x0
};
static struct adf_hw_device_class adf_4xxx_class = {
.name = ADF_4XXX_DEVICE_NAME,
.type = DEV_4XXX,
.instances = 0,
};
enum dev_services {
SVC_CY = 0,
SVC_CY2,
SVC_DC,
SVC_SYM,
SVC_ASYM,
SVC_DC_ASYM,
SVC_ASYM_DC,
SVC_DC_SYM,
SVC_SYM_DC,
};
static const char *const dev_cfg_services[] = {
[SVC_CY] = ADF_CFG_CY,
[SVC_CY2] = ADF_CFG_ASYM_SYM,
[SVC_DC] = ADF_CFG_DC,
[SVC_SYM] = ADF_CFG_SYM,
[SVC_ASYM] = ADF_CFG_ASYM,
[SVC_DC_ASYM] = ADF_CFG_DC_ASYM,
[SVC_ASYM_DC] = ADF_CFG_ASYM_DC,
[SVC_DC_SYM] = ADF_CFG_DC_SYM,
[SVC_SYM_DC] = ADF_CFG_SYM_DC,
};
static int get_service_enabled(struct adf_accel_dev *accel_dev)
{
char services[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = {0};
int ret;
ret = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC,
ADF_SERVICES_ENABLED, services);
if (ret) {
dev_err(&GET_DEV(accel_dev),
ADF_SERVICES_ENABLED " param not found\n");
return ret;
}
ret = match_string(dev_cfg_services, ARRAY_SIZE(dev_cfg_services),
services);
if (ret < 0)
dev_err(&GET_DEV(accel_dev),
"Invalid value of " ADF_SERVICES_ENABLED " param: %s\n",
services);
return ret;
}
static u32 get_accel_mask(struct adf_hw_device_data *self)
{
return ADF_4XXX_ACCELERATORS_MASK;
}
static u32 get_ae_mask(struct adf_hw_device_data *self)
{
u32 me_disable = self->fuses;
return ~me_disable & ADF_4XXX_ACCELENGINES_MASK;
}
static u32 get_num_accels(struct adf_hw_device_data *self)
{
return ADF_4XXX_MAX_ACCELERATORS;
}
static u32 get_num_aes(struct adf_hw_device_data *self)
{
if (!self || !self->ae_mask)
return 0;
return hweight32(self->ae_mask);
}
static u32 get_misc_bar_id(struct adf_hw_device_data *self)
{
return ADF_4XXX_PMISC_BAR;
}
static u32 get_etr_bar_id(struct adf_hw_device_data *self)
{
return ADF_4XXX_ETR_BAR;
}
static u32 get_sram_bar_id(struct adf_hw_device_data *self)
{
return ADF_4XXX_SRAM_BAR;
}
/*
* The vector routing table is used to select the MSI-X entry to use for each
* interrupt source.
* The first ADF_4XXX_ETR_MAX_BANKS entries correspond to ring interrupts.
* The final entry corresponds to VF2PF or error interrupts.
* This vector table could be used to configure one MSI-X entry to be shared
* between multiple interrupt sources.
*
* The default routing is set to have a one to one correspondence between the
* interrupt source and the MSI-X entry used.
*/
static void set_msix_default_rttable(struct adf_accel_dev *accel_dev)
{
void __iomem *csr;
int i;
csr = (&GET_BARS(accel_dev)[ADF_4XXX_PMISC_BAR])->virt_addr;
for (i = 0; i <= ADF_4XXX_ETR_MAX_BANKS; i++)
ADF_CSR_WR(csr, ADF_4XXX_MSIX_RTTABLE_OFFSET(i), i);
}
static u32 get_accel_cap(struct adf_accel_dev *accel_dev)
{
struct pci_dev *pdev = accel_dev->accel_pci_dev.pci_dev;
u32 capabilities_sym, capabilities_asym, capabilities_dc;
u32 fusectl1;
/* Read accelerator capabilities mask */
pci_read_config_dword(pdev, ADF_4XXX_FUSECTL1_OFFSET, &fusectl1);
capabilities_sym = ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC |
ICP_ACCEL_CAPABILITIES_CIPHER |
ICP_ACCEL_CAPABILITIES_AUTHENTICATION |
ICP_ACCEL_CAPABILITIES_SHA3 |
ICP_ACCEL_CAPABILITIES_SHA3_EXT |
ICP_ACCEL_CAPABILITIES_HKDF |
ICP_ACCEL_CAPABILITIES_CHACHA_POLY |
ICP_ACCEL_CAPABILITIES_AESGCM_SPC |
ICP_ACCEL_CAPABILITIES_SM3 |
ICP_ACCEL_CAPABILITIES_SM4 |
ICP_ACCEL_CAPABILITIES_AES_V2;
/* A set bit in fusectl1 means the feature is OFF in this SKU */
if (fusectl1 & ICP_ACCEL_4XXX_MASK_CIPHER_SLICE) {
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_HKDF;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CIPHER;
}
if (fusectl1 & ICP_ACCEL_4XXX_MASK_UCS_SLICE) {
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CHACHA_POLY;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_AESGCM_SPC;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_AES_V2;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CIPHER;
}
if (fusectl1 & ICP_ACCEL_4XXX_MASK_AUTH_SLICE) {
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_AUTHENTICATION;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_SHA3;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_SHA3_EXT;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CIPHER;
}
if (fusectl1 & ICP_ACCEL_4XXX_MASK_SMX_SLICE) {
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_SM3;
capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_SM4;
}
capabilities_asym = ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC |
ICP_ACCEL_CAPABILITIES_CIPHER |
ICP_ACCEL_CAPABILITIES_SM2 |
ICP_ACCEL_CAPABILITIES_ECEDMONT;
if (fusectl1 & ICP_ACCEL_4XXX_MASK_PKE_SLICE) {
capabilities_asym &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC;
capabilities_asym &= ~ICP_ACCEL_CAPABILITIES_SM2;
capabilities_asym &= ~ICP_ACCEL_CAPABILITIES_ECEDMONT;
}
capabilities_dc = ICP_ACCEL_CAPABILITIES_COMPRESSION |
ICP_ACCEL_CAPABILITIES_LZ4_COMPRESSION |
ICP_ACCEL_CAPABILITIES_LZ4S_COMPRESSION |
ICP_ACCEL_CAPABILITIES_CNV_INTEGRITY64;
if (fusectl1 & ICP_ACCEL_4XXX_MASK_COMPRESS_SLICE) {
capabilities_dc &= ~ICP_ACCEL_CAPABILITIES_COMPRESSION;
capabilities_dc &= ~ICP_ACCEL_CAPABILITIES_LZ4_COMPRESSION;
capabilities_dc &= ~ICP_ACCEL_CAPABILITIES_LZ4S_COMPRESSION;
capabilities_dc &= ~ICP_ACCEL_CAPABILITIES_CNV_INTEGRITY64;
}
switch (get_service_enabled(accel_dev)) {
case SVC_CY:
case SVC_CY2:
return capabilities_sym | capabilities_asym;
case SVC_DC:
return capabilities_dc;
case SVC_SYM:
return capabilities_sym;
case SVC_ASYM:
return capabilities_asym;
case SVC_ASYM_DC:
case SVC_DC_ASYM:
return capabilities_asym | capabilities_dc;
case SVC_SYM_DC:
case SVC_DC_SYM:
return capabilities_sym | capabilities_dc;
default:
return 0;
}
}
static enum dev_sku_info get_sku(struct adf_hw_device_data *self)
{
return DEV_SKU_1;
}
static const u32 *adf_get_arbiter_mapping(struct adf_accel_dev *accel_dev)
{
switch (get_service_enabled(accel_dev)) {
case SVC_DC:
return thrd_to_arb_map_dc;
default:
return default_thrd_to_arb_map;
}
}
static void get_arb_info(struct arb_info *arb_info)
{
arb_info->arb_cfg = ADF_4XXX_ARB_CONFIG;
arb_info->arb_offset = ADF_4XXX_ARB_OFFSET;
arb_info->wt2sam_offset = ADF_4XXX_ARB_WRK_2_SER_MAP_OFFSET;
}
static void get_admin_info(struct admin_info *admin_csrs_info)
{
admin_csrs_info->mailbox_offset = ADF_4XXX_MAILBOX_BASE_OFFSET;
admin_csrs_info->admin_msg_ur = ADF_4XXX_ADMINMSGUR_OFFSET;
admin_csrs_info->admin_msg_lr = ADF_4XXX_ADMINMSGLR_OFFSET;
}
static u32 get_heartbeat_clock(struct adf_hw_device_data *self)
{
/*
* 4XXX uses KPT counter for HB
*/
