python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Spreadtrum Communications Inc. #include <linux/gpio/consumer.h> #include <linux/iio/consumer.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/slab.h> /* PMIC global control registers definition */ #define SC27XX_MODULE_EN0 0xc08 #define SC27XX_CLK_EN0 0xc18 #define SC27XX_FGU_EN BIT(7) #define SC27XX_FGU_RTC_EN BIT(6) /* FGU registers definition */ #define SC27XX_FGU_START 0x0 #define SC27XX_FGU_CONFIG 0x4 #define SC27XX_FGU_ADC_CONFIG 0x8 #define SC27XX_FGU_STATUS 0xc #define SC27XX_FGU_INT_EN 0x10 #define SC27XX_FGU_INT_CLR 0x14 #define SC27XX_FGU_INT_STS 0x1c #define SC27XX_FGU_VOLTAGE 0x20 #define SC27XX_FGU_OCV 0x24 #define SC27XX_FGU_POCV 0x28 #define SC27XX_FGU_CURRENT 0x2c #define SC27XX_FGU_LOW_OVERLOAD 0x34 #define SC27XX_FGU_CLBCNT_SETH 0x50 #define SC27XX_FGU_CLBCNT_SETL 0x54 #define SC27XX_FGU_CLBCNT_DELTH 0x58 #define SC27XX_FGU_CLBCNT_DELTL 0x5c #define SC27XX_FGU_CLBCNT_VALH 0x68 #define SC27XX_FGU_CLBCNT_VALL 0x6c #define SC27XX_FGU_CLBCNT_QMAXL 0x74 #define SC27XX_FGU_USER_AREA_SET 0xa0 #define SC27XX_FGU_USER_AREA_CLEAR 0xa4 #define SC27XX_FGU_USER_AREA_STATUS 0xa8 #define SC27XX_FGU_VOLTAGE_BUF 0xd0 #define SC27XX_FGU_CURRENT_BUF 0xf0 #define SC27XX_WRITE_SELCLB_EN BIT(0) #define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0) #define SC27XX_FGU_CLBCNT_SHIFT 16 #define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0) #define SC27XX_FGU_INT_MASK GENMASK(9, 0) #define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0) #define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2) #define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12) #define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0) #define SC27XX_FGU_MODE_AREA_SHIFT 12 #define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0) #define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0) #define SC27XX_FGU_NORMAIL_POWERTON 0x5 #define SC27XX_FGU_CUR_BASIC_ADC 8192 #define SC27XX_FGU_SAMPLE_HZ 2 /* micro Ohms */ #define SC27XX_FGU_IDEAL_RESISTANCE 20000 /* * struct sc27xx_fgu_data: describe the FGU device * @regmap: regmap for register access * @dev: platform device * @battery: battery power supply * @base: the base offset for the controller * @lock: protect the structure * @gpiod: GPIO for battery detection * @channel: IIO channel to get battery temperature * @charge_chan: IIO channel to get charge voltage * @internal_resist: the battery internal resistance in mOhm * @total_cap: the total capacity of the battery in mAh * @init_cap: the initial capacity of the battery in mAh * @alarm_cap: the alarm capacity * @init_clbcnt: the initial coulomb counter * @max_volt: the maximum constant input voltage in millivolt * @min_volt: the minimum drained battery voltage in microvolt * @boot_volt: the voltage measured during boot in microvolt * @table_len: the capacity table length * @resist_table_len: the resistance table length * @cur_1000ma_adc: ADC value corresponding to 1000 mA * @vol_1000mv_adc: ADC value corresponding to 1000 mV * @calib_resist: the real resistance of coulomb counter chip in uOhm * @cap_table: capacity table with corresponding ocv * @resist_table: resistance percent table with corresponding temperature */ struct sc27xx_fgu_data { struct regmap *regmap; struct device *dev; struct power_supply *battery; u32 base; struct mutex lock; struct gpio_desc *gpiod; struct iio_channel *channel; struct iio_channel *charge_chan; bool bat_present; int internal_resist; int total_cap; int init_cap; int alarm_cap; int init_clbcnt; int max_volt; int min_volt; int boot_volt; int table_len; int resist_table_len; int cur_1000ma_adc; int vol_1000mv_adc; int calib_resist; struct power_supply_battery_ocv_table *cap_table; struct power_supply_resistance_temp_table *resist_table; }; static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity); static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data, int cap, bool int_mode); static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap); static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp); static const char * const sc27xx_charger_supply_name[] = { "sc2731_charger", "sc2720_charger", "sc2721_charger", "sc2723_charger", }; static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc) { return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc); } static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc) { return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc); } static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol) { return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000); } static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data) { int ret, status, cap, mode; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_USER_AREA_STATUS, &status); if (ret) return false; /* * We use low 4 bits to save the last battery capacity and high 12 bits * to save the system boot mode. */ mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT; cap = status & SC27XX_FGU_CAP_AREA_MASK; /* * When FGU has been powered down, the user area registers became * default value (0xffff), which can be used to valid if the system is * first power on or not. */ if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP) return true; return false; } static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data, int boot_mode) { int ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_CLEAR, SC27XX_FGU_MODE_AREA_MASK, SC27XX_FGU_MODE_AREA_MASK); if (ret) return ret; /* * Since the user area registers are put on power always-on region, * then these registers changing time will be a little long. Thus * here we should delay 200us to wait until values are updated * successfully according to the datasheet. */ udelay(200); ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_SET, SC27XX_FGU_MODE_AREA_MASK, boot_mode << SC27XX_FGU_MODE_AREA_SHIFT); if (ret) return ret; /* * Since the user area registers are put on power always-on region, * then these registers changing time will be a little long. Thus * here we should delay 200us to wait until values are updated * successfully according to the datasheet. */ udelay(200); /* * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to * make the user area data available, otherwise we can not save the user * area data. */ return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_CLEAR, SC27XX_FGU_MODE_AREA_MASK, 0); } static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap) { int ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_CLEAR, SC27XX_FGU_CAP_AREA_MASK, SC27XX_FGU_CAP_AREA_MASK); if (ret) return ret; /* * Since the user area registers are put on power always-on region, * then these registers changing time will be a little long. Thus * here we should delay 200us to wait until values are updated * successfully according to the datasheet. */ udelay(200); ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_SET, SC27XX_FGU_CAP_AREA_MASK, cap); if (ret) return ret; /* * Since the user area registers are put on power always-on region, * then these registers changing time will be a little long. Thus * here we should delay 200us to wait until values are updated * successfully according to the datasheet. */ udelay(200); /* * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to * make the user area data available, otherwise we can not save the user * area data. */ return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_USER_AREA_CLEAR, SC27XX_FGU_CAP_AREA_MASK, 0); } static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap) { int ret, value; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_USER_AREA_STATUS, &value); if (ret) return ret; *cap = value & SC27XX_FGU_CAP_AREA_MASK; return 0; } /* * When system boots on, we can not read battery capacity from coulomb * registers, since now the coulomb registers are invalid. So we should * calculate the battery open circuit voltage, and get current battery * capacity according to the capacity table. */ static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap) { int volt, cur, oci, ocv, ret; bool is_first_poweron = sc27xx_fgu_is_first_poweron(data); /* * If system is not the first power on, we should use the last saved * battery capacity as the initial battery capacity. Otherwise we should * re-calculate the initial battery capacity. */ if (!is_first_poweron) { ret = sc27xx_fgu_read_last_cap(data, cap); if (ret) return ret; return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON); } /* * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved * the first sampled open circuit current. */ ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_QMAXL, &cur); if (ret) return ret; cur <<= 1; oci = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); /* * Should get the OCV from SC27XX_FGU_POCV register at the system * beginning. It is ADC values reading from registers which need to * convert the corresponding voltage. */ ret = regmap_read(data->regmap, data->base + SC27XX_FGU_POCV, &volt); if (ret) return ret; volt = sc27xx_fgu_adc_to_voltage(data, volt); ocv = volt * 1000 - oci * data->internal_resist; data->boot_volt = ocv; /* * Parse the capacity table to look up the correct capacity percent * according to current battery's corresponding OCV values. */ *cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, ocv); ret = sc27xx_fgu_save_last_cap(data, *cap); if (ret) return ret; return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON); } static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt) { int ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_SETL, SC27XX_FGU_CLBCNT_MASK, clbcnt); if (ret) return ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_SETH, SC27XX_FGU_CLBCNT_MASK, clbcnt >> SC27XX_FGU_CLBCNT_SHIFT); if (ret) return ret; return regmap_update_bits(data->regmap, data->base + SC27XX_FGU_START, SC27XX_WRITE_SELCLB_EN, SC27XX_WRITE_SELCLB_EN); } static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt) { int ccl, cch, ret; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALL, &ccl); if (ret) return ret; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CLBCNT_VALH, &cch); if (ret) return ret; *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK; *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT; return 0; } static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val) { int ret; u32 vol; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE_BUF, &vol); if (ret) return ret; /* * It is ADC values reading from registers which need to convert to * corresponding voltage values. */ *val = sc27xx_fgu_adc_to_voltage(data, vol); return 0; } static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val) { int ret; u32 cur; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT_BUF, &cur); if (ret) return ret; /* * It is ADC values reading from registers which need to convert to * corresponding current values. */ *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); return 0; } static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap) { int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp; /* Get current coulomb counters firstly */ ret = sc27xx_fgu_get_clbcnt(data, &cur_clbcnt); if (ret) return ret; delta_clbcnt = cur_clbcnt - data->init_clbcnt; /* * Convert coulomb counter to delta capacity (mAh), and set multiplier * as 10 to improve the precision. */ temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ); temp = sc27xx_fgu_adc_to_current(data, temp / 1000); /* * Convert to capacity percent of the battery total capacity, * and multiplier is 100 too. */ delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap); *cap = delta_cap + data->init_cap; /* Calibrate the battery capacity in a normal range. */ sc27xx_fgu_capacity_calibration(data, *cap, false); return 0; } static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val) { int ret, vol; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_VOLTAGE, &vol); if (ret) return ret; /* * It is ADC values reading from registers which need to convert to * corresponding voltage values. */ *val = sc27xx_fgu_adc_to_voltage(data, vol); return 0; } static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val) { int ret, cur; ret = regmap_read(data->regmap, data->base + SC27XX_FGU_CURRENT, &cur); if (ret) return ret; /* * It is ADC values reading from registers which need to convert to * corresponding current values. */ *val = sc27xx_fgu_adc_to_current(data, cur - SC27XX_FGU_CUR_BASIC_ADC); return 0; } static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val) { int vol, cur, ret, temp, resistance; ret = sc27xx_fgu_get_vbat_vol(data, &vol); if (ret) return ret; ret = sc27xx_fgu_get_current(data, &cur); if (ret) return ret; resistance = data->internal_resist; if (data->resist_table_len > 0) { ret = sc27xx_fgu_get_temp(data, &temp); if (ret) return ret; resistance = power_supply_temp2resist_simple(data->resist_table, data->resist_table_len, temp); resistance = data->internal_resist * resistance / 100; } /* Return the battery OCV in micro volts. */ *val = vol * 1000 - cur * resistance; return 0; } static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val) { int ret, vol; ret = iio_read_channel_processed(data->charge_chan, &vol); if (ret < 0) return ret; *val = vol * 1000; return 0; } static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp) { return iio_read_channel_processed(data->channel, temp); } static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health) { int ret, vol; ret = sc27xx_fgu_get_vbat_vol(data, &vol); if (ret) return ret; if (vol > data->max_volt) *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else *health = POWER_SUPPLY_HEALTH_GOOD; return 0; } static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status) { union power_supply_propval val; struct power_supply *psy; int i, ret = -EINVAL; for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) { psy = power_supply_get_by_name(sc27xx_charger_supply_name[i]); if (!psy) continue; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &val); power_supply_put(psy); if (ret) return ret; *status = val.intval; } return ret; } static int sc27xx_fgu_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy); int ret = 0; int value; mutex_lock(&data->lock); switch (psp) { case POWER_SUPPLY_PROP_STATUS: ret = sc27xx_fgu_get_status(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_HEALTH: ret = sc27xx_fgu_get_health(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = data->bat_present; break; case POWER_SUPPLY_PROP_TEMP: ret = sc27xx_fgu_get_temp(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CAPACITY: ret = sc27xx_fgu_get_capacity(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: ret = sc27xx_fgu_get_vbat_vol(data, &value); if (ret) goto error; val->intval = value * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_OCV: ret = sc27xx_fgu_get_vbat_ocv(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = sc27xx_fgu_get_charge_vol(data, &value); if (ret) goto error; val->intval = value; break; case POWER_SUPPLY_PROP_CURRENT_AVG: ret = sc27xx_fgu_get_current(data, &value); if (ret) goto error; val->intval = value * 1000; break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: val->intval = data->total_cap * 1000; break; case POWER_SUPPLY_PROP_CHARGE_NOW: ret = sc27xx_fgu_get_clbcnt(data, &value); if (ret) goto error; value = DIV_ROUND_CLOSEST(value * 10, 36 * SC27XX_FGU_SAMPLE_HZ); val->intval = sc27xx_fgu_adc_to_current(data, value); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = sc27xx_fgu_get_vol_now(data, &value); if (ret) goto error; val->intval = value * 1000; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = sc27xx_fgu_get_cur_now(data, &value); if (ret) goto error; val->intval = value * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_BOOT: val->intval = data->boot_volt; break; default: ret = -EINVAL; break; } error: mutex_unlock(&data->lock); return ret; } static int sc27xx_fgu_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy); int ret; mutex_lock(&data->lock); switch (psp) { case POWER_SUPPLY_PROP_CAPACITY: ret = sc27xx_fgu_save_last_cap(data, val->intval); if (ret < 0) dev_err(data->dev, "failed to save battery capacity\n"); break; case POWER_SUPPLY_PROP_CALIBRATE: sc27xx_fgu_adjust_cap(data, val->intval); ret = 0; break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: data->total_cap = val->intval / 1000; ret = 0; break; default: ret = -EINVAL; } mutex_unlock(&data->lock); return ret; } static int sc27xx_fgu_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { return psp == POWER_SUPPLY_PROP_CAPACITY || psp == POWER_SUPPLY_PROP_CALIBRATE || psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN; } static enum power_supply_property sc27xx_fgu_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_VOLTAGE_BOOT, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_CALIBRATE, POWER_SUPPLY_PROP_CHARGE_NOW }; static const struct power_supply_desc sc27xx_fgu_desc = { .name = "sc27xx-fgu", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = sc27xx_fgu_props, .num_properties = ARRAY_SIZE(sc27xx_fgu_props), .get_property = sc27xx_fgu_get_property, .set_property = sc27xx_fgu_set_property, .external_power_changed = power_supply_changed, .property_is_writeable = sc27xx_fgu_property_is_writeable, .no_thermal = true, }; static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap) { int ret; data->init_cap = cap; ret = sc27xx_fgu_get_clbcnt(data, &data->init_clbcnt); if (ret) dev_err(data->dev, "failed to get init coulomb counter\n"); } static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data, int cap, bool int_mode) { int ret, ocv, chg_sts, adc; ret = sc27xx_fgu_get_vbat_ocv(data, &ocv); if (ret) { dev_err(data->dev, "get battery ocv error.\n"); return; } ret = sc27xx_fgu_get_status(data, &chg_sts); if (ret) { dev_err(data->dev, "get charger status error.\n"); return; } /* * If we are in charging mode, then we do not need to calibrate the * lower capacity. */ if (chg_sts == POWER_SUPPLY_STATUS_CHARGING) return; if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) { /* * If current OCV value is larger than the max OCV value in * OCV table, or the current capacity is larger than 100, * we should force the inititial capacity to 100. */ sc27xx_fgu_adjust_cap(data, 100); } else if (ocv <= data->cap_table[data->table_len - 1].ocv) { /* * If current OCV value is leass than the minimum OCV value in * OCV table, we should force the inititial capacity to 0. */ sc27xx_fgu_adjust_cap(data, 0); } else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) || (ocv > data->min_volt && cap <= data->alarm_cap)) { /* * If current OCV value is not matchable with current capacity, * we should re-calculate current capacity by looking up the * OCV table. */ int cur_cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, ocv); sc27xx_fgu_adjust_cap(data, cur_cap); } else if (ocv <= data->min_volt) { /* * If current OCV value is less than the low alarm voltage, but * current capacity is larger than the alarm capacity, we should * adjust the inititial capacity to alarm capacity. */ if (cap > data->alarm_cap) { sc27xx_fgu_adjust_cap(data, data->alarm_cap); } else { int cur_cap; /* * If current capacity is equal with 0 or less than 0 * (some error occurs), we should adjust inititial * capacity to the capacity corresponding to current OCV * value. */ cur_cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, ocv); sc27xx_fgu_adjust_cap(data, cur_cap); } if (!int_mode) return; /* * After adjusting the battery capacity, we should set the * lowest alarm voltage instead. */ data->min_volt = data->cap_table[data->table_len - 1].ocv; data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, data->min_volt); adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000); regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD, SC27XX_FGU_LOW_OVERLOAD_MASK, adc); } } static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id) { struct sc27xx_fgu_data *data = dev_id; int ret, cap; u32 status; mutex_lock(&data->lock); ret = regmap_read(data->regmap, data->base + SC27XX_FGU_INT_STS, &status); if (ret) goto out; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR, status, status); if (ret) goto out; /* * When low overload voltage interrupt happens, we should calibrate the * battery capacity in lower voltage stage. */ if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT)) goto out; ret = sc27xx_fgu_get_capacity(data, &cap); if (ret) goto out; sc27xx_fgu_capacity_calibration(data, cap, true); out: mutex_unlock(&data->lock); power_supply_changed(data->battery); return IRQ_HANDLED; } static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id) { struct sc27xx_fgu_data *data = dev_id; int state; mutex_lock(&data->lock); state = gpiod_get_value_cansleep(data->gpiod); if (state < 0) { dev_err(data->dev, "failed to get gpio state\n"); mutex_unlock(&data->lock); return IRQ_RETVAL(state); } data->bat_present = !!state; mutex_unlock(&data->lock); power_supply_changed(data->battery); return IRQ_HANDLED; } static void sc27xx_fgu_disable(void *_data) { struct sc27xx_fgu_data *data = _data; regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0); regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0); } static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity) { /* * Get current capacity (mAh) = battery total capacity (mAh) * * current capacity percent (capacity / 100). */ int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100); /* * Convert current capacity (mAh) to coulomb counter according to the * formula: 1 mAh =3.6 coulomb. */ return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10); } static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data) { struct nvmem_cell *cell; int calib_data, cal_4200mv; void *buf; size_t len; cell = nvmem_cell_get(data->dev, "fgu_calib"); if (IS_ERR(cell)) return PTR_ERR(cell); buf = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(buf)) return PTR_ERR(buf); memcpy(&calib_data, buf, min(len, sizeof(u32))); /* * Get the ADC value corresponding to 4200 mV from eFuse controller * according to below formula. Then convert to ADC values corresponding * to 1000 mV and 1000 mA. */ cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256; data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42); data->cur_1000ma_adc = DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist, SC27XX_FGU_IDEAL_RESISTANCE); kfree(buf); return 0; } static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data) { struct power_supply_battery_info *info; struct power_supply_battery_ocv_table *table; int ret, delta_clbcnt, alarm_adc; ret = power_supply_get_battery_info(data->battery, &info); if (ret) { dev_err(data->dev, "failed to get battery information\n"); return ret; } data->total_cap = info->charge_full_design_uah / 1000; data->max_volt = info->constant_charge_voltage_max_uv / 1000; data->internal_resist = info->factory_internal_resistance_uohm / 1000; data->min_volt = info->voltage_min_design_uv; /* * For SC27XX fuel gauge device, we only use one ocv-capacity * table in normal temperature 20 Celsius. */ table = power_supply_find_ocv2cap_table(info, 20, &data->table_len); if (!table) return -EINVAL; data->cap_table = devm_kmemdup(data->dev, table, data->table_len * sizeof(*table), GFP_KERNEL); if (!data->cap_table) { power_supply_put_battery_info(data->battery, info); return -ENOMEM; } data->alarm_cap = power_supply_ocv2cap_simple(data->cap_table, data->table_len, data->min_volt); if (!data->alarm_cap) data->alarm_cap += 1; data->resist_table_len = info->resist_table_size; if (data->resist_table_len > 0) { data->resist_table = devm_kmemdup(data->dev, info->resist_table, data->resist_table_len * sizeof(struct power_supply_resistance_temp_table), GFP_KERNEL); if (!data->resist_table) { power_supply_put_battery_info(data->battery, info); return -ENOMEM; } } power_supply_put_battery_info(data->battery, info); ret = sc27xx_fgu_calibration(data); if (ret) return ret; /* Enable the FGU module */ ret = regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, SC27XX_FGU_EN); if (ret) { dev_err(data->dev, "failed to enable fgu\n"); return ret; } /* Enable the FGU RTC clock to make it work */ ret = regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN); if (ret) { dev_err(data->dev, "failed to enable fgu RTC clock\n"); goto disable_fgu; } ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_CLR, SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK); if (ret) { dev_err(data->dev, "failed to clear interrupt status\n"); goto disable_clk; } /* * Set the voltage low overload threshold, which means when the battery * voltage is lower than this threshold, the controller will generate * one interrupt to notify. */ alarm_adc = sc27xx_fgu_voltage_to_adc(data, data->min_volt / 1000); ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_LOW_OVERLOAD, SC27XX_FGU_LOW_OVERLOAD_MASK, alarm_adc); if (ret) { dev_err(data->dev, "failed to set fgu low overload\n"); goto disable_clk; } /* * Set the coulomb counter delta threshold, that means when the coulomb * counter change is multiples of the delta threshold, the controller * will generate one interrupt to notify the users to update the battery * capacity. Now we set the delta threshold as a counter value of 1% * capacity. */ delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, 1); ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTL, SC27XX_FGU_CLBCNT_MASK, delta_clbcnt); if (ret) { dev_err(data->dev, "failed to set low delta coulomb counter\n"); goto disable_clk; } ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_CLBCNT_DELTH, SC27XX_FGU_CLBCNT_MASK, delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT); if (ret) { dev_err(data->dev, "failed to set high delta coulomb counter\n"); goto disable_clk; } /* * Get the boot battery capacity when system powers on, which is used to * initialize the coulomb counter. After that, we can read the coulomb * counter to measure the battery capacity. */ ret = sc27xx_fgu_get_boot_capacity(data, &data->init_cap); if (ret) { dev_err(data->dev, "failed to get boot capacity\n"); goto disable_clk; } /* * Convert battery capacity to the corresponding initial coulomb counter * and set into coulomb counter registers. */ data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, data->init_cap); ret = sc27xx_fgu_set_clbcnt(data, data->init_clbcnt); if (ret) { dev_err(data->dev, "failed to initialize coulomb counter\n"); goto disable_clk; } return 0; disable_clk: regmap_update_bits(data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, 0); disable_fgu: regmap_update_bits(data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, 0); return ret; } static int sc27xx_fgu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct power_supply_config fgu_cfg = { }; struct sc27xx_fgu_data *data; int ret, irq; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->regmap = dev_get_regmap(dev->parent, NULL); if (!data->regmap) { dev_err(dev, "failed to get regmap\n"); return -ENODEV; } ret = device_property_read_u32(dev, "reg", &data->base); if (ret) { dev_err(dev, "failed to get fgu address\n"); return ret; } ret = device_property_read_u32(&pdev->dev, "sprd,calib-resistance-micro-ohms", &data->calib_resist); if (ret) { dev_err(&pdev->dev, "failed to get fgu calibration resistance\n"); return ret; } data->channel = devm_iio_channel_get(dev, "bat-temp"); if (IS_ERR(data->channel)) { dev_err(dev, "failed to get IIO channel\n"); return PTR_ERR(data->channel); } data->charge_chan = devm_iio_channel_get(dev, "charge-vol"); if (IS_ERR(data->charge_chan)) { dev_err(dev, "failed to get charge IIO channel\n"); return PTR_ERR(data->charge_chan); } data->gpiod = devm_gpiod_get(dev, "bat-detect", GPIOD_IN); if (IS_ERR(data->gpiod)) { dev_err(dev, "failed to get battery detection GPIO\n"); return PTR_ERR(data->gpiod); } ret = gpiod_get_value_cansleep(data->gpiod); if (ret < 0) { dev_err(dev, "failed to get gpio state\n"); return ret; } data->bat_present = !!ret; mutex_init(&data->lock); data->dev = dev; platform_set_drvdata(pdev, data); fgu_cfg.drv_data = data; fgu_cfg.of_node = np; data->battery = devm_power_supply_register(dev, &sc27xx_fgu_desc, &fgu_cfg); if (IS_ERR(data->battery)) { dev_err(dev, "failed to register power supply\n"); return PTR_ERR(data->battery); } ret = sc27xx_fgu_hw_init(data); if (ret) { dev_err(dev, "failed to initialize fgu hardware\n"); return ret; } ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data); if (ret) { dev_err(dev, "failed to add fgu disable action\n"); return ret; } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_threaded_irq(data->dev, irq, NULL, sc27xx_fgu_interrupt, IRQF_NO_SUSPEND | IRQF_ONESHOT, pdev->name, data); if (ret) { dev_err(data->dev, "failed to request fgu IRQ\n"); return ret; } irq = gpiod_to_irq(data->gpiod); if (irq < 0) { dev_err(dev, "failed to translate GPIO to IRQ\n"); return irq; } ret = devm_request_threaded_irq(dev, irq, NULL, sc27xx_fgu_bat_detection, IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, pdev->name, data); if (ret) { dev_err(dev, "failed to request IRQ\n"); return ret; } return 0; } #ifdef CONFIG_PM_SLEEP static int sc27xx_fgu_resume(struct device *dev) { struct sc27xx_fgu_data *data = dev_get_drvdata(dev); int ret; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, SC27XX_FGU_LOW_OVERLOAD_INT | SC27XX_FGU_CLBCNT_DELTA_INT, 0); if (ret) { dev_err(data->dev, "failed to disable fgu interrupts\n"); return ret; } return 0; } static int sc27xx_fgu_suspend(struct device *dev) { struct sc27xx_fgu_data *data = dev_get_drvdata(dev); int ret, status, ocv; ret = sc27xx_fgu_get_status(data, &status); if (ret) return ret; /* * If we are charging, then no need to enable the FGU interrupts to * adjust the battery capacity. */ if (status != POWER_SUPPLY_STATUS_NOT_CHARGING && status != POWER_SUPPLY_STATUS_DISCHARGING) return 0; ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, SC27XX_FGU_LOW_OVERLOAD_INT, SC27XX_FGU_LOW_OVERLOAD_INT); if (ret) { dev_err(data->dev, "failed to enable low voltage interrupt\n"); return ret; } ret = sc27xx_fgu_get_vbat_ocv(data, &ocv); if (ret) goto disable_int; /* * If current OCV is less than the minimum voltage, we should enable the * coulomb counter threshold interrupt to notify events to adjust the * battery capacity. */ if (ocv < data->min_volt) { ret = regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, SC27XX_FGU_CLBCNT_DELTA_INT, SC27XX_FGU_CLBCNT_DELTA_INT); if (ret) { dev_err(data->dev, "failed to enable coulomb threshold int\n"); goto disable_int; } } return 0; disable_int: regmap_update_bits(data->regmap, data->base + SC27XX_FGU_INT_EN, SC27XX_FGU_LOW_OVERLOAD_INT, 0); return ret; } #endif static const struct dev_pm_ops sc27xx_fgu_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume) }; static const struct of_device_id sc27xx_fgu_of_match[] = { { .compatible = "sprd,sc2731-fgu", }, { } }; MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match); static struct platform_driver sc27xx_fgu_driver = { .probe = sc27xx_fgu_probe, .driver = { .name = "sc27xx-fgu", .of_match_table = sc27xx_fgu_of_match, .pm = &sc27xx_fgu_pm_ops, } }; module_platform_driver(sc27xx_fgu_driver); MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/sc27xx_fuel_gauge.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016, Prodys S.L. * * This adds support for sbs-charger compilant chips as defined here: * http://sbs-forum.org/specs/sbc110.pdf * * Implemetation based on sbs-battery.c */ #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/err.h> #include <linux/power_supply.h> #include <linux/i2c.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/regmap.h> #include <linux/bitops.h> #include <linux/devm-helpers.h> #define SBS_CHARGER_REG_SPEC_INFO 0x11 #define SBS_CHARGER_REG_STATUS 0x13 #define SBS_CHARGER_REG_ALARM_WARNING 0x16 #define SBS_CHARGER_STATUS_CHARGE_INHIBITED BIT(0) #define SBS_CHARGER_STATUS_RES_COLD BIT(9) #define SBS_CHARGER_STATUS_RES_HOT BIT(10) #define SBS_CHARGER_STATUS_BATTERY_PRESENT BIT(14) #define SBS_CHARGER_STATUS_AC_PRESENT BIT(15) #define SBS_CHARGER_POLL_TIME 500 struct sbs_info { struct i2c_client *client; struct power_supply *power_supply; struct regmap *regmap; struct delayed_work work; unsigned int last_state; }; static int sbs_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct sbs_info *chip = power_supply_get_drvdata(psy); unsigned int reg; reg = chip->last_state; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: val->intval = !!(reg & SBS_CHARGER_STATUS_BATTERY_PRESENT); break; case POWER_SUPPLY_PROP_ONLINE: val->intval = !!(reg & SBS_CHARGER_STATUS_AC_PRESENT); break; case POWER_SUPPLY_PROP_STATUS: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; if (!(reg & SBS_CHARGER_STATUS_BATTERY_PRESENT)) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (reg & SBS_CHARGER_STATUS_AC_PRESENT && !(reg & SBS_CHARGER_STATUS_CHARGE_INHIBITED)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; case POWER_SUPPLY_PROP_HEALTH: if (reg & SBS_CHARGER_STATUS_RES_COLD) val->intval = POWER_SUPPLY_HEALTH_COLD; if (reg & SBS_CHARGER_STATUS_RES_HOT) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else val->intval = POWER_SUPPLY_HEALTH_GOOD; break; default: return -EINVAL; } return 0; } static int sbs_check_state(struct sbs_info *chip) { unsigned int reg; int ret; ret = regmap_read(chip->regmap, SBS_CHARGER_REG_STATUS, &reg); if (!ret && reg != chip->last_state) { chip->last_state = reg; power_supply_changed(chip->power_supply); return 1; } return 0; } static void sbs_delayed_work(struct work_struct *work) { struct sbs_info *chip = container_of(work, struct sbs_info, work.work); sbs_check_state(chip); schedule_delayed_work(&chip->work, msecs_to_jiffies(SBS_CHARGER_POLL_TIME)); } static irqreturn_t sbs_irq_thread(int irq, void *data) { struct sbs_info *chip = data; int ret; ret = sbs_check_state(chip); return ret ? IRQ_HANDLED : IRQ_NONE; } static enum power_supply_property sbs_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_HEALTH, }; static bool sbs_readable_reg(struct device *dev, unsigned int reg) { return reg >= SBS_CHARGER_REG_SPEC_INFO; } static bool sbs_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case SBS_CHARGER_REG_STATUS: return true; } return false; } static const struct regmap_config sbs_regmap = { .reg_bits = 8, .val_bits = 16, .max_register = SBS_CHARGER_REG_ALARM_WARNING, .readable_reg = sbs_readable_reg, .volatile_reg = sbs_volatile_reg, .val_format_endian = REGMAP_ENDIAN_LITTLE, /* since based on SMBus */ }; static const struct power_supply_desc sbs_desc = { .name = "sbs-charger", .type = POWER_SUPPLY_TYPE_MAINS, .properties = sbs_properties, .num_properties = ARRAY_SIZE(sbs_properties), .get_property = sbs_get_property, }; static int sbs_probe(struct i2c_client *client) { struct power_supply_config psy_cfg = {}; struct sbs_info *chip; int ret, val; chip = devm_kzalloc(&client->dev, sizeof(struct sbs_info), GFP_KERNEL); if (!chip) return -ENOMEM; chip->client = client; psy_cfg.of_node = client->dev.of_node; psy_cfg.drv_data = chip; i2c_set_clientdata(client, chip); chip->regmap = devm_regmap_init_i2c(client, &sbs_regmap); if (IS_ERR(chip->regmap)) return PTR_ERR(chip->regmap); /* * Before we register, we need to make sure we can actually talk * to the battery. */ ret = regmap_read(chip->regmap, SBS_CHARGER_REG_STATUS, &val); if (ret) return dev_err_probe(&client->dev, ret, "Failed to get device status\n"); chip->last_state = val; chip->power_supply = devm_power_supply_register(&client->dev, &sbs_desc, &psy_cfg); if (IS_ERR(chip->power_supply)) return dev_err_probe(&client->dev, PTR_ERR(chip->power_supply), "Failed to register power supply\n"); /* * The sbs-charger spec doesn't impose the use of an interrupt. So in * the case it wasn't provided we use polling in order get the charger's * status. */ if (client->irq) { ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, sbs_irq_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, dev_name(&client->dev), chip); if (ret) return dev_err_probe(&client->dev, ret, "Failed to request irq\n"); } else { ret = devm_delayed_work_autocancel(&client->dev, &chip->work, sbs_delayed_work); if (ret) return dev_err_probe(&client->dev, ret, "Failed to init work for polling\n"); schedule_delayed_work(&chip->work, msecs_to_jiffies(SBS_CHARGER_POLL_TIME)); } dev_info(&client->dev, "%s: smart charger device registered\n", client->name); return 0; } #ifdef CONFIG_OF static const struct of_device_id sbs_dt_ids[] = { { .compatible = "sbs,sbs-charger" }, { }, }; MODULE_DEVICE_TABLE(of, sbs_dt_ids); #endif static const struct i2c_device_id sbs_id[] = { { "sbs-charger", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sbs_id); static struct i2c_driver sbs_driver = { .probe = sbs_probe, .id_table = sbs_id, .driver = { .name = "sbs-charger", .of_match_table = of_match_ptr(sbs_dt_ids), }, }; module_i2c_driver(sbs_driver); MODULE_AUTHOR("Nicolas Saenz Julienne <[email protected]>"); MODULE_DESCRIPTION("SBS smart charger driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/sbs-charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Battery measurement code for WM97xx * * based on tosa_battery.c * * Copyright (C) 2008 Marek Vasut <[email protected]> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/wm97xx.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/gpio/consumer.h> #include <linux/irq.h> #include <linux/slab.h> static struct work_struct bat_work; static struct gpio_desc *charge_gpiod; static DEFINE_MUTEX(work_lock); static int bat_status = POWER_SUPPLY_STATUS_UNKNOWN; static enum power_supply_property *prop; static unsigned long wm97xx_read_bat(struct power_supply *bat_ps) { struct wm97xx_batt_pdata *pdata = power_supply_get_drvdata(bat_ps); return wm97xx_read_aux_adc(dev_get_drvdata(bat_ps->dev.parent), pdata->batt_aux) * pdata->batt_mult / pdata->batt_div; } static unsigned long wm97xx_read_temp(struct power_supply *bat_ps) { struct wm97xx_batt_pdata *pdata = power_supply_get_drvdata(bat_ps); return wm97xx_read_aux_adc(dev_get_drvdata(bat_ps->dev.parent), pdata->temp_aux) * pdata->temp_mult / pdata->temp_div; } static int wm97xx_bat_get_property(struct power_supply *bat_ps, enum power_supply_property psp, union power_supply_propval *val) { struct wm97xx_batt_pdata *pdata = power_supply_get_drvdata(bat_ps); switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = bat_status; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = pdata->batt_tech; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (pdata->batt_aux >= 0) val->intval = wm97xx_read_bat(bat_ps); else return -EINVAL; break; case POWER_SUPPLY_PROP_TEMP: if (pdata->temp_aux >= 0) val->intval = wm97xx_read_temp(bat_ps); else return -EINVAL; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX: if (pdata->max_voltage >= 0) val->intval = pdata->max_voltage; else return -EINVAL; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN: if (pdata->min_voltage >= 0) val->intval = pdata->min_voltage; else return -EINVAL; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = 1; break; default: return -EINVAL; } return 0; } static void wm97xx_bat_external_power_changed(struct power_supply *bat_ps) { schedule_work(&bat_work); } static void wm97xx_bat_update(struct power_supply *bat_ps) { int old_status = bat_status; mutex_lock(&work_lock); bat_status = (charge_gpiod) ? (gpiod_get_value(charge_gpiod) ? POWER_SUPPLY_STATUS_DISCHARGING : POWER_SUPPLY_STATUS_CHARGING) : POWER_SUPPLY_STATUS_UNKNOWN; if (old_status != bat_status) { pr_debug("%s: %i -> %i\n", bat_ps->desc->name, old_status, bat_status); power_supply_changed(bat_ps); } mutex_unlock(&work_lock); } static struct power_supply *bat_psy; static struct power_supply_desc bat_psy_desc = { .type = POWER_SUPPLY_TYPE_BATTERY, .get_property = wm97xx_bat_get_property, .external_power_changed = wm97xx_bat_external_power_changed, .use_for_apm = 1, }; static void wm97xx_bat_work(struct work_struct *work) { wm97xx_bat_update(bat_psy); } static irqreturn_t wm97xx_chrg_irq(int irq, void *data) { schedule_work(&bat_work); return IRQ_HANDLED; } #ifdef CONFIG_PM static int wm97xx_bat_suspend(struct device *dev) { flush_work(&bat_work); return 0; } static int wm97xx_bat_resume(struct device *dev) { schedule_work(&bat_work); return 0; } static const struct dev_pm_ops wm97xx_bat_pm_ops = { .suspend = wm97xx_bat_suspend, .resume = wm97xx_bat_resume, }; #endif static int wm97xx_bat_probe(struct platform_device *dev) { int ret = 0; int props = 1; /* POWER_SUPPLY_PROP_PRESENT */ int i = 0; struct wm97xx_batt_pdata *pdata = dev->dev.platform_data; struct power_supply_config cfg = {}; if (!pdata) { dev_err(&dev->dev, "No platform data supplied\n"); return -EINVAL; } cfg.drv_data = pdata; if (dev->id != -1) return -EINVAL; charge_gpiod = devm_gpiod_get_optional(&dev->dev, NULL, GPIOD_IN); if (IS_ERR(charge_gpiod)) return dev_err_probe(&dev->dev, PTR_ERR(charge_gpiod), "failed to get charge GPIO\n"); if (charge_gpiod) { gpiod_set_consumer_name(charge_gpiod, "BATT CHRG"); ret = request_irq(gpiod_to_irq(charge_gpiod), wm97xx_chrg_irq, 0, "AC Detect", dev); if (ret) return dev_err_probe(&dev->dev, ret, "failed to request GPIO irq\n"); props++; /* POWER_SUPPLY_PROP_STATUS */ } if (pdata->batt_tech >= 0) props++; /* POWER_SUPPLY_PROP_TECHNOLOGY */ if (pdata->temp_aux >= 0) props++; /* POWER_SUPPLY_PROP_TEMP */ if (pdata->batt_aux >= 0) props++; /* POWER_SUPPLY_PROP_VOLTAGE_NOW */ if (pdata->max_voltage >= 0) props++; /* POWER_SUPPLY_PROP_VOLTAGE_MAX */ if (pdata->min_voltage >= 0) props++; /* POWER_SUPPLY_PROP_VOLTAGE_MIN */ prop = kcalloc(props, sizeof(*prop), GFP_KERNEL); if (!prop) { ret = -ENOMEM; goto err3; } prop[i++] = POWER_SUPPLY_PROP_PRESENT; if (charge_gpiod) prop[i++] = POWER_SUPPLY_PROP_STATUS; if (pdata->batt_tech >= 0) prop[i++] = POWER_SUPPLY_PROP_TECHNOLOGY; if (pdata->temp_aux >= 0) prop[i++] = POWER_SUPPLY_PROP_TEMP; if (pdata->batt_aux >= 0) prop[i++] = POWER_SUPPLY_PROP_VOLTAGE_NOW; if (pdata->max_voltage >= 0) prop[i++] = POWER_SUPPLY_PROP_VOLTAGE_MAX; if (pdata->min_voltage >= 0) prop[i++] = POWER_SUPPLY_PROP_VOLTAGE_MIN; INIT_WORK(&bat_work, wm97xx_bat_work); if (!pdata->batt_name) { dev_info(&dev->dev, "Please consider setting proper battery " "name in platform definition file, falling " "back to name \"wm97xx-batt\"\n"); bat_psy_desc.name = "wm97xx-batt"; } else bat_psy_desc.name = pdata->batt_name; bat_psy_desc.properties = prop; bat_psy_desc.num_properties = props; bat_psy = power_supply_register(&dev->dev, &bat_psy_desc, &cfg); if (!IS_ERR(bat_psy)) { schedule_work(&bat_work); } else { ret = PTR_ERR(bat_psy); goto err4; } return 0; err4: kfree(prop); err3: if (charge_gpiod) free_irq(gpiod_to_irq(charge_gpiod), dev); return ret; } static int wm97xx_bat_remove(struct platform_device *dev) { if (charge_gpiod) free_irq(gpiod_to_irq(charge_gpiod), dev); cancel_work_sync(&bat_work); power_supply_unregister(bat_psy); kfree(prop); return 0; } static struct platform_driver wm97xx_bat_driver = { .driver = { .name = "wm97xx-battery", #ifdef CONFIG_PM .pm = &wm97xx_bat_pm_ops, #endif }, .probe = wm97xx_bat_probe, .remove = wm97xx_bat_remove, }; module_platform_driver(wm97xx_bat_driver); MODULE_AUTHOR("Marek Vasut <[email protected]>"); MODULE_DESCRIPTION("WM97xx battery driver");
linux-master
drivers/power/supply/wm97xx_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2012 * * Battery temperature driver for AB8500 * * Author: * Johan Palsson <[email protected]> * Karl Komierowski <[email protected]> * Arun R Murthy <[email protected]> */ #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/component.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/completion.h> #include <linux/workqueue.h> #include <linux/jiffies.h> #include <linux/of.h> #include <linux/mfd/core.h> #include <linux/mfd/abx500.h> #include <linux/mfd/abx500/ab8500.h> #include <linux/thermal.h> #include <linux/iio/consumer.h> #include <linux/fixp-arith.h> #include "ab8500-bm.h" #define BTEMP_THERMAL_LOW_LIMIT -10 #define BTEMP_THERMAL_MED_LIMIT 0 #define BTEMP_THERMAL_HIGH_LIMIT_52 52 #define BTEMP_THERMAL_HIGH_LIMIT_57 57 #define BTEMP_THERMAL_HIGH_LIMIT_62 62 #define BTEMP_BATCTRL_CURR_SRC_7UA 7 #define BTEMP_BATCTRL_CURR_SRC_20UA 20 #define BTEMP_BATCTRL_CURR_SRC_16UA 16 #define BTEMP_BATCTRL_CURR_SRC_18UA 18 #define BTEMP_BATCTRL_CURR_SRC_60UA 60 #define BTEMP_BATCTRL_CURR_SRC_120UA 120 /** * struct ab8500_btemp_interrupts - ab8500 interrupts * @name: name of the interrupt * @isr function pointer to the isr */ struct ab8500_btemp_interrupts { char *name; irqreturn_t (*isr)(int irq, void *data); }; struct ab8500_btemp_events { bool batt_rem; bool btemp_high; bool btemp_medhigh; bool btemp_lowmed; bool btemp_low; bool ac_conn; bool usb_conn; }; struct ab8500_btemp_ranges { int btemp_high_limit; int btemp_med_limit; int btemp_low_limit; }; /** * struct ab8500_btemp - ab8500 BTEMP device information * @dev: Pointer to the structure device * @node: List of AB8500 BTEMPs, hence prepared for reentrance * @curr_source: What current source we use, in uA * @bat_temp: Dispatched battery temperature in degree Celsius * @prev_bat_temp Last measured battery temperature in degree Celsius * @parent: Pointer to the struct ab8500 * @tz: Thermal zone for the battery * @adc_bat_ctrl: ADC channel for the battery control * @fg: Pointer to the struct fg * @bm: Platform specific battery management information * @btemp_psy: Structure for BTEMP specific battery properties * @events: Structure for information about events triggered * @btemp_ranges: Battery temperature range structure * @btemp_wq: Work queue for measuring the temperature periodically * @btemp_periodic_work: Work for measuring the temperature periodically * @initialized: True if battery id read. */ struct ab8500_btemp { struct device *dev; struct list_head node; int curr_source; int bat_temp; int prev_bat_temp; struct ab8500 *parent; struct thermal_zone_device *tz; struct iio_channel *bat_ctrl; struct ab8500_fg *fg; struct ab8500_bm_data *bm; struct power_supply *btemp_psy; struct ab8500_btemp_events events; struct ab8500_btemp_ranges btemp_ranges; struct workqueue_struct *btemp_wq; struct delayed_work btemp_periodic_work; bool initialized; }; /* BTEMP power supply properties */ static enum power_supply_property ab8500_btemp_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_TEMP, }; static LIST_HEAD(ab8500_btemp_list); /** * ab8500_btemp_batctrl_volt_to_res() - convert batctrl voltage to resistance * @di: pointer to the ab8500_btemp structure * @v_batctrl: measured batctrl voltage * @inst_curr: measured instant current * * This function returns the battery resistance that is * derived from the BATCTRL voltage. * Returns value in Ohms. */ static int ab8500_btemp_batctrl_volt_to_res(struct ab8500_btemp *di, int v_batctrl, int inst_curr) { if (is_ab8500_1p1_or_earlier(di->parent)) { /* * For ABB cut1.0 and 1.1 BAT_CTRL is internally * connected to 1.8V through a 450k resistor */ return (450000 * (v_batctrl)) / (1800 - v_batctrl); } /* * BAT_CTRL is internally * connected to 1.8V through a 80k resistor */ return (80000 * (v_batctrl)) / (1800 - v_batctrl); } /** * ab8500_btemp_read_batctrl_voltage() - measure batctrl voltage * @di: pointer to the ab8500_btemp structure * * This function returns the voltage on BATCTRL. Returns value in mV. */ static int ab8500_btemp_read_batctrl_voltage(struct ab8500_btemp *di) { int vbtemp, ret; static int prev; ret = iio_read_channel_processed(di->bat_ctrl, &vbtemp); if (ret < 0) { dev_err(di->dev, "%s ADC conversion failed, using previous value", __func__); return prev; } prev = vbtemp; return vbtemp; } /** * ab8500_btemp_get_batctrl_res() - get battery resistance * @di: pointer to the ab8500_btemp structure * * This function returns the battery pack identification resistance. * Returns value in Ohms. */ static int ab8500_btemp_get_batctrl_res(struct ab8500_btemp *di) { int ret; int batctrl = 0; int res; int inst_curr; int i; if (!di->fg) di->fg = ab8500_fg_get(); if (!di->fg) { dev_err(di->dev, "No fg found\n"); return -EINVAL; } ret = ab8500_fg_inst_curr_start(di->fg); if (ret) { dev_err(di->dev, "Failed to start current measurement\n"); return ret; } do { msleep(20); } while (!ab8500_fg_inst_curr_started(di->fg)); i = 0; do { batctrl += ab8500_btemp_read_batctrl_voltage(di); i++; msleep(20); } while (!ab8500_fg_inst_curr_done(di->fg)); batctrl /= i; ret = ab8500_fg_inst_curr_finalize(di->fg, &inst_curr); if (ret) { dev_err(di->dev, "Failed to finalize current measurement\n"); return ret; } res = ab8500_btemp_batctrl_volt_to_res(di, batctrl, inst_curr); dev_dbg(di->dev, "%s batctrl: %d res: %d inst_curr: %d samples: %d\n", __func__, batctrl, res, inst_curr, i); return res; } /** * ab8500_btemp_id() - Identify the connected battery * @di: pointer to the ab8500_btemp structure * * This function will try to identify the battery by reading the ID * resistor. Some brands use a combined ID resistor with a NTC resistor to * both be able to identify and to read the temperature of it. */ static int ab8500_btemp_id(struct ab8500_btemp *di) { struct power_supply_battery_info *bi = di->bm->bi; int res; di->curr_source = BTEMP_BATCTRL_CURR_SRC_7UA; res = ab8500_btemp_get_batctrl_res(di); if (res < 0) { dev_err(di->dev, "%s get batctrl res failed\n", __func__); return -ENXIO; } if (power_supply_battery_bti_in_range(bi, res)) { dev_info(di->dev, "Battery detected on BATCTRL (pin C3)" " resistance %d Ohm = %d Ohm +/- %d%%\n", res, bi->bti_resistance_ohm, bi->bti_resistance_tolerance); } else { dev_warn(di->dev, "Battery identified as unknown" ", resistance %d Ohm\n", res); return -ENXIO; } return 0; } /** * ab8500_btemp_periodic_work() - Measuring the temperature periodically * @work: pointer to the work_struct structure * * Work function for measuring the temperature periodically */ static void ab8500_btemp_periodic_work(struct work_struct *work) { int interval; int bat_temp; struct ab8500_btemp *di = container_of(work, struct ab8500_btemp, btemp_periodic_work.work); /* Assume 25 degrees celsius as start temperature */ static int prev = 25; int ret; if (!di->initialized) { /* Identify the battery */ if (ab8500_btemp_id(di) < 0) dev_warn(di->dev, "failed to identify the battery\n"); } /* Failover if a reading is erroneous, use last meausurement */ ret = thermal_zone_get_temp(di->tz, &bat_temp); if (ret) { dev_err(di->dev, "error reading temperature\n"); bat_temp = prev; } else { /* Convert from millicentigrades to centigrades */ bat_temp /= 1000; prev = bat_temp; } /* * Filter battery temperature. * Allow direct updates on temperature only if two samples result in * same temperature. Else only allow 1 degree change from previous * reported value in the direction of the new measurement. */ if ((bat_temp == di->prev_bat_temp) || !di->initialized) { if ((di->bat_temp != di->prev_bat_temp) || !di->initialized) { di->initialized = true; di->bat_temp = bat_temp; power_supply_changed(di->btemp_psy); } } else if (bat_temp < di->prev_bat_temp) { di->bat_temp--; power_supply_changed(di->btemp_psy); } else if (bat_temp > di->prev_bat_temp) { di->bat_temp++; power_supply_changed(di->btemp_psy); } di->prev_bat_temp = bat_temp; if (di->events.ac_conn || di->events.usb_conn) interval = di->bm->temp_interval_chg; else interval = di->bm->temp_interval_nochg; /* Schedule a new measurement */ queue_delayed_work(di->btemp_wq, &di->btemp_periodic_work, round_jiffies(interval * HZ)); } /** * ab8500_btemp_batctrlindb_handler() - battery removal detected * @irq: interrupt number * @_di: void pointer that has to address of ab8500_btemp * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_btemp_batctrlindb_handler(int irq, void *_di) { struct ab8500_btemp *di = _di; dev_err(di->dev, "Battery removal detected!\n"); di->events.batt_rem = true; power_supply_changed(di->btemp_psy); return IRQ_HANDLED; } /** * ab8500_btemp_templow_handler() - battery temp lower than 10 degrees * @irq: interrupt number * @_di: void pointer that has to address of ab8500_btemp * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_btemp_templow_handler(int irq, void *_di) { struct ab8500_btemp *di = _di; if (is_ab8500_3p3_or_earlier(di->parent)) { dev_dbg(di->dev, "Ignore false btemp low irq" " for ABB cut 1.0, 1.1, 2.0 and 3.3\n"); } else { dev_crit(di->dev, "Battery temperature lower than -10deg c\n"); di->events.btemp_low = true; di->events.btemp_high = false; di->events.btemp_medhigh = false; di->events.btemp_lowmed = false; power_supply_changed(di->btemp_psy); } return IRQ_HANDLED; } /** * ab8500_btemp_temphigh_handler() - battery temp higher than max temp * @irq: interrupt number * @_di: void pointer that has to address of ab8500_btemp * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_btemp_temphigh_handler(int irq, void *_di) { struct ab8500_btemp *di = _di; dev_crit(di->dev, "Battery temperature is higher than MAX temp\n"); di->events.btemp_high = true; di->events.btemp_medhigh = false; di->events.btemp_lowmed = false; di->events.btemp_low = false; power_supply_changed(di->btemp_psy); return IRQ_HANDLED; } /** * ab8500_btemp_lowmed_handler() - battery temp between low and medium * @irq: interrupt number * @_di: void pointer that has to address of ab8500_btemp * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_btemp_lowmed_handler(int irq, void *_di) { struct ab8500_btemp *di = _di; dev_dbg(di->dev, "Battery temperature is between low and medium\n"); di->events.btemp_lowmed = true; di->events.btemp_medhigh = false; di->events.btemp_high = false; di->events.btemp_low = false; power_supply_changed(di->btemp_psy); return IRQ_HANDLED; } /** * ab8500_btemp_medhigh_handler() - battery temp between medium and high * @irq: interrupt number * @_di: void pointer that has to address of ab8500_btemp * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_btemp_medhigh_handler(int irq, void *_di) { struct ab8500_btemp *di = _di; dev_dbg(di->dev, "Battery temperature is between medium and high\n"); di->events.btemp_medhigh = true; di->events.btemp_lowmed = false; di->events.btemp_high = false; di->events.btemp_low = false; power_supply_changed(di->btemp_psy); return IRQ_HANDLED; } /** * ab8500_btemp_periodic() - Periodic temperature measurements * @di: pointer to the ab8500_btemp structure * @enable: enable or disable periodic temperature measurements * * Starts of stops periodic temperature measurements. Periodic measurements * should only be done when a charger is connected. */ static void ab8500_btemp_periodic(struct ab8500_btemp *di, bool enable) { dev_dbg(di->dev, "Enable periodic temperature measurements: %d\n", enable); /* * Make sure a new measurement is done directly by cancelling * any pending work */ cancel_delayed_work_sync(&di->btemp_periodic_work); if (enable) queue_delayed_work(di->btemp_wq, &di->btemp_periodic_work, 0); } /** * ab8500_btemp_get_temp() - get battery temperature * @di: pointer to the ab8500_btemp structure * * Returns battery temperature */ static int ab8500_btemp_get_temp(struct ab8500_btemp *di) { int temp = 0; /* * The BTEMP events are not reliabe on AB8500 cut3.3 * and prior versions */ if (is_ab8500_3p3_or_earlier(di->parent)) { temp = di->bat_temp * 10; } else { if (di->events.btemp_low) { if (temp > di->btemp_ranges.btemp_low_limit) temp = di->btemp_ranges.btemp_low_limit * 10; else temp = di->bat_temp * 10; } else if (di->events.btemp_high) { if (temp < di->btemp_ranges.btemp_high_limit) temp = di->btemp_ranges.btemp_high_limit * 10; else temp = di->bat_temp * 10; } else if (di->events.btemp_lowmed) { if (temp > di->btemp_ranges.btemp_med_limit) temp = di->btemp_ranges.btemp_med_limit * 10; else temp = di->bat_temp * 10; } else if (di->events.btemp_medhigh) { if (temp < di->btemp_ranges.btemp_med_limit) temp = di->btemp_ranges.btemp_med_limit * 10; else temp = di->bat_temp * 10; } else temp = di->bat_temp * 10; } return temp; } /** * ab8500_btemp_get_property() - get the btemp properties * @psy: pointer to the power_supply structure * @psp: pointer to the power_supply_property structure * @val: pointer to the power_supply_propval union * * This function gets called when an application tries to get the btemp * properties by reading the sysfs files. * online: presence of the battery * present: presence of the battery * technology: battery technology * temp: battery temperature * Returns error code in case of failure else 0(on success) */ static int ab8500_btemp_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ab8500_btemp *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_ONLINE: if (di->events.batt_rem) val->intval = 0; else val->intval = 1; break; case POWER_SUPPLY_PROP_TECHNOLOGY: if (di->bm->bi) val->intval = di->bm->bi->technology; else val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; break; case POWER_SUPPLY_PROP_TEMP: val->intval = ab8500_btemp_get_temp(di); break; default: return -EINVAL; } return 0; } static int ab8500_btemp_get_ext_psy_data(struct device *dev, void *data) { struct power_supply *psy; struct power_supply *ext = dev_get_drvdata(dev); const char **supplicants = (const char **)ext->supplied_to; struct ab8500_btemp *di; union power_supply_propval ret; int j; psy = (struct power_supply *)data; di = power_supply_get_drvdata(psy); /* * For all psy where the name of your driver * appears in any supplied_to */ j = match_string(supplicants, ext->num_supplicants, psy->desc->name); if (j < 0) return 0; /* Go through all properties for the psy */ for (j = 0; j < ext->desc->num_properties; j++) { enum power_supply_property prop; prop = ext->desc->properties[j]; if (power_supply_get_property(ext, prop, &ret)) continue; switch (prop) { case POWER_SUPPLY_PROP_PRESENT: switch (ext->desc->type) { case POWER_SUPPLY_TYPE_MAINS: /* AC disconnected */ if (!ret.intval && di->events.ac_conn) { di->events.ac_conn = false; } /* AC connected */ else if (ret.intval && !di->events.ac_conn) { di->events.ac_conn = true; if (!di->events.usb_conn) ab8500_btemp_periodic(di, true); } break; case POWER_SUPPLY_TYPE_USB: /* USB disconnected */ if (!ret.intval && di->events.usb_conn) { di->events.usb_conn = false; } /* USB connected */ else if (ret.intval && !di->events.usb_conn) { di->events.usb_conn = true; if (!di->events.ac_conn) ab8500_btemp_periodic(di, true); } break; default: break; } break; default: break; } } return 0; } /** * ab8500_btemp_external_power_changed() - callback for power supply changes * @psy: pointer to the structure power_supply * * This function is pointing to the function pointer external_power_changed * of the structure power_supply. * This function gets executed when there is a change in the external power * supply to the btemp. */ static void ab8500_btemp_external_power_changed(struct power_supply *psy) { class_for_each_device(power_supply_class, NULL, psy, ab8500_btemp_get_ext_psy_data); } /* ab8500 btemp driver interrupts and their respective isr */ static struct ab8500_btemp_interrupts ab8500_btemp_irq[] = { {"BAT_CTRL_INDB", ab8500_btemp_batctrlindb_handler}, {"BTEMP_LOW", ab8500_btemp_templow_handler}, {"BTEMP_HIGH", ab8500_btemp_temphigh_handler}, {"BTEMP_LOW_MEDIUM", ab8500_btemp_lowmed_handler}, {"BTEMP_MEDIUM_HIGH", ab8500_btemp_medhigh_handler}, }; static int __maybe_unused ab8500_btemp_resume(struct device *dev) { struct ab8500_btemp *di = dev_get_drvdata(dev); ab8500_btemp_periodic(di, true); return 0; } static int __maybe_unused ab8500_btemp_suspend(struct device *dev) { struct ab8500_btemp *di = dev_get_drvdata(dev); ab8500_btemp_periodic(di, false); return 0; } static char *supply_interface[] = { "ab8500_chargalg", "ab8500_fg", }; static const struct power_supply_desc ab8500_btemp_desc = { .name = "ab8500_btemp", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = ab8500_btemp_props, .num_properties = ARRAY_SIZE(ab8500_btemp_props), .get_property = ab8500_btemp_get_property, .external_power_changed = ab8500_btemp_external_power_changed, }; static int ab8500_btemp_bind(struct device *dev, struct device *master, void *data) { struct ab8500_btemp *di = dev_get_drvdata(dev); /* Create a work queue for the btemp */ di->btemp_wq = alloc_workqueue("ab8500_btemp_wq", WQ_MEM_RECLAIM, 0); if (di->btemp_wq == NULL) { dev_err(dev, "failed to create work queue\n"); return -ENOMEM; } /* Kick off periodic temperature measurements */ ab8500_btemp_periodic(di, true); return 0; } static void ab8500_btemp_unbind(struct device *dev, struct device *master, void *data) { struct ab8500_btemp *di = dev_get_drvdata(dev); /* Delete the work queue */ destroy_workqueue(di->btemp_wq); } static const struct component_ops ab8500_btemp_component_ops = { .bind = ab8500_btemp_bind, .unbind = ab8500_btemp_unbind, }; static int ab8500_btemp_probe(struct platform_device *pdev) { struct power_supply_config psy_cfg = {}; struct device *dev = &pdev->dev; struct ab8500_btemp *di; int irq, i, ret = 0; u8 val; di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL); if (!di) return -ENOMEM; di->bm = &ab8500_bm_data; /* get parent data */ di->dev = dev; di->parent = dev_get_drvdata(pdev->dev.parent); /* Get thermal zone and ADC */ di->tz = thermal_zone_get_zone_by_name("battery-thermal"); if (IS_ERR(di->tz)) { ret = PTR_ERR(di->tz); /* * This usually just means we are probing before the thermal * zone, so just defer. */ if (ret == -ENODEV) ret = -EPROBE_DEFER; return dev_err_probe(dev, ret, "failed to get battery thermal zone\n"); } di->bat_ctrl = devm_iio_channel_get(dev, "bat_ctrl"); if (IS_ERR(di->bat_ctrl)) { ret = dev_err_probe(dev, PTR_ERR(di->bat_ctrl), "failed to get BAT CTRL ADC channel\n"); return ret; } di->initialized = false; psy_cfg.supplied_to = supply_interface; psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface); psy_cfg.drv_data = di; /* Init work for measuring temperature periodically */ INIT_DEFERRABLE_WORK(&di->btemp_periodic_work, ab8500_btemp_periodic_work); /* Set BTEMP thermal limits. Low and Med are fixed */ di->btemp_ranges.btemp_low_limit = BTEMP_THERMAL_LOW_LIMIT; di->btemp_ranges.btemp_med_limit = BTEMP_THERMAL_MED_LIMIT; ret = abx500_get_register_interruptible(dev, AB8500_CHARGER, AB8500_BTEMP_HIGH_TH, &val); if (ret < 0) { dev_err(dev, "%s ab8500 read failed\n", __func__); return ret; } switch (val) { case BTEMP_HIGH_TH_57_0: case BTEMP_HIGH_TH_57_1: di->btemp_ranges.btemp_high_limit = BTEMP_THERMAL_HIGH_LIMIT_57; break; case BTEMP_HIGH_TH_52: di->btemp_ranges.btemp_high_limit = BTEMP_THERMAL_HIGH_LIMIT_52; break; case BTEMP_HIGH_TH_62: di->btemp_ranges.btemp_high_limit = BTEMP_THERMAL_HIGH_LIMIT_62; break; } /* Register BTEMP power supply class */ di->btemp_psy = devm_power_supply_register(dev, &ab8500_btemp_desc, &psy_cfg); if (IS_ERR(di->btemp_psy)) { dev_err(dev, "failed to register BTEMP psy\n"); return PTR_ERR(di->btemp_psy); } /* Register interrupts */ for (i = 0; i < ARRAY_SIZE(ab8500_btemp_irq); i++) { irq = platform_get_irq_byname(pdev, ab8500_btemp_irq[i].name); if (irq < 0) return irq; ret = devm_request_threaded_irq(dev, irq, NULL, ab8500_btemp_irq[i].isr, IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT, ab8500_btemp_irq[i].name, di); if (ret) { dev_err(dev, "failed to request %s IRQ %d: %d\n" , ab8500_btemp_irq[i].name, irq, ret); return ret; } dev_dbg(dev, "Requested %s IRQ %d: %d\n", ab8500_btemp_irq[i].name, irq, ret); } platform_set_drvdata(pdev, di); list_add_tail(&di->node, &ab8500_btemp_list); return component_add(dev, &ab8500_btemp_component_ops); } static int ab8500_btemp_remove(struct platform_device *pdev) { component_del(&pdev->dev, &ab8500_btemp_component_ops); return 0; } static SIMPLE_DEV_PM_OPS(ab8500_btemp_pm_ops, ab8500_btemp_suspend, ab8500_btemp_resume); static const struct of_device_id ab8500_btemp_match[] = { { .compatible = "stericsson,ab8500-btemp", }, { }, }; MODULE_DEVICE_TABLE(of, ab8500_btemp_match); struct platform_driver ab8500_btemp_driver = { .probe = ab8500_btemp_probe, .remove = ab8500_btemp_remove, .driver = { .name = "ab8500-btemp", .of_match_table = ab8500_btemp_match, .pm = &ab8500_btemp_pm_ops, }, }; MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Johan Palsson, Karl Komierowski, Arun R Murthy"); MODULE_ALIAS("platform:ab8500-btemp"); MODULE_DESCRIPTION("AB8500 battery temperature driver");
linux-master
drivers/power/supply/ab8500_btemp.c
// SPDX-License-Identifier: GPL-2.0-only /* * ROHM BD99954 charger driver * * Copyright (C) 2020 Rohm Semiconductors * Originally written by: * Mikko Mutanen <[email protected]> * Markus Laine <[email protected]> * Bugs added by: * Matti Vaittinen <[email protected]> */ /* * The battery charging profile of BD99954. * * Curve (1) represents charging current. * Curve (2) represents battery voltage. * * The BD99954 data sheet divides charging to three phases. * a) Trickle-charge with constant current (8). * b) pre-charge with constant current (6) * c) fast-charge, first with constant current (5) phase. After * the battery voltage has reached target level (4) we have constant * voltage phase until charging current has dropped to termination * level (7) * * V ^ ^ I * . . * . . *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------. * . :/ . * . o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5) * . + :: + . * . + /- -- . * . +`/- + . * . o/- -: . * . .s. +` . * . .--+ `/ . * . ..`` + .: . * . -` + -- . * . (2) ...`` + :- . * . ...`` + -: . *(3)` `.`."" ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6) * . + `:. . * . + -: . * . + -:. . * . + .--. . * . (1) + `.+` ` ` `.` ` (7) * -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8) * . + - * -------------------------------------------------+++++++++--> * | trickle | pre | fast | * * Details of DT properties for different limits can be found from BD99954 * device tree binding documentation. */ #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/linear_range.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/power_supply.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/types.h> #include "bd99954-charger.h" struct battery_data { u16 precharge_current; /* Trickle-charge Current */ u16 fc_reg_voltage; /* Fast Charging Regulation Voltage */ u16 voltage_min; u16 voltage_max; }; /* Initial field values, converted to initial register values */ struct bd9995x_init_data { u16 vsysreg_set; /* VSYS Regulation Setting */ u16 ibus_lim_set; /* VBUS input current limitation */ u16 icc_lim_set; /* VCC/VACP Input Current Limit Setting */ u16 itrich_set; /* Trickle-charge Current Setting */ u16 iprech_set; /* Pre-Charge Current Setting */ u16 ichg_set; /* Fast-Charge constant current */ u16 vfastchg_reg_set1; /* Fast Charging Regulation Voltage */ u16 vprechg_th_set; /* Pre-charge Voltage Threshold Setting */ u16 vrechg_set; /* Re-charge Battery Voltage Setting */ u16 vbatovp_set; /* Battery Over Voltage Threshold Setting */ u16 iterm_set; /* Charging termination current */ }; struct bd9995x_state { u8 online; u16 chgstm_status; u16 vbat_vsys_status; u16 vbus_vcc_status; }; struct bd9995x_device { struct i2c_client *client; struct device *dev; struct power_supply *charger; struct regmap *rmap; struct regmap_field *rmap_fields[F_MAX_FIELDS]; int chip_id; int chip_rev; struct bd9995x_init_data init_data; struct bd9995x_state state; struct mutex lock; /* Protect state data */ }; static const struct regmap_range bd9995x_readonly_reg_ranges[] = { regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL), regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL), regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS), regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS), regmap_reg_range(CHIP_ID, CHIP_REV), regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS), regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL), regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL), }; static const struct regmap_access_table bd9995x_writeable_regs = { .no_ranges = bd9995x_readonly_reg_ranges, .n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges), }; static const struct regmap_range bd9995x_volatile_reg_ranges[] = { regmap_reg_range(CHGSTM_STATUS, WDT_STATUS), regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS), regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS), regmap_reg_range(INT0_STATUS, INT7_STATUS), regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET), regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */ }; static const struct regmap_access_table bd9995x_volatile_regs = { .yes_ranges = bd9995x_volatile_reg_ranges, .n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges), }; static const struct regmap_range_cfg regmap_range_cfg[] = { { .selector_reg = MAP_SET, .selector_mask = 0xFFFF, .selector_shift = 0, .window_start = 0, .window_len = 0x100, .range_min = 0 * 0x100, .range_max = 3 * 0x100, }, }; static const struct regmap_config bd9995x_regmap_config = { .reg_bits = 8, .val_bits = 16, .reg_stride = 1, .max_register = 3 * 0x100, .cache_type = REGCACHE_RBTREE, .ranges = regmap_range_cfg, .num_ranges = ARRAY_SIZE(regmap_range_cfg), .val_format_endian = REGMAP_ENDIAN_LITTLE, .wr_table = &bd9995x_writeable_regs, .volatile_table = &bd9995x_volatile_regs, }; enum bd9995x_chrg_fault { CHRG_FAULT_NORMAL, CHRG_FAULT_INPUT, CHRG_FAULT_THERMAL_SHUTDOWN, CHRG_FAULT_TIMER_EXPIRED, }; static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp); if (ret) return POWER_SUPPLY_HEALTH_UNKNOWN; /* TODO: Check these against datasheet page 34 */ switch (tmp) { case ROOM: return POWER_SUPPLY_HEALTH_GOOD; case HOT1: case HOT2: case HOT3: return POWER_SUPPLY_HEALTH_OVERHEAT; case COLD1: case COLD2: return POWER_SUPPLY_HEALTH_COLD; case TEMP_DIS: case BATT_OPEN: default: return POWER_SUPPLY_HEALTH_UNKNOWN; } } static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp); if (ret) return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; switch (tmp) { case CHGSTM_TRICKLE_CHARGE: case CHGSTM_PRE_CHARGE: return POWER_SUPPLY_CHARGE_TYPE_TRICKLE; case CHGSTM_FAST_CHARGE: return POWER_SUPPLY_CHARGE_TYPE_FAST; case CHGSTM_TOP_OFF: case CHGSTM_DONE: case CHGSTM_SUSPEND: return POWER_SUPPLY_CHARGE_TYPE_NONE; default: /* Rest of the states are error related, no charging */ return POWER_SUPPLY_CHARGE_TYPE_NONE; } } static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp); if (ret) return false; return tmp != BATT_OPEN; } static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp); if (ret) return 0; tmp = min(tmp, 19200); return tmp * 1000; } static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp); if (ret) return 0; return tmp * 1000; } #define DEFAULT_BATTERY_TEMPERATURE 250 static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp); if (ret) return DEFAULT_BATTERY_TEMPERATURE; return (200 - tmp) * 10; } static int bd9995x_power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret, tmp; struct bd9995x_device *bd = power_supply_get_drvdata(psy); struct bd9995x_state state; mutex_lock(&bd->lock); state = bd->state; mutex_unlock(&bd->lock); switch (psp) { case POWER_SUPPLY_PROP_STATUS: switch (state.chgstm_status) { case CHGSTM_TRICKLE_CHARGE: case CHGSTM_PRE_CHARGE: case CHGSTM_FAST_CHARGE: case CHGSTM_TOP_OFF: val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case CHGSTM_DONE: val->intval = POWER_SUPPLY_STATUS_FULL; break; case CHGSTM_SUSPEND: case CHGSTM_TEMPERATURE_ERROR_1: case CHGSTM_TEMPERATURE_ERROR_2: case CHGSTM_TEMPERATURE_ERROR_3: case CHGSTM_TEMPERATURE_ERROR_4: case CHGSTM_TEMPERATURE_ERROR_5: case CHGSTM_TEMPERATURE_ERROR_6: case CHGSTM_TEMPERATURE_ERROR_7: case CHGSTM_THERMAL_SHUT_DOWN_1: case CHGSTM_THERMAL_SHUT_DOWN_2: case CHGSTM_THERMAL_SHUT_DOWN_3: case CHGSTM_THERMAL_SHUT_DOWN_4: case CHGSTM_THERMAL_SHUT_DOWN_5: case CHGSTM_THERMAL_SHUT_DOWN_6: case CHGSTM_THERMAL_SHUT_DOWN_7: case CHGSTM_BATTERY_ERROR: val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; default: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; break; } break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BD9995X_MANUFACTURER; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = state.online; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp); if (ret) return ret; val->intval = tmp * 1000; break; case POWER_SUPPLY_PROP_CHARGE_AVG: ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp); if (ret) return ret; val->intval = tmp * 1000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: /* * Currently the DT uses this property to give the * target current for fast-charging constant current phase. * I think it is correct in a sense. * * Yet, this prop we read and return here is the programmed * safety limit for combined input currents. This feels * also correct in a sense. * * However, this results a mismatch to DT value and value * read from sysfs. */ ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp); if (ret) return ret; val->intval = tmp * 1000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: if (!state.online) { val->intval = 0; break; } ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1], &tmp); if (ret) return ret; /* * The actual range : 2560 to 19200 mV. No matter what the * register says */ val->intval = clamp_val(tmp << 4, 2560, 19200); val->intval *= 1000; break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp); if (ret) return ret; /* Start step is 64 mA */ val->intval = tmp << 6; /* Maximum is 1024 mA - no matter what register says */ val->intval = min(val->intval, 1024); val->intval *= 1000; break; /* Battery properties which we access through charger */ case POWER_SUPPLY_PROP_PRESENT: val->intval = bd9995x_get_prop_batt_present(bd); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = bd9995x_get_prop_batt_voltage(bd); break; case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = bd9995x_get_prop_batt_current(bd); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: val->intval = bd9995x_get_prop_charge_type(bd); break; case POWER_SUPPLY_PROP_HEALTH: val->intval = bd9995x_get_prop_batt_health(bd); break; case POWER_SUPPLY_PROP_TEMP: val->intval = bd9995x_get_prop_batt_temp(bd); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = "bd99954"; break; default: return -EINVAL; } return 0; } static int bd9995x_get_chip_state(struct bd9995x_device *bd, struct bd9995x_state *state) { int i, ret, tmp; struct { struct regmap_field *id; u16 *data; } state_fields[] = { { bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status, }, { bd->rmap_fields[F_VBAT_VSYS_STATUS], &state->vbat_vsys_status, }, { bd->rmap_fields[F_VBUS_VCC_STATUS], &state->vbus_vcc_status, }, }; for (i = 0; i < ARRAY_SIZE(state_fields); i++) { ret = regmap_field_read(state_fields[i].id, &tmp); if (ret) return ret; *state_fields[i].data = tmp; } if (state->vbus_vcc_status & STATUS_VCC_DET || state->vbus_vcc_status & STATUS_VBUS_DET) state->online = 1; else state->online = 0; return 0; } static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private) { struct bd9995x_device *bd = private; int ret, status, mask, i; unsigned long tmp; struct bd9995x_state state; /* * The bd9995x does not seem to generate big amount of interrupts. * The logic regarding which interrupts can cause relevant * status changes seem to be pretty complex. * * So lets implement really simple and hopefully bullet-proof handler: * It does not really matter which IRQ we handle, we just go and * re-read all interesting statuses + give the framework a nudge. * * Other option would be building a _complex_ and error prone logic * trying to decide what could have been changed (resulting this IRQ * we are now handling). During the normal operation the BD99954 does * not seem to be generating much of interrupts so benefit from such * logic would probably be minimal. */ ret = regmap_read(bd->rmap, INT0_STATUS, &status); if (ret) { dev_err(bd->dev, "Failed to read IRQ status\n"); return IRQ_NONE; } ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask); if (ret) { dev_err(bd->dev, "Failed to read IRQ mask\n"); return IRQ_NONE; } /* Handle only IRQs that are not masked */ status &= mask; tmp = status; /* Lowest bit does not represent any sub-registers */ tmp >>= 1; /* * Mask and ack IRQs we will handle (+ the idiot bit) */ ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0); if (ret) { dev_err(bd->dev, "Failed to mask F_INT0\n"); return IRQ_NONE; } ret = regmap_write(bd->rmap, INT0_STATUS, status); if (ret) { dev_err(bd->dev, "Failed to ack F_INT0\n"); goto err_umask; } for_each_set_bit(i, &tmp, 7) { int sub_status, sub_mask; static const int sub_status_reg[] = { INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS, INT5_STATUS, INT6_STATUS, INT7_STATUS, }; struct regmap_field *sub_mask_f[] = { bd->rmap_fields[F_INT1_SET], bd->rmap_fields[F_INT2_SET], bd->rmap_fields[F_INT3_SET], bd->rmap_fields[F_INT4_SET], bd->rmap_fields[F_INT5_SET], bd->rmap_fields[F_INT6_SET], bd->rmap_fields[F_INT7_SET], }; /* Clear sub IRQs */ ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status); if (ret) { dev_err(bd->dev, "Failed to read IRQ sub-status\n"); goto err_umask; } ret = regmap_field_read(sub_mask_f[i], &sub_mask); if (ret) { dev_err(bd->dev, "Failed to read IRQ sub-mask\n"); goto err_umask; } /* Ack active sub-statuses */ sub_status &= sub_mask; ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status); if (ret) { dev_err(bd->dev, "Failed to ack sub-IRQ\n"); goto err_umask; } } ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask); if (ret) /* May as well retry once */ goto err_umask; /* Read whole chip state */ ret = bd9995x_get_chip_state(bd, &state); if (ret < 0) { dev_err(bd->dev, "Failed to read chip state\n"); } else { mutex_lock(&bd->lock); bd->state = state; mutex_unlock(&bd->lock); power_supply_changed(bd->charger); } return IRQ_HANDLED; err_umask: ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask); if (ret) dev_err(bd->dev, "Failed to un-mask F_INT0 - IRQ permanently disabled\n"); return IRQ_NONE; } static int __bd9995x_chip_reset(struct bd9995x_device *bd) { int ret, state; int rst_check_counter = 10; u16 tmp = ALLRST | OTPLD; ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2); if (ret < 0) return ret; do { ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state); if (ret) return ret; msleep(10); } while (state == 0 && --rst_check_counter); if (!rst_check_counter) { dev_err(bd->dev, "chip reset not completed\n"); return -ETIMEDOUT; } tmp = 0; ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2); return ret; } static int bd9995x_hw_init(struct bd9995x_device *bd) { int ret; int i; struct bd9995x_state state; struct bd9995x_init_data *id = &bd->init_data; const struct { enum bd9995x_fields id; u16 value; } init_data[] = { /* Enable the charging trigger after SDP charger attached */ {F_SDP_CHG_TRIG_EN, 1}, /* Enable charging trigger after SDP charger attached */ {F_SDP_CHG_TRIG, 1}, /* Disable charging trigger by BC1.2 detection */ {F_VBUS_BC_DISEN, 1}, /* Disable charging trigger by BC1.2 detection */ {F_VCC_BC_DISEN, 1}, /* Disable automatic limitation of the input current */ {F_ILIM_AUTO_DISEN, 1}, /* Select current limitation when SDP charger attached*/ {F_SDP_500_SEL, 1}, /* Select current limitation when DCP charger attached */ {F_DCP_2500_SEL, 1}, {F_VSYSREG_SET, id->vsysreg_set}, /* Activate USB charging and DC/DC converter */ {F_USB_SUS, 0}, /* DCDC clock: 1200 kHz*/ {F_DCDC_CLK_SEL, 3}, /* Enable charging */ {F_CHG_EN, 1}, /* Disable Input current Limit setting voltage measurement */ {F_EXTIADPEN, 0}, /* Disable input current limiting */ {F_VSYS_PRIORITY, 1}, {F_IBUS_LIM_SET, id->ibus_lim_set}, {F_ICC_LIM_SET, id->icc_lim_set}, /* Charge Termination Current Setting to 0*/ {F_ITERM_SET, id->iterm_set}, /* Trickle-charge Current Setting */ {F_ITRICH_SET, id->itrich_set}, /* Pre-charge Current setting */ {F_IPRECH_SET, id->iprech_set}, /* Fast Charge Current for constant current phase */ {F_ICHG_SET, id->ichg_set}, /* Fast Charge Voltage Regulation Setting */ {F_VFASTCHG_REG_SET1, id->vfastchg_reg_set1}, /* Set Pre-charge Voltage Threshold for trickle charging. */ {F_VPRECHG_TH_SET, id->vprechg_th_set}, {F_VRECHG_SET, id->vrechg_set}, {F_VBATOVP_SET, id->vbatovp_set}, /* Reverse buck boost voltage Setting */ {F_VRBOOST_SET, 0}, /* Disable fast-charging watchdog */ {F_WDT_FST, 0}, /* Disable pre-charging watchdog */ {F_WDT_PRE, 0}, /* Power save off */ {F_POWER_SAVE_MODE, 0}, {F_INT1_SET, INT1_ALL}, {F_INT2_SET, INT2_ALL}, {F_INT3_SET, INT3_ALL}, {F_INT4_SET, INT4_ALL}, {F_INT5_SET, INT5_ALL}, {F_INT6_SET, INT6_ALL}, {F_INT7_SET, INT7_ALL}, }; /* * Currently we initialize charger to a known state at startup. * If we want to allow for example the boot code to initialize * charger we should get rid of this. */ ret = __bd9995x_chip_reset(bd); if (ret < 0) return ret; /* Initialize currents/voltages and other parameters */ for (i = 0; i < ARRAY_SIZE(init_data); i++) { ret = regmap_field_write(bd->rmap_fields[init_data[i].id], init_data[i].value); if (ret) { dev_err(bd->dev, "failed to initialize charger (%d)\n", ret); return ret; } } ret = bd9995x_get_chip_state(bd, &state); if (ret < 0) return ret; mutex_lock(&bd->lock); bd->state = state; mutex_unlock(&bd->lock); return 0; } static enum power_supply_property bd9995x_power_supply_props[] = { POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_AVG, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, /* Battery props we access through charger */ POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_MODEL_NAME, }; static const struct power_supply_desc bd9995x_power_supply_desc = { .name = "bd9995x-charger", .type = POWER_SUPPLY_TYPE_USB, .properties = bd9995x_power_supply_props, .num_properties = ARRAY_SIZE(bd9995x_power_supply_props), .get_property = bd9995x_power_supply_get_property, }; /* * Limit configurations for vbus-input-current and vcc-vacp-input-current * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is * configured by writing a register so that each increment in register * value equals to 32000 uA limit increment. * * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ... * Describe the setting in linear_range table. */ static const struct linear_range input_current_limit_ranges[] = { LINEAR_RANGE(0, 0x0, 0x1ff, 32000), }; /* Possible trickle, pre-charging and termination current values */ static const struct linear_range charging_current_ranges[] = { LINEAR_RANGE(0, 0x0, 0x10, 64000), LINEAR_RANGE(1024000, 0x11, 0x1f, 0), }; /* * Fast charging voltage regulation, starting re-charging limit * and battery over voltage protection have same possible values */ static const struct linear_range charge_voltage_regulation_ranges[] = { LINEAR_RANGE(2560000, 0, 0xA0, 0), LINEAR_RANGE(2560000, 0xA0, 0x4B0, 16000), LINEAR_RANGE(19200000, 0x4B0, 0x7FF, 0), }; /* Possible VSYS voltage regulation values */ static const struct linear_range vsys_voltage_regulation_ranges[] = { LINEAR_RANGE(2560000, 0, 0x28, 0), LINEAR_RANGE(2560000, 0x28, 0x12C, 64000), LINEAR_RANGE(19200000, 0x12C, 0x1FF, 0), }; /* Possible settings for switching from trickle to pre-charging limits */ static const struct linear_range trickle_to_pre_threshold_ranges[] = { LINEAR_RANGE(2048000, 0, 0x20, 0), LINEAR_RANGE(2048000, 0x20, 0x12C, 64000), LINEAR_RANGE(19200000, 0x12C, 0x1FF, 0), }; /* Possible current values for fast-charging constant current phase */ static const struct linear_range fast_charge_current_ranges[] = { LINEAR_RANGE(0, 0, 0xFF, 64000), }; struct battery_init { const char *name; int *info_data; const struct linear_range *range; int ranges; u16 *data; }; struct dt_init { char *prop; const struct linear_range *range; int ranges; u16 *data; }; static int bd9995x_fw_probe(struct bd9995x_device *bd) { int ret; struct power_supply_battery_info *info; u32 property; int i; int regval; bool found; struct bd9995x_init_data *init = &bd->init_data; struct battery_init battery_inits[] = { { .name = "trickle-charging current", .range = &charging_current_ranges[0], .ranges = 2, .data = &init->itrich_set, }, { .name = "pre-charging current", .range = &charging_current_ranges[0], .ranges = 2, .data = &init->iprech_set, }, { .name = "pre-to-trickle charge voltage threshold", .range = &trickle_to_pre_threshold_ranges[0], .ranges = 2, .data = &init->vprechg_th_set, }, { .name = "charging termination current", .range = &charging_current_ranges[0], .ranges = 2, .data = &init->iterm_set, }, { .name = "charging re-start voltage", .range = &charge_voltage_regulation_ranges[0], .ranges = 2, .data = &init->vrechg_set, }, { .name = "battery overvoltage limit", .range = &charge_voltage_regulation_ranges[0], .ranges = 2, .data = &init->vbatovp_set, }, { .name = "fast-charging max current", .range = &fast_charge_current_ranges[0], .ranges = 1, .data = &init->ichg_set, }, { .name = "fast-charging voltage", .range = &charge_voltage_regulation_ranges[0], .ranges = 2, .data = &init->vfastchg_reg_set1, }, }; struct dt_init props[] = { { .prop = "rohm,vsys-regulation-microvolt", .range = &vsys_voltage_regulation_ranges[0], .ranges = 2, .data = &init->vsysreg_set, }, { .prop = "rohm,vbus-input-current-limit-microamp", .range = &input_current_limit_ranges[0], .ranges = 1, .data = &init->ibus_lim_set, }, { .prop = "rohm,vcc-input-current-limit-microamp", .range = &input_current_limit_ranges[0], .ranges = 1, .data = &init->icc_lim_set, }, }; /* * The power_supply_get_battery_info() does not support getting values * from ACPI. Let's fix it if ACPI is required here. */ ret = power_supply_get_battery_info(bd->charger, &info); if (ret < 0) return ret; /* Put pointers to the generic battery info */ battery_inits[0].info_data = &info->tricklecharge_current_ua; battery_inits[1].info_data = &info->precharge_current_ua; battery_inits[2].info_data = &info->precharge_voltage_max_uv; battery_inits[3].info_data = &info->charge_term_current_ua; battery_inits[4].info_data = &info->charge_restart_voltage_uv; battery_inits[5].info_data = &info->overvoltage_limit_uv; battery_inits[6].info_data = &info->constant_charge_current_max_ua; battery_inits[7].info_data = &info->constant_charge_voltage_max_uv; for (i = 0; i < ARRAY_SIZE(battery_inits); i++) { int val = *battery_inits[i].info_data; const struct linear_range *range = battery_inits[i].range; int ranges = battery_inits[i].ranges; if (val == -EINVAL) continue; ret = linear_range_get_selector_low_array(range, ranges, val, &regval, &found); if (ret) { dev_err(bd->dev, "Unsupported value for %s\n", battery_inits[i].name); power_supply_put_battery_info(bd->charger, info); return -EINVAL; } if (!found) { dev_warn(bd->dev, "Unsupported value for %s - using smaller\n", battery_inits[i].name); } *(battery_inits[i].data) = regval; } power_supply_put_battery_info(bd->charger, info); for (i = 0; i < ARRAY_SIZE(props); i++) { ret = device_property_read_u32(bd->dev, props[i].prop, &property); if (ret < 0) { dev_err(bd->dev, "failed to read %s", props[i].prop); return ret; } ret = linear_range_get_selector_low_array(props[i].range, props[i].ranges, property, &regval, &found); if (ret) { dev_err(bd->dev, "Unsupported value for '%s'\n", props[i].prop); return -EINVAL; } if (!found) { dev_warn(bd->dev, "Unsupported value for '%s' - using smaller\n", props[i].prop); } *(props[i].data) = regval; } return 0; } static void bd9995x_chip_reset(void *bd) { __bd9995x_chip_reset(bd); } static int bd9995x_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct bd9995x_device *bd; struct power_supply_config psy_cfg = {}; int ret; int i; bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL); if (!bd) return -ENOMEM; bd->client = client; bd->dev = dev; psy_cfg.drv_data = bd; psy_cfg.of_node = dev->of_node; mutex_init(&bd->lock); bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config); if (IS_ERR(bd->rmap)) { dev_err(dev, "Failed to setup register access via i2c\n"); return PTR_ERR(bd->rmap); } for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) { const struct reg_field *reg_fields = bd9995x_reg_fields; bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap, reg_fields[i]); if (IS_ERR(bd->rmap_fields[i])) { dev_err(dev, "cannot allocate regmap field\n"); return PTR_ERR(bd->rmap_fields[i]); } } i2c_set_clientdata(client, bd); ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id); if (ret) { dev_err(dev, "Cannot read chip ID.\n"); return ret; } if (bd->chip_id != BD99954_ID) { dev_err(dev, "Chip with ID=0x%x, not supported!\n", bd->chip_id); return -ENODEV; } ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev); if (ret) { dev_err(dev, "Cannot read revision.\n"); return ret; } dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev); /* * We need to init the psy before we can call * power_supply_get_battery_info() for it */ bd->charger = devm_power_supply_register(bd->dev, &bd9995x_power_supply_desc, &psy_cfg); if (IS_ERR(bd->charger)) { dev_err(dev, "Failed to register power supply\n"); return PTR_ERR(bd->charger); } ret = bd9995x_fw_probe(bd); if (ret < 0) { dev_err(dev, "Cannot read device properties.\n"); return ret; } ret = bd9995x_hw_init(bd); if (ret < 0) { dev_err(dev, "Cannot initialize the chip.\n"); return ret; } ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd); if (ret) return ret; return devm_request_threaded_irq(dev, client->irq, NULL, bd9995x_irq_handler_thread, IRQF_TRIGGER_LOW | IRQF_ONESHOT, BD9995X_IRQ_PIN, bd); } static const struct of_device_id bd9995x_of_match[] = { { .compatible = "rohm,bd99954", }, { } }; MODULE_DEVICE_TABLE(of, bd9995x_of_match); static struct i2c_driver bd9995x_driver = { .driver = { .name = "bd9995x-charger", .of_match_table = bd9995x_of_match, }, .probe = bd9995x_probe, }; module_i2c_driver(bd9995x_driver); MODULE_AUTHOR("Laine Markus <[email protected]>"); MODULE_DESCRIPTION("ROHM BD99954 charger driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/bd99954-charger.c
// SPDX-License-Identifier: GPL-2.0+ /* * Power supply driver for ChromeOS EC based USB PD Charger. * * Copyright (c) 2014 - 2018 Google, Inc */ #include <linux/module.h> #include <linux/platform_data/cros_ec_commands.h> #include <linux/platform_data/cros_ec_proto.h> #include <linux/platform_data/cros_usbpd_notify.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #define CHARGER_USBPD_DIR_NAME "CROS_USBPD_CHARGER%d" #define CHARGER_DEDICATED_DIR_NAME "CROS_DEDICATED_CHARGER" #define CHARGER_DIR_NAME_LENGTH (sizeof(CHARGER_USBPD_DIR_NAME) >= \ sizeof(CHARGER_DEDICATED_DIR_NAME) ? \ sizeof(CHARGER_USBPD_DIR_NAME) : \ sizeof(CHARGER_DEDICATED_DIR_NAME)) #define CHARGER_CACHE_UPDATE_DELAY msecs_to_jiffies(500) #define CHARGER_MANUFACTURER_MODEL_LENGTH 32 #define DRV_NAME "cros-usbpd-charger" struct port_data { int port_number; char name[CHARGER_DIR_NAME_LENGTH]; char manufacturer[CHARGER_MANUFACTURER_MODEL_LENGTH]; char model_name[CHARGER_MANUFACTURER_MODEL_LENGTH]; struct power_supply *psy; struct power_supply_desc psy_desc; int psy_usb_type; int psy_online; int psy_status; int psy_current_max; int psy_voltage_max_design; int psy_voltage_now; int psy_power_max; struct charger_data *charger; unsigned long last_update; }; struct charger_data { struct device *dev; struct cros_ec_dev *ec_dev; struct cros_ec_device *ec_device; int num_charger_ports; int num_usbpd_ports; int num_registered_psy; struct port_data *ports[EC_USB_PD_MAX_PORTS]; struct notifier_block notifier; }; static enum power_supply_property cros_usbpd_charger_props[] = { POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_USB_TYPE }; static enum power_supply_property cros_usbpd_dedicated_charger_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_VOLTAGE_NOW, }; static enum power_supply_usb_type cros_usbpd_charger_usb_types[] = { POWER_SUPPLY_USB_TYPE_UNKNOWN, POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_CDP, POWER_SUPPLY_USB_TYPE_C, POWER_SUPPLY_USB_TYPE_PD, POWER_SUPPLY_USB_TYPE_PD_DRP, POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID }; /* Input voltage/current limit in mV/mA. Default to none. */ static u16 input_voltage_limit = EC_POWER_LIMIT_NONE; static u16 input_current_limit = EC_POWER_LIMIT_NONE; static bool cros_usbpd_charger_port_is_dedicated(struct port_data *port) { return port->port_number >= port->charger->num_usbpd_ports; } static int cros_usbpd_charger_ec_command(struct charger_data *charger, unsigned int version, unsigned int command, void *outdata, unsigned int outsize, void *indata, unsigned int insize) { struct cros_ec_dev *ec_dev = charger->ec_dev; struct cros_ec_command *msg; int ret; msg = kzalloc(struct_size(msg, data, max(outsize, insize)), GFP_KERNEL); if (!msg) return -ENOMEM; msg->version = version; msg->command = ec_dev->cmd_offset + command; msg->outsize = outsize; msg->insize = insize; if (outsize) memcpy(msg->data, outdata, outsize); ret = cros_ec_cmd_xfer_status(charger->ec_device, msg); if (ret >= 0 && insize) memcpy(indata, msg->data, insize); kfree(msg); return ret; } static int cros_usbpd_charger_get_num_ports(struct charger_data *charger) { struct ec_response_charge_port_count resp; int ret; ret = cros_usbpd_charger_ec_command(charger, 0, EC_CMD_CHARGE_PORT_COUNT, NULL, 0, &resp, sizeof(resp)); if (ret < 0) return ret; return resp.port_count; } static int cros_usbpd_charger_get_usbpd_num_ports(struct charger_data *charger) { struct ec_response_usb_pd_ports resp; int ret; ret = cros_usbpd_charger_ec_command(charger, 0, EC_CMD_USB_PD_PORTS, NULL, 0, &resp, sizeof(resp)); if (ret < 0) return ret; return resp.num_ports; } static int cros_usbpd_charger_get_discovery_info(struct port_data *port) { struct charger_data *charger = port->charger; struct ec_params_usb_pd_discovery_entry resp; struct ec_params_usb_pd_info_request req; int ret; req.port = port->port_number; ret = cros_usbpd_charger_ec_command(charger, 0, EC_CMD_USB_PD_DISCOVERY, &req, sizeof(req), &resp, sizeof(resp)); if (ret < 0) { dev_err(charger->dev, "Unable to query discovery info (err:0x%x)\n", ret); return ret; } dev_dbg(charger->dev, "Port %d: VID = 0x%x, PID=0x%x, PTYPE=0x%x\n", port->port_number, resp.vid, resp.pid, resp.ptype); snprintf(port->manufacturer, sizeof(port->manufacturer), "%x", resp.vid); snprintf(port->model_name, sizeof(port->model_name), "%x", resp.pid); return 0; } static int cros_usbpd_charger_get_power_info(struct port_data *port) { struct charger_data *charger = port->charger; struct ec_response_usb_pd_power_info resp; struct ec_params_usb_pd_power_info req; int last_psy_status, last_psy_usb_type; struct device *dev = charger->dev; int ret; req.port = port->port_number; ret = cros_usbpd_charger_ec_command(charger, 0, EC_CMD_USB_PD_POWER_INFO, &req, sizeof(req), &resp, sizeof(resp)); if (ret < 0) { dev_err(dev, "Unable to query PD power info (err:0x%x)\n", ret); return ret; } last_psy_status = port->psy_status; last_psy_usb_type = port->psy_usb_type; switch (resp.role) { case USB_PD_PORT_POWER_DISCONNECTED: port->psy_status = POWER_SUPPLY_STATUS_NOT_CHARGING; port->psy_online = 0; break; case USB_PD_PORT_POWER_SOURCE: port->psy_status = POWER_SUPPLY_STATUS_NOT_CHARGING; port->psy_online = 0; break; case USB_PD_PORT_POWER_SINK: port->psy_status = POWER_SUPPLY_STATUS_CHARGING; port->psy_online = 1; break; case USB_PD_PORT_POWER_SINK_NOT_CHARGING: port->psy_status = POWER_SUPPLY_STATUS_NOT_CHARGING; port->psy_online = 1; break; default: dev_err(dev, "Unknown role %d\n", resp.role); break; } port->psy_voltage_max_design = resp.meas.voltage_max; port->psy_voltage_now = resp.meas.voltage_now; port->psy_current_max = resp.meas.current_max; port->psy_power_max = resp.max_power; switch (resp.type) { case USB_CHG_TYPE_BC12_SDP: case USB_CHG_TYPE_VBUS: port->psy_usb_type = POWER_SUPPLY_USB_TYPE_SDP; break; case USB_CHG_TYPE_NONE: /* * For dual-role devices when we are a source, the firmware * reports the type as NONE. Report such chargers as type * USB_PD_DRP. */ if (resp.role == USB_PD_PORT_POWER_SOURCE && resp.dualrole) port->psy_usb_type = POWER_SUPPLY_USB_TYPE_PD_DRP; else port->psy_usb_type = POWER_SUPPLY_USB_TYPE_SDP; break; case USB_CHG_TYPE_OTHER: case USB_CHG_TYPE_PROPRIETARY: port->psy_usb_type = POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID; break; case USB_CHG_TYPE_C: port->psy_usb_type = POWER_SUPPLY_USB_TYPE_C; break; case USB_CHG_TYPE_BC12_DCP: port->psy_usb_type = POWER_SUPPLY_USB_TYPE_DCP; break; case USB_CHG_TYPE_BC12_CDP: port->psy_usb_type = POWER_SUPPLY_USB_TYPE_CDP; break; case USB_CHG_TYPE_PD: if (resp.dualrole) port->psy_usb_type = POWER_SUPPLY_USB_TYPE_PD_DRP; else port->psy_usb_type = POWER_SUPPLY_USB_TYPE_PD; break; case USB_CHG_TYPE_UNKNOWN: /* * While the EC is trying to determine the type of charger that * has been plugged in, it will report the charger type as * unknown. Additionally since the power capabilities are * unknown, report the max current and voltage as zero. */ port->psy_usb_type = POWER_SUPPLY_USB_TYPE_UNKNOWN; port->psy_voltage_max_design = 0; port->psy_current_max = 0; break; default: dev_dbg(dev, "Port %d: default case!\n", port->port_number); port->psy_usb_type = POWER_SUPPLY_USB_TYPE_SDP; } if (cros_usbpd_charger_port_is_dedicated(port)) port->psy_desc.type = POWER_SUPPLY_TYPE_MAINS; else port->psy_desc.type = POWER_SUPPLY_TYPE_USB; dev_dbg(dev, "Port %d: type=%d vmax=%d vnow=%d cmax=%d clim=%d pmax=%d\n", port->port_number, resp.type, resp.meas.voltage_max, resp.meas.voltage_now, resp.meas.current_max, resp.meas.current_lim, resp.max_power); /* * If power supply type or status changed, explicitly call * power_supply_changed. This results in udev event getting generated * and allows user mode apps to react quicker instead of waiting for * their next poll of power supply status. */ if (last_psy_usb_type != port->psy_usb_type || last_psy_status != port->psy_status) power_supply_changed(port->psy); return 0; } static int cros_usbpd_charger_get_port_status(struct port_data *port, bool ratelimit) { int ret; if (ratelimit && time_is_after_jiffies(port->last_update + CHARGER_CACHE_UPDATE_DELAY)) return 0; ret = cros_usbpd_charger_get_power_info(port); if (ret < 0) return ret; if (!cros_usbpd_charger_port_is_dedicated(port)) ret = cros_usbpd_charger_get_discovery_info(port); port->last_update = jiffies; return ret; } static int cros_usbpd_charger_set_ext_power_limit(struct charger_data *charger, u16 current_lim, u16 voltage_lim) { struct ec_params_external_power_limit_v1 req; int ret; req.current_lim = current_lim; req.voltage_lim = voltage_lim; ret = cros_usbpd_charger_ec_command(charger, 0, EC_CMD_EXTERNAL_POWER_LIMIT, &req, sizeof(req), NULL, 0); if (ret < 0) dev_err(charger->dev, "Unable to set the 'External Power Limit': %d\n", ret); return ret; } static void cros_usbpd_charger_power_changed(struct power_supply *psy) { struct port_data *port = power_supply_get_drvdata(psy); struct charger_data *charger = port->charger; int i; for (i = 0; i < charger->num_registered_psy; i++) cros_usbpd_charger_get_port_status(charger->ports[i], false); } static int cros_usbpd_charger_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct port_data *port = power_supply_get_drvdata(psy); struct charger_data *charger = port->charger; struct cros_ec_device *ec_device = charger->ec_device; struct device *dev = charger->dev; int ret; /* Only refresh ec_port_status for dynamic properties */ switch (psp) { case POWER_SUPPLY_PROP_ONLINE: /* * If mkbp_event_supported, then we can be assured that * the driver's state for the online property is consistent * with the hardware. However, if we aren't event driven, * the optimization before to skip an ec_port_status get * and only returned cached values of the online property will * cause a delay in detecting a cable attach until one of the * other properties are read. * * Allow an ec_port_status refresh for online property check * if we're not already online to check for plug events if * not mkbp_event_supported. */ if (ec_device->mkbp_event_supported || port->psy_online) break; fallthrough; case POWER_SUPPLY_PROP_CURRENT_MAX: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = cros_usbpd_charger_get_port_status(port, true); if (ret < 0) { dev_err(dev, "Failed to get port status (err:0x%x)\n", ret); return -EINVAL; } break; default: break; } switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = port->psy_online; break; case POWER_SUPPLY_PROP_STATUS: val->intval = port->psy_status; break; case POWER_SUPPLY_PROP_CURRENT_MAX: val->intval = port->psy_current_max * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = port->psy_voltage_max_design * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = port->psy_voltage_now * 1000; break; case POWER_SUPPLY_PROP_USB_TYPE: val->intval = port->psy_usb_type; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: if (input_current_limit == EC_POWER_LIMIT_NONE) val->intval = -1; else val->intval = input_current_limit * 1000; break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: if (input_voltage_limit == EC_POWER_LIMIT_NONE) val->intval = -1; else val->intval = input_voltage_limit * 1000; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = port->model_name; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = port->manufacturer; break; default: return -EINVAL; } return 0; } static int cros_usbpd_charger_set_prop(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct port_data *port = power_supply_get_drvdata(psy); struct charger_data *charger = port->charger; struct device *dev = charger->dev; u16 intval; int ret; /* U16_MAX in mV/mA is the maximum supported value */ if (val->intval >= U16_MAX * 1000) return -EINVAL; /* A negative number is used to clear the limit */ if (val->intval < 0) intval = EC_POWER_LIMIT_NONE; else /* Convert from uA/uV to mA/mV */ intval = val->intval / 1000; switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = cros_usbpd_charger_set_ext_power_limit(charger, intval, input_voltage_limit); if (ret < 0) break; input_current_limit = intval; if (input_current_limit == EC_POWER_LIMIT_NONE) dev_info(dev, "External Current Limit cleared for all ports\n"); else dev_info(dev, "External Current Limit set to %dmA for all ports\n", input_current_limit); break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = cros_usbpd_charger_set_ext_power_limit(charger, input_current_limit, intval); if (ret < 0) break; input_voltage_limit = intval; if (input_voltage_limit == EC_POWER_LIMIT_NONE) dev_info(dev, "External Voltage Limit cleared for all ports\n"); else dev_info(dev, "External Voltage Limit set to %dmV for all ports\n", input_voltage_limit); break; default: ret = -EINVAL; } return ret; } static int cros_usbpd_charger_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { int ret; switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = 1; break; default: ret = 0; } return ret; } static int cros_usbpd_charger_ec_event(struct notifier_block *nb, unsigned long host_event, void *_notify) { struct charger_data *charger = container_of(nb, struct charger_data, notifier); cros_usbpd_charger_power_changed(charger->ports[0]->psy); return NOTIFY_OK; } static void cros_usbpd_charger_unregister_notifier(void *data) { struct charger_data *charger = data; cros_usbpd_unregister_notify(&charger->notifier); } static int cros_usbpd_charger_probe(struct platform_device *pd) { struct cros_ec_dev *ec_dev = dev_get_drvdata(pd->dev.parent); struct cros_ec_device *ec_device = ec_dev->ec_dev; struct power_supply_desc *psy_desc; struct device *dev = &pd->dev; struct charger_data *charger; struct power_supply *psy; struct port_data *port; int ret = -EINVAL; int i; charger = devm_kzalloc(dev, sizeof(struct charger_data), GFP_KERNEL); if (!charger) return -ENOMEM; charger->dev = dev; charger->ec_dev = ec_dev; charger->ec_device = ec_device; platform_set_drvdata(pd, charger); /* * We need to know the number of USB PD ports in order to know whether * there is a dedicated port. The dedicated port will always be * after the USB PD ports, and there should be only one. */ charger->num_usbpd_ports = cros_usbpd_charger_get_usbpd_num_ports(charger); if (charger->num_usbpd_ports <= 0) { /* * This can happen on a system that doesn't support USB PD. * Log a message, but no need to warn. */ dev_info(dev, "No USB PD charging ports found\n"); } charger->num_charger_ports = cros_usbpd_charger_get_num_ports(charger); if (charger->num_charger_ports < 0) { /* * This can happen on a system that doesn't support USB PD. * Log a message, but no need to warn. * Older ECs do not support the above command, in that case * let's set up the number of charger ports equal to the number * of USB PD ports */ dev_info(dev, "Could not get charger port count\n"); charger->num_charger_ports = charger->num_usbpd_ports; } if (charger->num_charger_ports <= 0) { /* * This can happen on a system that doesn't support USB PD and * doesn't have a dedicated port. * Log a message, but no need to warn. */ dev_info(dev, "No charging ports found\n"); ret = -ENODEV; goto fail_nowarn; } /* * Sanity checks on the number of ports: * there should be at most 1 dedicated port */ if (charger->num_charger_ports < charger->num_usbpd_ports || charger->num_charger_ports > (charger->num_usbpd_ports + 1)) { dev_err(dev, "Unexpected number of charge port count\n"); ret = -EPROTO; goto fail_nowarn; } for (i = 0; i < charger->num_charger_ports; i++) { struct power_supply_config psy_cfg = {}; port = devm_kzalloc(dev, sizeof(struct port_data), GFP_KERNEL); if (!port) { ret = -ENOMEM; goto fail; } port->charger = charger; port->port_number = i; psy_desc = &port->psy_desc; psy_desc->get_property = cros_usbpd_charger_get_prop; psy_desc->set_property = cros_usbpd_charger_set_prop; psy_desc->property_is_writeable = cros_usbpd_charger_property_is_writeable; psy_desc->external_power_changed = cros_usbpd_charger_power_changed; psy_cfg.drv_data = port; if (cros_usbpd_charger_port_is_dedicated(port)) { sprintf(port->name, CHARGER_DEDICATED_DIR_NAME); psy_desc->type = POWER_SUPPLY_TYPE_MAINS; psy_desc->properties = cros_usbpd_dedicated_charger_props; psy_desc->num_properties = ARRAY_SIZE(cros_usbpd_dedicated_charger_props); } else { sprintf(port->name, CHARGER_USBPD_DIR_NAME, i); psy_desc->type = POWER_SUPPLY_TYPE_USB; psy_desc->properties = cros_usbpd_charger_props; psy_desc->num_properties = ARRAY_SIZE(cros_usbpd_charger_props); psy_desc->usb_types = cros_usbpd_charger_usb_types; psy_desc->num_usb_types = ARRAY_SIZE(cros_usbpd_charger_usb_types); } psy_desc->name = port->name; psy = devm_power_supply_register_no_ws(dev, psy_desc, &psy_cfg); if (IS_ERR(psy)) { dev_err(dev, "Failed to register power supply\n"); continue; } port->psy = psy; charger->ports[charger->num_registered_psy++] = port; } if (!charger->num_registered_psy) { ret = -ENODEV; dev_err(dev, "No power supplies registered\n"); goto fail; } /* Get PD events from the EC */ charger->notifier.notifier_call = cros_usbpd_charger_ec_event; ret = cros_usbpd_register_notify(&charger->notifier); if (ret < 0) { dev_warn(dev, "failed to register notifier\n"); } else { ret = devm_add_action_or_reset(dev, cros_usbpd_charger_unregister_notifier, charger); if (ret < 0) goto fail; } return 0; fail: WARN(1, "%s: Failing probe (err:0x%x)\n", dev_name(dev), ret); fail_nowarn: dev_info(dev, "Failing probe (err:0x%x)\n", ret); return ret; } #ifdef CONFIG_PM_SLEEP static int cros_usbpd_charger_resume(struct device *dev) { struct charger_data *charger = dev_get_drvdata(dev); int i; if (!charger) return 0; for (i = 0; i < charger->num_registered_psy; i++) { power_supply_changed(charger->ports[i]->psy); charger->ports[i]->last_update = jiffies - CHARGER_CACHE_UPDATE_DELAY; } return 0; } #endif static SIMPLE_DEV_PM_OPS(cros_usbpd_charger_pm_ops, NULL, cros_usbpd_charger_resume); static struct platform_driver cros_usbpd_charger_driver = { .driver = { .name = DRV_NAME, .pm = &cros_usbpd_charger_pm_ops, }, .probe = cros_usbpd_charger_probe }; module_platform_driver(cros_usbpd_charger_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ChromeOS EC USBPD charger"); MODULE_ALIAS("platform:" DRV_NAME);
linux-master
drivers/power/supply/cros_usbpd-charger.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2021 MediaTek Inc. */ #include <linux/devm-helpers.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/linear_range.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #define MT6360_PMU_CHG_CTRL1 0x311 #define MT6360_PMU_CHG_CTRL2 0x312 #define MT6360_PMU_CHG_CTRL3 0x313 #define MT6360_PMU_CHG_CTRL4 0x314 #define MT6360_PMU_CHG_CTRL5 0x315 #define MT6360_PMU_CHG_CTRL6 0x316 #define MT6360_PMU_CHG_CTRL7 0x317 #define MT6360_PMU_CHG_CTRL8 0x318 #define MT6360_PMU_CHG_CTRL9 0x319 #define MT6360_PMU_CHG_CTRL10 0x31A #define MT6360_PMU_DEVICE_TYPE 0x322 #define MT6360_PMU_USB_STATUS1 0x327 #define MT6360_PMU_CHG_STAT 0x34A #define MT6360_PMU_CHG_CTRL19 0x361 #define MT6360_PMU_FOD_STAT 0x3E7 /* MT6360_PMU_CHG_CTRL1 */ #define MT6360_FSLP_SHFT (3) #define MT6360_FSLP_MASK BIT(MT6360_FSLP_SHFT) #define MT6360_OPA_MODE_SHFT (0) #define MT6360_OPA_MODE_MASK BIT(MT6360_OPA_MODE_SHFT) /* MT6360_PMU_CHG_CTRL2 */ #define MT6360_IINLMTSEL_SHFT (2) #define MT6360_IINLMTSEL_MASK GENMASK(3, 2) /* MT6360_PMU_CHG_CTRL3 */ #define MT6360_IAICR_SHFT (2) #define MT6360_IAICR_MASK GENMASK(7, 2) #define MT6360_ILIM_EN_MASK BIT(0) /* MT6360_PMU_CHG_CTRL4 */ #define MT6360_VOREG_SHFT (1) #define MT6360_VOREG_MASK GENMASK(7, 1) /* MT6360_PMU_CHG_CTRL5 */ #define MT6360_VOBST_MASK GENMASK(7, 2) /* MT6360_PMU_CHG_CTRL6 */ #define MT6360_VMIVR_SHFT (1) #define MT6360_VMIVR_MASK GENMASK(7, 1) /* MT6360_PMU_CHG_CTRL7 */ #define MT6360_ICHG_SHFT (2) #define MT6360_ICHG_MASK GENMASK(7, 2) /* MT6360_PMU_CHG_CTRL8 */ #define MT6360_IPREC_SHFT (0) #define MT6360_IPREC_MASK GENMASK(3, 0) /* MT6360_PMU_CHG_CTRL9 */ #define MT6360_IEOC_SHFT (4) #define MT6360_IEOC_MASK GENMASK(7, 4) /* MT6360_PMU_CHG_CTRL10 */ #define MT6360_OTG_OC_MASK GENMASK(3, 0) /* MT6360_PMU_DEVICE_TYPE */ #define MT6360_USBCHGEN_MASK BIT(7) /* MT6360_PMU_USB_STATUS1 */ #define MT6360_USB_STATUS_SHFT (4) #define MT6360_USB_STATUS_MASK GENMASK(6, 4) /* MT6360_PMU_CHG_STAT */ #define MT6360_CHG_STAT_SHFT (6) #define MT6360_CHG_STAT_MASK GENMASK(7, 6) #define MT6360_VBAT_LVL_MASK BIT(5) /* MT6360_PMU_CHG_CTRL19 */ #define MT6360_VINOVP_SHFT (5) #define MT6360_VINOVP_MASK GENMASK(6, 5) /* MT6360_PMU_FOD_STAT */ #define MT6360_CHRDET_EXT_MASK BIT(4) /* uV */ #define MT6360_VMIVR_MIN 3900000 #define MT6360_VMIVR_MAX 13400000 #define MT6360_VMIVR_STEP 100000 /* uA */ #define MT6360_ICHG_MIN 100000 #define MT6360_ICHG_MAX 5000000 #define MT6360_ICHG_STEP 100000 /* uV */ #define MT6360_VOREG_MIN 3900000 #define MT6360_VOREG_MAX 4710000 #define MT6360_VOREG_STEP 10000 /* uA */ #define MT6360_AICR_MIN 100000 #define MT6360_AICR_MAX 3250000 #define MT6360_AICR_STEP 50000 /* uA */ #define MT6360_IPREC_MIN 100000 #define MT6360_IPREC_MAX 850000 #define MT6360_IPREC_STEP 50000 /* uA */ #define MT6360_IEOC_MIN 100000 #define MT6360_IEOC_MAX 850000 #define MT6360_IEOC_STEP 50000 enum { MT6360_RANGE_VMIVR, MT6360_RANGE_ICHG, MT6360_RANGE_VOREG, MT6360_RANGE_AICR, MT6360_RANGE_IPREC, MT6360_RANGE_IEOC, MT6360_RANGE_MAX, }; static const struct linear_range mt6360_chg_range[MT6360_RANGE_MAX] = { LINEAR_RANGE_IDX(MT6360_RANGE_VMIVR, 3900000, 0, 0x5F, 100000), LINEAR_RANGE_IDX(MT6360_RANGE_ICHG, 100000, 0, 0x31, 100000), LINEAR_RANGE_IDX(MT6360_RANGE_VOREG, 3900000, 0, 0x51, 10000), LINEAR_RANGE_IDX(MT6360_RANGE_AICR, 100000, 0, 0x3F, 50000), LINEAR_RANGE_IDX(MT6360_RANGE_IPREC, 100000, 0, 0x0F, 50000), LINEAR_RANGE_IDX(MT6360_RANGE_IEOC, 100000, 0, 0x0F, 50000), }; struct mt6360_chg_info { struct device *dev; struct regmap *regmap; struct power_supply_desc psy_desc; struct power_supply *psy; struct regulator_dev *otg_rdev; struct mutex chgdet_lock; u32 vinovp; bool pwr_rdy; bool bc12_en; int psy_usb_type; struct work_struct chrdet_work; }; enum mt6360_iinlmtsel { MT6360_IINLMTSEL_AICR_3250 = 0, MT6360_IINLMTSEL_CHG_TYPE, MT6360_IINLMTSEL_AICR, MT6360_IINLMTSEL_LOWER_LEVEL, }; enum mt6360_pmu_chg_type { MT6360_CHG_TYPE_NOVBUS = 0, MT6360_CHG_TYPE_UNDER_GOING, MT6360_CHG_TYPE_SDP, MT6360_CHG_TYPE_SDPNSTD, MT6360_CHG_TYPE_DCP, MT6360_CHG_TYPE_CDP, MT6360_CHG_TYPE_DISABLE_BC12, MT6360_CHG_TYPE_MAX, }; static enum power_supply_usb_type mt6360_charger_usb_types[] = { POWER_SUPPLY_USB_TYPE_UNKNOWN, POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_CDP, }; static int mt6360_get_chrdet_ext_stat(struct mt6360_chg_info *mci, bool *pwr_rdy) { int ret; unsigned int regval; ret = regmap_read(mci->regmap, MT6360_PMU_FOD_STAT, &regval); if (ret < 0) return ret; *pwr_rdy = (regval & MT6360_CHRDET_EXT_MASK) ? true : false; return 0; } static int mt6360_charger_get_online(struct mt6360_chg_info *mci, union power_supply_propval *val) { int ret; bool pwr_rdy; ret = mt6360_get_chrdet_ext_stat(mci, &pwr_rdy); if (ret < 0) return ret; val->intval = pwr_rdy ? true : false; return 0; } static int mt6360_charger_get_status(struct mt6360_chg_info *mci, union power_supply_propval *val) { int status, ret; unsigned int regval; bool pwr_rdy; ret = mt6360_get_chrdet_ext_stat(mci, &pwr_rdy); if (ret < 0) return ret; if (!pwr_rdy) { status = POWER_SUPPLY_STATUS_DISCHARGING; goto out; } ret = regmap_read(mci->regmap, MT6360_PMU_CHG_STAT, &regval); if (ret < 0) return ret; regval &= MT6360_CHG_STAT_MASK; regval >>= MT6360_CHG_STAT_SHFT; switch (regval) { case 0x0: status = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case 0x1: status = POWER_SUPPLY_STATUS_CHARGING; break; case 0x2: status = POWER_SUPPLY_STATUS_FULL; break; default: ret = -EIO; } out: if (!ret) val->intval = status; return ret; } static int mt6360_charger_get_charge_type(struct mt6360_chg_info *mci, union power_supply_propval *val) { int type, ret; unsigned int regval; u8 chg_stat; ret = regmap_read(mci->regmap, MT6360_PMU_CHG_STAT, &regval); if (ret < 0) return ret; chg_stat = (regval & MT6360_CHG_STAT_MASK) >> MT6360_CHG_STAT_SHFT; switch (chg_stat) { case 0x01: /* Charge in Progress */ if (regval & MT6360_VBAT_LVL_MASK) type = POWER_SUPPLY_CHARGE_TYPE_FAST; else type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case 0x00: /* Not Charging */ case 0x02: /* Charge Done */ case 0x03: /* Charge Fault */ default: type = POWER_SUPPLY_CHARGE_TYPE_NONE; break; } val->intval = type; return 0; } static int mt6360_charger_get_ichg(struct mt6360_chg_info *mci, union power_supply_propval *val) { int ret; u32 sel, value; ret = regmap_read(mci->regmap, MT6360_PMU_CHG_CTRL7, &sel); if (ret < 0) return ret; sel = (sel & MT6360_ICHG_MASK) >> MT6360_ICHG_SHFT; ret = linear_range_get_value(&mt6360_chg_range[MT6360_RANGE_ICHG], sel, &value); if (!ret) val->intval = value; return ret; } static int mt6360_charger_get_max_ichg(struct mt6360_chg_info *mci, union power_supply_propval *val) { val->intval = MT6360_ICHG_MAX; return 0; } static int mt6360_charger_get_cv(struct mt6360_chg_info *mci, union power_supply_propval *val) { int ret; u32 sel, value; ret = regmap_read(mci->regmap, MT6360_PMU_CHG_CTRL4, &sel); if (ret < 0) return ret; sel = (sel & MT6360_VOREG_MASK) >> MT6360_VOREG_SHFT; ret = linear_range_get_value(&mt6360_chg_range[MT6360_RANGE_VOREG], sel, &value); if (!ret) val->intval = value; return ret; } static int mt6360_charger_get_max_cv(struct mt6360_chg_info *mci, union power_supply_propval *val) { val->intval = MT6360_VOREG_MAX; return 0; } static int mt6360_charger_get_aicr(struct mt6360_chg_info *mci, union power_supply_propval *val) { int ret; u32 sel, value; ret = regmap_read(mci->regmap, MT6360_PMU_CHG_CTRL3, &sel); if (ret < 0) return ret; sel = (sel & MT6360_IAICR_MASK) >> MT6360_IAICR_SHFT; ret = linear_range_get_value(&mt6360_chg_range[MT6360_RANGE_AICR], sel, &value); if (!ret) val->intval = value; return ret; } static int mt6360_charger_get_mivr(struct mt6360_chg_info *mci, union power_supply_propval *val) { int ret; u32 sel, value; ret = regmap_read(mci->regmap, MT6360_PMU_CHG_CTRL6, &sel); if (ret < 0) return ret; sel = (sel & MT6360_VMIVR_MASK) >> MT6360_VMIVR_SHFT; ret = linear_range_get_value(&mt6360_chg_range[MT6360_RANGE_VMIVR], sel, &value); if (!ret) val->intval = value; return ret; } static int mt6360_charger_get_iprechg(struct mt6360_chg_info *mci, union power_supply_propval *val) { int ret; u32 sel, value; ret = regmap_read(mci->regmap, MT6360_PMU_CHG_CTRL8, &sel); if (ret < 0) return ret; sel = (sel & MT6360_IPREC_MASK) >> MT6360_IPREC_SHFT; ret = linear_range_get_value(&mt6360_chg_range[MT6360_RANGE_IPREC], sel, &value); if (!ret) val->intval = value; return ret; } static int mt6360_charger_get_ieoc(struct mt6360_chg_info *mci, union power_supply_propval *val) { int ret; u32 sel, value; ret = regmap_read(mci->regmap, MT6360_PMU_CHG_CTRL9, &sel); if (ret < 0) return ret; sel = (sel & MT6360_IEOC_MASK) >> MT6360_IEOC_SHFT; ret = linear_range_get_value(&mt6360_chg_range[MT6360_RANGE_IEOC], sel, &value); if (!ret) val->intval = value; return ret; } static int mt6360_charger_set_online(struct mt6360_chg_info *mci, const union power_supply_propval *val) { u8 force_sleep = val->intval ? 0 : 1; return regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL1, MT6360_FSLP_MASK, force_sleep << MT6360_FSLP_SHFT); } static int mt6360_charger_set_ichg(struct mt6360_chg_info *mci, const union power_supply_propval *val) { u32 sel; linear_range_get_selector_within(&mt6360_chg_range[MT6360_RANGE_ICHG], val->intval, &sel); return regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL7, MT6360_ICHG_MASK, sel << MT6360_ICHG_SHFT); } static int mt6360_charger_set_cv(struct mt6360_chg_info *mci, const union power_supply_propval *val) { u32 sel; linear_range_get_selector_within(&mt6360_chg_range[MT6360_RANGE_VOREG], val->intval, &sel); return regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL4, MT6360_VOREG_MASK, sel << MT6360_VOREG_SHFT); } static int mt6360_charger_set_aicr(struct mt6360_chg_info *mci, const union power_supply_propval *val) { u32 sel; linear_range_get_selector_within(&mt6360_chg_range[MT6360_RANGE_AICR], val->intval, &sel); return regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL3, MT6360_IAICR_MASK, sel << MT6360_IAICR_SHFT); } static int mt6360_charger_set_mivr(struct mt6360_chg_info *mci, const union power_supply_propval *val) { u32 sel; linear_range_get_selector_within(&mt6360_chg_range[MT6360_RANGE_VMIVR], val->intval, &sel); return regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL3, MT6360_VMIVR_MASK, sel << MT6360_VMIVR_SHFT); } static int mt6360_charger_set_iprechg(struct mt6360_chg_info *mci, const union power_supply_propval *val) { u32 sel; linear_range_get_selector_within(&mt6360_chg_range[MT6360_RANGE_IPREC], val->intval, &sel); return regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL8, MT6360_IPREC_MASK, sel << MT6360_IPREC_SHFT); } static int mt6360_charger_set_ieoc(struct mt6360_chg_info *mci, const union power_supply_propval *val) { u32 sel; linear_range_get_selector_within(&mt6360_chg_range[MT6360_RANGE_IEOC], val->intval, &sel); return regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL9, MT6360_IEOC_MASK, sel << MT6360_IEOC_SHFT); } static int mt6360_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct mt6360_chg_info *mci = power_supply_get_drvdata(psy); int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = mt6360_charger_get_online(mci, val); break; case POWER_SUPPLY_PROP_STATUS: ret = mt6360_charger_get_status(mci, val); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = mt6360_charger_get_charge_type(mci, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = mt6360_charger_get_ichg(mci, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: ret = mt6360_charger_get_max_ichg(mci, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = mt6360_charger_get_cv(mci, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: ret = mt6360_charger_get_max_cv(mci, val); break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = mt6360_charger_get_aicr(mci, val); break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = mt6360_charger_get_mivr(mci, val); break; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: ret = mt6360_charger_get_iprechg(mci, val); break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: ret = mt6360_charger_get_ieoc(mci, val); break; case POWER_SUPPLY_PROP_USB_TYPE: val->intval = mci->psy_usb_type; break; default: ret = -ENODATA; } return ret; } static int mt6360_charger_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct mt6360_chg_info *mci = power_supply_get_drvdata(psy); int ret; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = mt6360_charger_set_online(mci, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = mt6360_charger_set_ichg(mci, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = mt6360_charger_set_cv(mci, val); break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = mt6360_charger_set_aicr(mci, val); break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = mt6360_charger_set_mivr(mci, val); break; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: ret = mt6360_charger_set_iprechg(mci, val); break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: ret = mt6360_charger_set_ieoc(mci, val); break; default: ret = -EINVAL; } return ret; } static int mt6360_charger_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_ONLINE: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return 1; default: return 0; } } static enum power_supply_property mt6360_charger_properties[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_USB_TYPE, }; static const struct power_supply_desc mt6360_charger_desc = { .type = POWER_SUPPLY_TYPE_USB, .properties = mt6360_charger_properties, .num_properties = ARRAY_SIZE(mt6360_charger_properties), .get_property = mt6360_charger_get_property, .set_property = mt6360_charger_set_property, .property_is_writeable = mt6360_charger_property_is_writeable, .usb_types = mt6360_charger_usb_types, .num_usb_types = ARRAY_SIZE(mt6360_charger_usb_types), }; static const struct regulator_ops mt6360_chg_otg_ops = { .list_voltage = regulator_list_voltage_linear, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, }; static const struct regulator_desc mt6360_otg_rdesc = { .of_match = "usb-otg-vbus", .name = "usb-otg-vbus", .ops = &mt6360_chg_otg_ops, .owner = THIS_MODULE, .type = REGULATOR_VOLTAGE, .min_uV = 4425000, .uV_step = 25000, .n_voltages = 57, .vsel_reg = MT6360_PMU_CHG_CTRL5, .vsel_mask = MT6360_VOBST_MASK, .enable_reg = MT6360_PMU_CHG_CTRL1, .enable_mask = MT6360_OPA_MODE_MASK, }; static irqreturn_t mt6360_pmu_attach_i_handler(int irq, void *data) { struct mt6360_chg_info *mci = data; int ret; unsigned int usb_status; int last_usb_type; mutex_lock(&mci->chgdet_lock); if (!mci->bc12_en) { dev_warn(mci->dev, "Received attach interrupt, bc12 disabled, ignore irq\n"); goto out; } last_usb_type = mci->psy_usb_type; /* Plug in */ ret = regmap_read(mci->regmap, MT6360_PMU_USB_STATUS1, &usb_status); if (ret < 0) goto out; usb_status &= MT6360_USB_STATUS_MASK; usb_status >>= MT6360_USB_STATUS_SHFT; switch (usb_status) { case MT6360_CHG_TYPE_NOVBUS: dev_dbg(mci->dev, "Received attach interrupt, no vbus\n"); goto out; case MT6360_CHG_TYPE_UNDER_GOING: dev_dbg(mci->dev, "Received attach interrupt, under going...\n"); goto out; case MT6360_CHG_TYPE_SDP: mci->psy_usb_type = POWER_SUPPLY_USB_TYPE_SDP; break; case MT6360_CHG_TYPE_SDPNSTD: mci->psy_usb_type = POWER_SUPPLY_USB_TYPE_SDP; break; case MT6360_CHG_TYPE_CDP: mci->psy_usb_type = POWER_SUPPLY_USB_TYPE_CDP; break; case MT6360_CHG_TYPE_DCP: mci->psy_usb_type = POWER_SUPPLY_USB_TYPE_DCP; break; case MT6360_CHG_TYPE_DISABLE_BC12: dev_dbg(mci->dev, "Received attach interrupt, bc12 detect not enable\n"); goto out; default: mci->psy_usb_type = POWER_SUPPLY_USB_TYPE_UNKNOWN; dev_dbg(mci->dev, "Received attach interrupt, reserved address\n"); goto out; } dev_dbg(mci->dev, "Received attach interrupt, chg_type = %d\n", mci->psy_usb_type); if (last_usb_type != mci->psy_usb_type) power_supply_changed(mci->psy); out: mutex_unlock(&mci->chgdet_lock); return IRQ_HANDLED; } static void mt6360_handle_chrdet_ext_evt(struct mt6360_chg_info *mci) { int ret; bool pwr_rdy; mutex_lock(&mci->chgdet_lock); ret = mt6360_get_chrdet_ext_stat(mci, &pwr_rdy); if (ret < 0) goto out; if (mci->pwr_rdy == pwr_rdy) { dev_dbg(mci->dev, "Received vbus interrupt, pwr_rdy is same(%d)\n", pwr_rdy); goto out; } mci->pwr_rdy = pwr_rdy; dev_dbg(mci->dev, "Received vbus interrupt, pwr_rdy = %d\n", pwr_rdy); if (!pwr_rdy) { mci->psy_usb_type = POWER_SUPPLY_USB_TYPE_UNKNOWN; power_supply_changed(mci->psy); } ret = regmap_update_bits(mci->regmap, MT6360_PMU_DEVICE_TYPE, MT6360_USBCHGEN_MASK, pwr_rdy ? MT6360_USBCHGEN_MASK : 0); if (ret < 0) goto out; mci->bc12_en = pwr_rdy; out: mutex_unlock(&mci->chgdet_lock); } static void mt6360_chrdet_work(struct work_struct *work) { struct mt6360_chg_info *mci = (struct mt6360_chg_info *)container_of( work, struct mt6360_chg_info, chrdet_work); mt6360_handle_chrdet_ext_evt(mci); } static irqreturn_t mt6360_pmu_chrdet_ext_evt_handler(int irq, void *data) { struct mt6360_chg_info *mci = data; mt6360_handle_chrdet_ext_evt(mci); return IRQ_HANDLED; } static int mt6360_chg_irq_register(struct platform_device *pdev) { const struct { const char *name; irq_handler_t handler; } irq_descs[] = { { "attach_i", mt6360_pmu_attach_i_handler }, { "chrdet_ext_evt", mt6360_pmu_chrdet_ext_evt_handler } }; int i, ret; for (i = 0; i < ARRAY_SIZE(irq_descs); i++) { ret = platform_get_irq_byname(pdev, irq_descs[i].name); if (ret < 0) return ret; ret = devm_request_threaded_irq(&pdev->dev, ret, NULL, irq_descs[i].handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, irq_descs[i].name, platform_get_drvdata(pdev)); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "Failed to request %s irq\n", irq_descs[i].name); } return 0; } static u32 mt6360_vinovp_trans_to_sel(u32 val) { u32 vinovp_tbl[] = { 5500000, 6500000, 11000000, 14500000 }; int i; /* Select the smaller and equal supported value */ for (i = 0; i < ARRAY_SIZE(vinovp_tbl)-1; i++) { if (val < vinovp_tbl[i+1]) break; } return i; } static int mt6360_chg_init_setting(struct mt6360_chg_info *mci) { int ret; u32 sel; sel = mt6360_vinovp_trans_to_sel(mci->vinovp); ret = regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL19, MT6360_VINOVP_MASK, sel << MT6360_VINOVP_SHFT); if (ret) return dev_err_probe(mci->dev, ret, "%s: Failed to apply vinovp\n", __func__); ret = regmap_update_bits(mci->regmap, MT6360_PMU_DEVICE_TYPE, MT6360_USBCHGEN_MASK, 0); if (ret) return dev_err_probe(mci->dev, ret, "%s: Failed to disable bc12\n", __func__); ret = regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL2, MT6360_IINLMTSEL_MASK, MT6360_IINLMTSEL_AICR << MT6360_IINLMTSEL_SHFT); if (ret) return dev_err_probe(mci->dev, ret, "%s: Failed to switch iinlmtsel to aicr\n", __func__); usleep_range(5000, 6000); ret = regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL3, MT6360_ILIM_EN_MASK, 0); if (ret) return dev_err_probe(mci->dev, ret, "%s: Failed to disable ilim\n", __func__); ret = regmap_update_bits(mci->regmap, MT6360_PMU_CHG_CTRL10, MT6360_OTG_OC_MASK, MT6360_OTG_OC_MASK); if (ret) return dev_err_probe(mci->dev, ret, "%s: Failed to config otg oc to 3A\n", __func__); return 0; } static int mt6360_charger_probe(struct platform_device *pdev) { struct mt6360_chg_info *mci; struct power_supply_config charger_cfg = {}; struct regulator_config config = { }; int ret; mci = devm_kzalloc(&pdev->dev, sizeof(*mci), GFP_KERNEL); if (!mci) return -ENOMEM; mci->dev = &pdev->dev; mci->vinovp = 6500000; mutex_init(&mci->chgdet_lock); platform_set_drvdata(pdev, mci); ret = devm_work_autocancel(&pdev->dev, &mci->chrdet_work, mt6360_chrdet_work); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to set delayed work\n"); ret = device_property_read_u32(&pdev->dev, "richtek,vinovp-microvolt", &mci->vinovp); if (ret) dev_warn(&pdev->dev, "Failed to parse vinovp in DT, keep default 6.5v\n"); mci->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!mci->regmap) return dev_err_probe(&pdev->dev, -ENODEV, "Failed to get parent regmap\n"); ret = mt6360_chg_init_setting(mci); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to initial setting\n"); memcpy(&mci->psy_desc, &mt6360_charger_desc, sizeof(mci->psy_desc)); mci->psy_desc.name = dev_name(&pdev->dev); charger_cfg.drv_data = mci; charger_cfg.of_node = pdev->dev.of_node; mci->psy = devm_power_supply_register(&pdev->dev, &mci->psy_desc, &charger_cfg); if (IS_ERR(mci->psy)) return dev_err_probe(&pdev->dev, PTR_ERR(mci->psy), "Failed to register power supply dev\n"); ret = mt6360_chg_irq_register(pdev); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to register irqs\n"); config.dev = &pdev->dev; config.regmap = mci->regmap; mci->otg_rdev = devm_regulator_register(&pdev->dev, &mt6360_otg_rdesc, &config); if (IS_ERR(mci->otg_rdev)) return PTR_ERR(mci->otg_rdev); schedule_work(&mci->chrdet_work); return 0; } static const struct of_device_id __maybe_unused mt6360_charger_of_id[] = { { .compatible = "mediatek,mt6360-chg", }, {}, }; MODULE_DEVICE_TABLE(of, mt6360_charger_of_id); static const struct platform_device_id mt6360_charger_id[] = { { "mt6360-chg", 0 }, {}, }; MODULE_DEVICE_TABLE(platform, mt6360_charger_id); static struct platform_driver mt6360_charger_driver = { .driver = { .name = "mt6360-chg", .of_match_table = of_match_ptr(mt6360_charger_of_id), }, .probe = mt6360_charger_probe, .id_table = mt6360_charger_id, }; module_platform_driver(mt6360_charger_driver); MODULE_AUTHOR("Gene Chen <[email protected]>"); MODULE_DESCRIPTION("MT6360 Charger Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/mt6360_charger.c
// SPDX-License-Identifier: GPL-2.0 // Battery charger driver for TI's tps65217 // // Copyright (C) 2015 Collabora Ltd. // Author: Enric Balletbo i Serra <[email protected]> /* * Battery charger driver for TI's tps65217 */ #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/device.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/of.h> #include <linux/power_supply.h> #include <linux/mfd/core.h> #include <linux/mfd/tps65217.h> #define CHARGER_STATUS_PRESENT (TPS65217_STATUS_ACPWR | TPS65217_STATUS_USBPWR) #define NUM_CHARGER_IRQS 2 #define POLL_INTERVAL (HZ * 2) struct tps65217_charger { struct tps65217 *tps; struct device *dev; struct power_supply *psy; int online; int prev_online; struct task_struct *poll_task; }; static enum power_supply_property tps65217_charger_props[] = { POWER_SUPPLY_PROP_ONLINE, }; static int tps65217_config_charger(struct tps65217_charger *charger) { int ret; /* * tps65217 rev. G, p. 31 (see p. 32 for NTC schematic) * * The device can be configured to support a 100k NTC (B = 3960) by * setting the NTC_TYPE bit in register CHGCONFIG1 to 1. However it * is not recommended to do so. In sleep mode, the charger continues * charging the battery, but all register values are reset to default * values. Therefore, the charger would get the wrong temperature * information. If 100k NTC setting is required, please contact the * factory. * * ATTENTION, conflicting information, from p. 46 * * NTC TYPE (for battery temperature measurement) * 0 – 100k (curve 1, B = 3960) * 1 – 10k (curve 2, B = 3480) (default on reset) * */ ret = tps65217_clear_bits(charger->tps, TPS65217_REG_CHGCONFIG1, TPS65217_CHGCONFIG1_NTC_TYPE, TPS65217_PROTECT_NONE); if (ret) { dev_err(charger->dev, "failed to set 100k NTC setting: %d\n", ret); return ret; } return 0; } static int tps65217_enable_charging(struct tps65217_charger *charger) { int ret; /* charger already enabled */ if (charger->online) return 0; dev_dbg(charger->dev, "%s: enable charging\n", __func__); ret = tps65217_set_bits(charger->tps, TPS65217_REG_CHGCONFIG1, TPS65217_CHGCONFIG1_CHG_EN, TPS65217_CHGCONFIG1_CHG_EN, TPS65217_PROTECT_NONE); if (ret) { dev_err(charger->dev, "%s: Error in writing CHG_EN in reg 0x%x: %d\n", __func__, TPS65217_REG_CHGCONFIG1, ret); return ret; } charger->online = 1; return 0; } static int tps65217_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct tps65217_charger *charger = power_supply_get_drvdata(psy); if (psp == POWER_SUPPLY_PROP_ONLINE) { val->intval = charger->online; return 0; } return -EINVAL; } static irqreturn_t tps65217_charger_irq(int irq, void *dev) { int ret, val; struct tps65217_charger *charger = dev; charger->prev_online = charger->online; ret = tps65217_reg_read(charger->tps, TPS65217_REG_STATUS, &val); if (ret < 0) { dev_err(charger->dev, "%s: Error in reading reg 0x%x\n", __func__, TPS65217_REG_STATUS); return IRQ_HANDLED; } dev_dbg(charger->dev, "%s: 0x%x\n", __func__, val); /* check for charger status bit */ if (val & CHARGER_STATUS_PRESENT) { ret = tps65217_enable_charging(charger); if (ret) { dev_err(charger->dev, "failed to enable charger: %d\n", ret); return IRQ_HANDLED; } } else { charger->online = 0; } if (charger->prev_online != charger->online) power_supply_changed(charger->psy); ret = tps65217_reg_read(charger->tps, TPS65217_REG_CHGCONFIG0, &val); if (ret < 0) { dev_err(charger->dev, "%s: Error in reading reg 0x%x\n", __func__, TPS65217_REG_CHGCONFIG0); return IRQ_HANDLED; } if (val & TPS65217_CHGCONFIG0_ACTIVE) dev_dbg(charger->dev, "%s: charger is charging\n", __func__); else dev_dbg(charger->dev, "%s: charger is NOT charging\n", __func__); return IRQ_HANDLED; } static int tps65217_charger_poll_task(void *data) { set_freezable(); while (!kthread_should_stop()) { schedule_timeout_interruptible(POLL_INTERVAL); try_to_freeze(); tps65217_charger_irq(-1, data); } return 0; } static const struct power_supply_desc tps65217_charger_desc = { .name = "tps65217-charger", .type = POWER_SUPPLY_TYPE_MAINS, .get_property = tps65217_charger_get_property, .properties = tps65217_charger_props, .num_properties = ARRAY_SIZE(tps65217_charger_props), }; static int tps65217_charger_probe(struct platform_device *pdev) { struct tps65217 *tps = dev_get_drvdata(pdev->dev.parent); struct tps65217_charger *charger; struct power_supply_config cfg = {}; struct task_struct *poll_task; int irq[NUM_CHARGER_IRQS]; int ret; int i; charger = devm_kzalloc(&pdev->dev, sizeof(*charger), GFP_KERNEL); if (!charger) return -ENOMEM; platform_set_drvdata(pdev, charger); charger->tps = tps; charger->dev = &pdev->dev; cfg.of_node = pdev->dev.of_node; cfg.drv_data = charger; charger->psy = devm_power_supply_register(&pdev->dev, &tps65217_charger_desc, &cfg); if (IS_ERR(charger->psy)) { dev_err(&pdev->dev, "failed: power supply register\n"); return PTR_ERR(charger->psy); } irq[0] = platform_get_irq_byname(pdev, "USB"); irq[1] = platform_get_irq_byname(pdev, "AC"); ret = tps65217_config_charger(charger); if (ret < 0) { dev_err(charger->dev, "charger config failed, err %d\n", ret); return ret; } /* Create a polling thread if an interrupt is invalid */ if (irq[0] < 0 || irq[1] < 0) { poll_task = kthread_run(tps65217_charger_poll_task, charger, "ktps65217charger"); if (IS_ERR(poll_task)) { ret = PTR_ERR(poll_task); dev_err(charger->dev, "Unable to run kthread err %d\n", ret); return ret; } charger->poll_task = poll_task; return 0; } /* Create IRQ threads for charger interrupts */ for (i = 0; i < NUM_CHARGER_IRQS; i++) { ret = devm_request_threaded_irq(&pdev->dev, irq[i], NULL, tps65217_charger_irq, IRQF_ONESHOT, "tps65217-charger", charger); if (ret) { dev_err(charger->dev, "Unable to register irq %d err %d\n", irq[i], ret); return ret; } /* Check current state */ tps65217_charger_irq(-1, charger); } return 0; } static int tps65217_charger_remove(struct platform_device *pdev) { struct tps65217_charger *charger = platform_get_drvdata(pdev); if (charger->poll_task) kthread_stop(charger->poll_task); return 0; } static const struct of_device_id tps65217_charger_match_table[] = { { .compatible = "ti,tps65217-charger", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tps65217_charger_match_table); static struct platform_driver tps65217_charger_driver = { .probe = tps65217_charger_probe, .remove = tps65217_charger_remove, .driver = { .name = "tps65217-charger", .of_match_table = of_match_ptr(tps65217_charger_match_table), }, }; module_platform_driver(tps65217_charger_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Enric Balletbo Serra <[email protected]>"); MODULE_DESCRIPTION("TPS65217 battery charger driver");
linux-master
drivers/power/supply/tps65217_charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Fuel gauge driver for Richtek RT5033 * * Copyright (C) 2014 Samsung Electronics, Co., Ltd. * Author: Beomho Seo <[email protected]> */ #include <linux/i2c.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/mfd/rt5033-private.h> struct rt5033_battery { struct i2c_client *client; struct regmap *regmap; struct power_supply *psy; }; static int rt5033_battery_get_status(struct i2c_client *client) { struct rt5033_battery *battery = i2c_get_clientdata(client); union power_supply_propval val; int ret; ret = power_supply_get_property_from_supplier(battery->psy, POWER_SUPPLY_PROP_STATUS, &val); if (ret) val.intval = POWER_SUPPLY_STATUS_UNKNOWN; return val.intval; } static int rt5033_battery_get_capacity(struct i2c_client *client) { struct rt5033_battery *battery = i2c_get_clientdata(client); u32 msb; regmap_read(battery->regmap, RT5033_FUEL_REG_SOC_H, &msb); return msb; } static int rt5033_battery_get_present(struct i2c_client *client) { struct rt5033_battery *battery = i2c_get_clientdata(client); u32 val; regmap_read(battery->regmap, RT5033_FUEL_REG_CONFIG_L, &val); return (val & RT5033_FUEL_BAT_PRESENT) ? true : false; } static int rt5033_battery_get_watt_prop(struct i2c_client *client, enum power_supply_property psp) { struct rt5033_battery *battery = i2c_get_clientdata(client); unsigned int regh, regl; int ret; u32 msb, lsb; switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: regh = RT5033_FUEL_REG_VBAT_H; regl = RT5033_FUEL_REG_VBAT_L; break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: regh = RT5033_FUEL_REG_AVG_VOLT_H; regl = RT5033_FUEL_REG_AVG_VOLT_L; break; case POWER_SUPPLY_PROP_VOLTAGE_OCV: regh = RT5033_FUEL_REG_OCV_H; regl = RT5033_FUEL_REG_OCV_L; break; default: return -EINVAL; } regmap_read(battery->regmap, regh, &msb); regmap_read(battery->regmap, regl, &lsb); ret = ((msb << 4) + (lsb >> 4)) * 1250; return ret; } static int rt5033_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct rt5033_battery *battery = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_VOLTAGE_AVG: case POWER_SUPPLY_PROP_VOLTAGE_OCV: val->intval = rt5033_battery_get_watt_prop(battery->client, psp); break; case POWER_SUPPLY_PROP_PRESENT: val->intval = rt5033_battery_get_present(battery->client); break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = rt5033_battery_get_capacity(battery->client); break; case POWER_SUPPLY_PROP_STATUS: val->intval = rt5033_battery_get_status(battery->client); break; default: return -EINVAL; } return 0; } static enum power_supply_property rt5033_battery_props[] = { POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_STATUS, }; static const struct regmap_config rt5033_battery_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = RT5033_FUEL_REG_END, }; static const struct power_supply_desc rt5033_battery_desc = { .name = "rt5033-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .get_property = rt5033_battery_get_property, .properties = rt5033_battery_props, .num_properties = ARRAY_SIZE(rt5033_battery_props), }; static int rt5033_battery_probe(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; struct power_supply_config psy_cfg = {}; struct rt5033_battery *battery; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) return -EIO; battery = devm_kzalloc(&client->dev, sizeof(*battery), GFP_KERNEL); if (!battery) return -ENOMEM; battery->client = client; battery->regmap = devm_regmap_init_i2c(client, &rt5033_battery_regmap_config); if (IS_ERR(battery->regmap)) { dev_err(&client->dev, "Failed to initialize regmap\n"); return -EINVAL; } i2c_set_clientdata(client, battery); psy_cfg.of_node = client->dev.of_node; psy_cfg.drv_data = battery; battery->psy = power_supply_register(&client->dev, &rt5033_battery_desc, &psy_cfg); if (IS_ERR(battery->psy)) return dev_err_probe(&client->dev, PTR_ERR(battery->psy), "Failed to register power supply\n"); return 0; } static void rt5033_battery_remove(struct i2c_client *client) { struct rt5033_battery *battery = i2c_get_clientdata(client); power_supply_unregister(battery->psy); } static const struct i2c_device_id rt5033_battery_id[] = { { "rt5033-battery", }, { } }; MODULE_DEVICE_TABLE(i2c, rt5033_battery_id); static const struct of_device_id rt5033_battery_of_match[] = { { .compatible = "richtek,rt5033-battery", }, { } }; MODULE_DEVICE_TABLE(of, rt5033_battery_of_match); static struct i2c_driver rt5033_battery_driver = { .driver = { .name = "rt5033-battery", .of_match_table = rt5033_battery_of_match, }, .probe = rt5033_battery_probe, .remove = rt5033_battery_remove, .id_table = rt5033_battery_id, }; module_i2c_driver(rt5033_battery_driver); MODULE_DESCRIPTION("Richtek RT5033 fuel gauge driver"); MODULE_AUTHOR("Beomho Seo <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/rt5033_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Battery charger driver for Dialog Semiconductor DA9030 * * Copyright (C) 2008 Compulab, Ltd. * Mike Rapoport <[email protected]> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/types.h> #include <linux/device.h> #include <linux/workqueue.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/mfd/da903x.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/notifier.h> #define DA9030_FAULT_LOG 0x0a #define DA9030_FAULT_LOG_OVER_TEMP (1 << 7) #define DA9030_FAULT_LOG_VBAT_OVER (1 << 4) #define DA9030_CHARGE_CONTROL 0x28 #define DA9030_CHRG_CHARGER_ENABLE (1 << 7) #define DA9030_ADC_MAN_CONTROL 0x30 #define DA9030_ADC_TBATREF_ENABLE (1 << 5) #define DA9030_ADC_LDO_INT_ENABLE (1 << 4) #define DA9030_ADC_AUTO_CONTROL 0x31 #define DA9030_ADC_TBAT_ENABLE (1 << 5) #define DA9030_ADC_VBAT_IN_TXON (1 << 4) #define DA9030_ADC_VCH_ENABLE (1 << 3) #define DA9030_ADC_ICH_ENABLE (1 << 2) #define DA9030_ADC_VBAT_ENABLE (1 << 1) #define DA9030_ADC_AUTO_SLEEP_ENABLE (1 << 0) #define DA9030_VBATMON 0x32 #define DA9030_VBATMONTXON 0x33 #define DA9030_TBATHIGHP 0x34 #define DA9030_TBATHIGHN 0x35 #define DA9030_TBATLOW 0x36 #define DA9030_VBAT_RES 0x41 #define DA9030_VBATMIN_RES 0x42 #define DA9030_VBATMINTXON_RES 0x43 #define DA9030_ICHMAX_RES 0x44 #define DA9030_ICHMIN_RES 0x45 #define DA9030_ICHAVERAGE_RES 0x46 #define DA9030_VCHMAX_RES 0x47 #define DA9030_VCHMIN_RES 0x48 #define DA9030_TBAT_RES 0x49 struct da9030_adc_res { uint8_t vbat_res; uint8_t vbatmin_res; uint8_t vbatmintxon; uint8_t ichmax_res; uint8_t ichmin_res; uint8_t ichaverage_res; uint8_t vchmax_res; uint8_t vchmin_res; uint8_t tbat_res; uint8_t adc_in4_res; uint8_t adc_in5_res; }; struct da9030_battery_thresholds { int tbat_low; int tbat_high; int tbat_restart; int vbat_low; int vbat_crit; int vbat_charge_start; int vbat_charge_stop; int vbat_charge_restart; int vcharge_min; int vcharge_max; }; struct da9030_charger { struct power_supply *psy; struct power_supply_desc psy_desc; struct device *master; struct da9030_adc_res adc; struct delayed_work work; unsigned int interval; struct power_supply_info *battery_info; struct da9030_battery_thresholds thresholds; unsigned int charge_milliamp; unsigned int charge_millivolt; /* charger status */ bool chdet; uint8_t fault; int mA; int mV; bool is_on; struct notifier_block nb; /* platform callbacks for battery low and critical events */ void (*battery_low)(void); void (*battery_critical)(void); struct dentry *debug_file; }; static inline int da9030_reg_to_mV(int reg) { return ((reg * 2650) >> 8) + 2650; } static inline int da9030_millivolt_to_reg(int mV) { return ((mV - 2650) << 8) / 2650; } static inline int da9030_reg_to_mA(int reg) { return ((reg * 24000) >> 8) / 15; } #ifdef CONFIG_DEBUG_FS static int bat_debug_show(struct seq_file *s, void *data) { struct da9030_charger *charger = s->private; seq_printf(s, "charger is %s\n", charger->is_on ? "on" : "off"); if (charger->chdet) { seq_printf(s, "iset = %dmA, vset = %dmV\n", charger->mA, charger->mV); } seq_printf(s, "vbat_res = %d (%dmV)\n", charger->adc.vbat_res, da9030_reg_to_mV(charger->adc.vbat_res)); seq_printf(s, "vbatmin_res = %d (%dmV)\n", charger->adc.vbatmin_res, da9030_reg_to_mV(charger->adc.vbatmin_res)); seq_printf(s, "vbatmintxon = %d (%dmV)\n", charger->adc.vbatmintxon, da9030_reg_to_mV(charger->adc.vbatmintxon)); seq_printf(s, "ichmax_res = %d (%dmA)\n", charger->adc.ichmax_res, da9030_reg_to_mV(charger->adc.ichmax_res)); seq_printf(s, "ichmin_res = %d (%dmA)\n", charger->adc.ichmin_res, da9030_reg_to_mA(charger->adc.ichmin_res)); seq_printf(s, "ichaverage_res = %d (%dmA)\n", charger->adc.ichaverage_res, da9030_reg_to_mA(charger->adc.ichaverage_res)); seq_printf(s, "vchmax_res = %d (%dmV)\n", charger->adc.vchmax_res, da9030_reg_to_mA(charger->adc.vchmax_res)); seq_printf(s, "vchmin_res = %d (%dmV)\n", charger->adc.vchmin_res, da9030_reg_to_mV(charger->adc.vchmin_res)); return 0; } DEFINE_SHOW_ATTRIBUTE(bat_debug); static struct dentry *da9030_bat_create_debugfs(struct da9030_charger *charger) { charger->debug_file = debugfs_create_file("charger", 0666, NULL, charger, &bat_debug_fops); return charger->debug_file; } static void da9030_bat_remove_debugfs(struct da9030_charger *charger) { debugfs_remove(charger->debug_file); } #else static inline struct dentry *da9030_bat_create_debugfs(struct da9030_charger *charger) { return NULL; } static inline void da9030_bat_remove_debugfs(struct da9030_charger *charger) { } #endif static inline void da9030_read_adc(struct da9030_charger *charger, struct da9030_adc_res *adc) { da903x_reads(charger->master, DA9030_VBAT_RES, sizeof(*adc), (uint8_t *)adc); } static void da9030_charger_update_state(struct da9030_charger *charger) { uint8_t val; da903x_read(charger->master, DA9030_CHARGE_CONTROL, &val); charger->is_on = (val & DA9030_CHRG_CHARGER_ENABLE) ? 1 : 0; charger->mA = ((val >> 3) & 0xf) * 100; charger->mV = (val & 0x7) * 50 + 4000; da9030_read_adc(charger, &charger->adc); da903x_read(charger->master, DA9030_FAULT_LOG, &charger->fault); charger->chdet = da903x_query_status(charger->master, DA9030_STATUS_CHDET); } static void da9030_set_charge(struct da9030_charger *charger, int on) { uint8_t val; if (on) { val = DA9030_CHRG_CHARGER_ENABLE; val |= (charger->charge_milliamp / 100) << 3; val |= (charger->charge_millivolt - 4000) / 50; charger->is_on = 1; } else { val = 0; charger->is_on = 0; } da903x_write(charger->master, DA9030_CHARGE_CONTROL, val); power_supply_changed(charger->psy); } static void da9030_charger_check_state(struct da9030_charger *charger) { da9030_charger_update_state(charger); /* we wake or boot with external power on */ if (!charger->is_on) { if ((charger->chdet) && (charger->adc.vbat_res < charger->thresholds.vbat_charge_start)) { da9030_set_charge(charger, 1); } } else { /* Charger has been pulled out */ if (!charger->chdet) { da9030_set_charge(charger, 0); return; } if (charger->adc.vbat_res >= charger->thresholds.vbat_charge_stop) { da9030_set_charge(charger, 0); da903x_write(charger->master, DA9030_VBATMON, charger->thresholds.vbat_charge_restart); } else if (charger->adc.vbat_res > charger->thresholds.vbat_low) { /* we are charging and passed LOW_THRESH, so upate DA9030 VBAT threshold */ da903x_write(charger->master, DA9030_VBATMON, charger->thresholds.vbat_low); } if (charger->adc.vchmax_res > charger->thresholds.vcharge_max || charger->adc.vchmin_res < charger->thresholds.vcharge_min || /* Tempreture readings are negative */ charger->adc.tbat_res < charger->thresholds.tbat_high || charger->adc.tbat_res > charger->thresholds.tbat_low) { /* disable charger */ da9030_set_charge(charger, 0); } } } static void da9030_charging_monitor(struct work_struct *work) { struct da9030_charger *charger; charger = container_of(work, struct da9030_charger, work.work); da9030_charger_check_state(charger); /* reschedule for the next time */ schedule_delayed_work(&charger->work, charger->interval); } static enum power_supply_property da9030_battery_props[] = { POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, }; static void da9030_battery_check_status(struct da9030_charger *charger, union power_supply_propval *val) { if (charger->chdet) { if (charger->is_on) val->intval = POWER_SUPPLY_STATUS_CHARGING; else val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; } else { val->intval = POWER_SUPPLY_STATUS_DISCHARGING; } } static void da9030_battery_check_health(struct da9030_charger *charger, union power_supply_propval *val) { if (charger->fault & DA9030_FAULT_LOG_OVER_TEMP) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else if (charger->fault & DA9030_FAULT_LOG_VBAT_OVER) val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else val->intval = POWER_SUPPLY_HEALTH_GOOD; } static int da9030_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct da9030_charger *charger = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: da9030_battery_check_status(charger, val); break; case POWER_SUPPLY_PROP_HEALTH: da9030_battery_check_health(charger, val); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = charger->battery_info->technology; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = charger->battery_info->voltage_max_design; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = charger->battery_info->voltage_min_design; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = da9030_reg_to_mV(charger->adc.vbat_res) * 1000; break; case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = da9030_reg_to_mA(charger->adc.ichaverage_res) * 1000; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = charger->battery_info->name; break; default: break; } return 0; } static void da9030_battery_vbat_event(struct da9030_charger *charger) { da9030_read_adc(charger, &charger->adc); if (charger->is_on) return; if (charger->adc.vbat_res < charger->thresholds.vbat_low) { /* set VBAT threshold for critical */ da903x_write(charger->master, DA9030_VBATMON, charger->thresholds.vbat_crit); if (charger->battery_low) charger->battery_low(); } else if (charger->adc.vbat_res < charger->thresholds.vbat_crit) { /* notify the system of battery critical */ if (charger->battery_critical) charger->battery_critical(); } } static int da9030_battery_event(struct notifier_block *nb, unsigned long event, void *data) { struct da9030_charger *charger = container_of(nb, struct da9030_charger, nb); switch (event) { case DA9030_EVENT_CHDET: cancel_delayed_work_sync(&charger->work); schedule_work(&charger->work.work); break; case DA9030_EVENT_VBATMON: da9030_battery_vbat_event(charger); break; case DA9030_EVENT_CHIOVER: case DA9030_EVENT_TBAT: da9030_set_charge(charger, 0); break; } return 0; } static void da9030_battery_convert_thresholds(struct da9030_charger *charger, struct da9030_battery_info *pdata) { charger->thresholds.tbat_low = pdata->tbat_low; charger->thresholds.tbat_high = pdata->tbat_high; charger->thresholds.tbat_restart = pdata->tbat_restart; charger->thresholds.vbat_low = da9030_millivolt_to_reg(pdata->vbat_low); charger->thresholds.vbat_crit = da9030_millivolt_to_reg(pdata->vbat_crit); charger->thresholds.vbat_charge_start = da9030_millivolt_to_reg(pdata->vbat_charge_start); charger->thresholds.vbat_charge_stop = da9030_millivolt_to_reg(pdata->vbat_charge_stop); charger->thresholds.vbat_charge_restart = da9030_millivolt_to_reg(pdata->vbat_charge_restart); charger->thresholds.vcharge_min = da9030_millivolt_to_reg(pdata->vcharge_min); charger->thresholds.vcharge_max = da9030_millivolt_to_reg(pdata->vcharge_max); } static void da9030_battery_setup_psy(struct da9030_charger *charger) { struct power_supply_desc *psy_desc = &charger->psy_desc; struct power_supply_info *info = charger->battery_info; psy_desc->name = info->name; psy_desc->use_for_apm = info->use_for_apm; psy_desc->type = POWER_SUPPLY_TYPE_BATTERY; psy_desc->get_property = da9030_battery_get_property; psy_desc->properties = da9030_battery_props; psy_desc->num_properties = ARRAY_SIZE(da9030_battery_props); }; static int da9030_battery_charger_init(struct da9030_charger *charger) { char v[5]; int ret; v[0] = v[1] = charger->thresholds.vbat_low; v[2] = charger->thresholds.tbat_high; v[3] = charger->thresholds.tbat_restart; v[4] = charger->thresholds.tbat_low; ret = da903x_writes(charger->master, DA9030_VBATMON, 5, v); if (ret) return ret; /* * Enable reference voltage supply for ADC from the LDO_INTERNAL * regulator. Must be set before ADC measurements can be made. */ ret = da903x_write(charger->master, DA9030_ADC_MAN_CONTROL, DA9030_ADC_LDO_INT_ENABLE | DA9030_ADC_TBATREF_ENABLE); if (ret) return ret; /* enable auto ADC measuremnts */ return da903x_write(charger->master, DA9030_ADC_AUTO_CONTROL, DA9030_ADC_TBAT_ENABLE | DA9030_ADC_VBAT_IN_TXON | DA9030_ADC_VCH_ENABLE | DA9030_ADC_ICH_ENABLE | DA9030_ADC_VBAT_ENABLE | DA9030_ADC_AUTO_SLEEP_ENABLE); } static int da9030_battery_probe(struct platform_device *pdev) { struct da9030_charger *charger; struct power_supply_config psy_cfg = {}; struct da9030_battery_info *pdata = pdev->dev.platform_data; int ret; if (pdata == NULL) return -EINVAL; if (pdata->charge_milliamp >= 1500 || pdata->charge_millivolt < 4000 || pdata->charge_millivolt > 4350) return -EINVAL; charger = devm_kzalloc(&pdev->dev, sizeof(*charger), GFP_KERNEL); if (charger == NULL) return -ENOMEM; charger->master = pdev->dev.parent; /* 10 seconds between monitor runs unless platform defines other interval */ charger->interval = msecs_to_jiffies( (pdata->batmon_interval ? : 10) * 1000); charger->charge_milliamp = pdata->charge_milliamp; charger->charge_millivolt = pdata->charge_millivolt; charger->battery_info = pdata->battery_info; charger->battery_low = pdata->battery_low; charger->battery_critical = pdata->battery_critical; da9030_battery_convert_thresholds(charger, pdata); ret = da9030_battery_charger_init(charger); if (ret) goto err_charger_init; INIT_DELAYED_WORK(&charger->work, da9030_charging_monitor); schedule_delayed_work(&charger->work, charger->interval); charger->nb.notifier_call = da9030_battery_event; ret = da903x_register_notifier(charger->master, &charger->nb, DA9030_EVENT_CHDET | DA9030_EVENT_VBATMON | DA9030_EVENT_CHIOVER | DA9030_EVENT_TBAT); if (ret) goto err_notifier; da9030_battery_setup_psy(charger); psy_cfg.drv_data = charger; charger->psy = power_supply_register(&pdev->dev, &charger->psy_desc, &psy_cfg); if (IS_ERR(charger->psy)) { ret = PTR_ERR(charger->psy); goto err_ps_register; } charger->debug_file = da9030_bat_create_debugfs(charger); platform_set_drvdata(pdev, charger); return 0; err_ps_register: da903x_unregister_notifier(charger->master, &charger->nb, DA9030_EVENT_CHDET | DA9030_EVENT_VBATMON | DA9030_EVENT_CHIOVER | DA9030_EVENT_TBAT); err_notifier: cancel_delayed_work(&charger->work); err_charger_init: return ret; } static int da9030_battery_remove(struct platform_device *dev) { struct da9030_charger *charger = platform_get_drvdata(dev); da9030_bat_remove_debugfs(charger); da903x_unregister_notifier(charger->master, &charger->nb, DA9030_EVENT_CHDET | DA9030_EVENT_VBATMON | DA9030_EVENT_CHIOVER | DA9030_EVENT_TBAT); cancel_delayed_work_sync(&charger->work); da9030_set_charge(charger, 0); power_supply_unregister(charger->psy); return 0; } static struct platform_driver da903x_battery_driver = { .driver = { .name = "da903x-battery", }, .probe = da9030_battery_probe, .remove = da9030_battery_remove, }; module_platform_driver(da903x_battery_driver); MODULE_DESCRIPTION("DA9030 battery charger driver"); MODULE_AUTHOR("Mike Rapoport, CompuLab"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/da9030_battery.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Nokia RX-51 battery driver * * Copyright (C) 2012 Pali Rohár <[email protected]> */ #include <linux/module.h> #include <linux/param.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/iio/consumer.h> #include <linux/of.h> struct rx51_device_info { struct device *dev; struct power_supply *bat; struct power_supply_desc bat_desc; struct iio_channel *channel_temp; struct iio_channel *channel_bsi; struct iio_channel *channel_vbat; }; /* * Read ADCIN channel value, code copied from maemo kernel */ static int rx51_battery_read_adc(struct iio_channel *channel) { int val, err; err = iio_read_channel_average_raw(channel, &val); if (err < 0) return err; return val; } /* * Read ADCIN channel 12 (voltage) and convert RAW value to micro voltage * This conversion formula was extracted from maemo program bsi-read */ static int rx51_battery_read_voltage(struct rx51_device_info *di) { int voltage = rx51_battery_read_adc(di->channel_vbat); if (voltage < 0) { dev_err(di->dev, "Could not read ADC: %d\n", voltage); return voltage; } return 1000 * (10000 * voltage / 1705); } /* * Temperature look-up tables * TEMP = (1/(t1 + 1/298) - 273.15) * Where t1 = (1/B) * ln((RAW_ADC_U * 2.5)/(R * I * 255)) * Formula is based on experimental data, RX-51 CAL data, maemo program bme * and formula from da9052 driver with values R = 100, B = 3380, I = 0.00671 */ /* * Table1 (temperature for first 25 RAW values) * Usage: TEMP = rx51_temp_table1[RAW] * RAW is between 1 and 24 * TEMP is between 201 C and 55 C */ static u8 rx51_temp_table1[] = { 255, 201, 159, 138, 124, 114, 106, 99, 94, 89, 85, 82, 78, 75, 73, 70, 68, 66, 64, 62, 61, 59, 57, 56, 55 }; /* * Table2 (lowest RAW value for temperature) * Usage: RAW = rx51_temp_table2[TEMP-rx51_temp_table2_first] * TEMP is between 53 C and -32 C * RAW is between 25 and 993 */ #define rx51_temp_table2_first 53 static u16 rx51_temp_table2[] = { 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 55, 57, 59, 61, 64, 66, 69, 71, 74, 77, 80, 83, 86, 90, 94, 97, 101, 106, 110, 115, 119, 125, 130, 136, 141, 148, 154, 161, 168, 176, 184, 202, 211, 221, 231, 242, 254, 266, 279, 293, 308, 323, 340, 357, 375, 395, 415, 437, 460, 485, 511, 539, 568, 600, 633, 669, 706, 747, 790, 836, 885, 937, 993, 1024 }; /* * Read ADCIN channel 0 (battery temp) and convert value to tenths of Celsius * Use Temperature look-up tables for conversation */ static int rx51_battery_read_temperature(struct rx51_device_info *di) { int min = 0; int max = ARRAY_SIZE(rx51_temp_table2) - 1; int raw = rx51_battery_read_adc(di->channel_temp); if (raw < 0) dev_err(di->dev, "Could not read ADC: %d\n", raw); /* Zero and negative values are undefined */ if (raw <= 0) return INT_MAX; /* ADC channels are 10 bit, higher value are undefined */ if (raw >= (1 << 10)) return INT_MIN; /* First check for temperature in first direct table */ if (raw < ARRAY_SIZE(rx51_temp_table1)) return rx51_temp_table1[raw] * 10; /* Binary search RAW value in second inverse table */ while (max - min > 1) { int mid = (max + min) / 2; if (rx51_temp_table2[mid] <= raw) min = mid; else if (rx51_temp_table2[mid] > raw) max = mid; if (rx51_temp_table2[mid] == raw) break; } return (rx51_temp_table2_first - min) * 10; } /* * Read ADCIN channel 4 (BSI) and convert RAW value to micro Ah * This conversion formula was extracted from maemo program bsi-read */ static int rx51_battery_read_capacity(struct rx51_device_info *di) { int capacity = rx51_battery_read_adc(di->channel_bsi); if (capacity < 0) { dev_err(di->dev, "Could not read ADC: %d\n", capacity); return capacity; } return 1280 * (1200 * capacity)/(1024 - capacity); } /* * Return power_supply property */ static int rx51_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct rx51_device_info *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = 4200000; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = rx51_battery_read_voltage(di) ? 1 : 0; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = rx51_battery_read_voltage(di); break; case POWER_SUPPLY_PROP_TEMP: val->intval = rx51_battery_read_temperature(di); break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = rx51_battery_read_capacity(di); break; default: return -EINVAL; } if (val->intval == INT_MAX || val->intval == INT_MIN) return -EINVAL; return 0; } static enum power_supply_property rx51_battery_props[] = { POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, }; static int rx51_battery_probe(struct platform_device *pdev) { struct power_supply_config psy_cfg = {}; struct rx51_device_info *di; int ret; di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL); if (!di) return -ENOMEM; platform_set_drvdata(pdev, di); di->dev = &pdev->dev; di->bat_desc.name = "rx51-battery"; di->bat_desc.type = POWER_SUPPLY_TYPE_BATTERY; di->bat_desc.properties = rx51_battery_props; di->bat_desc.num_properties = ARRAY_SIZE(rx51_battery_props); di->bat_desc.get_property = rx51_battery_get_property; psy_cfg.drv_data = di; di->channel_temp = iio_channel_get(di->dev, "temp"); if (IS_ERR(di->channel_temp)) { ret = PTR_ERR(di->channel_temp); goto error; } di->channel_bsi = iio_channel_get(di->dev, "bsi"); if (IS_ERR(di->channel_bsi)) { ret = PTR_ERR(di->channel_bsi); goto error_channel_temp; } di->channel_vbat = iio_channel_get(di->dev, "vbat"); if (IS_ERR(di->channel_vbat)) { ret = PTR_ERR(di->channel_vbat); goto error_channel_bsi; } di->bat = power_supply_register(di->dev, &di->bat_desc, &psy_cfg); if (IS_ERR(di->bat)) { ret = PTR_ERR(di->bat); goto error_channel_vbat; } return 0; error_channel_vbat: iio_channel_release(di->channel_vbat); error_channel_bsi: iio_channel_release(di->channel_bsi); error_channel_temp: iio_channel_release(di->channel_temp); error: return ret; } static int rx51_battery_remove(struct platform_device *pdev) { struct rx51_device_info *di = platform_get_drvdata(pdev); power_supply_unregister(di->bat); iio_channel_release(di->channel_vbat); iio_channel_release(di->channel_bsi); iio_channel_release(di->channel_temp); return 0; } #ifdef CONFIG_OF static const struct of_device_id n900_battery_of_match[] = { {.compatible = "nokia,n900-battery", }, { }, }; MODULE_DEVICE_TABLE(of, n900_battery_of_match); #endif static struct platform_driver rx51_battery_driver = { .probe = rx51_battery_probe, .remove = rx51_battery_remove, .driver = { .name = "rx51-battery", .of_match_table = of_match_ptr(n900_battery_of_match), }, }; module_platform_driver(rx51_battery_driver); MODULE_ALIAS("platform:rx51-battery"); MODULE_AUTHOR("Pali Rohár <[email protected]>"); MODULE_DESCRIPTION("Nokia RX-51 battery driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/rx51_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011 Samsung Electronics Co., Ltd. * MyungJoo Ham <[email protected]> * * This driver enables to monitor battery health and control charger * during suspend-to-mem. * Charger manager depends on other devices. Register this later than * the depending devices. * **/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/io.h> #include <linux/module.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/rtc.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/platform_device.h> #include <linux/power/charger-manager.h> #include <linux/regulator/consumer.h> #include <linux/sysfs.h> #include <linux/of.h> #include <linux/thermal.h> static struct { const char *name; u64 extcon_type; } extcon_mapping[] = { /* Current textual representations */ { "USB", EXTCON_USB }, { "USB-HOST", EXTCON_USB_HOST }, { "SDP", EXTCON_CHG_USB_SDP }, { "DCP", EXTCON_CHG_USB_DCP }, { "CDP", EXTCON_CHG_USB_CDP }, { "ACA", EXTCON_CHG_USB_ACA }, { "FAST-CHARGER", EXTCON_CHG_USB_FAST }, { "SLOW-CHARGER", EXTCON_CHG_USB_SLOW }, { "WPT", EXTCON_CHG_WPT }, { "PD", EXTCON_CHG_USB_PD }, { "DOCK", EXTCON_DOCK }, { "JIG", EXTCON_JIG }, { "MECHANICAL", EXTCON_MECHANICAL }, /* Deprecated textual representations */ { "TA", EXTCON_CHG_USB_SDP }, { "CHARGE-DOWNSTREAM", EXTCON_CHG_USB_CDP }, }; /* * Default temperature threshold for charging. * Every temperature units are in tenth of centigrade. */ #define CM_DEFAULT_RECHARGE_TEMP_DIFF 50 #define CM_DEFAULT_CHARGE_TEMP_MAX 500 /* * Regard CM_JIFFIES_SMALL jiffies is small enough to ignore for * delayed works so that we can run delayed works with CM_JIFFIES_SMALL * without any delays. */ #define CM_JIFFIES_SMALL (2) /* If y is valid (> 0) and smaller than x, do x = y */ #define CM_MIN_VALID(x, y) x = (((y > 0) && ((x) > (y))) ? (y) : (x)) /* * Regard CM_RTC_SMALL (sec) is small enough to ignore error in invoking * rtc alarm. It should be 2 or larger */ #define CM_RTC_SMALL (2) static LIST_HEAD(cm_list); static DEFINE_MUTEX(cm_list_mtx); /* About in-suspend (suspend-again) monitoring */ static struct alarm *cm_timer; static bool cm_suspended; static bool cm_timer_set; static unsigned long cm_suspend_duration_ms; /* About normal (not suspended) monitoring */ static unsigned long polling_jiffy = ULONG_MAX; /* ULONG_MAX: no polling */ static unsigned long next_polling; /* Next appointed polling time */ static struct workqueue_struct *cm_wq; /* init at driver add */ static struct delayed_work cm_monitor_work; /* init at driver add */ /** * is_batt_present - See if the battery presents in place. * @cm: the Charger Manager representing the battery. */ static bool is_batt_present(struct charger_manager *cm) { union power_supply_propval val; struct power_supply *psy; bool present = false; int i, ret; switch (cm->desc->battery_present) { case CM_BATTERY_PRESENT: present = true; break; case CM_NO_BATTERY: break; case CM_FUEL_GAUGE: psy = power_supply_get_by_name(cm->desc->psy_fuel_gauge); if (!psy) break; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_PRESENT, &val); if (ret == 0 && val.intval) present = true; power_supply_put(psy); break; case CM_CHARGER_STAT: for (i = 0; cm->desc->psy_charger_stat[i]; i++) { psy = power_supply_get_by_name( cm->desc->psy_charger_stat[i]); if (!psy) { dev_err(cm->dev, "Cannot find power supply \"%s\"\n", cm->desc->psy_charger_stat[i]); continue; } ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_PRESENT, &val); power_supply_put(psy); if (ret == 0 && val.intval) { present = true; break; } } break; } return present; } /** * is_ext_pwr_online - See if an external power source is attached to charge * @cm: the Charger Manager representing the battery. * * Returns true if at least one of the chargers of the battery has an external * power source attached to charge the battery regardless of whether it is * actually charging or not. */ static bool is_ext_pwr_online(struct charger_manager *cm) { union power_supply_propval val; struct power_supply *psy; bool online = false; int i, ret; /* If at least one of them has one, it's yes. */ for (i = 0; cm->desc->psy_charger_stat[i]; i++) { psy = power_supply_get_by_name(cm->desc->psy_charger_stat[i]); if (!psy) { dev_err(cm->dev, "Cannot find power supply \"%s\"\n", cm->desc->psy_charger_stat[i]); continue; } ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_ONLINE, &val); power_supply_put(psy); if (ret == 0 && val.intval) { online = true; break; } } return online; } /** * get_batt_uV - Get the voltage level of the battery * @cm: the Charger Manager representing the battery. * @uV: the voltage level returned. * * Returns 0 if there is no error. * Returns a negative value on error. */ static int get_batt_uV(struct charger_manager *cm, int *uV) { union power_supply_propval val; struct power_supply *fuel_gauge; int ret; fuel_gauge = power_supply_get_by_name(cm->desc->psy_fuel_gauge); if (!fuel_gauge) return -ENODEV; ret = power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_VOLTAGE_NOW, &val); power_supply_put(fuel_gauge); if (ret) return ret; *uV = val.intval; return 0; } /** * is_charging - Returns true if the battery is being charged. * @cm: the Charger Manager representing the battery. */ static bool is_charging(struct charger_manager *cm) { int i, ret; bool charging = false; struct power_supply *psy; union power_supply_propval val; /* If there is no battery, it cannot be charged */ if (!is_batt_present(cm)) return false; /* If at least one of the charger is charging, return yes */ for (i = 0; cm->desc->psy_charger_stat[i]; i++) { /* 1. The charger sholuld not be DISABLED */ if (cm->emergency_stop) continue; if (!cm->charger_enabled) continue; psy = power_supply_get_by_name(cm->desc->psy_charger_stat[i]); if (!psy) { dev_err(cm->dev, "Cannot find power supply \"%s\"\n", cm->desc->psy_charger_stat[i]); continue; } /* 2. The charger should be online (ext-power) */ ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_ONLINE, &val); if (ret) { dev_warn(cm->dev, "Cannot read ONLINE value from %s\n", cm->desc->psy_charger_stat[i]); power_supply_put(psy); continue; } if (val.intval == 0) { power_supply_put(psy); continue; } /* * 3. The charger should not be FULL, DISCHARGING, * or NOT_CHARGING. */ ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &val); power_supply_put(psy); if (ret) { dev_warn(cm->dev, "Cannot read STATUS value from %s\n", cm->desc->psy_charger_stat[i]); continue; } if (val.intval == POWER_SUPPLY_STATUS_FULL || val.intval == POWER_SUPPLY_STATUS_DISCHARGING || val.intval == POWER_SUPPLY_STATUS_NOT_CHARGING) continue; /* Then, this is charging. */ charging = true; break; } return charging; } /** * is_full_charged - Returns true if the battery is fully charged. * @cm: the Charger Manager representing the battery. */ static bool is_full_charged(struct charger_manager *cm) { struct charger_desc *desc = cm->desc; union power_supply_propval val; struct power_supply *fuel_gauge; bool is_full = false; int ret = 0; int uV; /* If there is no battery, it cannot be charged */ if (!is_batt_present(cm)) return false; fuel_gauge = power_supply_get_by_name(cm->desc->psy_fuel_gauge); if (!fuel_gauge) return false; /* Full, if it's over the fullbatt voltage */ if (desc->fullbatt_uV > 0) { ret = get_batt_uV(cm, &uV); if (!ret) { /* Battery is already full, checks voltage drop. */ if (cm->battery_status == POWER_SUPPLY_STATUS_FULL && desc->fullbatt_vchkdrop_uV) uV += desc->fullbatt_vchkdrop_uV; if (uV >= desc->fullbatt_uV) return true; } } if (desc->fullbatt_full_capacity > 0) { val.intval = 0; /* Not full if capacity of fuel gauge isn't full */ ret = power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_CHARGE_FULL, &val); if (!ret && val.intval > desc->fullbatt_full_capacity) { is_full = true; goto out; } } /* Full, if the capacity is more than fullbatt_soc */ if (desc->fullbatt_soc > 0) { val.intval = 0; ret = power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_CAPACITY, &val); if (!ret && val.intval >= desc->fullbatt_soc) { is_full = true; goto out; } } out: power_supply_put(fuel_gauge); return is_full; } /** * is_polling_required - Return true if need to continue polling for this CM. * @cm: the Charger Manager representing the battery. */ static bool is_polling_required(struct charger_manager *cm) { switch (cm->desc->polling_mode) { case CM_POLL_DISABLE: return false; case CM_POLL_ALWAYS: return true; case CM_POLL_EXTERNAL_POWER_ONLY: return is_ext_pwr_online(cm); case CM_POLL_CHARGING_ONLY: return is_charging(cm); default: dev_warn(cm->dev, "Incorrect polling_mode (%d)\n", cm->desc->polling_mode); } return false; } /** * try_charger_enable - Enable/Disable chargers altogether * @cm: the Charger Manager representing the battery. * @enable: true: enable / false: disable * * Note that Charger Manager keeps the charger enabled regardless whether * the charger is charging or not (because battery is full or no external * power source exists) except when CM needs to disable chargers forcibly * because of emergency causes; when the battery is overheated or too cold. */ static int try_charger_enable(struct charger_manager *cm, bool enable) { int err = 0, i; struct charger_desc *desc = cm->desc; /* Ignore if it's redundant command */ if (enable == cm->charger_enabled) return 0; if (enable) { if (cm->emergency_stop) return -EAGAIN; /* * Save start time of charging to limit * maximum possible charging time. */ cm->charging_start_time = ktime_to_ms(ktime_get()); cm->charging_end_time = 0; for (i = 0 ; i < desc->num_charger_regulators ; i++) { if (desc->charger_regulators[i].externally_control) continue; err = regulator_enable(desc->charger_regulators[i].consumer); if (err < 0) { dev_warn(cm->dev, "Cannot enable %s regulator\n", desc->charger_regulators[i].regulator_name); } } } else { /* * Save end time of charging to maintain fully charged state * of battery after full-batt. */ cm->charging_start_time = 0; cm->charging_end_time = ktime_to_ms(ktime_get()); for (i = 0 ; i < desc->num_charger_regulators ; i++) { if (desc->charger_regulators[i].externally_control) continue; err = regulator_disable(desc->charger_regulators[i].consumer); if (err < 0) { dev_warn(cm->dev, "Cannot disable %s regulator\n", desc->charger_regulators[i].regulator_name); } } /* * Abnormal battery state - Stop charging forcibly, * even if charger was enabled at the other places */ for (i = 0; i < desc->num_charger_regulators; i++) { if (regulator_is_enabled( desc->charger_regulators[i].consumer)) { regulator_force_disable( desc->charger_regulators[i].consumer); dev_warn(cm->dev, "Disable regulator(%s) forcibly\n", desc->charger_regulators[i].regulator_name); } } } if (!err) cm->charger_enabled = enable; return err; } /** * check_charging_duration - Monitor charging/discharging duration * @cm: the Charger Manager representing the battery. * * If whole charging duration exceed 'charging_max_duration_ms', * cm stop charging to prevent overcharge/overheat. If discharging * duration exceed 'discharging _max_duration_ms', charger cable is * attached, after full-batt, cm start charging to maintain fully * charged state for battery. */ static int check_charging_duration(struct charger_manager *cm) { struct charger_desc *desc = cm->desc; u64 curr = ktime_to_ms(ktime_get()); u64 duration; int ret = false; if (!desc->charging_max_duration_ms && !desc->discharging_max_duration_ms) return ret; if (cm->charger_enabled) { duration = curr - cm->charging_start_time; if (duration > desc->charging_max_duration_ms) { dev_info(cm->dev, "Charging duration exceed %ums\n", desc->charging_max_duration_ms); ret = true; } } else if (cm->battery_status == POWER_SUPPLY_STATUS_NOT_CHARGING) { duration = curr - cm->charging_end_time; if (duration > desc->discharging_max_duration_ms) { dev_info(cm->dev, "Discharging duration exceed %ums\n", desc->discharging_max_duration_ms); ret = true; } } return ret; } static int cm_get_battery_temperature_by_psy(struct charger_manager *cm, int *temp) { struct power_supply *fuel_gauge; int ret; fuel_gauge = power_supply_get_by_name(cm->desc->psy_fuel_gauge); if (!fuel_gauge) return -ENODEV; ret = power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_TEMP, (union power_supply_propval *)temp); power_supply_put(fuel_gauge); return ret; } static int cm_get_battery_temperature(struct charger_manager *cm, int *temp) { int ret; if (!cm->desc->measure_battery_temp) return -ENODEV; #ifdef CONFIG_THERMAL if (cm->tzd_batt) { ret = thermal_zone_get_temp(cm->tzd_batt, temp); if (!ret) /* Calibrate temperature unit */ *temp /= 100; } else #endif { /* if-else continued from CONFIG_THERMAL */ ret = cm_get_battery_temperature_by_psy(cm, temp); } return ret; } static int cm_check_thermal_status(struct charger_manager *cm) { struct charger_desc *desc = cm->desc; int temp, upper_limit, lower_limit; int ret = 0; ret = cm_get_battery_temperature(cm, &temp); if (ret) { /* FIXME: * No information of battery temperature might * occur hazardous result. We have to handle it * depending on battery type. */ dev_err(cm->dev, "Failed to get battery temperature\n"); return 0; } upper_limit = desc->temp_max; lower_limit = desc->temp_min; if (cm->emergency_stop) { upper_limit -= desc->temp_diff; lower_limit += desc->temp_diff; } if (temp > upper_limit) ret = CM_BATT_OVERHEAT; else if (temp < lower_limit) ret = CM_BATT_COLD; else ret = CM_BATT_OK; cm->emergency_stop = ret; return ret; } /** * cm_get_target_status - Check current status and get next target status. * @cm: the Charger Manager representing the battery. */ static int cm_get_target_status(struct charger_manager *cm) { if (!is_ext_pwr_online(cm)) return POWER_SUPPLY_STATUS_DISCHARGING; if (cm_check_thermal_status(cm)) { /* Check if discharging duration exceeds limit. */ if (check_charging_duration(cm)) goto charging_ok; return POWER_SUPPLY_STATUS_NOT_CHARGING; } switch (cm->battery_status) { case POWER_SUPPLY_STATUS_CHARGING: /* Check if charging duration exceeds limit. */ if (check_charging_duration(cm)) return POWER_SUPPLY_STATUS_FULL; fallthrough; case POWER_SUPPLY_STATUS_FULL: if (is_full_charged(cm)) return POWER_SUPPLY_STATUS_FULL; fallthrough; default: break; } charging_ok: /* Charging is allowed. */ return POWER_SUPPLY_STATUS_CHARGING; } /** * _cm_monitor - Monitor the temperature and return true for exceptions. * @cm: the Charger Manager representing the battery. * * Returns true if there is an event to notify for the battery. * (True if the status of "emergency_stop" changes) */ static bool _cm_monitor(struct charger_manager *cm) { int target; target = cm_get_target_status(cm); try_charger_enable(cm, (target == POWER_SUPPLY_STATUS_CHARGING)); if (cm->battery_status != target) { cm->battery_status = target; power_supply_changed(cm->charger_psy); } return (cm->battery_status == POWER_SUPPLY_STATUS_NOT_CHARGING); } /** * cm_monitor - Monitor every battery. * * Returns true if there is an event to notify from any of the batteries. * (True if the status of "emergency_stop" changes) */ static bool cm_monitor(void) { bool stop = false; struct charger_manager *cm; mutex_lock(&cm_list_mtx); list_for_each_entry(cm, &cm_list, entry) { if (_cm_monitor(cm)) stop = true; } mutex_unlock(&cm_list_mtx); return stop; } /** * _setup_polling - Setup the next instance of polling. * @work: work_struct of the function _setup_polling. */ static void _setup_polling(struct work_struct *work) { unsigned long min = ULONG_MAX; struct charger_manager *cm; bool keep_polling = false; unsigned long _next_polling; mutex_lock(&cm_list_mtx); list_for_each_entry(cm, &cm_list, entry) { if (is_polling_required(cm) && cm->desc->polling_interval_ms) { keep_polling = true; if (min > cm->desc->polling_interval_ms) min = cm->desc->polling_interval_ms; } } polling_jiffy = msecs_to_jiffies(min); if (polling_jiffy <= CM_JIFFIES_SMALL) polling_jiffy = CM_JIFFIES_SMALL + 1; if (!keep_polling) polling_jiffy = ULONG_MAX; if (polling_jiffy == ULONG_MAX) goto out; WARN(cm_wq == NULL, "charger-manager: workqueue not initialized" ". try it later. %s\n", __func__); /* * Use mod_delayed_work() iff the next polling interval should * occur before the currently scheduled one. If @cm_monitor_work * isn't active, the end result is the same, so no need to worry * about stale @next_polling. */ _next_polling = jiffies + polling_jiffy; if (time_before(_next_polling, next_polling)) { mod_delayed_work(cm_wq, &cm_monitor_work, polling_jiffy); next_polling = _next_polling; } else { if (queue_delayed_work(cm_wq, &cm_monitor_work, polling_jiffy)) next_polling = _next_polling; } out: mutex_unlock(&cm_list_mtx); } static DECLARE_WORK(setup_polling, _setup_polling); /** * cm_monitor_poller - The Monitor / Poller. * @work: work_struct of the function cm_monitor_poller * * During non-suspended state, cm_monitor_poller is used to poll and monitor * the batteries. */ static void cm_monitor_poller(struct work_struct *work) { cm_monitor(); schedule_work(&setup_polling); } static int charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct charger_manager *cm = power_supply_get_drvdata(psy); struct charger_desc *desc = cm->desc; struct power_supply *fuel_gauge = NULL; int ret = 0; int uV; switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = cm->battery_status; break; case POWER_SUPPLY_PROP_HEALTH: if (cm->emergency_stop == CM_BATT_OVERHEAT) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else if (cm->emergency_stop == CM_BATT_COLD) val->intval = POWER_SUPPLY_HEALTH_COLD; else val->intval = POWER_SUPPLY_HEALTH_GOOD; break; case POWER_SUPPLY_PROP_PRESENT: if (is_batt_present(cm)) val->intval = 1; else val->intval = 0; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = get_batt_uV(cm, &val->intval); break; case POWER_SUPPLY_PROP_CURRENT_NOW: fuel_gauge = power_supply_get_by_name(cm->desc->psy_fuel_gauge); if (!fuel_gauge) { ret = -ENODEV; break; } ret = power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_CURRENT_NOW, val); break; case POWER_SUPPLY_PROP_TEMP: return cm_get_battery_temperature(cm, &val->intval); case POWER_SUPPLY_PROP_CAPACITY: if (!is_batt_present(cm)) { /* There is no battery. Assume 100% */ val->intval = 100; break; } fuel_gauge = power_supply_get_by_name(cm->desc->psy_fuel_gauge); if (!fuel_gauge) { ret = -ENODEV; break; } ret = power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_CAPACITY, val); if (ret) break; if (val->intval > 100) { val->intval = 100; break; } if (val->intval < 0) val->intval = 0; /* Do not adjust SOC when charging: voltage is overrated */ if (is_charging(cm)) break; /* * If the capacity value is inconsistent, calibrate it base on * the battery voltage values and the thresholds given as desc */ ret = get_batt_uV(cm, &uV); if (ret) { /* Voltage information not available. No calibration */ ret = 0; break; } if (desc->fullbatt_uV > 0 && uV >= desc->fullbatt_uV && !is_charging(cm)) { val->intval = 100; break; } break; case POWER_SUPPLY_PROP_ONLINE: if (is_ext_pwr_online(cm)) val->intval = 1; else val->intval = 0; break; case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_NOW: fuel_gauge = power_supply_get_by_name(cm->desc->psy_fuel_gauge); if (!fuel_gauge) { ret = -ENODEV; break; } ret = power_supply_get_property(fuel_gauge, psp, val); break; default: return -EINVAL; } if (fuel_gauge) power_supply_put(fuel_gauge); return ret; } #define NUM_CHARGER_PSY_OPTIONAL (4) static enum power_supply_property default_charger_props[] = { /* Guaranteed to provide */ POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_ONLINE, /* * Optional properties are: * POWER_SUPPLY_PROP_CHARGE_FULL, * POWER_SUPPLY_PROP_CHARGE_NOW, * POWER_SUPPLY_PROP_CURRENT_NOW, * POWER_SUPPLY_PROP_TEMP, */ }; static const struct power_supply_desc psy_default = { .name = "battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = default_charger_props, .num_properties = ARRAY_SIZE(default_charger_props), .get_property = charger_get_property, .no_thermal = true, }; /** * cm_setup_timer - For in-suspend monitoring setup wakeup alarm * for suspend_again. * * Returns true if the alarm is set for Charger Manager to use. * Returns false if * cm_setup_timer fails to set an alarm, * cm_setup_timer does not need to set an alarm for Charger Manager, * or an alarm previously configured is to be used. */ static bool cm_setup_timer(void) { struct charger_manager *cm; unsigned int wakeup_ms = UINT_MAX; int timer_req = 0; if (time_after(next_polling, jiffies)) CM_MIN_VALID(wakeup_ms, jiffies_to_msecs(next_polling - jiffies)); mutex_lock(&cm_list_mtx); list_for_each_entry(cm, &cm_list, entry) { /* Skip if polling is not required for this CM */ if (!is_polling_required(cm) && !cm->emergency_stop) continue; timer_req++; if (cm->desc->polling_interval_ms == 0) continue; CM_MIN_VALID(wakeup_ms, cm->desc->polling_interval_ms); } mutex_unlock(&cm_list_mtx); if (timer_req && cm_timer) { ktime_t now, add; /* * Set alarm with the polling interval (wakeup_ms) * The alarm time should be NOW + CM_RTC_SMALL or later. */ if (wakeup_ms == UINT_MAX || wakeup_ms < CM_RTC_SMALL * MSEC_PER_SEC) wakeup_ms = 2 * CM_RTC_SMALL * MSEC_PER_SEC; pr_info("Charger Manager wakeup timer: %u ms\n", wakeup_ms); now = ktime_get_boottime(); add = ktime_set(wakeup_ms / MSEC_PER_SEC, (wakeup_ms % MSEC_PER_SEC) * NSEC_PER_MSEC); alarm_start(cm_timer, ktime_add(now, add)); cm_suspend_duration_ms = wakeup_ms; return true; } return false; } /** * charger_extcon_work - enable/diable charger according to the state * of charger cable * * @work: work_struct of the function charger_extcon_work. */ static void charger_extcon_work(struct work_struct *work) { struct charger_cable *cable = container_of(work, struct charger_cable, wq); int ret; if (cable->attached && cable->min_uA != 0 && cable->max_uA != 0) { ret = regulator_set_current_limit(cable->charger->consumer, cable->min_uA, cable->max_uA); if (ret < 0) { pr_err("Cannot set current limit of %s (%s)\n", cable->charger->regulator_name, cable->name); return; } pr_info("Set current limit of %s : %duA ~ %duA\n", cable->charger->regulator_name, cable->min_uA, cable->max_uA); } cancel_delayed_work(&cm_monitor_work); queue_delayed_work(cm_wq, &cm_monitor_work, 0); } /** * charger_extcon_notifier - receive the state of charger cable * when registered cable is attached or detached. * * @self: the notifier block of the charger_extcon_notifier. * @event: the cable state. * @ptr: the data pointer of notifier block. */ static int charger_extcon_notifier(struct notifier_block *self, unsigned long event, void *ptr) { struct charger_cable *cable = container_of(self, struct charger_cable, nb); /* * The newly state of charger cable. * If cable is attached, cable->attached is true. */ cable->attached = event; /* * Setup work for controlling charger(regulator) * according to charger cable. */ schedule_work(&cable->wq); return NOTIFY_DONE; } /** * charger_extcon_init - register external connector to use it * as the charger cable * * @cm: the Charger Manager representing the battery. * @cable: the Charger cable representing the external connector. */ static int charger_extcon_init(struct charger_manager *cm, struct charger_cable *cable) { int ret, i; u64 extcon_type = EXTCON_NONE; /* * Charger manager use Extcon framework to identify * the charger cable among various external connector * cable (e.g., TA, USB, MHL, Dock). */ INIT_WORK(&cable->wq, charger_extcon_work); cable->nb.notifier_call = charger_extcon_notifier; cable->extcon_dev = extcon_get_extcon_dev(cable->extcon_name); if (IS_ERR(cable->extcon_dev)) { pr_err("Cannot find extcon_dev for %s (cable: %s)\n", cable->extcon_name, cable->name); return PTR_ERR(cable->extcon_dev); } for (i = 0; i < ARRAY_SIZE(extcon_mapping); i++) { if (!strcmp(cable->name, extcon_mapping[i].name)) { extcon_type = extcon_mapping[i].extcon_type; break; } } if (extcon_type == EXTCON_NONE) { pr_err("Cannot find cable for type %s", cable->name); return -EINVAL; } cable->extcon_type = extcon_type; ret = devm_extcon_register_notifier(cm->dev, cable->extcon_dev, cable->extcon_type, &cable->nb); if (ret < 0) { pr_err("Cannot register extcon_dev for %s (cable: %s)\n", cable->extcon_name, cable->name); return ret; } return 0; } /** * charger_manager_register_extcon - Register extcon device to receive state * of charger cable. * @cm: the Charger Manager representing the battery. * * This function support EXTCON(External Connector) subsystem to detect the * state of charger cables for enabling or disabling charger(regulator) and * select the charger cable for charging among a number of external cable * according to policy of H/W board. */ static int charger_manager_register_extcon(struct charger_manager *cm) { struct charger_desc *desc = cm->desc; struct charger_regulator *charger; unsigned long event; int ret; int i; int j; for (i = 0; i < desc->num_charger_regulators; i++) { charger = &desc->charger_regulators[i]; charger->consumer = regulator_get(cm->dev, charger->regulator_name); if (IS_ERR(charger->consumer)) { dev_err(cm->dev, "Cannot find charger(%s)\n", charger->regulator_name); return PTR_ERR(charger->consumer); } charger->cm = cm; for (j = 0; j < charger->num_cables; j++) { struct charger_cable *cable = &charger->cables[j]; ret = charger_extcon_init(cm, cable); if (ret < 0) { dev_err(cm->dev, "Cannot initialize charger(%s)\n", charger->regulator_name); return ret; } cable->charger = charger; cable->cm = cm; event = extcon_get_state(cable->extcon_dev, cable->extcon_type); charger_extcon_notifier(&cable->nb, event, NULL); } } return 0; } /* help function of sysfs node to control charger(regulator) */ static ssize_t charger_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct charger_regulator *charger = container_of(attr, struct charger_regulator, attr_name); return sysfs_emit(buf, "%s\n", charger->regulator_name); } static ssize_t charger_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct charger_regulator *charger = container_of(attr, struct charger_regulator, attr_state); int state = 0; if (!charger->externally_control) state = regulator_is_enabled(charger->consumer); return sysfs_emit(buf, "%s\n", state ? "enabled" : "disabled"); } static ssize_t charger_externally_control_show(struct device *dev, struct device_attribute *attr, char *buf) { struct charger_regulator *charger = container_of(attr, struct charger_regulator, attr_externally_control); return sysfs_emit(buf, "%d\n", charger->externally_control); } static ssize_t charger_externally_control_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct charger_regulator *charger = container_of(attr, struct charger_regulator, attr_externally_control); struct charger_manager *cm = charger->cm; struct charger_desc *desc = cm->desc; int i; int ret; int externally_control; int chargers_externally_control = 1; ret = sscanf(buf, "%d", &externally_control); if (ret == 0) { ret = -EINVAL; return ret; } if (!externally_control) { charger->externally_control = 0; return count; } for (i = 0; i < desc->num_charger_regulators; i++) { if (&desc->charger_regulators[i] != charger && !desc->charger_regulators[i].externally_control) { /* * At least, one charger is controlled by * charger-manager */ chargers_externally_control = 0; break; } } if (!chargers_externally_control) { if (cm->charger_enabled) { try_charger_enable(charger->cm, false); charger->externally_control = externally_control; try_charger_enable(charger->cm, true); } else { charger->externally_control = externally_control; } } else { dev_warn(cm->dev, "'%s' regulator should be controlled in charger-manager because charger-manager must need at least one charger for charging\n", charger->regulator_name); } return count; } /** * charger_manager_prepare_sysfs - Prepare sysfs entry for each charger * @cm: the Charger Manager representing the battery. * * This function add sysfs entry for charger(regulator) to control charger from * user-space. If some development board use one more chargers for charging * but only need one charger on specific case which is dependent on user * scenario or hardware restrictions, the user enter 1 or 0(zero) to '/sys/ * class/power_supply/battery/charger.[index]/externally_control'. For example, * if user enter 1 to 'sys/class/power_supply/battery/charger.[index]/ * externally_control, this charger isn't controlled from charger-manager and * always stay off state of regulator. */ static int charger_manager_prepare_sysfs(struct charger_manager *cm) { struct charger_desc *desc = cm->desc; struct charger_regulator *charger; int chargers_externally_control = 1; char *name; int i; /* Create sysfs entry to control charger(regulator) */ for (i = 0; i < desc->num_charger_regulators; i++) { charger = &desc->charger_regulators[i]; name = devm_kasprintf(cm->dev, GFP_KERNEL, "charger.%d", i); if (!name) return -ENOMEM; charger->attrs[0] = &charger->attr_name.attr; charger->attrs[1] = &charger->attr_state.attr; charger->attrs[2] = &charger->attr_externally_control.attr; charger->attrs[3] = NULL; charger->attr_grp.name = name; charger->attr_grp.attrs = charger->attrs; desc->sysfs_groups[i] = &charger->attr_grp; sysfs_attr_init(&charger->attr_name.attr); charger->attr_name.attr.name = "name"; charger->attr_name.attr.mode = 0444; charger->attr_name.show = charger_name_show; sysfs_attr_init(&charger->attr_state.attr); charger->attr_state.attr.name = "state"; charger->attr_state.attr.mode = 0444; charger->attr_state.show = charger_state_show; sysfs_attr_init(&charger->attr_externally_control.attr); charger->attr_externally_control.attr.name = "externally_control"; charger->attr_externally_control.attr.mode = 0644; charger->attr_externally_control.show = charger_externally_control_show; charger->attr_externally_control.store = charger_externally_control_store; if (!desc->charger_regulators[i].externally_control || !chargers_externally_control) chargers_externally_control = 0; dev_info(cm->dev, "'%s' regulator's externally_control is %d\n", charger->regulator_name, charger->externally_control); } if (chargers_externally_control) { dev_err(cm->dev, "Cannot register regulator because charger-manager must need at least one charger for charging battery\n"); return -EINVAL; } return 0; } static int cm_init_thermal_data(struct charger_manager *cm, struct power_supply *fuel_gauge, enum power_supply_property *properties, size_t *num_properties) { struct charger_desc *desc = cm->desc; union power_supply_propval val; int ret; /* Verify whether fuel gauge provides battery temperature */ ret = power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_TEMP, &val); if (!ret) { properties[*num_properties] = POWER_SUPPLY_PROP_TEMP; (*num_properties)++; cm->desc->measure_battery_temp = true; } #ifdef CONFIG_THERMAL if (ret && desc->thermal_zone) { cm->tzd_batt = thermal_zone_get_zone_by_name(desc->thermal_zone); if (IS_ERR(cm->tzd_batt)) return PTR_ERR(cm->tzd_batt); /* Use external thermometer */ properties[*num_properties] = POWER_SUPPLY_PROP_TEMP; (*num_properties)++; cm->desc->measure_battery_temp = true; ret = 0; } #endif if (cm->desc->measure_battery_temp) { /* NOTICE : Default allowable minimum charge temperature is 0 */ if (!desc->temp_max) desc->temp_max = CM_DEFAULT_CHARGE_TEMP_MAX; if (!desc->temp_diff) desc->temp_diff = CM_DEFAULT_RECHARGE_TEMP_DIFF; } return ret; } static const struct of_device_id charger_manager_match[] = { { .compatible = "charger-manager", }, {}, }; MODULE_DEVICE_TABLE(of, charger_manager_match); static struct charger_desc *of_cm_parse_desc(struct device *dev) { struct charger_desc *desc; struct device_node *np = dev->of_node; u32 poll_mode = CM_POLL_DISABLE; u32 battery_stat = CM_NO_BATTERY; int num_chgs = 0; desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL); if (!desc) return ERR_PTR(-ENOMEM); of_property_read_string(np, "cm-name", &desc->psy_name); of_property_read_u32(np, "cm-poll-mode", &poll_mode); desc->polling_mode = poll_mode; of_property_read_u32(np, "cm-poll-interval", &desc->polling_interval_ms); of_property_read_u32(np, "cm-fullbatt-vchkdrop-volt", &desc->fullbatt_vchkdrop_uV); of_property_read_u32(np, "cm-fullbatt-voltage", &desc->fullbatt_uV); of_property_read_u32(np, "cm-fullbatt-soc", &desc->fullbatt_soc); of_property_read_u32(np, "cm-fullbatt-capacity", &desc->fullbatt_full_capacity); of_property_read_u32(np, "cm-battery-stat", &battery_stat); desc->battery_present = battery_stat; /* chargers */ num_chgs = of_property_count_strings(np, "cm-chargers"); if (num_chgs > 0) { int i; /* Allocate empty bin at the tail of array */ desc->psy_charger_stat = devm_kcalloc(dev, num_chgs + 1, sizeof(char *), GFP_KERNEL); if (!desc->psy_charger_stat) return ERR_PTR(-ENOMEM); for (i = 0; i < num_chgs; i++) of_property_read_string_index(np, "cm-chargers", i, &desc->psy_charger_stat[i]); } of_property_read_string(np, "cm-fuel-gauge", &desc->psy_fuel_gauge); of_property_read_string(np, "cm-thermal-zone", &desc->thermal_zone); of_property_read_u32(np, "cm-battery-cold", &desc->temp_min); if (of_property_read_bool(np, "cm-battery-cold-in-minus")) desc->temp_min *= -1; of_property_read_u32(np, "cm-battery-hot", &desc->temp_max); of_property_read_u32(np, "cm-battery-temp-diff", &desc->temp_diff); of_property_read_u32(np, "cm-charging-max", &desc->charging_max_duration_ms); of_property_read_u32(np, "cm-discharging-max", &desc->discharging_max_duration_ms); /* battery charger regulators */ desc->num_charger_regulators = of_get_child_count(np); if (desc->num_charger_regulators) { struct charger_regulator *chg_regs; struct device_node *child; chg_regs = devm_kcalloc(dev, desc->num_charger_regulators, sizeof(*chg_regs), GFP_KERNEL); if (!chg_regs) return ERR_PTR(-ENOMEM); desc->charger_regulators = chg_regs; desc->sysfs_groups = devm_kcalloc(dev, desc->num_charger_regulators + 1, sizeof(*desc->sysfs_groups), GFP_KERNEL); if (!desc->sysfs_groups) return ERR_PTR(-ENOMEM); for_each_child_of_node(np, child) { struct charger_cable *cables; struct device_node *_child; of_property_read_string(child, "cm-regulator-name", &chg_regs->regulator_name); /* charger cables */ chg_regs->num_cables = of_get_child_count(child); if (chg_regs->num_cables) { cables = devm_kcalloc(dev, chg_regs->num_cables, sizeof(*cables), GFP_KERNEL); if (!cables) { of_node_put(child); return ERR_PTR(-ENOMEM); } chg_regs->cables = cables; for_each_child_of_node(child, _child) { of_property_read_string(_child, "cm-cable-name", &cables->name); of_property_read_string(_child, "cm-cable-extcon", &cables->extcon_name); of_property_read_u32(_child, "cm-cable-min", &cables->min_uA); of_property_read_u32(_child, "cm-cable-max", &cables->max_uA); cables++; } } chg_regs++; } } return desc; } static inline struct charger_desc *cm_get_drv_data(struct platform_device *pdev) { if (pdev->dev.of_node) return of_cm_parse_desc(&pdev->dev); return dev_get_platdata(&pdev->dev); } static enum alarmtimer_restart cm_timer_func(struct alarm *alarm, ktime_t now) { cm_timer_set = false; return ALARMTIMER_NORESTART; } static int charger_manager_probe(struct platform_device *pdev) { struct charger_desc *desc = cm_get_drv_data(pdev); struct charger_manager *cm; int ret, i = 0; union power_supply_propval val; struct power_supply *fuel_gauge; enum power_supply_property *properties; size_t num_properties; struct power_supply_config psy_cfg = {}; if (IS_ERR(desc)) { dev_err(&pdev->dev, "No platform data (desc) found\n"); return PTR_ERR(desc); } cm = devm_kzalloc(&pdev->dev, sizeof(*cm), GFP_KERNEL); if (!cm) return -ENOMEM; /* Basic Values. Unspecified are Null or 0 */ cm->dev = &pdev->dev; cm->desc = desc; psy_cfg.drv_data = cm; /* Initialize alarm timer */ if (alarmtimer_get_rtcdev()) { cm_timer = devm_kzalloc(cm->dev, sizeof(*cm_timer), GFP_KERNEL); if (!cm_timer) return -ENOMEM; alarm_init(cm_timer, ALARM_BOOTTIME, cm_timer_func); } /* * Some of the following do not need to be errors. * Users may intentionally ignore those features. */ if (desc->fullbatt_uV == 0) { dev_info(&pdev->dev, "Ignoring full-battery voltage threshold as it is not supplied\n"); } if (!desc->fullbatt_vchkdrop_uV) { dev_info(&pdev->dev, "Disabling full-battery voltage drop checking mechanism as it is not supplied\n"); desc->fullbatt_vchkdrop_uV = 0; } if (desc->fullbatt_soc == 0) { dev_info(&pdev->dev, "Ignoring full-battery soc(state of charge) threshold as it is not supplied\n"); } if (desc->fullbatt_full_capacity == 0) { dev_info(&pdev->dev, "Ignoring full-battery full capacity threshold as it is not supplied\n"); } if (!desc->charger_regulators || desc->num_charger_regulators < 1) { dev_err(&pdev->dev, "charger_regulators undefined\n"); return -EINVAL; } if (!desc->psy_charger_stat || !desc->psy_charger_stat[0]) { dev_err(&pdev->dev, "No power supply defined\n"); return -EINVAL; } if (!desc->psy_fuel_gauge) { dev_err(&pdev->dev, "No fuel gauge power supply defined\n"); return -EINVAL; } /* Check if charger's supplies are present at probe */ for (i = 0; desc->psy_charger_stat[i]; i++) { struct power_supply *psy; psy = power_supply_get_by_name(desc->psy_charger_stat[i]); if (!psy) { dev_err(&pdev->dev, "Cannot find power supply \"%s\"\n", desc->psy_charger_stat[i]); return -ENODEV; } power_supply_put(psy); } if (cm->desc->polling_mode != CM_POLL_DISABLE && (desc->polling_interval_ms == 0 || msecs_to_jiffies(desc->polling_interval_ms) <= CM_JIFFIES_SMALL)) { dev_err(&pdev->dev, "polling_interval_ms is too small\n"); return -EINVAL; } if (!desc->charging_max_duration_ms || !desc->discharging_max_duration_ms) { dev_info(&pdev->dev, "Cannot limit charging duration checking mechanism to prevent overcharge/overheat and control discharging duration\n"); desc->charging_max_duration_ms = 0; desc->discharging_max_duration_ms = 0; } platform_set_drvdata(pdev, cm); memcpy(&cm->charger_psy_desc, &psy_default, sizeof(psy_default)); if (!desc->psy_name) strncpy(cm->psy_name_buf, psy_default.name, PSY_NAME_MAX); else strncpy(cm->psy_name_buf, desc->psy_name, PSY_NAME_MAX); cm->charger_psy_desc.name = cm->psy_name_buf; /* Allocate for psy properties because they may vary */ properties = devm_kcalloc(&pdev->dev, ARRAY_SIZE(default_charger_props) + NUM_CHARGER_PSY_OPTIONAL, sizeof(*properties), GFP_KERNEL); if (!properties) return -ENOMEM; memcpy(properties, default_charger_props, sizeof(enum power_supply_property) * ARRAY_SIZE(default_charger_props)); num_properties = ARRAY_SIZE(default_charger_props); /* Find which optional psy-properties are available */ fuel_gauge = power_supply_get_by_name(desc->psy_fuel_gauge); if (!fuel_gauge) { dev_err(&pdev->dev, "Cannot find power supply \"%s\"\n", desc->psy_fuel_gauge); return -ENODEV; } if (!power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_CHARGE_FULL, &val)) { properties[num_properties] = POWER_SUPPLY_PROP_CHARGE_FULL; num_properties++; } if (!power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_CHARGE_NOW, &val)) { properties[num_properties] = POWER_SUPPLY_PROP_CHARGE_NOW; num_properties++; } if (!power_supply_get_property(fuel_gauge, POWER_SUPPLY_PROP_CURRENT_NOW, &val)) { properties[num_properties] = POWER_SUPPLY_PROP_CURRENT_NOW; num_properties++; } ret = cm_init_thermal_data(cm, fuel_gauge, properties, &num_properties); if (ret) { dev_err(&pdev->dev, "Failed to initialize thermal data\n"); cm->desc->measure_battery_temp = false; } power_supply_put(fuel_gauge); cm->charger_psy_desc.properties = properties; cm->charger_psy_desc.num_properties = num_properties; /* Register sysfs entry for charger(regulator) */ ret = charger_manager_prepare_sysfs(cm); if (ret < 0) { dev_err(&pdev->dev, "Cannot prepare sysfs entry of regulators\n"); return ret; } psy_cfg.attr_grp = desc->sysfs_groups; cm->charger_psy = power_supply_register(&pdev->dev, &cm->charger_psy_desc, &psy_cfg); if (IS_ERR(cm->charger_psy)) { dev_err(&pdev->dev, "Cannot register charger-manager with name \"%s\"\n", cm->charger_psy_desc.name); return PTR_ERR(cm->charger_psy); } /* Register extcon device for charger cable */ ret = charger_manager_register_extcon(cm); if (ret < 0) { dev_err(&pdev->dev, "Cannot initialize extcon device\n"); goto err_reg_extcon; } /* Add to the list */ mutex_lock(&cm_list_mtx); list_add(&cm->entry, &cm_list); mutex_unlock(&cm_list_mtx); /* * Charger-manager is capable of waking up the system from sleep * when event is happened through cm_notify_event() */ device_init_wakeup(&pdev->dev, true); device_set_wakeup_capable(&pdev->dev, false); /* * Charger-manager have to check the charging state right after * initialization of charger-manager and then update current charging * state. */ cm_monitor(); schedule_work(&setup_polling); return 0; err_reg_extcon: for (i = 0; i < desc->num_charger_regulators; i++) regulator_put(desc->charger_regulators[i].consumer); power_supply_unregister(cm->charger_psy); return ret; } static int charger_manager_remove(struct platform_device *pdev) { struct charger_manager *cm = platform_get_drvdata(pdev); struct charger_desc *desc = cm->desc; int i = 0; /* Remove from the list */ mutex_lock(&cm_list_mtx); list_del(&cm->entry); mutex_unlock(&cm_list_mtx); cancel_work_sync(&setup_polling); cancel_delayed_work_sync(&cm_monitor_work); for (i = 0 ; i < desc->num_charger_regulators ; i++) regulator_put(desc->charger_regulators[i].consumer); power_supply_unregister(cm->charger_psy); try_charger_enable(cm, false); return 0; } static const struct platform_device_id charger_manager_id[] = { { "charger-manager", 0 }, { }, }; MODULE_DEVICE_TABLE(platform, charger_manager_id); static int cm_suspend_noirq(struct device *dev) { if (device_may_wakeup(dev)) { device_set_wakeup_capable(dev, false); return -EAGAIN; } return 0; } static bool cm_need_to_awake(void) { struct charger_manager *cm; if (cm_timer) return false; mutex_lock(&cm_list_mtx); list_for_each_entry(cm, &cm_list, entry) { if (is_charging(cm)) { mutex_unlock(&cm_list_mtx); return true; } } mutex_unlock(&cm_list_mtx); return false; } static int cm_suspend_prepare(struct device *dev) { if (cm_need_to_awake()) return -EBUSY; if (!cm_suspended) cm_suspended = true; cm_timer_set = cm_setup_timer(); if (cm_timer_set) { cancel_work_sync(&setup_polling); cancel_delayed_work_sync(&cm_monitor_work); } return 0; } static void cm_suspend_complete(struct device *dev) { struct charger_manager *cm = dev_get_drvdata(dev); if (cm_suspended) cm_suspended = false; if (cm_timer_set) { ktime_t remain; alarm_cancel(cm_timer); cm_timer_set = false; remain = alarm_expires_remaining(cm_timer); cm_suspend_duration_ms -= ktime_to_ms(remain); schedule_work(&setup_polling); } _cm_monitor(cm); device_set_wakeup_capable(cm->dev, false); } static const struct dev_pm_ops charger_manager_pm = { .prepare = cm_suspend_prepare, .suspend_noirq = cm_suspend_noirq, .complete = cm_suspend_complete, }; static struct platform_driver charger_manager_driver = { .driver = { .name = "charger-manager", .pm = &charger_manager_pm, .of_match_table = charger_manager_match, }, .probe = charger_manager_probe, .remove = charger_manager_remove, .id_table = charger_manager_id, }; static int __init charger_manager_init(void) { cm_wq = create_freezable_workqueue("charger_manager"); if (unlikely(!cm_wq)) return -ENOMEM; INIT_DELAYED_WORK(&cm_monitor_work, cm_monitor_poller); return platform_driver_register(&charger_manager_driver); } late_initcall(charger_manager_init); static void __exit charger_manager_cleanup(void) { destroy_workqueue(cm_wq); cm_wq = NULL; platform_driver_unregister(&charger_manager_driver); } module_exit(charger_manager_cleanup); MODULE_AUTHOR("MyungJoo Ham <[email protected]>"); MODULE_DESCRIPTION("Charger Manager"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/charger-manager.c
// SPDX-License-Identifier: GPL-2.0+ // // max8998_charger.c - Power supply consumer driver for the Maxim 8998/LP3974 // // Copyright (C) 2009-2010 Samsung Electronics // MyungJoo Ham <[email protected]> #include <linux/err.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/mfd/max8998.h> #include <linux/mfd/max8998-private.h> struct max8998_battery_data { struct device *dev; struct max8998_dev *iodev; struct power_supply *battery; }; static enum power_supply_property max8998_battery_props[] = { POWER_SUPPLY_PROP_PRESENT, /* the presence of battery */ POWER_SUPPLY_PROP_ONLINE, /* charger is active or not */ POWER_SUPPLY_PROP_STATUS, /* charger is charging/discharging/full */ }; /* Note that the charger control is done by a current regulator "CHARGER" */ static int max8998_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max8998_battery_data *max8998 = power_supply_get_drvdata(psy); struct i2c_client *i2c = max8998->iodev->i2c; int ret; u8 reg; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: ret = max8998_read_reg(i2c, MAX8998_REG_STATUS2, &reg); if (ret) return ret; if (reg & (1 << 4)) val->intval = 0; else val->intval = 1; break; case POWER_SUPPLY_PROP_ONLINE: ret = max8998_read_reg(i2c, MAX8998_REG_STATUS2, &reg); if (ret) return ret; if (reg & (1 << 5)) val->intval = 1; else val->intval = 0; break; case POWER_SUPPLY_PROP_STATUS: ret = max8998_read_reg(i2c, MAX8998_REG_STATUS2, &reg); if (ret) return ret; if (!(reg & (1 << 5))) { val->intval = POWER_SUPPLY_STATUS_DISCHARGING; } else { if (reg & (1 << 6)) val->intval = POWER_SUPPLY_STATUS_FULL; else if (reg & (1 << 3)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; } break; default: return -EINVAL; } return 0; } static const struct power_supply_desc max8998_battery_desc = { .name = "max8998_pmic", .type = POWER_SUPPLY_TYPE_BATTERY, .get_property = max8998_battery_get_property, .properties = max8998_battery_props, .num_properties = ARRAY_SIZE(max8998_battery_props), }; static int max8998_battery_probe(struct platform_device *pdev) { struct max8998_dev *iodev = dev_get_drvdata(pdev->dev.parent); struct max8998_platform_data *pdata = iodev->pdata; struct power_supply_config psy_cfg = {}; struct max8998_battery_data *max8998; struct i2c_client *i2c; int ret = 0; if (!pdata) { dev_err(pdev->dev.parent, "No platform init data supplied\n"); return -ENODEV; } max8998 = devm_kzalloc(&pdev->dev, sizeof(struct max8998_battery_data), GFP_KERNEL); if (!max8998) return -ENOMEM; max8998->dev = &pdev->dev; max8998->iodev = iodev; platform_set_drvdata(pdev, max8998); i2c = max8998->iodev->i2c; /* Setup "End of Charge" */ /* If EOC value equals 0, * remain value set from bootloader or default value */ if (pdata->eoc >= 10 && pdata->eoc <= 45) { max8998_update_reg(i2c, MAX8998_REG_CHGR1, (pdata->eoc / 5 - 2) << 5, 0x7 << 5); } else if (pdata->eoc == 0) { dev_dbg(max8998->dev, "EOC value not set: leave it unchanged.\n"); } else { dev_err(max8998->dev, "Invalid EOC value\n"); return -EINVAL; } /* Setup Charge Restart Level */ switch (pdata->restart) { case 100: max8998_update_reg(i2c, MAX8998_REG_CHGR1, 0x1 << 3, 0x3 << 3); break; case 150: max8998_update_reg(i2c, MAX8998_REG_CHGR1, 0x0 << 3, 0x3 << 3); break; case 200: max8998_update_reg(i2c, MAX8998_REG_CHGR1, 0x2 << 3, 0x3 << 3); break; case -1: max8998_update_reg(i2c, MAX8998_REG_CHGR1, 0x3 << 3, 0x3 << 3); break; case 0: dev_dbg(max8998->dev, "Restart Level not set: leave it unchanged.\n"); break; default: dev_err(max8998->dev, "Invalid Restart Level\n"); return -EINVAL; } /* Setup Charge Full Timeout */ switch (pdata->timeout) { case 5: max8998_update_reg(i2c, MAX8998_REG_CHGR2, 0x0 << 4, 0x3 << 4); break; case 6: max8998_update_reg(i2c, MAX8998_REG_CHGR2, 0x1 << 4, 0x3 << 4); break; case 7: max8998_update_reg(i2c, MAX8998_REG_CHGR2, 0x2 << 4, 0x3 << 4); break; case -1: max8998_update_reg(i2c, MAX8998_REG_CHGR2, 0x3 << 4, 0x3 << 4); break; case 0: dev_dbg(max8998->dev, "Full Timeout not set: leave it unchanged.\n"); break; default: dev_err(max8998->dev, "Invalid Full Timeout value\n"); return -EINVAL; } psy_cfg.drv_data = max8998; max8998->battery = devm_power_supply_register(max8998->dev, &max8998_battery_desc, &psy_cfg); if (IS_ERR(max8998->battery)) { ret = PTR_ERR(max8998->battery); dev_err(max8998->dev, "failed: power supply register: %d\n", ret); return ret; } return 0; } static const struct platform_device_id max8998_battery_id[] = { { "max8998-battery", TYPE_MAX8998 }, { } }; static struct platform_driver max8998_battery_driver = { .driver = { .name = "max8998-battery", }, .probe = max8998_battery_probe, .id_table = max8998_battery_id, }; module_platform_driver(max8998_battery_driver); MODULE_DESCRIPTION("MAXIM 8998 battery control driver"); MODULE_AUTHOR("MyungJoo Ham <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:max8998-battery");
linux-master
drivers/power/supply/max8998_charger.c
// SPDX-License-Identifier: GPL-2.0 /* * Charging control driver for the Wilco EC * * Copyright 2019 Google LLC * * See Documentation/ABI/testing/sysfs-class-power and * Documentation/ABI/testing/sysfs-class-power-wilco for userspace interface * and other info. */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/platform_data/wilco-ec.h> #include <linux/power_supply.h> #define DRV_NAME "wilco-charger" /* Property IDs and related EC constants */ #define PID_CHARGE_MODE 0x0710 #define PID_CHARGE_LOWER_LIMIT 0x0711 #define PID_CHARGE_UPPER_LIMIT 0x0712 enum charge_mode { CHARGE_MODE_STD = 1, /* Used for Standard */ CHARGE_MODE_EXP = 2, /* Express Charge, used for Fast */ CHARGE_MODE_AC = 3, /* Mostly AC use, used for Trickle */ CHARGE_MODE_AUTO = 4, /* Used for Adaptive */ CHARGE_MODE_CUSTOM = 5, /* Used for Custom */ CHARGE_MODE_LONGLIFE = 6, /* Used for Long Life */ }; #define CHARGE_LOWER_LIMIT_MIN 50 #define CHARGE_LOWER_LIMIT_MAX 95 #define CHARGE_UPPER_LIMIT_MIN 55 #define CHARGE_UPPER_LIMIT_MAX 100 /* Convert from POWER_SUPPLY_PROP_CHARGE_TYPE value to the EC's charge mode */ static int psp_val_to_charge_mode(int psp_val) { switch (psp_val) { case POWER_SUPPLY_CHARGE_TYPE_TRICKLE: return CHARGE_MODE_AC; case POWER_SUPPLY_CHARGE_TYPE_FAST: return CHARGE_MODE_EXP; case POWER_SUPPLY_CHARGE_TYPE_STANDARD: return CHARGE_MODE_STD; case POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE: return CHARGE_MODE_AUTO; case POWER_SUPPLY_CHARGE_TYPE_CUSTOM: return CHARGE_MODE_CUSTOM; case POWER_SUPPLY_CHARGE_TYPE_LONGLIFE: return CHARGE_MODE_LONGLIFE; default: return -EINVAL; } } /* Convert from EC's charge mode to POWER_SUPPLY_PROP_CHARGE_TYPE value */ static int charge_mode_to_psp_val(enum charge_mode mode) { switch (mode) { case CHARGE_MODE_AC: return POWER_SUPPLY_CHARGE_TYPE_TRICKLE; case CHARGE_MODE_EXP: return POWER_SUPPLY_CHARGE_TYPE_FAST; case CHARGE_MODE_STD: return POWER_SUPPLY_CHARGE_TYPE_STANDARD; case CHARGE_MODE_AUTO: return POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE; case CHARGE_MODE_CUSTOM: return POWER_SUPPLY_CHARGE_TYPE_CUSTOM; case CHARGE_MODE_LONGLIFE: return POWER_SUPPLY_CHARGE_TYPE_LONGLIFE; default: return -EINVAL; } } static enum power_supply_property wilco_charge_props[] = { POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, }; static int wilco_charge_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct wilco_ec_device *ec = power_supply_get_drvdata(psy); u32 property_id; int ret; u8 raw; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_TYPE: property_id = PID_CHARGE_MODE; break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD: property_id = PID_CHARGE_LOWER_LIMIT; break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD: property_id = PID_CHARGE_UPPER_LIMIT; break; default: return -EINVAL; } ret = wilco_ec_get_byte_property(ec, property_id, &raw); if (ret < 0) return ret; if (property_id == PID_CHARGE_MODE) { ret = charge_mode_to_psp_val(raw); if (ret < 0) return -EBADMSG; raw = ret; } val->intval = raw; return 0; } static int wilco_charge_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct wilco_ec_device *ec = power_supply_get_drvdata(psy); int mode; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_TYPE: mode = psp_val_to_charge_mode(val->intval); if (mode < 0) return -EINVAL; return wilco_ec_set_byte_property(ec, PID_CHARGE_MODE, mode); case POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD: if (val->intval < CHARGE_LOWER_LIMIT_MIN || val->intval > CHARGE_LOWER_LIMIT_MAX) return -EINVAL; return wilco_ec_set_byte_property(ec, PID_CHARGE_LOWER_LIMIT, val->intval); case POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD: if (val->intval < CHARGE_UPPER_LIMIT_MIN || val->intval > CHARGE_UPPER_LIMIT_MAX) return -EINVAL; return wilco_ec_set_byte_property(ec, PID_CHARGE_UPPER_LIMIT, val->intval); default: return -EINVAL; } } static int wilco_charge_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { return 1; } static const struct power_supply_desc wilco_ps_desc = { .properties = wilco_charge_props, .num_properties = ARRAY_SIZE(wilco_charge_props), .get_property = wilco_charge_get_property, .set_property = wilco_charge_set_property, .property_is_writeable = wilco_charge_property_is_writeable, .name = DRV_NAME, .type = POWER_SUPPLY_TYPE_MAINS, }; static int wilco_charge_probe(struct platform_device *pdev) { struct wilco_ec_device *ec = dev_get_drvdata(pdev->dev.parent); struct power_supply_config psy_cfg = {}; struct power_supply *psy; psy_cfg.drv_data = ec; psy = devm_power_supply_register(&pdev->dev, &wilco_ps_desc, &psy_cfg); return PTR_ERR_OR_ZERO(psy); } static struct platform_driver wilco_charge_driver = { .probe = wilco_charge_probe, .driver = { .name = DRV_NAME, } }; module_platform_driver(wilco_charge_driver); MODULE_ALIAS("platform:" DRV_NAME); MODULE_AUTHOR("Nick Crews <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Wilco EC charge control driver");
linux-master
drivers/power/supply/wilco-charger.c
// SPDX-License-Identifier: GPL-2.0-or-later /* NXP PCF50633 Main Battery Charger Driver * * (C) 2006-2008 by Openmoko, Inc. * Author: Balaji Rao <[email protected]> * All rights reserved. * * Broken down from monstrous PCF50633 driver mainly by * Harald Welte, Andy Green and Werner Almesberger */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/types.h> #include <linux/device.h> #include <linux/sysfs.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/mfd/pcf50633/core.h> #include <linux/mfd/pcf50633/mbc.h> struct pcf50633_mbc { struct pcf50633 *pcf; int adapter_online; int usb_online; struct power_supply *usb; struct power_supply *adapter; struct power_supply *ac; }; int pcf50633_mbc_usb_curlim_set(struct pcf50633 *pcf, int ma) { struct pcf50633_mbc *mbc = platform_get_drvdata(pcf->mbc_pdev); int ret = 0; u8 bits; u8 mbcs2, chgmod; unsigned int mbcc5; if (ma >= 1000) { bits = PCF50633_MBCC7_USB_1000mA; ma = 1000; } else if (ma >= 500) { bits = PCF50633_MBCC7_USB_500mA; ma = 500; } else if (ma >= 100) { bits = PCF50633_MBCC7_USB_100mA; ma = 100; } else { bits = PCF50633_MBCC7_USB_SUSPEND; ma = 0; } ret = pcf50633_reg_set_bit_mask(pcf, PCF50633_REG_MBCC7, PCF50633_MBCC7_USB_MASK, bits); if (ret) dev_err(pcf->dev, "error setting usb curlim to %d mA\n", ma); else dev_info(pcf->dev, "usb curlim to %d mA\n", ma); /* * We limit the charging current to be the USB current limit. * The reason is that on pcf50633, when it enters PMU Standby mode, * which it does when the device goes "off", the USB current limit * reverts to the variant default. In at least one common case, that * default is 500mA. By setting the charging current to be the same * as the USB limit we set here before PMU standby, we enforce it only * using the correct amount of current even when the USB current limit * gets reset to the wrong thing */ if (mbc->pcf->pdata->charger_reference_current_ma) { mbcc5 = (ma << 8) / mbc->pcf->pdata->charger_reference_current_ma; if (mbcc5 > 255) mbcc5 = 255; pcf50633_reg_write(mbc->pcf, PCF50633_REG_MBCC5, mbcc5); } mbcs2 = pcf50633_reg_read(mbc->pcf, PCF50633_REG_MBCS2); chgmod = (mbcs2 & PCF50633_MBCS2_MBC_MASK); /* If chgmod == BATFULL, setting chgena has no effect. * Datasheet says we need to set resume instead but when autoresume is * used resume doesn't work. Clear and set chgena instead. */ if (chgmod != PCF50633_MBCS2_MBC_BAT_FULL) pcf50633_reg_set_bit_mask(pcf, PCF50633_REG_MBCC1, PCF50633_MBCC1_CHGENA, PCF50633_MBCC1_CHGENA); else { pcf50633_reg_clear_bits(pcf, PCF50633_REG_MBCC1, PCF50633_MBCC1_CHGENA); pcf50633_reg_set_bit_mask(pcf, PCF50633_REG_MBCC1, PCF50633_MBCC1_CHGENA, PCF50633_MBCC1_CHGENA); } power_supply_changed(mbc->usb); return ret; } EXPORT_SYMBOL_GPL(pcf50633_mbc_usb_curlim_set); int pcf50633_mbc_get_status(struct pcf50633 *pcf) { struct pcf50633_mbc *mbc = platform_get_drvdata(pcf->mbc_pdev); int status = 0; u8 chgmod; if (!mbc) return 0; chgmod = pcf50633_reg_read(mbc->pcf, PCF50633_REG_MBCS2) & PCF50633_MBCS2_MBC_MASK; if (mbc->usb_online) status |= PCF50633_MBC_USB_ONLINE; if (chgmod == PCF50633_MBCS2_MBC_USB_PRE || chgmod == PCF50633_MBCS2_MBC_USB_PRE_WAIT || chgmod == PCF50633_MBCS2_MBC_USB_FAST || chgmod == PCF50633_MBCS2_MBC_USB_FAST_WAIT) status |= PCF50633_MBC_USB_ACTIVE; if (mbc->adapter_online) status |= PCF50633_MBC_ADAPTER_ONLINE; if (chgmod == PCF50633_MBCS2_MBC_ADP_PRE || chgmod == PCF50633_MBCS2_MBC_ADP_PRE_WAIT || chgmod == PCF50633_MBCS2_MBC_ADP_FAST || chgmod == PCF50633_MBCS2_MBC_ADP_FAST_WAIT) status |= PCF50633_MBC_ADAPTER_ACTIVE; return status; } EXPORT_SYMBOL_GPL(pcf50633_mbc_get_status); int pcf50633_mbc_get_usb_online_status(struct pcf50633 *pcf) { struct pcf50633_mbc *mbc = platform_get_drvdata(pcf->mbc_pdev); if (!mbc) return 0; return mbc->usb_online; } EXPORT_SYMBOL_GPL(pcf50633_mbc_get_usb_online_status); static ssize_t show_chgmode(struct device *dev, struct device_attribute *attr, char *buf) { struct pcf50633_mbc *mbc = dev_get_drvdata(dev); u8 mbcs2 = pcf50633_reg_read(mbc->pcf, PCF50633_REG_MBCS2); u8 chgmod = (mbcs2 & PCF50633_MBCS2_MBC_MASK); return sysfs_emit(buf, "%d\n", chgmod); } static DEVICE_ATTR(chgmode, S_IRUGO, show_chgmode, NULL); static ssize_t show_usblim(struct device *dev, struct device_attribute *attr, char *buf) { struct pcf50633_mbc *mbc = dev_get_drvdata(dev); u8 usblim = pcf50633_reg_read(mbc->pcf, PCF50633_REG_MBCC7) & PCF50633_MBCC7_USB_MASK; unsigned int ma; if (usblim == PCF50633_MBCC7_USB_1000mA) ma = 1000; else if (usblim == PCF50633_MBCC7_USB_500mA) ma = 500; else if (usblim == PCF50633_MBCC7_USB_100mA) ma = 100; else ma = 0; return sysfs_emit(buf, "%u\n", ma); } static ssize_t set_usblim(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct pcf50633_mbc *mbc = dev_get_drvdata(dev); unsigned long ma; int ret; ret = kstrtoul(buf, 10, &ma); if (ret) return ret; pcf50633_mbc_usb_curlim_set(mbc->pcf, ma); return count; } static DEVICE_ATTR(usb_curlim, S_IRUGO | S_IWUSR, show_usblim, set_usblim); static ssize_t show_chglim(struct device *dev, struct device_attribute *attr, char *buf) { struct pcf50633_mbc *mbc = dev_get_drvdata(dev); u8 mbcc5 = pcf50633_reg_read(mbc->pcf, PCF50633_REG_MBCC5); unsigned int ma; if (!mbc->pcf->pdata->charger_reference_current_ma) return -ENODEV; ma = (mbc->pcf->pdata->charger_reference_current_ma * mbcc5) >> 8; return sysfs_emit(buf, "%u\n", ma); } static ssize_t set_chglim(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct pcf50633_mbc *mbc = dev_get_drvdata(dev); unsigned long ma; unsigned int mbcc5; int ret; if (!mbc->pcf->pdata->charger_reference_current_ma) return -ENODEV; ret = kstrtoul(buf, 10, &ma); if (ret) return ret; mbcc5 = (ma << 8) / mbc->pcf->pdata->charger_reference_current_ma; if (mbcc5 > 255) mbcc5 = 255; pcf50633_reg_write(mbc->pcf, PCF50633_REG_MBCC5, mbcc5); return count; } /* * This attribute allows to change MBC charging limit on the fly * independently of usb current limit. It also gets set automatically every * time usb current limit is changed. */ static DEVICE_ATTR(chg_curlim, S_IRUGO | S_IWUSR, show_chglim, set_chglim); static struct attribute *pcf50633_mbc_sysfs_attrs[] = { &dev_attr_chgmode.attr, &dev_attr_usb_curlim.attr, &dev_attr_chg_curlim.attr, NULL, }; ATTRIBUTE_GROUPS(pcf50633_mbc_sysfs); static void pcf50633_mbc_irq_handler(int irq, void *data) { struct pcf50633_mbc *mbc = data; /* USB */ if (irq == PCF50633_IRQ_USBINS) { mbc->usb_online = 1; } else if (irq == PCF50633_IRQ_USBREM) { mbc->usb_online = 0; pcf50633_mbc_usb_curlim_set(mbc->pcf, 0); } /* Adapter */ if (irq == PCF50633_IRQ_ADPINS) mbc->adapter_online = 1; else if (irq == PCF50633_IRQ_ADPREM) mbc->adapter_online = 0; power_supply_changed(mbc->ac); power_supply_changed(mbc->usb); power_supply_changed(mbc->adapter); if (mbc->pcf->pdata->mbc_event_callback) mbc->pcf->pdata->mbc_event_callback(mbc->pcf, irq); } static int adapter_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct pcf50633_mbc *mbc = power_supply_get_drvdata(psy); int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = mbc->adapter_online; break; default: ret = -EINVAL; break; } return ret; } static int usb_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct pcf50633_mbc *mbc = power_supply_get_drvdata(psy); int ret = 0; u8 usblim = pcf50633_reg_read(mbc->pcf, PCF50633_REG_MBCC7) & PCF50633_MBCC7_USB_MASK; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = mbc->usb_online && (usblim <= PCF50633_MBCC7_USB_500mA); break; default: ret = -EINVAL; break; } return ret; } static int ac_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct pcf50633_mbc *mbc = power_supply_get_drvdata(psy); int ret = 0; u8 usblim = pcf50633_reg_read(mbc->pcf, PCF50633_REG_MBCC7) & PCF50633_MBCC7_USB_MASK; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = mbc->usb_online && (usblim == PCF50633_MBCC7_USB_1000mA); break; default: ret = -EINVAL; break; } return ret; } static enum power_supply_property power_props[] = { POWER_SUPPLY_PROP_ONLINE, }; static const u8 mbc_irq_handlers[] = { PCF50633_IRQ_ADPINS, PCF50633_IRQ_ADPREM, PCF50633_IRQ_USBINS, PCF50633_IRQ_USBREM, PCF50633_IRQ_BATFULL, PCF50633_IRQ_CHGHALT, PCF50633_IRQ_THLIMON, PCF50633_IRQ_THLIMOFF, PCF50633_IRQ_USBLIMON, PCF50633_IRQ_USBLIMOFF, PCF50633_IRQ_LOWSYS, PCF50633_IRQ_LOWBAT, }; static const struct power_supply_desc pcf50633_mbc_adapter_desc = { .name = "adapter", .type = POWER_SUPPLY_TYPE_MAINS, .properties = power_props, .num_properties = ARRAY_SIZE(power_props), .get_property = &adapter_get_property, }; static const struct power_supply_desc pcf50633_mbc_usb_desc = { .name = "usb", .type = POWER_SUPPLY_TYPE_USB, .properties = power_props, .num_properties = ARRAY_SIZE(power_props), .get_property = usb_get_property, }; static const struct power_supply_desc pcf50633_mbc_ac_desc = { .name = "ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = power_props, .num_properties = ARRAY_SIZE(power_props), .get_property = ac_get_property, }; static int pcf50633_mbc_probe(struct platform_device *pdev) { struct power_supply_config psy_cfg = {}; struct power_supply_config usb_psy_cfg; struct pcf50633_mbc *mbc; int i; u8 mbcs1; mbc = devm_kzalloc(&pdev->dev, sizeof(*mbc), GFP_KERNEL); if (!mbc) return -ENOMEM; platform_set_drvdata(pdev, mbc); mbc->pcf = dev_to_pcf50633(pdev->dev.parent); /* Set up IRQ handlers */ for (i = 0; i < ARRAY_SIZE(mbc_irq_handlers); i++) pcf50633_register_irq(mbc->pcf, mbc_irq_handlers[i], pcf50633_mbc_irq_handler, mbc); psy_cfg.supplied_to = mbc->pcf->pdata->batteries; psy_cfg.num_supplicants = mbc->pcf->pdata->num_batteries; psy_cfg.drv_data = mbc; /* Create power supplies */ mbc->adapter = power_supply_register(&pdev->dev, &pcf50633_mbc_adapter_desc, &psy_cfg); if (IS_ERR(mbc->adapter)) { dev_err(mbc->pcf->dev, "failed to register adapter\n"); return PTR_ERR(mbc->adapter); } usb_psy_cfg = psy_cfg; usb_psy_cfg.attr_grp = pcf50633_mbc_sysfs_groups; mbc->usb = power_supply_register(&pdev->dev, &pcf50633_mbc_usb_desc, &usb_psy_cfg); if (IS_ERR(mbc->usb)) { dev_err(mbc->pcf->dev, "failed to register usb\n"); power_supply_unregister(mbc->adapter); return PTR_ERR(mbc->usb); } mbc->ac = power_supply_register(&pdev->dev, &pcf50633_mbc_ac_desc, &psy_cfg); if (IS_ERR(mbc->ac)) { dev_err(mbc->pcf->dev, "failed to register ac\n"); power_supply_unregister(mbc->adapter); power_supply_unregister(mbc->usb); return PTR_ERR(mbc->ac); } mbcs1 = pcf50633_reg_read(mbc->pcf, PCF50633_REG_MBCS1); if (mbcs1 & PCF50633_MBCS1_USBPRES) pcf50633_mbc_irq_handler(PCF50633_IRQ_USBINS, mbc); if (mbcs1 & PCF50633_MBCS1_ADAPTPRES) pcf50633_mbc_irq_handler(PCF50633_IRQ_ADPINS, mbc); return 0; } static int pcf50633_mbc_remove(struct platform_device *pdev) { struct pcf50633_mbc *mbc = platform_get_drvdata(pdev); int i; /* Remove IRQ handlers */ for (i = 0; i < ARRAY_SIZE(mbc_irq_handlers); i++) pcf50633_free_irq(mbc->pcf, mbc_irq_handlers[i]); power_supply_unregister(mbc->usb); power_supply_unregister(mbc->adapter); power_supply_unregister(mbc->ac); return 0; } static struct platform_driver pcf50633_mbc_driver = { .driver = { .name = "pcf50633-mbc", }, .probe = pcf50633_mbc_probe, .remove = pcf50633_mbc_remove, }; module_platform_driver(pcf50633_mbc_driver); MODULE_AUTHOR("Balaji Rao <[email protected]>"); MODULE_DESCRIPTION("PCF50633 mbc driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pcf50633-mbc");
linux-master
drivers/power/supply/pcf50633-charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * 1-wire client/driver for the Maxim/Dallas DS2781 Stand-Alone Fuel Gauge IC * * Author: Renata Sayakhova <[email protected]> * * Based on ds2780_battery drivers */ #include <linux/module.h> #include <linux/slab.h> #include <linux/param.h> #include <linux/pm.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/idr.h> #include <linux/w1.h> #include "../../w1/slaves/w1_ds2781.h" /* Current unit measurement in uA for a 1 milli-ohm sense resistor */ #define DS2781_CURRENT_UNITS 1563 /* Charge unit measurement in uAh for a 1 milli-ohm sense resistor */ #define DS2781_CHARGE_UNITS 6250 /* Number of bytes in user EEPROM space */ #define DS2781_USER_EEPROM_SIZE (DS2781_EEPROM_BLOCK0_END - \ DS2781_EEPROM_BLOCK0_START + 1) /* Number of bytes in parameter EEPROM space */ #define DS2781_PARAM_EEPROM_SIZE (DS2781_EEPROM_BLOCK1_END - \ DS2781_EEPROM_BLOCK1_START + 1) struct ds2781_device_info { struct device *dev; struct power_supply *bat; struct power_supply_desc bat_desc; struct device *w1_dev; }; enum current_types { CURRENT_NOW, CURRENT_AVG, }; static const char model[] = "DS2781"; static const char manufacturer[] = "Maxim/Dallas"; static inline struct ds2781_device_info * to_ds2781_device_info(struct power_supply *psy) { return power_supply_get_drvdata(psy); } static inline int ds2781_battery_io(struct ds2781_device_info *dev_info, char *buf, int addr, size_t count, int io) { return w1_ds2781_io(dev_info->w1_dev, buf, addr, count, io); } static int w1_ds2781_read(struct ds2781_device_info *dev_info, char *buf, int addr, size_t count) { return ds2781_battery_io(dev_info, buf, addr, count, 0); } static inline int ds2781_read8(struct ds2781_device_info *dev_info, u8 *val, int addr) { return ds2781_battery_io(dev_info, val, addr, sizeof(u8), 0); } static int ds2781_read16(struct ds2781_device_info *dev_info, s16 *val, int addr) { int ret; u8 raw[2]; ret = ds2781_battery_io(dev_info, raw, addr, sizeof(raw), 0); if (ret < 0) return ret; *val = (raw[0] << 8) | raw[1]; return 0; } static inline int ds2781_read_block(struct ds2781_device_info *dev_info, u8 *val, int addr, size_t count) { return ds2781_battery_io(dev_info, val, addr, count, 0); } static inline int ds2781_write(struct ds2781_device_info *dev_info, u8 *val, int addr, size_t count) { return ds2781_battery_io(dev_info, val, addr, count, 1); } static inline int ds2781_store_eeprom(struct device *dev, int addr) { return w1_ds2781_eeprom_cmd(dev, addr, W1_DS2781_COPY_DATA); } static inline int ds2781_recall_eeprom(struct device *dev, int addr) { return w1_ds2781_eeprom_cmd(dev, addr, W1_DS2781_RECALL_DATA); } static int ds2781_save_eeprom(struct ds2781_device_info *dev_info, int reg) { int ret; ret = ds2781_store_eeprom(dev_info->w1_dev, reg); if (ret < 0) return ret; ret = ds2781_recall_eeprom(dev_info->w1_dev, reg); if (ret < 0) return ret; return 0; } /* Set sense resistor value in mhos */ static int ds2781_set_sense_register(struct ds2781_device_info *dev_info, u8 conductance) { int ret; ret = ds2781_write(dev_info, &conductance, DS2781_RSNSP, sizeof(u8)); if (ret < 0) return ret; return ds2781_save_eeprom(dev_info, DS2781_RSNSP); } /* Get RSGAIN value from 0 to 1.999 in steps of 0.001 */ static int ds2781_get_rsgain_register(struct ds2781_device_info *dev_info, u16 *rsgain) { return ds2781_read16(dev_info, rsgain, DS2781_RSGAIN_MSB); } /* Set RSGAIN value from 0 to 1.999 in steps of 0.001 */ static int ds2781_set_rsgain_register(struct ds2781_device_info *dev_info, u16 rsgain) { int ret; u8 raw[] = {rsgain >> 8, rsgain & 0xFF}; ret = ds2781_write(dev_info, raw, DS2781_RSGAIN_MSB, sizeof(raw)); if (ret < 0) return ret; return ds2781_save_eeprom(dev_info, DS2781_RSGAIN_MSB); } static int ds2781_get_voltage(struct ds2781_device_info *dev_info, int *voltage_uV) { int ret; char val[2]; int voltage_raw; ret = w1_ds2781_read(dev_info, val, DS2781_VOLT_MSB, 2 * sizeof(u8)); if (ret < 0) return ret; /* * The voltage value is located in 10 bits across the voltage MSB * and LSB registers in two's complement form * Sign bit of the voltage value is in bit 7 of the voltage MSB register * Bits 9 - 3 of the voltage value are in bits 6 - 0 of the * voltage MSB register * Bits 2 - 0 of the voltage value are in bits 7 - 5 of the * voltage LSB register */ voltage_raw = (val[0] << 3) | (val[1] >> 5); /* DS2781 reports voltage in units of 9.76mV, but the battery class * reports in units of uV, so convert by multiplying by 9760. */ *voltage_uV = voltage_raw * 9760; return 0; } static int ds2781_get_temperature(struct ds2781_device_info *dev_info, int *temp) { int ret; char val[2]; int temp_raw; ret = w1_ds2781_read(dev_info, val, DS2781_TEMP_MSB, 2 * sizeof(u8)); if (ret < 0) return ret; /* * The temperature value is located in 10 bits across the temperature * MSB and LSB registers in two's complement form * Sign bit of the temperature value is in bit 7 of the temperature * MSB register * Bits 9 - 3 of the temperature value are in bits 6 - 0 of the * temperature MSB register * Bits 2 - 0 of the temperature value are in bits 7 - 5 of the * temperature LSB register */ temp_raw = ((val[0]) << 3) | (val[1] >> 5); *temp = temp_raw + (temp_raw / 4); return 0; } static int ds2781_get_current(struct ds2781_device_info *dev_info, enum current_types type, int *current_uA) { int ret, sense_res; s16 current_raw; u8 sense_res_raw, reg_msb; /* * The units of measurement for current are dependent on the value of * the sense resistor. */ ret = ds2781_read8(dev_info, &sense_res_raw, DS2781_RSNSP); if (ret < 0) return ret; if (sense_res_raw == 0) { dev_err(dev_info->dev, "sense resistor value is 0\n"); return -EINVAL; } sense_res = 1000 / sense_res_raw; if (type == CURRENT_NOW) reg_msb = DS2781_CURRENT_MSB; else if (type == CURRENT_AVG) reg_msb = DS2781_IAVG_MSB; else return -EINVAL; /* * The current value is located in 16 bits across the current MSB * and LSB registers in two's complement form * Sign bit of the current value is in bit 7 of the current MSB register * Bits 14 - 8 of the current value are in bits 6 - 0 of the current * MSB register * Bits 7 - 0 of the current value are in bits 7 - 0 of the current * LSB register */ ret = ds2781_read16(dev_info, &current_raw, reg_msb); if (ret < 0) return ret; *current_uA = current_raw * (DS2781_CURRENT_UNITS / sense_res); return 0; } static int ds2781_get_accumulated_current(struct ds2781_device_info *dev_info, int *accumulated_current) { int ret, sense_res; s16 current_raw; u8 sense_res_raw; /* * The units of measurement for accumulated current are dependent on * the value of the sense resistor. */ ret = ds2781_read8(dev_info, &sense_res_raw, DS2781_RSNSP); if (ret < 0) return ret; if (sense_res_raw == 0) { dev_err(dev_info->dev, "sense resistor value is 0\n"); return -EINVAL; } sense_res = 1000 / sense_res_raw; /* * The ACR value is located in 16 bits across the ACR MSB and * LSB registers * Bits 15 - 8 of the ACR value are in bits 7 - 0 of the ACR * MSB register * Bits 7 - 0 of the ACR value are in bits 7 - 0 of the ACR * LSB register */ ret = ds2781_read16(dev_info, &current_raw, DS2781_ACR_MSB); if (ret < 0) return ret; *accumulated_current = current_raw * (DS2781_CHARGE_UNITS / sense_res); return 0; } static int ds2781_get_capacity(struct ds2781_device_info *dev_info, int *capacity) { int ret; u8 raw; ret = ds2781_read8(dev_info, &raw, DS2781_RARC); if (ret < 0) return ret; *capacity = raw; return 0; } static int ds2781_get_status(struct ds2781_device_info *dev_info, int *status) { int ret, current_uA, capacity; ret = ds2781_get_current(dev_info, CURRENT_NOW, &current_uA); if (ret < 0) return ret; ret = ds2781_get_capacity(dev_info, &capacity); if (ret < 0) return ret; if (power_supply_am_i_supplied(dev_info->bat)) { if (capacity == 100) *status = POWER_SUPPLY_STATUS_FULL; else if (current_uA > 50000) *status = POWER_SUPPLY_STATUS_CHARGING; else *status = POWER_SUPPLY_STATUS_NOT_CHARGING; } else { *status = POWER_SUPPLY_STATUS_DISCHARGING; } return 0; } static int ds2781_get_charge_now(struct ds2781_device_info *dev_info, int *charge_now) { int ret; u16 charge_raw; /* * The RAAC value is located in 16 bits across the RAAC MSB and * LSB registers * Bits 15 - 8 of the RAAC value are in bits 7 - 0 of the RAAC * MSB register * Bits 7 - 0 of the RAAC value are in bits 7 - 0 of the RAAC * LSB register */ ret = ds2781_read16(dev_info, &charge_raw, DS2781_RAAC_MSB); if (ret < 0) return ret; *charge_now = charge_raw * 1600; return 0; } static int ds2781_get_control_register(struct ds2781_device_info *dev_info, u8 *control_reg) { return ds2781_read8(dev_info, control_reg, DS2781_CONTROL); } static int ds2781_set_control_register(struct ds2781_device_info *dev_info, u8 control_reg) { int ret; ret = ds2781_write(dev_info, &control_reg, DS2781_CONTROL, sizeof(u8)); if (ret < 0) return ret; return ds2781_save_eeprom(dev_info, DS2781_CONTROL); } static int ds2781_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = ds2781_get_voltage(dev_info, &val->intval); break; case POWER_SUPPLY_PROP_TEMP: ret = ds2781_get_temperature(dev_info, &val->intval); break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = model; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = manufacturer; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = ds2781_get_current(dev_info, CURRENT_NOW, &val->intval); break; case POWER_SUPPLY_PROP_CURRENT_AVG: ret = ds2781_get_current(dev_info, CURRENT_AVG, &val->intval); break; case POWER_SUPPLY_PROP_STATUS: ret = ds2781_get_status(dev_info, &val->intval); break; case POWER_SUPPLY_PROP_CAPACITY: ret = ds2781_get_capacity(dev_info, &val->intval); break; case POWER_SUPPLY_PROP_CHARGE_COUNTER: ret = ds2781_get_accumulated_current(dev_info, &val->intval); break; case POWER_SUPPLY_PROP_CHARGE_NOW: ret = ds2781_get_charge_now(dev_info, &val->intval); break; default: ret = -EINVAL; } return ret; } static enum power_supply_property ds2781_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_CHARGE_NOW, }; static ssize_t ds2781_get_pmod_enabled(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 control_reg; struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); /* Get power mode */ ret = ds2781_get_control_register(dev_info, &control_reg); if (ret < 0) return ret; return sysfs_emit(buf, "%d\n", !!(control_reg & DS2781_CONTROL_PMOD)); } static ssize_t ds2781_set_pmod_enabled(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u8 control_reg, new_setting; struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); /* Set power mode */ ret = ds2781_get_control_register(dev_info, &control_reg); if (ret < 0) return ret; ret = kstrtou8(buf, 0, &new_setting); if (ret < 0) return ret; if ((new_setting != 0) && (new_setting != 1)) { dev_err(dev_info->dev, "Invalid pmod setting (0 or 1)\n"); return -EINVAL; } if (new_setting) control_reg |= DS2781_CONTROL_PMOD; else control_reg &= ~DS2781_CONTROL_PMOD; ret = ds2781_set_control_register(dev_info, control_reg); if (ret < 0) return ret; return count; } static ssize_t ds2781_get_sense_resistor_value(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 sense_resistor; struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); ret = ds2781_read8(dev_info, &sense_resistor, DS2781_RSNSP); if (ret < 0) return ret; ret = sysfs_emit(buf, "%d\n", sense_resistor); return ret; } static ssize_t ds2781_set_sense_resistor_value(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u8 new_setting; struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); ret = kstrtou8(buf, 0, &new_setting); if (ret < 0) return ret; ret = ds2781_set_sense_register(dev_info, new_setting); if (ret < 0) return ret; return count; } static ssize_t ds2781_get_rsgain_setting(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u16 rsgain; struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); ret = ds2781_get_rsgain_register(dev_info, &rsgain); if (ret < 0) return ret; return sysfs_emit(buf, "%d\n", rsgain); } static ssize_t ds2781_set_rsgain_setting(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u16 new_setting; struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); ret = kstrtou16(buf, 0, &new_setting); if (ret < 0) return ret; /* Gain can only be from 0 to 1.999 in steps of .001 */ if (new_setting > 1999) { dev_err(dev_info->dev, "Invalid rsgain setting (0 - 1999)\n"); return -EINVAL; } ret = ds2781_set_rsgain_register(dev_info, new_setting); if (ret < 0) return ret; return count; } static ssize_t ds2781_get_pio_pin(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 sfr; struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); ret = ds2781_read8(dev_info, &sfr, DS2781_SFR); if (ret < 0) return ret; ret = sysfs_emit(buf, "%d\n", sfr & DS2781_SFR_PIOSC); return ret; } static ssize_t ds2781_set_pio_pin(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; u8 new_setting; struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); ret = kstrtou8(buf, 0, &new_setting); if (ret < 0) return ret; if ((new_setting != 0) && (new_setting != 1)) { dev_err(dev_info->dev, "Invalid pio_pin setting (0 or 1)\n"); return -EINVAL; } ret = ds2781_write(dev_info, &new_setting, DS2781_SFR, sizeof(u8)); if (ret < 0) return ret; return count; } static ssize_t ds2781_read_param_eeprom_bin(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); return ds2781_read_block(dev_info, buf, DS2781_EEPROM_BLOCK1_START + off, count); } static ssize_t ds2781_write_param_eeprom_bin(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); int ret; ret = ds2781_write(dev_info, buf, DS2781_EEPROM_BLOCK1_START + off, count); if (ret < 0) return ret; ret = ds2781_save_eeprom(dev_info, DS2781_EEPROM_BLOCK1_START); if (ret < 0) return ret; return count; } static struct bin_attribute ds2781_param_eeprom_bin_attr = { .attr = { .name = "param_eeprom", .mode = S_IRUGO | S_IWUSR, }, .size = DS2781_PARAM_EEPROM_SIZE, .read = ds2781_read_param_eeprom_bin, .write = ds2781_write_param_eeprom_bin, }; static ssize_t ds2781_read_user_eeprom_bin(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); return ds2781_read_block(dev_info, buf, DS2781_EEPROM_BLOCK0_START + off, count); } static ssize_t ds2781_write_user_eeprom_bin(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); struct power_supply *psy = to_power_supply(dev); struct ds2781_device_info *dev_info = to_ds2781_device_info(psy); int ret; ret = ds2781_write(dev_info, buf, DS2781_EEPROM_BLOCK0_START + off, count); if (ret < 0) return ret; ret = ds2781_save_eeprom(dev_info, DS2781_EEPROM_BLOCK0_START); if (ret < 0) return ret; return count; } static struct bin_attribute ds2781_user_eeprom_bin_attr = { .attr = { .name = "user_eeprom", .mode = S_IRUGO | S_IWUSR, }, .size = DS2781_USER_EEPROM_SIZE, .read = ds2781_read_user_eeprom_bin, .write = ds2781_write_user_eeprom_bin, }; static DEVICE_ATTR(pmod_enabled, S_IRUGO | S_IWUSR, ds2781_get_pmod_enabled, ds2781_set_pmod_enabled); static DEVICE_ATTR(sense_resistor_value, S_IRUGO | S_IWUSR, ds2781_get_sense_resistor_value, ds2781_set_sense_resistor_value); static DEVICE_ATTR(rsgain_setting, S_IRUGO | S_IWUSR, ds2781_get_rsgain_setting, ds2781_set_rsgain_setting); static DEVICE_ATTR(pio_pin, S_IRUGO | S_IWUSR, ds2781_get_pio_pin, ds2781_set_pio_pin); static struct attribute *ds2781_sysfs_attrs[] = { &dev_attr_pmod_enabled.attr, &dev_attr_sense_resistor_value.attr, &dev_attr_rsgain_setting.attr, &dev_attr_pio_pin.attr, NULL }; static struct bin_attribute *ds2781_sysfs_bin_attrs[] = { &ds2781_param_eeprom_bin_attr, &ds2781_user_eeprom_bin_attr, NULL, }; static const struct attribute_group ds2781_sysfs_group = { .attrs = ds2781_sysfs_attrs, .bin_attrs = ds2781_sysfs_bin_attrs, }; static const struct attribute_group *ds2781_sysfs_groups[] = { &ds2781_sysfs_group, NULL, }; static int ds2781_battery_probe(struct platform_device *pdev) { struct power_supply_config psy_cfg = {}; struct ds2781_device_info *dev_info; dev_info = devm_kzalloc(&pdev->dev, sizeof(*dev_info), GFP_KERNEL); if (!dev_info) return -ENOMEM; platform_set_drvdata(pdev, dev_info); dev_info->dev = &pdev->dev; dev_info->w1_dev = pdev->dev.parent; dev_info->bat_desc.name = dev_name(&pdev->dev); dev_info->bat_desc.type = POWER_SUPPLY_TYPE_BATTERY; dev_info->bat_desc.properties = ds2781_battery_props; dev_info->bat_desc.num_properties = ARRAY_SIZE(ds2781_battery_props); dev_info->bat_desc.get_property = ds2781_battery_get_property; psy_cfg.drv_data = dev_info; psy_cfg.attr_grp = ds2781_sysfs_groups; dev_info->bat = devm_power_supply_register(&pdev->dev, &dev_info->bat_desc, &psy_cfg); if (IS_ERR(dev_info->bat)) { dev_err(dev_info->dev, "failed to register battery\n"); return PTR_ERR(dev_info->bat); } return 0; } static struct platform_driver ds2781_battery_driver = { .driver = { .name = "ds2781-battery", }, .probe = ds2781_battery_probe, }; module_platform_driver(ds2781_battery_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Renata Sayakhova <[email protected]>"); MODULE_DESCRIPTION("Maxim/Dallas DS2781 Stand-Alone Fuel Gauge IC driver"); MODULE_ALIAS("platform:ds2781-battery");
linux-master
drivers/power/supply/ds2781_battery.c
// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2018 BayLibre SAS // Author: Bartosz Golaszewski <[email protected]> // // Battery charger driver for MAXIM 77650/77651 charger/power-supply. #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/mfd/max77650.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #define MAX77650_CHARGER_ENABLED BIT(0) #define MAX77650_CHARGER_DISABLED 0x00 #define MAX77650_CHARGER_CHG_EN_MASK BIT(0) #define MAX77650_CHG_DETAILS_MASK GENMASK(7, 4) #define MAX77650_CHG_DETAILS_BITS(_reg) \ (((_reg) & MAX77650_CHG_DETAILS_MASK) >> 4) /* Charger is OFF. */ #define MAX77650_CHG_OFF 0x00 /* Charger is in prequalification mode. */ #define MAX77650_CHG_PREQ 0x01 /* Charger is in fast-charge constant current mode. */ #define MAX77650_CHG_ON_CURR 0x02 /* Charger is in JEITA modified fast-charge constant-current mode. */ #define MAX77650_CHG_ON_CURR_JEITA 0x03 /* Charger is in fast-charge constant-voltage mode. */ #define MAX77650_CHG_ON_VOLT 0x04 /* Charger is in JEITA modified fast-charge constant-voltage mode. */ #define MAX77650_CHG_ON_VOLT_JEITA 0x05 /* Charger is in top-off mode. */ #define MAX77650_CHG_ON_TOPOFF 0x06 /* Charger is in JEITA modified top-off mode. */ #define MAX77650_CHG_ON_TOPOFF_JEITA 0x07 /* Charger is done. */ #define MAX77650_CHG_DONE 0x08 /* Charger is JEITA modified done. */ #define MAX77650_CHG_DONE_JEITA 0x09 /* Charger is suspended due to a prequalification timer fault. */ #define MAX77650_CHG_SUSP_PREQ_TIM_FAULT 0x0a /* Charger is suspended due to a fast-charge timer fault. */ #define MAX77650_CHG_SUSP_FAST_CHG_TIM_FAULT 0x0b /* Charger is suspended due to a battery temperature fault. */ #define MAX77650_CHG_SUSP_BATT_TEMP_FAULT 0x0c #define MAX77650_CHGIN_DETAILS_MASK GENMASK(3, 2) #define MAX77650_CHGIN_DETAILS_BITS(_reg) \ (((_reg) & MAX77650_CHGIN_DETAILS_MASK) >> 2) #define MAX77650_CHGIN_UNDERVOLTAGE_LOCKOUT 0x00 #define MAX77650_CHGIN_OVERVOLTAGE_LOCKOUT 0x01 #define MAX77650_CHGIN_OKAY 0x11 #define MAX77650_CHARGER_CHG_MASK BIT(1) #define MAX77650_CHARGER_CHG_CHARGING(_reg) \ (((_reg) & MAX77650_CHARGER_CHG_MASK) > 1) #define MAX77650_CHARGER_VCHGIN_MIN_MASK 0xc0 #define MAX77650_CHARGER_VCHGIN_MIN_SHIFT(_val) ((_val) << 5) #define MAX77650_CHARGER_ICHGIN_LIM_MASK 0x1c #define MAX77650_CHARGER_ICHGIN_LIM_SHIFT(_val) ((_val) << 2) struct max77650_charger_data { struct regmap *map; struct device *dev; }; static enum power_supply_property max77650_charger_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CHARGE_TYPE }; static const unsigned int max77650_charger_vchgin_min_table[] = { 4000000, 4100000, 4200000, 4300000, 4400000, 4500000, 4600000, 4700000 }; static const unsigned int max77650_charger_ichgin_lim_table[] = { 95000, 190000, 285000, 380000, 475000 }; static int max77650_charger_set_vchgin_min(struct max77650_charger_data *chg, unsigned int val) { int i, rv; for (i = 0; i < ARRAY_SIZE(max77650_charger_vchgin_min_table); i++) { if (val == max77650_charger_vchgin_min_table[i]) { rv = regmap_update_bits(chg->map, MAX77650_REG_CNFG_CHG_B, MAX77650_CHARGER_VCHGIN_MIN_MASK, MAX77650_CHARGER_VCHGIN_MIN_SHIFT(i)); if (rv) return rv; return 0; } } return -EINVAL; } static int max77650_charger_set_ichgin_lim(struct max77650_charger_data *chg, unsigned int val) { int i, rv; for (i = 0; i < ARRAY_SIZE(max77650_charger_ichgin_lim_table); i++) { if (val == max77650_charger_ichgin_lim_table[i]) { rv = regmap_update_bits(chg->map, MAX77650_REG_CNFG_CHG_B, MAX77650_CHARGER_ICHGIN_LIM_MASK, MAX77650_CHARGER_ICHGIN_LIM_SHIFT(i)); if (rv) return rv; return 0; } } return -EINVAL; } static int max77650_charger_enable(struct max77650_charger_data *chg) { int rv; rv = regmap_update_bits(chg->map, MAX77650_REG_CNFG_CHG_B, MAX77650_CHARGER_CHG_EN_MASK, MAX77650_CHARGER_ENABLED); if (rv) dev_err(chg->dev, "unable to enable the charger: %d\n", rv); return rv; } static void max77650_charger_disable(struct max77650_charger_data *chg) { int rv; rv = regmap_update_bits(chg->map, MAX77650_REG_CNFG_CHG_B, MAX77650_CHARGER_CHG_EN_MASK, MAX77650_CHARGER_DISABLED); if (rv) dev_err(chg->dev, "unable to disable the charger: %d\n", rv); } static irqreturn_t max77650_charger_check_status(int irq, void *data) { struct max77650_charger_data *chg = data; int rv, reg; rv = regmap_read(chg->map, MAX77650_REG_STAT_CHG_B, &reg); if (rv) { dev_err(chg->dev, "unable to read the charger status: %d\n", rv); return IRQ_HANDLED; } switch (MAX77650_CHGIN_DETAILS_BITS(reg)) { case MAX77650_CHGIN_UNDERVOLTAGE_LOCKOUT: dev_err(chg->dev, "undervoltage lockout detected, disabling charger\n"); max77650_charger_disable(chg); break; case MAX77650_CHGIN_OVERVOLTAGE_LOCKOUT: dev_err(chg->dev, "overvoltage lockout detected, disabling charger\n"); max77650_charger_disable(chg); break; case MAX77650_CHGIN_OKAY: max77650_charger_enable(chg); break; default: /* May be 0x10 - debouncing */ break; } return IRQ_HANDLED; } static int max77650_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max77650_charger_data *chg = power_supply_get_drvdata(psy); int rv, reg; switch (psp) { case POWER_SUPPLY_PROP_STATUS: rv = regmap_read(chg->map, MAX77650_REG_STAT_CHG_B, &reg); if (rv) return rv; if (MAX77650_CHARGER_CHG_CHARGING(reg)) { val->intval = POWER_SUPPLY_STATUS_CHARGING; break; } switch (MAX77650_CHG_DETAILS_BITS(reg)) { case MAX77650_CHG_OFF: case MAX77650_CHG_SUSP_PREQ_TIM_FAULT: case MAX77650_CHG_SUSP_FAST_CHG_TIM_FAULT: case MAX77650_CHG_SUSP_BATT_TEMP_FAULT: val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case MAX77650_CHG_PREQ: case MAX77650_CHG_ON_CURR: case MAX77650_CHG_ON_CURR_JEITA: case MAX77650_CHG_ON_VOLT: case MAX77650_CHG_ON_VOLT_JEITA: case MAX77650_CHG_ON_TOPOFF: case MAX77650_CHG_ON_TOPOFF_JEITA: val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case MAX77650_CHG_DONE: val->intval = POWER_SUPPLY_STATUS_FULL; break; default: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; } break; case POWER_SUPPLY_PROP_ONLINE: rv = regmap_read(chg->map, MAX77650_REG_STAT_CHG_B, &reg); if (rv) return rv; val->intval = MAX77650_CHARGER_CHG_CHARGING(reg); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: rv = regmap_read(chg->map, MAX77650_REG_STAT_CHG_B, &reg); if (rv) return rv; if (!MAX77650_CHARGER_CHG_CHARGING(reg)) { val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; } switch (MAX77650_CHG_DETAILS_BITS(reg)) { case MAX77650_CHG_PREQ: case MAX77650_CHG_ON_CURR: case MAX77650_CHG_ON_CURR_JEITA: case MAX77650_CHG_ON_VOLT: case MAX77650_CHG_ON_VOLT_JEITA: val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; break; case MAX77650_CHG_ON_TOPOFF: case MAX77650_CHG_ON_TOPOFF_JEITA: val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; default: val->intval = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; } break; default: return -EINVAL; } return 0; } static const struct power_supply_desc max77650_battery_desc = { .name = "max77650", .type = POWER_SUPPLY_TYPE_USB, .get_property = max77650_charger_get_property, .properties = max77650_charger_properties, .num_properties = ARRAY_SIZE(max77650_charger_properties), }; static int max77650_charger_probe(struct platform_device *pdev) { struct power_supply_config pscfg = {}; struct max77650_charger_data *chg; struct power_supply *battery; struct device *dev, *parent; int rv, chg_irq, chgin_irq; unsigned int prop; dev = &pdev->dev; parent = dev->parent; chg = devm_kzalloc(dev, sizeof(*chg), GFP_KERNEL); if (!chg) return -ENOMEM; platform_set_drvdata(pdev, chg); chg->map = dev_get_regmap(parent, NULL); if (!chg->map) return -ENODEV; chg->dev = dev; pscfg.of_node = dev->of_node; pscfg.drv_data = chg; chg_irq = platform_get_irq_byname(pdev, "CHG"); if (chg_irq < 0) return chg_irq; chgin_irq = platform_get_irq_byname(pdev, "CHGIN"); if (chgin_irq < 0) return chgin_irq; rv = devm_request_any_context_irq(dev, chg_irq, max77650_charger_check_status, IRQF_ONESHOT, "chg", chg); if (rv < 0) return rv; rv = devm_request_any_context_irq(dev, chgin_irq, max77650_charger_check_status, IRQF_ONESHOT, "chgin", chg); if (rv < 0) return rv; battery = devm_power_supply_register(dev, &max77650_battery_desc, &pscfg); if (IS_ERR(battery)) return PTR_ERR(battery); rv = of_property_read_u32(dev->of_node, "input-voltage-min-microvolt", &prop); if (rv == 0) { rv = max77650_charger_set_vchgin_min(chg, prop); if (rv) return rv; } rv = of_property_read_u32(dev->of_node, "input-current-limit-microamp", &prop); if (rv == 0) { rv = max77650_charger_set_ichgin_lim(chg, prop); if (rv) return rv; } return max77650_charger_enable(chg); } static int max77650_charger_remove(struct platform_device *pdev) { struct max77650_charger_data *chg = platform_get_drvdata(pdev); max77650_charger_disable(chg); return 0; } static const struct of_device_id max77650_charger_of_match[] = { { .compatible = "maxim,max77650-charger" }, { } }; MODULE_DEVICE_TABLE(of, max77650_charger_of_match); static struct platform_driver max77650_charger_driver = { .driver = { .name = "max77650-charger", .of_match_table = max77650_charger_of_match, }, .probe = max77650_charger_probe, .remove = max77650_charger_remove, }; module_platform_driver(max77650_charger_driver); MODULE_DESCRIPTION("MAXIM 77650/77651 charger driver"); MODULE_AUTHOR("Bartosz Golaszewski <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:max77650-charger");
linux-master
drivers/power/supply/max77650-charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Maxim MAX14656 / AL32 USB Charger Detector driver * * Copyright (C) 2014 LG Electronics, Inc * Copyright (C) 2016 Alexander Kurz <[email protected]> * * Components from Maxim AL32 Charger detection Driver for MX50 Yoshi Board * Copyright (C) Amazon Technologies Inc. All rights reserved. * Manish Lachwani ([email protected]) */ #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/mod_devicetable.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/power_supply.h> #include <linux/devm-helpers.h> #define MAX14656_MANUFACTURER "Maxim Integrated" #define MAX14656_NAME "max14656" #define MAX14656_DEVICE_ID 0x00 #define MAX14656_INTERRUPT_1 0x01 #define MAX14656_INTERRUPT_2 0x02 #define MAX14656_STATUS_1 0x03 #define MAX14656_STATUS_2 0x04 #define MAX14656_INTMASK_1 0x05 #define MAX14656_INTMASK_2 0x06 #define MAX14656_CONTROL_1 0x07 #define MAX14656_CONTROL_2 0x08 #define MAX14656_CONTROL_3 0x09 #define DEVICE_VENDOR_MASK 0xf0 #define DEVICE_REV_MASK 0x0f #define INT_EN_REG_MASK BIT(4) #define CHG_TYPE_INT_MASK BIT(0) #define STATUS1_VB_VALID_MASK BIT(4) #define STATUS1_CHG_TYPE_MASK 0xf #define INT1_DCD_TIMEOUT_MASK BIT(7) #define CONTROL1_DEFAULT 0x0d #define CONTROL1_INT_EN BIT(4) #define CONTROL1_INT_ACTIVE_HIGH BIT(5) #define CONTROL1_EDGE BIT(7) #define CONTROL2_DEFAULT 0x8e #define CONTROL2_ADC_EN BIT(0) #define CONTROL3_DEFAULT 0x8d enum max14656_chg_type { MAX14656_NO_CHARGER = 0, MAX14656_SDP_CHARGER, MAX14656_CDP_CHARGER, MAX14656_DCP_CHARGER, MAX14656_APPLE_500MA_CHARGER, MAX14656_APPLE_1A_CHARGER, MAX14656_APPLE_2A_CHARGER, MAX14656_SPECIAL_500MA_CHARGER, MAX14656_APPLE_12W, MAX14656_CHARGER_LAST }; static const struct max14656_chg_type_props { enum power_supply_type type; } chg_type_props[] = { { POWER_SUPPLY_TYPE_UNKNOWN }, { POWER_SUPPLY_TYPE_USB }, { POWER_SUPPLY_TYPE_USB_CDP }, { POWER_SUPPLY_TYPE_USB_DCP }, { POWER_SUPPLY_TYPE_USB_DCP }, { POWER_SUPPLY_TYPE_USB_DCP }, { POWER_SUPPLY_TYPE_USB_DCP }, { POWER_SUPPLY_TYPE_USB_DCP }, { POWER_SUPPLY_TYPE_USB }, }; struct max14656_chip { struct i2c_client *client; struct power_supply *detect_psy; struct power_supply_desc psy_desc; struct delayed_work irq_work; int irq; int online; }; static int max14656_read_reg(struct i2c_client *client, int reg, u8 *val) { s32 ret; ret = i2c_smbus_read_byte_data(client, reg); if (ret < 0) { dev_err(&client->dev, "i2c read fail: can't read from %02x: %d\n", reg, ret); return ret; } *val = ret; return 0; } static int max14656_write_reg(struct i2c_client *client, int reg, u8 val) { s32 ret; ret = i2c_smbus_write_byte_data(client, reg, val); if (ret < 0) { dev_err(&client->dev, "i2c write fail: can't write %02x to %02x: %d\n", val, reg, ret); return ret; } return 0; } static int max14656_read_block_reg(struct i2c_client *client, u8 reg, u8 length, u8 *val) { int ret; ret = i2c_smbus_read_i2c_block_data(client, reg, length, val); if (ret < 0) { dev_err(&client->dev, "failed to block read reg 0x%x: %d\n", reg, ret); return ret; } return 0; } #define REG_TOTAL_NUM 5 static void max14656_irq_worker(struct work_struct *work) { struct max14656_chip *chip = container_of(work, struct max14656_chip, irq_work.work); u8 buf[REG_TOTAL_NUM]; u8 chg_type; max14656_read_block_reg(chip->client, MAX14656_DEVICE_ID, REG_TOTAL_NUM, buf); if ((buf[MAX14656_STATUS_1] & STATUS1_VB_VALID_MASK) && (buf[MAX14656_STATUS_1] & STATUS1_CHG_TYPE_MASK)) { chg_type = buf[MAX14656_STATUS_1] & STATUS1_CHG_TYPE_MASK; if (chg_type < MAX14656_CHARGER_LAST) chip->psy_desc.type = chg_type_props[chg_type].type; else chip->psy_desc.type = POWER_SUPPLY_TYPE_UNKNOWN; chip->online = 1; } else { chip->online = 0; chip->psy_desc.type = POWER_SUPPLY_TYPE_UNKNOWN; } power_supply_changed(chip->detect_psy); } static irqreturn_t max14656_irq(int irq, void *dev_id) { struct max14656_chip *chip = dev_id; schedule_delayed_work(&chip->irq_work, msecs_to_jiffies(100)); return IRQ_HANDLED; } static int max14656_hw_init(struct max14656_chip *chip) { uint8_t val = 0; uint8_t rev; struct i2c_client *client = chip->client; if (max14656_read_reg(client, MAX14656_DEVICE_ID, &val)) return -ENODEV; if ((val & DEVICE_VENDOR_MASK) != 0x20) { dev_err(&client->dev, "wrong vendor ID %d\n", ((val & DEVICE_VENDOR_MASK) >> 4)); return -ENODEV; } rev = val & DEVICE_REV_MASK; /* Turn on ADC_EN */ if (max14656_write_reg(client, MAX14656_CONTROL_2, CONTROL2_ADC_EN)) return -EINVAL; /* turn on interrupts and low power mode */ if (max14656_write_reg(client, MAX14656_CONTROL_1, CONTROL1_DEFAULT | CONTROL1_INT_EN | CONTROL1_INT_ACTIVE_HIGH | CONTROL1_EDGE)) return -EINVAL; if (max14656_write_reg(client, MAX14656_INTMASK_1, 0x3)) return -EINVAL; if (max14656_write_reg(client, MAX14656_INTMASK_2, 0x1)) return -EINVAL; dev_info(&client->dev, "detected revision %d\n", rev); return 0; } static int max14656_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max14656_chip *chip = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = chip->online; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = MAX14656_NAME; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = MAX14656_MANUFACTURER; break; default: return -EINVAL; } return 0; } static enum power_supply_property max14656_battery_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, }; static int max14656_probe(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; struct device *dev = &client->dev; struct power_supply_config psy_cfg = {}; struct max14656_chip *chip; int irq = client->irq; int ret = 0; if (irq <= 0) { dev_err(dev, "invalid irq number: %d\n", irq); return -ENODEV; } if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(dev, "No support for SMBUS_BYTE_DATA\n"); return -ENODEV; } chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; psy_cfg.drv_data = chip; chip->client = client; chip->online = 0; chip->psy_desc.name = MAX14656_NAME; chip->psy_desc.type = POWER_SUPPLY_TYPE_UNKNOWN; chip->psy_desc.properties = max14656_battery_props; chip->psy_desc.num_properties = ARRAY_SIZE(max14656_battery_props); chip->psy_desc.get_property = max14656_get_property; chip->irq = irq; ret = max14656_hw_init(chip); if (ret) return -ENODEV; chip->detect_psy = devm_power_supply_register(dev, &chip->psy_desc, &psy_cfg); if (IS_ERR(chip->detect_psy)) { dev_err(dev, "power_supply_register failed\n"); return -EINVAL; } ret = devm_delayed_work_autocancel(dev, &chip->irq_work, max14656_irq_worker); if (ret) { dev_err(dev, "devm_delayed_work_autocancel %d failed\n", ret); return ret; } ret = devm_request_irq(dev, chip->irq, max14656_irq, IRQF_TRIGGER_FALLING, MAX14656_NAME, chip); if (ret) { dev_err(dev, "request_irq %d failed\n", chip->irq); return -EINVAL; } enable_irq_wake(chip->irq); schedule_delayed_work(&chip->irq_work, msecs_to_jiffies(2000)); return 0; } static const struct i2c_device_id max14656_id[] = { { "max14656", 0 }, {} }; MODULE_DEVICE_TABLE(i2c, max14656_id); static const struct of_device_id max14656_match_table[] = { { .compatible = "maxim,max14656", }, {} }; MODULE_DEVICE_TABLE(of, max14656_match_table); static struct i2c_driver max14656_i2c_driver = { .driver = { .name = "max14656", .of_match_table = max14656_match_table, }, .probe = max14656_probe, .id_table = max14656_id, }; module_i2c_driver(max14656_i2c_driver); MODULE_DESCRIPTION("MAX14656 USB charger detector"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/max14656_charger_detector.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * TWL4030/TPS65950 BCI (Battery Charger Interface) driver * * Copyright (C) 2010 Gražvydas Ignotas <[email protected]> * * based on twl4030_bci_battery.c by TI * Copyright (C) 2008 Texas Instruments, Inc. */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/mfd/twl.h> #include <linux/power_supply.h> #include <linux/notifier.h> #include <linux/usb/otg.h> #include <linux/iio/consumer.h> #define TWL4030_BCIMDEN 0x00 #define TWL4030_BCIMDKEY 0x01 #define TWL4030_BCIMSTATEC 0x02 #define TWL4030_BCIICHG 0x08 #define TWL4030_BCIVAC 0x0a #define TWL4030_BCIVBUS 0x0c #define TWL4030_BCIMFSTS3 0x0F #define TWL4030_BCIMFSTS4 0x10 #define TWL4030_BCICTL1 0x23 #define TWL4030_BB_CFG 0x12 #define TWL4030_BCIIREF1 0x27 #define TWL4030_BCIIREF2 0x28 #define TWL4030_BCIMFKEY 0x11 #define TWL4030_BCIMFEN3 0x14 #define TWL4030_BCIMFTH8 0x1d #define TWL4030_BCIMFTH9 0x1e #define TWL4030_BCIWDKEY 0x21 #define TWL4030_BCIMFSTS1 0x01 #define TWL4030_BCIAUTOWEN BIT(5) #define TWL4030_CONFIG_DONE BIT(4) #define TWL4030_CVENAC BIT(2) #define TWL4030_BCIAUTOUSB BIT(1) #define TWL4030_BCIAUTOAC BIT(0) #define TWL4030_CGAIN BIT(5) #define TWL4030_USBFASTMCHG BIT(2) #define TWL4030_STS_VBUS BIT(7) #define TWL4030_STS_USB_ID BIT(2) #define TWL4030_BBCHEN BIT(4) #define TWL4030_BBSEL_MASK 0x0c #define TWL4030_BBSEL_2V5 0x00 #define TWL4030_BBSEL_3V0 0x04 #define TWL4030_BBSEL_3V1 0x08 #define TWL4030_BBSEL_3V2 0x0c #define TWL4030_BBISEL_MASK 0x03 #define TWL4030_BBISEL_25uA 0x00 #define TWL4030_BBISEL_150uA 0x01 #define TWL4030_BBISEL_500uA 0x02 #define TWL4030_BBISEL_1000uA 0x03 #define TWL4030_BATSTSPCHG BIT(2) #define TWL4030_BATSTSMCHG BIT(6) /* BCI interrupts */ #define TWL4030_WOVF BIT(0) /* Watchdog overflow */ #define TWL4030_TMOVF BIT(1) /* Timer overflow */ #define TWL4030_ICHGHIGH BIT(2) /* Battery charge current high */ #define TWL4030_ICHGLOW BIT(3) /* Battery cc. low / FSM state change */ #define TWL4030_ICHGEOC BIT(4) /* Battery current end-of-charge */ #define TWL4030_TBATOR2 BIT(5) /* Battery temperature out of range 2 */ #define TWL4030_TBATOR1 BIT(6) /* Battery temperature out of range 1 */ #define TWL4030_BATSTS BIT(7) /* Battery status */ #define TWL4030_VBATLVL BIT(0) /* VBAT level */ #define TWL4030_VBATOV BIT(1) /* VBAT overvoltage */ #define TWL4030_VBUSOV BIT(2) /* VBUS overvoltage */ #define TWL4030_ACCHGOV BIT(3) /* Ac charger overvoltage */ #define TWL4030_MSTATEC_USB BIT(4) #define TWL4030_MSTATEC_AC BIT(5) #define TWL4030_MSTATEC_MASK 0x0f #define TWL4030_MSTATEC_QUICK1 0x02 #define TWL4030_MSTATEC_QUICK7 0x07 #define TWL4030_MSTATEC_COMPLETE1 0x0b #define TWL4030_MSTATEC_COMPLETE4 0x0e /* * If AC (Accessory Charger) voltage exceeds 4.5V (MADC 11) * then AC is available. */ static inline int ac_available(struct iio_channel *channel_vac) { int val, err; if (!channel_vac) return 0; err = iio_read_channel_processed(channel_vac, &val); if (err < 0) return 0; return val > 4500; } static bool allow_usb; module_param(allow_usb, bool, 0644); MODULE_PARM_DESC(allow_usb, "Allow USB charge drawing default current"); struct twl4030_bci { struct device *dev; struct power_supply *ac; struct power_supply *usb; struct usb_phy *transceiver; struct notifier_block usb_nb; struct work_struct work; int irq_chg; int irq_bci; int usb_enabled; /* * ichg_* and *_cur values in uA. If any are 'large', we set * CGAIN to '1' which doubles the range for half the * precision. */ unsigned int ichg_eoc, ichg_lo, ichg_hi; unsigned int usb_cur, ac_cur; struct iio_channel *channel_vac; bool ac_is_active; int usb_mode, ac_mode; /* charging mode requested */ #define CHARGE_OFF 0 #define CHARGE_AUTO 1 #define CHARGE_LINEAR 2 /* When setting the USB current we slowly increase the * requested current until target is reached or the voltage * drops below 4.75V. In the latter case we step back one * step. */ unsigned int usb_cur_target; struct delayed_work current_worker; #define USB_CUR_STEP 20000 /* 20mA at a time */ #define USB_MIN_VOLT 4750000 /* 4.75V */ #define USB_CUR_DELAY msecs_to_jiffies(100) #define USB_MAX_CURRENT 1700000 /* TWL4030 caps at 1.7A */ unsigned long event; }; /* strings for 'usb_mode' values */ static const char *modes[] = { "off", "auto", "continuous" }; /* * clear and set bits on an given register on a given module */ static int twl4030_clear_set(u8 mod_no, u8 clear, u8 set, u8 reg) { u8 val = 0; int ret; ret = twl_i2c_read_u8(mod_no, &val, reg); if (ret) return ret; val &= ~clear; val |= set; return twl_i2c_write_u8(mod_no, val, reg); } static int twl4030_bci_read(u8 reg, u8 *val) { return twl_i2c_read_u8(TWL_MODULE_MAIN_CHARGE, val, reg); } static int twl4030_clear_set_boot_bci(u8 clear, u8 set) { return twl4030_clear_set(TWL_MODULE_PM_MASTER, clear, TWL4030_CONFIG_DONE | TWL4030_BCIAUTOWEN | set, TWL4030_PM_MASTER_BOOT_BCI); } static int twl4030bci_read_adc_val(u8 reg) { int ret, temp; u8 val; /* read MSB */ ret = twl4030_bci_read(reg + 1, &val); if (ret) return ret; temp = (int)(val & 0x03) << 8; /* read LSB */ ret = twl4030_bci_read(reg, &val); if (ret) return ret; return temp | val; } /* * TI provided formulas: * CGAIN == 0: ICHG = (BCIICHG * 1.7) / (2^10 - 1) - 0.85 * CGAIN == 1: ICHG = (BCIICHG * 3.4) / (2^10 - 1) - 1.7 * Here we use integer approximation of: * CGAIN == 0: val * 1.6618 - 0.85 * 1000 * CGAIN == 1: (val * 1.6618 - 0.85 * 1000) * 2 */ /* * convert twl register value for currents into uA */ static int regval2ua(int regval, bool cgain) { if (cgain) return (regval * 16618 - 8500 * 1000) / 5; else return (regval * 16618 - 8500 * 1000) / 10; } /* * convert uA currents into twl register value */ static int ua2regval(int ua, bool cgain) { int ret; if (cgain) ua /= 2; ret = (ua * 10 + 8500 * 1000) / 16618; /* rounding problems */ if (ret < 512) ret = 512; return ret; } static int twl4030_charger_update_current(struct twl4030_bci *bci) { int status; int cur; unsigned reg, cur_reg; u8 bcictl1, oldreg, fullreg; bool cgain = false; u8 boot_bci; /* * If AC (Accessory Charger) voltage exceeds 4.5V (MADC 11) * and AC is enabled, set current for 'ac' */ if (ac_available(bci->channel_vac)) { cur = bci->ac_cur; bci->ac_is_active = true; } else { cur = bci->usb_cur; bci->ac_is_active = false; if (cur > bci->usb_cur_target) { cur = bci->usb_cur_target; bci->usb_cur = cur; } if (cur < bci->usb_cur_target) schedule_delayed_work(&bci->current_worker, USB_CUR_DELAY); } /* First, check thresholds and see if cgain is needed */ if (bci->ichg_eoc >= 200000) cgain = true; if (bci->ichg_lo >= 400000) cgain = true; if (bci->ichg_hi >= 820000) cgain = true; if (cur > 852000) cgain = true; status = twl4030_bci_read(TWL4030_BCICTL1, &bcictl1); if (status < 0) return status; if (twl_i2c_read_u8(TWL_MODULE_PM_MASTER, &boot_bci, TWL4030_PM_MASTER_BOOT_BCI) < 0) boot_bci = 0; boot_bci &= 7; if ((!!cgain) != !!(bcictl1 & TWL4030_CGAIN)) /* Need to turn for charging while we change the * CGAIN bit. Leave it off while everything is * updated. */ twl4030_clear_set_boot_bci(boot_bci, 0); /* * For ichg_eoc, the hardware only supports reg values matching * 100XXXX000, and requires the XXXX be stored in the high nibble * of TWL4030_BCIMFTH8. */ reg = ua2regval(bci->ichg_eoc, cgain); if (reg > 0x278) reg = 0x278; if (reg < 0x200) reg = 0x200; reg = (reg >> 3) & 0xf; fullreg = reg << 4; /* * For ichg_lo, reg value must match 10XXXX0000. * XXXX is stored in low nibble of TWL4030_BCIMFTH8. */ reg = ua2regval(bci->ichg_lo, cgain); if (reg > 0x2F0) reg = 0x2F0; if (reg < 0x200) reg = 0x200; reg = (reg >> 4) & 0xf; fullreg |= reg; /* ichg_eoc and ichg_lo live in same register */ status = twl4030_bci_read(TWL4030_BCIMFTH8, &oldreg); if (status < 0) return status; if (oldreg != fullreg) { status = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0xF4, TWL4030_BCIMFKEY); if (status < 0) return status; twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, fullreg, TWL4030_BCIMFTH8); } /* ichg_hi threshold must be 1XXXX01100 (I think) */ reg = ua2regval(bci->ichg_hi, cgain); if (reg > 0x3E0) reg = 0x3E0; if (reg < 0x200) reg = 0x200; fullreg = (reg >> 5) & 0xF; fullreg <<= 4; status = twl4030_bci_read(TWL4030_BCIMFTH9, &oldreg); if (status < 0) return status; if ((oldreg & 0xF0) != fullreg) { fullreg |= (oldreg & 0x0F); status = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0xE7, TWL4030_BCIMFKEY); if (status < 0) return status; twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, fullreg, TWL4030_BCIMFTH9); } /* * And finally, set the current. This is stored in * two registers. */ reg = ua2regval(cur, cgain); /* we have only 10 bits */ if (reg > 0x3ff) reg = 0x3ff; status = twl4030_bci_read(TWL4030_BCIIREF1, &oldreg); if (status < 0) return status; cur_reg = oldreg; status = twl4030_bci_read(TWL4030_BCIIREF2, &oldreg); if (status < 0) return status; cur_reg |= oldreg << 8; if (reg != oldreg) { /* disable write protection for one write access for * BCIIREF */ status = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0xE7, TWL4030_BCIMFKEY); if (status < 0) return status; status = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, (reg & 0x100) ? 3 : 2, TWL4030_BCIIREF2); if (status < 0) return status; /* disable write protection for one write access for * BCIIREF */ status = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0xE7, TWL4030_BCIMFKEY); if (status < 0) return status; status = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, reg & 0xff, TWL4030_BCIIREF1); } if ((!!cgain) != !!(bcictl1 & TWL4030_CGAIN)) { /* Flip CGAIN and re-enable charging */ bcictl1 ^= TWL4030_CGAIN; twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, bcictl1, TWL4030_BCICTL1); twl4030_clear_set_boot_bci(0, boot_bci); } return 0; } static int twl4030_charger_get_current(void); static void twl4030_current_worker(struct work_struct *data) { int v, curr; int res; struct twl4030_bci *bci = container_of(data, struct twl4030_bci, current_worker.work); res = twl4030bci_read_adc_val(TWL4030_BCIVBUS); if (res < 0) v = 0; else /* BCIVBUS uses ADCIN8, 7/1023 V/step */ v = res * 6843; curr = twl4030_charger_get_current(); dev_dbg(bci->dev, "v=%d cur=%d limit=%d target=%d\n", v, curr, bci->usb_cur, bci->usb_cur_target); if (v < USB_MIN_VOLT) { /* Back up and stop adjusting. */ if (bci->usb_cur >= USB_CUR_STEP) bci->usb_cur -= USB_CUR_STEP; bci->usb_cur_target = bci->usb_cur; } else if (bci->usb_cur >= bci->usb_cur_target || bci->usb_cur + USB_CUR_STEP > USB_MAX_CURRENT) { /* Reached target and voltage is OK - stop */ return; } else { bci->usb_cur += USB_CUR_STEP; schedule_delayed_work(&bci->current_worker, USB_CUR_DELAY); } twl4030_charger_update_current(bci); } /* * Enable/Disable USB Charge functionality. */ static int twl4030_charger_enable_usb(struct twl4030_bci *bci, bool enable) { int ret; u32 reg; if (bci->usb_mode == CHARGE_OFF) enable = false; if (enable && !IS_ERR_OR_NULL(bci->transceiver)) { twl4030_charger_update_current(bci); /* Need to keep phy powered */ if (!bci->usb_enabled) { pm_runtime_get_sync(bci->transceiver->dev); bci->usb_enabled = 1; } if (bci->usb_mode == CHARGE_AUTO) { /* Enable interrupts now. */ reg = ~(u32)(TWL4030_ICHGLOW | TWL4030_ICHGEOC | TWL4030_TBATOR2 | TWL4030_TBATOR1 | TWL4030_BATSTS); ret = twl_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, reg, TWL4030_INTERRUPTS_BCIIMR1A); if (ret < 0) { dev_err(bci->dev, "failed to unmask interrupts: %d\n", ret); return ret; } /* forcing the field BCIAUTOUSB (BOOT_BCI[1]) to 1 */ ret = twl4030_clear_set_boot_bci(0, TWL4030_BCIAUTOUSB); } /* forcing USBFASTMCHG(BCIMFSTS4[2]) to 1 */ ret = twl4030_clear_set(TWL_MODULE_MAIN_CHARGE, 0, TWL4030_USBFASTMCHG, TWL4030_BCIMFSTS4); if (bci->usb_mode == CHARGE_LINEAR) { /* Enable interrupts now. */ reg = ~(u32)(TWL4030_ICHGLOW | TWL4030_TBATOR2 | TWL4030_TBATOR1 | TWL4030_BATSTS); ret = twl_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, reg, TWL4030_INTERRUPTS_BCIIMR1A); if (ret < 0) { dev_err(bci->dev, "failed to unmask interrupts: %d\n", ret); return ret; } twl4030_clear_set_boot_bci(TWL4030_BCIAUTOAC|TWL4030_CVENAC, 0); /* Watch dog key: WOVF acknowledge */ ret = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0x33, TWL4030_BCIWDKEY); /* 0x24 + EKEY6: off mode */ ret = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0x2a, TWL4030_BCIMDKEY); /* EKEY2: Linear charge: USB path */ ret = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0x26, TWL4030_BCIMDKEY); /* WDKEY5: stop watchdog count */ ret = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0xf3, TWL4030_BCIWDKEY); /* enable MFEN3 access */ ret = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0x9c, TWL4030_BCIMFKEY); /* ICHGEOCEN - end-of-charge monitor (current < 80mA) * (charging continues) * ICHGLOWEN - current level monitor (charge continues) * don't monitor over-current or heat save */ ret = twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0xf0, TWL4030_BCIMFEN3); } } else { ret = twl4030_clear_set_boot_bci(TWL4030_BCIAUTOUSB, 0); ret |= twl_i2c_write_u8(TWL_MODULE_MAIN_CHARGE, 0x2a, TWL4030_BCIMDKEY); if (bci->usb_enabled) { pm_runtime_mark_last_busy(bci->transceiver->dev); pm_runtime_put_autosuspend(bci->transceiver->dev); bci->usb_enabled = 0; } bci->usb_cur = 0; } return ret; } /* * Enable/Disable AC Charge funtionality. */ static int twl4030_charger_enable_ac(struct twl4030_bci *bci, bool enable) { int ret; if (bci->ac_mode == CHARGE_OFF) enable = false; if (enable) ret = twl4030_clear_set_boot_bci(0, TWL4030_BCIAUTOAC); else ret = twl4030_clear_set_boot_bci(TWL4030_BCIAUTOAC, 0); return ret; } /* * Enable/Disable charging of Backup Battery. */ static int twl4030_charger_enable_backup(int uvolt, int uamp) { int ret; u8 flags; if (uvolt < 2500000 || uamp < 25) { /* disable charging of backup battery */ ret = twl4030_clear_set(TWL_MODULE_PM_RECEIVER, TWL4030_BBCHEN, 0, TWL4030_BB_CFG); return ret; } flags = TWL4030_BBCHEN; if (uvolt >= 3200000) flags |= TWL4030_BBSEL_3V2; else if (uvolt >= 3100000) flags |= TWL4030_BBSEL_3V1; else if (uvolt >= 3000000) flags |= TWL4030_BBSEL_3V0; else flags |= TWL4030_BBSEL_2V5; if (uamp >= 1000) flags |= TWL4030_BBISEL_1000uA; else if (uamp >= 500) flags |= TWL4030_BBISEL_500uA; else if (uamp >= 150) flags |= TWL4030_BBISEL_150uA; else flags |= TWL4030_BBISEL_25uA; ret = twl4030_clear_set(TWL_MODULE_PM_RECEIVER, TWL4030_BBSEL_MASK | TWL4030_BBISEL_MASK, flags, TWL4030_BB_CFG); return ret; } /* * TWL4030 CHG_PRES (AC charger presence) events */ static irqreturn_t twl4030_charger_interrupt(int irq, void *arg) { struct twl4030_bci *bci = arg; dev_dbg(bci->dev, "CHG_PRES irq\n"); /* reset current on each 'plug' event */ bci->ac_cur = 500000; twl4030_charger_update_current(bci); power_supply_changed(bci->ac); power_supply_changed(bci->usb); return IRQ_HANDLED; } /* * TWL4030 BCI monitoring events */ static irqreturn_t twl4030_bci_interrupt(int irq, void *arg) { struct twl4030_bci *bci = arg; u8 irqs1, irqs2; int ret; ret = twl_i2c_read_u8(TWL4030_MODULE_INTERRUPTS, &irqs1, TWL4030_INTERRUPTS_BCIISR1A); if (ret < 0) return IRQ_HANDLED; ret = twl_i2c_read_u8(TWL4030_MODULE_INTERRUPTS, &irqs2, TWL4030_INTERRUPTS_BCIISR2A); if (ret < 0) return IRQ_HANDLED; dev_dbg(bci->dev, "BCI irq %02x %02x\n", irqs2, irqs1); if (irqs1 & (TWL4030_ICHGLOW | TWL4030_ICHGEOC)) { /* charger state change, inform the core */ power_supply_changed(bci->ac); power_supply_changed(bci->usb); } twl4030_charger_update_current(bci); /* various monitoring events, for now we just log them here */ if (irqs1 & (TWL4030_TBATOR2 | TWL4030_TBATOR1)) dev_warn(bci->dev, "battery temperature out of range\n"); if (irqs1 & TWL4030_BATSTS) dev_crit(bci->dev, "battery disconnected\n"); if (irqs2 & TWL4030_VBATOV) dev_crit(bci->dev, "VBAT overvoltage\n"); if (irqs2 & TWL4030_VBUSOV) dev_crit(bci->dev, "VBUS overvoltage\n"); if (irqs2 & TWL4030_ACCHGOV) dev_crit(bci->dev, "Ac charger overvoltage\n"); return IRQ_HANDLED; } static void twl4030_bci_usb_work(struct work_struct *data) { struct twl4030_bci *bci = container_of(data, struct twl4030_bci, work); switch (bci->event) { case USB_EVENT_VBUS: case USB_EVENT_CHARGER: twl4030_charger_enable_usb(bci, true); break; case USB_EVENT_NONE: twl4030_charger_enable_usb(bci, false); break; } } static int twl4030_bci_usb_ncb(struct notifier_block *nb, unsigned long val, void *priv) { struct twl4030_bci *bci = container_of(nb, struct twl4030_bci, usb_nb); dev_dbg(bci->dev, "OTG notify %lu\n", val); /* reset current on each 'plug' event */ if (allow_usb) bci->usb_cur_target = 500000; else bci->usb_cur_target = 100000; bci->event = val; schedule_work(&bci->work); return NOTIFY_OK; } /* * sysfs charger enabled store */ static ssize_t twl4030_bci_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t n) { struct twl4030_bci *bci = dev_get_drvdata(dev->parent); int mode; int status; mode = sysfs_match_string(modes, buf); if (mode < 0) return mode; if (dev == &bci->ac->dev) { if (mode == 2) return -EINVAL; twl4030_charger_enable_ac(bci, false); bci->ac_mode = mode; status = twl4030_charger_enable_ac(bci, true); } else { twl4030_charger_enable_usb(bci, false); bci->usb_mode = mode; status = twl4030_charger_enable_usb(bci, true); } return (status == 0) ? n : status; } /* * sysfs charger enabled show */ static ssize_t twl4030_bci_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct twl4030_bci *bci = dev_get_drvdata(dev->parent); int len = 0; int i; int mode = bci->usb_mode; if (dev == &bci->ac->dev) mode = bci->ac_mode; for (i = 0; i < ARRAY_SIZE(modes); i++) if (mode == i) len += sysfs_emit_at(buf, len, "[%s] ", modes[i]); else len += sysfs_emit_at(buf, len, "%s ", modes[i]); buf[len-1] = '\n'; return len; } static DEVICE_ATTR(mode, 0644, twl4030_bci_mode_show, twl4030_bci_mode_store); static int twl4030_charger_get_current(void) { int curr; int ret; u8 bcictl1; curr = twl4030bci_read_adc_val(TWL4030_BCIICHG); if (curr < 0) return curr; ret = twl4030_bci_read(TWL4030_BCICTL1, &bcictl1); if (ret) return ret; return regval2ua(curr, bcictl1 & TWL4030_CGAIN); } /* * Returns the main charge FSM state * Or < 0 on failure. */ static int twl4030bci_state(struct twl4030_bci *bci) { int ret; u8 state; ret = twl4030_bci_read(TWL4030_BCIMSTATEC, &state); if (ret) { dev_err(bci->dev, "error reading BCIMSTATEC\n"); return ret; } dev_dbg(bci->dev, "state: %02x\n", state); return state; } static int twl4030_bci_state_to_status(int state) { state &= TWL4030_MSTATEC_MASK; if (TWL4030_MSTATEC_QUICK1 <= state && state <= TWL4030_MSTATEC_QUICK7) return POWER_SUPPLY_STATUS_CHARGING; else if (TWL4030_MSTATEC_COMPLETE1 <= state && state <= TWL4030_MSTATEC_COMPLETE4) return POWER_SUPPLY_STATUS_FULL; else return POWER_SUPPLY_STATUS_NOT_CHARGING; } static int twl4030_bci_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct twl4030_bci *bci = dev_get_drvdata(psy->dev.parent); int is_charging; int state; int ret; state = twl4030bci_state(bci); if (state < 0) return state; if (psy->desc->type == POWER_SUPPLY_TYPE_USB) is_charging = state & TWL4030_MSTATEC_USB; else is_charging = state & TWL4030_MSTATEC_AC; if (!is_charging) { u8 s; ret = twl4030_bci_read(TWL4030_BCIMDEN, &s); if (ret < 0) return ret; if (psy->desc->type == POWER_SUPPLY_TYPE_USB) is_charging = s & 1; else is_charging = s & 2; if (is_charging) /* A little white lie */ state = TWL4030_MSTATEC_QUICK1; } switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (is_charging) val->intval = twl4030_bci_state_to_status(state); else val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: /* charging must be active for meaningful result */ if (!is_charging) return -ENODATA; if (psy->desc->type == POWER_SUPPLY_TYPE_USB) { ret = twl4030bci_read_adc_val(TWL4030_BCIVBUS); if (ret < 0) return ret; /* BCIVBUS uses ADCIN8, 7/1023 V/step */ val->intval = ret * 6843; } else { ret = twl4030bci_read_adc_val(TWL4030_BCIVAC); if (ret < 0) return ret; /* BCIVAC uses ADCIN11, 10/1023 V/step */ val->intval = ret * 9775; } break; case POWER_SUPPLY_PROP_CURRENT_NOW: if (!is_charging) return -ENODATA; /* current measurement is shared between AC and USB */ ret = twl4030_charger_get_current(); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = is_charging && twl4030_bci_state_to_status(state) != POWER_SUPPLY_STATUS_NOT_CHARGING; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: val->intval = -1; if (psy->desc->type != POWER_SUPPLY_TYPE_USB) { if (!bci->ac_is_active) val->intval = bci->ac_cur; } else { if (bci->ac_is_active) val->intval = bci->usb_cur_target; } if (val->intval < 0) { u8 bcictl1; val->intval = twl4030bci_read_adc_val(TWL4030_BCIIREF1); if (val->intval < 0) return val->intval; ret = twl4030_bci_read(TWL4030_BCICTL1, &bcictl1); if (ret < 0) return ret; val->intval = regval2ua(val->intval, bcictl1 & TWL4030_CGAIN); } break; default: return -EINVAL; } return 0; } static int twl4030_bci_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct twl4030_bci *bci = dev_get_drvdata(psy->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: if (psy->desc->type == POWER_SUPPLY_TYPE_USB) bci->usb_cur_target = val->intval; else bci->ac_cur = val->intval; twl4030_charger_update_current(bci); break; default: return -EINVAL; } return 0; } static int twl4030_bci_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return true; default: return false; } } static enum power_supply_property twl4030_charger_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, }; #ifdef CONFIG_OF static const struct twl4030_bci_platform_data * twl4030_bci_parse_dt(struct device *dev) { struct device_node *np = dev->of_node; struct twl4030_bci_platform_data *pdata; u32 num; if (!np) return NULL; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return pdata; if (of_property_read_u32(np, "ti,bb-uvolt", &num) == 0) pdata->bb_uvolt = num; if (of_property_read_u32(np, "ti,bb-uamp", &num) == 0) pdata->bb_uamp = num; return pdata; } #else static inline const struct twl4030_bci_platform_data * twl4030_bci_parse_dt(struct device *dev) { return NULL; } #endif static const struct power_supply_desc twl4030_bci_ac_desc = { .name = "twl4030_ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = twl4030_charger_props, .num_properties = ARRAY_SIZE(twl4030_charger_props), .get_property = twl4030_bci_get_property, .set_property = twl4030_bci_set_property, .property_is_writeable = twl4030_bci_property_is_writeable, }; static const struct power_supply_desc twl4030_bci_usb_desc = { .name = "twl4030_usb", .type = POWER_SUPPLY_TYPE_USB, .properties = twl4030_charger_props, .num_properties = ARRAY_SIZE(twl4030_charger_props), .get_property = twl4030_bci_get_property, .set_property = twl4030_bci_set_property, .property_is_writeable = twl4030_bci_property_is_writeable, }; static int twl4030_bci_probe(struct platform_device *pdev) { struct twl4030_bci *bci; const struct twl4030_bci_platform_data *pdata = pdev->dev.platform_data; int ret; u32 reg; bci = devm_kzalloc(&pdev->dev, sizeof(*bci), GFP_KERNEL); if (bci == NULL) return -ENOMEM; if (!pdata) pdata = twl4030_bci_parse_dt(&pdev->dev); bci->ichg_eoc = 80100; /* Stop charging when current drops to here */ bci->ichg_lo = 241000; /* Low threshold */ bci->ichg_hi = 500000; /* High threshold */ bci->ac_cur = 500000; /* 500mA */ if (allow_usb) bci->usb_cur_target = 500000; /* 500mA */ else bci->usb_cur_target = 100000; /* 100mA */ bci->usb_mode = CHARGE_AUTO; bci->ac_mode = CHARGE_AUTO; bci->dev = &pdev->dev; bci->irq_chg = platform_get_irq(pdev, 0); bci->irq_bci = platform_get_irq(pdev, 1); platform_set_drvdata(pdev, bci); INIT_WORK(&bci->work, twl4030_bci_usb_work); INIT_DELAYED_WORK(&bci->current_worker, twl4030_current_worker); bci->channel_vac = devm_iio_channel_get(&pdev->dev, "vac"); if (IS_ERR(bci->channel_vac)) { ret = PTR_ERR(bci->channel_vac); if (ret == -EPROBE_DEFER) return ret; /* iio not ready */ dev_warn(&pdev->dev, "could not request vac iio channel (%d)", ret); bci->channel_vac = NULL; } if (bci->dev->of_node) { struct device_node *phynode; phynode = of_get_compatible_child(bci->dev->of_node->parent, "ti,twl4030-usb"); if (phynode) { bci->usb_nb.notifier_call = twl4030_bci_usb_ncb; bci->transceiver = devm_usb_get_phy_by_node( bci->dev, phynode, &bci->usb_nb); of_node_put(phynode); if (IS_ERR(bci->transceiver)) { ret = PTR_ERR(bci->transceiver); if (ret == -EPROBE_DEFER) return ret; /* phy not ready */ dev_warn(&pdev->dev, "could not request transceiver (%d)", ret); bci->transceiver = NULL; } } } bci->ac = devm_power_supply_register(&pdev->dev, &twl4030_bci_ac_desc, NULL); if (IS_ERR(bci->ac)) { ret = PTR_ERR(bci->ac); dev_err(&pdev->dev, "failed to register ac: %d\n", ret); return ret; } bci->usb = devm_power_supply_register(&pdev->dev, &twl4030_bci_usb_desc, NULL); if (IS_ERR(bci->usb)) { ret = PTR_ERR(bci->usb); dev_err(&pdev->dev, "failed to register usb: %d\n", ret); return ret; } ret = devm_request_threaded_irq(&pdev->dev, bci->irq_chg, NULL, twl4030_charger_interrupt, IRQF_ONESHOT, pdev->name, bci); if (ret < 0) { dev_err(&pdev->dev, "could not request irq %d, status %d\n", bci->irq_chg, ret); return ret; } ret = devm_request_threaded_irq(&pdev->dev, bci->irq_bci, NULL, twl4030_bci_interrupt, IRQF_ONESHOT, pdev->name, bci); if (ret < 0) { dev_err(&pdev->dev, "could not request irq %d, status %d\n", bci->irq_bci, ret); return ret; } /* Enable interrupts now. */ reg = ~(u32)(TWL4030_ICHGLOW | TWL4030_ICHGEOC | TWL4030_TBATOR2 | TWL4030_TBATOR1 | TWL4030_BATSTS); ret = twl_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, reg, TWL4030_INTERRUPTS_BCIIMR1A); if (ret < 0) { dev_err(&pdev->dev, "failed to unmask interrupts: %d\n", ret); return ret; } reg = ~(u32)(TWL4030_VBATOV | TWL4030_VBUSOV | TWL4030_ACCHGOV); ret = twl_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, reg, TWL4030_INTERRUPTS_BCIIMR2A); if (ret < 0) dev_warn(&pdev->dev, "failed to unmask interrupts: %d\n", ret); twl4030_charger_update_current(bci); if (device_create_file(&bci->usb->dev, &dev_attr_mode)) dev_warn(&pdev->dev, "could not create sysfs file\n"); if (device_create_file(&bci->ac->dev, &dev_attr_mode)) dev_warn(&pdev->dev, "could not create sysfs file\n"); twl4030_charger_enable_ac(bci, true); if (!IS_ERR_OR_NULL(bci->transceiver)) twl4030_bci_usb_ncb(&bci->usb_nb, bci->transceiver->last_event, NULL); else twl4030_charger_enable_usb(bci, false); if (pdata) twl4030_charger_enable_backup(pdata->bb_uvolt, pdata->bb_uamp); else twl4030_charger_enable_backup(0, 0); return 0; } static int twl4030_bci_remove(struct platform_device *pdev) { struct twl4030_bci *bci = platform_get_drvdata(pdev); twl4030_charger_enable_ac(bci, false); twl4030_charger_enable_usb(bci, false); twl4030_charger_enable_backup(0, 0); device_remove_file(&bci->usb->dev, &dev_attr_mode); device_remove_file(&bci->ac->dev, &dev_attr_mode); /* mask interrupts */ twl_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, 0xff, TWL4030_INTERRUPTS_BCIIMR1A); twl_i2c_write_u8(TWL4030_MODULE_INTERRUPTS, 0xff, TWL4030_INTERRUPTS_BCIIMR2A); return 0; } static const struct of_device_id twl_bci_of_match[] __maybe_unused = { {.compatible = "ti,twl4030-bci", }, { } }; MODULE_DEVICE_TABLE(of, twl_bci_of_match); static struct platform_driver twl4030_bci_driver = { .probe = twl4030_bci_probe, .remove = twl4030_bci_remove, .driver = { .name = "twl4030_bci", .of_match_table = of_match_ptr(twl_bci_of_match), }, }; module_platform_driver(twl4030_bci_driver); MODULE_AUTHOR("Gražvydas Ignotas"); MODULE_DESCRIPTION("TWL4030 Battery Charger Interface driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:twl4030_bci");
linux-master
drivers/power/supply/twl4030_charger.c
// SPDX-License-Identifier: GPL-2.0+ /* * AC driver for 7th-generation Microsoft Surface devices via Surface System * Aggregator Module (SSAM). * * Copyright (C) 2019-2021 Maximilian Luz <[email protected]> */ #include <asm/unaligned.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/power_supply.h> #include <linux/types.h> #include <linux/surface_aggregator/device.h> /* -- SAM interface. -------------------------------------------------------- */ enum sam_event_cid_bat { SAM_EVENT_CID_BAT_ADP = 0x17, }; enum sam_battery_sta { SAM_BATTERY_STA_OK = 0x0f, SAM_BATTERY_STA_PRESENT = 0x10, }; /* Get battery status (_STA). */ SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_sta, __le32, { .target_category = SSAM_SSH_TC_BAT, .command_id = 0x01, }); /* Get platform power source for battery (_PSR / DPTF PSRC). */ SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_psrc, __le32, { .target_category = SSAM_SSH_TC_BAT, .command_id = 0x0d, }); /* -- Device structures. ---------------------------------------------------- */ struct spwr_psy_properties { const char *name; struct ssam_event_registry registry; }; struct spwr_ac_device { struct ssam_device *sdev; char name[32]; struct power_supply *psy; struct power_supply_desc psy_desc; struct ssam_event_notifier notif; struct mutex lock; /* Guards access to state below. */ __le32 state; }; /* -- State management. ----------------------------------------------------- */ static int spwr_ac_update_unlocked(struct spwr_ac_device *ac) { __le32 old = ac->state; int status; lockdep_assert_held(&ac->lock); status = ssam_retry(ssam_bat_get_psrc, ac->sdev, &ac->state); if (status < 0) return status; return old != ac->state; } static int spwr_ac_update(struct spwr_ac_device *ac) { int status; mutex_lock(&ac->lock); status = spwr_ac_update_unlocked(ac); mutex_unlock(&ac->lock); return status; } static int spwr_ac_recheck(struct spwr_ac_device *ac) { int status; status = spwr_ac_update(ac); if (status > 0) power_supply_changed(ac->psy); return status >= 0 ? 0 : status; } static u32 spwr_notify_ac(struct ssam_event_notifier *nf, const struct ssam_event *event) { struct spwr_ac_device *ac; int status; ac = container_of(nf, struct spwr_ac_device, notif); dev_dbg(&ac->sdev->dev, "power event (cid = %#04x, iid = %#04x, tid = %#04x)\n", event->command_id, event->instance_id, event->target_id); /* * Allow events of all targets/instances here. Global adapter status * seems to be handled via target=1 and instance=1, but events are * reported on all targets/instances in use. * * While it should be enough to just listen on 1/1, listen everywhere to * make sure we don't miss anything. */ switch (event->command_id) { case SAM_EVENT_CID_BAT_ADP: status = spwr_ac_recheck(ac); return ssam_notifier_from_errno(status) | SSAM_NOTIF_HANDLED; default: return 0; } } /* -- Properties. ----------------------------------------------------------- */ static const enum power_supply_property spwr_ac_props[] = { POWER_SUPPLY_PROP_ONLINE, }; static int spwr_ac_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct spwr_ac_device *ac = power_supply_get_drvdata(psy); int status; mutex_lock(&ac->lock); status = spwr_ac_update_unlocked(ac); if (status) goto out; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = !!le32_to_cpu(ac->state); break; default: status = -EINVAL; goto out; } out: mutex_unlock(&ac->lock); return status; } /* -- Device setup. --------------------------------------------------------- */ static char *battery_supplied_to[] = { "BAT1", "BAT2", }; static void spwr_ac_init(struct spwr_ac_device *ac, struct ssam_device *sdev, struct ssam_event_registry registry, const char *name) { mutex_init(&ac->lock); strncpy(ac->name, name, ARRAY_SIZE(ac->name) - 1); ac->sdev = sdev; ac->notif.base.priority = 1; ac->notif.base.fn = spwr_notify_ac; ac->notif.event.reg = registry; ac->notif.event.id.target_category = sdev->uid.category; ac->notif.event.id.instance = 0; ac->notif.event.mask = SSAM_EVENT_MASK_NONE; ac->notif.event.flags = SSAM_EVENT_SEQUENCED; ac->psy_desc.name = ac->name; ac->psy_desc.type = POWER_SUPPLY_TYPE_MAINS; ac->psy_desc.properties = spwr_ac_props; ac->psy_desc.num_properties = ARRAY_SIZE(spwr_ac_props); ac->psy_desc.get_property = spwr_ac_get_property; } static int spwr_ac_register(struct spwr_ac_device *ac) { struct power_supply_config psy_cfg = {}; __le32 sta; int status; /* Make sure the device is there and functioning properly. */ status = ssam_retry(ssam_bat_get_sta, ac->sdev, &sta); if (status) return status; if ((le32_to_cpu(sta) & SAM_BATTERY_STA_OK) != SAM_BATTERY_STA_OK) return -ENODEV; psy_cfg.drv_data = ac; psy_cfg.supplied_to = battery_supplied_to; psy_cfg.num_supplicants = ARRAY_SIZE(battery_supplied_to); ac->psy = devm_power_supply_register(&ac->sdev->dev, &ac->psy_desc, &psy_cfg); if (IS_ERR(ac->psy)) return PTR_ERR(ac->psy); return ssam_device_notifier_register(ac->sdev, &ac->notif); } /* -- Driver setup. --------------------------------------------------------- */ static int __maybe_unused surface_ac_resume(struct device *dev) { return spwr_ac_recheck(dev_get_drvdata(dev)); } static SIMPLE_DEV_PM_OPS(surface_ac_pm_ops, NULL, surface_ac_resume); static int surface_ac_probe(struct ssam_device *sdev) { const struct spwr_psy_properties *p; struct spwr_ac_device *ac; p = ssam_device_get_match_data(sdev); if (!p) return -ENODEV; ac = devm_kzalloc(&sdev->dev, sizeof(*ac), GFP_KERNEL); if (!ac) return -ENOMEM; spwr_ac_init(ac, sdev, p->registry, p->name); ssam_device_set_drvdata(sdev, ac); return spwr_ac_register(ac); } static void surface_ac_remove(struct ssam_device *sdev) { struct spwr_ac_device *ac = ssam_device_get_drvdata(sdev); ssam_device_notifier_unregister(sdev, &ac->notif); } static const struct spwr_psy_properties spwr_psy_props_adp1 = { .name = "ADP1", .registry = SSAM_EVENT_REGISTRY_SAM, }; static const struct ssam_device_id surface_ac_match[] = { { SSAM_SDEV(BAT, SAM, 0x01, 0x01), (unsigned long)&spwr_psy_props_adp1 }, { }, }; MODULE_DEVICE_TABLE(ssam, surface_ac_match); static struct ssam_device_driver surface_ac_driver = { .probe = surface_ac_probe, .remove = surface_ac_remove, .match_table = surface_ac_match, .driver = { .name = "surface_ac", .pm = &surface_ac_pm_ops, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; module_ssam_device_driver(surface_ac_driver); MODULE_AUTHOR("Maximilian Luz <[email protected]>"); MODULE_DESCRIPTION("AC driver for Surface System Aggregator Module"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/surface_charger.c