return ADF_4XXX_KPT_COUNTER_FREQ;
}
static void adf_enable_error_correction(struct adf_accel_dev *accel_dev)
{
struct adf_bar *misc_bar = &GET_BARS(accel_dev)[ADF_4XXX_PMISC_BAR];
void __iomem *csr = misc_bar->virt_addr;
/* Enable all in errsou3 except VFLR notification on host */
ADF_CSR_WR(csr, ADF_GEN4_ERRMSK3, ADF_GEN4_VFLNOTIFY);
}
static void adf_enable_ints(struct adf_accel_dev *accel_dev)
{
void __iomem *addr;
addr = (&GET_BARS(accel_dev)[ADF_4XXX_PMISC_BAR])->virt_addr;
/* Enable bundle interrupts */
ADF_CSR_WR(addr, ADF_4XXX_SMIAPF_RP_X0_MASK_OFFSET, 0);
ADF_CSR_WR(addr, ADF_4XXX_SMIAPF_RP_X1_MASK_OFFSET, 0);
/* Enable misc interrupts */
ADF_CSR_WR(addr, ADF_4XXX_SMIAPF_MASK_OFFSET, 0);
}
static int adf_init_device(struct adf_accel_dev *accel_dev)
{
void __iomem *addr;
u32 status;
u32 csr;
int ret;
addr = (&GET_BARS(accel_dev)[ADF_4XXX_PMISC_BAR])->virt_addr;
/* Temporarily mask PM interrupt */
csr = ADF_CSR_RD(addr, ADF_GEN4_ERRMSK2);
csr |= ADF_GEN4_PM_SOU;
ADF_CSR_WR(addr, ADF_GEN4_ERRMSK2, csr);
/* Set DRV_ACTIVE bit to power up the device */
ADF_CSR_WR(addr, ADF_GEN4_PM_INTERRUPT, ADF_GEN4_PM_DRV_ACTIVE);
/* Poll status register to make sure the device is powered up */
ret = read_poll_timeout(ADF_CSR_RD, status,
status & ADF_GEN4_PM_INIT_STATE,
ADF_GEN4_PM_POLL_DELAY_US,
ADF_GEN4_PM_POLL_TIMEOUT_US, true, addr,
ADF_GEN4_PM_STATUS);
if (ret)
dev_err(&GET_DEV(accel_dev), "Failed to power up the device\n");
return ret;
}
static u32 uof_get_num_objs(void)
{
return ARRAY_SIZE(adf_fw_cy_config);
}
static const char *uof_get_name(struct adf_accel_dev *accel_dev, u32 obj_num,
const char * const fw_objs[], int num_objs)
{
int id;
switch (get_service_enabled(accel_dev)) {
case SVC_CY:
case SVC_CY2:
id = adf_fw_cy_config[obj_num].obj;
break;
case SVC_DC:
id = adf_fw_dc_config[obj_num].obj;
break;
case SVC_SYM:
id = adf_fw_sym_config[obj_num].obj;
break;
case SVC_ASYM:
id = adf_fw_asym_config[obj_num].obj;
break;
case SVC_ASYM_DC:
case SVC_DC_ASYM:
id = adf_fw_asym_dc_config[obj_num].obj;
break;
case SVC_SYM_DC:
case SVC_DC_SYM:
id = adf_fw_sym_dc_config[obj_num].obj;
break;
default:
id = -EINVAL;
break;
}
if (id < 0 || id > num_objs)
return NULL;
return fw_objs[id];
}
static const char *uof_get_name_4xxx(struct adf_accel_dev *accel_dev, u32 obj_num)
{
int num_fw_objs = ARRAY_SIZE(adf_4xxx_fw_objs);
return uof_get_name(accel_dev, obj_num, adf_4xxx_fw_objs, num_fw_objs);
}
static const char *uof_get_name_402xx(struct adf_accel_dev *accel_dev, u32 obj_num)
{
int num_fw_objs = ARRAY_SIZE(adf_402xx_fw_objs);
return uof_get_name(accel_dev, obj_num, adf_402xx_fw_objs, num_fw_objs);
}
static u32 uof_get_ae_mask(struct adf_accel_dev *accel_dev, u32 obj_num)
{
switch (get_service_enabled(accel_dev)) {
case SVC_CY:
return adf_fw_cy_config[obj_num].ae_mask;
case SVC_DC:
return adf_fw_dc_config[obj_num].ae_mask;
case SVC_CY2:
return adf_fw_cy_config[obj_num].ae_mask;
case SVC_SYM:
return adf_fw_sym_config[obj_num].ae_mask;
case SVC_ASYM:
return adf_fw_asym_config[obj_num].ae_mask;
case SVC_ASYM_DC:
case SVC_DC_ASYM:
return adf_fw_asym_dc_config[obj_num].ae_mask;
case SVC_SYM_DC:
case SVC_DC_SYM:
return adf_fw_sym_dc_config[obj_num].ae_mask;
default:
return 0;
}
}
void adf_init_hw_data_4xxx(struct adf_hw_device_data *hw_data, u32 dev_id)
{
hw_data->dev_class = &adf_4xxx_class;
hw_data->instance_id = adf_4xxx_class.instances++;
hw_data->num_banks = ADF_4XXX_ETR_MAX_BANKS;
hw_data->num_banks_per_vf = ADF_4XXX_NUM_BANKS_PER_VF;
hw_data->num_rings_per_bank = ADF_4XXX_NUM_RINGS_PER_BANK;
hw_data->num_accel = ADF_4XXX_MAX_ACCELERATORS;
hw_data->num_engines = ADF_4XXX_MAX_ACCELENGINES;
hw_data->num_logical_accel = 1;
hw_data->tx_rx_gap = ADF_4XXX_RX_RINGS_OFFSET;
hw_data->tx_rings_mask = ADF_4XXX_TX_RINGS_MASK;
hw_data->ring_to_svc_map = ADF_GEN4_DEFAULT_RING_TO_SRV_MAP;
hw_data->alloc_irq = adf_isr_resource_alloc;
hw_data->free_irq = adf_isr_resource_free;
hw_data->enable_error_correction = adf_enable_error_correction;
hw_data->get_accel_mask = get_accel_mask;
hw_data->get_ae_mask = get_ae_mask;
hw_data->get_num_accels = get_num_accels;
hw_data->get_num_aes = get_num_aes;
hw_data->get_sram_bar_id = get_sram_bar_id;
hw_data->get_etr_bar_id = get_etr_bar_id;
hw_data->get_misc_bar_id = get_misc_bar_id;
hw_data->get_arb_info = get_arb_info;
hw_data->get_admin_info = get_admin_info;
hw_data->get_accel_cap = get_accel_cap;
hw_data->get_sku = get_sku;
hw_data->init_admin_comms = adf_init_admin_comms;
hw_data->exit_admin_comms = adf_exit_admin_comms;
hw_data->send_admin_init = adf_send_admin_init;
hw_data->init_arb = adf_init_arb;
hw_data->exit_arb = adf_exit_arb;
hw_data->get_arb_mapping = adf_get_arbiter_mapping;
hw_data->enable_ints = adf_enable_ints;
hw_data->init_device = adf_init_device;
hw_data->reset_device = adf_reset_flr;
hw_data->admin_ae_mask = ADF_4XXX_ADMIN_AE_MASK;
switch (dev_id) {
case ADF_402XX_PCI_DEVICE_ID:
hw_data->fw_name = ADF_402XX_FW;
hw_data->fw_mmp_name = ADF_402XX_MMP;
hw_data->uof_get_name = uof_get_name_402xx;
break;
default:
hw_data->fw_name = ADF_4XXX_FW;
hw_data->fw_mmp_name = ADF_4XXX_MMP;
hw_data->uof_get_name = uof_get_name_4xxx;
}
hw_data->uof_get_num_objs = uof_get_num_objs;
hw_data->uof_get_ae_mask = uof_get_ae_mask;
hw_data->set_msix_rttable = set_msix_default_rttable;
hw_data->set_ssm_wdtimer = adf_gen4_set_ssm_wdtimer;
hw_data->disable_iov = adf_disable_sriov;
hw_data->ring_pair_reset = adf_gen4_ring_pair_reset;
hw_data->enable_pm = adf_gen4_enable_pm;
hw_data->handle_pm_interrupt = adf_gen4_handle_pm_interrupt;
hw_data->dev_config = adf_gen4_dev_config;
hw_data->start_timer = adf_gen4_timer_start;
hw_data->stop_timer = adf_gen4_timer_stop;
hw_data->get_hb_clock = get_heartbeat_clock;
hw_data->num_hb_ctrs = ADF_NUM_HB_CNT_PER_AE;
adf_gen4_init_hw_csr_ops(&hw_data->csr_ops);
adf_gen4_init_pf_pfvf_ops(&hw_data->pfvf_ops);
adf_gen4_init_dc_ops(&hw_data->dc_ops);
}
void adf_clean_hw_data_4xxx(struct adf_hw_device_data *hw_data)
{
hw_data->dev_class->instances--;
}
| linux-master | drivers/crypto/intel/qat/qat_4xxx/adf_4xxx_hw_data.c |
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2020 Intel Corporation */
#include <linux/device.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <adf_accel_devices.h>
#include <adf_cfg.h>
#include <adf_common_drv.h>
#include <adf_dbgfs.h>
#include <adf_heartbeat.h>
#include "adf_4xxx_hw_data.h"
#include "qat_compression.h"
#include "qat_crypto.h"