// SPDX-License-Identifier: GPL-2.0+ /* * max77976_charger.c - Driver for the Maxim MAX77976 battery charger * * Copyright (C) 2021 Luca Ceresoli * Author: Luca Ceresoli <[email protected]> */ #include <linux/i2c.h> #include <linux/module.h> #include <linux/power_supply.h> #include <linux/regmap.h> #define MAX77976_DRIVER_NAME "max77976-charger" #define MAX77976_CHIP_ID 0x76 static const char *max77976_manufacturer = "Maxim Integrated"; static const char *max77976_model = "MAX77976"; /* -------------------------------------------------------------------------- * Register map */ #define MAX77976_REG_CHIP_ID 0x00 #define MAX77976_REG_CHIP_REVISION 0x01 #define MAX77976_REG_CHG_INT_OK 0x12 #define MAX77976_REG_CHG_DETAILS_01 0x14 #define MAX77976_REG_CHG_CNFG_00 0x16 #define MAX77976_REG_CHG_CNFG_02 0x18 #define MAX77976_REG_CHG_CNFG_06 0x1c #define MAX77976_REG_CHG_CNFG_09 0x1f /* CHG_DETAILS_01.CHG_DTLS values */ enum max77976_charging_state { MAX77976_CHARGING_PREQUALIFICATION = 0x0, MAX77976_CHARGING_FAST_CONST_CURRENT, MAX77976_CHARGING_FAST_CONST_VOLTAGE, MAX77976_CHARGING_TOP_OFF, MAX77976_CHARGING_DONE, MAX77976_CHARGING_RESERVED_05, MAX77976_CHARGING_TIMER_FAULT, MAX77976_CHARGING_SUSPENDED_QBATT_OFF, MAX77976_CHARGING_OFF, MAX77976_CHARGING_RESERVED_09, MAX77976_CHARGING_THERMAL_SHUTDOWN, MAX77976_CHARGING_WATCHDOG_EXPIRED, MAX77976_CHARGING_SUSPENDED_JEITA, MAX77976_CHARGING_SUSPENDED_THM_REMOVAL, MAX77976_CHARGING_SUSPENDED_PIN, MAX77976_CHARGING_RESERVED_0F, }; /* CHG_DETAILS_01.BAT_DTLS values */ enum max77976_battery_state { MAX77976_BATTERY_BATTERY_REMOVAL = 0x0, MAX77976_BATTERY_PREQUALIFICATION, MAX77976_BATTERY_TIMER_FAULT, MAX77976_BATTERY_REGULAR_VOLTAGE, MAX77976_BATTERY_LOW_VOLTAGE, MAX77976_BATTERY_OVERVOLTAGE, MAX77976_BATTERY_RESERVED, MAX77976_BATTERY_BATTERY_ONLY, // No valid adapter is present }; /* CHG_CNFG_00.MODE values */ enum max77976_mode { MAX77976_MODE_CHARGER_BUCK = 0x5, MAX77976_MODE_BOOST = 0x9, }; /* CHG_CNFG_02.CHG_CC: charge current limit, 100..5500 mA, 50 mA steps */ #define MAX77976_CHG_CC_STEP 50000U #define MAX77976_CHG_CC_MIN 100000U #define MAX77976_CHG_CC_MAX 5500000U /* CHG_CNFG_09.CHGIN_ILIM: input current limit, 100..3200 mA, 100 mA steps */ #define MAX77976_CHGIN_ILIM_STEP 100000U #define MAX77976_CHGIN_ILIM_MIN 100000U #define MAX77976_CHGIN_ILIM_MAX 3200000U enum max77976_field_idx { VERSION, REVISION, /* CHIP_REVISION */ CHGIN_OK, /* CHG_INT_OK */ BAT_DTLS, CHG_DTLS, /* CHG_DETAILS_01 */ MODE, /* CHG_CNFG_00 */ CHG_CC, /* CHG_CNFG_02 */ CHGPROT, /* CHG_CNFG_06 */ CHGIN_ILIM, /* CHG_CNFG_09 */ MAX77976_N_REGMAP_FIELDS }; static const struct reg_field max77976_reg_field[MAX77976_N_REGMAP_FIELDS] = { [VERSION] = REG_FIELD(MAX77976_REG_CHIP_REVISION, 4, 7), [REVISION] = REG_FIELD(MAX77976_REG_CHIP_REVISION, 0, 3), [CHGIN_OK] = REG_FIELD(MAX77976_REG_CHG_INT_OK, 6, 6), [CHG_DTLS] = REG_FIELD(MAX77976_REG_CHG_DETAILS_01, 0, 3), [BAT_DTLS] = REG_FIELD(MAX77976_REG_CHG_DETAILS_01, 4, 6), [MODE] = REG_FIELD(MAX77976_REG_CHG_CNFG_00, 0, 3), [CHG_CC] = REG_FIELD(MAX77976_REG_CHG_CNFG_02, 0, 6), [CHGPROT] = REG_FIELD(MAX77976_REG_CHG_CNFG_06, 2, 3), [CHGIN_ILIM] = REG_FIELD(MAX77976_REG_CHG_CNFG_09, 0, 5), }; static const struct regmap_config max77976_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x24, }; /* -------------------------------------------------------------------------- * Data structures */ struct max77976 { struct i2c_client *client; struct regmap *regmap; struct regmap_field *rfield[MAX77976_N_REGMAP_FIELDS]; }; /* -------------------------------------------------------------------------- * power_supply properties */ static int max77976_get_status(struct max77976 *chg, int *val) { unsigned int regval; int err; err = regmap_field_read(chg->rfield[CHG_DTLS], &regval); if (err < 0) return err; switch (regval) { case MAX77976_CHARGING_PREQUALIFICATION: case MAX77976_CHARGING_FAST_CONST_CURRENT: case MAX77976_CHARGING_FAST_CONST_VOLTAGE: case MAX77976_CHARGING_TOP_OFF: *val = POWER_SUPPLY_STATUS_CHARGING; break; case MAX77976_CHARGING_DONE: *val = POWER_SUPPLY_STATUS_FULL; break; case MAX77976_CHARGING_TIMER_FAULT: case MAX77976_CHARGING_SUSPENDED_QBATT_OFF: case MAX77976_CHARGING_SUSPENDED_JEITA: case MAX77976_CHARGING_SUSPENDED_THM_REMOVAL: case MAX77976_CHARGING_SUSPENDED_PIN: *val = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case MAX77976_CHARGING_OFF: case MAX77976_CHARGING_THERMAL_SHUTDOWN: case MAX77976_CHARGING_WATCHDOG_EXPIRED: *val = POWER_SUPPLY_STATUS_DISCHARGING; break; default: *val = POWER_SUPPLY_STATUS_UNKNOWN; } return 0; } static int max77976_get_charge_type(struct max77976 *chg, int *val) { unsigned int regval; int err; err = regmap_field_read(chg->rfield[CHG_DTLS], &regval); if (err < 0) return err; switch (regval) { case MAX77976_CHARGING_PREQUALIFICATION: *val = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case MAX77976_CHARGING_FAST_CONST_CURRENT: case MAX77976_CHARGING_FAST_CONST_VOLTAGE: *val = POWER_SUPPLY_CHARGE_TYPE_FAST; break; case MAX77976_CHARGING_TOP_OFF: *val = POWER_SUPPLY_CHARGE_TYPE_STANDARD; break; case MAX77976_CHARGING_DONE: case MAX77976_CHARGING_TIMER_FAULT: case MAX77976_CHARGING_SUSPENDED_QBATT_OFF: case MAX77976_CHARGING_OFF: case MAX77976_CHARGING_THERMAL_SHUTDOWN: case MAX77976_CHARGING_WATCHDOG_EXPIRED: case MAX77976_CHARGING_SUSPENDED_JEITA: case MAX77976_CHARGING_SUSPENDED_THM_REMOVAL: case MAX77976_CHARGING_SUSPENDED_PIN: *val = POWER_SUPPLY_CHARGE_TYPE_NONE; break; default: *val = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; } return 0; } static int max77976_get_health(struct max77976 *chg, int *val) { unsigned int regval; int err; err = regmap_field_read(chg->rfield[BAT_DTLS], &regval); if (err < 0) return err; switch (regval) { case MAX77976_BATTERY_BATTERY_REMOVAL: *val = POWER_SUPPLY_HEALTH_NO_BATTERY; break; case MAX77976_BATTERY_LOW_VOLTAGE: case MAX77976_BATTERY_REGULAR_VOLTAGE: *val = POWER_SUPPLY_HEALTH_GOOD; break; case MAX77976_BATTERY_TIMER_FAULT: *val = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; break; case MAX77976_BATTERY_OVERVOLTAGE: *val = POWER_SUPPLY_HEALTH_OVERVOLTAGE; break; case MAX77976_BATTERY_PREQUALIFICATION: case MAX77976_BATTERY_BATTERY_ONLY: *val = POWER_SUPPLY_HEALTH_UNKNOWN; break; default: *val = POWER_SUPPLY_HEALTH_UNKNOWN; } return 0; } static int max77976_get_online(struct max77976 *chg, int *val) { unsigned int regval; int err; err = regmap_field_read(chg->rfield[CHGIN_OK], &regval); if (err < 0) return err; *val = (regval ? 1 : 0); return 0; } static int max77976_get_integer(struct max77976 *chg, enum max77976_field_idx fidx, unsigned int clamp_min, unsigned int clamp_max, unsigned int mult, int *val) { unsigned int regval; int err; err = regmap_field_read(chg->rfield[fidx], &regval); if (err < 0) return err; *val = clamp_val(regval * mult, clamp_min, clamp_max); return 0; } static int max77976_set_integer(struct max77976 *chg, enum max77976_field_idx fidx, unsigned int clamp_min, unsigned int clamp_max, unsigned int div, int val) { unsigned int regval; regval = clamp_val(val, clamp_min, clamp_max) / div; return regmap_field_write(chg->rfield[fidx], regval); } static int max77976_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max77976 *chg = power_supply_get_drvdata(psy); int err = 0; switch (psp) { case POWER_SUPPLY_PROP_STATUS: err = max77976_get_status(chg, &val->intval); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: err = max77976_get_charge_type(chg, &val->intval); break; case POWER_SUPPLY_PROP_HEALTH: err = max77976_get_health(chg, &val->intval); break; case POWER_SUPPLY_PROP_ONLINE: err = max77976_get_online(chg, &val->intval); break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX: val->intval = MAX77976_CHG_CC_MAX; break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: err = max77976_get_integer(chg, CHG_CC, MAX77976_CHG_CC_MIN, MAX77976_CHG_CC_MAX, MAX77976_CHG_CC_STEP, &val->intval); break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: err = max77976_get_integer(chg, CHGIN_ILIM, MAX77976_CHGIN_ILIM_MIN, MAX77976_CHGIN_ILIM_MAX, MAX77976_CHGIN_ILIM_STEP, &val->intval); break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = max77976_model; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = max77976_manufacturer; break; default: err = -EINVAL; } return err; } static int max77976_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct max77976 *chg = power_supply_get_drvdata(psy); int err = 0; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: err = max77976_set_integer(chg, CHG_CC, MAX77976_CHG_CC_MIN, MAX77976_CHG_CC_MAX, MAX77976_CHG_CC_STEP, val->intval); break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: err = max77976_set_integer(chg, CHGIN_ILIM, MAX77976_CHGIN_ILIM_MIN, MAX77976_CHGIN_ILIM_MAX, MAX77976_CHGIN_ILIM_STEP, val->intval); break; default: err = -EINVAL; } return err; }; static int max77976_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return true; default: return false; } } static enum power_supply_property max77976_psy_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, }; static const struct power_supply_desc max77976_psy_desc = { .name = MAX77976_DRIVER_NAME, .type = POWER_SUPPLY_TYPE_USB, .properties = max77976_psy_props, .num_properties = ARRAY_SIZE(max77976_psy_props), .get_property = max77976_get_property, .set_property = max77976_set_property, .property_is_writeable = max77976_property_is_writeable, }; /* -------------------------------------------------------------------------- * Entry point */ static int max77976_detect(struct max77976 *chg) { struct device *dev = &chg->client->dev; unsigned int id, ver, rev; int err; err = regmap_read(chg->regmap, MAX77976_REG_CHIP_ID, &id); if (err) return dev_err_probe(dev, err, "cannot read chip ID\n"); if (id != MAX77976_CHIP_ID) return dev_err_probe(dev, -ENXIO, "unknown model ID 0x%02x\n", id); err = regmap_field_read(chg->rfield[VERSION], &ver); if (!err) err = regmap_field_read(chg->rfield[REVISION], &rev); if (err) return dev_err_probe(dev, -ENXIO, "cannot read version/revision\n"); dev_info(dev, "detected model MAX779%02x ver %u rev %u", id, ver, rev); return 0; } static int max77976_configure(struct max77976 *chg) { struct device *dev = &chg->client->dev; int err; /* Magic value to unlock writing to some registers */ err = regmap_field_write(chg->rfield[CHGPROT], 0x3); if (err) goto err; /* * Mode 5 = Charger ON, OTG OFF, buck ON, boost OFF. * Other modes are not implemented by this driver. */ err = regmap_field_write(chg->rfield[MODE], MAX77976_MODE_CHARGER_BUCK); if (err) goto err; return 0; err: return dev_err_probe(dev, err, "error while configuring"); } static int max77976_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct power_supply_config psy_cfg = {}; struct power_supply *psy; struct max77976 *chg; int err; int i; chg = devm_kzalloc(dev, sizeof(*chg), GFP_KERNEL); if (!chg) return -ENOMEM; i2c_set_clientdata(client, chg); psy_cfg.drv_data = chg; chg->client = client; chg->regmap = devm_regmap_init_i2c(client, &max77976_regmap_config); if (IS_ERR(chg->regmap)) return dev_err_probe(dev, PTR_ERR(chg->regmap), "cannot allocate regmap\n"); for (i = 0; i < MAX77976_N_REGMAP_FIELDS; i++) { chg->rfield[i] = devm_regmap_field_alloc(dev, chg->regmap, max77976_reg_field[i]); if (IS_ERR(chg->rfield[i])) return dev_err_probe(dev, PTR_ERR(chg->rfield[i]), "cannot allocate regmap field\n"); } err = max77976_detect(chg); if (err) return err; err = max77976_configure(chg); if (err) return err; psy = devm_power_supply_register_no_ws(dev, &max77976_psy_desc, &psy_cfg); if (IS_ERR(psy)) return dev_err_probe(dev, PTR_ERR(psy), "cannot register\n"); return 0; } static const struct i2c_device_id max77976_i2c_id[] = { { MAX77976_DRIVER_NAME, 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, max77976_i2c_id); static const struct of_device_id max77976_of_id[] = { { .compatible = "maxim,max77976" }, { }, }; MODULE_DEVICE_TABLE(of, max77976_of_id); static struct i2c_driver max77976_driver = { .driver = { .name = MAX77976_DRIVER_NAME, .of_match_table = max77976_of_id, }, .probe = max77976_probe, .id_table = max77976_i2c_id, }; module_i2c_driver(max77976_driver); MODULE_AUTHOR("Luca Ceresoli <[email protected]>"); MODULE_DESCRIPTION("Maxim MAX77976 charger driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/max77976_charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 Richtek Technology Corp. * * Authors: Alina Yu <[email protected]> * ChiYuan Huang <[email protected]> */ #include <linux/bits.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kstrtox.h> #include <linux/linear_range.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/sysfs.h> #define RT9471_REG_OTGCFG 0x00 #define RT9471_REG_TOP 0x01 #define RT9471_REG_FUNC 0x02 #define RT9471_REG_IBUS 0x03 #define RT9471_REG_VBUS 0x04 #define RT9471_REG_PRECHG 0x05 #define RT9471_REG_VCHG 0x07 #define RT9471_REG_ICHG 0x08 #define RT9471_REG_CHGTMR 0x09 #define RT9471_REG_EOC 0x0A #define RT9471_REG_INFO 0x0B #define RT9471_REG_JEITA 0x0C #define RT9471_REG_PUMP_EXP 0x0D #define RT9471_REG_DPDMDET 0x0E #define RT9471_REG_ICSTAT 0x0F #define RT9471_REG_STAT0 0x10 #define RT9471_REG_STAT1 0x11 #define RT9471_REG_STAT2 0x12 #define RT9471_REG_IRQ0 0x20 #define RT9471_REG_MASK0 0x30 #define RT9471_OTGCV_MASK GENMASK(7, 6) #define RT9471_OTGCC_MASK BIT(0) #define RT9471_OTGEN_MASK BIT(1) #define RT9471_CHGFAULT_MASK GENMASK(4, 1) #define RT9471_NUM_IRQ_REGS 4 #define RT9471_OTGCV_MINUV 4850000 #define RT9471_OTGCV_STEPUV 150000 #define RT9471_NUM_VOTG 4 #define RT9471_VCHG_MAXUV 4700000 #define RT9471_ICHG_MAXUA 3150000 /* Device ID */ #define RT9470_DEVID 0x09 #define RT9470D_DEVID 0x0A #define RT9471_DEVID 0x0D #define RT9471D_DEVID 0x0E /* IRQ number */ #define RT9471_IRQ_BC12_DONE 0 #define RT9471_IRQ_DETACH 1 #define RT9471_IRQ_RECHG 2 #define RT9471_IRQ_CHG_DONE 3 #define RT9471_IRQ_BG_CHG 4 #define RT9471_IRQ_IE0C 5 #define RT9471_IRQ_CHG_RDY 6 #define RT9471_IRQ_VBUS_GD 7 #define RT9471_IRQ_CHG_BATOV 9 #define RT9471_IRQ_CHG_SYSOV 10 #define RT9471_IRQ_CHG_TOUT 11 #define RT9471_IRQ_CHG_BUSUV 12 #define RT9471_IRQ_CHG_THREG 13 #define RT9471_IRQ_CHG_AICR 14 #define RT9471_IRQ_CHG_MIVR 15 #define RT9471_IRQ_SYS_SHORT 16 #define RT9471_IRQ_SYS_MIN 17 #define RT9471_IRQ_AICC_DONE 18 #define RT9471_IRQ_PE_DONE 19 #define RT9471_IRQ_JEITA_COLD 20 #define RT9471_IRQ_JEITA_COOL 21 #define RT9471_IRQ_JEITA_WARM 22 #define RT9471_IRQ_JEITA_HOT 23 #define RT9471_IRQ_OTG_FAULT 24 #define RT9471_IRQ_OTG_LBP 25 #define RT9471_IRQ_OTG_CC 26 #define RT9471_IRQ_WDT 29 #define RT9471_IRQ_VAC_OV 30 #define RT9471_IRQ_OTP 31 enum rt9471_fields { F_WDT = 0, F_WDT_RST, F_CHG_EN, F_HZ, F_BATFET_DIS, F_AICR, F_AICC_EN, F_MIVR, F_IPRE_CHG, F_VPRE_CHG, F_VBAT_REG, F_ICHG_REG, F_EOC_RST, F_TE, F_IEOC_CHG, F_DEVICE_ID, F_REG_RST, F_BC12_EN, F_IC_STAT, F_PORT_STAT, F_ST_CHG_DONE, F_ST_CHG_RDY, F_ST_VBUS_GD, F_MAX_FIELDS }; enum rt9471_ranges { RT9471_RANGE_AICR = 0, RT9471_RANGE_MIVR, RT9471_RANGE_IPRE, RT9471_RANGE_VCHG, RT9471_RANGE_ICHG, RT9471_RANGE_IEOC, RT9471_MAX_RANGES }; enum { RT9471_PORTSTAT_APPLE_10W = 8, RT9471_PORTSTAT_SAMSUNG_10W, RT9471_PORTSTAT_APPLE_5W, RT9471_PORTSTAT_APPLE_12W, RT9471_PORTSTAT_NSTD, RT9471_PORTSTAT_SDP, RT9471_PORTSTAT_CDP, RT9471_PORTSTAT_DCP, }; struct rt9471_chip { struct device *dev; struct regmap *regmap; struct regmap_field *rm_fields[F_MAX_FIELDS]; struct regmap_irq_chip_data *irq_chip_data; struct regulator_dev *otg_rdev; struct power_supply *psy; struct power_supply_desc psy_desc; struct mutex var_lock; enum power_supply_usb_type psy_usb_type; int psy_usb_curr; }; static const struct reg_field rt9471_reg_fields[F_MAX_FIELDS] = { [F_WDT] = REG_FIELD(RT9471_REG_TOP, 0, 0), [F_WDT_RST] = REG_FIELD(RT9471_REG_TOP, 1, 1), [F_CHG_EN] = REG_FIELD(RT9471_REG_FUNC, 0, 0), [F_HZ] = REG_FIELD(RT9471_REG_FUNC, 5, 5), [F_BATFET_DIS] = REG_FIELD(RT9471_REG_FUNC, 7, 7), [F_AICR] = REG_FIELD(RT9471_REG_IBUS, 0, 5), [F_AICC_EN] = REG_FIELD(RT9471_REG_IBUS, 7, 7), [F_MIVR] = REG_FIELD(RT9471_REG_VBUS, 0, 3), [F_IPRE_CHG] = REG_FIELD(RT9471_REG_PRECHG, 0, 3), [F_VPRE_CHG] = REG_FIELD(RT9471_REG_PRECHG, 4, 6), [F_VBAT_REG] = REG_FIELD(RT9471_REG_VCHG, 0, 6), [F_ICHG_REG] = REG_FIELD(RT9471_REG_ICHG, 0, 5), [F_EOC_RST] = REG_FIELD(RT9471_REG_EOC, 0, 0), [F_TE] = REG_FIELD(RT9471_REG_EOC, 1, 1), [F_IEOC_CHG] = REG_FIELD(RT9471_REG_EOC, 4, 7), [F_DEVICE_ID] = REG_FIELD(RT9471_REG_INFO, 3, 6), [F_REG_RST] = REG_FIELD(RT9471_REG_INFO, 7, 7), [F_BC12_EN] = REG_FIELD(RT9471_REG_DPDMDET, 7, 7), [F_IC_STAT] = REG_FIELD(RT9471_REG_ICSTAT, 0, 3), [F_PORT_STAT] = REG_FIELD(RT9471_REG_ICSTAT, 4, 7), [F_ST_CHG_DONE] = REG_FIELD(RT9471_REG_STAT0, 3, 3), [F_ST_CHG_RDY] = REG_FIELD(RT9471_REG_STAT0, 6, 6), [F_ST_VBUS_GD] = REG_FIELD(RT9471_REG_STAT0, 7, 7), }; static const struct linear_range rt9471_chg_ranges[RT9471_MAX_RANGES] = { [RT9471_RANGE_AICR] = { .min = 50000, .min_sel = 1, .max_sel = 63, .step = 50000 }, [RT9471_RANGE_MIVR] = { .min = 3900000, .min_sel = 0, .max_sel = 15, .step = 100000 }, [RT9471_RANGE_IPRE] = { .min = 50000, .min_sel = 0, .max_sel = 15, .step = 50000 }, [RT9471_RANGE_VCHG] = { .min = 3900000, .min_sel = 0, .max_sel = 80, .step = 10000 }, [RT9471_RANGE_ICHG] = { .min = 0, .min_sel = 0, .max_sel = 63, .step = 50000 }, [RT9471_RANGE_IEOC] = { .min = 50000, .min_sel = 0, .max_sel = 15, .step = 50000 }, }; static int rt9471_set_value_by_field_range(struct rt9471_chip *chip, enum rt9471_fields field, enum rt9471_ranges range, int val) { unsigned int sel; if (val < 0) return -EINVAL; linear_range_get_selector_within(rt9471_chg_ranges + range, val, &sel); return regmap_field_write(chip->rm_fields[field], sel); } static int rt9471_get_value_by_field_range(struct rt9471_chip *chip, enum rt9471_fields field, enum rt9471_ranges range, int *val) { unsigned int sel, rvalue; int ret; ret = regmap_field_read(chip->rm_fields[field], &sel); if (ret) return ret; ret = linear_range_get_value(rt9471_chg_ranges + range, sel, &rvalue); if (ret) return ret; *val = rvalue; return 0; } static int rt9471_set_ieoc(struct rt9471_chip *chip, int microamp) { int ret; if (microamp == 0) return regmap_field_write(chip->rm_fields[F_TE], 0); ret = rt9471_set_value_by_field_range(chip, F_IEOC_CHG, RT9471_RANGE_IEOC, microamp); if (ret) return ret; /* After applying the new IEOC value, enable charge termination */ return regmap_field_write(chip->rm_fields[F_TE], 1); } static int rt9471_get_ieoc(struct rt9471_chip *chip, int *microamp) { unsigned int chg_term_enable; int ret; ret = regmap_field_read(chip->rm_fields[F_TE], &chg_term_enable); if (ret) return ret; if (!chg_term_enable) { *microamp = 0; return 0; } return rt9471_get_value_by_field_range(chip, F_IEOC_CHG, RT9471_RANGE_IEOC, microamp); } static int rt9471_get_status(struct rt9471_chip *chip, int *status) { unsigned int chg_ready, chg_done, fault_stat; int ret; ret = regmap_field_read(chip->rm_fields[F_ST_CHG_RDY], &chg_ready); if (ret) return ret; ret = regmap_field_read(chip->rm_fields[F_ST_CHG_DONE], &chg_done); if (ret) return ret; ret = regmap_read(chip->regmap, RT9471_REG_STAT1, &fault_stat); if (ret) return ret; fault_stat &= RT9471_CHGFAULT_MASK; if (chg_ready && chg_done) *status = POWER_SUPPLY_STATUS_FULL; else if (chg_ready && fault_stat) *status = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (chg_ready && !fault_stat) *status = POWER_SUPPLY_STATUS_CHARGING; else *status = POWER_SUPPLY_STATUS_DISCHARGING; return 0; } static int rt9471_get_vbus_good(struct rt9471_chip *chip, int *stat) { unsigned int vbus_gd; int ret; ret = regmap_field_read(chip->rm_fields[F_ST_VBUS_GD], &vbus_gd); if (ret) return ret; *stat = vbus_gd; return 0; } static int rt9471_get_usb_type(struct rt9471_chip *chip, int *usb_type) { mutex_lock(&chip->var_lock); *usb_type = chip->psy_usb_type; mutex_unlock(&chip->var_lock); return 0; } static int rt9471_get_usb_type_current(struct rt9471_chip *chip, int *microamp) { mutex_lock(&chip->var_lock); *microamp = chip->psy_usb_curr; mutex_unlock(&chip->var_lock); return 0; } static enum power_supply_property rt9471_charger_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_usb_type rt9471_charger_usb_types[] = { POWER_SUPPLY_USB_TYPE_UNKNOWN, POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_CDP, POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, }; static int rt9471_charger_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_ONLINE: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return 1; default: return 0; } } static int rt9471_charger_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct rt9471_chip *chip = power_supply_get_drvdata(psy); int value = val->intval; switch (psp) { case POWER_SUPPLY_PROP_STATUS: return regmap_field_write(chip->rm_fields[F_CHG_EN], !!value); case POWER_SUPPLY_PROP_ONLINE: return regmap_field_write(chip->rm_fields[F_HZ], !value); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return rt9471_set_value_by_field_range(chip, F_ICHG_REG, RT9471_RANGE_ICHG, value); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return rt9471_set_value_by_field_range(chip, F_VBAT_REG, RT9471_RANGE_VCHG, value); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return rt9471_set_value_by_field_range(chip, F_AICR, RT9471_RANGE_AICR, value); case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: return rt9471_set_value_by_field_range(chip, F_MIVR, RT9471_RANGE_MIVR, value); case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return rt9471_set_value_by_field_range(chip, F_IPRE_CHG, RT9471_RANGE_IPRE, value); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return rt9471_set_ieoc(chip, val->intval); default: return -EINVAL; } } static const char * const rt9471_manufacturer = "Richtek Technology Corp."; static const char * const rt9471_model = "RT9471"; static int rt9471_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct rt9471_chip *chip = power_supply_get_drvdata(psy); int *pvalue = &val->intval; switch (psp) { case POWER_SUPPLY_PROP_STATUS: return rt9471_get_status(chip, pvalue); case POWER_SUPPLY_PROP_ONLINE: return rt9471_get_vbus_good(chip, pvalue); case POWER_SUPPLY_PROP_CURRENT_MAX: return rt9471_get_usb_type_current(chip, pvalue); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return rt9471_get_value_by_field_range(chip, F_ICHG_REG, RT9471_RANGE_ICHG, pvalue); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: *pvalue = RT9471_ICHG_MAXUA; return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return rt9471_get_value_by_field_range(chip, F_VBAT_REG, RT9471_RANGE_VCHG, pvalue); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = RT9471_VCHG_MAXUV; return 0; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return rt9471_get_value_by_field_range(chip, F_AICR, RT9471_RANGE_AICR, pvalue); case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: return rt9471_get_value_by_field_range(chip, F_MIVR, RT9471_RANGE_MIVR, pvalue); case POWER_SUPPLY_PROP_USB_TYPE: return rt9471_get_usb_type(chip, pvalue); case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return rt9471_get_value_by_field_range(chip, F_IPRE_CHG, RT9471_RANGE_IPRE, pvalue); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return rt9471_get_ieoc(chip, pvalue); case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = rt9471_model; return 0; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = rt9471_manufacturer; return 0; default: return -ENODATA; } } static irqreturn_t rt9471_vbus_gd_handler(int irqno, void *devid) { struct rt9471_chip *chip = devid; power_supply_changed(chip->psy); return IRQ_HANDLED; } static irqreturn_t rt9471_detach_handler(int irqno, void *devid) { struct rt9471_chip *chip = devid; unsigned int vbus_gd; int ret; ret = regmap_field_read(chip->rm_fields[F_ST_VBUS_GD], &vbus_gd); if (ret) return IRQ_NONE; /* Only focus on really detached */ if (vbus_gd) return IRQ_HANDLED; mutex_lock(&chip->var_lock); chip->psy_usb_type = POWER_SUPPLY_USB_TYPE_UNKNOWN; chip->psy_usb_curr = 0; mutex_unlock(&chip->var_lock); power_supply_changed(chip->psy); return IRQ_HANDLED; } static irqreturn_t rt9471_bc12_done_handler(int irqno, void *devid) { struct rt9471_chip *chip = devid; enum power_supply_usb_type usb_type; unsigned int port_stat; int usb_curr, ret; ret = regmap_field_read(chip->rm_fields[F_PORT_STAT], &port_stat); if (ret) return IRQ_NONE; switch (port_stat) { case RT9471_PORTSTAT_APPLE_10W: usb_type = POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID; usb_curr = 2000000; break; case RT9471_PORTSTAT_APPLE_5W: usb_type = POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID; usb_curr = 1000000; break; case RT9471_PORTSTAT_APPLE_12W: usb_type = POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID; usb_curr = 2400000; break; case RT9471_PORTSTAT_SAMSUNG_10W: usb_type = POWER_SUPPLY_USB_TYPE_DCP; usb_curr = 2000000; break; case RT9471_PORTSTAT_DCP: usb_type = POWER_SUPPLY_USB_TYPE_DCP; usb_curr = 1500000; break; case RT9471_PORTSTAT_NSTD: case RT9471_PORTSTAT_SDP: usb_type = POWER_SUPPLY_USB_TYPE_SDP; usb_curr = 500000; break; case RT9471_PORTSTAT_CDP: usb_type = POWER_SUPPLY_USB_TYPE_CDP; usb_curr = 1500000; break; default: usb_type = POWER_SUPPLY_USB_TYPE_UNKNOWN; usb_curr = 0; break; } mutex_lock(&chip->var_lock); chip->psy_usb_type = usb_type; chip->psy_usb_curr = usb_curr; mutex_unlock(&chip->var_lock); power_supply_changed(chip->psy); return IRQ_HANDLED; } static irqreturn_t rt9471_wdt_handler(int irqno, void *devid) { struct rt9471_chip *chip = devid; int ret; ret = regmap_field_write(chip->rm_fields[F_WDT_RST], 1); return ret ? IRQ_NONE : IRQ_HANDLED; } static irqreturn_t rt9471_otg_fault_handler(int irqno, void *devid) { struct rt9471_chip *chip = devid; regulator_notifier_call_chain(chip->otg_rdev, REGULATOR_EVENT_FAIL, NULL); return IRQ_HANDLED; } #define RT9471_IRQ_DESC(_name, _hwirq) \ { \ .name = #_name, \ .hwirq = _hwirq, \ .handler = rt9471_##_name##_handler, \ } static int rt9471_register_interrupts(struct rt9471_chip *chip) { struct device *dev = chip->dev; static const struct { char *name; int hwirq; irq_handler_t handler; } chg_irqs[] = { RT9471_IRQ_DESC(vbus_gd, RT9471_IRQ_VBUS_GD), RT9471_IRQ_DESC(detach, RT9471_IRQ_DETACH), RT9471_IRQ_DESC(bc12_done, RT9471_IRQ_BC12_DONE), RT9471_IRQ_DESC(wdt, RT9471_IRQ_WDT), RT9471_IRQ_DESC(otg_fault, RT9471_IRQ_OTG_FAULT), }, *curr; int i, virq, ret; for (i = 0; i < ARRAY_SIZE(chg_irqs); i++) { curr = chg_irqs + i; virq = regmap_irq_get_virq(chip->irq_chip_data, curr->hwirq); if (virq <= 0) return virq; ret = devm_request_threaded_irq(dev, virq, NULL, curr->handler, IRQF_ONESHOT, curr->name, chip); if (ret) return dev_err_probe(dev, ret, "Failed to register IRQ (%s)\n", curr->name); } return 0; } static const struct regulator_ops rt9471_otg_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .list_voltage = regulator_list_voltage_linear, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .set_current_limit = regulator_set_current_limit_regmap, .get_current_limit = regulator_get_current_limit_regmap, }; static const unsigned int rt9471_otg_microamp[] = { 500000, 1200000, }; static const struct regulator_desc rt9471_otg_rdesc = { .of_match = of_match_ptr("usb-otg-vbus-regulator"), .name = "rt9471-otg-vbus", .owner = THIS_MODULE, .type = REGULATOR_VOLTAGE, .ops = &rt9471_otg_ops, .min_uV = RT9471_OTGCV_MINUV, .uV_step = RT9471_OTGCV_STEPUV, .n_voltages = RT9471_NUM_VOTG, .curr_table = rt9471_otg_microamp, .n_current_limits = ARRAY_SIZE(rt9471_otg_microamp), .enable_mask = RT9471_OTGEN_MASK, .enable_reg = RT9471_REG_FUNC, .vsel_reg = RT9471_REG_OTGCFG, .vsel_mask = RT9471_OTGCV_MASK, .csel_reg = RT9471_REG_OTGCFG, .csel_mask = RT9471_OTGCC_MASK, }; static int rt9471_register_otg_regulator(struct rt9471_chip *chip) { struct device *dev = chip->dev; struct regulator_config cfg = { .dev = dev, .driver_data = chip }; chip->otg_rdev = devm_regulator_register(dev, &rt9471_otg_rdesc, &cfg); return PTR_ERR_OR_ZERO(chip->otg_rdev); } static inline struct rt9471_chip *psy_device_to_chip(struct device *dev) { return power_supply_get_drvdata(to_power_supply(dev)); } static ssize_t sysoff_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rt9471_chip *chip = psy_device_to_chip(dev); unsigned int sysoff_enable; int ret; ret = regmap_field_read(chip->rm_fields[F_BATFET_DIS], &sysoff_enable); if (ret) return ret; return sysfs_emit(buf, "%d\n", sysoff_enable); } static ssize_t sysoff_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rt9471_chip *chip = psy_device_to_chip(dev); unsigned int tmp; int ret; ret = kstrtouint(buf, 10, &tmp); if (ret) return ret; ret = regmap_field_write(chip->rm_fields[F_BATFET_DIS], !!tmp); if (ret) return ret; return count; } static ssize_t port_detect_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rt9471_chip *chip = psy_device_to_chip(dev); unsigned int bc12_enable; int ret; ret = regmap_field_read(chip->rm_fields[F_BC12_EN], &bc12_enable); if (ret) return ret; return sysfs_emit(buf, "%d\n", bc12_enable); } static ssize_t port_detect_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rt9471_chip *chip = psy_device_to_chip(dev); unsigned int tmp; int ret; ret = kstrtouint(buf, 10, &tmp); if (ret) return ret; ret = regmap_field_write(chip->rm_fields[F_BC12_EN], !!tmp); if (ret) return ret; return count; } static DEVICE_ATTR_RW(sysoff_enable); static DEVICE_ATTR_RW(port_detect_enable); static struct attribute *rt9471_sysfs_attrs[] = { &dev_attr_sysoff_enable.attr, &dev_attr_port_detect_enable.attr, NULL }; ATTRIBUTE_GROUPS(rt9471_sysfs); static int rt9471_register_psy(struct rt9471_chip *chip) { struct device *dev = chip->dev; struct power_supply_desc *desc = &chip->psy_desc; struct power_supply_config cfg = {}; char *psy_name; cfg.drv_data = chip; cfg.of_node = dev->of_node; cfg.attr_grp = rt9471_sysfs_groups; psy_name = devm_kasprintf(dev, GFP_KERNEL, "rt9471-%s", dev_name(dev)); if (!psy_name) return -ENOMEM; desc->name = psy_name; desc->type = POWER_SUPPLY_TYPE_USB; desc->usb_types = rt9471_charger_usb_types; desc->num_usb_types = ARRAY_SIZE(rt9471_charger_usb_types); desc->properties = rt9471_charger_properties; desc->num_properties = ARRAY_SIZE(rt9471_charger_properties); desc->get_property = rt9471_charger_get_property; desc->set_property = rt9471_charger_set_property; desc->property_is_writeable = rt9471_charger_property_is_writeable; chip->psy = devm_power_supply_register(dev, desc, &cfg); return PTR_ERR_OR_ZERO(chip->psy); } static const struct regmap_irq rt9471_regmap_irqs[] = { REGMAP_IRQ_REG_LINE(RT9471_IRQ_BC12_DONE, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_DETACH, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_RECHG, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_DONE, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_BG_CHG, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_IE0C, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_RDY, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_VBUS_GD, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_BATOV, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_SYSOV, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_TOUT, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_BUSUV, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_THREG, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_AICR, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_CHG_MIVR, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_SYS_SHORT, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_SYS_MIN, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_AICC_DONE, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_PE_DONE, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_JEITA_COLD, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_JEITA_COOL, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_JEITA_WARM, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_JEITA_HOT, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_OTG_FAULT, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_OTG_LBP, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_OTG_CC, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_WDT, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_VAC_OV, 8), REGMAP_IRQ_REG_LINE(RT9471_IRQ_OTP, 8), }; static const struct regmap_irq_chip rt9471_irq_chip = { .name = "rt9471-irqs", .status_base = RT9471_REG_IRQ0, .mask_base = RT9471_REG_MASK0, .num_regs = RT9471_NUM_IRQ_REGS, .irqs = rt9471_regmap_irqs, .num_irqs = ARRAY_SIZE(rt9471_regmap_irqs), }; static const struct reg_sequence rt9471_init_regs[] = { REG_SEQ0(RT9471_REG_INFO, 0x80), /* REG_RST */ REG_SEQ0(RT9471_REG_TOP, 0xC0), /* WDT = 0 */ REG_SEQ0(RT9471_REG_FUNC, 0x01), /* BATFET_DIS_DLY = 0 */ REG_SEQ0(RT9471_REG_IBUS, 0x0A), /* AUTO_AICR = 0 */ REG_SEQ0(RT9471_REG_VBUS, 0xC6), /* VAC_OVP = 14V */ REG_SEQ0(RT9471_REG_JEITA, 0x38), /* JEITA = 0 */ REG_SEQ0(RT9471_REG_DPDMDET, 0x31), /* BC12_EN = 0, DCP_DP_OPT = 1 */ }; static int rt9471_check_devinfo(struct rt9471_chip *chip) { struct device *dev = chip->dev; unsigned int dev_id; int ret; ret = regmap_field_read(chip->rm_fields[F_DEVICE_ID], &dev_id); if (ret) return dev_err_probe(dev, ret, "Failed to read device_id\n"); switch (dev_id) { case RT9470_DEVID: case RT9470D_DEVID: case RT9471_DEVID: case RT9471D_DEVID: return 0; default: return dev_err_probe(dev, -ENODEV, "Incorrect device id\n"); } } static bool rt9471_accessible_reg(struct device *dev, unsigned int reg) { switch (reg) { case 0x00 ... 0x0F: case 0x10 ... 0x13: case 0x20 ... 0x33: case 0x40 ... 0xA1: return true; default: return false; } } static const struct regmap_config rt9471_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0xA1, .writeable_reg = rt9471_accessible_reg, .readable_reg = rt9471_accessible_reg, }; static int rt9471_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct rt9471_chip *chip; struct gpio_desc *ce_gpio; struct regmap *regmap; int ret; chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->dev = dev; mutex_init(&chip->var_lock); i2c_set_clientdata(i2c, chip); /* Default pull charge enable gpio to make 'CHG_EN' by SW control only */ ce_gpio = devm_gpiod_get_optional(dev, "charge-enable", GPIOD_OUT_HIGH); if (IS_ERR(ce_gpio)) return dev_err_probe(dev, PTR_ERR(ce_gpio), "Failed to config charge enable gpio\n"); regmap = devm_regmap_init_i2c(i2c, &rt9471_regmap_config); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "Failed to init regmap\n"); chip->regmap = regmap; ret = devm_regmap_field_bulk_alloc(dev, regmap, chip->rm_fields, rt9471_reg_fields, ARRAY_SIZE(rt9471_reg_fields)); if (ret) return dev_err_probe(dev, ret, "Failed to alloc regmap field\n"); ret = rt9471_check_devinfo(chip); if (ret) return ret; ret = regmap_register_patch(regmap, rt9471_init_regs, ARRAY_SIZE(rt9471_init_regs)); if (ret) return dev_err_probe(dev, ret, "Failed to init registers\n"); ret = devm_regmap_add_irq_chip(dev, regmap, i2c->irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, 0, &rt9471_irq_chip, &chip->irq_chip_data); if (ret) return dev_err_probe(dev, ret, "Failed to add IRQ chip\n"); ret = rt9471_register_psy(chip); if (ret) return dev_err_probe(dev, ret, "Failed to register psy\n"); ret = rt9471_register_otg_regulator(chip); if (ret) return dev_err_probe(dev, ret, "Failed to register otg\n"); ret = rt9471_register_interrupts(chip); if (ret) return ret; /* After IRQs are all initialized, enable port detection by default */ return regmap_field_write(chip->rm_fields[F_BC12_EN], 1); } static void rt9471_shutdown(struct i2c_client *i2c) { struct rt9471_chip *chip = i2c_get_clientdata(i2c); /* * There's no external reset pin. Do register reset to guarantee charger * function is normal after shutdown */ regmap_field_write(chip->rm_fields[F_REG_RST], 1); } static const struct of_device_id rt9471_of_device_id[] = { { .compatible = "richtek,rt9471" }, {} }; MODULE_DEVICE_TABLE(of, rt9471_of_device_id); static struct i2c_driver rt9471_driver = { .driver = { .name = "rt9471", .of_match_table = rt9471_of_device_id, }, .probe = rt9471_probe, .shutdown = rt9471_shutdown, }; module_i2c_driver(rt9471_driver); MODULE_DESCRIPTION("Richtek RT9471 charger driver"); MODULE_AUTHOR("Alina Yu <[email protected]>"); MODULE_AUTHOR("ChiYuan Huang <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/rt9471.c
// SPDX-License-Identifier: GPL-2.0-only /* * TI LP8788 MFD - battery charger driver * * Copyright 2012 Texas Instruments * * Author: Milo(Woogyom) Kim <[email protected]> */ #include <linux/err.h> #include <linux/iio/consumer.h> #include <linux/interrupt.h> #include <linux/irqdomain.h> #include <linux/mfd/lp8788.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/workqueue.h> /* register address */ #define LP8788_CHG_STATUS 0x07 #define LP8788_CHG_IDCIN 0x13 #define LP8788_CHG_IBATT 0x14 #define LP8788_CHG_VTERM 0x15 #define LP8788_CHG_EOC 0x16 /* mask/shift bits */ #define LP8788_CHG_INPUT_STATE_M 0x03 /* Addr 07h */ #define LP8788_CHG_STATE_M 0x3C #define LP8788_CHG_STATE_S 2 #define LP8788_NO_BATT_M BIT(6) #define LP8788_BAD_BATT_M BIT(7) #define LP8788_CHG_IBATT_M 0x1F /* Addr 14h */ #define LP8788_CHG_VTERM_M 0x0F /* Addr 15h */ #define LP8788_CHG_EOC_LEVEL_M 0x30 /* Addr 16h */ #define LP8788_CHG_EOC_LEVEL_S 4 #define LP8788_CHG_EOC_TIME_M 0x0E #define LP8788_CHG_EOC_TIME_S 1 #define LP8788_CHG_EOC_MODE_M BIT(0) #define LP8788_CHARGER_NAME "charger" #define LP8788_BATTERY_NAME "main_batt" #define LP8788_CHG_START 0x11 #define LP8788_CHG_END 0x1C #define LP8788_ISEL_MAX 23 #define LP8788_ISEL_STEP 50 #define LP8788_VTERM_MIN 4100 #define LP8788_VTERM_STEP 25 #define LP8788_MAX_BATT_CAPACITY 100 #define LP8788_MAX_CHG_IRQS 11 enum lp8788_charging_state { LP8788_OFF, LP8788_WARM_UP, LP8788_LOW_INPUT = 0x3, LP8788_PRECHARGE, LP8788_CC, LP8788_CV, LP8788_MAINTENANCE, LP8788_BATTERY_FAULT, LP8788_SYSTEM_SUPPORT = 0xC, LP8788_HIGH_CURRENT = 0xF, LP8788_MAX_CHG_STATE, }; enum lp8788_charger_adc_sel { LP8788_VBATT, LP8788_BATT_TEMP, LP8788_NUM_CHG_ADC, }; enum lp8788_charger_input_state { LP8788_SYSTEM_SUPPLY = 1, LP8788_FULL_FUNCTION, }; /* * struct lp8788_chg_irq * @which : lp8788 interrupt id * @virq : Linux IRQ number from irq_domain */ struct lp8788_chg_irq { enum lp8788_int_id which; int virq; }; /* * struct lp8788_charger * @lp : used for accessing the registers of mfd lp8788 device * @charger : power supply driver for the battery charger * @battery : power supply driver for the battery * @charger_work : work queue for charger input interrupts * @chan : iio channels for getting adc values * eg) battery voltage, capacity and temperature * @irqs : charger dedicated interrupts * @num_irqs : total numbers of charger interrupts * @pdata : charger platform specific data */ struct lp8788_charger { struct lp8788 *lp; struct power_supply *charger; struct power_supply *battery; struct work_struct charger_work; struct iio_channel *chan[LP8788_NUM_CHG_ADC]; struct lp8788_chg_irq irqs[LP8788_MAX_CHG_IRQS]; int num_irqs; struct lp8788_charger_platform_data *pdata; }; static char *battery_supplied_to[] = { LP8788_BATTERY_NAME, }; static enum power_supply_property lp8788_charger_prop[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CURRENT_MAX, }; static enum power_supply_property lp8788_battery_prop[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_TEMP, }; static bool lp8788_is_charger_detected(struct lp8788_charger *pchg) { u8 data; lp8788_read_byte(pchg->lp, LP8788_CHG_STATUS, &data); data &= LP8788_CHG_INPUT_STATE_M; return data == LP8788_SYSTEM_SUPPLY || data == LP8788_FULL_FUNCTION; } static int lp8788_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct lp8788_charger *pchg = dev_get_drvdata(psy->dev.parent); u8 read; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = lp8788_is_charger_detected(pchg); break; case POWER_SUPPLY_PROP_CURRENT_MAX: lp8788_read_byte(pchg->lp, LP8788_CHG_IDCIN, &read); val->intval = LP8788_ISEL_STEP * (min_t(int, read, LP8788_ISEL_MAX) + 1); break; default: return -EINVAL; } return 0; } static int lp8788_get_battery_status(struct lp8788_charger *pchg, union power_supply_propval *val) { enum lp8788_charging_state state; u8 data; int ret; ret = lp8788_read_byte(pchg->lp, LP8788_CHG_STATUS, &data); if (ret) return ret; state = (data & LP8788_CHG_STATE_M) >> LP8788_CHG_STATE_S; switch (state) { case LP8788_OFF: val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; case LP8788_PRECHARGE: case LP8788_CC: case LP8788_CV: case LP8788_HIGH_CURRENT: val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case LP8788_MAINTENANCE: val->intval = POWER_SUPPLY_STATUS_FULL; break; default: val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; } return 0; } static int lp8788_get_battery_health(struct lp8788_charger *pchg, union power_supply_propval *val) { u8 data; int ret; ret = lp8788_read_byte(pchg->lp, LP8788_CHG_STATUS, &data); if (ret) return ret; if (data & LP8788_NO_BATT_M) val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; else if (data & LP8788_BAD_BATT_M) val->intval = POWER_SUPPLY_HEALTH_DEAD; else val->intval = POWER_SUPPLY_HEALTH_GOOD; return 0; } static int lp8788_get_battery_present(struct lp8788_charger *pchg, union power_supply_propval *val) { u8 data; int ret; ret = lp8788_read_byte(pchg->lp, LP8788_CHG_STATUS, &data); if (ret) return ret; val->intval = !(data & LP8788_NO_BATT_M); return 0; } static int lp8788_get_vbatt_adc(struct lp8788_charger *pchg, int *result) { struct iio_channel *channel = pchg->chan[LP8788_VBATT]; if (!channel) return -EINVAL; return iio_read_channel_processed(channel, result); } static int lp8788_get_battery_voltage(struct lp8788_charger *pchg, union power_supply_propval *val) { return lp8788_get_vbatt_adc(pchg, &val->intval); } static int lp8788_get_battery_capacity(struct lp8788_charger *pchg, union power_supply_propval *val) { struct lp8788 *lp = pchg->lp; struct lp8788_charger_platform_data *pdata = pchg->pdata; unsigned int max_vbatt; int vbatt; enum lp8788_charging_state state; u8 data; int ret; if (!pdata) return -EINVAL; max_vbatt = pdata->max_vbatt_mv; if (max_vbatt == 0) return -EINVAL; ret = lp8788_read_byte(lp, LP8788_CHG_STATUS, &data); if (ret) return ret; state = (data & LP8788_CHG_STATE_M) >> LP8788_CHG_STATE_S; if (state == LP8788_MAINTENANCE) { val->intval = LP8788_MAX_BATT_CAPACITY; } else { ret = lp8788_get_vbatt_adc(pchg, &vbatt); if (ret) return ret; val->intval = (vbatt * LP8788_MAX_BATT_CAPACITY) / max_vbatt; val->intval = min(val->intval, LP8788_MAX_BATT_CAPACITY); } return 0; } static int lp8788_get_battery_temperature(struct lp8788_charger *pchg, union power_supply_propval *val) { struct iio_channel *channel = pchg->chan[LP8788_BATT_TEMP]; int result; int ret; if (!channel) return -EINVAL; ret = iio_read_channel_processed(channel, &result); if (ret < 0) return -EINVAL; /* unit: 0.1 'C */ val->intval = result * 10; return 0; } static int lp8788_get_battery_charging_current(struct lp8788_charger *pchg, union power_supply_propval *val) { u8 read; lp8788_read_byte(pchg->lp, LP8788_CHG_IBATT, &read); read &= LP8788_CHG_IBATT_M; val->intval = LP8788_ISEL_STEP * (min_t(int, read, LP8788_ISEL_MAX) + 1); return 0; } static int lp8788_get_charging_termination_voltage(struct lp8788_charger *pchg, union power_supply_propval *val) { u8 read; lp8788_read_byte(pchg->lp, LP8788_CHG_VTERM, &read); read &= LP8788_CHG_VTERM_M; val->intval = LP8788_VTERM_MIN + LP8788_VTERM_STEP * read; return 0; } static int lp8788_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct lp8788_charger *pchg = dev_get_drvdata(psy->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_STATUS: return lp8788_get_battery_status(pchg, val); case POWER_SUPPLY_PROP_HEALTH: return lp8788_get_battery_health(pchg, val); case POWER_SUPPLY_PROP_PRESENT: return lp8788_get_battery_present(pchg, val); case POWER_SUPPLY_PROP_VOLTAGE_NOW: return lp8788_get_battery_voltage(pchg, val); case POWER_SUPPLY_PROP_CAPACITY: return lp8788_get_battery_capacity(pchg, val); case POWER_SUPPLY_PROP_TEMP: return lp8788_get_battery_temperature(pchg, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return lp8788_get_battery_charging_current(pchg, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: return lp8788_get_charging_termination_voltage(pchg, val); default: return -EINVAL; } } static inline bool lp8788_is_valid_charger_register(u8 addr) { return addr >= LP8788_CHG_START && addr <= LP8788_CHG_END; } static int lp8788_update_charger_params(struct platform_device *pdev, struct lp8788_charger *pchg) { struct lp8788 *lp = pchg->lp; struct lp8788_charger_platform_data *pdata = pchg->pdata; struct lp8788_chg_param *param; int i; int ret; if (!pdata || !pdata->chg_params) { dev_info(&pdev->dev, "skip updating charger parameters\n"); return 0; } /* setting charging parameters */ for (i = 0; i < pdata->num_chg_params; i++) { param = pdata->chg_params + i; if (lp8788_is_valid_charger_register(param->addr)) { ret = lp8788_write_byte(lp, param->addr, param->val); if (ret) return ret; } } return 0; } static const struct power_supply_desc lp8788_psy_charger_desc = { .name = LP8788_CHARGER_NAME, .type = POWER_SUPPLY_TYPE_MAINS, .properties = lp8788_charger_prop, .num_properties = ARRAY_SIZE(lp8788_charger_prop), .get_property = lp8788_charger_get_property, }; static const struct power_supply_desc lp8788_psy_battery_desc = { .name = LP8788_BATTERY_NAME, .type = POWER_SUPPLY_TYPE_BATTERY, .properties = lp8788_battery_prop, .num_properties = ARRAY_SIZE(lp8788_battery_prop), .get_property = lp8788_battery_get_property, }; static void lp8788_psy_unregister(struct lp8788_charger *pchg) { power_supply_unregister(pchg->battery); power_supply_unregister(pchg->charger); } static void lp8788_charger_event(struct work_struct *work) { struct lp8788_charger *pchg = container_of(work, struct lp8788_charger, charger_work); struct lp8788_charger_platform_data *pdata = pchg->pdata; enum lp8788_charger_event event = lp8788_is_charger_detected(pchg); pdata->charger_event(pchg->lp, event); } static bool lp8788_find_irq_id(struct lp8788_charger *pchg, int virq, int *id) { bool found = false; int i; for (i = 0; i < pchg->num_irqs; i++) { if (pchg->irqs[i].virq == virq) { *id = pchg->irqs[i].which; found = true; break; } } return found; } static irqreturn_t lp8788_charger_irq_thread(int virq, void *ptr) { struct lp8788_charger *pchg = ptr; struct lp8788_charger_platform_data *pdata = pchg->pdata; int id = -1; if (!lp8788_find_irq_id(pchg, virq, &id)) return IRQ_NONE; switch (id) { case LP8788_INT_CHG_INPUT_STATE: case LP8788_INT_CHG_STATE: case LP8788_INT_EOC: case LP8788_INT_BATT_LOW: case LP8788_INT_NO_BATT: power_supply_changed(pchg->charger); power_supply_changed(pchg->battery); break; default: break; } /* report charger dectection event if used */ if (!pdata) goto irq_handled; if (pdata->charger_event && id == LP8788_INT_CHG_INPUT_STATE) schedule_work(&pchg->charger_work); irq_handled: return IRQ_HANDLED; } static int lp8788_set_irqs(struct platform_device *pdev, struct lp8788_charger *pchg, const char *name) { struct resource *r; struct irq_domain *irqdm = pchg->lp->irqdm; int irq_start; int irq_end; int virq; int nr_irq; int i; int ret; /* no error even if no irq resource */ r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, name); if (!r) return 0; irq_start = r->start; irq_end = r->end; for (i = irq_start; i <= irq_end; i++) { nr_irq = pchg->num_irqs; virq = irq_create_mapping(irqdm, i); pchg->irqs[nr_irq].virq = virq; pchg->irqs[nr_irq].which = i; pchg->num_irqs++; ret = request_threaded_irq(virq, NULL, lp8788_charger_irq_thread, IRQF_ONESHOT, name, pchg); if (ret) break; } if (i <= irq_end) goto err_free_irq; return 0; err_free_irq: for (i = 0; i < pchg->num_irqs; i++) free_irq(pchg->irqs[i].virq, pchg); return ret; } static int lp8788_irq_register(struct platform_device *pdev, struct lp8788_charger *pchg) { static const char * const name[] = { LP8788_CHG_IRQ, LP8788_PRSW_IRQ, LP8788_BATT_IRQ }; int i; int ret; INIT_WORK(&pchg->charger_work, lp8788_charger_event); pchg->num_irqs = 0; for (i = 0; i < ARRAY_SIZE(name); i++) { ret = lp8788_set_irqs(pdev, pchg, name[i]); if (ret) { dev_warn(&pdev->dev, "irq setup failed: %s\n", name[i]); return ret; } } if (pchg->num_irqs > LP8788_MAX_CHG_IRQS) { dev_err(&pdev->dev, "invalid total number of irqs: %d\n", pchg->num_irqs); return -EINVAL; } return 0; } static void lp8788_irq_unregister(struct platform_device *pdev, struct lp8788_charger *pchg) { int i; int irq; for (i = 0; i < pchg->num_irqs; i++) { irq = pchg->irqs[i].virq; if (!irq) continue; free_irq(irq, pchg); } } static void lp8788_setup_adc_channel(struct device *dev, struct lp8788_charger *pchg) { struct lp8788_charger_platform_data *pdata = pchg->pdata; struct iio_channel *chan; if (!pdata) return; /* ADC channel for battery voltage */ chan = devm_iio_channel_get(dev, pdata->adc_vbatt); pchg->chan[LP8788_VBATT] = IS_ERR(chan) ? NULL : chan; /* ADC channel for battery temperature */ chan = devm_iio_channel_get(dev, pdata->adc_batt_temp); pchg->chan[LP8788_BATT_TEMP] = IS_ERR(chan) ? NULL : chan; } static ssize_t lp8788_show_charger_status(struct device *dev, struct device_attribute *attr, char *buf) { struct lp8788_charger *pchg = dev_get_drvdata(dev); enum lp8788_charging_state state; static const char * const desc[LP8788_MAX_CHG_STATE] = { [LP8788_OFF] = "CHARGER OFF", [LP8788_WARM_UP] = "WARM UP", [LP8788_LOW_INPUT] = "LOW INPUT STATE", [LP8788_PRECHARGE] = "CHARGING - PRECHARGE", [LP8788_CC] = "CHARGING - CC", [LP8788_CV] = "CHARGING - CV", [LP8788_MAINTENANCE] = "NO CHARGING - MAINTENANCE", [LP8788_BATTERY_FAULT] = "BATTERY FAULT", [LP8788_SYSTEM_SUPPORT] = "SYSTEM SUPPORT", [LP8788_HIGH_CURRENT] = "HIGH CURRENT", }; u8 data; lp8788_read_byte(pchg->lp, LP8788_CHG_STATUS, &data); state = (data & LP8788_CHG_STATE_M) >> LP8788_CHG_STATE_S; return sysfs_emit(buf, "%s\n", desc[state]); } static ssize_t lp8788_show_eoc_time(struct device *dev, struct device_attribute *attr, char *buf) { struct lp8788_charger *pchg = dev_get_drvdata(dev); static const char * const stime[] = { "400ms", "5min", "10min", "15min", "20min", "25min", "30min", "No timeout" }; u8 val; lp8788_read_byte(pchg->lp, LP8788_CHG_EOC, &val); val = (val & LP8788_CHG_EOC_TIME_M) >> LP8788_CHG_EOC_TIME_S; return sysfs_emit(buf, "End Of Charge Time: %s\n", stime[val]); } static ssize_t lp8788_show_eoc_level(struct device *dev, struct device_attribute *attr, char *buf) { struct lp8788_charger *pchg = dev_get_drvdata(dev); static const char * const abs_level[] = { "25mA", "49mA", "75mA", "98mA" }; static const char * const relative_level[] = { "5%", "10%", "15%", "20%" }; const char *level; u8 val; u8 mode; lp8788_read_byte(pchg->lp, LP8788_CHG_EOC, &val); mode = val & LP8788_CHG_EOC_MODE_M; val = (val & LP8788_CHG_EOC_LEVEL_M) >> LP8788_CHG_EOC_LEVEL_S; level = mode ? abs_level[val] : relative_level[val]; return sysfs_emit(buf, "End Of Charge Level: %s\n", level); } static DEVICE_ATTR(charger_status, S_IRUSR, lp8788_show_charger_status, NULL); static DEVICE_ATTR(eoc_time, S_IRUSR, lp8788_show_eoc_time, NULL); static DEVICE_ATTR(eoc_level, S_IRUSR, lp8788_show_eoc_level, NULL); static struct attribute *lp8788_charger_sysfs_attrs[] = { &dev_attr_charger_status.attr, &dev_attr_eoc_time.attr, &dev_attr_eoc_level.attr, NULL, }; ATTRIBUTE_GROUPS(lp8788_charger_sysfs); static int lp8788_psy_register(struct platform_device *pdev, struct lp8788_charger *pchg) { struct power_supply_config charger_cfg = {}; charger_cfg.attr_grp = lp8788_charger_sysfs_groups; charger_cfg.supplied_to = battery_supplied_to; charger_cfg.num_supplicants = ARRAY_SIZE(battery_supplied_to); pchg->charger = power_supply_register(&pdev->dev, &lp8788_psy_charger_desc, &charger_cfg); if (IS_ERR(pchg->charger)) return -EPERM; pchg->battery = power_supply_register(&pdev->dev, &lp8788_psy_battery_desc, NULL); if (IS_ERR(pchg->battery)) { power_supply_unregister(pchg->charger); return -EPERM; } return 0; } static int lp8788_charger_probe(struct platform_device *pdev) { struct lp8788 *lp = dev_get_drvdata(pdev->dev.parent); struct lp8788_charger *pchg; struct device *dev = &pdev->dev; int ret; pchg = devm_kzalloc(dev, sizeof(struct lp8788_charger), GFP_KERNEL); if (!pchg) return -ENOMEM; pchg->lp = lp; pchg->pdata = lp->pdata ? lp->pdata->chg_pdata : NULL; platform_set_drvdata(pdev, pchg); ret = lp8788_update_charger_params(pdev, pchg); if (ret) return ret; lp8788_setup_adc_channel(&pdev->dev, pchg); ret = lp8788_psy_register(pdev, pchg); if (ret) return ret; ret = lp8788_irq_register(pdev, pchg); if (ret) dev_warn(dev, "failed to register charger irq: %d\n", ret); return 0; } static int lp8788_charger_remove(struct platform_device *pdev) { struct lp8788_charger *pchg = platform_get_drvdata(pdev); flush_work(&pchg->charger_work); lp8788_irq_unregister(pdev, pchg); lp8788_psy_unregister(pchg); return 0; } static struct platform_driver lp8788_charger_driver = { .probe = lp8788_charger_probe, .remove = lp8788_charger_remove, .driver = { .name = LP8788_DEV_CHARGER, }, }; module_platform_driver(lp8788_charger_driver); MODULE_DESCRIPTION("TI LP8788 Charger Driver"); MODULE_AUTHOR("Milo Kim"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:lp8788-charger");
linux-master
drivers/power/supply/lp8788-charger.c
// SPDX-License-Identifier: GPL-2.0+ /* * Charger Driver for Rockchip rk817 * * Copyright (c) 2021 Maya Matuszczyk <[email protected]> * * Authors: Maya Matuszczyk <[email protected]> * Chris Morgan <[email protected]> */ #include <asm/unaligned.h> #include <linux/devm-helpers.h> #include <linux/mfd/rk808.h> #include <linux/irq.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> /* Charging statuses reported by hardware register */ enum rk817_charge_status { CHRG_OFF, DEAD_CHRG, TRICKLE_CHRG, CC_OR_CV_CHRG, CHARGE_FINISH, USB_OVER_VOL, BAT_TMP_ERR, BAT_TIM_ERR, }; /* * Max charging current read to/written from hardware register. * Note how highest value corresponding to 0x7 is the lowest * current, this is per the datasheet. */ enum rk817_chg_cur { CHG_1A, CHG_1_5A, CHG_2A, CHG_2_5A, CHG_2_75A, CHG_3A, CHG_3_5A, CHG_0_5A, }; struct rk817_charger { struct device *dev; struct rk808 *rk808; struct power_supply *bat_ps; struct power_supply *chg_ps; bool plugged_in; bool battery_present; /* * voltage_k and voltage_b values are used to calibrate the ADC * voltage readings. While they are documented in the BSP kernel and * datasheet as voltage_k and voltage_b, there is no further * information explaining them in more detail. */ uint32_t voltage_k; uint32_t voltage_b; /* * soc - state of charge - like the BSP this is stored as a percentage, * to the thousandth. BSP has a display state of charge (dsoc) and a * remaining state of charge (rsoc). This value will be used for both * purposes here so we don't do any fancy math to try and "smooth" the * charge and just report it as it is. Note for example an soc of 100 * is stored as 100000, an soc of 50 is stored as 50000, etc. */ int soc; /* * Capacity of battery when fully charged, equal or less than design * capacity depending upon wear. BSP kernel saves to nvram in mAh, * so this value is in mAh not the standard uAh. */ int fcc_mah; /* * Calibrate the SOC on a fully charged battery, this way we can use * the calibrated SOC value to correct for columb counter drift. */ bool soc_cal; /* Implementation specific immutable properties from device tree */ int res_div; int sleep_enter_current_ua; int sleep_filter_current_ua; int bat_charge_full_design_uah; int bat_voltage_min_design_uv; int bat_voltage_max_design_uv; /* Values updated periodically by driver for display. */ int charge_now_uah; int volt_avg_uv; int cur_avg_ua; int max_chg_cur_ua; int max_chg_volt_uv; int charge_status; int charger_input_volt_avg_uv; /* Work queue to periodically update values. */ struct delayed_work work; }; /* ADC coefficients extracted from BSP kernel */ #define ADC_TO_CURRENT(adc_value, res_div) \ (adc_value * 172 / res_div) #define CURRENT_TO_ADC(current, samp_res) \ (current * samp_res / 172) #define CHARGE_TO_ADC(capacity, res_div) \ (capacity * res_div * 3600 / 172 * 1000) #define ADC_TO_CHARGE_UAH(adc_value, res_div) \ (adc_value / 3600 * 172 / res_div) static int rk817_chg_cur_to_reg(u32 chg_cur_ma) { if (chg_cur_ma >= 3500) return CHG_3_5A; else if (chg_cur_ma >= 3000) return CHG_3A; else if (chg_cur_ma >= 2750) return CHG_2_75A; else if (chg_cur_ma >= 2500) return CHG_2_5A; else if (chg_cur_ma >= 2000) return CHG_2A; else if (chg_cur_ma >= 1500) return CHG_1_5A; else if (chg_cur_ma >= 1000) return CHG_1A; else if (chg_cur_ma >= 500) return CHG_0_5A; else return -EINVAL; } static int rk817_chg_cur_from_reg(u8 reg) { switch (reg) { case CHG_0_5A: return 500000; case CHG_1A: return 1000000; case CHG_1_5A: return 1500000; case CHG_2A: return 2000000; case CHG_2_5A: return 2500000; case CHG_2_75A: return 2750000; case CHG_3A: return 3000000; case CHG_3_5A: return 3500000; default: return -EINVAL; } } static void rk817_bat_calib_vol(struct rk817_charger *charger) { uint32_t vcalib0 = 0; uint32_t vcalib1 = 0; u8 bulk_reg[2]; /* calibrate voltage */ regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_VCALIB0_H, bulk_reg, 2); vcalib0 = get_unaligned_be16(bulk_reg); regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_VCALIB1_H, bulk_reg, 2); vcalib1 = get_unaligned_be16(bulk_reg); /* values were taken from BSP kernel */ charger->voltage_k = (4025 - 2300) * 1000 / ((vcalib1 - vcalib0) ? (vcalib1 - vcalib0) : 1); charger->voltage_b = 4025 - (charger->voltage_k * vcalib1) / 1000; } static void rk817_bat_calib_cur(struct rk817_charger *charger) { u8 bulk_reg[2]; /* calibrate current */ regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_IOFFSET_H, bulk_reg, 2); regmap_bulk_write(charger->rk808->regmap, RK817_GAS_GAUGE_CAL_OFFSET_H, bulk_reg, 2); } /* * note that only the fcc_mah is really used by this driver, the other values * are to ensure we can remain backwards compatible with the BSP kernel. */ static int rk817_record_battery_nvram_values(struct rk817_charger *charger) { u8 bulk_reg[3]; int ret, rsoc; /* * write the soc value to the nvram location used by the BSP kernel * for the dsoc value. */ put_unaligned_le24(charger->soc, bulk_reg); ret = regmap_bulk_write(charger->rk808->regmap, RK817_GAS_GAUGE_BAT_R1, bulk_reg, 3); if (ret < 0) return ret; /* * write the remaining capacity in mah to the nvram location used by * the BSP kernel for the rsoc value. */ rsoc = (charger->soc * charger->fcc_mah) / 100000; put_unaligned_le24(rsoc, bulk_reg); ret = regmap_bulk_write(charger->rk808->regmap, RK817_GAS_GAUGE_DATA0, bulk_reg, 3); if (ret < 0) return ret; /* write the fcc_mah in mAh, just as the BSP kernel does. */ put_unaligned_le24(charger->fcc_mah, bulk_reg); ret = regmap_bulk_write(charger->rk808->regmap, RK817_GAS_GAUGE_DATA3, bulk_reg, 3); if (ret < 0) return ret; return 0; } static int rk817_bat_calib_cap(struct rk817_charger *charger) { struct rk808 *rk808 = charger->rk808; int tmp, charge_now, charge_now_adc, volt_avg; u8 bulk_reg[4]; /* Calibrate the soc and fcc on a fully charged battery */ if (charger->charge_status == CHARGE_FINISH && (!charger->soc_cal)) { /* * soc should be 100000 and columb counter should show the full * charge capacity. Note that if the device is unplugged for a * period of several days the columb counter will have a large * margin of error, so setting it back to the full charge on * a completed charge cycle should correct this (my device was * showing 33% battery after 3 days unplugged when it should * have been closer to 95% based on voltage and charge * current). */ charger->soc = 100000; charge_now_adc = CHARGE_TO_ADC(charger->fcc_mah, charger->res_div); put_unaligned_be32(charge_now_adc, bulk_reg); regmap_bulk_write(rk808->regmap, RK817_GAS_GAUGE_Q_INIT_H3, bulk_reg, 4); charger->soc_cal = 1; dev_dbg(charger->dev, "Fully charged. SOC is %d, full capacity is %d\n", charger->soc, charger->fcc_mah * 1000); } /* * The columb counter can drift up slightly, so we should correct for * it. But don't correct it until we're at 100% soc. */ if (charger->charge_status == CHARGE_FINISH && charger->soc_cal) { regmap_bulk_read(rk808->regmap, RK817_GAS_GAUGE_Q_PRES_H3, bulk_reg, 4); charge_now_adc = get_unaligned_be32(bulk_reg); if (charge_now_adc < 0) return charge_now_adc; charge_now = ADC_TO_CHARGE_UAH(charge_now_adc, charger->res_div); /* * Re-init columb counter with updated values to correct drift. */ if (charge_now / 1000 > charger->fcc_mah) { dev_dbg(charger->dev, "Recalibrating columb counter to %d uah\n", charge_now); /* * Order of operations matters here to ensure we keep * enough precision until the last step to keep from * making needless updates to columb counter. */ charge_now_adc = CHARGE_TO_ADC(charger->fcc_mah, charger->res_div); put_unaligned_be32(charge_now_adc, bulk_reg); regmap_bulk_write(rk808->regmap, RK817_GAS_GAUGE_Q_INIT_H3, bulk_reg, 4); } } /* * Calibrate the fully charged capacity when we previously had a full * battery (soc_cal = 1) and are now empty (at or below minimum design * voltage). If our columb counter is still positive, subtract that * from our fcc value to get a calibrated fcc, and if our columb * counter is negative add that to our fcc (but not to exceed our * design capacity). */ regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_BAT_VOL_H, bulk_reg, 2); tmp = get_unaligned_be16(bulk_reg); volt_avg = (charger->voltage_k * tmp) + 1000 * charger->voltage_b; if (volt_avg <= charger->bat_voltage_min_design_uv && charger->soc_cal) { regmap_bulk_read(rk808->regmap, RK817_GAS_GAUGE_Q_PRES_H3, bulk_reg, 4); charge_now_adc = get_unaligned_be32(bulk_reg); charge_now = ADC_TO_CHARGE_UAH(charge_now_adc, charger->res_div); /* * Note, if charge_now is negative this will add it (what we * want) and if it's positive this will subtract (also what * we want). */ charger->fcc_mah = charger->fcc_mah - (charge_now / 1000); dev_dbg(charger->dev, "Recalibrating full charge capacity to %d uah\n", charger->fcc_mah * 1000); } /* * Set the SOC to 0 if we are below the minimum system voltage. */ if (volt_avg <= charger->bat_voltage_min_design_uv) { charger->soc = 0; charge_now_adc = CHARGE_TO_ADC(0, charger->res_div); put_unaligned_be32(charge_now_adc, bulk_reg); regmap_bulk_write(rk808->regmap, RK817_GAS_GAUGE_Q_INIT_H3, bulk_reg, 4); dev_warn(charger->dev, "Battery voltage %d below minimum voltage %d\n", volt_avg, charger->bat_voltage_min_design_uv); } rk817_record_battery_nvram_values(charger); return 0; } static void rk817_read_props(struct rk817_charger *charger) { int tmp, reg; u8 bulk_reg[4]; /* * Recalibrate voltage and current readings if we need to BSP does both * on CUR_CALIB_UPD, ignoring VOL_CALIB_UPD. Curiously enough, both * documentation and the BSP show that you perform an update if bit 7 * is 1, but you clear the status by writing a 1 to bit 7. */ regmap_read(charger->rk808->regmap, RK817_GAS_GAUGE_ADC_CONFIG1, &reg); if (reg & RK817_VOL_CUR_CALIB_UPD) { rk817_bat_calib_cur(charger); rk817_bat_calib_vol(charger); regmap_write_bits(charger->rk808->regmap, RK817_GAS_GAUGE_ADC_CONFIG1, RK817_VOL_CUR_CALIB_UPD, RK817_VOL_CUR_CALIB_UPD); } /* Update reported charge. */ regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_Q_PRES_H3, bulk_reg, 4); tmp = get_unaligned_be32(bulk_reg); charger->charge_now_uah = ADC_TO_CHARGE_UAH(tmp, charger->res_div); if (charger->charge_now_uah < 0) charger->charge_now_uah = 0; if (charger->charge_now_uah > charger->fcc_mah * 1000) charger->charge_now_uah = charger->fcc_mah * 1000; /* Update soc based on reported charge. */ charger->soc = charger->charge_now_uah * 100 / charger->fcc_mah; /* Update reported voltage. */ regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_BAT_VOL_H, bulk_reg, 2); tmp = get_unaligned_be16(bulk_reg); charger->volt_avg_uv = (charger->voltage_k * tmp) + 1000 * charger->voltage_b; /* * Update reported current. Note value from registers is a signed 16 * bit int. */ regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_BAT_CUR_H, bulk_reg, 2); tmp = (short int)get_unaligned_be16(bulk_reg); charger->cur_avg_ua = ADC_TO_CURRENT(tmp, charger->res_div); /* * Update the max charge current. This value shouldn't change, but we * can read it to report what the PMIC says it is instead of simply * returning the default value. */ regmap_read(charger->rk808->regmap, RK817_PMIC_CHRG_OUT, &reg); charger->max_chg_cur_ua = rk817_chg_cur_from_reg(reg & RK817_CHRG_CUR_SEL); /* * Update max charge voltage. Like the max charge current this value * shouldn't change, but we can report what the PMIC says. */ regmap_read(charger->rk808->regmap, RK817_PMIC_CHRG_OUT, &reg); charger->max_chg_volt_uv = ((((reg & RK817_CHRG_VOL_SEL) >> 4) * 50000) + 4100000); /* Check if battery still present. */ regmap_read(charger->rk808->regmap, RK817_PMIC_CHRG_STS, &reg); charger->battery_present = (reg & RK817_BAT_EXS); /* Get which type of charge we are using (if any). */ regmap_read(charger->rk808->regmap, RK817_PMIC_CHRG_STS, &reg); charger->charge_status = (reg >> 4) & 0x07; /* * Get charger input voltage. Note that on my example hardware (an * Odroid Go Advance) the voltage of the power connector is measured * on the register labelled USB in the datasheet; I don't know if this * is how it is designed or just a quirk of the implementation. I * believe this will also measure the voltage of the USB output when in * OTG mode, if that is the case we may need to change this in the * future to return 0 if the power supply status is offline (I can't * test this with my current implementation. Also, when the voltage * should be zero sometimes the ADC still shows a single bit (which * would register as 20000uv). When this happens set it to 0. */ regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_USB_VOL_H, bulk_reg, 2); reg = get_unaligned_be16(bulk_reg); if (reg > 1) { tmp = ((charger->voltage_k * reg / 1000 + charger->voltage_b) * 60 / 46); charger->charger_input_volt_avg_uv = tmp * 1000; } else { charger->charger_input_volt_avg_uv = 0; } /* Calibrate battery capacity and soc. */ rk817_bat_calib_cap(charger); } static int rk817_bat_get_prop(struct power_supply *ps, enum power_supply_property prop, union power_supply_propval *val) { struct rk817_charger *charger = power_supply_get_drvdata(ps); switch (prop) { case POWER_SUPPLY_PROP_PRESENT: val->intval = charger->battery_present; break; case POWER_SUPPLY_PROP_STATUS: if (charger->cur_avg_ua < 0) { val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; } switch (charger->charge_status) { case CHRG_OFF: val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; /* * Dead charge is documented, but not explained. I never * observed it but assume it's a pre-charge for a dead * battery. */ case DEAD_CHRG: case TRICKLE_CHRG: case CC_OR_CV_CHRG: val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case CHARGE_FINISH: val->intval = POWER_SUPPLY_STATUS_FULL; break; default: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; return -EINVAL; } break; case POWER_SUPPLY_PROP_CHARGE_TYPE: switch (charger->charge_status) { case CHRG_OFF: case CHARGE_FINISH: val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; case TRICKLE_CHRG: val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case DEAD_CHRG: case CC_OR_CV_CHRG: val->intval = POWER_SUPPLY_CHARGE_TYPE_STANDARD; break; default: val->intval = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; break; } break; case POWER_SUPPLY_PROP_CHARGE_FULL: val->intval = charger->fcc_mah * 1000; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = charger->bat_charge_full_design_uah; break; case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: val->intval = 0; break; case POWER_SUPPLY_PROP_CHARGE_NOW: val->intval = charger->charge_now_uah; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = charger->bat_voltage_min_design_uv; break; case POWER_SUPPLY_PROP_CAPACITY: /* Add 500 so that values like 99999 are 100% not 99%. */ val->intval = (charger->soc + 500) / 1000; if (val->intval > 100) val->intval = 100; if (val->intval < 0) val->intval = 0; break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: val->intval = charger->volt_avg_uv; break; case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = charger->cur_avg_ua; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = charger->max_chg_cur_ua; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = charger->max_chg_volt_uv; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = charger->bat_voltage_max_design_uv; break; default: return -EINVAL; } return 0; } static int rk817_chg_get_prop(struct power_supply *ps, enum power_supply_property prop, union power_supply_propval *val) { struct rk817_charger *charger = power_supply_get_drvdata(ps); switch (prop) { case POWER_SUPPLY_PROP_ONLINE: val->intval = charger->plugged_in; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: /* max voltage from datasheet at 5.5v (default 5.0v) */ val->intval = 5500000; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: /* min voltage from datasheet at 3.8v (default 5.0v) */ val->intval = 3800000; break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: val->intval = charger->charger_input_volt_avg_uv; break; /* * While it's possible that other implementations could use different * USB types, the current implementation for this PMIC (the Odroid Go * Advance) only uses a dedicated charging port with no rx/tx lines. */ case POWER_SUPPLY_PROP_USB_TYPE: val->intval = POWER_SUPPLY_USB_TYPE_DCP; break; default: return -EINVAL; } return 0; } static irqreturn_t rk817_plug_in_isr(int irq, void *cg) { struct rk817_charger *charger; charger = (struct rk817_charger *)cg; charger->plugged_in = 1; power_supply_changed(charger->chg_ps); power_supply_changed(charger->bat_ps); /* try to recalibrate capacity if we hit full charge. */ charger->soc_cal = 0; rk817_read_props(charger); dev_dbg(charger->dev, "Power Cord Inserted\n"); return IRQ_HANDLED; } static irqreturn_t rk817_plug_out_isr(int irq, void *cg) { struct rk817_charger *charger; struct rk808 *rk808; charger = (struct rk817_charger *)cg; rk808 = charger->rk808; charger->plugged_in = 0; power_supply_changed(charger->bat_ps); power_supply_changed(charger->chg_ps); /* * For some reason the bits of RK817_PMIC_CHRG_IN reset whenever the * power cord is unplugged. This was not documented in the BSP kernel * or the datasheet and only discovered by trial and error. Set minimum * USB input voltage to 4.5v and enable USB voltage input limit. */ regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_IN, RK817_USB_VLIM_SEL, (0x05 << 4)); regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_IN, RK817_USB_VLIM_EN, (0x01 << 7)); /* * Set average USB input current limit to 1.5A and enable USB current * input limit. */ regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_IN, RK817_USB_ILIM_SEL, 0x03); regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_IN, RK817_USB_ILIM_EN, (0x01 << 3)); rk817_read_props(charger); dev_dbg(charger->dev, "Power Cord Removed\n"); return IRQ_HANDLED; } static enum power_supply_property rk817_bat_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, }; static enum power_supply_property rk817_chg_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_AVG, }; static enum power_supply_usb_type rk817_usb_type[] = { POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_UNKNOWN, }; static const struct power_supply_desc rk817_bat_desc = { .name = "rk817-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = rk817_bat_props, .num_properties = ARRAY_SIZE(rk817_bat_props), .get_property = rk817_bat_get_prop, }; static const struct power_supply_desc rk817_chg_desc = { .name = "rk817-charger", .type = POWER_SUPPLY_TYPE_USB, .usb_types = rk817_usb_type, .num_usb_types = ARRAY_SIZE(rk817_usb_type), .properties = rk817_chg_props, .num_properties = ARRAY_SIZE(rk817_chg_props), .get_property = rk817_chg_get_prop, }; static int rk817_read_battery_nvram_values(struct rk817_charger *charger) { u8 bulk_reg[3]; int ret; /* Read the nvram data for full charge capacity. */ ret = regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_DATA3, bulk_reg, 3); if (ret < 0) return ret; charger->fcc_mah = get_unaligned_le24(bulk_reg); /* * Sanity checking for values equal to zero or less than would be * practical for this device (BSP Kernel assumes 500mAH or less) for * practicality purposes. Also check if the value is too large and * correct it. */ if ((charger->fcc_mah < 500) || ((charger->fcc_mah * 1000) > charger->bat_charge_full_design_uah)) { dev_info(charger->dev, "Invalid NVRAM max charge, setting to %u uAH\n", charger->bat_charge_full_design_uah); charger->fcc_mah = charger->bat_charge_full_design_uah / 1000; } /* * Read the nvram for state of charge. Sanity check for values greater * than 100 (10000) or less than 0, because other things (BSP kernels, * U-Boot, or even i2cset) can write to this register. If the value is * off it should get corrected automatically when the voltage drops to * the min (soc is 0) or when the battery is full (soc is 100). */ ret = regmap_bulk_read(charger->rk808->regmap, RK817_GAS_GAUGE_BAT_R1, bulk_reg, 3); if (ret < 0) return ret; charger->soc = get_unaligned_le24(bulk_reg); if (charger->soc > 10000) charger->soc = 10000; if (charger->soc < 0) charger->soc = 0; return 0; } static int rk817_read_or_set_full_charge_on_boot(struct rk817_charger *charger, struct power_supply_battery_info *bat_info) { struct rk808 *rk808 = charger->rk808; u8 bulk_reg[4]; u32 boot_voltage, boot_charge_mah; int ret, reg, off_time, tmp; bool first_boot; /* * Check if the battery is uninitalized. If it is, the columb counter * needs to be set up. */ ret = regmap_read(rk808->regmap, RK817_GAS_GAUGE_GG_STS, &reg); if (ret < 0) return ret; first_boot = reg & RK817_BAT_CON; /* * If the battery is uninitialized, use the poweron voltage and an ocv * lookup to guess our charge. The number won't be very accurate until * we hit either our minimum voltage (0%) or full charge (100%). */ if (first_boot) { regmap_bulk_read(rk808->regmap, RK817_GAS_GAUGE_PWRON_VOL_H, bulk_reg, 2); tmp = get_unaligned_be16(bulk_reg); boot_voltage = (charger->voltage_k * tmp) + 1000 * charger->voltage_b; /* * Since only implementation has no working thermistor, assume * 20C for OCV lookup. If lookup fails, report error with OCV * table. */ charger->soc = power_supply_batinfo_ocv2cap(bat_info, boot_voltage, 20) * 1000; if (charger->soc < 0) charger->soc = 0; /* Guess that full charge capacity is the design capacity */ charger->fcc_mah = charger->bat_charge_full_design_uah / 1000; /* * Set battery as "set up". BSP driver uses this value even * though datasheet claims it's a read-only value. */ regmap_write_bits(rk808->regmap, RK817_GAS_GAUGE_GG_STS, RK817_BAT_CON, 0); /* Save nvram values */ ret = rk817_record_battery_nvram_values(charger); if (ret < 0) return ret; } else { ret = rk817_read_battery_nvram_values(charger); if (ret < 0) return ret; regmap_bulk_read(rk808->regmap, RK817_GAS_GAUGE_Q_PRES_H3, bulk_reg, 4); tmp = get_unaligned_be32(bulk_reg); if (tmp < 0) tmp = 0; boot_charge_mah = ADC_TO_CHARGE_UAH(tmp, charger->res_div) / 1000; /* * Check if the columb counter has been off for more than 30 * minutes as it tends to drift downward. If so, re-init soc * with the boot voltage instead. Note the unit values for the * OFF_CNT register appear to be in decaminutes and stops * counting at 2550 (0xFF) minutes. BSP kernel used OCV, but * for me occasionally that would show invalid values. Boot * voltage is only accurate for me on first poweron (not * reboots), but we shouldn't ever encounter an OFF_CNT more * than 0 on a reboot anyway. */ regmap_read(rk808->regmap, RK817_GAS_GAUGE_OFF_CNT, &off_time); if (off_time >= 3) { regmap_bulk_read(rk808->regmap, RK817_GAS_GAUGE_PWRON_VOL_H, bulk_reg, 2); tmp = get_unaligned_be16(bulk_reg); boot_voltage = (charger->voltage_k * tmp) + 1000 * charger->voltage_b; charger->soc = power_supply_batinfo_ocv2cap(bat_info, boot_voltage, 20) * 1000; } else { charger->soc = (boot_charge_mah * 1000 * 100 / charger->fcc_mah); } } /* * Now we have our full charge capacity and soc, init the columb * counter. */ boot_charge_mah = charger->soc * charger->fcc_mah / 100 / 1000; if (boot_charge_mah > charger->fcc_mah) boot_charge_mah = charger->fcc_mah; tmp = CHARGE_TO_ADC(boot_charge_mah, charger->res_div); put_unaligned_be32(tmp, bulk_reg); ret = regmap_bulk_write(rk808->regmap, RK817_GAS_GAUGE_Q_INIT_H3, bulk_reg, 4); if (ret < 0) return ret; /* Set QMAX value to max design capacity. */ tmp = CHARGE_TO_ADC((charger->bat_charge_full_design_uah / 1000), charger->res_div); put_unaligned_be32(tmp, bulk_reg); ret = regmap_bulk_write(rk808->regmap, RK817_GAS_GAUGE_Q_MAX_H3, bulk_reg, 4); if (ret < 0) return ret; return 0; } static int rk817_battery_init(struct rk817_charger *charger, struct power_supply_battery_info *bat_info) { struct rk808 *rk808 = charger->rk808; u32 tmp, max_chg_vol_mv, max_chg_cur_ma; u8 max_chg_vol_reg, chg_term_i_reg; int ret, chg_term_ma, max_chg_cur_reg; u8 bulk_reg[2]; /* Get initial plug state */ regmap_read(rk808->regmap, RK817_SYS_STS, &tmp); charger->plugged_in = (tmp & RK817_PLUG_IN_STS); /* * Turn on all ADC functions to measure battery, USB, and sys voltage, * as well as batt temp. Note only tested implementation so far does * not use a battery with a thermistor. */ regmap_write(rk808->regmap, RK817_GAS_GAUGE_ADC_CONFIG0, 0xfc); /* * Set relax mode voltage sampling interval and ADC offset calibration * interval to 8 minutes to mirror BSP kernel. Set voltage and current * modes to average to mirror BSP kernel. */ regmap_write(rk808->regmap, RK817_GAS_GAUGE_GG_CON, 0x04); /* Calibrate voltage like the BSP does here. */ rk817_bat_calib_vol(charger); /* Write relax threshold, derived from sleep enter current. */ tmp = CURRENT_TO_ADC(charger->sleep_enter_current_ua, charger->res_div); put_unaligned_be16(tmp, bulk_reg); regmap_bulk_write(rk808->regmap, RK817_GAS_GAUGE_RELAX_THRE_H, bulk_reg, 2); /* Write sleep sample current, derived from sleep filter current. */ tmp = CURRENT_TO_ADC(charger->sleep_filter_current_ua, charger->res_div); put_unaligned_be16(tmp, bulk_reg); regmap_bulk_write(rk808->regmap, RK817_GAS_GAUGE_SLEEP_CON_SAMP_CUR_H, bulk_reg, 2); /* Restart battery relax voltage */ regmap_write_bits(rk808->regmap, RK817_GAS_GAUGE_GG_STS, RK817_RELAX_VOL_UPD, (0x0 << 2)); /* * Set OCV Threshold Voltage to 127.5mV. This was hard coded like this * in the BSP. */ regmap_write(rk808->regmap, RK817_GAS_GAUGE_OCV_THRE_VOL, 0xff); /* * Set maximum charging voltage to battery max voltage. Trying to be * incredibly safe with these value, as setting them wrong could * overcharge the battery, which would be very bad. */ max_chg_vol_mv = bat_info->constant_charge_voltage_max_uv / 1000; max_chg_cur_ma = bat_info->constant_charge_current_max_ua / 1000; if (max_chg_vol_mv < 4100) { return dev_err_probe(charger->dev, -EINVAL, "invalid max charger voltage, value %u unsupported\n", max_chg_vol_mv * 1000); } if (max_chg_vol_mv > 4450) { dev_info(charger->dev, "Setting max charge voltage to 4450000uv\n"); max_chg_vol_mv = 4450; } if (max_chg_cur_ma < 500) { return dev_err_probe(charger->dev, -EINVAL, "invalid max charger current, value %u unsupported\n", max_chg_cur_ma * 1000); } if (max_chg_cur_ma > 3500) dev_info(charger->dev, "Setting max charge current to 3500000ua\n"); /* * Now that the values are sanity checked, if we subtract 4100 from the * max voltage and divide by 50, we conviently get the exact value for * the registers, which are 4.1v, 4.15v, 4.2v, 4.25v, 4.3v, 4.35v, * 4.4v, and 4.45v; these correspond to values 0x00 through 0x07. */ max_chg_vol_reg = (max_chg_vol_mv - 4100) / 50; max_chg_cur_reg = rk817_chg_cur_to_reg(max_chg_cur_ma); if (max_chg_vol_reg < 0 || max_chg_vol_reg > 7) { return dev_err_probe(charger->dev, -EINVAL, "invalid max charger voltage, value %u unsupported\n", max_chg_vol_mv * 1000); } if (max_chg_cur_reg < 0 || max_chg_cur_reg > 7) { return dev_err_probe(charger->dev, -EINVAL, "invalid max charger current, value %u unsupported\n", max_chg_cur_ma * 1000); } /* * Write the values to the registers, and deliver an emergency warning * in the event they are not written correctly. */ ret = regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_OUT, RK817_CHRG_VOL_SEL, (max_chg_vol_reg << 4)); if (ret) { dev_emerg(charger->dev, "Danger, unable to set max charger voltage: %u\n", ret); } ret = regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_OUT, RK817_CHRG_CUR_SEL, max_chg_cur_reg); if (ret) { dev_emerg(charger->dev, "Danger, unable to set max charger current: %u\n", ret); } /* Set charge finishing mode to analog */ regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_TERM, RK817_CHRG_TERM_ANA_DIG, (0x0 << 2)); /* * Set charge finish current, warn if value not in range and keep * default. */ chg_term_ma = bat_info->charge_term_current_ua / 1000; if (chg_term_ma < 150 || chg_term_ma > 400) { dev_warn(charger->dev, "Invalid charge termination %u, keeping default\n", chg_term_ma * 1000); chg_term_ma = 200; } /* * Values of 150ma, 200ma, 300ma, and 400ma correspond to 00, 01, 10, * and 11. */ chg_term_i_reg = (chg_term_ma - 100) / 100; regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_TERM, RK817_CHRG_TERM_ANA_SEL, chg_term_i_reg); ret = rk817_read_or_set_full_charge_on_boot(charger, bat_info); if (ret < 0) return ret; /* * Set minimum USB input voltage to 4.5v and enable USB voltage input * limit. */ regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_IN, RK817_USB_VLIM_SEL, (0x05 << 4)); regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_IN, RK817_USB_VLIM_EN, (0x01 << 7)); /* * Set average USB input current limit to 1.5A and enable USB current * input limit. */ regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_IN, RK817_USB_ILIM_SEL, 0x03); regmap_write_bits(rk808->regmap, RK817_PMIC_CHRG_IN, RK817_USB_ILIM_EN, (0x01 << 3)); return 0; } static void rk817_charging_monitor(struct work_struct *work) { struct rk817_charger *charger; charger = container_of(work, struct rk817_charger, work.work); rk817_read_props(charger); /* Run every 8 seconds like the BSP driver did. */ queue_delayed_work(system_wq, &charger->work, msecs_to_jiffies(8000)); } static int rk817_charger_probe(struct platform_device *pdev) { struct rk808 *rk808 = dev_get_drvdata(pdev->dev.parent); struct rk817_charger *charger; struct device_node *node; struct power_supply_battery_info *bat_info; struct device *dev = &pdev->dev; struct power_supply_config pscfg = {}; int plugin_irq, plugout_irq; int of_value; int ret; node = of_get_child_by_name(dev->parent->of_node, "charger"); if (!node) return -ENODEV; charger = devm_kzalloc(&pdev->dev, sizeof(*charger), GFP_KERNEL); if (!charger) { of_node_put(node); return -ENOMEM; } charger->rk808 = rk808; charger->dev = &pdev->dev; platform_set_drvdata(pdev, charger); rk817_bat_calib_vol(charger); pscfg.drv_data = charger; pscfg.of_node = node; /* * Get sample resistor value. Note only values of 10000 or 20000 * microohms are allowed. Schematic for my test implementation (an * Odroid Go Advance) shows a 10 milliohm resistor for reference. */ ret = of_property_read_u32(node, "rockchip,resistor-sense-micro-ohms", &of_value); if (ret < 0) { return dev_err_probe(dev, ret, "Error reading sample resistor value\n"); } /* * Store as a 1 or a 2, since all we really use the value for is as a * divisor in some calculations. */ charger->res_div = (of_value == 20000) ? 2 : 1; /* * Get sleep enter current value. Not sure what this value is for * other than to help calibrate the relax threshold. */ ret = of_property_read_u32(node, "rockchip,sleep-enter-current-microamp", &of_value); if (ret < 0) { return dev_err_probe(dev, ret, "Error reading sleep enter cur value\n"); } charger->sleep_enter_current_ua = of_value; /* Get sleep filter current value */ ret = of_property_read_u32(node, "rockchip,sleep-filter-current-microamp", &of_value); if (ret < 0) { return dev_err_probe(dev, ret, "Error reading sleep filter cur value\n"); } charger->sleep_filter_current_ua = of_value; charger->bat_ps = devm_power_supply_register(&pdev->dev, &rk817_bat_desc, &pscfg); if (IS_ERR(charger->bat_ps)) return dev_err_probe(dev, -EINVAL, "Battery failed to probe\n"); charger->chg_ps = devm_power_supply_register(&pdev->dev, &rk817_chg_desc, &pscfg); if (IS_ERR(charger->chg_ps)) return dev_err_probe(dev, -EINVAL, "Charger failed to probe\n"); ret = power_supply_get_battery_info(charger->bat_ps, &bat_info); if (ret) { return dev_err_probe(dev, ret, "Unable to get battery info\n"); } if ((bat_info->charge_full_design_uah <= 0) || (bat_info->voltage_min_design_uv <= 0) || (bat_info->voltage_max_design_uv <= 0) || (bat_info->constant_charge_voltage_max_uv <= 0) || (bat_info->constant_charge_current_max_ua <= 0) || (bat_info->charge_term_current_ua <= 0)) { return dev_err_probe(dev, -EINVAL, "Required bat info missing or invalid\n"); } charger->bat_charge_full_design_uah = bat_info->charge_full_design_uah; charger->bat_voltage_min_design_uv = bat_info->voltage_min_design_uv; charger->bat_voltage_max_design_uv = bat_info->voltage_max_design_uv; /* * Has to run after power_supply_get_battery_info as it depends on some * values discovered from that routine. */ ret = rk817_battery_init(charger, bat_info); if (ret) return ret; power_supply_put_battery_info(charger->bat_ps, bat_info); plugin_irq = platform_get_irq(pdev, 0); if (plugin_irq < 0) return plugin_irq; plugout_irq = platform_get_irq(pdev, 1); if (plugout_irq < 0) return plugout_irq; ret = devm_request_threaded_irq(charger->dev, plugin_irq, NULL, rk817_plug_in_isr, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "rk817_plug_in", charger); if (ret) { return dev_err_probe(&pdev->dev, ret, "plug_in_irq request failed!\n"); } ret = devm_request_threaded_irq(charger->dev, plugout_irq, NULL, rk817_plug_out_isr, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "rk817_plug_out", charger); if (ret) { return dev_err_probe(&pdev->dev, ret, "plug_out_irq request failed!\n"); } ret = devm_delayed_work_autocancel(&pdev->dev, &charger->work, rk817_charging_monitor); if (ret) return ret; /* Force the first update immediately. */ mod_delayed_work(system_wq, &charger->work, 0); return 0; } static struct platform_driver rk817_charger_driver = { .probe = rk817_charger_probe, .driver = { .name = "rk817-charger", }, }; module_platform_driver(rk817_charger_driver); MODULE_DESCRIPTION("Battery power supply driver for RK817 PMIC"); MODULE_AUTHOR("Maya Matuszczyk <[email protected]>"); MODULE_AUTHOR("Chris Morgan <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/rk817_charger.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/export.h> #include <linux/power_supply.h> #include <linux/of.h> #include "ab8500-bm.h" /* Default: under this temperature, charging is stopped */ #define AB8500_TEMP_UNDER 3 /* Default: between this temp and AB8500_TEMP_UNDER charging is reduced */ #define AB8500_TEMP_LOW 8 /* Default: between this temp and AB8500_TEMP_OVER charging is reduced */ #define AB8500_TEMP_HIGH 43 /* Default: over this temp, charging is stopped */ #define AB8500_TEMP_OVER 48 /* Default: temperature hysteresis */ #define AB8500_TEMP_HYSTERESIS 3 static struct power_supply_battery_ocv_table ocv_cap_tbl[] = { { .ocv = 4186000, .capacity = 100}, { .ocv = 4163000, .capacity = 99}, { .ocv = 4114000, .capacity = 95}, { .ocv = 4068000, .capacity = 90}, { .ocv = 3990000, .capacity = 80}, { .ocv = 3926000, .capacity = 70}, { .ocv = 3898000, .capacity = 65}, { .ocv = 3866000, .capacity = 60}, { .ocv = 3833000, .capacity = 55}, { .ocv = 3812000, .capacity = 50}, { .ocv = 3787000, .capacity = 40}, { .ocv = 3768000, .capacity = 30}, { .ocv = 3747000, .capacity = 25}, { .ocv = 3730000, .capacity = 20}, { .ocv = 3705000, .capacity = 15}, { .ocv = 3699000, .capacity = 14}, { .ocv = 3684000, .capacity = 12}, { .ocv = 3672000, .capacity = 9}, { .ocv = 3657000, .capacity = 7}, { .ocv = 3638000, .capacity = 6}, { .ocv = 3556000, .capacity = 4}, { .ocv = 3424000, .capacity = 2}, { .ocv = 3317000, .capacity = 1}, { .ocv = 3094000, .capacity = 0}, }; /* * Note that the batres_vs_temp table must be strictly sorted by falling * temperature values to work. Factory resistance is 300 mOhm and the * resistance values to the right are percentages of 300 mOhm. */ static struct power_supply_resistance_temp_table temp_to_batres_tbl_thermistor[] = { { .temp = 40, .resistance = 40 /* 120 mOhm */ }, { .temp = 30, .resistance = 45 /* 135 mOhm */ }, { .temp = 20, .resistance = 55 /* 165 mOhm */ }, { .temp = 10, .resistance = 77 /* 230 mOhm */ }, { .temp = 00, .resistance = 108 /* 325 mOhm */ }, { .temp = -10, .resistance = 158 /* 445 mOhm */ }, { .temp = -20, .resistance = 198 /* 595 mOhm */ }, }; static struct power_supply_maintenance_charge_table ab8500_maint_charg_table[] = { { /* Maintenance charging phase A, 60 hours */ .charge_current_max_ua = 400000, .charge_voltage_max_uv = 4050000, .charge_safety_timer_minutes = 60*60, }, { /* Maintenance charging phase B, 200 hours */ .charge_current_max_ua = 400000, .charge_voltage_max_uv = 4000000, .charge_safety_timer_minutes = 200*60, } }; static const struct ab8500_bm_capacity_levels cap_levels = { .critical = 2, .low = 10, .normal = 70, .high = 95, .full = 100, }; static const struct ab8500_fg_parameters fg = { .recovery_sleep_timer = 10, .recovery_total_time = 100, .init_timer = 1, .init_discard_time = 5, .init_total_time = 40, .high_curr_time = 60, .accu_charging = 30, .accu_high_curr = 30, .high_curr_threshold_ua = 50000, .lowbat_threshold_uv = 3100000, .battok_falling_th_sel0 = 2860, .battok_raising_th_sel1 = 2860, .maint_thres = 95, .user_cap_limit = 15, .pcut_enable = 1, .pcut_max_time = 127, .pcut_flag_time = 112, .pcut_max_restart = 15, .pcut_debounce_time = 2, }; static const struct ab8500_maxim_parameters ab8500_maxi_params = { .ena_maxi = true, .chg_curr_ua = 910000, .wait_cycles = 10, .charger_curr_step_ua = 100000, }; static const struct ab8500_bm_charger_parameters chg = { .usb_volt_max_uv = 5500000, .usb_curr_max_ua = 1500000, .ac_volt_max_uv = 7500000, .ac_curr_max_ua = 1500000, }; /* This is referenced directly in the charger code */ struct ab8500_bm_data ab8500_bm_data = { .main_safety_tmr_h = 4, .temp_interval_chg = 20, .temp_interval_nochg = 120, .usb_safety_tmr_h = 4, .bkup_bat_v = BUP_VCH_SEL_2P6V, .bkup_bat_i = BUP_ICH_SEL_150UA, .capacity_scaling = false, .chg_unknown_bat = false, .enable_overshoot = false, .fg_res = 100, .cap_levels = &cap_levels, .interval_charging = 5, .interval_not_charging = 120, .maxi = &ab8500_maxi_params, .chg_params = &chg, .fg_params = &fg, }; int ab8500_bm_of_probe(struct power_supply *psy, struct ab8500_bm_data *bm) { struct power_supply_battery_info *bi; struct device *dev = &psy->dev; int ret; ret = power_supply_get_battery_info(psy, &bm->bi); if (ret) { dev_err(dev, "cannot retrieve battery info\n"); return ret; } bi = bm->bi; /* Fill in defaults for any data missing from the device tree */ if (bi->charge_full_design_uah < 0) /* The default capacity is 612 mAh for unknown batteries */ bi->charge_full_design_uah = 612000; /* * All of these voltages need to be specified or we will simply * fall back to safe defaults. */ if ((bi->voltage_min_design_uv < 0) || (bi->voltage_max_design_uv < 0)) { /* Nominal voltage is 3.7V for unknown batteries */ bi->voltage_min_design_uv = 3700000; /* Termination voltage 4.05V */ bi->voltage_max_design_uv = 4050000; } if (bi->constant_charge_current_max_ua < 0) bi->constant_charge_current_max_ua = 400000; if (bi->constant_charge_voltage_max_uv < 0) bi->constant_charge_voltage_max_uv = 4100000; if (bi->charge_term_current_ua) /* Charging stops when we drop below this current */ bi->charge_term_current_ua = 200000; if (!bi->maintenance_charge || !bi->maintenance_charge_size) { bi->maintenance_charge = ab8500_maint_charg_table; bi->maintenance_charge_size = ARRAY_SIZE(ab8500_maint_charg_table); } if (bi->alert_low_temp_charge_current_ua < 0 || bi->alert_low_temp_charge_voltage_uv < 0) { bi->alert_low_temp_charge_current_ua = 300000; bi->alert_low_temp_charge_voltage_uv = 4000000; } if (bi->alert_high_temp_charge_current_ua < 0 || bi->alert_high_temp_charge_voltage_uv < 0) { bi->alert_high_temp_charge_current_ua = 300000; bi->alert_high_temp_charge_voltage_uv = 4000000; } /* * Internal resistance and factory resistance are tightly coupled * so both MUST be defined or we fall back to defaults. */ if ((bi->factory_internal_resistance_uohm < 0) || !bi->resist_table) { bi->factory_internal_resistance_uohm = 300000; bi->resist_table = temp_to_batres_tbl_thermistor; bi->resist_table_size = ARRAY_SIZE(temp_to_batres_tbl_thermistor); } /* The default battery is emulated by a resistor at 7K */ if (bi->bti_resistance_ohm < 0 || bi->bti_resistance_tolerance < 0) { bi->bti_resistance_ohm = 7000; bi->bti_resistance_tolerance = 20; } if (!bi->ocv_table[0]) { /* Default capacity table at say 25 degrees Celsius */ bi->ocv_temp[0] = 25; bi->ocv_table[0] = ocv_cap_tbl; bi->ocv_table_size[0] = ARRAY_SIZE(ocv_cap_tbl); } if (bi->temp_min == INT_MIN) bi->temp_min = AB8500_TEMP_UNDER; if (bi->temp_max == INT_MAX) bi->temp_max = AB8500_TEMP_OVER; if (bi->temp_alert_min == INT_MIN) bi->temp_alert_min = AB8500_TEMP_LOW; if (bi->temp_alert_max == INT_MAX) bi->temp_alert_max = AB8500_TEMP_HIGH; bm->temp_hysteresis = AB8500_TEMP_HYSTERESIS; return 0; } void ab8500_bm_of_remove(struct power_supply *psy, struct ab8500_bm_data *bm) { power_supply_put_battery_info(psy, bm->bi); }
linux-master
drivers/power/supply/ab8500_bmdata.c
// SPDX-License-Identifier: GPL-2.0-only /* * ADP5061 I2C Programmable Linear Battery Charger * * Copyright 2018 Analog Devices Inc. */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/mod_devicetable.h> #include <linux/power_supply.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/regmap.h> /* ADP5061 registers definition */ #define ADP5061_ID 0x00 #define ADP5061_REV 0x01 #define ADP5061_VINX_SET 0x02 #define ADP5061_TERM_SET 0x03 #define ADP5061_CHG_CURR 0x04 #define ADP5061_VOLTAGE_TH 0x05 #define ADP5061_TIMER_SET 0x06 #define ADP5061_FUNC_SET_1 0x07 #define ADP5061_FUNC_SET_2 0x08 #define ADP5061_INT_EN 0x09 #define ADP5061_INT_ACT 0x0A #define ADP5061_CHG_STATUS_1 0x0B #define ADP5061_CHG_STATUS_2 0x0C #define ADP5061_FAULT 0x0D #define ADP5061_BATTERY_SHORT 0x10 #define ADP5061_IEND 0x11 /* ADP5061_VINX_SET */ #define ADP5061_VINX_SET_ILIM_MSK GENMASK(3, 0) #define ADP5061_VINX_SET_ILIM_MODE(x) (((x) & 0x0F) << 0) /* ADP5061_TERM_SET */ #define ADP5061_TERM_SET_VTRM_MSK GENMASK(7, 2) #define ADP5061_TERM_SET_VTRM_MODE(x) (((x) & 0x3F) << 2) #define ADP5061_TERM_SET_CHG_VLIM_MSK GENMASK(1, 0) #define ADP5061_TERM_SET_CHG_VLIM_MODE(x) (((x) & 0x03) << 0) /* ADP5061_CHG_CURR */ #define ADP5061_CHG_CURR_ICHG_MSK GENMASK(6, 2) #define ADP5061_CHG_CURR_ICHG_MODE(x) (((x) & 0x1F) << 2) #define ADP5061_CHG_CURR_ITRK_DEAD_MSK GENMASK(1, 0) #define ADP5061_CHG_CURR_ITRK_DEAD_MODE(x) (((x) & 0x03) << 0) /* ADP5061_VOLTAGE_TH */ #define ADP5061_VOLTAGE_TH_DIS_RCH_MSK BIT(7) #define ADP5061_VOLTAGE_TH_DIS_RCH_MODE(x) (((x) & 0x01) << 7) #define ADP5061_VOLTAGE_TH_VRCH_MSK GENMASK(6, 5) #define ADP5061_VOLTAGE_TH_VRCH_MODE(x) (((x) & 0x03) << 5) #define ADP5061_VOLTAGE_TH_VTRK_DEAD_MSK GENMASK(4, 3) #define ADP5061_VOLTAGE_TH_VTRK_DEAD_MODE(x) (((x) & 0x03) << 3) #define ADP5061_VOLTAGE_TH_VWEAK_MSK GENMASK(2, 0) #define ADP5061_VOLTAGE_TH_VWEAK_MODE(x) (((x) & 0x07) << 0) /* ADP5061_CHG_STATUS_1 */ #define ADP5061_CHG_STATUS_1_VIN_OV(x) (((x) >> 7) & 0x1) #define ADP5061_CHG_STATUS_1_VIN_OK(x) (((x) >> 6) & 0x1) #define ADP5061_CHG_STATUS_1_VIN_ILIM(x) (((x) >> 5) & 0x1) #define ADP5061_CHG_STATUS_1_THERM_LIM(x) (((x) >> 4) & 0x1) #define ADP5061_CHG_STATUS_1_CHDONE(x) (((x) >> 3) & 0x1) #define ADP5061_CHG_STATUS_1_CHG_STATUS(x) (((x) >> 0) & 0x7) /* ADP5061_CHG_STATUS_2 */ #define ADP5061_CHG_STATUS_2_THR_STATUS(x) (((x) >> 5) & 0x7) #define ADP5061_CHG_STATUS_2_RCH_LIM_INFO(x) (((x) >> 3) & 0x1) #define ADP5061_CHG_STATUS_2_BAT_STATUS(x) (((x) >> 0) & 0x7) /* ADP5061_IEND */ #define ADP5061_IEND_IEND_MSK GENMASK(7, 5) #define ADP5061_IEND_IEND_MODE(x) (((x) & 0x07) << 5) #define ADP5061_NO_BATTERY 0x01 #define ADP5061_ICHG_MAX 1300 // mA enum adp5061_chg_status { ADP5061_CHG_OFF, ADP5061_CHG_TRICKLE, ADP5061_CHG_FAST_CC, ADP5061_CHG_FAST_CV, ADP5061_CHG_COMPLETE, ADP5061_CHG_LDO_MODE, ADP5061_CHG_TIMER_EXP, ADP5061_CHG_BAT_DET, }; static const int adp5061_chg_type[4] = { [ADP5061_CHG_OFF] = POWER_SUPPLY_CHARGE_TYPE_NONE, [ADP5061_CHG_TRICKLE] = POWER_SUPPLY_CHARGE_TYPE_TRICKLE, [ADP5061_CHG_FAST_CC] = POWER_SUPPLY_CHARGE_TYPE_FAST, [ADP5061_CHG_FAST_CV] = POWER_SUPPLY_CHARGE_TYPE_FAST, }; static const int adp5061_vweak_th[8] = { 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, }; static const int adp5061_prechg_current[4] = { 5, 10, 20, 80, }; static const int adp5061_vmin[4] = { 2000, 2500, 2600, 2900, }; static const int adp5061_const_chg_vmax[4] = { 3200, 3400, 3700, 3800, }; static const int adp5061_const_ichg[24] = { 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1200, 1300, }; static const int adp5061_vmax[36] = { 3800, 3820, 3840, 3860, 3880, 3900, 3920, 3940, 3960, 3980, 4000, 4020, 4040, 4060, 4080, 4100, 4120, 4140, 4160, 4180, 4200, 4220, 4240, 4260, 4280, 4300, 4320, 4340, 4360, 4380, 4400, 4420, 4440, 4460, 4480, 4500, }; static const int adp5061_in_current_lim[16] = { 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, 1800, 2100, }; static const int adp5061_iend[8] = { 12500, 32500, 52500, 72500, 92500, 117500, 142500, 170000, }; struct adp5061_state { struct i2c_client *client; struct regmap *regmap; struct power_supply *psy; }; static int adp5061_get_array_index(const int *array, u8 size, int val) { int i; for (i = 1; i < size; i++) { if (val < array[i]) break; } return i-1; } static int adp5061_get_status(struct adp5061_state *st, u8 *status1, u8 *status2) { u8 buf[2]; int ret; /* CHG_STATUS1 and CHG_STATUS2 are adjacent regs */ ret = regmap_bulk_read(st->regmap, ADP5061_CHG_STATUS_1, &buf[0], 2); if (ret < 0) return ret; *status1 = buf[0]; *status2 = buf[1]; return ret; } static int adp5061_get_input_current_limit(struct adp5061_state *st, union power_supply_propval *val) { unsigned int regval; int mode, ret; ret = regmap_read(st->regmap, ADP5061_VINX_SET, &regval); if (ret < 0) return ret; mode = ADP5061_VINX_SET_ILIM_MODE(regval); val->intval = adp5061_in_current_lim[mode] * 1000; return ret; } static int adp5061_set_input_current_limit(struct adp5061_state *st, int val) { int index; /* Convert from uA to mA */ val /= 1000; index = adp5061_get_array_index(adp5061_in_current_lim, ARRAY_SIZE(adp5061_in_current_lim), val); if (index < 0) return index; return regmap_update_bits(st->regmap, ADP5061_VINX_SET, ADP5061_VINX_SET_ILIM_MSK, ADP5061_VINX_SET_ILIM_MODE(index)); } static int adp5061_set_min_voltage(struct adp5061_state *st, int val) { int index; /* Convert from uV to mV */ val /= 1000; index = adp5061_get_array_index(adp5061_vmin, ARRAY_SIZE(adp5061_vmin), val); if (index < 0) return index; return regmap_update_bits(st->regmap, ADP5061_VOLTAGE_TH, ADP5061_VOLTAGE_TH_VTRK_DEAD_MSK, ADP5061_VOLTAGE_TH_VTRK_DEAD_MODE(index)); } static int adp5061_get_min_voltage(struct adp5061_state *st, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(st->regmap, ADP5061_VOLTAGE_TH, &regval); if (ret < 0) return ret; regval = ((regval & ADP5061_VOLTAGE_TH_VTRK_DEAD_MSK) >> 3); val->intval = adp5061_vmin[regval] * 1000; return ret; } static int adp5061_get_chg_volt_lim(struct adp5061_state *st, union power_supply_propval *val) { unsigned int regval; int mode, ret; ret = regmap_read(st->regmap, ADP5061_TERM_SET, &regval); if (ret < 0) return ret; mode = ADP5061_TERM_SET_CHG_VLIM_MODE(regval); val->intval = adp5061_const_chg_vmax[mode] * 1000; return ret; } static int adp5061_get_max_voltage(struct adp5061_state *st, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(st->regmap, ADP5061_TERM_SET, &regval); if (ret < 0) return ret; regval = ((regval & ADP5061_TERM_SET_VTRM_MSK) >> 2) - 0x0F; if (regval >= ARRAY_SIZE(adp5061_vmax)) regval = ARRAY_SIZE(adp5061_vmax) - 1; val->intval = adp5061_vmax[regval] * 1000; return ret; } static int adp5061_set_max_voltage(struct adp5061_state *st, int val) { int vmax_index; /* Convert from uV to mV */ val /= 1000; if (val > 4500) val = 4500; vmax_index = adp5061_get_array_index(adp5061_vmax, ARRAY_SIZE(adp5061_vmax), val); if (vmax_index < 0) return vmax_index; vmax_index += 0x0F; return regmap_update_bits(st->regmap, ADP5061_TERM_SET, ADP5061_TERM_SET_VTRM_MSK, ADP5061_TERM_SET_VTRM_MODE(vmax_index)); } static int adp5061_set_const_chg_vmax(struct adp5061_state *st, int val) { int index; /* Convert from uV to mV */ val /= 1000; index = adp5061_get_array_index(adp5061_const_chg_vmax, ARRAY_SIZE(adp5061_const_chg_vmax), val); if (index < 0) return index; return regmap_update_bits(st->regmap, ADP5061_TERM_SET, ADP5061_TERM_SET_CHG_VLIM_MSK, ADP5061_TERM_SET_CHG_VLIM_MODE(index)); } static int adp5061_set_const_chg_current(struct adp5061_state *st, int val) { int index; /* Convert from uA to mA */ val /= 1000; if (val > ADP5061_ICHG_MAX) val = ADP5061_ICHG_MAX; index = adp5061_get_array_index(adp5061_const_ichg, ARRAY_SIZE(adp5061_const_ichg), val); if (index < 0) return index; return regmap_update_bits(st->regmap, ADP5061_CHG_CURR, ADP5061_CHG_CURR_ICHG_MSK, ADP5061_CHG_CURR_ICHG_MODE(index)); } static int adp5061_get_const_chg_current(struct adp5061_state *st, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(st->regmap, ADP5061_CHG_CURR, &regval); if (ret < 0) return ret; regval = ((regval & ADP5061_CHG_CURR_ICHG_MSK) >> 2); if (regval >= ARRAY_SIZE(adp5061_const_ichg)) regval = ARRAY_SIZE(adp5061_const_ichg) - 1; val->intval = adp5061_const_ichg[regval] * 1000; return ret; } static int adp5061_get_prechg_current(struct adp5061_state *st, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(st->regmap, ADP5061_CHG_CURR, &regval); if (ret < 0) return ret; regval &= ADP5061_CHG_CURR_ITRK_DEAD_MSK; val->intval = adp5061_prechg_current[regval] * 1000; return ret; } static int adp5061_set_prechg_current(struct adp5061_state *st, int val) { int index; /* Convert from uA to mA */ val /= 1000; index = adp5061_get_array_index(adp5061_prechg_current, ARRAY_SIZE(adp5061_prechg_current), val); if (index < 0) return index; return regmap_update_bits(st->regmap, ADP5061_CHG_CURR, ADP5061_CHG_CURR_ITRK_DEAD_MSK, ADP5061_CHG_CURR_ITRK_DEAD_MODE(index)); } static int adp5061_get_vweak_th(struct adp5061_state *st, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(st->regmap, ADP5061_VOLTAGE_TH, &regval); if (ret < 0) return ret; regval &= ADP5061_VOLTAGE_TH_VWEAK_MSK; val->intval = adp5061_vweak_th[regval] * 1000; return ret; } static int adp5061_set_vweak_th(struct adp5061_state *st, int val) { int index; /* Convert from uV to mV */ val /= 1000; index = adp5061_get_array_index(adp5061_vweak_th, ARRAY_SIZE(adp5061_vweak_th), val); if (index < 0) return index; return regmap_update_bits(st->regmap, ADP5061_VOLTAGE_TH, ADP5061_VOLTAGE_TH_VWEAK_MSK, ADP5061_VOLTAGE_TH_VWEAK_MODE(index)); } static int adp5061_get_chg_type(struct adp5061_state *st, union power_supply_propval *val) { u8 status1, status2; int chg_type, ret; ret = adp5061_get_status(st, &status1, &status2); if (ret < 0) return ret; chg_type = ADP5061_CHG_STATUS_1_CHG_STATUS(status1); if (chg_type >= ARRAY_SIZE(adp5061_chg_type)) val->intval = POWER_SUPPLY_STATUS_UNKNOWN; else val->intval = adp5061_chg_type[chg_type]; return ret; } static int adp5061_get_charger_status(struct adp5061_state *st, union power_supply_propval *val) { u8 status1, status2; int ret; ret = adp5061_get_status(st, &status1, &status2); if (ret < 0) return ret; switch (ADP5061_CHG_STATUS_1_CHG_STATUS(status1)) { case ADP5061_CHG_OFF: val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case ADP5061_CHG_TRICKLE: case ADP5061_CHG_FAST_CC: case ADP5061_CHG_FAST_CV: val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case ADP5061_CHG_COMPLETE: val->intval = POWER_SUPPLY_STATUS_FULL; break; case ADP5061_CHG_TIMER_EXP: /* The battery must be discharging if there is a charge fault */ val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; default: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; } return ret; } static int adp5061_get_battery_status(struct adp5061_state *st, union power_supply_propval *val) { u8 status1, status2; int ret; ret = adp5061_get_status(st, &status1, &status2); if (ret < 0) return ret; switch (ADP5061_CHG_STATUS_2_BAT_STATUS(status2)) { case 0x0: /* Battery monitor off */ case 0x1: /* No battery */ val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; break; case 0x2: /* VBAT < VTRK */ val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; break; case 0x3: /* VTRK < VBAT_SNS < VWEAK */ val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW; break; case 0x4: /* VBAT_SNS > VWEAK */ val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; break; default: val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; break; } return ret; } static int adp5061_get_termination_current(struct adp5061_state *st, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(st->regmap, ADP5061_IEND, &regval); if (ret < 0) return ret; regval = (regval & ADP5061_IEND_IEND_MSK) >> 5; val->intval = adp5061_iend[regval]; return ret; } static int adp5061_set_termination_current(struct adp5061_state *st, int val) { int index; index = adp5061_get_array_index(adp5061_iend, ARRAY_SIZE(adp5061_iend), val); if (index < 0) return index; return regmap_update_bits(st->regmap, ADP5061_IEND, ADP5061_IEND_IEND_MSK, ADP5061_IEND_IEND_MODE(index)); } static int adp5061_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct adp5061_state *st = power_supply_get_drvdata(psy); u8 status1, status2; int mode, ret; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: ret = adp5061_get_status(st, &status1, &status2); if (ret < 0) return ret; mode = ADP5061_CHG_STATUS_2_BAT_STATUS(status2); if (mode == ADP5061_NO_BATTERY) val->intval = 0; else val->intval = 1; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: return adp5061_get_chg_type(st, val); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: /* This property is used to indicate the input current * limit into VINx (ILIM) */ return adp5061_get_input_current_limit(st, val); case POWER_SUPPLY_PROP_VOLTAGE_MAX: /* This property is used to indicate the termination * voltage (VTRM) */ return adp5061_get_max_voltage(st, val); case POWER_SUPPLY_PROP_VOLTAGE_MIN: /* * This property is used to indicate the trickle to fast * charge threshold (VTRK_DEAD) */ return adp5061_get_min_voltage(st, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: /* This property is used to indicate the charging * voltage limit (CHG_VLIM) */ return adp5061_get_chg_volt_lim(st, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: /* * This property is used to indicate the value of the constant * current charge (ICHG) */ return adp5061_get_const_chg_current(st, val); case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: /* * This property is used to indicate the value of the trickle * and weak charge currents (ITRK_DEAD) */ return adp5061_get_prechg_current(st, val); case POWER_SUPPLY_PROP_VOLTAGE_AVG: /* * This property is used to set the VWEAK threshold * bellow this value, weak charge mode is entered * above this value, fast chargerge mode is entered */ return adp5061_get_vweak_th(st, val); case POWER_SUPPLY_PROP_STATUS: /* * Indicate the charger status in relation to power * supply status property */ return adp5061_get_charger_status(st, val); case POWER_SUPPLY_PROP_CAPACITY_LEVEL: /* * Indicate the battery status in relation to power * supply capacity level property */ return adp5061_get_battery_status(st, val); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: /* Indicate the values of the termination current */ return adp5061_get_termination_current(st, val); default: return -EINVAL; } return 0; } static int adp5061_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct adp5061_state *st = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return adp5061_set_input_current_limit(st, val->intval); case POWER_SUPPLY_PROP_VOLTAGE_MAX: return adp5061_set_max_voltage(st, val->intval); case POWER_SUPPLY_PROP_VOLTAGE_MIN: return adp5061_set_min_voltage(st, val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: return adp5061_set_const_chg_vmax(st, val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return adp5061_set_const_chg_current(st, val->intval); case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return adp5061_set_prechg_current(st, val->intval); case POWER_SUPPLY_PROP_VOLTAGE_AVG: return adp5061_set_vweak_th(st, val->intval); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return adp5061_set_termination_current(st, val->intval); default: return -EINVAL; } return 0; } static int adp5061_prop_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_VOLTAGE_MAX: case POWER_SUPPLY_PROP_VOLTAGE_MIN: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: case POWER_SUPPLY_PROP_VOLTAGE_AVG: case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return 1; default: return 0; } } static enum power_supply_property adp5061_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_VOLTAGE_MAX, POWER_SUPPLY_PROP_VOLTAGE_MIN, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, }; static const struct regmap_config adp5061_regmap_config = { .reg_bits = 8, .val_bits = 8, }; static const struct power_supply_desc adp5061_desc = { .name = "adp5061", .type = POWER_SUPPLY_TYPE_USB, .get_property = adp5061_get_property, .set_property = adp5061_set_property, .property_is_writeable = adp5061_prop_writeable, .properties = adp5061_props, .num_properties = ARRAY_SIZE(adp5061_props), }; static int adp5061_probe(struct i2c_client *client) { struct power_supply_config psy_cfg = {}; struct adp5061_state *st; st = devm_kzalloc(&client->dev, sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; st->client = client; st->regmap = devm_regmap_init_i2c(client, &adp5061_regmap_config); if (IS_ERR(st->regmap)) { dev_err(&client->dev, "Failed to initialize register map\n"); return -EINVAL; } i2c_set_clientdata(client, st); psy_cfg.drv_data = st; st->psy = devm_power_supply_register(&client->dev, &adp5061_desc, &psy_cfg); if (IS_ERR(st->psy)) { dev_err(&client->dev, "Failed to register power supply\n"); return PTR_ERR(st->psy); } return 0; } static const struct i2c_device_id adp5061_id[] = { { "adp5061", 0}, { } }; MODULE_DEVICE_TABLE(i2c, adp5061_id); static struct i2c_driver adp5061_driver = { .driver = { .name = KBUILD_MODNAME, }, .probe = adp5061_probe, .id_table = adp5061_id, }; module_i2c_driver(adp5061_driver); MODULE_DESCRIPTION("Analog Devices adp5061 battery charger driver"); MODULE_AUTHOR("Stefan Popa <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/adp5061.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Richtek RT9455WSC battery charger. * * Copyright (C) 2015 Intel Corporation */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/pm_runtime.h> #include <linux/power_supply.h> #include <linux/i2c.h> #include <linux/acpi.h> #include <linux/usb/phy.h> #include <linux/regmap.h> #define RT9455_MANUFACTURER "Richtek" #define RT9455_MODEL_NAME "RT9455" #define RT9455_DRIVER_NAME "rt9455-charger" #define RT9455_IRQ_NAME "interrupt" #define RT9455_PWR_RDY_DELAY 1 /* 1 second */ #define RT9455_MAX_CHARGING_TIME 21600 /* 6 hrs */ #define RT9455_BATT_PRESENCE_DELAY 60 /* 60 seconds */ #define RT9455_CHARGE_MODE 0x00 #define RT9455_BOOST_MODE 0x01 #define RT9455_FAULT 0x03 #define RT9455_IAICR_100MA 0x00 #define RT9455_IAICR_500MA 0x01 #define RT9455_IAICR_NO_LIMIT 0x03 #define RT9455_CHARGE_DISABLE 0x00 #define RT9455_CHARGE_ENABLE 0x01 #define RT9455_PWR_FAULT 0x00 #define RT9455_PWR_GOOD 0x01 #define RT9455_REG_CTRL1 0x00 /* CTRL1 reg address */ #define RT9455_REG_CTRL2 0x01 /* CTRL2 reg address */ #define RT9455_REG_CTRL3 0x02 /* CTRL3 reg address */ #define RT9455_REG_DEV_ID 0x03 /* DEV_ID reg address */ #define RT9455_REG_CTRL4 0x04 /* CTRL4 reg address */ #define RT9455_REG_CTRL5 0x05 /* CTRL5 reg address */ #define RT9455_REG_CTRL6 0x06 /* CTRL6 reg address */ #define RT9455_REG_CTRL7 0x07 /* CTRL7 reg address */ #define RT9455_REG_IRQ1 0x08 /* IRQ1 reg address */ #define RT9455_REG_IRQ2 0x09 /* IRQ2 reg address */ #define RT9455_REG_IRQ3 0x0A /* IRQ3 reg address */ #define RT9455_REG_MASK1 0x0B /* MASK1 reg address */ #define RT9455_REG_MASK2 0x0C /* MASK2 reg address */ #define RT9455_REG_MASK3 0x0D /* MASK3 reg address */ enum rt9455_fields { F_STAT, F_BOOST, F_PWR_RDY, F_OTG_PIN_POLARITY, /* CTRL1 reg fields */ F_IAICR, F_TE_SHDN_EN, F_HIGHER_OCP, F_TE, F_IAICR_INT, F_HIZ, F_OPA_MODE, /* CTRL2 reg fields */ F_VOREG, F_OTG_PL, F_OTG_EN, /* CTRL3 reg fields */ F_VENDOR_ID, F_CHIP_REV, /* DEV_ID reg fields */ F_RST, /* CTRL4 reg fields */ F_TMR_EN, F_MIVR, F_IPREC, F_IEOC_PERCENTAGE, /* CTRL5 reg fields*/ F_IAICR_SEL, F_ICHRG, F_VPREC, /* CTRL6 reg fields */ F_BATD_EN, F_CHG_EN, F_VMREG, /* CTRL7 reg fields */ F_TSDI, F_VINOVPI, F_BATAB, /* IRQ1 reg fields */ F_CHRVPI, F_CHBATOVI, F_CHTERMI, F_CHRCHGI, F_CH32MI, F_CHTREGI, F_CHMIVRI, /* IRQ2 reg fields */ F_BSTBUSOVI, F_BSTOLI, F_BSTLOWVI, F_BST32SI, /* IRQ3 reg fields */ F_TSDM, F_VINOVPIM, F_BATABM, /* MASK1 reg fields */ F_CHRVPIM, F_CHBATOVIM, F_CHTERMIM, F_CHRCHGIM, F_CH32MIM, F_CHTREGIM, F_CHMIVRIM, /* MASK2 reg fields */ F_BSTVINOVIM, F_BSTOLIM, F_BSTLOWVIM, F_BST32SIM, /* MASK3 reg fields */ F_MAX_FIELDS }; static const struct reg_field rt9455_reg_fields[] = { [F_STAT] = REG_FIELD(RT9455_REG_CTRL1, 4, 5), [F_BOOST] = REG_FIELD(RT9455_REG_CTRL1, 3, 3), [F_PWR_RDY] = REG_FIELD(RT9455_REG_CTRL1, 2, 2), [F_OTG_PIN_POLARITY] = REG_FIELD(RT9455_REG_CTRL1, 1, 1), [F_IAICR] = REG_FIELD(RT9455_REG_CTRL2, 6, 7), [F_TE_SHDN_EN] = REG_FIELD(RT9455_REG_CTRL2, 5, 5), [F_HIGHER_OCP] = REG_FIELD(RT9455_REG_CTRL2, 4, 4), [F_TE] = REG_FIELD(RT9455_REG_CTRL2, 3, 3), [F_IAICR_INT] = REG_FIELD(RT9455_REG_CTRL2, 2, 2), [F_HIZ] = REG_FIELD(RT9455_REG_CTRL2, 1, 1), [F_OPA_MODE] = REG_FIELD(RT9455_REG_CTRL2, 0, 0), [F_VOREG] = REG_FIELD(RT9455_REG_CTRL3, 2, 7), [F_OTG_PL] = REG_FIELD(RT9455_REG_CTRL3, 1, 1), [F_OTG_EN] = REG_FIELD(RT9455_REG_CTRL3, 0, 0), [F_VENDOR_ID] = REG_FIELD(RT9455_REG_DEV_ID, 4, 7), [F_CHIP_REV] = REG_FIELD(RT9455_REG_DEV_ID, 0, 3), [F_RST] = REG_FIELD(RT9455_REG_CTRL4, 7, 7), [F_TMR_EN] = REG_FIELD(RT9455_REG_CTRL5, 7, 7), [F_MIVR] = REG_FIELD(RT9455_REG_CTRL5, 4, 5), [F_IPREC] = REG_FIELD(RT9455_REG_CTRL5, 2, 3), [F_IEOC_PERCENTAGE] = REG_FIELD(RT9455_REG_CTRL5, 0, 1), [F_IAICR_SEL] = REG_FIELD(RT9455_REG_CTRL6, 7, 7), [F_ICHRG] = REG_FIELD(RT9455_REG_CTRL6, 4, 6), [F_VPREC] = REG_FIELD(RT9455_REG_CTRL6, 0, 2), [F_BATD_EN] = REG_FIELD(RT9455_REG_CTRL7, 6, 6), [F_CHG_EN] = REG_FIELD(RT9455_REG_CTRL7, 4, 4), [F_VMREG] = REG_FIELD(RT9455_REG_CTRL7, 0, 3), [F_TSDI] = REG_FIELD(RT9455_REG_IRQ1, 7, 7), [F_VINOVPI] = REG_FIELD(RT9455_REG_IRQ1, 6, 6), [F_BATAB] = REG_FIELD(RT9455_REG_IRQ1, 0, 0), [F_CHRVPI] = REG_FIELD(RT9455_REG_IRQ2, 7, 7), [F_CHBATOVI] = REG_FIELD(RT9455_REG_IRQ2, 5, 5), [F_CHTERMI] = REG_FIELD(RT9455_REG_IRQ2, 4, 4), [F_CHRCHGI] = REG_FIELD(RT9455_REG_IRQ2, 3, 3), [F_CH32MI] = REG_FIELD(RT9455_REG_IRQ2, 2, 2), [F_CHTREGI] = REG_FIELD(RT9455_REG_IRQ2, 1, 1), [F_CHMIVRI] = REG_FIELD(RT9455_REG_IRQ2, 0, 0), [F_BSTBUSOVI] = REG_FIELD(RT9455_REG_IRQ3, 7, 7), [F_BSTOLI] = REG_FIELD(RT9455_REG_IRQ3, 6, 6), [F_BSTLOWVI] = REG_FIELD(RT9455_REG_IRQ3, 5, 5), [F_BST32SI] = REG_FIELD(RT9455_REG_IRQ3, 3, 3), [F_TSDM] = REG_FIELD(RT9455_REG_MASK1, 7, 7), [F_VINOVPIM] = REG_FIELD(RT9455_REG_MASK1, 6, 6), [F_BATABM] = REG_FIELD(RT9455_REG_MASK1, 0, 0), [F_CHRVPIM] = REG_FIELD(RT9455_REG_MASK2, 7, 7), [F_CHBATOVIM] = REG_FIELD(RT9455_REG_MASK2, 5, 5), [F_CHTERMIM] = REG_FIELD(RT9455_REG_MASK2, 4, 4), [F_CHRCHGIM] = REG_FIELD(RT9455_REG_MASK2, 3, 3), [F_CH32MIM] = REG_FIELD(RT9455_REG_MASK2, 2, 2), [F_CHTREGIM] = REG_FIELD(RT9455_REG_MASK2, 1, 1), [F_CHMIVRIM] = REG_FIELD(RT9455_REG_MASK2, 0, 0), [F_BSTVINOVIM] = REG_FIELD(RT9455_REG_MASK3, 7, 7), [F_BSTOLIM] = REG_FIELD(RT9455_REG_MASK3, 6, 6), [F_BSTLOWVIM] = REG_FIELD(RT9455_REG_MASK3, 5, 5), [F_BST32SIM] = REG_FIELD(RT9455_REG_MASK3, 3, 3), }; #define GET_MASK(fid) (BIT(rt9455_reg_fields[fid].msb + 1) - \ BIT(rt9455_reg_fields[fid].lsb)) /* * Each array initialised below shows the possible real-world values for a * group of bits belonging to RT9455 registers. The arrays are sorted in * ascending order. The index of each real-world value represents the value * that is encoded in the group of bits belonging to RT9455 registers. */ /* REG06[6:4] (ICHRG) in uAh */ static const int rt9455_ichrg_values[] = { 500000, 650000, 800000, 950000, 1100000, 1250000, 1400000, 1550000 }; /* * When the charger is in charge mode, REG02[7:2] represent battery regulation * voltage. */ /* REG02[7:2] (VOREG) in uV */ static const int rt9455_voreg_values[] = { 3500000, 3520000, 3540000, 3560000, 3580000, 3600000, 3620000, 3640000, 3660000, 3680000, 3700000, 3720000, 3740000, 3760000, 3780000, 3800000, 3820000, 3840000, 3860000, 3880000, 3900000, 3920000, 3940000, 3960000, 3980000, 4000000, 4020000, 4040000, 4060000, 4080000, 4100000, 4120000, 4140000, 4160000, 4180000, 4200000, 4220000, 4240000, 4260000, 4280000, 4300000, 4330000, 4350000, 4370000, 4390000, 4410000, 4430000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000, 4450000 }; /* * When the charger is in boost mode, REG02[7:2] represent boost output * voltage. */ /* REG02[7:2] (Boost output voltage) in uV */ static const int rt9455_boost_voltage_values[] = { 4425000, 4450000, 4475000, 4500000, 4525000, 4550000, 4575000, 4600000, 4625000, 4650000, 4675000, 4700000, 4725000, 4750000, 4775000, 4800000, 4825000, 4850000, 4875000, 4900000, 4925000, 4950000, 4975000, 5000000, 5025000, 5050000, 5075000, 5100000, 5125000, 5150000, 5175000, 5200000, 5225000, 5250000, 5275000, 5300000, 5325000, 5350000, 5375000, 5400000, 5425000, 5450000, 5475000, 5500000, 5525000, 5550000, 5575000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, 5600000, }; /* REG07[3:0] (VMREG) in uV */ static const int rt9455_vmreg_values[] = { 4200000, 4220000, 4240000, 4260000, 4280000, 4300000, 4320000, 4340000, 4360000, 4380000, 4400000, 4430000, 4450000, 4450000, 4450000, 4450000 }; /* REG05[5:4] (IEOC_PERCENTAGE) */ static const int rt9455_ieoc_percentage_values[] = { 10, 30, 20, 30 }; /* REG05[1:0] (MIVR) in uV */ static const int rt9455_mivr_values[] = { 4000000, 4250000, 4500000, 5000000 }; /* REG05[1:0] (IAICR) in uA */ static const int rt9455_iaicr_values[] = { 100000, 500000, 1000000, 2000000 }; struct rt9455_info { struct i2c_client *client; struct regmap *regmap; struct regmap_field *regmap_fields[F_MAX_FIELDS]; struct power_supply *charger; #if IS_ENABLED(CONFIG_USB_PHY) struct usb_phy *usb_phy; struct notifier_block nb; #endif struct delayed_work pwr_rdy_work; struct delayed_work max_charging_time_work; struct delayed_work batt_presence_work; u32 voreg; u32 boost_voltage; }; /* * Iterate through each element of the 'tbl' array until an element whose value * is greater than v is found. Return the index of the respective element, * or the index of the last element in the array, if no such element is found. */ static unsigned int rt9455_find_idx(const int tbl[], int tbl_size, int v) { int i; /* * No need to iterate until the last index in the table because * if no element greater than v is found in the table, * or if only the last element is greater than v, * function returns the index of the last element. */ for (i = 0; i < tbl_size - 1; i++) if (v <= tbl[i]) return i; return (tbl_size - 1); } static int rt9455_get_field_val(struct rt9455_info *info, enum rt9455_fields field, const int tbl[], int tbl_size, int *val) { unsigned int v; int ret; ret = regmap_field_read(info->regmap_fields[field], &v); if (ret) return ret; v = (v >= tbl_size) ? (tbl_size - 1) : v; *val = tbl[v]; return 0; } static int rt9455_set_field_val(struct rt9455_info *info, enum rt9455_fields field, const int tbl[], int tbl_size, int val) { unsigned int idx = rt9455_find_idx(tbl, tbl_size, val); return regmap_field_write(info->regmap_fields[field], idx); } static int rt9455_register_reset(struct rt9455_info *info) { struct device *dev = &info->client->dev; unsigned int v; int ret, limit = 100; ret = regmap_field_write(info->regmap_fields[F_RST], 0x01); if (ret) { dev_err(dev, "Failed to set RST bit\n"); return ret; } /* * To make sure that reset operation has finished, loop until RST bit * is set to 0. */ do { ret = regmap_field_read(info->regmap_fields[F_RST], &v); if (ret) { dev_err(dev, "Failed to read RST bit\n"); return ret; } if (!v) break; usleep_range(10, 100); } while (--limit); if (!limit) return -EIO; return 0; } /* Charger power supply property routines */ static enum power_supply_property rt9455_charger_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_SCOPE, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, }; static char *rt9455_charger_supplied_to[] = { "main-battery", }; static int rt9455_charger_get_status(struct rt9455_info *info, union power_supply_propval *val) { unsigned int v, pwr_rdy; int ret; ret = regmap_field_read(info->regmap_fields[F_PWR_RDY], &pwr_rdy); if (ret) { dev_err(&info->client->dev, "Failed to read PWR_RDY bit\n"); return ret; } /* * If PWR_RDY bit is unset, the battery is discharging. Otherwise, * STAT bits value must be checked. */ if (!pwr_rdy) { val->intval = POWER_SUPPLY_STATUS_DISCHARGING; return 0; } ret = regmap_field_read(info->regmap_fields[F_STAT], &v); if (ret) { dev_err(&info->client->dev, "Failed to read STAT bits\n"); return ret; } switch (v) { case 0: /* * If PWR_RDY bit is set, but STAT bits value is 0, the charger * may be in one of the following cases: * 1. CHG_EN bit is 0. * 2. CHG_EN bit is 1 but the battery is not connected. * In any of these cases, POWER_SUPPLY_STATUS_NOT_CHARGING is * returned. */ val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; return 0; case 1: val->intval = POWER_SUPPLY_STATUS_CHARGING; return 0; case 2: val->intval = POWER_SUPPLY_STATUS_FULL; return 0; default: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; return 0; } } static int rt9455_charger_get_health(struct rt9455_info *info, union power_supply_propval *val) { struct device *dev = &info->client->dev; unsigned int v; int ret; val->intval = POWER_SUPPLY_HEALTH_GOOD; ret = regmap_read(info->regmap, RT9455_REG_IRQ1, &v); if (ret) { dev_err(dev, "Failed to read IRQ1 register\n"); return ret; } if (v & GET_MASK(F_TSDI)) { val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; return 0; } if (v & GET_MASK(F_VINOVPI)) { val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; return 0; } if (v & GET_MASK(F_BATAB)) { val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; return 0; } ret = regmap_read(info->regmap, RT9455_REG_IRQ2, &v); if (ret) { dev_err(dev, "Failed to read IRQ2 register\n"); return ret; } if (v & GET_MASK(F_CHBATOVI)) { val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; return 0; } if (v & GET_MASK(F_CH32MI)) { val->intval = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; return 0; } ret = regmap_read(info->regmap, RT9455_REG_IRQ3, &v); if (ret) { dev_err(dev, "Failed to read IRQ3 register\n"); return ret; } if (v & GET_MASK(F_BSTBUSOVI)) { val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; return 0; } if (v & GET_MASK(F_BSTOLI)) { val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; return 0; } if (v & GET_MASK(F_BSTLOWVI)) { val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; return 0; } if (v & GET_MASK(F_BST32SI)) { val->intval = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; return 0; } ret = regmap_field_read(info->regmap_fields[F_STAT], &v); if (ret) { dev_err(dev, "Failed to read STAT bits\n"); return ret; } if (v == RT9455_FAULT) { val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; return 0; } return 0; } static int rt9455_charger_get_battery_presence(struct rt9455_info *info, union power_supply_propval *val) { unsigned int v; int ret; ret = regmap_field_read(info->regmap_fields[F_BATAB], &v); if (ret) { dev_err(&info->client->dev, "Failed to read BATAB bit\n"); return ret; } /* * Since BATAB is 1 when battery is NOT present and 0 otherwise, * !BATAB is returned. */ val->intval = !v; return 0; } static int rt9455_charger_get_online(struct rt9455_info *info, union power_supply_propval *val) { unsigned int v; int ret; ret = regmap_field_read(info->regmap_fields[F_PWR_RDY], &v); if (ret) { dev_err(&info->client->dev, "Failed to read PWR_RDY bit\n"); return ret; } val->intval = (int)v; return 0; } static int rt9455_charger_get_current(struct rt9455_info *info, union power_supply_propval *val) { int curr; int ret; ret = rt9455_get_field_val(info, F_ICHRG, rt9455_ichrg_values, ARRAY_SIZE(rt9455_ichrg_values), &curr); if (ret) { dev_err(&info->client->dev, "Failed to read ICHRG value\n"); return ret; } val->intval = curr; return 0; } static int rt9455_charger_get_current_max(struct rt9455_info *info, union power_supply_propval *val) { int idx = ARRAY_SIZE(rt9455_ichrg_values) - 1; val->intval = rt9455_ichrg_values[idx]; return 0; } static int rt9455_charger_get_voltage(struct rt9455_info *info, union power_supply_propval *val) { int voltage; int ret; ret = rt9455_get_field_val(info, F_VOREG, rt9455_voreg_values, ARRAY_SIZE(rt9455_voreg_values), &voltage); if (ret) { dev_err(&info->client->dev, "Failed to read VOREG value\n"); return ret; } val->intval = voltage; return 0; } static int rt9455_charger_get_voltage_max(struct rt9455_info *info, union power_supply_propval *val) { int idx = ARRAY_SIZE(rt9455_vmreg_values) - 1; val->intval = rt9455_vmreg_values[idx]; return 0; } static int rt9455_charger_get_term_current(struct rt9455_info *info, union power_supply_propval *val) { struct device *dev = &info->client->dev; int ichrg, ieoc_percentage, ret; ret = rt9455_get_field_val(info, F_ICHRG, rt9455_ichrg_values, ARRAY_SIZE(rt9455_ichrg_values), &ichrg); if (ret) { dev_err(dev, "Failed to read ICHRG value\n"); return ret; } ret = rt9455_get_field_val(info, F_IEOC_PERCENTAGE, rt9455_ieoc_percentage_values, ARRAY_SIZE(rt9455_ieoc_percentage_values), &ieoc_percentage); if (ret) { dev_err(dev, "Failed to read IEOC value\n"); return ret; } val->intval = ichrg * ieoc_percentage / 100; return 0; } static int rt9455_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct rt9455_info *info = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: return rt9455_charger_get_status(info, val); case POWER_SUPPLY_PROP_HEALTH: return rt9455_charger_get_health(info, val); case POWER_SUPPLY_PROP_PRESENT: return rt9455_charger_get_battery_presence(info, val); case POWER_SUPPLY_PROP_ONLINE: return rt9455_charger_get_online(info, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return rt9455_charger_get_current(info, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: return rt9455_charger_get_current_max(info, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return rt9455_charger_get_voltage(info, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: return rt9455_charger_get_voltage_max(info, val); case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_SYSTEM; return 0; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return rt9455_charger_get_term_current(info, val); case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = RT9455_MODEL_NAME; return 0; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = RT9455_MANUFACTURER; return 0; default: return -ENODATA; } } static int rt9455_hw_init(struct rt9455_info *info, u32 ichrg, u32 ieoc_percentage, u32 mivr, u32 iaicr) { struct device *dev = &info->client->dev; int idx, ret; ret = rt9455_register_reset(info); if (ret) { dev_err(dev, "Power On Reset failed\n"); return ret; } /* Set TE bit in order to enable end of charge detection */ ret = regmap_field_write(info->regmap_fields[F_TE], 1); if (ret) { dev_err(dev, "Failed to set TE bit\n"); return ret; } /* Set TE_SHDN_EN bit in order to enable end of charge detection */ ret = regmap_field_write(info->regmap_fields[F_TE_SHDN_EN], 1); if (ret) { dev_err(dev, "Failed to set TE_SHDN_EN bit\n"); return ret; } /* * Set BATD_EN bit in order to enable battery detection * when charging is done */ ret = regmap_field_write(info->regmap_fields[F_BATD_EN], 1); if (ret) { dev_err(dev, "Failed to set BATD_EN bit\n"); return ret; } /* * Disable Safety Timer. In charge mode, this timer terminates charging * if no read or write via I2C is done within 32 minutes. This timer * avoids overcharging the baterry when the OS is not loaded and the * charger is connected to a power source. * In boost mode, this timer triggers BST32SI interrupt if no read or * write via I2C is done within 32 seconds. * When the OS is loaded and the charger driver is inserted, it is used * delayed_work, named max_charging_time_work, to avoid overcharging * the battery. */ ret = regmap_field_write(info->regmap_fields[F_TMR_EN], 0x00); if (ret) { dev_err(dev, "Failed to disable Safety Timer\n"); return ret; } /* Set ICHRG to value retrieved from device-specific data */ ret = rt9455_set_field_val(info, F_ICHRG, rt9455_ichrg_values, ARRAY_SIZE(rt9455_ichrg_values), ichrg); if (ret) { dev_err(dev, "Failed to set ICHRG value\n"); return ret; } /* Set IEOC Percentage to value retrieved from device-specific data */ ret = rt9455_set_field_val(info, F_IEOC_PERCENTAGE, rt9455_ieoc_percentage_values, ARRAY_SIZE(rt9455_ieoc_percentage_values), ieoc_percentage); if (ret) { dev_err(dev, "Failed to set IEOC Percentage value\n"); return ret; } /* Set VOREG to value retrieved from device-specific data */ ret = rt9455_set_field_val(info, F_VOREG, rt9455_voreg_values, ARRAY_SIZE(rt9455_voreg_values), info->voreg); if (ret) { dev_err(dev, "Failed to set VOREG value\n"); return ret; } /* Set VMREG value to maximum (4.45V). */ idx = ARRAY_SIZE(rt9455_vmreg_values) - 1; ret = rt9455_set_field_val(info, F_VMREG, rt9455_vmreg_values, ARRAY_SIZE(rt9455_vmreg_values), rt9455_vmreg_values[idx]); if (ret) { dev_err(dev, "Failed to set VMREG value\n"); return ret; } /* * Set MIVR to value retrieved from device-specific data. * If no value is specified, default value for MIVR is 4.5V. */ if (mivr == -1) mivr = 4500000; ret = rt9455_set_field_val(info, F_MIVR, rt9455_mivr_values, ARRAY_SIZE(rt9455_mivr_values), mivr); if (ret) { dev_err(dev, "Failed to set MIVR value\n"); return ret; } /* * Set IAICR to value retrieved from device-specific data. * If no value is specified, default value for IAICR is 500 mA. */ if (iaicr == -1) iaicr = 500000; ret = rt9455_set_field_val(info, F_IAICR, rt9455_iaicr_values, ARRAY_SIZE(rt9455_iaicr_values), iaicr); if (ret) { dev_err(dev, "Failed to set IAICR value\n"); return ret; } /* * Set IAICR_INT bit so that IAICR value is determined by IAICR bits * and not by OTG pin. */ ret = regmap_field_write(info->regmap_fields[F_IAICR_INT], 0x01); if (ret) { dev_err(dev, "Failed to set IAICR_INT bit\n"); return ret; } /* * Disable CHMIVRI interrupt. Because the driver sets MIVR value, * CHMIVRI is triggered, but there is no action to be taken by the * driver when CHMIVRI is triggered. */ ret = regmap_field_write(info->regmap_fields[F_CHMIVRIM], 0x01); if (ret) { dev_err(dev, "Failed to mask CHMIVRI interrupt\n"); return ret; } return 0; } #if IS_ENABLED(CONFIG_USB_PHY) /* * Before setting the charger into boost mode, boost output voltage is * set. This is needed because boost output voltage may differ from battery * regulation voltage. F_VOREG bits represent either battery regulation voltage * or boost output voltage, depending on the mode the charger is. Both battery * regulation voltage and boost output voltage are read from DT/ACPI during * probe. */ static int rt9455_set_boost_voltage_before_boost_mode(struct rt9455_info *info) { struct device *dev = &info->client->dev; int ret; ret = rt9455_set_field_val(info, F_VOREG, rt9455_boost_voltage_values, ARRAY_SIZE(rt9455_boost_voltage_values), info->boost_voltage); if (ret) { dev_err(dev, "Failed to set boost output voltage value\n"); return ret; } return 0; } #endif /* * Before setting the charger into charge mode, battery regulation voltage is * set. This is needed because boost output voltage may differ from battery * regulation voltage. F_VOREG bits represent either battery regulation voltage * or boost output voltage, depending on the mode the charger is. Both battery * regulation voltage and boost output voltage are read from DT/ACPI during * probe. */ static int rt9455_set_voreg_before_charge_mode(struct rt9455_info *info) { struct device *dev = &info->client->dev; int ret; ret = rt9455_set_field_val(info, F_VOREG, rt9455_voreg_values, ARRAY_SIZE(rt9455_voreg_values), info->voreg); if (ret) { dev_err(dev, "Failed to set VOREG value\n"); return ret; } return 0; } static int rt9455_irq_handler_check_irq1_register(struct rt9455_info *info, bool *_is_battery_absent, bool *_alert_userspace) { unsigned int irq1, mask1, mask2; struct device *dev = &info->client->dev; bool is_battery_absent = false; bool alert_userspace = false; int ret; ret = regmap_read(info->regmap, RT9455_REG_IRQ1, &irq1); if (ret) { dev_err(dev, "Failed to read IRQ1 register\n"); return ret; } ret = regmap_read(info->regmap, RT9455_REG_MASK1, &mask1); if (ret) { dev_err(dev, "Failed to read MASK1 register\n"); return ret; } if (irq1 & GET_MASK(F_TSDI)) { dev_err(dev, "Thermal shutdown fault occurred\n"); alert_userspace = true; } if (irq1 & GET_MASK(F_VINOVPI)) { dev_err(dev, "Overvoltage input occurred\n"); alert_userspace = true; } if (irq1 & GET_MASK(F_BATAB)) { dev_err(dev, "Battery absence occurred\n"); is_battery_absent = true; alert_userspace = true; if ((mask1 & GET_MASK(F_BATABM)) == 0) { ret = regmap_field_write(info->regmap_fields[F_BATABM], 0x01); if (ret) { dev_err(dev, "Failed to mask BATAB interrupt\n"); return ret; } } ret = regmap_read(info->regmap, RT9455_REG_MASK2, &mask2); if (ret) { dev_err(dev, "Failed to read MASK2 register\n"); return ret; } if (mask2 & GET_MASK(F_CHTERMIM)) { ret = regmap_field_write( info->regmap_fields[F_CHTERMIM], 0x00); if (ret) { dev_err(dev, "Failed to unmask CHTERMI interrupt\n"); return ret; } } if (mask2 & GET_MASK(F_CHRCHGIM)) { ret = regmap_field_write( info->regmap_fields[F_CHRCHGIM], 0x00); if (ret) { dev_err(dev, "Failed to unmask CHRCHGI interrupt\n"); return ret; } } /* * When the battery is absent, max_charging_time_work is * cancelled, since no charging is done. */ cancel_delayed_work_sync(&info->max_charging_time_work); /* * Since no interrupt is triggered when the battery is * reconnected, max_charging_time_work is not rescheduled. * Therefore, batt_presence_work is scheduled to check whether * the battery is still absent or not. */ queue_delayed_work(system_power_efficient_wq, &info->batt_presence_work, RT9455_BATT_PRESENCE_DELAY * HZ); } *_is_battery_absent = is_battery_absent; if (alert_userspace) *_alert_userspace = alert_userspace; return 0; } static int rt9455_irq_handler_check_irq2_register(struct rt9455_info *info, bool is_battery_absent, bool *_alert_userspace) { unsigned int irq2, mask2; struct device *dev = &info->client->dev; bool alert_userspace = false; int ret; ret = regmap_read(info->regmap, RT9455_REG_IRQ2, &irq2); if (ret) { dev_err(dev, "Failed to read IRQ2 register\n"); return ret; } ret = regmap_read(info->regmap, RT9455_REG_MASK2, &mask2); if (ret) { dev_err(dev, "Failed to read MASK2 register\n"); return ret; } if (irq2 & GET_MASK(F_CHRVPI)) { dev_dbg(dev, "Charger fault occurred\n"); /* * CHRVPI bit is set in 2 cases: * 1. when the power source is connected to the charger. * 2. when the power source is disconnected from the charger. * To identify the case, PWR_RDY bit is checked. Because * PWR_RDY bit is set / cleared after CHRVPI interrupt is * triggered, it is used delayed_work to later read PWR_RDY bit. * Also, do not set to true alert_userspace, because there is no * need to notify userspace when CHRVPI interrupt has occurred. * Userspace will be notified after PWR_RDY bit is read. */ queue_delayed_work(system_power_efficient_wq, &info->pwr_rdy_work, RT9455_PWR_RDY_DELAY * HZ); } if (irq2 & GET_MASK(F_CHBATOVI)) { dev_err(dev, "Battery OVP occurred\n"); alert_userspace = true; } if (irq2 & GET_MASK(F_CHTERMI)) { dev_dbg(dev, "Charge terminated\n"); if (!is_battery_absent) { if ((mask2 & GET_MASK(F_CHTERMIM)) == 0) { ret = regmap_field_write( info->regmap_fields[F_CHTERMIM], 0x01); if (ret) { dev_err(dev, "Failed to mask CHTERMI interrupt\n"); return ret; } /* * Update MASK2 value, since CHTERMIM bit is * set. */ mask2 = mask2 | GET_MASK(F_CHTERMIM); } cancel_delayed_work_sync(&info->max_charging_time_work); alert_userspace = true; } } if (irq2 & GET_MASK(F_CHRCHGI)) { dev_dbg(dev, "Recharge request\n"); ret = regmap_field_write(info->regmap_fields[F_CHG_EN], RT9455_CHARGE_ENABLE); if (ret) { dev_err(dev, "Failed to enable charging\n"); return ret; } if (mask2 & GET_MASK(F_CHTERMIM)) { ret = regmap_field_write( info->regmap_fields[F_CHTERMIM], 0x00); if (ret) { dev_err(dev, "Failed to unmask CHTERMI interrupt\n"); return ret; } /* Update MASK2 value, since CHTERMIM bit is cleared. */ mask2 = mask2 & ~GET_MASK(F_CHTERMIM); } if (!is_battery_absent) { /* * No need to check whether the charger is connected to * power source when CHRCHGI is received, since CHRCHGI * is not triggered if the charger is not connected to * the power source. */ queue_delayed_work(system_power_efficient_wq, &info->max_charging_time_work, RT9455_MAX_CHARGING_TIME * HZ); alert_userspace = true; } } if (irq2 & GET_MASK(F_CH32MI)) { dev_err(dev, "Charger fault. 32 mins timeout occurred\n"); alert_userspace = true; } if (irq2 & GET_MASK(F_CHTREGI)) { dev_warn(dev, "Charger warning. Thermal regulation loop active\n"); alert_userspace = true; } if (irq2 & GET_MASK(F_CHMIVRI)) { dev_dbg(dev, "Charger warning. Input voltage MIVR loop active\n"); } if (alert_userspace) *_alert_userspace = alert_userspace; return 0; } static int rt9455_irq_handler_check_irq3_register(struct rt9455_info *info, bool *_alert_userspace) { unsigned int irq3, mask3; struct device *dev = &info->client->dev; bool alert_userspace = false; int ret; ret = regmap_read(info->regmap, RT9455_REG_IRQ3, &irq3); if (ret) { dev_err(dev, "Failed to read IRQ3 register\n"); return ret; } ret = regmap_read(info->regmap, RT9455_REG_MASK3, &mask3); if (ret) { dev_err(dev, "Failed to read MASK3 register\n"); return ret; } if (irq3 & GET_MASK(F_BSTBUSOVI)) { dev_err(dev, "Boost fault. Overvoltage input occurred\n"); alert_userspace = true; } if (irq3 & GET_MASK(F_BSTOLI)) { dev_err(dev, "Boost fault. Overload\n"); alert_userspace = true; } if (irq3 & GET_MASK(F_BSTLOWVI)) { dev_err(dev, "Boost fault. Battery voltage too low\n"); alert_userspace = true; } if (irq3 & GET_MASK(F_BST32SI)) { dev_err(dev, "Boost fault. 32 seconds timeout occurred.\n"); alert_userspace = true; } if (alert_userspace) { dev_info(dev, "Boost fault occurred, therefore the charger goes into charge mode\n"); ret = rt9455_set_voreg_before_charge_mode(info); if (ret) { dev_err(dev, "Failed to set VOREG before entering charge mode\n"); return ret; } ret = regmap_field_write(info->regmap_fields[F_OPA_MODE], RT9455_CHARGE_MODE); if (ret) { dev_err(dev, "Failed to set charger in charge mode\n"); return ret; } *_alert_userspace = alert_userspace; } return 0; } static irqreturn_t rt9455_irq_handler_thread(int irq, void *data) { struct rt9455_info *info = data; struct device *dev; bool alert_userspace = false; bool is_battery_absent = false; unsigned int status; int ret; if (!info) return IRQ_NONE; dev = &info->client->dev; if (irq != info->client->irq) { dev_err(dev, "Interrupt is not for RT9455 charger\n"); return IRQ_NONE; } ret = regmap_field_read(info->regmap_fields[F_STAT], &status); if (ret) { dev_err(dev, "Failed to read STAT bits\n"); return IRQ_HANDLED; } dev_dbg(dev, "Charger status is %d\n", status); /* * Each function that processes an IRQ register receives as output * parameter alert_userspace pointer. alert_userspace is set to true * in such a function only if an interrupt has occurred in the * respective interrupt register. This way, it is avoided the following * case: interrupt occurs only in IRQ1 register, * rt9455_irq_handler_check_irq1_register() function sets to true * alert_userspace, but rt9455_irq_handler_check_irq2_register() * and rt9455_irq_handler_check_irq3_register() functions set to false * alert_userspace and power_supply_changed() is never called. */ ret = rt9455_irq_handler_check_irq1_register(info, &is_battery_absent, &alert_userspace); if (ret) { dev_err(dev, "Failed to handle IRQ1 register\n"); return IRQ_HANDLED; } ret = rt9455_irq_handler_check_irq2_register(info, is_battery_absent, &alert_userspace); if (ret) { dev_err(dev, "Failed to handle IRQ2 register\n"); return IRQ_HANDLED; } ret = rt9455_irq_handler_check_irq3_register(info, &alert_userspace); if (ret) { dev_err(dev, "Failed to handle IRQ3 register\n"); return IRQ_HANDLED; } if (alert_userspace) { /* * Sometimes, an interrupt occurs while rt9455_probe() function * is executing and power_supply_register() is not yet called. * Do not call power_supply_changed() in this case. */ if (info->charger) power_supply_changed(info->charger); } return IRQ_HANDLED; } static int rt9455_discover_charger(struct rt9455_info *info, u32 *ichrg, u32 *ieoc_percentage, u32 *mivr, u32 *iaicr) { struct device *dev = &info->client->dev; int ret; if (!dev->of_node && !ACPI_HANDLE(dev)) { dev_err(dev, "No support for either device tree or ACPI\n"); return -EINVAL; } /* * ICHRG, IEOC_PERCENTAGE, VOREG and boost output voltage are mandatory * parameters. */ ret = device_property_read_u32(dev, "richtek,output-charge-current", ichrg); if (ret) { dev_err(dev, "Error: missing \"output-charge-current\" property\n"); return ret; } ret = device_property_read_u32(dev, "richtek,end-of-charge-percentage", ieoc_percentage); if (ret) { dev_err(dev, "Error: missing \"end-of-charge-percentage\" property\n"); return ret; } ret = device_property_read_u32(dev, "richtek,battery-regulation-voltage", &info->voreg); if (ret) { dev_err(dev, "Error: missing \"battery-regulation-voltage\" property\n"); return ret; } ret = device_property_read_u32(dev, "richtek,boost-output-voltage", &info->boost_voltage); if (ret) { dev_err(dev, "Error: missing \"boost-output-voltage\" property\n"); return ret; } /* * MIVR and IAICR are optional parameters. Do not return error if one of * them is not present in ACPI table or device tree specification. */ device_property_read_u32(dev, "richtek,min-input-voltage-regulation", mivr); device_property_read_u32(dev, "richtek,avg-input-current-regulation", iaicr); return 0; } #if IS_ENABLED(CONFIG_USB_PHY) static int rt9455_usb_event_none(struct rt9455_info *info, u8 opa_mode, u8 iaicr) { struct device *dev = &info->client->dev; int ret; if (opa_mode == RT9455_BOOST_MODE) { ret = rt9455_set_voreg_before_charge_mode(info); if (ret) { dev_err(dev, "Failed to set VOREG before entering charge mode\n"); return ret; } /* * If the charger is in boost mode, and it has received * USB_EVENT_NONE, this means the consumer device powered by the * charger is not connected anymore. * In this case, the charger goes into charge mode. */ dev_dbg(dev, "USB_EVENT_NONE received, therefore the charger goes into charge mode\n"); ret = regmap_field_write(info->regmap_fields[F_OPA_MODE], RT9455_CHARGE_MODE); if (ret) { dev_err(dev, "Failed to set charger in charge mode\n"); return NOTIFY_DONE; } } dev_dbg(dev, "USB_EVENT_NONE received, therefore IAICR is set to its minimum value\n"); if (iaicr != RT9455_IAICR_100MA) { ret = regmap_field_write(info->regmap_fields[F_IAICR], RT9455_IAICR_100MA); if (ret) { dev_err(dev, "Failed to set IAICR value\n"); return NOTIFY_DONE; } } return NOTIFY_OK; } static int rt9455_usb_event_vbus(struct rt9455_info *info, u8 opa_mode, u8 iaicr) { struct device *dev = &info->client->dev; int ret; if (opa_mode == RT9455_BOOST_MODE) { ret = rt9455_set_voreg_before_charge_mode(info); if (ret) { dev_err(dev, "Failed to set VOREG before entering charge mode\n"); return ret; } /* * If the charger is in boost mode, and it has received * USB_EVENT_VBUS, this means the consumer device powered by the * charger is not connected anymore. * In this case, the charger goes into charge mode. */ dev_dbg(dev, "USB_EVENT_VBUS received, therefore the charger goes into charge mode\n"); ret = regmap_field_write(info->regmap_fields[F_OPA_MODE], RT9455_CHARGE_MODE); if (ret) { dev_err(dev, "Failed to set charger in charge mode\n"); return NOTIFY_DONE; } } dev_dbg(dev, "USB_EVENT_VBUS received, therefore IAICR is set to 500 mA\n"); if (iaicr != RT9455_IAICR_500MA) { ret = regmap_field_write(info->regmap_fields[F_IAICR], RT9455_IAICR_500MA); if (ret) { dev_err(dev, "Failed to set IAICR value\n"); return NOTIFY_DONE; } } return NOTIFY_OK; } static int rt9455_usb_event_id(struct rt9455_info *info, u8 opa_mode, u8 iaicr) { struct device *dev = &info->client->dev; int ret; if (opa_mode == RT9455_CHARGE_MODE) { ret = rt9455_set_boost_voltage_before_boost_mode(info); if (ret) { dev_err(dev, "Failed to set boost output voltage before entering boost mode\n"); return ret; } /* * If the charger is in charge mode, and it has received * USB_EVENT_ID, this means a consumer device is connected and * it should be powered by the charger. * In this case, the charger goes into boost mode. */ dev_dbg(dev, "USB_EVENT_ID received, therefore the charger goes into boost mode\n"); ret = regmap_field_write(info->regmap_fields[F_OPA_MODE], RT9455_BOOST_MODE); if (ret) { dev_err(dev, "Failed to set charger in boost mode\n"); return NOTIFY_DONE; } } dev_dbg(dev, "USB_EVENT_ID received, therefore IAICR is set to its minimum value\n"); if (iaicr != RT9455_IAICR_100MA) { ret = regmap_field_write(info->regmap_fields[F_IAICR], RT9455_IAICR_100MA); if (ret) { dev_err(dev, "Failed to set IAICR value\n"); return NOTIFY_DONE; } } return NOTIFY_OK; } static int rt9455_usb_event_charger(struct rt9455_info *info, u8 opa_mode, u8 iaicr) { struct device *dev = &info->client->dev; int ret; if (opa_mode == RT9455_BOOST_MODE) { ret = rt9455_set_voreg_before_charge_mode(info); if (ret) { dev_err(dev, "Failed to set VOREG before entering charge mode\n"); return ret; } /* * If the charger is in boost mode, and it has received * USB_EVENT_CHARGER, this means the consumer device powered by * the charger is not connected anymore. * In this case, the charger goes into charge mode. */ dev_dbg(dev, "USB_EVENT_CHARGER received, therefore the charger goes into charge mode\n"); ret = regmap_field_write(info->regmap_fields[F_OPA_MODE], RT9455_CHARGE_MODE); if (ret) { dev_err(dev, "Failed to set charger in charge mode\n"); return NOTIFY_DONE; } } dev_dbg(dev, "USB_EVENT_CHARGER received, therefore IAICR is set to no current limit\n"); if (iaicr != RT9455_IAICR_NO_LIMIT) { ret = regmap_field_write(info->regmap_fields[F_IAICR], RT9455_IAICR_NO_LIMIT); if (ret) { dev_err(dev, "Failed to set IAICR value\n"); return NOTIFY_DONE; } } return NOTIFY_OK; } static int rt9455_usb_event(struct notifier_block *nb, unsigned long event, void *power) { struct rt9455_info *info = container_of(nb, struct rt9455_info, nb); struct device *dev = &info->client->dev; unsigned int opa_mode, iaicr; int ret; /* * Determine whether the charger is in charge mode * or in boost mode. */ ret = regmap_field_read(info->regmap_fields[F_OPA_MODE], &opa_mode); if (ret) { dev_err(dev, "Failed to read OPA_MODE value\n"); return NOTIFY_DONE; } ret = regmap_field_read(info->regmap_fields[F_IAICR], &iaicr); if (ret) { dev_err(dev, "Failed to read IAICR value\n"); return NOTIFY_DONE; } dev_dbg(dev, "Received USB event %lu\n", event); switch (event) { case USB_EVENT_NONE: return rt9455_usb_event_none(info, opa_mode, iaicr); case USB_EVENT_VBUS: return rt9455_usb_event_vbus(info, opa_mode, iaicr); case USB_EVENT_ID: return rt9455_usb_event_id(info, opa_mode, iaicr); case USB_EVENT_CHARGER: return rt9455_usb_event_charger(info, opa_mode, iaicr); default: dev_err(dev, "Unknown USB event\n"); } return NOTIFY_DONE; } #endif static void rt9455_pwr_rdy_work_callback(struct work_struct *work) { struct rt9455_info *info = container_of(work, struct rt9455_info, pwr_rdy_work.work); struct device *dev = &info->client->dev; unsigned int pwr_rdy; int ret; ret = regmap_field_read(info->regmap_fields[F_PWR_RDY], &pwr_rdy); if (ret) { dev_err(dev, "Failed to read PWR_RDY bit\n"); return; } switch (pwr_rdy) { case RT9455_PWR_FAULT: dev_dbg(dev, "Charger disconnected from power source\n"); cancel_delayed_work_sync(&info->max_charging_time_work); break; case RT9455_PWR_GOOD: dev_dbg(dev, "Charger connected to power source\n"); ret = regmap_field_write(info->regmap_fields[F_CHG_EN], RT9455_CHARGE_ENABLE); if (ret) { dev_err(dev, "Failed to enable charging\n"); return; } queue_delayed_work(system_power_efficient_wq, &info->max_charging_time_work, RT9455_MAX_CHARGING_TIME * HZ); break; } /* * Notify userspace that the charger has been either connected to or * disconnected from the power source. */ power_supply_changed(info->charger); } static void rt9455_max_charging_time_work_callback(struct work_struct *work) { struct rt9455_info *info = container_of(work, struct rt9455_info, max_charging_time_work.work); struct device *dev = &info->client->dev; int ret; dev_err(dev, "Battery has been charging for at least 6 hours and is not yet fully charged. Battery is dead, therefore charging is disabled.\n"); ret = regmap_field_write(info->regmap_fields[F_CHG_EN], RT9455_CHARGE_DISABLE); if (ret) dev_err(dev, "Failed to disable charging\n"); } static void rt9455_batt_presence_work_callback(struct work_struct *work) { struct rt9455_info *info = container_of(work, struct rt9455_info, batt_presence_work.work); struct device *dev = &info->client->dev; unsigned int irq1, mask1; int ret; ret = regmap_read(info->regmap, RT9455_REG_IRQ1, &irq1); if (ret) { dev_err(dev, "Failed to read IRQ1 register\n"); return; } /* * If the battery is still absent, batt_presence_work is rescheduled. * Otherwise, max_charging_time is scheduled. */ if (irq1 & GET_MASK(F_BATAB)) { queue_delayed_work(system_power_efficient_wq, &info->batt_presence_work, RT9455_BATT_PRESENCE_DELAY * HZ); } else { queue_delayed_work(system_power_efficient_wq, &info->max_charging_time_work, RT9455_MAX_CHARGING_TIME * HZ); ret = regmap_read(info->regmap, RT9455_REG_MASK1, &mask1); if (ret) { dev_err(dev, "Failed to read MASK1 register\n"); return; } if (mask1 & GET_MASK(F_BATABM)) { ret = regmap_field_write(info->regmap_fields[F_BATABM], 0x00); if (ret) dev_err(dev, "Failed to unmask BATAB interrupt\n"); } /* * Notify userspace that the battery is now connected to the * charger. */ power_supply_changed(info->charger); } } static const struct power_supply_desc rt9455_charger_desc = { .name = RT9455_DRIVER_NAME, .type = POWER_SUPPLY_TYPE_USB, .properties = rt9455_charger_properties, .num_properties = ARRAY_SIZE(rt9455_charger_properties), .get_property = rt9455_charger_get_property, }; static bool rt9455_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case RT9455_REG_DEV_ID: case RT9455_REG_IRQ1: case RT9455_REG_IRQ2: case RT9455_REG_IRQ3: return false; default: return true; } } static bool rt9455_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case RT9455_REG_DEV_ID: case RT9455_REG_CTRL5: case RT9455_REG_CTRL6: return false; default: return true; } } static const struct regmap_config rt9455_regmap_config = { .reg_bits = 8, .val_bits = 8, .writeable_reg = rt9455_is_writeable_reg, .volatile_reg = rt9455_is_volatile_reg, .max_register = RT9455_REG_MASK3, .cache_type = REGCACHE_RBTREE, }; static int rt9455_probe(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; struct device *dev = &client->dev; struct rt9455_info *info; struct power_supply_config rt9455_charger_config = {}; /* * Mandatory device-specific data values. Also, VOREG and boost output * voltage are mandatory values, but they are stored in rt9455_info * structure. */ u32 ichrg, ieoc_percentage; /* Optional device-specific data values. */ u32 mivr = -1, iaicr = -1; int i, ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(dev, "No support for SMBUS_BYTE_DATA\n"); return -ENODEV; } info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->client = client; i2c_set_clientdata(client, info); info->regmap = devm_regmap_init_i2c(client, &rt9455_regmap_config); if (IS_ERR(info->regmap)) { dev_err(dev, "Failed to initialize register map\n"); return -EINVAL; } for (i = 0; i < F_MAX_FIELDS; i++) { info->regmap_fields[i] = devm_regmap_field_alloc(dev, info->regmap, rt9455_reg_fields[i]); if (IS_ERR(info->regmap_fields[i])) { dev_err(dev, "Failed to allocate regmap field = %d\n", i); return PTR_ERR(info->regmap_fields[i]); } } ret = rt9455_discover_charger(info, &ichrg, &ieoc_percentage, &mivr, &iaicr); if (ret) { dev_err(dev, "Failed to discover charger\n"); return ret; } #if IS_ENABLED(CONFIG_USB_PHY) info->usb_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); if (IS_ERR(info->usb_phy)) { dev_err(dev, "Failed to get USB transceiver\n"); } else { info->nb.notifier_call = rt9455_usb_event; ret = usb_register_notifier(info->usb_phy, &info->nb); if (ret) { dev_err(dev, "Failed to register USB notifier\n"); /* * If usb_register_notifier() fails, set notifier_call * to NULL, to avoid calling usb_unregister_notifier(). */ info->nb.notifier_call = NULL; } } #endif INIT_DEFERRABLE_WORK(&info->pwr_rdy_work, rt9455_pwr_rdy_work_callback); INIT_DEFERRABLE_WORK(&info->max_charging_time_work, rt9455_max_charging_time_work_callback); INIT_DEFERRABLE_WORK(&info->batt_presence_work, rt9455_batt_presence_work_callback); rt9455_charger_config.of_node = dev->of_node; rt9455_charger_config.drv_data = info; rt9455_charger_config.supplied_to = rt9455_charger_supplied_to; rt9455_charger_config.num_supplicants = ARRAY_SIZE(rt9455_charger_supplied_to); ret = devm_request_threaded_irq(dev, client->irq, NULL, rt9455_irq_handler_thread, IRQF_TRIGGER_LOW | IRQF_ONESHOT, RT9455_DRIVER_NAME, info); if (ret) { dev_err(dev, "Failed to register IRQ handler\n"); goto put_usb_notifier; } ret = rt9455_hw_init(info, ichrg, ieoc_percentage, mivr, iaicr); if (ret) { dev_err(dev, "Failed to set charger to its default values\n"); goto put_usb_notifier; } info->charger = devm_power_supply_register(dev, &rt9455_charger_desc, &rt9455_charger_config); if (IS_ERR(info->charger)) { dev_err(dev, "Failed to register charger\n"); ret = PTR_ERR(info->charger); goto put_usb_notifier; } return 0; put_usb_notifier: #if IS_ENABLED(CONFIG_USB_PHY) if (info->nb.notifier_call) { usb_unregister_notifier(info->usb_phy, &info->nb); info->nb.notifier_call = NULL; } #endif return ret; } static void rt9455_remove(struct i2c_client *client) { int ret; struct rt9455_info *info = i2c_get_clientdata(client); ret = rt9455_register_reset(info); if (ret) dev_err(&info->client->dev, "Failed to set charger to its default values\n"); #if IS_ENABLED(CONFIG_USB_PHY) if (info->nb.notifier_call) usb_unregister_notifier(info->usb_phy, &info->nb); #endif cancel_delayed_work_sync(&info->pwr_rdy_work); cancel_delayed_work_sync(&info->max_charging_time_work); cancel_delayed_work_sync(&info->batt_presence_work); } static const struct i2c_device_id rt9455_i2c_id_table[] = { { RT9455_DRIVER_NAME, 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, rt9455_i2c_id_table); static const struct of_device_id rt9455_of_match[] __maybe_unused = { { .compatible = "richtek,rt9455", }, { }, }; MODULE_DEVICE_TABLE(of, rt9455_of_match); #ifdef CONFIG_ACPI static const struct acpi_device_id rt9455_i2c_acpi_match[] = { { "RT945500", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, rt9455_i2c_acpi_match); #endif static struct i2c_driver rt9455_driver = { .probe = rt9455_probe, .remove = rt9455_remove, .id_table = rt9455_i2c_id_table, .driver = { .name = RT9455_DRIVER_NAME, .of_match_table = of_match_ptr(rt9455_of_match), .acpi_match_table = ACPI_PTR(rt9455_i2c_acpi_match), }, }; module_i2c_driver(rt9455_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Anda-Maria Nicolae <[email protected]>"); MODULE_DESCRIPTION("Richtek RT9455 Charger Driver");
linux-master
drivers/power/supply/rt9455_charger.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * MP2629 battery charger driver * * Copyright 2020 Monolithic Power Systems, Inc * * Author: Saravanan Sekar <[email protected]> */ #include <linux/bits.h> #include <linux/iio/consumer.h> #include <linux/iio/types.h> #include <linux/interrupt.h> #include <linux/mfd/mp2629.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #define MP2629_REG_INPUT_ILIM 0x00 #define MP2629_REG_INPUT_VLIM 0x01 #define MP2629_REG_CHARGE_CTRL 0x04 #define MP2629_REG_CHARGE_ILIM 0x05 #define MP2629_REG_PRECHARGE 0x06 #define MP2629_REG_TERM_CURRENT 0x06 #define MP2629_REG_CHARGE_VLIM 0x07 #define MP2629_REG_TIMER_CTRL 0x08 #define MP2629_REG_IMPEDANCE_COMP 0x09 #define MP2629_REG_INTERRUPT 0x0b #define MP2629_REG_STATUS 0x0c #define MP2629_REG_FAULT 0x0d #define MP2629_MASK_INPUT_TYPE GENMASK(7, 5) #define MP2629_MASK_CHARGE_TYPE GENMASK(4, 3) #define MP2629_MASK_CHARGE_CTRL GENMASK(5, 4) #define MP2629_MASK_WDOG_CTRL GENMASK(5, 4) #define MP2629_MASK_IMPEDANCE GENMASK(7, 4) #define MP2629_INPUTSOURCE_CHANGE GENMASK(7, 5) #define MP2629_CHARGING_CHANGE GENMASK(4, 3) #define MP2629_FAULT_BATTERY BIT(3) #define MP2629_FAULT_THERMAL BIT(4) #define MP2629_FAULT_INPUT BIT(5) #define MP2629_FAULT_OTG BIT(6) #define MP2629_MAX_BATT_CAPACITY 100 #define MP2629_PROPS(_idx, _min, _max, _step) \ [_idx] = { \ .min = _min, \ .max = _max, \ .step = _step, \ } enum mp2629_source_type { MP2629_SOURCE_TYPE_NO_INPUT, MP2629_SOURCE_TYPE_NON_STD, MP2629_SOURCE_TYPE_SDP, MP2629_SOURCE_TYPE_CDP, MP2629_SOURCE_TYPE_DCP, MP2629_SOURCE_TYPE_OTG = 7, }; enum mp2629_field { INPUT_ILIM, INPUT_VLIM, CHARGE_ILIM, CHARGE_VLIM, PRECHARGE, TERM_CURRENT, MP2629_MAX_FIELD }; struct mp2629_charger { struct device *dev; int status; int fault; struct regmap *regmap; struct regmap_field *regmap_fields[MP2629_MAX_FIELD]; struct mutex lock; struct power_supply *usb; struct power_supply *battery; struct iio_channel *iiochan[MP2629_ADC_CHAN_END]; }; struct mp2629_prop { int reg; int mask; int min; int max; int step; int shift; }; static enum power_supply_usb_type mp2629_usb_types[] = { POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_CDP, POWER_SUPPLY_USB_TYPE_PD_DRP, POWER_SUPPLY_USB_TYPE_UNKNOWN }; static enum power_supply_property mp2629_charger_usb_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, }; static enum power_supply_property mp2629_charger_bat_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, }; static struct mp2629_prop props[] = { MP2629_PROPS(INPUT_ILIM, 100000, 3250000, 50000), MP2629_PROPS(INPUT_VLIM, 3800000, 5300000, 100000), MP2629_PROPS(CHARGE_ILIM, 320000, 4520000, 40000), MP2629_PROPS(CHARGE_VLIM, 3400000, 4670000, 10000), MP2629_PROPS(PRECHARGE, 120000, 720000, 40000), MP2629_PROPS(TERM_CURRENT, 80000, 680000, 40000), }; static const struct reg_field mp2629_reg_fields[] = { [INPUT_ILIM] = REG_FIELD(MP2629_REG_INPUT_ILIM, 0, 5), [INPUT_VLIM] = REG_FIELD(MP2629_REG_INPUT_VLIM, 0, 3), [CHARGE_ILIM] = REG_FIELD(MP2629_REG_CHARGE_ILIM, 0, 6), [CHARGE_VLIM] = REG_FIELD(MP2629_REG_CHARGE_VLIM, 1, 7), [PRECHARGE] = REG_FIELD(MP2629_REG_PRECHARGE, 4, 7), [TERM_CURRENT] = REG_FIELD(MP2629_REG_TERM_CURRENT, 0, 3), }; static char *adc_chan_name[] = { "mp2629-batt-volt", "mp2629-system-volt", "mp2629-input-volt", "mp2629-batt-current", "mp2629-input-current", }; static int mp2629_read_adc(struct mp2629_charger *charger, enum mp2629_adc_chan ch, union power_supply_propval *val) { int ret; int chval; ret = iio_read_channel_processed(charger->iiochan[ch], &chval); if (ret) return ret; val->intval = chval * 1000; return 0; } static int mp2629_get_prop(struct mp2629_charger *charger, enum mp2629_field fld, union power_supply_propval *val) { int ret; unsigned int rval; ret = regmap_field_read(charger->regmap_fields[fld], &rval); if (ret) return ret; val->intval = rval * props[fld].step + props[fld].min; return 0; } static int mp2629_set_prop(struct mp2629_charger *charger, enum mp2629_field fld, const union power_supply_propval *val) { unsigned int rval; if (val->intval < props[fld].min || val->intval > props[fld].max) return -EINVAL; rval = (val->intval - props[fld].min) / props[fld].step; return regmap_field_write(charger->regmap_fields[fld], rval); } static int mp2629_get_battery_capacity(struct mp2629_charger *charger, union power_supply_propval *val) { union power_supply_propval vnow, vlim; int ret; ret = mp2629_read_adc(charger, MP2629_BATT_VOLT, &vnow); if (ret) return ret; ret = mp2629_get_prop(charger, CHARGE_VLIM, &vlim); if (ret) return ret; val->intval = (vnow.intval * 100) / vlim.intval; val->intval = min(val->intval, MP2629_MAX_BATT_CAPACITY); return 0; } static int mp2629_charger_battery_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct mp2629_charger *charger = dev_get_drvdata(psy->dev.parent); unsigned int rval; int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = mp2629_read_adc(charger, MP2629_BATT_VOLT, val); break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = mp2629_read_adc(charger, MP2629_BATT_CURRENT, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = 4520000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = 4670000; break; case POWER_SUPPLY_PROP_CAPACITY: ret = mp2629_get_battery_capacity(charger, val); break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: ret = mp2629_get_prop(charger, TERM_CURRENT, val); break; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: ret = mp2629_get_prop(charger, PRECHARGE, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = mp2629_get_prop(charger, CHARGE_VLIM, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = mp2629_get_prop(charger, CHARGE_ILIM, val); break; case POWER_SUPPLY_PROP_HEALTH: if (!charger->fault) val->intval = POWER_SUPPLY_HEALTH_GOOD; if (MP2629_FAULT_BATTERY & charger->fault) val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else if (MP2629_FAULT_THERMAL & charger->fault) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else if (MP2629_FAULT_INPUT & charger->fault) val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; break; case POWER_SUPPLY_PROP_STATUS: ret = regmap_read(charger->regmap, MP2629_REG_STATUS, &rval); if (ret) break; rval = (rval & MP2629_MASK_CHARGE_TYPE) >> 3; switch (rval) { case 0x00: val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; case 0x01: case 0x10: val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case 0x11: val->intval = POWER_SUPPLY_STATUS_FULL; } break; case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = regmap_read(charger->regmap, MP2629_REG_STATUS, &rval); if (ret) break; rval = (rval & MP2629_MASK_CHARGE_TYPE) >> 3; switch (rval) { case 0x00: val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; case 0x01: val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case 0x10: val->intval = POWER_SUPPLY_CHARGE_TYPE_STANDARD; break; default: val->intval = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; } break; default: return -EINVAL; } return ret; } static int mp2629_charger_battery_set_prop(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct mp2629_charger *charger = dev_get_drvdata(psy->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return mp2629_set_prop(charger, TERM_CURRENT, val); case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return mp2629_set_prop(charger, PRECHARGE, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return mp2629_set_prop(charger, CHARGE_VLIM, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return mp2629_set_prop(charger, CHARGE_ILIM, val); default: return -EINVAL; } } static int mp2629_charger_usb_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct mp2629_charger *charger = dev_get_drvdata(psy->dev.parent); unsigned int rval; int ret; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = regmap_read(charger->regmap, MP2629_REG_STATUS, &rval); if (ret) break; val->intval = !!(rval & MP2629_MASK_INPUT_TYPE); break; case POWER_SUPPLY_PROP_USB_TYPE: ret = regmap_read(charger->regmap, MP2629_REG_STATUS, &rval); if (ret) break; rval = (rval & MP2629_MASK_INPUT_TYPE) >> 5; switch (rval) { case MP2629_SOURCE_TYPE_SDP: val->intval = POWER_SUPPLY_USB_TYPE_SDP; break; case MP2629_SOURCE_TYPE_CDP: val->intval = POWER_SUPPLY_USB_TYPE_CDP; break; case MP2629_SOURCE_TYPE_DCP: val->intval = POWER_SUPPLY_USB_TYPE_DCP; break; case MP2629_SOURCE_TYPE_OTG: val->intval = POWER_SUPPLY_USB_TYPE_PD_DRP; break; default: val->intval = POWER_SUPPLY_USB_TYPE_UNKNOWN; break; } break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = mp2629_read_adc(charger, MP2629_INPUT_VOLT, val); break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = mp2629_read_adc(charger, MP2629_INPUT_CURRENT, val); break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = mp2629_get_prop(charger, INPUT_VLIM, val); break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = mp2629_get_prop(charger, INPUT_ILIM, val); break; default: return -EINVAL; } return ret; } static int mp2629_charger_usb_set_prop(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct mp2629_charger *charger = dev_get_drvdata(psy->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: return mp2629_set_prop(charger, INPUT_VLIM, val); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return mp2629_set_prop(charger, INPUT_ILIM, val); default: return -EINVAL; } } static int mp2629_charger_battery_prop_writeable(struct power_supply *psy, enum power_supply_property psp) { return (psp == POWER_SUPPLY_PROP_PRECHARGE_CURRENT) || (psp == POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT) || (psp == POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT) || (psp == POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE); } static int mp2629_charger_usb_prop_writeable(struct power_supply *psy, enum power_supply_property psp) { return (psp == POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT) || (psp == POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT); } static irqreturn_t mp2629_irq_handler(int irq, void *dev_id) { struct mp2629_charger *charger = dev_id; unsigned int rval; int ret; mutex_lock(&charger->lock); ret = regmap_read(charger->regmap, MP2629_REG_FAULT, &rval); if (ret) goto unlock; if (rval) { charger->fault = rval; if (MP2629_FAULT_BATTERY & rval) dev_err(charger->dev, "Battery fault OVP\n"); else if (MP2629_FAULT_THERMAL & rval) dev_err(charger->dev, "Thermal shutdown fault\n"); else if (MP2629_FAULT_INPUT & rval) dev_err(charger->dev, "no input or input OVP\n"); else if (MP2629_FAULT_OTG & rval) dev_err(charger->dev, "VIN overloaded\n"); goto unlock; } ret = regmap_read(charger->regmap, MP2629_REG_STATUS, &rval); if (ret) goto unlock; if (rval & MP2629_INPUTSOURCE_CHANGE) power_supply_changed(charger->usb); else if (rval & MP2629_CHARGING_CHANGE) power_supply_changed(charger->battery); unlock: mutex_unlock(&charger->lock); return IRQ_HANDLED; } static const struct power_supply_desc mp2629_usb_desc = { .name = "mp2629_usb", .type = POWER_SUPPLY_TYPE_USB, .usb_types = mp2629_usb_types, .num_usb_types = ARRAY_SIZE(mp2629_usb_types), .properties = mp2629_charger_usb_props, .num_properties = ARRAY_SIZE(mp2629_charger_usb_props), .get_property = mp2629_charger_usb_get_prop, .set_property = mp2629_charger_usb_set_prop, .property_is_writeable = mp2629_charger_usb_prop_writeable, }; static const struct power_supply_desc mp2629_battery_desc = { .name = "mp2629_battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = mp2629_charger_bat_props, .num_properties = ARRAY_SIZE(mp2629_charger_bat_props), .get_property = mp2629_charger_battery_get_prop, .set_property = mp2629_charger_battery_set_prop, .property_is_writeable = mp2629_charger_battery_prop_writeable, }; static ssize_t batt_impedance_compensation_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mp2629_charger *charger = dev_get_drvdata(dev->parent); unsigned int rval; int ret; ret = regmap_read(charger->regmap, MP2629_REG_IMPEDANCE_COMP, &rval); if (ret) return ret; rval = (rval >> 4) * 10; return sysfs_emit(buf, "%d mohm\n", rval); } static ssize_t batt_impedance_compensation_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mp2629_charger *charger = dev_get_drvdata(dev->parent); unsigned int val; int ret; ret = kstrtouint(buf, 10, &val); if (ret) return ret; if (val > 140) return -ERANGE; /* multiples of 10 mohm so round off */ val = val / 10; ret = regmap_update_bits(charger->regmap, MP2629_REG_IMPEDANCE_COMP, MP2629_MASK_IMPEDANCE, val << 4); if (ret) return ret; return count; } static DEVICE_ATTR_RW(batt_impedance_compensation); static struct attribute *mp2629_charger_sysfs_attrs[] = { &dev_attr_batt_impedance_compensation.attr, NULL }; ATTRIBUTE_GROUPS(mp2629_charger_sysfs); static void mp2629_charger_disable(void *data) { struct mp2629_charger *charger = data; regmap_update_bits(charger->regmap, MP2629_REG_CHARGE_CTRL, MP2629_MASK_CHARGE_CTRL, 0); } static int mp2629_charger_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mp2629_data *ddata = dev_get_drvdata(dev->parent); struct mp2629_charger *charger; struct power_supply_config psy_cfg = {}; int ret, i, irq; charger = devm_kzalloc(dev, sizeof(*charger), GFP_KERNEL); if (!charger) return -ENOMEM; charger->regmap = ddata->regmap; charger->dev = dev; platform_set_drvdata(pdev, charger); irq = platform_get_irq(to_platform_device(dev->parent), 0); if (irq < 0) return irq; for (i = 0; i < MP2629_MAX_FIELD; i++) { charger->regmap_fields[i] = devm_regmap_field_alloc(dev, charger->regmap, mp2629_reg_fields[i]); if (IS_ERR(charger->regmap_fields[i])) { dev_err(dev, "regmap field alloc fail %d\n", i); return PTR_ERR(charger->regmap_fields[i]); } } for (i = 0; i < MP2629_ADC_CHAN_END; i++) { charger->iiochan[i] = devm_iio_channel_get(dev, adc_chan_name[i]); if (IS_ERR(charger->iiochan[i])) { dev_err(dev, "iio chan get %s err\n", adc_chan_name[i]); return PTR_ERR(charger->iiochan[i]); } } ret = devm_add_action_or_reset(dev, mp2629_charger_disable, charger); if (ret) return ret; charger->usb = devm_power_supply_register(dev, &mp2629_usb_desc, NULL); if (IS_ERR(charger->usb)) { dev_err(dev, "power supply register usb failed\n"); return PTR_ERR(charger->usb); } psy_cfg.drv_data = charger; psy_cfg.attr_grp = mp2629_charger_sysfs_groups; charger->battery = devm_power_supply_register(dev, &mp2629_battery_desc, &psy_cfg); if (IS_ERR(charger->battery)) { dev_err(dev, "power supply register battery failed\n"); return PTR_ERR(charger->battery); } ret = regmap_update_bits(charger->regmap, MP2629_REG_CHARGE_CTRL, MP2629_MASK_CHARGE_CTRL, BIT(4)); if (ret) { dev_err(dev, "enable charge fail: %d\n", ret); return ret; } regmap_update_bits(charger->regmap, MP2629_REG_TIMER_CTRL, MP2629_MASK_WDOG_CTRL, 0); mutex_init(&charger->lock); ret = devm_request_threaded_irq(dev, irq, NULL, mp2629_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_RISING, "mp2629-charger", charger); if (ret) { dev_err(dev, "failed to request gpio IRQ\n"); return ret; } regmap_update_bits(charger->regmap, MP2629_REG_INTERRUPT, GENMASK(6, 5), BIT(6) | BIT(5)); return 0; } static const struct of_device_id mp2629_charger_of_match[] = { { .compatible = "mps,mp2629_charger"}, {} }; MODULE_DEVICE_TABLE(of, mp2629_charger_of_match); static struct platform_driver mp2629_charger_driver = { .driver = { .name = "mp2629_charger", .of_match_table = mp2629_charger_of_match, }, .probe = mp2629_charger_probe, }; module_platform_driver(mp2629_charger_driver); MODULE_AUTHOR("Saravanan Sekar <[email protected]>"); MODULE_DESCRIPTION("MP2629 Charger driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/mp2629_charger.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2010, Lars-Peter Clausen <[email protected]> * Driver for chargers which report their online status through a GPIO pin */ #include <linux/device.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/gpio/consumer.h> #include <linux/power/gpio-charger.h> struct gpio_mapping { u32 limit_ua; u32 gpiodata; } __packed; struct gpio_charger { struct device *dev; unsigned int irq; unsigned int charge_status_irq; bool wakeup_enabled; struct power_supply *charger; struct power_supply_desc charger_desc; struct gpio_desc *gpiod; struct gpio_desc *charge_status; struct gpio_descs *current_limit_gpios; struct gpio_mapping *current_limit_map; u32 current_limit_map_size; u32 charge_current_limit; }; static irqreturn_t gpio_charger_irq(int irq, void *devid) { struct power_supply *charger = devid; power_supply_changed(charger); return IRQ_HANDLED; } static inline struct gpio_charger *psy_to_gpio_charger(struct power_supply *psy) { return power_supply_get_drvdata(psy); } static int set_charge_current_limit(struct gpio_charger *gpio_charger, int val) { struct gpio_mapping mapping; int ndescs = gpio_charger->current_limit_gpios->ndescs; struct gpio_desc **gpios = gpio_charger->current_limit_gpios->desc; int i; if (!gpio_charger->current_limit_map_size) return -EINVAL; for (i = 0; i < gpio_charger->current_limit_map_size; i++) { if (gpio_charger->current_limit_map[i].limit_ua <= val) break; } mapping = gpio_charger->current_limit_map[i]; for (i = 0; i < ndescs; i++) { bool val = (mapping.gpiodata >> i) & 1; gpiod_set_value_cansleep(gpios[ndescs-i-1], val); } gpio_charger->charge_current_limit = mapping.limit_ua; dev_dbg(gpio_charger->dev, "set charge current limit to %d (requested: %d)\n", gpio_charger->charge_current_limit, val); return 0; } static int gpio_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct gpio_charger *gpio_charger = psy_to_gpio_charger(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = gpiod_get_value_cansleep(gpio_charger->gpiod); break; case POWER_SUPPLY_PROP_STATUS: if (gpiod_get_value_cansleep(gpio_charger->charge_status)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = gpio_charger->charge_current_limit; break; default: return -EINVAL; } return 0; } static int gpio_charger_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct gpio_charger *gpio_charger = psy_to_gpio_charger(psy); switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: return set_charge_current_limit(gpio_charger, val->intval); default: return -EINVAL; } return 0; } static int gpio_charger_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: return 1; default: break; } return 0; } static enum power_supply_type gpio_charger_get_type(struct device *dev) { const char *chargetype; if (!device_property_read_string(dev, "charger-type", &chargetype)) { if (!strcmp("unknown", chargetype)) return POWER_SUPPLY_TYPE_UNKNOWN; if (!strcmp("battery", chargetype)) return POWER_SUPPLY_TYPE_BATTERY; if (!strcmp("ups", chargetype)) return POWER_SUPPLY_TYPE_UPS; if (!strcmp("mains", chargetype)) return POWER_SUPPLY_TYPE_MAINS; if (!strcmp("usb-sdp", chargetype)) return POWER_SUPPLY_TYPE_USB; if (!strcmp("usb-dcp", chargetype)) return POWER_SUPPLY_TYPE_USB; if (!strcmp("usb-cdp", chargetype)) return POWER_SUPPLY_TYPE_USB; if (!strcmp("usb-aca", chargetype)) return POWER_SUPPLY_TYPE_USB; } dev_warn(dev, "unknown charger type %s\n", chargetype); return POWER_SUPPLY_TYPE_UNKNOWN; } static int gpio_charger_get_irq(struct device *dev, void *dev_id, struct gpio_desc *gpio) { int ret, irq = gpiod_to_irq(gpio); if (irq > 0) { ret = devm_request_any_context_irq(dev, irq, gpio_charger_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, dev_name(dev), dev_id); if (ret < 0) { dev_warn(dev, "Failed to request irq: %d\n", ret); irq = 0; } } return irq; } static int init_charge_current_limit(struct device *dev, struct gpio_charger *gpio_charger) { int i, len; u32 cur_limit = U32_MAX; gpio_charger->current_limit_gpios = devm_gpiod_get_array_optional(dev, "charge-current-limit", GPIOD_OUT_LOW); if (IS_ERR(gpio_charger->current_limit_gpios)) { dev_err(dev, "error getting current-limit GPIOs\n"); return PTR_ERR(gpio_charger->current_limit_gpios); } if (!gpio_charger->current_limit_gpios) return 0; len = device_property_read_u32_array(dev, "charge-current-limit-mapping", NULL, 0); if (len < 0) return len; if (len == 0 || len % 2) { dev_err(dev, "invalid charge-current-limit-mapping length\n"); return -EINVAL; } gpio_charger->current_limit_map = devm_kmalloc_array(dev, len / 2, sizeof(*gpio_charger->current_limit_map), GFP_KERNEL); if (!gpio_charger->current_limit_map) return -ENOMEM; gpio_charger->current_limit_map_size = len / 2; len = device_property_read_u32_array(dev, "charge-current-limit-mapping", (u32*) gpio_charger->current_limit_map, len); if (len < 0) return len; for (i=0; i < gpio_charger->current_limit_map_size; i++) { if (gpio_charger->current_limit_map[i].limit_ua > cur_limit) { dev_err(dev, "charge-current-limit-mapping not sorted by current in descending order\n"); return -EINVAL; } cur_limit = gpio_charger->current_limit_map[i].limit_ua; } /* default to smallest current limitation for safety reasons */ len = gpio_charger->current_limit_map_size - 1; set_charge_current_limit(gpio_charger, gpio_charger->current_limit_map[len].limit_ua); return 0; } /* * The entries will be overwritten by driver's probe routine depending * on the available features. This list ensures, that the array is big * enough for all optional features. */ static enum power_supply_property gpio_charger_properties[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, }; static int gpio_charger_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct gpio_charger_platform_data *pdata = dev->platform_data; struct power_supply_config psy_cfg = {}; struct gpio_charger *gpio_charger; struct power_supply_desc *charger_desc; struct gpio_desc *charge_status; int charge_status_irq; int ret; int num_props = 0; if (!pdata && !dev->of_node) { dev_err(dev, "No platform data\n"); return -ENOENT; } gpio_charger = devm_kzalloc(dev, sizeof(*gpio_charger), GFP_KERNEL); if (!gpio_charger) return -ENOMEM; gpio_charger->dev = dev; /* * This will fetch a GPIO descriptor from device tree, ACPI or * boardfile descriptor tables. It's good to try this first. */ gpio_charger->gpiod = devm_gpiod_get_optional(dev, NULL, GPIOD_IN); if (IS_ERR(gpio_charger->gpiod)) { /* Just try again if this happens */ return dev_err_probe(dev, PTR_ERR(gpio_charger->gpiod), "error getting GPIO descriptor\n"); } if (gpio_charger->gpiod) { gpio_charger_properties[num_props] = POWER_SUPPLY_PROP_ONLINE; num_props++; } charge_status = devm_gpiod_get_optional(dev, "charge-status", GPIOD_IN); if (IS_ERR(charge_status)) return PTR_ERR(charge_status); if (charge_status) { gpio_charger->charge_status = charge_status; gpio_charger_properties[num_props] = POWER_SUPPLY_PROP_STATUS; num_props++; } ret = init_charge_current_limit(dev, gpio_charger); if (ret < 0) return ret; if (gpio_charger->current_limit_map) { gpio_charger_properties[num_props] = POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX; num_props++; } charger_desc = &gpio_charger->charger_desc; charger_desc->properties = gpio_charger_properties; charger_desc->num_properties = num_props; charger_desc->get_property = gpio_charger_get_property; charger_desc->set_property = gpio_charger_set_property; charger_desc->property_is_writeable = gpio_charger_property_is_writeable; psy_cfg.of_node = dev->of_node; psy_cfg.drv_data = gpio_charger; if (pdata) { charger_desc->name = pdata->name; charger_desc->type = pdata->type; psy_cfg.supplied_to = pdata->supplied_to; psy_cfg.num_supplicants = pdata->num_supplicants; } else { charger_desc->name = dev->of_node->name; charger_desc->type = gpio_charger_get_type(dev); } if (!charger_desc->name) charger_desc->name = pdev->name; gpio_charger->charger = devm_power_supply_register(dev, charger_desc, &psy_cfg); if (IS_ERR(gpio_charger->charger)) { ret = PTR_ERR(gpio_charger->charger); dev_err(dev, "Failed to register power supply: %d\n", ret); return ret; } gpio_charger->irq = gpio_charger_get_irq(dev, gpio_charger->charger, gpio_charger->gpiod); charge_status_irq = gpio_charger_get_irq(dev, gpio_charger->charger, gpio_charger->charge_status); gpio_charger->charge_status_irq = charge_status_irq; platform_set_drvdata(pdev, gpio_charger); device_init_wakeup(dev, 1); return 0; } #ifdef CONFIG_PM_SLEEP static int gpio_charger_suspend(struct device *dev) { struct gpio_charger *gpio_charger = dev_get_drvdata(dev); if (device_may_wakeup(dev)) gpio_charger->wakeup_enabled = !enable_irq_wake(gpio_charger->irq); return 0; } static int gpio_charger_resume(struct device *dev) { struct gpio_charger *gpio_charger = dev_get_drvdata(dev); if (device_may_wakeup(dev) && gpio_charger->wakeup_enabled) disable_irq_wake(gpio_charger->irq); power_supply_changed(gpio_charger->charger); return 0; } #endif static SIMPLE_DEV_PM_OPS(gpio_charger_pm_ops, gpio_charger_suspend, gpio_charger_resume); static const struct of_device_id gpio_charger_match[] = { { .compatible = "gpio-charger" }, { } }; MODULE_DEVICE_TABLE(of, gpio_charger_match); static struct platform_driver gpio_charger_driver = { .probe = gpio_charger_probe, .driver = { .name = "gpio-charger", .pm = &gpio_charger_pm_ops, .of_match_table = gpio_charger_match, }, }; module_platform_driver(gpio_charger_driver); MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>"); MODULE_DESCRIPTION("Driver for chargers only communicating via GPIO(s)"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:gpio-charger");
linux-master
drivers/power/supply/gpio-charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * I2C client/driver for the Linear Technology LTC2941, LTC2942, LTC2943 * and LTC2944 Battery Gas Gauge IC * * Copyright (C) 2014 Topic Embedded Systems * * Author: Auryn Verwegen * Author: Mike Looijmans */ #include <linux/devm-helpers.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/swab.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/power_supply.h> #include <linux/slab.h> #define I16_MSB(x) ((x >> 8) & 0xFF) #define I16_LSB(x) (x & 0xFF) #define LTC294X_WORK_DELAY 10 /* Update delay in seconds */ #define LTC294X_MAX_VALUE 0xFFFF #define LTC294X_MID_SUPPLY 0x7FFF #define LTC2941_MAX_PRESCALER_EXP 7 #define LTC2943_MAX_PRESCALER_EXP 6 enum ltc294x_reg { LTC294X_REG_STATUS = 0x00, LTC294X_REG_CONTROL = 0x01, LTC294X_REG_ACC_CHARGE_MSB = 0x02, LTC294X_REG_ACC_CHARGE_LSB = 0x03, LTC294X_REG_CHARGE_THR_HIGH_MSB = 0x04, LTC294X_REG_CHARGE_THR_HIGH_LSB = 0x05, LTC294X_REG_CHARGE_THR_LOW_MSB = 0x06, LTC294X_REG_CHARGE_THR_LOW_LSB = 0x07, LTC294X_REG_VOLTAGE_MSB = 0x08, LTC294X_REG_VOLTAGE_LSB = 0x09, LTC2942_REG_TEMPERATURE_MSB = 0x0C, LTC2942_REG_TEMPERATURE_LSB = 0x0D, LTC2943_REG_CURRENT_MSB = 0x0E, LTC2943_REG_CURRENT_LSB = 0x0F, LTC2943_REG_TEMPERATURE_MSB = 0x14, LTC2943_REG_TEMPERATURE_LSB = 0x15, }; enum ltc294x_id { LTC2941_ID, LTC2942_ID, LTC2943_ID, LTC2944_ID, }; #define LTC2941_REG_STATUS_CHIP_ID BIT(7) #define LTC2942_REG_CONTROL_MODE_SCAN (BIT(7) | BIT(6)) #define LTC2943_REG_CONTROL_MODE_SCAN BIT(7) #define LTC294X_REG_CONTROL_PRESCALER_MASK (BIT(5) | BIT(4) | BIT(3)) #define LTC294X_REG_CONTROL_SHUTDOWN_MASK (BIT(0)) #define LTC294X_REG_CONTROL_PRESCALER_SET(x) \ ((x << 3) & LTC294X_REG_CONTROL_PRESCALER_MASK) #define LTC294X_REG_CONTROL_ALCC_CONFIG_DISABLED 0 #define LTC294X_REG_CONTROL_ADC_DISABLE(x) ((x) & ~(BIT(7) | BIT(6))) struct ltc294x_info { struct i2c_client *client; /* I2C Client pointer */ struct power_supply *supply; /* Supply pointer */ struct power_supply_desc supply_desc; /* Supply description */ struct delayed_work work; /* Work scheduler */ enum ltc294x_id id; /* Chip type */ int charge; /* Last charge register content */ int r_sense; /* mOhm */ int Qlsb; /* nAh */ }; static inline int convert_bin_to_uAh( const struct ltc294x_info *info, int Q) { return ((Q * (info->Qlsb / 10))) / 100; } static inline int convert_uAh_to_bin( const struct ltc294x_info *info, int uAh) { int Q; Q = (uAh * 100) / (info->Qlsb/10); return (Q < LTC294X_MAX_VALUE) ? Q : LTC294X_MAX_VALUE; } static int ltc294x_read_regs(struct i2c_client *client, enum ltc294x_reg reg, u8 *buf, int num_regs) { int ret; struct i2c_msg msgs[2] = { }; u8 reg_start = reg; msgs[0].addr = client->addr; msgs[0].len = 1; msgs[0].buf = &reg_start; msgs[1].addr = client->addr; msgs[1].len = num_regs; msgs[1].buf = buf; msgs[1].flags = I2C_M_RD; ret = i2c_transfer(client->adapter, &msgs[0], 2); if (ret < 0) { dev_err(&client->dev, "ltc2941 read_reg(0x%x[%d]) failed: %pe\n", reg, num_regs, ERR_PTR(ret)); return ret; } dev_dbg(&client->dev, "%s (%#x, %d) -> %#x\n", __func__, reg, num_regs, *buf); return 0; } static int ltc294x_write_regs(struct i2c_client *client, enum ltc294x_reg reg, const u8 *buf, int num_regs) { int ret; u8 reg_start = reg; ret = i2c_smbus_write_i2c_block_data(client, reg_start, num_regs, buf); if (ret < 0) { dev_err(&client->dev, "ltc2941 write_reg(0x%x[%d]) failed: %pe\n", reg, num_regs, ERR_PTR(ret)); return ret; } dev_dbg(&client->dev, "%s (%#x, %d) -> %#x\n", __func__, reg, num_regs, *buf); return 0; } static int ltc294x_reset(const struct ltc294x_info *info, int prescaler_exp) { int ret; u8 value; u8 control; /* Read status and control registers */ ret = ltc294x_read_regs(info->client, LTC294X_REG_CONTROL, &value, 1); if (ret < 0) return ret; control = LTC294X_REG_CONTROL_PRESCALER_SET(prescaler_exp) | LTC294X_REG_CONTROL_ALCC_CONFIG_DISABLED; /* Put device into "monitor" mode */ switch (info->id) { case LTC2942_ID: /* 2942 measures every 2 sec */ control |= LTC2942_REG_CONTROL_MODE_SCAN; break; case LTC2943_ID: case LTC2944_ID: /* 2943 and 2944 measure every 10 sec */ control |= LTC2943_REG_CONTROL_MODE_SCAN; break; default: break; } if (value != control) { ret = ltc294x_write_regs(info->client, LTC294X_REG_CONTROL, &control, 1); if (ret < 0) return ret; } return 0; } static int ltc294x_read_charge_register(const struct ltc294x_info *info, enum ltc294x_reg reg) { int ret; u8 datar[2]; ret = ltc294x_read_regs(info->client, reg, &datar[0], 2); if (ret < 0) return ret; return (datar[0] << 8) + datar[1]; } static int ltc294x_get_charge(const struct ltc294x_info *info, enum ltc294x_reg reg, int *val) { int value = ltc294x_read_charge_register(info, reg); if (value < 0) return value; /* When r_sense < 0, this counts up when the battery discharges */ if (info->Qlsb < 0) value -= 0xFFFF; *val = convert_bin_to_uAh(info, value); return 0; } static int ltc294x_set_charge_now(const struct ltc294x_info *info, int val) { int ret; u8 dataw[2]; u8 ctrl_reg; s32 value; value = convert_uAh_to_bin(info, val); /* Direction depends on how sense+/- were connected */ if (info->Qlsb < 0) value += 0xFFFF; if ((value < 0) || (value > 0xFFFF)) /* input validation */ return -EINVAL; /* Read control register */ ret = ltc294x_read_regs(info->client, LTC294X_REG_CONTROL, &ctrl_reg, 1); if (ret < 0) return ret; /* Disable analog section */ ctrl_reg |= LTC294X_REG_CONTROL_SHUTDOWN_MASK; ret = ltc294x_write_regs(info->client, LTC294X_REG_CONTROL, &ctrl_reg, 1); if (ret < 0) return ret; /* Set new charge value */ dataw[0] = I16_MSB(value); dataw[1] = I16_LSB(value); ret = ltc294x_write_regs(info->client, LTC294X_REG_ACC_CHARGE_MSB, &dataw[0], 2); if (ret < 0) goto error_exit; /* Enable analog section */ error_exit: ctrl_reg &= ~LTC294X_REG_CONTROL_SHUTDOWN_MASK; ret = ltc294x_write_regs(info->client, LTC294X_REG_CONTROL, &ctrl_reg, 1); return ret < 0 ? ret : 0; } static int ltc294x_set_charge_thr(const struct ltc294x_info *info, enum ltc294x_reg reg, int val) { u8 dataw[2]; s32 value; value = convert_uAh_to_bin(info, val); /* Direction depends on how sense+/- were connected */ if (info->Qlsb < 0) value += 0xFFFF; if ((value < 0) || (value > 0xFFFF)) /* input validation */ return -EINVAL; /* Set new charge value */ dataw[0] = I16_MSB(value); dataw[1] = I16_LSB(value); return ltc294x_write_regs(info->client, reg, &dataw[0], 2); } static int ltc294x_get_charge_counter( const struct ltc294x_info *info, int *val) { int value = ltc294x_read_charge_register(info, LTC294X_REG_ACC_CHARGE_MSB); if (value < 0) return value; value -= LTC294X_MID_SUPPLY; *val = convert_bin_to_uAh(info, value); return 0; } static int ltc294x_get_voltage(const struct ltc294x_info *info, int *val) { int ret; u8 datar[2]; u32 value; ret = ltc294x_read_regs(info->client, LTC294X_REG_VOLTAGE_MSB, &datar[0], 2); value = (datar[0] << 8) | datar[1]; switch (info->id) { case LTC2943_ID: value *= 23600 * 2; value /= 0xFFFF; value *= 1000 / 2; break; case LTC2944_ID: value *= 70800 / 5*4; value /= 0xFFFF; value *= 1000 * 5/4; break; default: value *= 6000 * 10; value /= 0xFFFF; value *= 1000 / 10; break; } *val = value; return ret; } static int ltc294x_get_current(const struct ltc294x_info *info, int *val) { int ret; u8 datar[2]; s32 value; ret = ltc294x_read_regs(info->client, LTC2943_REG_CURRENT_MSB, &datar[0], 2); value = (datar[0] << 8) | datar[1]; value -= 0x7FFF; if (info->id == LTC2944_ID) value *= 64000; else value *= 60000; /* Value is in range -32k..+32k, r_sense is usually 10..50 mOhm, * the formula below keeps everything in s32 range while preserving * enough digits */ *val = 1000 * (value / (info->r_sense * 0x7FFF)); /* in uA */ return ret; } static int ltc294x_get_temperature(const struct ltc294x_info *info, int *val) { enum ltc294x_reg reg; int ret; u8 datar[2]; u32 value; if (info->id == LTC2942_ID) { reg = LTC2942_REG_TEMPERATURE_MSB; value = 6000; /* Full-scale is 600 Kelvin */ } else { reg = LTC2943_REG_TEMPERATURE_MSB; value = 5100; /* Full-scale is 510 Kelvin */ } ret = ltc294x_read_regs(info->client, reg, &datar[0], 2); value *= (datar[0] << 8) | datar[1]; /* Convert to tenths of degree Celsius */ *val = value / 0xFFFF - 2722; return ret; } static int ltc294x_get_property(struct power_supply *psy, enum power_supply_property prop, union power_supply_propval *val) { struct ltc294x_info *info = power_supply_get_drvdata(psy); switch (prop) { case POWER_SUPPLY_PROP_CHARGE_FULL: return ltc294x_get_charge(info, LTC294X_REG_CHARGE_THR_HIGH_MSB, &val->intval); case POWER_SUPPLY_PROP_CHARGE_EMPTY: return ltc294x_get_charge(info, LTC294X_REG_CHARGE_THR_LOW_MSB, &val->intval); case POWER_SUPPLY_PROP_CHARGE_NOW: return ltc294x_get_charge(info, LTC294X_REG_ACC_CHARGE_MSB, &val->intval); case POWER_SUPPLY_PROP_CHARGE_COUNTER: return ltc294x_get_charge_counter(info, &val->intval); case POWER_SUPPLY_PROP_VOLTAGE_NOW: return ltc294x_get_voltage(info, &val->intval); case POWER_SUPPLY_PROP_CURRENT_NOW: return ltc294x_get_current(info, &val->intval); case POWER_SUPPLY_PROP_TEMP: return ltc294x_get_temperature(info, &val->intval); default: return -EINVAL; } } static int ltc294x_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct ltc294x_info *info = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CHARGE_FULL: return ltc294x_set_charge_thr(info, LTC294X_REG_CHARGE_THR_HIGH_MSB, val->intval); case POWER_SUPPLY_PROP_CHARGE_EMPTY: return ltc294x_set_charge_thr(info, LTC294X_REG_CHARGE_THR_LOW_MSB, val->intval); case POWER_SUPPLY_PROP_CHARGE_NOW: return ltc294x_set_charge_now(info, val->intval); default: return -EPERM; } } static int ltc294x_property_is_writeable( struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_EMPTY: case POWER_SUPPLY_PROP_CHARGE_NOW: return 1; default: return 0; } } static void ltc294x_update(struct ltc294x_info *info) { int charge = ltc294x_read_charge_register(info, LTC294X_REG_ACC_CHARGE_MSB); if (charge != info->charge) { info->charge = charge; power_supply_changed(info->supply); } } static void ltc294x_work(struct work_struct *work) { struct ltc294x_info *info; info = container_of(work, struct ltc294x_info, work.work); ltc294x_update(info); schedule_delayed_work(&info->work, LTC294X_WORK_DELAY * HZ); } static enum power_supply_property ltc294x_properties[] = { POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_EMPTY, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_CURRENT_NOW, }; static int ltc294x_i2c_probe(struct i2c_client *client) { struct power_supply_config psy_cfg = {}; struct ltc294x_info *info; struct device_node *np; int ret; u32 prescaler_exp; s32 r_sense; u8 status; info = devm_kzalloc(&client->dev, sizeof(*info), GFP_KERNEL); if (info == NULL) return -ENOMEM; i2c_set_clientdata(client, info); np = of_node_get(client->dev.of_node); info->id = (enum ltc294x_id) (uintptr_t) of_device_get_match_data( &client->dev); info->supply_desc.name = np->name; /* r_sense can be negative, when sense+ is connected to the battery * instead of the sense-. This results in reversed measurements. */ ret = of_property_read_u32(np, "lltc,resistor-sense", &r_sense); if (ret < 0) return dev_err_probe(&client->dev, ret, "Could not find lltc,resistor-sense in devicetree\n"); info->r_sense = r_sense; ret = of_property_read_u32(np, "lltc,prescaler-exponent", &prescaler_exp); if (ret < 0) { dev_warn(&client->dev, "lltc,prescaler-exponent not in devicetree\n"); prescaler_exp = LTC2941_MAX_PRESCALER_EXP; } if (info->id == LTC2943_ID) { if (prescaler_exp > LTC2943_MAX_PRESCALER_EXP) prescaler_exp = LTC2943_MAX_PRESCALER_EXP; info->Qlsb = ((340 * 50000) / r_sense) >> (12 - 2*prescaler_exp); } else { if (prescaler_exp > LTC2941_MAX_PRESCALER_EXP) prescaler_exp = LTC2941_MAX_PRESCALER_EXP; info->Qlsb = ((85 * 50000) / r_sense) >> (7 - prescaler_exp); } /* Read status register to check for LTC2942 */ if (info->id == LTC2941_ID || info->id == LTC2942_ID) { ret = ltc294x_read_regs(client, LTC294X_REG_STATUS, &status, 1); if (ret < 0) return dev_err_probe(&client->dev, ret, "Could not read status register\n"); if (status & LTC2941_REG_STATUS_CHIP_ID) info->id = LTC2941_ID; else info->id = LTC2942_ID; } info->client = client; info->supply_desc.type = POWER_SUPPLY_TYPE_BATTERY; info->supply_desc.properties = ltc294x_properties; switch (info->id) { case LTC2944_ID: case LTC2943_ID: info->supply_desc.num_properties = ARRAY_SIZE(ltc294x_properties); break; case LTC2942_ID: info->supply_desc.num_properties = ARRAY_SIZE(ltc294x_properties) - 1; break; case LTC2941_ID: default: info->supply_desc.num_properties = ARRAY_SIZE(ltc294x_properties) - 3; break; } info->supply_desc.get_property = ltc294x_get_property; info->supply_desc.set_property = ltc294x_set_property; info->supply_desc.property_is_writeable = ltc294x_property_is_writeable; info->supply_desc.external_power_changed = NULL; psy_cfg.drv_data = info; ret = devm_delayed_work_autocancel(&client->dev, &info->work, ltc294x_work); if (ret) return ret; ret = ltc294x_reset(info, prescaler_exp); if (ret < 0) return dev_err_probe(&client->dev, ret, "Communication with chip failed\n"); info->supply = devm_power_supply_register(&client->dev, &info->supply_desc, &psy_cfg); if (IS_ERR(info->supply)) return dev_err_probe(&client->dev, PTR_ERR(info->supply), "failed to register ltc2941\n"); schedule_delayed_work(&info->work, LTC294X_WORK_DELAY * HZ); return 0; } static void ltc294x_i2c_shutdown(struct i2c_client *client) { struct ltc294x_info *info = i2c_get_clientdata(client); int ret; u8 value; u8 control; /* The LTC2941 does not need any special handling */ if (info->id == LTC2941_ID) return; /* Read control register */ ret = ltc294x_read_regs(info->client, LTC294X_REG_CONTROL, &value, 1); if (ret < 0) return; /* Disable continuous ADC conversion as this drains the battery */ control = LTC294X_REG_CONTROL_ADC_DISABLE(value); if (control != value) ltc294x_write_regs(info->client, LTC294X_REG_CONTROL, &control, 1); } #ifdef CONFIG_PM_SLEEP static int ltc294x_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct ltc294x_info *info = i2c_get_clientdata(client); cancel_delayed_work(&info->work); return 0; } static int ltc294x_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct ltc294x_info *info = i2c_get_clientdata(client); schedule_delayed_work(&info->work, LTC294X_WORK_DELAY * HZ); return 0; } static SIMPLE_DEV_PM_OPS(ltc294x_pm_ops, ltc294x_suspend, ltc294x_resume); #define LTC294X_PM_OPS (&ltc294x_pm_ops) #else #define LTC294X_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static const struct i2c_device_id ltc294x_i2c_id[] = { { "ltc2941", LTC2941_ID, }, { "ltc2942", LTC2942_ID, }, { "ltc2943", LTC2943_ID, }, { "ltc2944", LTC2944_ID, }, { }, }; MODULE_DEVICE_TABLE(i2c, ltc294x_i2c_id); static const struct of_device_id ltc294x_i2c_of_match[] = { { .compatible = "lltc,ltc2941", .data = (void *)LTC2941_ID, }, { .compatible = "lltc,ltc2942", .data = (void *)LTC2942_ID, }, { .compatible = "lltc,ltc2943", .data = (void *)LTC2943_ID, }, { .compatible = "lltc,ltc2944", .data = (void *)LTC2944_ID, }, { }, }; MODULE_DEVICE_TABLE(of, ltc294x_i2c_of_match); static struct i2c_driver ltc294x_driver = { .driver = { .name = "LTC2941", .of_match_table = ltc294x_i2c_of_match, .pm = LTC294X_PM_OPS, }, .probe = ltc294x_i2c_probe, .shutdown = ltc294x_i2c_shutdown, .id_table = ltc294x_i2c_id, }; module_i2c_driver(ltc294x_driver); MODULE_AUTHOR("Auryn Verwegen, Topic Embedded Systems"); MODULE_AUTHOR("Mike Looijmans, Topic Embedded Products"); MODULE_DESCRIPTION("LTC2941/LTC2942/LTC2943/LTC2944 Battery Gas Gauge IC driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/ltc2941-battery-gauge.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * DA9150 Fuel-Gauge Driver * * Copyright (c) 2015 Dialog Semiconductor * * Author: Adam Thomson <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/power_supply.h> #include <linux/list.h> #include <asm/div64.h> #include <linux/mfd/da9150/core.h> #include <linux/mfd/da9150/registers.h> #include <linux/devm-helpers.h> /* Core2Wire */ #define DA9150_QIF_READ (0x0 << 7) #define DA9150_QIF_WRITE (0x1 << 7) #define DA9150_QIF_CODE_MASK 0x7F #define DA9150_QIF_BYTE_SIZE 8 #define DA9150_QIF_BYTE_MASK 0xFF #define DA9150_QIF_SHORT_SIZE 2 #define DA9150_QIF_LONG_SIZE 4 /* QIF Codes */ #define DA9150_QIF_UAVG 6 #define DA9150_QIF_UAVG_SIZE DA9150_QIF_LONG_SIZE #define DA9150_QIF_IAVG 8 #define DA9150_QIF_IAVG_SIZE DA9150_QIF_LONG_SIZE #define DA9150_QIF_NTCAVG 12 #define DA9150_QIF_NTCAVG_SIZE DA9150_QIF_LONG_SIZE #define DA9150_QIF_SHUNT_VAL 36 #define DA9150_QIF_SHUNT_VAL_SIZE DA9150_QIF_SHORT_SIZE #define DA9150_QIF_SD_GAIN 38 #define DA9150_QIF_SD_GAIN_SIZE DA9150_QIF_LONG_SIZE #define DA9150_QIF_FCC_MAH 40 #define DA9150_QIF_FCC_MAH_SIZE DA9150_QIF_SHORT_SIZE #define DA9150_QIF_SOC_PCT 43 #define DA9150_QIF_SOC_PCT_SIZE DA9150_QIF_SHORT_SIZE #define DA9150_QIF_CHARGE_LIMIT 44 #define DA9150_QIF_CHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE #define DA9150_QIF_DISCHARGE_LIMIT 45 #define DA9150_QIF_DISCHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE #define DA9150_QIF_FW_MAIN_VER 118 #define DA9150_QIF_FW_MAIN_VER_SIZE DA9150_QIF_SHORT_SIZE #define DA9150_QIF_E_FG_STATUS 126 #define DA9150_QIF_E_FG_STATUS_SIZE DA9150_QIF_SHORT_SIZE #define DA9150_QIF_SYNC 127 #define DA9150_QIF_SYNC_SIZE DA9150_QIF_SHORT_SIZE #define DA9150_QIF_MAX_CODES 128 /* QIF Sync Timeout */ #define DA9150_QIF_SYNC_TIMEOUT 1000 #define DA9150_QIF_SYNC_RETRIES 10 /* QIF E_FG_STATUS */ #define DA9150_FG_IRQ_LOW_SOC_MASK (1 << 0) #define DA9150_FG_IRQ_HIGH_SOC_MASK (1 << 1) #define DA9150_FG_IRQ_SOC_MASK \ (DA9150_FG_IRQ_LOW_SOC_MASK | DA9150_FG_IRQ_HIGH_SOC_MASK) /* Private data */ struct da9150_fg { struct da9150 *da9150; struct device *dev; struct mutex io_lock; struct power_supply *battery; struct delayed_work work; u32 interval; int warn_soc; int crit_soc; int soc; }; /* Battery Properties */ static u32 da9150_fg_read_attr(struct da9150_fg *fg, u8 code, u8 size) { u8 buf[DA9150_QIF_LONG_SIZE]; u8 read_addr; u32 res = 0; int i; /* Set QIF code (READ mode) */ read_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_READ; da9150_read_qif(fg->da9150, read_addr, size, buf); for (i = 0; i < size; ++i) res |= (buf[i] << (i * DA9150_QIF_BYTE_SIZE)); return res; } static void da9150_fg_write_attr(struct da9150_fg *fg, u8 code, u8 size, u32 val) { u8 buf[DA9150_QIF_LONG_SIZE]; u8 write_addr; int i; /* Set QIF code (WRITE mode) */ write_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_WRITE; for (i = 0; i < size; ++i) { buf[i] = (val >> (i * DA9150_QIF_BYTE_SIZE)) & DA9150_QIF_BYTE_MASK; } da9150_write_qif(fg->da9150, write_addr, size, buf); } /* Trigger QIF Sync to update QIF readable data */ static void da9150_fg_read_sync_start(struct da9150_fg *fg) { int i = 0; u32 res = 0; mutex_lock(&fg->io_lock); /* Check if QIF sync already requested, and write to sync if not */ res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC, DA9150_QIF_SYNC_SIZE); if (res > 0) da9150_fg_write_attr(fg, DA9150_QIF_SYNC, DA9150_QIF_SYNC_SIZE, 0); /* Wait for sync to complete */ res = 0; while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) { usleep_range(DA9150_QIF_SYNC_TIMEOUT, DA9150_QIF_SYNC_TIMEOUT * 2); res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC, DA9150_QIF_SYNC_SIZE); } /* Check if sync completed */ if (res == 0) dev_err(fg->dev, "Failed to perform QIF read sync!\n"); } /* * Should always be called after QIF sync read has been performed, and all * attributes required have been accessed. */ static inline void da9150_fg_read_sync_end(struct da9150_fg *fg) { mutex_unlock(&fg->io_lock); } /* Sync read of single QIF attribute */ static u32 da9150_fg_read_attr_sync(struct da9150_fg *fg, u8 code, u8 size) { u32 val; da9150_fg_read_sync_start(fg); val = da9150_fg_read_attr(fg, code, size); da9150_fg_read_sync_end(fg); return val; } /* Wait for QIF Sync, write QIF data and wait for ack */ static void da9150_fg_write_attr_sync(struct da9150_fg *fg, u8 code, u8 size, u32 val) { int i = 0; u32 res = 0, sync_val; mutex_lock(&fg->io_lock); /* Check if QIF sync already requested */ res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC, DA9150_QIF_SYNC_SIZE); /* Wait for an existing sync to complete */ while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) { usleep_range(DA9150_QIF_SYNC_TIMEOUT, DA9150_QIF_SYNC_TIMEOUT * 2); res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC, DA9150_QIF_SYNC_SIZE); } if (res == 0) { dev_err(fg->dev, "Timeout waiting for existing QIF sync!\n"); mutex_unlock(&fg->io_lock); return; } /* Write value for QIF code */ da9150_fg_write_attr(fg, code, size, val); /* Wait for write acknowledgment */ i = 0; sync_val = res; while ((res == sync_val) && (i++ < DA9150_QIF_SYNC_RETRIES)) { usleep_range(DA9150_QIF_SYNC_TIMEOUT, DA9150_QIF_SYNC_TIMEOUT * 2); res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC, DA9150_QIF_SYNC_SIZE); } mutex_unlock(&fg->io_lock); /* Check write was actually successful */ if (res != (sync_val + 1)) dev_err(fg->dev, "Error performing QIF sync write for code %d\n", code); } /* Power Supply attributes */ static int da9150_fg_capacity(struct da9150_fg *fg, union power_supply_propval *val) { val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT, DA9150_QIF_SOC_PCT_SIZE); if (val->intval > 100) val->intval = 100; return 0; } static int da9150_fg_current_avg(struct da9150_fg *fg, union power_supply_propval *val) { u32 iavg, sd_gain, shunt_val; u64 div, res; da9150_fg_read_sync_start(fg); iavg = da9150_fg_read_attr(fg, DA9150_QIF_IAVG, DA9150_QIF_IAVG_SIZE); shunt_val = da9150_fg_read_attr(fg, DA9150_QIF_SHUNT_VAL, DA9150_QIF_SHUNT_VAL_SIZE); sd_gain = da9150_fg_read_attr(fg, DA9150_QIF_SD_GAIN, DA9150_QIF_SD_GAIN_SIZE); da9150_fg_read_sync_end(fg); div = (u64) (sd_gain * shunt_val * 65536ULL); do_div(div, 1000000); res = (u64) (iavg * 1000000ULL); do_div(res, div); val->intval = (int) res; return 0; } static int da9150_fg_voltage_avg(struct da9150_fg *fg, union power_supply_propval *val) { u64 res; val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_UAVG, DA9150_QIF_UAVG_SIZE); res = (u64) (val->intval * 186ULL); do_div(res, 10000); val->intval = (int) res; return 0; } static int da9150_fg_charge_full(struct da9150_fg *fg, union power_supply_propval *val) { val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_FCC_MAH, DA9150_QIF_FCC_MAH_SIZE); val->intval = val->intval * 1000; return 0; } /* * Temperature reading from device is only valid if battery/system provides * valid NTC to associated pin of DA9150 chip. */ static int da9150_fg_temp(struct da9150_fg *fg, union power_supply_propval *val) { val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_NTCAVG, DA9150_QIF_NTCAVG_SIZE); val->intval = (val->intval * 10) / 1048576; return 0; } static enum power_supply_property da9150_fg_props[] = { POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_TEMP, }; static int da9150_fg_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct da9150_fg *fg = dev_get_drvdata(psy->dev.parent); int ret; switch (psp) { case POWER_SUPPLY_PROP_CAPACITY: ret = da9150_fg_capacity(fg, val); break; case POWER_SUPPLY_PROP_CURRENT_AVG: ret = da9150_fg_current_avg(fg, val); break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: ret = da9150_fg_voltage_avg(fg, val); break; case POWER_SUPPLY_PROP_CHARGE_FULL: ret = da9150_fg_charge_full(fg, val); break; case POWER_SUPPLY_PROP_TEMP: ret = da9150_fg_temp(fg, val); break; default: ret = -EINVAL; break; } return ret; } /* Repeated SOC check */ static bool da9150_fg_soc_changed(struct da9150_fg *fg) { union power_supply_propval val; da9150_fg_capacity(fg, &val); if (val.intval != fg->soc) { fg->soc = val.intval; return true; } return false; } static void da9150_fg_work(struct work_struct *work) { struct da9150_fg *fg = container_of(work, struct da9150_fg, work.work); /* Report if SOC has changed */ if (da9150_fg_soc_changed(fg)) power_supply_changed(fg->battery); schedule_delayed_work(&fg->work, msecs_to_jiffies(fg->interval)); } /* SOC level event configuration */ static void da9150_fg_soc_event_config(struct da9150_fg *fg) { int soc; soc = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT, DA9150_QIF_SOC_PCT_SIZE); if (soc > fg->warn_soc) { /* If SOC > warn level, set discharge warn level event */ da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT, DA9150_QIF_DISCHARGE_LIMIT_SIZE, fg->warn_soc + 1); } else if ((soc <= fg->warn_soc) && (soc > fg->crit_soc)) { /* * If SOC <= warn level, set discharge crit level event, * and set charge warn level event. */ da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT, DA9150_QIF_DISCHARGE_LIMIT_SIZE, fg->crit_soc + 1); da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT, DA9150_QIF_CHARGE_LIMIT_SIZE, fg->warn_soc); } else if (soc <= fg->crit_soc) { /* If SOC <= crit level, set charge crit level event */ da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT, DA9150_QIF_CHARGE_LIMIT_SIZE, fg->crit_soc); } } static irqreturn_t da9150_fg_irq(int irq, void *data) { struct da9150_fg *fg = data; u32 e_fg_status; /* Read FG IRQ status info */ e_fg_status = da9150_fg_read_attr(fg, DA9150_QIF_E_FG_STATUS, DA9150_QIF_E_FG_STATUS_SIZE); /* Handle warning/critical threhold events */ if (e_fg_status & DA9150_FG_IRQ_SOC_MASK) da9150_fg_soc_event_config(fg); /* Clear any FG IRQs */ da9150_fg_write_attr(fg, DA9150_QIF_E_FG_STATUS, DA9150_QIF_E_FG_STATUS_SIZE, e_fg_status); return IRQ_HANDLED; } static struct da9150_fg_pdata *da9150_fg_dt_pdata(struct device *dev) { struct device_node *fg_node = dev->of_node; struct da9150_fg_pdata *pdata; pdata = devm_kzalloc(dev, sizeof(struct da9150_fg_pdata), GFP_KERNEL); if (!pdata) return NULL; of_property_read_u32(fg_node, "dlg,update-interval", &pdata->update_interval); of_property_read_u8(fg_node, "dlg,warn-soc-level", &pdata->warn_soc_lvl); of_property_read_u8(fg_node, "dlg,crit-soc-level", &pdata->crit_soc_lvl); return pdata; } static const struct power_supply_desc fg_desc = { .name = "da9150-fg", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = da9150_fg_props, .num_properties = ARRAY_SIZE(da9150_fg_props), .get_property = da9150_fg_get_prop, }; static int da9150_fg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct da9150 *da9150 = dev_get_drvdata(dev->parent); struct da9150_fg_pdata *fg_pdata = dev_get_platdata(dev); struct da9150_fg *fg; int ver, irq, ret = 0; fg = devm_kzalloc(dev, sizeof(*fg), GFP_KERNEL); if (fg == NULL) return -ENOMEM; platform_set_drvdata(pdev, fg); fg->da9150 = da9150; fg->dev = dev; mutex_init(&fg->io_lock); /* Enable QIF */ da9150_set_bits(da9150, DA9150_CORE2WIRE_CTRL_A, DA9150_FG_QIF_EN_MASK, DA9150_FG_QIF_EN_MASK); fg->battery = devm_power_supply_register(dev, &fg_desc, NULL); if (IS_ERR(fg->battery)) { ret = PTR_ERR(fg->battery); return ret; } ver = da9150_fg_read_attr(fg, DA9150_QIF_FW_MAIN_VER, DA9150_QIF_FW_MAIN_VER_SIZE); dev_info(dev, "Version: 0x%x\n", ver); /* Handle DT data if provided */ if (dev->of_node) { fg_pdata = da9150_fg_dt_pdata(dev); dev->platform_data = fg_pdata; } /* Handle any pdata provided */ if (fg_pdata) { fg->interval = fg_pdata->update_interval; if (fg_pdata->warn_soc_lvl > 100) dev_warn(dev, "Invalid SOC warning level provided, Ignoring"); else fg->warn_soc = fg_pdata->warn_soc_lvl; if ((fg_pdata->crit_soc_lvl > 100) || (fg_pdata->crit_soc_lvl >= fg_pdata->warn_soc_lvl)) dev_warn(dev, "Invalid SOC critical level provided, Ignoring"); else fg->crit_soc = fg_pdata->crit_soc_lvl; } /* Configure initial SOC level events */ da9150_fg_soc_event_config(fg); /* * If an interval period has been provided then setup repeating * work for reporting data updates. */ if (fg->interval) { ret = devm_delayed_work_autocancel(dev, &fg->work, da9150_fg_work); if (ret) { dev_err(dev, "Failed to init work\n"); return ret; } schedule_delayed_work(&fg->work, msecs_to_jiffies(fg->interval)); } /* Register IRQ */ irq = platform_get_irq_byname(pdev, "FG"); if (irq < 0) return irq; ret = devm_request_threaded_irq(dev, irq, NULL, da9150_fg_irq, IRQF_ONESHOT, "FG", fg); if (ret) { dev_err(dev, "Failed to request IRQ %d: %d\n", irq, ret); return ret; } return 0; } static int da9150_fg_resume(struct platform_device *pdev) { struct da9150_fg *fg = platform_get_drvdata(pdev); /* * Trigger SOC check to happen now so as to indicate any value change * since last check before suspend. */ if (fg->interval) flush_delayed_work(&fg->work); return 0; } static struct platform_driver da9150_fg_driver = { .driver = { .name = "da9150-fuel-gauge", }, .probe = da9150_fg_probe, .resume = da9150_fg_resume, }; module_platform_driver(da9150_fg_driver); MODULE_DESCRIPTION("Fuel-Gauge Driver for DA9150"); MODULE_AUTHOR("Adam Thomson <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/da9150-fg.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson AB 2012 * * Main and Back-up battery management driver. * * Note: Backup battery management is required in case of Li-Ion battery and not * for capacitive battery. HREF boards have capacitive battery and hence backup * battery management is not used and the supported code is available in this * driver. * * Author: * Johan Palsson <[email protected]> * Karl Komierowski <[email protected]> * Arun R Murthy <[email protected]> */ #include <linux/init.h> #include <linux/module.h> #include <linux/component.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/kobject.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/time.h> #include <linux/time64.h> #include <linux/of.h> #include <linux/completion.h> #include <linux/mfd/core.h> #include <linux/mfd/abx500.h> #include <linux/mfd/abx500/ab8500.h> #include <linux/iio/consumer.h> #include <linux/kernel.h> #include <linux/fixp-arith.h> #include "ab8500-bm.h" #define FG_LSB_IN_MA 1627 #define QLSB_NANO_AMP_HOURS_X10 1071 #define INS_CURR_TIMEOUT (3 * HZ) #define SEC_TO_SAMPLE(S) (S * 4) #define NBR_AVG_SAMPLES 20 #define WAIT_FOR_INST_CURRENT_MAX 70 /* Currents higher than -500mA (dissipating) will make compensation unstable */ #define IGNORE_VBAT_HIGHCUR -500000 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */ #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */ #define BATT_OK_MIN 2360 /* mV */ #define BATT_OK_INCREMENT 50 /* mV */ #define BATT_OK_MAX_NR_INCREMENTS 0xE /* FG constants */ #define BATT_OVV 0x01 /** * struct ab8500_fg_interrupts - ab8500 fg interrupts * @name: name of the interrupt * @isr function pointer to the isr */ struct ab8500_fg_interrupts { char *name; irqreturn_t (*isr)(int irq, void *data); }; enum ab8500_fg_discharge_state { AB8500_FG_DISCHARGE_INIT, AB8500_FG_DISCHARGE_INITMEASURING, AB8500_FG_DISCHARGE_INIT_RECOVERY, AB8500_FG_DISCHARGE_RECOVERY, AB8500_FG_DISCHARGE_READOUT_INIT, AB8500_FG_DISCHARGE_READOUT, AB8500_FG_DISCHARGE_WAKEUP, }; static char *discharge_state[] = { "DISCHARGE_INIT", "DISCHARGE_INITMEASURING", "DISCHARGE_INIT_RECOVERY", "DISCHARGE_RECOVERY", "DISCHARGE_READOUT_INIT", "DISCHARGE_READOUT", "DISCHARGE_WAKEUP", }; enum ab8500_fg_charge_state { AB8500_FG_CHARGE_INIT, AB8500_FG_CHARGE_READOUT, }; static char *charge_state[] = { "CHARGE_INIT", "CHARGE_READOUT", }; enum ab8500_fg_calibration_state { AB8500_FG_CALIB_INIT, AB8500_FG_CALIB_WAIT, AB8500_FG_CALIB_END, }; struct ab8500_fg_avg_cap { int avg; int samples[NBR_AVG_SAMPLES]; time64_t time_stamps[NBR_AVG_SAMPLES]; int pos; int nbr_samples; int sum; }; struct ab8500_fg_cap_scaling { bool enable; int cap_to_scale[2]; int disable_cap_level; int scaled_cap; }; struct ab8500_fg_battery_capacity { int max_mah_design; int max_mah; int mah; int permille; int level; int prev_mah; int prev_percent; int prev_level; int user_mah; struct ab8500_fg_cap_scaling cap_scale; }; struct ab8500_fg_flags { bool fg_enabled; bool conv_done; bool charging; bool fully_charged; bool force_full; bool low_bat_delay; bool low_bat; bool bat_ovv; bool batt_unknown; bool calibrate; bool user_cap; bool batt_id_received; }; struct inst_curr_result_list { struct list_head list; int *result; }; /** * struct ab8500_fg - ab8500 FG device information * @dev: Pointer to the structure device * @node: a list of AB8500 FGs, hence prepared for reentrance * @irq holds the CCEOC interrupt number * @vbat_uv: Battery voltage in uV * @vbat_nom_uv: Nominal battery voltage in uV * @inst_curr_ua: Instantenous battery current in uA * @avg_curr_ua: Average battery current in uA * @bat_temp battery temperature * @fg_samples: Number of samples used in the FG accumulation * @accu_charge: Accumulated charge from the last conversion * @recovery_cnt: Counter for recovery mode * @high_curr_cnt: Counter for high current mode * @init_cnt: Counter for init mode * @low_bat_cnt Counter for number of consecutive low battery measures * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled * @recovery_needed: Indicate if recovery is needed * @high_curr_mode: Indicate if we're in high current mode * @init_capacity: Indicate if initial capacity measuring should be done * @turn_off_fg: True if fg was off before current measurement * @calib_state State during offset calibration * @discharge_state: Current discharge state * @charge_state: Current charge state * @ab8500_fg_started Completion struct used for the instant current start * @ab8500_fg_complete Completion struct used for the instant current reading * @flags: Structure for information about events triggered * @bat_cap: Structure for battery capacity specific parameters * @avg_cap: Average capacity filter * @parent: Pointer to the struct ab8500 * @main_bat_v: ADC channel for the main battery voltage * @bm: Platform specific battery management information * @fg_psy: Structure that holds the FG specific battery properties * @fg_wq: Work queue for running the FG algorithm * @fg_periodic_work: Work to run the FG algorithm periodically * @fg_low_bat_work: Work to check low bat condition * @fg_reinit_work Work used to reset and reinitialise the FG algorithm * @fg_work: Work to run the FG algorithm instantly * @fg_acc_cur_work: Work to read the FG accumulator * @fg_check_hw_failure_work: Work for checking HW state * @cc_lock: Mutex for locking the CC * @fg_kobject: Structure of type kobject */ struct ab8500_fg { struct device *dev; struct list_head node; int irq; int vbat_uv; int vbat_nom_uv; int inst_curr_ua; int avg_curr_ua; int bat_temp; int fg_samples; int accu_charge; int recovery_cnt; int high_curr_cnt; int init_cnt; int low_bat_cnt; int nbr_cceoc_irq_cnt; u32 line_impedance_uohm; bool recovery_needed; bool high_curr_mode; bool init_capacity; bool turn_off_fg; enum ab8500_fg_calibration_state calib_state; enum ab8500_fg_discharge_state discharge_state; enum ab8500_fg_charge_state charge_state; struct completion ab8500_fg_started; struct completion ab8500_fg_complete; struct ab8500_fg_flags flags; struct ab8500_fg_battery_capacity bat_cap; struct ab8500_fg_avg_cap avg_cap; struct ab8500 *parent; struct iio_channel *main_bat_v; struct ab8500_bm_data *bm; struct power_supply *fg_psy; struct workqueue_struct *fg_wq; struct delayed_work fg_periodic_work; struct delayed_work fg_low_bat_work; struct delayed_work fg_reinit_work; struct work_struct fg_work; struct work_struct fg_acc_cur_work; struct delayed_work fg_check_hw_failure_work; struct mutex cc_lock; struct kobject fg_kobject; }; static LIST_HEAD(ab8500_fg_list); /** * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge * (i.e. the first fuel gauge in the instance list) */ struct ab8500_fg *ab8500_fg_get(void) { return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg, node); } /* Main battery properties */ static enum power_supply_property ab8500_fg_props[] = { POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, }; /* * This array maps the raw hex value to lowbat voltage used by the AB8500 * Values taken from the UM0836, in microvolts. */ static int ab8500_fg_lowbat_voltage_map[] = { 2300000, 2325000, 2350000, 2375000, 2400000, 2425000, 2450000, 2475000, 2500000, 2525000, 2550000, 2575000, 2600000, 2625000, 2650000, 2675000, 2700000, 2725000, 2750000, 2775000, 2800000, 2825000, 2850000, 2875000, 2900000, 2925000, 2950000, 2975000, 3000000, 3025000, 3050000, 3075000, 3100000, 3125000, 3150000, 3175000, 3200000, 3225000, 3250000, 3275000, 3300000, 3325000, 3350000, 3375000, 3400000, 3425000, 3450000, 3475000, 3500000, 3525000, 3550000, 3575000, 3600000, 3625000, 3650000, 3675000, 3700000, 3725000, 3750000, 3775000, 3800000, 3825000, 3850000, 3850000, }; static u8 ab8500_volt_to_regval(int voltage_uv) { int i; if (voltage_uv < ab8500_fg_lowbat_voltage_map[0]) return 0; for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) { if (voltage_uv < ab8500_fg_lowbat_voltage_map[i]) return (u8) i - 1; } /* If not captured above, return index of last element */ return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1; } /** * ab8500_fg_is_low_curr() - Low or high current mode * @di: pointer to the ab8500_fg structure * @curr_ua: the current to base or our decision on in microampere * * Low current mode if the current consumption is below a certain threshold */ static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr_ua) { /* * We want to know if we're in low current mode */ if (curr_ua > -di->bm->fg_params->high_curr_threshold_ua) return true; else return false; } /** * ab8500_fg_add_cap_sample() - Add capacity to average filter * @di: pointer to the ab8500_fg structure * @sample: the capacity in mAh to add to the filter * * A capacity is added to the filter and a new mean capacity is calculated and * returned */ static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample) { time64_t now = ktime_get_boottime_seconds(); struct ab8500_fg_avg_cap *avg = &di->avg_cap; do { avg->sum += sample - avg->samples[avg->pos]; avg->samples[avg->pos] = sample; avg->time_stamps[avg->pos] = now; avg->pos++; if (avg->pos == NBR_AVG_SAMPLES) avg->pos = 0; if (avg->nbr_samples < NBR_AVG_SAMPLES) avg->nbr_samples++; /* * Check the time stamp for each sample. If too old, * replace with latest sample */ } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]); avg->avg = avg->sum / avg->nbr_samples; return avg->avg; } /** * ab8500_fg_clear_cap_samples() - Clear average filter * @di: pointer to the ab8500_fg structure * * The capacity filter is reset to zero. */ static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di) { int i; struct ab8500_fg_avg_cap *avg = &di->avg_cap; avg->pos = 0; avg->nbr_samples = 0; avg->sum = 0; avg->avg = 0; for (i = 0; i < NBR_AVG_SAMPLES; i++) { avg->samples[i] = 0; avg->time_stamps[i] = 0; } } /** * ab8500_fg_fill_cap_sample() - Fill average filter * @di: pointer to the ab8500_fg structure * @sample: the capacity in mAh to fill the filter with * * The capacity filter is filled with a capacity in mAh */ static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample) { int i; time64_t now; struct ab8500_fg_avg_cap *avg = &di->avg_cap; now = ktime_get_boottime_seconds(); for (i = 0; i < NBR_AVG_SAMPLES; i++) { avg->samples[i] = sample; avg->time_stamps[i] = now; } avg->pos = 0; avg->nbr_samples = NBR_AVG_SAMPLES; avg->sum = sample * NBR_AVG_SAMPLES; avg->avg = sample; } /** * ab8500_fg_coulomb_counter() - enable coulomb counter * @di: pointer to the ab8500_fg structure * @enable: enable/disable * * Enable/Disable coulomb counter. * On failure returns negative value. */ static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable) { int ret = 0; mutex_lock(&di->cc_lock); if (enable) { /* To be able to reprogram the number of samples, we have to * first stop the CC and then enable it again */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, 0x00); if (ret) goto cc_err; /* Program the samples */ ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, di->fg_samples); if (ret) goto cc_err; /* Start the CC */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); if (ret) goto cc_err; di->flags.fg_enabled = true; } else { /* Clear any pending read requests */ ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, (RESET_ACCU | READ_REQ), 0); if (ret) goto cc_err; ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0); if (ret) goto cc_err; /* Stop the CC */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, 0); if (ret) goto cc_err; di->flags.fg_enabled = false; } dev_dbg(di->dev, " CC enabled: %d Samples: %d\n", enable, di->fg_samples); mutex_unlock(&di->cc_lock); return ret; cc_err: dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__); mutex_unlock(&di->cc_lock); return ret; } /** * ab8500_fg_inst_curr_start() - start battery instantaneous current * @di: pointer to the ab8500_fg structure * * Returns 0 or error code * Note: This is part "one" and has to be called before * ab8500_fg_inst_curr_finalize() */ int ab8500_fg_inst_curr_start(struct ab8500_fg *di) { u8 reg_val; int ret; mutex_lock(&di->cc_lock); di->nbr_cceoc_irq_cnt = 0; ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, &reg_val); if (ret < 0) goto fail; if (!(reg_val & CC_PWR_UP_ENA)) { dev_dbg(di->dev, "%s Enable FG\n", __func__); di->turn_off_fg = true; /* Program the samples */ ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, SEC_TO_SAMPLE(10)); if (ret) goto fail; /* Start the CC */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); if (ret) goto fail; } else { di->turn_off_fg = false; } /* Return and WFI */ reinit_completion(&di->ab8500_fg_started); reinit_completion(&di->ab8500_fg_complete); enable_irq(di->irq); /* Note: cc_lock is still locked */ return 0; fail: mutex_unlock(&di->cc_lock); return ret; } /** * ab8500_fg_inst_curr_started() - check if fg conversion has started * @di: pointer to the ab8500_fg structure * * Returns 1 if conversion started, 0 if still waiting */ int ab8500_fg_inst_curr_started(struct ab8500_fg *di) { return completion_done(&di->ab8500_fg_started); } /** * ab8500_fg_inst_curr_done() - check if fg conversion is done * @di: pointer to the ab8500_fg structure * * Returns 1 if conversion done, 0 if still waiting */ int ab8500_fg_inst_curr_done(struct ab8500_fg *di) { return completion_done(&di->ab8500_fg_complete); } /** * ab8500_fg_inst_curr_finalize() - battery instantaneous current * @di: pointer to the ab8500_fg structure * @curr_ua: battery instantenous current in microampere (on success) * * Returns 0 or an error code * Note: This is part "two" and has to be called at earliest 250 ms * after ab8500_fg_inst_curr_start() */ int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *curr_ua) { u8 low, high; int val; int ret; unsigned long timeout; if (!completion_done(&di->ab8500_fg_complete)) { timeout = wait_for_completion_timeout( &di->ab8500_fg_complete, INS_CURR_TIMEOUT); dev_dbg(di->dev, "Finalize time: %d ms\n", jiffies_to_msecs(INS_CURR_TIMEOUT - timeout)); if (!timeout) { ret = -ETIME; disable_irq(di->irq); di->nbr_cceoc_irq_cnt = 0; dev_err(di->dev, "completion timed out [%d]\n", __LINE__); goto fail; } } disable_irq(di->irq); di->nbr_cceoc_irq_cnt = 0; ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, READ_REQ, READ_REQ); /* 100uS between read request and read is needed */ usleep_range(100, 100); /* Read CC Sample conversion value Low and high */ ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_SMPL_CNVL_REG, &low); if (ret < 0) goto fail; ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_SMPL_CNVH_REG, &high); if (ret < 0) goto fail; /* * negative value for Discharging * convert 2's complement into decimal */ if (high & 0x10) val = (low | (high << 8) | 0xFFFFE000); else val = (low | (high << 8)); /* * Convert to unit value in mA * Full scale input voltage is * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542.000 uA * Given a 250ms conversion cycle time the LSB corresponds * to 107.1 nAh. Convert to current by dividing by the conversion * time in hours (250ms = 1 / (3600 * 4)h) * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm */ val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) / di->bm->fg_res; if (di->turn_off_fg) { dev_dbg(di->dev, "%s Disable FG\n", __func__); /* Clear any pending read requests */ ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); if (ret) goto fail; /* Stop the CC */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, 0); if (ret) goto fail; } mutex_unlock(&di->cc_lock); *curr_ua = val; return 0; fail: mutex_unlock(&di->cc_lock); return ret; } /** * ab8500_fg_inst_curr_blocking() - battery instantaneous current * @di: pointer to the ab8500_fg structure * * Returns battery instantenous current in microampere (on success) * else error code */ int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di) { int ret; unsigned long timeout; int curr_ua = 0; ret = ab8500_fg_inst_curr_start(di); if (ret) { dev_err(di->dev, "Failed to initialize fg_inst\n"); return 0; } /* Wait for CC to actually start */ if (!completion_done(&di->ab8500_fg_started)) { timeout = wait_for_completion_timeout( &di->ab8500_fg_started, INS_CURR_TIMEOUT); dev_dbg(di->dev, "Start time: %d ms\n", jiffies_to_msecs(INS_CURR_TIMEOUT - timeout)); if (!timeout) { ret = -ETIME; dev_err(di->dev, "completion timed out [%d]\n", __LINE__); goto fail; } } ret = ab8500_fg_inst_curr_finalize(di, &curr_ua); if (ret) { dev_err(di->dev, "Failed to finalize fg_inst\n"); return 0; } dev_dbg(di->dev, "%s instant current: %d uA", __func__, curr_ua); return curr_ua; fail: disable_irq(di->irq); mutex_unlock(&di->cc_lock); return ret; } /** * ab8500_fg_acc_cur_work() - average battery current * @work: pointer to the work_struct structure * * Updated the average battery current obtained from the * coulomb counter. */ static void ab8500_fg_acc_cur_work(struct work_struct *work) { int val; int ret; u8 low, med, high; struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_acc_cur_work); mutex_lock(&di->cc_lock); ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ); if (ret) goto exit; ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_LOW, &low); if (ret < 0) goto exit; ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_MED, &med); if (ret < 0) goto exit; ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_HIGH, &high); if (ret < 0) goto exit; /* Check for sign bit in case of negative value, 2's complement */ if (high & 0x10) val = (low | (med << 8) | (high << 16) | 0xFFE00000); else val = (low | (med << 8) | (high << 16)); /* * Convert to uAh * Given a 250ms conversion cycle time the LSB corresponds * to 112.9 nAh. * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm */ di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) / (100 * di->bm->fg_res); /* * Convert to unit value in uA * by dividing by the conversion * time in hours (= samples / (3600 * 4)h) */ di->avg_curr_ua = (val * QLSB_NANO_AMP_HOURS_X10 * 36) / (di->bm->fg_res * (di->fg_samples / 4)); di->flags.conv_done = true; mutex_unlock(&di->cc_lock); queue_work(di->fg_wq, &di->fg_work); dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n", di->bm->fg_res, di->fg_samples, val, di->accu_charge); return; exit: dev_err(di->dev, "Failed to read or write gas gauge registers\n"); mutex_unlock(&di->cc_lock); queue_work(di->fg_wq, &di->fg_work); } /** * ab8500_fg_bat_voltage() - get battery voltage * @di: pointer to the ab8500_fg structure * * Returns battery voltage in microvolts (on success) else error code */ static int ab8500_fg_bat_voltage(struct ab8500_fg *di) { int vbat, ret; static int prev; ret = iio_read_channel_processed(di->main_bat_v, &vbat); if (ret < 0) { dev_err(di->dev, "%s ADC conversion failed, using previous value\n", __func__); return prev; } /* IIO returns millivolts but we want microvolts */ vbat *= 1000; prev = vbat; return vbat; } /** * ab8500_fg_volt_to_capacity() - Voltage based capacity * @di: pointer to the ab8500_fg structure * @voltage_uv: The voltage to convert to a capacity in microvolt * * Returns battery capacity in per mille based on voltage */ static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage_uv) { struct power_supply_battery_info *bi = di->bm->bi; /* Multiply by 10 because the capacity is tracked in per mille */ return power_supply_batinfo_ocv2cap(bi, voltage_uv, di->bat_temp) * 10; } /** * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity * @di: pointer to the ab8500_fg structure * * Returns battery capacity based on battery voltage that is not compensated * for the voltage drop due to the load */ static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di) { di->vbat_uv = ab8500_fg_bat_voltage(di); return ab8500_fg_volt_to_capacity(di, di->vbat_uv); } /** * ab8500_fg_battery_resistance() - Returns the battery inner resistance * @di: pointer to the ab8500_fg structure * @vbat_uncomp_uv: Uncompensated VBAT voltage * * Returns battery inner resistance added with the fuel gauge resistor value * to get the total resistance in the whole link from gnd to bat+ node * in milliohm. */ static int ab8500_fg_battery_resistance(struct ab8500_fg *di, int vbat_uncomp_uv) { struct power_supply_battery_info *bi = di->bm->bi; int resistance_percent = 0; int resistance; /* * Determine the resistance at this voltage. First try VBAT-to-Ri else * just infer it from the surrounding temperature, if nothing works just * use the internal resistance. */ if (power_supply_supports_vbat2ri(bi)) { resistance = power_supply_vbat2ri(bi, vbat_uncomp_uv, di->flags.charging); /* Convert to milliohm */ resistance = resistance / 1000; } else if (power_supply_supports_temp2ri(bi)) { resistance_percent = power_supply_temp2resist_simple(bi->resist_table, bi->resist_table_size, di->bat_temp / 10); /* Convert to milliohm */ resistance = bi->factory_internal_resistance_uohm / 1000; resistance = resistance * resistance_percent / 100; } else { /* Last fallback */ resistance = bi->factory_internal_resistance_uohm / 1000; } /* Compensate for line impedance */ resistance += (di->line_impedance_uohm / 1000); dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d" " fg resistance %d, total: %d (mOhm)\n", __func__, di->bat_temp, resistance, di->bm->fg_res / 10, (di->bm->fg_res / 10) + resistance); /* fg_res variable is in 0.1mOhm */ resistance += di->bm->fg_res / 10; return resistance; } /** * ab8500_load_comp_fg_bat_voltage() - get load compensated battery voltage * @di: pointer to the ab8500_fg structure * @always: always return a voltage, also uncompensated * * Returns compensated battery voltage (on success) else error code. * If always is specified, we always return a voltage but it may be * uncompensated. */ static int ab8500_load_comp_fg_bat_voltage(struct ab8500_fg *di, bool always) { int i = 0; int vbat_uv = 0; int rcomp; /* Average the instant current to get a stable current measurement */ ab8500_fg_inst_curr_start(di); do { vbat_uv += ab8500_fg_bat_voltage(di); i++; usleep_range(5000, 6000); } while (!ab8500_fg_inst_curr_done(di) && i <= WAIT_FOR_INST_CURRENT_MAX); if (i > WAIT_FOR_INST_CURRENT_MAX) { dev_err(di->dev, "TIMEOUT: return uncompensated measurement of VBAT\n"); di->vbat_uv = vbat_uv / i; return di->vbat_uv; } ab8500_fg_inst_curr_finalize(di, &di->inst_curr_ua); /* * If there is too high current dissipation, the compensation cannot be * trusted so return an error unless we must return something here, as * enforced by the "always" parameter. */ if (!always && di->inst_curr_ua < IGNORE_VBAT_HIGHCUR) return -EINVAL; vbat_uv = vbat_uv / i; /* Next we apply voltage compensation from internal resistance */ rcomp = ab8500_fg_battery_resistance(di, vbat_uv); vbat_uv = vbat_uv - (di->inst_curr_ua * rcomp) / 1000; /* Always keep this state at latest measurement */ di->vbat_uv = vbat_uv; return vbat_uv; } /** * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity * @di: pointer to the ab8500_fg structure * * Returns battery capacity based on battery voltage that is load compensated * for the voltage drop */ static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di) { int vbat_comp_uv; vbat_comp_uv = ab8500_load_comp_fg_bat_voltage(di, true); return ab8500_fg_volt_to_capacity(di, vbat_comp_uv); } /** * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille * @di: pointer to the ab8500_fg structure * @cap_mah: capacity in mAh * * Converts capacity in mAh to capacity in permille */ static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah) { return (cap_mah * 1000) / di->bat_cap.max_mah_design; } /** * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh * @di: pointer to the ab8500_fg structure * @cap_pm: capacity in permille * * Converts capacity in permille to capacity in mAh */ static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm) { return cap_pm * di->bat_cap.max_mah_design / 1000; } /** * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh * @di: pointer to the ab8500_fg structure * @cap_mah: capacity in mAh * * Converts capacity in mAh to capacity in uWh */ static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah) { u64 div_res; u32 div_rem; /* * Capacity is in milli ampere hours (10^-3)Ah * Nominal voltage is in microvolts (10^-6)V * divide by 1000000 after multiplication to get to mWh */ div_res = ((u64) cap_mah) * ((u64) di->vbat_nom_uv); div_rem = do_div(div_res, 1000000); /* Make sure to round upwards if necessary */ if (div_rem >= 1000000 / 2) div_res++; return (int) div_res; } /** * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging * @di: pointer to the ab8500_fg structure * * Return the capacity in mAh based on previous calculated capcity and the FG * accumulator register value. The filter is filled with this capacity */ static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di) { dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", __func__, di->bat_cap.mah, di->accu_charge); /* Capacity should not be less than 0 */ if (di->bat_cap.mah + di->accu_charge > 0) di->bat_cap.mah += di->accu_charge; else di->bat_cap.mah = 0; /* * We force capacity to 100% once when the algorithm * reports that it's full. */ if (di->bat_cap.mah >= di->bat_cap.max_mah_design || di->flags.force_full) { di->bat_cap.mah = di->bat_cap.max_mah_design; } ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); /* We need to update battery voltage and inst current when charging */ di->vbat_uv = ab8500_fg_bat_voltage(di); di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); return di->bat_cap.mah; } /** * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage * @di: pointer to the ab8500_fg structure * * Return the capacity in mAh based on the load compensated battery voltage. * This value is added to the filter and a new mean value is calculated and * returned. */ static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di) { int permille, mah; permille = ab8500_fg_load_comp_volt_to_capacity(di); mah = ab8500_fg_convert_permille_to_mah(di, permille); di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah); di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); return di->bat_cap.mah; } /** * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG * @di: pointer to the ab8500_fg structure * * Return the capacity in mAh based on previous calculated capcity and the FG * accumulator register value. This value is added to the filter and a * new mean value is calculated and returned. */ static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di) { int permille_volt, permille; dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", __func__, di->bat_cap.mah, di->accu_charge); /* Capacity should not be less than 0 */ if (di->bat_cap.mah + di->accu_charge > 0) di->bat_cap.mah += di->accu_charge; else di->bat_cap.mah = 0; if (di->bat_cap.mah >= di->bat_cap.max_mah_design) di->bat_cap.mah = di->bat_cap.max_mah_design; /* * Check against voltage based capacity. It can not be lower * than what the uncompensated voltage says */ permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); permille_volt = ab8500_fg_uncomp_volt_to_capacity(di); if (permille < permille_volt) { di->bat_cap.permille = permille_volt; di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di, di->bat_cap.permille); dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n", __func__, permille, permille_volt); ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); } else { ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); } return di->bat_cap.mah; } /** * ab8500_fg_capacity_level() - Get the battery capacity level * @di: pointer to the ab8500_fg structure * * Get the battery capacity level based on the capacity in percent */ static int ab8500_fg_capacity_level(struct ab8500_fg *di) { int ret, percent; percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10); if (percent <= di->bm->cap_levels->critical || di->flags.low_bat) ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else if (percent <= di->bm->cap_levels->low) ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else if (percent <= di->bm->cap_levels->normal) ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; else if (percent <= di->bm->cap_levels->high) ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; else ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL; return ret; } /** * ab8500_fg_calculate_scaled_capacity() - Capacity scaling * @di: pointer to the ab8500_fg structure * * Calculates the capacity to be shown to upper layers. Scales the capacity * to have 100% as a reference from the actual capacity upon removal of charger * when charging is in maintenance mode. */ static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di) { struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale; int capacity = di->bat_cap.prev_percent; if (!cs->enable) return capacity; /* * As long as we are in fully charge mode scale the capacity * to show 100%. */ if (di->flags.fully_charged) { cs->cap_to_scale[0] = 100; cs->cap_to_scale[1] = max(capacity, di->bm->fg_params->maint_thres); dev_dbg(di->dev, "Scale cap with %d/%d\n", cs->cap_to_scale[0], cs->cap_to_scale[1]); } /* Calculates the scaled capacity. */ if ((cs->cap_to_scale[0] != cs->cap_to_scale[1]) && (cs->cap_to_scale[1] > 0)) capacity = min(100, DIV_ROUND_CLOSEST(di->bat_cap.prev_percent * cs->cap_to_scale[0], cs->cap_to_scale[1])); if (di->flags.charging) { if (capacity < cs->disable_cap_level) { cs->disable_cap_level = capacity; dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n", cs->disable_cap_level); } else if (!di->flags.fully_charged) { if (di->bat_cap.prev_percent >= cs->disable_cap_level) { dev_dbg(di->dev, "Disabling scaled capacity\n"); cs->enable = false; capacity = di->bat_cap.prev_percent; } else { dev_dbg(di->dev, "Waiting in cap to level %d%%\n", cs->disable_cap_level); capacity = cs->disable_cap_level; } } } return capacity; } /** * ab8500_fg_update_cap_scalers() - Capacity scaling * @di: pointer to the ab8500_fg structure * * To be called when state change from charge<->discharge to update * the capacity scalers. */ static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di) { struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale; if (!cs->enable) return; if (di->flags.charging) { di->bat_cap.cap_scale.disable_cap_level = di->bat_cap.cap_scale.scaled_cap; dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n", di->bat_cap.cap_scale.disable_cap_level); } else { if (cs->scaled_cap != 100) { cs->cap_to_scale[0] = cs->scaled_cap; cs->cap_to_scale[1] = di->bat_cap.prev_percent; } else { cs->cap_to_scale[0] = 100; cs->cap_to_scale[1] = max(di->bat_cap.prev_percent, di->bm->fg_params->maint_thres); } dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n", cs->cap_to_scale[0], cs->cap_to_scale[1]); } } /** * ab8500_fg_check_capacity_limits() - Check if capacity has changed * @di: pointer to the ab8500_fg structure * @init: capacity is allowed to go up in init mode * * Check if capacity or capacity limit has changed and notify the system * about it using the power_supply framework */ static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init) { bool changed = false; int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10); di->bat_cap.level = ab8500_fg_capacity_level(di); if (di->bat_cap.level != di->bat_cap.prev_level) { /* * We do not allow reported capacity level to go up * unless we're charging or if we're in init */ if (!(!di->flags.charging && di->bat_cap.level > di->bat_cap.prev_level) || init) { dev_dbg(di->dev, "level changed from %d to %d\n", di->bat_cap.prev_level, di->bat_cap.level); di->bat_cap.prev_level = di->bat_cap.level; changed = true; } else { dev_dbg(di->dev, "level not allowed to go up " "since no charger is connected: %d to %d\n", di->bat_cap.prev_level, di->bat_cap.level); } } /* * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate * shutdown */ if (di->flags.low_bat) { dev_dbg(di->dev, "Battery low, set capacity to 0\n"); di->bat_cap.prev_percent = 0; di->bat_cap.permille = 0; percent = 0; di->bat_cap.prev_mah = 0; di->bat_cap.mah = 0; changed = true; } else if (di->flags.fully_charged) { /* * We report 100% if algorithm reported fully charged * and show 100% during maintenance charging (scaling). */ if (di->flags.force_full) { di->bat_cap.prev_percent = percent; di->bat_cap.prev_mah = di->bat_cap.mah; changed = true; if (!di->bat_cap.cap_scale.enable && di->bm->capacity_scaling) { di->bat_cap.cap_scale.enable = true; di->bat_cap.cap_scale.cap_to_scale[0] = 100; di->bat_cap.cap_scale.cap_to_scale[1] = di->bat_cap.prev_percent; di->bat_cap.cap_scale.disable_cap_level = 100; } } else if (di->bat_cap.prev_percent != percent) { dev_dbg(di->dev, "battery reported full " "but capacity dropping: %d\n", percent); di->bat_cap.prev_percent = percent; di->bat_cap.prev_mah = di->bat_cap.mah; changed = true; } } else if (di->bat_cap.prev_percent != percent) { if (percent == 0) { /* * We will not report 0% unless we've got * the LOW_BAT IRQ, no matter what the FG * algorithm says. */ di->bat_cap.prev_percent = 1; percent = 1; changed = true; } else if (!(!di->flags.charging && percent > di->bat_cap.prev_percent) || init) { /* * We do not allow reported capacity to go up * unless we're charging or if we're in init */ dev_dbg(di->dev, "capacity changed from %d to %d (%d)\n", di->bat_cap.prev_percent, percent, di->bat_cap.permille); di->bat_cap.prev_percent = percent; di->bat_cap.prev_mah = di->bat_cap.mah; changed = true; } else { dev_dbg(di->dev, "capacity not allowed to go up since " "no charger is connected: %d to %d (%d)\n", di->bat_cap.prev_percent, percent, di->bat_cap.permille); } } if (changed) { if (di->bm->capacity_scaling) { di->bat_cap.cap_scale.scaled_cap = ab8500_fg_calculate_scaled_capacity(di); dev_info(di->dev, "capacity=%d (%d)\n", di->bat_cap.prev_percent, di->bat_cap.cap_scale.scaled_cap); } power_supply_changed(di->fg_psy); if (di->flags.fully_charged && di->flags.force_full) { dev_dbg(di->dev, "Battery full, notifying.\n"); di->flags.force_full = false; sysfs_notify(&di->fg_kobject, NULL, "charge_full"); } sysfs_notify(&di->fg_kobject, NULL, "charge_now"); } } static void ab8500_fg_charge_state_to(struct ab8500_fg *di, enum ab8500_fg_charge_state new_state) { dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n", di->charge_state, charge_state[di->charge_state], new_state, charge_state[new_state]); di->charge_state = new_state; } static void ab8500_fg_discharge_state_to(struct ab8500_fg *di, enum ab8500_fg_discharge_state new_state) { dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n", di->discharge_state, discharge_state[di->discharge_state], new_state, discharge_state[new_state]); di->discharge_state = new_state; } /** * ab8500_fg_algorithm_charging() - FG algorithm for when charging * @di: pointer to the ab8500_fg structure * * Battery capacity calculation state machine for when we're charging */ static void ab8500_fg_algorithm_charging(struct ab8500_fg *di) { /* * If we change to discharge mode * we should start with recovery */ if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY) ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT_RECOVERY); switch (di->charge_state) { case AB8500_FG_CHARGE_INIT: di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_charging); ab8500_fg_coulomb_counter(di, true); ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT); break; case AB8500_FG_CHARGE_READOUT: /* * Read the FG and calculate the new capacity */ mutex_lock(&di->cc_lock); if (!di->flags.conv_done && !di->flags.force_full) { /* Wasn't the CC IRQ that got us here */ mutex_unlock(&di->cc_lock); dev_dbg(di->dev, "%s CC conv not done\n", __func__); break; } di->flags.conv_done = false; mutex_unlock(&di->cc_lock); ab8500_fg_calc_cap_charging(di); break; default: break; } /* Check capacity limits */ ab8500_fg_check_capacity_limits(di, false); } static void force_capacity(struct ab8500_fg *di) { int cap; ab8500_fg_clear_cap_samples(di); cap = di->bat_cap.user_mah; if (cap > di->bat_cap.max_mah_design) { dev_dbg(di->dev, "Remaining cap %d can't be bigger than total" " %d\n", cap, di->bat_cap.max_mah_design); cap = di->bat_cap.max_mah_design; } ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah); di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap); di->bat_cap.mah = cap; ab8500_fg_check_capacity_limits(di, true); } static bool check_sysfs_capacity(struct ab8500_fg *di) { int cap, lower, upper; int cap_permille; cap = di->bat_cap.user_mah; cap_permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.user_mah); lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10; upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10; if (lower < 0) lower = 0; /* 1000 is permille, -> 100 percent */ if (upper > 1000) upper = 1000; dev_dbg(di->dev, "Capacity limits:" " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n", lower, cap_permille, upper, cap, di->bat_cap.mah); /* If within limits, use the saved capacity and exit estimation...*/ if (cap_permille > lower && cap_permille < upper) { dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap); force_capacity(di); return true; } dev_dbg(di->dev, "Capacity from user out of limits, ignoring"); return false; } /** * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging * @di: pointer to the ab8500_fg structure * * Battery capacity calculation state machine for when we're discharging */ static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di) { int sleep_time; /* If we change to charge mode we should start with init */ if (di->charge_state != AB8500_FG_CHARGE_INIT) ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); switch (di->discharge_state) { case AB8500_FG_DISCHARGE_INIT: /* We use the FG IRQ to work on */ di->init_cnt = 0; di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INITMEASURING); fallthrough; case AB8500_FG_DISCHARGE_INITMEASURING: /* * Discard a number of samples during startup. * After that, use compensated voltage for a few * samples to get an initial capacity. * Then go to READOUT */ sleep_time = di->bm->fg_params->init_timer; /* Discard the first [x] seconds */ if (di->init_cnt > di->bm->fg_params->init_discard_time) { ab8500_fg_calc_cap_discharge_voltage(di); ab8500_fg_check_capacity_limits(di, true); } di->init_cnt += sleep_time; if (di->init_cnt > di->bm->fg_params->init_total_time) ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT_INIT); break; case AB8500_FG_DISCHARGE_INIT_RECOVERY: di->recovery_cnt = 0; di->recovery_needed = true; ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_RECOVERY); fallthrough; case AB8500_FG_DISCHARGE_RECOVERY: sleep_time = di->bm->fg_params->recovery_sleep_timer; /* * We should check the power consumption * If low, go to READOUT (after x min) or * RECOVERY_SLEEP if time left. * If high, go to READOUT */ di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); if (ab8500_fg_is_low_curr(di, di->inst_curr_ua)) { if (di->recovery_cnt > di->bm->fg_params->recovery_total_time) { di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_high_curr); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT); di->recovery_needed = false; } else { queue_delayed_work(di->fg_wq, &di->fg_periodic_work, sleep_time * HZ); } di->recovery_cnt += sleep_time; } else { di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_high_curr); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT); } break; case AB8500_FG_DISCHARGE_READOUT_INIT: di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_high_curr); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT); break; case AB8500_FG_DISCHARGE_READOUT: di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); if (ab8500_fg_is_low_curr(di, di->inst_curr_ua)) { /* Detect mode change */ if (di->high_curr_mode) { di->high_curr_mode = false; di->high_curr_cnt = 0; } if (di->recovery_needed) { ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT_RECOVERY); queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); break; } ab8500_fg_calc_cap_discharge_voltage(di); } else { mutex_lock(&di->cc_lock); if (!di->flags.conv_done) { /* Wasn't the CC IRQ that got us here */ mutex_unlock(&di->cc_lock); dev_dbg(di->dev, "%s CC conv not done\n", __func__); break; } di->flags.conv_done = false; mutex_unlock(&di->cc_lock); /* Detect mode change */ if (!di->high_curr_mode) { di->high_curr_mode = true; di->high_curr_cnt = 0; } di->high_curr_cnt += di->bm->fg_params->accu_high_curr; if (di->high_curr_cnt > di->bm->fg_params->high_curr_time) di->recovery_needed = true; ab8500_fg_calc_cap_discharge_fg(di); } ab8500_fg_check_capacity_limits(di, false); break; case AB8500_FG_DISCHARGE_WAKEUP: ab8500_fg_calc_cap_discharge_voltage(di); di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_high_curr); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT); ab8500_fg_check_capacity_limits(di, false); break; default: break; } } /** * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration * @di: pointer to the ab8500_fg structure * */ static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di) { int ret; switch (di->calib_state) { case AB8500_FG_CALIB_INIT: dev_dbg(di->dev, "Calibration ongoing...\n"); ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8); if (ret < 0) goto err; ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA); if (ret < 0) goto err; di->calib_state = AB8500_FG_CALIB_WAIT; break; case AB8500_FG_CALIB_END: ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, CC_MUXOFFSET, CC_MUXOFFSET); if (ret < 0) goto err; di->flags.calibrate = false; dev_dbg(di->dev, "Calibration done...\n"); queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); break; case AB8500_FG_CALIB_WAIT: dev_dbg(di->dev, "Calibration WFI\n"); break; default: break; } return; err: /* Something went wrong, don't calibrate then */ dev_err(di->dev, "failed to calibrate the CC\n"); di->flags.calibrate = false; di->calib_state = AB8500_FG_CALIB_INIT; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); } /** * ab8500_fg_algorithm() - Entry point for the FG algorithm * @di: pointer to the ab8500_fg structure * * Entry point for the battery capacity calculation state machine */ static void ab8500_fg_algorithm(struct ab8500_fg *di) { if (di->flags.calibrate) ab8500_fg_algorithm_calibrate(di); else { if (di->flags.charging) ab8500_fg_algorithm_charging(di); else ab8500_fg_algorithm_discharging(di); } dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d " "%d %d %d %d %d %d %d\n", di->bat_cap.max_mah_design, di->bat_cap.max_mah, di->bat_cap.mah, di->bat_cap.permille, di->bat_cap.level, di->bat_cap.prev_mah, di->bat_cap.prev_percent, di->bat_cap.prev_level, di->vbat_uv, di->inst_curr_ua, di->avg_curr_ua, di->accu_charge, di->flags.charging, di->charge_state, di->discharge_state, di->high_curr_mode, di->recovery_needed); } /** * ab8500_fg_periodic_work() - Run the FG state machine periodically * @work: pointer to the work_struct structure * * Work queue function for periodic work */ static void ab8500_fg_periodic_work(struct work_struct *work) { struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_periodic_work.work); if (di->init_capacity) { /* Get an initial capacity calculation */ ab8500_fg_calc_cap_discharge_voltage(di); ab8500_fg_check_capacity_limits(di, true); di->init_capacity = false; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); } else if (di->flags.user_cap) { if (check_sysfs_capacity(di)) { ab8500_fg_check_capacity_limits(di, true); if (di->flags.charging) ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); else ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT_INIT); } di->flags.user_cap = false; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); } else ab8500_fg_algorithm(di); } /** * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition * @work: pointer to the work_struct structure * * Work queue function for checking the OVV_BAT condition */ static void ab8500_fg_check_hw_failure_work(struct work_struct *work) { int ret; u8 reg_value; struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_check_hw_failure_work.work); /* * If we have had a battery over-voltage situation, * check ovv-bit to see if it should be reset. */ ret = abx500_get_register_interruptible(di->dev, AB8500_CHARGER, AB8500_CH_STAT_REG, &reg_value); if (ret < 0) { dev_err(di->dev, "%s ab8500 read failed\n", __func__); return; } if ((reg_value & BATT_OVV) == BATT_OVV) { if (!di->flags.bat_ovv) { dev_dbg(di->dev, "Battery OVV\n"); di->flags.bat_ovv = true; power_supply_changed(di->fg_psy); } /* Not yet recovered from ovv, reschedule this test */ queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, HZ); } else { dev_dbg(di->dev, "Battery recovered from OVV\n"); di->flags.bat_ovv = false; power_supply_changed(di->fg_psy); } } /** * ab8500_fg_low_bat_work() - Check LOW_BAT condition * @work: pointer to the work_struct structure * * Work queue function for checking the LOW_BAT condition */ static void ab8500_fg_low_bat_work(struct work_struct *work) { int vbat_uv; struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_low_bat_work.work); vbat_uv = ab8500_fg_bat_voltage(di); /* Check if LOW_BAT still fulfilled */ if (vbat_uv < di->bm->fg_params->lowbat_threshold_uv) { /* Is it time to shut down? */ if (di->low_bat_cnt < 1) { di->flags.low_bat = true; dev_warn(di->dev, "Shut down pending...\n"); } else { /* * Else we need to re-schedule this check to be able to detect * if the voltage increases again during charging or * due to decreasing load. */ di->low_bat_cnt--; dev_warn(di->dev, "Battery voltage still LOW\n"); queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, round_jiffies(LOW_BAT_CHECK_INTERVAL)); } } else { di->flags.low_bat_delay = false; di->low_bat_cnt = 10; dev_warn(di->dev, "Battery voltage OK again\n"); } /* This is needed to dispatch LOW_BAT */ ab8500_fg_check_capacity_limits(di, false); } /** * ab8500_fg_battok_calc - calculate the bit pattern corresponding * to the target voltage. * @di: pointer to the ab8500_fg structure * @target: target voltage * * Returns bit pattern closest to the target voltage * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS) */ static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target) { if (target > BATT_OK_MIN + (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS)) return BATT_OK_MAX_NR_INCREMENTS; if (target < BATT_OK_MIN) return 0; return (target - BATT_OK_MIN) / BATT_OK_INCREMENT; } /** * ab8500_fg_battok_init_hw_register - init battok levels * @di: pointer to the ab8500_fg structure * */ static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di) { int selected; int sel0; int sel1; int cbp_sel0; int cbp_sel1; int ret; int new_val; sel0 = di->bm->fg_params->battok_falling_th_sel0; sel1 = di->bm->fg_params->battok_raising_th_sel1; cbp_sel0 = ab8500_fg_battok_calc(di, sel0); cbp_sel1 = ab8500_fg_battok_calc(di, sel1); selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT; if (selected != sel0) dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", sel0, selected, cbp_sel0); selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT; if (selected != sel1) dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", sel1, selected, cbp_sel1); new_val = cbp_sel0 | (cbp_sel1 << 4); dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1); ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK, AB8500_BATT_OK_REG, new_val); return ret; } /** * ab8500_fg_instant_work() - Run the FG state machine instantly * @work: pointer to the work_struct structure * * Work queue function for instant work */ static void ab8500_fg_instant_work(struct work_struct *work) { struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work); ab8500_fg_algorithm(di); } /** * ab8500_fg_cc_data_end_handler() - end of data conversion isr. * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di) { struct ab8500_fg *di = _di; if (!di->nbr_cceoc_irq_cnt) { di->nbr_cceoc_irq_cnt++; complete(&di->ab8500_fg_started); } else { di->nbr_cceoc_irq_cnt = 0; complete(&di->ab8500_fg_complete); } return IRQ_HANDLED; } /** * ab8500_fg_cc_int_calib_handler () - end of calibration isr. * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di) { struct ab8500_fg *di = _di; di->calib_state = AB8500_FG_CALIB_END; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); return IRQ_HANDLED; } /** * ab8500_fg_cc_convend_handler() - isr to get battery avg current. * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di) { struct ab8500_fg *di = _di; queue_work(di->fg_wq, &di->fg_acc_cur_work); return IRQ_HANDLED; } /** * ab8500_fg_batt_ovv_handler() - Battery OVV occured * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di) { struct ab8500_fg *di = _di; dev_dbg(di->dev, "Battery OVV\n"); /* Schedule a new HW failure check */ queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0); return IRQ_HANDLED; } /** * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di) { struct ab8500_fg *di = _di; /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */ if (!di->flags.low_bat_delay) { dev_warn(di->dev, "Battery voltage is below LOW threshold\n"); di->flags.low_bat_delay = true; /* * Start a timer to check LOW_BAT again after some time * This is done to avoid shutdown on single voltage dips */ queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, round_jiffies(LOW_BAT_CHECK_INTERVAL)); } return IRQ_HANDLED; } /** * ab8500_fg_get_property() - get the fg properties * @psy: pointer to the power_supply structure * @psp: pointer to the power_supply_property structure * @val: pointer to the power_supply_propval union * * This function gets called when an application tries to get the * fg properties by reading the sysfs files. * voltage_now: battery voltage * current_now: battery instant current * current_avg: battery average current * charge_full_design: capacity where battery is considered full * charge_now: battery capacity in nAh * capacity: capacity in percent * capacity_level: capacity level * * Returns error code in case of failure else 0 on success */ static int ab8500_fg_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ab8500_fg *di = power_supply_get_drvdata(psy); /* * If battery is identified as unknown and charging of unknown * batteries is disabled, we always report 100% capacity and * capacity level UNKNOWN, since we can't calculate * remaining capacity */ switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (di->flags.bat_ovv) val->intval = BATT_OVV_VALUE; else val->intval = di->vbat_uv; break; case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = di->inst_curr_ua; break; case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = di->avg_curr_ua; break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: val->intval = ab8500_fg_convert_mah_to_uwh(di, di->bat_cap.max_mah_design); break; case POWER_SUPPLY_PROP_ENERGY_FULL: val->intval = ab8500_fg_convert_mah_to_uwh(di, di->bat_cap.max_mah); break; case POWER_SUPPLY_PROP_ENERGY_NOW: if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && di->flags.batt_id_received) val->intval = ab8500_fg_convert_mah_to_uwh(di, di->bat_cap.max_mah); else val->intval = ab8500_fg_convert_mah_to_uwh(di, di->bat_cap.prev_mah); break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = di->bat_cap.max_mah_design; break; case POWER_SUPPLY_PROP_CHARGE_FULL: val->intval = di->bat_cap.max_mah; break; case POWER_SUPPLY_PROP_CHARGE_NOW: if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && di->flags.batt_id_received) val->intval = di->bat_cap.max_mah; else val->intval = di->bat_cap.prev_mah; break; case POWER_SUPPLY_PROP_CAPACITY: if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && di->flags.batt_id_received) val->intval = 100; else val->intval = di->bat_cap.prev_percent; break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && di->flags.batt_id_received) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; else val->intval = di->bat_cap.prev_level; break; default: return -EINVAL; } return 0; } static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data) { struct power_supply *psy; struct power_supply *ext = dev_get_drvdata(dev); const char **supplicants = (const char **)ext->supplied_to; struct ab8500_fg *di; struct power_supply_battery_info *bi; union power_supply_propval ret; int j; psy = (struct power_supply *)data; di = power_supply_get_drvdata(psy); bi = di->bm->bi; /* * For all psy where the name of your driver * appears in any supplied_to */ j = match_string(supplicants, ext->num_supplicants, psy->desc->name); if (j < 0) return 0; /* Go through all properties for the psy */ for (j = 0; j < ext->desc->num_properties; j++) { enum power_supply_property prop; prop = ext->desc->properties[j]; if (power_supply_get_property(ext, prop, &ret)) continue; switch (prop) { case POWER_SUPPLY_PROP_STATUS: switch (ext->desc->type) { case POWER_SUPPLY_TYPE_BATTERY: switch (ret.intval) { case POWER_SUPPLY_STATUS_UNKNOWN: case POWER_SUPPLY_STATUS_DISCHARGING: case POWER_SUPPLY_STATUS_NOT_CHARGING: if (!di->flags.charging) break; di->flags.charging = false; di->flags.fully_charged = false; if (di->bm->capacity_scaling) ab8500_fg_update_cap_scalers(di); queue_work(di->fg_wq, &di->fg_work); break; case POWER_SUPPLY_STATUS_FULL: if (di->flags.fully_charged) break; di->flags.fully_charged = true; di->flags.force_full = true; /* Save current capacity as maximum */ di->bat_cap.max_mah = di->bat_cap.mah; queue_work(di->fg_wq, &di->fg_work); break; case POWER_SUPPLY_STATUS_CHARGING: if (di->flags.charging && !di->flags.fully_charged) break; di->flags.charging = true; di->flags.fully_charged = false; if (di->bm->capacity_scaling) ab8500_fg_update_cap_scalers(di); queue_work(di->fg_wq, &di->fg_work); break; } break; default: break; } break; case POWER_SUPPLY_PROP_TECHNOLOGY: switch (ext->desc->type) { case POWER_SUPPLY_TYPE_BATTERY: if (!di->flags.batt_id_received && (bi && (bi->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN))) { di->flags.batt_id_received = true; di->bat_cap.max_mah_design = di->bm->bi->charge_full_design_uah; di->bat_cap.max_mah = di->bat_cap.max_mah_design; di->vbat_nom_uv = di->bm->bi->voltage_max_design_uv; } if (ret.intval) di->flags.batt_unknown = false; else di->flags.batt_unknown = true; break; default: break; } break; case POWER_SUPPLY_PROP_TEMP: switch (ext->desc->type) { case POWER_SUPPLY_TYPE_BATTERY: if (di->flags.batt_id_received) di->bat_temp = ret.intval; break; default: break; } break; default: break; } } return 0; } /** * ab8500_fg_init_hw_registers() - Set up FG related registers * @di: pointer to the ab8500_fg structure * * Set up battery OVV, low battery voltage registers */ static int ab8500_fg_init_hw_registers(struct ab8500_fg *di) { int ret; /* * Set VBAT OVV (overvoltage) threshold to 4.75V (typ) this is what * the hardware supports, nothing else can be configured in hardware. * See this as an "outer limit" where the charger will certainly * shut down. Other (lower) overvoltage levels need to be implemented * in software. */ ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_CHARGER, AB8500_BATT_OVV, BATT_OVV_TH_4P75, BATT_OVV_TH_4P75); if (ret) { dev_err(di->dev, "failed to set BATT_OVV\n"); goto out; } /* Enable VBAT OVV detection */ ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_CHARGER, AB8500_BATT_OVV, BATT_OVV_ENA, BATT_OVV_ENA); if (ret) { dev_err(di->dev, "failed to enable BATT_OVV\n"); goto out; } /* Low Battery Voltage */ ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK, AB8500_LOW_BAT_REG, ab8500_volt_to_regval( di->bm->fg_params->lowbat_threshold_uv) << 1 | LOW_BAT_ENABLE); if (ret) { dev_err(di->dev, "%s write failed\n", __func__); goto out; } /* Battery OK threshold */ ret = ab8500_fg_battok_init_hw_register(di); if (ret) { dev_err(di->dev, "BattOk init write failed.\n"); goto out; } if (is_ab8505(di->parent)) { ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__); goto out; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__); goto out; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__); goto out; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__); goto out; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__); goto out; } } out: return ret; } /** * ab8500_fg_external_power_changed() - callback for power supply changes * @psy: pointer to the structure power_supply * * This function is the entry point of the pointer external_power_changed * of the structure power_supply. * This function gets executed when there is a change in any external power * supply that this driver needs to be notified of. */ static void ab8500_fg_external_power_changed(struct power_supply *psy) { class_for_each_device(power_supply_class, NULL, psy, ab8500_fg_get_ext_psy_data); } /** * ab8500_fg_reinit_work() - work to reset the FG algorithm * @work: pointer to the work_struct structure * * Used to reset the current battery capacity to be able to * retrigger a new voltage base capacity calculation. For * test and verification purpose. */ static void ab8500_fg_reinit_work(struct work_struct *work) { struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_reinit_work.work); if (!di->flags.calibrate) { dev_dbg(di->dev, "Resetting FG state machine to init.\n"); ab8500_fg_clear_cap_samples(di); ab8500_fg_calc_cap_discharge_voltage(di); ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); } else { dev_err(di->dev, "Residual offset calibration ongoing " "retrying..\n"); /* Wait one second until next try*/ queue_delayed_work(di->fg_wq, &di->fg_reinit_work, round_jiffies(1)); } } /* Exposure to the sysfs interface */ struct ab8500_fg_sysfs_entry { struct attribute attr; ssize_t (*show)(struct ab8500_fg *, char *); ssize_t (*store)(struct ab8500_fg *, const char *, size_t); }; static ssize_t charge_full_show(struct ab8500_fg *di, char *buf) { return sysfs_emit(buf, "%d\n", di->bat_cap.max_mah); } static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf, size_t count) { unsigned long charge_full; int ret; ret = kstrtoul(buf, 10, &charge_full); if (ret) return ret; di->bat_cap.max_mah = (int) charge_full; return count; } static ssize_t charge_now_show(struct ab8500_fg *di, char *buf) { return sysfs_emit(buf, "%d\n", di->bat_cap.prev_mah); } static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf, size_t count) { unsigned long charge_now; int ret; ret = kstrtoul(buf, 10, &charge_now); if (ret) return ret; di->bat_cap.user_mah = (int) charge_now; di->flags.user_cap = true; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); return count; } static struct ab8500_fg_sysfs_entry charge_full_attr = __ATTR(charge_full, 0644, charge_full_show, charge_full_store); static struct ab8500_fg_sysfs_entry charge_now_attr = __ATTR(charge_now, 0644, charge_now_show, charge_now_store); static ssize_t ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct ab8500_fg_sysfs_entry *entry; struct ab8500_fg *di; entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); di = container_of(kobj, struct ab8500_fg, fg_kobject); if (!entry->show) return -EIO; return entry->show(di, buf); } static ssize_t ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct ab8500_fg_sysfs_entry *entry; struct ab8500_fg *di; entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); di = container_of(kobj, struct ab8500_fg, fg_kobject); if (!entry->store) return -EIO; return entry->store(di, buf, count); } static const struct sysfs_ops ab8500_fg_sysfs_ops = { .show = ab8500_fg_show, .store = ab8500_fg_store, }; static struct attribute *ab8500_fg_attrs[] = { &charge_full_attr.attr, &charge_now_attr.attr, NULL, }; ATTRIBUTE_GROUPS(ab8500_fg); static struct kobj_type ab8500_fg_ktype = { .sysfs_ops = &ab8500_fg_sysfs_ops, .default_groups = ab8500_fg_groups, }; /** * ab8500_fg_sysfs_exit() - de-init of sysfs entry * @di: pointer to the struct ab8500_chargalg * * This function removes the entry in sysfs. */ static void ab8500_fg_sysfs_exit(struct ab8500_fg *di) { kobject_del(&di->fg_kobject); } /** * ab8500_fg_sysfs_init() - init of sysfs entry * @di: pointer to the struct ab8500_chargalg * * This function adds an entry in sysfs. * Returns error code in case of failure else 0(on success) */ static int ab8500_fg_sysfs_init(struct ab8500_fg *di) { int ret = 0; ret = kobject_init_and_add(&di->fg_kobject, &ab8500_fg_ktype, NULL, "battery"); if (ret < 0) { kobject_put(&di->fg_kobject); dev_err(di->dev, "failed to create sysfs entry\n"); } return ret; } static ssize_t ab8505_powercut_flagtime_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); fail: return ret; } static ssize_t ab8505_powercut_flagtime_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, &reg_value)) goto fail; if (reg_value > 0x7F) { dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n"); fail: return count; } static ssize_t ab8505_powercut_maxtime_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); fail: return ret; } static ssize_t ab8505_powercut_maxtime_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, &reg_value)) goto fail; if (reg_value > 0x7F) { dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n"); fail: return count; } static ssize_t ab8505_powercut_restart_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_RESTART_REG, &reg_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0xF)); fail: return ret; } static ssize_t ab8505_powercut_restart_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, &reg_value)) goto fail; if (reg_value > 0xF) { dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n"); fail: return count; } static ssize_t ab8505_powercut_timer_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_TIME_REG, &reg_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); fail: return ret; } static ssize_t ab8505_powercut_restart_counter_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_RESTART_REG, &reg_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0xF0) >> 4); fail: return ret; } static ssize_t ab8505_powercut_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value); if (ret < 0) goto fail; return sysfs_emit(buf, "%d\n", (reg_value & 0x1)); fail: return ret; } static ssize_t ab8505_powercut_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, &reg_value)) goto fail; if (reg_value > 0x1) { dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n"); fail: return count; } static ssize_t ab8505_powercut_flag_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", ((reg_value & 0x10) >> 4)); fail: return ret; } static ssize_t ab8505_powercut_debounce_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_DEBOUNCE_REG, &reg_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0x7)); fail: return ret; } static ssize_t ab8505_powercut_debounce_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, &reg_value)) goto fail; if (reg_value > 0x7) { dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n"); fail: return count; } static ssize_t ab8505_powercut_enable_status_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", ((reg_value & 0x20) >> 5)); fail: return ret; } static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = { __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write), __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write), __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_restart_read, ab8505_powercut_restart_write), __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL), __ATTR(powercut_restart_counter, S_IRUGO, ab8505_powercut_restart_counter_read, NULL), __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_read, ab8505_powercut_write), __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL), __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_debounce_read, ab8505_powercut_debounce_write), __ATTR(powercut_enable_status, S_IRUGO, ab8505_powercut_enable_status_read, NULL), }; static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di) { unsigned int i; if (is_ab8505(di->parent)) { for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++) if (device_create_file(&di->fg_psy->dev, &ab8505_fg_sysfs_psy_attrs[i])) goto sysfs_psy_create_attrs_failed_ab8505; } return 0; sysfs_psy_create_attrs_failed_ab8505: dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n"); while (i--) device_remove_file(&di->fg_psy->dev, &ab8505_fg_sysfs_psy_attrs[i]); return -EIO; } static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di) { unsigned int i; if (is_ab8505(di->parent)) { for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++) (void)device_remove_file(&di->fg_psy->dev, &ab8505_fg_sysfs_psy_attrs[i]); } } /* Exposure to the sysfs interface <<END>> */ static int __maybe_unused ab8500_fg_resume(struct device *dev) { struct ab8500_fg *di = dev_get_drvdata(dev); /* * Change state if we're not charging. If we're charging we will wake * up on the FG IRQ */ if (!di->flags.charging) { ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP); queue_work(di->fg_wq, &di->fg_work); } return 0; } static int __maybe_unused ab8500_fg_suspend(struct device *dev) { struct ab8500_fg *di = dev_get_drvdata(dev); flush_delayed_work(&di->fg_periodic_work); flush_work(&di->fg_work); flush_work(&di->fg_acc_cur_work); flush_delayed_work(&di->fg_reinit_work); flush_delayed_work(&di->fg_low_bat_work); flush_delayed_work(&di->fg_check_hw_failure_work); /* * If the FG is enabled we will disable it before going to suspend * only if we're not charging */ if (di->flags.fg_enabled && !di->flags.charging) ab8500_fg_coulomb_counter(di, false); return 0; } /* ab8500 fg driver interrupts and their respective isr */ static struct ab8500_fg_interrupts ab8500_fg_irq[] = { {"NCONV_ACCU", ab8500_fg_cc_convend_handler}, {"BATT_OVV", ab8500_fg_batt_ovv_handler}, {"LOW_BAT_F", ab8500_fg_lowbatf_handler}, {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler}, {"CCEOC", ab8500_fg_cc_data_end_handler}, }; static char *supply_interface[] = { "ab8500_chargalg", "ab8500_usb", }; static const struct power_supply_desc ab8500_fg_desc = { .name = "ab8500_fg", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = ab8500_fg_props, .num_properties = ARRAY_SIZE(ab8500_fg_props), .get_property = ab8500_fg_get_property, .external_power_changed = ab8500_fg_external_power_changed, }; static int ab8500_fg_bind(struct device *dev, struct device *master, void *data) { struct ab8500_fg *di = dev_get_drvdata(dev); di->bat_cap.max_mah_design = di->bm->bi->charge_full_design_uah; di->bat_cap.max_mah = di->bat_cap.max_mah_design; di->vbat_nom_uv = di->bm->bi->voltage_max_design_uv; /* Start the coulomb counter */ ab8500_fg_coulomb_counter(di, true); /* Run the FG algorithm */ queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); return 0; } static void ab8500_fg_unbind(struct device *dev, struct device *master, void *data) { struct ab8500_fg *di = dev_get_drvdata(dev); int ret; /* Disable coulomb counter */ ret = ab8500_fg_coulomb_counter(di, false); if (ret) dev_err(dev, "failed to disable coulomb counter\n"); flush_workqueue(di->fg_wq); } static const struct component_ops ab8500_fg_component_ops = { .bind = ab8500_fg_bind, .unbind = ab8500_fg_unbind, }; static int ab8500_fg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct power_supply_config psy_cfg = {}; struct ab8500_fg *di; int i, irq; int ret = 0; di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL); if (!di) return -ENOMEM; di->bm = &ab8500_bm_data; mutex_init(&di->cc_lock); /* get parent data */ di->dev = dev; di->parent = dev_get_drvdata(pdev->dev.parent); di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v"); if (IS_ERR(di->main_bat_v)) { ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v), "failed to get main battery ADC channel\n"); return ret; } if (!of_property_read_u32(dev->of_node, "line-impedance-micro-ohms", &di->line_impedance_uohm)) dev_info(dev, "line impedance: %u uOhm\n", di->line_impedance_uohm); psy_cfg.supplied_to = supply_interface; psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface); psy_cfg.drv_data = di; di->init_capacity = true; ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); /* Create a work queue for running the FG algorithm */ di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM); if (di->fg_wq == NULL) { dev_err(dev, "failed to create work queue\n"); return -ENOMEM; } /* Init work for running the fg algorithm instantly */ INIT_WORK(&di->fg_work, ab8500_fg_instant_work); /* Init work for getting the battery accumulated current */ INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work); /* Init work for reinitialising the fg algorithm */ INIT_DEFERRABLE_WORK(&di->fg_reinit_work, ab8500_fg_reinit_work); /* Work delayed Queue to run the state machine */ INIT_DEFERRABLE_WORK(&di->fg_periodic_work, ab8500_fg_periodic_work); /* Work to check low battery condition */ INIT_DEFERRABLE_WORK(&di->fg_low_bat_work, ab8500_fg_low_bat_work); /* Init work for HW failure check */ INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work, ab8500_fg_check_hw_failure_work); /* Reset battery low voltage flag */ di->flags.low_bat = false; /* Initialize low battery counter */ di->low_bat_cnt = 10; /* Initialize OVV, and other registers */ ret = ab8500_fg_init_hw_registers(di); if (ret) { dev_err(dev, "failed to initialize registers\n"); destroy_workqueue(di->fg_wq); return ret; } /* Consider battery unknown until we're informed otherwise */ di->flags.batt_unknown = true; di->flags.batt_id_received = false; /* Register FG power supply class */ di->fg_psy = devm_power_supply_register(dev, &ab8500_fg_desc, &psy_cfg); if (IS_ERR(di->fg_psy)) { dev_err(dev, "failed to register FG psy\n"); destroy_workqueue(di->fg_wq); return PTR_ERR(di->fg_psy); } di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer); /* * Initialize completion used to notify completion and start * of inst current */ init_completion(&di->ab8500_fg_started); init_completion(&di->ab8500_fg_complete); /* Register primary interrupt handlers */ for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) { irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); if (irq < 0) { destroy_workqueue(di->fg_wq); return irq; } ret = devm_request_threaded_irq(dev, irq, NULL, ab8500_fg_irq[i].isr, IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT, ab8500_fg_irq[i].name, di); if (ret != 0) { dev_err(dev, "failed to request %s IRQ %d: %d\n", ab8500_fg_irq[i].name, irq, ret); destroy_workqueue(di->fg_wq); return ret; } dev_dbg(dev, "Requested %s IRQ %d: %d\n", ab8500_fg_irq[i].name, irq, ret); } di->irq = platform_get_irq_byname(pdev, "CCEOC"); disable_irq(di->irq); di->nbr_cceoc_irq_cnt = 0; platform_set_drvdata(pdev, di); ret = ab8500_fg_sysfs_init(di); if (ret) { dev_err(dev, "failed to create sysfs entry\n"); destroy_workqueue(di->fg_wq); return ret; } ret = ab8500_fg_sysfs_psy_create_attrs(di); if (ret) { dev_err(dev, "failed to create FG psy\n"); ab8500_fg_sysfs_exit(di); destroy_workqueue(di->fg_wq); return ret; } /* Calibrate the fg first time */ di->flags.calibrate = true; di->calib_state = AB8500_FG_CALIB_INIT; /* Use room temp as default value until we get an update from driver. */ di->bat_temp = 210; list_add_tail(&di->node, &ab8500_fg_list); return component_add(dev, &ab8500_fg_component_ops); } static int ab8500_fg_remove(struct platform_device *pdev) { struct ab8500_fg *di = platform_get_drvdata(pdev); destroy_workqueue(di->fg_wq); component_del(&pdev->dev, &ab8500_fg_component_ops); list_del(&di->node); ab8500_fg_sysfs_exit(di); ab8500_fg_sysfs_psy_remove_attrs(di); return 0; } static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume); static const struct of_device_id ab8500_fg_match[] = { { .compatible = "stericsson,ab8500-fg", }, { }, }; MODULE_DEVICE_TABLE(of, ab8500_fg_match); struct platform_driver ab8500_fg_driver = { .probe = ab8500_fg_probe, .remove = ab8500_fg_remove, .driver = { .name = "ab8500-fg", .of_match_table = ab8500_fg_match, .pm = &ab8500_fg_pm_ops, }, }; MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Johan Palsson, Karl Komierowski"); MODULE_ALIAS("platform:ab8500-fg"); MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
linux-master
drivers/power/supply/ab8500_fg.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Gas Gauge driver for SBS Compliant Batteries * * Copyright (c) 2010, NVIDIA Corporation. */ #include <linux/bits.h> #include <linux/delay.h> #include <linux/devm-helpers.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/property.h> #include <linux/of.h> #include <linux/power/sbs-battery.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/stat.h> enum { REG_MANUFACTURER_DATA, REG_BATTERY_MODE, REG_TEMPERATURE, REG_VOLTAGE, REG_CURRENT_NOW, REG_CURRENT_AVG, REG_MAX_ERR, REG_CAPACITY, REG_TIME_TO_EMPTY_NOW, REG_TIME_TO_EMPTY_AVG, REG_TIME_TO_FULL_AVG, REG_STATUS, REG_CAPACITY_LEVEL, REG_CYCLE_COUNT, REG_SERIAL_NUMBER, REG_REMAINING_CAPACITY, REG_REMAINING_CAPACITY_CHARGE, REG_FULL_CHARGE_CAPACITY, REG_FULL_CHARGE_CAPACITY_CHARGE, REG_DESIGN_CAPACITY, REG_DESIGN_CAPACITY_CHARGE, REG_DESIGN_VOLTAGE_MIN, REG_DESIGN_VOLTAGE_MAX, REG_CHEMISTRY, REG_MANUFACTURER, REG_MODEL_NAME, REG_CHARGE_CURRENT, REG_CHARGE_VOLTAGE, }; #define REG_ADDR_SPEC_INFO 0x1A #define SPEC_INFO_VERSION_MASK GENMASK(7, 4) #define SPEC_INFO_VERSION_SHIFT 4 #define SBS_VERSION_1_0 1 #define SBS_VERSION_1_1 2 #define SBS_VERSION_1_1_WITH_PEC 3 #define REG_ADDR_MANUFACTURE_DATE 0x1B /* Battery Mode defines */ #define BATTERY_MODE_OFFSET 0x03 #define BATTERY_MODE_CAPACITY_MASK BIT(15) enum sbs_capacity_mode { CAPACITY_MODE_AMPS = 0, CAPACITY_MODE_WATTS = BATTERY_MODE_CAPACITY_MASK }; #define BATTERY_MODE_CHARGER_MASK (1<<14) /* manufacturer access defines */ #define MANUFACTURER_ACCESS_STATUS 0x0006 #define MANUFACTURER_ACCESS_SLEEP 0x0011 /* battery status value bits */ #define BATTERY_INITIALIZED 0x80 #define BATTERY_DISCHARGING 0x40 #define BATTERY_FULL_CHARGED 0x20 #define BATTERY_FULL_DISCHARGED 0x10 /* min_value and max_value are only valid for numerical data */ #define SBS_DATA(_psp, _addr, _min_value, _max_value) { \ .psp = _psp, \ .addr = _addr, \ .min_value = _min_value, \ .max_value = _max_value, \ } static const struct chip_data { enum power_supply_property psp; u8 addr; int min_value; int max_value; } sbs_data[] = { [REG_MANUFACTURER_DATA] = SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535), [REG_BATTERY_MODE] = SBS_DATA(-1, 0x03, 0, 65535), [REG_TEMPERATURE] = SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535), [REG_VOLTAGE] = SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 65535), [REG_CURRENT_NOW] = SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767), [REG_CURRENT_AVG] = SBS_DATA(POWER_SUPPLY_PROP_CURRENT_AVG, 0x0B, -32768, 32767), [REG_MAX_ERR] = SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, 0x0c, 0, 100), [REG_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0D, 0, 100), [REG_REMAINING_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535), [REG_REMAINING_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535), [REG_FULL_CHARGE_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535), [REG_FULL_CHARGE_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535), [REG_TIME_TO_EMPTY_NOW] = SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 0x11, 0, 65535), [REG_TIME_TO_EMPTY_AVG] = SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535), [REG_TIME_TO_FULL_AVG] = SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535), [REG_CHARGE_CURRENT] = SBS_DATA(POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 0x14, 0, 65535), [REG_CHARGE_VOLTAGE] = SBS_DATA(POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 0x15, 0, 65535), [REG_STATUS] = SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535), [REG_CAPACITY_LEVEL] = SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_LEVEL, 0x16, 0, 65535), [REG_CYCLE_COUNT] = SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535), [REG_DESIGN_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535), [REG_DESIGN_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535), [REG_DESIGN_VOLTAGE_MIN] = SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 0x19, 0, 65535), [REG_DESIGN_VOLTAGE_MAX] = SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535), [REG_SERIAL_NUMBER] = SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535), /* Properties of type `const char *' */ [REG_MANUFACTURER] = SBS_DATA(POWER_SUPPLY_PROP_MANUFACTURER, 0x20, 0, 65535), [REG_MODEL_NAME] = SBS_DATA(POWER_SUPPLY_PROP_MODEL_NAME, 0x21, 0, 65535), [REG_CHEMISTRY] = SBS_DATA(POWER_SUPPLY_PROP_TECHNOLOGY, 0x22, 0, 65535) }; static const enum power_supply_property sbs_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, POWER_SUPPLY_PROP_SERIAL_NUMBER, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_MANUFACTURE_YEAR, POWER_SUPPLY_PROP_MANUFACTURE_MONTH, POWER_SUPPLY_PROP_MANUFACTURE_DAY, /* Properties of type `const char *' */ POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_MODEL_NAME }; /* Supports special manufacturer commands from TI BQ20Z65 and BQ20Z75 IC. */ #define SBS_FLAGS_TI_BQ20ZX5 BIT(0) static const enum power_supply_property string_properties[] = { POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_MODEL_NAME, }; #define NR_STRING_BUFFERS ARRAY_SIZE(string_properties) struct sbs_info { struct i2c_client *client; struct power_supply *power_supply; bool is_present; struct gpio_desc *gpio_detect; bool charger_broadcasts; int last_state; int poll_time; u32 i2c_retry_count; u32 poll_retry_count; struct delayed_work work; struct mutex mode_lock; u32 flags; int technology; char strings[NR_STRING_BUFFERS][I2C_SMBUS_BLOCK_MAX + 1]; }; static char *sbs_get_string_buf(struct sbs_info *chip, enum power_supply_property psp) { int i = 0; for (i = 0; i < NR_STRING_BUFFERS; i++) if (string_properties[i] == psp) return chip->strings[i]; return ERR_PTR(-EINVAL); } static void sbs_invalidate_cached_props(struct sbs_info *chip) { int i = 0; chip->technology = -1; for (i = 0; i < NR_STRING_BUFFERS; i++) chip->strings[i][0] = 0; } static bool force_load; static int sbs_read_word_data(struct i2c_client *client, u8 address); static int sbs_write_word_data(struct i2c_client *client, u8 address, u16 value); static void sbs_disable_charger_broadcasts(struct sbs_info *chip) { int val = sbs_read_word_data(chip->client, BATTERY_MODE_OFFSET); if (val < 0) goto exit; val |= BATTERY_MODE_CHARGER_MASK; val = sbs_write_word_data(chip->client, BATTERY_MODE_OFFSET, val); exit: if (val < 0) dev_err(&chip->client->dev, "Failed to disable charger broadcasting: %d\n", val); else dev_dbg(&chip->client->dev, "%s\n", __func__); } static int sbs_update_presence(struct sbs_info *chip, bool is_present) { struct i2c_client *client = chip->client; int retries = chip->i2c_retry_count; s32 ret = 0; u8 version; if (chip->is_present == is_present) return 0; if (!is_present) { chip->is_present = false; /* Disable PEC when no device is present */ client->flags &= ~I2C_CLIENT_PEC; sbs_invalidate_cached_props(chip); return 0; } /* Check if device supports packet error checking and use it */ while (retries > 0) { ret = i2c_smbus_read_word_data(client, REG_ADDR_SPEC_INFO); if (ret >= 0) break; /* * Some batteries trigger the detection pin before the * I2C bus is properly connected. This works around the * issue. */ msleep(100); retries--; } if (ret < 0) { dev_dbg(&client->dev, "failed to read spec info: %d\n", ret); /* fallback to old behaviour */ client->flags &= ~I2C_CLIENT_PEC; chip->is_present = true; return ret; } version = (ret & SPEC_INFO_VERSION_MASK) >> SPEC_INFO_VERSION_SHIFT; if (version == SBS_VERSION_1_1_WITH_PEC) client->flags |= I2C_CLIENT_PEC; else client->flags &= ~I2C_CLIENT_PEC; if (of_device_is_compatible(client->dev.parent->of_node, "google,cros-ec-i2c-tunnel") && client->flags & I2C_CLIENT_PEC) { dev_info(&client->dev, "Disabling PEC because of broken Cros-EC implementation\n"); client->flags &= ~I2C_CLIENT_PEC; } dev_dbg(&client->dev, "PEC: %s\n", (client->flags & I2C_CLIENT_PEC) ? "enabled" : "disabled"); if (!chip->is_present && is_present && !chip->charger_broadcasts) sbs_disable_charger_broadcasts(chip); chip->is_present = true; return 0; } static int sbs_read_word_data(struct i2c_client *client, u8 address) { struct sbs_info *chip = i2c_get_clientdata(client); int retries = chip->i2c_retry_count; s32 ret = 0; while (retries > 0) { ret = i2c_smbus_read_word_data(client, address); if (ret >= 0) break; retries--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c read at address 0x%x failed\n", __func__, address); return ret; } return ret; } static int sbs_read_string_data_fallback(struct i2c_client *client, u8 address, char *values) { struct sbs_info *chip = i2c_get_clientdata(client); s32 ret = 0, block_length = 0; int retries_length, retries_block; u8 block_buffer[I2C_SMBUS_BLOCK_MAX + 1]; retries_length = chip->i2c_retry_count; retries_block = chip->i2c_retry_count; dev_warn_once(&client->dev, "I2C adapter does not support I2C_FUNC_SMBUS_READ_BLOCK_DATA.\n" "Fallback method does not support PEC.\n"); /* Adapter needs to support these two functions */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)){ return -ENODEV; } /* Get the length of block data */ while (retries_length > 0) { ret = i2c_smbus_read_byte_data(client, address); if (ret >= 0) break; retries_length--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c read at address 0x%x failed\n", __func__, address); return ret; } /* block_length does not include NULL terminator */ block_length = ret; if (block_length > I2C_SMBUS_BLOCK_MAX) { dev_err(&client->dev, "%s: Returned block_length is longer than 0x%x\n", __func__, I2C_SMBUS_BLOCK_MAX); return -EINVAL; } /* Get the block data */ while (retries_block > 0) { ret = i2c_smbus_read_i2c_block_data( client, address, block_length + 1, block_buffer); if (ret >= 0) break; retries_block--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c read at address 0x%x failed\n", __func__, address); return ret; } /* block_buffer[0] == block_length */ memcpy(values, block_buffer + 1, block_length); values[block_length] = '\0'; return ret; } static int sbs_read_string_data(struct i2c_client *client, u8 address, char *values) { struct sbs_info *chip = i2c_get_clientdata(client); int retries = chip->i2c_retry_count; int ret = 0; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BLOCK_DATA)) { bool pec = client->flags & I2C_CLIENT_PEC; client->flags &= ~I2C_CLIENT_PEC; ret = sbs_read_string_data_fallback(client, address, values); if (pec) client->flags |= I2C_CLIENT_PEC; return ret; } while (retries > 0) { ret = i2c_smbus_read_block_data(client, address, values); if (ret >= 0) break; retries--; } if (ret < 0) { dev_dbg(&client->dev, "failed to read block 0x%x: %d\n", address, ret); return ret; } /* add string termination */ values[ret] = '\0'; return ret; } static int sbs_write_word_data(struct i2c_client *client, u8 address, u16 value) { struct sbs_info *chip = i2c_get_clientdata(client); int retries = chip->i2c_retry_count; s32 ret = 0; while (retries > 0) { ret = i2c_smbus_write_word_data(client, address, value); if (ret >= 0) break; retries--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c write to address 0x%x failed\n", __func__, address); return ret; } return 0; } static int sbs_status_correct(struct i2c_client *client, int *intval) { int ret; ret = sbs_read_word_data(client, sbs_data[REG_CURRENT_NOW].addr); if (ret < 0) return ret; ret = (s16)ret; /* Not drawing current -> not charging (i.e. idle) */ if (*intval != POWER_SUPPLY_STATUS_FULL && ret == 0) *intval = POWER_SUPPLY_STATUS_NOT_CHARGING; if (*intval == POWER_SUPPLY_STATUS_FULL) { /* Drawing or providing current when full */ if (ret > 0) *intval = POWER_SUPPLY_STATUS_CHARGING; else if (ret < 0) *intval = POWER_SUPPLY_STATUS_DISCHARGING; } return 0; } static bool sbs_bat_needs_calibration(struct i2c_client *client) { int ret; ret = sbs_read_word_data(client, sbs_data[REG_BATTERY_MODE].addr); if (ret < 0) return false; return !!(ret & BIT(7)); } static int sbs_get_ti_battery_presence_and_health( struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { s32 ret; /* * Write to ManufacturerAccess with ManufacturerAccess command * and then read the status. */ ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr, MANUFACTURER_ACCESS_STATUS); if (ret < 0) { if (psp == POWER_SUPPLY_PROP_PRESENT) val->intval = 0; /* battery removed */ return ret; } ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr); if (ret < 0) { if (psp == POWER_SUPPLY_PROP_PRESENT) val->intval = 0; /* battery removed */ return ret; } if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value || ret > sbs_data[REG_MANUFACTURER_DATA].max_value) { val->intval = 0; return 0; } /* Mask the upper nibble of 2nd byte and * lower byte of response then * shift the result by 8 to get status*/ ret &= 0x0F00; ret >>= 8; if (psp == POWER_SUPPLY_PROP_PRESENT) { if (ret == 0x0F) /* battery removed */ val->intval = 0; else val->intval = 1; } else if (psp == POWER_SUPPLY_PROP_HEALTH) { if (ret == 0x09) val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; else if (ret == 0x0B) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else if (ret == 0x0C) val->intval = POWER_SUPPLY_HEALTH_DEAD; else if (sbs_bat_needs_calibration(client)) val->intval = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED; else val->intval = POWER_SUPPLY_HEALTH_GOOD; } return 0; } static int sbs_get_battery_presence_and_health( struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { struct sbs_info *chip = i2c_get_clientdata(client); int ret; if (chip->flags & SBS_FLAGS_TI_BQ20ZX5) return sbs_get_ti_battery_presence_and_health(client, psp, val); /* Dummy command; if it succeeds, battery is present. */ ret = sbs_read_word_data(client, sbs_data[REG_STATUS].addr); if (ret < 0) { /* battery not present*/ if (psp == POWER_SUPPLY_PROP_PRESENT) { val->intval = 0; return 0; } return ret; } if (psp == POWER_SUPPLY_PROP_PRESENT) val->intval = 1; /* battery present */ else { /* POWER_SUPPLY_PROP_HEALTH */ if (sbs_bat_needs_calibration(client)) { val->intval = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED; } else { /* SBS spec doesn't have a general health command. */ val->intval = POWER_SUPPLY_HEALTH_UNKNOWN; } } return 0; } static int sbs_get_battery_property(struct i2c_client *client, int reg_offset, enum power_supply_property psp, union power_supply_propval *val) { struct sbs_info *chip = i2c_get_clientdata(client); s32 ret; ret = sbs_read_word_data(client, sbs_data[reg_offset].addr); if (ret < 0) return ret; /* returned values are 16 bit */ if (sbs_data[reg_offset].min_value < 0) ret = (s16)ret; if (ret >= sbs_data[reg_offset].min_value && ret <= sbs_data[reg_offset].max_value) { val->intval = ret; if (psp == POWER_SUPPLY_PROP_CAPACITY_LEVEL) { if (!(ret & BATTERY_INITIALIZED)) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; else if (ret & BATTERY_FULL_CHARGED) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (ret & BATTERY_FULL_DISCHARGED) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; return 0; } else if (psp != POWER_SUPPLY_PROP_STATUS) { return 0; } if (ret & BATTERY_FULL_CHARGED) val->intval = POWER_SUPPLY_STATUS_FULL; else if (ret & BATTERY_DISCHARGING) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else val->intval = POWER_SUPPLY_STATUS_CHARGING; sbs_status_correct(client, &val->intval); if (chip->poll_time == 0) chip->last_state = val->intval; else if (chip->last_state != val->intval) { cancel_delayed_work_sync(&chip->work); power_supply_changed(chip->power_supply); chip->poll_time = 0; } } else { if (psp == POWER_SUPPLY_PROP_STATUS) val->intval = POWER_SUPPLY_STATUS_UNKNOWN; else if (psp == POWER_SUPPLY_PROP_CAPACITY) /* sbs spec says that this can be >100 % * even if max value is 100 % */ val->intval = min(ret, 100); else val->intval = 0; } return 0; } static int sbs_get_property_index(struct i2c_client *client, enum power_supply_property psp) { int count; for (count = 0; count < ARRAY_SIZE(sbs_data); count++) if (psp == sbs_data[count].psp) return count; dev_warn(&client->dev, "%s: Invalid Property - %d\n", __func__, psp); return -EINVAL; } static const char *sbs_get_constant_string(struct sbs_info *chip, enum power_supply_property psp) { int ret; char *buf; u8 addr; buf = sbs_get_string_buf(chip, psp); if (IS_ERR(buf)) return buf; if (!buf[0]) { ret = sbs_get_property_index(chip->client, psp); if (ret < 0) return ERR_PTR(ret); addr = sbs_data[ret].addr; ret = sbs_read_string_data(chip->client, addr, buf); if (ret < 0) return ERR_PTR(ret); } return buf; } static void sbs_unit_adjustment(struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { #define BASE_UNIT_CONVERSION 1000 #define BATTERY_MODE_CAP_MULT_WATT (10 * BASE_UNIT_CONVERSION) #define TIME_UNIT_CONVERSION 60 #define TEMP_KELVIN_TO_CELSIUS 2731 switch (psp) { case POWER_SUPPLY_PROP_ENERGY_NOW: case POWER_SUPPLY_PROP_ENERGY_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: /* sbs provides energy in units of 10mWh. * Convert to µWh */ val->intval *= BATTERY_MODE_CAP_MULT_WATT; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_CURRENT_AVG: case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval *= BASE_UNIT_CONVERSION; break; case POWER_SUPPLY_PROP_TEMP: /* sbs provides battery temperature in 0.1K * so convert it to 0.1°C */ val->intval -= TEMP_KELVIN_TO_CELSIUS; break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: /* sbs provides time to empty and time to full in minutes. * Convert to seconds */ val->intval *= TIME_UNIT_CONVERSION; break; default: dev_dbg(&client->dev, "%s: no need for unit conversion %d\n", __func__, psp); } } static enum sbs_capacity_mode sbs_set_capacity_mode(struct i2c_client *client, enum sbs_capacity_mode mode) { int ret, original_val; original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET); if (original_val < 0) return original_val; if ((original_val & BATTERY_MODE_CAPACITY_MASK) == mode) return mode; if (mode == CAPACITY_MODE_AMPS) ret = original_val & ~BATTERY_MODE_CAPACITY_MASK; else ret = original_val | BATTERY_MODE_CAPACITY_MASK; ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret); if (ret < 0) return ret; usleep_range(1000, 2000); return original_val & BATTERY_MODE_CAPACITY_MASK; } static int sbs_get_battery_capacity(struct i2c_client *client, int reg_offset, enum power_supply_property psp, union power_supply_propval *val) { s32 ret; enum sbs_capacity_mode mode = CAPACITY_MODE_WATTS; if (power_supply_is_amp_property(psp)) mode = CAPACITY_MODE_AMPS; mode = sbs_set_capacity_mode(client, mode); if ((int)mode < 0) return mode; ret = sbs_read_word_data(client, sbs_data[reg_offset].addr); if (ret < 0) return ret; val->intval = ret; ret = sbs_set_capacity_mode(client, mode); if (ret < 0) return ret; return 0; } static char sbs_serial[5]; static int sbs_get_battery_serial_number(struct i2c_client *client, union power_supply_propval *val) { int ret; ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr); if (ret < 0) return ret; sprintf(sbs_serial, "%04x", ret); val->strval = sbs_serial; return 0; } static int sbs_get_chemistry(struct sbs_info *chip, union power_supply_propval *val) { const char *chemistry; if (chip->technology != -1) { val->intval = chip->technology; return 0; } chemistry = sbs_get_constant_string(chip, POWER_SUPPLY_PROP_TECHNOLOGY); if (IS_ERR(chemistry)) return PTR_ERR(chemistry); if (!strncasecmp(chemistry, "LION", 4)) chip->technology = POWER_SUPPLY_TECHNOLOGY_LION; else if (!strncasecmp(chemistry, "LiP", 3)) chip->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; else if (!strncasecmp(chemistry, "NiCd", 4)) chip->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; else if (!strncasecmp(chemistry, "NiMH", 4)) chip->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; else chip->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; if (chip->technology == POWER_SUPPLY_TECHNOLOGY_UNKNOWN) dev_warn(&chip->client->dev, "Unknown chemistry: %s\n", chemistry); val->intval = chip->technology; return 0; } static int sbs_get_battery_manufacture_date(struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { int ret; u16 day, month, year; ret = sbs_read_word_data(client, REG_ADDR_MANUFACTURE_DATE); if (ret < 0) return ret; day = ret & GENMASK(4, 0); month = (ret & GENMASK(8, 5)) >> 5; year = ((ret & GENMASK(15, 9)) >> 9) + 1980; switch (psp) { case POWER_SUPPLY_PROP_MANUFACTURE_YEAR: val->intval = year; break; case POWER_SUPPLY_PROP_MANUFACTURE_MONTH: val->intval = month; break; case POWER_SUPPLY_PROP_MANUFACTURE_DAY: val->intval = day; break; default: return -EINVAL; } return 0; } static int sbs_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct sbs_info *chip = power_supply_get_drvdata(psy); struct i2c_client *client = chip->client; const char *str; if (chip->gpio_detect) { ret = gpiod_get_value_cansleep(chip->gpio_detect); if (ret < 0) return ret; if (psp == POWER_SUPPLY_PROP_PRESENT) { val->intval = ret; sbs_update_presence(chip, ret); return 0; } if (ret == 0) return -ENODATA; } switch (psp) { case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_HEALTH: ret = sbs_get_battery_presence_and_health(client, psp, val); /* this can only be true if no gpio is used */ if (psp == POWER_SUPPLY_PROP_PRESENT) return 0; break; case POWER_SUPPLY_PROP_TECHNOLOGY: ret = sbs_get_chemistry(chip, val); if (ret < 0) break; goto done; /* don't trigger power_supply_changed()! */ case POWER_SUPPLY_PROP_ENERGY_NOW: case POWER_SUPPLY_PROP_ENERGY_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: ret = sbs_get_property_index(client, psp); if (ret < 0) break; /* sbs_get_battery_capacity() will change the battery mode * temporarily to read the requested attribute. Ensure we stay * in the desired mode for the duration of the attribute read. */ mutex_lock(&chip->mode_lock); ret = sbs_get_battery_capacity(client, ret, psp, val); mutex_unlock(&chip->mode_lock); break; case POWER_SUPPLY_PROP_SERIAL_NUMBER: ret = sbs_get_battery_serial_number(client, val); break; case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_CAPACITY_LEVEL: case POWER_SUPPLY_PROP_CYCLE_COUNT: case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_CURRENT_AVG: case POWER_SUPPLY_PROP_TEMP: case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: case POWER_SUPPLY_PROP_CAPACITY: case POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN: ret = sbs_get_property_index(client, psp); if (ret < 0) break; ret = sbs_get_battery_property(client, ret, psp, val); break; case POWER_SUPPLY_PROP_MODEL_NAME: case POWER_SUPPLY_PROP_MANUFACTURER: str = sbs_get_constant_string(chip, psp); if (IS_ERR(str)) ret = PTR_ERR(str); else val->strval = str; break; case POWER_SUPPLY_PROP_MANUFACTURE_YEAR: case POWER_SUPPLY_PROP_MANUFACTURE_MONTH: case POWER_SUPPLY_PROP_MANUFACTURE_DAY: ret = sbs_get_battery_manufacture_date(client, psp, val); break; default: dev_err(&client->dev, "%s: INVALID property\n", __func__); return -EINVAL; } if (!chip->gpio_detect && chip->is_present != (ret >= 0)) { bool old_present = chip->is_present; union power_supply_propval val; int err = sbs_get_battery_presence_and_health( client, POWER_SUPPLY_PROP_PRESENT, &val); sbs_update_presence(chip, !err && val.intval); if (old_present != chip->is_present) power_supply_changed(chip->power_supply); } done: if (!ret) { /* Convert units to match requirements for power supply class */ sbs_unit_adjustment(client, psp, val); dev_dbg(&client->dev, "%s: property = %d, value = %x\n", __func__, psp, val->intval); } else if (!chip->is_present) { /* battery not present, so return NODATA for properties */ ret = -ENODATA; } return ret; } static void sbs_supply_changed(struct sbs_info *chip) { struct power_supply *battery = chip->power_supply; int ret; ret = gpiod_get_value_cansleep(chip->gpio_detect); if (ret < 0) return; sbs_update_presence(chip, ret); power_supply_changed(battery); } static irqreturn_t sbs_irq(int irq, void *devid) { sbs_supply_changed(devid); return IRQ_HANDLED; } static void sbs_alert(struct i2c_client *client, enum i2c_alert_protocol prot, unsigned int data) { sbs_supply_changed(i2c_get_clientdata(client)); } static void sbs_external_power_changed(struct power_supply *psy) { struct sbs_info *chip = power_supply_get_drvdata(psy); /* cancel outstanding work */ cancel_delayed_work_sync(&chip->work); schedule_delayed_work(&chip->work, HZ); chip->poll_time = chip->poll_retry_count; } static void sbs_delayed_work(struct work_struct *work) { struct sbs_info *chip; s32 ret; chip = container_of(work, struct sbs_info, work.work); ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr); /* if the read failed, give up on this work */ if (ret < 0) { chip->poll_time = 0; return; } if (ret & BATTERY_FULL_CHARGED) ret = POWER_SUPPLY_STATUS_FULL; else if (ret & BATTERY_DISCHARGING) ret = POWER_SUPPLY_STATUS_DISCHARGING; else ret = POWER_SUPPLY_STATUS_CHARGING; sbs_status_correct(chip->client, &ret); if (chip->last_state != ret) { chip->poll_time = 0; power_supply_changed(chip->power_supply); return; } if (chip->poll_time > 0) { schedule_delayed_work(&chip->work, HZ); chip->poll_time--; return; } } static const struct power_supply_desc sbs_default_desc = { .type = POWER_SUPPLY_TYPE_BATTERY, .properties = sbs_properties, .num_properties = ARRAY_SIZE(sbs_properties), .get_property = sbs_get_property, .external_power_changed = sbs_external_power_changed, }; static int sbs_probe(struct i2c_client *client) { struct sbs_info *chip; struct power_supply_desc *sbs_desc; struct sbs_platform_data *pdata = client->dev.platform_data; struct power_supply_config psy_cfg = {}; int rc; int irq; sbs_desc = devm_kmemdup(&client->dev, &sbs_default_desc, sizeof(*sbs_desc), GFP_KERNEL); if (!sbs_desc) return -ENOMEM; sbs_desc->name = devm_kasprintf(&client->dev, GFP_KERNEL, "sbs-%s", dev_name(&client->dev)); if (!sbs_desc->name) return -ENOMEM; chip = devm_kzalloc(&client->dev, sizeof(struct sbs_info), GFP_KERNEL); if (!chip) return -ENOMEM; chip->flags = (u32)(uintptr_t)device_get_match_data(&client->dev); chip->client = client; psy_cfg.of_node = client->dev.of_node; psy_cfg.drv_data = chip; chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN; sbs_invalidate_cached_props(chip); mutex_init(&chip->mode_lock); /* use pdata if available, fall back to DT properties, * or hardcoded defaults if not */ rc = device_property_read_u32(&client->dev, "sbs,i2c-retry-count", &chip->i2c_retry_count); if (rc) chip->i2c_retry_count = 0; rc = device_property_read_u32(&client->dev, "sbs,poll-retry-count", &chip->poll_retry_count); if (rc) chip->poll_retry_count = 0; if (pdata) { chip->poll_retry_count = pdata->poll_retry_count; chip->i2c_retry_count = pdata->i2c_retry_count; } chip->i2c_retry_count = chip->i2c_retry_count + 1; chip->charger_broadcasts = !device_property_read_bool(&client->dev, "sbs,disable-charger-broadcasts"); chip->gpio_detect = devm_gpiod_get_optional(&client->dev, "sbs,battery-detect", GPIOD_IN); if (IS_ERR(chip->gpio_detect)) return dev_err_probe(&client->dev, PTR_ERR(chip->gpio_detect), "Failed to get gpio\n"); i2c_set_clientdata(client, chip); if (!chip->gpio_detect) goto skip_gpio; irq = gpiod_to_irq(chip->gpio_detect); if (irq <= 0) { dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq); goto skip_gpio; } rc = devm_request_threaded_irq(&client->dev, irq, NULL, sbs_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, dev_name(&client->dev), chip); if (rc) { dev_warn(&client->dev, "Failed to request irq: %d\n", rc); goto skip_gpio; } skip_gpio: /* * Before we register, we might need to make sure we can actually talk * to the battery. */ if (!(force_load || chip->gpio_detect)) { union power_supply_propval val; rc = sbs_get_battery_presence_and_health( client, POWER_SUPPLY_PROP_PRESENT, &val); if (rc < 0 || !val.intval) return dev_err_probe(&client->dev, -ENODEV, "Failed to get present status\n"); } rc = devm_delayed_work_autocancel(&client->dev, &chip->work, sbs_delayed_work); if (rc) return rc; chip->power_supply = devm_power_supply_register(&client->dev, sbs_desc, &psy_cfg); if (IS_ERR(chip->power_supply)) return dev_err_probe(&client->dev, PTR_ERR(chip->power_supply), "Failed to register power supply\n"); dev_info(&client->dev, "%s: battery gas gauge device registered\n", client->name); return 0; } #if defined CONFIG_PM_SLEEP static int sbs_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct sbs_info *chip = i2c_get_clientdata(client); int ret; if (chip->poll_time > 0) cancel_delayed_work_sync(&chip->work); if (chip->flags & SBS_FLAGS_TI_BQ20ZX5) { /* Write to manufacturer access with sleep command. */ ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr, MANUFACTURER_ACCESS_SLEEP); if (chip->is_present && ret < 0) return ret; } return 0; } static SIMPLE_DEV_PM_OPS(sbs_pm_ops, sbs_suspend, NULL); #define SBS_PM_OPS (&sbs_pm_ops) #else #define SBS_PM_OPS NULL #endif static const struct i2c_device_id sbs_id[] = { { "bq20z65", 0 }, { "bq20z75", 0 }, { "sbs-battery", 1 }, {} }; MODULE_DEVICE_TABLE(i2c, sbs_id); static const struct of_device_id sbs_dt_ids[] = { { .compatible = "sbs,sbs-battery" }, { .compatible = "ti,bq20z65", .data = (void *)SBS_FLAGS_TI_BQ20ZX5, }, { .compatible = "ti,bq20z75", .data = (void *)SBS_FLAGS_TI_BQ20ZX5, }, { } }; MODULE_DEVICE_TABLE(of, sbs_dt_ids); static struct i2c_driver sbs_battery_driver = { .probe = sbs_probe, .alert = sbs_alert, .id_table = sbs_id, .driver = { .name = "sbs-battery", .of_match_table = sbs_dt_ids, .pm = SBS_PM_OPS, }, }; module_i2c_driver(sbs_battery_driver); MODULE_DESCRIPTION("SBS battery monitor driver"); MODULE_LICENSE("GPL"); module_param(force_load, bool, 0444); MODULE_PARM_DESC(force_load, "Attempt to load the driver even if no battery is connected");