#include "adf_transport_access_macros.h"
static const struct pci_device_id adf_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, ADF_4XXX_PCI_DEVICE_ID), },
{ PCI_VDEVICE(INTEL, ADF_401XX_PCI_DEVICE_ID), },
{ PCI_VDEVICE(INTEL, ADF_402XX_PCI_DEVICE_ID), },
{ }
};
MODULE_DEVICE_TABLE(pci, adf_pci_tbl);
enum configs {
DEV_CFG_CY = 0,
DEV_CFG_DC,
DEV_CFG_SYM,
DEV_CFG_ASYM,
DEV_CFG_ASYM_SYM,
DEV_CFG_ASYM_DC,
DEV_CFG_DC_ASYM,
DEV_CFG_SYM_DC,
DEV_CFG_DC_SYM,
};
static const char * const services_operations[] = {
ADF_CFG_CY,
ADF_CFG_DC,
ADF_CFG_SYM,
ADF_CFG_ASYM,
ADF_CFG_ASYM_SYM,
ADF_CFG_ASYM_DC,
ADF_CFG_DC_ASYM,
ADF_CFG_SYM_DC,
ADF_CFG_DC_SYM,
};
static void adf_cleanup_accel(struct adf_accel_dev *accel_dev)
{
if (accel_dev->hw_device) {
adf_clean_hw_data_4xxx(accel_dev->hw_device);
accel_dev->hw_device = NULL;
}
adf_dbgfs_exit(accel_dev);
adf_cfg_dev_remove(accel_dev);
adf_devmgr_rm_dev(accel_dev, NULL);
}
static int adf_cfg_dev_init(struct adf_accel_dev *accel_dev)
{
const char *config;
int ret;
config = accel_dev->accel_id % 2 ? ADF_CFG_DC : ADF_CFG_CY;
ret = adf_cfg_section_add(accel_dev, ADF_GENERAL_SEC);
if (ret)
return ret;
/* Default configuration is crypto only for even devices
* and compression for odd devices
*/
ret = adf_cfg_add_key_value_param(accel_dev, ADF_GENERAL_SEC,
ADF_SERVICES_ENABLED, config,
ADF_STR);
if (ret)
return ret;
adf_heartbeat_save_cfg_param(accel_dev, ADF_CFG_HB_TIMER_MIN_MS);
return 0;
}
static int adf_crypto_dev_config(struct adf_accel_dev *accel_dev)
{
char key[ADF_CFG_MAX_KEY_LEN_IN_BYTES];
int banks = GET_MAX_BANKS(accel_dev);
int cpus = num_online_cpus();
unsigned long bank, val;
int instances;
int ret;
int i;
if (adf_hw_dev_has_crypto(accel_dev))
instances = min(cpus, banks / 2);
else
instances = 0;
for (i = 0; i < instances; i++) {
val = i;
bank = i * 2;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_BANK_NUM, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &bank, ADF_DEC);
if (ret)
goto err;
bank += 1;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_BANK_NUM, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &bank, ADF_DEC);
if (ret)
goto err;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_ETRMGR_CORE_AFFINITY,
i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_SIZE, i);
val = 128;
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = 512;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_SIZE, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = 0;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_TX, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = 0;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_TX, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = 1;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_ASYM_RX, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = 1;
snprintf(key, sizeof(key), ADF_CY "%d" ADF_RING_SYM_RX, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = ADF_COALESCING_DEF_TIME;
snprintf(key, sizeof(key), ADF_ETRMGR_COALESCE_TIMER_FORMAT, i);
ret = adf_cfg_add_key_value_param(accel_dev, "Accelerator0",
key, &val, ADF_DEC);
if (ret)
goto err;
}
val = i;
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_CY,
&val, ADF_DEC);
if (ret)
goto err;
val = 0;
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_DC,
&val, ADF_DEC);
if (ret)
goto err;
return 0;
err:
dev_err(&GET_DEV(accel_dev), "Failed to add configuration for crypto\n");
return ret;
}
static int adf_comp_dev_config(struct adf_accel_dev *accel_dev)
{
char key[ADF_CFG_MAX_KEY_LEN_IN_BYTES];
int banks = GET_MAX_BANKS(accel_dev);
int cpus = num_online_cpus();
unsigned long val;
int instances;
int ret;
int i;
if (adf_hw_dev_has_compression(accel_dev))
instances = min(cpus, banks);
else
instances = 0;
for (i = 0; i < instances; i++) {
val = i;
snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_BANK_NUM, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = 512;
snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_SIZE, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = 0;
snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_TX, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = 1;
snprintf(key, sizeof(key), ADF_DC "%d" ADF_RING_DC_RX, i);
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC,
key, &val, ADF_DEC);
if (ret)
goto err;
val = ADF_COALESCING_DEF_TIME;
snprintf(key, sizeof(key), ADF_ETRMGR_COALESCE_TIMER_FORMAT, i);
ret = adf_cfg_add_key_value_param(accel_dev, "Accelerator0",
key, &val, ADF_DEC);
if (ret)
goto err;
}
val = i;
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_DC,
&val, ADF_DEC);
if (ret)
goto err;
val = 0;
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_CY,
&val, ADF_DEC);
if (ret)
goto err;
return 0;
err:
dev_err(&GET_DEV(accel_dev), "Failed to add configuration for compression\n");
return ret;
}
static int adf_no_dev_config(struct adf_accel_dev *accel_dev)
{
unsigned long val;
int ret;
val = 0;
ret = adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_DC,
&val, ADF_DEC);
if (ret)
return ret;
return adf_cfg_add_key_value_param(accel_dev, ADF_KERNEL_SEC, ADF_NUM_CY,
&val, ADF_DEC);
}
int adf_gen4_dev_config(struct adf_accel_dev *accel_dev)
{
char services[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = {0};
int ret;
ret = adf_cfg_section_add(accel_dev, ADF_KERNEL_SEC);
if (ret)
goto err;
ret = adf_cfg_section_add(accel_dev, "Accelerator0");
if (ret)
goto err;
ret = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC,
ADF_SERVICES_ENABLED, services);
if (ret)
goto err;
ret = sysfs_match_string(services_operations, services);
if (ret < 0)
goto err;
switch (ret) {
case DEV_CFG_CY:
case DEV_CFG_ASYM_SYM:
ret = adf_crypto_dev_config(accel_dev);
break;
case DEV_CFG_DC:
ret = adf_comp_dev_config(accel_dev);
break;
default:
ret = adf_no_dev_config(accel_dev);
break;
}
if (ret)
goto err;
set_bit(ADF_STATUS_CONFIGURED, &accel_dev->status);
return ret;
err:
dev_err(&GET_DEV(accel_dev), "Failed to configure QAT driver\n");
return ret;
}
static int adf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct adf_accel_dev *accel_dev;
struct adf_accel_pci *accel_pci_dev;
struct adf_hw_device_data *hw_data;
unsigned int i, bar_nr;
unsigned long bar_mask;
struct adf_bar *bar;
int ret;
if (num_possible_nodes() > 1 && dev_to_node(&pdev->dev) < 0) {
/*
* If the accelerator is connected to a node with no memory
* there is no point in using the accelerator since the remote
* memory transaction will be very slow.