linux-master
drivers/power/supply/sbs-battery.c
// SPDX-License-Identifier: GPL-2.0 /* * Power supply driver for ChromeOS EC based Peripheral Device Charger. * * Copyright 2020 Google LLC. */ #include <linux/module.h> #include <linux/notifier.h> #include <linux/platform_data/cros_ec_commands.h> #include <linux/platform_data/cros_ec_proto.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/stringify.h> #include <linux/types.h> #include <asm/unaligned.h> #define DRV_NAME "cros-ec-pchg" #define PCHG_DIR_PREFIX "peripheral" #define PCHG_DIR_NAME PCHG_DIR_PREFIX "%d" #define PCHG_DIR_NAME_LENGTH \ sizeof(PCHG_DIR_PREFIX __stringify(EC_PCHG_MAX_PORTS)) #define PCHG_CACHE_UPDATE_DELAY msecs_to_jiffies(500) struct port_data { int port_number; char name[PCHG_DIR_NAME_LENGTH]; struct power_supply *psy; struct power_supply_desc psy_desc; int psy_status; int battery_percentage; int charge_type; struct charger_data *charger; unsigned long last_update; }; struct charger_data { struct device *dev; struct cros_ec_dev *ec_dev; struct cros_ec_device *ec_device; int num_registered_psy; struct port_data *ports[EC_PCHG_MAX_PORTS]; struct notifier_block notifier; }; static enum power_supply_property cros_pchg_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_SCOPE, }; static int cros_pchg_ec_command(const struct charger_data *charger, unsigned int version, unsigned int command, const void *outdata, unsigned int outsize, void *indata, unsigned int insize) { struct cros_ec_dev *ec_dev = charger->ec_dev; struct cros_ec_command *msg; int ret; msg = kzalloc(struct_size(msg, data, max(outsize, insize)), GFP_KERNEL); if (!msg) return -ENOMEM; msg->version = version; msg->command = ec_dev->cmd_offset + command; msg->outsize = outsize; msg->insize = insize; if (outsize) memcpy(msg->data, outdata, outsize); ret = cros_ec_cmd_xfer_status(charger->ec_device, msg); if (ret >= 0 && insize) memcpy(indata, msg->data, insize); kfree(msg); return ret; } static const unsigned int pchg_cmd_version = 1; static bool cros_pchg_cmd_ver_check(const struct charger_data *charger) { struct ec_params_get_cmd_versions_v1 req; struct ec_response_get_cmd_versions rsp; int ret; req.cmd = EC_CMD_PCHG; ret = cros_pchg_ec_command(charger, 1, EC_CMD_GET_CMD_VERSIONS, &req, sizeof(req), &rsp, sizeof(rsp)); if (ret < 0) { dev_warn(charger->dev, "Unable to get versions of EC_CMD_PCHG (err:%d)\n", ret); return false; } return !!(rsp.version_mask & BIT(pchg_cmd_version)); } static int cros_pchg_port_count(const struct charger_data *charger) { struct ec_response_pchg_count rsp; int ret; ret = cros_pchg_ec_command(charger, 0, EC_CMD_PCHG_COUNT, NULL, 0, &rsp, sizeof(rsp)); if (ret < 0) { dev_warn(charger->dev, "Unable to get number or ports (err:%d)\n", ret); return ret; } return rsp.port_count; } static int cros_pchg_get_status(struct port_data *port) { struct charger_data *charger = port->charger; struct ec_params_pchg req; struct ec_response_pchg rsp; struct device *dev = charger->dev; int old_status = port->psy_status; int old_percentage = port->battery_percentage; int ret; req.port = port->port_number; ret = cros_pchg_ec_command(charger, pchg_cmd_version, EC_CMD_PCHG, &req, sizeof(req), &rsp, sizeof(rsp)); if (ret < 0) { dev_err(dev, "Unable to get port.%d status (err:%d)\n", port->port_number, ret); return ret; } switch (rsp.state) { case PCHG_STATE_RESET: case PCHG_STATE_INITIALIZED: case PCHG_STATE_ENABLED: default: port->psy_status = POWER_SUPPLY_STATUS_UNKNOWN; port->charge_type = POWER_SUPPLY_CHARGE_TYPE_NONE; break; case PCHG_STATE_DETECTED: port->psy_status = POWER_SUPPLY_STATUS_CHARGING; port->charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case PCHG_STATE_CHARGING: port->psy_status = POWER_SUPPLY_STATUS_CHARGING; port->charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD; break; case PCHG_STATE_FULL: port->psy_status = POWER_SUPPLY_STATUS_FULL; port->charge_type = POWER_SUPPLY_CHARGE_TYPE_NONE; break; } port->battery_percentage = rsp.battery_percentage; if (port->psy_status != old_status || port->battery_percentage != old_percentage) power_supply_changed(port->psy); dev_dbg(dev, "Port %d: state=%d battery=%d%%\n", port->port_number, rsp.state, rsp.battery_percentage); return 0; } static int cros_pchg_get_port_status(struct port_data *port, bool ratelimit) { int ret; if (ratelimit && time_is_after_jiffies(port->last_update + PCHG_CACHE_UPDATE_DELAY)) return 0; ret = cros_pchg_get_status(port); if (ret < 0) return ret; port->last_update = jiffies; return ret; } static int cros_pchg_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct port_data *port = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_CAPACITY: case POWER_SUPPLY_PROP_CHARGE_TYPE: cros_pchg_get_port_status(port, true); break; default: break; } switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = port->psy_status; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = port->battery_percentage; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: val->intval = port->charge_type; break; case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_DEVICE; break; default: return -EINVAL; } return 0; } static int cros_pchg_event(const struct charger_data *charger) { int i; for (i = 0; i < charger->num_registered_psy; i++) cros_pchg_get_port_status(charger->ports[i], false); return NOTIFY_OK; } static int cros_ec_notify(struct notifier_block *nb, unsigned long queued_during_suspend, void *data) { struct cros_ec_device *ec_dev = data; struct charger_data *charger = container_of(nb, struct charger_data, notifier); u32 host_event; if (ec_dev->event_data.event_type != EC_MKBP_EVENT_PCHG || ec_dev->event_size != sizeof(host_event)) return NOTIFY_DONE; host_event = get_unaligned_le32(&ec_dev->event_data.data.host_event); if (!(host_event & EC_MKBP_PCHG_DEVICE_EVENT)) return NOTIFY_DONE; return cros_pchg_event(charger); } static int cros_pchg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct cros_ec_dev *ec_dev = dev_get_drvdata(dev->parent); struct cros_ec_device *ec_device = ec_dev->ec_dev; struct power_supply_desc *psy_desc; struct charger_data *charger; struct power_supply *psy; struct port_data *port; struct notifier_block *nb; int num_ports; int ret; int i; charger = devm_kzalloc(dev, sizeof(*charger), GFP_KERNEL); if (!charger) return -ENOMEM; charger->dev = dev; charger->ec_dev = ec_dev; charger->ec_device = ec_device; platform_set_drvdata(pdev, charger); ret = cros_pchg_port_count(charger); if (ret <= 0) { /* * This feature is enabled by the EC and the kernel driver is * included by default for CrOS devices. Don't need to be loud * since this error can be normal. */ dev_info(dev, "No peripheral charge ports (err:%d)\n", ret); return -ENODEV; } if (!cros_pchg_cmd_ver_check(charger)) { dev_err(dev, "EC_CMD_PCHG version %d isn't available.\n", pchg_cmd_version); return -EOPNOTSUPP; } num_ports = ret; if (num_ports > EC_PCHG_MAX_PORTS) { dev_err(dev, "Too many peripheral charge ports (%d)\n", num_ports); return -ENOBUFS; } dev_info(dev, "%d peripheral charge ports found\n", num_ports); for (i = 0; i < num_ports; i++) { struct power_supply_config psy_cfg = {}; port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL); if (!port) return -ENOMEM; port->charger = charger; port->port_number = i; snprintf(port->name, sizeof(port->name), PCHG_DIR_NAME, i); psy_desc = &port->psy_desc; psy_desc->name = port->name; psy_desc->type = POWER_SUPPLY_TYPE_BATTERY; psy_desc->get_property = cros_pchg_get_prop; psy_desc->external_power_changed = NULL; psy_desc->properties = cros_pchg_props; psy_desc->num_properties = ARRAY_SIZE(cros_pchg_props); psy_cfg.drv_data = port; psy = devm_power_supply_register(dev, psy_desc, &psy_cfg); if (IS_ERR(psy)) return dev_err_probe(dev, PTR_ERR(psy), "Failed to register power supply\n"); port->psy = psy; charger->ports[charger->num_registered_psy++] = port; } if (!charger->num_registered_psy) return -ENODEV; nb = &charger->notifier; nb->notifier_call = cros_ec_notify; ret = blocking_notifier_chain_register(&ec_dev->ec_dev->event_notifier, nb); if (ret < 0) dev_err(dev, "Failed to register notifier (err:%d)\n", ret); return 0; } #ifdef CONFIG_PM_SLEEP static int __maybe_unused cros_pchg_resume(struct device *dev) { struct charger_data *charger = dev_get_drvdata(dev); /* * Sync all ports on resume in case reports from EC are lost during * the last suspend. */ cros_pchg_event(charger); return 0; } #endif static SIMPLE_DEV_PM_OPS(cros_pchg_pm_ops, NULL, cros_pchg_resume); static struct platform_driver cros_pchg_driver = { .driver = { .name = DRV_NAME, .pm = &cros_pchg_pm_ops, }, .probe = cros_pchg_probe }; module_platform_driver(cros_pchg_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ChromeOS EC peripheral device charger"); MODULE_ALIAS("platform:" DRV_NAME);
linux-master
drivers/power/supply/cros_peripheral_charger.c
/* * Battery power supply driver for X-Powers AXP20X and AXP22X PMICs * * Copyright 2016 Free Electrons NextThing Co. * Quentin Schulz <[email protected]> * * This driver is based on a previous upstreaming attempt by: * Bruno Prémont <[email protected]> * * This file is subject to the terms and conditions of the GNU General * Public License. See the file "COPYING" in the main directory of this * archive for more details. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/err.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/iio/iio.h> #include <linux/iio/consumer.h> #include <linux/mfd/axp20x.h> #define AXP20X_PWR_STATUS_BAT_CHARGING BIT(2) #define AXP20X_PWR_OP_BATT_PRESENT BIT(5) #define AXP20X_PWR_OP_BATT_ACTIVATED BIT(3) #define AXP209_FG_PERCENT GENMASK(6, 0) #define AXP22X_FG_VALID BIT(7) #define AXP20X_CHRG_CTRL1_ENABLE BIT(7) #define AXP20X_CHRG_CTRL1_TGT_VOLT GENMASK(6, 5) #define AXP20X_CHRG_CTRL1_TGT_4_1V (0 << 5) #define AXP20X_CHRG_CTRL1_TGT_4_15V (1 << 5) #define AXP20X_CHRG_CTRL1_TGT_4_2V (2 << 5) #define AXP20X_CHRG_CTRL1_TGT_4_36V (3 << 5) #define AXP22X_CHRG_CTRL1_TGT_4_22V (1 << 5) #define AXP22X_CHRG_CTRL1_TGT_4_24V (3 << 5) #define AXP813_CHRG_CTRL1_TGT_4_35V (3 << 5) #define AXP20X_CHRG_CTRL1_TGT_CURR GENMASK(3, 0) #define AXP20X_V_OFF_MASK GENMASK(2, 0) struct axp20x_batt_ps; struct axp_data { int ccc_scale; int ccc_offset; bool has_fg_valid; int (*get_max_voltage)(struct axp20x_batt_ps *batt, int *val); int (*set_max_voltage)(struct axp20x_batt_ps *batt, int val); }; struct axp20x_batt_ps { struct regmap *regmap; struct power_supply *batt; struct device *dev; struct iio_channel *batt_chrg_i; struct iio_channel *batt_dischrg_i; struct iio_channel *batt_v; /* Maximum constant charge current */ unsigned int max_ccc; const struct axp_data *data; }; static int axp20x_battery_get_max_voltage(struct axp20x_batt_ps *axp20x_batt, int *val) { int ret, reg; ret = regmap_read(axp20x_batt->regmap, AXP20X_CHRG_CTRL1, &reg); if (ret) return ret; switch (reg & AXP20X_CHRG_CTRL1_TGT_VOLT) { case AXP20X_CHRG_CTRL1_TGT_4_1V: *val = 4100000; break; case AXP20X_CHRG_CTRL1_TGT_4_15V: *val = 4150000; break; case AXP20X_CHRG_CTRL1_TGT_4_2V: *val = 4200000; break; case AXP20X_CHRG_CTRL1_TGT_4_36V: *val = 4360000; break; default: return -EINVAL; } return 0; } static int axp22x_battery_get_max_voltage(struct axp20x_batt_ps *axp20x_batt, int *val) { int ret, reg; ret = regmap_read(axp20x_batt->regmap, AXP20X_CHRG_CTRL1, &reg); if (ret) return ret; switch (reg & AXP20X_CHRG_CTRL1_TGT_VOLT) { case AXP20X_CHRG_CTRL1_TGT_4_1V: *val = 4100000; break; case AXP20X_CHRG_CTRL1_TGT_4_2V: *val = 4200000; break; case AXP22X_CHRG_CTRL1_TGT_4_22V: *val = 4220000; break; case AXP22X_CHRG_CTRL1_TGT_4_24V: *val = 4240000; break; default: return -EINVAL; } return 0; } static int axp813_battery_get_max_voltage(struct axp20x_batt_ps *axp20x_batt, int *val) { int ret, reg; ret = regmap_read(axp20x_batt->regmap, AXP20X_CHRG_CTRL1, &reg); if (ret) return ret; switch (reg & AXP20X_CHRG_CTRL1_TGT_VOLT) { case AXP20X_CHRG_CTRL1_TGT_4_1V: *val = 4100000; break; case AXP20X_CHRG_CTRL1_TGT_4_15V: *val = 4150000; break; case AXP20X_CHRG_CTRL1_TGT_4_2V: *val = 4200000; break; case AXP813_CHRG_CTRL1_TGT_4_35V: *val = 4350000; break; default: return -EINVAL; } return 0; } static int axp20x_get_constant_charge_current(struct axp20x_batt_ps *axp, int *val) { int ret; ret = regmap_read(axp->regmap, AXP20X_CHRG_CTRL1, val); if (ret) return ret; *val &= AXP20X_CHRG_CTRL1_TGT_CURR; *val = *val * axp->data->ccc_scale + axp->data->ccc_offset; return 0; } static int axp20x_battery_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct axp20x_batt_ps *axp20x_batt = power_supply_get_drvdata(psy); int ret = 0, reg, val1; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_ONLINE: ret = regmap_read(axp20x_batt->regmap, AXP20X_PWR_OP_MODE, &reg); if (ret) return ret; val->intval = !!(reg & AXP20X_PWR_OP_BATT_PRESENT); break; case POWER_SUPPLY_PROP_STATUS: ret = regmap_read(axp20x_batt->regmap, AXP20X_PWR_INPUT_STATUS, &reg); if (ret) return ret; if (reg & AXP20X_PWR_STATUS_BAT_CHARGING) { val->intval = POWER_SUPPLY_STATUS_CHARGING; return 0; } ret = iio_read_channel_processed(axp20x_batt->batt_dischrg_i, &val1); if (ret) return ret; if (val1) { val->intval = POWER_SUPPLY_STATUS_DISCHARGING; return 0; } ret = regmap_read(axp20x_batt->regmap, AXP20X_FG_RES, &val1); if (ret) return ret; /* * Fuel Gauge data takes 7 bits but the stored value seems to be * directly the raw percentage without any scaling to 7 bits. */ if ((val1 & AXP209_FG_PERCENT) == 100) val->intval = POWER_SUPPLY_STATUS_FULL; else val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case POWER_SUPPLY_PROP_HEALTH: ret = regmap_read(axp20x_batt->regmap, AXP20X_PWR_OP_MODE, &val1); if (ret) return ret; if (val1 & AXP20X_PWR_OP_BATT_ACTIVATED) { val->intval = POWER_SUPPLY_HEALTH_DEAD; return 0; } val->intval = POWER_SUPPLY_HEALTH_GOOD; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = axp20x_get_constant_charge_current(axp20x_batt, &val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = axp20x_batt->max_ccc; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = regmap_read(axp20x_batt->regmap, AXP20X_PWR_INPUT_STATUS, &reg); if (ret) return ret; if (reg & AXP20X_PWR_STATUS_BAT_CHARGING) { ret = iio_read_channel_processed(axp20x_batt->batt_chrg_i, &val->intval); } else { ret = iio_read_channel_processed(axp20x_batt->batt_dischrg_i, &val1); val->intval = -val1; } if (ret) return ret; /* IIO framework gives mA but Power Supply framework gives uA */ val->intval *= 1000; break; case POWER_SUPPLY_PROP_CAPACITY: /* When no battery is present, return capacity is 100% */ ret = regmap_read(axp20x_batt->regmap, AXP20X_PWR_OP_MODE, &reg); if (ret) return ret; if (!(reg & AXP20X_PWR_OP_BATT_PRESENT)) { val->intval = 100; return 0; } ret = regmap_read(axp20x_batt->regmap, AXP20X_FG_RES, &reg); if (ret) return ret; if (axp20x_batt->data->has_fg_valid && !(reg & AXP22X_FG_VALID)) return -EINVAL; /* * Fuel Gauge data takes 7 bits but the stored value seems to be * directly the raw percentage without any scaling to 7 bits. */ val->intval = reg & AXP209_FG_PERCENT; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: return axp20x_batt->data->get_max_voltage(axp20x_batt, &val->intval); case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: ret = regmap_read(axp20x_batt->regmap, AXP20X_V_OFF, &reg); if (ret) return ret; val->intval = 2600000 + 100000 * (reg & AXP20X_V_OFF_MASK); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = iio_read_channel_processed(axp20x_batt->batt_v, &val->intval); if (ret) return ret; /* IIO framework gives mV but Power Supply framework gives uV */ val->intval *= 1000; break; default: return -EINVAL; } return 0; } static int axp22x_battery_set_max_voltage(struct axp20x_batt_ps *axp20x_batt, int val) { switch (val) { case 4100000: val = AXP20X_CHRG_CTRL1_TGT_4_1V; break; case 4200000: val = AXP20X_CHRG_CTRL1_TGT_4_2V; break; default: /* * AXP20x max voltage can be set to 4.36V and AXP22X max voltage * can be set to 4.22V and 4.24V, but these voltages are too * high for Lithium based batteries (AXP PMICs are supposed to * be used with these kinds of battery). */ return -EINVAL; } return regmap_update_bits(axp20x_batt->regmap, AXP20X_CHRG_CTRL1, AXP20X_CHRG_CTRL1_TGT_VOLT, val); } static int axp20x_battery_set_max_voltage(struct axp20x_batt_ps *axp20x_batt, int val) { switch (val) { case 4100000: val = AXP20X_CHRG_CTRL1_TGT_4_1V; break; case 4150000: val = AXP20X_CHRG_CTRL1_TGT_4_15V; break; case 4200000: val = AXP20X_CHRG_CTRL1_TGT_4_2V; break; default: /* * AXP20x max voltage can be set to 4.36V and AXP22X max voltage * can be set to 4.22V and 4.24V, but these voltages are too * high for Lithium based batteries (AXP PMICs are supposed to * be used with these kinds of battery). */ return -EINVAL; } return regmap_update_bits(axp20x_batt->regmap, AXP20X_CHRG_CTRL1, AXP20X_CHRG_CTRL1_TGT_VOLT, val); } static int axp20x_set_constant_charge_current(struct axp20x_batt_ps *axp_batt, int charge_current) { if (charge_current > axp_batt->max_ccc) return -EINVAL; charge_current = (charge_current - axp_batt->data->ccc_offset) / axp_batt->data->ccc_scale; if (charge_current > AXP20X_CHRG_CTRL1_TGT_CURR || charge_current < 0) return -EINVAL; return regmap_update_bits(axp_batt->regmap, AXP20X_CHRG_CTRL1, AXP20X_CHRG_CTRL1_TGT_CURR, charge_current); } static int axp20x_set_max_constant_charge_current(struct axp20x_batt_ps *axp, int charge_current) { bool lower_max = false; charge_current = (charge_current - axp->data->ccc_offset) / axp->data->ccc_scale; if (charge_current > AXP20X_CHRG_CTRL1_TGT_CURR || charge_current < 0) return -EINVAL; charge_current = charge_current * axp->data->ccc_scale + axp->data->ccc_offset; if (charge_current > axp->max_ccc) dev_warn(axp->dev, "Setting max constant charge current higher than previously defined. Note that increasing the constant charge current may damage your battery.\n"); else lower_max = true; axp->max_ccc = charge_current; if (lower_max) { int current_cc; axp20x_get_constant_charge_current(axp, &current_cc); if (current_cc > charge_current) axp20x_set_constant_charge_current(axp, charge_current); } return 0; } static int axp20x_set_voltage_min_design(struct axp20x_batt_ps *axp_batt, int min_voltage) { int val1 = (min_voltage - 2600000) / 100000; if (val1 < 0 || val1 > AXP20X_V_OFF_MASK) return -EINVAL; return regmap_update_bits(axp_batt->regmap, AXP20X_V_OFF, AXP20X_V_OFF_MASK, val1); } static int axp20x_battery_set_prop(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct axp20x_batt_ps *axp20x_batt = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: return axp20x_set_voltage_min_design(axp20x_batt, val->intval); case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: return axp20x_batt->data->set_max_voltage(axp20x_batt, val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return axp20x_set_constant_charge_current(axp20x_batt, val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: return axp20x_set_max_constant_charge_current(axp20x_batt, val->intval); case POWER_SUPPLY_PROP_STATUS: switch (val->intval) { case POWER_SUPPLY_STATUS_CHARGING: return regmap_update_bits(axp20x_batt->regmap, AXP20X_CHRG_CTRL1, AXP20X_CHRG_CTRL1_ENABLE, AXP20X_CHRG_CTRL1_ENABLE); case POWER_SUPPLY_STATUS_DISCHARGING: case POWER_SUPPLY_STATUS_NOT_CHARGING: return regmap_update_bits(axp20x_batt->regmap, AXP20X_CHRG_CTRL1, AXP20X_CHRG_CTRL1_ENABLE, 0); } fallthrough; default: return -EINVAL; } } static enum power_supply_property axp20x_battery_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_CAPACITY, }; static int axp20x_battery_prop_writeable(struct power_supply *psy, enum power_supply_property psp) { return psp == POWER_SUPPLY_PROP_STATUS || psp == POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN || psp == POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN || psp == POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT || psp == POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX; } static const struct power_supply_desc axp20x_batt_ps_desc = { .name = "axp20x-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = axp20x_battery_props, .num_properties = ARRAY_SIZE(axp20x_battery_props), .property_is_writeable = axp20x_battery_prop_writeable, .get_property = axp20x_battery_get_prop, .set_property = axp20x_battery_set_prop, }; static const struct axp_data axp209_data = { .ccc_scale = 100000, .ccc_offset = 300000, .get_max_voltage = axp20x_battery_get_max_voltage, .set_max_voltage = axp20x_battery_set_max_voltage, }; static const struct axp_data axp221_data = { .ccc_scale = 150000, .ccc_offset = 300000, .has_fg_valid = true, .get_max_voltage = axp22x_battery_get_max_voltage, .set_max_voltage = axp22x_battery_set_max_voltage, }; static const struct axp_data axp813_data = { .ccc_scale = 200000, .ccc_offset = 200000, .has_fg_valid = true, .get_max_voltage = axp813_battery_get_max_voltage, .set_max_voltage = axp20x_battery_set_max_voltage, }; static const struct of_device_id axp20x_battery_ps_id[] = { { .compatible = "x-powers,axp209-battery-power-supply", .data = (void *)&axp209_data, }, { .compatible = "x-powers,axp221-battery-power-supply", .data = (void *)&axp221_data, }, { .compatible = "x-powers,axp813-battery-power-supply", .data = (void *)&axp813_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, axp20x_battery_ps_id); static int axp20x_power_probe(struct platform_device *pdev) { struct axp20x_batt_ps *axp20x_batt; struct power_supply_config psy_cfg = {}; struct power_supply_battery_info *info; struct device *dev = &pdev->dev; if (!of_device_is_available(pdev->dev.of_node)) return -ENODEV; axp20x_batt = devm_kzalloc(&pdev->dev, sizeof(*axp20x_batt), GFP_KERNEL); if (!axp20x_batt) return -ENOMEM; axp20x_batt->dev = &pdev->dev; axp20x_batt->batt_v = devm_iio_channel_get(&pdev->dev, "batt_v"); if (IS_ERR(axp20x_batt->batt_v)) { if (PTR_ERR(axp20x_batt->batt_v) == -ENODEV) return -EPROBE_DEFER; return PTR_ERR(axp20x_batt->batt_v); } axp20x_batt->batt_chrg_i = devm_iio_channel_get(&pdev->dev, "batt_chrg_i"); if (IS_ERR(axp20x_batt->batt_chrg_i)) { if (PTR_ERR(axp20x_batt->batt_chrg_i) == -ENODEV) return -EPROBE_DEFER; return PTR_ERR(axp20x_batt->batt_chrg_i); } axp20x_batt->batt_dischrg_i = devm_iio_channel_get(&pdev->dev, "batt_dischrg_i"); if (IS_ERR(axp20x_batt->batt_dischrg_i)) { if (PTR_ERR(axp20x_batt->batt_dischrg_i) == -ENODEV) return -EPROBE_DEFER; return PTR_ERR(axp20x_batt->batt_dischrg_i); } axp20x_batt->regmap = dev_get_regmap(pdev->dev.parent, NULL); platform_set_drvdata(pdev, axp20x_batt); psy_cfg.drv_data = axp20x_batt; psy_cfg.of_node = pdev->dev.of_node; axp20x_batt->data = (struct axp_data *)of_device_get_match_data(dev); axp20x_batt->batt = devm_power_supply_register(&pdev->dev, &axp20x_batt_ps_desc, &psy_cfg); if (IS_ERR(axp20x_batt->batt)) { dev_err(&pdev->dev, "failed to register power supply: %ld\n", PTR_ERR(axp20x_batt->batt)); return PTR_ERR(axp20x_batt->batt); } if (!power_supply_get_battery_info(axp20x_batt->batt, &info)) { int vmin = info->voltage_min_design_uv; int ccc = info->constant_charge_current_max_ua; if (vmin > 0 && axp20x_set_voltage_min_design(axp20x_batt, vmin)) dev_err(&pdev->dev, "couldn't set voltage_min_design\n"); /* Set max to unverified value to be able to set CCC */ axp20x_batt->max_ccc = ccc; if (ccc <= 0 || axp20x_set_constant_charge_current(axp20x_batt, ccc)) { dev_err(&pdev->dev, "couldn't set constant charge current from DT: fallback to minimum value\n"); ccc = 300000; axp20x_batt->max_ccc = ccc; axp20x_set_constant_charge_current(axp20x_batt, ccc); } } /* * Update max CCC to a valid value if battery info is present or set it * to current register value by default. */ axp20x_get_constant_charge_current(axp20x_batt, &axp20x_batt->max_ccc); return 0; } static struct platform_driver axp20x_batt_driver = { .probe = axp20x_power_probe, .driver = { .name = "axp20x-battery-power-supply", .of_match_table = axp20x_battery_ps_id, }, }; module_platform_driver(axp20x_batt_driver); MODULE_DESCRIPTION("Battery power supply driver for AXP20X and AXP22X PMICs"); MODULE_AUTHOR("Quentin Schulz <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/axp20x_battery.c
// SPDX-License-Identifier: GPL-2.0 /* * Battery driver for the Ingenic JZ47xx SoCs * Copyright (c) 2019 Artur Rojek <[email protected]> * * based on drivers/power/supply/jz4740-battery.c */ #include <linux/iio/consumer.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/property.h> struct ingenic_battery { struct device *dev; struct iio_channel *channel; struct power_supply_desc desc; struct power_supply *battery; struct power_supply_battery_info *info; }; static int ingenic_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ingenic_battery *bat = power_supply_get_drvdata(psy); struct power_supply_battery_info *info = bat->info; int ret; switch (psp) { case POWER_SUPPLY_PROP_HEALTH: ret = iio_read_channel_processed(bat->channel, &val->intval); val->intval *= 1000; if (val->intval < info->voltage_min_design_uv) val->intval = POWER_SUPPLY_HEALTH_DEAD; else if (val->intval > info->voltage_max_design_uv) val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else val->intval = POWER_SUPPLY_HEALTH_GOOD; return ret; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = iio_read_channel_processed(bat->channel, &val->intval); val->intval *= 1000; return ret; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = info->voltage_min_design_uv; return 0; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = info->voltage_max_design_uv; return 0; default: return -EINVAL; } } /* Set the most appropriate IIO channel voltage reference scale * based on the battery's max voltage. */ static int ingenic_battery_set_scale(struct ingenic_battery *bat) { const int *scale_raw; int scale_len, scale_type, best_idx = -1, best_mV, max_raw, i, ret; u64 max_mV; ret = iio_read_max_channel_raw(bat->channel, &max_raw); if (ret) { dev_err(bat->dev, "Unable to read max raw channel value\n"); return ret; } ret = iio_read_avail_channel_attribute(bat->channel, &scale_raw, &scale_type, &scale_len, IIO_CHAN_INFO_SCALE); if (ret < 0) { dev_err(bat->dev, "Unable to read channel avail scale\n"); return ret; } if (ret != IIO_AVAIL_LIST || scale_type != IIO_VAL_FRACTIONAL_LOG2) return -EINVAL; max_mV = bat->info->voltage_max_design_uv / 1000; for (i = 0; i < scale_len; i += 2) { u64 scale_mV = (max_raw * scale_raw[i]) >> scale_raw[i + 1]; if (scale_mV < max_mV) continue; if (best_idx >= 0 && scale_mV > best_mV) continue; best_mV = scale_mV; best_idx = i; } if (best_idx < 0) { dev_err(bat->dev, "Unable to find matching voltage scale\n"); return -EINVAL; } /* Only set scale if there is more than one (fractional) entry */ if (scale_len > 2) { ret = iio_write_channel_attribute(bat->channel, scale_raw[best_idx], scale_raw[best_idx + 1], IIO_CHAN_INFO_SCALE); if (ret) return ret; } return 0; } static enum power_supply_property ingenic_battery_properties[] = { POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, }; static int ingenic_battery_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ingenic_battery *bat; struct power_supply_config psy_cfg = {}; struct power_supply_desc *desc; int ret; bat = devm_kzalloc(dev, sizeof(*bat), GFP_KERNEL); if (!bat) return -ENOMEM; bat->dev = dev; bat->channel = devm_iio_channel_get(dev, "battery"); if (IS_ERR(bat->channel)) return PTR_ERR(bat->channel); desc = &bat->desc; desc->name = "jz-battery"; desc->type = POWER_SUPPLY_TYPE_BATTERY; desc->properties = ingenic_battery_properties; desc->num_properties = ARRAY_SIZE(ingenic_battery_properties); desc->get_property = ingenic_battery_get_property; psy_cfg.drv_data = bat; psy_cfg.of_node = dev->of_node; bat->battery = devm_power_supply_register(dev, desc, &psy_cfg); if (IS_ERR(bat->battery)) return dev_err_probe(dev, PTR_ERR(bat->battery), "Unable to register battery\n"); ret = power_supply_get_battery_info(bat->battery, &bat->info); if (ret) { dev_err(dev, "Unable to get battery info: %d\n", ret); return ret; } if (bat->info->voltage_min_design_uv < 0) { dev_err(dev, "Unable to get voltage min design\n"); return bat->info->voltage_min_design_uv; } if (bat->info->voltage_max_design_uv < 0) { dev_err(dev, "Unable to get voltage max design\n"); return bat->info->voltage_max_design_uv; } return ingenic_battery_set_scale(bat); } #ifdef CONFIG_OF static const struct of_device_id ingenic_battery_of_match[] = { { .compatible = "ingenic,jz4740-battery", }, { }, }; MODULE_DEVICE_TABLE(of, ingenic_battery_of_match); #endif static struct platform_driver ingenic_battery_driver = { .driver = { .name = "ingenic-battery", .of_match_table = of_match_ptr(ingenic_battery_of_match), }, .probe = ingenic_battery_probe, }; module_platform_driver(ingenic_battery_driver); MODULE_DESCRIPTION("Battery driver for Ingenic JZ47xx SoCs"); MODULE_AUTHOR("Artur Rojek <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/ingenic-battery.c
// SPDX-License-Identifier: GPL-2.0 /* * Battery data and characteristics for Samsung SDI (Samsung Digital Interface) * batteries. The data is retrieved automatically into drivers using * the power_supply_get_battery_info() call. * * The BTI (battery type indicator) resistance in the code drops was very * unreliable. The resistance listed here was obtained by simply measuring * the BTI resistance with a multimeter on the battery. */ #include <linux/module.h> #include <linux/power_supply.h> #include "samsung-sdi-battery.h" struct samsung_sdi_battery { char *compatible; char *name; struct power_supply_battery_info info; }; /* * Voltage to internal resistance tables. The internal resistance varies * depending on the VBAT voltage, so look this up from a table. Different * tables apply depending on whether we are charging or not. */ static struct power_supply_vbat_ri_table samsung_vbat2res_discharging_eb_l1m7flu[] = { { .vbat_uv = 4240000, .ri_uohm = 160000 }, { .vbat_uv = 4210000, .ri_uohm = 179000 }, { .vbat_uv = 4180000, .ri_uohm = 183000 }, { .vbat_uv = 4160000, .ri_uohm = 184000 }, { .vbat_uv = 4140000, .ri_uohm = 191000 }, { .vbat_uv = 4120000, .ri_uohm = 204000 }, { .vbat_uv = 4076000, .ri_uohm = 220000 }, { .vbat_uv = 4030000, .ri_uohm = 227000 }, { .vbat_uv = 3986000, .ri_uohm = 215000 }, { .vbat_uv = 3916000, .ri_uohm = 221000 }, { .vbat_uv = 3842000, .ri_uohm = 259000 }, { .vbat_uv = 3773000, .ri_uohm = 287000 }, { .vbat_uv = 3742000, .ri_uohm = 283000 }, { .vbat_uv = 3709000, .ri_uohm = 277000 }, { .vbat_uv = 3685000, .ri_uohm = 297000 }, { .vbat_uv = 3646000, .ri_uohm = 310000 }, { .vbat_uv = 3616000, .ri_uohm = 331000 }, { .vbat_uv = 3602000, .ri_uohm = 370000 }, { .vbat_uv = 3578000, .ri_uohm = 350000 }, { .vbat_uv = 3553000, .ri_uohm = 321000 }, { .vbat_uv = 3503000, .ri_uohm = 322000 }, { .vbat_uv = 3400000, .ri_uohm = 269000 }, { .vbat_uv = 3360000, .ri_uohm = 328000 }, { .vbat_uv = 3330000, .ri_uohm = 305000 }, { .vbat_uv = 3300000, .ri_uohm = 339000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_charging_eb_l1m7flu[] = { { .vbat_uv = 4302000, .ri_uohm = 230000 }, { .vbat_uv = 4276000, .ri_uohm = 345000 }, { .vbat_uv = 4227000, .ri_uohm = 345000 }, { .vbat_uv = 4171000, .ri_uohm = 346000 }, { .vbat_uv = 4134000, .ri_uohm = 311000 }, { .vbat_uv = 4084000, .ri_uohm = 299000 }, { .vbat_uv = 4052000, .ri_uohm = 316000 }, { .vbat_uv = 4012000, .ri_uohm = 309000 }, { .vbat_uv = 3961000, .ri_uohm = 303000 }, { .vbat_uv = 3939000, .ri_uohm = 280000 }, { .vbat_uv = 3904000, .ri_uohm = 261000 }, { .vbat_uv = 3850000, .ri_uohm = 212000 }, { .vbat_uv = 3800000, .ri_uohm = 232000 }, { .vbat_uv = 3750000, .ri_uohm = 177000 }, { .vbat_uv = 3712000, .ri_uohm = 164000 }, { .vbat_uv = 3674000, .ri_uohm = 161000 }, { .vbat_uv = 3590000, .ri_uohm = 164000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_discharging_eb425161la[] = { { .vbat_uv = 4240000, .ri_uohm = 160000 }, { .vbat_uv = 4210000, .ri_uohm = 179000 }, { .vbat_uv = 4180000, .ri_uohm = 183000 }, { .vbat_uv = 4160000, .ri_uohm = 184000 }, { .vbat_uv = 4140000, .ri_uohm = 191000 }, { .vbat_uv = 4120000, .ri_uohm = 204000 }, { .vbat_uv = 4080000, .ri_uohm = 200000 }, { .vbat_uv = 4027000, .ri_uohm = 202000 }, { .vbat_uv = 3916000, .ri_uohm = 221000 }, { .vbat_uv = 3842000, .ri_uohm = 259000 }, { .vbat_uv = 3800000, .ri_uohm = 262000 }, { .vbat_uv = 3742000, .ri_uohm = 263000 }, { .vbat_uv = 3709000, .ri_uohm = 277000 }, { .vbat_uv = 3685000, .ri_uohm = 312000 }, { .vbat_uv = 3668000, .ri_uohm = 258000 }, { .vbat_uv = 3660000, .ri_uohm = 247000 }, { .vbat_uv = 3636000, .ri_uohm = 293000 }, { .vbat_uv = 3616000, .ri_uohm = 331000 }, { .vbat_uv = 3600000, .ri_uohm = 349000 }, { .vbat_uv = 3593000, .ri_uohm = 345000 }, { .vbat_uv = 3585000, .ri_uohm = 344000 }, { .vbat_uv = 3572000, .ri_uohm = 336000 }, { .vbat_uv = 3553000, .ri_uohm = 321000 }, { .vbat_uv = 3517000, .ri_uohm = 336000 }, { .vbat_uv = 3503000, .ri_uohm = 322000 }, { .vbat_uv = 3400000, .ri_uohm = 269000 }, { .vbat_uv = 3360000, .ri_uohm = 328000 }, { .vbat_uv = 3330000, .ri_uohm = 305000 }, { .vbat_uv = 3300000, .ri_uohm = 339000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_charging_eb425161la[] = { { .vbat_uv = 4345000, .ri_uohm = 230000 }, { .vbat_uv = 4329000, .ri_uohm = 238000 }, { .vbat_uv = 4314000, .ri_uohm = 225000 }, { .vbat_uv = 4311000, .ri_uohm = 239000 }, { .vbat_uv = 4294000, .ri_uohm = 235000 }, { .vbat_uv = 4264000, .ri_uohm = 229000 }, { .vbat_uv = 4262000, .ri_uohm = 228000 }, { .vbat_uv = 4252000, .ri_uohm = 236000 }, { .vbat_uv = 4244000, .ri_uohm = 234000 }, { .vbat_uv = 4235000, .ri_uohm = 234000 }, { .vbat_uv = 4227000, .ri_uohm = 238000 }, { .vbat_uv = 4219000, .ri_uohm = 242000 }, { .vbat_uv = 4212000, .ri_uohm = 239000 }, { .vbat_uv = 4206000, .ri_uohm = 231000 }, { .vbat_uv = 4201000, .ri_uohm = 231000 }, { .vbat_uv = 4192000, .ri_uohm = 224000 }, { .vbat_uv = 4184000, .ri_uohm = 238000 }, { .vbat_uv = 4173000, .ri_uohm = 245000 }, { .vbat_uv = 4161000, .ri_uohm = 244000 }, { .vbat_uv = 4146000, .ri_uohm = 244000 }, { .vbat_uv = 4127000, .ri_uohm = 228000 }, { .vbat_uv = 4119000, .ri_uohm = 218000 }, { .vbat_uv = 4112000, .ri_uohm = 215000 }, { .vbat_uv = 4108000, .ri_uohm = 209000 }, { .vbat_uv = 4102000, .ri_uohm = 214000 }, { .vbat_uv = 4096000, .ri_uohm = 215000 }, { .vbat_uv = 4090000, .ri_uohm = 215000 }, { .vbat_uv = 4083000, .ri_uohm = 219000 }, { .vbat_uv = 4078000, .ri_uohm = 208000 }, { .vbat_uv = 4071000, .ri_uohm = 205000 }, { .vbat_uv = 4066000, .ri_uohm = 208000 }, { .vbat_uv = 4061000, .ri_uohm = 210000 }, { .vbat_uv = 4055000, .ri_uohm = 212000 }, { .vbat_uv = 4049000, .ri_uohm = 215000 }, { .vbat_uv = 4042000, .ri_uohm = 212000 }, { .vbat_uv = 4032000, .ri_uohm = 217000 }, { .vbat_uv = 4027000, .ri_uohm = 220000 }, { .vbat_uv = 4020000, .ri_uohm = 210000 }, { .vbat_uv = 4013000, .ri_uohm = 214000 }, { .vbat_uv = 4007000, .ri_uohm = 219000 }, { .vbat_uv = 4003000, .ri_uohm = 229000 }, { .vbat_uv = 3996000, .ri_uohm = 246000 }, { .vbat_uv = 3990000, .ri_uohm = 245000 }, { .vbat_uv = 3984000, .ri_uohm = 242000 }, { .vbat_uv = 3977000, .ri_uohm = 236000 }, { .vbat_uv = 3971000, .ri_uohm = 231000 }, { .vbat_uv = 3966000, .ri_uohm = 229000 }, { .vbat_uv = 3952000, .ri_uohm = 226000 }, { .vbat_uv = 3946000, .ri_uohm = 222000 }, { .vbat_uv = 3941000, .ri_uohm = 222000 }, { .vbat_uv = 3936000, .ri_uohm = 217000 }, { .vbat_uv = 3932000, .ri_uohm = 217000 }, { .vbat_uv = 3928000, .ri_uohm = 212000 }, { .vbat_uv = 3926000, .ri_uohm = 214000 }, { .vbat_uv = 3922000, .ri_uohm = 209000 }, { .vbat_uv = 3917000, .ri_uohm = 215000 }, { .vbat_uv = 3914000, .ri_uohm = 212000 }, { .vbat_uv = 3912000, .ri_uohm = 220000 }, { .vbat_uv = 3910000, .ri_uohm = 226000 }, { .vbat_uv = 3903000, .ri_uohm = 226000 }, { .vbat_uv = 3891000, .ri_uohm = 222000 }, { .vbat_uv = 3871000, .ri_uohm = 221000 }, { .vbat_uv = 3857000, .ri_uohm = 219000 }, { .vbat_uv = 3850000, .ri_uohm = 216000 }, { .vbat_uv = 3843000, .ri_uohm = 212000 }, { .vbat_uv = 3835000, .ri_uohm = 206000 }, { .vbat_uv = 3825000, .ri_uohm = 217000 }, { .vbat_uv = 3824000, .ri_uohm = 220000 }, { .vbat_uv = 3820000, .ri_uohm = 237000 }, { .vbat_uv = 3800000, .ri_uohm = 232000 }, { .vbat_uv = 3750000, .ri_uohm = 177000 }, { .vbat_uv = 3712000, .ri_uohm = 164000 }, { .vbat_uv = 3674000, .ri_uohm = 161000 }, { .vbat_uv = 3590000, .ri_uohm = 164000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_discharging_eb425161lu[] = { { .vbat_uv = 4240000, .ri_uohm = 160000 }, { .vbat_uv = 4210000, .ri_uohm = 179000 }, { .vbat_uv = 4180000, .ri_uohm = 183000 }, { .vbat_uv = 4160000, .ri_uohm = 184000 }, { .vbat_uv = 4140000, .ri_uohm = 191000 }, { .vbat_uv = 4120000, .ri_uohm = 204000 }, { .vbat_uv = 4080000, .ri_uohm = 200000 }, { .vbat_uv = 4027000, .ri_uohm = 202000 }, { .vbat_uv = 3916000, .ri_uohm = 221000 }, { .vbat_uv = 3842000, .ri_uohm = 259000 }, { .vbat_uv = 3800000, .ri_uohm = 262000 }, { .vbat_uv = 3742000, .ri_uohm = 263000 }, { .vbat_uv = 3708000, .ri_uohm = 277000 }, { .vbat_uv = 3684000, .ri_uohm = 272000 }, { .vbat_uv = 3664000, .ri_uohm = 278000 }, { .vbat_uv = 3655000, .ri_uohm = 285000 }, { .vbat_uv = 3638000, .ri_uohm = 261000 }, { .vbat_uv = 3624000, .ri_uohm = 259000 }, { .vbat_uv = 3616000, .ri_uohm = 266000 }, { .vbat_uv = 3597000, .ri_uohm = 278000 }, { .vbat_uv = 3581000, .ri_uohm = 281000 }, { .vbat_uv = 3560000, .ri_uohm = 287000 }, { .vbat_uv = 3527000, .ri_uohm = 289000 }, { .vbat_uv = 3512000, .ri_uohm = 286000 }, { .vbat_uv = 3494000, .ri_uohm = 282000 }, { .vbat_uv = 3400000, .ri_uohm = 269000 }, { .vbat_uv = 3360000, .ri_uohm = 328000 }, { .vbat_uv = 3330000, .ri_uohm = 305000 }, { .vbat_uv = 3300000, .ri_uohm = 339000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_charging_eb425161lu[] = { { .vbat_uv = 4346000, .ri_uohm = 293000 }, { .vbat_uv = 4336000, .ri_uohm = 290000 }, { .vbat_uv = 4315000, .ri_uohm = 274000 }, { .vbat_uv = 4310000, .ri_uohm = 264000 }, { .vbat_uv = 4275000, .ri_uohm = 275000 }, { .vbat_uv = 4267000, .ri_uohm = 274000 }, { .vbat_uv = 4227000, .ri_uohm = 262000 }, { .vbat_uv = 4186000, .ri_uohm = 282000 }, { .vbat_uv = 4136000, .ri_uohm = 246000 }, { .vbat_uv = 4110000, .ri_uohm = 242000 }, { .vbat_uv = 4077000, .ri_uohm = 249000 }, { .vbat_uv = 4049000, .ri_uohm = 238000 }, { .vbat_uv = 4017000, .ri_uohm = 268000 }, { .vbat_uv = 3986000, .ri_uohm = 261000 }, { .vbat_uv = 3962000, .ri_uohm = 252000 }, { .vbat_uv = 3940000, .ri_uohm = 235000 }, { .vbat_uv = 3930000, .ri_uohm = 237000 }, { .vbat_uv = 3924000, .ri_uohm = 255000 }, { .vbat_uv = 3910000, .ri_uohm = 244000 }, { .vbat_uv = 3889000, .ri_uohm = 231000 }, { .vbat_uv = 3875000, .ri_uohm = 249000 }, { .vbat_uv = 3850000, .ri_uohm = 212000 }, { .vbat_uv = 3800000, .ri_uohm = 232000 }, { .vbat_uv = 3750000, .ri_uohm = 177000 }, { .vbat_uv = 3712000, .ri_uohm = 164000 }, { .vbat_uv = 3674000, .ri_uohm = 161000 }, { .vbat_uv = 3590000, .ri_uohm = 164000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_discharging_eb485159lu[] = { { .vbat_uv = 4240000, .ri_uohm = 160000 }, { .vbat_uv = 4210000, .ri_uohm = 179000 }, { .vbat_uv = 4180000, .ri_uohm = 183000 }, { .vbat_uv = 4160000, .ri_uohm = 184000 }, { .vbat_uv = 4140000, .ri_uohm = 191000 }, { .vbat_uv = 4120000, .ri_uohm = 204000 }, { .vbat_uv = 4080000, .ri_uohm = 200000 }, { .vbat_uv = 4027000, .ri_uohm = 202000 }, { .vbat_uv = 3916000, .ri_uohm = 221000 }, { .vbat_uv = 3842000, .ri_uohm = 259000 }, { .vbat_uv = 3800000, .ri_uohm = 262000 }, { .vbat_uv = 3715000, .ri_uohm = 340000 }, { .vbat_uv = 3700000, .ri_uohm = 300000 }, { .vbat_uv = 3682000, .ri_uohm = 233000 }, { .vbat_uv = 3655000, .ri_uohm = 246000 }, { .vbat_uv = 3639000, .ri_uohm = 260000 }, { .vbat_uv = 3621000, .ri_uohm = 254000 }, { .vbat_uv = 3583000, .ri_uohm = 266000 }, { .vbat_uv = 3536000, .ri_uohm = 274000 }, { .vbat_uv = 3502000, .ri_uohm = 300000 }, { .vbat_uv = 3465000, .ri_uohm = 245000 }, { .vbat_uv = 3438000, .ri_uohm = 225000 }, { .vbat_uv = 3330000, .ri_uohm = 305000 }, { .vbat_uv = 3300000, .ri_uohm = 339000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_charging_eb485159lu[] = { { .vbat_uv = 4302000, .ri_uohm = 200000 }, { .vbat_uv = 4258000, .ri_uohm = 206000 }, { .vbat_uv = 4200000, .ri_uohm = 231000 }, { .vbat_uv = 4150000, .ri_uohm = 198000 }, { .vbat_uv = 4134000, .ri_uohm = 268000 }, { .vbat_uv = 4058000, .ri_uohm = 172000 }, { .vbat_uv = 4003000, .ri_uohm = 227000 }, { .vbat_uv = 3972000, .ri_uohm = 241000 }, { .vbat_uv = 3953000, .ri_uohm = 244000 }, { .vbat_uv = 3950000, .ri_uohm = 213000 }, { .vbat_uv = 3900000, .ri_uohm = 225000 }, { .vbat_uv = 3850000, .ri_uohm = 212000 }, { .vbat_uv = 3800000, .ri_uohm = 232000 }, { .vbat_uv = 3750000, .ri_uohm = 177000 }, { .vbat_uv = 3712000, .ri_uohm = 164000 }, { .vbat_uv = 3674000, .ri_uohm = 161000 }, { .vbat_uv = 3590000, .ri_uohm = 164000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_discharging_eb535151vu[] = { { .vbat_uv = 4071000, .ri_uohm = 158000 }, { .vbat_uv = 4019000, .ri_uohm = 187000 }, { .vbat_uv = 3951000, .ri_uohm = 191000 }, { .vbat_uv = 3901000, .ri_uohm = 193000 }, { .vbat_uv = 3850000, .ri_uohm = 273000 }, { .vbat_uv = 3800000, .ri_uohm = 305000 }, { .vbat_uv = 3750000, .ri_uohm = 205000 }, { .vbat_uv = 3700000, .ri_uohm = 290000 }, { .vbat_uv = 3650000, .ri_uohm = 262000 }, { .vbat_uv = 3618000, .ri_uohm = 290000 }, { .vbat_uv = 3505000, .ri_uohm = 235000 }, { .vbat_uv = 3484000, .ri_uohm = 253000 }, { .vbat_uv = 3413000, .ri_uohm = 243000 }, { .vbat_uv = 3393000, .ri_uohm = 285000 }, { .vbat_uv = 3361000, .ri_uohm = 281000 }, { .vbat_uv = 3302000, .ri_uohm = 286000 }, { .vbat_uv = 3280000, .ri_uohm = 250000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_charging_eb535151vu[] = { { .vbat_uv = 4190000, .ri_uohm = 214000 }, { .vbat_uv = 4159000, .ri_uohm = 252000 }, { .vbat_uv = 4121000, .ri_uohm = 245000 }, { .vbat_uv = 4069000, .ri_uohm = 228000 }, { .vbat_uv = 4046000, .ri_uohm = 229000 }, { .vbat_uv = 4026000, .ri_uohm = 233000 }, { .vbat_uv = 4007000, .ri_uohm = 240000 }, { .vbat_uv = 3982000, .ri_uohm = 291000 }, { .vbat_uv = 3945000, .ri_uohm = 276000 }, { .vbat_uv = 3924000, .ri_uohm = 266000 }, { .vbat_uv = 3910000, .ri_uohm = 258000 }, { .vbat_uv = 3900000, .ri_uohm = 271000 }, { .vbat_uv = 3844000, .ri_uohm = 279000 }, { .vbat_uv = 3772000, .ri_uohm = 217000 }, { .vbat_uv = 3673000, .ri_uohm = 208000 }, { .vbat_uv = 3571000, .ri_uohm = 208000 }, { .vbat_uv = 3510000, .ri_uohm = 228000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_discharging_eb585157lu[] = { { .vbat_uv = 4194000, .ri_uohm = 121000 }, { .vbat_uv = 4169000, .ri_uohm = 188000 }, { .vbat_uv = 4136000, .ri_uohm = 173000 }, { .vbat_uv = 4108000, .ri_uohm = 158000 }, { .vbat_uv = 4064000, .ri_uohm = 143000 }, { .vbat_uv = 3956000, .ri_uohm = 160000 }, { .vbat_uv = 3847000, .ri_uohm = 262000 }, { .vbat_uv = 3806000, .ri_uohm = 280000 }, { .vbat_uv = 3801000, .ri_uohm = 266000 }, { .vbat_uv = 3794000, .ri_uohm = 259000 }, { .vbat_uv = 3785000, .ri_uohm = 234000 }, { .vbat_uv = 3779000, .ri_uohm = 227000 }, { .vbat_uv = 3772000, .ri_uohm = 222000 }, { .vbat_uv = 3765000, .ri_uohm = 221000 }, { .vbat_uv = 3759000, .ri_uohm = 216000 }, { .vbat_uv = 3754000, .ri_uohm = 206000 }, { .vbat_uv = 3747000, .ri_uohm = 212000 }, { .vbat_uv = 3743000, .ri_uohm = 208000 }, { .vbat_uv = 3737000, .ri_uohm = 212000 }, { .vbat_uv = 3733000, .ri_uohm = 200000 }, { .vbat_uv = 3728000, .ri_uohm = 203000 }, { .vbat_uv = 3722000, .ri_uohm = 207000 }, { .vbat_uv = 3719000, .ri_uohm = 208000 }, { .vbat_uv = 3715000, .ri_uohm = 209000 }, { .vbat_uv = 3712000, .ri_uohm = 211000 }, { .vbat_uv = 3709000, .ri_uohm = 210000 }, { .vbat_uv = 3704000, .ri_uohm = 216000 }, { .vbat_uv = 3701000, .ri_uohm = 218000 }, { .vbat_uv = 3698000, .ri_uohm = 222000 }, { .vbat_uv = 3694000, .ri_uohm = 218000 }, { .vbat_uv = 3692000, .ri_uohm = 215000 }, { .vbat_uv = 3688000, .ri_uohm = 224000 }, { .vbat_uv = 3686000, .ri_uohm = 224000 }, { .vbat_uv = 3683000, .ri_uohm = 228000 }, { .vbat_uv = 3681000, .ri_uohm = 228000 }, { .vbat_uv = 3679000, .ri_uohm = 229000 }, { .vbat_uv = 3676000, .ri_uohm = 232000 }, { .vbat_uv = 3675000, .ri_uohm = 229000 }, { .vbat_uv = 3673000, .ri_uohm = 229000 }, { .vbat_uv = 3672000, .ri_uohm = 223000 }, { .vbat_uv = 3669000, .ri_uohm = 224000 }, { .vbat_uv = 3666000, .ri_uohm = 224000 }, { .vbat_uv = 3663000, .ri_uohm = 221000 }, { .vbat_uv = 3660000, .ri_uohm = 218000 }, { .vbat_uv = 3657000, .ri_uohm = 215000 }, { .vbat_uv = 3654000, .ri_uohm = 212000 }, { .vbat_uv = 3649000, .ri_uohm = 215000 }, { .vbat_uv = 3644000, .ri_uohm = 215000 }, { .vbat_uv = 3636000, .ri_uohm = 215000 }, { .vbat_uv = 3631000, .ri_uohm = 206000 }, { .vbat_uv = 3623000, .ri_uohm = 205000 }, { .vbat_uv = 3616000, .ri_uohm = 193000 }, { .vbat_uv = 3605000, .ri_uohm = 193000 }, { .vbat_uv = 3600000, .ri_uohm = 198000 }, { .vbat_uv = 3597000, .ri_uohm = 198000 }, { .vbat_uv = 3592000, .ri_uohm = 203000 }, { .vbat_uv = 3591000, .ri_uohm = 188000 }, { .vbat_uv = 3587000, .ri_uohm = 188000 }, { .vbat_uv = 3583000, .ri_uohm = 177000 }, { .vbat_uv = 3577000, .ri_uohm = 170000 }, { .vbat_uv = 3568000, .ri_uohm = 135000 }, { .vbat_uv = 3552000, .ri_uohm = 54000 }, { .vbat_uv = 3526000, .ri_uohm = 130000 }, { .vbat_uv = 3501000, .ri_uohm = 48000 }, { .vbat_uv = 3442000, .ri_uohm = 183000 }, { .vbat_uv = 3326000, .ri_uohm = 372000 }, { .vbat_uv = 3161000, .ri_uohm = 452000 }, }; static struct power_supply_vbat_ri_table samsung_vbat2res_charging_eb585157lu[] = { { .vbat_uv = 4360000, .ri_uohm = 128000 }, { .vbat_uv = 4325000, .ri_uohm = 130000 }, { .vbat_uv = 4316000, .ri_uohm = 148000 }, { .vbat_uv = 4308000, .ri_uohm = 162000 }, { .vbat_uv = 4301000, .ri_uohm = 162000 }, { .vbat_uv = 4250000, .ri_uohm = 162000 }, { .vbat_uv = 4230000, .ri_uohm = 164000 }, { .vbat_uv = 4030000, .ri_uohm = 164000 }, { .vbat_uv = 4000000, .ri_uohm = 193000 }, { .vbat_uv = 3950000, .ri_uohm = 204000 }, { .vbat_uv = 3850000, .ri_uohm = 210000 }, { .vbat_uv = 3800000, .ri_uohm = 230000 }, { .vbat_uv = 3790000, .ri_uohm = 240000 }, { .vbat_uv = 3780000, .ri_uohm = 311000 }, { .vbat_uv = 3760000, .ri_uohm = 420000 }, { .vbat_uv = 3700000, .ri_uohm = 504000 }, { .vbat_uv = 3600000, .ri_uohm = 565000 }, }; /* * Temperature to internal resistance scaling tables. * * "resistance" is the percentage of the resistance determined from the voltage * so this represents the capacity ratio at different temperatures. * * FIXME: the proper table is missing: Samsung does not provide the necessary * temperature compensation tables so we just state 100% for every temperature. * If you have the datasheets, please provide these tables. */ static struct power_supply_resistance_temp_table samsung_temp2res[] = { { .temp = 50, .resistance = 100 }, { .temp = 40, .resistance = 100 }, { .temp = 30, .resistance = 100 }, { .temp = 20, .resistance = 100 }, { .temp = 10, .resistance = 100 }, { .temp = 00, .resistance = 100 }, { .temp = -10, .resistance = 100 }, { .temp = -20, .resistance = 100 }, }; /* * Capacity tables for different Open Circuit Voltages (OCV). * These must be sorted by falling OCV value. */ static struct power_supply_battery_ocv_table samsung_ocv_cap_eb485159lu[] = { { .ocv = 4330000, .capacity = 100}, { .ocv = 4320000, .capacity = 99}, { .ocv = 4283000, .capacity = 95}, { .ocv = 4246000, .capacity = 92}, { .ocv = 4211000, .capacity = 89}, { .ocv = 4167000, .capacity = 85}, { .ocv = 4146000, .capacity = 83}, { .ocv = 4124000, .capacity = 81}, { .ocv = 4062000, .capacity = 75}, { .ocv = 4013000, .capacity = 70}, { .ocv = 3977000, .capacity = 66}, { .ocv = 3931000, .capacity = 60}, { .ocv = 3914000, .capacity = 58}, { .ocv = 3901000, .capacity = 57}, { .ocv = 3884000, .capacity = 56}, { .ocv = 3870000, .capacity = 55}, { .ocv = 3862000, .capacity = 54}, { .ocv = 3854000, .capacity = 53}, { .ocv = 3838000, .capacity = 50}, { .ocv = 3823000, .capacity = 47}, { .ocv = 3813000, .capacity = 45}, { .ocv = 3807000, .capacity = 43}, { .ocv = 3800000, .capacity = 41}, { .ocv = 3795000, .capacity = 40}, { .ocv = 3786000, .capacity = 37}, { .ocv = 3783000, .capacity = 35}, { .ocv = 3773000, .capacity = 30}, { .ocv = 3758000, .capacity = 25}, { .ocv = 3745000, .capacity = 22}, { .ocv = 3738000, .capacity = 20}, { .ocv = 3733000, .capacity = 19}, { .ocv = 3716000, .capacity = 17}, { .ocv = 3709000, .capacity = 16}, { .ocv = 3698000, .capacity = 15}, { .ocv = 3687000, .capacity = 14}, { .ocv = 3684000, .capacity = 13}, { .ocv = 3684000, .capacity = 12}, { .ocv = 3678000, .capacity = 10}, { .ocv = 3671000, .capacity = 9}, { .ocv = 3665000, .capacity = 8}, { .ocv = 3651000, .capacity = 7}, { .ocv = 3634000, .capacity = 6}, { .ocv = 3601000, .capacity = 5}, { .ocv = 3564000, .capacity = 4}, { .ocv = 3516000, .capacity = 3}, { .ocv = 3456000, .capacity = 2}, { .ocv = 3381000, .capacity = 1}, { .ocv = 3300000, .capacity = 0}, }; /* Same capacity table is used by eb-l1m7flu, eb425161la, eb425161lu */ static struct power_supply_battery_ocv_table samsung_ocv_cap_1500mah[] = { { .ocv = 4328000, .capacity = 100}, { .ocv = 4299000, .capacity = 99}, { .ocv = 4281000, .capacity = 98}, { .ocv = 4241000, .capacity = 95}, { .ocv = 4183000, .capacity = 90}, { .ocv = 4150000, .capacity = 87}, { .ocv = 4116000, .capacity = 84}, { .ocv = 4077000, .capacity = 80}, { .ocv = 4068000, .capacity = 79}, { .ocv = 4058000, .capacity = 77}, { .ocv = 4026000, .capacity = 75}, { .ocv = 3987000, .capacity = 72}, { .ocv = 3974000, .capacity = 69}, { .ocv = 3953000, .capacity = 66}, { .ocv = 3933000, .capacity = 63}, { .ocv = 3911000, .capacity = 60}, { .ocv = 3900000, .capacity = 58}, { .ocv = 3873000, .capacity = 55}, { .ocv = 3842000, .capacity = 52}, { .ocv = 3829000, .capacity = 50}, { .ocv = 3810000, .capacity = 45}, { .ocv = 3793000, .capacity = 40}, { .ocv = 3783000, .capacity = 35}, { .ocv = 3776000, .capacity = 30}, { .ocv = 3762000, .capacity = 25}, { .ocv = 3746000, .capacity = 20}, { .ocv = 3739000, .capacity = 18}, { .ocv = 3715000, .capacity = 15}, { .ocv = 3700000, .capacity = 12}, { .ocv = 3690000, .capacity = 10}, { .ocv = 3680000, .capacity = 9}, { .ocv = 3670000, .capacity = 7}, { .ocv = 3656000, .capacity = 5}, { .ocv = 3634000, .capacity = 4}, { .ocv = 3614000, .capacity = 3}, { .ocv = 3551000, .capacity = 2}, { .ocv = 3458000, .capacity = 1}, { .ocv = 3300000, .capacity = 0}, }; static struct power_supply_battery_ocv_table samsung_ocv_cap_eb535151vu[] = { { .ocv = 4178000, .capacity = 100}, { .ocv = 4148000, .capacity = 99}, { .ocv = 4105000, .capacity = 95}, { .ocv = 4078000, .capacity = 92}, { .ocv = 4057000, .capacity = 89}, { .ocv = 4013000, .capacity = 85}, { .ocv = 3988000, .capacity = 82}, { .ocv = 3962000, .capacity = 77}, { .ocv = 3920000, .capacity = 70}, { .ocv = 3891000, .capacity = 65}, { .ocv = 3874000, .capacity = 62}, { .ocv = 3839000, .capacity = 59}, { .ocv = 3816000, .capacity = 55}, { .ocv = 3798000, .capacity = 50}, { .ocv = 3778000, .capacity = 40}, { .ocv = 3764000, .capacity = 30}, { .ocv = 3743000, .capacity = 25}, { .ocv = 3711000, .capacity = 20}, { .ocv = 3691000, .capacity = 18}, { .ocv = 3685000, .capacity = 15}, { .ocv = 3680000, .capacity = 12}, { .ocv = 3662000, .capacity = 10}, { .ocv = 3638000, .capacity = 9}, { .ocv = 3593000, .capacity = 7}, { .ocv = 3566000, .capacity = 6}, { .ocv = 3497000, .capacity = 4}, { .ocv = 3405000, .capacity = 2}, { .ocv = 3352000, .capacity = 1}, { .ocv = 3300000, .capacity = 0}, }; static struct power_supply_battery_ocv_table samsung_ocv_cap_eb585157lu[] = { { .ocv = 4320000, .capacity = 100}, { .ocv = 4296000, .capacity = 99}, { .ocv = 4283000, .capacity = 98}, { .ocv = 4245000, .capacity = 95}, { .ocv = 4185000, .capacity = 90}, { .ocv = 4152000, .capacity = 87}, { .ocv = 4119000, .capacity = 84}, { .ocv = 4077000, .capacity = 80}, { .ocv = 4057000, .capacity = 78}, { .ocv = 4048000, .capacity = 77}, { .ocv = 4020000, .capacity = 74}, { .ocv = 4003000, .capacity = 72}, { .ocv = 3978000, .capacity = 69}, { .ocv = 3955000, .capacity = 66}, { .ocv = 3934000, .capacity = 63}, { .ocv = 3912000, .capacity = 60}, { .ocv = 3894000, .capacity = 58}, { .ocv = 3860000, .capacity = 55}, { .ocv = 3837000, .capacity = 52}, { .ocv = 3827000, .capacity = 50}, { .ocv = 3806000, .capacity = 45}, { .ocv = 3791000, .capacity = 40}, { .ocv = 3779000, .capacity = 35}, { .ocv = 3770000, .capacity = 30}, { .ocv = 3758000, .capacity = 25}, { .ocv = 3739000, .capacity = 20}, { .ocv = 3730000, .capacity = 18}, { .ocv = 3706000, .capacity = 15}, { .ocv = 3684000, .capacity = 13}, { .ocv = 3675000, .capacity = 10}, { .ocv = 3673000, .capacity = 9}, { .ocv = 3665000, .capacity = 7}, { .ocv = 3649000, .capacity = 5}, { .ocv = 3628000, .capacity = 4}, { .ocv = 3585000, .capacity = 3}, { .ocv = 3525000, .capacity = 2}, { .ocv = 3441000, .capacity = 1}, { .ocv = 3300000, .capacity = 0}, }; static struct power_supply_maintenance_charge_table samsung_maint_charge_table[] = { { /* Maintenance charging phase A, 60 hours */ .charge_current_max_ua = 600000, .charge_voltage_max_uv = 4150000, .charge_safety_timer_minutes = 60*60, }, { /* Maintenance charging phase B, 200 hours */ .charge_current_max_ua = 600000, .charge_voltage_max_uv = 4100000, .charge_safety_timer_minutes = 200*60, } }; static struct samsung_sdi_battery samsung_sdi_batteries[] = { { /* * Used in Samsung GT-I8190 "Golden" * Data from vendor boardfile board-golden-[bm|battery].c */ .compatible = "samsung,eb-l1m7flu", .name = "EB-L1M7FLU", .info = { .charge_full_design_uah = 1500000, .technology = POWER_SUPPLY_TECHNOLOGY_LION, .factory_internal_resistance_uohm = 100000, .factory_internal_resistance_charging_uohm = 200000, /* If you have data on this fix the min_design_uv */ .voltage_min_design_uv = 3320000, .voltage_max_design_uv = 4340000, .overvoltage_limit_uv = 4500000, .constant_charge_current_max_ua = 900000, .constant_charge_voltage_max_uv = 4320000, .charge_term_current_ua = 200000, .charge_restart_voltage_uv = 4300000, .maintenance_charge = samsung_maint_charge_table, .maintenance_charge_size = ARRAY_SIZE(samsung_maint_charge_table), .alert_low_temp_charge_current_ua = 300000, .alert_low_temp_charge_voltage_uv = 4000000, .alert_high_temp_charge_current_ua = 300000, .alert_high_temp_charge_voltage_uv = 4000000, .temp_min = -50, .temp_alert_min = 0, .temp_alert_max = 40, .temp_max = 60, .resist_table = samsung_temp2res, .resist_table_size = ARRAY_SIZE(samsung_temp2res), /* If you have tables for more temperatures, add them */ .ocv_temp[0] = 25, .ocv_table[0] = samsung_ocv_cap_1500mah, .ocv_table_size[0] = ARRAY_SIZE(samsung_ocv_cap_1500mah), .vbat2ri_discharging = samsung_vbat2res_discharging_eb_l1m7flu, .vbat2ri_discharging_size = ARRAY_SIZE(samsung_vbat2res_discharging_eb_l1m7flu), .vbat2ri_charging = samsung_vbat2res_charging_eb_l1m7flu, .vbat2ri_charging_size = ARRAY_SIZE(samsung_vbat2res_charging_eb_l1m7flu), .bti_resistance_ohm = 2400, .bti_resistance_tolerance = 40, }, }, { /* * Used in Samsung SGH-T599 "Codina TMO" and SGH-I407 "Kyle" * Data from vendor boardfile board-kyle-[bm|battery].c */ .compatible = "samsung,eb425161la", .name = "EB425161LA", .info = { .charge_full_design_uah = 1500000, .technology = POWER_SUPPLY_TECHNOLOGY_LION, .factory_internal_resistance_uohm = 136000, .factory_internal_resistance_charging_uohm = 200000, /* If you have data on this fix the min_design_uv */ .voltage_min_design_uv = 3320000, .voltage_max_design_uv = 4340000, .overvoltage_limit_uv = 4500000, .constant_charge_current_max_ua = 900000, .constant_charge_voltage_max_uv = 4320000, .charge_term_current_ua = 200000, .charge_restart_voltage_uv = 4270000, .maintenance_charge = samsung_maint_charge_table, .maintenance_charge_size = ARRAY_SIZE(samsung_maint_charge_table), .alert_low_temp_charge_current_ua = 300000, .alert_low_temp_charge_voltage_uv = 4000000, .alert_high_temp_charge_current_ua = 300000, .alert_high_temp_charge_voltage_uv = 4000000, .temp_min = -30, .temp_alert_min = 0, .temp_alert_max = 40, .temp_max = 47, .resist_table = samsung_temp2res, .resist_table_size = ARRAY_SIZE(samsung_temp2res), /* If you have tables for more temperatures, add them */ .ocv_temp[0] = 25, .ocv_table[0] = samsung_ocv_cap_1500mah, .ocv_table_size[0] = ARRAY_SIZE(samsung_ocv_cap_1500mah), .vbat2ri_discharging = samsung_vbat2res_discharging_eb425161la, .vbat2ri_discharging_size = ARRAY_SIZE(samsung_vbat2res_discharging_eb425161la), .vbat2ri_charging = samsung_vbat2res_charging_eb425161la, .vbat2ri_charging_size = ARRAY_SIZE(samsung_vbat2res_charging_eb425161la), .bti_resistance_ohm = 2400, .bti_resistance_tolerance = 40, }, }, { /* * Used in Samsung GT-I8160 "Codina" * Data from vendor boardfile board-codina-[bm|battery].c */ .compatible = "samsung,eb425161lu", .name = "EB425161LU", .info = { .charge_full_design_uah = 1500000, .technology = POWER_SUPPLY_TECHNOLOGY_LION, .factory_internal_resistance_uohm = 100000, .factory_internal_resistance_charging_uohm = 200000, /* If you have data on this fix the min_design_uv */ .voltage_min_design_uv = 3320000, .voltage_max_design_uv = 4350000, .overvoltage_limit_uv = 4500000, .constant_charge_current_max_ua = 900000, .constant_charge_voltage_max_uv = 4340000, .charge_term_current_ua = 200000, .charge_restart_voltage_uv = 4280000, .maintenance_charge = samsung_maint_charge_table, .maintenance_charge_size = ARRAY_SIZE(samsung_maint_charge_table), .alert_low_temp_charge_current_ua = 300000, .alert_low_temp_charge_voltage_uv = 4000000, .alert_high_temp_charge_current_ua = 300000, .alert_high_temp_charge_voltage_uv = 4000000, .temp_min = -50, .temp_alert_min = 0, .temp_alert_max = 43, .temp_max = 49, .resist_table = samsung_temp2res, .resist_table_size = ARRAY_SIZE(samsung_temp2res), /* If you have tables for more temperatures, add them */ .ocv_temp[0] = 25, .ocv_table[0] = samsung_ocv_cap_1500mah, .ocv_table_size[0] = ARRAY_SIZE(samsung_ocv_cap_1500mah), .vbat2ri_discharging = samsung_vbat2res_discharging_eb425161lu, .vbat2ri_discharging_size = ARRAY_SIZE(samsung_vbat2res_discharging_eb425161lu), .vbat2ri_charging = samsung_vbat2res_charging_eb425161lu, .vbat2ri_charging_size = ARRAY_SIZE(samsung_vbat2res_charging_eb425161lu), .bti_resistance_ohm = 2400, .bti_resistance_tolerance = 40, }, }, { /* * Used in Samsung GT-S7710 "Skomer" * Data from vendor boardfile board-skomer-[bm|battery].c */ .compatible = "samsung,eb485159lu", .name = "EB485159LU", .info = { .charge_full_design_uah = 1700000, .technology = POWER_SUPPLY_TECHNOLOGY_LION, .factory_internal_resistance_uohm = 100000, .factory_internal_resistance_charging_uohm = 200000, .voltage_min_design_uv = 3320000, .voltage_max_design_uv = 4350000, .overvoltage_limit_uv = 4500000, .constant_charge_current_max_ua = 900000, .constant_charge_voltage_max_uv = 4340000, .charge_term_current_ua = 200000, .charge_restart_voltage_uv = 4300000, .maintenance_charge = samsung_maint_charge_table, .maintenance_charge_size = ARRAY_SIZE(samsung_maint_charge_table), .alert_low_temp_charge_current_ua = 300000, .alert_low_temp_charge_voltage_uv = 4000000, .alert_high_temp_charge_current_ua = 300000, .alert_high_temp_charge_voltage_uv = 4000000, .temp_min = -50, .temp_alert_min = 0, .temp_alert_max = 40, .temp_max = 60, .resist_table = samsung_temp2res, .resist_table_size = ARRAY_SIZE(samsung_temp2res), /* If you have tables for more temperatures, add them */ .ocv_temp[0] = 25, .ocv_table[0] = samsung_ocv_cap_eb485159lu, .ocv_table_size[0] = ARRAY_SIZE(samsung_ocv_cap_eb485159lu), /* CHECKME: vendor uses the 1500 mAh table, check against datasheet */ .vbat2ri_discharging = samsung_vbat2res_discharging_eb485159lu, .vbat2ri_discharging_size = ARRAY_SIZE(samsung_vbat2res_discharging_eb485159lu), .vbat2ri_charging = samsung_vbat2res_charging_eb485159lu, .vbat2ri_charging_size = ARRAY_SIZE(samsung_vbat2res_charging_eb485159lu), .bti_resistance_ohm = 2400, .bti_resistance_tolerance = 40, }, }, { /* * Used in Samsung GT-I9070 "Janice" * Data from vendor boardfile board-janice-bm.c */ .compatible = "samsung,eb535151vu", .name = "EB535151VU", .info = { .charge_full_design_uah = 1500000, .technology = POWER_SUPPLY_TECHNOLOGY_LION, .factory_internal_resistance_uohm = 100000, .factory_internal_resistance_charging_uohm = 200000, /* If you have data on this fix the min_design_uv */ .voltage_min_design_uv = 3300000, .voltage_max_design_uv = 4180000, .overvoltage_limit_uv = 4500000, .constant_charge_current_max_ua = 900000, .constant_charge_voltage_max_uv = 4200000, .charge_term_current_ua = 200000, .charge_restart_voltage_uv = 4170000, .maintenance_charge = samsung_maint_charge_table, .maintenance_charge_size = ARRAY_SIZE(samsung_maint_charge_table), .alert_low_temp_charge_current_ua = 300000, .alert_low_temp_charge_voltage_uv = 4000000, .alert_high_temp_charge_current_ua = 300000, .alert_high_temp_charge_voltage_uv = 4000000, .temp_min = -5, .temp_alert_min = 0, .temp_alert_max = 40, .temp_max = 60, .resist_table = samsung_temp2res, .resist_table_size = ARRAY_SIZE(samsung_temp2res), /* If you have tables for more temperatures, add them */ .ocv_temp[0] = 25, .ocv_table[0] = samsung_ocv_cap_eb535151vu, .ocv_table_size[0] = ARRAY_SIZE(samsung_ocv_cap_eb535151vu), .vbat2ri_discharging = samsung_vbat2res_discharging_eb535151vu, .vbat2ri_discharging_size = ARRAY_SIZE(samsung_vbat2res_discharging_eb535151vu), .vbat2ri_charging = samsung_vbat2res_charging_eb535151vu, .vbat2ri_charging_size = ARRAY_SIZE(samsung_vbat2res_charging_eb535151vu), .bti_resistance_ohm = 1500, .bti_resistance_tolerance = 40, }, }, { /* * Used in Samsung GT-I8530 "Gavini" * Data from vendor boardfile board-gavini-bm.c */ .compatible = "samsung,eb585157lu", .name = "EB585157LU", .info = { .charge_full_design_uah = 2000000, .technology = POWER_SUPPLY_TECHNOLOGY_LION, .factory_internal_resistance_uohm = 105000, .factory_internal_resistance_charging_uohm = 160000, /* If you have data on this fix the min_design_uv */ .voltage_min_design_uv = 3300000, .voltage_max_design_uv = 4320000, .overvoltage_limit_uv = 4500000, .constant_charge_current_max_ua = 1500000, .constant_charge_voltage_max_uv = 4350000, .charge_term_current_ua = 120000, .charge_restart_voltage_uv = 4300000, .maintenance_charge = samsung_maint_charge_table, .maintenance_charge_size = ARRAY_SIZE(samsung_maint_charge_table), .alert_low_temp_charge_current_ua = 300000, .alert_low_temp_charge_voltage_uv = 4000000, .alert_high_temp_charge_current_ua = 300000, .alert_high_temp_charge_voltage_uv = 4000000, .temp_min = -5, .temp_alert_min = 0, .temp_alert_max = 40, .temp_max = 60, .resist_table = samsung_temp2res, .resist_table_size = ARRAY_SIZE(samsung_temp2res), /* If you have tables for more temperatures, add them */ .ocv_temp[0] = 25, .ocv_table[0] = samsung_ocv_cap_eb585157lu, .ocv_table_size[0] = ARRAY_SIZE(samsung_ocv_cap_eb585157lu), .vbat2ri_discharging = samsung_vbat2res_discharging_eb585157lu, .vbat2ri_discharging_size = ARRAY_SIZE(samsung_vbat2res_discharging_eb585157lu), .vbat2ri_charging = samsung_vbat2res_charging_eb585157lu, .vbat2ri_charging_size = ARRAY_SIZE(samsung_vbat2res_charging_eb585157lu), .bti_resistance_ohm = 2400, .bti_resistance_tolerance = 40, }, }, }; int samsung_sdi_battery_get_info(struct device *dev, const char *compatible, struct power_supply_battery_info **info) { struct samsung_sdi_battery *batt; int i; for (i = 0; i < ARRAY_SIZE(samsung_sdi_batteries); i++) { batt = &samsung_sdi_batteries[i]; if (!strcmp(compatible, batt->compatible)) break; } if (i == ARRAY_SIZE(samsung_sdi_batteries)) return -ENODEV; *info = &batt->info; dev_info(dev, "Samsung SDI %s battery %d mAh\n", batt->name, batt->info.charge_full_design_uah / 1000); return 0; } EXPORT_SYMBOL_GPL(samsung_sdi_battery_get_info);
linux-master
drivers/power/supply/samsung-sdi-battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * I2C client/driver for the Maxim/Dallas DS2782 Stand-Alone Fuel Gauge IC * * Copyright (C) 2009 Bluewater Systems Ltd * * Author: Ryan Mallon * * DS2786 added by Yulia Vilensky <[email protected]> * * UEvent sending added by Evgeny Romanov <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/swab.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/idr.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/ds2782_battery.h> #define DS2782_REG_RARC 0x06 /* Remaining active relative capacity */ #define DS278x_REG_VOLT_MSB 0x0c #define DS278x_REG_TEMP_MSB 0x0a #define DS278x_REG_CURRENT_MSB 0x0e /* EEPROM Block */ #define DS2782_REG_RSNSP 0x69 /* Sense resistor value */ /* Current unit measurement in uA for a 1 milli-ohm sense resistor */ #define DS2782_CURRENT_UNITS 1563 #define DS2786_REG_RARC 0x02 /* Remaining active relative capacity */ #define DS2786_CURRENT_UNITS 25 #define DS278x_DELAY 1000 struct ds278x_info; struct ds278x_battery_ops { int (*get_battery_current)(struct ds278x_info *info, int *current_uA); int (*get_battery_voltage)(struct ds278x_info *info, int *voltage_uV); int (*get_battery_capacity)(struct ds278x_info *info, int *capacity); }; #define to_ds278x_info(x) power_supply_get_drvdata(x) struct ds278x_info { struct i2c_client *client; struct power_supply *battery; struct power_supply_desc battery_desc; const struct ds278x_battery_ops *ops; struct delayed_work bat_work; int id; int rsns; int capacity; int status; /* State Of Charge */ }; static DEFINE_IDR(battery_id); static DEFINE_MUTEX(battery_lock); static inline int ds278x_read_reg(struct ds278x_info *info, int reg, u8 *val) { int ret; ret = i2c_smbus_read_byte_data(info->client, reg); if (ret < 0) { dev_err(&info->client->dev, "register read failed\n"); return ret; } *val = ret; return 0; } static inline int ds278x_read_reg16(struct ds278x_info *info, int reg_msb, s16 *val) { int ret; ret = i2c_smbus_read_word_data(info->client, reg_msb); if (ret < 0) { dev_err(&info->client->dev, "register read failed\n"); return ret; } *val = swab16(ret); return 0; } static int ds278x_get_temp(struct ds278x_info *info, int *temp) { s16 raw; int err; /* * Temperature is measured in units of 0.125 degrees celcius, the * power_supply class measures temperature in tenths of degrees * celsius. The temperature value is stored as a 10 bit number, plus * sign in the upper bits of a 16 bit register. */ err = ds278x_read_reg16(info, DS278x_REG_TEMP_MSB, &raw); if (err) return err; *temp = ((raw / 32) * 125) / 100; return 0; } static int ds2782_get_current(struct ds278x_info *info, int *current_uA) { int sense_res; int err; u8 sense_res_raw; s16 raw; /* * The units of measurement for current are dependent on the value of * the sense resistor. */ err = ds278x_read_reg(info, DS2782_REG_RSNSP, &sense_res_raw); if (err) return err; if (sense_res_raw == 0) { dev_err(&info->client->dev, "sense resistor value is 0\n"); return -ENXIO; } sense_res = 1000 / sense_res_raw; dev_dbg(&info->client->dev, "sense resistor = %d milli-ohms\n", sense_res); err = ds278x_read_reg16(info, DS278x_REG_CURRENT_MSB, &raw); if (err) return err; *current_uA = raw * (DS2782_CURRENT_UNITS / sense_res); return 0; } static int ds2782_get_voltage(struct ds278x_info *info, int *voltage_uV) { s16 raw; int err; /* * Voltage is measured in units of 4.88mV. The voltage is stored as * a 10-bit number plus sign, in the upper bits of a 16-bit register */ err = ds278x_read_reg16(info, DS278x_REG_VOLT_MSB, &raw); if (err) return err; *voltage_uV = (raw / 32) * 4800; return 0; } static int ds2782_get_capacity(struct ds278x_info *info, int *capacity) { int err; u8 raw; err = ds278x_read_reg(info, DS2782_REG_RARC, &raw); if (err) return err; *capacity = raw; return 0; } static int ds2786_get_current(struct ds278x_info *info, int *current_uA) { int err; s16 raw; err = ds278x_read_reg16(info, DS278x_REG_CURRENT_MSB, &raw); if (err) return err; *current_uA = (raw / 16) * (DS2786_CURRENT_UNITS / info->rsns); return 0; } static int ds2786_get_voltage(struct ds278x_info *info, int *voltage_uV) { s16 raw; int err; /* * Voltage is measured in units of 1.22mV. The voltage is stored as * a 12-bit number plus sign, in the upper bits of a 16-bit register */ err = ds278x_read_reg16(info, DS278x_REG_VOLT_MSB, &raw); if (err) return err; *voltage_uV = (raw / 8) * 1220; return 0; } static int ds2786_get_capacity(struct ds278x_info *info, int *capacity) { int err; u8 raw; err = ds278x_read_reg(info, DS2786_REG_RARC, &raw); if (err) return err; /* Relative capacity is displayed with resolution 0.5 % */ *capacity = raw/2 ; return 0; } static int ds278x_get_status(struct ds278x_info *info, int *status) { int err; int current_uA; int capacity; err = info->ops->get_battery_current(info, &current_uA); if (err) return err; err = info->ops->get_battery_capacity(info, &capacity); if (err) return err; info->capacity = capacity; if (capacity == 100) *status = POWER_SUPPLY_STATUS_FULL; else if (current_uA == 0) *status = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (current_uA < 0) *status = POWER_SUPPLY_STATUS_DISCHARGING; else *status = POWER_SUPPLY_STATUS_CHARGING; return 0; } static int ds278x_battery_get_property(struct power_supply *psy, enum power_supply_property prop, union power_supply_propval *val) { struct ds278x_info *info = to_ds278x_info(psy); int ret; switch (prop) { case POWER_SUPPLY_PROP_STATUS: ret = ds278x_get_status(info, &val->intval); break; case POWER_SUPPLY_PROP_CAPACITY: ret = info->ops->get_battery_capacity(info, &val->intval); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = info->ops->get_battery_voltage(info, &val->intval); break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = info->ops->get_battery_current(info, &val->intval); break; case POWER_SUPPLY_PROP_TEMP: ret = ds278x_get_temp(info, &val->intval); break; default: ret = -EINVAL; } return ret; } static void ds278x_bat_update(struct ds278x_info *info) { int old_status = info->status; int old_capacity = info->capacity; ds278x_get_status(info, &info->status); if ((old_status != info->status) || (old_capacity != info->capacity)) power_supply_changed(info->battery); } static void ds278x_bat_work(struct work_struct *work) { struct ds278x_info *info; info = container_of(work, struct ds278x_info, bat_work.work); ds278x_bat_update(info); schedule_delayed_work(&info->bat_work, DS278x_DELAY); } static enum power_supply_property ds278x_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_TEMP, }; static void ds278x_power_supply_init(struct power_supply_desc *battery) { battery->type = POWER_SUPPLY_TYPE_BATTERY; battery->properties = ds278x_battery_props; battery->num_properties = ARRAY_SIZE(ds278x_battery_props); battery->get_property = ds278x_battery_get_property; battery->external_power_changed = NULL; } static void ds278x_battery_remove(struct i2c_client *client) { struct ds278x_info *info = i2c_get_clientdata(client); int id = info->id; power_supply_unregister(info->battery); cancel_delayed_work_sync(&info->bat_work); kfree(info->battery_desc.name); kfree(info); mutex_lock(&battery_lock); idr_remove(&battery_id, id); mutex_unlock(&battery_lock); } #ifdef CONFIG_PM_SLEEP static int ds278x_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct ds278x_info *info = i2c_get_clientdata(client); cancel_delayed_work(&info->bat_work); return 0; } static int ds278x_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct ds278x_info *info = i2c_get_clientdata(client); schedule_delayed_work(&info->bat_work, DS278x_DELAY); return 0; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(ds278x_battery_pm_ops, ds278x_suspend, ds278x_resume); enum ds278x_num_id { DS2782 = 0, DS2786, }; static const struct ds278x_battery_ops ds278x_ops[] = { [DS2782] = { .get_battery_current = ds2782_get_current, .get_battery_voltage = ds2782_get_voltage, .get_battery_capacity = ds2782_get_capacity, }, [DS2786] = { .get_battery_current = ds2786_get_current, .get_battery_voltage = ds2786_get_voltage, .get_battery_capacity = ds2786_get_capacity, } }; static int ds278x_battery_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct ds278x_platform_data *pdata = client->dev.platform_data; struct power_supply_config psy_cfg = {}; struct ds278x_info *info; int ret; int num; /* * ds2786 should have the sense resistor value set * in the platform data */ if (id->driver_data == DS2786 && !pdata) { dev_err(&client->dev, "missing platform data for ds2786\n"); return -EINVAL; } /* Get an ID for this battery */ mutex_lock(&battery_lock); ret = idr_alloc(&battery_id, client, 0, 0, GFP_KERNEL); mutex_unlock(&battery_lock); if (ret < 0) goto fail_id; num = ret; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) { ret = -ENOMEM; goto fail_info; } info->battery_desc.name = kasprintf(GFP_KERNEL, "%s-%d", client->name, num); if (!info->battery_desc.name) { ret = -ENOMEM; goto fail_name; } if (id->driver_data == DS2786) info->rsns = pdata->rsns; i2c_set_clientdata(client, info); info->client = client; info->id = num; info->ops = &ds278x_ops[id->driver_data]; ds278x_power_supply_init(&info->battery_desc); psy_cfg.drv_data = info; info->capacity = 100; info->status = POWER_SUPPLY_STATUS_FULL; INIT_DELAYED_WORK(&info->bat_work, ds278x_bat_work); info->battery = power_supply_register(&client->dev, &info->battery_desc, &psy_cfg); if (IS_ERR(info->battery)) { dev_err(&client->dev, "failed to register battery\n"); ret = PTR_ERR(info->battery); goto fail_register; } else { schedule_delayed_work(&info->bat_work, DS278x_DELAY); } return 0; fail_register: kfree(info->battery_desc.name); fail_name: kfree(info); fail_info: mutex_lock(&battery_lock); idr_remove(&battery_id, num); mutex_unlock(&battery_lock); fail_id: return ret; } static const struct i2c_device_id ds278x_id[] = { {"ds2782", DS2782}, {"ds2786", DS2786}, {}, }; MODULE_DEVICE_TABLE(i2c, ds278x_id); static struct i2c_driver ds278x_battery_driver = { .driver = { .name = "ds2782-battery", .pm = &ds278x_battery_pm_ops, }, .probe = ds278x_battery_probe, .remove = ds278x_battery_remove, .id_table = ds278x_id, }; module_i2c_driver(ds278x_battery_driver); MODULE_AUTHOR("Ryan Mallon"); MODULE_DESCRIPTION("Maxim/Dallas DS2782 Stand-Alone Fuel Gauge IC driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/ds2782_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Battery charger driver for RT5033 * * Copyright (C) 2014 Samsung Electronics, Co., Ltd. * Author: Beomho Seo <[email protected]> */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/mfd/rt5033-private.h> struct rt5033_charger_data { unsigned int pre_uamp; unsigned int pre_uvolt; unsigned int const_uvolt; unsigned int eoc_uamp; unsigned int fast_uamp; }; struct rt5033_charger { struct device *dev; struct regmap *regmap; struct power_supply *psy; struct rt5033_charger_data *chg; }; static int rt5033_get_charger_state(struct rt5033_charger *charger) { struct regmap *regmap = charger->regmap; unsigned int reg_data; int state; if (!regmap) return POWER_SUPPLY_STATUS_UNKNOWN; regmap_read(regmap, RT5033_REG_CHG_STAT, &reg_data); switch (reg_data & RT5033_CHG_STAT_MASK) { case RT5033_CHG_STAT_DISCHARGING: state = POWER_SUPPLY_STATUS_DISCHARGING; break; case RT5033_CHG_STAT_CHARGING: state = POWER_SUPPLY_STATUS_CHARGING; break; case RT5033_CHG_STAT_FULL: state = POWER_SUPPLY_STATUS_FULL; break; case RT5033_CHG_STAT_NOT_CHARGING: state = POWER_SUPPLY_STATUS_NOT_CHARGING; break; default: state = POWER_SUPPLY_STATUS_UNKNOWN; } return state; } static int rt5033_get_charger_type(struct rt5033_charger *charger) { struct regmap *regmap = charger->regmap; unsigned int reg_data; int state; regmap_read(regmap, RT5033_REG_CHG_STAT, &reg_data); switch (reg_data & RT5033_CHG_STAT_TYPE_MASK) { case RT5033_CHG_STAT_TYPE_FAST: state = POWER_SUPPLY_CHARGE_TYPE_FAST; break; case RT5033_CHG_STAT_TYPE_PRE: state = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; default: state = POWER_SUPPLY_CHARGE_TYPE_NONE; } return state; } static int rt5033_get_charger_current_limit(struct rt5033_charger *charger) { struct regmap *regmap = charger->regmap; unsigned int state, reg_data, data; regmap_read(regmap, RT5033_REG_CHG_CTRL5, &reg_data); state = (reg_data & RT5033_CHGCTRL5_ICHG_MASK) >> RT5033_CHGCTRL5_ICHG_SHIFT; data = RT5033_CHARGER_FAST_CURRENT_MIN + RT5033_CHARGER_FAST_CURRENT_STEP_NUM * state; return data; } static int rt5033_get_charger_const_voltage(struct rt5033_charger *charger) { struct regmap *regmap = charger->regmap; unsigned int state, reg_data, data; regmap_read(regmap, RT5033_REG_CHG_CTRL2, &reg_data); state = (reg_data & RT5033_CHGCTRL2_CV_MASK) >> RT5033_CHGCTRL2_CV_SHIFT; data = RT5033_CHARGER_CONST_VOLTAGE_LIMIT_MIN + RT5033_CHARGER_CONST_VOLTAGE_STEP_NUM * state; return data; } static inline int rt5033_init_const_charge(struct rt5033_charger *charger) { struct rt5033_charger_data *chg = charger->chg; int ret; unsigned int val; u8 reg_data; /* Set constant voltage mode */ if (chg->const_uvolt < RT5033_CHARGER_CONST_VOLTAGE_LIMIT_MIN || chg->const_uvolt > RT5033_CHARGER_CONST_VOLTAGE_LIMIT_MAX) { dev_err(charger->dev, "Value 'constant-charge-voltage-max-microvolt' out of range\n"); return -EINVAL; } if (chg->const_uvolt == RT5033_CHARGER_CONST_VOLTAGE_LIMIT_MIN) reg_data = 0x00; else if (chg->const_uvolt == RT5033_CHARGER_CONST_VOLTAGE_LIMIT_MAX) reg_data = RT5033_CV_MAX_VOLTAGE; else { val = chg->const_uvolt; val -= RT5033_CHARGER_CONST_VOLTAGE_LIMIT_MIN; val /= RT5033_CHARGER_CONST_VOLTAGE_STEP_NUM; reg_data = val; } ret = regmap_update_bits(charger->regmap, RT5033_REG_CHG_CTRL2, RT5033_CHGCTRL2_CV_MASK, reg_data << RT5033_CHGCTRL2_CV_SHIFT); if (ret) { dev_err(charger->dev, "Failed regmap update\n"); return -EINVAL; } /* Set end of charge current */ if (chg->eoc_uamp < RT5033_CHARGER_EOC_MIN || chg->eoc_uamp > RT5033_CHARGER_EOC_MAX) { dev_err(charger->dev, "Value 'charge-term-current-microamp' out of range\n"); return -EINVAL; } if (chg->eoc_uamp == RT5033_CHARGER_EOC_MIN) reg_data = 0x01; else if (chg->eoc_uamp == RT5033_CHARGER_EOC_MAX) reg_data = 0x07; else { val = chg->eoc_uamp; if (val < RT5033_CHARGER_EOC_REF) { val -= RT5033_CHARGER_EOC_MIN; val /= RT5033_CHARGER_EOC_STEP_NUM1; reg_data = 0x01 + val; } else if (val > RT5033_CHARGER_EOC_REF) { val -= RT5033_CHARGER_EOC_REF; val /= RT5033_CHARGER_EOC_STEP_NUM2; reg_data = 0x04 + val; } else { reg_data = 0x04; } } ret = regmap_update_bits(charger->regmap, RT5033_REG_CHG_CTRL4, RT5033_CHGCTRL4_EOC_MASK, reg_data); if (ret) { dev_err(charger->dev, "Failed regmap update\n"); return -EINVAL; } return 0; } static inline int rt5033_init_fast_charge(struct rt5033_charger *charger) { struct rt5033_charger_data *chg = charger->chg; int ret; unsigned int val; u8 reg_data; /* Set limit input current */ ret = regmap_update_bits(charger->regmap, RT5033_REG_CHG_CTRL1, RT5033_CHGCTRL1_IAICR_MASK, RT5033_AICR_2000_MODE); if (ret) { dev_err(charger->dev, "Failed regmap update\n"); return -EINVAL; } /* Set fast-charge mode charging current */ if (chg->fast_uamp < RT5033_CHARGER_FAST_CURRENT_MIN || chg->fast_uamp > RT5033_CHARGER_FAST_CURRENT_MAX) { dev_err(charger->dev, "Value 'constant-charge-current-max-microamp' out of range\n"); return -EINVAL; } if (chg->fast_uamp == RT5033_CHARGER_FAST_CURRENT_MIN) reg_data = 0x00; else if (chg->fast_uamp == RT5033_CHARGER_FAST_CURRENT_MAX) reg_data = RT5033_CHG_MAX_CURRENT; else { val = chg->fast_uamp; val -= RT5033_CHARGER_FAST_CURRENT_MIN; val /= RT5033_CHARGER_FAST_CURRENT_STEP_NUM; reg_data = val; } ret = regmap_update_bits(charger->regmap, RT5033_REG_CHG_CTRL5, RT5033_CHGCTRL5_ICHG_MASK, reg_data << RT5033_CHGCTRL5_ICHG_SHIFT); if (ret) { dev_err(charger->dev, "Failed regmap update\n"); return -EINVAL; } return 0; } static inline int rt5033_init_pre_charge(struct rt5033_charger *charger) { struct rt5033_charger_data *chg = charger->chg; int ret; unsigned int val; u8 reg_data; /* Set pre-charge threshold voltage */ if (chg->pre_uvolt < RT5033_CHARGER_PRE_THRESHOLD_LIMIT_MIN || chg->pre_uvolt > RT5033_CHARGER_PRE_THRESHOLD_LIMIT_MAX) { dev_err(charger->dev, "Value 'precharge-upper-limit-microvolt' out of range\n"); return -EINVAL; } if (chg->pre_uvolt == RT5033_CHARGER_PRE_THRESHOLD_LIMIT_MIN) reg_data = 0x00; else if (chg->pre_uvolt == RT5033_CHARGER_PRE_THRESHOLD_LIMIT_MAX) reg_data = 0x0f; else { val = chg->pre_uvolt; val -= RT5033_CHARGER_PRE_THRESHOLD_LIMIT_MIN; val /= RT5033_CHARGER_PRE_THRESHOLD_STEP_NUM; reg_data = val; } ret = regmap_update_bits(charger->regmap, RT5033_REG_CHG_CTRL5, RT5033_CHGCTRL5_VPREC_MASK, reg_data); if (ret) { dev_err(charger->dev, "Failed regmap update\n"); return -EINVAL; } /* Set pre-charge mode charging current */ if (chg->pre_uamp < RT5033_CHARGER_PRE_CURRENT_LIMIT_MIN || chg->pre_uamp > RT5033_CHARGER_PRE_CURRENT_LIMIT_MAX) { dev_err(charger->dev, "Value 'precharge-current-microamp' out of range\n"); return -EINVAL; } if (chg->pre_uamp == RT5033_CHARGER_PRE_CURRENT_LIMIT_MIN) reg_data = 0x00; else if (chg->pre_uamp == RT5033_CHARGER_PRE_CURRENT_LIMIT_MAX) reg_data = RT5033_CHG_MAX_PRE_CURRENT; else { val = chg->pre_uamp; val -= RT5033_CHARGER_PRE_CURRENT_LIMIT_MIN; val /= RT5033_CHARGER_PRE_CURRENT_STEP_NUM; reg_data = val; } ret = regmap_update_bits(charger->regmap, RT5033_REG_CHG_CTRL4, RT5033_CHGCTRL4_IPREC_MASK, reg_data << RT5033_CHGCTRL4_IPREC_SHIFT); if (ret) { dev_err(charger->dev, "Failed regmap update\n"); return -EINVAL; } return 0; } static int rt5033_charger_reg_init(struct rt5033_charger *charger) { int ret = 0; /* Enable charging termination */ ret = regmap_update_bits(charger->regmap, RT5033_REG_CHG_CTRL1, RT5033_CHGCTRL1_TE_EN_MASK, RT5033_TE_ENABLE); if (ret) { dev_err(charger->dev, "Failed to enable charging termination.\n"); return -EINVAL; } /* * Disable minimum input voltage regulation (MIVR), this improves * the charging performance. */ ret = regmap_update_bits(charger->regmap, RT5033_REG_CHG_CTRL4, RT5033_CHGCTRL4_MIVR_MASK, RT5033_CHARGER_MIVR_DISABLE); if (ret) { dev_err(charger->dev, "Failed to disable MIVR.\n"); return -EINVAL; } ret = rt5033_init_pre_charge(charger); if (ret) return ret; ret = rt5033_init_fast_charge(charger); if (ret) return ret; ret = rt5033_init_const_charge(charger); if (ret) return ret; return 0; } static enum power_supply_property rt5033_charger_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_ONLINE, }; static int rt5033_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct rt5033_charger *charger = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = rt5033_get_charger_state(charger); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: val->intval = rt5033_get_charger_type(charger); break; case POWER_SUPPLY_PROP_CURRENT_MAX: val->intval = rt5033_get_charger_current_limit(charger); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: val->intval = rt5033_get_charger_const_voltage(charger); break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = RT5033_CHARGER_MODEL; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = RT5033_MANUFACTURER; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = (rt5033_get_charger_state(charger) == POWER_SUPPLY_STATUS_CHARGING); break; default: return -EINVAL; } return 0; } static struct rt5033_charger_data *rt5033_charger_dt_init( struct rt5033_charger *charger) { struct rt5033_charger_data *chg; struct power_supply_battery_info *info; int ret; chg = devm_kzalloc(charger->dev, sizeof(*chg), GFP_KERNEL); if (!chg) return ERR_PTR(-ENOMEM); ret = power_supply_get_battery_info(charger->psy, &info); if (ret) return ERR_PTR(dev_err_probe(charger->dev, -EINVAL, "missing battery info\n")); /* Assign data. Validity will be checked in the init functions. */ chg->pre_uamp = info->precharge_current_ua; chg->fast_uamp = info->constant_charge_current_max_ua; chg->eoc_uamp = info->charge_term_current_ua; chg->pre_uvolt = info->precharge_voltage_max_uv; chg->const_uvolt = info->constant_charge_voltage_max_uv; return chg; } static const struct power_supply_desc rt5033_charger_desc = { .name = "rt5033-charger", .type = POWER_SUPPLY_TYPE_USB, .properties = rt5033_charger_props, .num_properties = ARRAY_SIZE(rt5033_charger_props), .get_property = rt5033_charger_get_property, }; static int rt5033_charger_probe(struct platform_device *pdev) { struct rt5033_charger *charger; struct power_supply_config psy_cfg = {}; int ret; charger = devm_kzalloc(&pdev->dev, sizeof(*charger), GFP_KERNEL); if (!charger) return -ENOMEM; platform_set_drvdata(pdev, charger); charger->dev = &pdev->dev; charger->regmap = dev_get_regmap(pdev->dev.parent, NULL); psy_cfg.of_node = pdev->dev.of_node; psy_cfg.drv_data = charger; charger->psy = devm_power_supply_register(&pdev->dev, &rt5033_charger_desc, &psy_cfg); if (IS_ERR(charger->psy)) return dev_err_probe(&pdev->dev, PTR_ERR(charger->psy), "Failed to register power supply\n"); charger->chg = rt5033_charger_dt_init(charger); if (IS_ERR_OR_NULL(charger->chg)) return PTR_ERR(charger->chg); ret = rt5033_charger_reg_init(charger); if (ret) return ret; return 0; } static const struct platform_device_id rt5033_charger_id[] = { { "rt5033-charger", }, { } }; MODULE_DEVICE_TABLE(platform, rt5033_charger_id); static const struct of_device_id rt5033_charger_of_match[] = { { .compatible = "richtek,rt5033-charger", }, { } }; MODULE_DEVICE_TABLE(of, rt5033_charger_of_match); static struct platform_driver rt5033_charger_driver = { .driver = { .name = "rt5033-charger", .of_match_table = rt5033_charger_of_match, }, .probe = rt5033_charger_probe, .id_table = rt5033_charger_id, }; module_platform_driver(rt5033_charger_driver); MODULE_DESCRIPTION("Richtek RT5033 charger driver"); MODULE_AUTHOR("Beomho Seo <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/rt5033_charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Battery driver for One Laptop Per Child board. * * Copyright © 2006-2010 David Woodhouse <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/types.h> #include <linux/err.h> #include <linux/device.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/jiffies.h> #include <linux/sched.h> #include <linux/olpc-ec.h> #define EC_BAT_VOLTAGE 0x10 /* uint16_t, *9.76/32, mV */ #define EC_BAT_CURRENT 0x11 /* int16_t, *15.625/120, mA */ #define EC_BAT_ACR 0x12 /* int16_t, *6250/15, µAh */ #define EC_BAT_TEMP 0x13 /* uint16_t, *100/256, °C */ #define EC_AMB_TEMP 0x14 /* uint16_t, *100/256, °C */ #define EC_BAT_STATUS 0x15 /* uint8_t, bitmask */ #define EC_BAT_SOC 0x16 /* uint8_t, percentage */ #define EC_BAT_SERIAL 0x17 /* uint8_t[6] */ #define EC_BAT_EEPROM 0x18 /* uint8_t adr as input, uint8_t output */ #define EC_BAT_ERRCODE 0x1f /* uint8_t, bitmask */ #define BAT_STAT_PRESENT 0x01 #define BAT_STAT_FULL 0x02 #define BAT_STAT_LOW 0x04 #define BAT_STAT_DESTROY 0x08 #define BAT_STAT_AC 0x10 #define BAT_STAT_CHARGING 0x20 #define BAT_STAT_DISCHARGING 0x40 #define BAT_STAT_TRICKLE 0x80 #define BAT_ERR_INFOFAIL 0x02 #define BAT_ERR_OVERVOLTAGE 0x04 #define BAT_ERR_OVERTEMP 0x05 #define BAT_ERR_GAUGESTOP 0x06 #define BAT_ERR_OUT_OF_CONTROL 0x07 #define BAT_ERR_ID_FAIL 0x09 #define BAT_ERR_ACR_FAIL 0x10 #define BAT_ADDR_MFR_TYPE 0x5F struct olpc_battery_data { struct power_supply *olpc_ac; struct power_supply *olpc_bat; char bat_serial[17]; bool new_proto; bool little_endian; }; /********************************************************************* * Power *********************************************************************/ static int olpc_ac_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; uint8_t status; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = olpc_ec_cmd(EC_BAT_STATUS, NULL, 0, &status, 1); if (ret) return ret; val->intval = !!(status & BAT_STAT_AC); break; default: ret = -EINVAL; break; } return ret; } static enum power_supply_property olpc_ac_props[] = { POWER_SUPPLY_PROP_ONLINE, }; static const struct power_supply_desc olpc_ac_desc = { .name = "olpc_ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = olpc_ac_props, .num_properties = ARRAY_SIZE(olpc_ac_props), .get_property = olpc_ac_get_prop, }; static int olpc_bat_get_status(struct olpc_battery_data *data, union power_supply_propval *val, uint8_t ec_byte) { if (data->new_proto) { if (ec_byte & (BAT_STAT_CHARGING | BAT_STAT_TRICKLE)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (ec_byte & BAT_STAT_DISCHARGING) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (ec_byte & BAT_STAT_FULL) val->intval = POWER_SUPPLY_STATUS_FULL; else /* er,... */ val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; } else { /* Older EC didn't report charge/discharge bits */ if (!(ec_byte & BAT_STAT_AC)) /* No AC means discharging */ val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (ec_byte & BAT_STAT_FULL) val->intval = POWER_SUPPLY_STATUS_FULL; else /* Not _necessarily_ true but EC doesn't tell all yet */ val->intval = POWER_SUPPLY_STATUS_CHARGING; } return 0; } static int olpc_bat_get_health(union power_supply_propval *val) { uint8_t ec_byte; int ret; ret = olpc_ec_cmd(EC_BAT_ERRCODE, NULL, 0, &ec_byte, 1); if (ret) return ret; switch (ec_byte) { case 0: val->intval = POWER_SUPPLY_HEALTH_GOOD; break; case BAT_ERR_OVERTEMP: val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; break; case BAT_ERR_OVERVOLTAGE: val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; break; case BAT_ERR_INFOFAIL: case BAT_ERR_OUT_OF_CONTROL: case BAT_ERR_ID_FAIL: case BAT_ERR_ACR_FAIL: val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; break; default: /* Eep. We don't know this failure code */ ret = -EIO; } return ret; } static int olpc_bat_get_mfr(union power_supply_propval *val) { uint8_t ec_byte; int ret; ec_byte = BAT_ADDR_MFR_TYPE; ret = olpc_ec_cmd(EC_BAT_EEPROM, &ec_byte, 1, &ec_byte, 1); if (ret) return ret; switch (ec_byte >> 4) { case 1: val->strval = "Gold Peak"; break; case 2: val->strval = "BYD"; break; default: val->strval = "Unknown"; break; } return ret; } static int olpc_bat_get_tech(union power_supply_propval *val) { uint8_t ec_byte; int ret; ec_byte = BAT_ADDR_MFR_TYPE; ret = olpc_ec_cmd(EC_BAT_EEPROM, &ec_byte, 1, &ec_byte, 1); if (ret) return ret; switch (ec_byte & 0xf) { case 1: val->intval = POWER_SUPPLY_TECHNOLOGY_NiMH; break; case 2: val->intval = POWER_SUPPLY_TECHNOLOGY_LiFe; break; default: val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; break; } return ret; } static int olpc_bat_get_charge_full_design(union power_supply_propval *val) { uint8_t ec_byte; union power_supply_propval tech; int ret, mfr; ret = olpc_bat_get_tech(&tech); if (ret) return ret; ec_byte = BAT_ADDR_MFR_TYPE; ret = olpc_ec_cmd(EC_BAT_EEPROM, &ec_byte, 1, &ec_byte, 1); if (ret) return ret; mfr = ec_byte >> 4; switch (tech.intval) { case POWER_SUPPLY_TECHNOLOGY_NiMH: switch (mfr) { case 1: /* Gold Peak */ val->intval = 3000000*.8; break; default: return -EIO; } break; case POWER_SUPPLY_TECHNOLOGY_LiFe: switch (mfr) { case 1: /* Gold Peak, fall through */ case 2: /* BYD */ val->intval = 2800000; break; default: return -EIO; } break; default: return -EIO; } return ret; } static int olpc_bat_get_charge_now(union power_supply_propval *val) { uint8_t soc; union power_supply_propval full; int ret; ret = olpc_ec_cmd(EC_BAT_SOC, NULL, 0, &soc, 1); if (ret) return ret; ret = olpc_bat_get_charge_full_design(&full); if (ret) return ret; val->intval = soc * (full.intval / 100); return 0; } static int olpc_bat_get_voltage_max_design(union power_supply_propval *val) { uint8_t ec_byte; union power_supply_propval tech; int mfr; int ret; ret = olpc_bat_get_tech(&tech); if (ret) return ret; ec_byte = BAT_ADDR_MFR_TYPE; ret = olpc_ec_cmd(EC_BAT_EEPROM, &ec_byte, 1, &ec_byte, 1); if (ret) return ret; mfr = ec_byte >> 4; switch (tech.intval) { case POWER_SUPPLY_TECHNOLOGY_NiMH: switch (mfr) { case 1: /* Gold Peak */ val->intval = 6000000; break; default: return -EIO; } break; case POWER_SUPPLY_TECHNOLOGY_LiFe: switch (mfr) { case 1: /* Gold Peak */ val->intval = 6400000; break; case 2: /* BYD */ val->intval = 6500000; break; default: return -EIO; } break; default: return -EIO; } return ret; } static u16 ecword_to_cpu(struct olpc_battery_data *data, u16 ec_word) { if (data->little_endian) return le16_to_cpu((__force __le16)ec_word); else return be16_to_cpu((__force __be16)ec_word); } /********************************************************************* * Battery properties *********************************************************************/ static int olpc_bat_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct olpc_battery_data *data = power_supply_get_drvdata(psy); int ret = 0; u16 ec_word; uint8_t ec_byte; __be64 ser_buf; ret = olpc_ec_cmd(EC_BAT_STATUS, NULL, 0, &ec_byte, 1); if (ret) return ret; /* Theoretically there's a race here -- the battery could be removed immediately after we check whether it's present, and then we query for some other property of the now-absent battery. It doesn't matter though -- the EC will return the last-known information, and it's as if we just ran that _little_ bit faster and managed to read it out before the battery went away. */ if (!(ec_byte & (BAT_STAT_PRESENT | BAT_STAT_TRICKLE)) && psp != POWER_SUPPLY_PROP_PRESENT) return -ENODEV; switch (psp) { case POWER_SUPPLY_PROP_STATUS: ret = olpc_bat_get_status(data, val, ec_byte); if (ret) return ret; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: if (ec_byte & BAT_STAT_TRICKLE) val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; else if (ec_byte & BAT_STAT_CHARGING) val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; else val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = !!(ec_byte & (BAT_STAT_PRESENT | BAT_STAT_TRICKLE)); break; case POWER_SUPPLY_PROP_HEALTH: if (ec_byte & BAT_STAT_DESTROY) val->intval = POWER_SUPPLY_HEALTH_DEAD; else { ret = olpc_bat_get_health(val); if (ret) return ret; } break; case POWER_SUPPLY_PROP_MANUFACTURER: ret = olpc_bat_get_mfr(val); if (ret) return ret; break; case POWER_SUPPLY_PROP_TECHNOLOGY: ret = olpc_bat_get_tech(val); if (ret) return ret; break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = olpc_ec_cmd(EC_BAT_VOLTAGE, NULL, 0, (void *)&ec_word, 2); if (ret) return ret; val->intval = ecword_to_cpu(data, ec_word) * 9760L / 32; break; case POWER_SUPPLY_PROP_CURRENT_AVG: case POWER_SUPPLY_PROP_CURRENT_NOW: ret = olpc_ec_cmd(EC_BAT_CURRENT, NULL, 0, (void *)&ec_word, 2); if (ret) return ret; val->intval = ecword_to_cpu(data, ec_word) * 15625L / 120; break; case POWER_SUPPLY_PROP_CAPACITY: ret = olpc_ec_cmd(EC_BAT_SOC, NULL, 0, &ec_byte, 1); if (ret) return ret; val->intval = ec_byte; break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: if (ec_byte & BAT_STAT_FULL) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (ec_byte & BAT_STAT_LOW) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: ret = olpc_bat_get_charge_full_design(val); if (ret) return ret; break; case POWER_SUPPLY_PROP_CHARGE_NOW: ret = olpc_bat_get_charge_now(val); if (ret) return ret; break; case POWER_SUPPLY_PROP_TEMP: ret = olpc_ec_cmd(EC_BAT_TEMP, NULL, 0, (void *)&ec_word, 2); if (ret) return ret; val->intval = ecword_to_cpu(data, ec_word) * 10 / 256; break; case POWER_SUPPLY_PROP_TEMP_AMBIENT: ret = olpc_ec_cmd(EC_AMB_TEMP, NULL, 0, (void *)&ec_word, 2); if (ret) return ret; val->intval = (int)ecword_to_cpu(data, ec_word) * 10 / 256; break; case POWER_SUPPLY_PROP_CHARGE_COUNTER: ret = olpc_ec_cmd(EC_BAT_ACR, NULL, 0, (void *)&ec_word, 2); if (ret) return ret; val->intval = ecword_to_cpu(data, ec_word) * 6250 / 15; break; case POWER_SUPPLY_PROP_SERIAL_NUMBER: ret = olpc_ec_cmd(EC_BAT_SERIAL, NULL, 0, (void *)&ser_buf, 8); if (ret) return ret; sprintf(data->bat_serial, "%016llx", (long long)be64_to_cpu(ser_buf)); val->strval = data->bat_serial; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: ret = olpc_bat_get_voltage_max_design(val); if (ret) return ret; break; default: ret = -EINVAL; break; } return ret; } static enum power_supply_property olpc_xo1_bat_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TEMP_AMBIENT, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, }; /* XO-1.5 does not have ambient temperature property */ static enum power_supply_property olpc_xo15_bat_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, }; /* EEPROM reading goes completely around the power_supply API, sadly */ #define EEPROM_START 0x20 #define EEPROM_END 0x80 #define EEPROM_SIZE (EEPROM_END - EEPROM_START) static ssize_t olpc_bat_eeprom_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { uint8_t ec_byte; int ret; int i; for (i = 0; i < count; i++) { ec_byte = EEPROM_START + off + i; ret = olpc_ec_cmd(EC_BAT_EEPROM, &ec_byte, 1, &buf[i], 1); if (ret) { pr_err("olpc-battery: " "EC_BAT_EEPROM cmd @ 0x%x failed - %d!\n", ec_byte, ret); return -EIO; } } return count; } static struct bin_attribute olpc_bat_eeprom = { .attr = { .name = "eeprom", .mode = S_IRUGO, }, .size = EEPROM_SIZE, .read = olpc_bat_eeprom_read, }; /* Allow userspace to see the specific error value pulled from the EC */ static ssize_t olpc_bat_error_read(struct device *dev, struct device_attribute *attr, char *buf) { uint8_t ec_byte; ssize_t ret; ret = olpc_ec_cmd(EC_BAT_ERRCODE, NULL, 0, &ec_byte, 1); if (ret < 0) return ret; return sysfs_emit(buf, "%d\n", ec_byte); } static struct device_attribute olpc_bat_error = { .attr = { .name = "error", .mode = S_IRUGO, }, .show = olpc_bat_error_read, }; static struct attribute *olpc_bat_sysfs_attrs[] = { &olpc_bat_error.attr, NULL }; static struct bin_attribute *olpc_bat_sysfs_bin_attrs[] = { &olpc_bat_eeprom, NULL }; static const struct attribute_group olpc_bat_sysfs_group = { .attrs = olpc_bat_sysfs_attrs, .bin_attrs = olpc_bat_sysfs_bin_attrs, }; static const struct attribute_group *olpc_bat_sysfs_groups[] = { &olpc_bat_sysfs_group, NULL }; /********************************************************************* * Initialisation *********************************************************************/ static struct power_supply_desc olpc_bat_desc = { .name = "olpc_battery", .get_property = olpc_bat_get_property, .use_for_apm = 1, }; static int olpc_battery_suspend(struct platform_device *pdev, pm_message_t state) { struct olpc_battery_data *data = platform_get_drvdata(pdev); if (device_may_wakeup(&data->olpc_ac->dev)) olpc_ec_wakeup_set(EC_SCI_SRC_ACPWR); else olpc_ec_wakeup_clear(EC_SCI_SRC_ACPWR); if (device_may_wakeup(&data->olpc_bat->dev)) olpc_ec_wakeup_set(EC_SCI_SRC_BATTERY | EC_SCI_SRC_BATSOC | EC_SCI_SRC_BATERR); else olpc_ec_wakeup_clear(EC_SCI_SRC_BATTERY | EC_SCI_SRC_BATSOC | EC_SCI_SRC_BATERR); return 0; } static int olpc_battery_probe(struct platform_device *pdev) { struct power_supply_config bat_psy_cfg = {}; struct power_supply_config ac_psy_cfg = {}; struct olpc_battery_data *data; struct device_node *np; uint8_t status; uint8_t ecver; int ret; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; platform_set_drvdata(pdev, data); /* See if the EC is already there and get the EC revision */ ret = olpc_ec_cmd(EC_FIRMWARE_REV, NULL, 0, &ecver, 1); if (ret) return ret; np = of_find_compatible_node(NULL, NULL, "olpc,xo1.75-ec"); if (np) { of_node_put(np); /* XO 1.75 */ data->new_proto = true; data->little_endian = true; } else if (ecver > 0x44) { /* XO 1 or 1.5 with a new EC firmware. */ data->new_proto = true; } else if (ecver < 0x44) { /* * We've seen a number of EC protocol changes; this driver * requires the latest EC protocol, supported by 0x44 and above. */ printk(KERN_NOTICE "OLPC EC version 0x%02x too old for " "battery driver.\n", ecver); return -ENXIO; } ret = olpc_ec_cmd(EC_BAT_STATUS, NULL, 0, &status, 1); if (ret) return ret; /* Ignore the status. It doesn't actually matter */ ac_psy_cfg.of_node = pdev->dev.of_node; ac_psy_cfg.drv_data = data; data->olpc_ac = devm_power_supply_register(&pdev->dev, &olpc_ac_desc, &ac_psy_cfg); if (IS_ERR(data->olpc_ac)) return PTR_ERR(data->olpc_ac); if (of_device_is_compatible(pdev->dev.of_node, "olpc,xo1.5-battery")) { /* XO-1.5 */ olpc_bat_desc.properties = olpc_xo15_bat_props; olpc_bat_desc.num_properties = ARRAY_SIZE(olpc_xo15_bat_props); } else { /* XO-1 */ olpc_bat_desc.properties = olpc_xo1_bat_props; olpc_bat_desc.num_properties = ARRAY_SIZE(olpc_xo1_bat_props); } bat_psy_cfg.of_node = pdev->dev.of_node; bat_psy_cfg.drv_data = data; bat_psy_cfg.attr_grp = olpc_bat_sysfs_groups; data->olpc_bat = devm_power_supply_register(&pdev->dev, &olpc_bat_desc, &bat_psy_cfg); if (IS_ERR(data->olpc_bat)) return PTR_ERR(data->olpc_bat); if (olpc_ec_wakeup_available()) { device_set_wakeup_capable(&data->olpc_ac->dev, true); device_set_wakeup_capable(&data->olpc_bat->dev, true); } return 0; } static const struct of_device_id olpc_battery_ids[] = { { .compatible = "olpc,xo1-battery" }, { .compatible = "olpc,xo1.5-battery" }, {} }; MODULE_DEVICE_TABLE(of, olpc_battery_ids); static struct platform_driver olpc_battery_driver = { .driver = { .name = "olpc-battery", .of_match_table = olpc_battery_ids, }, .probe = olpc_battery_probe, .suspend = olpc_battery_suspend, }; module_platform_driver(olpc_battery_driver); MODULE_AUTHOR("David Woodhouse <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Battery driver for One Laptop Per Child 'XO' machine");
linux-master
drivers/power/supply/olpc_battery.c
// SPDX-License-Identifier: GPL-2.0 /* * Fuel gauge driver for CellWise 2013 / 2015 * * Copyright (C) 2012, RockChip * Copyright (C) 2020, Tobias Schramm * * Authors: xuhuicong <[email protected]> * Authors: Tobias Schramm <[email protected]> */ #include <linux/bits.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/gfp.h> #include <linux/gpio/consumer.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/power_supply.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/time.h> #include <linux/workqueue.h> #include <linux/devm-helpers.h> #define CW2015_SIZE_BATINFO 64 #define CW2015_RESET_TRIES 5 #define CW2015_REG_VERSION 0x00 #define CW2015_REG_VCELL 0x02 #define CW2015_REG_SOC 0x04 #define CW2015_REG_RRT_ALERT 0x06 #define CW2015_REG_CONFIG 0x08 #define CW2015_REG_MODE 0x0A #define CW2015_REG_BATINFO 0x10 #define CW2015_MODE_SLEEP_MASK GENMASK(7, 6) #define CW2015_MODE_SLEEP (0x03 << 6) #define CW2015_MODE_NORMAL (0x00 << 6) #define CW2015_MODE_QUICK_START (0x03 << 4) #define CW2015_MODE_RESTART (0x0f << 0) #define CW2015_CONFIG_UPDATE_FLG (0x01 << 1) #define CW2015_ATHD(x) ((x) << 3) #define CW2015_MASK_ATHD GENMASK(7, 3) #define CW2015_MASK_SOC GENMASK(12, 0) /* reset gauge of no valid state of charge could be polled for 40s */ #define CW2015_BAT_SOC_ERROR_MS (40 * MSEC_PER_SEC) /* reset gauge if state of charge stuck for half an hour during charging */ #define CW2015_BAT_CHARGING_STUCK_MS (1800 * MSEC_PER_SEC) /* poll interval from CellWise GPL Android driver example */ #define CW2015_DEFAULT_POLL_INTERVAL_MS 8000 #define CW2015_AVERAGING_SAMPLES 3 struct cw_battery { struct device *dev; struct workqueue_struct *battery_workqueue; struct delayed_work battery_delay_work; struct regmap *regmap; struct power_supply *rk_bat; struct power_supply_battery_info *battery; u8 *bat_profile; bool charger_attached; bool battery_changed; int soc; int voltage_mv; int status; int time_to_empty; int charge_count; u32 poll_interval_ms; u8 alert_level; unsigned int read_errors; unsigned int charge_stuck_cnt; }; static int cw_read_word(struct cw_battery *cw_bat, u8 reg, u16 *val) { __be16 value; int ret; ret = regmap_bulk_read(cw_bat->regmap, reg, &value, sizeof(value)); if (ret) return ret; *val = be16_to_cpu(value); return 0; } static int cw_update_profile(struct cw_battery *cw_bat) { int ret; unsigned int reg_val; u8 reset_val; /* make sure gauge is not in sleep mode */ ret = regmap_read(cw_bat->regmap, CW2015_REG_MODE, &reg_val); if (ret) return ret; reset_val = reg_val; if ((reg_val & CW2015_MODE_SLEEP_MASK) == CW2015_MODE_SLEEP) { dev_err(cw_bat->dev, "Gauge is in sleep mode, can't update battery info\n"); return -EINVAL; } /* write new battery info */ ret = regmap_raw_write(cw_bat->regmap, CW2015_REG_BATINFO, cw_bat->bat_profile, CW2015_SIZE_BATINFO); if (ret) return ret; /* set config update flag */ reg_val |= CW2015_CONFIG_UPDATE_FLG; reg_val &= ~CW2015_MASK_ATHD; reg_val |= CW2015_ATHD(cw_bat->alert_level); ret = regmap_write(cw_bat->regmap, CW2015_REG_CONFIG, reg_val); if (ret) return ret; /* reset gauge to apply new battery profile */ reset_val &= ~CW2015_MODE_RESTART; reg_val = reset_val | CW2015_MODE_RESTART; ret = regmap_write(cw_bat->regmap, CW2015_REG_MODE, reg_val); if (ret) return ret; /* wait for gauge to reset */ msleep(20); /* clear reset flag */ ret = regmap_write(cw_bat->regmap, CW2015_REG_MODE, reset_val); if (ret) return ret; /* wait for gauge to become ready */ ret = regmap_read_poll_timeout(cw_bat->regmap, CW2015_REG_SOC, reg_val, reg_val <= 100, 10 * USEC_PER_MSEC, 10 * USEC_PER_SEC); if (ret) dev_err(cw_bat->dev, "Gauge did not become ready after profile upload\n"); else dev_dbg(cw_bat->dev, "Battery profile updated\n"); return ret; } static int cw_init(struct cw_battery *cw_bat) { int ret; unsigned int reg_val = CW2015_MODE_SLEEP; if ((reg_val & CW2015_MODE_SLEEP_MASK) == CW2015_MODE_SLEEP) { reg_val = CW2015_MODE_NORMAL; ret = regmap_write(cw_bat->regmap, CW2015_REG_MODE, reg_val); if (ret) return ret; } ret = regmap_read(cw_bat->regmap, CW2015_REG_CONFIG, &reg_val); if (ret) return ret; if ((reg_val & CW2015_MASK_ATHD) != CW2015_ATHD(cw_bat->alert_level)) { dev_dbg(cw_bat->dev, "Setting new alert level\n"); reg_val &= ~CW2015_MASK_ATHD; reg_val |= ~CW2015_ATHD(cw_bat->alert_level); ret = regmap_write(cw_bat->regmap, CW2015_REG_CONFIG, reg_val); if (ret) return ret; } ret = regmap_read(cw_bat->regmap, CW2015_REG_CONFIG, &reg_val); if (ret) return ret; if (!(reg_val & CW2015_CONFIG_UPDATE_FLG)) { dev_dbg(cw_bat->dev, "Battery profile not present, uploading battery profile\n"); if (cw_bat->bat_profile) { ret = cw_update_profile(cw_bat); if (ret) { dev_err(cw_bat->dev, "Failed to upload battery profile\n"); return ret; } } else { dev_warn(cw_bat->dev, "No profile specified, continuing without profile\n"); } } else if (cw_bat->bat_profile) { u8 bat_info[CW2015_SIZE_BATINFO]; ret = regmap_raw_read(cw_bat->regmap, CW2015_REG_BATINFO, bat_info, CW2015_SIZE_BATINFO); if (ret) { dev_err(cw_bat->dev, "Failed to read stored battery profile\n"); return ret; } if (memcmp(bat_info, cw_bat->bat_profile, CW2015_SIZE_BATINFO)) { dev_warn(cw_bat->dev, "Replacing stored battery profile\n"); ret = cw_update_profile(cw_bat); if (ret) return ret; } } else { dev_warn(cw_bat->dev, "Can't check current battery profile, no profile provided\n"); } dev_dbg(cw_bat->dev, "Battery profile configured\n"); return 0; } static int cw_power_on_reset(struct cw_battery *cw_bat) { int ret; unsigned char reset_val; reset_val = CW2015_MODE_SLEEP; ret = regmap_write(cw_bat->regmap, CW2015_REG_MODE, reset_val); if (ret) return ret; /* wait for gauge to enter sleep */ msleep(20); reset_val = CW2015_MODE_NORMAL; ret = regmap_write(cw_bat->regmap, CW2015_REG_MODE, reset_val); if (ret) return ret; ret = cw_init(cw_bat); if (ret) return ret; return 0; } #define HYSTERESIS(current, previous, up, down) \ (((current) < (previous) + (up)) && ((current) > (previous) - (down))) static int cw_get_soc(struct cw_battery *cw_bat) { unsigned int soc; int ret; ret = regmap_read(cw_bat->regmap, CW2015_REG_SOC, &soc); if (ret) return ret; if (soc > 100) { int max_error_cycles = CW2015_BAT_SOC_ERROR_MS / cw_bat->poll_interval_ms; dev_err(cw_bat->dev, "Invalid SoC %d%%\n", soc); cw_bat->read_errors++; if (cw_bat->read_errors > max_error_cycles) { dev_warn(cw_bat->dev, "Too many invalid SoC reports, resetting gauge\n"); cw_power_on_reset(cw_bat); cw_bat->read_errors = 0; } return cw_bat->soc; } cw_bat->read_errors = 0; /* Reset gauge if stuck while charging */ if (cw_bat->status == POWER_SUPPLY_STATUS_CHARGING && soc == cw_bat->soc) { int max_stuck_cycles = CW2015_BAT_CHARGING_STUCK_MS / cw_bat->poll_interval_ms; cw_bat->charge_stuck_cnt++; if (cw_bat->charge_stuck_cnt > max_stuck_cycles) { dev_warn(cw_bat->dev, "SoC stuck @%u%%, resetting gauge\n", soc); cw_power_on_reset(cw_bat); cw_bat->charge_stuck_cnt = 0; } } else { cw_bat->charge_stuck_cnt = 0; } /* Ignore voltage dips during charge */ if (cw_bat->charger_attached && HYSTERESIS(soc, cw_bat->soc, 0, 3)) soc = cw_bat->soc; /* Ignore voltage spikes during discharge */ if (!cw_bat->charger_attached && HYSTERESIS(soc, cw_bat->soc, 3, 0)) soc = cw_bat->soc; return soc; } static int cw_get_voltage(struct cw_battery *cw_bat) { int ret, i, voltage_mv; u16 reg_val; u32 avg = 0; for (i = 0; i < CW2015_AVERAGING_SAMPLES; i++) { ret = cw_read_word(cw_bat, CW2015_REG_VCELL, &reg_val); if (ret) return ret; avg += reg_val; } avg /= CW2015_AVERAGING_SAMPLES; /* * 305 uV per ADC step * Use 312 / 1024 as efficient approximation of 305 / 1000 * Negligible error of 0.1% */ voltage_mv = avg * 312 / 1024; dev_dbg(cw_bat->dev, "Read voltage: %d mV, raw=0x%04x\n", voltage_mv, reg_val); return voltage_mv; } static int cw_get_time_to_empty(struct cw_battery *cw_bat) { int ret; u16 value16; ret = cw_read_word(cw_bat, CW2015_REG_RRT_ALERT, &value16); if (ret) return ret; return value16 & CW2015_MASK_SOC; } static void cw_update_charge_status(struct cw_battery *cw_bat) { int ret; ret = power_supply_am_i_supplied(cw_bat->rk_bat); if (ret < 0) { dev_warn(cw_bat->dev, "Failed to get supply state: %d\n", ret); } else { bool charger_attached; charger_attached = !!ret; if (cw_bat->charger_attached != charger_attached) { cw_bat->battery_changed = true; if (charger_attached) cw_bat->charge_count++; } cw_bat->charger_attached = charger_attached; } } static void cw_update_soc(struct cw_battery *cw_bat) { int soc; soc = cw_get_soc(cw_bat); if (soc < 0) dev_err(cw_bat->dev, "Failed to get SoC from gauge: %d\n", soc); else if (cw_bat->soc != soc) { cw_bat->soc = soc; cw_bat->battery_changed = true; } } static void cw_update_voltage(struct cw_battery *cw_bat) { int voltage_mv; voltage_mv = cw_get_voltage(cw_bat); if (voltage_mv < 0) dev_err(cw_bat->dev, "Failed to get voltage from gauge: %d\n", voltage_mv); else cw_bat->voltage_mv = voltage_mv; } static void cw_update_status(struct cw_battery *cw_bat) { int status = POWER_SUPPLY_STATUS_DISCHARGING; if (cw_bat->charger_attached) { if (cw_bat->soc >= 100) status = POWER_SUPPLY_STATUS_FULL; else status = POWER_SUPPLY_STATUS_CHARGING; } if (cw_bat->status != status) cw_bat->battery_changed = true; cw_bat->status = status; } static void cw_update_time_to_empty(struct cw_battery *cw_bat) { int time_to_empty; time_to_empty = cw_get_time_to_empty(cw_bat); if (time_to_empty < 0) dev_err(cw_bat->dev, "Failed to get time to empty from gauge: %d\n", time_to_empty); else if (cw_bat->time_to_empty != time_to_empty) { cw_bat->time_to_empty = time_to_empty; cw_bat->battery_changed = true; } } static void cw_bat_work(struct work_struct *work) { struct delayed_work *delay_work; struct cw_battery *cw_bat; int ret; unsigned int reg_val; delay_work = to_delayed_work(work); cw_bat = container_of(delay_work, struct cw_battery, battery_delay_work); ret = regmap_read(cw_bat->regmap, CW2015_REG_MODE, &reg_val); if (ret) { dev_err(cw_bat->dev, "Failed to read mode from gauge: %d\n", ret); } else { if ((reg_val & CW2015_MODE_SLEEP_MASK) == CW2015_MODE_SLEEP) { int i; for (i = 0; i < CW2015_RESET_TRIES; i++) { if (!cw_power_on_reset(cw_bat)) break; } } cw_update_soc(cw_bat); cw_update_voltage(cw_bat); cw_update_charge_status(cw_bat); cw_update_status(cw_bat); cw_update_time_to_empty(cw_bat); } dev_dbg(cw_bat->dev, "charger_attached = %d\n", cw_bat->charger_attached); dev_dbg(cw_bat->dev, "status = %d\n", cw_bat->status); dev_dbg(cw_bat->dev, "soc = %d%%\n", cw_bat->soc); dev_dbg(cw_bat->dev, "voltage = %dmV\n", cw_bat->voltage_mv); if (cw_bat->battery_changed) power_supply_changed(cw_bat->rk_bat); cw_bat->battery_changed = false; queue_delayed_work(cw_bat->battery_workqueue, &cw_bat->battery_delay_work, msecs_to_jiffies(cw_bat->poll_interval_ms)); } static bool cw_battery_valid_time_to_empty(struct cw_battery *cw_bat) { return cw_bat->time_to_empty > 0 && cw_bat->time_to_empty < CW2015_MASK_SOC && cw_bat->status == POWER_SUPPLY_STATUS_DISCHARGING; } static int cw_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct cw_battery *cw_bat; cw_bat = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CAPACITY: val->intval = cw_bat->soc; break; case POWER_SUPPLY_PROP_STATUS: val->intval = cw_bat->status; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = !!cw_bat->voltage_mv; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = cw_bat->voltage_mv * 1000; break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: if (cw_battery_valid_time_to_empty(cw_bat)) val->intval = cw_bat->time_to_empty; else val->intval = 0; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CHARGE_COUNTER: val->intval = cw_bat->charge_count; break; case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: if (cw_bat->battery->charge_full_design_uah > 0) val->intval = cw_bat->battery->charge_full_design_uah; else val->intval = 0; break; case POWER_SUPPLY_PROP_CHARGE_NOW: val->intval = cw_bat->battery->charge_full_design_uah; val->intval = val->intval * cw_bat->soc / 100; break; case POWER_SUPPLY_PROP_CURRENT_NOW: if (cw_battery_valid_time_to_empty(cw_bat) && cw_bat->battery->charge_full_design_uah > 0) { /* calculate remaining capacity */ val->intval = cw_bat->battery->charge_full_design_uah; val->intval = val->intval * cw_bat->soc / 100; /* estimate current based on time to empty */ val->intval = 60 * val->intval / cw_bat->time_to_empty; } else { val->intval = 0; } break; default: break; } return 0; } static enum power_supply_property cw_battery_properties[] = { POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, }; static const struct power_supply_desc cw2015_bat_desc = { .name = "cw2015-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = cw_battery_properties, .num_properties = ARRAY_SIZE(cw_battery_properties), .get_property = cw_battery_get_property, }; static int cw2015_parse_properties(struct cw_battery *cw_bat) { struct device *dev = cw_bat->dev; int length; int ret; length = device_property_count_u8(dev, "cellwise,battery-profile"); if (length < 0) { dev_warn(cw_bat->dev, "No battery-profile found, using current flash contents\n"); } else if (length != CW2015_SIZE_BATINFO) { dev_err(cw_bat->dev, "battery-profile must be %d bytes\n", CW2015_SIZE_BATINFO); return -EINVAL; } else { cw_bat->bat_profile = devm_kzalloc(dev, length, GFP_KERNEL); if (!cw_bat->bat_profile) return -ENOMEM; ret = device_property_read_u8_array(dev, "cellwise,battery-profile", cw_bat->bat_profile, length); if (ret) return ret; } ret = device_property_read_u32(dev, "cellwise,monitor-interval-ms", &cw_bat->poll_interval_ms); if (ret) { dev_dbg(cw_bat->dev, "Using default poll interval\n"); cw_bat->poll_interval_ms = CW2015_DEFAULT_POLL_INTERVAL_MS; } return 0; } static const struct regmap_range regmap_ranges_rd_yes[] = { regmap_reg_range(CW2015_REG_VERSION, CW2015_REG_VERSION), regmap_reg_range(CW2015_REG_VCELL, CW2015_REG_CONFIG), regmap_reg_range(CW2015_REG_MODE, CW2015_REG_MODE), regmap_reg_range(CW2015_REG_BATINFO, CW2015_REG_BATINFO + CW2015_SIZE_BATINFO - 1), }; static const struct regmap_access_table regmap_rd_table = { .yes_ranges = regmap_ranges_rd_yes, .n_yes_ranges = 4, }; static const struct regmap_range regmap_ranges_wr_yes[] = { regmap_reg_range(CW2015_REG_RRT_ALERT, CW2015_REG_CONFIG), regmap_reg_range(CW2015_REG_MODE, CW2015_REG_MODE), regmap_reg_range(CW2015_REG_BATINFO, CW2015_REG_BATINFO + CW2015_SIZE_BATINFO - 1), }; static const struct regmap_access_table regmap_wr_table = { .yes_ranges = regmap_ranges_wr_yes, .n_yes_ranges = 3, }; static const struct regmap_range regmap_ranges_vol_yes[] = { regmap_reg_range(CW2015_REG_VCELL, CW2015_REG_SOC + 1), }; static const struct regmap_access_table regmap_vol_table = { .yes_ranges = regmap_ranges_vol_yes, .n_yes_ranges = 1, }; static const struct regmap_config cw2015_regmap_config = { .reg_bits = 8, .val_bits = 8, .rd_table = &regmap_rd_table, .wr_table = &regmap_wr_table, .volatile_table = &regmap_vol_table, .max_register = CW2015_REG_BATINFO + CW2015_SIZE_BATINFO - 1, }; static int cw_bat_probe(struct i2c_client *client) { int ret; struct cw_battery *cw_bat; struct power_supply_config psy_cfg = { 0 }; cw_bat = devm_kzalloc(&client->dev, sizeof(*cw_bat), GFP_KERNEL); if (!cw_bat) return -ENOMEM; i2c_set_clientdata(client, cw_bat); cw_bat->dev = &client->dev; cw_bat->soc = 1; ret = cw2015_parse_properties(cw_bat); if (ret) { dev_err(cw_bat->dev, "Failed to parse cw2015 properties\n"); return ret; } cw_bat->regmap = devm_regmap_init_i2c(client, &cw2015_regmap_config); if (IS_ERR(cw_bat->regmap)) { dev_err(cw_bat->dev, "Failed to allocate regmap: %ld\n", PTR_ERR(cw_bat->regmap)); return PTR_ERR(cw_bat->regmap); } ret = cw_init(cw_bat); if (ret) { dev_err(cw_bat->dev, "Init failed: %d\n", ret); return ret; } psy_cfg.drv_data = cw_bat; psy_cfg.fwnode = dev_fwnode(cw_bat->dev); cw_bat->rk_bat = devm_power_supply_register(&client->dev, &cw2015_bat_desc, &psy_cfg); if (IS_ERR(cw_bat->rk_bat)) { /* try again if this happens */ dev_err_probe(&client->dev, PTR_ERR(cw_bat->rk_bat), "Failed to register power supply\n"); return PTR_ERR(cw_bat->rk_bat); } ret = power_supply_get_battery_info(cw_bat->rk_bat, &cw_bat->battery); if (ret) { /* Allocate an empty battery */ cw_bat->battery = devm_kzalloc(&client->dev, sizeof(*cw_bat->battery), GFP_KERNEL); if (!cw_bat->battery) return -ENOMEM; dev_warn(cw_bat->dev, "No monitored battery, some properties will be missing\n"); } cw_bat->battery_workqueue = create_singlethread_workqueue("rk_battery"); if (!cw_bat->battery_workqueue) return -ENOMEM; devm_delayed_work_autocancel(&client->dev, &cw_bat->battery_delay_work, cw_bat_work); queue_delayed_work(cw_bat->battery_workqueue, &cw_bat->battery_delay_work, msecs_to_jiffies(10)); return 0; } static int __maybe_unused cw_bat_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct cw_battery *cw_bat = i2c_get_clientdata(client); cancel_delayed_work_sync(&cw_bat->battery_delay_work); return 0; } static int __maybe_unused cw_bat_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct cw_battery *cw_bat = i2c_get_clientdata(client); queue_delayed_work(cw_bat->battery_workqueue, &cw_bat->battery_delay_work, 0); return 0; } static SIMPLE_DEV_PM_OPS(cw_bat_pm_ops, cw_bat_suspend, cw_bat_resume); static const struct i2c_device_id cw_bat_id_table[] = { { "cw2015", 0 }, { } }; static const struct of_device_id cw2015_of_match[] = { { .compatible = "cellwise,cw2015" }, { } }; MODULE_DEVICE_TABLE(of, cw2015_of_match); static struct i2c_driver cw_bat_driver = { .driver = { .name = "cw2015", .of_match_table = cw2015_of_match, .pm = &cw_bat_pm_ops, }, .probe = cw_bat_probe, .id_table = cw_bat_id_table, }; module_i2c_driver(cw_bat_driver); MODULE_AUTHOR("xhc<[email protected]>"); MODULE_AUTHOR("Tobias Schramm <[email protected]>"); MODULE_DESCRIPTION("cw2015/cw2013 battery driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/cw2015_battery.c
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for UCS1002 Programmable USB Port Power Controller * * Copyright (C) 2019 Zodiac Inflight Innovations */ #include <linux/bits.h> #include <linux/freezer.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/device.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/regulator/of_regulator.h> /* UCS1002 Registers */ #define UCS1002_REG_CURRENT_MEASUREMENT 0x00 /* * The Total Accumulated Charge registers store the total accumulated * charge delivered from the VS source to a portable device. The total * value is calculated using four registers, from 01h to 04h. The bit * weighting of the registers is given in mA/hrs. */ #define UCS1002_REG_TOTAL_ACC_CHARGE 0x01 /* Other Status Register */ #define UCS1002_REG_OTHER_STATUS 0x0f # define F_ADET_PIN BIT(4) # define F_CHG_ACT BIT(3) /* Interrupt Status */ #define UCS1002_REG_INTERRUPT_STATUS 0x10 # define F_ERR BIT(7) # define F_DISCHARGE_ERR BIT(6) # define F_RESET BIT(5) # define F_MIN_KEEP_OUT BIT(4) # define F_TSD BIT(3) # define F_OVER_VOLT BIT(2) # define F_BACK_VOLT BIT(1) # define F_OVER_ILIM BIT(0) /* Pin Status Register */ #define UCS1002_REG_PIN_STATUS 0x14 # define UCS1002_PWR_STATE_MASK 0x03 # define F_PWR_EN_PIN BIT(6) # define F_M2_PIN BIT(5) # define F_M1_PIN BIT(4) # define F_EM_EN_PIN BIT(3) # define F_SEL_PIN BIT(2) # define F_ACTIVE_MODE_MASK GENMASK(5, 3) # define F_ACTIVE_MODE_PASSTHROUGH F_M2_PIN # define F_ACTIVE_MODE_DEDICATED F_EM_EN_PIN # define F_ACTIVE_MODE_BC12_DCP (F_M2_PIN | F_EM_EN_PIN) # define F_ACTIVE_MODE_BC12_SDP F_M1_PIN # define F_ACTIVE_MODE_BC12_CDP (F_M1_PIN | F_M2_PIN | F_EM_EN_PIN) /* General Configuration Register */ #define UCS1002_REG_GENERAL_CFG 0x15 # define F_RATION_EN BIT(3) /* Emulation Configuration Register */ #define UCS1002_REG_EMU_CFG 0x16 /* Switch Configuration Register */ #define UCS1002_REG_SWITCH_CFG 0x17 # define F_PIN_IGNORE BIT(7) # define F_EM_EN_SET BIT(5) # define F_M2_SET BIT(4) # define F_M1_SET BIT(3) # define F_S0_SET BIT(2) # define F_PWR_EN_SET BIT(1) # define F_LATCH_SET BIT(0) # define V_SET_ACTIVE_MODE_MASK GENMASK(5, 3) # define V_SET_ACTIVE_MODE_PASSTHROUGH F_M2_SET # define V_SET_ACTIVE_MODE_DEDICATED F_EM_EN_SET # define V_SET_ACTIVE_MODE_BC12_DCP (F_M2_SET | F_EM_EN_SET) # define V_SET_ACTIVE_MODE_BC12_SDP F_M1_SET # define V_SET_ACTIVE_MODE_BC12_CDP (F_M1_SET | F_M2_SET | F_EM_EN_SET) /* Current Limit Register */ #define UCS1002_REG_ILIMIT 0x19 # define UCS1002_ILIM_SW_MASK GENMASK(3, 0) /* Product ID */ #define UCS1002_REG_PRODUCT_ID 0xfd # define UCS1002_PRODUCT_ID 0x4e /* Manufacture name */ #define UCS1002_MANUFACTURER "SMSC" struct ucs1002_info { struct power_supply *charger; struct i2c_client *client; struct regmap *regmap; struct regulator_desc *regulator_descriptor; struct regulator_dev *rdev; bool present; bool output_disable; struct delayed_work health_poll; int health; }; static enum power_supply_property ucs1002_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_PRESENT, /* the presence of PED */ POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_HEALTH, }; static int ucs1002_get_online(struct ucs1002_info *info, union power_supply_propval *val) { unsigned int reg; int ret; ret = regmap_read(info->regmap, UCS1002_REG_OTHER_STATUS, &reg); if (ret) return ret; val->intval = !!(reg & F_CHG_ACT); return 0; } static int ucs1002_get_charge(struct ucs1002_info *info, union power_supply_propval *val) { /* * To fit within 32 bits some values are rounded (uA/h) * * For Total Accumulated Charge Middle Low Byte register, addr * 03h, byte 2 * * B0: 0.01084 mA/h rounded to 11 uA/h * B1: 0.02169 mA/h rounded to 22 uA/h * B2: 0.04340 mA/h rounded to 43 uA/h * B3: 0.08676 mA/h rounded to 87 uA/h * B4: 0.17350 mA/h rounded to 173 uÁ/h * * For Total Accumulated Charge Low Byte register, addr 04h, * byte 3 * * B6: 0.00271 mA/h rounded to 3 uA/h * B7: 0.005422 mA/h rounded to 5 uA/h */ static const int bit_weights_uAh[BITS_PER_TYPE(u32)] = { /* * Bit corresponding to low byte (offset 0x04) * B0 B1 B2 B3 B4 B5 B6 B7 */ 0, 0, 0, 0, 0, 0, 3, 5, /* * Bit corresponding to middle low byte (offset 0x03) * B0 B1 B2 B3 B4 B5 B6 B7 */ 11, 22, 43, 87, 173, 347, 694, 1388, /* * Bit corresponding to middle high byte (offset 0x02) * B0 B1 B2 B3 B4 B5 B6 B7 */ 2776, 5552, 11105, 22210, 44420, 88840, 177700, 355400, /* * Bit corresponding to high byte (offset 0x01) * B0 B1 B2 B3 B4 B5 B6 B7 */ 710700, 1421000, 2843000, 5685000, 11371000, 22742000, 45484000, 90968000, }; unsigned long total_acc_charger; unsigned int reg; int i, ret; ret = regmap_bulk_read(info->regmap, UCS1002_REG_TOTAL_ACC_CHARGE, &reg, sizeof(u32)); if (ret) return ret; total_acc_charger = be32_to_cpu(reg); /* BE as per offsets above */ val->intval = 0; for_each_set_bit(i, &total_acc_charger, ARRAY_SIZE(bit_weights_uAh)) val->intval += bit_weights_uAh[i]; return 0; } static int ucs1002_get_current(struct ucs1002_info *info, union power_supply_propval *val) { /* * The Current Measurement register stores the measured * current value delivered to the portable device. The range * is from 9.76 mA to 2.5 A. */ static const int bit_weights_uA[BITS_PER_TYPE(u8)] = { 9760, 19500, 39000, 78100, 156200, 312300, 624600, 1249300, }; unsigned long current_measurement; unsigned int reg; int i, ret; ret = regmap_read(info->regmap, UCS1002_REG_CURRENT_MEASUREMENT, &reg); if (ret) return ret; current_measurement = reg; val->intval = 0; for_each_set_bit(i, &current_measurement, ARRAY_SIZE(bit_weights_uA)) val->intval += bit_weights_uA[i]; return 0; } /* * The Current Limit register stores the maximum current used by the * port switch. The range is from 500mA to 2.5 A. */ static const u32 ucs1002_current_limit_uA[] = { 500000, 900000, 1000000, 1200000, 1500000, 1800000, 2000000, 2500000, }; static int ucs1002_get_max_current(struct ucs1002_info *info, union power_supply_propval *val) { unsigned int reg; int ret; if (info->output_disable) { val->intval = 0; return 0; } ret = regmap_read(info->regmap, UCS1002_REG_ILIMIT, &reg); if (ret) return ret; val->intval = ucs1002_current_limit_uA[reg & UCS1002_ILIM_SW_MASK]; return 0; } static int ucs1002_set_max_current(struct ucs1002_info *info, u32 val) { unsigned int reg; int ret, idx; if (val == 0) { info->output_disable = true; regulator_disable_regmap(info->rdev); return 0; } for (idx = 0; idx < ARRAY_SIZE(ucs1002_current_limit_uA); idx++) { if (val == ucs1002_current_limit_uA[idx]) break; } if (idx == ARRAY_SIZE(ucs1002_current_limit_uA)) return -EINVAL; ret = regmap_write(info->regmap, UCS1002_REG_ILIMIT, idx); if (ret) return ret; /* * Any current limit setting exceeding the one set via ILIM * pin will be rejected, so we read out freshly changed limit * to make sure that it took effect. */ ret = regmap_read(info->regmap, UCS1002_REG_ILIMIT, &reg); if (ret) return ret; if (reg != idx) return -EINVAL; info->output_disable = false; if (info->rdev && info->rdev->use_count && !regulator_is_enabled_regmap(info->rdev)) regulator_enable_regmap(info->rdev); return 0; } static enum power_supply_usb_type ucs1002_usb_types[] = { POWER_SUPPLY_USB_TYPE_PD, POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_CDP, POWER_SUPPLY_USB_TYPE_UNKNOWN, }; static int ucs1002_set_usb_type(struct ucs1002_info *info, int val) { unsigned int mode; if (val < 0 || val >= ARRAY_SIZE(ucs1002_usb_types)) return -EINVAL; switch (ucs1002_usb_types[val]) { case POWER_SUPPLY_USB_TYPE_PD: mode = V_SET_ACTIVE_MODE_DEDICATED; break; case POWER_SUPPLY_USB_TYPE_SDP: mode = V_SET_ACTIVE_MODE_BC12_SDP; break; case POWER_SUPPLY_USB_TYPE_DCP: mode = V_SET_ACTIVE_MODE_BC12_DCP; break; case POWER_SUPPLY_USB_TYPE_CDP: mode = V_SET_ACTIVE_MODE_BC12_CDP; break; default: return -EINVAL; } return regmap_update_bits(info->regmap, UCS1002_REG_SWITCH_CFG, V_SET_ACTIVE_MODE_MASK, mode); } static int ucs1002_get_usb_type(struct ucs1002_info *info, union power_supply_propval *val) { enum power_supply_usb_type type; unsigned int reg; int ret; ret = regmap_read(info->regmap, UCS1002_REG_PIN_STATUS, &reg); if (ret) return ret; switch (reg & F_ACTIVE_MODE_MASK) { default: type = POWER_SUPPLY_USB_TYPE_UNKNOWN; break; case F_ACTIVE_MODE_DEDICATED: type = POWER_SUPPLY_USB_TYPE_PD; break; case F_ACTIVE_MODE_BC12_SDP: type = POWER_SUPPLY_USB_TYPE_SDP; break; case F_ACTIVE_MODE_BC12_DCP: type = POWER_SUPPLY_USB_TYPE_DCP; break; case F_ACTIVE_MODE_BC12_CDP: type = POWER_SUPPLY_USB_TYPE_CDP; break; } val->intval = type; return 0; } static int ucs1002_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ucs1002_info *info = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: return ucs1002_get_online(info, val); case POWER_SUPPLY_PROP_CHARGE_NOW: return ucs1002_get_charge(info, val); case POWER_SUPPLY_PROP_CURRENT_NOW: return ucs1002_get_current(info, val); case POWER_SUPPLY_PROP_CURRENT_MAX: return ucs1002_get_max_current(info, val); case POWER_SUPPLY_PROP_USB_TYPE: return ucs1002_get_usb_type(info, val); case POWER_SUPPLY_PROP_HEALTH: return val->intval = info->health; case POWER_SUPPLY_PROP_PRESENT: val->intval = info->present; return 0; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = UCS1002_MANUFACTURER; return 0; default: return -EINVAL; } } static int ucs1002_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct ucs1002_info *info = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: return ucs1002_set_max_current(info, val->intval); case POWER_SUPPLY_PROP_USB_TYPE: return ucs1002_set_usb_type(info, val->intval); default: return -EINVAL; } } static int ucs1002_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: case POWER_SUPPLY_PROP_USB_TYPE: return true; default: return false; } } static const struct power_supply_desc ucs1002_charger_desc = { .name = "ucs1002", .type = POWER_SUPPLY_TYPE_USB, .usb_types = ucs1002_usb_types, .num_usb_types = ARRAY_SIZE(ucs1002_usb_types), .get_property = ucs1002_get_property, .set_property = ucs1002_set_property, .property_is_writeable = ucs1002_property_is_writeable, .properties = ucs1002_props, .num_properties = ARRAY_SIZE(ucs1002_props), }; static void ucs1002_health_poll(struct work_struct *work) { struct ucs1002_info *info = container_of(work, struct ucs1002_info, health_poll.work); int ret; u32 reg; ret = regmap_read(info->regmap, UCS1002_REG_INTERRUPT_STATUS, &reg); if (ret) return; /* bad health and no status change, just schedule us again in a while */ if ((reg & F_ERR) && info->health != POWER_SUPPLY_HEALTH_GOOD) { schedule_delayed_work(&info->health_poll, msecs_to_jiffies(2000)); return; } if (reg & F_TSD) info->health = POWER_SUPPLY_HEALTH_OVERHEAT; else if (reg & (F_OVER_VOLT | F_BACK_VOLT)) info->health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else if (reg & F_OVER_ILIM) info->health = POWER_SUPPLY_HEALTH_OVERCURRENT; else if (reg & (F_DISCHARGE_ERR | F_MIN_KEEP_OUT)) info->health = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; else info->health = POWER_SUPPLY_HEALTH_GOOD; sysfs_notify(&info->charger->dev.kobj, NULL, "health"); } static irqreturn_t ucs1002_charger_irq(int irq, void *data) { int ret, regval; bool present; struct ucs1002_info *info = data; present = info->present; ret = regmap_read(info->regmap, UCS1002_REG_OTHER_STATUS, &regval); if (ret) return IRQ_HANDLED; /* update attached status */ info->present = regval & F_ADET_PIN; /* notify the change */ if (present != info->present) power_supply_changed(info->charger); return IRQ_HANDLED; } static irqreturn_t ucs1002_alert_irq(int irq, void *data) { struct ucs1002_info *info = data; mod_delayed_work(system_wq, &info->health_poll, 0); return IRQ_HANDLED; } static int ucs1002_regulator_enable(struct regulator_dev *rdev) { struct ucs1002_info *info = rdev_get_drvdata(rdev); /* * If the output is disabled due to 0 maximum current, just pretend the * enable did work. The regulator will be enabled as soon as we get a * a non-zero maximum current budget. */ if (info->output_disable) return 0; return regulator_enable_regmap(rdev); } static const struct regulator_ops ucs1002_regulator_ops = { .is_enabled = regulator_is_enabled_regmap, .enable = ucs1002_regulator_enable, .disable = regulator_disable_regmap, }; static const struct regulator_desc ucs1002_regulator_descriptor = { .name = "ucs1002-vbus", .ops = &ucs1002_regulator_ops, .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .enable_reg = UCS1002_REG_SWITCH_CFG, .enable_mask = F_PWR_EN_SET, .enable_val = F_PWR_EN_SET, .fixed_uV = 5000000, .n_voltages = 1, }; static int ucs1002_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct power_supply_config charger_config = {}; const struct regmap_config regmap_config = { .reg_bits = 8, .val_bits = 8, }; struct regulator_config regulator_config = {}; int irq_a_det, irq_alert, ret; struct ucs1002_info *info; unsigned int regval; info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->regmap = devm_regmap_init_i2c(client, &regmap_config); ret = PTR_ERR_OR_ZERO(info->regmap); if (ret) { dev_err(dev, "Regmap initialization failed: %d\n", ret); return ret; } info->client = client; irq_a_det = of_irq_get_byname(dev->of_node, "a_det"); irq_alert = of_irq_get_byname(dev->of_node, "alert"); charger_config.of_node = dev->of_node; charger_config.drv_data = info; ret = regmap_read(info->regmap, UCS1002_REG_PRODUCT_ID, &regval); if (ret) { dev_err(dev, "Failed to read product ID: %d\n", ret); return ret; } if (regval != UCS1002_PRODUCT_ID) { dev_err(dev, "Product ID does not match (0x%02x != 0x%02x)\n", regval, UCS1002_PRODUCT_ID); return -ENODEV; } /* Enable charge rationing by default */ ret = regmap_update_bits(info->regmap, UCS1002_REG_GENERAL_CFG, F_RATION_EN, F_RATION_EN); if (ret) { dev_err(dev, "Failed to read general config: %d\n", ret); return ret; } /* * Ignore the M1, M2, PWR_EN, and EM_EN pin states. Set active * mode selection to BC1.2 CDP. */ ret = regmap_update_bits(info->regmap, UCS1002_REG_SWITCH_CFG, V_SET_ACTIVE_MODE_MASK | F_PIN_IGNORE, V_SET_ACTIVE_MODE_BC12_CDP | F_PIN_IGNORE); if (ret) { dev_err(dev, "Failed to configure default mode: %d\n", ret); return ret; } /* * Be safe and set initial current limit to 500mA */ ret = ucs1002_set_max_current(info, 500000); if (ret) { dev_err(dev, "Failed to set max current default: %d\n", ret); return ret; } info->charger = devm_power_supply_register(dev, &ucs1002_charger_desc, &charger_config); ret = PTR_ERR_OR_ZERO(info->charger); if (ret) { dev_err(dev, "Failed to register power supply: %d\n", ret); return ret; } ret = regmap_read(info->regmap, UCS1002_REG_PIN_STATUS, &regval); if (ret) { dev_err(dev, "Failed to read pin status: %d\n", ret); return ret; } info->regulator_descriptor = devm_kmemdup(dev, &ucs1002_regulator_descriptor, sizeof(ucs1002_regulator_descriptor), GFP_KERNEL); if (!info->regulator_descriptor) return -ENOMEM; info->regulator_descriptor->enable_is_inverted = !(regval & F_SEL_PIN); regulator_config.dev = dev; regulator_config.of_node = dev->of_node; regulator_config.regmap = info->regmap; regulator_config.driver_data = info; info->rdev = devm_regulator_register(dev, info->regulator_descriptor, &regulator_config); ret = PTR_ERR_OR_ZERO(info->rdev); if (ret) { dev_err(dev, "Failed to register VBUS regulator: %d\n", ret); return ret; } info->health = POWER_SUPPLY_HEALTH_GOOD; INIT_DELAYED_WORK(&info->health_poll, ucs1002_health_poll); if (irq_a_det > 0) { ret = devm_request_threaded_irq(dev, irq_a_det, NULL, ucs1002_charger_irq, IRQF_ONESHOT, "ucs1002-a_det", info); if (ret) { dev_err(dev, "Failed to request A_DET threaded irq: %d\n", ret); return ret; } } if (irq_alert > 0) { ret = devm_request_irq(dev, irq_alert, ucs1002_alert_irq, 0,"ucs1002-alert", info); if (ret) { dev_err(dev, "Failed to request ALERT threaded irq: %d\n", ret); return ret; } } return 0; } static const struct of_device_id ucs1002_of_match[] = { { .compatible = "microchip,ucs1002", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, ucs1002_of_match); static struct i2c_driver ucs1002_driver = { .driver = { .name = "ucs1002", .of_match_table = ucs1002_of_match, }, .probe = ucs1002_probe, }; module_i2c_driver(ucs1002_driver); MODULE_DESCRIPTION("Microchip UCS1002 Programmable USB Port Power Controller"); MODULE_AUTHOR("Enric Balletbo Serra <[email protected]>"); MODULE_AUTHOR("Andrey Smirnov <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/ucs1002_power.c
// SPDX-License-Identifier: GPL-2.0-only /* * * h3xxx atmel micro companion support, battery subdevice * based on previous kernel 2.4 version * Author : Alessandro Gardich <[email protected]> * Author : Linus Walleij <[email protected]> */ #include <linux/module.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/mfd/ipaq-micro.h> #include <linux/power_supply.h> #include <linux/workqueue.h> #define BATT_PERIOD 100000 /* 100 seconds in milliseconds */ #define MICRO_BATT_CHEM_ALKALINE 0x01 #define MICRO_BATT_CHEM_NICD 0x02 #define MICRO_BATT_CHEM_NIMH 0x03 #define MICRO_BATT_CHEM_LION 0x04 #define MICRO_BATT_CHEM_LIPOLY 0x05 #define MICRO_BATT_CHEM_NOT_INSTALLED 0x06 #define MICRO_BATT_CHEM_UNKNOWN 0xff #define MICRO_BATT_STATUS_HIGH 0x01 #define MICRO_BATT_STATUS_LOW 0x02 #define MICRO_BATT_STATUS_CRITICAL 0x04 #define MICRO_BATT_STATUS_CHARGING 0x08 #define MICRO_BATT_STATUS_CHARGEMAIN 0x10 #define MICRO_BATT_STATUS_DEAD 0x20 /* Battery will not charge */ #define MICRO_BATT_STATUS_NOTINSTALLED 0x20 /* For expansion pack batteries */ #define MICRO_BATT_STATUS_FULL 0x40 /* Battery fully charged */ #define MICRO_BATT_STATUS_NOBATTERY 0x80 #define MICRO_BATT_STATUS_UNKNOWN 0xff struct micro_battery { struct ipaq_micro *micro; struct workqueue_struct *wq; struct delayed_work update; u8 ac; u8 chemistry; unsigned int voltage; u16 temperature; u8 flag; }; static void micro_battery_work(struct work_struct *work) { struct micro_battery *mb = container_of(work, struct micro_battery, update.work); struct ipaq_micro_msg msg_battery = { .id = MSG_BATTERY, }; struct ipaq_micro_msg msg_sensor = { .id = MSG_THERMAL_SENSOR, }; /* First send battery message */ ipaq_micro_tx_msg_sync(mb->micro, &msg_battery); if (msg_battery.rx_len < 4) pr_info("ERROR"); /* * Returned message format: * byte 0: 0x00 = Not plugged in * 0x01 = AC adapter plugged in * byte 1: chemistry * byte 2: voltage LSB * byte 3: voltage MSB * byte 4: flags * byte 5-9: same for battery 2 */ mb->ac = msg_battery.rx_data[0]; mb->chemistry = msg_battery.rx_data[1]; mb->voltage = ((((unsigned short)msg_battery.rx_data[3] << 8) + msg_battery.rx_data[2]) * 5000L) * 1000 / 1024; mb->flag = msg_battery.rx_data[4]; if (msg_battery.rx_len == 9) pr_debug("second battery ignored\n"); /* Then read the sensor */ ipaq_micro_tx_msg_sync(mb->micro, &msg_sensor); mb->temperature = msg_sensor.rx_data[1] << 8 | msg_sensor.rx_data[0]; queue_delayed_work(mb->wq, &mb->update, msecs_to_jiffies(BATT_PERIOD)); } static int get_capacity(struct power_supply *b) { struct micro_battery *mb = dev_get_drvdata(b->dev.parent); switch (mb->flag & 0x07) { case MICRO_BATT_STATUS_HIGH: return 100; break; case MICRO_BATT_STATUS_LOW: return 50; break; case MICRO_BATT_STATUS_CRITICAL: return 5; break; default: break; } return 0; } static int get_status(struct power_supply *b) { struct micro_battery *mb = dev_get_drvdata(b->dev.parent); if (mb->flag == MICRO_BATT_STATUS_UNKNOWN) return POWER_SUPPLY_STATUS_UNKNOWN; if (mb->flag & MICRO_BATT_STATUS_FULL) return POWER_SUPPLY_STATUS_FULL; if ((mb->flag & MICRO_BATT_STATUS_CHARGING) || (mb->flag & MICRO_BATT_STATUS_CHARGEMAIN)) return POWER_SUPPLY_STATUS_CHARGING; return POWER_SUPPLY_STATUS_DISCHARGING; } static int micro_batt_get_property(struct power_supply *b, enum power_supply_property psp, union power_supply_propval *val) { struct micro_battery *mb = dev_get_drvdata(b->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_TECHNOLOGY: switch (mb->chemistry) { case MICRO_BATT_CHEM_NICD: val->intval = POWER_SUPPLY_TECHNOLOGY_NiCd; break; case MICRO_BATT_CHEM_NIMH: val->intval = POWER_SUPPLY_TECHNOLOGY_NiMH; break; case MICRO_BATT_CHEM_LION: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case MICRO_BATT_CHEM_LIPOLY: val->intval = POWER_SUPPLY_TECHNOLOGY_LIPO; break; default: val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; break; } break; case POWER_SUPPLY_PROP_STATUS: val->intval = get_status(b); break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = 4700000; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = get_capacity(b); break; case POWER_SUPPLY_PROP_TEMP: val->intval = mb->temperature; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = mb->voltage; break; default: return -EINVAL; } return 0; } static int micro_ac_get_property(struct power_supply *b, enum power_supply_property psp, union power_supply_propval *val) { struct micro_battery *mb = dev_get_drvdata(b->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = mb->ac; break; default: return -EINVAL; } return 0; } static enum power_supply_property micro_batt_power_props[] = { POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_VOLTAGE_NOW, }; static const struct power_supply_desc micro_batt_power_desc = { .name = "main-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = micro_batt_power_props, .num_properties = ARRAY_SIZE(micro_batt_power_props), .get_property = micro_batt_get_property, .use_for_apm = 1, }; static enum power_supply_property micro_ac_power_props[] = { POWER_SUPPLY_PROP_ONLINE, }; static const struct power_supply_desc micro_ac_power_desc = { .name = "ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = micro_ac_power_props, .num_properties = ARRAY_SIZE(micro_ac_power_props), .get_property = micro_ac_get_property, }; static struct power_supply *micro_batt_power, *micro_ac_power; static int micro_batt_probe(struct platform_device *pdev) { struct micro_battery *mb; int ret; mb = devm_kzalloc(&pdev->dev, sizeof(*mb), GFP_KERNEL); if (!mb) return -ENOMEM; mb->micro = dev_get_drvdata(pdev->dev.parent); mb->wq = alloc_workqueue("ipaq-battery-wq", WQ_MEM_RECLAIM, 0); if (!mb->wq) return -ENOMEM; INIT_DELAYED_WORK(&mb->update, micro_battery_work); platform_set_drvdata(pdev, mb); queue_delayed_work(mb->wq, &mb->update, 1); micro_batt_power = power_supply_register(&pdev->dev, &micro_batt_power_desc, NULL); if (IS_ERR(micro_batt_power)) { ret = PTR_ERR(micro_batt_power); goto batt_err; } micro_ac_power = power_supply_register(&pdev->dev, &micro_ac_power_desc, NULL); if (IS_ERR(micro_ac_power)) { ret = PTR_ERR(micro_ac_power); goto ac_err; } dev_info(&pdev->dev, "iPAQ micro battery driver\n"); return 0; ac_err: power_supply_unregister(micro_batt_power); batt_err: cancel_delayed_work_sync(&mb->update); destroy_workqueue(mb->wq); return ret; } static int micro_batt_remove(struct platform_device *pdev) { struct micro_battery *mb = platform_get_drvdata(pdev); power_supply_unregister(micro_ac_power); power_supply_unregister(micro_batt_power); cancel_delayed_work_sync(&mb->update); destroy_workqueue(mb->wq); return 0; } static int __maybe_unused micro_batt_suspend(struct device *dev) { struct micro_battery *mb = dev_get_drvdata(dev); cancel_delayed_work_sync(&mb->update); return 0; } static int __maybe_unused micro_batt_resume(struct device *dev) { struct micro_battery *mb = dev_get_drvdata(dev); queue_delayed_work(mb->wq, &mb->update, msecs_to_jiffies(BATT_PERIOD)); return 0; } static const struct dev_pm_ops micro_batt_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(micro_batt_suspend, micro_batt_resume) }; static struct platform_driver micro_batt_device_driver = { .driver = { .name = "ipaq-micro-battery", .pm = &micro_batt_dev_pm_ops, }, .probe = micro_batt_probe, .remove = micro_batt_remove, }; module_platform_driver(micro_batt_device_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("driver for iPAQ Atmel micro battery"); MODULE_ALIAS("platform:ipaq-micro-battery");