*/
dev_err(&pdev->dev, "Invalid NUMA configuration.\n");
return -EINVAL;
}
accel_dev = devm_kzalloc(&pdev->dev, sizeof(*accel_dev), GFP_KERNEL);
if (!accel_dev)
return -ENOMEM;
INIT_LIST_HEAD(&accel_dev->crypto_list);
accel_pci_dev = &accel_dev->accel_pci_dev;
accel_pci_dev->pci_dev = pdev;
/*
* Add accel device to accel table
* This should be called before adf_cleanup_accel is called
*/
if (adf_devmgr_add_dev(accel_dev, NULL)) {
dev_err(&pdev->dev, "Failed to add new accelerator device.\n");
return -EFAULT;
}
accel_dev->owner = THIS_MODULE;
/* Allocate and initialise device hardware meta-data structure */
hw_data = devm_kzalloc(&pdev->dev, sizeof(*hw_data), GFP_KERNEL);
if (!hw_data) {
ret = -ENOMEM;
goto out_err;
}
accel_dev->hw_device = hw_data;
adf_init_hw_data_4xxx(accel_dev->hw_device, ent->device);
pci_read_config_byte(pdev, PCI_REVISION_ID, &accel_pci_dev->revid);
pci_read_config_dword(pdev, ADF_4XXX_FUSECTL4_OFFSET, &hw_data->fuses);
/* Get Accelerators and Accelerators Engines masks */
hw_data->accel_mask = hw_data->get_accel_mask(hw_data);
hw_data->ae_mask = hw_data->get_ae_mask(hw_data);
accel_pci_dev->sku = hw_data->get_sku(hw_data);
/* If the device has no acceleration engines then ignore it */
if (!hw_data->accel_mask || !hw_data->ae_mask ||
(~hw_data->ae_mask & 0x01)) {
dev_err(&pdev->dev, "No acceleration units found.\n");
ret = -EFAULT;
goto out_err;
}
/* Create device configuration table */
ret = adf_cfg_dev_add(accel_dev);
if (ret)
goto out_err;
/* Enable PCI device */
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "Can't enable PCI device.\n");
goto out_err;
}
/* Set DMA identifier */
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret) {
dev_err(&pdev->dev, "No usable DMA configuration.\n");
goto out_err;
}
ret = adf_cfg_dev_init(accel_dev);
if (ret) {
dev_err(&pdev->dev, "Failed to initialize configuration.\n");
goto out_err;
}
/* Get accelerator capabilities mask */
hw_data->accel_capabilities_mask = hw_data->get_accel_cap(accel_dev);
if (!hw_data->accel_capabilities_mask) {
dev_err(&pdev->dev, "Failed to get capabilities mask.\n");
ret = -EINVAL;
goto out_err;
}
/* Find and map all the device's BARS */
bar_mask = pci_select_bars(pdev, IORESOURCE_MEM) & ADF_4XXX_BAR_MASK;
ret = pcim_iomap_regions_request_all(pdev, bar_mask, pci_name(pdev));
if (ret) {
dev_err(&pdev->dev, "Failed to map pci regions.\n");
goto out_err;
}
i = 0;
for_each_set_bit(bar_nr, &bar_mask, PCI_STD_NUM_BARS) {
bar = &accel_pci_dev->pci_bars[i++];
bar->virt_addr = pcim_iomap_table(pdev)[bar_nr];
}
pci_set_master(pdev);
if (pci_save_state(pdev)) {
dev_err(&pdev->dev, "Failed to save pci state.\n");
ret = -ENOMEM;
goto out_err;
}
adf_dbgfs_init(accel_dev);
ret = adf_dev_up(accel_dev, true);
if (ret)
goto out_err_dev_stop;
ret = adf_sysfs_init(accel_dev);
if (ret)
goto out_err_dev_stop;
return ret;
out_err_dev_stop:
adf_dev_down(accel_dev, false);
out_err:
adf_cleanup_accel(accel_dev);
return ret;
}
static void adf_remove(struct pci_dev *pdev)
{
struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev);
if (!accel_dev) {
pr_err("QAT: Driver removal failed\n");
return;
}
adf_dev_down(accel_dev, false);
adf_cleanup_accel(accel_dev);
}
static struct pci_driver adf_driver = {
.id_table = adf_pci_tbl,
.name = ADF_4XXX_DEVICE_NAME,
.probe = adf_probe,
.remove = adf_remove,
.sriov_configure = adf_sriov_configure,
.err_handler = &adf_err_handler,
};
module_pci_driver(adf_driver);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Intel");
MODULE_FIRMWARE(ADF_4XXX_FW);
MODULE_FIRMWARE(ADF_4XXX_MMP);
MODULE_DESCRIPTION("Intel(R) QuickAssist Technology");
MODULE_VERSION(ADF_DRV_VERSION);
MODULE_SOFTDEP("pre: crypto-intel_qat");
| linux-master | drivers/crypto/intel/qat/qat_4xxx/adf_drv.c |
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2014 - 2020 Intel Corporation */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/io.h>
#include <adf_accel_devices.h>
#include <adf_common_drv.h>
#include <adf_cfg.h>
#include <adf_dbgfs.h>
#include "adf_dh895xcc_hw_data.h"
static const struct pci_device_id adf_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_QAT_DH895XCC), },
{ }
};
MODULE_DEVICE_TABLE(pci, adf_pci_tbl);
static int adf_probe(struct pci_dev *dev, const struct pci_device_id *ent);
static void adf_remove(struct pci_dev *dev);
static struct pci_driver adf_driver = {
.id_table = adf_pci_tbl,
.name = ADF_DH895XCC_DEVICE_NAME,
.probe = adf_probe,
.remove = adf_remove,
.sriov_configure = adf_sriov_configure,
.err_handler = &adf_err_handler,
};
static void adf_cleanup_pci_dev(struct adf_accel_dev *accel_dev)
{
pci_release_regions(accel_dev->accel_pci_dev.pci_dev);
pci_disable_device(accel_dev->accel_pci_dev.pci_dev);
}
static void adf_cleanup_accel(struct adf_accel_dev *accel_dev)
{
struct adf_accel_pci *accel_pci_dev = &accel_dev->accel_pci_dev;
int i;
for (i = 0; i < ADF_PCI_MAX_BARS; i++) {
struct adf_bar *bar = &accel_pci_dev->pci_bars[i];
if (bar->virt_addr)
pci_iounmap(accel_pci_dev->pci_dev, bar->virt_addr);
}
if (accel_dev->hw_device) {
switch (accel_pci_dev->pci_dev->device) {
case PCI_DEVICE_ID_INTEL_QAT_DH895XCC:
adf_clean_hw_data_dh895xcc(accel_dev->hw_device);
break;
default:
break;
}
kfree(accel_dev->hw_device);
accel_dev->hw_device = NULL;
}
adf_dbgfs_exit(accel_dev);
adf_cfg_dev_remove(accel_dev);
adf_devmgr_rm_dev(accel_dev, NULL);
}
static int adf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct adf_accel_dev *accel_dev;
struct adf_accel_pci *accel_pci_dev;
struct adf_hw_device_data *hw_data;
unsigned int i, bar_nr;
unsigned long bar_mask;
int ret;
switch (ent->device) {
case PCI_DEVICE_ID_INTEL_QAT_DH895XCC:
break;
default:
dev_err(&pdev->dev, "Invalid device 0x%x.\n", ent->device);
return -ENODEV;
}
if (num_possible_nodes() > 1 && dev_to_node(&pdev->dev) < 0) {
/* If the accelerator is connected to a node with no memory
* there is no point in using the accelerator since the remote
* memory transaction will be very slow. */
dev_err(&pdev->dev, "Invalid NUMA configuration.\n");
return -EINVAL;
}
accel_dev = kzalloc_node(sizeof(*accel_dev), GFP_KERNEL,
dev_to_node(&pdev->dev));
if (!accel_dev)
return -ENOMEM;
INIT_LIST_HEAD(&accel_dev->crypto_list);
accel_pci_dev = &accel_dev->accel_pci_dev;
accel_pci_dev->pci_dev = pdev;
/* Add accel device to accel table.
* This should be called before adf_cleanup_accel is called */
if (adf_devmgr_add_dev(accel_dev, NULL)) {
dev_err(&pdev->dev, "Failed to add new accelerator device.\n");
kfree(accel_dev);
return -EFAULT;
}
accel_dev->owner = THIS_MODULE;
/* Allocate and configure device configuration structure */
hw_data = kzalloc_node(sizeof(*hw_data), GFP_KERNEL,
dev_to_node(&pdev->dev));
if (!hw_data) {
ret = -ENOMEM;
goto out_err;
}
accel_dev->hw_device = hw_data;
adf_init_hw_data_dh895xcc(accel_dev->hw_device);
pci_read_config_byte(pdev, PCI_REVISION_ID, &accel_pci_dev->revid);
pci_read_config_dword(pdev, ADF_DEVICE_FUSECTL_OFFSET,
&hw_data->fuses);
/* Get Accelerators and Accelerators Engines masks */
hw_data->accel_mask = hw_data->get_accel_mask(hw_data);
hw_data->ae_mask = hw_data->get_ae_mask(hw_data);
accel_pci_dev->sku = hw_data->get_sku(hw_data);
/* If the device has no acceleration engines then ignore it. */
if (!hw_data->accel_mask || !hw_data->ae_mask ||
((~hw_data->ae_mask) & 0x01)) {
dev_err(&pdev->dev, "No acceleration units found");
ret = -EFAULT;
goto out_err;
}
/* Create device configuration table */
ret = adf_cfg_dev_add(accel_dev);
if (ret)
goto out_err;
pcie_set_readrq(pdev, 1024);
/* enable PCI device */
if (pci_enable_device(pdev)) {
ret = -EFAULT;
goto out_err;
}
/* set dma identifier */
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
if (ret) {
dev_err(&pdev->dev, "No usable DMA configuration\n");
goto out_err_disable;
}
if (pci_request_regions(pdev, ADF_DH895XCC_DEVICE_NAME)) {
ret = -EFAULT;
goto out_err_disable;
}
/* Get accelerator capabilities mask */
hw_data->accel_capabilities_mask = hw_data->get_accel_cap(accel_dev);
/* Find and map all the device's BARS */
i = 0;
bar_mask = pci_select_bars(pdev, IORESOURCE_MEM);
for_each_set_bit(bar_nr, &bar_mask, ADF_PCI_MAX_BARS * 2) {
struct adf_bar *bar = &accel_pci_dev->pci_bars[i++];
bar->base_addr = pci_resource_start(pdev, bar_nr);
if (!bar->base_addr)
break;
bar->size = pci_resource_len(pdev, bar_nr);
bar->virt_addr = pci_iomap(accel_pci_dev->pci_dev, bar_nr, 0);
if (!bar->virt_addr) {
dev_err(&pdev->dev, "Failed to map BAR %d\n", bar_nr);
ret = -EFAULT;
goto out_err_free_reg;
}
}
pci_set_master(pdev);
if (pci_save_state(pdev)) {
dev_err(&pdev->dev, "Failed to save pci state\n");
ret = -ENOMEM;
goto out_err_free_reg;
}
adf_dbgfs_init(accel_dev);
ret = adf_dev_up(accel_dev, true);
if (ret)
goto out_err_dev_stop;
return ret;
out_err_dev_stop:
adf_dev_down(accel_dev, false);
out_err_free_reg:
pci_release_regions(accel_pci_dev->pci_dev);
out_err_disable:
pci_disable_device(accel_pci_dev->pci_dev);
out_err:
adf_cleanup_accel(accel_dev);
kfree(accel_dev);
return ret;
}
static void adf_remove(struct pci_dev *pdev)
{
struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev);
if (!accel_dev) {
pr_err("QAT: Driver removal failed\n");
return;
}
adf_dev_down(accel_dev, false);
adf_cleanup_accel(accel_dev);
adf_cleanup_pci_dev(accel_dev);
kfree(accel_dev);
}
static int __init adfdrv_init(void)
{
request_module("intel_qat");
if (pci_register_driver(&adf_driver)) {
pr_err("QAT: Driver initialization failed\n");
return -EFAULT;
}
return 0;
}
static void __exit adfdrv_release(void)
{
pci_unregister_driver(&adf_driver);
}
module_init(adfdrv_init);
module_exit(adfdrv_release);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Intel");
MODULE_FIRMWARE(ADF_DH895XCC_FW);
MODULE_FIRMWARE(ADF_DH895XCC_MMP);
MODULE_DESCRIPTION("Intel(R) QuickAssist Technology");
MODULE_VERSION(ADF_DRV_VERSION);
| linux-master | drivers/crypto/intel/qat/qat_dh895xcc/adf_drv.c |
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2014 - 2021 Intel Corporation */
#include <adf_accel_devices.h>
#include <adf_common_drv.h>
#include <adf_gen2_config.h>
#include <adf_gen2_dc.h>
#include <adf_gen2_hw_data.h>
#include <adf_gen2_pfvf.h>
#include "adf_dh895xcc_hw_data.h"
#include "adf_heartbeat.h"
#include "icp_qat_hw.h"
#define ADF_DH895XCC_VF_MSK 0xFFFFFFFF
/* Worker thread to service arbiter mappings */
static const u32 thrd_to_arb_map[ADF_DH895XCC_MAX_ACCELENGINES] = {
0x12222AAA, 0x11666666, 0x12222AAA, 0x11666666,
0x12222AAA, 0x11222222, 0x12222AAA, 0x11222222,
0x12222AAA, 0x11222222, 0x12222AAA, 0x11222222
};
static struct adf_hw_device_class dh895xcc_class = {
.name = ADF_DH895XCC_DEVICE_NAME,
.type = DEV_DH895XCC,
.instances = 0
};
static u32 get_accel_mask(struct adf_hw_device_data *self)
{
u32 fuses = self->fuses;
return ~fuses >> ADF_DH895XCC_ACCELERATORS_REG_OFFSET &
ADF_DH895XCC_ACCELERATORS_MASK;
}
static u32 get_ae_mask(struct adf_hw_device_data *self)
{
u32 fuses = self->fuses;
return ~fuses & ADF_DH895XCC_ACCELENGINES_MASK;
}
static u32 get_misc_bar_id(struct adf_hw_device_data *self)
{
return ADF_DH895XCC_PMISC_BAR;
}
static u32 get_ts_clock(struct adf_hw_device_data *self)
{
/*
* Timestamp update interval is 16 AE clock ticks for dh895xcc.