linux-master
drivers/power/supply/ipaq_micro_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * axp288_fuel_gauge.c - Xpower AXP288 PMIC Fuel Gauge Driver * * Copyright (C) 2020-2021 Andrejus Basovas <[email protected]> * Copyright (C) 2016-2021 Hans de Goede <[email protected]> * Copyright (C) 2014 Intel Corporation * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/acpi.h> #include <linux/dmi.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/regmap.h> #include <linux/jiffies.h> #include <linux/interrupt.h> #include <linux/mfd/axp20x.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/iio/consumer.h> #include <asm/unaligned.h> #include <asm/iosf_mbi.h> #define PS_STAT_VBUS_TRIGGER (1 << 0) #define PS_STAT_BAT_CHRG_DIR (1 << 2) #define PS_STAT_VBAT_ABOVE_VHOLD (1 << 3) #define PS_STAT_VBUS_VALID (1 << 4) #define PS_STAT_VBUS_PRESENT (1 << 5) #define CHRG_STAT_BAT_SAFE_MODE (1 << 3) #define CHRG_STAT_BAT_VALID (1 << 4) #define CHRG_STAT_BAT_PRESENT (1 << 5) #define CHRG_STAT_CHARGING (1 << 6) #define CHRG_STAT_PMIC_OTP (1 << 7) #define CHRG_CCCV_CC_MASK 0xf /* 4 bits */ #define CHRG_CCCV_CC_BIT_POS 0 #define CHRG_CCCV_CC_OFFSET 200 /* 200mA */ #define CHRG_CCCV_CC_LSB_RES 200 /* 200mA */ #define CHRG_CCCV_ITERM_20P (1 << 4) /* 20% of CC */ #define CHRG_CCCV_CV_MASK 0x60 /* 2 bits */ #define CHRG_CCCV_CV_BIT_POS 5 #define CHRG_CCCV_CV_4100MV 0x0 /* 4.10V */ #define CHRG_CCCV_CV_4150MV 0x1 /* 4.15V */ #define CHRG_CCCV_CV_4200MV 0x2 /* 4.20V */ #define CHRG_CCCV_CV_4350MV 0x3 /* 4.35V */ #define CHRG_CCCV_CHG_EN (1 << 7) #define FG_CNTL_OCV_ADJ_STAT (1 << 2) #define FG_CNTL_OCV_ADJ_EN (1 << 3) #define FG_CNTL_CAP_ADJ_STAT (1 << 4) #define FG_CNTL_CAP_ADJ_EN (1 << 5) #define FG_CNTL_CC_EN (1 << 6) #define FG_CNTL_GAUGE_EN (1 << 7) #define FG_15BIT_WORD_VALID (1 << 15) #define FG_15BIT_VAL_MASK 0x7fff #define FG_REP_CAP_VALID (1 << 7) #define FG_REP_CAP_VAL_MASK 0x7F #define FG_DES_CAP1_VALID (1 << 7) #define FG_DES_CAP_RES_LSB 1456 /* 1.456mAhr */ #define FG_DES_CC_RES_LSB 1456 /* 1.456mAhr */ #define FG_OCV_CAP_VALID (1 << 7) #define FG_OCV_CAP_VAL_MASK 0x7F #define FG_CC_CAP_VALID (1 << 7) #define FG_CC_CAP_VAL_MASK 0x7F #define FG_LOW_CAP_THR1_MASK 0xf0 /* 5% tp 20% */ #define FG_LOW_CAP_THR1_VAL 0xa0 /* 15 perc */ #define FG_LOW_CAP_THR2_MASK 0x0f /* 0% to 15% */ #define FG_LOW_CAP_WARN_THR 14 /* 14 perc */ #define FG_LOW_CAP_CRIT_THR 4 /* 4 perc */ #define FG_LOW_CAP_SHDN_THR 0 /* 0 perc */ #define DEV_NAME "axp288_fuel_gauge" /* 1.1mV per LSB expressed in uV */ #define VOLTAGE_FROM_ADC(a) ((a * 11) / 10) /* properties converted to uV, uA */ #define PROP_VOLT(a) ((a) * 1000) #define PROP_CURR(a) ((a) * 1000) #define AXP288_REG_UPDATE_INTERVAL (60 * HZ) #define AXP288_FG_INTR_NUM 6 #define AXP288_QUIRK_NO_BATTERY BIT(0) static bool no_current_sense_res; module_param(no_current_sense_res, bool, 0444); MODULE_PARM_DESC(no_current_sense_res, "No (or broken) current sense resistor"); enum { QWBTU_IRQ = 0, WBTU_IRQ, QWBTO_IRQ, WBTO_IRQ, WL2_IRQ, WL1_IRQ, }; enum { BAT_CHRG_CURR, BAT_D_CURR, BAT_VOLT, IIO_CHANNEL_NUM }; struct axp288_fg_info { struct device *dev; struct regmap *regmap; int irq[AXP288_FG_INTR_NUM]; struct iio_channel *iio_channel[IIO_CHANNEL_NUM]; struct power_supply *bat; struct mutex lock; int status; int max_volt; int pwr_op; int low_cap; struct dentry *debug_file; char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ int pwr_stat; int fg_res; int bat_volt; int d_curr; int c_curr; int ocv; int fg_cc_mtr1; int fg_des_cap1; }; static enum power_supply_property fuel_gauge_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, POWER_SUPPLY_PROP_TECHNOLOGY, /* The 3 props below are not used when no_current_sense_res is set */ POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, }; static int fuel_gauge_reg_readb(struct axp288_fg_info *info, int reg) { unsigned int val; int ret; ret = regmap_read(info->regmap, reg, &val); if (ret < 0) { dev_err(info->dev, "Error reading reg 0x%02x err: %d\n", reg, ret); return ret; } return val; } static int fuel_gauge_reg_writeb(struct axp288_fg_info *info, int reg, u8 val) { int ret; ret = regmap_write(info->regmap, reg, (unsigned int)val); if (ret < 0) dev_err(info->dev, "Error writing reg 0x%02x err: %d\n", reg, ret); return ret; } static int fuel_gauge_read_15bit_word(struct axp288_fg_info *info, int reg) { unsigned char buf[2]; int ret; ret = regmap_bulk_read(info->regmap, reg, buf, 2); if (ret < 0) { dev_err(info->dev, "Error reading reg 0x%02x err: %d\n", reg, ret); return ret; } ret = get_unaligned_be16(buf); if (!(ret & FG_15BIT_WORD_VALID)) { dev_err(info->dev, "Error reg 0x%02x contents not valid\n", reg); return -ENXIO; } return ret & FG_15BIT_VAL_MASK; } static int fuel_gauge_read_12bit_word(struct axp288_fg_info *info, int reg) { unsigned char buf[2]; int ret; ret = regmap_bulk_read(info->regmap, reg, buf, 2); if (ret < 0) { dev_err(info->dev, "Error reading reg 0x%02x err: %d\n", reg, ret); return ret; } /* 12-bit data values have upper 8 bits in buf[0], lower 4 in buf[1] */ return (buf[0] << 4) | ((buf[1] >> 4) & 0x0f); } static int fuel_gauge_update_registers(struct axp288_fg_info *info) { int ret; if (info->valid && time_before(jiffies, info->last_updated + AXP288_REG_UPDATE_INTERVAL)) return 0; dev_dbg(info->dev, "Fuel Gauge updating register values...\n"); ret = iosf_mbi_block_punit_i2c_access(); if (ret < 0) return ret; ret = fuel_gauge_reg_readb(info, AXP20X_PWR_INPUT_STATUS); if (ret < 0) goto out; info->pwr_stat = ret; if (no_current_sense_res) ret = fuel_gauge_reg_readb(info, AXP288_FG_OCV_CAP_REG); else ret = fuel_gauge_reg_readb(info, AXP20X_FG_RES); if (ret < 0) goto out; info->fg_res = ret; ret = iio_read_channel_raw(info->iio_channel[BAT_VOLT], &info->bat_volt); if (ret < 0) goto out; ret = fuel_gauge_read_12bit_word(info, AXP288_FG_OCVH_REG); if (ret < 0) goto out; info->ocv = ret; if (no_current_sense_res) goto out_no_current_sense_res; if (info->pwr_stat & PS_STAT_BAT_CHRG_DIR) { info->d_curr = 0; ret = iio_read_channel_raw(info->iio_channel[BAT_CHRG_CURR], &info->c_curr); if (ret < 0) goto out; } else { info->c_curr = 0; ret = iio_read_channel_raw(info->iio_channel[BAT_D_CURR], &info->d_curr); if (ret < 0) goto out; } ret = fuel_gauge_read_15bit_word(info, AXP288_FG_CC_MTR1_REG); if (ret < 0) goto out; info->fg_cc_mtr1 = ret; ret = fuel_gauge_read_15bit_word(info, AXP288_FG_DES_CAP1_REG); if (ret < 0) goto out; info->fg_des_cap1 = ret; out_no_current_sense_res: info->last_updated = jiffies; info->valid = 1; ret = 0; out: iosf_mbi_unblock_punit_i2c_access(); return ret; } static void fuel_gauge_get_status(struct axp288_fg_info *info) { int pwr_stat = info->pwr_stat; int fg_res = info->fg_res; int curr = info->d_curr; /* Report full if Vbus is valid and the reported capacity is 100% */ if (!(pwr_stat & PS_STAT_VBUS_VALID)) goto not_full; if (!(fg_res & FG_REP_CAP_VALID)) goto not_full; fg_res &= ~FG_REP_CAP_VALID; if (fg_res == 100) { info->status = POWER_SUPPLY_STATUS_FULL; return; } /* * Sometimes the charger turns itself off before fg-res reaches 100%. * When this happens the AXP288 reports a not-charging status and * 0 mA discharge current. */ if (fg_res < 90 || (pwr_stat & PS_STAT_BAT_CHRG_DIR) || no_current_sense_res) goto not_full; if (curr == 0) { info->status = POWER_SUPPLY_STATUS_FULL; return; } not_full: if (pwr_stat & PS_STAT_BAT_CHRG_DIR) info->status = POWER_SUPPLY_STATUS_CHARGING; else info->status = POWER_SUPPLY_STATUS_DISCHARGING; } static int fuel_gauge_battery_health(struct axp288_fg_info *info) { int vocv = VOLTAGE_FROM_ADC(info->ocv); int health = POWER_SUPPLY_HEALTH_UNKNOWN; if (vocv > info->max_volt) health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else health = POWER_SUPPLY_HEALTH_GOOD; return health; } static int fuel_gauge_get_property(struct power_supply *ps, enum power_supply_property prop, union power_supply_propval *val) { struct axp288_fg_info *info = power_supply_get_drvdata(ps); int ret, value; mutex_lock(&info->lock); ret = fuel_gauge_update_registers(info); if (ret < 0) goto out; switch (prop) { case POWER_SUPPLY_PROP_STATUS: fuel_gauge_get_status(info); val->intval = info->status; break; case POWER_SUPPLY_PROP_HEALTH: val->intval = fuel_gauge_battery_health(info); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: value = VOLTAGE_FROM_ADC(info->bat_volt); val->intval = PROP_VOLT(value); break; case POWER_SUPPLY_PROP_VOLTAGE_OCV: value = VOLTAGE_FROM_ADC(info->ocv); val->intval = PROP_VOLT(value); break; case POWER_SUPPLY_PROP_CURRENT_NOW: if (info->d_curr > 0) value = -1 * info->d_curr; else value = info->c_curr; val->intval = PROP_CURR(value); break; case POWER_SUPPLY_PROP_PRESENT: if (info->pwr_op & CHRG_STAT_BAT_PRESENT) val->intval = 1; else val->intval = 0; break; case POWER_SUPPLY_PROP_CAPACITY: if (!(info->fg_res & FG_REP_CAP_VALID)) dev_err(info->dev, "capacity measurement not valid\n"); val->intval = (info->fg_res & FG_REP_CAP_VAL_MASK); break; case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: val->intval = (info->low_cap & 0x0f); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CHARGE_NOW: val->intval = info->fg_cc_mtr1 * FG_DES_CAP_RES_LSB; break; case POWER_SUPPLY_PROP_CHARGE_FULL: val->intval = info->fg_des_cap1 * FG_DES_CAP_RES_LSB; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = PROP_VOLT(info->max_volt); break; default: ret = -EINVAL; } out: mutex_unlock(&info->lock); return ret; } static int fuel_gauge_set_property(struct power_supply *ps, enum power_supply_property prop, const union power_supply_propval *val) { struct axp288_fg_info *info = power_supply_get_drvdata(ps); int new_low_cap, ret = 0; mutex_lock(&info->lock); switch (prop) { case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: if ((val->intval < 0) || (val->intval > 15)) { ret = -EINVAL; break; } new_low_cap = info->low_cap; new_low_cap &= 0xf0; new_low_cap |= (val->intval & 0xf); ret = fuel_gauge_reg_writeb(info, AXP288_FG_LOW_CAP_REG, new_low_cap); if (ret == 0) info->low_cap = new_low_cap; break; default: ret = -EINVAL; break; } mutex_unlock(&info->lock); return ret; } static int fuel_gauge_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { int ret; switch (psp) { case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: ret = 1; break; default: ret = 0; } return ret; } static irqreturn_t fuel_gauge_thread_handler(int irq, void *dev) { struct axp288_fg_info *info = dev; int i; for (i = 0; i < AXP288_FG_INTR_NUM; i++) { if (info->irq[i] == irq) break; } if (i >= AXP288_FG_INTR_NUM) { dev_warn(info->dev, "spurious interrupt!!\n"); return IRQ_NONE; } switch (i) { case QWBTU_IRQ: dev_info(info->dev, "Quit Battery under temperature in work mode IRQ (QWBTU)\n"); break; case WBTU_IRQ: dev_info(info->dev, "Battery under temperature in work mode IRQ (WBTU)\n"); break; case QWBTO_IRQ: dev_info(info->dev, "Quit Battery over temperature in work mode IRQ (QWBTO)\n"); break; case WBTO_IRQ: dev_info(info->dev, "Battery over temperature in work mode IRQ (WBTO)\n"); break; case WL2_IRQ: dev_info(info->dev, "Low Batt Warning(2) INTR\n"); break; case WL1_IRQ: dev_info(info->dev, "Low Batt Warning(1) INTR\n"); break; default: dev_warn(info->dev, "Spurious Interrupt!!!\n"); } mutex_lock(&info->lock); info->valid = 0; /* Force updating of the cached registers */ mutex_unlock(&info->lock); power_supply_changed(info->bat); return IRQ_HANDLED; } static void fuel_gauge_external_power_changed(struct power_supply *psy) { struct axp288_fg_info *info = power_supply_get_drvdata(psy); mutex_lock(&info->lock); info->valid = 0; /* Force updating of the cached registers */ mutex_unlock(&info->lock); power_supply_changed(psy); } static struct power_supply_desc fuel_gauge_desc = { .name = DEV_NAME, .type = POWER_SUPPLY_TYPE_BATTERY, .properties = fuel_gauge_props, .num_properties = ARRAY_SIZE(fuel_gauge_props), .get_property = fuel_gauge_get_property, .set_property = fuel_gauge_set_property, .property_is_writeable = fuel_gauge_property_is_writeable, .external_power_changed = fuel_gauge_external_power_changed, }; /* * Some devices have no battery (HDMI sticks) and the axp288 battery's * detection reports one despite it not being there. * Please keep this listed sorted alphabetically. */ static const struct dmi_system_id axp288_quirks[] = { { /* ACEPC T8 Cherry Trail Z8350 mini PC */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "To be filled by O.E.M."), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Cherry Trail CR"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "T8"), /* also match on somewhat unique bios-version */ DMI_EXACT_MATCH(DMI_BIOS_VERSION, "1.000"), }, .driver_data = (void *)AXP288_QUIRK_NO_BATTERY, }, { /* ACEPC T11 Cherry Trail Z8350 mini PC */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "To be filled by O.E.M."), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Cherry Trail CR"), DMI_EXACT_MATCH(DMI_PRODUCT_SKU, "T11"), /* also match on somewhat unique bios-version */ DMI_EXACT_MATCH(DMI_BIOS_VERSION, "1.000"), }, .driver_data = (void *)AXP288_QUIRK_NO_BATTERY, }, { /* Intel Cherry Trail Compute Stick, Windows version */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel"), DMI_MATCH(DMI_PRODUCT_NAME, "STK1AW32SC"), }, .driver_data = (void *)AXP288_QUIRK_NO_BATTERY, }, { /* Intel Cherry Trail Compute Stick, version without an OS */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Intel"), DMI_MATCH(DMI_PRODUCT_NAME, "STK1A32SC"), }, .driver_data = (void *)AXP288_QUIRK_NO_BATTERY, }, { /* Meegopad T02 */ .matches = { DMI_MATCH(DMI_PRODUCT_NAME, "MEEGOPAD T02"), }, .driver_data = (void *)AXP288_QUIRK_NO_BATTERY, }, { /* Mele PCG03 Mini PC */ .matches = { DMI_EXACT_MATCH(DMI_BOARD_VENDOR, "Mini PC"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "Mini PC"), }, .driver_data = (void *)AXP288_QUIRK_NO_BATTERY, }, { /* Minix Neo Z83-4 mini PC */ .matches = { DMI_MATCH(DMI_SYS_VENDOR, "MINIX"), DMI_MATCH(DMI_PRODUCT_NAME, "Z83-4"), }, .driver_data = (void *)AXP288_QUIRK_NO_BATTERY, }, { /* * One Mix 1, this uses the "T3 MRD" boardname used by * generic mini PCs, but it is a mini laptop so it does * actually have a battery! */ .matches = { DMI_MATCH(DMI_BOARD_NAME, "T3 MRD"), DMI_MATCH(DMI_BIOS_DATE, "06/14/2018"), }, .driver_data = NULL, }, { /* * Various Ace PC/Meegopad/MinisForum/Wintel Mini-PCs/HDMI-sticks * This entry must be last because it is generic, this allows * adding more specifuc quirks overriding this generic entry. */ .matches = { DMI_MATCH(DMI_BOARD_NAME, "T3 MRD"), DMI_MATCH(DMI_CHASSIS_TYPE, "3"), DMI_MATCH(DMI_BIOS_VENDOR, "American Megatrends Inc."), }, .driver_data = (void *)AXP288_QUIRK_NO_BATTERY, }, {} }; static int axp288_fuel_gauge_read_initial_regs(struct axp288_fg_info *info) { unsigned int val; int ret; /* * On some devices the fuelgauge and charger parts of the axp288 are * not used, check that the fuelgauge is enabled (CC_CTRL != 0). */ ret = regmap_read(info->regmap, AXP20X_CC_CTRL, &val); if (ret < 0) return ret; if (val == 0) return -ENODEV; ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG); if (ret < 0) return ret; if (!(ret & FG_DES_CAP1_VALID)) { dev_err(info->dev, "axp288 not configured by firmware\n"); return -ENODEV; } ret = fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1); if (ret < 0) return ret; switch ((ret & CHRG_CCCV_CV_MASK) >> CHRG_CCCV_CV_BIT_POS) { case CHRG_CCCV_CV_4100MV: info->max_volt = 4100; break; case CHRG_CCCV_CV_4150MV: info->max_volt = 4150; break; case CHRG_CCCV_CV_4200MV: info->max_volt = 4200; break; case CHRG_CCCV_CV_4350MV: info->max_volt = 4350; break; } ret = fuel_gauge_reg_readb(info, AXP20X_PWR_OP_MODE); if (ret < 0) return ret; info->pwr_op = ret; ret = fuel_gauge_reg_readb(info, AXP288_FG_LOW_CAP_REG); if (ret < 0) return ret; info->low_cap = ret; return 0; } static void axp288_fuel_gauge_release_iio_chans(void *data) { struct axp288_fg_info *info = data; int i; for (i = 0; i < IIO_CHANNEL_NUM; i++) if (!IS_ERR_OR_NULL(info->iio_channel[i])) iio_channel_release(info->iio_channel[i]); } static int axp288_fuel_gauge_probe(struct platform_device *pdev) { struct axp288_fg_info *info; struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent); struct power_supply_config psy_cfg = {}; static const char * const iio_chan_name[] = { [BAT_CHRG_CURR] = "axp288-chrg-curr", [BAT_D_CURR] = "axp288-chrg-d-curr", [BAT_VOLT] = "axp288-batt-volt", }; const struct dmi_system_id *dmi_id; struct device *dev = &pdev->dev; unsigned long quirks = 0; int i, pirq, ret; /* * Normally the native AXP288 fg/charger drivers are preferred but * on some devices the ACPI drivers should be used instead. */ if (!acpi_quirk_skip_acpi_ac_and_battery()) return -ENODEV; dmi_id = dmi_first_match(axp288_quirks); if (dmi_id) quirks = (unsigned long)dmi_id->driver_data; if (quirks & AXP288_QUIRK_NO_BATTERY) return -ENODEV; info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->dev = dev; info->regmap = axp20x->regmap; info->status = POWER_SUPPLY_STATUS_UNKNOWN; info->valid = 0; platform_set_drvdata(pdev, info); mutex_init(&info->lock); for (i = 0; i < AXP288_FG_INTR_NUM; i++) { pirq = platform_get_irq(pdev, i); if (pirq < 0) continue; ret = regmap_irq_get_virq(axp20x->regmap_irqc, pirq); if (ret < 0) return dev_err_probe(dev, ret, "getting vIRQ %d\n", pirq); info->irq[i] = ret; } for (i = 0; i < IIO_CHANNEL_NUM; i++) { /* * Note cannot use devm_iio_channel_get because x86 systems * lack the device<->channel maps which iio_channel_get will * try to use when passed a non NULL device pointer. */ info->iio_channel[i] = iio_channel_get(NULL, iio_chan_name[i]); if (IS_ERR(info->iio_channel[i])) { ret = PTR_ERR(info->iio_channel[i]); dev_dbg(dev, "error getting iiochan %s: %d\n", iio_chan_name[i], ret); /* Wait for axp288_adc to load */ if (ret == -ENODEV) ret = -EPROBE_DEFER; axp288_fuel_gauge_release_iio_chans(info); return ret; } } ret = devm_add_action_or_reset(dev, axp288_fuel_gauge_release_iio_chans, info); if (ret) return ret; ret = iosf_mbi_block_punit_i2c_access(); if (ret < 0) return ret; ret = axp288_fuel_gauge_read_initial_regs(info); iosf_mbi_unblock_punit_i2c_access(); if (ret < 0) return ret; psy_cfg.drv_data = info; if (no_current_sense_res) fuel_gauge_desc.num_properties = ARRAY_SIZE(fuel_gauge_props) - 3; info->bat = devm_power_supply_register(dev, &fuel_gauge_desc, &psy_cfg); if (IS_ERR(info->bat)) { ret = PTR_ERR(info->bat); dev_err(dev, "failed to register battery: %d\n", ret); return ret; } for (i = 0; i < AXP288_FG_INTR_NUM; i++) { ret = devm_request_threaded_irq(dev, info->irq[i], NULL, fuel_gauge_thread_handler, IRQF_ONESHOT, DEV_NAME, info); if (ret) return dev_err_probe(dev, ret, "requesting IRQ %d\n", info->irq[i]); } return 0; } static const struct platform_device_id axp288_fg_id_table[] = { { .name = DEV_NAME }, {}, }; MODULE_DEVICE_TABLE(platform, axp288_fg_id_table); static struct platform_driver axp288_fuel_gauge_driver = { .probe = axp288_fuel_gauge_probe, .id_table = axp288_fg_id_table, .driver = { .name = DEV_NAME, }, }; module_platform_driver(axp288_fuel_gauge_driver); MODULE_AUTHOR("Ramakrishna Pallala <[email protected]>"); MODULE_AUTHOR("Todd Brandt <[email protected]>"); MODULE_DESCRIPTION("Xpower AXP288 Fuel Gauge Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/axp288_fuel_gauge.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for LP8727 Micro/Mini USB IC with integrated charger * * Copyright (C) 2011 Texas Instruments * Copyright (C) 2011 National Semiconductor */ #include <linux/module.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/i2c.h> #include <linux/power_supply.h> #include <linux/platform_data/lp8727.h> #include <linux/of.h> #define LP8788_NUM_INTREGS 2 #define DEFAULT_DEBOUNCE_MSEC 270 /* Registers */ #define LP8727_CTRL1 0x1 #define LP8727_CTRL2 0x2 #define LP8727_SWCTRL 0x3 #define LP8727_INT1 0x4 #define LP8727_INT2 0x5 #define LP8727_STATUS1 0x6 #define LP8727_STATUS2 0x7 #define LP8727_CHGCTRL2 0x9 /* CTRL1 register */ #define LP8727_CP_EN BIT(0) #define LP8727_ADC_EN BIT(1) #define LP8727_ID200_EN BIT(4) /* CTRL2 register */ #define LP8727_CHGDET_EN BIT(1) #define LP8727_INT_EN BIT(6) /* SWCTRL register */ #define LP8727_SW_DM1_DM (0x0 << 0) #define LP8727_SW_DM1_HiZ (0x7 << 0) #define LP8727_SW_DP2_DP (0x0 << 3) #define LP8727_SW_DP2_HiZ (0x7 << 3) /* INT1 register */ #define LP8727_IDNO (0xF << 0) #define LP8727_VBUS BIT(4) /* STATUS1 register */ #define LP8727_CHGSTAT (3 << 4) #define LP8727_CHPORT BIT(6) #define LP8727_DCPORT BIT(7) #define LP8727_STAT_EOC 0x30 /* STATUS2 register */ #define LP8727_TEMP_STAT (3 << 5) #define LP8727_TEMP_SHIFT 5 /* CHGCTRL2 register */ #define LP8727_ICHG_SHIFT 4 enum lp8727_dev_id { LP8727_ID_NONE, LP8727_ID_TA, LP8727_ID_DEDICATED_CHG, LP8727_ID_USB_CHG, LP8727_ID_USB_DS, LP8727_ID_MAX, }; enum lp8727_die_temp { LP8788_TEMP_75C, LP8788_TEMP_95C, LP8788_TEMP_115C, LP8788_TEMP_135C, }; struct lp8727_psy { struct power_supply *ac; struct power_supply *usb; struct power_supply *batt; }; struct lp8727_chg { struct device *dev; struct i2c_client *client; struct mutex xfer_lock; struct lp8727_psy *psy; struct lp8727_platform_data *pdata; /* Charger Data */ enum lp8727_dev_id devid; struct lp8727_chg_param *chg_param; /* Interrupt Handling */ int irq; struct delayed_work work; unsigned long debounce_jiffies; }; static int lp8727_read_bytes(struct lp8727_chg *pchg, u8 reg, u8 *data, u8 len) { s32 ret; mutex_lock(&pchg->xfer_lock); ret = i2c_smbus_read_i2c_block_data(pchg->client, reg, len, data); mutex_unlock(&pchg->xfer_lock); return (ret != len) ? -EIO : 0; } static inline int lp8727_read_byte(struct lp8727_chg *pchg, u8 reg, u8 *data) { return lp8727_read_bytes(pchg, reg, data, 1); } static int lp8727_write_byte(struct lp8727_chg *pchg, u8 reg, u8 data) { int ret; mutex_lock(&pchg->xfer_lock); ret = i2c_smbus_write_byte_data(pchg->client, reg, data); mutex_unlock(&pchg->xfer_lock); return ret; } static bool lp8727_is_charger_attached(const char *name, int id) { if (!strcmp(name, "ac")) return id == LP8727_ID_TA || id == LP8727_ID_DEDICATED_CHG; else if (!strcmp(name, "usb")) return id == LP8727_ID_USB_CHG; return id >= LP8727_ID_TA && id <= LP8727_ID_USB_CHG; } static int lp8727_init_device(struct lp8727_chg *pchg) { u8 val; int ret; u8 intstat[LP8788_NUM_INTREGS]; /* clear interrupts */ ret = lp8727_read_bytes(pchg, LP8727_INT1, intstat, LP8788_NUM_INTREGS); if (ret) return ret; val = LP8727_ID200_EN | LP8727_ADC_EN | LP8727_CP_EN; ret = lp8727_write_byte(pchg, LP8727_CTRL1, val); if (ret) return ret; val = LP8727_INT_EN | LP8727_CHGDET_EN; return lp8727_write_byte(pchg, LP8727_CTRL2, val); } static int lp8727_is_dedicated_charger(struct lp8727_chg *pchg) { u8 val; lp8727_read_byte(pchg, LP8727_STATUS1, &val); return val & LP8727_DCPORT; } static int lp8727_is_usb_charger(struct lp8727_chg *pchg) { u8 val; lp8727_read_byte(pchg, LP8727_STATUS1, &val); return val & LP8727_CHPORT; } static inline void lp8727_ctrl_switch(struct lp8727_chg *pchg, u8 sw) { lp8727_write_byte(pchg, LP8727_SWCTRL, sw); } static void lp8727_id_detection(struct lp8727_chg *pchg, u8 id, int vbusin) { struct lp8727_platform_data *pdata = pchg->pdata; u8 devid = LP8727_ID_NONE; u8 swctrl = LP8727_SW_DM1_HiZ | LP8727_SW_DP2_HiZ; switch (id) { case 0x5: devid = LP8727_ID_TA; pchg->chg_param = pdata ? pdata->ac : NULL; break; case 0xB: if (lp8727_is_dedicated_charger(pchg)) { pchg->chg_param = pdata ? pdata->ac : NULL; devid = LP8727_ID_DEDICATED_CHG; } else if (lp8727_is_usb_charger(pchg)) { pchg->chg_param = pdata ? pdata->usb : NULL; devid = LP8727_ID_USB_CHG; swctrl = LP8727_SW_DM1_DM | LP8727_SW_DP2_DP; } else if (vbusin) { devid = LP8727_ID_USB_DS; swctrl = LP8727_SW_DM1_DM | LP8727_SW_DP2_DP; } break; default: devid = LP8727_ID_NONE; pchg->chg_param = NULL; break; } pchg->devid = devid; lp8727_ctrl_switch(pchg, swctrl); } static void lp8727_enable_chgdet(struct lp8727_chg *pchg) { u8 val; lp8727_read_byte(pchg, LP8727_CTRL2, &val); val |= LP8727_CHGDET_EN; lp8727_write_byte(pchg, LP8727_CTRL2, val); } static void lp8727_delayed_func(struct work_struct *_work) { struct lp8727_chg *pchg = container_of(_work, struct lp8727_chg, work.work); u8 intstat[LP8788_NUM_INTREGS]; u8 idno; u8 vbus; if (lp8727_read_bytes(pchg, LP8727_INT1, intstat, LP8788_NUM_INTREGS)) { dev_err(pchg->dev, "can not read INT registers\n"); return; } idno = intstat[0] & LP8727_IDNO; vbus = intstat[0] & LP8727_VBUS; lp8727_id_detection(pchg, idno, vbus); lp8727_enable_chgdet(pchg); power_supply_changed(pchg->psy->ac); power_supply_changed(pchg->psy->usb); power_supply_changed(pchg->psy->batt); } static irqreturn_t lp8727_isr_func(int irq, void *ptr) { struct lp8727_chg *pchg = ptr; schedule_delayed_work(&pchg->work, pchg->debounce_jiffies); return IRQ_HANDLED; } static int lp8727_setup_irq(struct lp8727_chg *pchg) { int ret; int irq = pchg->client->irq; unsigned delay_msec = pchg->pdata ? pchg->pdata->debounce_msec : DEFAULT_DEBOUNCE_MSEC; INIT_DELAYED_WORK(&pchg->work, lp8727_delayed_func); if (irq <= 0) { dev_warn(pchg->dev, "invalid irq number: %d\n", irq); return 0; } ret = request_threaded_irq(irq, NULL, lp8727_isr_func, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "lp8727_irq", pchg); if (ret) return ret; pchg->irq = irq; pchg->debounce_jiffies = msecs_to_jiffies(delay_msec); return 0; } static void lp8727_release_irq(struct lp8727_chg *pchg) { cancel_delayed_work_sync(&pchg->work); if (pchg->irq) free_irq(pchg->irq, pchg); } static enum power_supply_property lp8727_charger_prop[] = { POWER_SUPPLY_PROP_ONLINE, }; static enum power_supply_property lp8727_battery_prop[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_TEMP, }; static char *battery_supplied_to[] = { "main_batt", }; static int lp8727_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct lp8727_chg *pchg = dev_get_drvdata(psy->dev.parent); if (psp != POWER_SUPPLY_PROP_ONLINE) return -EINVAL; val->intval = lp8727_is_charger_attached(psy->desc->name, pchg->devid); return 0; } static bool lp8727_is_high_temperature(enum lp8727_die_temp temp) { switch (temp) { case LP8788_TEMP_95C: case LP8788_TEMP_115C: case LP8788_TEMP_135C: return true; default: return false; } } static int lp8727_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct lp8727_chg *pchg = dev_get_drvdata(psy->dev.parent); struct lp8727_platform_data *pdata = pchg->pdata; enum lp8727_die_temp temp; u8 read; switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (!lp8727_is_charger_attached(psy->desc->name, pchg->devid)) { val->intval = POWER_SUPPLY_STATUS_DISCHARGING; return 0; } lp8727_read_byte(pchg, LP8727_STATUS1, &read); val->intval = (read & LP8727_CHGSTAT) == LP8727_STAT_EOC ? POWER_SUPPLY_STATUS_FULL : POWER_SUPPLY_STATUS_CHARGING; break; case POWER_SUPPLY_PROP_HEALTH: lp8727_read_byte(pchg, LP8727_STATUS2, &read); temp = (read & LP8727_TEMP_STAT) >> LP8727_TEMP_SHIFT; val->intval = lp8727_is_high_temperature(temp) ? POWER_SUPPLY_HEALTH_OVERHEAT : POWER_SUPPLY_HEALTH_GOOD; break; case POWER_SUPPLY_PROP_PRESENT: if (!pdata) return -EINVAL; if (pdata->get_batt_present) val->intval = pdata->get_batt_present(); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (!pdata) return -EINVAL; if (pdata->get_batt_level) val->intval = pdata->get_batt_level(); break; case POWER_SUPPLY_PROP_CAPACITY: if (!pdata) return -EINVAL; if (pdata->get_batt_capacity) val->intval = pdata->get_batt_capacity(); break; case POWER_SUPPLY_PROP_TEMP: if (!pdata) return -EINVAL; if (pdata->get_batt_temp) val->intval = pdata->get_batt_temp(); break; default: break; } return 0; } static void lp8727_charger_changed(struct power_supply *psy) { struct lp8727_chg *pchg = dev_get_drvdata(psy->dev.parent); u8 eoc_level; u8 ichg; u8 val; /* skip if no charger exists */ if (!lp8727_is_charger_attached(psy->desc->name, pchg->devid)) return; /* update charging parameters */ if (pchg->chg_param) { eoc_level = pchg->chg_param->eoc_level; ichg = pchg->chg_param->ichg; val = (ichg << LP8727_ICHG_SHIFT) | eoc_level; lp8727_write_byte(pchg, LP8727_CHGCTRL2, val); } } static const struct power_supply_desc lp8727_ac_desc = { .name = "ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = lp8727_charger_prop, .num_properties = ARRAY_SIZE(lp8727_charger_prop), .get_property = lp8727_charger_get_property, }; static const struct power_supply_desc lp8727_usb_desc = { .name = "usb", .type = POWER_SUPPLY_TYPE_USB, .properties = lp8727_charger_prop, .num_properties = ARRAY_SIZE(lp8727_charger_prop), .get_property = lp8727_charger_get_property, }; static const struct power_supply_desc lp8727_batt_desc = { .name = "main_batt", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = lp8727_battery_prop, .num_properties = ARRAY_SIZE(lp8727_battery_prop), .get_property = lp8727_battery_get_property, .external_power_changed = lp8727_charger_changed, }; static int lp8727_register_psy(struct lp8727_chg *pchg) { struct power_supply_config psy_cfg = {}; /* Only for ac and usb */ struct lp8727_psy *psy; psy = devm_kzalloc(pchg->dev, sizeof(*psy), GFP_KERNEL); if (!psy) return -ENOMEM; pchg->psy = psy; psy_cfg.supplied_to = battery_supplied_to; psy_cfg.num_supplicants = ARRAY_SIZE(battery_supplied_to); psy->ac = power_supply_register(pchg->dev, &lp8727_ac_desc, &psy_cfg); if (IS_ERR(psy->ac)) goto err_psy_ac; psy->usb = power_supply_register(pchg->dev, &lp8727_usb_desc, &psy_cfg); if (IS_ERR(psy->usb)) goto err_psy_usb; psy->batt = power_supply_register(pchg->dev, &lp8727_batt_desc, NULL); if (IS_ERR(psy->batt)) goto err_psy_batt; return 0; err_psy_batt: power_supply_unregister(psy->usb); err_psy_usb: power_supply_unregister(psy->ac); err_psy_ac: return -EPERM; } static void lp8727_unregister_psy(struct lp8727_chg *pchg) { struct lp8727_psy *psy = pchg->psy; if (!psy) return; power_supply_unregister(psy->ac); power_supply_unregister(psy->usb); power_supply_unregister(psy->batt); } #ifdef CONFIG_OF static struct lp8727_chg_param *lp8727_parse_charge_pdata(struct device *dev, struct device_node *np) { struct lp8727_chg_param *param; param = devm_kzalloc(dev, sizeof(*param), GFP_KERNEL); if (!param) goto out; of_property_read_u8(np, "eoc-level", (u8 *)&param->eoc_level); of_property_read_u8(np, "charging-current", (u8 *)&param->ichg); out: return param; } static struct lp8727_platform_data *lp8727_parse_dt(struct device *dev) { struct device_node *np = dev->of_node; struct device_node *child; struct lp8727_platform_data *pdata; const char *type; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); of_property_read_u32(np, "debounce-ms", &pdata->debounce_msec); /* If charging parameter is not defined, just skip parsing the dt */ if (of_get_child_count(np) == 0) return pdata; for_each_child_of_node(np, child) { of_property_read_string(child, "charger-type", &type); if (!strcmp(type, "ac")) pdata->ac = lp8727_parse_charge_pdata(dev, child); if (!strcmp(type, "usb")) pdata->usb = lp8727_parse_charge_pdata(dev, child); } return pdata; } #else static struct lp8727_platform_data *lp8727_parse_dt(struct device *dev) { return NULL; } #endif static int lp8727_probe(struct i2c_client *cl) { struct lp8727_chg *pchg; struct lp8727_platform_data *pdata; int ret; if (!i2c_check_functionality(cl->adapter, I2C_FUNC_SMBUS_I2C_BLOCK)) return -EIO; if (cl->dev.of_node) { pdata = lp8727_parse_dt(&cl->dev); if (IS_ERR(pdata)) return PTR_ERR(pdata); } else { pdata = dev_get_platdata(&cl->dev); } pchg = devm_kzalloc(&cl->dev, sizeof(*pchg), GFP_KERNEL); if (!pchg) return -ENOMEM; pchg->client = cl; pchg->dev = &cl->dev; pchg->pdata = pdata; i2c_set_clientdata(cl, pchg); mutex_init(&pchg->xfer_lock); ret = lp8727_init_device(pchg); if (ret) { dev_err(pchg->dev, "i2c communication err: %d", ret); return ret; } ret = lp8727_register_psy(pchg); if (ret) { dev_err(pchg->dev, "power supplies register err: %d", ret); return ret; } ret = lp8727_setup_irq(pchg); if (ret) { dev_err(pchg->dev, "irq handler err: %d", ret); lp8727_unregister_psy(pchg); return ret; } return 0; } static void lp8727_remove(struct i2c_client *cl) { struct lp8727_chg *pchg = i2c_get_clientdata(cl); lp8727_release_irq(pchg); lp8727_unregister_psy(pchg); } static const struct of_device_id lp8727_dt_ids[] __maybe_unused = { { .compatible = "ti,lp8727", }, { } }; MODULE_DEVICE_TABLE(of, lp8727_dt_ids); static const struct i2c_device_id lp8727_ids[] = { {"lp8727", 0}, { } }; MODULE_DEVICE_TABLE(i2c, lp8727_ids); static struct i2c_driver lp8727_driver = { .driver = { .name = "lp8727", .of_match_table = of_match_ptr(lp8727_dt_ids), }, .probe = lp8727_probe, .remove = lp8727_remove, .id_table = lp8727_ids, }; module_i2c_driver(lp8727_driver); MODULE_DESCRIPTION("TI/National Semiconductor LP8727 charger driver"); MODULE_AUTHOR("Milo Kim <[email protected]>, Daniel Jeong <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/lp8727_charger.c
// SPDX-License-Identifier: GPL-2.0 // // max17040_battery.c // fuel-gauge systems for lithium-ion (Li+) batteries // // Copyright (C) 2009 Samsung Electronics // Minkyu Kang <[email protected]> #include <linux/module.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/mutex.h> #include <linux/err.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/power_supply.h> #include <linux/of.h> #include <linux/regmap.h> #include <linux/slab.h> #define MAX17040_VCELL 0x02 #define MAX17040_SOC 0x04 #define MAX17040_MODE 0x06 #define MAX17040_VER 0x08 #define MAX17040_CONFIG 0x0C #define MAX17040_STATUS 0x1A #define MAX17040_CMD 0xFE #define MAX17040_DELAY 1000 #define MAX17040_BATTERY_FULL 95 #define MAX17040_RCOMP_DEFAULT 0x9700 #define MAX17040_ATHD_MASK 0x3f #define MAX17040_ALSC_MASK 0x40 #define MAX17040_ATHD_DEFAULT_POWER_UP 4 #define MAX17040_STATUS_HD_MASK 0x1000 #define MAX17040_STATUS_SC_MASK 0x2000 #define MAX17040_CFG_RCOMP_MASK 0xff00 enum chip_id { ID_MAX17040, ID_MAX17041, ID_MAX17043, ID_MAX17044, ID_MAX17048, ID_MAX17049, ID_MAX17058, ID_MAX17059, }; /* values that differ by chip_id */ struct chip_data { u16 reset_val; u16 vcell_shift; u16 vcell_mul; u16 vcell_div; u8 has_low_soc_alert; u8 rcomp_bytes; u8 has_soc_alert; }; static struct chip_data max17040_family[] = { [ID_MAX17040] = { .reset_val = 0x0054, .vcell_shift = 4, .vcell_mul = 1250, .vcell_div = 1, .has_low_soc_alert = 0, .rcomp_bytes = 2, .has_soc_alert = 0, }, [ID_MAX17041] = { .reset_val = 0x0054, .vcell_shift = 4, .vcell_mul = 2500, .vcell_div = 1, .has_low_soc_alert = 0, .rcomp_bytes = 2, .has_soc_alert = 0, }, [ID_MAX17043] = { .reset_val = 0x0054, .vcell_shift = 4, .vcell_mul = 1250, .vcell_div = 1, .has_low_soc_alert = 1, .rcomp_bytes = 1, .has_soc_alert = 0, }, [ID_MAX17044] = { .reset_val = 0x0054, .vcell_shift = 4, .vcell_mul = 2500, .vcell_div = 1, .has_low_soc_alert = 1, .rcomp_bytes = 1, .has_soc_alert = 0, }, [ID_MAX17048] = { .reset_val = 0x5400, .vcell_shift = 0, .vcell_mul = 625, .vcell_div = 8, .has_low_soc_alert = 1, .rcomp_bytes = 1, .has_soc_alert = 1, }, [ID_MAX17049] = { .reset_val = 0x5400, .vcell_shift = 0, .vcell_mul = 625, .vcell_div = 4, .has_low_soc_alert = 1, .rcomp_bytes = 1, .has_soc_alert = 1, }, [ID_MAX17058] = { .reset_val = 0x5400, .vcell_shift = 0, .vcell_mul = 625, .vcell_div = 8, .has_low_soc_alert = 1, .rcomp_bytes = 1, .has_soc_alert = 0, }, [ID_MAX17059] = { .reset_val = 0x5400, .vcell_shift = 0, .vcell_mul = 625, .vcell_div = 4, .has_low_soc_alert = 1, .rcomp_bytes = 1, .has_soc_alert = 0, }, }; struct max17040_chip { struct i2c_client *client; struct regmap *regmap; struct delayed_work work; struct power_supply *battery; struct chip_data data; /* battery capacity */ int soc; /* Low alert threshold from 32% to 1% of the State of Charge */ u32 low_soc_alert; /* some devices return twice the capacity */ bool quirk_double_soc; /* higher 8 bits for 17043+, 16 bits for 17040,41 */ u16 rcomp; }; static int max17040_reset(struct max17040_chip *chip) { return regmap_write(chip->regmap, MAX17040_CMD, chip->data.reset_val); } static int max17040_set_low_soc_alert(struct max17040_chip *chip, u32 level) { level = 32 - level * (chip->quirk_double_soc ? 2 : 1); return regmap_update_bits(chip->regmap, MAX17040_CONFIG, MAX17040_ATHD_MASK, level); } static int max17040_set_soc_alert(struct max17040_chip *chip, bool enable) { return regmap_update_bits(chip->regmap, MAX17040_CONFIG, MAX17040_ALSC_MASK, enable ? MAX17040_ALSC_MASK : 0); } static int max17040_set_rcomp(struct max17040_chip *chip, u16 rcomp) { u16 mask = chip->data.rcomp_bytes == 2 ? 0xffff : MAX17040_CFG_RCOMP_MASK; return regmap_update_bits(chip->regmap, MAX17040_CONFIG, mask, rcomp); } static int max17040_raw_vcell_to_uvolts(struct max17040_chip *chip, u16 vcell) { struct chip_data *d = &chip->data; return (vcell >> d->vcell_shift) * d->vcell_mul / d->vcell_div; } static int max17040_get_vcell(struct max17040_chip *chip) { u32 vcell; regmap_read(chip->regmap, MAX17040_VCELL, &vcell); return max17040_raw_vcell_to_uvolts(chip, vcell); } static int max17040_get_soc(struct max17040_chip *chip) { u32 soc; regmap_read(chip->regmap, MAX17040_SOC, &soc); return soc >> (chip->quirk_double_soc ? 9 : 8); } static int max17040_get_version(struct max17040_chip *chip) { int ret; u32 version; ret = regmap_read(chip->regmap, MAX17040_VER, &version); return ret ? ret : version; } static int max17040_get_online(struct max17040_chip *chip) { return 1; } static int max17040_get_of_data(struct max17040_chip *chip) { struct device *dev = &chip->client->dev; struct chip_data *data = &max17040_family[ (uintptr_t) of_device_get_match_data(dev)]; int rcomp_len; u8 rcomp[2]; chip->quirk_double_soc = device_property_read_bool(dev, "maxim,double-soc"); chip->low_soc_alert = MAX17040_ATHD_DEFAULT_POWER_UP; device_property_read_u32(dev, "maxim,alert-low-soc-level", &chip->low_soc_alert); if (chip->low_soc_alert <= 0 || chip->low_soc_alert > (chip->quirk_double_soc ? 16 : 32)) { dev_err(dev, "maxim,alert-low-soc-level out of bounds\n"); return -EINVAL; } rcomp_len = device_property_count_u8(dev, "maxim,rcomp"); chip->rcomp = MAX17040_RCOMP_DEFAULT; if (rcomp_len == data->rcomp_bytes) { if (!device_property_read_u8_array(dev, "maxim,rcomp", rcomp, rcomp_len)) chip->rcomp = rcomp_len == 2 ? rcomp[0] << 8 | rcomp[1] : rcomp[0] << 8; } else if (rcomp_len > 0) { dev_err(dev, "maxim,rcomp has incorrect length\n"); return -EINVAL; } return 0; } static void max17040_check_changes(struct max17040_chip *chip) { chip->soc = max17040_get_soc(chip); } static void max17040_queue_work(struct max17040_chip *chip) { queue_delayed_work(system_power_efficient_wq, &chip->work, MAX17040_DELAY); } static void max17040_stop_work(void *data) { struct max17040_chip *chip = data; cancel_delayed_work_sync(&chip->work); } static void max17040_work(struct work_struct *work) { struct max17040_chip *chip; int last_soc; chip = container_of(work, struct max17040_chip, work.work); /* store SOC to check changes */ last_soc = chip->soc; max17040_check_changes(chip); /* check changes and send uevent */ if (last_soc != chip->soc) power_supply_changed(chip->battery); max17040_queue_work(chip); } /* Returns true if alert cause was SOC change, not low SOC */ static bool max17040_handle_soc_alert(struct max17040_chip *chip) { bool ret = true; u32 data; regmap_read(chip->regmap, MAX17040_STATUS, &data); if (data & MAX17040_STATUS_HD_MASK) { // this alert was caused by low soc ret = false; } if (data & MAX17040_STATUS_SC_MASK) { // soc change bit -- deassert to mark as handled regmap_write(chip->regmap, MAX17040_STATUS, data & ~MAX17040_STATUS_SC_MASK); } return ret; } static irqreturn_t max17040_thread_handler(int id, void *dev) { struct max17040_chip *chip = dev; if (!(chip->data.has_soc_alert && max17040_handle_soc_alert(chip))) dev_warn(&chip->client->dev, "IRQ: Alert battery low level\n"); /* read registers */ max17040_check_changes(chip); /* send uevent */ power_supply_changed(chip->battery); /* reset alert bit */ max17040_set_low_soc_alert(chip, chip->low_soc_alert); return IRQ_HANDLED; } static int max17040_enable_alert_irq(struct max17040_chip *chip) { struct i2c_client *client = chip->client; int ret; ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, max17040_thread_handler, IRQF_ONESHOT, chip->battery->desc->name, chip); return ret; } static int max17040_prop_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: return 1; default: return 0; } } static int max17040_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct max17040_chip *chip = power_supply_get_drvdata(psy); int ret; switch (psp) { case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: /* alert threshold can be programmed from 1% up to 16/32% */ if ((val->intval < 1) || (val->intval > (chip->quirk_double_soc ? 16 : 32))) { ret = -EINVAL; break; } ret = max17040_set_low_soc_alert(chip, val->intval); chip->low_soc_alert = val->intval; break; default: ret = -EINVAL; } return ret; } static int max17040_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max17040_chip *chip = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = max17040_get_online(chip); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = max17040_get_vcell(chip); break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = max17040_get_soc(chip); break; case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN: val->intval = chip->low_soc_alert; break; default: return -EINVAL; } return 0; } static const struct regmap_config max17040_regmap = { .reg_bits = 8, .reg_stride = 2, .val_bits = 16, .val_format_endian = REGMAP_ENDIAN_BIG, }; static enum power_supply_property max17040_battery_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, }; static const struct power_supply_desc max17040_battery_desc = { .name = "battery", .type = POWER_SUPPLY_TYPE_BATTERY, .get_property = max17040_get_property, .set_property = max17040_set_property, .property_is_writeable = max17040_prop_writeable, .properties = max17040_battery_props, .num_properties = ARRAY_SIZE(max17040_battery_props), }; static int max17040_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct i2c_adapter *adapter = client->adapter; struct power_supply_config psy_cfg = {}; struct max17040_chip *chip; enum chip_id chip_id; bool enable_irq = false; int ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) return -EIO; chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->client = client; chip->regmap = devm_regmap_init_i2c(client, &max17040_regmap); if (IS_ERR(chip->regmap)) return PTR_ERR(chip->regmap); chip_id = (enum chip_id) id->driver_data; if (client->dev.of_node) { ret = max17040_get_of_data(chip); if (ret) return ret; chip_id = (uintptr_t)of_device_get_match_data(&client->dev); } chip->data = max17040_family[chip_id]; i2c_set_clientdata(client, chip); psy_cfg.drv_data = chip; chip->battery = devm_power_supply_register(&client->dev, &max17040_battery_desc, &psy_cfg); if (IS_ERR(chip->battery)) { dev_err(&client->dev, "failed: power supply register\n"); return PTR_ERR(chip->battery); } ret = max17040_get_version(chip); if (ret < 0) return ret; dev_dbg(&chip->client->dev, "MAX17040 Fuel-Gauge Ver 0x%x\n", ret); if (chip_id == ID_MAX17040 || chip_id == ID_MAX17041) max17040_reset(chip); max17040_set_rcomp(chip, chip->rcomp); /* check interrupt */ if (client->irq && chip->data.has_low_soc_alert) { ret = max17040_set_low_soc_alert(chip, chip->low_soc_alert); if (ret) { dev_err(&client->dev, "Failed to set low SOC alert: err %d\n", ret); return ret; } enable_irq = true; } if (client->irq && chip->data.has_soc_alert) { ret = max17040_set_soc_alert(chip, 1); if (ret) { dev_err(&client->dev, "Failed to set SOC alert: err %d\n", ret); return ret; } enable_irq = true; } else { /* soc alerts negate the need for polling */ INIT_DEFERRABLE_WORK(&chip->work, max17040_work); ret = devm_add_action(&client->dev, max17040_stop_work, chip); if (ret) return ret; max17040_queue_work(chip); } if (enable_irq) { ret = max17040_enable_alert_irq(chip); if (ret) { client->irq = 0; dev_warn(&client->dev, "Failed to get IRQ err %d\n", ret); } } return 0; } #ifdef CONFIG_PM_SLEEP static int max17040_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct max17040_chip *chip = i2c_get_clientdata(client); if (client->irq && chip->data.has_soc_alert) // disable soc alert to prevent wakeup max17040_set_soc_alert(chip, 0); else cancel_delayed_work(&chip->work); if (client->irq && device_may_wakeup(dev)) enable_irq_wake(client->irq); return 0; } static int max17040_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct max17040_chip *chip = i2c_get_clientdata(client); if (client->irq && device_may_wakeup(dev)) disable_irq_wake(client->irq); if (client->irq && chip->data.has_soc_alert) max17040_set_soc_alert(chip, 1); else max17040_queue_work(chip); return 0; } static SIMPLE_DEV_PM_OPS(max17040_pm_ops, max17040_suspend, max17040_resume); #define MAX17040_PM_OPS (&max17040_pm_ops) #else #define MAX17040_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static const struct i2c_device_id max17040_id[] = { { "max17040", ID_MAX17040 }, { "max17041", ID_MAX17041 }, { "max17043", ID_MAX17043 }, { "max77836-battery", ID_MAX17043 }, { "max17044", ID_MAX17044 }, { "max17048", ID_MAX17048 }, { "max17049", ID_MAX17049 }, { "max17058", ID_MAX17058 }, { "max17059", ID_MAX17059 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(i2c, max17040_id); static const struct of_device_id max17040_of_match[] = { { .compatible = "maxim,max17040", .data = (void *) ID_MAX17040 }, { .compatible = "maxim,max17041", .data = (void *) ID_MAX17041 }, { .compatible = "maxim,max17043", .data = (void *) ID_MAX17043 }, { .compatible = "maxim,max77836-battery", .data = (void *) ID_MAX17043 }, { .compatible = "maxim,max17044", .data = (void *) ID_MAX17044 }, { .compatible = "maxim,max17048", .data = (void *) ID_MAX17048 }, { .compatible = "maxim,max17049", .data = (void *) ID_MAX17049 }, { .compatible = "maxim,max17058", .data = (void *) ID_MAX17058 }, { .compatible = "maxim,max17059", .data = (void *) ID_MAX17059 }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, max17040_of_match); static struct i2c_driver max17040_i2c_driver = { .driver = { .name = "max17040", .of_match_table = max17040_of_match, .pm = MAX17040_PM_OPS, }, .probe = max17040_probe, .id_table = max17040_id, }; module_i2c_driver(max17040_i2c_driver); MODULE_AUTHOR("Minkyu Kang <[email protected]>"); MODULE_DESCRIPTION("MAX17040 Fuel Gauge"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/max17040_battery.c
// SPDX-License-Identifier: GPL-2.0+ /* * Battery driver for 7th-generation Microsoft Surface devices via Surface * System Aggregator Module (SSAM). * * Copyright (C) 2019-2021 Maximilian Luz <[email protected]> */ #include <asm/unaligned.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/power_supply.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/surface_aggregator/device.h> /* -- SAM interface. -------------------------------------------------------- */ enum sam_event_cid_bat { SAM_EVENT_CID_BAT_BIX = 0x15, SAM_EVENT_CID_BAT_BST = 0x16, SAM_EVENT_CID_BAT_ADP = 0x17, SAM_EVENT_CID_BAT_PROT = 0x18, SAM_EVENT_CID_BAT_DPTF = 0x53, }; enum sam_battery_sta { SAM_BATTERY_STA_OK = 0x0f, SAM_BATTERY_STA_PRESENT = 0x10, }; enum sam_battery_state { SAM_BATTERY_STATE_DISCHARGING = BIT(0), SAM_BATTERY_STATE_CHARGING = BIT(1), SAM_BATTERY_STATE_CRITICAL = BIT(2), }; enum sam_battery_power_unit { SAM_BATTERY_POWER_UNIT_mW = 0, SAM_BATTERY_POWER_UNIT_mA = 1, }; /* Equivalent to data returned in ACPI _BIX method, revision 0. */ struct spwr_bix { u8 revision; __le32 power_unit; __le32 design_cap; __le32 last_full_charge_cap; __le32 technology; __le32 design_voltage; __le32 design_cap_warn; __le32 design_cap_low; __le32 cycle_count; __le32 measurement_accuracy; __le32 max_sampling_time; __le32 min_sampling_time; __le32 max_avg_interval; __le32 min_avg_interval; __le32 bat_cap_granularity_1; __le32 bat_cap_granularity_2; __u8 model[21]; __u8 serial[11]; __u8 type[5]; __u8 oem_info[21]; } __packed; static_assert(sizeof(struct spwr_bix) == 119); /* Equivalent to data returned in ACPI _BST method. */ struct spwr_bst { __le32 state; __le32 present_rate; __le32 remaining_cap; __le32 present_voltage; } __packed; static_assert(sizeof(struct spwr_bst) == 16); #define SPWR_BIX_REVISION 0 #define SPWR_BATTERY_VALUE_UNKNOWN 0xffffffff /* Get battery status (_STA) */ SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_sta, __le32, { .target_category = SSAM_SSH_TC_BAT, .command_id = 0x01, }); /* Get battery static information (_BIX). */ SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_bix, struct spwr_bix, { .target_category = SSAM_SSH_TC_BAT, .command_id = 0x02, }); /* Get battery dynamic information (_BST). */ SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_bst, struct spwr_bst, { .target_category = SSAM_SSH_TC_BAT, .command_id = 0x03, }); /* Set battery trip point (_BTP). */ SSAM_DEFINE_SYNC_REQUEST_CL_W(ssam_bat_set_btp, __le32, { .target_category = SSAM_SSH_TC_BAT, .command_id = 0x04, }); /* -- Device structures. ---------------------------------------------------- */ struct spwr_psy_properties { const char *name; struct ssam_event_registry registry; }; struct spwr_battery_device { struct ssam_device *sdev; char name[32]; struct power_supply *psy; struct power_supply_desc psy_desc; struct delayed_work update_work; struct ssam_event_notifier notif; struct mutex lock; /* Guards access to state data below. */ unsigned long timestamp; __le32 sta; struct spwr_bix bix; struct spwr_bst bst; u32 alarm; }; /* -- Module parameters. ---------------------------------------------------- */ static unsigned int cache_time = 1000; module_param(cache_time, uint, 0644); MODULE_PARM_DESC(cache_time, "battery state caching time in milliseconds [default: 1000]"); /* -- State management. ----------------------------------------------------- */ /* * Delay for battery update quirk. See spwr_external_power_changed() below * for more details. */ #define SPWR_AC_BAT_UPDATE_DELAY msecs_to_jiffies(5000) static bool spwr_battery_present(struct spwr_battery_device *bat) { lockdep_assert_held(&bat->lock); return le32_to_cpu(bat->sta) & SAM_BATTERY_STA_PRESENT; } static int spwr_battery_load_sta(struct spwr_battery_device *bat) { lockdep_assert_held(&bat->lock); return ssam_retry(ssam_bat_get_sta, bat->sdev, &bat->sta); } static int spwr_battery_load_bix(struct spwr_battery_device *bat) { int status; lockdep_assert_held(&bat->lock); if (!spwr_battery_present(bat)) return 0; status = ssam_retry(ssam_bat_get_bix, bat->sdev, &bat->bix); /* Enforce NULL terminated strings in case anything goes wrong... */ bat->bix.model[ARRAY_SIZE(bat->bix.model) - 1] = 0; bat->bix.serial[ARRAY_SIZE(bat->bix.serial) - 1] = 0; bat->bix.type[ARRAY_SIZE(bat->bix.type) - 1] = 0; bat->bix.oem_info[ARRAY_SIZE(bat->bix.oem_info) - 1] = 0; return status; } static int spwr_battery_load_bst(struct spwr_battery_device *bat) { lockdep_assert_held(&bat->lock); if (!spwr_battery_present(bat)) return 0; return ssam_retry(ssam_bat_get_bst, bat->sdev, &bat->bst); } static int spwr_battery_set_alarm_unlocked(struct spwr_battery_device *bat, u32 value) { __le32 value_le = cpu_to_le32(value); lockdep_assert_held(&bat->lock); bat->alarm = value; return ssam_retry(ssam_bat_set_btp, bat->sdev, &value_le); } static int spwr_battery_update_bst_unlocked(struct spwr_battery_device *bat, bool cached) { unsigned long cache_deadline = bat->timestamp + msecs_to_jiffies(cache_time); int status; lockdep_assert_held(&bat->lock); if (cached && bat->timestamp && time_is_after_jiffies(cache_deadline)) return 0; status = spwr_battery_load_sta(bat); if (status) return status; status = spwr_battery_load_bst(bat); if (status) return status; bat->timestamp = jiffies; return 0; } static int spwr_battery_update_bst(struct spwr_battery_device *bat, bool cached) { int status; mutex_lock(&bat->lock); status = spwr_battery_update_bst_unlocked(bat, cached); mutex_unlock(&bat->lock); return status; } static int spwr_battery_update_bix_unlocked(struct spwr_battery_device *bat) { int status; lockdep_assert_held(&bat->lock); status = spwr_battery_load_sta(bat); if (status) return status; status = spwr_battery_load_bix(bat); if (status) return status; status = spwr_battery_load_bst(bat); if (status) return status; if (bat->bix.revision != SPWR_BIX_REVISION) dev_warn(&bat->sdev->dev, "unsupported battery revision: %u\n", bat->bix.revision); bat->timestamp = jiffies; return 0; } static u32 sprw_battery_get_full_cap_safe(struct spwr_battery_device *bat) { u32 full_cap = get_unaligned_le32(&bat->bix.last_full_charge_cap); lockdep_assert_held(&bat->lock); if (full_cap == 0 || full_cap == SPWR_BATTERY_VALUE_UNKNOWN) full_cap = get_unaligned_le32(&bat->bix.design_cap); return full_cap; } static bool spwr_battery_is_full(struct spwr_battery_device *bat) { u32 state = get_unaligned_le32(&bat->bst.state); u32 full_cap = sprw_battery_get_full_cap_safe(bat); u32 remaining_cap = get_unaligned_le32(&bat->bst.remaining_cap); lockdep_assert_held(&bat->lock); return full_cap != SPWR_BATTERY_VALUE_UNKNOWN && full_cap != 0 && remaining_cap != SPWR_BATTERY_VALUE_UNKNOWN && remaining_cap >= full_cap && state == 0; } static int spwr_battery_recheck_full(struct spwr_battery_device *bat) { bool present; u32 unit; int status; mutex_lock(&bat->lock); unit = get_unaligned_le32(&bat->bix.power_unit); present = spwr_battery_present(bat); status = spwr_battery_update_bix_unlocked(bat); if (status) goto out; /* If battery has been attached, (re-)initialize alarm. */ if (!present && spwr_battery_present(bat)) { u32 cap_warn = get_unaligned_le32(&bat->bix.design_cap_warn); status = spwr_battery_set_alarm_unlocked(bat, cap_warn); if (status) goto out; } /* * Warn if the unit has changed. This is something we genuinely don't * expect to happen, so make this a big warning. If it does, we'll * need to add support for it. */ WARN_ON(unit != get_unaligned_le32(&bat->bix.power_unit)); out: mutex_unlock(&bat->lock); if (!status) power_supply_changed(bat->psy); return status; } static int spwr_battery_recheck_status(struct spwr_battery_device *bat) { int status; status = spwr_battery_update_bst(bat, false); if (!status) power_supply_changed(bat->psy); return status; } static u32 spwr_notify_bat(struct ssam_event_notifier *nf, const struct ssam_event *event) { struct spwr_battery_device *bat = container_of(nf, struct spwr_battery_device, notif); int status; /* * We cannot use strict matching when registering the notifier as the * EC expects us to register it against instance ID 0. Strict matching * would thus drop events, as those may have non-zero instance IDs in * this subsystem. So we need to check the instance ID of the event * here manually. */ if (event->instance_id != bat->sdev->uid.instance) return 0; dev_dbg(&bat->sdev->dev, "power event (cid = %#04x, iid = %#04x, tid = %#04x)\n", event->command_id, event->instance_id, event->target_id); switch (event->command_id) { case SAM_EVENT_CID_BAT_BIX: status = spwr_battery_recheck_full(bat); break; case SAM_EVENT_CID_BAT_BST: status = spwr_battery_recheck_status(bat); break; case SAM_EVENT_CID_BAT_PROT: /* * TODO: Implement support for battery protection status change * event. */ status = 0; break; case SAM_EVENT_CID_BAT_DPTF: /* * TODO: Implement support for DPTF event. */ status = 0; break; default: return 0; } return ssam_notifier_from_errno(status) | SSAM_NOTIF_HANDLED; } static void spwr_battery_update_bst_workfn(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct spwr_battery_device *bat; int status; bat = container_of(dwork, struct spwr_battery_device, update_work); status = spwr_battery_update_bst(bat, false); if (status) { dev_err(&bat->sdev->dev, "failed to update battery state: %d\n", status); return; } power_supply_changed(bat->psy); } static void spwr_external_power_changed(struct power_supply *psy) { struct spwr_battery_device *bat = power_supply_get_drvdata(psy); /* * Handle battery update quirk: When the battery is fully charged (or * charged up to the limit imposed by the UEFI battery limit) and the * adapter is plugged in or removed, the EC does not send a separate * event for the state (charging/discharging) change. Furthermore it * may take some time until the state is updated on the battery. * Schedule an update to solve this. */ schedule_delayed_work(&bat->update_work, SPWR_AC_BAT_UPDATE_DELAY); } /* -- Properties. ----------------------------------------------------------- */ static const enum power_supply_property spwr_battery_props_chg[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, }; static const enum power_supply_property spwr_battery_props_eng[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_POWER_NOW, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, }; static int spwr_battery_prop_status(struct spwr_battery_device *bat) { u32 state = get_unaligned_le32(&bat->bst.state); u32 present_rate = get_unaligned_le32(&bat->bst.present_rate); lockdep_assert_held(&bat->lock); if (state & SAM_BATTERY_STATE_DISCHARGING) return POWER_SUPPLY_STATUS_DISCHARGING; if (state & SAM_BATTERY_STATE_CHARGING) return POWER_SUPPLY_STATUS_CHARGING; if (spwr_battery_is_full(bat)) return POWER_SUPPLY_STATUS_FULL; if (present_rate == 0) return POWER_SUPPLY_STATUS_NOT_CHARGING; return POWER_SUPPLY_STATUS_UNKNOWN; } static int spwr_battery_prop_technology(struct spwr_battery_device *bat) { lockdep_assert_held(&bat->lock); if (!strcasecmp("NiCd", bat->bix.type)) return POWER_SUPPLY_TECHNOLOGY_NiCd; if (!strcasecmp("NiMH", bat->bix.type)) return POWER_SUPPLY_TECHNOLOGY_NiMH; if (!strcasecmp("LION", bat->bix.type)) return POWER_SUPPLY_TECHNOLOGY_LION; if (!strncasecmp("LI-ION", bat->bix.type, 6)) return POWER_SUPPLY_TECHNOLOGY_LION; if (!strcasecmp("LiP", bat->bix.type)) return POWER_SUPPLY_TECHNOLOGY_LIPO; return POWER_SUPPLY_TECHNOLOGY_UNKNOWN; } static int spwr_battery_prop_capacity(struct spwr_battery_device *bat) { u32 full_cap = sprw_battery_get_full_cap_safe(bat); u32 remaining_cap = get_unaligned_le32(&bat->bst.remaining_cap); lockdep_assert_held(&bat->lock); if (full_cap == 0 || full_cap == SPWR_BATTERY_VALUE_UNKNOWN) return -ENODATA; if (remaining_cap == SPWR_BATTERY_VALUE_UNKNOWN) return -ENODATA; return remaining_cap * 100 / full_cap; } static int spwr_battery_prop_capacity_level(struct spwr_battery_device *bat) { u32 state = get_unaligned_le32(&bat->bst.state); u32 remaining_cap = get_unaligned_le32(&bat->bst.remaining_cap); lockdep_assert_held(&bat->lock); if (state & SAM_BATTERY_STATE_CRITICAL) return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; if (spwr_battery_is_full(bat)) return POWER_SUPPLY_CAPACITY_LEVEL_FULL; if (remaining_cap <= bat->alarm) return POWER_SUPPLY_CAPACITY_LEVEL_LOW; return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } static int spwr_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct spwr_battery_device *bat = power_supply_get_drvdata(psy); u32 value; int status; mutex_lock(&bat->lock); status = spwr_battery_update_bst_unlocked(bat, true); if (status) goto out; /* Abort if battery is not present. */ if (!spwr_battery_present(bat) && psp != POWER_SUPPLY_PROP_PRESENT) { status = -ENODEV; goto out; } switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = spwr_battery_prop_status(bat); break; case POWER_SUPPLY_PROP_PRESENT: val->intval = spwr_battery_present(bat); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = spwr_battery_prop_technology(bat); break; case POWER_SUPPLY_PROP_CYCLE_COUNT: value = get_unaligned_le32(&bat->bix.cycle_count); if (value != SPWR_BATTERY_VALUE_UNKNOWN) val->intval = value; else status = -ENODATA; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: value = get_unaligned_le32(&bat->bix.design_voltage); if (value != SPWR_BATTERY_VALUE_UNKNOWN) val->intval = value * 1000; else status = -ENODATA; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: value = get_unaligned_le32(&bat->bst.present_voltage); if (value != SPWR_BATTERY_VALUE_UNKNOWN) val->intval = value * 1000; else status = -ENODATA; break; case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_POWER_NOW: value = get_unaligned_le32(&bat->bst.present_rate); if (value != SPWR_BATTERY_VALUE_UNKNOWN) val->intval = value * 1000; else status = -ENODATA; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: value = get_unaligned_le32(&bat->bix.design_cap); if (value != SPWR_BATTERY_VALUE_UNKNOWN) val->intval = value * 1000; else status = -ENODATA; break; case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL: value = get_unaligned_le32(&bat->bix.last_full_charge_cap); if (value != SPWR_BATTERY_VALUE_UNKNOWN) val->intval = value * 1000; else status = -ENODATA; break; case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_ENERGY_NOW: value = get_unaligned_le32(&bat->bst.remaining_cap); if (value != SPWR_BATTERY_VALUE_UNKNOWN) val->intval = value * 1000; else status = -ENODATA; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = spwr_battery_prop_capacity(bat); break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: val->intval = spwr_battery_prop_capacity_level(bat); break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = bat->bix.model; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = bat->bix.oem_info; break; case POWER_SUPPLY_PROP_SERIAL_NUMBER: val->strval = bat->bix.serial; break; default: status = -EINVAL; break; } out: mutex_unlock(&bat->lock); return status; } /* -- Alarm attribute. ------------------------------------------------------ */ static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy = dev_get_drvdata(dev); struct spwr_battery_device *bat = power_supply_get_drvdata(psy); int status; mutex_lock(&bat->lock); status = sysfs_emit(buf, "%d\n", bat->alarm * 1000); mutex_unlock(&bat->lock); return status; } static ssize_t alarm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct power_supply *psy = dev_get_drvdata(dev); struct spwr_battery_device *bat = power_supply_get_drvdata(psy); unsigned long value; int status; status = kstrtoul(buf, 0, &value); if (status) return status; mutex_lock(&bat->lock); if (!spwr_battery_present(bat)) { mutex_unlock(&bat->lock); return -ENODEV; } status = spwr_battery_set_alarm_unlocked(bat, value / 1000); if (status) { mutex_unlock(&bat->lock); return status; } mutex_unlock(&bat->lock); return count; } static DEVICE_ATTR_RW(alarm); static struct attribute *spwr_battery_attrs[] = { &dev_attr_alarm.attr, NULL, }; ATTRIBUTE_GROUPS(spwr_battery); /* -- Device setup. --------------------------------------------------------- */ static void spwr_battery_init(struct spwr_battery_device *bat, struct ssam_device *sdev, struct ssam_event_registry registry, const char *name) { mutex_init(&bat->lock); strncpy(bat->name, name, ARRAY_SIZE(bat->name) - 1); bat->sdev = sdev; bat->notif.base.priority = 1; bat->notif.base.fn = spwr_notify_bat; bat->notif.event.reg = registry; bat->notif.event.id.target_category = sdev->uid.category; bat->notif.event.id.instance = 0; /* need to register with instance 0 */ bat->notif.event.mask = SSAM_EVENT_MASK_TARGET; bat->notif.event.flags = SSAM_EVENT_SEQUENCED; bat->psy_desc.name = bat->name; bat->psy_desc.type = POWER_SUPPLY_TYPE_BATTERY; bat->psy_desc.get_property = spwr_battery_get_property; INIT_DELAYED_WORK(&bat->update_work, spwr_battery_update_bst_workfn); } static int spwr_battery_register(struct spwr_battery_device *bat) { struct power_supply_config psy_cfg = {}; __le32 sta; int status; /* Make sure the device is there and functioning properly. */ status = ssam_retry(ssam_bat_get_sta, bat->sdev, &sta); if (status) return status; if ((le32_to_cpu(sta) & SAM_BATTERY_STA_OK) != SAM_BATTERY_STA_OK) return -ENODEV; /* Satisfy lockdep although we are in an exclusive context here. */ mutex_lock(&bat->lock); status = spwr_battery_update_bix_unlocked(bat); if (status) { mutex_unlock(&bat->lock); return status; } if (spwr_battery_present(bat)) { u32 cap_warn = get_unaligned_le32(&bat->bix.design_cap_warn); status = spwr_battery_set_alarm_unlocked(bat, cap_warn); if (status) { mutex_unlock(&bat->lock); return status; } } mutex_unlock(&bat->lock); bat->psy_desc.external_power_changed = spwr_external_power_changed; switch (get_unaligned_le32(&bat->bix.power_unit)) { case SAM_BATTERY_POWER_UNIT_mW: bat->psy_desc.properties = spwr_battery_props_eng; bat->psy_desc.num_properties = ARRAY_SIZE(spwr_battery_props_eng); break; case SAM_BATTERY_POWER_UNIT_mA: bat->psy_desc.properties = spwr_battery_props_chg; bat->psy_desc.num_properties = ARRAY_SIZE(spwr_battery_props_chg); break; default: dev_err(&bat->sdev->dev, "unsupported battery power unit: %u\n", get_unaligned_le32(&bat->bix.power_unit)); return -EINVAL; } psy_cfg.drv_data = bat; psy_cfg.attr_grp = spwr_battery_groups; bat->psy = devm_power_supply_register(&bat->sdev->dev, &bat->psy_desc, &psy_cfg); if (IS_ERR(bat->psy)) return PTR_ERR(bat->psy); return ssam_device_notifier_register(bat->sdev, &bat->notif); } /* -- Driver setup. --------------------------------------------------------- */ static int __maybe_unused surface_battery_resume(struct device *dev) { return spwr_battery_recheck_full(dev_get_drvdata(dev)); } static SIMPLE_DEV_PM_OPS(surface_battery_pm_ops, NULL, surface_battery_resume); static int surface_battery_probe(struct ssam_device *sdev) { const struct spwr_psy_properties *p; struct spwr_battery_device *bat; p = ssam_device_get_match_data(sdev); if (!p) return -ENODEV; bat = devm_kzalloc(&sdev->dev, sizeof(*bat), GFP_KERNEL); if (!bat) return -ENOMEM; spwr_battery_init(bat, sdev, p->registry, p->name); ssam_device_set_drvdata(sdev, bat); return spwr_battery_register(bat); } static void surface_battery_remove(struct ssam_device *sdev) { struct spwr_battery_device *bat = ssam_device_get_drvdata(sdev); ssam_device_notifier_unregister(sdev, &bat->notif); cancel_delayed_work_sync(&bat->update_work); } static const struct spwr_psy_properties spwr_psy_props_bat1 = { .name = "BAT1", .registry = SSAM_EVENT_REGISTRY_SAM, }; static const struct spwr_psy_properties spwr_psy_props_bat2_sb3 = { .name = "BAT2", .registry = SSAM_EVENT_REGISTRY_KIP, }; static const struct ssam_device_id surface_battery_match[] = { { SSAM_SDEV(BAT, SAM, 0x01, 0x00), (unsigned long)&spwr_psy_props_bat1 }, { SSAM_SDEV(BAT, KIP, 0x01, 0x00), (unsigned long)&spwr_psy_props_bat2_sb3 }, { }, }; MODULE_DEVICE_TABLE(ssam, surface_battery_match); static struct ssam_device_driver surface_battery_driver = { .probe = surface_battery_probe, .remove = surface_battery_remove, .match_table = surface_battery_match, .driver = { .name = "surface_battery", .pm = &surface_battery_pm_ops, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; module_ssam_device_driver(surface_battery_driver); MODULE_AUTHOR("Maximilian Luz <[email protected]>"); MODULE_DESCRIPTION("Battery driver for Surface System Aggregator Module"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/surface_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Universal power supply monitor class * * Copyright © 2007 Anton Vorontsov <[email protected]> * Copyright © 2004 Szabolcs Gyurko * Copyright © 2003 Ian Molton <[email protected]> * * Modified: 2004, Oct Szabolcs Gyurko */ #include <linux/module.h> #include <linux/types.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/notifier.h> #include <linux/err.h> #include <linux/of.h> #include <linux/power_supply.h> #include <linux/property.h> #include <linux/thermal.h> #include <linux/fixp-arith.h> #include "power_supply.h" #include "samsung-sdi-battery.h" /* exported for the APM Power driver, APM emulation */ struct class *power_supply_class; EXPORT_SYMBOL_GPL(power_supply_class); ATOMIC_NOTIFIER_HEAD(power_supply_notifier); EXPORT_SYMBOL_GPL(power_supply_notifier); static struct device_type power_supply_dev_type; #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) static bool __power_supply_is_supplied_by(struct power_supply *supplier, struct power_supply *supply) { int i; if (!supply->supplied_from && !supplier->supplied_to) return false; /* Support both supplied_to and supplied_from modes */ if (supply->supplied_from) { if (!supplier->desc->name) return false; for (i = 0; i < supply->num_supplies; i++) if (!strcmp(supplier->desc->name, supply->supplied_from[i])) return true; } else { if (!supply->desc->name) return false; for (i = 0; i < supplier->num_supplicants; i++) if (!strcmp(supplier->supplied_to[i], supply->desc->name)) return true; } return false; } static int __power_supply_changed_work(struct device *dev, void *data) { struct power_supply *psy = data; struct power_supply *pst = dev_get_drvdata(dev); if (__power_supply_is_supplied_by(psy, pst)) { if (pst->desc->external_power_changed) pst->desc->external_power_changed(pst); } return 0; } static void power_supply_changed_work(struct work_struct *work) { unsigned long flags; struct power_supply *psy = container_of(work, struct power_supply, changed_work); dev_dbg(&psy->dev, "%s\n", __func__); spin_lock_irqsave(&psy->changed_lock, flags); /* * Check 'changed' here to avoid issues due to race between * power_supply_changed() and this routine. In worst case * power_supply_changed() can be called again just before we take above * lock. During the first call of this routine we will mark 'changed' as * false and it will stay false for the next call as well. */ if (likely(psy->changed)) { psy->changed = false; spin_unlock_irqrestore(&psy->changed_lock, flags); class_for_each_device(power_supply_class, NULL, psy, __power_supply_changed_work); power_supply_update_leds(psy); atomic_notifier_call_chain(&power_supply_notifier, PSY_EVENT_PROP_CHANGED, psy); kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); spin_lock_irqsave(&psy->changed_lock, flags); } /* * Hold the wakeup_source until all events are processed. * power_supply_changed() might have called again and have set 'changed' * to true. */ if (likely(!psy->changed)) pm_relax(&psy->dev); spin_unlock_irqrestore(&psy->changed_lock, flags); } void power_supply_changed(struct power_supply *psy) { unsigned long flags; dev_dbg(&psy->dev, "%s\n", __func__); spin_lock_irqsave(&psy->changed_lock, flags); psy->changed = true; pm_stay_awake(&psy->dev); spin_unlock_irqrestore(&psy->changed_lock, flags); schedule_work(&psy->changed_work); } EXPORT_SYMBOL_GPL(power_supply_changed); /* * Notify that power supply was registered after parent finished the probing. * * Often power supply is registered from driver's probe function. However * calling power_supply_changed() directly from power_supply_register() * would lead to execution of get_property() function provided by the driver * too early - before the probe ends. * * Avoid that by waiting on parent's mutex. */ static void power_supply_deferred_register_work(struct work_struct *work) { struct power_supply *psy = container_of(work, struct power_supply, deferred_register_work.work); if (psy->dev.parent) { while (!mutex_trylock(&psy->dev.parent->mutex)) { if (psy->removing) return; msleep(10); } } power_supply_changed(psy); if (psy->dev.parent) mutex_unlock(&psy->dev.parent->mutex); } #ifdef CONFIG_OF static int __power_supply_populate_supplied_from(struct device *dev, void *data) { struct power_supply *psy = data; struct power_supply *epsy = dev_get_drvdata(dev); struct device_node *np; int i = 0; do { np = of_parse_phandle(psy->of_node, "power-supplies", i++); if (!np) break; if (np == epsy->of_node) { dev_dbg(&psy->dev, "%s: Found supply : %s\n", psy->desc->name, epsy->desc->name); psy->supplied_from[i-1] = (char *)epsy->desc->name; psy->num_supplies++; of_node_put(np); break; } of_node_put(np); } while (np); return 0; } static int power_supply_populate_supplied_from(struct power_supply *psy) { int error; error = class_for_each_device(power_supply_class, NULL, psy, __power_supply_populate_supplied_from); dev_dbg(&psy->dev, "%s %d\n", __func__, error); return error; } static int __power_supply_find_supply_from_node(struct device *dev, void *data) { struct device_node *np = data; struct power_supply *epsy = dev_get_drvdata(dev); /* returning non-zero breaks out of class_for_each_device loop */ if (epsy->of_node == np) return 1; return 0; } static int power_supply_find_supply_from_node(struct device_node *supply_node) { int error; /* * class_for_each_device() either returns its own errors or values * returned by __power_supply_find_supply_from_node(). * * __power_supply_find_supply_from_node() will return 0 (no match) * or 1 (match). * * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if * it returned 0, or error as returned by it. */ error = class_for_each_device(power_supply_class, NULL, supply_node, __power_supply_find_supply_from_node); return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; } static int power_supply_check_supplies(struct power_supply *psy) { struct device_node *np; int cnt = 0; /* If there is already a list honor it */ if (psy->supplied_from && psy->num_supplies > 0) return 0; /* No device node found, nothing to do */ if (!psy->of_node) return 0; do { int ret; np = of_parse_phandle(psy->of_node, "power-supplies", cnt++); if (!np) break; ret = power_supply_find_supply_from_node(np); of_node_put(np); if (ret) { dev_dbg(&psy->dev, "Failed to find supply!\n"); return ret; } } while (np); /* Missing valid "power-supplies" entries */ if (cnt == 1) return 0; /* All supplies found, allocate char ** array for filling */ psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), GFP_KERNEL); if (!psy->supplied_from) return -ENOMEM; *psy->supplied_from = devm_kcalloc(&psy->dev, cnt - 1, sizeof(**psy->supplied_from), GFP_KERNEL); if (!*psy->supplied_from) return -ENOMEM; return power_supply_populate_supplied_from(psy); } #else static int power_supply_check_supplies(struct power_supply *psy) { int nval, ret; if (!psy->dev.parent) return 0; nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); if (nval <= 0) return 0; psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, sizeof(char *), GFP_KERNEL); if (!psy->supplied_from) return -ENOMEM; ret = device_property_read_string_array(psy->dev.parent, "supplied-from", (const char **)psy->supplied_from, nval); if (ret < 0) return ret; psy->num_supplies = nval; return 0; } #endif struct psy_am_i_supplied_data { struct power_supply *psy; unsigned int count; }; static int __power_supply_am_i_supplied(struct device *dev, void *_data) { union power_supply_propval ret = {0,}; struct power_supply *epsy = dev_get_drvdata(dev); struct psy_am_i_supplied_data *data = _data; if (__power_supply_is_supplied_by(epsy, data->psy)) { data->count++; if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, &ret)) return ret.intval; } return 0; } int power_supply_am_i_supplied(struct power_supply *psy) { struct psy_am_i_supplied_data data = { psy, 0 }; int error; error = class_for_each_device(power_supply_class, NULL, &data, __power_supply_am_i_supplied); dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); if (data.count == 0) return -ENODEV; return error; } EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); static int __power_supply_is_system_supplied(struct device *dev, void *data) { union power_supply_propval ret = {0,}; struct power_supply *psy = dev_get_drvdata(dev); unsigned int *count = data; if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret)) if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE) return 0; (*count)++; if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, &ret)) return ret.intval; return 0; } int power_supply_is_system_supplied(void) { int error; unsigned int count = 0; error = class_for_each_device(power_supply_class, NULL, &count, __power_supply_is_system_supplied); /* * If no system scope power class device was found at all, most probably we * are running on a desktop system, so assume we are on mains power. */ if (count == 0) return 1; return error; } EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); struct psy_get_supplier_prop_data { struct power_supply *psy; enum power_supply_property psp; union power_supply_propval *val; }; static int __power_supply_get_supplier_property(struct device *dev, void *_data) { struct power_supply *epsy = dev_get_drvdata(dev); struct psy_get_supplier_prop_data *data = _data; if (__power_supply_is_supplied_by(epsy, data->psy)) if (!power_supply_get_property(epsy, data->psp, data->val)) return 1; /* Success */ return 0; /* Continue iterating */ } int power_supply_get_property_from_supplier(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct psy_get_supplier_prop_data data = { .psy = psy, .psp = psp, .val = val, }; int ret; /* * This function is not intended for use with a supply with multiple * suppliers, we simply pick the first supply to report the psp. */ ret = class_for_each_device(power_supply_class, NULL, &data, __power_supply_get_supplier_property); if (ret < 0) return ret; if (ret == 0) return -ENODEV; return 0; } EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); int power_supply_set_battery_charged(struct power_supply *psy) { if (atomic_read(&psy->use_cnt) >= 0 && psy->desc->type == POWER_SUPPLY_TYPE_BATTERY && psy->desc->set_charged) { psy->desc->set_charged(psy); return 0; } return -EINVAL; } EXPORT_SYMBOL_GPL(power_supply_set_battery_charged); static int power_supply_match_device_by_name(struct device *dev, const void *data) { const char *name = data; struct power_supply *psy = dev_get_drvdata(dev); return strcmp(psy->desc->name, name) == 0; } /** * power_supply_get_by_name() - Search for a power supply and returns its ref * @name: Power supply name to fetch * * If power supply was found, it increases reference count for the * internal power supply's device. The user should power_supply_put() * after usage. * * Return: On success returns a reference to a power supply with * matching name equals to @name, a NULL otherwise. */ struct power_supply *power_supply_get_by_name(const char *name) { struct power_supply *psy = NULL; struct device *dev = class_find_device(power_supply_class, NULL, name, power_supply_match_device_by_name); if (dev) { psy = dev_get_drvdata(dev); atomic_inc(&psy->use_cnt); } return psy; } EXPORT_SYMBOL_GPL(power_supply_get_by_name); /** * power_supply_put() - Drop reference obtained with power_supply_get_by_name * @psy: Reference to put * * The reference to power supply should be put before unregistering * the power supply. */ void power_supply_put(struct power_supply *psy) { might_sleep(); atomic_dec(&psy->use_cnt); put_device(&psy->dev); } EXPORT_SYMBOL_GPL(power_supply_put); #ifdef CONFIG_OF static int power_supply_match_device_node(struct device *dev, const void *data) { return dev->parent && dev->parent->of_node == data; } /** * power_supply_get_by_phandle() - Search for a power supply and returns its ref * @np: Pointer to device node holding phandle property * @property: Name of property holding a power supply name * * If power supply was found, it increases reference count for the * internal power supply's device. The user should power_supply_put() * after usage. * * Return: On success returns a reference to a power supply with * matching name equals to value under @property, NULL or ERR_PTR otherwise. */ struct power_supply *power_supply_get_by_phandle(struct device_node *np, const char *property) { struct device_node *power_supply_np; struct power_supply *psy = NULL; struct device *dev; power_supply_np = of_parse_phandle(np, property, 0); if (!power_supply_np) return ERR_PTR(-ENODEV); dev = class_find_device(power_supply_class, NULL, power_supply_np, power_supply_match_device_node); of_node_put(power_supply_np); if (dev) { psy = dev_get_drvdata(dev); atomic_inc(&psy->use_cnt); } return psy; } EXPORT_SYMBOL_GPL(power_supply_get_by_phandle); static void devm_power_supply_put(struct device *dev, void *res) { struct power_supply **psy = res; power_supply_put(*psy); } /** * devm_power_supply_get_by_phandle() - Resource managed version of * power_supply_get_by_phandle() * @dev: Pointer to device holding phandle property * @property: Name of property holding a power supply phandle * * Return: On success returns a reference to a power supply with * matching name equals to value under @property, NULL or ERR_PTR otherwise. */ struct power_supply *devm_power_supply_get_by_phandle(struct device *dev, const char *property) { struct power_supply **ptr, *psy; if (!dev->of_node) return ERR_PTR(-ENODEV); ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); psy = power_supply_get_by_phandle(dev->of_node, property); if (IS_ERR_OR_NULL(psy)) { devres_free(ptr); } else { *ptr = psy; devres_add(dev, ptr); } return psy; } EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle); #endif /* CONFIG_OF */ int power_supply_get_battery_info(struct power_supply *psy, struct power_supply_battery_info **info_out) { struct power_supply_resistance_temp_table *resist_table; struct power_supply_battery_info *info; struct device_node *battery_np = NULL; struct fwnode_reference_args args; struct fwnode_handle *fwnode = NULL; const char *value; int err, len, index; const __be32 *list; u32 min_max[2]; if (psy->of_node) { battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0); if (!battery_np) return -ENODEV; fwnode = fwnode_handle_get(of_fwnode_handle(battery_np)); } else if (psy->dev.parent) { err = fwnode_property_get_reference_args( dev_fwnode(psy->dev.parent), "monitored-battery", NULL, 0, 0, &args); if (err) return err; fwnode = args.fwnode; } if (!fwnode) return -ENOENT; err = fwnode_property_read_string(fwnode, "compatible", &value); if (err) goto out_put_node; /* Try static batteries first */ err = samsung_sdi_battery_get_info(&psy->dev, value, &info); if (!err) goto out_ret_pointer; else if (err == -ENODEV) /* * Device does not have a static battery. * Proceed to look for a simple battery. */ err = 0; if (strcmp("simple-battery", value)) { err = -ENODEV; goto out_put_node; } info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); if (!info) { err = -ENOMEM; goto out_put_node; } info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; info->energy_full_design_uwh = -EINVAL; info->charge_full_design_uah = -EINVAL; info->voltage_min_design_uv = -EINVAL; info->voltage_max_design_uv = -EINVAL; info->precharge_current_ua = -EINVAL; info->charge_term_current_ua = -EINVAL; info->constant_charge_current_max_ua = -EINVAL; info->constant_charge_voltage_max_uv = -EINVAL; info->tricklecharge_current_ua = -EINVAL; info->precharge_voltage_max_uv = -EINVAL; info->charge_restart_voltage_uv = -EINVAL; info->overvoltage_limit_uv = -EINVAL; info->maintenance_charge = NULL; info->alert_low_temp_charge_current_ua = -EINVAL; info->alert_low_temp_charge_voltage_uv = -EINVAL; info->alert_high_temp_charge_current_ua = -EINVAL; info->alert_high_temp_charge_voltage_uv = -EINVAL; info->temp_ambient_alert_min = INT_MIN; info->temp_ambient_alert_max = INT_MAX; info->temp_alert_min = INT_MIN; info->temp_alert_max = INT_MAX; info->temp_min = INT_MIN; info->temp_max = INT_MAX; info->factory_internal_resistance_uohm = -EINVAL; info->resist_table = NULL; info->bti_resistance_ohm = -EINVAL; info->bti_resistance_tolerance = -EINVAL; for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { info->ocv_table[index] = NULL; info->ocv_temp[index] = -EINVAL; info->ocv_table_size[index] = -EINVAL; } /* The property and field names below must correspond to elements * in enum power_supply_property. For reasoning, see * Documentation/power/power_supply_class.rst. */ if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { if (!strcmp("nickel-cadmium", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; else if (!strcmp("nickel-metal-hydride", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; else if (!strcmp("lithium-ion", value)) /* Imprecise lithium-ion type */ info->technology = POWER_SUPPLY_TECHNOLOGY_LION; else if (!strcmp("lithium-ion-polymer", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; else if (!strcmp("lithium-ion-iron-phosphate", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; else if (!strcmp("lithium-ion-manganese-oxide", value)) info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; else dev_warn(&psy->dev, "%s unknown battery type\n", value); } fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", &info->energy_full_design_uwh); fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", &info->charge_full_design_uah); fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", &info->voltage_min_design_uv); fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", &info->voltage_max_design_uv); fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", &info->tricklecharge_current_ua); fwnode_property_read_u32(fwnode, "precharge-current-microamp", &info->precharge_current_ua); fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", &info->precharge_voltage_max_uv); fwnode_property_read_u32(fwnode, "charge-term-current-microamp", &info->charge_term_current_ua); fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", &info->charge_restart_voltage_uv); fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", &info->overvoltage_limit_uv); fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", &info->constant_charge_current_max_ua); fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", &info->constant_charge_voltage_max_uv); fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", &info->factory_internal_resistance_uohm); if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", min_max, ARRAY_SIZE(min_max))) { info->temp_ambient_alert_min = min_max[0]; info->temp_ambient_alert_max = min_max[1]; } if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", min_max, ARRAY_SIZE(min_max))) { info->temp_alert_min = min_max[0]; info->temp_alert_max = min_max[1]; } if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", min_max, ARRAY_SIZE(min_max))) { info->temp_min = min_max[0]; info->temp_max = min_max[1]; } /* * The below code uses raw of-data parsing to parse * /schemas/types.yaml#/definitions/uint32-matrix * data, so for now this is only support with of. */ if (!battery_np) goto out_ret_pointer; len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius"); if (len < 0 && len != -EINVAL) { err = len; goto out_put_node; } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { dev_err(&psy->dev, "Too many temperature values\n"); err = -EINVAL; goto out_put_node; } else if (len > 0) { of_property_read_u32_array(battery_np, "ocv-capacity-celsius", info->ocv_temp, len); } for (index = 0; index < len; index++) { struct power_supply_battery_ocv_table *table; char *propname; int i, tab_len, size; propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index); if (!propname) { power_supply_put_battery_info(psy, info); err = -ENOMEM; goto out_put_node; } list = of_get_property(battery_np, propname, &size); if (!list || !size) { dev_err(&psy->dev, "failed to get %s\n", propname); kfree(propname); power_supply_put_battery_info(psy, info); err = -EINVAL; goto out_put_node; } kfree(propname); tab_len = size / (2 * sizeof(__be32)); info->ocv_table_size[index] = tab_len; table = info->ocv_table[index] = devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); if (!info->ocv_table[index]) { power_supply_put_battery_info(psy, info); err = -ENOMEM; goto out_put_node; } for (i = 0; i < tab_len; i++) { table[i].ocv = be32_to_cpu(*list); list++; table[i].capacity = be32_to_cpu(*list); list++; } } list = of_get_property(battery_np, "resistance-temp-table", &len); if (!list || !len) goto out_ret_pointer; info->resist_table_size = len / (2 * sizeof(__be32)); resist_table = info->resist_table = devm_kcalloc(&psy->dev, info->resist_table_size, sizeof(*resist_table), GFP_KERNEL); if (!info->resist_table) { power_supply_put_battery_info(psy, info); err = -ENOMEM; goto out_put_node; } for (index = 0; index < info->resist_table_size; index++) { resist_table[index].temp = be32_to_cpu(*list++); resist_table[index].resistance = be32_to_cpu(*list++); } out_ret_pointer: /* Finally return the whole thing */ *info_out = info; out_put_node: fwnode_handle_put(fwnode); of_node_put(battery_np); return err; } EXPORT_SYMBOL_GPL(power_supply_get_battery_info); void power_supply_put_battery_info(struct power_supply *psy, struct power_supply_battery_info *info) { int i; for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { if (info->ocv_table[i]) devm_kfree(&psy->dev, info->ocv_table[i]); } if (info->resist_table) devm_kfree(&psy->dev, info->resist_table); devm_kfree(&psy->dev, info); } EXPORT_SYMBOL_GPL(power_supply_put_battery_info); const enum power_supply_property power_supply_battery_info_properties[] = { POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, POWER_SUPPLY_PROP_TEMP_ALERT_MIN, POWER_SUPPLY_PROP_TEMP_ALERT_MAX, POWER_SUPPLY_PROP_TEMP_MIN, POWER_SUPPLY_PROP_TEMP_MAX, }; EXPORT_SYMBOL_GPL(power_supply_battery_info_properties); const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties); EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size); bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, enum power_supply_property psp) { if (!info) return false; switch (psp) { case POWER_SUPPLY_PROP_TECHNOLOGY: return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: return info->energy_full_design_uwh >= 0; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: return info->charge_full_design_uah >= 0; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: return info->voltage_min_design_uv >= 0; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: return info->voltage_max_design_uv >= 0; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return info->precharge_current_ua >= 0; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return info->charge_term_current_ua >= 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: return info->constant_charge_current_max_ua >= 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: return info->constant_charge_voltage_max_uv >= 0; case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: return info->temp_ambient_alert_min > INT_MIN; case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: return info->temp_ambient_alert_max < INT_MAX; case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: return info->temp_alert_min > INT_MIN; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: return info->temp_alert_max < INT_MAX; case POWER_SUPPLY_PROP_TEMP_MIN: return info->temp_min > INT_MIN; case POWER_SUPPLY_PROP_TEMP_MAX: return info->temp_max < INT_MAX; default: return false; } } EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop); int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, enum power_supply_property psp, union power_supply_propval *val) { if (!info) return -EINVAL; if (!power_supply_battery_info_has_prop(info, psp)) return -EINVAL; switch (psp) { case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = info->technology; return 0; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: val->intval = info->energy_full_design_uwh; return 0; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = info->charge_full_design_uah; return 0; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = info->voltage_min_design_uv; return 0; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = info->voltage_max_design_uv; return 0; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: val->intval = info->precharge_current_ua; return 0; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: val->intval = info->charge_term_current_ua; return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = info->constant_charge_current_max_ua; return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = info->constant_charge_voltage_max_uv; return 0; case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: val->intval = info->temp_ambient_alert_min; return 0; case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: val->intval = info->temp_ambient_alert_max; return 0; case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: val->intval = info->temp_alert_min; return 0; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: val->intval = info->temp_alert_max; return 0; case POWER_SUPPLY_PROP_TEMP_MIN: val->intval = info->temp_min; return 0; case POWER_SUPPLY_PROP_TEMP_MAX: val->intval = info->temp_max; return 0; default: return -EINVAL; } } EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop); /** * power_supply_temp2resist_simple() - find the battery internal resistance * percent from temperature * @table: Pointer to battery resistance temperature table * @table_len: The table length * @temp: Current temperature * * This helper function is used to look up battery internal resistance percent * according to current temperature value from the resistance temperature table, * and the table must be ordered descending. Then the actual battery internal * resistance = the ideal battery internal resistance * percent / 100. * * Return: the battery internal resistance percent */ int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, int table_len, int temp) { int i, high, low; for (i = 0; i < table_len; i++) if (temp > table[i].temp) break; /* The library function will deal with high == low */ if (i == 0) high = low = i; else if (i == table_len) high = low = i - 1; else high = (low = i) - 1; return fixp_linear_interpolate(table[low].temp, table[low].resistance, table[high].temp, table[high].resistance, temp); } EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); /** * power_supply_vbat2ri() - find the battery internal resistance * from the battery voltage * @info: The battery information container * @vbat_uv: The battery voltage in microvolt * @charging: If we are charging (true) or not (false) * * This helper function is used to look up battery internal resistance * according to current battery voltage. Depending on whether the battery * is currently charging or not, different resistance will be returned. * * Returns the internal resistance in microohm or negative error code. */ int power_supply_vbat2ri(struct power_supply_battery_info *info, int vbat_uv, bool charging) { struct power_supply_vbat_ri_table *vbat2ri; int table_len; int i, high, low; /* * If we are charging, and the battery supplies a separate table * for this state, we use that in order to compensate for the * charging voltage. Otherwise we use the main table. */ if (charging && info->vbat2ri_charging) { vbat2ri = info->vbat2ri_charging; table_len = info->vbat2ri_charging_size; } else { vbat2ri = info->vbat2ri_discharging; table_len = info->vbat2ri_discharging_size; } /* * If no tables are specified, or if we are above the highest voltage in * the voltage table, just return the factory specified internal resistance. */ if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { if (charging && (info->factory_internal_resistance_charging_uohm > 0)) return info->factory_internal_resistance_charging_uohm; else return info->factory_internal_resistance_uohm; } /* Break loop at table_len - 1 because that is the highest index */ for (i = 0; i < table_len - 1; i++) if (vbat_uv > vbat2ri[i].vbat_uv) break; /* The library function will deal with high == low */ if ((i == 0) || (i == (table_len - 1))) high = i; else high = i - 1; low = i; return fixp_linear_interpolate(vbat2ri[low].vbat_uv, vbat2ri[low].ri_uohm, vbat2ri[high].vbat_uv, vbat2ri[high].ri_uohm, vbat_uv); } EXPORT_SYMBOL_GPL(power_supply_vbat2ri); struct power_supply_maintenance_charge_table * power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index) { if (index >= info->maintenance_charge_size) return NULL; return &info->maintenance_charge[index]; } EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); /** * power_supply_ocv2cap_simple() - find the battery capacity * @table: Pointer to battery OCV lookup table * @table_len: OCV table length * @ocv: Current OCV value * * This helper function is used to look up battery capacity according to * current OCV value from one OCV table, and the OCV table must be ordered * descending. * * Return: the battery capacity. */ int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, int table_len, int ocv) { int i, high, low; for (i = 0; i < table_len; i++) if (ocv > table[i].ocv) break; /* The library function will deal with high == low */ if (i == 0) high = low = i; else if (i == table_len) high = low = i - 1; else high = (low = i) - 1; return fixp_linear_interpolate(table[low].ocv, table[low].capacity, table[high].ocv, table[high].capacity, ocv); } EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); struct power_supply_battery_ocv_table * power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, int temp, int *table_len) { int best_temp_diff = INT_MAX, temp_diff; u8 i, best_index = 0; if (!info->ocv_table[0]) return NULL; for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { /* Out of capacity tables */ if (!info->ocv_table[i]) break; temp_diff = abs(info->ocv_temp[i] - temp); if (temp_diff < best_temp_diff) { best_temp_diff = temp_diff; best_index = i; } } *table_len = info->ocv_table_size[best_index]; return info->ocv_table[best_index]; } EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, int ocv, int temp) { struct power_supply_battery_ocv_table *table; int table_len; table = power_supply_find_ocv2cap_table(info, temp, &table_len); if (!table) return -EINVAL; return power_supply_ocv2cap_simple(table, table_len, ocv); } EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, int resistance) { int low, high; /* Nothing like this can be checked */ if (info->bti_resistance_ohm <= 0) return false; /* This will be extremely strict and unlikely to work */ if (info->bti_resistance_tolerance <= 0) return (info->bti_resistance_ohm == resistance); low = info->bti_resistance_ohm - (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; high = info->bti_resistance_ohm + (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; return ((resistance >= low) && (resistance <= high)); } EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); static bool psy_has_property(const struct power_supply_desc *psy_desc, enum power_supply_property psp) { bool found = false; int i; for (i = 0; i < psy_desc->num_properties; i++) { if (psy_desc->properties[i] == psp) { found = true; break; } } return found; } int power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { if (atomic_read(&psy->use_cnt) <= 0) { if (!psy->initialized) return -EAGAIN; return -ENODEV; } if (psy_has_property(psy->desc, psp)) return psy->desc->get_property(psy, psp, val); else if (power_supply_battery_info_has_prop(psy->battery_info, psp)) return power_supply_battery_info_get_prop(psy->battery_info, psp, val); else return -EINVAL; } EXPORT_SYMBOL_GPL(power_supply_get_property); int power_supply_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property) return -ENODEV; return psy->desc->set_property(psy, psp, val); } EXPORT_SYMBOL_GPL(power_supply_set_property); int power_supply_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->property_is_writeable) return -ENODEV; return psy->desc->property_is_writeable(psy, psp); } EXPORT_SYMBOL_GPL(power_supply_property_is_writeable); void power_supply_external_power_changed(struct power_supply *psy) { if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->external_power_changed) return; psy->desc->external_power_changed(psy); } EXPORT_SYMBOL_GPL(power_supply_external_power_changed); int power_supply_powers(struct power_supply *psy, struct device *dev) { return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); } EXPORT_SYMBOL_GPL(power_supply_powers); static void power_supply_dev_release(struct device *dev) { struct power_supply *psy = to_power_supply(dev); dev_dbg(dev, "%s\n", __func__); kfree(psy); } int power_supply_reg_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&power_supply_notifier, nb); } EXPORT_SYMBOL_GPL(power_supply_reg_notifier); void power_supply_unreg_notifier(struct notifier_block *nb) { atomic_notifier_chain_unregister(&power_supply_notifier, nb); } EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); #ifdef CONFIG_THERMAL static int power_supply_read_temp(struct thermal_zone_device *tzd, int *temp) { struct power_supply *psy; union power_supply_propval val; int ret; WARN_ON(tzd == NULL); psy = thermal_zone_device_priv(tzd); ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); if (ret) return ret; /* Convert tenths of degree Celsius to milli degree Celsius. */ *temp = val.intval * 100; return ret; } static struct thermal_zone_device_ops psy_tzd_ops = { .get_temp = power_supply_read_temp, }; static int psy_register_thermal(struct power_supply *psy) { int ret; if (psy->desc->no_thermal) return 0; /* Register battery zone device psy reports temperature */ if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { /* Prefer our hwmon device and avoid duplicates */ struct thermal_zone_params tzp = { .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON) }; psy->tzd = thermal_tripless_zone_device_register(psy->desc->name, psy, &psy_tzd_ops, &tzp); if (IS_ERR(psy->tzd)) return PTR_ERR(psy->tzd); ret = thermal_zone_device_enable(psy->tzd); if (ret) thermal_zone_device_unregister(psy->tzd); return ret; } return 0; } static void psy_unregister_thermal(struct power_supply *psy) { if (IS_ERR_OR_NULL(psy->tzd)) return; thermal_zone_device_unregister(psy->tzd); } #else static int psy_register_thermal(struct power_supply *psy) { return 0; } static void psy_unregister_thermal(struct power_supply *psy) { } #endif static struct power_supply *__must_check __power_supply_register(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg, bool ws) { struct device *dev; struct power_supply *psy; int rc; if (!desc || !desc->name || !desc->properties || !desc->num_properties) return ERR_PTR(-EINVAL); if (!parent) pr_warn("%s: Expected proper parent device for '%s'\n", __func__, desc->name); if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) && (!desc->usb_types || !desc->num_usb_types)) return ERR_PTR(-EINVAL); psy = kzalloc(sizeof(*psy), GFP_KERNEL); if (!psy) return ERR_PTR(-ENOMEM); dev = &psy->dev; device_initialize(dev); dev->class = power_supply_class; dev->type = &power_supply_dev_type; dev->parent = parent; dev->release = power_supply_dev_release; dev_set_drvdata(dev, psy); psy->desc = desc; if (cfg) { dev->groups = cfg->attr_grp; psy->drv_data = cfg->drv_data; psy->of_node = cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node; psy->supplied_to = cfg->supplied_to; psy->num_supplicants = cfg->num_supplicants; } rc = dev_set_name(dev, "%s", desc->name); if (rc) goto dev_set_name_failed; INIT_WORK(&psy->changed_work, power_supply_changed_work); INIT_DELAYED_WORK(&psy->deferred_register_work, power_supply_deferred_register_work); rc = power_supply_check_supplies(psy); if (rc) { dev_dbg(dev, "Not all required supplies found, defer probe\n"); goto check_supplies_failed; } /* * Expose constant battery info, if it is available. While there are * some chargers accessing constant battery data, we only want to * expose battery data to userspace for battery devices. */ if (desc->type == POWER_SUPPLY_TYPE_BATTERY) { rc = power_supply_get_battery_info(psy, &psy->battery_info); if (rc && rc != -ENODEV && rc != -ENOENT) goto check_supplies_failed; } spin_lock_init(&psy->changed_lock); rc = device_add(dev); if (rc) goto device_add_failed; rc = device_init_wakeup(dev, ws); if (rc) goto wakeup_init_failed; rc = psy_register_thermal(psy); if (rc) goto register_thermal_failed; rc = power_supply_create_triggers(psy); if (rc) goto create_triggers_failed; rc = power_supply_add_hwmon_sysfs(psy); if (rc) goto add_hwmon_sysfs_failed; /* * Update use_cnt after any uevents (most notably from device_add()). * We are here still during driver's probe but * the power_supply_uevent() calls back driver's get_property * method so: * 1. Driver did not assigned the returned struct power_supply, * 2. Driver could not finish initialization (anything in its probe * after calling power_supply_register()). */ atomic_inc(&psy->use_cnt); psy->initialized = true; queue_delayed_work(system_power_efficient_wq, &psy->deferred_register_work, POWER_SUPPLY_DEFERRED_REGISTER_TIME); return psy; add_hwmon_sysfs_failed: power_supply_remove_triggers(psy); create_triggers_failed: psy_unregister_thermal(psy); register_thermal_failed: wakeup_init_failed: device_del(dev); device_add_failed: check_supplies_failed: dev_set_name_failed: put_device(dev); return ERR_PTR(rc); } /** * power_supply_register() - Register new power supply * @parent: Device to be a parent of power supply's device, usually * the device which probe function calls this * @desc: Description of power supply, must be valid through whole * lifetime of this power supply * @cfg: Run-time specific configuration accessed during registering, * may be NULL * * Return: A pointer to newly allocated power_supply on success * or ERR_PTR otherwise. * Use power_supply_unregister() on returned power_supply pointer to release * resources. */ struct power_supply *__must_check power_supply_register(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg) { return __power_supply_register(parent, desc, cfg, true); } EXPORT_SYMBOL_GPL(power_supply_register); /** * power_supply_register_no_ws() - Register new non-waking-source power supply * @parent: Device to be a parent of power supply's device, usually * the device which probe function calls this * @desc: Description of power supply, must be valid through whole * lifetime of this power supply * @cfg: Run-time specific configuration accessed during registering, * may be NULL * * Return: A pointer to newly allocated power_supply on success * or ERR_PTR otherwise. * Use power_supply_unregister() on returned power_supply pointer to release * resources. */ struct power_supply *__must_check power_supply_register_no_ws(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg) { return __power_supply_register(parent, desc, cfg, false); } EXPORT_SYMBOL_GPL(power_supply_register_no_ws); static void devm_power_supply_release(struct device *dev, void *res) { struct power_supply **psy = res; power_supply_unregister(*psy); } /** * devm_power_supply_register() - Register managed power supply * @parent: Device to be a parent of power supply's device, usually * the device which probe function calls this * @desc: Description of power supply, must be valid through whole * lifetime of this power supply * @cfg: Run-time specific configuration accessed during registering, * may be NULL * * Return: A pointer to newly allocated power_supply on success * or ERR_PTR otherwise. * The returned power_supply pointer will be automatically unregistered * on driver detach. */ struct power_supply *__must_check devm_power_supply_register(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg) { struct power_supply **ptr, *psy; ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); psy = __power_supply_register(parent, desc, cfg, true); if (IS_ERR(psy)) { devres_free(ptr); } else { *ptr = psy; devres_add(parent, ptr); } return psy; } EXPORT_SYMBOL_GPL(devm_power_supply_register); /** * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply * @parent: Device to be a parent of power supply's device, usually * the device which probe function calls this * @desc: Description of power supply, must be valid through whole * lifetime of this power supply * @cfg: Run-time specific configuration accessed during registering, * may be NULL * * Return: A pointer to newly allocated power_supply on success * or ERR_PTR otherwise. * The returned power_supply pointer will be automatically unregistered * on driver detach. */ struct power_supply *__must_check devm_power_supply_register_no_ws(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg) { struct power_supply **ptr, *psy; ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); psy = __power_supply_register(parent, desc, cfg, false); if (IS_ERR(psy)) { devres_free(ptr); } else { *ptr = psy; devres_add(parent, ptr); } return psy; } EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws); /** * power_supply_unregister() - Remove this power supply from system * @psy: Pointer to power supply to unregister * * Remove this power supply from the system. The resources of power supply * will be freed here or on last power_supply_put() call. */ void power_supply_unregister(struct power_supply *psy) { WARN_ON(atomic_dec_return(&psy->use_cnt)); psy->removing = true; cancel_work_sync(&psy->changed_work); cancel_delayed_work_sync(&psy->deferred_register_work); sysfs_remove_link(&psy->dev.kobj, "powers"); power_supply_remove_hwmon_sysfs(psy); power_supply_remove_triggers(psy); psy_unregister_thermal(psy); device_init_wakeup(&psy->dev, false); device_unregister(&psy->dev); } EXPORT_SYMBOL_GPL(power_supply_unregister); void *power_supply_get_drvdata(struct power_supply *psy) { return psy->drv_data; } EXPORT_SYMBOL_GPL(power_supply_get_drvdata); static int __init power_supply_class_init(void) { power_supply_class = class_create("power_supply"); if (IS_ERR(power_supply_class)) return PTR_ERR(power_supply_class); power_supply_class->dev_uevent = power_supply_uevent; power_supply_init_attrs(&power_supply_dev_type); return 0; } static void __exit power_supply_class_exit(void) { class_destroy(power_supply_class); } subsys_initcall(power_supply_class_init); module_exit(power_supply_class_exit); MODULE_DESCRIPTION("Universal power supply monitor class"); MODULE_AUTHOR("Ian Molton <[email protected]>, " "Szabolcs Gyurko, " "Anton Vorontsov <[email protected]>");
linux-master
drivers/power/supply/power_supply_core.c
// SPDX-License-Identifier: GPL-2.0-only /* * Battery class driver for Apple PMU * * Copyright © 2006 David Woodhouse <[email protected]> */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/power_supply.h> #include <linux/adb.h> #include <linux/pmu.h> #include <linux/slab.h> static struct pmu_battery_dev { struct power_supply *bat; struct power_supply_desc bat_desc; struct pmu_battery_info *pbi; char name[16]; int propval; } *pbats[PMU_MAX_BATTERIES]; #define to_pmu_battery_dev(x) power_supply_get_drvdata(x) /********************************************************************* * Power *********************************************************************/ static int pmu_get_ac_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = (!!(pmu_power_flags & PMU_PWR_AC_PRESENT)) || (pmu_battery_count == 0); break; default: return -EINVAL; } return 0; } static enum power_supply_property pmu_ac_props[] = { POWER_SUPPLY_PROP_ONLINE, }; static const struct power_supply_desc pmu_ac_desc = { .name = "pmu-ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = pmu_ac_props, .num_properties = ARRAY_SIZE(pmu_ac_props), .get_property = pmu_get_ac_prop, }; static struct power_supply *pmu_ac; /********************************************************************* * Battery properties *********************************************************************/ static char *pmu_batt_types[] = { "Smart", "Comet", "Hooper", "Unknown" }; static char *pmu_bat_get_model_name(struct pmu_battery_info *pbi) { switch (pbi->flags & PMU_BATT_TYPE_MASK) { case PMU_BATT_TYPE_SMART: return pmu_batt_types[0]; case PMU_BATT_TYPE_COMET: return pmu_batt_types[1]; case PMU_BATT_TYPE_HOOPER: return pmu_batt_types[2]; default: break; } return pmu_batt_types[3]; } static int pmu_bat_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct pmu_battery_dev *pbat = to_pmu_battery_dev(psy); struct pmu_battery_info *pbi = pbat->pbi; switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (pbi->flags & PMU_BATT_CHARGING) val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (pmu_power_flags & PMU_PWR_AC_PRESENT) val->intval = POWER_SUPPLY_STATUS_FULL; else val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = !!(pbi->flags & PMU_BATT_PRESENT); break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = pmu_bat_get_model_name(pbi); break; case POWER_SUPPLY_PROP_ENERGY_AVG: val->intval = pbi->charge * 1000; /* mWh -> µWh */ break; case POWER_SUPPLY_PROP_ENERGY_FULL: val->intval = pbi->max_charge * 1000; /* mWh -> µWh */ break; case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = pbi->amperage * 1000; /* mA -> µA */ break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: val->intval = pbi->voltage * 1000; /* mV -> µV */ break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: val->intval = pbi->time_remaining; break; default: return -EINVAL; } return 0; } static enum power_supply_property pmu_bat_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_ENERGY_AVG, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, }; /********************************************************************* * Initialisation *********************************************************************/ static struct platform_device *bat_pdev; static int __init pmu_bat_init(void) { int ret = 0; int i; bat_pdev = platform_device_register_simple("pmu-battery", 0, NULL, 0); if (IS_ERR(bat_pdev)) { ret = PTR_ERR(bat_pdev); goto pdev_register_failed; } pmu_ac = power_supply_register(&bat_pdev->dev, &pmu_ac_desc, NULL); if (IS_ERR(pmu_ac)) { ret = PTR_ERR(pmu_ac); goto ac_register_failed; } for (i = 0; i < pmu_battery_count; i++) { struct power_supply_config psy_cfg = {}; struct pmu_battery_dev *pbat = kzalloc(sizeof(*pbat), GFP_KERNEL); if (!pbat) break; sprintf(pbat->name, "PMU_battery_%d", i); pbat->bat_desc.name = pbat->name; pbat->bat_desc.properties = pmu_bat_props; pbat->bat_desc.num_properties = ARRAY_SIZE(pmu_bat_props); pbat->bat_desc.get_property = pmu_bat_get_property; pbat->pbi = &pmu_batteries[i]; psy_cfg.drv_data = pbat; pbat->bat = power_supply_register(&bat_pdev->dev, &pbat->bat_desc, &psy_cfg); if (IS_ERR(pbat->bat)) { ret = PTR_ERR(pbat->bat); kfree(pbat); goto battery_register_failed; } pbats[i] = pbat; } goto success; battery_register_failed: while (i--) { if (!pbats[i]) continue; power_supply_unregister(pbats[i]->bat); kfree(pbats[i]); } power_supply_unregister(pmu_ac); ac_register_failed: platform_device_unregister(bat_pdev); pdev_register_failed: success: return ret; } static void __exit pmu_bat_exit(void) { int i; for (i = 0; i < PMU_MAX_BATTERIES; i++) { if (!pbats[i]) continue; power_supply_unregister(pbats[i]->bat); kfree(pbats[i]); } power_supply_unregister(pmu_ac); platform_device_unregister(bat_pdev); } module_init(pmu_bat_init); module_exit(pmu_bat_exit); MODULE_AUTHOR("David Woodhouse <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("PMU battery driver");
linux-master
drivers/power/supply/pmu_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Power supply driver for testing. * * Copyright 2010 Anton Vorontsov <[email protected]> * * Dynamic module parameter code from the Virtual Battery Driver * Copyright (C) 2008 Pylone, Inc. * By: Masashi YOKOTA <[email protected]> * Originally found here: * http://downloads.pylone.jp/src/virtual_battery/virtual_battery-0.0.1.tar.bz2 */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/power_supply.h> #include <linux/errno.h> #include <linux/delay.h> #include <generated/utsrelease.h> enum test_power_id { TEST_AC, TEST_BATTERY, TEST_USB, TEST_POWER_NUM, }; static int ac_online = 1; static int usb_online = 1; static int battery_status = POWER_SUPPLY_STATUS_DISCHARGING; static int battery_health = POWER_SUPPLY_HEALTH_GOOD; static int battery_present = 1; /* true */ static int battery_technology = POWER_SUPPLY_TECHNOLOGY_LION; static int battery_capacity = 50; static int battery_voltage = 3300; static int battery_charge_counter = -1000; static int battery_current = -1600; static bool module_initialized; static int test_power_get_ac_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = ac_online; break; default: return -EINVAL; } return 0; } static int test_power_get_usb_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = usb_online; break; default: return -EINVAL; } return 0; } static int test_power_get_battery_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { switch (psp) { case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = "Test battery"; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = "Linux"; break; case POWER_SUPPLY_PROP_SERIAL_NUMBER: val->strval = UTS_RELEASE; break; case POWER_SUPPLY_PROP_STATUS: val->intval = battery_status; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; break; case POWER_SUPPLY_PROP_HEALTH: val->intval = battery_health; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = battery_present; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = battery_technology; break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; break; case POWER_SUPPLY_PROP_CAPACITY: case POWER_SUPPLY_PROP_CHARGE_NOW: val->intval = battery_capacity; break; case POWER_SUPPLY_PROP_CHARGE_COUNTER: val->intval = battery_charge_counter; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: case POWER_SUPPLY_PROP_CHARGE_FULL: val->intval = 100; break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW: val->intval = 3600; break; case POWER_SUPPLY_PROP_TEMP: val->intval = 26; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = battery_voltage; break; case POWER_SUPPLY_PROP_CURRENT_AVG: case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = battery_current; break; default: pr_info("%s: some properties deliberately report errors.\n", __func__); return -EINVAL; } return 0; } static enum power_supply_property test_power_ac_props[] = { POWER_SUPPLY_PROP_ONLINE, }; static enum power_supply_property test_power_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CURRENT_NOW, }; static char *test_power_ac_supplied_to[] = { "test_battery", }; static struct power_supply *test_power_supplies[TEST_POWER_NUM]; static const struct power_supply_desc test_power_desc[] = { [TEST_AC] = { .name = "test_ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = test_power_ac_props, .num_properties = ARRAY_SIZE(test_power_ac_props), .get_property = test_power_get_ac_property, }, [TEST_BATTERY] = { .name = "test_battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = test_power_battery_props, .num_properties = ARRAY_SIZE(test_power_battery_props), .get_property = test_power_get_battery_property, }, [TEST_USB] = { .name = "test_usb", .type = POWER_SUPPLY_TYPE_USB, .properties = test_power_ac_props, .num_properties = ARRAY_SIZE(test_power_ac_props), .get_property = test_power_get_usb_property, }, }; static const struct power_supply_config test_power_configs[] = { { /* test_ac */ .supplied_to = test_power_ac_supplied_to, .num_supplicants = ARRAY_SIZE(test_power_ac_supplied_to), }, { /* test_battery */ }, { /* test_usb */ .supplied_to = test_power_ac_supplied_to, .num_supplicants = ARRAY_SIZE(test_power_ac_supplied_to), }, }; static int __init test_power_init(void) { int i; int ret; BUILD_BUG_ON(TEST_POWER_NUM != ARRAY_SIZE(test_power_supplies)); BUILD_BUG_ON(TEST_POWER_NUM != ARRAY_SIZE(test_power_configs)); for (i = 0; i < ARRAY_SIZE(test_power_supplies); i++) { test_power_supplies[i] = power_supply_register(NULL, &test_power_desc[i], &test_power_configs[i]); if (IS_ERR(test_power_supplies[i])) { pr_err("%s: failed to register %s\n", __func__, test_power_desc[i].name); ret = PTR_ERR(test_power_supplies[i]); goto failed; } } module_initialized = true; return 0; failed: while (--i >= 0) power_supply_unregister(test_power_supplies[i]); return ret; } module_init(test_power_init); static void __exit test_power_exit(void) { int i; /* Let's see how we handle changes... */ ac_online = 0; usb_online = 0; battery_status = POWER_SUPPLY_STATUS_DISCHARGING; for (i = 0; i < ARRAY_SIZE(test_power_supplies); i++) power_supply_changed(test_power_supplies[i]); pr_info("%s: 'changed' event sent, sleeping for 10 seconds...\n", __func__); ssleep(10); for (i = 0; i < ARRAY_SIZE(test_power_supplies); i++) power_supply_unregister(test_power_supplies[i]); module_initialized = false; } module_exit(test_power_exit); #define MAX_KEYLENGTH 256 struct battery_property_map { int value; char const *key; }; static struct battery_property_map map_ac_online[] = { { 0, "off" }, { 1, "on" }, { -1, NULL }, }; static struct battery_property_map map_status[] = { { POWER_SUPPLY_STATUS_CHARGING, "charging" }, { POWER_SUPPLY_STATUS_DISCHARGING, "discharging" }, { POWER_SUPPLY_STATUS_NOT_CHARGING, "not-charging" }, { POWER_SUPPLY_STATUS_FULL, "full" }, { -1, NULL }, }; static struct battery_property_map map_health[] = { { POWER_SUPPLY_HEALTH_GOOD, "good" }, { POWER_SUPPLY_HEALTH_OVERHEAT, "overheat" }, { POWER_SUPPLY_HEALTH_DEAD, "dead" }, { POWER_SUPPLY_HEALTH_OVERVOLTAGE, "overvoltage" }, { POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, "failure" }, { -1, NULL }, }; static struct battery_property_map map_present[] = { { 0, "false" }, { 1, "true" }, { -1, NULL }, }; static struct battery_property_map map_technology[] = { { POWER_SUPPLY_TECHNOLOGY_NiMH, "NiMH" }, { POWER_SUPPLY_TECHNOLOGY_LION, "LION" }, { POWER_SUPPLY_TECHNOLOGY_LIPO, "LIPO" }, { POWER_SUPPLY_TECHNOLOGY_LiFe, "LiFe" }, { POWER_SUPPLY_TECHNOLOGY_NiCd, "NiCd" }, { POWER_SUPPLY_TECHNOLOGY_LiMn, "LiMn" }, { -1, NULL }, }; static int map_get_value(struct battery_property_map *map, const char *key, int def_val) { char buf[MAX_KEYLENGTH]; int cr; strscpy(buf, key, MAX_KEYLENGTH); cr = strnlen(buf, MAX_KEYLENGTH) - 1; if (cr < 0) return def_val; if (buf[cr] == '\n') buf[cr] = '\0'; while (map->key) { if (strncasecmp(map->key, buf, MAX_KEYLENGTH) == 0) return map->value; map++; } return def_val; } static const char *map_get_key(struct battery_property_map *map, int value, const char *def_key) { while (map->key) { if (map->value == value) return map->key; map++; } return def_key; } static inline void signal_power_supply_changed(struct power_supply *psy) { if (module_initialized) power_supply_changed(psy); } static int param_set_ac_online(const char *key, const struct kernel_param *kp) { ac_online = map_get_value(map_ac_online, key, ac_online); signal_power_supply_changed(test_power_supplies[TEST_AC]); return 0; } static int param_get_ac_online(char *buffer, const struct kernel_param *kp) { return sprintf(buffer, "%s\n", map_get_key(map_ac_online, ac_online, "unknown")); } static int param_set_usb_online(const char *key, const struct kernel_param *kp) { usb_online = map_get_value(map_ac_online, key, usb_online); signal_power_supply_changed(test_power_supplies[TEST_USB]); return 0; } static int param_get_usb_online(char *buffer, const struct kernel_param *kp) { return sprintf(buffer, "%s\n", map_get_key(map_ac_online, usb_online, "unknown")); } static int param_set_battery_status(const char *key, const struct kernel_param *kp) { battery_status = map_get_value(map_status, key, battery_status); signal_power_supply_changed(test_power_supplies[TEST_BATTERY]); return 0; } static int param_get_battery_status(char *buffer, const struct kernel_param *kp) { return sprintf(buffer, "%s\n", map_get_key(map_ac_online, battery_status, "unknown")); } static int param_set_battery_health(const char *key, const struct kernel_param *kp) { battery_health = map_get_value(map_health, key, battery_health); signal_power_supply_changed(test_power_supplies[TEST_BATTERY]); return 0; } static int param_get_battery_health(char *buffer, const struct kernel_param *kp) { return sprintf(buffer, "%s\n", map_get_key(map_ac_online, battery_health, "unknown")); } static int param_set_battery_present(const char *key, const struct kernel_param *kp) { battery_present = map_get_value(map_present, key, battery_present); signal_power_supply_changed(test_power_supplies[TEST_AC]); return 0; } static int param_get_battery_present(char *buffer, const struct kernel_param *kp) { return sprintf(buffer, "%s\n", map_get_key(map_ac_online, battery_present, "unknown")); } static int param_set_battery_technology(const char *key, const struct kernel_param *kp) { battery_technology = map_get_value(map_technology, key, battery_technology); signal_power_supply_changed(test_power_supplies[TEST_BATTERY]); return 0; } static int param_get_battery_technology(char *buffer, const struct kernel_param *kp) { return sprintf(buffer, "%s\n", map_get_key(map_ac_online, battery_technology, "unknown")); } static int param_set_battery_capacity(const char *key, const struct kernel_param *kp) { int tmp; if (1 != sscanf(key, "%d", &tmp)) return -EINVAL; battery_capacity = tmp; signal_power_supply_changed(test_power_supplies[TEST_BATTERY]); return 0; } #define param_get_battery_capacity param_get_int static int param_set_battery_voltage(const char *key, const struct kernel_param *kp) { int tmp; if (1 != sscanf(key, "%d", &tmp)) return -EINVAL; battery_voltage = tmp; signal_power_supply_changed(test_power_supplies[TEST_BATTERY]); return 0; } #define param_get_battery_voltage param_get_int static int param_set_battery_charge_counter(const char *key, const struct kernel_param *kp) { int tmp; if (1 != sscanf(key, "%d", &tmp)) return -EINVAL; battery_charge_counter = tmp; signal_power_supply_changed(test_power_supplies[TEST_BATTERY]); return 0; } #define param_get_battery_charge_counter param_get_int static int param_set_battery_current(const char *key, const struct kernel_param *kp) { int tmp; if (1 != sscanf(key, "%d", &tmp)) return -EINVAL; battery_current = tmp; signal_power_supply_changed(test_power_supplies[TEST_BATTERY]); return 0; } #define param_get_battery_current param_get_int static const struct kernel_param_ops param_ops_ac_online = { .set = param_set_ac_online, .get = param_get_ac_online, }; static const struct kernel_param_ops param_ops_usb_online = { .set = param_set_usb_online, .get = param_get_usb_online, }; static const struct kernel_param_ops param_ops_battery_status = { .set = param_set_battery_status, .get = param_get_battery_status, }; static const struct kernel_param_ops param_ops_battery_present = { .set = param_set_battery_present, .get = param_get_battery_present, }; static const struct kernel_param_ops param_ops_battery_technology = { .set = param_set_battery_technology, .get = param_get_battery_technology, }; static const struct kernel_param_ops param_ops_battery_health = { .set = param_set_battery_health, .get = param_get_battery_health, }; static const struct kernel_param_ops param_ops_battery_capacity = { .set = param_set_battery_capacity, .get = param_get_battery_capacity, }; static const struct kernel_param_ops param_ops_battery_voltage = { .set = param_set_battery_voltage, .get = param_get_battery_voltage, }; static const struct kernel_param_ops param_ops_battery_charge_counter = { .set = param_set_battery_charge_counter, .get = param_get_battery_charge_counter, }; static const struct kernel_param_ops param_ops_battery_current = { .set = param_set_battery_current, .get = param_get_battery_current, }; #define param_check_ac_online(name, p) __param_check(name, p, void); #define param_check_usb_online(name, p) __param_check(name, p, void); #define param_check_battery_status(name, p) __param_check(name, p, void); #define param_check_battery_present(name, p) __param_check(name, p, void); #define param_check_battery_technology(name, p) __param_check(name, p, void); #define param_check_battery_health(name, p) __param_check(name, p, void); #define param_check_battery_capacity(name, p) __param_check(name, p, void); #define param_check_battery_voltage(name, p) __param_check(name, p, void); #define param_check_battery_charge_counter(name, p) __param_check(name, p, void); #define param_check_battery_current(name, p) __param_check(name, p, void); module_param(ac_online, ac_online, 0644); MODULE_PARM_DESC(ac_online, "AC charging state <on|off>"); module_param(usb_online, usb_online, 0644); MODULE_PARM_DESC(usb_online, "USB charging state <on|off>"); module_param(battery_status, battery_status, 0644); MODULE_PARM_DESC(battery_status, "battery status <charging|discharging|not-charging|full>"); module_param(battery_present, battery_present, 0644); MODULE_PARM_DESC(battery_present, "battery presence state <good|overheat|dead|overvoltage|failure>"); module_param(battery_technology, battery_technology, 0644); MODULE_PARM_DESC(battery_technology, "battery technology <NiMH|LION|LIPO|LiFe|NiCd|LiMn>"); module_param(battery_health, battery_health, 0644); MODULE_PARM_DESC(battery_health, "battery health state <good|overheat|dead|overvoltage|failure>"); module_param(battery_capacity, battery_capacity, 0644); MODULE_PARM_DESC(battery_capacity, "battery capacity (percentage)"); module_param(battery_voltage, battery_voltage, 0644); MODULE_PARM_DESC(battery_voltage, "battery voltage (millivolts)"); module_param(battery_charge_counter, battery_charge_counter, 0644); MODULE_PARM_DESC(battery_charge_counter, "battery charge counter (microampere-hours)"); module_param(battery_current, battery_current, 0644); MODULE_PARM_DESC(battery_current, "battery current (milliampere)"); MODULE_DESCRIPTION("Power supply driver for testing"); MODULE_AUTHOR("Anton Vorontsov <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/test_power.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2014, Sony Mobile Communications Inc. * * This driver is for the multi-block Switch-Mode Battery Charger and Boost * (SMBB) hardware, found in Qualcomm PM8941 PMICs. The charger is an * integrated, single-cell lithium-ion battery charger. * * Sub-components: * - Charger core * - Buck * - DC charge-path * - USB charge-path * - Battery interface * - Boost (not implemented) * - Misc * - HF-Buck */ #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/extcon-provider.h> #include <linux/regulator/driver.h> #define SMBB_CHG_VMAX 0x040 #define SMBB_CHG_VSAFE 0x041 #define SMBB_CHG_CFG 0x043 #define SMBB_CHG_IMAX 0x044 #define SMBB_CHG_ISAFE 0x045 #define SMBB_CHG_VIN_MIN 0x047 #define SMBB_CHG_CTRL 0x049 #define CTRL_EN BIT(7) #define SMBB_CHG_VBAT_WEAK 0x052 #define SMBB_CHG_IBAT_TERM_CHG 0x05b #define IBAT_TERM_CHG_IEOC BIT(7) #define IBAT_TERM_CHG_IEOC_BMS BIT(7) #define IBAT_TERM_CHG_IEOC_CHG 0 #define SMBB_CHG_VBAT_DET 0x05d #define SMBB_CHG_TCHG_MAX_EN 0x060 #define TCHG_MAX_EN BIT(7) #define SMBB_CHG_WDOG_TIME 0x062 #define SMBB_CHG_WDOG_EN 0x065 #define WDOG_EN BIT(7) #define SMBB_BUCK_REG_MODE 0x174 #define BUCK_REG_MODE BIT(0) #define BUCK_REG_MODE_VBAT BIT(0) #define BUCK_REG_MODE_VSYS 0 #define SMBB_BAT_PRES_STATUS 0x208 #define PRES_STATUS_BAT_PRES BIT(7) #define SMBB_BAT_TEMP_STATUS 0x209 #define TEMP_STATUS_OK BIT(7) #define TEMP_STATUS_HOT BIT(6) #define SMBB_BAT_BTC_CTRL 0x249 #define BTC_CTRL_COMP_EN BIT(7) #define BTC_CTRL_COLD_EXT BIT(1) #define BTC_CTRL_HOT_EXT_N BIT(0) #define SMBB_USB_IMAX 0x344 #define SMBB_USB_OTG_CTL 0x348 #define OTG_CTL_EN BIT(0) #define SMBB_USB_ENUM_TIMER_STOP 0x34e #define ENUM_TIMER_STOP BIT(0) #define SMBB_USB_SEC_ACCESS 0x3d0 #define SEC_ACCESS_MAGIC 0xa5 #define SMBB_USB_REV_BST 0x3ed #define REV_BST_CHG_GONE BIT(7) #define SMBB_DC_IMAX 0x444 #define SMBB_MISC_REV2 0x601 #define SMBB_MISC_BOOT_DONE 0x642 #define BOOT_DONE BIT(7) #define STATUS_USBIN_VALID BIT(0) /* USB connection is valid */ #define STATUS_DCIN_VALID BIT(1) /* DC connection is valid */ #define STATUS_BAT_HOT BIT(2) /* Battery temp 1=Hot, 0=Cold */ #define STATUS_BAT_OK BIT(3) /* Battery temp OK */ #define STATUS_BAT_PRESENT BIT(4) /* Battery is present */ #define STATUS_CHG_DONE BIT(5) /* Charge cycle is complete */ #define STATUS_CHG_TRKL BIT(6) /* Trickle charging */ #define STATUS_CHG_FAST BIT(7) /* Fast charging */ #define STATUS_CHG_GONE BIT(8) /* No charger is connected */ enum smbb_attr { ATTR_BAT_ISAFE, ATTR_BAT_IMAX, ATTR_USBIN_IMAX, ATTR_DCIN_IMAX, ATTR_BAT_VSAFE, ATTR_BAT_VMAX, ATTR_BAT_VMIN, ATTR_CHG_VDET, ATTR_VIN_MIN, _ATTR_CNT, }; struct smbb_charger { unsigned int revision; unsigned int addr; struct device *dev; struct extcon_dev *edev; bool dc_disabled; bool jeita_ext_temp; unsigned long status; struct mutex statlock; unsigned int attr[_ATTR_CNT]; struct power_supply *usb_psy; struct power_supply *dc_psy; struct power_supply *bat_psy; struct regmap *regmap; struct regulator_desc otg_rdesc; struct regulator_dev *otg_reg; }; static const unsigned int smbb_usb_extcon_cable[] = { EXTCON_USB, EXTCON_NONE, }; static int smbb_vbat_weak_fn(unsigned int index) { return 2100000 + index * 100000; } static int smbb_vin_fn(unsigned int index) { if (index > 42) return 5600000 + (index - 43) * 200000; return 3400000 + index * 50000; } static int smbb_vmax_fn(unsigned int index) { return 3240000 + index * 10000; } static int smbb_vbat_det_fn(unsigned int index) { return 3240000 + index * 20000; } static int smbb_imax_fn(unsigned int index) { if (index < 2) return 100000 + index * 50000; return index * 100000; } static int smbb_bat_imax_fn(unsigned int index) { return index * 50000; } static unsigned int smbb_hw_lookup(unsigned int val, int (*fn)(unsigned int)) { unsigned int widx; unsigned int sel; for (widx = sel = 0; (*fn)(widx) <= val; ++widx) sel = widx; return sel; } static const struct smbb_charger_attr { const char *name; unsigned int reg; unsigned int safe_reg; unsigned int max; unsigned int min; unsigned int fail_ok; int (*hw_fn)(unsigned int); } smbb_charger_attrs[] = { [ATTR_BAT_ISAFE] = { .name = "qcom,fast-charge-safe-current", .reg = SMBB_CHG_ISAFE, .max = 3000000, .min = 200000, .hw_fn = smbb_bat_imax_fn, .fail_ok = 1, }, [ATTR_BAT_IMAX] = { .name = "qcom,fast-charge-current-limit", .reg = SMBB_CHG_IMAX, .safe_reg = SMBB_CHG_ISAFE, .max = 3000000, .min = 200000, .hw_fn = smbb_bat_imax_fn, }, [ATTR_DCIN_IMAX] = { .name = "qcom,dc-current-limit", .reg = SMBB_DC_IMAX, .max = 2500000, .min = 100000, .hw_fn = smbb_imax_fn, }, [ATTR_BAT_VSAFE] = { .name = "qcom,fast-charge-safe-voltage", .reg = SMBB_CHG_VSAFE, .max = 5000000, .min = 3240000, .hw_fn = smbb_vmax_fn, .fail_ok = 1, }, [ATTR_BAT_VMAX] = { .name = "qcom,fast-charge-high-threshold-voltage", .reg = SMBB_CHG_VMAX, .safe_reg = SMBB_CHG_VSAFE, .max = 5000000, .min = 3240000, .hw_fn = smbb_vmax_fn, }, [ATTR_BAT_VMIN] = { .name = "qcom,fast-charge-low-threshold-voltage", .reg = SMBB_CHG_VBAT_WEAK, .max = 3600000, .min = 2100000, .hw_fn = smbb_vbat_weak_fn, }, [ATTR_CHG_VDET] = { .name = "qcom,auto-recharge-threshold-voltage", .reg = SMBB_CHG_VBAT_DET, .max = 5000000, .min = 3240000, .hw_fn = smbb_vbat_det_fn, }, [ATTR_VIN_MIN] = { .name = "qcom,minimum-input-voltage", .reg = SMBB_CHG_VIN_MIN, .max = 9600000, .min = 4200000, .hw_fn = smbb_vin_fn, }, [ATTR_USBIN_IMAX] = { .name = "usb-charge-current-limit", .reg = SMBB_USB_IMAX, .max = 2500000, .min = 100000, .hw_fn = smbb_imax_fn, }, }; static int smbb_charger_attr_write(struct smbb_charger *chg, enum smbb_attr which, unsigned int val) { const struct smbb_charger_attr *prop; unsigned int wval; unsigned int out; int rc; prop = &smbb_charger_attrs[which]; if (val > prop->max || val < prop->min) { dev_err(chg->dev, "value out of range for %s [%u:%u]\n", prop->name, prop->min, prop->max); return -EINVAL; } if (prop->safe_reg) { rc = regmap_read(chg->regmap, chg->addr + prop->safe_reg, &wval); if (rc) { dev_err(chg->dev, "unable to read safe value for '%s'\n", prop->name); return rc; } wval = prop->hw_fn(wval); if (val > wval) { dev_warn(chg->dev, "%s above safe value, clamping at %u\n", prop->name, wval); val = wval; } } wval = smbb_hw_lookup(val, prop->hw_fn); rc = regmap_write(chg->regmap, chg->addr + prop->reg, wval); if (rc) { dev_err(chg->dev, "unable to update %s", prop->name); return rc; } out = prop->hw_fn(wval); if (out != val) { dev_warn(chg->dev, "%s inaccurate, rounded to %u\n", prop->name, out); } dev_dbg(chg->dev, "%s <= %d\n", prop->name, out); chg->attr[which] = out; return 0; } static int smbb_charger_attr_read(struct smbb_charger *chg, enum smbb_attr which) { const struct smbb_charger_attr *prop; unsigned int val; int rc; prop = &smbb_charger_attrs[which]; rc = regmap_read(chg->regmap, chg->addr + prop->reg, &val); if (rc) { dev_err(chg->dev, "failed to read %s\n", prop->name); return rc; } val = prop->hw_fn(val); dev_dbg(chg->dev, "%s => %d\n", prop->name, val); chg->attr[which] = val; return 0; } static int smbb_charger_attr_parse(struct smbb_charger *chg, enum smbb_attr which) { const struct smbb_charger_attr *prop; unsigned int val; int rc; prop = &smbb_charger_attrs[which]; rc = of_property_read_u32(chg->dev->of_node, prop->name, &val); if (rc == 0) { rc = smbb_charger_attr_write(chg, which, val); if (!rc || !prop->fail_ok) return rc; } return smbb_charger_attr_read(chg, which); } static void smbb_set_line_flag(struct smbb_charger *chg, int irq, int flag) { bool state; int ret; ret = irq_get_irqchip_state(irq, IRQCHIP_STATE_LINE_LEVEL, &state); if (ret < 0) { dev_err(chg->dev, "failed to read irq line\n"); return; } mutex_lock(&chg->statlock); if (state) chg->status |= flag; else chg->status &= ~flag; mutex_unlock(&chg->statlock); dev_dbg(chg->dev, "status = %03lx\n", chg->status); } static irqreturn_t smbb_usb_valid_handler(int irq, void *_data) { struct smbb_charger *chg = _data; smbb_set_line_flag(chg, irq, STATUS_USBIN_VALID); extcon_set_state_sync(chg->edev, EXTCON_USB, chg->status & STATUS_USBIN_VALID); power_supply_changed(chg->usb_psy); return IRQ_HANDLED; } static irqreturn_t smbb_dc_valid_handler(int irq, void *_data) { struct smbb_charger *chg = _data; smbb_set_line_flag(chg, irq, STATUS_DCIN_VALID); if (!chg->dc_disabled) power_supply_changed(chg->dc_psy); return IRQ_HANDLED; } static irqreturn_t smbb_bat_temp_handler(int irq, void *_data) { struct smbb_charger *chg = _data; unsigned int val; int rc; rc = regmap_read(chg->regmap, chg->addr + SMBB_BAT_TEMP_STATUS, &val); if (rc) return IRQ_HANDLED; mutex_lock(&chg->statlock); if (val & TEMP_STATUS_OK) { chg->status |= STATUS_BAT_OK; } else { chg->status &= ~STATUS_BAT_OK; if (val & TEMP_STATUS_HOT) chg->status |= STATUS_BAT_HOT; } mutex_unlock(&chg->statlock); power_supply_changed(chg->bat_psy); return IRQ_HANDLED; } static irqreturn_t smbb_bat_present_handler(int irq, void *_data) { struct smbb_charger *chg = _data; smbb_set_line_flag(chg, irq, STATUS_BAT_PRESENT); power_supply_changed(chg->bat_psy); return IRQ_HANDLED; } static irqreturn_t smbb_chg_done_handler(int irq, void *_data) { struct smbb_charger *chg = _data; smbb_set_line_flag(chg, irq, STATUS_CHG_DONE); power_supply_changed(chg->bat_psy); return IRQ_HANDLED; } static irqreturn_t smbb_chg_gone_handler(int irq, void *_data) { struct smbb_charger *chg = _data; smbb_set_line_flag(chg, irq, STATUS_CHG_GONE); power_supply_changed(chg->bat_psy); power_supply_changed(chg->usb_psy); if (!chg->dc_disabled) power_supply_changed(chg->dc_psy); return IRQ_HANDLED; } static irqreturn_t smbb_chg_fast_handler(int irq, void *_data) { struct smbb_charger *chg = _data; smbb_set_line_flag(chg, irq, STATUS_CHG_FAST); power_supply_changed(chg->bat_psy); return IRQ_HANDLED; } static irqreturn_t smbb_chg_trkl_handler(int irq, void *_data) { struct smbb_charger *chg = _data; smbb_set_line_flag(chg, irq, STATUS_CHG_TRKL); power_supply_changed(chg->bat_psy); return IRQ_HANDLED; } static const struct smbb_irq { const char *name; irqreturn_t (*handler)(int, void *); } smbb_charger_irqs[] = { { "chg-done", smbb_chg_done_handler }, { "chg-fast", smbb_chg_fast_handler }, { "chg-trkl", smbb_chg_trkl_handler }, { "bat-temp-ok", smbb_bat_temp_handler }, { "bat-present", smbb_bat_present_handler }, { "chg-gone", smbb_chg_gone_handler }, { "usb-valid", smbb_usb_valid_handler }, { "dc-valid", smbb_dc_valid_handler }, }; static int smbb_usbin_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct smbb_charger *chg = power_supply_get_drvdata(psy); int rc = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: mutex_lock(&chg->statlock); val->intval = !(chg->status & STATUS_CHG_GONE) && (chg->status & STATUS_USBIN_VALID); mutex_unlock(&chg->statlock); break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: val->intval = chg->attr[ATTR_USBIN_IMAX]; break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX: val->intval = 2500000; break; default: rc = -EINVAL; break; } return rc; } static int smbb_usbin_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct smbb_charger *chg = power_supply_get_drvdata(psy); int rc; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: rc = smbb_charger_attr_write(chg, ATTR_USBIN_IMAX, val->intval); break; default: rc = -EINVAL; break; } return rc; } static int smbb_dcin_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct smbb_charger *chg = power_supply_get_drvdata(psy); int rc = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: mutex_lock(&chg->statlock); val->intval = !(chg->status & STATUS_CHG_GONE) && (chg->status & STATUS_DCIN_VALID); mutex_unlock(&chg->statlock); break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: val->intval = chg->attr[ATTR_DCIN_IMAX]; break; case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX: val->intval = 2500000; break; default: rc = -EINVAL; break; } return rc; } static int smbb_dcin_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct smbb_charger *chg = power_supply_get_drvdata(psy); int rc; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT: rc = smbb_charger_attr_write(chg, ATTR_DCIN_IMAX, val->intval); break; default: rc = -EINVAL; break; } return rc; } static int smbb_charger_writable_property(struct power_supply *psy, enum power_supply_property psp) { return psp == POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT; } static int smbb_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct smbb_charger *chg = power_supply_get_drvdata(psy); unsigned long status; int rc = 0; mutex_lock(&chg->statlock); status = chg->status; mutex_unlock(&chg->statlock); switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (status & STATUS_CHG_GONE) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (!(status & (STATUS_DCIN_VALID | STATUS_USBIN_VALID))) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (status & STATUS_CHG_DONE) val->intval = POWER_SUPPLY_STATUS_FULL; else if (!(status & STATUS_BAT_OK)) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (status & (STATUS_CHG_FAST | STATUS_CHG_TRKL)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else /* everything is ok for charging, but we are not... */ val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; case POWER_SUPPLY_PROP_HEALTH: if (status & STATUS_BAT_OK) val->intval = POWER_SUPPLY_HEALTH_GOOD; else if (status & STATUS_BAT_HOT) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else val->intval = POWER_SUPPLY_HEALTH_COLD; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: if (status & STATUS_CHG_FAST) val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; else if (status & STATUS_CHG_TRKL) val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; else val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = !!(status & STATUS_BAT_PRESENT); break; case POWER_SUPPLY_PROP_CURRENT_MAX: val->intval = chg->attr[ATTR_BAT_IMAX]; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX: val->intval = chg->attr[ATTR_BAT_VMAX]; break; case POWER_SUPPLY_PROP_TECHNOLOGY: /* this charger is a single-cell lithium-ion battery charger * only. If you hook up some other technology, there will be * fireworks. */ val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = 3000000; /* single-cell li-ion low end */ break; default: rc = -EINVAL; break; } return rc; } static int smbb_battery_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct smbb_charger *chg = power_supply_get_drvdata(psy); int rc; switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: rc = smbb_charger_attr_write(chg, ATTR_BAT_IMAX, val->intval); break; case POWER_SUPPLY_PROP_VOLTAGE_MAX: rc = smbb_charger_attr_write(chg, ATTR_BAT_VMAX, val->intval); break; default: rc = -EINVAL; break; } return rc; } static int smbb_battery_writable_property(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: case POWER_SUPPLY_PROP_VOLTAGE_MAX: return 1; default: return 0; } } static enum power_supply_property smbb_charger_properties[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, }; static enum power_supply_property smbb_battery_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_VOLTAGE_MAX, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_TECHNOLOGY, }; static const struct reg_off_mask_default { unsigned int offset; unsigned int mask; unsigned int value; unsigned int rev_mask; } smbb_charger_setup[] = { /* The bootloader is supposed to set this... make sure anyway. */ { SMBB_MISC_BOOT_DONE, BOOT_DONE, BOOT_DONE }, /* Disable software timer */ { SMBB_CHG_TCHG_MAX_EN, TCHG_MAX_EN, 0 }, /* Clear and disable watchdog */ { SMBB_CHG_WDOG_TIME, 0xff, 160 }, { SMBB_CHG_WDOG_EN, WDOG_EN, 0 }, /* Use charger based EoC detection */ { SMBB_CHG_IBAT_TERM_CHG, IBAT_TERM_CHG_IEOC, IBAT_TERM_CHG_IEOC_CHG }, /* Disable GSM PA load adjustment. * The PA signal is incorrectly connected on v2. */ { SMBB_CHG_CFG, 0xff, 0x00, BIT(3) }, /* Use VBAT (not VSYS) to compensate for IR drop during fast charging */ { SMBB_BUCK_REG_MODE, BUCK_REG_MODE, BUCK_REG_MODE_VBAT }, /* Enable battery temperature comparators */ { SMBB_BAT_BTC_CTRL, BTC_CTRL_COMP_EN, BTC_CTRL_COMP_EN }, /* Stop USB enumeration timer */ { SMBB_USB_ENUM_TIMER_STOP, ENUM_TIMER_STOP, ENUM_TIMER_STOP }, #if 0 /* FIXME supposedly only to disable hardware ARB termination */ { SMBB_USB_SEC_ACCESS, SEC_ACCESS_MAGIC }, { SMBB_USB_REV_BST, 0xff, REV_BST_CHG_GONE }, #endif /* Stop USB enumeration timer, again */ { SMBB_USB_ENUM_TIMER_STOP, ENUM_TIMER_STOP, ENUM_TIMER_STOP }, /* Enable charging */ { SMBB_CHG_CTRL, CTRL_EN, CTRL_EN }, }; static char *smbb_bif[] = { "smbb-bif" }; static const struct power_supply_desc bat_psy_desc = { .name = "smbb-bif", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = smbb_battery_properties, .num_properties = ARRAY_SIZE(smbb_battery_properties), .get_property = smbb_battery_get_property, .set_property = smbb_battery_set_property, .property_is_writeable = smbb_battery_writable_property, }; static const struct power_supply_desc usb_psy_desc = { .name = "smbb-usbin", .type = POWER_SUPPLY_TYPE_USB, .properties = smbb_charger_properties, .num_properties = ARRAY_SIZE(smbb_charger_properties), .get_property = smbb_usbin_get_property, .set_property = smbb_usbin_set_property, .property_is_writeable = smbb_charger_writable_property, }; static const struct power_supply_desc dc_psy_desc = { .name = "smbb-dcin", .type = POWER_SUPPLY_TYPE_MAINS, .properties = smbb_charger_properties, .num_properties = ARRAY_SIZE(smbb_charger_properties), .get_property = smbb_dcin_get_property, .set_property = smbb_dcin_set_property, .property_is_writeable = smbb_charger_writable_property, }; static int smbb_chg_otg_enable(struct regulator_dev *rdev) { struct smbb_charger *chg = rdev_get_drvdata(rdev); int rc; rc = regmap_update_bits(chg->regmap, chg->addr + SMBB_USB_OTG_CTL, OTG_CTL_EN, OTG_CTL_EN); if (rc) dev_err(chg->dev, "failed to update OTG_CTL\n"); return rc; } static int smbb_chg_otg_disable(struct regulator_dev *rdev) { struct smbb_charger *chg = rdev_get_drvdata(rdev); int rc; rc = regmap_update_bits(chg->regmap, chg->addr + SMBB_USB_OTG_CTL, OTG_CTL_EN, 0); if (rc) dev_err(chg->dev, "failed to update OTG_CTL\n"); return rc; } static int smbb_chg_otg_is_enabled(struct regulator_dev *rdev) { struct smbb_charger *chg = rdev_get_drvdata(rdev); unsigned int value = 0; int rc; rc = regmap_read(chg->regmap, chg->addr + SMBB_USB_OTG_CTL, &value); if (rc) dev_err(chg->dev, "failed to read OTG_CTL\n"); return !!(value & OTG_CTL_EN); } static const struct regulator_ops smbb_chg_otg_ops = { .enable = smbb_chg_otg_enable, .disable = smbb_chg_otg_disable, .is_enabled = smbb_chg_otg_is_enabled, }; static int smbb_charger_probe(struct platform_device *pdev) { struct power_supply_config bat_cfg = {}; struct power_supply_config usb_cfg = {}; struct power_supply_config dc_cfg = {}; struct smbb_charger *chg; struct regulator_config config = { }; int rc, i; chg = devm_kzalloc(&pdev->dev, sizeof(*chg), GFP_KERNEL); if (!chg) return -ENOMEM; chg->dev = &pdev->dev; mutex_init(&chg->statlock); chg->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!chg->regmap) { dev_err(&pdev->dev, "failed to locate regmap\n"); return -ENODEV; } rc = of_property_read_u32(pdev->dev.of_node, "reg", &chg->addr); if (rc) { dev_err(&pdev->dev, "missing or invalid 'reg' property\n"); return rc; } rc = regmap_read(chg->regmap, chg->addr + SMBB_MISC_REV2, &chg->revision); if (rc) { dev_err(&pdev->dev, "unable to read revision\n"); return rc; } chg->revision += 1; if (chg->revision != 1 && chg->revision != 2 && chg->revision != 3) { dev_err(&pdev->dev, "v%d hardware not supported\n", chg->revision); return -ENODEV; } dev_info(&pdev->dev, "Initializing SMBB rev %u", chg->revision); chg->dc_disabled = of_property_read_bool(pdev->dev.of_node, "qcom,disable-dc"); for (i = 0; i < _ATTR_CNT; ++i) { rc = smbb_charger_attr_parse(chg, i); if (rc) { dev_err(&pdev->dev, "failed to parse/apply settings\n"); return rc; } } bat_cfg.drv_data = chg; bat_cfg.of_node = pdev->dev.of_node; chg->bat_psy = devm_power_supply_register(&pdev->dev, &bat_psy_desc, &bat_cfg); if (IS_ERR(chg->bat_psy)) { dev_err(&pdev->dev, "failed to register battery\n"); return PTR_ERR(chg->bat_psy); } usb_cfg.drv_data = chg; usb_cfg.supplied_to = smbb_bif; usb_cfg.num_supplicants = ARRAY_SIZE(smbb_bif); chg->usb_psy = devm_power_supply_register(&pdev->dev, &usb_psy_desc, &usb_cfg); if (IS_ERR(chg->usb_psy)) { dev_err(&pdev->dev, "failed to register USB power supply\n"); return PTR_ERR(chg->usb_psy); } chg->edev = devm_extcon_dev_allocate(&pdev->dev, smbb_usb_extcon_cable); if (IS_ERR(chg->edev)) { dev_err(&pdev->dev, "failed to allocate extcon device\n"); return -ENOMEM; } rc = devm_extcon_dev_register(&pdev->dev, chg->edev); if (rc < 0) { dev_err(&pdev->dev, "failed to register extcon device\n"); return rc; } if (!chg->dc_disabled) { dc_cfg.drv_data = chg; dc_cfg.supplied_to = smbb_bif; dc_cfg.num_supplicants = ARRAY_SIZE(smbb_bif); chg->dc_psy = devm_power_supply_register(&pdev->dev, &dc_psy_desc, &dc_cfg); if (IS_ERR(chg->dc_psy)) { dev_err(&pdev->dev, "failed to register DC power supply\n"); return PTR_ERR(chg->dc_psy); } } for (i = 0; i < ARRAY_SIZE(smbb_charger_irqs); ++i) { int irq; irq = platform_get_irq_byname(pdev, smbb_charger_irqs[i].name); if (irq < 0) return irq; smbb_charger_irqs[i].handler(irq, chg); rc = devm_request_threaded_irq(&pdev->dev, irq, NULL, smbb_charger_irqs[i].handler, IRQF_ONESHOT, smbb_charger_irqs[i].name, chg); if (rc) { dev_err(&pdev->dev, "failed to request irq '%s'\n", smbb_charger_irqs[i].name); return rc; } } /* * otg regulator is used to control VBUS voltage direction * when USB switches between host and gadget mode */ chg->otg_rdesc.id = -1; chg->otg_rdesc.name = "otg-vbus"; chg->otg_rdesc.ops = &smbb_chg_otg_ops; chg->otg_rdesc.owner = THIS_MODULE; chg->otg_rdesc.type = REGULATOR_VOLTAGE; chg->otg_rdesc.supply_name = "usb-otg-in"; chg->otg_rdesc.of_match = "otg-vbus"; config.dev = &pdev->dev; config.driver_data = chg; chg->otg_reg = devm_regulator_register(&pdev->dev, &chg->otg_rdesc, &config); if (IS_ERR(chg->otg_reg)) return PTR_ERR(chg->otg_reg); chg->jeita_ext_temp = of_property_read_bool(pdev->dev.of_node, "qcom,jeita-extended-temp-range"); /* Set temperature range to [35%:70%] or [25%:80%] accordingly */ rc = regmap_update_bits(chg->regmap, chg->addr + SMBB_BAT_BTC_CTRL, BTC_CTRL_COLD_EXT | BTC_CTRL_HOT_EXT_N, chg->jeita_ext_temp ? BTC_CTRL_COLD_EXT : BTC_CTRL_HOT_EXT_N); if (rc) { dev_err(&pdev->dev, "unable to set %s temperature range\n", chg->jeita_ext_temp ? "JEITA extended" : "normal"); return rc; } for (i = 0; i < ARRAY_SIZE(smbb_charger_setup); ++i) { const struct reg_off_mask_default *r = &smbb_charger_setup[i]; if (r->rev_mask & BIT(chg->revision)) continue; rc = regmap_update_bits(chg->regmap, chg->addr + r->offset, r->mask, r->value); if (rc) { dev_err(&pdev->dev, "unable to initializing charging, bailing\n"); return rc; } } platform_set_drvdata(pdev, chg); return 0; } static int smbb_charger_remove(struct platform_device *pdev) { struct smbb_charger *chg; chg = platform_get_drvdata(pdev); regmap_update_bits(chg->regmap, chg->addr + SMBB_CHG_CTRL, CTRL_EN, 0); return 0; } static const struct of_device_id smbb_charger_id_table[] = { { .compatible = "qcom,pm8226-charger" }, { .compatible = "qcom,pm8941-charger" }, { } }; MODULE_DEVICE_TABLE(of, smbb_charger_id_table); static struct platform_driver smbb_charger_driver = { .probe = smbb_charger_probe, .remove = smbb_charger_remove, .driver = { .name = "qcom-smbb", .of_match_table = smbb_charger_id_table, }, }; module_platform_driver(smbb_charger_driver); MODULE_DESCRIPTION("Qualcomm Switch-Mode Battery Charger and Boost driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/qcom_smbb.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for SBS compliant Smart Battery System Managers * * The device communicates via i2c at address 0x0a and multiplexes access to up * to four smart batteries at address 0x0b. * * Via sysfs interface the online state and charge type are presented. * * Datasheet SBSM: http://sbs-forum.org/specs/sbsm100b.pdf * Datasheet LTC1760: http://cds.linear.com/docs/en/datasheet/1760fb.pdf * * Karl-Heinz Schneider <[email protected]> */ #include <linux/gpio/driver.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/i2c-mux.h> #include <linux/power_supply.h> #include <linux/property.h> #define SBSM_MAX_BATS 4 #define SBSM_RETRY_CNT 3 /* registers addresses */ #define SBSM_CMD_BATSYSSTATE 0x01 #define SBSM_CMD_BATSYSSTATECONT 0x02 #define SBSM_CMD_BATSYSINFO 0x04 #define SBSM_CMD_LTC 0x3c #define SBSM_MASK_BAT_SUPPORTED GENMASK(3, 0) #define SBSM_MASK_CHARGE_BAT GENMASK(7, 4) #define SBSM_BIT_AC_PRESENT BIT(0) #define SBSM_BIT_TURBO BIT(7) #define SBSM_SMB_BAT_OFFSET 11 struct sbsm_data { struct i2c_client *client; struct i2c_mux_core *muxc; struct power_supply *psy; u8 cur_chan; /* currently selected channel */ struct gpio_chip chip; bool is_ltc1760; /* special capabilities */ unsigned int supported_bats; unsigned int last_state; unsigned int last_state_cont; }; static enum power_supply_property sbsm_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CHARGE_TYPE, }; static int sbsm_read_word(struct i2c_client *client, u8 address) { int reg, retries; for (retries = SBSM_RETRY_CNT; retries > 0; retries--) { reg = i2c_smbus_read_word_data(client, address); if (reg >= 0) break; } if (reg < 0) { dev_err(&client->dev, "failed to read register 0x%02x\n", address); } return reg; } static int sbsm_write_word(struct i2c_client *client, u8 address, u16 word) { int ret, retries; for (retries = SBSM_RETRY_CNT; retries > 0; retries--) { ret = i2c_smbus_write_word_data(client, address, word); if (ret >= 0) break; } if (ret < 0) dev_err(&client->dev, "failed to write to register 0x%02x\n", address); return ret; } static int sbsm_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct sbsm_data *data = power_supply_get_drvdata(psy); int regval = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: regval = sbsm_read_word(data->client, SBSM_CMD_BATSYSSTATECONT); if (regval < 0) return regval; val->intval = !!(regval & SBSM_BIT_AC_PRESENT); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: regval = sbsm_read_word(data->client, SBSM_CMD_BATSYSSTATE); if (regval < 0) return regval; if ((regval & SBSM_MASK_CHARGE_BAT) == 0) { val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; return 0; } val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; if (data->is_ltc1760) { /* charge mode fast if turbo is active */ regval = sbsm_read_word(data->client, SBSM_CMD_LTC); if (regval < 0) return regval; else if (regval & SBSM_BIT_TURBO) val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; } break; default: return -EINVAL; } return 0; } static int sbsm_prop_is_writeable(struct power_supply *psy, enum power_supply_property psp) { struct sbsm_data *data = power_supply_get_drvdata(psy); return (psp == POWER_SUPPLY_PROP_CHARGE_TYPE) && data->is_ltc1760; } static int sbsm_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct sbsm_data *data = power_supply_get_drvdata(psy); int ret = -EINVAL; u16 regval; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_TYPE: /* write 1 to TURBO if type fast is given */ if (!data->is_ltc1760) break; regval = val->intval == POWER_SUPPLY_CHARGE_TYPE_FAST ? SBSM_BIT_TURBO : 0; ret = sbsm_write_word(data->client, SBSM_CMD_LTC, regval); break; default: break; } return ret; } /* * Switch to battery * Parameter chan is directly the content of SMB_BAT* nibble */ static int sbsm_select(struct i2c_mux_core *muxc, u32 chan) { struct sbsm_data *data = i2c_mux_priv(muxc); struct device *dev = &data->client->dev; int ret = 0; u16 reg; if (data->cur_chan == chan) return ret; /* chan goes from 1 ... 4 */ reg = BIT(SBSM_SMB_BAT_OFFSET + chan); ret = sbsm_write_word(data->client, SBSM_CMD_BATSYSSTATE, reg); if (ret) dev_err(dev, "Failed to select channel %i\n", chan); else data->cur_chan = chan; return ret; } static int sbsm_gpio_get_value(struct gpio_chip *gc, unsigned int off) { struct sbsm_data *data = gpiochip_get_data(gc); int ret; ret = sbsm_read_word(data->client, SBSM_CMD_BATSYSSTATE); if (ret < 0) return ret; return ret & BIT(off); } /* * This needs to be defined or the GPIO lib fails to register the pin. * But the 'gpio' is always an input. */ static int sbsm_gpio_direction_input(struct gpio_chip *gc, unsigned int off) { return 0; } static int sbsm_do_alert(struct device *dev, void *d) { struct i2c_client *client = i2c_verify_client(dev); struct i2c_driver *driver; if (!client || client->addr != 0x0b) return 0; device_lock(dev); if (client->dev.driver) { driver = to_i2c_driver(client->dev.driver); if (driver->alert) driver->alert(client, I2C_PROTOCOL_SMBUS_ALERT, 0); else dev_warn(&client->dev, "no driver alert()!\n"); } else { dev_dbg(&client->dev, "alert with no driver\n"); } device_unlock(dev); return -EBUSY; } static void sbsm_alert(struct i2c_client *client, enum i2c_alert_protocol prot, unsigned int d) { struct sbsm_data *sbsm = i2c_get_clientdata(client); int ret, i, irq_bat = 0, state = 0; ret = sbsm_read_word(sbsm->client, SBSM_CMD_BATSYSSTATE); if (ret >= 0) { irq_bat = ret ^ sbsm->last_state; sbsm->last_state = ret; state = ret; } ret = sbsm_read_word(sbsm->client, SBSM_CMD_BATSYSSTATECONT); if ((ret >= 0) && ((ret ^ sbsm->last_state_cont) & SBSM_BIT_AC_PRESENT)) { irq_bat |= sbsm->supported_bats & state; power_supply_changed(sbsm->psy); } sbsm->last_state_cont = ret; for (i = 0; i < SBSM_MAX_BATS; i++) { if (irq_bat & BIT(i)) { device_for_each_child(&sbsm->muxc->adapter[i]->dev, NULL, sbsm_do_alert); } } } static int sbsm_gpio_setup(struct sbsm_data *data) { struct gpio_chip *gc = &data->chip; struct i2c_client *client = data->client; struct device *dev = &client->dev; int ret; if (!device_property_present(dev, "gpio-controller")) return 0; ret = sbsm_read_word(client, SBSM_CMD_BATSYSSTATE); if (ret < 0) return ret; data->last_state = ret; ret = sbsm_read_word(client, SBSM_CMD_BATSYSSTATECONT); if (ret < 0) return ret; data->last_state_cont = ret; gc->get = sbsm_gpio_get_value; gc->direction_input = sbsm_gpio_direction_input; gc->can_sleep = true; gc->base = -1; gc->ngpio = SBSM_MAX_BATS; gc->label = client->name; gc->parent = dev; gc->owner = THIS_MODULE; ret = devm_gpiochip_add_data(dev, gc, data); if (ret) return dev_err_probe(dev, ret, "devm_gpiochip_add_data failed\n"); return ret; } static const struct power_supply_desc sbsm_default_psy_desc = { .type = POWER_SUPPLY_TYPE_MAINS, .properties = sbsm_props, .num_properties = ARRAY_SIZE(sbsm_props), .get_property = &sbsm_get_property, .set_property = &sbsm_set_property, .property_is_writeable = &sbsm_prop_is_writeable, }; static void sbsm_del_mux_adapter(void *data) { struct sbsm_data *sbsm = data; i2c_mux_del_adapters(sbsm->muxc); } static int sbsm_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct i2c_adapter *adapter = client->adapter; struct sbsm_data *data; struct device *dev = &client->dev; struct power_supply_desc *psy_desc; struct power_supply_config psy_cfg = {}; int ret = 0, i; /* Device listens only at address 0x0a */ if (client->addr != 0x0a) return -EINVAL; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) return -EPFNOSUPPORT; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); data->client = client; data->is_ltc1760 = !!strstr(id->name, "ltc1760"); ret = sbsm_read_word(client, SBSM_CMD_BATSYSINFO); if (ret < 0) return ret; data->supported_bats = ret & SBSM_MASK_BAT_SUPPORTED; data->muxc = i2c_mux_alloc(adapter, dev, SBSM_MAX_BATS, 0, I2C_MUX_LOCKED, &sbsm_select, NULL); if (!data->muxc) return dev_err_probe(dev, -ENOMEM, "failed to alloc i2c mux\n"); data->muxc->priv = data; ret = devm_add_action_or_reset(dev, sbsm_del_mux_adapter, data); if (ret) return ret; /* register muxed i2c channels. One for each supported battery */ for (i = 0; i < SBSM_MAX_BATS; ++i) { if (data->supported_bats & BIT(i)) { ret = i2c_mux_add_adapter(data->muxc, 0, i + 1, 0); if (ret) break; } } if (ret) return dev_err_probe(dev, ret, "failed to register i2c mux channel %d\n", i + 1); psy_desc = devm_kmemdup(dev, &sbsm_default_psy_desc, sizeof(*psy_desc), GFP_KERNEL); if (!psy_desc) return -ENOMEM; psy_desc->name = devm_kasprintf(dev, GFP_KERNEL, "sbsm-%s", dev_name(&client->dev)); if (!psy_desc->name) return -ENOMEM; ret = sbsm_gpio_setup(data); if (ret < 0) return ret; psy_cfg.drv_data = data; psy_cfg.of_node = dev->of_node; data->psy = devm_power_supply_register(dev, psy_desc, &psy_cfg); if (IS_ERR(data->psy)) return dev_err_probe(dev, PTR_ERR(data->psy), "failed to register power supply %s\n", psy_desc->name); return 0; } static const struct i2c_device_id sbsm_ids[] = { { "sbs-manager", 0 }, { "ltc1760", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, sbsm_ids); #ifdef CONFIG_OF static const struct of_device_id sbsm_dt_ids[] = { { .compatible = "sbs,sbs-manager" }, { .compatible = "lltc,ltc1760" }, { } }; MODULE_DEVICE_TABLE(of, sbsm_dt_ids); #endif static struct i2c_driver sbsm_driver = { .driver = { .name = "sbsm", .of_match_table = of_match_ptr(sbsm_dt_ids), }, .probe = sbsm_probe, .alert = sbsm_alert, .id_table = sbsm_ids }; module_i2c_driver(sbsm_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Karl-Heinz Schneider <[email protected]>"); MODULE_DESCRIPTION("SBSM Smart Battery System Manager");