*/
return self->clock_frequency / 16;
}
static u32 get_etr_bar_id(struct adf_hw_device_data *self)
{
return ADF_DH895XCC_ETR_BAR;
}
static u32 get_sram_bar_id(struct adf_hw_device_data *self)
{
return ADF_DH895XCC_SRAM_BAR;
}
static u32 get_accel_cap(struct adf_accel_dev *accel_dev)
{
struct pci_dev *pdev = accel_dev->accel_pci_dev.pci_dev;
u32 capabilities;
u32 legfuses;
capabilities = ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC |
ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC |
ICP_ACCEL_CAPABILITIES_AUTHENTICATION |
ICP_ACCEL_CAPABILITIES_CIPHER |
ICP_ACCEL_CAPABILITIES_COMPRESSION;
/* Read accelerator capabilities mask */
pci_read_config_dword(pdev, ADF_DEVICE_LEGFUSE_OFFSET, &legfuses);
/* A set bit in legfuses means the feature is OFF in this SKU */
if (legfuses & ICP_ACCEL_MASK_CIPHER_SLICE) {
capabilities &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC;
capabilities &= ~ICP_ACCEL_CAPABILITIES_CIPHER;
}
if (legfuses & ICP_ACCEL_MASK_PKE_SLICE)
capabilities &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC;
if (legfuses & ICP_ACCEL_MASK_AUTH_SLICE) {
capabilities &= ~ICP_ACCEL_CAPABILITIES_AUTHENTICATION;
capabilities &= ~ICP_ACCEL_CAPABILITIES_CIPHER;
}
if (legfuses & ICP_ACCEL_MASK_COMPRESS_SLICE)
capabilities &= ~ICP_ACCEL_CAPABILITIES_COMPRESSION;
return capabilities;
}
static enum dev_sku_info get_sku(struct adf_hw_device_data *self)
{
int sku = (self->fuses & ADF_DH895XCC_FUSECTL_SKU_MASK)
>> ADF_DH895XCC_FUSECTL_SKU_SHIFT;
switch (sku) {
case ADF_DH895XCC_FUSECTL_SKU_1:
return DEV_SKU_1;
case ADF_DH895XCC_FUSECTL_SKU_2:
return DEV_SKU_2;
case ADF_DH895XCC_FUSECTL_SKU_3:
return DEV_SKU_3;
case ADF_DH895XCC_FUSECTL_SKU_4:
return DEV_SKU_4;
default:
return DEV_SKU_UNKNOWN;
}
return DEV_SKU_UNKNOWN;
}
static const u32 *adf_get_arbiter_mapping(struct adf_accel_dev *accel_dev)
{
return thrd_to_arb_map;
}
static void enable_vf2pf_interrupts(void __iomem *pmisc_addr, u32 vf_mask)
{
/* Enable VF2PF Messaging Ints - VFs 0 through 15 per vf_mask[15:0] */
if (vf_mask & 0xFFFF) {
u32 val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3)
& ~ADF_DH895XCC_ERR_MSK_VF2PF_L(vf_mask);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, val);
}
/* Enable VF2PF Messaging Ints - VFs 16 through 31 per vf_mask[31:16] */
if (vf_mask >> 16) {
u32 val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK5)
& ~ADF_DH895XCC_ERR_MSK_VF2PF_U(vf_mask);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK5, val);
}
}
static void disable_all_vf2pf_interrupts(void __iomem *pmisc_addr)
{
u32 val;
/* Disable VF2PF interrupts for VFs 0 through 15 per vf_mask[15:0] */
val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3)
| ADF_DH895XCC_ERR_MSK_VF2PF_L(ADF_DH895XCC_VF_MSK);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, val);
/* Disable VF2PF interrupts for VFs 16 through 31 per vf_mask[31:16] */
val = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK5)
| ADF_DH895XCC_ERR_MSK_VF2PF_U(ADF_DH895XCC_VF_MSK);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK5, val);
}
static u32 disable_pending_vf2pf_interrupts(void __iomem *pmisc_addr)
{
u32 sources, pending, disabled;
u32 errsou3, errmsk3;
u32 errsou5, errmsk5;
/* Get the interrupt sources triggered by VFs */
errsou3 = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRSOU3);
errsou5 = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRSOU5);
sources = ADF_DH895XCC_ERR_REG_VF2PF_L(errsou3)
| ADF_DH895XCC_ERR_REG_VF2PF_U(errsou5);
if (!sources)
return 0;
/* Get the already disabled interrupts */
errmsk3 = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK3);
errmsk5 = ADF_CSR_RD(pmisc_addr, ADF_GEN2_ERRMSK5);
disabled = ADF_DH895XCC_ERR_REG_VF2PF_L(errmsk3)
| ADF_DH895XCC_ERR_REG_VF2PF_U(errmsk5);
pending = sources & ~disabled;
if (!pending)
return 0;
/* Due to HW limitations, when disabling the interrupts, we can't
* just disable the requested sources, as this would lead to missed
* interrupts if sources changes just before writing to ERRMSK3 and
* ERRMSK5.
* To work around it, disable all and re-enable only the sources that
* are not in vf_mask and were not already disabled. Re-enabling will
* trigger a new interrupt for the sources that have changed in the
* meantime, if any.
*/
errmsk3 |= ADF_DH895XCC_ERR_MSK_VF2PF_L(ADF_DH895XCC_VF_MSK);
errmsk5 |= ADF_DH895XCC_ERR_MSK_VF2PF_U(ADF_DH895XCC_VF_MSK);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, errmsk3);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK5, errmsk5);
errmsk3 &= ADF_DH895XCC_ERR_MSK_VF2PF_L(sources | disabled);
errmsk5 &= ADF_DH895XCC_ERR_MSK_VF2PF_U(sources | disabled);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK3, errmsk3);
ADF_CSR_WR(pmisc_addr, ADF_GEN2_ERRMSK5, errmsk5);
/* Return the sources of the (new) interrupt(s) */
return pending;
}
static void configure_iov_threads(struct adf_accel_dev *accel_dev, bool enable)
{
adf_gen2_cfg_iov_thds(accel_dev, enable,
ADF_DH895XCC_AE2FUNC_MAP_GRP_A_NUM_REGS,
ADF_DH895XCC_AE2FUNC_MAP_GRP_B_NUM_REGS);
}
void adf_init_hw_data_dh895xcc(struct adf_hw_device_data *hw_data)
{
hw_data->dev_class = &dh895xcc_class;
hw_data->instance_id = dh895xcc_class.instances++;
hw_data->num_banks = ADF_DH895XCC_ETR_MAX_BANKS;
hw_data->num_rings_per_bank = ADF_ETR_MAX_RINGS_PER_BANK;
hw_data->num_accel = ADF_DH895XCC_MAX_ACCELERATORS;
hw_data->num_logical_accel = 1;
hw_data->num_engines = ADF_DH895XCC_MAX_ACCELENGINES;
hw_data->tx_rx_gap = ADF_GEN2_RX_RINGS_OFFSET;
hw_data->tx_rings_mask = ADF_GEN2_TX_RINGS_MASK;
hw_data->ring_to_svc_map = ADF_GEN2_DEFAULT_RING_TO_SRV_MAP;
hw_data->alloc_irq = adf_isr_resource_alloc;
hw_data->free_irq = adf_isr_resource_free;
hw_data->enable_error_correction = adf_gen2_enable_error_correction;
hw_data->get_accel_mask = get_accel_mask;
hw_data->get_ae_mask = get_ae_mask;
hw_data->get_accel_cap = get_accel_cap;
hw_data->get_num_accels = adf_gen2_get_num_accels;
hw_data->get_num_aes = adf_gen2_get_num_aes;
hw_data->get_etr_bar_id = get_etr_bar_id;
hw_data->get_misc_bar_id = get_misc_bar_id;
hw_data->get_admin_info = adf_gen2_get_admin_info;
hw_data->get_arb_info = adf_gen2_get_arb_info;
hw_data->get_sram_bar_id = get_sram_bar_id;
hw_data->get_sku = get_sku;
hw_data->fw_name = ADF_DH895XCC_FW;
hw_data->fw_mmp_name = ADF_DH895XCC_MMP;
hw_data->init_admin_comms = adf_init_admin_comms;
hw_data->exit_admin_comms = adf_exit_admin_comms;
hw_data->configure_iov_threads = configure_iov_threads;
hw_data->send_admin_init = adf_send_admin_init;
hw_data->init_arb = adf_init_arb;
hw_data->exit_arb = adf_exit_arb;
hw_data->get_arb_mapping = adf_get_arbiter_mapping;
hw_data->enable_ints = adf_gen2_enable_ints;
hw_data->reset_device = adf_reset_sbr;
hw_data->disable_iov = adf_disable_sriov;
hw_data->dev_config = adf_gen2_dev_config;
hw_data->clock_frequency = ADF_DH895X_AE_FREQ;
hw_data->get_hb_clock = get_ts_clock;
hw_data->num_hb_ctrs = ADF_NUM_HB_CNT_PER_AE;
hw_data->check_hb_ctrs = adf_heartbeat_check_ctrs;
adf_gen2_init_pf_pfvf_ops(&hw_data->pfvf_ops);
hw_data->pfvf_ops.enable_vf2pf_interrupts = enable_vf2pf_interrupts;
hw_data->pfvf_ops.disable_all_vf2pf_interrupts = disable_all_vf2pf_interrupts;
hw_data->pfvf_ops.disable_pending_vf2pf_interrupts = disable_pending_vf2pf_interrupts;
adf_gen2_init_hw_csr_ops(&hw_data->csr_ops);
adf_gen2_init_dc_ops(&hw_data->dc_ops);
}
void adf_clean_hw_data_dh895xcc(struct adf_hw_device_data *hw_data)
{
hw_data->dev_class->instances--;
}
| linux-master | drivers/crypto/intel/qat/qat_dh895xcc/adf_dh895xcc_hw_data.c |
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2014 - 2021 Intel Corporation */
#include <adf_accel_devices.h>
#include <adf_clock.h>
#include <adf_common_drv.h>
#include <adf_gen2_config.h>
#include <adf_gen2_dc.h>
#include <adf_gen2_hw_data.h>
#include <adf_gen2_pfvf.h>
#include "adf_c3xxx_hw_data.h"
#include "adf_heartbeat.h"
#include "icp_qat_hw.h"
/* Worker thread to service arbiter mappings */
static const u32 thrd_to_arb_map[ADF_C3XXX_MAX_ACCELENGINES] = {
0x12222AAA, 0x11222AAA, 0x12222AAA,
0x11222AAA, 0x12222AAA, 0x11222AAA
};
static struct adf_hw_device_class c3xxx_class = {
.name = ADF_C3XXX_DEVICE_NAME,
.type = DEV_C3XXX,
.instances = 0
};
static u32 get_accel_mask(struct adf_hw_device_data *self)
{
u32 straps = self->straps;
u32 fuses = self->fuses;
u32 accel;
accel = ~(fuses | straps) >> ADF_C3XXX_ACCELERATORS_REG_OFFSET;
accel &= ADF_C3XXX_ACCELERATORS_MASK;
return accel;
}
static u32 get_ae_mask(struct adf_hw_device_data *self)
{
u32 straps = self->straps;
u32 fuses = self->fuses;
unsigned long disabled;
u32 ae_disable;
int accel;
/* If an accel is disabled, then disable the corresponding two AEs */
disabled = ~get_accel_mask(self) & ADF_C3XXX_ACCELERATORS_MASK;
ae_disable = BIT(1) | BIT(0);
for_each_set_bit(accel, &disabled, ADF_C3XXX_MAX_ACCELERATORS)
straps |= ae_disable << (accel << 1);
return ~(fuses | straps) & ADF_C3XXX_ACCELENGINES_MASK;
}
static u32 get_ts_clock(struct adf_hw_device_data *self)
{
/*
* Timestamp update interval is 16 AE clock ticks for c3xxx.
*/
return self->clock_frequency / 16;
}
static int measure_clock(struct adf_accel_dev *accel_dev)
{
u32 frequency;
int ret;
ret = adf_dev_measure_clock(accel_dev, &frequency, ADF_C3XXX_MIN_AE_FREQ,
ADF_C3XXX_MAX_AE_FREQ);
if (ret)
return ret;
accel_dev->hw_device->clock_frequency = frequency;
return 0;
}
static u32 get_misc_bar_id(struct adf_hw_device_data *self)
{
return ADF_C3XXX_PMISC_BAR;
}
static u32 get_etr_bar_id(struct adf_hw_device_data *self)
{
return ADF_C3XXX_ETR_BAR;
}
static u32 get_sram_bar_id(struct adf_hw_device_data *self)
{
return ADF_C3XXX_SRAM_BAR;
}
static enum dev_sku_info get_sku(struct adf_hw_device_data *self)
{
int aes = self->get_num_aes(self);
if (aes == 6)
return DEV_SKU_4;
return DEV_SKU_UNKNOWN;
}
static const u32 *adf_get_arbiter_mapping(struct adf_accel_dev *accel_dev)
{
return thrd_to_arb_map;
}
static void configure_iov_threads(struct adf_accel_dev *accel_dev, bool enable)
{
adf_gen2_cfg_iov_thds(accel_dev, enable,
ADF_C3XXX_AE2FUNC_MAP_GRP_A_NUM_REGS,
ADF_C3XXX_AE2FUNC_MAP_GRP_B_NUM_REGS);
}
void adf_init_hw_data_c3xxx(struct adf_hw_device_data *hw_data)
{
hw_data->dev_class = &c3xxx_class;
hw_data->instance_id = c3xxx_class.instances++;
hw_data->num_banks = ADF_C3XXX_ETR_MAX_BANKS;
hw_data->num_rings_per_bank = ADF_ETR_MAX_RINGS_PER_BANK;
hw_data->num_accel = ADF_C3XXX_MAX_ACCELERATORS;
hw_data->num_logical_accel = 1;
hw_data->num_engines = ADF_C3XXX_MAX_ACCELENGINES;
hw_data->tx_rx_gap = ADF_GEN2_RX_RINGS_OFFSET;
hw_data->tx_rings_mask = ADF_GEN2_TX_RINGS_MASK;
hw_data->ring_to_svc_map = ADF_GEN2_DEFAULT_RING_TO_SRV_MAP;
hw_data->alloc_irq = adf_isr_resource_alloc;
hw_data->free_irq = adf_isr_resource_free;
hw_data->enable_error_correction = adf_gen2_enable_error_correction;
hw_data->get_accel_mask = get_accel_mask;
hw_data->get_ae_mask = get_ae_mask;
hw_data->get_accel_cap = adf_gen2_get_accel_cap;
hw_data->get_num_accels = adf_gen2_get_num_accels;
hw_data->get_num_aes = adf_gen2_get_num_aes;
hw_data->get_sram_bar_id = get_sram_bar_id;
hw_data->get_etr_bar_id = get_etr_bar_id;
hw_data->get_misc_bar_id = get_misc_bar_id;
hw_data->get_admin_info = adf_gen2_get_admin_info;
hw_data->get_arb_info = adf_gen2_get_arb_info;
hw_data->get_sku = get_sku;
hw_data->fw_name = ADF_C3XXX_FW;
hw_data->fw_mmp_name = ADF_C3XXX_MMP;
hw_data->init_admin_comms = adf_init_admin_comms;
hw_data->exit_admin_comms = adf_exit_admin_comms;
hw_data->configure_iov_threads = configure_iov_threads;
hw_data->send_admin_init = adf_send_admin_init;
hw_data->init_arb = adf_init_arb;
hw_data->exit_arb = adf_exit_arb;
hw_data->get_arb_mapping = adf_get_arbiter_mapping;
hw_data->enable_ints = adf_gen2_enable_ints;
hw_data->reset_device = adf_reset_flr;
hw_data->set_ssm_wdtimer = adf_gen2_set_ssm_wdtimer;
hw_data->disable_iov = adf_disable_sriov;
hw_data->dev_config = adf_gen2_dev_config;
hw_data->measure_clock = measure_clock;
hw_data->get_hb_clock = get_ts_clock;
hw_data->num_hb_ctrs = ADF_NUM_HB_CNT_PER_AE;
hw_data->check_hb_ctrs = adf_heartbeat_check_ctrs;
adf_gen2_init_pf_pfvf_ops(&hw_data->pfvf_ops);
adf_gen2_init_hw_csr_ops(&hw_data->csr_ops);
adf_gen2_init_dc_ops(&hw_data->dc_ops);
}
void adf_clean_hw_data_c3xxx(struct adf_hw_device_data *hw_data)
{
hw_data->dev_class->instances--;
}
| linux-master | drivers/crypto/intel/qat/qat_c3xxx/adf_c3xxx_hw_data.c |