linux-master
drivers/power/supply/sbs-manager.c
// SPDX-License-Identifier: GPL-2.0 // BQ25980 Battery Charger Driver // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/ #include <linux/err.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/gpio/consumer.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include "bq25980_charger.h" struct bq25980_state { bool dischg; bool ovp; bool ocp; bool wdt; bool tflt; bool online; bool ce; bool hiz; bool bypass; u32 vbat_adc; u32 vsys_adc; u32 ibat_adc; }; enum bq25980_id { BQ25980, BQ25975, BQ25960, }; struct bq25980_chip_info { int model_id; const struct regmap_config *regmap_config; int busocp_def; int busocp_sc_max; int busocp_byp_max; int busocp_sc_min; int busocp_byp_min; int busovp_sc_def; int busovp_byp_def; int busovp_sc_step; int busovp_sc_offset; int busovp_byp_step; int busovp_byp_offset; int busovp_sc_min; int busovp_sc_max; int busovp_byp_min; int busovp_byp_max; int batovp_def; int batovp_max; int batovp_min; int batovp_step; int batovp_offset; int batocp_def; int batocp_max; }; struct bq25980_init_data { u32 ichg; u32 bypass_ilim; u32 sc_ilim; u32 vreg; u32 iterm; u32 iprechg; u32 bypass_vlim; u32 sc_vlim; u32 ichg_max; u32 vreg_max; }; struct bq25980_device { struct i2c_client *client; struct device *dev; struct power_supply *charger; struct power_supply *battery; struct mutex lock; struct regmap *regmap; char model_name[I2C_NAME_SIZE]; struct bq25980_init_data init_data; const struct bq25980_chip_info *chip_info; struct bq25980_state state; int watchdog_timer; }; static struct reg_default bq25980_reg_defs[] = { {BQ25980_BATOVP, 0x5A}, {BQ25980_BATOVP_ALM, 0x46}, {BQ25980_BATOCP, 0x51}, {BQ25980_BATOCP_ALM, 0x50}, {BQ25980_BATUCP_ALM, 0x28}, {BQ25980_CHRGR_CTRL_1, 0x0}, {BQ25980_BUSOVP, 0x26}, {BQ25980_BUSOVP_ALM, 0x22}, {BQ25980_BUSOCP, 0xD}, {BQ25980_BUSOCP_ALM, 0xC}, {BQ25980_TEMP_CONTROL, 0x30}, {BQ25980_TDIE_ALM, 0xC8}, {BQ25980_TSBUS_FLT, 0x15}, {BQ25980_TSBAT_FLG, 0x15}, {BQ25980_VAC_CONTROL, 0x0}, {BQ25980_CHRGR_CTRL_2, 0x0}, {BQ25980_CHRGR_CTRL_3, 0x20}, {BQ25980_CHRGR_CTRL_4, 0x1D}, {BQ25980_CHRGR_CTRL_5, 0x18}, {BQ25980_STAT1, 0x0}, {BQ25980_STAT2, 0x0}, {BQ25980_STAT3, 0x0}, {BQ25980_STAT4, 0x0}, {BQ25980_STAT5, 0x0}, {BQ25980_FLAG1, 0x0}, {BQ25980_FLAG2, 0x0}, {BQ25980_FLAG3, 0x0}, {BQ25980_FLAG4, 0x0}, {BQ25980_FLAG5, 0x0}, {BQ25980_MASK1, 0x0}, {BQ25980_MASK2, 0x0}, {BQ25980_MASK3, 0x0}, {BQ25980_MASK4, 0x0}, {BQ25980_MASK5, 0x0}, {BQ25980_DEVICE_INFO, 0x8}, {BQ25980_ADC_CONTROL1, 0x0}, {BQ25980_ADC_CONTROL2, 0x0}, {BQ25980_IBUS_ADC_LSB, 0x0}, {BQ25980_IBUS_ADC_MSB, 0x0}, {BQ25980_VBUS_ADC_LSB, 0x0}, {BQ25980_VBUS_ADC_MSB, 0x0}, {BQ25980_VAC1_ADC_LSB, 0x0}, {BQ25980_VAC2_ADC_LSB, 0x0}, {BQ25980_VOUT_ADC_LSB, 0x0}, {BQ25980_VBAT_ADC_LSB, 0x0}, {BQ25980_IBAT_ADC_MSB, 0x0}, {BQ25980_IBAT_ADC_LSB, 0x0}, {BQ25980_TSBUS_ADC_LSB, 0x0}, {BQ25980_TSBAT_ADC_LSB, 0x0}, {BQ25980_TDIE_ADC_LSB, 0x0}, {BQ25980_DEGLITCH_TIME, 0x0}, {BQ25980_CHRGR_CTRL_6, 0x0}, }; static struct reg_default bq25975_reg_defs[] = { {BQ25980_BATOVP, 0x5A}, {BQ25980_BATOVP_ALM, 0x46}, {BQ25980_BATOCP, 0x51}, {BQ25980_BATOCP_ALM, 0x50}, {BQ25980_BATUCP_ALM, 0x28}, {BQ25980_CHRGR_CTRL_1, 0x0}, {BQ25980_BUSOVP, 0x26}, {BQ25980_BUSOVP_ALM, 0x22}, {BQ25980_BUSOCP, 0xD}, {BQ25980_BUSOCP_ALM, 0xC}, {BQ25980_TEMP_CONTROL, 0x30}, {BQ25980_TDIE_ALM, 0xC8}, {BQ25980_TSBUS_FLT, 0x15}, {BQ25980_TSBAT_FLG, 0x15}, {BQ25980_VAC_CONTROL, 0x0}, {BQ25980_CHRGR_CTRL_2, 0x0}, {BQ25980_CHRGR_CTRL_3, 0x20}, {BQ25980_CHRGR_CTRL_4, 0x1D}, {BQ25980_CHRGR_CTRL_5, 0x18}, {BQ25980_STAT1, 0x0}, {BQ25980_STAT2, 0x0}, {BQ25980_STAT3, 0x0}, {BQ25980_STAT4, 0x0}, {BQ25980_STAT5, 0x0}, {BQ25980_FLAG1, 0x0}, {BQ25980_FLAG2, 0x0}, {BQ25980_FLAG3, 0x0}, {BQ25980_FLAG4, 0x0}, {BQ25980_FLAG5, 0x0}, {BQ25980_MASK1, 0x0}, {BQ25980_MASK2, 0x0}, {BQ25980_MASK3, 0x0}, {BQ25980_MASK4, 0x0}, {BQ25980_MASK5, 0x0}, {BQ25980_DEVICE_INFO, 0x8}, {BQ25980_ADC_CONTROL1, 0x0}, {BQ25980_ADC_CONTROL2, 0x0}, {BQ25980_IBUS_ADC_LSB, 0x0}, {BQ25980_IBUS_ADC_MSB, 0x0}, {BQ25980_VBUS_ADC_LSB, 0x0}, {BQ25980_VBUS_ADC_MSB, 0x0}, {BQ25980_VAC1_ADC_LSB, 0x0}, {BQ25980_VAC2_ADC_LSB, 0x0}, {BQ25980_VOUT_ADC_LSB, 0x0}, {BQ25980_VBAT_ADC_LSB, 0x0}, {BQ25980_IBAT_ADC_MSB, 0x0}, {BQ25980_IBAT_ADC_LSB, 0x0}, {BQ25980_TSBUS_ADC_LSB, 0x0}, {BQ25980_TSBAT_ADC_LSB, 0x0}, {BQ25980_TDIE_ADC_LSB, 0x0}, {BQ25980_DEGLITCH_TIME, 0x0}, {BQ25980_CHRGR_CTRL_6, 0x0}, }; static struct reg_default bq25960_reg_defs[] = { {BQ25980_BATOVP, 0x5A}, {BQ25980_BATOVP_ALM, 0x46}, {BQ25980_BATOCP, 0x51}, {BQ25980_BATOCP_ALM, 0x50}, {BQ25980_BATUCP_ALM, 0x28}, {BQ25980_CHRGR_CTRL_1, 0x0}, {BQ25980_BUSOVP, 0x26}, {BQ25980_BUSOVP_ALM, 0x22}, {BQ25980_BUSOCP, 0xD}, {BQ25980_BUSOCP_ALM, 0xC}, {BQ25980_TEMP_CONTROL, 0x30}, {BQ25980_TDIE_ALM, 0xC8}, {BQ25980_TSBUS_FLT, 0x15}, {BQ25980_TSBAT_FLG, 0x15}, {BQ25980_VAC_CONTROL, 0x0}, {BQ25980_CHRGR_CTRL_2, 0x0}, {BQ25980_CHRGR_CTRL_3, 0x20}, {BQ25980_CHRGR_CTRL_4, 0x1D}, {BQ25980_CHRGR_CTRL_5, 0x18}, {BQ25980_STAT1, 0x0}, {BQ25980_STAT2, 0x0}, {BQ25980_STAT3, 0x0}, {BQ25980_STAT4, 0x0}, {BQ25980_STAT5, 0x0}, {BQ25980_FLAG1, 0x0}, {BQ25980_FLAG2, 0x0}, {BQ25980_FLAG3, 0x0}, {BQ25980_FLAG4, 0x0}, {BQ25980_FLAG5, 0x0}, {BQ25980_MASK1, 0x0}, {BQ25980_MASK2, 0x0}, {BQ25980_MASK3, 0x0}, {BQ25980_MASK4, 0x0}, {BQ25980_MASK5, 0x0}, {BQ25980_DEVICE_INFO, 0x8}, {BQ25980_ADC_CONTROL1, 0x0}, {BQ25980_ADC_CONTROL2, 0x0}, {BQ25980_IBUS_ADC_LSB, 0x0}, {BQ25980_IBUS_ADC_MSB, 0x0}, {BQ25980_VBUS_ADC_LSB, 0x0}, {BQ25980_VBUS_ADC_MSB, 0x0}, {BQ25980_VAC1_ADC_LSB, 0x0}, {BQ25980_VAC2_ADC_LSB, 0x0}, {BQ25980_VOUT_ADC_LSB, 0x0}, {BQ25980_VBAT_ADC_LSB, 0x0}, {BQ25980_IBAT_ADC_MSB, 0x0}, {BQ25980_IBAT_ADC_LSB, 0x0}, {BQ25980_TSBUS_ADC_LSB, 0x0}, {BQ25980_TSBAT_ADC_LSB, 0x0}, {BQ25980_TDIE_ADC_LSB, 0x0}, {BQ25980_DEGLITCH_TIME, 0x0}, {BQ25980_CHRGR_CTRL_6, 0x0}, }; static int bq25980_watchdog_time[BQ25980_NUM_WD_VAL] = {5000, 10000, 50000, 300000}; static int bq25980_get_input_curr_lim(struct bq25980_device *bq) { unsigned int busocp_reg_code; int ret; ret = regmap_read(bq->regmap, BQ25980_BUSOCP, &busocp_reg_code); if (ret) return ret; return (busocp_reg_code * BQ25980_BUSOCP_STEP_uA) + BQ25980_BUSOCP_OFFSET_uA; } static int bq25980_set_hiz(struct bq25980_device *bq, int setting) { return regmap_update_bits(bq->regmap, BQ25980_CHRGR_CTRL_2, BQ25980_EN_HIZ, setting); } static int bq25980_set_input_curr_lim(struct bq25980_device *bq, int busocp) { unsigned int busocp_reg_code; int ret; if (!busocp) return bq25980_set_hiz(bq, BQ25980_ENABLE_HIZ); bq25980_set_hiz(bq, BQ25980_DISABLE_HIZ); if (busocp < BQ25980_BUSOCP_MIN_uA) busocp = BQ25980_BUSOCP_MIN_uA; if (bq->state.bypass) busocp = min(busocp, bq->chip_info->busocp_sc_max); else busocp = min(busocp, bq->chip_info->busocp_byp_max); busocp_reg_code = (busocp - BQ25980_BUSOCP_OFFSET_uA) / BQ25980_BUSOCP_STEP_uA; ret = regmap_write(bq->regmap, BQ25980_BUSOCP, busocp_reg_code); if (ret) return ret; return regmap_write(bq->regmap, BQ25980_BUSOCP_ALM, busocp_reg_code); } static int bq25980_get_input_volt_lim(struct bq25980_device *bq) { unsigned int busovp_reg_code; unsigned int busovp_offset; unsigned int busovp_step; int ret; if (bq->state.bypass) { busovp_step = bq->chip_info->busovp_byp_step; busovp_offset = bq->chip_info->busovp_byp_offset; } else { busovp_step = bq->chip_info->busovp_sc_step; busovp_offset = bq->chip_info->busovp_sc_offset; } ret = regmap_read(bq->regmap, BQ25980_BUSOVP, &busovp_reg_code); if (ret) return ret; return (busovp_reg_code * busovp_step) + busovp_offset; } static int bq25980_set_input_volt_lim(struct bq25980_device *bq, int busovp) { unsigned int busovp_reg_code; unsigned int busovp_step; unsigned int busovp_offset; int ret; if (bq->state.bypass) { busovp_step = bq->chip_info->busovp_byp_step; busovp_offset = bq->chip_info->busovp_byp_offset; if (busovp > bq->chip_info->busovp_byp_max) busovp = bq->chip_info->busovp_byp_max; else if (busovp < bq->chip_info->busovp_byp_min) busovp = bq->chip_info->busovp_byp_min; } else { busovp_step = bq->chip_info->busovp_sc_step; busovp_offset = bq->chip_info->busovp_sc_offset; if (busovp > bq->chip_info->busovp_sc_max) busovp = bq->chip_info->busovp_sc_max; else if (busovp < bq->chip_info->busovp_sc_min) busovp = bq->chip_info->busovp_sc_min; } busovp_reg_code = (busovp - busovp_offset) / busovp_step; ret = regmap_write(bq->regmap, BQ25980_BUSOVP, busovp_reg_code); if (ret) return ret; return regmap_write(bq->regmap, BQ25980_BUSOVP_ALM, busovp_reg_code); } static int bq25980_get_const_charge_curr(struct bq25980_device *bq) { unsigned int batocp_reg_code; int ret; ret = regmap_read(bq->regmap, BQ25980_BATOCP, &batocp_reg_code); if (ret) return ret; return (batocp_reg_code & BQ25980_BATOCP_MASK) * BQ25980_BATOCP_STEP_uA; } static int bq25980_set_const_charge_curr(struct bq25980_device *bq, int batocp) { unsigned int batocp_reg_code; int ret; batocp = max(batocp, BQ25980_BATOCP_MIN_uA); batocp = min(batocp, bq->chip_info->batocp_max); batocp_reg_code = batocp / BQ25980_BATOCP_STEP_uA; ret = regmap_update_bits(bq->regmap, BQ25980_BATOCP, BQ25980_BATOCP_MASK, batocp_reg_code); if (ret) return ret; return regmap_update_bits(bq->regmap, BQ25980_BATOCP_ALM, BQ25980_BATOCP_MASK, batocp_reg_code); } static int bq25980_get_const_charge_volt(struct bq25980_device *bq) { unsigned int batovp_reg_code; int ret; ret = regmap_read(bq->regmap, BQ25980_BATOVP, &batovp_reg_code); if (ret) return ret; return ((batovp_reg_code * bq->chip_info->batovp_step) + bq->chip_info->batovp_offset); } static int bq25980_set_const_charge_volt(struct bq25980_device *bq, int batovp) { unsigned int batovp_reg_code; int ret; if (batovp < bq->chip_info->batovp_min) batovp = bq->chip_info->batovp_min; if (batovp > bq->chip_info->batovp_max) batovp = bq->chip_info->batovp_max; batovp_reg_code = (batovp - bq->chip_info->batovp_offset) / bq->chip_info->batovp_step; ret = regmap_write(bq->regmap, BQ25980_BATOVP, batovp_reg_code); if (ret) return ret; return regmap_write(bq->regmap, BQ25980_BATOVP_ALM, batovp_reg_code); } static int bq25980_set_bypass(struct bq25980_device *bq, bool en_bypass) { int ret; if (en_bypass) ret = regmap_update_bits(bq->regmap, BQ25980_CHRGR_CTRL_2, BQ25980_EN_BYPASS, BQ25980_EN_BYPASS); else ret = regmap_update_bits(bq->regmap, BQ25980_CHRGR_CTRL_2, BQ25980_EN_BYPASS, en_bypass); if (ret) return ret; bq->state.bypass = en_bypass; return bq->state.bypass; } static int bq25980_set_chg_en(struct bq25980_device *bq, bool en_chg) { int ret; if (en_chg) ret = regmap_update_bits(bq->regmap, BQ25980_CHRGR_CTRL_2, BQ25980_CHG_EN, BQ25980_CHG_EN); else ret = regmap_update_bits(bq->regmap, BQ25980_CHRGR_CTRL_2, BQ25980_CHG_EN, en_chg); if (ret) return ret; bq->state.ce = en_chg; return 0; } static int bq25980_get_adc_ibus(struct bq25980_device *bq) { int ibus_adc_lsb, ibus_adc_msb; u16 ibus_adc; int ret; ret = regmap_read(bq->regmap, BQ25980_IBUS_ADC_MSB, &ibus_adc_msb); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_IBUS_ADC_LSB, &ibus_adc_lsb); if (ret) return ret; ibus_adc = (ibus_adc_msb << 8) | ibus_adc_lsb; if (ibus_adc_msb & BQ25980_ADC_POLARITY_BIT) return ((ibus_adc ^ 0xffff) + 1) * BQ25980_ADC_CURR_STEP_uA; return ibus_adc * BQ25980_ADC_CURR_STEP_uA; } static int bq25980_get_adc_vbus(struct bq25980_device *bq) { int vbus_adc_lsb, vbus_adc_msb; u16 vbus_adc; int ret; ret = regmap_read(bq->regmap, BQ25980_VBUS_ADC_MSB, &vbus_adc_msb); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_VBUS_ADC_LSB, &vbus_adc_lsb); if (ret) return ret; vbus_adc = (vbus_adc_msb << 8) | vbus_adc_lsb; return vbus_adc * BQ25980_ADC_VOLT_STEP_uV; } static int bq25980_get_ibat_adc(struct bq25980_device *bq) { int ret; int ibat_adc_lsb, ibat_adc_msb; int ibat_adc; ret = regmap_read(bq->regmap, BQ25980_IBAT_ADC_MSB, &ibat_adc_msb); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_IBAT_ADC_LSB, &ibat_adc_lsb); if (ret) return ret; ibat_adc = (ibat_adc_msb << 8) | ibat_adc_lsb; if (ibat_adc_msb & BQ25980_ADC_POLARITY_BIT) return ((ibat_adc ^ 0xffff) + 1) * BQ25980_ADC_CURR_STEP_uA; return ibat_adc * BQ25980_ADC_CURR_STEP_uA; } static int bq25980_get_adc_vbat(struct bq25980_device *bq) { int vsys_adc_lsb, vsys_adc_msb; u16 vsys_adc; int ret; ret = regmap_read(bq->regmap, BQ25980_VBAT_ADC_MSB, &vsys_adc_msb); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_VBAT_ADC_LSB, &vsys_adc_lsb); if (ret) return ret; vsys_adc = (vsys_adc_msb << 8) | vsys_adc_lsb; return vsys_adc * BQ25980_ADC_VOLT_STEP_uV; } static int bq25980_get_state(struct bq25980_device *bq, struct bq25980_state *state) { unsigned int chg_ctrl_2; unsigned int stat1; unsigned int stat2; unsigned int stat3; unsigned int stat4; unsigned int ibat_adc_msb; int ret; ret = regmap_read(bq->regmap, BQ25980_STAT1, &stat1); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_STAT2, &stat2); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_STAT3, &stat3); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_STAT4, &stat4); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_CHRGR_CTRL_2, &chg_ctrl_2); if (ret) return ret; ret = regmap_read(bq->regmap, BQ25980_IBAT_ADC_MSB, &ibat_adc_msb); if (ret) return ret; state->dischg = ibat_adc_msb & BQ25980_ADC_POLARITY_BIT; state->ovp = (stat1 & BQ25980_STAT1_OVP_MASK) | (stat3 & BQ25980_STAT3_OVP_MASK); state->ocp = (stat1 & BQ25980_STAT1_OCP_MASK) | (stat2 & BQ25980_STAT2_OCP_MASK); state->tflt = stat4 & BQ25980_STAT4_TFLT_MASK; state->wdt = stat4 & BQ25980_WD_STAT; state->online = stat3 & BQ25980_PRESENT_MASK; state->ce = chg_ctrl_2 & BQ25980_CHG_EN; state->hiz = chg_ctrl_2 & BQ25980_EN_HIZ; state->bypass = chg_ctrl_2 & BQ25980_EN_BYPASS; return 0; } static int bq25980_get_battery_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct bq25980_device *bq = power_supply_get_drvdata(psy); int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = bq->init_data.ichg_max; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = bq->init_data.vreg_max; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = bq25980_get_ibat_adc(bq); val->intval = ret; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = bq25980_get_adc_vbat(bq); if (ret < 0) return ret; val->intval = ret; break; default: return -EINVAL; } return ret; } static int bq25980_set_charger_property(struct power_supply *psy, enum power_supply_property prop, const union power_supply_propval *val) { struct bq25980_device *bq = power_supply_get_drvdata(psy); int ret = -EINVAL; switch (prop) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = bq25980_set_input_curr_lim(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = bq25980_set_input_volt_lim(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = bq25980_set_bypass(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_STATUS: ret = bq25980_set_chg_en(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = bq25980_set_const_charge_curr(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = bq25980_set_const_charge_volt(bq, val->intval); if (ret) return ret; break; default: return -EINVAL; } return ret; } static int bq25980_get_charger_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct bq25980_device *bq = power_supply_get_drvdata(psy); struct bq25980_state state; int ret = 0; mutex_lock(&bq->lock); ret = bq25980_get_state(bq, &state); mutex_unlock(&bq->lock); if (ret) return ret; switch (psp) { case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BQ25980_MANUFACTURER; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = bq->model_name; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = state.online; break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = bq25980_get_input_volt_lim(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = bq25980_get_input_curr_lim(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_HEALTH: val->intval = POWER_SUPPLY_HEALTH_GOOD; if (state.tflt) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else if (state.ovp) val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else if (state.ocp) val->intval = POWER_SUPPLY_HEALTH_OVERCURRENT; else if (state.wdt) val->intval = POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE; break; case POWER_SUPPLY_PROP_STATUS: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; if ((state.ce) && (!state.hiz)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (state.dischg) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (!state.ce) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: val->intval = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; if (!state.ce) val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; else if (state.bypass) val->intval = POWER_SUPPLY_CHARGE_TYPE_BYPASS; else if (!state.bypass) val->intval = POWER_SUPPLY_CHARGE_TYPE_STANDARD; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = bq25980_get_adc_ibus(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = bq25980_get_adc_vbus(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = bq25980_get_const_charge_curr(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = bq25980_get_const_charge_volt(bq); if (ret < 0) return ret; val->intval = ret; break; default: return -EINVAL; } return ret; } static bool bq25980_state_changed(struct bq25980_device *bq, struct bq25980_state *new_state) { struct bq25980_state old_state; mutex_lock(&bq->lock); old_state = bq->state; mutex_unlock(&bq->lock); return (old_state.dischg != new_state->dischg || old_state.ovp != new_state->ovp || old_state.ocp != new_state->ocp || old_state.online != new_state->online || old_state.wdt != new_state->wdt || old_state.tflt != new_state->tflt || old_state.ce != new_state->ce || old_state.hiz != new_state->hiz || old_state.bypass != new_state->bypass); } static irqreturn_t bq25980_irq_handler_thread(int irq, void *private) { struct bq25980_device *bq = private; struct bq25980_state state; int ret; ret = bq25980_get_state(bq, &state); if (ret < 0) goto irq_out; if (!bq25980_state_changed(bq, &state)) goto irq_out; mutex_lock(&bq->lock); bq->state = state; mutex_unlock(&bq->lock); power_supply_changed(bq->charger); irq_out: return IRQ_HANDLED; } static enum power_supply_property bq25980_power_supply_props[] = { POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_VOLTAGE_NOW, }; static enum power_supply_property bq25980_battery_props[] = { POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_VOLTAGE_NOW, }; static char *bq25980_charger_supplied_to[] = { "main-battery", }; static int bq25980_property_is_writeable(struct power_supply *psy, enum power_supply_property prop) { switch (prop) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CHARGE_TYPE: case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: return true; default: return false; } } static const struct power_supply_desc bq25980_power_supply_desc = { .name = "bq25980-charger", .type = POWER_SUPPLY_TYPE_MAINS, .properties = bq25980_power_supply_props, .num_properties = ARRAY_SIZE(bq25980_power_supply_props), .get_property = bq25980_get_charger_property, .set_property = bq25980_set_charger_property, .property_is_writeable = bq25980_property_is_writeable, }; static struct power_supply_desc bq25980_battery_desc = { .name = "bq25980-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .get_property = bq25980_get_battery_property, .properties = bq25980_battery_props, .num_properties = ARRAY_SIZE(bq25980_battery_props), .property_is_writeable = bq25980_property_is_writeable, }; static bool bq25980_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case BQ25980_CHRGR_CTRL_2: case BQ25980_STAT1...BQ25980_FLAG5: case BQ25980_ADC_CONTROL1...BQ25980_TDIE_ADC_LSB: return true; default: return false; } } static const struct regmap_config bq25980_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BQ25980_CHRGR_CTRL_6, .reg_defaults = bq25980_reg_defs, .num_reg_defaults = ARRAY_SIZE(bq25980_reg_defs), .cache_type = REGCACHE_RBTREE, .volatile_reg = bq25980_is_volatile_reg, }; static const struct regmap_config bq25975_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BQ25980_CHRGR_CTRL_6, .reg_defaults = bq25975_reg_defs, .num_reg_defaults = ARRAY_SIZE(bq25975_reg_defs), .cache_type = REGCACHE_RBTREE, .volatile_reg = bq25980_is_volatile_reg, }; static const struct regmap_config bq25960_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BQ25980_CHRGR_CTRL_6, .reg_defaults = bq25960_reg_defs, .num_reg_defaults = ARRAY_SIZE(bq25960_reg_defs), .cache_type = REGCACHE_RBTREE, .volatile_reg = bq25980_is_volatile_reg, }; static const struct bq25980_chip_info bq25980_chip_info_tbl[] = { [BQ25980] = { .model_id = BQ25980, .regmap_config = &bq25980_regmap_config, .busocp_def = BQ25980_BUSOCP_DFLT_uA, .busocp_sc_min = BQ25960_BUSOCP_SC_MAX_uA, .busocp_sc_max = BQ25980_BUSOCP_SC_MAX_uA, .busocp_byp_max = BQ25980_BUSOCP_BYP_MAX_uA, .busocp_byp_min = BQ25980_BUSOCP_MIN_uA, .busovp_sc_def = BQ25980_BUSOVP_DFLT_uV, .busovp_byp_def = BQ25980_BUSOVP_BYPASS_DFLT_uV, .busovp_sc_step = BQ25980_BUSOVP_SC_STEP_uV, .busovp_sc_offset = BQ25980_BUSOVP_SC_OFFSET_uV, .busovp_byp_step = BQ25980_BUSOVP_BYP_STEP_uV, .busovp_byp_offset = BQ25980_BUSOVP_BYP_OFFSET_uV, .busovp_sc_min = BQ25980_BUSOVP_SC_MIN_uV, .busovp_sc_max = BQ25980_BUSOVP_SC_MAX_uV, .busovp_byp_min = BQ25980_BUSOVP_BYP_MIN_uV, .busovp_byp_max = BQ25980_BUSOVP_BYP_MAX_uV, .batovp_def = BQ25980_BATOVP_DFLT_uV, .batovp_max = BQ25980_BATOVP_MAX_uV, .batovp_min = BQ25980_BATOVP_MIN_uV, .batovp_step = BQ25980_BATOVP_STEP_uV, .batovp_offset = BQ25980_BATOVP_OFFSET_uV, .batocp_def = BQ25980_BATOCP_DFLT_uA, .batocp_max = BQ25980_BATOCP_MAX_uA, }, [BQ25975] = { .model_id = BQ25975, .regmap_config = &bq25975_regmap_config, .busocp_def = BQ25975_BUSOCP_DFLT_uA, .busocp_sc_min = BQ25975_BUSOCP_SC_MAX_uA, .busocp_sc_max = BQ25975_BUSOCP_SC_MAX_uA, .busocp_byp_min = BQ25980_BUSOCP_MIN_uA, .busocp_byp_max = BQ25975_BUSOCP_BYP_MAX_uA, .busovp_sc_def = BQ25975_BUSOVP_DFLT_uV, .busovp_byp_def = BQ25975_BUSOVP_BYPASS_DFLT_uV, .busovp_sc_step = BQ25975_BUSOVP_SC_STEP_uV, .busovp_sc_offset = BQ25975_BUSOVP_SC_OFFSET_uV, .busovp_byp_step = BQ25975_BUSOVP_BYP_STEP_uV, .busovp_byp_offset = BQ25975_BUSOVP_BYP_OFFSET_uV, .busovp_sc_min = BQ25975_BUSOVP_SC_MIN_uV, .busovp_sc_max = BQ25975_BUSOVP_SC_MAX_uV, .busovp_byp_min = BQ25975_BUSOVP_BYP_MIN_uV, .busovp_byp_max = BQ25975_BUSOVP_BYP_MAX_uV, .batovp_def = BQ25975_BATOVP_DFLT_uV, .batovp_max = BQ25975_BATOVP_MAX_uV, .batovp_min = BQ25975_BATOVP_MIN_uV, .batovp_step = BQ25975_BATOVP_STEP_uV, .batovp_offset = BQ25975_BATOVP_OFFSET_uV, .batocp_def = BQ25980_BATOCP_DFLT_uA, .batocp_max = BQ25980_BATOCP_MAX_uA, }, [BQ25960] = { .model_id = BQ25960, .regmap_config = &bq25960_regmap_config, .busocp_def = BQ25960_BUSOCP_DFLT_uA, .busocp_sc_min = BQ25960_BUSOCP_SC_MAX_uA, .busocp_sc_max = BQ25960_BUSOCP_SC_MAX_uA, .busocp_byp_min = BQ25960_BUSOCP_SC_MAX_uA, .busocp_byp_max = BQ25960_BUSOCP_BYP_MAX_uA, .busovp_sc_def = BQ25975_BUSOVP_DFLT_uV, .busovp_byp_def = BQ25975_BUSOVP_BYPASS_DFLT_uV, .busovp_sc_step = BQ25960_BUSOVP_SC_STEP_uV, .busovp_sc_offset = BQ25960_BUSOVP_SC_OFFSET_uV, .busovp_byp_step = BQ25960_BUSOVP_BYP_STEP_uV, .busovp_byp_offset = BQ25960_BUSOVP_BYP_OFFSET_uV, .busovp_sc_min = BQ25960_BUSOVP_SC_MIN_uV, .busovp_sc_max = BQ25960_BUSOVP_SC_MAX_uV, .busovp_byp_min = BQ25960_BUSOVP_BYP_MIN_uV, .busovp_byp_max = BQ25960_BUSOVP_BYP_MAX_uV, .batovp_def = BQ25960_BATOVP_DFLT_uV, .batovp_max = BQ25960_BATOVP_MAX_uV, .batovp_min = BQ25960_BATOVP_MIN_uV, .batovp_step = BQ25960_BATOVP_STEP_uV, .batovp_offset = BQ25960_BATOVP_OFFSET_uV, .batocp_def = BQ25960_BATOCP_DFLT_uA, .batocp_max = BQ25960_BATOCP_MAX_uA, }, }; static int bq25980_power_supply_init(struct bq25980_device *bq, struct device *dev) { struct power_supply_config psy_cfg = { .drv_data = bq, .of_node = dev->of_node, }; psy_cfg.supplied_to = bq25980_charger_supplied_to; psy_cfg.num_supplicants = ARRAY_SIZE(bq25980_charger_supplied_to); bq->charger = devm_power_supply_register(bq->dev, &bq25980_power_supply_desc, &psy_cfg); if (IS_ERR(bq->charger)) return -EINVAL; bq->battery = devm_power_supply_register(bq->dev, &bq25980_battery_desc, &psy_cfg); if (IS_ERR(bq->battery)) return -EINVAL; return 0; } static int bq25980_hw_init(struct bq25980_device *bq) { struct power_supply_battery_info *bat_info; int wd_reg_val = BQ25980_WATCHDOG_DIS; int wd_max_val = BQ25980_NUM_WD_VAL - 1; int ret = 0; int curr_val; int volt_val; int i; if (bq->watchdog_timer) { if (bq->watchdog_timer >= bq25980_watchdog_time[wd_max_val]) wd_reg_val = wd_max_val; else { for (i = 0; i < wd_max_val; i++) { if (bq->watchdog_timer > bq25980_watchdog_time[i] && bq->watchdog_timer < bq25980_watchdog_time[i + 1]) { wd_reg_val = i; break; } } } } ret = regmap_update_bits(bq->regmap, BQ25980_CHRGR_CTRL_3, BQ25980_WATCHDOG_MASK, wd_reg_val); if (ret) return ret; ret = power_supply_get_battery_info(bq->charger, &bat_info); if (ret) { dev_warn(bq->dev, "battery info missing\n"); return -EINVAL; } bq->init_data.ichg_max = bat_info->constant_charge_current_max_ua; bq->init_data.vreg_max = bat_info->constant_charge_voltage_max_uv; if (bq->state.bypass) { ret = regmap_update_bits(bq->regmap, BQ25980_CHRGR_CTRL_2, BQ25980_EN_BYPASS, BQ25980_EN_BYPASS); if (ret) return ret; curr_val = bq->init_data.bypass_ilim; volt_val = bq->init_data.bypass_vlim; } else { curr_val = bq->init_data.sc_ilim; volt_val = bq->init_data.sc_vlim; } ret = bq25980_set_input_curr_lim(bq, curr_val); if (ret) return ret; ret = bq25980_set_input_volt_lim(bq, volt_val); if (ret) return ret; return regmap_update_bits(bq->regmap, BQ25980_ADC_CONTROL1, BQ25980_ADC_EN, BQ25980_ADC_EN); } static int bq25980_parse_dt(struct bq25980_device *bq) { int ret; ret = device_property_read_u32(bq->dev, "ti,watchdog-timeout-ms", &bq->watchdog_timer); if (ret) bq->watchdog_timer = BQ25980_WATCHDOG_MIN; if (bq->watchdog_timer > BQ25980_WATCHDOG_MAX || bq->watchdog_timer < BQ25980_WATCHDOG_MIN) return -EINVAL; ret = device_property_read_u32(bq->dev, "ti,sc-ovp-limit-microvolt", &bq->init_data.sc_vlim); if (ret) bq->init_data.sc_vlim = bq->chip_info->busovp_sc_def; if (bq->init_data.sc_vlim > bq->chip_info->busovp_sc_max || bq->init_data.sc_vlim < bq->chip_info->busovp_sc_min) { dev_err(bq->dev, "SC ovp limit is out of range\n"); return -EINVAL; } ret = device_property_read_u32(bq->dev, "ti,sc-ocp-limit-microamp", &bq->init_data.sc_ilim); if (ret) bq->init_data.sc_ilim = bq->chip_info->busocp_def; if (bq->init_data.sc_ilim > bq->chip_info->busocp_sc_max || bq->init_data.sc_ilim < bq->chip_info->busocp_sc_min) { dev_err(bq->dev, "SC ocp limit is out of range\n"); return -EINVAL; } ret = device_property_read_u32(bq->dev, "ti,bypass-ovp-limit-microvolt", &bq->init_data.bypass_vlim); if (ret) bq->init_data.bypass_vlim = bq->chip_info->busovp_byp_def; if (bq->init_data.bypass_vlim > bq->chip_info->busovp_byp_max || bq->init_data.bypass_vlim < bq->chip_info->busovp_byp_min) { dev_err(bq->dev, "Bypass ovp limit is out of range\n"); return -EINVAL; } ret = device_property_read_u32(bq->dev, "ti,bypass-ocp-limit-microamp", &bq->init_data.bypass_ilim); if (ret) bq->init_data.bypass_ilim = bq->chip_info->busocp_def; if (bq->init_data.bypass_ilim > bq->chip_info->busocp_byp_max || bq->init_data.bypass_ilim < bq->chip_info->busocp_byp_min) { dev_err(bq->dev, "Bypass ocp limit is out of range\n"); return -EINVAL; } bq->state.bypass = device_property_read_bool(bq->dev, "ti,bypass-enable"); return 0; } static int bq25980_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct device *dev = &client->dev; struct bq25980_device *bq; int ret; bq = devm_kzalloc(dev, sizeof(*bq), GFP_KERNEL); if (!bq) return -ENOMEM; bq->client = client; bq->dev = dev; mutex_init(&bq->lock); strncpy(bq->model_name, id->name, I2C_NAME_SIZE); bq->chip_info = &bq25980_chip_info_tbl[id->driver_data]; bq->regmap = devm_regmap_init_i2c(client, bq->chip_info->regmap_config); if (IS_ERR(bq->regmap)) { dev_err(dev, "Failed to allocate register map\n"); return PTR_ERR(bq->regmap); } i2c_set_clientdata(client, bq); ret = bq25980_parse_dt(bq); if (ret) { dev_err(dev, "Failed to read device tree properties%d\n", ret); return ret; } if (client->irq) { ret = devm_request_threaded_irq(dev, client->irq, NULL, bq25980_irq_handler_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, dev_name(&client->dev), bq); if (ret) return ret; } ret = bq25980_power_supply_init(bq, dev); if (ret) { dev_err(dev, "Failed to register power supply\n"); return ret; } ret = bq25980_hw_init(bq); if (ret) { dev_err(dev, "Cannot initialize the chip.\n"); return ret; } return 0; } static const struct i2c_device_id bq25980_i2c_ids[] = { { "bq25980", BQ25980 }, { "bq25975", BQ25975 }, { "bq25960", BQ25960 }, {}, }; MODULE_DEVICE_TABLE(i2c, bq25980_i2c_ids); static const struct of_device_id bq25980_of_match[] = { { .compatible = "ti,bq25980", .data = (void *)BQ25980 }, { .compatible = "ti,bq25975", .data = (void *)BQ25975 }, { .compatible = "ti,bq25960", .data = (void *)BQ25960 }, { }, }; MODULE_DEVICE_TABLE(of, bq25980_of_match); static struct i2c_driver bq25980_driver = { .driver = { .name = "bq25980-charger", .of_match_table = bq25980_of_match, }, .probe = bq25980_probe, .id_table = bq25980_i2c_ids, }; module_i2c_driver(bq25980_driver); MODULE_AUTHOR("Dan Murphy <[email protected]>"); MODULE_AUTHOR("Ricardo Rivera-Matos <[email protected]>"); MODULE_DESCRIPTION("bq25980 charger driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/bq25980_charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved. * Copyright (c) 2023, Linaro Ltd. * Author: Caleb Connolly <[email protected]> * * This driver is for the switch-mode battery charger and boost * hardware found in pmi8998 and related PMICs. */ #include <linux/bits.h> #include <linux/devm-helpers.h> #include <linux/iio/consumer.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #include <linux/of.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/types.h> #include <linux/workqueue.h> /* clang-format off */ #define BATTERY_CHARGER_STATUS_1 0x06 #define BVR_INITIAL_RAMP_BIT BIT(7) #define CC_SOFT_TERMINATE_BIT BIT(6) #define STEP_CHARGING_STATUS_SHIFT 3 #define STEP_CHARGING_STATUS_MASK GENMASK(5, 3) #define BATTERY_CHARGER_STATUS_MASK GENMASK(2, 0) #define BATTERY_CHARGER_STATUS_2 0x07 #define INPUT_CURRENT_LIMITED_BIT BIT(7) #define CHARGER_ERROR_STATUS_SFT_EXPIRE_BIT BIT(6) #define CHARGER_ERROR_STATUS_BAT_OV_BIT BIT(5) #define CHARGER_ERROR_STATUS_BAT_TERM_MISSING_BIT BIT(4) #define BAT_TEMP_STATUS_MASK GENMASK(3, 0) #define BAT_TEMP_STATUS_SOFT_LIMIT_MASK GENMASK(3, 2) #define BAT_TEMP_STATUS_HOT_SOFT_LIMIT_BIT BIT(3) #define BAT_TEMP_STATUS_COLD_SOFT_LIMIT_BIT BIT(2) #define BAT_TEMP_STATUS_TOO_HOT_BIT BIT(1) #define BAT_TEMP_STATUS_TOO_COLD_BIT BIT(0) #define BATTERY_CHARGER_STATUS_4 0x0A #define CHARGE_CURRENT_POST_JEITA_MASK GENMASK(7, 0) #define BATTERY_CHARGER_STATUS_7 0x0D #define ENABLE_TRICKLE_BIT BIT(7) #define ENABLE_PRE_CHARGING_BIT BIT(6) #define ENABLE_FAST_CHARGING_BIT BIT(5) #define ENABLE_FULLON_MODE_BIT BIT(4) #define TOO_COLD_ADC_BIT BIT(3) #define TOO_HOT_ADC_BIT BIT(2) #define HOT_SL_ADC_BIT BIT(1) #define COLD_SL_ADC_BIT BIT(0) #define CHARGING_ENABLE_CMD 0x42 #define CHARGING_ENABLE_CMD_BIT BIT(0) #define CHGR_CFG2 0x51 #define CHG_EN_SRC_BIT BIT(7) #define CHG_EN_POLARITY_BIT BIT(6) #define PRETOFAST_TRANSITION_CFG_BIT BIT(5) #define BAT_OV_ECC_BIT BIT(4) #define I_TERM_BIT BIT(3) #define AUTO_RECHG_BIT BIT(2) #define EN_ANALOG_DROP_IN_VBATT_BIT BIT(1) #define CHARGER_INHIBIT_BIT BIT(0) #define PRE_CHARGE_CURRENT_CFG 0x60 #define PRE_CHARGE_CURRENT_SETTING_MASK GENMASK(5, 0) #define FAST_CHARGE_CURRENT_CFG 0x61 #define FAST_CHARGE_CURRENT_SETTING_MASK GENMASK(7, 0) #define FLOAT_VOLTAGE_CFG 0x70 #define FLOAT_VOLTAGE_SETTING_MASK GENMASK(7, 0) #define FG_UPDATE_CFG_2_SEL 0x7D #define SOC_LT_OTG_THRESH_SEL_BIT BIT(3) #define SOC_LT_CHG_RECHARGE_THRESH_SEL_BIT BIT(2) #define VBT_LT_CHG_RECHARGE_THRESH_SEL_BIT BIT(1) #define IBT_LT_CHG_TERM_THRESH_SEL_BIT BIT(0) #define JEITA_EN_CFG 0x90 #define JEITA_EN_HARDLIMIT_BIT BIT(4) #define JEITA_EN_HOT_SL_FCV_BIT BIT(3) #define JEITA_EN_COLD_SL_FCV_BIT BIT(2) #define JEITA_EN_HOT_SL_CCC_BIT BIT(1) #define JEITA_EN_COLD_SL_CCC_BIT BIT(0) #define INT_RT_STS 0x310 #define TYPE_C_CHANGE_RT_STS_BIT BIT(7) #define USBIN_ICL_CHANGE_RT_STS_BIT BIT(6) #define USBIN_SOURCE_CHANGE_RT_STS_BIT BIT(5) #define USBIN_PLUGIN_RT_STS_BIT BIT(4) #define USBIN_OV_RT_STS_BIT BIT(3) #define USBIN_UV_RT_STS_BIT BIT(2) #define USBIN_LT_3P6V_RT_STS_BIT BIT(1) #define USBIN_COLLAPSE_RT_STS_BIT BIT(0) #define OTG_CFG 0x153 #define OTG_RESERVED_MASK GENMASK(7, 6) #define DIS_OTG_ON_TLIM_BIT BIT(5) #define QUICKSTART_OTG_FASTROLESWAP_BIT BIT(4) #define INCREASE_DFP_TIME_BIT BIT(3) #define ENABLE_OTG_IN_DEBUG_MODE_BIT BIT(2) #define OTG_EN_SRC_CFG_BIT BIT(1) #define CONCURRENT_MODE_CFG_BIT BIT(0) #define OTG_ENG_OTG_CFG 0x1C0 #define ENG_BUCKBOOST_HALT1_8_MODE_BIT BIT(0) #define APSD_STATUS 0x307 #define APSD_STATUS_7_BIT BIT(7) #define HVDCP_CHECK_TIMEOUT_BIT BIT(6) #define SLOW_PLUGIN_TIMEOUT_BIT BIT(5) #define ENUMERATION_DONE_BIT BIT(4) #define VADP_CHANGE_DONE_AFTER_AUTH_BIT BIT(3) #define QC_AUTH_DONE_STATUS_BIT BIT(2) #define QC_CHARGER_BIT BIT(1) #define APSD_DTC_STATUS_DONE_BIT BIT(0) #define APSD_RESULT_STATUS 0x308 #define ICL_OVERRIDE_LATCH_BIT BIT(7) #define APSD_RESULT_STATUS_MASK GENMASK(6, 0) #define QC_3P0_BIT BIT(6) #define QC_2P0_BIT BIT(5) #define FLOAT_CHARGER_BIT BIT(4) #define DCP_CHARGER_BIT BIT(3) #define CDP_CHARGER_BIT BIT(2) #define OCP_CHARGER_BIT BIT(1) #define SDP_CHARGER_BIT BIT(0) #define TYPE_C_STATUS_1 0x30B #define UFP_TYPEC_MASK GENMASK(7, 5) #define UFP_TYPEC_RDSTD_BIT BIT(7) #define UFP_TYPEC_RD1P5_BIT BIT(6) #define UFP_TYPEC_RD3P0_BIT BIT(5) #define UFP_TYPEC_FMB_255K_BIT BIT(4) #define UFP_TYPEC_FMB_301K_BIT BIT(3) #define UFP_TYPEC_FMB_523K_BIT BIT(2) #define UFP_TYPEC_FMB_619K_BIT BIT(1) #define UFP_TYPEC_OPEN_OPEN_BIT BIT(0) #define TYPE_C_STATUS_2 0x30C #define DFP_RA_OPEN_BIT BIT(7) #define TIMER_STAGE_BIT BIT(6) #define EXIT_UFP_MODE_BIT BIT(5) #define EXIT_DFP_MODE_BIT BIT(4) #define DFP_TYPEC_MASK GENMASK(3, 0) #define DFP_RD_OPEN_BIT BIT(3) #define DFP_RD_RA_VCONN_BIT BIT(2) #define DFP_RD_RD_BIT BIT(1) #define DFP_RA_RA_BIT BIT(0) #define TYPE_C_STATUS_3 0x30D #define ENABLE_BANDGAP_BIT BIT(7) #define U_USB_GND_NOVBUS_BIT BIT(6) #define U_USB_FLOAT_NOVBUS_BIT BIT(5) #define U_USB_GND_BIT BIT(4) #define U_USB_FMB1_BIT BIT(3) #define U_USB_FLOAT1_BIT BIT(2) #define U_USB_FMB2_BIT BIT(1) #define U_USB_FLOAT2_BIT BIT(0) #define TYPE_C_STATUS_4 0x30E #define UFP_DFP_MODE_STATUS_BIT BIT(7) #define TYPEC_VBUS_STATUS_BIT BIT(6) #define TYPEC_VBUS_ERROR_STATUS_BIT BIT(5) #define TYPEC_DEBOUNCE_DONE_STATUS_BIT BIT(4) #define TYPEC_UFP_AUDIO_ADAPT_STATUS_BIT BIT(3) #define TYPEC_VCONN_OVERCURR_STATUS_BIT BIT(2) #define CC_ORIENTATION_BIT BIT(1) #define CC_ATTACHED_BIT BIT(0) #define TYPE_C_STATUS_5 0x30F #define TRY_SOURCE_FAILED_BIT BIT(6) #define TRY_SINK_FAILED_BIT BIT(5) #define TIMER_STAGE_2_BIT BIT(4) #define TYPEC_LEGACY_CABLE_STATUS_BIT BIT(3) #define TYPEC_NONCOMP_LEGACY_CABLE_STATUS_BIT BIT(2) #define TYPEC_TRYSOURCE_DETECT_STATUS_BIT BIT(1) #define TYPEC_TRYSINK_DETECT_STATUS_BIT BIT(0) #define CMD_APSD 0x341 #define ICL_OVERRIDE_BIT BIT(1) #define APSD_RERUN_BIT BIT(0) #define TYPE_C_CFG 0x358 #define APSD_START_ON_CC_BIT BIT(7) #define WAIT_FOR_APSD_BIT BIT(6) #define FACTORY_MODE_DETECTION_EN_BIT BIT(5) #define FACTORY_MODE_ICL_3A_4A_BIT BIT(4) #define FACTORY_MODE_DIS_CHGING_CFG_BIT BIT(3) #define SUSPEND_NON_COMPLIANT_CFG_BIT BIT(2) #define VCONN_OC_CFG_BIT BIT(1) #define TYPE_C_OR_U_USB_BIT BIT(0) #define TYPE_C_CFG_2 0x359 #define TYPE_C_DFP_CURRSRC_MODE_BIT BIT(7) #define DFP_CC_1P4V_OR_1P6V_BIT BIT(6) #define VCONN_SOFTSTART_CFG_MASK GENMASK(5, 4) #define EN_TRY_SOURCE_MODE_BIT BIT(3) #define USB_FACTORY_MODE_ENABLE_BIT BIT(2) #define TYPE_C_UFP_MODE_BIT BIT(1) #define EN_80UA_180UA_CUR_SOURCE_BIT BIT(0) #define TYPE_C_CFG_3 0x35A #define TVBUS_DEBOUNCE_BIT BIT(7) #define TYPEC_LEGACY_CABLE_INT_EN_BIT BIT(6) #define TYPEC_NONCOMPLIANT_LEGACY_CABLE_INT_EN_B BIT(5) #define TYPEC_TRYSOURCE_DETECT_INT_EN_BIT BIT(4) #define TYPEC_TRYSINK_DETECT_INT_EN_BIT BIT(3) #define EN_TRYSINK_MODE_BIT BIT(2) #define EN_LEGACY_CABLE_DETECTION_BIT BIT(1) #define ALLOW_PD_DRING_UFP_TCCDB_BIT BIT(0) #define USBIN_OPTIONS_1_CFG 0x362 #define CABLE_R_SEL_BIT BIT(7) #define HVDCP_AUTH_ALG_EN_CFG_BIT BIT(6) #define HVDCP_AUTONOMOUS_MODE_EN_CFG_BIT BIT(5) #define INPUT_PRIORITY_BIT BIT(4) #define AUTO_SRC_DETECT_BIT BIT(3) #define HVDCP_EN_BIT BIT(2) #define VADP_INCREMENT_VOLTAGE_LIMIT_BIT BIT(1) #define VADP_TAPER_TIMER_EN_BIT BIT(0) #define USBIN_OPTIONS_2_CFG 0x363 #define WIPWR_RST_EUD_CFG_BIT BIT(7) #define SWITCHER_START_CFG_BIT BIT(6) #define DCD_TIMEOUT_SEL_BIT BIT(5) #define OCD_CURRENT_SEL_BIT BIT(4) #define SLOW_PLUGIN_TIMER_EN_CFG_BIT BIT(3) #define FLOAT_OPTIONS_MASK GENMASK(2, 0) #define FLOAT_DIS_CHGING_CFG_BIT BIT(2) #define SUSPEND_FLOAT_CFG_BIT BIT(1) #define FORCE_FLOAT_SDP_CFG_BIT BIT(0) #define TAPER_TIMER_SEL_CFG 0x364 #define TYPEC_SPARE_CFG_BIT BIT(7) #define TYPEC_DRP_DFP_TIME_CFG_BIT BIT(5) #define TAPER_TIMER_SEL_MASK GENMASK(1, 0) #define USBIN_LOAD_CFG 0x365 #define USBIN_OV_CH_LOAD_OPTION_BIT BIT(7) #define ICL_OVERRIDE_AFTER_APSD_BIT BIT(4) #define USBIN_ICL_OPTIONS 0x366 #define CFG_USB3P0_SEL_BIT BIT(2) #define USB51_MODE_BIT BIT(1) #define USBIN_MODE_CHG_BIT BIT(0) #define TYPE_C_INTRPT_ENB_SOFTWARE_CTRL 0x368 #define EXIT_SNK_BASED_ON_CC_BIT BIT(7) #define VCONN_EN_ORIENTATION_BIT BIT(6) #define TYPEC_VCONN_OVERCURR_INT_EN_BIT BIT(5) #define VCONN_EN_SRC_BIT BIT(4) #define VCONN_EN_VALUE_BIT BIT(3) #define TYPEC_POWER_ROLE_CMD_MASK GENMASK(2, 0) #define UFP_EN_CMD_BIT BIT(2) #define DFP_EN_CMD_BIT BIT(1) #define TYPEC_DISABLE_CMD_BIT BIT(0) #define USBIN_CURRENT_LIMIT_CFG 0x370 #define USBIN_CURRENT_LIMIT_MASK GENMASK(7, 0) #define USBIN_AICL_OPTIONS_CFG 0x380 #define SUSPEND_ON_COLLAPSE_USBIN_BIT BIT(7) #define USBIN_AICL_HDC_EN_BIT BIT(6) #define USBIN_AICL_START_AT_MAX_BIT BIT(5) #define USBIN_AICL_RERUN_EN_BIT BIT(4) #define USBIN_AICL_ADC_EN_BIT BIT(3) #define USBIN_AICL_EN_BIT BIT(2) #define USBIN_HV_COLLAPSE_RESPONSE_BIT BIT(1) #define USBIN_LV_COLLAPSE_RESPONSE_BIT BIT(0) #define USBIN_5V_AICL_THRESHOLD_CFG 0x381 #define USBIN_5V_AICL_THRESHOLD_CFG_MASK GENMASK(2, 0) #define USBIN_CONT_AICL_THRESHOLD_CFG 0x384 #define USBIN_CONT_AICL_THRESHOLD_CFG_MASK GENMASK(5, 0) #define DC_ENG_SSUPPLY_CFG2 0x4C1 #define ENG_SSUPPLY_IVREF_OTG_SS_MASK GENMASK(2, 0) #define OTG_SS_SLOW 0x3 #define DCIN_AICL_REF_SEL_CFG 0x481 #define DCIN_CONT_AICL_THRESHOLD_CFG_MASK GENMASK(5, 0) #define WI_PWR_OPTIONS 0x495 #define CHG_OK_BIT BIT(7) #define WIPWR_UVLO_IRQ_OPT_BIT BIT(6) #define BUCK_HOLDOFF_ENABLE_BIT BIT(5) #define CHG_OK_HW_SW_SELECT_BIT BIT(4) #define WIPWR_RST_ENABLE_BIT BIT(3) #define DCIN_WIPWR_IRQ_SELECT_BIT BIT(2) #define AICL_SWITCH_ENABLE_BIT BIT(1) #define ZIN_ICL_ENABLE_BIT BIT(0) #define ICL_STATUS 0x607 #define INPUT_CURRENT_LIMIT_MASK GENMASK(7, 0) #define POWER_PATH_STATUS 0x60B #define P_PATH_INPUT_SS_DONE_BIT BIT(7) #define P_PATH_USBIN_SUSPEND_STS_BIT BIT(6) #define P_PATH_DCIN_SUSPEND_STS_BIT BIT(5) #define P_PATH_USE_USBIN_BIT BIT(4) #define P_PATH_USE_DCIN_BIT BIT(3) #define P_PATH_POWER_PATH_MASK GENMASK(2, 1) #define P_PATH_VALID_INPUT_POWER_SOURCE_STS_BIT BIT(0) #define BARK_BITE_WDOG_PET 0x643 #define BARK_BITE_WDOG_PET_BIT BIT(0) #define WD_CFG 0x651 #define WATCHDOG_TRIGGER_AFP_EN_BIT BIT(7) #define BARK_WDOG_INT_EN_BIT BIT(6) #define BITE_WDOG_INT_EN_BIT BIT(5) #define SFT_AFTER_WDOG_IRQ_MASK GENMASK(4, 3) #define WDOG_IRQ_SFT_BIT BIT(2) #define WDOG_TIMER_EN_ON_PLUGIN_BIT BIT(1) #define WDOG_TIMER_EN_BIT BIT(0) #define SNARL_BARK_BITE_WD_CFG 0x653 #define BITE_WDOG_DISABLE_CHARGING_CFG_BIT BIT(7) #define SNARL_WDOG_TIMEOUT_MASK GENMASK(6, 4) #define BARK_WDOG_TIMEOUT_MASK GENMASK(3, 2) #define BITE_WDOG_TIMEOUT_MASK GENMASK(1, 0) #define AICL_RERUN_TIME_CFG 0x661 #define AICL_RERUN_TIME_MASK GENMASK(1, 0) #define STAT_CFG 0x690 #define STAT_SW_OVERRIDE_VALUE_BIT BIT(7) #define STAT_SW_OVERRIDE_CFG_BIT BIT(6) #define STAT_PARALLEL_OFF_DG_CFG_MASK GENMASK(5, 4) #define STAT_POLARITY_CFG_BIT BIT(3) #define STAT_PARALLEL_CFG_BIT BIT(2) #define STAT_FUNCTION_CFG_BIT BIT(1) #define STAT_IRQ_PULSING_EN_BIT BIT(0) #define SDP_CURRENT_UA 500000 #define CDP_CURRENT_UA 1500000 #define DCP_CURRENT_UA 1500000 #define CURRENT_MAX_UA DCP_CURRENT_UA /* pmi8998 registers represent current in increments of 1/40th of an amp */ #define CURRENT_SCALE_FACTOR 25000 /* clang-format on */ enum charger_status { TRICKLE_CHARGE = 0, PRE_CHARGE, FAST_CHARGE, FULLON_CHARGE, TAPER_CHARGE, TERMINATE_CHARGE, INHIBIT_CHARGE, DISABLE_CHARGE, }; struct smb2_register { u16 addr; u8 mask; u8 val; }; /** * struct smb2_chip - smb2 chip structure * @dev: Device reference for power_supply * @name: The platform device name * @base: Base address for smb2 registers * @regmap: Register map * @batt_info: Battery data from DT * @status_change_work: Worker to handle plug/unplug events * @cable_irq: USB plugin IRQ * @wakeup_enabled: If the cable IRQ will cause a wakeup * @usb_in_i_chan: USB_IN current measurement channel * @usb_in_v_chan: USB_IN voltage measurement channel * @chg_psy: Charger power supply instance */ struct smb2_chip { struct device *dev; const char *name; unsigned int base; struct regmap *regmap; struct power_supply_battery_info *batt_info; struct delayed_work status_change_work; int cable_irq; bool wakeup_enabled; struct iio_channel *usb_in_i_chan; struct iio_channel *usb_in_v_chan; struct power_supply *chg_psy; }; static enum power_supply_property smb2_properties[] = { POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_USB_TYPE, }; static enum power_supply_usb_type smb2_usb_types[] = { POWER_SUPPLY_USB_TYPE_UNKNOWN, POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_CDP, }; static int smb2_get_prop_usb_online(struct smb2_chip *chip, int *val) { unsigned int stat; int rc; rc = regmap_read(chip->regmap, chip->base + POWER_PATH_STATUS, &stat); if (rc < 0) { dev_err(chip->dev, "Couldn't read power path status: %d\n", rc); return rc; } *val = (stat & P_PATH_USE_USBIN_BIT) && (stat & P_PATH_VALID_INPUT_POWER_SOURCE_STS_BIT); return 0; } /* * Qualcomm "automatic power source detection" aka APSD * tells us what type of charger we're connected to. */ static int smb2_apsd_get_charger_type(struct smb2_chip *chip, int *val) { unsigned int apsd_stat, stat; int usb_online = 0; int rc; rc = smb2_get_prop_usb_online(chip, &usb_online); if (!usb_online) { *val = POWER_SUPPLY_USB_TYPE_UNKNOWN; return rc; } rc = regmap_read(chip->regmap, chip->base + APSD_STATUS, &apsd_stat); if (rc < 0) { dev_err(chip->dev, "Failed to read apsd status, rc = %d", rc); return rc; } if (!(apsd_stat & APSD_DTC_STATUS_DONE_BIT)) { dev_dbg(chip->dev, "Apsd not ready"); return -EAGAIN; } rc = regmap_read(chip->regmap, chip->base + APSD_RESULT_STATUS, &stat); if (rc < 0) { dev_err(chip->dev, "Failed to read apsd result, rc = %d", rc); return rc; } stat &= APSD_RESULT_STATUS_MASK; if (stat & CDP_CHARGER_BIT) *val = POWER_SUPPLY_USB_TYPE_CDP; else if (stat & (DCP_CHARGER_BIT | OCP_CHARGER_BIT | FLOAT_CHARGER_BIT)) *val = POWER_SUPPLY_USB_TYPE_DCP; else /* SDP_CHARGER_BIT (or others) */ *val = POWER_SUPPLY_USB_TYPE_SDP; return 0; } static int smb2_get_prop_status(struct smb2_chip *chip, int *val) { unsigned char stat[2]; int usb_online = 0; int rc; rc = smb2_get_prop_usb_online(chip, &usb_online); if (!usb_online) { *val = POWER_SUPPLY_STATUS_DISCHARGING; return rc; } rc = regmap_bulk_read(chip->regmap, chip->base + BATTERY_CHARGER_STATUS_1, &stat, 2); if (rc < 0) { dev_err(chip->dev, "Failed to read charging status ret=%d\n", rc); return rc; } if (stat[1] & CHARGER_ERROR_STATUS_BAT_OV_BIT) { *val = POWER_SUPPLY_STATUS_NOT_CHARGING; return 0; } stat[0] = stat[0] & BATTERY_CHARGER_STATUS_MASK; switch (stat[0]) { case TRICKLE_CHARGE: case PRE_CHARGE: case FAST_CHARGE: case FULLON_CHARGE: case TAPER_CHARGE: *val = POWER_SUPPLY_STATUS_CHARGING; return rc; case DISABLE_CHARGE: *val = POWER_SUPPLY_STATUS_NOT_CHARGING; return rc; case TERMINATE_CHARGE: case INHIBIT_CHARGE: *val = POWER_SUPPLY_STATUS_FULL; return rc; default: *val = POWER_SUPPLY_STATUS_UNKNOWN; return rc; } } static inline int smb2_get_current_limit(struct smb2_chip *chip, unsigned int *val) { int rc = regmap_read(chip->regmap, chip->base + ICL_STATUS, val); if (rc >= 0) *val *= CURRENT_SCALE_FACTOR; return rc; } static int smb2_set_current_limit(struct smb2_chip *chip, unsigned int val) { unsigned char val_raw; if (val > 4800000) { dev_err(chip->dev, "Can't set current limit higher than 4800000uA"); return -EINVAL; } val_raw = val / CURRENT_SCALE_FACTOR; return regmap_write(chip->regmap, chip->base + USBIN_CURRENT_LIMIT_CFG, val_raw); } static void smb2_status_change_work(struct work_struct *work) { unsigned int charger_type, current_ua; int usb_online = 0; int count, rc; struct smb2_chip *chip; chip = container_of(work, struct smb2_chip, status_change_work.work); smb2_get_prop_usb_online(chip, &usb_online); if (!usb_online) return; for (count = 0; count < 3; count++) { dev_dbg(chip->dev, "get charger type retry %d\n", count); rc = smb2_apsd_get_charger_type(chip, &charger_type); if (rc != -EAGAIN) break; msleep(100); } if (rc < 0 && rc != -EAGAIN) { dev_err(chip->dev, "get charger type failed: %d\n", rc); return; } if (rc < 0) { rc = regmap_update_bits(chip->regmap, chip->base + CMD_APSD, APSD_RERUN_BIT, APSD_RERUN_BIT); schedule_delayed_work(&chip->status_change_work, msecs_to_jiffies(1000)); dev_dbg(chip->dev, "get charger type failed, rerun apsd\n"); return; } switch (charger_type) { case POWER_SUPPLY_USB_TYPE_CDP: current_ua = CDP_CURRENT_UA; break; case POWER_SUPPLY_USB_TYPE_DCP: current_ua = DCP_CURRENT_UA; break; case POWER_SUPPLY_USB_TYPE_SDP: default: current_ua = SDP_CURRENT_UA; break; } smb2_set_current_limit(chip, current_ua); power_supply_changed(chip->chg_psy); } static int smb2_get_iio_chan(struct smb2_chip *chip, struct iio_channel *chan, int *val) { int rc; union power_supply_propval status; rc = power_supply_get_property(chip->chg_psy, POWER_SUPPLY_PROP_STATUS, &status); if (rc < 0 || status.intval != POWER_SUPPLY_STATUS_CHARGING) { *val = 0; return 0; } if (IS_ERR(chan)) { dev_err(chip->dev, "Failed to chan, err = %li", PTR_ERR(chan)); return PTR_ERR(chan); } return iio_read_channel_processed(chan, val); } static int smb2_get_prop_health(struct smb2_chip *chip, int *val) { int rc; unsigned int stat; rc = regmap_read(chip->regmap, chip->base + BATTERY_CHARGER_STATUS_2, &stat); if (rc < 0) { dev_err(chip->dev, "Couldn't read charger status rc=%d\n", rc); return rc; } switch (stat) { case CHARGER_ERROR_STATUS_BAT_OV_BIT: *val = POWER_SUPPLY_HEALTH_OVERVOLTAGE; return 0; case BAT_TEMP_STATUS_TOO_COLD_BIT: *val = POWER_SUPPLY_HEALTH_COLD; return 0; case BAT_TEMP_STATUS_TOO_HOT_BIT: *val = POWER_SUPPLY_HEALTH_OVERHEAT; return 0; case BAT_TEMP_STATUS_COLD_SOFT_LIMIT_BIT: *val = POWER_SUPPLY_HEALTH_COOL; return 0; case BAT_TEMP_STATUS_HOT_SOFT_LIMIT_BIT: *val = POWER_SUPPLY_HEALTH_WARM; return 0; default: *val = POWER_SUPPLY_HEALTH_GOOD; return 0; } } static int smb2_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct smb2_chip *chip = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = "Qualcomm"; return 0; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = chip->name; return 0; case POWER_SUPPLY_PROP_CURRENT_MAX: return smb2_get_current_limit(chip, &val->intval); case POWER_SUPPLY_PROP_CURRENT_NOW: return smb2_get_iio_chan(chip, chip->usb_in_i_chan, &val->intval); case POWER_SUPPLY_PROP_VOLTAGE_NOW: return smb2_get_iio_chan(chip, chip->usb_in_v_chan, &val->intval); case POWER_SUPPLY_PROP_ONLINE: return smb2_get_prop_usb_online(chip, &val->intval); case POWER_SUPPLY_PROP_STATUS: return smb2_get_prop_status(chip, &val->intval); case POWER_SUPPLY_PROP_HEALTH: return smb2_get_prop_health(chip, &val->intval); case POWER_SUPPLY_PROP_USB_TYPE: return smb2_apsd_get_charger_type(chip, &val->intval); default: dev_err(chip->dev, "invalid property: %d\n", psp); return -EINVAL; } } static int smb2_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct smb2_chip *chip = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: return smb2_set_current_limit(chip, val->intval); default: dev_err(chip->dev, "No setter for property: %d\n", psp); return -EINVAL; } } static int smb2_property_is_writable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: return 1; default: return 0; } } static irqreturn_t smb2_handle_batt_overvoltage(int irq, void *data) { struct smb2_chip *chip = data; unsigned int status; regmap_read(chip->regmap, chip->base + BATTERY_CHARGER_STATUS_2, &status); if (status & CHARGER_ERROR_STATUS_BAT_OV_BIT) { /* The hardware stops charging automatically */ dev_err(chip->dev, "battery overvoltage detected\n"); power_supply_changed(chip->chg_psy); } return IRQ_HANDLED; } static irqreturn_t smb2_handle_usb_plugin(int irq, void *data) { struct smb2_chip *chip = data; power_supply_changed(chip->chg_psy); schedule_delayed_work(&chip->status_change_work, msecs_to_jiffies(1500)); return IRQ_HANDLED; } static irqreturn_t smb2_handle_usb_icl_change(int irq, void *data) { struct smb2_chip *chip = data; power_supply_changed(chip->chg_psy); return IRQ_HANDLED; } static irqreturn_t smb2_handle_wdog_bark(int irq, void *data) { struct smb2_chip *chip = data; int rc; power_supply_changed(chip->chg_psy); rc = regmap_write(chip->regmap, BARK_BITE_WDOG_PET, BARK_BITE_WDOG_PET_BIT); if (rc < 0) dev_err(chip->dev, "Couldn't pet the dog rc=%d\n", rc); return IRQ_HANDLED; } static const struct power_supply_desc smb2_psy_desc = { .name = "pmi8998_charger", .type = POWER_SUPPLY_TYPE_USB, .usb_types = smb2_usb_types, .num_usb_types = ARRAY_SIZE(smb2_usb_types), .properties = smb2_properties, .num_properties = ARRAY_SIZE(smb2_properties), .get_property = smb2_get_property, .set_property = smb2_set_property, .property_is_writeable = smb2_property_is_writable, }; /* Init sequence derived from vendor downstream driver */ static const struct smb2_register smb2_init_seq[] = { { .addr = AICL_RERUN_TIME_CFG, .mask = AICL_RERUN_TIME_MASK, .val = 0 }, /* * By default configure us as an upstream facing port * FIXME: This will be handled by the type-c driver */ { .addr = TYPE_C_INTRPT_ENB_SOFTWARE_CTRL, .mask = TYPEC_POWER_ROLE_CMD_MASK | VCONN_EN_SRC_BIT | VCONN_EN_VALUE_BIT, .val = VCONN_EN_SRC_BIT }, /* * Disable Type-C factory mode and stay in Attached.SRC state when VCONN * over-current happens */ { .addr = TYPE_C_CFG, .mask = FACTORY_MODE_DETECTION_EN_BIT | VCONN_OC_CFG_BIT, .val = 0 }, /* Configure VBUS for software control */ { .addr = OTG_CFG, .mask = OTG_EN_SRC_CFG_BIT, .val = 0 }, /* * Use VBAT to determine the recharge threshold when battery is full * rather than the state of charge. */ { .addr = FG_UPDATE_CFG_2_SEL, .mask = SOC_LT_CHG_RECHARGE_THRESH_SEL_BIT | VBT_LT_CHG_RECHARGE_THRESH_SEL_BIT, .val = VBT_LT_CHG_RECHARGE_THRESH_SEL_BIT }, /* Enable charging */ { .addr = USBIN_OPTIONS_1_CFG, .mask = HVDCP_EN_BIT, .val = 0 }, { .addr = CHARGING_ENABLE_CMD, .mask = CHARGING_ENABLE_CMD_BIT, .val = CHARGING_ENABLE_CMD_BIT }, /* * Match downstream defaults * CHG_EN_SRC_BIT - charger enable is controlled by software * CHG_EN_POLARITY_BIT - polarity of charge enable pin when in HW control * pulled low on OnePlus 6 and SHIFT6mq * PRETOFAST_TRANSITION_CFG_BIT - * BAT_OV_ECC_BIT - * I_TERM_BIT - Current termination ?? 0 = enabled * AUTO_RECHG_BIT - Enable automatic recharge when battery is full * 0 = enabled * EN_ANALOG_DROP_IN_VBATT_BIT * CHARGER_INHIBIT_BIT - Inhibit charging based on battery voltage * instead of ?? */ { .addr = CHGR_CFG2, .mask = CHG_EN_SRC_BIT | CHG_EN_POLARITY_BIT | PRETOFAST_TRANSITION_CFG_BIT | BAT_OV_ECC_BIT | I_TERM_BIT | AUTO_RECHG_BIT | EN_ANALOG_DROP_IN_VBATT_BIT | CHARGER_INHIBIT_BIT, .val = CHARGER_INHIBIT_BIT }, /* STAT pin software override, match downstream. Parallell charging? */ { .addr = STAT_CFG, .mask = STAT_SW_OVERRIDE_CFG_BIT, .val = STAT_SW_OVERRIDE_CFG_BIT }, /* Set the default SDP charger type to a 500ma USB 2.0 port */ { .addr = USBIN_ICL_OPTIONS, .mask = USB51_MODE_BIT | USBIN_MODE_CHG_BIT, .val = USB51_MODE_BIT }, /* Disable watchdog */ { .addr = SNARL_BARK_BITE_WD_CFG, .mask = 0xff, .val = 0 }, { .addr = WD_CFG, .mask = WATCHDOG_TRIGGER_AFP_EN_BIT | WDOG_TIMER_EN_ON_PLUGIN_BIT | BARK_WDOG_INT_EN_BIT, .val = 0 }, /* These bits aren't documented anywhere */ { .addr = USBIN_5V_AICL_THRESHOLD_CFG, .mask = USBIN_5V_AICL_THRESHOLD_CFG_MASK, .val = 0x3 }, { .addr = USBIN_CONT_AICL_THRESHOLD_CFG, .mask = USBIN_CONT_AICL_THRESHOLD_CFG_MASK, .val = 0x3 }, /* * Enable Automatic Input Current Limit, this will slowly ramp up the current * When connected to a wall charger, and automatically stop when it detects * the charger current limit (voltage drop?) or it reaches the programmed limit. */ { .addr = USBIN_AICL_OPTIONS_CFG, .mask = USBIN_AICL_START_AT_MAX_BIT | USBIN_AICL_ADC_EN_BIT | USBIN_AICL_EN_BIT | SUSPEND_ON_COLLAPSE_USBIN_BIT | USBIN_HV_COLLAPSE_RESPONSE_BIT | USBIN_LV_COLLAPSE_RESPONSE_BIT, .val = USBIN_HV_COLLAPSE_RESPONSE_BIT | USBIN_LV_COLLAPSE_RESPONSE_BIT | USBIN_AICL_EN_BIT }, /* * Set pre charge current to default, the OnePlus 6 bootloader * sets this very conservatively. */ { .addr = PRE_CHARGE_CURRENT_CFG, .mask = PRE_CHARGE_CURRENT_SETTING_MASK, .val = 500000 / CURRENT_SCALE_FACTOR }, /* * This overrides all of the current limit options exposed to userspace * and prevents the device from pulling more than ~1A. This is done * to minimise potential fire hazard risks. */ { .addr = FAST_CHARGE_CURRENT_CFG, .mask = FAST_CHARGE_CURRENT_SETTING_MASK, .val = 1000000 / CURRENT_SCALE_FACTOR }, }; static int smb2_init_hw(struct smb2_chip *chip) { int rc, i; for (i = 0; i < ARRAY_SIZE(smb2_init_seq); i++) { dev_dbg(chip->dev, "%d: Writing 0x%02x to 0x%02x\n", i, smb2_init_seq[i].val, smb2_init_seq[i].addr); rc = regmap_update_bits(chip->regmap, chip->base + smb2_init_seq[i].addr, smb2_init_seq[i].mask, smb2_init_seq[i].val); if (rc < 0) return dev_err_probe(chip->dev, rc, "%s: init command %d failed\n", __func__, i); } return 0; } static int smb2_init_irq(struct smb2_chip *chip, int *irq, const char *name, irqreturn_t (*handler)(int irq, void *data)) { int irqnum; int rc; irqnum = platform_get_irq_byname(to_platform_device(chip->dev), name); if (irqnum < 0) return dev_err_probe(chip->dev, irqnum, "Couldn't get irq %s byname\n", name); rc = devm_request_threaded_irq(chip->dev, irqnum, NULL, handler, IRQF_ONESHOT, name, chip); if (rc < 0) return dev_err_probe(chip->dev, rc, "Couldn't request irq %s\n", name); if (irq) *irq = irqnum; return 0; } static int smb2_probe(struct platform_device *pdev) { struct power_supply_config supply_config = {}; struct power_supply_desc *desc; struct smb2_chip *chip; int rc, irq; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->dev = &pdev->dev; chip->name = pdev->name; chip->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!chip->regmap) return dev_err_probe(chip->dev, -ENODEV, "failed to locate the regmap\n"); rc = device_property_read_u32(chip->dev, "reg", &chip->base); if (rc < 0) return dev_err_probe(chip->dev, rc, "Couldn't read base address\n"); chip->usb_in_v_chan = devm_iio_channel_get(chip->dev, "usbin_v"); if (IS_ERR(chip->usb_in_v_chan)) return dev_err_probe(chip->dev, PTR_ERR(chip->usb_in_v_chan), "Couldn't get usbin_v IIO channel\n"); chip->usb_in_i_chan = devm_iio_channel_get(chip->dev, "usbin_i"); if (IS_ERR(chip->usb_in_i_chan)) { return dev_err_probe(chip->dev, PTR_ERR(chip->usb_in_i_chan), "Couldn't get usbin_i IIO channel\n"); } rc = smb2_init_hw(chip); if (rc < 0) return rc; supply_config.drv_data = chip; supply_config.of_node = pdev->dev.of_node; desc = devm_kzalloc(chip->dev, sizeof(smb2_psy_desc), GFP_KERNEL); memcpy(desc, &smb2_psy_desc, sizeof(smb2_psy_desc)); desc->name = devm_kasprintf(chip->dev, GFP_KERNEL, "%s-charger", (const char *)device_get_match_data(chip->dev)); chip->chg_psy = devm_power_supply_register(chip->dev, desc, &supply_config); if (IS_ERR(chip->chg_psy)) return dev_err_probe(chip->dev, PTR_ERR(chip->chg_psy), "failed to register power supply\n"); rc = power_supply_get_battery_info(chip->chg_psy, &chip->batt_info); if (rc) return dev_err_probe(chip->dev, rc, "Failed to get battery info\n"); rc = devm_delayed_work_autocancel(chip->dev, &chip->status_change_work, smb2_status_change_work); if (rc) return dev_err_probe(chip->dev, rc, "Failed to init status change work\n"); rc = (chip->batt_info->voltage_max_design_uv - 3487500) / 7500 + 1; rc = regmap_update_bits(chip->regmap, chip->base + FLOAT_VOLTAGE_CFG, FLOAT_VOLTAGE_SETTING_MASK, rc); if (rc < 0) return dev_err_probe(chip->dev, rc, "Couldn't set vbat max\n"); rc = smb2_init_irq(chip, &irq, "bat-ov", smb2_handle_batt_overvoltage); if (rc < 0) return rc; rc = smb2_init_irq(chip, &chip->cable_irq, "usb-plugin", smb2_handle_usb_plugin); if (rc < 0) return rc; rc = smb2_init_irq(chip, &irq, "usbin-icl-change", smb2_handle_usb_icl_change); if (rc < 0) return rc; rc = smb2_init_irq(chip, &irq, "wdog-bark", smb2_handle_wdog_bark); if (rc < 0) return rc; rc = dev_pm_set_wake_irq(chip->dev, chip->cable_irq); if (rc < 0) return dev_err_probe(chip->dev, rc, "Couldn't set wake irq\n"); platform_set_drvdata(pdev, chip); /* Initialise charger state */ schedule_delayed_work(&chip->status_change_work, 0); return 0; } static const struct of_device_id smb2_match_id_table[] = { { .compatible = "qcom,pmi8998-charger", .data = "pmi8998" }, { .compatible = "qcom,pm660-charger", .data = "pm660" }, { /* sentinal */ } }; MODULE_DEVICE_TABLE(of, smb2_match_id_table); static struct platform_driver qcom_spmi_smb2 = { .probe = smb2_probe, .driver = { .name = "qcom-pmi8998/pm660-charger", .of_match_table = smb2_match_id_table, }, }; module_platform_driver(qcom_spmi_smb2); MODULE_AUTHOR("Caleb Connolly <[email protected]>"); MODULE_DESCRIPTION("Qualcomm SMB2 Charger Driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/qcom_pmi8998_charger.c
/* * Battery driver for LEGO MINDSTORMS EV3 * * Copyright (C) 2017 David Lechner <[email protected]> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/delay.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/iio/consumer.h> #include <linux/iio/types.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/power_supply.h> struct lego_ev3_battery { struct iio_channel *iio_v; struct iio_channel *iio_i; struct gpio_desc *rechargeable_gpio; struct power_supply *psy; int technology; int v_max; int v_min; }; static int lego_ev3_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct lego_ev3_battery *batt = power_supply_get_drvdata(psy); int ret, val2; switch (psp) { case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = batt->technology; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: /* battery voltage is iio channel * 2 + Vce of transistor */ ret = iio_read_channel_processed(batt->iio_v, &val->intval); if (ret) return ret; val->intval *= 2000; val->intval += 50000; /* plus adjust for shunt resistor drop */ ret = iio_read_channel_processed(batt->iio_i, &val2); if (ret) return ret; val2 *= 1000; val2 /= 15; val->intval += val2; break; case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: val->intval = batt->v_max; break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: val->intval = batt->v_min; break; case POWER_SUPPLY_PROP_CURRENT_NOW: /* battery current is iio channel / 15 / 0.05 ohms */ ret = iio_read_channel_processed(batt->iio_i, &val->intval); if (ret) return ret; val->intval *= 20000; val->intval /= 15; break; case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_SYSTEM; break; default: return -EINVAL; } return 0; } static int lego_ev3_battery_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct lego_ev3_battery *batt = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_TECHNOLOGY: /* * Only allow changing technology from Unknown to NiMH. Li-ion * batteries are automatically detected and should not be * overridden. Rechargeable AA batteries, on the other hand, * cannot be automatically detected, and so must be manually * specified. This should only be set once during system init, * so there is no mechanism to go back to Unknown. */ if (batt->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN) return -EINVAL; switch (val->intval) { case POWER_SUPPLY_TECHNOLOGY_NiMH: batt->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; batt->v_max = 7800000; batt->v_min = 5400000; break; default: return -EINVAL; } break; default: return -EINVAL; } return 0; } static int lego_ev3_battery_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { struct lego_ev3_battery *batt = power_supply_get_drvdata(psy); return psp == POWER_SUPPLY_PROP_TECHNOLOGY && batt->technology == POWER_SUPPLY_TECHNOLOGY_UNKNOWN; } static enum power_supply_property lego_ev3_battery_props[] = { POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_SCOPE, }; static const struct power_supply_desc lego_ev3_battery_desc = { .name = "lego-ev3-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = lego_ev3_battery_props, .num_properties = ARRAY_SIZE(lego_ev3_battery_props), .get_property = lego_ev3_battery_get_property, .set_property = lego_ev3_battery_set_property, .property_is_writeable = lego_ev3_battery_property_is_writeable, }; static int lego_ev3_battery_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct lego_ev3_battery *batt; struct power_supply_config psy_cfg = {}; int err; batt = devm_kzalloc(dev, sizeof(*batt), GFP_KERNEL); if (!batt) return -ENOMEM; platform_set_drvdata(pdev, batt); batt->iio_v = devm_iio_channel_get(dev, "voltage"); err = PTR_ERR_OR_ZERO(batt->iio_v); if (err) return dev_err_probe(dev, err, "Failed to get voltage iio channel\n"); batt->iio_i = devm_iio_channel_get(dev, "current"); err = PTR_ERR_OR_ZERO(batt->iio_i); if (err) return dev_err_probe(dev, err, "Failed to get current iio channel\n"); batt->rechargeable_gpio = devm_gpiod_get(dev, "rechargeable", GPIOD_IN); err = PTR_ERR_OR_ZERO(batt->rechargeable_gpio); if (err) return dev_err_probe(dev, err, "Failed to get rechargeable gpio\n"); /* * The rechargeable battery indication switch cannot be changed without * removing the battery, so we only need to read it once. */ if (gpiod_get_value(batt->rechargeable_gpio)) { /* 2-cell Li-ion, 7.4V nominal */ batt->technology = POWER_SUPPLY_TECHNOLOGY_LION; batt->v_max = 84000000; batt->v_min = 60000000; } else { /* 6x AA Alkaline, 9V nominal */ batt->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; batt->v_max = 90000000; batt->v_min = 48000000; } psy_cfg.of_node = pdev->dev.of_node; psy_cfg.drv_data = batt; batt->psy = devm_power_supply_register(dev, &lego_ev3_battery_desc, &psy_cfg); err = PTR_ERR_OR_ZERO(batt->psy); if (err) { dev_err(dev, "failed to register power supply\n"); return err; } return 0; } static const struct of_device_id of_lego_ev3_battery_match[] = { { .compatible = "lego,ev3-battery", }, { } }; MODULE_DEVICE_TABLE(of, of_lego_ev3_battery_match); static struct platform_driver lego_ev3_battery_driver = { .driver = { .name = "lego-ev3-battery", .of_match_table = of_lego_ev3_battery_match, }, .probe = lego_ev3_battery_probe, }; module_platform_driver(lego_ev3_battery_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Lechner <[email protected]>"); MODULE_DESCRIPTION("LEGO MINDSTORMS EV3 Battery Driver");
linux-master
drivers/power/supply/lego_ev3_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Motorola CPCAP PMIC battery charger driver * * Copyright (C) 2017 Tony Lindgren <[email protected]> * * Rewritten for Linux power framework with some parts based on * earlier driver found in the Motorola Linux kernel: * * Copyright (C) 2009-2010 Motorola, Inc. */ #include <linux/atomic.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/notifier.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/gpio/consumer.h> #include <linux/usb/phy_companion.h> #include <linux/phy/omap_usb.h> #include <linux/usb/otg.h> #include <linux/iio/consumer.h> #include <linux/mfd/motorola-cpcap.h> /* * CPCAP_REG_CRM register bits. For documentation of somewhat similar hardware, * see NXP "MC13783 Power Management and Audio Circuit Users's Guide" * MC13783UG.pdf chapter "8.5 Battery Interface Register Summary". The registers * and values for CPCAP are different, but some of the internal components seem * similar. Also see the Motorola Linux kernel cpcap-regbits.h. CPCAP_REG_CHRGR_1 * bits that seem to describe the CRM register. */ #define CPCAP_REG_CRM_UNUSED_641_15 BIT(15) /* 641 = register number */ #define CPCAP_REG_CRM_UNUSED_641_14 BIT(14) /* 641 = register number */ #define CPCAP_REG_CRM_CHRG_LED_EN BIT(13) /* Charger LED */ #define CPCAP_REG_CRM_RVRSMODE BIT(12) /* USB VBUS output enable */ #define CPCAP_REG_CRM_ICHRG_TR1 BIT(11) /* Trickle charge current */ #define CPCAP_REG_CRM_ICHRG_TR0 BIT(10) #define CPCAP_REG_CRM_FET_OVRD BIT(9) /* 0 = hardware, 1 = FET_CTRL */ #define CPCAP_REG_CRM_FET_CTRL BIT(8) /* BPFET 1 if FET_OVRD set */ #define CPCAP_REG_CRM_VCHRG3 BIT(7) /* Charge voltage bits */ #define CPCAP_REG_CRM_VCHRG2 BIT(6) #define CPCAP_REG_CRM_VCHRG1 BIT(5) #define CPCAP_REG_CRM_VCHRG0 BIT(4) #define CPCAP_REG_CRM_ICHRG3 BIT(3) /* Charge current bits */ #define CPCAP_REG_CRM_ICHRG2 BIT(2) #define CPCAP_REG_CRM_ICHRG1 BIT(1) #define CPCAP_REG_CRM_ICHRG0 BIT(0) /* CPCAP_REG_CRM trickle charge voltages */ #define CPCAP_REG_CRM_TR(val) (((val) & 0x3) << 10) #define CPCAP_REG_CRM_TR_0A00 CPCAP_REG_CRM_TR(0x0) #define CPCAP_REG_CRM_TR_0A24 CPCAP_REG_CRM_TR(0x1) #define CPCAP_REG_CRM_TR_0A48 CPCAP_REG_CRM_TR(0x2) #define CPCAP_REG_CRM_TR_0A72 CPCAP_REG_CRM_TR(0x4) /* * CPCAP_REG_CRM charge voltages based on the ADC channel 1 values. * Note that these register bits don't match MC13783UG.pdf VCHRG * register bits. */ #define CPCAP_REG_CRM_VCHRG(val) (((val) & 0xf) << 4) #define CPCAP_REG_CRM_VCHRG_3V80 CPCAP_REG_CRM_VCHRG(0x0) #define CPCAP_REG_CRM_VCHRG_4V10 CPCAP_REG_CRM_VCHRG(0x1) #define CPCAP_REG_CRM_VCHRG_4V12 CPCAP_REG_CRM_VCHRG(0x2) #define CPCAP_REG_CRM_VCHRG_4V15 CPCAP_REG_CRM_VCHRG(0x3) #define CPCAP_REG_CRM_VCHRG_4V17 CPCAP_REG_CRM_VCHRG(0x4) #define CPCAP_REG_CRM_VCHRG_4V20 CPCAP_REG_CRM_VCHRG(0x5) #define CPCAP_REG_CRM_VCHRG_4V23 CPCAP_REG_CRM_VCHRG(0x6) #define CPCAP_REG_CRM_VCHRG_4V25 CPCAP_REG_CRM_VCHRG(0x7) #define CPCAP_REG_CRM_VCHRG_4V27 CPCAP_REG_CRM_VCHRG(0x8) #define CPCAP_REG_CRM_VCHRG_4V30 CPCAP_REG_CRM_VCHRG(0x9) #define CPCAP_REG_CRM_VCHRG_4V33 CPCAP_REG_CRM_VCHRG(0xa) #define CPCAP_REG_CRM_VCHRG_4V35 CPCAP_REG_CRM_VCHRG(0xb) #define CPCAP_REG_CRM_VCHRG_4V38 CPCAP_REG_CRM_VCHRG(0xc) #define CPCAP_REG_CRM_VCHRG_4V40 CPCAP_REG_CRM_VCHRG(0xd) #define CPCAP_REG_CRM_VCHRG_4V42 CPCAP_REG_CRM_VCHRG(0xe) #define CPCAP_REG_CRM_VCHRG_4V44 CPCAP_REG_CRM_VCHRG(0xf) /* * CPCAP_REG_CRM charge currents. These seem to match MC13783UG.pdf * values in "Table 8-3. Charge Path Regulator Current Limit * Characteristics" for the nominal values. * * Except 70mA and 1.596A and unlimited, these are simply 88.7mA / step. */ #define CPCAP_REG_CRM_ICHRG(val) (((val) & 0xf) << 0) #define CPCAP_REG_CRM_ICHRG_0A000 CPCAP_REG_CRM_ICHRG(0x0) #define CPCAP_REG_CRM_ICHRG_0A070 CPCAP_REG_CRM_ICHRG(0x1) #define CPCAP_REG_CRM_ICHRG_0A177 CPCAP_REG_CRM_ICHRG(0x2) #define CPCAP_REG_CRM_ICHRG_0A266 CPCAP_REG_CRM_ICHRG(0x3) #define CPCAP_REG_CRM_ICHRG_0A355 CPCAP_REG_CRM_ICHRG(0x4) #define CPCAP_REG_CRM_ICHRG_0A443 CPCAP_REG_CRM_ICHRG(0x5) #define CPCAP_REG_CRM_ICHRG_0A532 CPCAP_REG_CRM_ICHRG(0x6) #define CPCAP_REG_CRM_ICHRG_0A621 CPCAP_REG_CRM_ICHRG(0x7) #define CPCAP_REG_CRM_ICHRG_0A709 CPCAP_REG_CRM_ICHRG(0x8) #define CPCAP_REG_CRM_ICHRG_0A798 CPCAP_REG_CRM_ICHRG(0x9) #define CPCAP_REG_CRM_ICHRG_0A886 CPCAP_REG_CRM_ICHRG(0xa) #define CPCAP_REG_CRM_ICHRG_0A975 CPCAP_REG_CRM_ICHRG(0xb) #define CPCAP_REG_CRM_ICHRG_1A064 CPCAP_REG_CRM_ICHRG(0xc) #define CPCAP_REG_CRM_ICHRG_1A152 CPCAP_REG_CRM_ICHRG(0xd) #define CPCAP_REG_CRM_ICHRG_1A596 CPCAP_REG_CRM_ICHRG(0xe) #define CPCAP_REG_CRM_ICHRG_NO_LIMIT CPCAP_REG_CRM_ICHRG(0xf) /* CPCAP_REG_VUSBC register bits needed for VBUS */ #define CPCAP_BIT_VBUS_SWITCH BIT(0) /* VBUS boost to 5V */ enum { CPCAP_CHARGER_IIO_BATTDET, CPCAP_CHARGER_IIO_VOLTAGE, CPCAP_CHARGER_IIO_VBUS, CPCAP_CHARGER_IIO_CHRG_CURRENT, CPCAP_CHARGER_IIO_BATT_CURRENT, CPCAP_CHARGER_IIO_NR, }; struct cpcap_charger_ddata { struct device *dev; struct regmap *reg; struct list_head irq_list; struct delayed_work detect_work; struct delayed_work vbus_work; struct gpio_desc *gpio[2]; /* gpio_reven0 & 1 */ struct iio_channel *channels[CPCAP_CHARGER_IIO_NR]; struct power_supply *usb; struct phy_companion comparator; /* For USB VBUS */ unsigned int vbus_enabled:1; unsigned int feeding_vbus:1; atomic_t active; int status; int voltage; int limit_current; }; struct cpcap_interrupt_desc { int irq; struct list_head node; const char *name; }; struct cpcap_charger_ints_state { bool chrg_det; bool rvrs_chrg; bool vbusov; bool chrg_se1b; bool rvrs_mode; bool chrgcurr2; bool chrgcurr1; bool vbusvld; bool battdetb; }; static enum power_supply_property cpcap_charger_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, }; static int cpcap_charger_get_charge_voltage(struct cpcap_charger_ddata *ddata) { struct iio_channel *channel; int error, value = 0; channel = ddata->channels[CPCAP_CHARGER_IIO_VOLTAGE]; error = iio_read_channel_processed(channel, &value); if (error < 0) { dev_warn(ddata->dev, "%s failed: %i\n", __func__, error); return 0; } return value; } static int cpcap_charger_get_charge_current(struct cpcap_charger_ddata *ddata) { struct iio_channel *channel; int error, value = 0; channel = ddata->channels[CPCAP_CHARGER_IIO_CHRG_CURRENT]; error = iio_read_channel_processed(channel, &value); if (error < 0) { dev_warn(ddata->dev, "%s failed: %i\n", __func__, error); return 0; } return value; } static int cpcap_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct cpcap_charger_ddata *ddata = dev_get_drvdata(psy->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = ddata->status; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: val->intval = ddata->limit_current; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: val->intval = ddata->voltage; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (ddata->status == POWER_SUPPLY_STATUS_CHARGING) val->intval = cpcap_charger_get_charge_voltage(ddata) * 1000; else val->intval = 0; break; case POWER_SUPPLY_PROP_CURRENT_NOW: if (ddata->status == POWER_SUPPLY_STATUS_CHARGING) val->intval = cpcap_charger_get_charge_current(ddata) * 1000; else val->intval = 0; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = ddata->status == POWER_SUPPLY_STATUS_CHARGING; break; default: return -EINVAL; } return 0; } static int cpcap_charger_match_voltage(int voltage) { switch (voltage) { case 0 ... 4100000 - 1: return 3800000; case 4100000 ... 4120000 - 1: return 4100000; case 4120000 ... 4150000 - 1: return 4120000; case 4150000 ... 4170000 - 1: return 4150000; case 4170000 ... 4200000 - 1: return 4170000; case 4200000 ... 4230000 - 1: return 4200000; case 4230000 ... 4250000 - 1: return 4230000; case 4250000 ... 4270000 - 1: return 4250000; case 4270000 ... 4300000 - 1: return 4270000; case 4300000 ... 4330000 - 1: return 4300000; case 4330000 ... 4350000 - 1: return 4330000; case 4350000 ... 4380000 - 1: return 4350000; case 4380000 ... 4400000 - 1: return 4380000; case 4400000 ... 4420000 - 1: return 4400000; case 4420000 ... 4440000 - 1: return 4420000; case 4440000: return 4440000; default: return 0; } } static int cpcap_charger_get_bat_const_charge_voltage(struct cpcap_charger_ddata *ddata) { union power_supply_propval prop; struct power_supply *battery; int voltage = ddata->voltage; int error; battery = power_supply_get_by_name("battery"); if (battery) { error = power_supply_get_property(battery, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, &prop); if (!error) voltage = prop.intval; power_supply_put(battery); } return voltage; } static int cpcap_charger_current_to_regval(int microamp) { int miliamp = microamp / 1000; int res; if (miliamp < 0) return -EINVAL; if (miliamp < 70) return CPCAP_REG_CRM_ICHRG(0x0); if (miliamp < 177) return CPCAP_REG_CRM_ICHRG(0x1); if (miliamp >= 1596) return CPCAP_REG_CRM_ICHRG(0xe); res = microamp / 88666; if (res > 0xd) res = 0xd; return CPCAP_REG_CRM_ICHRG(res); } static int cpcap_charger_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct cpcap_charger_ddata *ddata = dev_get_drvdata(psy->dev.parent); int voltage, batvolt; switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: if (cpcap_charger_current_to_regval(val->intval) < 0) return -EINVAL; ddata->limit_current = val->intval; schedule_delayed_work(&ddata->detect_work, 0); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: voltage = cpcap_charger_match_voltage(val->intval); batvolt = cpcap_charger_get_bat_const_charge_voltage(ddata); if (voltage > batvolt) voltage = batvolt; ddata->voltage = voltage; schedule_delayed_work(&ddata->detect_work, 0); break; default: return -EINVAL; } return 0; } static int cpcap_charger_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return 1; default: return 0; } } static void cpcap_charger_set_cable_path(struct cpcap_charger_ddata *ddata, bool enabled) { if (!ddata->gpio[0]) return; gpiod_set_value(ddata->gpio[0], enabled); } static void cpcap_charger_set_inductive_path(struct cpcap_charger_ddata *ddata, bool enabled) { if (!ddata->gpio[1]) return; gpiod_set_value(ddata->gpio[1], enabled); } static void cpcap_charger_update_state(struct cpcap_charger_ddata *ddata, int state) { const char *status; if (state > POWER_SUPPLY_STATUS_FULL) { dev_warn(ddata->dev, "unknown state: %i\n", state); return; } ddata->status = state; switch (state) { case POWER_SUPPLY_STATUS_DISCHARGING: status = "DISCONNECTED"; break; case POWER_SUPPLY_STATUS_NOT_CHARGING: status = "DETECTING"; break; case POWER_SUPPLY_STATUS_CHARGING: status = "CHARGING"; break; case POWER_SUPPLY_STATUS_FULL: status = "DONE"; break; default: return; } dev_dbg(ddata->dev, "state: %s\n", status); } static int cpcap_charger_disable(struct cpcap_charger_ddata *ddata) { int error; error = regmap_update_bits(ddata->reg, CPCAP_REG_CRM, 0x3fff, CPCAP_REG_CRM_FET_OVRD | CPCAP_REG_CRM_FET_CTRL); if (error) dev_err(ddata->dev, "%s failed with %i\n", __func__, error); return error; } static int cpcap_charger_enable(struct cpcap_charger_ddata *ddata, int max_voltage, int charge_current, int trickle_current) { int error; if (!max_voltage || !charge_current) return -EINVAL; dev_dbg(ddata->dev, "enable: %i %i %i\n", max_voltage, charge_current, trickle_current); error = regmap_update_bits(ddata->reg, CPCAP_REG_CRM, 0x3fff, CPCAP_REG_CRM_CHRG_LED_EN | trickle_current | CPCAP_REG_CRM_FET_OVRD | CPCAP_REG_CRM_FET_CTRL | max_voltage | charge_current); if (error) dev_err(ddata->dev, "%s failed with %i\n", __func__, error); return error; } static bool cpcap_charger_vbus_valid(struct cpcap_charger_ddata *ddata) { int error, value = 0; struct iio_channel *channel = ddata->channels[CPCAP_CHARGER_IIO_VBUS]; error = iio_read_channel_processed(channel, &value); if (error >= 0) return value > 3900; dev_err(ddata->dev, "error reading VBUS: %i\n", error); return false; } /* VBUS control functions for the USB PHY companion */ static void cpcap_charger_vbus_work(struct work_struct *work) { struct cpcap_charger_ddata *ddata; bool vbus = false; int error; ddata = container_of(work, struct cpcap_charger_ddata, vbus_work.work); if (ddata->vbus_enabled) { vbus = cpcap_charger_vbus_valid(ddata); if (vbus) { dev_dbg(ddata->dev, "VBUS already provided\n"); return; } ddata->feeding_vbus = true; cpcap_charger_set_cable_path(ddata, false); cpcap_charger_set_inductive_path(ddata, false); error = cpcap_charger_disable(ddata); if (error) goto out_err; cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_DISCHARGING); error = regmap_update_bits(ddata->reg, CPCAP_REG_VUSBC, CPCAP_BIT_VBUS_SWITCH, CPCAP_BIT_VBUS_SWITCH); if (error) goto out_err; error = regmap_update_bits(ddata->reg, CPCAP_REG_CRM, CPCAP_REG_CRM_RVRSMODE, CPCAP_REG_CRM_RVRSMODE); if (error) goto out_err; } else { error = regmap_update_bits(ddata->reg, CPCAP_REG_VUSBC, CPCAP_BIT_VBUS_SWITCH, 0); if (error) goto out_err; error = regmap_update_bits(ddata->reg, CPCAP_REG_CRM, CPCAP_REG_CRM_RVRSMODE, 0); if (error) goto out_err; cpcap_charger_set_cable_path(ddata, true); cpcap_charger_set_inductive_path(ddata, true); ddata->feeding_vbus = false; } return; out_err: cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_UNKNOWN); dev_err(ddata->dev, "%s could not %s vbus: %i\n", __func__, ddata->vbus_enabled ? "enable" : "disable", error); } static int cpcap_charger_set_vbus(struct phy_companion *comparator, bool enabled) { struct cpcap_charger_ddata *ddata = container_of(comparator, struct cpcap_charger_ddata, comparator); ddata->vbus_enabled = enabled; schedule_delayed_work(&ddata->vbus_work, 0); return 0; } /* Charger interrupt handling functions */ static int cpcap_charger_get_ints_state(struct cpcap_charger_ddata *ddata, struct cpcap_charger_ints_state *s) { int val, error; error = regmap_read(ddata->reg, CPCAP_REG_INTS1, &val); if (error) return error; s->chrg_det = val & BIT(13); s->rvrs_chrg = val & BIT(12); s->vbusov = val & BIT(11); error = regmap_read(ddata->reg, CPCAP_REG_INTS2, &val); if (error) return error; s->chrg_se1b = val & BIT(13); s->rvrs_mode = val & BIT(6); s->chrgcurr2 = val & BIT(5); s->chrgcurr1 = val & BIT(4); s->vbusvld = val & BIT(3); error = regmap_read(ddata->reg, CPCAP_REG_INTS4, &val); if (error) return error; s->battdetb = val & BIT(6); return 0; } static int cpcap_charger_voltage_to_regval(int voltage) { int offset; switch (voltage) { case 0 ... 4100000 - 1: return 0; case 4100000 ... 4200000 - 1: offset = 1; break; case 4200000 ... 4300000 - 1: offset = 0; break; case 4300000 ... 4380000 - 1: offset = -1; break; case 4380000 ... 4440000: offset = -2; break; default: return 0; } return ((voltage - 4100000) / 20000) + offset; } static void cpcap_charger_disconnect(struct cpcap_charger_ddata *ddata, int state, unsigned long delay) { int error; /* Update battery state before disconnecting the charger */ switch (state) { case POWER_SUPPLY_STATUS_DISCHARGING: case POWER_SUPPLY_STATUS_FULL: power_supply_changed(ddata->usb); break; default: break; } error = cpcap_charger_disable(ddata); if (error) { cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_UNKNOWN); return; } cpcap_charger_update_state(ddata, state); power_supply_changed(ddata->usb); schedule_delayed_work(&ddata->detect_work, delay); } static void cpcap_usb_detect(struct work_struct *work) { struct cpcap_charger_ddata *ddata; struct cpcap_charger_ints_state s; int error, new_state; ddata = container_of(work, struct cpcap_charger_ddata, detect_work.work); error = cpcap_charger_get_ints_state(ddata, &s); if (error) return; /* Just init the state if a charger is connected with no chrg_det set */ if (!s.chrg_det && s.chrgcurr1 && s.vbusvld) { cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_NOT_CHARGING); return; } /* * If battery voltage is higher than charge voltage, it may have been * charged to 4.35V by Android. Try again in 10 minutes. */ if (cpcap_charger_get_charge_voltage(ddata) > ddata->voltage) { cpcap_charger_disconnect(ddata, POWER_SUPPLY_STATUS_NOT_CHARGING, HZ * 60 * 10); return; } /* Delay for 80ms to avoid vbus bouncing when usb cable is plugged in */ usleep_range(80000, 120000); /* Throttle chrgcurr2 interrupt for charger done and retry */ switch (ddata->status) { case POWER_SUPPLY_STATUS_CHARGING: if (s.chrgcurr2) break; new_state = POWER_SUPPLY_STATUS_FULL; if (s.chrgcurr1 && s.vbusvld) { cpcap_charger_disconnect(ddata, new_state, HZ * 5); return; } break; case POWER_SUPPLY_STATUS_FULL: if (!s.chrgcurr2) break; if (s.vbusvld) new_state = POWER_SUPPLY_STATUS_NOT_CHARGING; else new_state = POWER_SUPPLY_STATUS_DISCHARGING; cpcap_charger_disconnect(ddata, new_state, HZ * 5); return; default: break; } if (!ddata->feeding_vbus && cpcap_charger_vbus_valid(ddata) && s.chrgcurr1) { int max_current; int vchrg, ichrg; union power_supply_propval val; struct power_supply *battery; battery = power_supply_get_by_name("battery"); if (IS_ERR_OR_NULL(battery)) { dev_err(ddata->dev, "battery power_supply not available %li\n", PTR_ERR(battery)); return; } error = power_supply_get_property(battery, POWER_SUPPLY_PROP_PRESENT, &val); power_supply_put(battery); if (error) goto out_err; if (val.intval) { max_current = 1596000; } else { dev_info(ddata->dev, "battery not inserted, charging disabled\n"); max_current = 0; } if (max_current > ddata->limit_current) max_current = ddata->limit_current; ichrg = cpcap_charger_current_to_regval(max_current); vchrg = cpcap_charger_voltage_to_regval(ddata->voltage); error = cpcap_charger_enable(ddata, CPCAP_REG_CRM_VCHRG(vchrg), ichrg, 0); if (error) goto out_err; cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_CHARGING); } else { error = cpcap_charger_disable(ddata); if (error) goto out_err; cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_DISCHARGING); } power_supply_changed(ddata->usb); return; out_err: cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_UNKNOWN); dev_err(ddata->dev, "%s failed with %i\n", __func__, error); } static irqreturn_t cpcap_charger_irq_thread(int irq, void *data) { struct cpcap_charger_ddata *ddata = data; if (!atomic_read(&ddata->active)) return IRQ_NONE; schedule_delayed_work(&ddata->detect_work, 0); return IRQ_HANDLED; } static int cpcap_usb_init_irq(struct platform_device *pdev, struct cpcap_charger_ddata *ddata, const char *name) { struct cpcap_interrupt_desc *d; int irq, error; irq = platform_get_irq_byname(pdev, name); if (irq < 0) return -ENODEV; error = devm_request_threaded_irq(ddata->dev, irq, NULL, cpcap_charger_irq_thread, IRQF_SHARED | IRQF_ONESHOT, name, ddata); if (error) { dev_err(ddata->dev, "could not get irq %s: %i\n", name, error); return error; } d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->name = name; d->irq = irq; list_add(&d->node, &ddata->irq_list); return 0; } static const char * const cpcap_charger_irqs[] = { /* REG_INT_0 */ "chrg_det", "rvrs_chrg", /* REG_INT1 */ "chrg_se1b", "se0conn", "rvrs_mode", "chrgcurr2", "chrgcurr1", "vbusvld", /* REG_INT_3 */ "battdetb", }; static int cpcap_usb_init_interrupts(struct platform_device *pdev, struct cpcap_charger_ddata *ddata) { int i, error; for (i = 0; i < ARRAY_SIZE(cpcap_charger_irqs); i++) { error = cpcap_usb_init_irq(pdev, ddata, cpcap_charger_irqs[i]); if (error) return error; } return 0; } static void cpcap_charger_init_optional_gpios(struct cpcap_charger_ddata *ddata) { int i; for (i = 0; i < 2; i++) { ddata->gpio[i] = devm_gpiod_get_index(ddata->dev, "mode", i, GPIOD_OUT_HIGH); if (IS_ERR(ddata->gpio[i])) { dev_info(ddata->dev, "no mode change GPIO%i: %li\n", i, PTR_ERR(ddata->gpio[i])); ddata->gpio[i] = NULL; } } } static int cpcap_charger_init_iio(struct cpcap_charger_ddata *ddata) { const char * const names[CPCAP_CHARGER_IIO_NR] = { "battdetb", "battp", "vbus", "chg_isense", "batti", }; int error, i; for (i = 0; i < CPCAP_CHARGER_IIO_NR; i++) { ddata->channels[i] = devm_iio_channel_get(ddata->dev, names[i]); if (IS_ERR(ddata->channels[i])) { error = PTR_ERR(ddata->channels[i]); goto out_err; } if (!ddata->channels[i]->indio_dev) { error = -ENXIO; goto out_err; } } return 0; out_err: if (error != -EPROBE_DEFER) dev_err(ddata->dev, "could not initialize VBUS or ID IIO: %i\n", error); return error; } static char *cpcap_charger_supplied_to[] = { "battery", }; static const struct power_supply_desc cpcap_charger_usb_desc = { .name = "usb", .type = POWER_SUPPLY_TYPE_USB, .properties = cpcap_charger_props, .num_properties = ARRAY_SIZE(cpcap_charger_props), .get_property = cpcap_charger_get_property, .set_property = cpcap_charger_set_property, .property_is_writeable = cpcap_charger_property_is_writeable, }; #ifdef CONFIG_OF static const struct of_device_id cpcap_charger_id_table[] = { { .compatible = "motorola,mapphone-cpcap-charger", }, {}, }; MODULE_DEVICE_TABLE(of, cpcap_charger_id_table); #endif static int cpcap_charger_probe(struct platform_device *pdev) { struct cpcap_charger_ddata *ddata; const struct of_device_id *of_id; struct power_supply_config psy_cfg = {}; int error; of_id = of_match_device(of_match_ptr(cpcap_charger_id_table), &pdev->dev); if (!of_id) return -EINVAL; ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL); if (!ddata) return -ENOMEM; ddata->dev = &pdev->dev; ddata->voltage = 4200000; ddata->limit_current = 532000; ddata->reg = dev_get_regmap(ddata->dev->parent, NULL); if (!ddata->reg) return -ENODEV; INIT_LIST_HEAD(&ddata->irq_list); INIT_DELAYED_WORK(&ddata->detect_work, cpcap_usb_detect); INIT_DELAYED_WORK(&ddata->vbus_work, cpcap_charger_vbus_work); platform_set_drvdata(pdev, ddata); error = cpcap_charger_init_iio(ddata); if (error) return error; atomic_set(&ddata->active, 1); psy_cfg.of_node = pdev->dev.of_node; psy_cfg.drv_data = ddata; psy_cfg.supplied_to = cpcap_charger_supplied_to; psy_cfg.num_supplicants = ARRAY_SIZE(cpcap_charger_supplied_to), ddata->usb = devm_power_supply_register(ddata->dev, &cpcap_charger_usb_desc, &psy_cfg); if (IS_ERR(ddata->usb)) { error = PTR_ERR(ddata->usb); dev_err(ddata->dev, "failed to register USB charger: %i\n", error); return error; } error = cpcap_usb_init_interrupts(pdev, ddata); if (error) return error; ddata->comparator.set_vbus = cpcap_charger_set_vbus; error = omap_usb2_set_comparator(&ddata->comparator); if (error == -ENODEV) { dev_info(ddata->dev, "charger needs phy, deferring probe\n"); return -EPROBE_DEFER; } cpcap_charger_init_optional_gpios(ddata); schedule_delayed_work(&ddata->detect_work, 0); return 0; } static void cpcap_charger_shutdown(struct platform_device *pdev) { struct cpcap_charger_ddata *ddata = platform_get_drvdata(pdev); int error; atomic_set(&ddata->active, 0); error = omap_usb2_set_comparator(NULL); if (error) dev_warn(ddata->dev, "could not clear USB comparator: %i\n", error); error = cpcap_charger_disable(ddata); if (error) { cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_UNKNOWN); dev_warn(ddata->dev, "could not clear charger: %i\n", error); } cpcap_charger_update_state(ddata, POWER_SUPPLY_STATUS_DISCHARGING); cancel_delayed_work_sync(&ddata->vbus_work); cancel_delayed_work_sync(&ddata->detect_work); } static int cpcap_charger_remove(struct platform_device *pdev) { cpcap_charger_shutdown(pdev); return 0; } static struct platform_driver cpcap_charger_driver = { .probe = cpcap_charger_probe, .driver = { .name = "cpcap-charger", .of_match_table = of_match_ptr(cpcap_charger_id_table), }, .shutdown = cpcap_charger_shutdown, .remove = cpcap_charger_remove, }; module_platform_driver(cpcap_charger_driver); MODULE_AUTHOR("Tony Lindgren <[email protected]>"); MODULE_DESCRIPTION("CPCAP Battery Charger Interface driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:cpcap-charger");
linux-master
drivers/power/supply/cpcap-charger.c
// SPDX-License-Identifier: GPL-2.0 /* * BQ27xxx battery monitor I2C driver * * Copyright (C) 2015 Texas Instruments Incorporated - https://www.ti.com/ * Andrew F. Davis <[email protected]> */ #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/module.h> #include <asm/unaligned.h> #include <linux/power/bq27xxx_battery.h> static DEFINE_IDR(battery_id); static DEFINE_MUTEX(battery_mutex); static irqreturn_t bq27xxx_battery_irq_handler_thread(int irq, void *data) { struct bq27xxx_device_info *di = data; bq27xxx_battery_update(di); return IRQ_HANDLED; } static int bq27xxx_battery_i2c_read(struct bq27xxx_device_info *di, u8 reg, bool single) { struct i2c_client *client = to_i2c_client(di->dev); struct i2c_msg msg[2]; u8 data[2]; int ret; if (!client->adapter) return -ENODEV; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].buf = &reg; msg[0].len = sizeof(reg); msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].buf = data; if (single) msg[1].len = 1; else msg[1].len = 2; ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg)); if (ret < 0) return ret; if (!single) ret = get_unaligned_le16(data); else ret = data[0]; return ret; } static int bq27xxx_battery_i2c_write(struct bq27xxx_device_info *di, u8 reg, int value, bool single) { struct i2c_client *client = to_i2c_client(di->dev); struct i2c_msg msg; u8 data[4]; int ret; if (!client->adapter) return -ENODEV; data[0] = reg; if (single) { data[1] = (u8) value; msg.len = 2; } else { put_unaligned_le16(value, &data[1]); msg.len = 3; } msg.buf = data; msg.addr = client->addr; msg.flags = 0; ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) return ret; if (ret != 1) return -EINVAL; return 0; } static int bq27xxx_battery_i2c_bulk_read(struct bq27xxx_device_info *di, u8 reg, u8 *data, int len) { struct i2c_client *client = to_i2c_client(di->dev); int ret; if (!client->adapter) return -ENODEV; ret = i2c_smbus_read_i2c_block_data(client, reg, len, data); if (ret < 0) return ret; if (ret != len) return -EINVAL; return 0; } static int bq27xxx_battery_i2c_bulk_write(struct bq27xxx_device_info *di, u8 reg, u8 *data, int len) { struct i2c_client *client = to_i2c_client(di->dev); struct i2c_msg msg; u8 buf[33]; int ret; if (!client->adapter) return -ENODEV; buf[0] = reg; memcpy(&buf[1], data, len); msg.buf = buf; msg.addr = client->addr; msg.flags = 0; msg.len = len + 1; ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) return ret; if (ret != 1) return -EINVAL; return 0; } static int bq27xxx_battery_i2c_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct bq27xxx_device_info *di; int ret; char *name; int num; /* Get new ID for the new battery device */ mutex_lock(&battery_mutex); num = idr_alloc(&battery_id, client, 0, 0, GFP_KERNEL); mutex_unlock(&battery_mutex); if (num < 0) return num; name = devm_kasprintf(&client->dev, GFP_KERNEL, "%s-%d", id->name, num); if (!name) goto err_mem; di = devm_kzalloc(&client->dev, sizeof(*di), GFP_KERNEL); if (!di) goto err_mem; di->id = num; di->dev = &client->dev; di->chip = id->driver_data; di->name = name; di->bus.read = bq27xxx_battery_i2c_read; di->bus.write = bq27xxx_battery_i2c_write; di->bus.read_bulk = bq27xxx_battery_i2c_bulk_read; di->bus.write_bulk = bq27xxx_battery_i2c_bulk_write; ret = bq27xxx_battery_setup(di); if (ret) goto err_failed; /* Schedule a polling after about 1 min */ schedule_delayed_work(&di->work, 60 * HZ); i2c_set_clientdata(client, di); if (client->irq) { ret = request_threaded_irq(client->irq, NULL, bq27xxx_battery_irq_handler_thread, IRQF_ONESHOT, di->name, di); if (ret) { dev_err(&client->dev, "Unable to register IRQ %d error %d\n", client->irq, ret); bq27xxx_battery_teardown(di); goto err_failed; } } return 0; err_mem: ret = -ENOMEM; err_failed: mutex_lock(&battery_mutex); idr_remove(&battery_id, num); mutex_unlock(&battery_mutex); return ret; } static void bq27xxx_battery_i2c_remove(struct i2c_client *client) { struct bq27xxx_device_info *di = i2c_get_clientdata(client); free_irq(client->irq, di); bq27xxx_battery_teardown(di); mutex_lock(&battery_mutex); idr_remove(&battery_id, di->id); mutex_unlock(&battery_mutex); } static const struct i2c_device_id bq27xxx_i2c_id_table[] = { { "bq27200", BQ27000 }, { "bq27210", BQ27010 }, { "bq27500", BQ2750X }, { "bq27510", BQ2751X }, { "bq27520", BQ2752X }, { "bq27500-1", BQ27500 }, { "bq27510g1", BQ27510G1 }, { "bq27510g2", BQ27510G2 }, { "bq27510g3", BQ27510G3 }, { "bq27520g1", BQ27520G1 }, { "bq27520g2", BQ27520G2 }, { "bq27520g3", BQ27520G3 }, { "bq27520g4", BQ27520G4 }, { "bq27521", BQ27521 }, { "bq27530", BQ27530 }, { "bq27531", BQ27531 }, { "bq27541", BQ27541 }, { "bq27542", BQ27542 }, { "bq27546", BQ27546 }, { "bq27742", BQ27742 }, { "bq27545", BQ27545 }, { "bq27411", BQ27411 }, { "bq27421", BQ27421 }, { "bq27425", BQ27425 }, { "bq27426", BQ27426 }, { "bq27441", BQ27441 }, { "bq27621", BQ27621 }, { "bq27z561", BQ27Z561 }, { "bq28z610", BQ28Z610 }, { "bq34z100", BQ34Z100 }, { "bq78z100", BQ78Z100 }, {}, }; MODULE_DEVICE_TABLE(i2c, bq27xxx_i2c_id_table); #ifdef CONFIG_OF static const struct of_device_id bq27xxx_battery_i2c_of_match_table[] = { { .compatible = "ti,bq27200" }, { .compatible = "ti,bq27210" }, { .compatible = "ti,bq27500" }, { .compatible = "ti,bq27510" }, { .compatible = "ti,bq27520" }, { .compatible = "ti,bq27500-1" }, { .compatible = "ti,bq27510g1" }, { .compatible = "ti,bq27510g2" }, { .compatible = "ti,bq27510g3" }, { .compatible = "ti,bq27520g1" }, { .compatible = "ti,bq27520g2" }, { .compatible = "ti,bq27520g3" }, { .compatible = "ti,bq27520g4" }, { .compatible = "ti,bq27521" }, { .compatible = "ti,bq27530" }, { .compatible = "ti,bq27531" }, { .compatible = "ti,bq27541" }, { .compatible = "ti,bq27542" }, { .compatible = "ti,bq27546" }, { .compatible = "ti,bq27742" }, { .compatible = "ti,bq27545" }, { .compatible = "ti,bq27411" }, { .compatible = "ti,bq27421" }, { .compatible = "ti,bq27425" }, { .compatible = "ti,bq27426" }, { .compatible = "ti,bq27441" }, { .compatible = "ti,bq27621" }, { .compatible = "ti,bq27z561" }, { .compatible = "ti,bq28z610" }, { .compatible = "ti,bq34z100" }, { .compatible = "ti,bq78z100" }, {}, }; MODULE_DEVICE_TABLE(of, bq27xxx_battery_i2c_of_match_table); #endif static struct i2c_driver bq27xxx_battery_i2c_driver = { .driver = { .name = "bq27xxx-battery", .of_match_table = of_match_ptr(bq27xxx_battery_i2c_of_match_table), }, .probe = bq27xxx_battery_i2c_probe, .remove = bq27xxx_battery_i2c_remove, .id_table = bq27xxx_i2c_id_table, }; module_i2c_driver(bq27xxx_battery_i2c_driver); MODULE_AUTHOR("Andrew F. Davis <[email protected]>"); MODULE_DESCRIPTION("BQ27xxx battery monitor i2c driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/bq27xxx_battery_i2c.c
// SPDX-License-Identifier: GPL-2.0-only /* * axp288_charger.c - X-power AXP288 PMIC Charger driver * * Copyright (C) 2016-2017 Hans de Goede <[email protected]> * Copyright (C) 2014 Intel Corporation * Author: Ramakrishna Pallala <[email protected]> */ #include <linux/acpi.h> #include <linux/bitops.h> #include <linux/module.h> #include <linux/device.h> #include <linux/regmap.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/usb/otg.h> #include <linux/notifier.h> #include <linux/power_supply.h> #include <linux/property.h> #include <linux/mfd/axp20x.h> #include <linux/extcon.h> #include <linux/dmi.h> #include <asm/iosf_mbi.h> #define PS_STAT_VBUS_TRIGGER BIT(0) #define PS_STAT_BAT_CHRG_DIR BIT(2) #define PS_STAT_VBAT_ABOVE_VHOLD BIT(3) #define PS_STAT_VBUS_VALID BIT(4) #define PS_STAT_VBUS_PRESENT BIT(5) #define CHRG_STAT_BAT_SAFE_MODE BIT(3) #define CHRG_STAT_BAT_VALID BIT(4) #define CHRG_STAT_BAT_PRESENT BIT(5) #define CHRG_STAT_CHARGING BIT(6) #define CHRG_STAT_PMIC_OTP BIT(7) #define VBUS_ISPOUT_CUR_LIM_MASK 0x03 #define VBUS_ISPOUT_CUR_LIM_BIT_POS 0 #define VBUS_ISPOUT_CUR_LIM_900MA 0x0 /* 900mA */ #define VBUS_ISPOUT_CUR_LIM_1500MA 0x1 /* 1500mA */ #define VBUS_ISPOUT_CUR_LIM_2000MA 0x2 /* 2000mA */ #define VBUS_ISPOUT_CUR_NO_LIM 0x3 /* 2500mA */ #define VBUS_ISPOUT_VHOLD_SET_MASK 0x38 #define VBUS_ISPOUT_VHOLD_SET_BIT_POS 0x3 #define VBUS_ISPOUT_VHOLD_SET_OFFSET 4000 /* 4000mV */ #define VBUS_ISPOUT_VHOLD_SET_LSB_RES 100 /* 100mV */ #define VBUS_ISPOUT_VHOLD_SET_4400MV 0x4 /* 4400mV */ #define VBUS_ISPOUT_VBUS_PATH_DIS BIT(7) #define CHRG_CCCV_CC_MASK 0xf /* 4 bits */ #define CHRG_CCCV_CC_BIT_POS 0 #define CHRG_CCCV_CC_OFFSET 200 /* 200mA */ #define CHRG_CCCV_CC_LSB_RES 200 /* 200mA */ #define CHRG_CCCV_ITERM_20P BIT(4) /* 20% of CC */ #define CHRG_CCCV_CV_MASK 0x60 /* 2 bits */ #define CHRG_CCCV_CV_BIT_POS 5 #define CHRG_CCCV_CV_4100MV 0x0 /* 4.10V */ #define CHRG_CCCV_CV_4150MV 0x1 /* 4.15V */ #define CHRG_CCCV_CV_4200MV 0x2 /* 4.20V */ #define CHRG_CCCV_CV_4350MV 0x3 /* 4.35V */ #define CHRG_CCCV_CHG_EN BIT(7) #define CNTL2_CC_TIMEOUT_MASK 0x3 /* 2 bits */ #define CNTL2_CC_TIMEOUT_OFFSET 6 /* 6 Hrs */ #define CNTL2_CC_TIMEOUT_LSB_RES 2 /* 2 Hrs */ #define CNTL2_CC_TIMEOUT_12HRS 0x3 /* 12 Hrs */ #define CNTL2_CHGLED_TYPEB BIT(4) #define CNTL2_CHG_OUT_TURNON BIT(5) #define CNTL2_PC_TIMEOUT_MASK 0xC0 #define CNTL2_PC_TIMEOUT_OFFSET 40 /* 40 mins */ #define CNTL2_PC_TIMEOUT_LSB_RES 10 /* 10 mins */ #define CNTL2_PC_TIMEOUT_70MINS 0x3 #define CHRG_ILIM_TEMP_LOOP_EN BIT(3) #define CHRG_VBUS_ILIM_MASK 0xf0 #define CHRG_VBUS_ILIM_BIT_POS 4 #define CHRG_VBUS_ILIM_100MA 0x0 /* 100mA */ #define CHRG_VBUS_ILIM_500MA 0x1 /* 500mA */ #define CHRG_VBUS_ILIM_900MA 0x2 /* 900mA */ #define CHRG_VBUS_ILIM_1500MA 0x3 /* 1500mA */ #define CHRG_VBUS_ILIM_2000MA 0x4 /* 2000mA */ #define CHRG_VBUS_ILIM_2500MA 0x5 /* 2500mA */ #define CHRG_VBUS_ILIM_3000MA 0x6 /* 3000mA */ #define CHRG_VBUS_ILIM_3500MA 0x7 /* 3500mA */ #define CHRG_VBUS_ILIM_4000MA 0x8 /* 4000mA */ #define CHRG_VLTFC_0C 0xA5 /* 0 DegC */ #define CHRG_VHTFC_45C 0x1F /* 45 DegC */ #define FG_CNTL_OCV_ADJ_EN BIT(3) #define CV_4100MV 4100 /* 4100mV */ #define CV_4150MV 4150 /* 4150mV */ #define CV_4200MV 4200 /* 4200mV */ #define CV_4350MV 4350 /* 4350mV */ #define AXP288_REG_UPDATE_INTERVAL (60 * HZ) #define AXP288_EXTCON_DEV_NAME "axp288_extcon" #define USB_HOST_EXTCON_HID "INT3496" #define USB_HOST_EXTCON_NAME "INT3496:00" enum { VBUS_OV_IRQ = 0, CHARGE_DONE_IRQ, CHARGE_CHARGING_IRQ, BAT_SAFE_QUIT_IRQ, BAT_SAFE_ENTER_IRQ, QCBTU_IRQ, CBTU_IRQ, QCBTO_IRQ, CBTO_IRQ, CHRG_INTR_END, }; struct axp288_chrg_info { struct platform_device *pdev; struct regmap *regmap; struct regmap_irq_chip_data *regmap_irqc; int irq[CHRG_INTR_END]; struct power_supply *psy_usb; struct mutex lock; /* OTG/Host mode */ struct { struct work_struct work; struct extcon_dev *cable; struct notifier_block id_nb; bool id_short; } otg; /* SDP/CDP/DCP USB charging cable notifications */ struct { struct extcon_dev *edev; struct notifier_block nb; struct work_struct work; } cable; int cc; int cv; int max_cc; int max_cv; unsigned long last_updated; unsigned int input_status; unsigned int op_mode; unsigned int backend_control; bool valid; }; static inline int axp288_charger_set_cc(struct axp288_chrg_info *info, int cc) { u8 reg_val; int ret; if (cc < CHRG_CCCV_CC_OFFSET) cc = CHRG_CCCV_CC_OFFSET; else if (cc > info->max_cc) cc = info->max_cc; reg_val = (cc - CHRG_CCCV_CC_OFFSET) / CHRG_CCCV_CC_LSB_RES; cc = (reg_val * CHRG_CCCV_CC_LSB_RES) + CHRG_CCCV_CC_OFFSET; reg_val = reg_val << CHRG_CCCV_CC_BIT_POS; ret = regmap_update_bits(info->regmap, AXP20X_CHRG_CTRL1, CHRG_CCCV_CC_MASK, reg_val); if (ret >= 0) info->cc = cc; return ret; } static inline int axp288_charger_set_cv(struct axp288_chrg_info *info, int cv) { u8 reg_val; int ret; if (cv <= CV_4100MV) { reg_val = CHRG_CCCV_CV_4100MV; cv = CV_4100MV; } else if (cv <= CV_4150MV) { reg_val = CHRG_CCCV_CV_4150MV; cv = CV_4150MV; } else if (cv <= CV_4200MV) { reg_val = CHRG_CCCV_CV_4200MV; cv = CV_4200MV; } else { reg_val = CHRG_CCCV_CV_4350MV; cv = CV_4350MV; } reg_val = reg_val << CHRG_CCCV_CV_BIT_POS; ret = regmap_update_bits(info->regmap, AXP20X_CHRG_CTRL1, CHRG_CCCV_CV_MASK, reg_val); if (ret >= 0) info->cv = cv; return ret; } static int axp288_charger_get_vbus_inlmt(struct axp288_chrg_info *info) { unsigned int val; val = info->backend_control; val >>= CHRG_VBUS_ILIM_BIT_POS; switch (val) { case CHRG_VBUS_ILIM_100MA: return 100000; case CHRG_VBUS_ILIM_500MA: return 500000; case CHRG_VBUS_ILIM_900MA: return 900000; case CHRG_VBUS_ILIM_1500MA: return 1500000; case CHRG_VBUS_ILIM_2000MA: return 2000000; case CHRG_VBUS_ILIM_2500MA: return 2500000; case CHRG_VBUS_ILIM_3000MA: return 3000000; case CHRG_VBUS_ILIM_3500MA: return 3500000; default: /* All b1xxx values map to 4000 mA */ return 4000000; } } static inline int axp288_charger_set_vbus_inlmt(struct axp288_chrg_info *info, int inlmt) { int ret; u8 reg_val; if (inlmt >= 4000000) reg_val = CHRG_VBUS_ILIM_4000MA << CHRG_VBUS_ILIM_BIT_POS; else if (inlmt >= 3500000) reg_val = CHRG_VBUS_ILIM_3500MA << CHRG_VBUS_ILIM_BIT_POS; else if (inlmt >= 3000000) reg_val = CHRG_VBUS_ILIM_3000MA << CHRG_VBUS_ILIM_BIT_POS; else if (inlmt >= 2500000) reg_val = CHRG_VBUS_ILIM_2500MA << CHRG_VBUS_ILIM_BIT_POS; else if (inlmt >= 2000000) reg_val = CHRG_VBUS_ILIM_2000MA << CHRG_VBUS_ILIM_BIT_POS; else if (inlmt >= 1500000) reg_val = CHRG_VBUS_ILIM_1500MA << CHRG_VBUS_ILIM_BIT_POS; else if (inlmt >= 900000) reg_val = CHRG_VBUS_ILIM_900MA << CHRG_VBUS_ILIM_BIT_POS; else if (inlmt >= 500000) reg_val = CHRG_VBUS_ILIM_500MA << CHRG_VBUS_ILIM_BIT_POS; else reg_val = CHRG_VBUS_ILIM_100MA << CHRG_VBUS_ILIM_BIT_POS; ret = regmap_update_bits(info->regmap, AXP20X_CHRG_BAK_CTRL, CHRG_VBUS_ILIM_MASK, reg_val); if (ret < 0) dev_err(&info->pdev->dev, "charger BAK control %d\n", ret); return ret; } static int axp288_charger_vbus_path_select(struct axp288_chrg_info *info, bool enable) { int ret; if (enable) ret = regmap_update_bits(info->regmap, AXP20X_VBUS_IPSOUT_MGMT, VBUS_ISPOUT_VBUS_PATH_DIS, 0); else ret = regmap_update_bits(info->regmap, AXP20X_VBUS_IPSOUT_MGMT, VBUS_ISPOUT_VBUS_PATH_DIS, VBUS_ISPOUT_VBUS_PATH_DIS); if (ret < 0) dev_err(&info->pdev->dev, "axp288 vbus path select %d\n", ret); return ret; } static int axp288_charger_enable_charger(struct axp288_chrg_info *info, bool enable) { int ret; if (enable) ret = regmap_update_bits(info->regmap, AXP20X_CHRG_CTRL1, CHRG_CCCV_CHG_EN, CHRG_CCCV_CHG_EN); else ret = regmap_update_bits(info->regmap, AXP20X_CHRG_CTRL1, CHRG_CCCV_CHG_EN, 0); if (ret < 0) dev_err(&info->pdev->dev, "axp288 enable charger %d\n", ret); return ret; } static int axp288_get_charger_health(struct axp288_chrg_info *info) { if (!(info->input_status & PS_STAT_VBUS_PRESENT)) return POWER_SUPPLY_HEALTH_UNKNOWN; if (!(info->input_status & PS_STAT_VBUS_VALID)) return POWER_SUPPLY_HEALTH_DEAD; else if (info->op_mode & CHRG_STAT_PMIC_OTP) return POWER_SUPPLY_HEALTH_OVERHEAT; else if (info->op_mode & CHRG_STAT_BAT_SAFE_MODE) return POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; else return POWER_SUPPLY_HEALTH_GOOD; } static int axp288_charger_usb_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct axp288_chrg_info *info = power_supply_get_drvdata(psy); int ret = 0; int scaled_val; mutex_lock(&info->lock); switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: scaled_val = min(val->intval, info->max_cc); scaled_val = DIV_ROUND_CLOSEST(scaled_val, 1000); ret = axp288_charger_set_cc(info, scaled_val); if (ret < 0) { dev_warn(&info->pdev->dev, "set charge current failed\n"); goto out; } break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: scaled_val = min(val->intval, info->max_cv); scaled_val = DIV_ROUND_CLOSEST(scaled_val, 1000); ret = axp288_charger_set_cv(info, scaled_val); if (ret < 0) { dev_warn(&info->pdev->dev, "set charge voltage failed\n"); goto out; } break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = axp288_charger_set_vbus_inlmt(info, val->intval); if (ret < 0) { dev_warn(&info->pdev->dev, "set input current limit failed\n"); goto out; } info->valid = false; break; default: ret = -EINVAL; } out: mutex_unlock(&info->lock); return ret; } static int axp288_charger_reg_readb(struct axp288_chrg_info *info, int reg, unsigned int *ret_val) { int ret; ret = regmap_read(info->regmap, reg, ret_val); if (ret < 0) { dev_err(&info->pdev->dev, "Error %d on reading value from register 0x%04x\n", ret, reg); return ret; } return 0; } static int axp288_charger_usb_update_property(struct axp288_chrg_info *info) { int ret = 0; if (info->valid && time_before(jiffies, info->last_updated + AXP288_REG_UPDATE_INTERVAL)) return 0; dev_dbg(&info->pdev->dev, "Charger updating register values...\n"); ret = iosf_mbi_block_punit_i2c_access(); if (ret < 0) return ret; ret = axp288_charger_reg_readb(info, AXP20X_PWR_INPUT_STATUS, &info->input_status); if (ret < 0) goto out; ret = axp288_charger_reg_readb(info, AXP20X_PWR_OP_MODE, &info->op_mode); if (ret < 0) goto out; ret = axp288_charger_reg_readb(info, AXP20X_CHRG_BAK_CTRL, &info->backend_control); if (ret < 0) goto out; info->last_updated = jiffies; info->valid = true; out: iosf_mbi_unblock_punit_i2c_access(); return ret; } static int axp288_charger_usb_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct axp288_chrg_info *info = power_supply_get_drvdata(psy); int ret; mutex_lock(&info->lock); ret = axp288_charger_usb_update_property(info); if (ret < 0) goto out; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: /* Check for OTG case first */ if (info->otg.id_short) { val->intval = 0; break; } val->intval = (info->input_status & PS_STAT_VBUS_PRESENT) ? 1 : 0; break; case POWER_SUPPLY_PROP_ONLINE: /* Check for OTG case first */ if (info->otg.id_short) { val->intval = 0; break; } val->intval = (info->input_status & PS_STAT_VBUS_VALID) ? 1 : 0; break; case POWER_SUPPLY_PROP_HEALTH: val->intval = axp288_get_charger_health(info); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: val->intval = info->cc * 1000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = info->max_cc * 1000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: val->intval = info->cv * 1000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = info->max_cv * 1000; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: val->intval = axp288_charger_get_vbus_inlmt(info); break; default: ret = -EINVAL; } out: mutex_unlock(&info->lock); return ret; } static int axp288_charger_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { int ret; switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = 1; break; default: ret = 0; } return ret; } static enum power_supply_property axp288_usb_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, }; static const struct power_supply_desc axp288_charger_desc = { .name = "axp288_charger", .type = POWER_SUPPLY_TYPE_USB, .properties = axp288_usb_props, .num_properties = ARRAY_SIZE(axp288_usb_props), .get_property = axp288_charger_usb_get_property, .set_property = axp288_charger_usb_set_property, .property_is_writeable = axp288_charger_property_is_writeable, }; static irqreturn_t axp288_charger_irq_thread_handler(int irq, void *dev) { struct axp288_chrg_info *info = dev; int i; for (i = 0; i < CHRG_INTR_END; i++) { if (info->irq[i] == irq) break; } if (i >= CHRG_INTR_END) { dev_warn(&info->pdev->dev, "spurious interrupt!!\n"); return IRQ_NONE; } switch (i) { case VBUS_OV_IRQ: dev_dbg(&info->pdev->dev, "VBUS Over Voltage INTR\n"); break; case CHARGE_DONE_IRQ: dev_dbg(&info->pdev->dev, "Charging Done INTR\n"); break; case CHARGE_CHARGING_IRQ: dev_dbg(&info->pdev->dev, "Start Charging IRQ\n"); break; case BAT_SAFE_QUIT_IRQ: dev_dbg(&info->pdev->dev, "Quit Safe Mode(restart timer) Charging IRQ\n"); break; case BAT_SAFE_ENTER_IRQ: dev_dbg(&info->pdev->dev, "Enter Safe Mode(timer expire) Charging IRQ\n"); break; case QCBTU_IRQ: dev_dbg(&info->pdev->dev, "Quit Battery Under Temperature(CHRG) INTR\n"); break; case CBTU_IRQ: dev_dbg(&info->pdev->dev, "Hit Battery Under Temperature(CHRG) INTR\n"); break; case QCBTO_IRQ: dev_dbg(&info->pdev->dev, "Quit Battery Over Temperature(CHRG) INTR\n"); break; case CBTO_IRQ: dev_dbg(&info->pdev->dev, "Hit Battery Over Temperature(CHRG) INTR\n"); break; default: dev_warn(&info->pdev->dev, "Spurious Interrupt!!!\n"); goto out; } mutex_lock(&info->lock); info->valid = false; mutex_unlock(&info->lock); power_supply_changed(info->psy_usb); out: return IRQ_HANDLED; } /* * The HP Pavilion x2 10 series comes in a number of variants: * Bay Trail SoC + AXP288 PMIC, Micro-USB, DMI_BOARD_NAME: "8021" * Bay Trail SoC + AXP288 PMIC, Type-C, DMI_BOARD_NAME: "815D" * Cherry Trail SoC + AXP288 PMIC, Type-C, DMI_BOARD_NAME: "813E" * Cherry Trail SoC + TI PMIC, Type-C, DMI_BOARD_NAME: "827C" or "82F4" * * The variants with the AXP288 + Type-C connector are all kinds of special: * * 1. They use a Type-C connector which the AXP288 does not support, so when * using a Type-C charger it is not recognized. Unlike most AXP288 devices, * this model actually has mostly working ACPI AC / Battery code, the ACPI code * "solves" this by simply setting the input_current_limit to 3A. * There are still some issues with the ACPI code, so we use this native driver, * and to solve the charging not working (500mA is not enough) issue we hardcode * the 3A input_current_limit like the ACPI code does. * * 2. If no charger is connected the machine boots with the vbus-path disabled. * Normally this is done when a 5V boost converter is active to avoid the PMIC * trying to charge from the 5V boost converter's output. This is done when * an OTG host cable is inserted and the ID pin on the micro-B receptacle is * pulled low and the ID pin has an ACPI event handler associated with it * which re-enables the vbus-path when the ID pin is pulled high when the * OTG host cable is removed. The Type-C connector has no ID pin, there is * no ID pin handler and there appears to be no 5V boost converter, so we * end up not charging because the vbus-path is disabled, until we unplug * the charger which automatically clears the vbus-path disable bit and then * on the second plug-in of the adapter we start charging. To solve the not * charging on first charger plugin we unconditionally enable the vbus-path at * probe on this model, which is safe since there is no 5V boost converter. */ static const struct dmi_system_id axp288_hp_x2_dmi_ids[] = { { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "HP Pavilion x2 Detachable"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "815D"), }, }, { .matches = { DMI_EXACT_MATCH(DMI_SYS_VENDOR, "HP"), DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "HP Pavilion x2 Detachable"), DMI_EXACT_MATCH(DMI_BOARD_NAME, "813E"), }, }, {} /* Terminating entry */ }; static void axp288_charger_extcon_evt_worker(struct work_struct *work) { struct axp288_chrg_info *info = container_of(work, struct axp288_chrg_info, cable.work); int ret, current_limit; struct extcon_dev *edev = info->cable.edev; unsigned int val; ret = regmap_read(info->regmap, AXP20X_PWR_INPUT_STATUS, &val); if (ret < 0) { dev_err(&info->pdev->dev, "Error reading status (%d)\n", ret); return; } /* Offline? Disable charging and bail */ if (!(val & PS_STAT_VBUS_VALID)) { dev_dbg(&info->pdev->dev, "USB charger disconnected\n"); axp288_charger_enable_charger(info, false); mutex_lock(&info->lock); info->valid = false; mutex_unlock(&info->lock); power_supply_changed(info->psy_usb); return; } /* Determine cable/charger type */ if (dmi_check_system(axp288_hp_x2_dmi_ids)) { /* See comment above axp288_hp_x2_dmi_ids declaration */ dev_dbg(&info->pdev->dev, "HP X2 with Type-C, setting inlmt to 3A\n"); current_limit = 3000000; } else if (extcon_get_state(edev, EXTCON_CHG_USB_SDP) > 0) { dev_dbg(&info->pdev->dev, "USB SDP charger is connected\n"); current_limit = 500000; } else if (extcon_get_state(edev, EXTCON_CHG_USB_CDP) > 0) { dev_dbg(&info->pdev->dev, "USB CDP charger is connected\n"); current_limit = 1500000; } else if (extcon_get_state(edev, EXTCON_CHG_USB_DCP) > 0) { dev_dbg(&info->pdev->dev, "USB DCP charger is connected\n"); current_limit = 2000000; } else { /* Charger type detection still in progress, bail. */ return; } /* Set vbus current limit first, then enable charger */ ret = axp288_charger_set_vbus_inlmt(info, current_limit); if (ret == 0) axp288_charger_enable_charger(info, true); else dev_err(&info->pdev->dev, "error setting current limit (%d)\n", ret); mutex_lock(&info->lock); info->valid = false; mutex_unlock(&info->lock); power_supply_changed(info->psy_usb); } static int axp288_charger_handle_cable_evt(struct notifier_block *nb, unsigned long event, void *param) { struct axp288_chrg_info *info = container_of(nb, struct axp288_chrg_info, cable.nb); schedule_work(&info->cable.work); return NOTIFY_OK; } static void axp288_charger_otg_evt_worker(struct work_struct *work) { struct axp288_chrg_info *info = container_of(work, struct axp288_chrg_info, otg.work); struct extcon_dev *edev = info->otg.cable; int ret, usb_host = extcon_get_state(edev, EXTCON_USB_HOST); dev_dbg(&info->pdev->dev, "external connector USB-Host is %s\n", usb_host ? "attached" : "detached"); /* * Set usb_id_short flag to avoid running charger detection logic * in case usb host. */ info->otg.id_short = usb_host; /* Disable VBUS path before enabling the 5V boost */ ret = axp288_charger_vbus_path_select(info, !info->otg.id_short); if (ret < 0) dev_warn(&info->pdev->dev, "vbus path disable failed\n"); } static int axp288_charger_handle_otg_evt(struct notifier_block *nb, unsigned long event, void *param) { struct axp288_chrg_info *info = container_of(nb, struct axp288_chrg_info, otg.id_nb); schedule_work(&info->otg.work); return NOTIFY_OK; } static int charger_init_hw_regs(struct axp288_chrg_info *info) { int ret, cc, cv; unsigned int val; /* Program temperature thresholds */ ret = regmap_write(info->regmap, AXP20X_V_LTF_CHRG, CHRG_VLTFC_0C); if (ret < 0) { dev_err(&info->pdev->dev, "register(%x) write error(%d)\n", AXP20X_V_LTF_CHRG, ret); return ret; } ret = regmap_write(info->regmap, AXP20X_V_HTF_CHRG, CHRG_VHTFC_45C); if (ret < 0) { dev_err(&info->pdev->dev, "register(%x) write error(%d)\n", AXP20X_V_HTF_CHRG, ret); return ret; } /* Do not turn-off charger o/p after charge cycle ends */ ret = regmap_update_bits(info->regmap, AXP20X_CHRG_CTRL2, CNTL2_CHG_OUT_TURNON, CNTL2_CHG_OUT_TURNON); if (ret < 0) { dev_err(&info->pdev->dev, "register(%x) write error(%d)\n", AXP20X_CHRG_CTRL2, ret); return ret; } /* Setup ending condition for charging to be 10% of I(chrg) */ ret = regmap_update_bits(info->regmap, AXP20X_CHRG_CTRL1, CHRG_CCCV_ITERM_20P, 0); if (ret < 0) { dev_err(&info->pdev->dev, "register(%x) write error(%d)\n", AXP20X_CHRG_CTRL1, ret); return ret; } /* Disable OCV-SOC curve calibration */ ret = regmap_update_bits(info->regmap, AXP20X_CC_CTRL, FG_CNTL_OCV_ADJ_EN, 0); if (ret < 0) { dev_err(&info->pdev->dev, "register(%x) write error(%d)\n", AXP20X_CC_CTRL, ret); return ret; } if (dmi_check_system(axp288_hp_x2_dmi_ids)) { /* See comment above axp288_hp_x2_dmi_ids declaration */ ret = axp288_charger_vbus_path_select(info, true); if (ret < 0) return ret; } else { /* Set Vhold to the factory default / recommended 4.4V */ val = VBUS_ISPOUT_VHOLD_SET_4400MV << VBUS_ISPOUT_VHOLD_SET_BIT_POS; ret = regmap_update_bits(info->regmap, AXP20X_VBUS_IPSOUT_MGMT, VBUS_ISPOUT_VHOLD_SET_MASK, val); if (ret < 0) { dev_err(&info->pdev->dev, "register(%x) write error(%d)\n", AXP20X_VBUS_IPSOUT_MGMT, ret); return ret; } } /* Read current charge voltage and current limit */ ret = regmap_read(info->regmap, AXP20X_CHRG_CTRL1, &val); if (ret < 0) { dev_err(&info->pdev->dev, "register(%x) read error(%d)\n", AXP20X_CHRG_CTRL1, ret); return ret; } /* Determine charge voltage */ cv = (val & CHRG_CCCV_CV_MASK) >> CHRG_CCCV_CV_BIT_POS; switch (cv) { case CHRG_CCCV_CV_4100MV: info->cv = CV_4100MV; break; case CHRG_CCCV_CV_4150MV: info->cv = CV_4150MV; break; case CHRG_CCCV_CV_4200MV: info->cv = CV_4200MV; break; case CHRG_CCCV_CV_4350MV: info->cv = CV_4350MV; break; } /* Determine charge current limit */ cc = (val & CHRG_CCCV_CC_MASK) >> CHRG_CCCV_CC_BIT_POS; cc = (cc * CHRG_CCCV_CC_LSB_RES) + CHRG_CCCV_CC_OFFSET; info->cc = cc; /* * Do not allow the user to configure higher settings then those * set by the firmware */ info->max_cv = info->cv; info->max_cc = info->cc; return 0; } static void axp288_charger_cancel_work(void *data) { struct axp288_chrg_info *info = data; cancel_work_sync(&info->otg.work); cancel_work_sync(&info->cable.work); } static int axp288_charger_probe(struct platform_device *pdev) { int ret, i, pirq; struct axp288_chrg_info *info; struct device *dev = &pdev->dev; struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent); struct power_supply_config charger_cfg = {}; const char *extcon_name = NULL; unsigned int val; /* * Normally the native AXP288 fg/charger drivers are preferred but * on some devices the ACPI drivers should be used instead. */ if (!acpi_quirk_skip_acpi_ac_and_battery()) return -ENODEV; /* * On some devices the fuelgauge and charger parts of the axp288 are * not used, check that the fuelgauge is enabled (CC_CTRL != 0). */ ret = regmap_read(axp20x->regmap, AXP20X_CC_CTRL, &val); if (ret < 0) return ret; if (val == 0) return -ENODEV; info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; mutex_init(&info->lock); info->pdev = pdev; info->regmap = axp20x->regmap; info->regmap_irqc = axp20x->regmap_irqc; info->cable.edev = extcon_get_extcon_dev(AXP288_EXTCON_DEV_NAME); if (IS_ERR(info->cable.edev)) { dev_err_probe(dev, PTR_ERR(info->cable.edev), "extcon_get_extcon_dev(%s) failed\n", AXP288_EXTCON_DEV_NAME); return PTR_ERR(info->cable.edev); } /* * On devices with broken ACPI GPIO event handlers there also is no ACPI * "INT3496" (USB_HOST_EXTCON_HID) device. x86-android-tablets.ko * instantiates an "intel-int3496" extcon on these devs as a workaround. */ if (acpi_quirk_skip_gpio_event_handlers()) extcon_name = "intel-int3496"; else if (acpi_dev_present(USB_HOST_EXTCON_HID, NULL, -1)) extcon_name = USB_HOST_EXTCON_NAME; if (extcon_name) { info->otg.cable = extcon_get_extcon_dev(extcon_name); if (IS_ERR(info->otg.cable)) { dev_err_probe(dev, PTR_ERR(info->otg.cable), "extcon_get_extcon_dev(%s) failed\n", USB_HOST_EXTCON_NAME); return PTR_ERR(info->otg.cable); } dev_info(dev, "Using " USB_HOST_EXTCON_HID " extcon for usb-id\n"); } platform_set_drvdata(pdev, info); ret = charger_init_hw_regs(info); if (ret) return ret; /* Register with power supply class */ charger_cfg.drv_data = info; info->psy_usb = devm_power_supply_register(dev, &axp288_charger_desc, &charger_cfg); if (IS_ERR(info->psy_usb)) { ret = PTR_ERR(info->psy_usb); dev_err(dev, "failed to register power supply: %d\n", ret); return ret; } /* Cancel our work on cleanup, register this before the notifiers */ ret = devm_add_action(dev, axp288_charger_cancel_work, info); if (ret) return ret; /* Register for extcon notification */ INIT_WORK(&info->cable.work, axp288_charger_extcon_evt_worker); info->cable.nb.notifier_call = axp288_charger_handle_cable_evt; ret = devm_extcon_register_notifier_all(dev, info->cable.edev, &info->cable.nb); if (ret) { dev_err(dev, "failed to register cable extcon notifier\n"); return ret; } schedule_work(&info->cable.work); /* Register for OTG notification */ INIT_WORK(&info->otg.work, axp288_charger_otg_evt_worker); info->otg.id_nb.notifier_call = axp288_charger_handle_otg_evt; if (info->otg.cable) { ret = devm_extcon_register_notifier(dev, info->otg.cable, EXTCON_USB_HOST, &info->otg.id_nb); if (ret) { dev_err(dev, "failed to register EXTCON_USB_HOST notifier\n"); return ret; } schedule_work(&info->otg.work); } /* Register charger interrupts */ for (i = 0; i < CHRG_INTR_END; i++) { pirq = platform_get_irq(info->pdev, i); if (pirq < 0) return pirq; info->irq[i] = regmap_irq_get_virq(info->regmap_irqc, pirq); if (info->irq[i] < 0) { dev_warn(&info->pdev->dev, "failed to get virtual interrupt=%d\n", pirq); return info->irq[i]; } ret = devm_request_threaded_irq(&info->pdev->dev, info->irq[i], NULL, axp288_charger_irq_thread_handler, IRQF_ONESHOT, info->pdev->name, info); if (ret) { dev_err(dev, "failed to request interrupt=%d\n", info->irq[i]); return ret; } } return 0; } static const struct platform_device_id axp288_charger_id_table[] = { { .name = "axp288_charger" }, {}, }; MODULE_DEVICE_TABLE(platform, axp288_charger_id_table); static struct platform_driver axp288_charger_driver = { .probe = axp288_charger_probe, .id_table = axp288_charger_id_table, .driver = { .name = "axp288_charger", }, }; module_platform_driver(axp288_charger_driver); MODULE_AUTHOR("Ramakrishna Pallala <[email protected]>"); MODULE_DESCRIPTION("X-power AXP288 Charger Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/axp288_charger.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Analog Devices (Linear Technology) LTC4162-L charger IC. * Copyright (C) 2020, Topic Embedded Products */ #include <linux/module.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/pm_runtime.h> #include <linux/power_supply.h> #include <linux/i2c.h> #include <linux/regmap.h> /* Registers (names based on what datasheet uses) */ #define LTC4162L_EN_LIMIT_ALERTS_REG 0x0D #define LTC4162L_EN_CHARGER_STATE_ALERTS_REG 0x0E #define LTC4162L_EN_CHARGE_STATUS_ALERTS_REG 0x0F #define LTC4162L_CONFIG_BITS_REG 0x14 #define LTC4162L_IIN_LIMIT_TARGET 0x15 #define LTC4162L_ARM_SHIP_MODE 0x19 #define LTC4162L_CHARGE_CURRENT_SETTING 0X1A #define LTC4162L_VCHARGE_SETTING 0X1B #define LTC4162L_C_OVER_X_THRESHOLD 0x1C #define LTC4162L_MAX_CV_TIME 0X1D #define LTC4162L_MAX_CHARGE_TIME 0X1E #define LTC4162L_CHARGER_CONFIG_BITS 0x29 #define LTC4162L_CHARGER_STATE 0x34 #define LTC4162L_CHARGE_STATUS 0x35 #define LTC4162L_LIMIT_ALERTS_REG 0x36 #define LTC4162L_CHARGER_STATE_ALERTS_REG 0x37 #define LTC4162L_CHARGE_STATUS_ALERTS_REG 0x38 #define LTC4162L_SYSTEM_STATUS_REG 0x39 #define LTC4162L_VBAT 0x3A #define LTC4162L_VIN 0x3B #define LTC4162L_VOUT 0x3C #define LTC4162L_IBAT 0x3D #define LTC4162L_IIN 0x3E #define LTC4162L_DIE_TEMPERATURE 0x3F #define LTC4162L_THERMISTOR_VOLTAGE 0x40 #define LTC4162L_BSR 0x41 #define LTC4162L_JEITA_REGION 0x42 #define LTC4162L_CHEM_CELLS_REG 0x43 #define LTC4162L_ICHARGE_DAC 0x44 #define LTC4162L_VCHARGE_DAC 0x45 #define LTC4162L_IIN_LIMIT_DAC 0x46 #define LTC4162L_VBAT_FILT 0x47 #define LTC4162L_INPUT_UNDERVOLTAGE_DAC 0x4B /* Enumeration as in datasheet. Individual bits are mutually exclusive. */ enum ltc4162l_state { battery_detection = 2048, charger_suspended = 256, precharge = 128, /* trickle on low bat voltage */ cc_cv_charge = 64, /* normal charge */ ntc_pause = 32, timer_term = 16, c_over_x_term = 8, /* battery is full */ max_charge_time_fault = 4, bat_missing_fault = 2, bat_short_fault = 1 }; /* Individual bits are mutually exclusive. Only active in charging states.*/ enum ltc4162l_charge_status { ilim_reg_active = 32, thermal_reg_active = 16, vin_uvcl_active = 8, iin_limit_active = 4, constant_current = 2, constant_voltage = 1, charger_off = 0 }; /* Magic number to write to ARM_SHIP_MODE register */ #define LTC4162L_ARM_SHIP_MODE_MAGIC 21325 struct ltc4162l_info { struct i2c_client *client; struct regmap *regmap; struct power_supply *charger; u32 rsnsb; /* Series resistor that sets charge current, microOhm */ u32 rsnsi; /* Series resistor to measure input current, microOhm */ u8 cell_count; /* Number of connected cells, 0 while unknown */ }; static u8 ltc4162l_get_cell_count(struct ltc4162l_info *info) { int ret; unsigned int val; /* Once read successfully */ if (info->cell_count) return info->cell_count; ret = regmap_read(info->regmap, LTC4162L_CHEM_CELLS_REG, &val); if (ret) return 0; /* Lower 4 bits is the cell count, or 0 if the chip doesn't know yet */ val &= 0x0f; if (!val) return 0; /* Once determined, keep the value */ info->cell_count = val; return val; }; /* Convert enum value to POWER_SUPPLY_STATUS value */ static int ltc4162l_state_decode(enum ltc4162l_state value) { switch (value) { case precharge: case cc_cv_charge: return POWER_SUPPLY_STATUS_CHARGING; case c_over_x_term: return POWER_SUPPLY_STATUS_FULL; case bat_missing_fault: case bat_short_fault: return POWER_SUPPLY_STATUS_UNKNOWN; default: return POWER_SUPPLY_STATUS_NOT_CHARGING; } }; static int ltc4162l_get_status(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_CHARGER_STATE, &regval); if (ret) { dev_err(&info->client->dev, "Failed to read CHARGER_STATE\n"); return ret; } val->intval = ltc4162l_state_decode(regval); return 0; } static int ltc4162l_charge_status_decode(enum ltc4162l_charge_status value) { if (!value) return POWER_SUPPLY_CHARGE_TYPE_NONE; /* constant voltage/current and input_current limit are "fast" modes */ if (value <= iin_limit_active) return POWER_SUPPLY_CHARGE_TYPE_FAST; /* Anything that's not fast we'll return as trickle */ return POWER_SUPPLY_CHARGE_TYPE_TRICKLE; } static int ltc4162l_get_charge_type(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_CHARGE_STATUS, &regval); if (ret) return ret; val->intval = ltc4162l_charge_status_decode(regval); return 0; } static int ltc4162l_state_to_health(enum ltc4162l_state value) { switch (value) { case ntc_pause: return POWER_SUPPLY_HEALTH_OVERHEAT; case timer_term: return POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; case max_charge_time_fault: return POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE; case bat_missing_fault: return POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; case bat_short_fault: return POWER_SUPPLY_HEALTH_DEAD; default: return POWER_SUPPLY_HEALTH_GOOD; } } static int ltc4162l_get_health(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_CHARGER_STATE, &regval); if (ret) return ret; val->intval = ltc4162l_state_to_health(regval); return 0; } static int ltc4162l_get_online(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_SYSTEM_STATUS_REG, &regval); if (ret) return ret; /* BIT(2) indicates if input voltage is sufficient to charge */ val->intval = !!(regval & BIT(2)); return 0; } static int ltc4162l_get_vbat(struct ltc4162l_info *info, unsigned int reg, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, reg, &regval); if (ret) return ret; /* cell_count × 192.4μV/LSB */ regval *= 1924; regval *= ltc4162l_get_cell_count(info); regval /= 10; val->intval = regval; return 0; } static int ltc4162l_get_ibat(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_IBAT, &regval); if (ret) return ret; /* Signed 16-bit number, 1.466μV / RSNSB amperes/LSB. */ ret = (s16)(regval & 0xFFFF); val->intval = 100 * mult_frac(ret, 14660, (int)info->rsnsb); return 0; } static int ltc4162l_get_input_voltage(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_VIN, &regval); if (ret) return ret; /* 1.649mV/LSB */ val->intval = regval * 1694; return 0; } static int ltc4162l_get_input_current(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_IIN, &regval); if (ret) return ret; /* Signed 16-bit number, 1.466μV / RSNSI amperes/LSB. */ ret = (s16)(regval & 0xFFFF); ret *= 14660; ret /= info->rsnsi; ret *= 100; val->intval = ret; return 0; } static int ltc4162l_get_icharge(struct ltc4162l_info *info, unsigned int reg, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, reg, &regval); if (ret) return ret; regval &= BIT(6) - 1; /* Only the lower 5 bits */ /* The charge current servo level: (icharge_dac + 1) × 1mV/RSNSB */ ++regval; val->intval = 10000u * mult_frac(regval, 100000u, info->rsnsb); return 0; } static int ltc4162l_set_icharge(struct ltc4162l_info *info, unsigned int reg, unsigned int value) { value = mult_frac(value, info->rsnsb, 100000u); value /= 10000u; /* Round to lowest possible */ if (value) --value; if (value > 31) return -EINVAL; return regmap_write(info->regmap, reg, value); } static int ltc4162l_get_vcharge(struct ltc4162l_info *info, unsigned int reg, union power_supply_propval *val) { unsigned int regval; int ret; u32 voltage; ret = regmap_read(info->regmap, reg, &regval); if (ret) return ret; regval &= BIT(6) - 1; /* Only the lower 5 bits */ /* * charge voltage setting can be computed from * cell_count × (vcharge_setting × 12.5mV + 3.8125V) * where vcharge_setting ranges from 0 to 31 (4.2V max). */ voltage = 3812500 + (regval * 12500); voltage *= ltc4162l_get_cell_count(info); val->intval = voltage; return 0; } static int ltc4162l_set_vcharge(struct ltc4162l_info *info, unsigned int reg, unsigned int value) { u8 cell_count = ltc4162l_get_cell_count(info); if (!cell_count) return -EBUSY; /* Not available yet, try again later */ value /= cell_count; if (value < 3812500) return -EINVAL; value -= 3812500; value /= 12500; if (value > 31) return -EINVAL; return regmap_write(info->regmap, reg, value); } static int ltc4162l_get_iin_limit_dac(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_IIN_LIMIT_DAC, &regval); if (ret) return ret; regval &= BIT(6) - 1; /* Only 6 bits */ /* (iin_limit_dac + 1) × 500μV / RSNSI */ ++regval; regval *= 5000000u; regval /= info->rsnsi; val->intval = 100u * regval; return 0; } static int ltc4162l_set_iin_limit(struct ltc4162l_info *info, unsigned int value) { unsigned int regval; regval = mult_frac(value, info->rsnsi, 50000u); regval /= 10000u; if (regval) --regval; if (regval > 63) regval = 63; return regmap_write(info->regmap, LTC4162L_IIN_LIMIT_TARGET, regval); } static int ltc4162l_get_die_temp(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_DIE_TEMPERATURE, &regval); if (ret) return ret; /* die_temp × 0.0215°C/LSB - 264.4°C */ ret = (s16)(regval & 0xFFFF); ret *= 215; ret /= 100; /* Centidegrees scale */ ret -= 26440; val->intval = ret; return 0; } static int ltc4162l_get_term_current(struct ltc4162l_info *info, union power_supply_propval *val) { unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_CHARGER_CONFIG_BITS, &regval); if (ret) return ret; /* Check if C_OVER_X_THRESHOLD is enabled */ if (!(regval & BIT(2))) { val->intval = 0; return 0; } ret = regmap_read(info->regmap, LTC4162L_C_OVER_X_THRESHOLD, &regval); if (ret) return ret; /* 1.466μV / RSNSB amperes/LSB */ regval *= 14660u; regval /= info->rsnsb; val->intval = 100 * regval; return 0; } static int ltc4162l_set_term_current(struct ltc4162l_info *info, unsigned int value) { int ret; unsigned int regval; if (!value) { /* Disable en_c_over_x_term when set to zero */ return regmap_update_bits(info->regmap, LTC4162L_CHARGER_CONFIG_BITS, BIT(2), 0); } regval = mult_frac(value, info->rsnsb, 14660u); regval /= 100u; ret = regmap_write(info->regmap, LTC4162L_C_OVER_X_THRESHOLD, regval); if (ret) return ret; /* Set en_c_over_x_term after changing the threshold value */ return regmap_update_bits(info->regmap, LTC4162L_CHARGER_CONFIG_BITS, BIT(2), BIT(2)); } /* Custom properties */ static const char * const ltc4162l_charge_status_name[] = { "ilim_reg_active", /* 32 */ "thermal_reg_active", "vin_uvcl_active", "iin_limit_active", "constant_current", "constant_voltage", "charger_off" /* 0 */ }; static ssize_t charge_status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy = to_power_supply(dev); struct ltc4162l_info *info = power_supply_get_drvdata(psy); const char *result = ltc4162l_charge_status_name[ ARRAY_SIZE(ltc4162l_charge_status_name) - 1]; unsigned int regval; unsigned int mask; unsigned int index; int ret; ret = regmap_read(info->regmap, LTC4162L_CHARGE_STATUS, &regval); if (ret) return ret; /* Only one bit is set according to datasheet, let's be safe here */ for (mask = 32, index = 0; mask != 0; mask >>= 1, ++index) { if (regval & mask) { result = ltc4162l_charge_status_name[index]; break; } } return sysfs_emit(buf, "%s\n", result); } static DEVICE_ATTR_RO(charge_status); static ssize_t vbat_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy = to_power_supply(dev); struct ltc4162l_info *info = power_supply_get_drvdata(psy); union power_supply_propval val; int ret; ret = ltc4162l_get_vbat(info, LTC4162L_VBAT, &val); if (ret) return ret; return sysfs_emit(buf, "%d\n", val.intval); } static DEVICE_ATTR_RO(vbat); static ssize_t vbat_avg_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy = to_power_supply(dev); struct ltc4162l_info *info = power_supply_get_drvdata(psy); union power_supply_propval val; int ret; ret = ltc4162l_get_vbat(info, LTC4162L_VBAT_FILT, &val); if (ret) return ret; return sysfs_emit(buf, "%d\n", val.intval); } static DEVICE_ATTR_RO(vbat_avg); static ssize_t ibat_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy = to_power_supply(dev); struct ltc4162l_info *info = power_supply_get_drvdata(psy); union power_supply_propval val; int ret; ret = ltc4162l_get_ibat(info, &val); if (ret) return ret; return sysfs_emit(buf, "%d\n", val.intval); } static DEVICE_ATTR_RO(ibat); static ssize_t force_telemetry_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy = to_power_supply(dev); struct ltc4162l_info *info = power_supply_get_drvdata(psy); unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_CONFIG_BITS_REG, &regval); if (ret) return ret; return sysfs_emit(buf, "%u\n", regval & BIT(2) ? 1 : 0); } static ssize_t force_telemetry_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct power_supply *psy = to_power_supply(dev); struct ltc4162l_info *info = power_supply_get_drvdata(psy); int ret; unsigned int value; ret = kstrtouint(buf, 0, &value); if (ret < 0) return ret; ret = regmap_update_bits(info->regmap, LTC4162L_CONFIG_BITS_REG, BIT(2), value ? BIT(2) : 0); if (ret < 0) return ret; return count; } static DEVICE_ATTR_RW(force_telemetry); static ssize_t arm_ship_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy = to_power_supply(dev); struct ltc4162l_info *info = power_supply_get_drvdata(psy); unsigned int regval; int ret; ret = regmap_read(info->regmap, LTC4162L_ARM_SHIP_MODE, &regval); if (ret) return ret; return sysfs_emit(buf, "%u\n", regval == LTC4162L_ARM_SHIP_MODE_MAGIC ? 1 : 0); } static ssize_t arm_ship_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct power_supply *psy = to_power_supply(dev); struct ltc4162l_info *info = power_supply_get_drvdata(psy); int ret; unsigned int value; ret = kstrtouint(buf, 0, &value); if (ret < 0) return ret; ret = regmap_write(info->regmap, LTC4162L_ARM_SHIP_MODE, value ? LTC4162L_ARM_SHIP_MODE_MAGIC : 0); if (ret < 0) return ret; return count; } static DEVICE_ATTR_RW(arm_ship_mode); static struct attribute *ltc4162l_sysfs_entries[] = { &dev_attr_charge_status.attr, &dev_attr_ibat.attr, &dev_attr_vbat.attr, &dev_attr_vbat_avg.attr, &dev_attr_force_telemetry.attr, &dev_attr_arm_ship_mode.attr, NULL, }; static const struct attribute_group ltc4162l_attr_group = { .name = NULL, /* put in device directory */ .attrs = ltc4162l_sysfs_entries, }; static const struct attribute_group *ltc4162l_attr_groups[] = { &ltc4162l_attr_group, NULL, }; static int ltc4162l_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ltc4162l_info *info = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: return ltc4162l_get_status(info, val); case POWER_SUPPLY_PROP_CHARGE_TYPE: return ltc4162l_get_charge_type(info, val); case POWER_SUPPLY_PROP_HEALTH: return ltc4162l_get_health(info, val); case POWER_SUPPLY_PROP_ONLINE: return ltc4162l_get_online(info, val); case POWER_SUPPLY_PROP_VOLTAGE_NOW: return ltc4162l_get_input_voltage(info, val); case POWER_SUPPLY_PROP_CURRENT_NOW: return ltc4162l_get_input_current(info, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return ltc4162l_get_icharge(info, LTC4162L_ICHARGE_DAC, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: return ltc4162l_get_icharge(info, LTC4162L_CHARGE_CURRENT_SETTING, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return ltc4162l_get_vcharge(info, LTC4162L_VCHARGE_DAC, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: return ltc4162l_get_vcharge(info, LTC4162L_VCHARGE_SETTING, val); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return ltc4162l_get_iin_limit_dac(info, val); case POWER_SUPPLY_PROP_TEMP: return ltc4162l_get_die_temp(info, val); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return ltc4162l_get_term_current(info, val); default: return -EINVAL; } } static int ltc4162l_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct ltc4162l_info *info = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: return ltc4162l_set_icharge(info, LTC4162L_CHARGE_CURRENT_SETTING, val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: return ltc4162l_set_vcharge(info, LTC4162L_VCHARGE_SETTING, val->intval); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return ltc4162l_set_iin_limit(info, val->intval); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return ltc4162l_set_term_current(info, val->intval); default: return -EINVAL; } } static int ltc4162l_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return 1; default: return 0; } } /* Charger power supply property routines */ static enum power_supply_property ltc4162l_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, }; static const struct power_supply_desc ltc4162l_desc = { .name = "ltc4162-l", .type = POWER_SUPPLY_TYPE_MAINS, .properties = ltc4162l_properties, .num_properties = ARRAY_SIZE(ltc4162l_properties), .get_property = ltc4162l_get_property, .set_property = ltc4162l_set_property, .property_is_writeable = ltc4162l_property_is_writeable, }; static bool ltc4162l_is_writeable_reg(struct device *dev, unsigned int reg) { /* all registers up to this one are writeable */ if (reg <= LTC4162L_CHARGER_CONFIG_BITS) return true; /* The ALERTS registers can be written to clear alerts */ if (reg >= LTC4162L_LIMIT_ALERTS_REG && reg <= LTC4162L_CHARGE_STATUS_ALERTS_REG) return true; return false; } static bool ltc4162l_is_volatile_reg(struct device *dev, unsigned int reg) { /* all registers after this one are read-only status registers */ return reg > LTC4162L_CHARGER_CONFIG_BITS; } static const struct regmap_config ltc4162l_regmap_config = { .reg_bits = 8, .val_bits = 16, .val_format_endian = REGMAP_ENDIAN_LITTLE, .writeable_reg = ltc4162l_is_writeable_reg, .volatile_reg = ltc4162l_is_volatile_reg, .max_register = LTC4162L_INPUT_UNDERVOLTAGE_DAC, .cache_type = REGCACHE_RBTREE, }; static void ltc4162l_clear_interrupts(struct ltc4162l_info *info) { /* Acknowledge interrupt to chip by clearing all events */ regmap_write(info->regmap, LTC4162L_LIMIT_ALERTS_REG, 0); regmap_write(info->regmap, LTC4162L_CHARGER_STATE_ALERTS_REG, 0); regmap_write(info->regmap, LTC4162L_CHARGE_STATUS_ALERTS_REG, 0); } static int ltc4162l_probe(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; struct device *dev = &client->dev; struct ltc4162l_info *info; struct power_supply_config ltc4162l_config = {}; u32 value; int ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) { dev_err(dev, "No support for SMBUS_WORD_DATA\n"); return -ENODEV; } info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->client = client; i2c_set_clientdata(client, info); info->regmap = devm_regmap_init_i2c(client, &ltc4162l_regmap_config); if (IS_ERR(info->regmap)) { dev_err(dev, "Failed to initialize register map\n"); return PTR_ERR(info->regmap); } ret = device_property_read_u32(dev, "lltc,rsnsb-micro-ohms", &info->rsnsb); if (ret) { dev_err(dev, "Missing lltc,rsnsb-micro-ohms property\n"); return ret; } if (!info->rsnsb) return -EINVAL; ret = device_property_read_u32(dev, "lltc,rsnsi-micro-ohms", &info->rsnsi); if (ret) { dev_err(dev, "Missing lltc,rsnsi-micro-ohms property\n"); return ret; } if (!info->rsnsi) return -EINVAL; if (!device_property_read_u32(dev, "lltc,cell-count", &value)) info->cell_count = value; ltc4162l_config.of_node = dev->of_node; ltc4162l_config.drv_data = info; ltc4162l_config.attr_grp = ltc4162l_attr_groups; info->charger = devm_power_supply_register(dev, &ltc4162l_desc, &ltc4162l_config); if (IS_ERR(info->charger)) { dev_err(dev, "Failed to register charger\n"); return PTR_ERR(info->charger); } /* Disable the threshold alerts, we're not using them */ regmap_write(info->regmap, LTC4162L_EN_LIMIT_ALERTS_REG, 0); /* Enable interrupts on all status changes */ regmap_write(info->regmap, LTC4162L_EN_CHARGER_STATE_ALERTS_REG, 0x1fff); regmap_write(info->regmap, LTC4162L_EN_CHARGE_STATUS_ALERTS_REG, 0x1f); ltc4162l_clear_interrupts(info); return 0; } static void ltc4162l_alert(struct i2c_client *client, enum i2c_alert_protocol type, unsigned int flag) { struct ltc4162l_info *info = i2c_get_clientdata(client); if (type != I2C_PROTOCOL_SMBUS_ALERT) return; ltc4162l_clear_interrupts(info); power_supply_changed(info->charger); } static const struct i2c_device_id ltc4162l_i2c_id_table[] = { { "ltc4162-l", 0 }, { }, }; MODULE_DEVICE_TABLE(i2c, ltc4162l_i2c_id_table); static const struct of_device_id ltc4162l_of_match[] __maybe_unused = { { .compatible = "lltc,ltc4162-l", }, { }, }; MODULE_DEVICE_TABLE(of, ltc4162l_of_match); static struct i2c_driver ltc4162l_driver = { .probe = ltc4162l_probe, .alert = ltc4162l_alert, .id_table = ltc4162l_i2c_id_table, .driver = { .name = "ltc4162-l-charger", .of_match_table = of_match_ptr(ltc4162l_of_match), }, }; module_i2c_driver(ltc4162l_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mike Looijmans <[email protected]>"); MODULE_DESCRIPTION("LTC4162-L charger driver");