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2014 - 2020 Intel Corporation */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/io.h>
#include <adf_accel_devices.h>
#include <adf_common_drv.h>
#include <adf_cfg.h>
#include <adf_dbgfs.h>
#include "adf_c3xxx_hw_data.h"
static const struct pci_device_id adf_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_QAT_C3XXX), },
{ }
};
MODULE_DEVICE_TABLE(pci, adf_pci_tbl);
static int adf_probe(struct pci_dev *dev, const struct pci_device_id *ent);
static void adf_remove(struct pci_dev *dev);
static struct pci_driver adf_driver = {
.id_table = adf_pci_tbl,
.name = ADF_C3XXX_DEVICE_NAME,
.probe = adf_probe,
.remove = adf_remove,
.sriov_configure = adf_sriov_configure,
.err_handler = &adf_err_handler,
};
static void adf_cleanup_pci_dev(struct adf_accel_dev *accel_dev)
{
pci_release_regions(accel_dev->accel_pci_dev.pci_dev);
pci_disable_device(accel_dev->accel_pci_dev.pci_dev);
}
static void adf_cleanup_accel(struct adf_accel_dev *accel_dev)
{
struct adf_accel_pci *accel_pci_dev = &accel_dev->accel_pci_dev;
int i;
for (i = 0; i < ADF_PCI_MAX_BARS; i++) {
struct adf_bar *bar = &accel_pci_dev->pci_bars[i];
if (bar->virt_addr)
pci_iounmap(accel_pci_dev->pci_dev, bar->virt_addr);
}
if (accel_dev->hw_device) {
switch (accel_pci_dev->pci_dev->device) {
case PCI_DEVICE_ID_INTEL_QAT_C3XXX:
adf_clean_hw_data_c3xxx(accel_dev->hw_device);
break;
default:
break;
}
kfree(accel_dev->hw_device);
accel_dev->hw_device = NULL;
}
adf_dbgfs_exit(accel_dev);
adf_cfg_dev_remove(accel_dev);
adf_devmgr_rm_dev(accel_dev, NULL);
}
static int adf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct adf_accel_dev *accel_dev;
struct adf_accel_pci *accel_pci_dev;
struct adf_hw_device_data *hw_data;
unsigned int i, bar_nr;
unsigned long bar_mask;
int ret;
switch (ent->device) {
case PCI_DEVICE_ID_INTEL_QAT_C3XXX:
break;
default:
dev_err(&pdev->dev, "Invalid device 0x%x.\n", ent->device);
return -ENODEV;
}
if (num_possible_nodes() > 1 && dev_to_node(&pdev->dev) < 0) {
/* If the accelerator is connected to a node with no memory
* there is no point in using the accelerator since the remote
* memory transaction will be very slow. */
dev_err(&pdev->dev, "Invalid NUMA configuration.\n");
return -EINVAL;
}
accel_dev = kzalloc_node(sizeof(*accel_dev), GFP_KERNEL,
dev_to_node(&pdev->dev));
if (!accel_dev)
return -ENOMEM;
INIT_LIST_HEAD(&accel_dev->crypto_list);
accel_pci_dev = &accel_dev->accel_pci_dev;
accel_pci_dev->pci_dev = pdev;
/* Add accel device to accel table.
* This should be called before adf_cleanup_accel is called */
if (adf_devmgr_add_dev(accel_dev, NULL)) {
dev_err(&pdev->dev, "Failed to add new accelerator device.\n");
kfree(accel_dev);
return -EFAULT;
}
accel_dev->owner = THIS_MODULE;
/* Allocate and configure device configuration structure */
hw_data = kzalloc_node(sizeof(*hw_data), GFP_KERNEL,
dev_to_node(&pdev->dev));
if (!hw_data) {
ret = -ENOMEM;
goto out_err;
}
accel_dev->hw_device = hw_data;
adf_init_hw_data_c3xxx(accel_dev->hw_device);
pci_read_config_byte(pdev, PCI_REVISION_ID, &accel_pci_dev->revid);
pci_read_config_dword(pdev, ADF_DEVICE_FUSECTL_OFFSET,
&hw_data->fuses);
pci_read_config_dword(pdev, ADF_C3XXX_SOFTSTRAP_CSR_OFFSET,
&hw_data->straps);
/* Get Accelerators and Accelerators Engines masks */
hw_data->accel_mask = hw_data->get_accel_mask(hw_data);
hw_data->ae_mask = hw_data->get_ae_mask(hw_data);
accel_pci_dev->sku = hw_data->get_sku(hw_data);
/* If the device has no acceleration engines then ignore it. */
if (!hw_data->accel_mask || !hw_data->ae_mask ||
((~hw_data->ae_mask) & 0x01)) {
dev_err(&pdev->dev, "No acceleration units found");
ret = -EFAULT;
goto out_err;
}
/* Create device configuration table */
ret = adf_cfg_dev_add(accel_dev);
if (ret)
goto out_err;
/* enable PCI device */
if (pci_enable_device(pdev)) {
ret = -EFAULT;
goto out_err;
}
/* set dma identifier */
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
if (ret) {
dev_err(&pdev->dev, "No usable DMA configuration\n");
goto out_err_disable;
}
if (pci_request_regions(pdev, ADF_C3XXX_DEVICE_NAME)) {
ret = -EFAULT;
goto out_err_disable;
}
/* Get accelerator capabilities mask */
hw_data->accel_capabilities_mask = hw_data->get_accel_cap(accel_dev);
/* Find and map all the device's BARS */
i = 0;
bar_mask = pci_select_bars(pdev, IORESOURCE_MEM);
for_each_set_bit(bar_nr, &bar_mask, ADF_PCI_MAX_BARS * 2) {
struct adf_bar *bar = &accel_pci_dev->pci_bars[i++];
bar->base_addr = pci_resource_start(pdev, bar_nr);
if (!bar->base_addr)
break;
bar->size = pci_resource_len(pdev, bar_nr);
bar->virt_addr = pci_iomap(accel_pci_dev->pci_dev, bar_nr, 0);
if (!bar->virt_addr) {
dev_err(&pdev->dev, "Failed to map BAR %d\n", bar_nr);
ret = -EFAULT;
goto out_err_free_reg;
}
}
pci_set_master(pdev);
if (pci_save_state(pdev)) {
dev_err(&pdev->dev, "Failed to save pci state\n");
ret = -ENOMEM;
goto out_err_free_reg;
}
adf_dbgfs_init(accel_dev);
ret = adf_dev_up(accel_dev, true);
if (ret)
goto out_err_dev_stop;
return ret;
out_err_dev_stop:
adf_dev_down(accel_dev, false);
out_err_free_reg:
pci_release_regions(accel_pci_dev->pci_dev);
out_err_disable:
pci_disable_device(accel_pci_dev->pci_dev);
out_err:
adf_cleanup_accel(accel_dev);
kfree(accel_dev);
return ret;
}
static void adf_remove(struct pci_dev *pdev)
{
struct adf_accel_dev *accel_dev = adf_devmgr_pci_to_accel_dev(pdev);
if (!accel_dev) {
pr_err("QAT: Driver removal failed\n");
return;
}
adf_dev_down(accel_dev, false);
adf_cleanup_accel(accel_dev);
adf_cleanup_pci_dev(accel_dev);
kfree(accel_dev);
}
static int __init adfdrv_init(void)
{
request_module("intel_qat");
if (pci_register_driver(&adf_driver)) {
pr_err("QAT: Driver initialization failed\n");
return -EFAULT;
}
return 0;
}
static void __exit adfdrv_release(void)
{
pci_unregister_driver(&adf_driver);
}
module_init(adfdrv_init);
module_exit(adfdrv_release);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Intel");
MODULE_FIRMWARE(ADF_C3XXX_FW);
MODULE_FIRMWARE(ADF_C3XXX_MMP);
MODULE_DESCRIPTION("Intel(R) QuickAssist Technology");
MODULE_VERSION(ADF_DRV_VERSION);
| linux-master | drivers/crypto/intel/qat/qat_c3xxx/adf_drv.c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.