linux-master
drivers/power/supply/ltc4162-l-charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 Richtek Technology Corp. * * Author: ChiYuan Huang <[email protected]> * ChiaEn Wu <[email protected]> */ #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/kstrtox.h> #include <linux/linear_range.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/units.h> #include <linux/sysfs.h> #define RT9467_REG_CORE_CTRL0 0x00 #define RT9467_REG_CHG_CTRL1 0x01 #define RT9467_REG_CHG_CTRL2 0x02 #define RT9467_REG_CHG_CTRL3 0x03 #define RT9467_REG_CHG_CTRL4 0x04 #define RT9467_REG_CHG_CTRL5 0x05 #define RT9467_REG_CHG_CTRL6 0x06 #define RT9467_REG_CHG_CTRL7 0x07 #define RT9467_REG_CHG_CTRL8 0x08 #define RT9467_REG_CHG_CTRL9 0x09 #define RT9467_REG_CHG_CTRL10 0x0A #define RT9467_REG_CHG_CTRL12 0x0C #define RT9467_REG_CHG_CTRL13 0x0D #define RT9467_REG_CHG_CTRL14 0x0E #define RT9467_REG_CHG_ADC 0x11 #define RT9467_REG_CHG_DPDM1 0x12 #define RT9467_REG_CHG_DPDM2 0x13 #define RT9467_REG_DEVICE_ID 0x40 #define RT9467_REG_CHG_STAT 0x42 #define RT9467_REG_ADC_DATA_H 0x44 #define RT9467_REG_CHG_STATC 0x50 #define RT9467_REG_CHG_IRQ1 0x53 #define RT9467_REG_CHG_STATC_CTRL 0x60 #define RT9467_REG_CHG_IRQ1_CTRL 0x63 #define RT9467_MASK_PWR_RDY BIT(7) #define RT9467_MASK_MIVR_STAT BIT(6) #define RT9467_MASK_OTG_CSEL GENMASK(2, 0) #define RT9467_MASK_OTG_VSEL GENMASK(7, 2) #define RT9467_MASK_OTG_EN BIT(0) #define RT9467_MASK_ADC_IN_SEL GENMASK(7, 4) #define RT9467_MASK_ADC_START BIT(0) #define RT9467_NUM_IRQ_REGS 4 #define RT9467_ICHG_MIN_uA 100000 #define RT9467_ICHG_MAX_uA 5000000 #define RT9467_CV_MAX_uV 4710000 #define RT9467_OTG_MIN_uV 4425000 #define RT9467_OTG_MAX_uV 5825000 #define RT9467_OTG_STEP_uV 25000 #define RT9467_NUM_VOTG (RT9467_OTG_MAX_uV - RT9467_OTG_MIN_uV + 1) #define RT9467_AICLVTH_GAP_uV 200000 #define RT9467_ADCCONV_TIME_MS 35 #define RT9466_VID 0x8 #define RT9467_VID 0x9 /* IRQ number */ #define RT9467_IRQ_TS_STATC 0 #define RT9467_IRQ_CHG_FAULT 1 #define RT9467_IRQ_CHG_STATC 2 #define RT9467_IRQ_CHG_TMR 3 #define RT9467_IRQ_CHG_BATABS 4 #define RT9467_IRQ_CHG_ADPBAD 5 #define RT9467_IRQ_CHG_RVP 6 #define RT9467_IRQ_OTP 7 #define RT9467_IRQ_CHG_AICLM 8 #define RT9467_IRQ_CHG_ICHGM 9 #define RT9467_IRQ_WDTMR 11 #define RT9467_IRQ_SSFINISH 12 #define RT9467_IRQ_CHG_RECHG 13 #define RT9467_IRQ_CHG_TERM 14 #define RT9467_IRQ_CHG_IEOC 15 #define RT9467_IRQ_ADC_DONE 16 #define RT9467_IRQ_PUMPX_DONE 17 #define RT9467_IRQ_BST_BATUV 21 #define RT9467_IRQ_BST_MIDOV 22 #define RT9467_IRQ_BST_OLP 23 #define RT9467_IRQ_ATTACH 24 #define RT9467_IRQ_DETACH 25 #define RT9467_IRQ_HVDCP_DET 29 #define RT9467_IRQ_CHGDET 30 #define RT9467_IRQ_DCDT 31 enum rt9467_fields { /* RT9467_REG_CORE_CTRL0 */ F_RST = 0, /* RT9467_REG_CHG_CTRL1 */ F_HZ, F_OTG_PIN_EN, F_OPA_MODE, /* RT9467_REG_CHG_CTRL2 */ F_SHIP_MODE, F_TE, F_IINLMTSEL, F_CFO_EN, F_CHG_EN, /* RT9467_REG_CHG_CTRL3 */ F_IAICR, F_ILIM_EN, /* RT9467_REG_CHG_CTRL4 */ F_VOREG, /* RT9467_REG_CHG_CTRL6 */ F_VMIVR, /* RT9467_REG_CHG_CTRL7 */ F_ICHG, /* RT9467_REG_CHG_CTRL8 */ F_IPREC, /* RT9467_REG_CHG_CTRL9 */ F_IEOC, /* RT9467_REG_CHG_CTRL12 */ F_WT_FC, /* RT9467_REG_CHG_CTRL13 */ F_OCP, /* RT9467_REG_CHG_CTRL14 */ F_AICL_MEAS, F_AICL_VTH, /* RT9467_REG_CHG_DPDM1 */ F_USBCHGEN, /* RT9467_REG_CHG_DPDM2 */ F_USB_STATUS, /* RT9467_REG_DEVICE_ID */ F_VENDOR, /* RT9467_REG_CHG_STAT */ F_CHG_STAT, /* RT9467_REG_CHG_STATC */ F_PWR_RDY, F_CHG_MIVR, F_MAX_FIELDS }; static const struct regmap_irq rt9467_irqs[] = { REGMAP_IRQ_REG_LINE(RT9467_IRQ_TS_STATC, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_FAULT, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_STATC, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_TMR, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_BATABS, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_ADPBAD, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_RVP, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_OTP, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_AICLM, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_ICHGM, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_WDTMR, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_SSFINISH, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_RECHG, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_TERM, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHG_IEOC, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_ADC_DONE, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_PUMPX_DONE, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_BST_BATUV, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_BST_MIDOV, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_BST_OLP, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_ATTACH, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_DETACH, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_HVDCP_DET, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_CHGDET, 8), REGMAP_IRQ_REG_LINE(RT9467_IRQ_DCDT, 8) }; static const struct regmap_irq_chip rt9467_irq_chip = { .name = "rt9467-irqs", .status_base = RT9467_REG_CHG_IRQ1, .mask_base = RT9467_REG_CHG_IRQ1_CTRL, .num_regs = RT9467_NUM_IRQ_REGS, .irqs = rt9467_irqs, .num_irqs = ARRAY_SIZE(rt9467_irqs), }; enum rt9467_ranges { RT9467_RANGE_IAICR = 0, RT9467_RANGE_VOREG, RT9467_RANGE_VMIVR, RT9467_RANGE_ICHG, RT9467_RANGE_IPREC, RT9467_RANGE_IEOC, RT9467_RANGE_AICL_VTH, RT9467_RANGES_MAX }; static const struct linear_range rt9467_ranges[RT9467_RANGES_MAX] = { LINEAR_RANGE_IDX(RT9467_RANGE_IAICR, 100000, 0x0, 0x3F, 50000), LINEAR_RANGE_IDX(RT9467_RANGE_VOREG, 3900000, 0x0, 0x51, 10000), LINEAR_RANGE_IDX(RT9467_RANGE_VMIVR, 3900000, 0x0, 0x5F, 100000), LINEAR_RANGE_IDX(RT9467_RANGE_ICHG, 900000, 0x08, 0x31, 100000), LINEAR_RANGE_IDX(RT9467_RANGE_IPREC, 100000, 0x0, 0x0F, 50000), LINEAR_RANGE_IDX(RT9467_RANGE_IEOC, 100000, 0x0, 0x0F, 50000), LINEAR_RANGE_IDX(RT9467_RANGE_AICL_VTH, 4100000, 0x0, 0x7, 100000), }; static const struct reg_field rt9467_chg_fields[] = { [F_RST] = REG_FIELD(RT9467_REG_CORE_CTRL0, 7, 7), [F_HZ] = REG_FIELD(RT9467_REG_CHG_CTRL1, 2, 2), [F_OTG_PIN_EN] = REG_FIELD(RT9467_REG_CHG_CTRL1, 1, 1), [F_OPA_MODE] = REG_FIELD(RT9467_REG_CHG_CTRL1, 0, 0), [F_SHIP_MODE] = REG_FIELD(RT9467_REG_CHG_CTRL2, 7, 7), [F_TE] = REG_FIELD(RT9467_REG_CHG_CTRL2, 4, 4), [F_IINLMTSEL] = REG_FIELD(RT9467_REG_CHG_CTRL2, 2, 3), [F_CFO_EN] = REG_FIELD(RT9467_REG_CHG_CTRL2, 1, 1), [F_CHG_EN] = REG_FIELD(RT9467_REG_CHG_CTRL2, 0, 0), [F_IAICR] = REG_FIELD(RT9467_REG_CHG_CTRL3, 2, 7), [F_ILIM_EN] = REG_FIELD(RT9467_REG_CHG_CTRL3, 0, 0), [F_VOREG] = REG_FIELD(RT9467_REG_CHG_CTRL4, 1, 7), [F_VMIVR] = REG_FIELD(RT9467_REG_CHG_CTRL6, 1, 7), [F_ICHG] = REG_FIELD(RT9467_REG_CHG_CTRL7, 2, 7), [F_IPREC] = REG_FIELD(RT9467_REG_CHG_CTRL8, 0, 3), [F_IEOC] = REG_FIELD(RT9467_REG_CHG_CTRL9, 4, 7), [F_WT_FC] = REG_FIELD(RT9467_REG_CHG_CTRL12, 5, 7), [F_OCP] = REG_FIELD(RT9467_REG_CHG_CTRL13, 2, 2), [F_AICL_MEAS] = REG_FIELD(RT9467_REG_CHG_CTRL14, 7, 7), [F_AICL_VTH] = REG_FIELD(RT9467_REG_CHG_CTRL14, 0, 2), [F_USBCHGEN] = REG_FIELD(RT9467_REG_CHG_DPDM1, 7, 7), [F_USB_STATUS] = REG_FIELD(RT9467_REG_CHG_DPDM2, 0, 2), [F_VENDOR] = REG_FIELD(RT9467_REG_DEVICE_ID, 4, 7), [F_CHG_STAT] = REG_FIELD(RT9467_REG_CHG_STAT, 6, 7), [F_PWR_RDY] = REG_FIELD(RT9467_REG_CHG_STATC, 7, 7), [F_CHG_MIVR] = REG_FIELD(RT9467_REG_CHG_STATC, 6, 6), }; enum { RT9467_STAT_READY = 0, RT9467_STAT_PROGRESS, RT9467_STAT_CHARGE_DONE, RT9467_STAT_FAULT }; enum rt9467_adc_chan { RT9467_ADC_VBUS_DIV5 = 0, RT9467_ADC_VBUS_DIV2, RT9467_ADC_VSYS, RT9467_ADC_VBAT, RT9467_ADC_TS_BAT, RT9467_ADC_IBUS, RT9467_ADC_IBAT, RT9467_ADC_REGN, RT9467_ADC_TEMP_JC }; enum rt9467_chg_type { RT9467_CHG_TYPE_NOVBUS = 0, RT9467_CHG_TYPE_UNDER_GOING, RT9467_CHG_TYPE_SDP, RT9467_CHG_TYPE_SDPNSTD, RT9467_CHG_TYPE_DCP, RT9467_CHG_TYPE_CDP, RT9467_CHG_TYPE_MAX }; enum rt9467_iin_limit_sel { RT9467_IINLMTSEL_3_2A = 0, RT9467_IINLMTSEL_CHG_TYP, RT9467_IINLMTSEL_AICR, RT9467_IINLMTSEL_LOWER_LEVEL, /* lower of above three */ }; struct rt9467_chg_data { struct device *dev; struct regmap *regmap; struct regmap_field *rm_field[F_MAX_FIELDS]; struct regmap_irq_chip_data *irq_chip_data; struct power_supply *psy; struct mutex adc_lock; struct mutex attach_lock; struct mutex ichg_ieoc_lock; struct regulator_dev *rdev; struct completion aicl_done; enum power_supply_usb_type psy_usb_type; unsigned int old_stat; unsigned int vid; int ichg_ua; int ieoc_ua; }; static int rt9467_otg_of_parse_cb(struct device_node *of, const struct regulator_desc *desc, struct regulator_config *cfg) { struct rt9467_chg_data *data = cfg->driver_data; cfg->ena_gpiod = fwnode_gpiod_get_index(of_fwnode_handle(of), "enable", 0, GPIOD_OUT_LOW | GPIOD_FLAGS_BIT_NONEXCLUSIVE, desc->name); if (IS_ERR(cfg->ena_gpiod)) { cfg->ena_gpiod = NULL; return 0; } return regmap_field_write(data->rm_field[F_OTG_PIN_EN], 1); } static const struct regulator_ops rt9467_otg_regulator_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .list_voltage = regulator_list_voltage_linear, .set_voltage_sel = regulator_set_voltage_sel_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_current_limit = regulator_set_current_limit_regmap, .get_current_limit = regulator_get_current_limit_regmap, }; static const u32 rt9467_otg_microamp[] = { 500000, 700000, 1100000, 1300000, 1800000, 2100000, 2400000, 3000000 }; static const struct regulator_desc rt9467_otg_desc = { .name = "rt9476-usb-otg-vbus", .of_match = "usb-otg-vbus-regulator", .of_parse_cb = rt9467_otg_of_parse_cb, .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .min_uV = RT9467_OTG_MIN_uV, .uV_step = RT9467_OTG_STEP_uV, .n_voltages = RT9467_NUM_VOTG, .curr_table = rt9467_otg_microamp, .n_current_limits = ARRAY_SIZE(rt9467_otg_microamp), .csel_reg = RT9467_REG_CHG_CTRL10, .csel_mask = RT9467_MASK_OTG_CSEL, .vsel_reg = RT9467_REG_CHG_CTRL5, .vsel_mask = RT9467_MASK_OTG_VSEL, .enable_reg = RT9467_REG_CHG_CTRL1, .enable_mask = RT9467_MASK_OTG_EN, .ops = &rt9467_otg_regulator_ops, }; static int rt9467_register_otg_regulator(struct rt9467_chg_data *data) { struct regulator_config cfg = { .dev = data->dev, .regmap = data->regmap, .driver_data = data, }; data->rdev = devm_regulator_register(data->dev, &rt9467_otg_desc, &cfg); return PTR_ERR_OR_ZERO(data->rdev); } static int rt9467_get_value_from_ranges(struct rt9467_chg_data *data, enum rt9467_fields field, enum rt9467_ranges rsel, int *value) { const struct linear_range *range = rt9467_ranges + rsel; unsigned int sel; int ret; ret = regmap_field_read(data->rm_field[field], &sel); if (ret) return ret; return linear_range_get_value(range, sel, value); } static int rt9467_set_value_from_ranges(struct rt9467_chg_data *data, enum rt9467_fields field, enum rt9467_ranges rsel, int value) { const struct linear_range *range = rt9467_ranges + rsel; unsigned int sel; bool found; int ret; if (rsel == RT9467_RANGE_VMIVR) { ret = linear_range_get_selector_high(range, value, &sel, &found); if (ret) value = range->max_sel; } else { linear_range_get_selector_within(range, value, &sel); } return regmap_field_write(data->rm_field[field], sel); } static int rt9467_get_adc_sel(enum rt9467_adc_chan chan, int *sel) { switch (chan) { case RT9467_ADC_VBUS_DIV5: case RT9467_ADC_VBUS_DIV2: case RT9467_ADC_VSYS: case RT9467_ADC_VBAT: *sel = chan + 1; return 0; case RT9467_ADC_TS_BAT: *sel = chan + 2; return 0; case RT9467_ADC_IBUS: case RT9467_ADC_IBAT: *sel = chan + 3; return 0; case RT9467_ADC_REGN: case RT9467_ADC_TEMP_JC: *sel = chan + 4; return 0; default: return -EINVAL; } } static int rt9467_get_adc_raw_data(struct rt9467_chg_data *data, enum rt9467_adc_chan chan, int *val) { unsigned int adc_stat, reg_val, adc_sel; __be16 chan_raw_data; int ret; mutex_lock(&data->adc_lock); ret = rt9467_get_adc_sel(chan, &adc_sel); if (ret) goto adc_unlock; ret = regmap_write(data->regmap, RT9467_REG_CHG_ADC, 0); if (ret) { dev_err(data->dev, "Failed to clear ADC enable\n"); goto adc_unlock; } reg_val = RT9467_MASK_ADC_START | FIELD_PREP(RT9467_MASK_ADC_IN_SEL, adc_sel); ret = regmap_write(data->regmap, RT9467_REG_CHG_ADC, reg_val); if (ret) goto adc_unlock; /* Minimum wait time for one channel processing */ msleep(RT9467_ADCCONV_TIME_MS); ret = regmap_read_poll_timeout(data->regmap, RT9467_REG_CHG_ADC, adc_stat, !(adc_stat & RT9467_MASK_ADC_START), MILLI, RT9467_ADCCONV_TIME_MS * MILLI); if (ret) { dev_err(data->dev, "Failed to wait ADC conversion, chan = %d\n", chan); goto adc_unlock; } ret = regmap_raw_read(data->regmap, RT9467_REG_ADC_DATA_H, &chan_raw_data, sizeof(chan_raw_data)); if (ret) goto adc_unlock; *val = be16_to_cpu(chan_raw_data); adc_unlock: mutex_unlock(&data->adc_lock); return ret; } static int rt9467_get_adc(struct rt9467_chg_data *data, enum rt9467_adc_chan chan, int *val) { unsigned int aicr_ua, ichg_ua; int ret; ret = rt9467_get_adc_raw_data(data, chan, val); if (ret) return ret; switch (chan) { case RT9467_ADC_VBUS_DIV5: *val *= 25000; return 0; case RT9467_ADC_VBUS_DIV2: *val *= 10000; return 0; case RT9467_ADC_VBAT: case RT9467_ADC_VSYS: case RT9467_ADC_REGN: *val *= 5000; return 0; case RT9467_ADC_TS_BAT: *val /= 400; return 0; case RT9467_ADC_IBUS: /* UUG MOS turn-on ratio will affect the IBUS adc scale */ ret = rt9467_get_value_from_ranges(data, F_IAICR, RT9467_RANGE_IAICR, &aicr_ua); if (ret) return ret; *val *= aicr_ua < 400000 ? 29480 : 50000; return 0; case RT9467_ADC_IBAT: /* PP MOS turn-on ratio will affect the ICHG adc scale */ ret = rt9467_get_value_from_ranges(data, F_ICHG, RT9467_RANGE_ICHG, &ichg_ua); if (ret) return ret; *val *= ichg_ua <= 400000 ? 28500 : ichg_ua <= 800000 ? 31500 : 500000; return 0; case RT9467_ADC_TEMP_JC: *val = ((*val * 2) - 40) * 10; return 0; default: return -EINVAL; } } static int rt9467_psy_get_status(struct rt9467_chg_data *data, int *state) { unsigned int status; int ret; ret = regmap_field_read(data->rm_field[F_CHG_STAT], &status); if (ret) return ret; switch (status) { case RT9467_STAT_READY: *state = POWER_SUPPLY_STATUS_NOT_CHARGING; return 0; case RT9467_STAT_PROGRESS: *state = POWER_SUPPLY_STATUS_CHARGING; return 0; case RT9467_STAT_CHARGE_DONE: *state = POWER_SUPPLY_STATUS_FULL; return 0; default: *state = POWER_SUPPLY_STATUS_UNKNOWN; return 0; } } static int rt9467_psy_set_ichg(struct rt9467_chg_data *data, int microamp) { int ret; mutex_lock(&data->ichg_ieoc_lock); if (microamp < 500000) { dev_err(data->dev, "Minimum value must be 500mA\n"); microamp = 500000; } ret = rt9467_set_value_from_ranges(data, F_ICHG, RT9467_RANGE_ICHG, microamp); if (ret) goto out; ret = rt9467_get_value_from_ranges(data, F_ICHG, RT9467_RANGE_ICHG, &data->ichg_ua); if (ret) goto out; out: mutex_unlock(&data->ichg_ieoc_lock); return ret; } static int rt9467_run_aicl(struct rt9467_chg_data *data) { unsigned int statc, aicl_vth; int mivr_vth, aicr_get; int ret = 0; ret = regmap_read(data->regmap, RT9467_REG_CHG_STATC, &statc); if (ret) { dev_err(data->dev, "Failed to read status\n"); return ret; } if (!(statc & RT9467_MASK_PWR_RDY) || !(statc & RT9467_MASK_MIVR_STAT)) { dev_info(data->dev, "Condition not matched %d\n", statc); return 0; } ret = rt9467_get_value_from_ranges(data, F_VMIVR, RT9467_RANGE_VMIVR, &mivr_vth); if (ret) { dev_err(data->dev, "Failed to get mivr\n"); return ret; } /* AICL_VTH = MIVR_VTH + 200mV */ aicl_vth = mivr_vth + RT9467_AICLVTH_GAP_uV; ret = rt9467_set_value_from_ranges(data, F_AICL_VTH, RT9467_RANGE_AICL_VTH, aicl_vth); /* Trigger AICL function */ ret = regmap_field_write(data->rm_field[F_AICL_MEAS], 1); if (ret) { dev_err(data->dev, "Failed to set aicl measurement\n"); return ret; } reinit_completion(&data->aicl_done); ret = wait_for_completion_timeout(&data->aicl_done, msecs_to_jiffies(3500)); if (ret) return ret; ret = rt9467_get_value_from_ranges(data, F_IAICR, RT9467_RANGE_IAICR, &aicr_get); if (ret) { dev_err(data->dev, "Failed to get aicr\n"); return ret; } dev_info(data->dev, "aicr get = %d uA\n", aicr_get); return 0; } static int rt9467_psy_set_ieoc(struct rt9467_chg_data *data, int microamp) { int ret; mutex_lock(&data->ichg_ieoc_lock); ret = rt9467_set_value_from_ranges(data, F_IEOC, RT9467_RANGE_IEOC, microamp); if (ret) goto out; ret = rt9467_get_value_from_ranges(data, F_IEOC, RT9467_RANGE_IEOC, &data->ieoc_ua); if (ret) goto out; out: mutex_unlock(&data->ichg_ieoc_lock); return ret; } static const enum power_supply_usb_type rt9467_chg_usb_types[] = { POWER_SUPPLY_USB_TYPE_UNKNOWN, POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_CDP, }; static const enum power_supply_property rt9467_chg_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, }; static int rt9467_psy_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct rt9467_chg_data *data = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: return rt9467_psy_get_status(data, &val->intval); case POWER_SUPPLY_PROP_ONLINE: return regmap_field_read(data->rm_field[F_PWR_RDY], &val->intval); case POWER_SUPPLY_PROP_CURRENT_MAX: mutex_lock(&data->attach_lock); if (data->psy_usb_type == POWER_SUPPLY_USB_TYPE_UNKNOWN || data->psy_usb_type == POWER_SUPPLY_USB_TYPE_SDP) val->intval = 500000; else val->intval = 1500000; mutex_unlock(&data->attach_lock); return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: mutex_lock(&data->ichg_ieoc_lock); val->intval = data->ichg_ua; mutex_unlock(&data->ichg_ieoc_lock); return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = RT9467_ICHG_MAX_uA; return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return rt9467_get_value_from_ranges(data, F_VOREG, RT9467_RANGE_VOREG, &val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = RT9467_CV_MAX_uV; return 0; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return rt9467_get_value_from_ranges(data, F_IAICR, RT9467_RANGE_IAICR, &val->intval); case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: return rt9467_get_value_from_ranges(data, F_VMIVR, RT9467_RANGE_VMIVR, &val->intval); case POWER_SUPPLY_PROP_USB_TYPE: mutex_lock(&data->attach_lock); val->intval = data->psy_usb_type; mutex_unlock(&data->attach_lock); return 0; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return rt9467_get_value_from_ranges(data, F_IPREC, RT9467_RANGE_IPREC, &val->intval); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: mutex_lock(&data->ichg_ieoc_lock); val->intval = data->ieoc_ua; mutex_unlock(&data->ichg_ieoc_lock); return 0; default: return -ENODATA; } } static int rt9467_psy_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct rt9467_chg_data *data = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: return regmap_field_write(data->rm_field[F_CHG_EN], val->intval); case POWER_SUPPLY_PROP_ONLINE: return regmap_field_write(data->rm_field[F_HZ], val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return rt9467_psy_set_ichg(data, val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return rt9467_set_value_from_ranges(data, F_VOREG, RT9467_RANGE_VOREG, val->intval); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: if (val->intval == -1) return rt9467_run_aicl(data); else return rt9467_set_value_from_ranges(data, F_IAICR, RT9467_RANGE_IAICR, val->intval); case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: return rt9467_set_value_from_ranges(data, F_VMIVR, RT9467_RANGE_VMIVR, val->intval); case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return rt9467_set_value_from_ranges(data, F_IPREC, RT9467_RANGE_IPREC, val->intval); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return rt9467_psy_set_ieoc(data, val->intval); case POWER_SUPPLY_PROP_USB_TYPE: return regmap_field_write(data->rm_field[F_USBCHGEN], val->intval); default: return -EINVAL; } } static int rt9467_chg_prop_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_ONLINE: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: case POWER_SUPPLY_PROP_USB_TYPE: return 1; default: return 0; } } static const struct power_supply_desc rt9467_chg_psy_desc = { .name = "rt9467-charger", .type = POWER_SUPPLY_TYPE_USB, .usb_types = rt9467_chg_usb_types, .num_usb_types = ARRAY_SIZE(rt9467_chg_usb_types), .properties = rt9467_chg_properties, .num_properties = ARRAY_SIZE(rt9467_chg_properties), .property_is_writeable = rt9467_chg_prop_is_writeable, .get_property = rt9467_psy_get_property, .set_property = rt9467_psy_set_property, }; static inline struct rt9467_chg_data *psy_device_to_chip(struct device *dev) { return power_supply_get_drvdata(to_power_supply(dev)); } static ssize_t sysoff_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rt9467_chg_data *data = psy_device_to_chip(dev); unsigned int sysoff_enable; int ret; ret = regmap_field_read(data->rm_field[F_SHIP_MODE], &sysoff_enable); if (ret) return ret; return sysfs_emit(buf, "%d\n", sysoff_enable); } static ssize_t sysoff_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rt9467_chg_data *data = psy_device_to_chip(dev); unsigned int tmp; int ret; ret = kstrtouint(buf, 10, &tmp); if (ret) return ret; ret = regmap_field_write(data->rm_field[F_SHIP_MODE], !!tmp); if (ret) return ret; return count; } static DEVICE_ATTR_RW(sysoff_enable); static struct attribute *rt9467_sysfs_attrs[] = { &dev_attr_sysoff_enable.attr, NULL }; ATTRIBUTE_GROUPS(rt9467_sysfs); static int rt9467_register_psy(struct rt9467_chg_data *data) { struct power_supply_config cfg = { .drv_data = data, .of_node = dev_of_node(data->dev), .attr_grp = rt9467_sysfs_groups, }; data->psy = devm_power_supply_register(data->dev, &rt9467_chg_psy_desc, &cfg); return PTR_ERR_OR_ZERO(data->psy); } static int rt9467_mivr_handler(struct rt9467_chg_data *data) { unsigned int mivr_act; int ret, ibus_ma; /* * back-boost workaround * If (mivr_active & ibus < 100mA), toggle cfo bit */ ret = regmap_field_read(data->rm_field[F_CHG_MIVR], &mivr_act); if (ret) { dev_err(data->dev, "Failed to read MIVR stat\n"); return ret; } if (!mivr_act) return 0; ret = rt9467_get_adc(data, RT9467_ADC_IBUS, &ibus_ma); if (ret) { dev_err(data->dev, "Failed to get IBUS\n"); return ret; } if (ibus_ma < 100000) { ret = regmap_field_write(data->rm_field[F_CFO_EN], 0); ret |= regmap_field_write(data->rm_field[F_CFO_EN], 1); if (ret) dev_err(data->dev, "Failed to toggle cfo\n"); } return ret; } static irqreturn_t rt9467_statc_handler(int irq, void *priv) { struct rt9467_chg_data *data = priv; unsigned int new_stat, evts = 0; int ret; ret = regmap_read(data->regmap, RT9467_REG_CHG_STATC, &new_stat); if (ret) { dev_err(data->dev, "Failed to read chg_statc\n"); return IRQ_NONE; } evts = data->old_stat ^ new_stat; data->old_stat = new_stat; if ((evts & new_stat) & RT9467_MASK_MIVR_STAT) { ret = rt9467_mivr_handler(data); if (ret) dev_err(data->dev, "Failed to handle mivr stat\n"); } return IRQ_HANDLED; } static irqreturn_t rt9467_wdt_handler(int irq, void *priv) { struct rt9467_chg_data *data = priv; unsigned int dev_id; int ret; /* Any i2c communication can kick watchdog timer */ ret = regmap_read(data->regmap, RT9467_REG_DEVICE_ID, &dev_id); if (ret) { dev_err(data->dev, "Failed to kick wdt (%d)\n", ret); return IRQ_NONE; } return IRQ_HANDLED; } static int rt9467_report_usb_state(struct rt9467_chg_data *data) { unsigned int usb_stat, power_ready; bool psy_changed = true; int ret; ret = regmap_field_read(data->rm_field[F_USB_STATUS], &usb_stat); ret |= regmap_field_read(data->rm_field[F_PWR_RDY], &power_ready); if (ret) return ret; if (!power_ready) usb_stat = RT9467_CHG_TYPE_NOVBUS; mutex_lock(&data->attach_lock); switch (usb_stat) { case RT9467_CHG_TYPE_NOVBUS: data->psy_usb_type = POWER_SUPPLY_USB_TYPE_UNKNOWN; break; case RT9467_CHG_TYPE_SDP: data->psy_usb_type = POWER_SUPPLY_USB_TYPE_SDP; break; case RT9467_CHG_TYPE_SDPNSTD: data->psy_usb_type = POWER_SUPPLY_USB_TYPE_DCP; break; case RT9467_CHG_TYPE_DCP: data->psy_usb_type = POWER_SUPPLY_USB_TYPE_DCP; break; case RT9467_CHG_TYPE_CDP: data->psy_usb_type = POWER_SUPPLY_USB_TYPE_CDP; break; case RT9467_CHG_TYPE_UNDER_GOING: default: psy_changed = false; break; } mutex_unlock(&data->attach_lock); if (psy_changed) power_supply_changed(data->psy); return 0; } static irqreturn_t rt9467_usb_state_handler(int irq, void *priv) { struct rt9467_chg_data *data = priv; int ret; ret = rt9467_report_usb_state(data); if (ret) { dev_err(data->dev, "Failed to report attach type (%d)\n", ret); return IRQ_NONE; } return IRQ_HANDLED; } static irqreturn_t rt9467_aiclmeas_handler(int irq, void *priv) { struct rt9467_chg_data *data = priv; complete(&data->aicl_done); return IRQ_HANDLED; } #define RT9467_IRQ_DESC(_name, _handler_func, _hwirq) \ { \ .name = #_name, \ .handler = rt9467_##_handler_func##_handler, \ .hwirq = _hwirq, \ } static int rt9467_request_interrupt(struct rt9467_chg_data *data) { struct device *dev = data->dev; static const struct { const char *name; int hwirq; irq_handler_t handler; } rt9467_exclusive_irqs[] = { RT9467_IRQ_DESC(statc, statc, RT9467_IRQ_TS_STATC), RT9467_IRQ_DESC(wdt, wdt, RT9467_IRQ_WDTMR), RT9467_IRQ_DESC(attach, usb_state, RT9467_IRQ_ATTACH), RT9467_IRQ_DESC(detach, usb_state, RT9467_IRQ_DETACH), RT9467_IRQ_DESC(aiclmeas, aiclmeas, RT9467_IRQ_CHG_AICLM), }, rt9466_exclusive_irqs[] = { RT9467_IRQ_DESC(statc, statc, RT9467_IRQ_TS_STATC), RT9467_IRQ_DESC(wdt, wdt, RT9467_IRQ_WDTMR), RT9467_IRQ_DESC(aiclmeas, aiclmeas, RT9467_IRQ_CHG_AICLM), }, *chg_irqs; int num_chg_irqs, i, virq, ret; if (data->vid == RT9466_VID) { chg_irqs = rt9466_exclusive_irqs; num_chg_irqs = ARRAY_SIZE(rt9466_exclusive_irqs); } else { chg_irqs = rt9467_exclusive_irqs; num_chg_irqs = ARRAY_SIZE(rt9467_exclusive_irqs); } for (i = 0; i < num_chg_irqs; i++) { virq = regmap_irq_get_virq(data->irq_chip_data, chg_irqs[i].hwirq); if (virq <= 0) return dev_err_probe(dev, -EINVAL, "Failed to get (%s) irq\n", chg_irqs[i].name); ret = devm_request_threaded_irq(dev, virq, NULL, chg_irqs[i].handler, IRQF_ONESHOT, chg_irqs[i].name, data); if (ret) return dev_err_probe(dev, ret, "Failed to request (%s) irq\n", chg_irqs[i].name); } return 0; } static int rt9467_do_charger_init(struct rt9467_chg_data *data) { struct device *dev = data->dev; int ret; ret = regmap_write(data->regmap, RT9467_REG_CHG_ADC, 0); if (ret) return dev_err_probe(dev, ret, "Failed to reset ADC\n"); ret = rt9467_get_value_from_ranges(data, F_ICHG, RT9467_RANGE_ICHG, &data->ichg_ua); ret |= rt9467_get_value_from_ranges(data, F_IEOC, RT9467_RANGE_IEOC, &data->ieoc_ua); if (ret) return dev_err_probe(dev, ret, "Failed to init ichg/ieoc value\n"); ret = regmap_update_bits(data->regmap, RT9467_REG_CHG_STATC_CTRL, RT9467_MASK_PWR_RDY | RT9467_MASK_MIVR_STAT, 0); if (ret) return dev_err_probe(dev, ret, "Failed to make statc unmask\n"); /* Select IINLMTSEL to use AICR */ ret = regmap_field_write(data->rm_field[F_IINLMTSEL], RT9467_IINLMTSEL_AICR); if (ret) return dev_err_probe(dev, ret, "Failed to set iinlmtsel to AICR\n"); /* Wait for AICR Rampping */ msleep(150); /* Disable hardware ILIM */ ret = regmap_field_write(data->rm_field[F_ILIM_EN], 0); if (ret) return dev_err_probe(dev, ret, "Failed to disable hardware ILIM\n"); /* Set inductor OCP to high level */ ret = regmap_field_write(data->rm_field[F_OCP], 1); if (ret) return dev_err_probe(dev, ret, "Failed to set higher inductor OCP level\n"); /* Set charge termination default enable */ ret = regmap_field_write(data->rm_field[F_TE], 1); if (ret) return dev_err_probe(dev, ret, "Failed to set TE=1\n"); /* Set 12hrs fast charger timer */ ret = regmap_field_write(data->rm_field[F_WT_FC], 4); if (ret) return dev_err_probe(dev, ret, "Failed to set WT_FC\n"); /* Toggle BC12 function */ ret = regmap_field_write(data->rm_field[F_USBCHGEN], 0); if (ret) return dev_err_probe(dev, ret, "Failed to disable BC12\n"); return regmap_field_write(data->rm_field[F_USBCHGEN], 1); } static bool rt9467_is_accessible_reg(struct device *dev, unsigned int reg) { switch (reg) { case 0x00 ... 0x1A: case 0x20 ... 0x38: case 0x40 ... 0x49: case 0x50 ... 0x57: case 0x60 ... 0x67: case 0x70 ... 0x79: case 0x82 ... 0x85: return true; default: return false; } } static const struct regmap_config rt9467_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x85, .writeable_reg = rt9467_is_accessible_reg, .readable_reg = rt9467_is_accessible_reg, }; static int rt9467_check_vendor_info(struct rt9467_chg_data *data) { unsigned int vid; int ret; ret = regmap_field_read(data->rm_field[F_VENDOR], &vid); if (ret) { dev_err(data->dev, "Failed to get vid\n"); return ret; } if ((vid != RT9466_VID) && (vid != RT9467_VID)) return dev_err_probe(data->dev, -ENODEV, "VID not correct [0x%02X]\n", vid); data->vid = vid; return 0; } static int rt9467_reset_chip(struct rt9467_chg_data *data) { int ret; /* Disable HZ before reset chip */ ret = regmap_field_write(data->rm_field[F_HZ], 0); if (ret) return ret; return regmap_field_write(data->rm_field[F_RST], 1); } static void rt9467_chg_destroy_adc_lock(void *data) { struct mutex *adc_lock = data; mutex_destroy(adc_lock); } static void rt9467_chg_destroy_attach_lock(void *data) { struct mutex *attach_lock = data; mutex_destroy(attach_lock); } static void rt9467_chg_destroy_ichg_ieoc_lock(void *data) { struct mutex *ichg_ieoc_lock = data; mutex_destroy(ichg_ieoc_lock); } static void rt9467_chg_complete_aicl_done(void *data) { struct completion *aicl_done = data; complete(aicl_done); } static int rt9467_charger_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct rt9467_chg_data *data; struct gpio_desc *ceb_gpio; int ret; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->dev = &i2c->dev; i2c_set_clientdata(i2c, data); /* Default pull charge enable gpio to make 'CHG_EN' by SW control only */ ceb_gpio = devm_gpiod_get_optional(dev, "charge-enable", GPIOD_OUT_HIGH); if (IS_ERR(ceb_gpio)) return dev_err_probe(dev, PTR_ERR(ceb_gpio), "Failed to config charge enable gpio\n"); data->regmap = devm_regmap_init_i2c(i2c, &rt9467_regmap_config); if (IS_ERR(data->regmap)) return dev_err_probe(dev, PTR_ERR(data->regmap), "Failed to init regmap\n"); ret = devm_regmap_field_bulk_alloc(dev, data->regmap, data->rm_field, rt9467_chg_fields, ARRAY_SIZE(rt9467_chg_fields)); if (ret) return dev_err_probe(dev, ret, "Failed to alloc regmap fields\n"); ret = rt9467_check_vendor_info(data); if (ret) return dev_err_probe(dev, ret, "Failed to check vendor info"); ret = rt9467_reset_chip(data); if (ret) return dev_err_probe(dev, ret, "Failed to reset chip\n"); ret = devm_regmap_add_irq_chip(dev, data->regmap, i2c->irq, IRQF_TRIGGER_LOW | IRQF_ONESHOT, 0, &rt9467_irq_chip, &data->irq_chip_data); if (ret) return dev_err_probe(dev, ret, "Failed to add irq chip\n"); mutex_init(&data->adc_lock); ret = devm_add_action_or_reset(dev, rt9467_chg_destroy_adc_lock, &data->adc_lock); if (ret) return dev_err_probe(dev, ret, "Failed to init ADC lock\n"); mutex_init(&data->attach_lock); ret = devm_add_action_or_reset(dev, rt9467_chg_destroy_attach_lock, &data->attach_lock); if (ret) return dev_err_probe(dev, ret, "Failed to init attach lock\n"); mutex_init(&data->ichg_ieoc_lock); ret = devm_add_action_or_reset(dev, rt9467_chg_destroy_ichg_ieoc_lock, &data->ichg_ieoc_lock); if (ret) return dev_err_probe(dev, ret, "Failed to init ICHG/IEOC lock\n"); init_completion(&data->aicl_done); ret = devm_add_action_or_reset(dev, rt9467_chg_complete_aicl_done, &data->aicl_done); if (ret) return dev_err_probe(dev, ret, "Failed to init AICL done completion\n"); ret = rt9467_do_charger_init(data); if (ret) return ret; ret = rt9467_register_otg_regulator(data); if (ret) return ret; ret = rt9467_register_psy(data); if (ret) return ret; return rt9467_request_interrupt(data); } static const struct of_device_id rt9467_charger_of_match_table[] = { { .compatible = "richtek,rt9467", }, {} }; MODULE_DEVICE_TABLE(of, rt9467_charger_of_match_table); static struct i2c_driver rt9467_charger_driver = { .driver = { .name = "rt9467-charger", .of_match_table = rt9467_charger_of_match_table, }, .probe = rt9467_charger_probe, }; module_i2c_driver(rt9467_charger_driver); MODULE_DESCRIPTION("Richtek RT9467 Charger Driver"); MODULE_AUTHOR("ChiYuan Huang <[email protected]>"); MODULE_AUTHOR("ChiaEn Wu <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/rt9467-charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Summit Microelectronics SMB347 Battery Charger Driver * * Copyright (C) 2011, Intel Corporation * * Authors: Bruce E. Robertson <[email protected]> * Mika Westerberg <[email protected]> */ #include <linux/delay.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/i2c.h> #include <linux/power_supply.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <dt-bindings/power/summit,smb347-charger.h> /* Use the default compensation method */ #define SMB3XX_SOFT_TEMP_COMPENSATE_DEFAULT -1 /* Use default factory programmed value for hard/soft temperature limit */ #define SMB3XX_TEMP_USE_DEFAULT -273 /* * Configuration registers. These are mirrored to volatile RAM and can be * written once %CMD_A_ALLOW_WRITE is set in %CMD_A register. They will be * reloaded from non-volatile registers after POR. */ #define CFG_CHARGE_CURRENT 0x00 #define CFG_CHARGE_CURRENT_FCC_MASK 0xe0 #define CFG_CHARGE_CURRENT_FCC_SHIFT 5 #define CFG_CHARGE_CURRENT_PCC_MASK 0x18 #define CFG_CHARGE_CURRENT_PCC_SHIFT 3 #define CFG_CHARGE_CURRENT_TC_MASK 0x07 #define CFG_CURRENT_LIMIT 0x01 #define CFG_CURRENT_LIMIT_DC_MASK 0xf0 #define CFG_CURRENT_LIMIT_DC_SHIFT 4 #define CFG_CURRENT_LIMIT_USB_MASK 0x0f #define CFG_FLOAT_VOLTAGE 0x03 #define CFG_FLOAT_VOLTAGE_FLOAT_MASK 0x3f #define CFG_FLOAT_VOLTAGE_THRESHOLD_MASK 0xc0 #define CFG_FLOAT_VOLTAGE_THRESHOLD_SHIFT 6 #define CFG_STAT 0x05 #define CFG_STAT_DISABLED BIT(5) #define CFG_STAT_ACTIVE_HIGH BIT(7) #define CFG_PIN 0x06 #define CFG_PIN_EN_CTRL_MASK 0x60 #define CFG_PIN_EN_CTRL_ACTIVE_HIGH 0x40 #define CFG_PIN_EN_CTRL_ACTIVE_LOW 0x60 #define CFG_PIN_EN_APSD_IRQ BIT(1) #define CFG_PIN_EN_CHARGER_ERROR BIT(2) #define CFG_PIN_EN_CTRL BIT(4) #define CFG_THERM 0x07 #define CFG_THERM_SOFT_HOT_COMPENSATION_MASK 0x03 #define CFG_THERM_SOFT_HOT_COMPENSATION_SHIFT 0 #define CFG_THERM_SOFT_COLD_COMPENSATION_MASK 0x0c #define CFG_THERM_SOFT_COLD_COMPENSATION_SHIFT 2 #define CFG_THERM_MONITOR_DISABLED BIT(4) #define CFG_SYSOK 0x08 #define CFG_SYSOK_INOK_ACTIVE_HIGH BIT(0) #define CFG_SYSOK_SUSPEND_HARD_LIMIT_DISABLED BIT(2) #define CFG_OTHER 0x09 #define CFG_OTHER_RID_MASK 0xc0 #define CFG_OTHER_RID_ENABLED_AUTO_OTG 0xc0 #define CFG_OTG 0x0a #define CFG_OTG_TEMP_THRESHOLD_MASK 0x30 #define CFG_OTG_CURRENT_LIMIT_250mA BIT(2) #define CFG_OTG_CURRENT_LIMIT_750mA BIT(3) #define CFG_OTG_TEMP_THRESHOLD_SHIFT 4 #define CFG_OTG_CC_COMPENSATION_MASK 0xc0 #define CFG_OTG_CC_COMPENSATION_SHIFT 6 #define CFG_TEMP_LIMIT 0x0b #define CFG_TEMP_LIMIT_SOFT_HOT_MASK 0x03 #define CFG_TEMP_LIMIT_SOFT_HOT_SHIFT 0 #define CFG_TEMP_LIMIT_SOFT_COLD_MASK 0x0c #define CFG_TEMP_LIMIT_SOFT_COLD_SHIFT 2 #define CFG_TEMP_LIMIT_HARD_HOT_MASK 0x30 #define CFG_TEMP_LIMIT_HARD_HOT_SHIFT 4 #define CFG_TEMP_LIMIT_HARD_COLD_MASK 0xc0 #define CFG_TEMP_LIMIT_HARD_COLD_SHIFT 6 #define CFG_FAULT_IRQ 0x0c #define CFG_FAULT_IRQ_DCIN_UV BIT(2) #define CFG_STATUS_IRQ 0x0d #define CFG_STATUS_IRQ_TERMINATION_OR_TAPER BIT(4) #define CFG_STATUS_IRQ_CHARGE_TIMEOUT BIT(7) #define CFG_ADDRESS 0x0e /* Command registers */ #define CMD_A 0x30 #define CMD_A_CHG_ENABLED BIT(1) #define CMD_A_SUSPEND_ENABLED BIT(2) #define CMD_A_OTG_ENABLED BIT(4) #define CMD_A_ALLOW_WRITE BIT(7) #define CMD_B 0x31 #define CMD_C 0x33 /* Interrupt Status registers */ #define IRQSTAT_A 0x35 #define IRQSTAT_C 0x37 #define IRQSTAT_C_TERMINATION_STAT BIT(0) #define IRQSTAT_C_TERMINATION_IRQ BIT(1) #define IRQSTAT_C_TAPER_IRQ BIT(3) #define IRQSTAT_D 0x38 #define IRQSTAT_D_CHARGE_TIMEOUT_STAT BIT(2) #define IRQSTAT_D_CHARGE_TIMEOUT_IRQ BIT(3) #define IRQSTAT_E 0x39 #define IRQSTAT_E_USBIN_UV_STAT BIT(0) #define IRQSTAT_E_USBIN_UV_IRQ BIT(1) #define IRQSTAT_E_DCIN_UV_STAT BIT(4) #define IRQSTAT_E_DCIN_UV_IRQ BIT(5) #define IRQSTAT_F 0x3a /* Status registers */ #define STAT_A 0x3b #define STAT_A_FLOAT_VOLTAGE_MASK 0x3f #define STAT_B 0x3c #define STAT_C 0x3d #define STAT_C_CHG_ENABLED BIT(0) #define STAT_C_HOLDOFF_STAT BIT(3) #define STAT_C_CHG_MASK 0x06 #define STAT_C_CHG_SHIFT 1 #define STAT_C_CHG_TERM BIT(5) #define STAT_C_CHARGER_ERROR BIT(6) #define STAT_E 0x3f #define SMB347_MAX_REGISTER 0x3f /** * struct smb347_charger - smb347 charger instance * @dev: pointer to device * @regmap: pointer to driver regmap * @mains: power_supply instance for AC/DC power * @usb: power_supply instance for USB power * @usb_rdev: USB VBUS regulator device * @id: SMB charger ID * @mains_online: is AC/DC input connected * @usb_online: is USB input connected * @irq_unsupported: is interrupt unsupported by SMB hardware * @usb_vbus_enabled: is USB VBUS powered by SMB charger * @max_charge_current: maximum current (in uA) the battery can be charged * @max_charge_voltage: maximum voltage (in uV) the battery can be charged * @pre_charge_current: current (in uA) to use in pre-charging phase * @termination_current: current (in uA) used to determine when the * charging cycle terminates * @pre_to_fast_voltage: voltage (in uV) treshold used for transitioning to * pre-charge to fast charge mode * @mains_current_limit: maximum input current drawn from AC/DC input (in uA) * @usb_hc_current_limit: maximum input high current (in uA) drawn from USB * input * @chip_temp_threshold: die temperature where device starts limiting charge * current [%100 - %130] (in degree C) * @soft_cold_temp_limit: soft cold temperature limit [%0 - %15] (in degree C), * granularity is 5 deg C. * @soft_hot_temp_limit: soft hot temperature limit [%40 - %55] (in degree C), * granularity is 5 deg C. * @hard_cold_temp_limit: hard cold temperature limit [%-5 - %10] (in degree C), * granularity is 5 deg C. * @hard_hot_temp_limit: hard hot temperature limit [%50 - %65] (in degree C), * granularity is 5 deg C. * @suspend_on_hard_temp_limit: suspend charging when hard limit is hit * @soft_temp_limit_compensation: compensation method when soft temperature * limit is hit * @charge_current_compensation: current (in uA) for charging compensation * current when temperature hits soft limits * @use_mains: AC/DC input can be used * @use_usb: USB input can be used * @use_usb_otg: USB OTG output can be used (not implemented yet) * @enable_control: how charging enable/disable is controlled * (driver/pin controls) * @inok_polarity: polarity of INOK signal which denotes presence of external * power supply * * @use_main, @use_usb, and @use_usb_otg are means to enable/disable * hardware support for these. This is useful when we want to have for * example OTG charging controlled via OTG transceiver driver and not by * the SMB347 hardware. * * Hard and soft temperature limit values are given as described in the * device data sheet and assuming NTC beta value is %3750. Even if this is * not the case, these values should be used. They can be mapped to the * corresponding NTC beta values with the help of table %2 in the data * sheet. So for example if NTC beta is %3375 and we want to program hard * hot limit to be %53 deg C, @hard_hot_temp_limit should be set to %50. * * If zero value is given in any of the current and voltage values, the * factory programmed default will be used. For soft/hard temperature * values, pass in %SMB3XX_TEMP_USE_DEFAULT instead. */ struct smb347_charger { struct device *dev; struct regmap *regmap; struct power_supply *mains; struct power_supply *usb; struct regulator_dev *usb_rdev; unsigned int id; bool mains_online; bool usb_online; bool irq_unsupported; bool usb_vbus_enabled; unsigned int max_charge_current; unsigned int max_charge_voltage; unsigned int pre_charge_current; unsigned int termination_current; unsigned int pre_to_fast_voltage; unsigned int mains_current_limit; unsigned int usb_hc_current_limit; unsigned int chip_temp_threshold; int soft_cold_temp_limit; int soft_hot_temp_limit; int hard_cold_temp_limit; int hard_hot_temp_limit; bool suspend_on_hard_temp_limit; unsigned int soft_temp_limit_compensation; unsigned int charge_current_compensation; bool use_mains; bool use_usb; bool use_usb_otg; unsigned int enable_control; unsigned int inok_polarity; }; enum smb_charger_chipid { SMB345, SMB347, SMB358, NUM_CHIP_TYPES, }; /* Fast charge current in uA */ static const unsigned int fcc_tbl[NUM_CHIP_TYPES][8] = { [SMB345] = { 200000, 450000, 600000, 900000, 1300000, 1500000, 1800000, 2000000 }, [SMB347] = { 700000, 900000, 1200000, 1500000, 1800000, 2000000, 2200000, 2500000 }, [SMB358] = { 200000, 450000, 600000, 900000, 1300000, 1500000, 1800000, 2000000 }, }; /* Pre-charge current in uA */ static const unsigned int pcc_tbl[NUM_CHIP_TYPES][4] = { [SMB345] = { 150000, 250000, 350000, 450000 }, [SMB347] = { 100000, 150000, 200000, 250000 }, [SMB358] = { 150000, 250000, 350000, 450000 }, }; /* Termination current in uA */ static const unsigned int tc_tbl[NUM_CHIP_TYPES][8] = { [SMB345] = { 30000, 40000, 60000, 80000, 100000, 125000, 150000, 200000 }, [SMB347] = { 37500, 50000, 100000, 150000, 200000, 250000, 500000, 600000 }, [SMB358] = { 30000, 40000, 60000, 80000, 100000, 125000, 150000, 200000 }, }; /* Input current limit in uA */ static const unsigned int icl_tbl[NUM_CHIP_TYPES][10] = { [SMB345] = { 300000, 500000, 700000, 1000000, 1500000, 1800000, 2000000, 2000000, 2000000, 2000000 }, [SMB347] = { 300000, 500000, 700000, 900000, 1200000, 1500000, 1800000, 2000000, 2200000, 2500000 }, [SMB358] = { 300000, 500000, 700000, 1000000, 1500000, 1800000, 2000000, 2000000, 2000000, 2000000 }, }; /* Charge current compensation in uA */ static const unsigned int ccc_tbl[NUM_CHIP_TYPES][4] = { [SMB345] = { 200000, 450000, 600000, 900000 }, [SMB347] = { 250000, 700000, 900000, 1200000 }, [SMB358] = { 200000, 450000, 600000, 900000 }, }; /* Convert register value to current using lookup table */ static int hw_to_current(const unsigned int *tbl, size_t size, unsigned int val) { if (val >= size) return -EINVAL; return tbl[val]; } /* Convert current to register value using lookup table */ static int current_to_hw(const unsigned int *tbl, size_t size, unsigned int val) { size_t i; for (i = 0; i < size; i++) if (val < tbl[i]) break; return i > 0 ? i - 1 : -EINVAL; } /** * smb347_update_ps_status - refreshes the power source status * @smb: pointer to smb347 charger instance * * Function checks whether any power source is connected to the charger and * updates internal state accordingly. If there is a change to previous state * function returns %1, otherwise %0 and negative errno in case of errror. */ static int smb347_update_ps_status(struct smb347_charger *smb) { bool usb = false; bool dc = false; unsigned int val; int ret; ret = regmap_read(smb->regmap, IRQSTAT_E, &val); if (ret < 0) return ret; /* * Dc and usb are set depending on whether they are enabled in * platform data _and_ whether corresponding undervoltage is set. */ if (smb->use_mains) dc = !(val & IRQSTAT_E_DCIN_UV_STAT); if (smb->use_usb) usb = !(val & IRQSTAT_E_USBIN_UV_STAT); ret = smb->mains_online != dc || smb->usb_online != usb; smb->mains_online = dc; smb->usb_online = usb; return ret; } /* * smb347_is_ps_online - returns whether input power source is connected * @smb: pointer to smb347 charger instance * * Returns %true if input power source is connected. Note that this is * dependent on what platform has configured for usable power sources. For * example if USB is disabled, this will return %false even if the USB cable * is connected. */ static bool smb347_is_ps_online(struct smb347_charger *smb) { return smb->usb_online || smb->mains_online; } /** * smb347_charging_status - returns status of charging * @smb: pointer to smb347 charger instance * * Function returns charging status. %0 means no charging is in progress, * %1 means pre-charging, %2 fast-charging and %3 taper-charging. */ static int smb347_charging_status(struct smb347_charger *smb) { unsigned int val; int ret; if (!smb347_is_ps_online(smb)) return 0; ret = regmap_read(smb->regmap, STAT_C, &val); if (ret < 0) return 0; return (val & STAT_C_CHG_MASK) >> STAT_C_CHG_SHIFT; } static int smb347_charging_set(struct smb347_charger *smb, bool enable) { if (smb->enable_control != SMB3XX_CHG_ENABLE_SW) { dev_dbg(smb->dev, "charging enable/disable in SW disabled\n"); return 0; } if (enable && smb->usb_vbus_enabled) { dev_dbg(smb->dev, "charging not enabled because USB is in host mode\n"); return 0; } return regmap_update_bits(smb->regmap, CMD_A, CMD_A_CHG_ENABLED, enable ? CMD_A_CHG_ENABLED : 0); } static inline int smb347_charging_enable(struct smb347_charger *smb) { return smb347_charging_set(smb, true); } static inline int smb347_charging_disable(struct smb347_charger *smb) { return smb347_charging_set(smb, false); } static int smb347_start_stop_charging(struct smb347_charger *smb) { int ret; /* * Depending on whether valid power source is connected or not, we * disable or enable the charging. We do it manually because it * depends on how the platform has configured the valid inputs. */ if (smb347_is_ps_online(smb)) { ret = smb347_charging_enable(smb); if (ret < 0) dev_err(smb->dev, "failed to enable charging\n"); } else { ret = smb347_charging_disable(smb); if (ret < 0) dev_err(smb->dev, "failed to disable charging\n"); } return ret; } static int smb347_set_charge_current(struct smb347_charger *smb) { unsigned int id = smb->id; int ret; if (smb->max_charge_current) { ret = current_to_hw(fcc_tbl[id], ARRAY_SIZE(fcc_tbl[id]), smb->max_charge_current); if (ret < 0) return ret; ret = regmap_update_bits(smb->regmap, CFG_CHARGE_CURRENT, CFG_CHARGE_CURRENT_FCC_MASK, ret << CFG_CHARGE_CURRENT_FCC_SHIFT); if (ret < 0) return ret; } if (smb->pre_charge_current) { ret = current_to_hw(pcc_tbl[id], ARRAY_SIZE(pcc_tbl[id]), smb->pre_charge_current); if (ret < 0) return ret; ret = regmap_update_bits(smb->regmap, CFG_CHARGE_CURRENT, CFG_CHARGE_CURRENT_PCC_MASK, ret << CFG_CHARGE_CURRENT_PCC_SHIFT); if (ret < 0) return ret; } if (smb->termination_current) { ret = current_to_hw(tc_tbl[id], ARRAY_SIZE(tc_tbl[id]), smb->termination_current); if (ret < 0) return ret; ret = regmap_update_bits(smb->regmap, CFG_CHARGE_CURRENT, CFG_CHARGE_CURRENT_TC_MASK, ret); if (ret < 0) return ret; } return 0; } static int smb347_set_current_limits(struct smb347_charger *smb) { unsigned int id = smb->id; int ret; if (smb->mains_current_limit) { ret = current_to_hw(icl_tbl[id], ARRAY_SIZE(icl_tbl[id]), smb->mains_current_limit); if (ret < 0) return ret; ret = regmap_update_bits(smb->regmap, CFG_CURRENT_LIMIT, CFG_CURRENT_LIMIT_DC_MASK, ret << CFG_CURRENT_LIMIT_DC_SHIFT); if (ret < 0) return ret; } if (smb->usb_hc_current_limit) { ret = current_to_hw(icl_tbl[id], ARRAY_SIZE(icl_tbl[id]), smb->usb_hc_current_limit); if (ret < 0) return ret; ret = regmap_update_bits(smb->regmap, CFG_CURRENT_LIMIT, CFG_CURRENT_LIMIT_USB_MASK, ret); if (ret < 0) return ret; } return 0; } static int smb347_set_voltage_limits(struct smb347_charger *smb) { int ret; if (smb->pre_to_fast_voltage) { ret = smb->pre_to_fast_voltage; /* uV */ ret = clamp_val(ret, 2400000, 3000000) - 2400000; ret /= 200000; ret = regmap_update_bits(smb->regmap, CFG_FLOAT_VOLTAGE, CFG_FLOAT_VOLTAGE_THRESHOLD_MASK, ret << CFG_FLOAT_VOLTAGE_THRESHOLD_SHIFT); if (ret < 0) return ret; } if (smb->max_charge_voltage) { ret = smb->max_charge_voltage; /* uV */ ret = clamp_val(ret, 3500000, 4500000) - 3500000; ret /= 20000; ret = regmap_update_bits(smb->regmap, CFG_FLOAT_VOLTAGE, CFG_FLOAT_VOLTAGE_FLOAT_MASK, ret); if (ret < 0) return ret; } return 0; } static int smb347_set_temp_limits(struct smb347_charger *smb) { unsigned int id = smb->id; bool enable_therm_monitor = false; int ret = 0; int val; if (smb->chip_temp_threshold) { val = smb->chip_temp_threshold; /* degree C */ val = clamp_val(val, 100, 130) - 100; val /= 10; ret = regmap_update_bits(smb->regmap, CFG_OTG, CFG_OTG_TEMP_THRESHOLD_MASK, val << CFG_OTG_TEMP_THRESHOLD_SHIFT); if (ret < 0) return ret; } if (smb->soft_cold_temp_limit != SMB3XX_TEMP_USE_DEFAULT) { val = smb->soft_cold_temp_limit; val = clamp_val(val, 0, 15); val /= 5; /* this goes from higher to lower so invert the value */ val = ~val & 0x3; ret = regmap_update_bits(smb->regmap, CFG_TEMP_LIMIT, CFG_TEMP_LIMIT_SOFT_COLD_MASK, val << CFG_TEMP_LIMIT_SOFT_COLD_SHIFT); if (ret < 0) return ret; enable_therm_monitor = true; } if (smb->soft_hot_temp_limit != SMB3XX_TEMP_USE_DEFAULT) { val = smb->soft_hot_temp_limit; val = clamp_val(val, 40, 55) - 40; val /= 5; ret = regmap_update_bits(smb->regmap, CFG_TEMP_LIMIT, CFG_TEMP_LIMIT_SOFT_HOT_MASK, val << CFG_TEMP_LIMIT_SOFT_HOT_SHIFT); if (ret < 0) return ret; enable_therm_monitor = true; } if (smb->hard_cold_temp_limit != SMB3XX_TEMP_USE_DEFAULT) { val = smb->hard_cold_temp_limit; val = clamp_val(val, -5, 10) + 5; val /= 5; /* this goes from higher to lower so invert the value */ val = ~val & 0x3; ret = regmap_update_bits(smb->regmap, CFG_TEMP_LIMIT, CFG_TEMP_LIMIT_HARD_COLD_MASK, val << CFG_TEMP_LIMIT_HARD_COLD_SHIFT); if (ret < 0) return ret; enable_therm_monitor = true; } if (smb->hard_hot_temp_limit != SMB3XX_TEMP_USE_DEFAULT) { val = smb->hard_hot_temp_limit; val = clamp_val(val, 50, 65) - 50; val /= 5; ret = regmap_update_bits(smb->regmap, CFG_TEMP_LIMIT, CFG_TEMP_LIMIT_HARD_HOT_MASK, val << CFG_TEMP_LIMIT_HARD_HOT_SHIFT); if (ret < 0) return ret; enable_therm_monitor = true; } /* * If any of the temperature limits are set, we also enable the * thermistor monitoring. * * When soft limits are hit, the device will start to compensate * current and/or voltage depending on the configuration. * * When hard limit is hit, the device will suspend charging * depending on the configuration. */ if (enable_therm_monitor) { ret = regmap_update_bits(smb->regmap, CFG_THERM, CFG_THERM_MONITOR_DISABLED, 0); if (ret < 0) return ret; } if (smb->suspend_on_hard_temp_limit) { ret = regmap_update_bits(smb->regmap, CFG_SYSOK, CFG_SYSOK_SUSPEND_HARD_LIMIT_DISABLED, 0); if (ret < 0) return ret; } if (smb->soft_temp_limit_compensation != SMB3XX_SOFT_TEMP_COMPENSATE_DEFAULT) { val = smb->soft_temp_limit_compensation & 0x3; ret = regmap_update_bits(smb->regmap, CFG_THERM, CFG_THERM_SOFT_HOT_COMPENSATION_MASK, val << CFG_THERM_SOFT_HOT_COMPENSATION_SHIFT); if (ret < 0) return ret; ret = regmap_update_bits(smb->regmap, CFG_THERM, CFG_THERM_SOFT_COLD_COMPENSATION_MASK, val << CFG_THERM_SOFT_COLD_COMPENSATION_SHIFT); if (ret < 0) return ret; } if (smb->charge_current_compensation) { val = current_to_hw(ccc_tbl[id], ARRAY_SIZE(ccc_tbl[id]), smb->charge_current_compensation); if (val < 0) return val; ret = regmap_update_bits(smb->regmap, CFG_OTG, CFG_OTG_CC_COMPENSATION_MASK, (val & 0x3) << CFG_OTG_CC_COMPENSATION_SHIFT); if (ret < 0) return ret; } return ret; } /* * smb347_set_writable - enables/disables writing to non-volatile registers * @smb: pointer to smb347 charger instance * * You can enable/disable writing to the non-volatile configuration * registers by calling this function. * * Returns %0 on success and negative errno in case of failure. */ static int smb347_set_writable(struct smb347_charger *smb, bool writable, bool irq_toggle) { struct i2c_client *client = to_i2c_client(smb->dev); int ret; if (writable && irq_toggle && !smb->irq_unsupported) disable_irq(client->irq); ret = regmap_update_bits(smb->regmap, CMD_A, CMD_A_ALLOW_WRITE, writable ? CMD_A_ALLOW_WRITE : 0); if ((!writable || ret) && irq_toggle && !smb->irq_unsupported) enable_irq(client->irq); return ret; } static int smb347_hw_init(struct smb347_charger *smb) { unsigned int val; int ret; ret = smb347_set_writable(smb, true, false); if (ret < 0) return ret; /* * Program the platform specific configuration values to the device * first. */ ret = smb347_set_charge_current(smb); if (ret < 0) goto fail; ret = smb347_set_current_limits(smb); if (ret < 0) goto fail; ret = smb347_set_voltage_limits(smb); if (ret < 0) goto fail; ret = smb347_set_temp_limits(smb); if (ret < 0) goto fail; /* If USB charging is disabled we put the USB in suspend mode */ if (!smb->use_usb) { ret = regmap_update_bits(smb->regmap, CMD_A, CMD_A_SUSPEND_ENABLED, CMD_A_SUSPEND_ENABLED); if (ret < 0) goto fail; } /* * If configured by platform data, we enable hardware Auto-OTG * support for driving VBUS. Otherwise we disable it. */ ret = regmap_update_bits(smb->regmap, CFG_OTHER, CFG_OTHER_RID_MASK, smb->use_usb_otg ? CFG_OTHER_RID_ENABLED_AUTO_OTG : 0); if (ret < 0) goto fail; /* Activate pin control, making it writable. */ switch (smb->enable_control) { case SMB3XX_CHG_ENABLE_PIN_ACTIVE_LOW: case SMB3XX_CHG_ENABLE_PIN_ACTIVE_HIGH: ret = regmap_set_bits(smb->regmap, CFG_PIN, CFG_PIN_EN_CTRL); if (ret < 0) goto fail; } /* * Make the charging functionality controllable by a write to the * command register unless pin control is specified in the platform * data. */ switch (smb->enable_control) { case SMB3XX_CHG_ENABLE_PIN_ACTIVE_LOW: val = CFG_PIN_EN_CTRL_ACTIVE_LOW; break; case SMB3XX_CHG_ENABLE_PIN_ACTIVE_HIGH: val = CFG_PIN_EN_CTRL_ACTIVE_HIGH; break; default: val = 0; break; } ret = regmap_update_bits(smb->regmap, CFG_PIN, CFG_PIN_EN_CTRL_MASK, val); if (ret < 0) goto fail; /* Disable Automatic Power Source Detection (APSD) interrupt. */ ret = regmap_update_bits(smb->regmap, CFG_PIN, CFG_PIN_EN_APSD_IRQ, 0); if (ret < 0) goto fail; ret = smb347_update_ps_status(smb); if (ret < 0) goto fail; ret = smb347_start_stop_charging(smb); fail: smb347_set_writable(smb, false, false); return ret; } static irqreturn_t smb347_interrupt(int irq, void *data) { struct smb347_charger *smb = data; unsigned int stat_c, irqstat_c, irqstat_d, irqstat_e; bool handled = false; int ret; /* SMB347 it needs at least 20ms for setting IRQSTAT_E_*IN_UV_IRQ */ usleep_range(25000, 35000); ret = regmap_read(smb->regmap, STAT_C, &stat_c); if (ret < 0) { dev_warn(smb->dev, "reading STAT_C failed\n"); return IRQ_NONE; } ret = regmap_read(smb->regmap, IRQSTAT_C, &irqstat_c); if (ret < 0) { dev_warn(smb->dev, "reading IRQSTAT_C failed\n"); return IRQ_NONE; } ret = regmap_read(smb->regmap, IRQSTAT_D, &irqstat_d); if (ret < 0) { dev_warn(smb->dev, "reading IRQSTAT_D failed\n"); return IRQ_NONE; } ret = regmap_read(smb->regmap, IRQSTAT_E, &irqstat_e); if (ret < 0) { dev_warn(smb->dev, "reading IRQSTAT_E failed\n"); return IRQ_NONE; } /* * If we get charger error we report the error back to user. * If the error is recovered charging will resume again. */ if (stat_c & STAT_C_CHARGER_ERROR) { dev_err(smb->dev, "charging stopped due to charger error\n"); if (smb->use_mains) power_supply_changed(smb->mains); if (smb->use_usb) power_supply_changed(smb->usb); handled = true; } /* * If we reached the termination current the battery is charged and * we can update the status now. Charging is automatically * disabled by the hardware. */ if (irqstat_c & (IRQSTAT_C_TERMINATION_IRQ | IRQSTAT_C_TAPER_IRQ)) { if (irqstat_c & IRQSTAT_C_TERMINATION_STAT) { if (smb->use_mains) power_supply_changed(smb->mains); if (smb->use_usb) power_supply_changed(smb->usb); } dev_dbg(smb->dev, "going to HW maintenance mode\n"); handled = true; } /* * If we got a charger timeout INT that means the charge * full is not detected with in charge timeout value. */ if (irqstat_d & IRQSTAT_D_CHARGE_TIMEOUT_IRQ) { dev_dbg(smb->dev, "total Charge Timeout INT received\n"); if (irqstat_d & IRQSTAT_D_CHARGE_TIMEOUT_STAT) dev_warn(smb->dev, "charging stopped due to timeout\n"); if (smb->use_mains) power_supply_changed(smb->mains); if (smb->use_usb) power_supply_changed(smb->usb); handled = true; } /* * If we got an under voltage interrupt it means that AC/USB input * was connected or disconnected. */ if (irqstat_e & (IRQSTAT_E_USBIN_UV_IRQ | IRQSTAT_E_DCIN_UV_IRQ)) { if (smb347_update_ps_status(smb) > 0) { smb347_start_stop_charging(smb); if (smb->use_mains) power_supply_changed(smb->mains); if (smb->use_usb) power_supply_changed(smb->usb); } handled = true; } return handled ? IRQ_HANDLED : IRQ_NONE; } static int smb347_irq_set(struct smb347_charger *smb, bool enable) { int ret; if (smb->irq_unsupported) return 0; ret = smb347_set_writable(smb, true, true); if (ret < 0) return ret; /* * Enable/disable interrupts for: * - under voltage * - termination current reached * - charger timeout * - charger error */ ret = regmap_update_bits(smb->regmap, CFG_FAULT_IRQ, 0xff, enable ? CFG_FAULT_IRQ_DCIN_UV : 0); if (ret < 0) goto fail; ret = regmap_update_bits(smb->regmap, CFG_STATUS_IRQ, 0xff, enable ? (CFG_STATUS_IRQ_TERMINATION_OR_TAPER | CFG_STATUS_IRQ_CHARGE_TIMEOUT) : 0); if (ret < 0) goto fail; ret = regmap_update_bits(smb->regmap, CFG_PIN, CFG_PIN_EN_CHARGER_ERROR, enable ? CFG_PIN_EN_CHARGER_ERROR : 0); fail: smb347_set_writable(smb, false, true); return ret; } static inline int smb347_irq_enable(struct smb347_charger *smb) { return smb347_irq_set(smb, true); } static inline int smb347_irq_disable(struct smb347_charger *smb) { return smb347_irq_set(smb, false); } static int smb347_irq_init(struct smb347_charger *smb, struct i2c_client *client) { int ret; smb->irq_unsupported = true; /* * Interrupt pin is optional. If it is connected, we setup the * interrupt support here. */ if (!client->irq) return 0; ret = smb347_set_writable(smb, true, false); if (ret < 0) return ret; /* * Configure the STAT output to be suitable for interrupts: disable * all other output (except interrupts) and make it active low. */ ret = regmap_update_bits(smb->regmap, CFG_STAT, CFG_STAT_ACTIVE_HIGH | CFG_STAT_DISABLED, CFG_STAT_DISABLED); smb347_set_writable(smb, false, false); if (ret < 0) { dev_warn(smb->dev, "failed to initialize IRQ: %d\n", ret); dev_warn(smb->dev, "disabling IRQ support\n"); return 0; } ret = devm_request_threaded_irq(smb->dev, client->irq, NULL, smb347_interrupt, IRQF_ONESHOT, client->name, smb); if (ret) return ret; smb->irq_unsupported = false; ret = smb347_irq_enable(smb); if (ret < 0) return ret; return 0; } /* * Returns the constant charge current programmed * into the charger in uA. */ static int get_const_charge_current(struct smb347_charger *smb) { unsigned int id = smb->id; int ret, intval; unsigned int v; if (!smb347_is_ps_online(smb)) return -ENODATA; ret = regmap_read(smb->regmap, STAT_B, &v); if (ret < 0) return ret; /* * The current value is composition of FCC and PCC values * and we can detect which table to use from bit 5. */ if (v & 0x20) { intval = hw_to_current(fcc_tbl[id], ARRAY_SIZE(fcc_tbl[id]), v & 7); } else { v >>= 3; intval = hw_to_current(pcc_tbl[id], ARRAY_SIZE(pcc_tbl[id]), v & 7); } return intval; } /* * Returns the constant charge voltage programmed * into the charger in uV. */ static int get_const_charge_voltage(struct smb347_charger *smb) { int ret, intval; unsigned int v; if (!smb347_is_ps_online(smb)) return -ENODATA; ret = regmap_read(smb->regmap, STAT_A, &v); if (ret < 0) return ret; v &= STAT_A_FLOAT_VOLTAGE_MASK; if (v > 0x3d) v = 0x3d; intval = 3500000 + v * 20000; return intval; } static int smb347_get_charging_status(struct smb347_charger *smb, struct power_supply *psy) { int ret, status; unsigned int val; if (psy->desc->type == POWER_SUPPLY_TYPE_USB) { if (!smb->usb_online) return POWER_SUPPLY_STATUS_DISCHARGING; } else { if (!smb->mains_online) return POWER_SUPPLY_STATUS_DISCHARGING; } ret = regmap_read(smb->regmap, STAT_C, &val); if (ret < 0) return ret; if ((val & STAT_C_CHARGER_ERROR) || (val & STAT_C_HOLDOFF_STAT)) { /* * set to NOT CHARGING upon charger error * or charging has stopped. */ status = POWER_SUPPLY_STATUS_NOT_CHARGING; } else { if ((val & STAT_C_CHG_MASK) >> STAT_C_CHG_SHIFT) { /* * set to charging if battery is in pre-charge, * fast charge or taper charging mode. */ status = POWER_SUPPLY_STATUS_CHARGING; } else if (val & STAT_C_CHG_TERM) { /* * set the status to FULL if battery is not in pre * charge, fast charge or taper charging mode AND * charging is terminated at least once. */ status = POWER_SUPPLY_STATUS_FULL; } else { /* * in this case no charger error or termination * occured but charging is not in progress!!! */ status = POWER_SUPPLY_STATUS_NOT_CHARGING; } } return status; } static int smb347_get_property_locked(struct power_supply *psy, enum power_supply_property prop, union power_supply_propval *val) { struct smb347_charger *smb = power_supply_get_drvdata(psy); int ret; switch (prop) { case POWER_SUPPLY_PROP_STATUS: ret = smb347_get_charging_status(smb, psy); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: if (psy->desc->type == POWER_SUPPLY_TYPE_USB) { if (!smb->usb_online) return -ENODATA; } else { if (!smb->mains_online) return -ENODATA; } /* * We handle trickle and pre-charging the same, and taper * and none the same. */ switch (smb347_charging_status(smb)) { case 1: val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case 2: val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; break; default: val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; } break; case POWER_SUPPLY_PROP_ONLINE: if (psy->desc->type == POWER_SUPPLY_TYPE_USB) val->intval = smb->usb_online; else val->intval = smb->mains_online; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = get_const_charge_voltage(smb); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = get_const_charge_current(smb); if (ret < 0) return ret; val->intval = ret; break; default: return -EINVAL; } return 0; } static int smb347_get_property(struct power_supply *psy, enum power_supply_property prop, union power_supply_propval *val) { struct smb347_charger *smb = power_supply_get_drvdata(psy); struct i2c_client *client = to_i2c_client(smb->dev); int ret; if (!smb->irq_unsupported) disable_irq(client->irq); ret = smb347_get_property_locked(psy, prop, val); if (!smb->irq_unsupported) enable_irq(client->irq); return ret; } static enum power_supply_property smb347_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, }; static bool smb347_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case IRQSTAT_A: case IRQSTAT_C: case IRQSTAT_D: case IRQSTAT_E: case IRQSTAT_F: case STAT_A: case STAT_B: case STAT_C: case STAT_E: return true; } return false; } static bool smb347_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case CFG_CHARGE_CURRENT: case CFG_CURRENT_LIMIT: case CFG_FLOAT_VOLTAGE: case CFG_STAT: case CFG_PIN: case CFG_THERM: case CFG_SYSOK: case CFG_OTHER: case CFG_OTG: case CFG_TEMP_LIMIT: case CFG_FAULT_IRQ: case CFG_STATUS_IRQ: case CFG_ADDRESS: case CMD_A: case CMD_B: case CMD_C: return true; } return smb347_volatile_reg(dev, reg); } static void smb347_dt_parse_dev_info(struct smb347_charger *smb) { struct device *dev = smb->dev; smb->soft_temp_limit_compensation = SMB3XX_SOFT_TEMP_COMPENSATE_DEFAULT; /* * These properties come from the battery info, still we need to * pre-initialize the values. See smb347_get_battery_info() below. */ smb->soft_cold_temp_limit = SMB3XX_TEMP_USE_DEFAULT; smb->hard_cold_temp_limit = SMB3XX_TEMP_USE_DEFAULT; smb->soft_hot_temp_limit = SMB3XX_TEMP_USE_DEFAULT; smb->hard_hot_temp_limit = SMB3XX_TEMP_USE_DEFAULT; /* Charging constraints */ device_property_read_u32(dev, "summit,fast-voltage-threshold-microvolt", &smb->pre_to_fast_voltage); device_property_read_u32(dev, "summit,mains-current-limit-microamp", &smb->mains_current_limit); device_property_read_u32(dev, "summit,usb-current-limit-microamp", &smb->usb_hc_current_limit); /* For thermometer monitoring */ device_property_read_u32(dev, "summit,chip-temperature-threshold-celsius", &smb->chip_temp_threshold); device_property_read_u32(dev, "summit,soft-compensation-method", &smb->soft_temp_limit_compensation); device_property_read_u32(dev, "summit,charge-current-compensation-microamp", &smb->charge_current_compensation); /* Supported charging mode */ smb->use_mains = device_property_read_bool(dev, "summit,enable-mains-charging"); smb->use_usb = device_property_read_bool(dev, "summit,enable-usb-charging"); smb->use_usb_otg = device_property_read_bool(dev, "summit,enable-otg-charging"); /* Select charging control */ device_property_read_u32(dev, "summit,enable-charge-control", &smb->enable_control); /* * Polarity of INOK signal indicating presence of external power * supply connected to the charger. */ device_property_read_u32(dev, "summit,inok-polarity", &smb->inok_polarity); } static int smb347_get_battery_info(struct smb347_charger *smb) { struct power_supply_battery_info *info; struct power_supply *supply; int err; if (smb->mains) supply = smb->mains; else supply = smb->usb; err = power_supply_get_battery_info(supply, &info); if (err == -ENXIO || err == -ENODEV) return 0; if (err) return err; if (info->constant_charge_current_max_ua != -EINVAL) smb->max_charge_current = info->constant_charge_current_max_ua; if (info->constant_charge_voltage_max_uv != -EINVAL) smb->max_charge_voltage = info->constant_charge_voltage_max_uv; if (info->precharge_current_ua != -EINVAL) smb->pre_charge_current = info->precharge_current_ua; if (info->charge_term_current_ua != -EINVAL) smb->termination_current = info->charge_term_current_ua; if (info->temp_alert_min != INT_MIN) smb->soft_cold_temp_limit = info->temp_alert_min; if (info->temp_alert_max != INT_MAX) smb->soft_hot_temp_limit = info->temp_alert_max; if (info->temp_min != INT_MIN) smb->hard_cold_temp_limit = info->temp_min; if (info->temp_max != INT_MAX) smb->hard_hot_temp_limit = info->temp_max; /* Suspend when battery temperature is outside hard limits */ if (smb->hard_cold_temp_limit != SMB3XX_TEMP_USE_DEFAULT || smb->hard_hot_temp_limit != SMB3XX_TEMP_USE_DEFAULT) smb->suspend_on_hard_temp_limit = true; return 0; } static int smb347_usb_vbus_get_current_limit(struct regulator_dev *rdev) { struct smb347_charger *smb = rdev_get_drvdata(rdev); unsigned int val; int ret; ret = regmap_read(smb->regmap, CFG_OTG, &val); if (ret < 0) return ret; /* * It's unknown what happens if this bit is unset due to lack of * access to the datasheet, assume it's limit-enable. */ if (!(val & CFG_OTG_CURRENT_LIMIT_250mA)) return 0; return val & CFG_OTG_CURRENT_LIMIT_750mA ? 750000 : 250000; } static int smb347_usb_vbus_set_new_current_limit(struct smb347_charger *smb, int max_uA) { const unsigned int mask = CFG_OTG_CURRENT_LIMIT_750mA | CFG_OTG_CURRENT_LIMIT_250mA; unsigned int val = CFG_OTG_CURRENT_LIMIT_250mA; int ret; if (max_uA >= 750000) val |= CFG_OTG_CURRENT_LIMIT_750mA; ret = regmap_update_bits(smb->regmap, CFG_OTG, mask, val); if (ret < 0) dev_err(smb->dev, "failed to change USB current limit\n"); return ret; } static int smb347_usb_vbus_set_current_limit(struct regulator_dev *rdev, int min_uA, int max_uA) { struct smb347_charger *smb = rdev_get_drvdata(rdev); int ret; ret = smb347_set_writable(smb, true, true); if (ret < 0) return ret; ret = smb347_usb_vbus_set_new_current_limit(smb, max_uA); smb347_set_writable(smb, false, true); return ret; } static int smb347_usb_vbus_regulator_enable(struct regulator_dev *rdev) { struct smb347_charger *smb = rdev_get_drvdata(rdev); int ret, max_uA; ret = smb347_set_writable(smb, true, true); if (ret < 0) return ret; smb347_charging_disable(smb); if (device_property_read_bool(&rdev->dev, "summit,needs-inok-toggle")) { unsigned int sysok = 0; if (smb->inok_polarity == SMB3XX_SYSOK_INOK_ACTIVE_LOW) sysok = CFG_SYSOK_INOK_ACTIVE_HIGH; /* * VBUS won't be powered if INOK is active, so we need to * manually disable INOK on some platforms. */ ret = regmap_update_bits(smb->regmap, CFG_SYSOK, CFG_SYSOK_INOK_ACTIVE_HIGH, sysok); if (ret < 0) { dev_err(smb->dev, "failed to disable INOK\n"); goto done; } } ret = smb347_usb_vbus_get_current_limit(rdev); if (ret < 0) { dev_err(smb->dev, "failed to get USB VBUS current limit\n"); goto done; } max_uA = ret; ret = smb347_usb_vbus_set_new_current_limit(smb, 250000); if (ret < 0) { dev_err(smb->dev, "failed to preset USB VBUS current limit\n"); goto done; } ret = regmap_set_bits(smb->regmap, CMD_A, CMD_A_OTG_ENABLED); if (ret < 0) { dev_err(smb->dev, "failed to enable USB VBUS\n"); goto done; } smb->usb_vbus_enabled = true; ret = smb347_usb_vbus_set_new_current_limit(smb, max_uA); if (ret < 0) { dev_err(smb->dev, "failed to restore USB VBUS current limit\n"); goto done; } done: smb347_set_writable(smb, false, true); return ret; } static int smb347_usb_vbus_regulator_disable(struct regulator_dev *rdev) { struct smb347_charger *smb = rdev_get_drvdata(rdev); int ret; ret = smb347_set_writable(smb, true, true); if (ret < 0) return ret; ret = regmap_clear_bits(smb->regmap, CMD_A, CMD_A_OTG_ENABLED); if (ret < 0) { dev_err(smb->dev, "failed to disable USB VBUS\n"); goto done; } smb->usb_vbus_enabled = false; if (device_property_read_bool(&rdev->dev, "summit,needs-inok-toggle")) { unsigned int sysok = 0; if (smb->inok_polarity == SMB3XX_SYSOK_INOK_ACTIVE_HIGH) sysok = CFG_SYSOK_INOK_ACTIVE_HIGH; ret = regmap_update_bits(smb->regmap, CFG_SYSOK, CFG_SYSOK_INOK_ACTIVE_HIGH, sysok); if (ret < 0) { dev_err(smb->dev, "failed to enable INOK\n"); goto done; } } smb347_start_stop_charging(smb); done: smb347_set_writable(smb, false, true); return ret; } static const struct regmap_config smb347_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = SMB347_MAX_REGISTER, .volatile_reg = smb347_volatile_reg, .readable_reg = smb347_readable_reg, .cache_type = REGCACHE_RBTREE, }; static const struct regulator_ops smb347_usb_vbus_regulator_ops = { .is_enabled = regulator_is_enabled_regmap, .enable = smb347_usb_vbus_regulator_enable, .disable = smb347_usb_vbus_regulator_disable, .get_current_limit = smb347_usb_vbus_get_current_limit, .set_current_limit = smb347_usb_vbus_set_current_limit, }; static const struct power_supply_desc smb347_mains_desc = { .name = "smb347-mains", .type = POWER_SUPPLY_TYPE_MAINS, .get_property = smb347_get_property, .properties = smb347_properties, .num_properties = ARRAY_SIZE(smb347_properties), }; static const struct power_supply_desc smb347_usb_desc = { .name = "smb347-usb", .type = POWER_SUPPLY_TYPE_USB, .get_property = smb347_get_property, .properties = smb347_properties, .num_properties = ARRAY_SIZE(smb347_properties), }; static const struct regulator_desc smb347_usb_vbus_regulator_desc = { .name = "smb347-usb-vbus", .of_match = of_match_ptr("usb-vbus"), .ops = &smb347_usb_vbus_regulator_ops, .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .enable_reg = CMD_A, .enable_mask = CMD_A_OTG_ENABLED, .enable_val = CMD_A_OTG_ENABLED, .fixed_uV = 5000000, .n_voltages = 1, }; static int smb347_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct power_supply_config mains_usb_cfg = {}; struct regulator_config usb_rdev_cfg = {}; struct device *dev = &client->dev; struct smb347_charger *smb; int ret; smb = devm_kzalloc(dev, sizeof(*smb), GFP_KERNEL); if (!smb) return -ENOMEM; smb->dev = &client->dev; smb->id = id->driver_data; i2c_set_clientdata(client, smb); smb347_dt_parse_dev_info(smb); if (!smb->use_mains && !smb->use_usb) return -EINVAL; smb->regmap = devm_regmap_init_i2c(client, &smb347_regmap); if (IS_ERR(smb->regmap)) return PTR_ERR(smb->regmap); mains_usb_cfg.drv_data = smb; mains_usb_cfg.of_node = dev->of_node; if (smb->use_mains) { smb->mains = devm_power_supply_register(dev, &smb347_mains_desc, &mains_usb_cfg); if (IS_ERR(smb->mains)) return PTR_ERR(smb->mains); } if (smb->use_usb) { smb->usb = devm_power_supply_register(dev, &smb347_usb_desc, &mains_usb_cfg); if (IS_ERR(smb->usb)) return PTR_ERR(smb->usb); } ret = smb347_get_battery_info(smb); if (ret) return ret; ret = smb347_hw_init(smb); if (ret < 0) return ret; ret = smb347_irq_init(smb, client); if (ret) return ret; usb_rdev_cfg.dev = dev; usb_rdev_cfg.driver_data = smb; usb_rdev_cfg.regmap = smb->regmap; smb->usb_rdev = devm_regulator_register(dev, &smb347_usb_vbus_regulator_desc, &usb_rdev_cfg); if (IS_ERR(smb->usb_rdev)) { smb347_irq_disable(smb); return PTR_ERR(smb->usb_rdev); } return 0; } static void smb347_remove(struct i2c_client *client) { struct smb347_charger *smb = i2c_get_clientdata(client); smb347_usb_vbus_regulator_disable(smb->usb_rdev); smb347_irq_disable(smb); } static void smb347_shutdown(struct i2c_client *client) { smb347_remove(client); } static const struct i2c_device_id smb347_id[] = { { "smb345", SMB345 }, { "smb347", SMB347 }, { "smb358", SMB358 }, { }, }; MODULE_DEVICE_TABLE(i2c, smb347_id); static const struct of_device_id smb3xx_of_match[] = { { .compatible = "summit,smb345" }, { .compatible = "summit,smb347" }, { .compatible = "summit,smb358" }, { }, }; MODULE_DEVICE_TABLE(of, smb3xx_of_match); static struct i2c_driver smb347_driver = { .driver = { .name = "smb347", .of_match_table = smb3xx_of_match, }, .probe = smb347_probe, .remove = smb347_remove, .shutdown = smb347_shutdown, .id_table = smb347_id, }; module_i2c_driver(smb347_driver); MODULE_AUTHOR("Bruce E. Robertson <[email protected]>"); MODULE_AUTHOR("Mika Westerberg <[email protected]>"); MODULE_DESCRIPTION("SMB347 battery charger driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/smb347-charger.c
// SPDX-License-Identifier: GPL-2.0 // BQ256XX Battery Charger Driver // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/ #include <linux/err.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/gpio/consumer.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/types.h> #include <linux/usb/phy.h> #include <linux/device.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include <linux/acpi.h> #define BQ256XX_MANUFACTURER "Texas Instruments" #define BQ256XX_INPUT_CURRENT_LIMIT 0x00 #define BQ256XX_CHARGER_CONTROL_0 0x01 #define BQ256XX_CHARGE_CURRENT_LIMIT 0x02 #define BQ256XX_PRECHG_AND_TERM_CURR_LIM 0x03 #define BQ256XX_BATTERY_VOLTAGE_LIMIT 0x04 #define BQ256XX_CHARGER_CONTROL_1 0x05 #define BQ256XX_CHARGER_CONTROL_2 0x06 #define BQ256XX_CHARGER_CONTROL_3 0x07 #define BQ256XX_CHARGER_STATUS_0 0x08 #define BQ256XX_CHARGER_STATUS_1 0x09 #define BQ256XX_CHARGER_STATUS_2 0x0a #define BQ256XX_PART_INFORMATION 0x0b #define BQ256XX_CHARGER_CONTROL_4 0x0c #define BQ256XX_IINDPM_MASK GENMASK(4, 0) #define BQ256XX_IINDPM_STEP_uA 100000 #define BQ256XX_IINDPM_OFFSET_uA 100000 #define BQ256XX_IINDPM_MIN_uA 100000 #define BQ256XX_IINDPM_MAX_uA 3200000 #define BQ256XX_IINDPM_DEF_uA 2400000 #define BQ256XX_TS_IGNORE BIT(6) #define BQ256XX_TS_IGNORE_SHIFT 6 #define BQ256XX_VINDPM_MASK GENMASK(3, 0) #define BQ256XX_VINDPM_STEP_uV 100000 #define BQ256XX_VINDPM_OFFSET_uV 3900000 #define BQ256XX_VINDPM_MIN_uV 3900000 #define BQ256XX_VINDPM_MAX_uV 5400000 #define BQ256XX_VINDPM_DEF_uV 4500000 #define BQ256XX_VBATREG_MASK GENMASK(7, 3) #define BQ2560X_VBATREG_STEP_uV 32000 #define BQ2560X_VBATREG_OFFSET_uV 3856000 #define BQ2560X_VBATREG_MIN_uV 3856000 #define BQ2560X_VBATREG_MAX_uV 4624000 #define BQ2560X_VBATREG_DEF_uV 4208000 #define BQ25601D_VBATREG_OFFSET_uV 3847000 #define BQ25601D_VBATREG_MIN_uV 3847000 #define BQ25601D_VBATREG_MAX_uV 4615000 #define BQ25601D_VBATREG_DEF_uV 4199000 #define BQ2561X_VBATREG_STEP_uV 10000 #define BQ25611D_VBATREG_MIN_uV 3494000 #define BQ25611D_VBATREG_MAX_uV 4510000 #define BQ25611D_VBATREG_DEF_uV 4190000 #define BQ25618_VBATREG_MIN_uV 3504000 #define BQ25618_VBATREG_MAX_uV 4500000 #define BQ25618_VBATREG_DEF_uV 4200000 #define BQ256XX_VBATREG_BIT_SHIFT 3 #define BQ2561X_VBATREG_THRESH 0x8 #define BQ25611D_VBATREG_THRESH_uV 4290000 #define BQ25618_VBATREG_THRESH_uV 4300000 #define BQ256XX_CHG_CONFIG_MASK BIT(4) #define BQ256XX_CHG_CONFIG_BIT_SHIFT 4 #define BQ256XX_ITERM_MASK GENMASK(3, 0) #define BQ256XX_ITERM_STEP_uA 60000 #define BQ256XX_ITERM_OFFSET_uA 60000 #define BQ256XX_ITERM_MIN_uA 60000 #define BQ256XX_ITERM_MAX_uA 780000 #define BQ256XX_ITERM_DEF_uA 180000 #define BQ25618_ITERM_STEP_uA 20000 #define BQ25618_ITERM_OFFSET_uA 20000 #define BQ25618_ITERM_MIN_uA 20000 #define BQ25618_ITERM_MAX_uA 260000 #define BQ25618_ITERM_DEF_uA 60000 #define BQ256XX_IPRECHG_MASK GENMASK(7, 4) #define BQ256XX_IPRECHG_STEP_uA 60000 #define BQ256XX_IPRECHG_OFFSET_uA 60000 #define BQ256XX_IPRECHG_MIN_uA 60000 #define BQ256XX_IPRECHG_MAX_uA 780000 #define BQ256XX_IPRECHG_DEF_uA 180000 #define BQ25618_IPRECHG_STEP_uA 20000 #define BQ25618_IPRECHG_OFFSET_uA 20000 #define BQ25618_IPRECHG_MIN_uA 20000 #define BQ25618_IPRECHG_MAX_uA 260000 #define BQ25618_IPRECHG_DEF_uA 40000 #define BQ256XX_IPRECHG_BIT_SHIFT 4 #define BQ256XX_ICHG_MASK GENMASK(5, 0) #define BQ256XX_ICHG_STEP_uA 60000 #define BQ256XX_ICHG_MIN_uA 0 #define BQ256XX_ICHG_MAX_uA 3000000 #define BQ2560X_ICHG_DEF_uA 2040000 #define BQ25611D_ICHG_DEF_uA 1020000 #define BQ25618_ICHG_STEP_uA 20000 #define BQ25618_ICHG_MIN_uA 0 #define BQ25618_ICHG_MAX_uA 1500000 #define BQ25618_ICHG_DEF_uA 340000 #define BQ25618_ICHG_THRESH 0x3c #define BQ25618_ICHG_THRESH_uA 1180000 #define BQ256XX_VBUS_STAT_MASK GENMASK(7, 5) #define BQ256XX_VBUS_STAT_NO_INPUT 0 #define BQ256XX_VBUS_STAT_USB_SDP BIT(5) #define BQ256XX_VBUS_STAT_USB_CDP BIT(6) #define BQ256XX_VBUS_STAT_USB_DCP (BIT(6) | BIT(5)) #define BQ256XX_VBUS_STAT_USB_OTG (BIT(7) | BIT(6) | BIT(5)) #define BQ256XX_CHRG_STAT_MASK GENMASK(4, 3) #define BQ256XX_CHRG_STAT_NOT_CHRGING 0 #define BQ256XX_CHRG_STAT_PRECHRGING BIT(3) #define BQ256XX_CHRG_STAT_FAST_CHRGING BIT(4) #define BQ256XX_CHRG_STAT_CHRG_TERM (BIT(4) | BIT(3)) #define BQ256XX_PG_STAT_MASK BIT(2) #define BQ256XX_WDT_FAULT_MASK BIT(7) #define BQ256XX_CHRG_FAULT_MASK GENMASK(5, 4) #define BQ256XX_CHRG_FAULT_NORMAL 0 #define BQ256XX_CHRG_FAULT_INPUT BIT(4) #define BQ256XX_CHRG_FAULT_THERM BIT(5) #define BQ256XX_CHRG_FAULT_CST_EXPIRE (BIT(5) | BIT(4)) #define BQ256XX_BAT_FAULT_MASK BIT(3) #define BQ256XX_NTC_FAULT_MASK GENMASK(2, 0) #define BQ256XX_NTC_FAULT_WARM BIT(1) #define BQ256XX_NTC_FAULT_COOL (BIT(1) | BIT(0)) #define BQ256XX_NTC_FAULT_COLD (BIT(2) | BIT(0)) #define BQ256XX_NTC_FAULT_HOT (BIT(2) | BIT(1)) #define BQ256XX_NUM_WD_VAL 4 #define BQ256XX_WATCHDOG_MASK GENMASK(5, 4) #define BQ256XX_WATCHDOG_MAX 1600000 #define BQ256XX_WATCHDOG_DIS 0 #define BQ256XX_WDT_BIT_SHIFT 4 #define BQ256XX_REG_RST BIT(7) /** * struct bq256xx_init_data - * @ichg: fast charge current * @iindpm: input current limit * @vbatreg: charge voltage * @iterm: termination current * @iprechg: precharge current * @vindpm: input voltage limit * @ichg_max: maximum fast charge current * @vbatreg_max: maximum charge voltage * @ts_ignore: TS_IGNORE flag */ struct bq256xx_init_data { u32 ichg; u32 iindpm; u32 vbatreg; u32 iterm; u32 iprechg; u32 vindpm; u32 ichg_max; u32 vbatreg_max; bool ts_ignore; }; /** * struct bq256xx_state - * @vbus_stat: VBUS status according to BQ256XX_CHARGER_STATUS_0 * @chrg_stat: charging status according to BQ256XX_CHARGER_STATUS_0 * @online: PG status according to BQ256XX_CHARGER_STATUS_0 * * @wdt_fault: watchdog fault according to BQ256XX_CHARGER_STATUS_1 * @bat_fault: battery fault according to BQ256XX_CHARGER_STATUS_1 * @chrg_fault: charging fault according to BQ256XX_CHARGER_STATUS_1 * @ntc_fault: TS fault according to BQ256XX_CHARGER_STATUS_1 */ struct bq256xx_state { u8 vbus_stat; u8 chrg_stat; bool online; u8 wdt_fault; u8 bat_fault; u8 chrg_fault; u8 ntc_fault; }; enum bq256xx_id { BQ25600, BQ25600D, BQ25601, BQ25601D, BQ25618, BQ25619, BQ25611D, }; /** * struct bq256xx_device - * @client: i2c client structure * @regmap: register map structure * @dev: device structure * @charger: power supply registered for the charger * @battery: power supply registered for the battery * @lock: mutex lock structure * * @usb2_phy: usb_phy identifier * @usb3_phy: usb_phy identifier * @usb_nb: notifier block * @usb_work: usb work queue * @usb_event: usb_event code * * @model_name: i2c name string * * @init_data: initialization data * @chip_info: device variant information * @state: device status and faults * @watchdog_timer: watchdog timer value in milliseconds */ struct bq256xx_device { struct i2c_client *client; struct device *dev; struct power_supply *charger; struct power_supply *battery; struct mutex lock; struct regmap *regmap; struct usb_phy *usb2_phy; struct usb_phy *usb3_phy; struct notifier_block usb_nb; struct work_struct usb_work; unsigned long usb_event; char model_name[I2C_NAME_SIZE]; struct bq256xx_init_data init_data; const struct bq256xx_chip_info *chip_info; struct bq256xx_state state; int watchdog_timer; }; /** * struct bq256xx_chip_info - * @model_id: device instance * * @bq256xx_regmap_config: regmap configuration struct * @bq256xx_get_ichg: pointer to instance specific get_ichg function * @bq256xx_get_iindpm: pointer to instance specific get_iindpm function * @bq256xx_get_vbatreg: pointer to instance specific get_vbatreg function * @bq256xx_get_iterm: pointer to instance specific get_iterm function * @bq256xx_get_iprechg: pointer to instance specific get_iprechg function * @bq256xx_get_vindpm: pointer to instance specific get_vindpm function * * @bq256xx_set_ichg: pointer to instance specific set_ichg function * @bq256xx_set_iindpm: pointer to instance specific set_iindpm function * @bq256xx_set_vbatreg: pointer to instance specific set_vbatreg function * @bq256xx_set_iterm: pointer to instance specific set_iterm function * @bq256xx_set_iprechg: pointer to instance specific set_iprechg function * @bq256xx_set_vindpm: pointer to instance specific set_vindpm function * @bq256xx_set_charge_type: pointer to instance specific set_charge_type function * @bq256xx_set_ts_ignore: pointer to instance specific set_ts_ignore function * * @bq256xx_def_ichg: default ichg value in microamps * @bq256xx_def_iindpm: default iindpm value in microamps * @bq256xx_def_vbatreg: default vbatreg value in microvolts * @bq256xx_def_iterm: default iterm value in microamps * @bq256xx_def_iprechg: default iprechg value in microamps * @bq256xx_def_vindpm: default vindpm value in microvolts * * @bq256xx_max_ichg: maximum charge current in microamps * @bq256xx_max_vbatreg: maximum battery regulation voltage in microvolts * * @has_usb_detect: indicates whether device has BC1.2 detection */ struct bq256xx_chip_info { int model_id; const struct regmap_config *bq256xx_regmap_config; int (*bq256xx_get_ichg)(struct bq256xx_device *bq); int (*bq256xx_get_iindpm)(struct bq256xx_device *bq); int (*bq256xx_get_vbatreg)(struct bq256xx_device *bq); int (*bq256xx_get_iterm)(struct bq256xx_device *bq); int (*bq256xx_get_iprechg)(struct bq256xx_device *bq); int (*bq256xx_get_vindpm)(struct bq256xx_device *bq); int (*bq256xx_set_ichg)(struct bq256xx_device *bq, int ichg); int (*bq256xx_set_iindpm)(struct bq256xx_device *bq, int iindpm); int (*bq256xx_set_vbatreg)(struct bq256xx_device *bq, int vbatreg); int (*bq256xx_set_iterm)(struct bq256xx_device *bq, int iterm); int (*bq256xx_set_iprechg)(struct bq256xx_device *bq, int iprechg); int (*bq256xx_set_vindpm)(struct bq256xx_device *bq, int vindpm); int (*bq256xx_set_charge_type)(struct bq256xx_device *bq, int type); int (*bq256xx_set_ts_ignore)(struct bq256xx_device *bq, bool ts_ignore); int bq256xx_def_ichg; int bq256xx_def_iindpm; int bq256xx_def_vbatreg; int bq256xx_def_iterm; int bq256xx_def_iprechg; int bq256xx_def_vindpm; int bq256xx_max_ichg; int bq256xx_max_vbatreg; bool has_usb_detect; }; static int bq256xx_watchdog_time[BQ256XX_NUM_WD_VAL] = { 0, 40000, 80000, 1600000 }; static const int bq25611d_vbatreg_values[] = { 3494000, 3590000, 3686000, 3790000, 3894000, 3990000, 4090000, 4140000, 4190000 }; static const int bq25618_619_vbatreg_values[] = { 3504000, 3600000, 3696000, 3800000, 3904000, 4000000, 4100000, 4150000, 4200000 }; static const int bq25618_619_ichg_values[] = { 1290000, 1360000, 1430000, 1500000 }; static enum power_supply_usb_type bq256xx_usb_type[] = { POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_CDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_UNKNOWN, POWER_SUPPLY_USB_TYPE_ACA, }; static int bq256xx_array_parse(int array_size, int val, const int array[]) { int i = 0; if (val < array[i]) return i - 1; if (val >= array[array_size - 1]) return array_size - 1; for (i = 1; i < array_size; i++) { if (val == array[i]) return i; if (val > array[i - 1] && val < array[i]) { if (val < array[i]) return i - 1; else return i; } } return -EINVAL; } static int bq256xx_usb_notifier(struct notifier_block *nb, unsigned long val, void *priv) { struct bq256xx_device *bq = container_of(nb, struct bq256xx_device, usb_nb); bq->usb_event = val; queue_work(system_power_efficient_wq, &bq->usb_work); return NOTIFY_OK; } static void bq256xx_usb_work(struct work_struct *data) { struct bq256xx_device *bq = container_of(data, struct bq256xx_device, usb_work); switch (bq->usb_event) { case USB_EVENT_ID: break; case USB_EVENT_NONE: power_supply_changed(bq->charger); break; default: dev_err(bq->dev, "Error switching to charger mode.\n"); break; } } static struct reg_default bq2560x_reg_defs[] = { {BQ256XX_INPUT_CURRENT_LIMIT, 0x17}, {BQ256XX_CHARGER_CONTROL_0, 0x1a}, {BQ256XX_CHARGE_CURRENT_LIMIT, 0xa2}, {BQ256XX_PRECHG_AND_TERM_CURR_LIM, 0x22}, {BQ256XX_BATTERY_VOLTAGE_LIMIT, 0x58}, {BQ256XX_CHARGER_CONTROL_1, 0x9f}, {BQ256XX_CHARGER_CONTROL_2, 0x66}, {BQ256XX_CHARGER_CONTROL_3, 0x4c}, }; static struct reg_default bq25611d_reg_defs[] = { {BQ256XX_INPUT_CURRENT_LIMIT, 0x17}, {BQ256XX_CHARGER_CONTROL_0, 0x1a}, {BQ256XX_CHARGE_CURRENT_LIMIT, 0x91}, {BQ256XX_PRECHG_AND_TERM_CURR_LIM, 0x12}, {BQ256XX_BATTERY_VOLTAGE_LIMIT, 0x40}, {BQ256XX_CHARGER_CONTROL_1, 0x9e}, {BQ256XX_CHARGER_CONTROL_2, 0xe6}, {BQ256XX_CHARGER_CONTROL_3, 0x4c}, {BQ256XX_PART_INFORMATION, 0x54}, {BQ256XX_CHARGER_CONTROL_4, 0x75}, }; static struct reg_default bq25618_619_reg_defs[] = { {BQ256XX_INPUT_CURRENT_LIMIT, 0x17}, {BQ256XX_CHARGER_CONTROL_0, 0x1a}, {BQ256XX_CHARGE_CURRENT_LIMIT, 0x91}, {BQ256XX_PRECHG_AND_TERM_CURR_LIM, 0x12}, {BQ256XX_BATTERY_VOLTAGE_LIMIT, 0x40}, {BQ256XX_CHARGER_CONTROL_1, 0x9e}, {BQ256XX_CHARGER_CONTROL_2, 0xe6}, {BQ256XX_CHARGER_CONTROL_3, 0x4c}, {BQ256XX_PART_INFORMATION, 0x2c}, {BQ256XX_CHARGER_CONTROL_4, 0x75}, }; static int bq256xx_get_state(struct bq256xx_device *bq, struct bq256xx_state *state) { unsigned int charger_status_0; unsigned int charger_status_1; int ret; ret = regmap_read(bq->regmap, BQ256XX_CHARGER_STATUS_0, &charger_status_0); if (ret) return ret; ret = regmap_read(bq->regmap, BQ256XX_CHARGER_STATUS_1, &charger_status_1); if (ret) return ret; state->vbus_stat = charger_status_0 & BQ256XX_VBUS_STAT_MASK; state->chrg_stat = charger_status_0 & BQ256XX_CHRG_STAT_MASK; state->online = charger_status_0 & BQ256XX_PG_STAT_MASK; state->wdt_fault = charger_status_1 & BQ256XX_WDT_FAULT_MASK; state->bat_fault = charger_status_1 & BQ256XX_BAT_FAULT_MASK; state->chrg_fault = charger_status_1 & BQ256XX_CHRG_FAULT_MASK; state->ntc_fault = charger_status_1 & BQ256XX_NTC_FAULT_MASK; return 0; } static int bq256xx_set_charge_type(struct bq256xx_device *bq, int type) { int chg_config = 0; switch (type) { case POWER_SUPPLY_CHARGE_TYPE_NONE: chg_config = 0x0; break; case POWER_SUPPLY_CHARGE_TYPE_TRICKLE: case POWER_SUPPLY_CHARGE_TYPE_FAST: chg_config = 0x1; break; default: return -EINVAL; } return regmap_update_bits(bq->regmap, BQ256XX_CHARGER_CONTROL_0, BQ256XX_CHG_CONFIG_MASK, (chg_config ? 1 : 0) << BQ256XX_CHG_CONFIG_BIT_SHIFT); } static int bq256xx_get_ichg_curr(struct bq256xx_device *bq) { unsigned int charge_current_limit; unsigned int ichg_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_CHARGE_CURRENT_LIMIT, &charge_current_limit); if (ret) return ret; ichg_reg_code = charge_current_limit & BQ256XX_ICHG_MASK; return ichg_reg_code * BQ256XX_ICHG_STEP_uA; } static int bq25618_619_get_ichg_curr(struct bq256xx_device *bq) { unsigned int charge_current_limit; unsigned int ichg_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_CHARGE_CURRENT_LIMIT, &charge_current_limit); if (ret) return ret; ichg_reg_code = charge_current_limit & BQ256XX_ICHG_MASK; if (ichg_reg_code < BQ25618_ICHG_THRESH) return ichg_reg_code * BQ25618_ICHG_STEP_uA; return bq25618_619_ichg_values[ichg_reg_code - BQ25618_ICHG_THRESH]; } static int bq256xx_set_ichg_curr(struct bq256xx_device *bq, int ichg) { unsigned int ichg_reg_code; int ichg_max = bq->init_data.ichg_max; ichg = clamp(ichg, BQ256XX_ICHG_MIN_uA, ichg_max); ichg_reg_code = ichg / BQ256XX_ICHG_STEP_uA; return regmap_update_bits(bq->regmap, BQ256XX_CHARGE_CURRENT_LIMIT, BQ256XX_ICHG_MASK, ichg_reg_code); } static int bq25618_619_set_ichg_curr(struct bq256xx_device *bq, int ichg) { int array_size = ARRAY_SIZE(bq25618_619_ichg_values); unsigned int ichg_reg_code; int ichg_max = bq->init_data.ichg_max; ichg = clamp(ichg, BQ25618_ICHG_MIN_uA, ichg_max); if (ichg <= BQ25618_ICHG_THRESH_uA) { ichg_reg_code = ichg / BQ25618_ICHG_STEP_uA; } else { ichg_reg_code = bq256xx_array_parse(array_size, ichg, bq25618_619_ichg_values) + BQ25618_ICHG_THRESH; } return regmap_update_bits(bq->regmap, BQ256XX_CHARGE_CURRENT_LIMIT, BQ256XX_ICHG_MASK, ichg_reg_code); } static int bq25618_619_get_chrg_volt(struct bq256xx_device *bq) { unsigned int battery_volt_lim; unsigned int vbatreg_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_BATTERY_VOLTAGE_LIMIT, &battery_volt_lim); if (ret) return ret; vbatreg_reg_code = (battery_volt_lim & BQ256XX_VBATREG_MASK) >> BQ256XX_VBATREG_BIT_SHIFT; if (vbatreg_reg_code > BQ2561X_VBATREG_THRESH) return ((vbatreg_reg_code - BQ2561X_VBATREG_THRESH) * BQ2561X_VBATREG_STEP_uV) + BQ25618_VBATREG_THRESH_uV; return bq25618_619_vbatreg_values[vbatreg_reg_code]; } static int bq25611d_get_chrg_volt(struct bq256xx_device *bq) { unsigned int battery_volt_lim; unsigned int vbatreg_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_BATTERY_VOLTAGE_LIMIT, &battery_volt_lim); if (ret) return ret; vbatreg_reg_code = (battery_volt_lim & BQ256XX_VBATREG_MASK) >> BQ256XX_VBATREG_BIT_SHIFT; if (vbatreg_reg_code > BQ2561X_VBATREG_THRESH) return ((vbatreg_reg_code - BQ2561X_VBATREG_THRESH) * BQ2561X_VBATREG_STEP_uV) + BQ25611D_VBATREG_THRESH_uV; return bq25611d_vbatreg_values[vbatreg_reg_code]; } static int bq2560x_get_chrg_volt(struct bq256xx_device *bq) { unsigned int battery_volt_lim; unsigned int vbatreg_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_BATTERY_VOLTAGE_LIMIT, &battery_volt_lim); if (ret) return ret; vbatreg_reg_code = (battery_volt_lim & BQ256XX_VBATREG_MASK) >> BQ256XX_VBATREG_BIT_SHIFT; return (vbatreg_reg_code * BQ2560X_VBATREG_STEP_uV) + BQ2560X_VBATREG_OFFSET_uV; } static int bq25601d_get_chrg_volt(struct bq256xx_device *bq) { unsigned int battery_volt_lim; unsigned int vbatreg_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_BATTERY_VOLTAGE_LIMIT, &battery_volt_lim); if (ret) return ret; vbatreg_reg_code = (battery_volt_lim & BQ256XX_VBATREG_MASK) >> BQ256XX_VBATREG_BIT_SHIFT; return (vbatreg_reg_code * BQ2560X_VBATREG_STEP_uV) + BQ25601D_VBATREG_OFFSET_uV; } static int bq25618_619_set_chrg_volt(struct bq256xx_device *bq, int vbatreg) { int array_size = ARRAY_SIZE(bq25618_619_vbatreg_values); unsigned int vbatreg_reg_code; int vbatreg_max = bq->init_data.vbatreg_max; vbatreg = clamp(vbatreg, BQ25618_VBATREG_MIN_uV, vbatreg_max); if (vbatreg > BQ25618_VBATREG_THRESH_uV) vbatreg_reg_code = ((vbatreg - BQ25618_VBATREG_THRESH_uV) / (BQ2561X_VBATREG_STEP_uV)) + BQ2561X_VBATREG_THRESH; else { vbatreg_reg_code = bq256xx_array_parse(array_size, vbatreg, bq25618_619_vbatreg_values); } return regmap_update_bits(bq->regmap, BQ256XX_BATTERY_VOLTAGE_LIMIT, BQ256XX_VBATREG_MASK, vbatreg_reg_code << BQ256XX_VBATREG_BIT_SHIFT); } static int bq25611d_set_chrg_volt(struct bq256xx_device *bq, int vbatreg) { int array_size = ARRAY_SIZE(bq25611d_vbatreg_values); unsigned int vbatreg_reg_code; int vbatreg_max = bq->init_data.vbatreg_max; vbatreg = clamp(vbatreg, BQ25611D_VBATREG_MIN_uV, vbatreg_max); if (vbatreg > BQ25611D_VBATREG_THRESH_uV) vbatreg_reg_code = ((vbatreg - BQ25611D_VBATREG_THRESH_uV) / (BQ2561X_VBATREG_STEP_uV)) + BQ2561X_VBATREG_THRESH; else { vbatreg_reg_code = bq256xx_array_parse(array_size, vbatreg, bq25611d_vbatreg_values); } return regmap_update_bits(bq->regmap, BQ256XX_BATTERY_VOLTAGE_LIMIT, BQ256XX_VBATREG_MASK, vbatreg_reg_code << BQ256XX_VBATREG_BIT_SHIFT); } static int bq2560x_set_chrg_volt(struct bq256xx_device *bq, int vbatreg) { unsigned int vbatreg_reg_code; int vbatreg_max = bq->init_data.vbatreg_max; vbatreg = clamp(vbatreg, BQ2560X_VBATREG_MIN_uV, vbatreg_max); vbatreg_reg_code = (vbatreg - BQ2560X_VBATREG_OFFSET_uV) / BQ2560X_VBATREG_STEP_uV; return regmap_update_bits(bq->regmap, BQ256XX_BATTERY_VOLTAGE_LIMIT, BQ256XX_VBATREG_MASK, vbatreg_reg_code << BQ256XX_VBATREG_BIT_SHIFT); } static int bq25601d_set_chrg_volt(struct bq256xx_device *bq, int vbatreg) { unsigned int vbatreg_reg_code; int vbatreg_max = bq->init_data.vbatreg_max; vbatreg = clamp(vbatreg, BQ25601D_VBATREG_MIN_uV, vbatreg_max); vbatreg_reg_code = (vbatreg - BQ25601D_VBATREG_OFFSET_uV) / BQ2560X_VBATREG_STEP_uV; return regmap_update_bits(bq->regmap, BQ256XX_BATTERY_VOLTAGE_LIMIT, BQ256XX_VBATREG_MASK, vbatreg_reg_code << BQ256XX_VBATREG_BIT_SHIFT); } static int bq256xx_set_ts_ignore(struct bq256xx_device *bq, bool ts_ignore) { return regmap_update_bits(bq->regmap, BQ256XX_INPUT_CURRENT_LIMIT, BQ256XX_TS_IGNORE, (ts_ignore ? 1 : 0) << BQ256XX_TS_IGNORE_SHIFT); } static int bq256xx_get_prechrg_curr(struct bq256xx_device *bq) { unsigned int prechg_and_term_curr_lim; unsigned int iprechg_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_PRECHG_AND_TERM_CURR_LIM, &prechg_and_term_curr_lim); if (ret) return ret; iprechg_reg_code = (prechg_and_term_curr_lim & BQ256XX_IPRECHG_MASK) >> BQ256XX_IPRECHG_BIT_SHIFT; return (iprechg_reg_code * BQ256XX_IPRECHG_STEP_uA) + BQ256XX_IPRECHG_OFFSET_uA; } static int bq256xx_set_prechrg_curr(struct bq256xx_device *bq, int iprechg) { unsigned int iprechg_reg_code; iprechg = clamp(iprechg, BQ256XX_IPRECHG_MIN_uA, BQ256XX_IPRECHG_MAX_uA); iprechg_reg_code = ((iprechg - BQ256XX_IPRECHG_OFFSET_uA) / BQ256XX_IPRECHG_STEP_uA) << BQ256XX_IPRECHG_BIT_SHIFT; return regmap_update_bits(bq->regmap, BQ256XX_PRECHG_AND_TERM_CURR_LIM, BQ256XX_IPRECHG_MASK, iprechg_reg_code); } static int bq25618_619_get_prechrg_curr(struct bq256xx_device *bq) { unsigned int prechg_and_term_curr_lim; unsigned int iprechg_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_PRECHG_AND_TERM_CURR_LIM, &prechg_and_term_curr_lim); if (ret) return ret; iprechg_reg_code = (prechg_and_term_curr_lim & BQ256XX_IPRECHG_MASK) >> BQ256XX_IPRECHG_BIT_SHIFT; return (iprechg_reg_code * BQ25618_IPRECHG_STEP_uA) + BQ25618_IPRECHG_OFFSET_uA; } static int bq25618_619_set_prechrg_curr(struct bq256xx_device *bq, int iprechg) { unsigned int iprechg_reg_code; iprechg = clamp(iprechg, BQ25618_IPRECHG_MIN_uA, BQ25618_IPRECHG_MAX_uA); iprechg_reg_code = ((iprechg - BQ25618_IPRECHG_OFFSET_uA) / BQ25618_IPRECHG_STEP_uA) << BQ256XX_IPRECHG_BIT_SHIFT; return regmap_update_bits(bq->regmap, BQ256XX_PRECHG_AND_TERM_CURR_LIM, BQ256XX_IPRECHG_MASK, iprechg_reg_code); } static int bq256xx_get_term_curr(struct bq256xx_device *bq) { unsigned int prechg_and_term_curr_lim; unsigned int iterm_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_PRECHG_AND_TERM_CURR_LIM, &prechg_and_term_curr_lim); if (ret) return ret; iterm_reg_code = prechg_and_term_curr_lim & BQ256XX_ITERM_MASK; return (iterm_reg_code * BQ256XX_ITERM_STEP_uA) + BQ256XX_ITERM_OFFSET_uA; } static int bq256xx_set_term_curr(struct bq256xx_device *bq, int iterm) { unsigned int iterm_reg_code; iterm = clamp(iterm, BQ256XX_ITERM_MIN_uA, BQ256XX_ITERM_MAX_uA); iterm_reg_code = (iterm - BQ256XX_ITERM_OFFSET_uA) / BQ256XX_ITERM_STEP_uA; return regmap_update_bits(bq->regmap, BQ256XX_PRECHG_AND_TERM_CURR_LIM, BQ256XX_ITERM_MASK, iterm_reg_code); } static int bq25618_619_get_term_curr(struct bq256xx_device *bq) { unsigned int prechg_and_term_curr_lim; unsigned int iterm_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_PRECHG_AND_TERM_CURR_LIM, &prechg_and_term_curr_lim); if (ret) return ret; iterm_reg_code = prechg_and_term_curr_lim & BQ256XX_ITERM_MASK; return (iterm_reg_code * BQ25618_ITERM_STEP_uA) + BQ25618_ITERM_OFFSET_uA; } static int bq25618_619_set_term_curr(struct bq256xx_device *bq, int iterm) { unsigned int iterm_reg_code; iterm = clamp(iterm, BQ25618_ITERM_MIN_uA, BQ25618_ITERM_MAX_uA); iterm_reg_code = (iterm - BQ25618_ITERM_OFFSET_uA) / BQ25618_ITERM_STEP_uA; return regmap_update_bits(bq->regmap, BQ256XX_PRECHG_AND_TERM_CURR_LIM, BQ256XX_ITERM_MASK, iterm_reg_code); } static int bq256xx_get_input_volt_lim(struct bq256xx_device *bq) { unsigned int charger_control_2; unsigned int vindpm_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_CHARGER_CONTROL_2, &charger_control_2); if (ret) return ret; vindpm_reg_code = charger_control_2 & BQ256XX_VINDPM_MASK; return (vindpm_reg_code * BQ256XX_VINDPM_STEP_uV) + BQ256XX_VINDPM_OFFSET_uV; } static int bq256xx_set_input_volt_lim(struct bq256xx_device *bq, int vindpm) { unsigned int vindpm_reg_code; vindpm = clamp(vindpm, BQ256XX_VINDPM_MIN_uV, BQ256XX_VINDPM_MAX_uV); vindpm_reg_code = (vindpm - BQ256XX_VINDPM_OFFSET_uV) / BQ256XX_VINDPM_STEP_uV; return regmap_update_bits(bq->regmap, BQ256XX_CHARGER_CONTROL_2, BQ256XX_VINDPM_MASK, vindpm_reg_code); } static int bq256xx_get_input_curr_lim(struct bq256xx_device *bq) { unsigned int input_current_limit; unsigned int iindpm_reg_code; int ret; ret = regmap_read(bq->regmap, BQ256XX_INPUT_CURRENT_LIMIT, &input_current_limit); if (ret) return ret; iindpm_reg_code = input_current_limit & BQ256XX_IINDPM_MASK; return (iindpm_reg_code * BQ256XX_IINDPM_STEP_uA) + BQ256XX_IINDPM_OFFSET_uA; } static int bq256xx_set_input_curr_lim(struct bq256xx_device *bq, int iindpm) { unsigned int iindpm_reg_code; iindpm = clamp(iindpm, BQ256XX_IINDPM_MIN_uA, BQ256XX_IINDPM_MAX_uA); iindpm_reg_code = (iindpm - BQ256XX_IINDPM_OFFSET_uA) / BQ256XX_IINDPM_STEP_uA; return regmap_update_bits(bq->regmap, BQ256XX_INPUT_CURRENT_LIMIT, BQ256XX_IINDPM_MASK, iindpm_reg_code); } static void bq256xx_charger_reset(void *data) { struct bq256xx_device *bq = data; regmap_update_bits(bq->regmap, BQ256XX_PART_INFORMATION, BQ256XX_REG_RST, BQ256XX_REG_RST); if (!IS_ERR_OR_NULL(bq->usb2_phy)) usb_unregister_notifier(bq->usb2_phy, &bq->usb_nb); if (!IS_ERR_OR_NULL(bq->usb3_phy)) usb_unregister_notifier(bq->usb3_phy, &bq->usb_nb); } static int bq256xx_set_charger_property(struct power_supply *psy, enum power_supply_property prop, const union power_supply_propval *val) { struct bq256xx_device *bq = power_supply_get_drvdata(psy); int ret = -EINVAL; switch (prop) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = bq->chip_info->bq256xx_set_iindpm(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_STATUS: break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = bq->chip_info->bq256xx_set_vbatreg(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = bq->chip_info->bq256xx_set_ichg(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: ret = bq->chip_info->bq256xx_set_iprechg(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: ret = bq->chip_info->bq256xx_set_iterm(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = bq->chip_info->bq256xx_set_vindpm(bq, val->intval); if (ret) return ret; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = bq->chip_info->bq256xx_set_charge_type(bq, val->intval); if (ret) return ret; break; default: break; } return ret; } static int bq256xx_get_battery_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct bq256xx_device *bq = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = bq->init_data.ichg_max; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = bq->init_data.vbatreg_max; break; default: return -EINVAL; } return 0; } static int bq256xx_get_charger_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct bq256xx_device *bq = power_supply_get_drvdata(psy); struct bq256xx_state state; int ret = 0; mutex_lock(&bq->lock); ret = bq256xx_get_state(bq, &state); mutex_unlock(&bq->lock); if (ret) return ret; switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (state.vbus_stat == BQ256XX_VBUS_STAT_NO_INPUT || state.vbus_stat == BQ256XX_VBUS_STAT_USB_OTG) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (state.chrg_stat == BQ256XX_CHRG_STAT_NOT_CHRGING) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (state.chrg_stat == BQ256XX_CHRG_STAT_CHRG_TERM) val->intval = POWER_SUPPLY_STATUS_FULL; else val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case POWER_SUPPLY_PROP_HEALTH: val->intval = POWER_SUPPLY_HEALTH_UNKNOWN; if (state.wdt_fault) { val->intval = POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE; } else if (state.bat_fault) { val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; } else { switch (state.chrg_stat) { case BQ256XX_CHRG_FAULT_INPUT: val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; break; case BQ256XX_CHRG_FAULT_THERM: val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; break; case BQ256XX_CHRG_FAULT_CST_EXPIRE: val->intval = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; break; default: break; } switch (state.ntc_fault) { case BQ256XX_NTC_FAULT_WARM: val->intval = POWER_SUPPLY_HEALTH_WARM; break; case BQ256XX_NTC_FAULT_COOL: val->intval = POWER_SUPPLY_HEALTH_COOL; break; case BQ256XX_NTC_FAULT_COLD: val->intval = POWER_SUPPLY_HEALTH_COLD; break; case BQ256XX_NTC_FAULT_HOT: val->intval = POWER_SUPPLY_HEALTH_HOT; break; default: val->intval = POWER_SUPPLY_HEALTH_GOOD; break; } } break; case POWER_SUPPLY_PROP_USB_TYPE: if (bq->chip_info->has_usb_detect) { switch (state.vbus_stat) { case BQ256XX_VBUS_STAT_USB_SDP: val->intval = POWER_SUPPLY_USB_TYPE_SDP; break; case BQ256XX_VBUS_STAT_USB_CDP: val->intval = POWER_SUPPLY_USB_TYPE_CDP; break; case BQ256XX_VBUS_STAT_USB_DCP: val->intval = POWER_SUPPLY_USB_TYPE_DCP; break; case BQ256XX_VBUS_STAT_USB_OTG: val->intval = POWER_SUPPLY_USB_TYPE_ACA; break; default: val->intval = POWER_SUPPLY_USB_TYPE_UNKNOWN; break; } } else { switch (state.vbus_stat) { case BQ256XX_VBUS_STAT_USB_SDP: val->intval = POWER_SUPPLY_USB_TYPE_SDP; break; case BQ256XX_VBUS_STAT_USB_OTG: val->intval = POWER_SUPPLY_USB_TYPE_ACA; break; default: val->intval = POWER_SUPPLY_USB_TYPE_UNKNOWN; break; } } break; case POWER_SUPPLY_PROP_CHARGE_TYPE: switch (state.chrg_stat) { case BQ256XX_CHRG_STAT_NOT_CHRGING: val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; case BQ256XX_CHRG_STAT_PRECHRGING: val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case BQ256XX_CHRG_STAT_FAST_CHRGING: val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; break; case BQ256XX_CHRG_STAT_CHRG_TERM: val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; default: val->intval = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; } break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BQ256XX_MANUFACTURER; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = bq->model_name; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = state.online; break; case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: ret = bq->chip_info->bq256xx_get_vindpm(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = bq->chip_info->bq256xx_get_iindpm(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = bq->chip_info->bq256xx_get_vbatreg(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = bq->chip_info->bq256xx_get_ichg(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: ret = bq->chip_info->bq256xx_get_iprechg(bq); if (ret < 0) return ret; val->intval = ret; break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: ret = bq->chip_info->bq256xx_get_iterm(bq); if (ret < 0) return ret; val->intval = ret; break; default: return -EINVAL; } return ret; } static bool bq256xx_state_changed(struct bq256xx_device *bq, struct bq256xx_state *new_state) { struct bq256xx_state old_state; mutex_lock(&bq->lock); old_state = bq->state; mutex_unlock(&bq->lock); return memcmp(&old_state, new_state, sizeof(struct bq256xx_state)) != 0; } static irqreturn_t bq256xx_irq_handler_thread(int irq, void *private) { struct bq256xx_device *bq = private; struct bq256xx_state state; int ret; ret = bq256xx_get_state(bq, &state); if (ret < 0) goto irq_out; if (!bq256xx_state_changed(bq, &state)) goto irq_out; mutex_lock(&bq->lock); bq->state = state; mutex_unlock(&bq->lock); power_supply_changed(bq->charger); irq_out: return IRQ_HANDLED; } static enum power_supply_property bq256xx_power_supply_props[] = { POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, }; static enum power_supply_property bq256xx_battery_props[] = { POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, }; static int bq256xx_property_is_writeable(struct power_supply *psy, enum power_supply_property prop) { switch (prop) { case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: case POWER_SUPPLY_PROP_CHARGE_TYPE: return true; default: return false; } } static const struct power_supply_desc bq256xx_power_supply_desc = { .name = "bq256xx-charger", .type = POWER_SUPPLY_TYPE_USB, .usb_types = bq256xx_usb_type, .num_usb_types = ARRAY_SIZE(bq256xx_usb_type), .properties = bq256xx_power_supply_props, .num_properties = ARRAY_SIZE(bq256xx_power_supply_props), .get_property = bq256xx_get_charger_property, .set_property = bq256xx_set_charger_property, .property_is_writeable = bq256xx_property_is_writeable, }; static struct power_supply_desc bq256xx_battery_desc = { .name = "bq256xx-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .get_property = bq256xx_get_battery_property, .properties = bq256xx_battery_props, .num_properties = ARRAY_SIZE(bq256xx_battery_props), .property_is_writeable = bq256xx_property_is_writeable, }; static bool bq256xx_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case BQ256XX_INPUT_CURRENT_LIMIT: case BQ256XX_CHARGER_STATUS_0...BQ256XX_CHARGER_STATUS_2: return true; default: return false; } } static const struct regmap_config bq25600_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BQ256XX_PART_INFORMATION, .reg_defaults = bq2560x_reg_defs, .num_reg_defaults = ARRAY_SIZE(bq2560x_reg_defs), .cache_type = REGCACHE_FLAT, .volatile_reg = bq256xx_is_volatile_reg, }; static const struct regmap_config bq25611d_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BQ256XX_CHARGER_CONTROL_4, .reg_defaults = bq25611d_reg_defs, .num_reg_defaults = ARRAY_SIZE(bq25611d_reg_defs), .cache_type = REGCACHE_FLAT, .volatile_reg = bq256xx_is_volatile_reg, }; static const struct regmap_config bq25618_619_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = BQ256XX_CHARGER_CONTROL_4, .reg_defaults = bq25618_619_reg_defs, .num_reg_defaults = ARRAY_SIZE(bq25618_619_reg_defs), .cache_type = REGCACHE_FLAT, .volatile_reg = bq256xx_is_volatile_reg, }; static const struct bq256xx_chip_info bq256xx_chip_info_tbl[] = { [BQ25600] = { .model_id = BQ25600, .bq256xx_regmap_config = &bq25600_regmap_config, .bq256xx_get_ichg = bq256xx_get_ichg_curr, .bq256xx_get_iindpm = bq256xx_get_input_curr_lim, .bq256xx_get_vbatreg = bq2560x_get_chrg_volt, .bq256xx_get_iterm = bq256xx_get_term_curr, .bq256xx_get_iprechg = bq256xx_get_prechrg_curr, .bq256xx_get_vindpm = bq256xx_get_input_volt_lim, .bq256xx_set_ts_ignore = NULL, .bq256xx_set_ichg = bq256xx_set_ichg_curr, .bq256xx_set_iindpm = bq256xx_set_input_curr_lim, .bq256xx_set_vbatreg = bq2560x_set_chrg_volt, .bq256xx_set_iterm = bq256xx_set_term_curr, .bq256xx_set_iprechg = bq256xx_set_prechrg_curr, .bq256xx_set_vindpm = bq256xx_set_input_volt_lim, .bq256xx_set_charge_type = bq256xx_set_charge_type, .bq256xx_def_ichg = BQ2560X_ICHG_DEF_uA, .bq256xx_def_iindpm = BQ256XX_IINDPM_DEF_uA, .bq256xx_def_vbatreg = BQ2560X_VBATREG_DEF_uV, .bq256xx_def_iterm = BQ256XX_ITERM_DEF_uA, .bq256xx_def_iprechg = BQ256XX_IPRECHG_DEF_uA, .bq256xx_def_vindpm = BQ256XX_VINDPM_DEF_uV, .bq256xx_max_ichg = BQ256XX_ICHG_MAX_uA, .bq256xx_max_vbatreg = BQ2560X_VBATREG_MAX_uV, .has_usb_detect = false, }, [BQ25600D] = { .model_id = BQ25600D, .bq256xx_regmap_config = &bq25600_regmap_config, .bq256xx_get_ichg = bq256xx_get_ichg_curr, .bq256xx_get_iindpm = bq256xx_get_input_curr_lim, .bq256xx_get_vbatreg = bq2560x_get_chrg_volt, .bq256xx_get_iterm = bq256xx_get_term_curr, .bq256xx_get_iprechg = bq256xx_get_prechrg_curr, .bq256xx_get_vindpm = bq256xx_get_input_volt_lim, .bq256xx_set_ichg = bq256xx_set_ichg_curr, .bq256xx_set_iindpm = bq256xx_set_input_curr_lim, .bq256xx_set_vbatreg = bq2560x_set_chrg_volt, .bq256xx_set_iterm = bq256xx_set_term_curr, .bq256xx_set_iprechg = bq256xx_set_prechrg_curr, .bq256xx_set_vindpm = bq256xx_set_input_volt_lim, .bq256xx_set_charge_type = bq256xx_set_charge_type, .bq256xx_set_ts_ignore = NULL, .bq256xx_def_ichg = BQ2560X_ICHG_DEF_uA, .bq256xx_def_iindpm = BQ256XX_IINDPM_DEF_uA, .bq256xx_def_vbatreg = BQ2560X_VBATREG_DEF_uV, .bq256xx_def_iterm = BQ256XX_ITERM_DEF_uA, .bq256xx_def_iprechg = BQ256XX_IPRECHG_DEF_uA, .bq256xx_def_vindpm = BQ256XX_VINDPM_DEF_uV, .bq256xx_max_ichg = BQ256XX_ICHG_MAX_uA, .bq256xx_max_vbatreg = BQ2560X_VBATREG_MAX_uV, .has_usb_detect = true, }, [BQ25601] = { .model_id = BQ25601, .bq256xx_regmap_config = &bq25600_regmap_config, .bq256xx_get_ichg = bq256xx_get_ichg_curr, .bq256xx_get_iindpm = bq256xx_get_input_curr_lim, .bq256xx_get_vbatreg = bq2560x_get_chrg_volt, .bq256xx_get_iterm = bq256xx_get_term_curr, .bq256xx_get_iprechg = bq256xx_get_prechrg_curr, .bq256xx_get_vindpm = bq256xx_get_input_volt_lim, .bq256xx_set_ichg = bq256xx_set_ichg_curr, .bq256xx_set_iindpm = bq256xx_set_input_curr_lim, .bq256xx_set_vbatreg = bq2560x_set_chrg_volt, .bq256xx_set_iterm = bq256xx_set_term_curr, .bq256xx_set_iprechg = bq256xx_set_prechrg_curr, .bq256xx_set_vindpm = bq256xx_set_input_volt_lim, .bq256xx_set_charge_type = bq256xx_set_charge_type, .bq256xx_set_ts_ignore = NULL, .bq256xx_def_ichg = BQ2560X_ICHG_DEF_uA, .bq256xx_def_iindpm = BQ256XX_IINDPM_DEF_uA, .bq256xx_def_vbatreg = BQ2560X_VBATREG_DEF_uV, .bq256xx_def_iterm = BQ256XX_ITERM_DEF_uA, .bq256xx_def_iprechg = BQ256XX_IPRECHG_DEF_uA, .bq256xx_def_vindpm = BQ256XX_VINDPM_DEF_uV, .bq256xx_max_ichg = BQ256XX_ICHG_MAX_uA, .bq256xx_max_vbatreg = BQ2560X_VBATREG_MAX_uV, .has_usb_detect = false, }, [BQ25601D] = { .model_id = BQ25601D, .bq256xx_regmap_config = &bq25600_regmap_config, .bq256xx_get_ichg = bq256xx_get_ichg_curr, .bq256xx_get_iindpm = bq256xx_get_input_curr_lim, .bq256xx_get_vbatreg = bq25601d_get_chrg_volt, .bq256xx_get_iterm = bq256xx_get_term_curr, .bq256xx_get_iprechg = bq256xx_get_prechrg_curr, .bq256xx_get_vindpm = bq256xx_get_input_volt_lim, .bq256xx_set_ichg = bq256xx_set_ichg_curr, .bq256xx_set_iindpm = bq256xx_set_input_curr_lim, .bq256xx_set_vbatreg = bq25601d_set_chrg_volt, .bq256xx_set_iterm = bq256xx_set_term_curr, .bq256xx_set_iprechg = bq256xx_set_prechrg_curr, .bq256xx_set_vindpm = bq256xx_set_input_volt_lim, .bq256xx_set_charge_type = bq256xx_set_charge_type, .bq256xx_set_ts_ignore = NULL, .bq256xx_def_ichg = BQ2560X_ICHG_DEF_uA, .bq256xx_def_iindpm = BQ256XX_IINDPM_DEF_uA, .bq256xx_def_vbatreg = BQ2560X_VBATREG_DEF_uV, .bq256xx_def_iterm = BQ256XX_ITERM_DEF_uA, .bq256xx_def_iprechg = BQ256XX_IPRECHG_DEF_uA, .bq256xx_def_vindpm = BQ256XX_VINDPM_DEF_uV, .bq256xx_max_ichg = BQ256XX_ICHG_MAX_uA, .bq256xx_max_vbatreg = BQ2560X_VBATREG_MAX_uV, .has_usb_detect = true, }, [BQ25611D] = { .model_id = BQ25611D, .bq256xx_regmap_config = &bq25611d_regmap_config, .bq256xx_get_ichg = bq256xx_get_ichg_curr, .bq256xx_get_iindpm = bq256xx_get_input_curr_lim, .bq256xx_get_vbatreg = bq25611d_get_chrg_volt, .bq256xx_get_iterm = bq256xx_get_term_curr, .bq256xx_get_iprechg = bq256xx_get_prechrg_curr, .bq256xx_get_vindpm = bq256xx_get_input_volt_lim, .bq256xx_set_ichg = bq256xx_set_ichg_curr, .bq256xx_set_iindpm = bq256xx_set_input_curr_lim, .bq256xx_set_vbatreg = bq25611d_set_chrg_volt, .bq256xx_set_iterm = bq256xx_set_term_curr, .bq256xx_set_iprechg = bq256xx_set_prechrg_curr, .bq256xx_set_vindpm = bq256xx_set_input_volt_lim, .bq256xx_set_charge_type = bq256xx_set_charge_type, .bq256xx_set_ts_ignore = bq256xx_set_ts_ignore, .bq256xx_def_ichg = BQ25611D_ICHG_DEF_uA, .bq256xx_def_iindpm = BQ256XX_IINDPM_DEF_uA, .bq256xx_def_vbatreg = BQ25611D_VBATREG_DEF_uV, .bq256xx_def_iterm = BQ256XX_ITERM_DEF_uA, .bq256xx_def_iprechg = BQ256XX_IPRECHG_DEF_uA, .bq256xx_def_vindpm = BQ256XX_VINDPM_DEF_uV, .bq256xx_max_ichg = BQ256XX_ICHG_MAX_uA, .bq256xx_max_vbatreg = BQ25611D_VBATREG_MAX_uV, .has_usb_detect = true, }, [BQ25618] = { .model_id = BQ25618, .bq256xx_regmap_config = &bq25618_619_regmap_config, .bq256xx_get_ichg = bq25618_619_get_ichg_curr, .bq256xx_get_iindpm = bq256xx_get_input_curr_lim, .bq256xx_get_vbatreg = bq25618_619_get_chrg_volt, .bq256xx_get_iterm = bq25618_619_get_term_curr, .bq256xx_get_iprechg = bq25618_619_get_prechrg_curr, .bq256xx_get_vindpm = bq256xx_get_input_volt_lim, .bq256xx_set_ichg = bq25618_619_set_ichg_curr, .bq256xx_set_iindpm = bq256xx_set_input_curr_lim, .bq256xx_set_vbatreg = bq25618_619_set_chrg_volt, .bq256xx_set_iterm = bq25618_619_set_term_curr, .bq256xx_set_iprechg = bq25618_619_set_prechrg_curr, .bq256xx_set_vindpm = bq256xx_set_input_volt_lim, .bq256xx_set_charge_type = bq256xx_set_charge_type, .bq256xx_set_ts_ignore = bq256xx_set_ts_ignore, .bq256xx_def_ichg = BQ25618_ICHG_DEF_uA, .bq256xx_def_iindpm = BQ256XX_IINDPM_DEF_uA, .bq256xx_def_vbatreg = BQ25618_VBATREG_DEF_uV, .bq256xx_def_iterm = BQ25618_ITERM_DEF_uA, .bq256xx_def_iprechg = BQ25618_IPRECHG_DEF_uA, .bq256xx_def_vindpm = BQ256XX_VINDPM_DEF_uV, .bq256xx_max_ichg = BQ25618_ICHG_MAX_uA, .bq256xx_max_vbatreg = BQ25618_VBATREG_MAX_uV, .has_usb_detect = false, }, [BQ25619] = { .model_id = BQ25619, .bq256xx_regmap_config = &bq25618_619_regmap_config, .bq256xx_get_ichg = bq25618_619_get_ichg_curr, .bq256xx_get_iindpm = bq256xx_get_input_curr_lim, .bq256xx_get_vbatreg = bq25618_619_get_chrg_volt, .bq256xx_get_iterm = bq25618_619_get_term_curr, .bq256xx_get_iprechg = bq25618_619_get_prechrg_curr, .bq256xx_get_vindpm = bq256xx_get_input_volt_lim, .bq256xx_set_ichg = bq25618_619_set_ichg_curr, .bq256xx_set_iindpm = bq256xx_set_input_curr_lim, .bq256xx_set_vbatreg = bq25618_619_set_chrg_volt, .bq256xx_set_iterm = bq25618_619_set_term_curr, .bq256xx_set_iprechg = bq25618_619_set_prechrg_curr, .bq256xx_set_vindpm = bq256xx_set_input_volt_lim, .bq256xx_set_charge_type = bq256xx_set_charge_type, .bq256xx_set_ts_ignore = bq256xx_set_ts_ignore, .bq256xx_def_ichg = BQ25618_ICHG_DEF_uA, .bq256xx_def_iindpm = BQ256XX_IINDPM_DEF_uA, .bq256xx_def_vbatreg = BQ25618_VBATREG_DEF_uV, .bq256xx_def_iterm = BQ25618_ITERM_DEF_uA, .bq256xx_def_iprechg = BQ25618_IPRECHG_DEF_uA, .bq256xx_def_vindpm = BQ256XX_VINDPM_DEF_uV, .bq256xx_max_ichg = BQ25618_ICHG_MAX_uA, .bq256xx_max_vbatreg = BQ25618_VBATREG_MAX_uV, .has_usb_detect = false, }, }; static int bq256xx_power_supply_init(struct bq256xx_device *bq, struct power_supply_config *psy_cfg, struct device *dev) { bq->charger = devm_power_supply_register(bq->dev, &bq256xx_power_supply_desc, psy_cfg); if (IS_ERR(bq->charger)) { dev_err(dev, "power supply register charger failed\n"); return PTR_ERR(bq->charger); } bq->battery = devm_power_supply_register(bq->dev, &bq256xx_battery_desc, psy_cfg); if (IS_ERR(bq->battery)) { dev_err(dev, "power supply register battery failed\n"); return PTR_ERR(bq->battery); } return 0; } static int bq256xx_hw_init(struct bq256xx_device *bq) { struct power_supply_battery_info *bat_info; int wd_reg_val = BQ256XX_WATCHDOG_DIS; int ret = 0; int i; for (i = 0; i < BQ256XX_NUM_WD_VAL; i++) { if (bq->watchdog_timer == bq256xx_watchdog_time[i]) { wd_reg_val = i; break; } if (bq->watchdog_timer > bq256xx_watchdog_time[i] && bq->watchdog_timer < bq256xx_watchdog_time[i + 1]) wd_reg_val = i; } ret = regmap_update_bits(bq->regmap, BQ256XX_CHARGER_CONTROL_1, BQ256XX_WATCHDOG_MASK, wd_reg_val << BQ256XX_WDT_BIT_SHIFT); ret = power_supply_get_battery_info(bq->charger, &bat_info); if (ret == -ENOMEM) return ret; if (ret) { dev_warn(bq->dev, "battery info missing, default values will be applied\n"); bat_info->constant_charge_current_max_ua = bq->chip_info->bq256xx_def_ichg; bat_info->constant_charge_voltage_max_uv = bq->chip_info->bq256xx_def_vbatreg; bat_info->precharge_current_ua = bq->chip_info->bq256xx_def_iprechg; bat_info->charge_term_current_ua = bq->chip_info->bq256xx_def_iterm; bq->init_data.ichg_max = bq->chip_info->bq256xx_max_ichg; bq->init_data.vbatreg_max = bq->chip_info->bq256xx_max_vbatreg; } else { bq->init_data.ichg_max = bat_info->constant_charge_current_max_ua; bq->init_data.vbatreg_max = bat_info->constant_charge_voltage_max_uv; } ret = bq->chip_info->bq256xx_set_vindpm(bq, bq->init_data.vindpm); if (ret) return ret; ret = bq->chip_info->bq256xx_set_iindpm(bq, bq->init_data.iindpm); if (ret) return ret; ret = bq->chip_info->bq256xx_set_ichg(bq, bq->chip_info->bq256xx_def_ichg); if (ret) return ret; ret = bq->chip_info->bq256xx_set_iprechg(bq, bat_info->precharge_current_ua); if (ret) return ret; ret = bq->chip_info->bq256xx_set_vbatreg(bq, bq->chip_info->bq256xx_def_vbatreg); if (ret) return ret; ret = bq->chip_info->bq256xx_set_iterm(bq, bat_info->charge_term_current_ua); if (ret) return ret; if (bq->chip_info->bq256xx_set_ts_ignore) { ret = bq->chip_info->bq256xx_set_ts_ignore(bq, bq->init_data.ts_ignore); if (ret) return ret; } power_supply_put_battery_info(bq->charger, bat_info); return 0; } static int bq256xx_parse_dt(struct bq256xx_device *bq, struct power_supply_config *psy_cfg, struct device *dev) { int ret = 0; psy_cfg->drv_data = bq; psy_cfg->of_node = dev->of_node; ret = device_property_read_u32(bq->dev, "ti,watchdog-timeout-ms", &bq->watchdog_timer); if (ret) bq->watchdog_timer = BQ256XX_WATCHDOG_DIS; if (bq->watchdog_timer > BQ256XX_WATCHDOG_MAX || bq->watchdog_timer < BQ256XX_WATCHDOG_DIS) return -EINVAL; ret = device_property_read_u32(bq->dev, "input-voltage-limit-microvolt", &bq->init_data.vindpm); if (ret) bq->init_data.vindpm = bq->chip_info->bq256xx_def_vindpm; ret = device_property_read_u32(bq->dev, "input-current-limit-microamp", &bq->init_data.iindpm); if (ret) bq->init_data.iindpm = bq->chip_info->bq256xx_def_iindpm; bq->init_data.ts_ignore = device_property_read_bool(bq->dev, "ti,no-thermistor"); return 0; } static int bq256xx_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct device *dev = &client->dev; struct bq256xx_device *bq; struct power_supply_config psy_cfg = { }; int ret; bq = devm_kzalloc(dev, sizeof(*bq), GFP_KERNEL); if (!bq) return -ENOMEM; bq->client = client; bq->dev = dev; bq->chip_info = &bq256xx_chip_info_tbl[id->driver_data]; mutex_init(&bq->lock); strncpy(bq->model_name, id->name, I2C_NAME_SIZE); bq->regmap = devm_regmap_init_i2c(client, bq->chip_info->bq256xx_regmap_config); if (IS_ERR(bq->regmap)) { dev_err(dev, "Failed to allocate register map\n"); return PTR_ERR(bq->regmap); } i2c_set_clientdata(client, bq); ret = bq256xx_parse_dt(bq, &psy_cfg, dev); if (ret) { dev_err(dev, "Failed to read device tree properties%d\n", ret); return ret; } ret = devm_add_action_or_reset(dev, bq256xx_charger_reset, bq); if (ret) return ret; /* OTG reporting */ bq->usb2_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); if (!IS_ERR_OR_NULL(bq->usb2_phy)) { INIT_WORK(&bq->usb_work, bq256xx_usb_work); bq->usb_nb.notifier_call = bq256xx_usb_notifier; usb_register_notifier(bq->usb2_phy, &bq->usb_nb); } bq->usb3_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB3); if (!IS_ERR_OR_NULL(bq->usb3_phy)) { INIT_WORK(&bq->usb_work, bq256xx_usb_work); bq->usb_nb.notifier_call = bq256xx_usb_notifier; usb_register_notifier(bq->usb3_phy, &bq->usb_nb); } if (client->irq) { ret = devm_request_threaded_irq(dev, client->irq, NULL, bq256xx_irq_handler_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, dev_name(&client->dev), bq); if (ret < 0) { dev_err(dev, "get irq fail: %d\n", ret); return ret; } } ret = bq256xx_power_supply_init(bq, &psy_cfg, dev); if (ret) { dev_err(dev, "Failed to register power supply\n"); return ret; } ret = bq256xx_hw_init(bq); if (ret) { dev_err(dev, "Cannot initialize the chip.\n"); return ret; } return ret; } static const struct i2c_device_id bq256xx_i2c_ids[] = { { "bq25600", BQ25600 }, { "bq25600d", BQ25600D }, { "bq25601", BQ25601 }, { "bq25601d", BQ25601D }, { "bq25611d", BQ25611D }, { "bq25618", BQ25618 }, { "bq25619", BQ25619 }, {}, }; MODULE_DEVICE_TABLE(i2c, bq256xx_i2c_ids); static const struct of_device_id bq256xx_of_match[] = { { .compatible = "ti,bq25600", .data = (void *)BQ25600 }, { .compatible = "ti,bq25600d", .data = (void *)BQ25600D }, { .compatible = "ti,bq25601", .data = (void *)BQ25601 }, { .compatible = "ti,bq25601d", .data = (void *)BQ25601D }, { .compatible = "ti,bq25611d", .data = (void *)BQ25611D }, { .compatible = "ti,bq25618", .data = (void *)BQ25618 }, { .compatible = "ti,bq25619", .data = (void *)BQ25619 }, { }, }; MODULE_DEVICE_TABLE(of, bq256xx_of_match); static const struct acpi_device_id bq256xx_acpi_match[] = { { "bq25600", BQ25600 }, { "bq25600d", BQ25600D }, { "bq25601", BQ25601 }, { "bq25601d", BQ25601D }, { "bq25611d", BQ25611D }, { "bq25618", BQ25618 }, { "bq25619", BQ25619 }, {}, }; MODULE_DEVICE_TABLE(acpi, bq256xx_acpi_match); static struct i2c_driver bq256xx_driver = { .driver = { .name = "bq256xx-charger", .of_match_table = bq256xx_of_match, .acpi_match_table = bq256xx_acpi_match, }, .probe = bq256xx_probe, .id_table = bq256xx_i2c_ids, }; module_i2c_driver(bq256xx_driver); MODULE_AUTHOR("Ricardo Rivera-Matos <[email protected]>"); MODULE_DESCRIPTION("bq256xx charger driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/bq256xx_charger.c
// SPDX-License-Identifier: GPL-2.0 /* * BQ27xxx battery monitor HDQ/1-wire driver * * Copyright (C) 2007-2017 Texas Instruments Incorporated - https://www.ti.com/ * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/types.h> #include <linux/platform_device.h> #include <linux/mutex.h> #include <linux/power/bq27xxx_battery.h> #include <linux/w1.h> #define W1_FAMILY_BQ27000 0x01 #define HDQ_CMD_READ (0 << 7) #define HDQ_CMD_WRITE (1 << 7) static int F_ID; module_param(F_ID, int, S_IRUSR); MODULE_PARM_DESC(F_ID, "1-wire slave FID for BQ27xxx device"); static int w1_bq27000_read(struct w1_slave *sl, unsigned int reg) { u8 val; mutex_lock(&sl->master->bus_mutex); w1_write_8(sl->master, HDQ_CMD_READ | reg); val = w1_read_8(sl->master); mutex_unlock(&sl->master->bus_mutex); return val; } static int bq27xxx_battery_hdq_read(struct bq27xxx_device_info *di, u8 reg, bool single) { struct w1_slave *sl = dev_to_w1_slave(di->dev); unsigned int timeout = 3; int upper, lower; int temp; if (!single) { /* * Make sure the value has not changed in between reading the * lower and the upper part */ upper = w1_bq27000_read(sl, reg + 1); do { temp = upper; if (upper < 0) return upper; lower = w1_bq27000_read(sl, reg); if (lower < 0) return lower; upper = w1_bq27000_read(sl, reg + 1); } while (temp != upper && --timeout); if (timeout == 0) return -EIO; return (upper << 8) | lower; } return w1_bq27000_read(sl, reg); } static int bq27xxx_battery_hdq_add_slave(struct w1_slave *sl) { struct bq27xxx_device_info *di; di = devm_kzalloc(&sl->dev, sizeof(*di), GFP_KERNEL); if (!di) return -ENOMEM; dev_set_drvdata(&sl->dev, di); di->dev = &sl->dev; di->chip = BQ27000; di->name = "bq27000-battery"; di->bus.read = bq27xxx_battery_hdq_read; return bq27xxx_battery_setup(di); } static void bq27xxx_battery_hdq_remove_slave(struct w1_slave *sl) { struct bq27xxx_device_info *di = dev_get_drvdata(&sl->dev); bq27xxx_battery_teardown(di); } static const struct w1_family_ops bq27xxx_battery_hdq_fops = { .add_slave = bq27xxx_battery_hdq_add_slave, .remove_slave = bq27xxx_battery_hdq_remove_slave, }; static struct w1_family bq27xxx_battery_hdq_family = { .fid = W1_FAMILY_BQ27000, .fops = &bq27xxx_battery_hdq_fops, }; static int __init bq27xxx_battery_hdq_init(void) { if (F_ID) bq27xxx_battery_hdq_family.fid = F_ID; return w1_register_family(&bq27xxx_battery_hdq_family); } module_init(bq27xxx_battery_hdq_init); static void __exit bq27xxx_battery_hdq_exit(void) { w1_unregister_family(&bq27xxx_battery_hdq_family); } module_exit(bq27xxx_battery_hdq_exit); MODULE_AUTHOR("Texas Instruments Ltd"); MODULE_DESCRIPTION("BQ27xxx battery monitor HDQ/1-wire driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("w1-family-" __stringify(W1_FAMILY_BQ27000));
linux-master
drivers/power/supply/bq27xxx_battery_hdq.c
/* * Driver for batteries with DS2760 chips inside. * * Copyright © 2007 Anton Vorontsov * 2004-2007 Matt Reimer * 2004 Szabolcs Gyurko * * Use consistent with the GNU GPL is permitted, * provided that this copyright notice is * preserved in its entirety in all copies and derived works. * * Author: Anton Vorontsov <[email protected]> * February 2007 * * Matt Reimer <[email protected]> * April 2004, 2005, 2007 * * Szabolcs Gyurko <[email protected]> * September 2004 */ #include <linux/module.h> #include <linux/param.h> #include <linux/jiffies.h> #include <linux/workqueue.h> #include <linux/pm.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/suspend.h> #include <linux/w1.h> #include <linux/of.h> static unsigned int cache_time = 1000; module_param(cache_time, uint, 0644); MODULE_PARM_DESC(cache_time, "cache time in milliseconds"); static bool pmod_enabled; module_param(pmod_enabled, bool, 0644); MODULE_PARM_DESC(pmod_enabled, "PMOD enable bit"); static unsigned int rated_capacity; module_param(rated_capacity, uint, 0644); MODULE_PARM_DESC(rated_capacity, "rated battery capacity, 10*mAh or index"); static unsigned int current_accum; module_param(current_accum, uint, 0644); MODULE_PARM_DESC(current_accum, "current accumulator value"); #define W1_FAMILY_DS2760 0x30 /* Known commands to the DS2760 chip */ #define W1_DS2760_SWAP 0xAA #define W1_DS2760_READ_DATA 0x69 #define W1_DS2760_WRITE_DATA 0x6C #define W1_DS2760_COPY_DATA 0x48 #define W1_DS2760_RECALL_DATA 0xB8 #define W1_DS2760_LOCK 0x6A /* Number of valid register addresses */ #define DS2760_DATA_SIZE 0x40 #define DS2760_PROTECTION_REG 0x00 #define DS2760_STATUS_REG 0x01 #define DS2760_STATUS_IE (1 << 2) #define DS2760_STATUS_SWEN (1 << 3) #define DS2760_STATUS_RNAOP (1 << 4) #define DS2760_STATUS_PMOD (1 << 5) #define DS2760_EEPROM_REG 0x07 #define DS2760_SPECIAL_FEATURE_REG 0x08 #define DS2760_VOLTAGE_MSB 0x0c #define DS2760_VOLTAGE_LSB 0x0d #define DS2760_CURRENT_MSB 0x0e #define DS2760_CURRENT_LSB 0x0f #define DS2760_CURRENT_ACCUM_MSB 0x10 #define DS2760_CURRENT_ACCUM_LSB 0x11 #define DS2760_TEMP_MSB 0x18 #define DS2760_TEMP_LSB 0x19 #define DS2760_EEPROM_BLOCK0 0x20 #define DS2760_ACTIVE_FULL 0x20 #define DS2760_EEPROM_BLOCK1 0x30 #define DS2760_STATUS_WRITE_REG 0x31 #define DS2760_RATED_CAPACITY 0x32 #define DS2760_CURRENT_OFFSET_BIAS 0x33 #define DS2760_ACTIVE_EMPTY 0x3b struct ds2760_device_info { struct device *dev; /* DS2760 data, valid after calling ds2760_battery_read_status() */ unsigned long update_time; /* jiffies when data read */ char raw[DS2760_DATA_SIZE]; /* raw DS2760 data */ int voltage_raw; /* units of 4.88 mV */ int voltage_uV; /* units of µV */ int current_raw; /* units of 0.625 mA */ int current_uA; /* units of µA */ int accum_current_raw; /* units of 0.25 mAh */ int accum_current_uAh; /* units of µAh */ int temp_raw; /* units of 0.125 °C */ int temp_C; /* units of 0.1 °C */ int rated_capacity; /* units of µAh */ int rem_capacity; /* percentage */ int full_active_uAh; /* units of µAh */ int empty_uAh; /* units of µAh */ int life_sec; /* units of seconds */ int charge_status; /* POWER_SUPPLY_STATUS_* */ int full_counter; struct power_supply *bat; struct power_supply_desc bat_desc; struct workqueue_struct *monitor_wqueue; struct delayed_work monitor_work; struct delayed_work set_charged_work; struct notifier_block pm_notifier; }; static int w1_ds2760_io(struct device *dev, char *buf, int addr, size_t count, int io) { struct w1_slave *sl = container_of(dev, struct w1_slave, dev); if (!dev) return 0; mutex_lock(&sl->master->bus_mutex); if (addr > DS2760_DATA_SIZE || addr < 0) { count = 0; goto out; } if (addr + count > DS2760_DATA_SIZE) count = DS2760_DATA_SIZE - addr; if (!w1_reset_select_slave(sl)) { if (!io) { w1_write_8(sl->master, W1_DS2760_READ_DATA); w1_write_8(sl->master, addr); count = w1_read_block(sl->master, buf, count); } else { w1_write_8(sl->master, W1_DS2760_WRITE_DATA); w1_write_8(sl->master, addr); w1_write_block(sl->master, buf, count); /* XXX w1_write_block returns void, not n_written */ } } out: mutex_unlock(&sl->master->bus_mutex); return count; } static int w1_ds2760_read(struct device *dev, char *buf, int addr, size_t count) { return w1_ds2760_io(dev, buf, addr, count, 0); } static int w1_ds2760_write(struct device *dev, char *buf, int addr, size_t count) { return w1_ds2760_io(dev, buf, addr, count, 1); } static int w1_ds2760_eeprom_cmd(struct device *dev, int addr, int cmd) { struct w1_slave *sl = container_of(dev, struct w1_slave, dev); if (!dev) return -EINVAL; mutex_lock(&sl->master->bus_mutex); if (w1_reset_select_slave(sl) == 0) { w1_write_8(sl->master, cmd); w1_write_8(sl->master, addr); } mutex_unlock(&sl->master->bus_mutex); return 0; } static int w1_ds2760_store_eeprom(struct device *dev, int addr) { return w1_ds2760_eeprom_cmd(dev, addr, W1_DS2760_COPY_DATA); } static int w1_ds2760_recall_eeprom(struct device *dev, int addr) { return w1_ds2760_eeprom_cmd(dev, addr, W1_DS2760_RECALL_DATA); } static ssize_t w1_slave_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct device *dev = kobj_to_dev(kobj); return w1_ds2760_read(dev, buf, off, count); } static BIN_ATTR_RO(w1_slave, DS2760_DATA_SIZE); static struct bin_attribute *w1_ds2760_bin_attrs[] = { &bin_attr_w1_slave, NULL, }; static const struct attribute_group w1_ds2760_group = { .bin_attrs = w1_ds2760_bin_attrs, }; static const struct attribute_group *w1_ds2760_groups[] = { &w1_ds2760_group, NULL, }; /* Some batteries have their rated capacity stored a N * 10 mAh, while * others use an index into this table. */ static int rated_capacities[] = { 0, 920, /* Samsung */ 920, /* BYD */ 920, /* Lishen */ 920, /* NEC */ 1440, /* Samsung */ 1440, /* BYD */ 1440, /* Lishen */ 1440, /* NEC */ 2880, /* Samsung */ 2880, /* BYD */ 2880, /* Lishen */ 2880, /* NEC */ }; /* array is level at temps 0°C, 10°C, 20°C, 30°C, 40°C * temp is in Celsius */ static int battery_interpolate(int array[], int temp) { int index, dt; if (temp <= 0) return array[0]; if (temp >= 40) return array[4]; index = temp / 10; dt = temp % 10; return array[index] + (((array[index + 1] - array[index]) * dt) / 10); } static int ds2760_battery_read_status(struct ds2760_device_info *di) { int ret, i, start, count, scale[5]; if (di->update_time && time_before(jiffies, di->update_time + msecs_to_jiffies(cache_time))) return 0; /* The first time we read the entire contents of SRAM/EEPROM, * but after that we just read the interesting bits that change. */ if (di->update_time == 0) { start = 0; count = DS2760_DATA_SIZE; } else { start = DS2760_VOLTAGE_MSB; count = DS2760_TEMP_LSB - start + 1; } ret = w1_ds2760_read(di->dev, di->raw + start, start, count); if (ret != count) { dev_warn(di->dev, "call to w1_ds2760_read failed (0x%p)\n", di->dev); return 1; } di->update_time = jiffies; /* DS2760 reports voltage in units of 4.88mV, but the battery class * reports in units of uV, so convert by multiplying by 4880. */ di->voltage_raw = (di->raw[DS2760_VOLTAGE_MSB] << 3) | (di->raw[DS2760_VOLTAGE_LSB] >> 5); di->voltage_uV = di->voltage_raw * 4880; /* DS2760 reports current in signed units of 0.625mA, but the battery * class reports in units of µA, so convert by multiplying by 625. */ di->current_raw = (((signed char)di->raw[DS2760_CURRENT_MSB]) << 5) | (di->raw[DS2760_CURRENT_LSB] >> 3); di->current_uA = di->current_raw * 625; /* DS2760 reports accumulated current in signed units of 0.25mAh. */ di->accum_current_raw = (((signed char)di->raw[DS2760_CURRENT_ACCUM_MSB]) << 8) | di->raw[DS2760_CURRENT_ACCUM_LSB]; di->accum_current_uAh = di->accum_current_raw * 250; /* DS2760 reports temperature in signed units of 0.125°C, but the * battery class reports in units of 1/10 °C, so we convert by * multiplying by .125 * 10 = 1.25. */ di->temp_raw = (((signed char)di->raw[DS2760_TEMP_MSB]) << 3) | (di->raw[DS2760_TEMP_LSB] >> 5); di->temp_C = di->temp_raw + (di->temp_raw / 4); /* At least some battery monitors (e.g. HP iPAQ) store the battery's * maximum rated capacity. */ if (di->raw[DS2760_RATED_CAPACITY] < ARRAY_SIZE(rated_capacities)) di->rated_capacity = rated_capacities[ (unsigned int)di->raw[DS2760_RATED_CAPACITY]]; else di->rated_capacity = di->raw[DS2760_RATED_CAPACITY] * 10; di->rated_capacity *= 1000; /* convert to µAh */ /* Calculate the full level at the present temperature. */ di->full_active_uAh = di->raw[DS2760_ACTIVE_FULL] << 8 | di->raw[DS2760_ACTIVE_FULL + 1]; /* If the full_active_uAh value is not given, fall back to the rated * capacity. This is likely to happen when chips are not part of the * battery pack and is therefore not bootstrapped. */ if (di->full_active_uAh == 0) di->full_active_uAh = di->rated_capacity / 1000L; scale[0] = di->full_active_uAh; for (i = 1; i < 5; i++) scale[i] = scale[i - 1] + di->raw[DS2760_ACTIVE_FULL + 1 + i]; di->full_active_uAh = battery_interpolate(scale, di->temp_C / 10); di->full_active_uAh *= 1000; /* convert to µAh */ /* Calculate the empty level at the present temperature. */ scale[4] = di->raw[DS2760_ACTIVE_EMPTY + 4]; for (i = 3; i >= 0; i--) scale[i] = scale[i + 1] + di->raw[DS2760_ACTIVE_EMPTY + i]; di->empty_uAh = battery_interpolate(scale, di->temp_C / 10); di->empty_uAh *= 1000; /* convert to µAh */ if (di->full_active_uAh == di->empty_uAh) di->rem_capacity = 0; else /* From Maxim Application Note 131: remaining capacity = * ((ICA - Empty Value) / (Full Value - Empty Value)) x 100% */ di->rem_capacity = ((di->accum_current_uAh - di->empty_uAh) * 100L) / (di->full_active_uAh - di->empty_uAh); if (di->rem_capacity < 0) di->rem_capacity = 0; if (di->rem_capacity > 100) di->rem_capacity = 100; if (di->current_uA < -100L) di->life_sec = -((di->accum_current_uAh - di->empty_uAh) * 36L) / (di->current_uA / 100L); else di->life_sec = 0; return 0; } static void ds2760_battery_set_current_accum(struct ds2760_device_info *di, unsigned int acr_val) { unsigned char acr[2]; /* acr is in units of 0.25 mAh */ acr_val *= 4L; acr_val /= 1000; acr[0] = acr_val >> 8; acr[1] = acr_val & 0xff; if (w1_ds2760_write(di->dev, acr, DS2760_CURRENT_ACCUM_MSB, 2) < 2) dev_warn(di->dev, "ACR write failed\n"); } static void ds2760_battery_update_status(struct ds2760_device_info *di) { int old_charge_status = di->charge_status; ds2760_battery_read_status(di); if (di->charge_status == POWER_SUPPLY_STATUS_UNKNOWN) di->full_counter = 0; if (power_supply_am_i_supplied(di->bat)) { if (di->current_uA > 10000) { di->charge_status = POWER_SUPPLY_STATUS_CHARGING; di->full_counter = 0; } else if (di->current_uA < -5000) { if (di->charge_status != POWER_SUPPLY_STATUS_NOT_CHARGING) dev_notice(di->dev, "not enough power to " "charge\n"); di->charge_status = POWER_SUPPLY_STATUS_NOT_CHARGING; di->full_counter = 0; } else if (di->current_uA < 10000 && di->charge_status != POWER_SUPPLY_STATUS_FULL) { /* Don't consider the battery to be full unless * we've seen the current < 10 mA at least two * consecutive times. */ di->full_counter++; if (di->full_counter < 2) { di->charge_status = POWER_SUPPLY_STATUS_CHARGING; } else { di->charge_status = POWER_SUPPLY_STATUS_FULL; ds2760_battery_set_current_accum(di, di->full_active_uAh); } } } else { di->charge_status = POWER_SUPPLY_STATUS_DISCHARGING; di->full_counter = 0; } if (di->charge_status != old_charge_status) power_supply_changed(di->bat); } static void ds2760_battery_write_status(struct ds2760_device_info *di, char status) { if (status == di->raw[DS2760_STATUS_REG]) return; w1_ds2760_write(di->dev, &status, DS2760_STATUS_WRITE_REG, 1); w1_ds2760_store_eeprom(di->dev, DS2760_EEPROM_BLOCK1); w1_ds2760_recall_eeprom(di->dev, DS2760_EEPROM_BLOCK1); } static void ds2760_battery_write_rated_capacity(struct ds2760_device_info *di, unsigned char rated_capacity) { if (rated_capacity == di->raw[DS2760_RATED_CAPACITY]) return; w1_ds2760_write(di->dev, &rated_capacity, DS2760_RATED_CAPACITY, 1); w1_ds2760_store_eeprom(di->dev, DS2760_EEPROM_BLOCK1); w1_ds2760_recall_eeprom(di->dev, DS2760_EEPROM_BLOCK1); } static void ds2760_battery_write_active_full(struct ds2760_device_info *di, int active_full) { unsigned char tmp[2] = { active_full >> 8, active_full & 0xff }; if (tmp[0] == di->raw[DS2760_ACTIVE_FULL] && tmp[1] == di->raw[DS2760_ACTIVE_FULL + 1]) return; w1_ds2760_write(di->dev, tmp, DS2760_ACTIVE_FULL, sizeof(tmp)); w1_ds2760_store_eeprom(di->dev, DS2760_EEPROM_BLOCK0); w1_ds2760_recall_eeprom(di->dev, DS2760_EEPROM_BLOCK0); /* Write to the di->raw[] buffer directly - the DS2760_ACTIVE_FULL * values won't be read back by ds2760_battery_read_status() */ di->raw[DS2760_ACTIVE_FULL] = tmp[0]; di->raw[DS2760_ACTIVE_FULL + 1] = tmp[1]; } static void ds2760_battery_work(struct work_struct *work) { struct ds2760_device_info *di = container_of(work, struct ds2760_device_info, monitor_work.work); const int interval = HZ * 60; dev_dbg(di->dev, "%s\n", __func__); ds2760_battery_update_status(di); queue_delayed_work(di->monitor_wqueue, &di->monitor_work, interval); } static void ds2760_battery_external_power_changed(struct power_supply *psy) { struct ds2760_device_info *di = power_supply_get_drvdata(psy); dev_dbg(di->dev, "%s\n", __func__); mod_delayed_work(di->monitor_wqueue, &di->monitor_work, HZ/10); } static void ds2760_battery_set_charged_work(struct work_struct *work) { char bias; struct ds2760_device_info *di = container_of(work, struct ds2760_device_info, set_charged_work.work); dev_dbg(di->dev, "%s\n", __func__); ds2760_battery_read_status(di); /* When we get notified by external circuitry that the battery is * considered fully charged now, we know that there is no current * flow any more. However, the ds2760's internal current meter is * too inaccurate to rely on - spec say something ~15% failure. * Hence, we use the current offset bias register to compensate * that error. */ if (!power_supply_am_i_supplied(di->bat)) return; bias = (signed char) di->current_raw + (signed char) di->raw[DS2760_CURRENT_OFFSET_BIAS]; dev_dbg(di->dev, "%s: bias = %d\n", __func__, bias); w1_ds2760_write(di->dev, &bias, DS2760_CURRENT_OFFSET_BIAS, 1); w1_ds2760_store_eeprom(di->dev, DS2760_EEPROM_BLOCK1); w1_ds2760_recall_eeprom(di->dev, DS2760_EEPROM_BLOCK1); /* Write to the di->raw[] buffer directly - the CURRENT_OFFSET_BIAS * value won't be read back by ds2760_battery_read_status() */ di->raw[DS2760_CURRENT_OFFSET_BIAS] = bias; } static void ds2760_battery_set_charged(struct power_supply *psy) { struct ds2760_device_info *di = power_supply_get_drvdata(psy); /* postpone the actual work by 20 secs. This is for debouncing GPIO * signals and to let the current value settle. See AN4188. */ mod_delayed_work(di->monitor_wqueue, &di->set_charged_work, HZ * 20); } static int ds2760_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ds2760_device_info *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = di->charge_status; return 0; default: break; } ds2760_battery_read_status(di); switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = di->voltage_uV; break; case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = di->current_uA; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = di->rated_capacity; break; case POWER_SUPPLY_PROP_CHARGE_FULL: val->intval = di->full_active_uAh; break; case POWER_SUPPLY_PROP_CHARGE_EMPTY: val->intval = di->empty_uAh; break; case POWER_SUPPLY_PROP_CHARGE_NOW: val->intval = di->accum_current_uAh; break; case POWER_SUPPLY_PROP_TEMP: val->intval = di->temp_C; break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: val->intval = di->life_sec; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = di->rem_capacity; break; default: return -EINVAL; } return 0; } static int ds2760_battery_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct ds2760_device_info *di = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CHARGE_FULL: /* the interface counts in uAh, convert the value */ ds2760_battery_write_active_full(di, val->intval / 1000L); break; case POWER_SUPPLY_PROP_CHARGE_NOW: /* ds2760_battery_set_current_accum() does the conversion */ ds2760_battery_set_current_accum(di, val->intval); break; default: return -EPERM; } return 0; } static int ds2760_battery_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_NOW: return 1; default: break; } return 0; } static enum power_supply_property ds2760_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_EMPTY, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_CAPACITY, }; static int ds2760_pm_notifier(struct notifier_block *notifier, unsigned long pm_event, void *unused) { struct ds2760_device_info *di = container_of(notifier, struct ds2760_device_info, pm_notifier); switch (pm_event) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: di->charge_status = POWER_SUPPLY_STATUS_UNKNOWN; break; case PM_POST_RESTORE: case PM_POST_HIBERNATION: case PM_POST_SUSPEND: di->charge_status = POWER_SUPPLY_STATUS_UNKNOWN; power_supply_changed(di->bat); mod_delayed_work(di->monitor_wqueue, &di->monitor_work, HZ); break; case PM_RESTORE_PREPARE: default: break; } return NOTIFY_DONE; } static int w1_ds2760_add_slave(struct w1_slave *sl) { struct power_supply_config psy_cfg = {}; struct ds2760_device_info *di; struct device *dev = &sl->dev; int retval = 0; char name[32]; char status; di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL); if (!di) { retval = -ENOMEM; goto di_alloc_failed; } snprintf(name, sizeof(name), "ds2760-battery.%d", dev->id); di->dev = dev; di->bat_desc.name = name; di->bat_desc.type = POWER_SUPPLY_TYPE_BATTERY; di->bat_desc.properties = ds2760_battery_props; di->bat_desc.num_properties = ARRAY_SIZE(ds2760_battery_props); di->bat_desc.get_property = ds2760_battery_get_property; di->bat_desc.set_property = ds2760_battery_set_property; di->bat_desc.property_is_writeable = ds2760_battery_property_is_writeable; di->bat_desc.set_charged = ds2760_battery_set_charged; di->bat_desc.external_power_changed = ds2760_battery_external_power_changed; psy_cfg.drv_data = di; if (dev->of_node) { u32 tmp; psy_cfg.of_node = dev->of_node; if (!of_property_read_bool(dev->of_node, "maxim,pmod-enabled")) pmod_enabled = true; if (!of_property_read_u32(dev->of_node, "maxim,cache-time-ms", &tmp)) cache_time = tmp; if (!of_property_read_u32(dev->of_node, "rated-capacity-microamp-hours", &tmp)) rated_capacity = tmp / 10; /* property is in mAh */ } di->charge_status = POWER_SUPPLY_STATUS_UNKNOWN; sl->family_data = di; /* enable sleep mode feature */ ds2760_battery_read_status(di); status = di->raw[DS2760_STATUS_REG]; if (pmod_enabled) status |= DS2760_STATUS_PMOD; else status &= ~DS2760_STATUS_PMOD; ds2760_battery_write_status(di, status); /* set rated capacity from module param or device tree */ if (rated_capacity) ds2760_battery_write_rated_capacity(di, rated_capacity); /* set current accumulator if given as parameter. * this should only be done for bootstrapping the value */ if (current_accum) ds2760_battery_set_current_accum(di, current_accum); di->bat = power_supply_register(dev, &di->bat_desc, &psy_cfg); if (IS_ERR(di->bat)) { dev_err(di->dev, "failed to register battery\n"); retval = PTR_ERR(di->bat); goto batt_failed; } INIT_DELAYED_WORK(&di->monitor_work, ds2760_battery_work); INIT_DELAYED_WORK(&di->set_charged_work, ds2760_battery_set_charged_work); di->monitor_wqueue = alloc_ordered_workqueue(name, WQ_MEM_RECLAIM); if (!di->monitor_wqueue) { retval = -ESRCH; goto workqueue_failed; } queue_delayed_work(di->monitor_wqueue, &di->monitor_work, HZ * 1); di->pm_notifier.notifier_call = ds2760_pm_notifier; register_pm_notifier(&di->pm_notifier); goto success; workqueue_failed: power_supply_unregister(di->bat); batt_failed: di_alloc_failed: success: return retval; } static void w1_ds2760_remove_slave(struct w1_slave *sl) { struct ds2760_device_info *di = sl->family_data; unregister_pm_notifier(&di->pm_notifier); cancel_delayed_work_sync(&di->monitor_work); cancel_delayed_work_sync(&di->set_charged_work); destroy_workqueue(di->monitor_wqueue); power_supply_unregister(di->bat); } #ifdef CONFIG_OF static const struct of_device_id w1_ds2760_of_ids[] = { { .compatible = "maxim,ds2760" }, {} }; #endif static const struct w1_family_ops w1_ds2760_fops = { .add_slave = w1_ds2760_add_slave, .remove_slave = w1_ds2760_remove_slave, .groups = w1_ds2760_groups, }; static struct w1_family w1_ds2760_family = { .fid = W1_FAMILY_DS2760, .fops = &w1_ds2760_fops, .of_match_table = of_match_ptr(w1_ds2760_of_ids), }; module_w1_family(w1_ds2760_family); MODULE_AUTHOR("Szabolcs Gyurko <[email protected]>, " "Matt Reimer <[email protected]>, " "Anton Vorontsov <[email protected]>"); MODULE_DESCRIPTION("1-wire Driver Dallas 2760 battery monitor chip"); MODULE_LICENSE("GPL"); MODULE_ALIAS("w1-family-" __stringify(W1_FAMILY_DS2760));
linux-master
drivers/power/supply/ds2760_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 Richtek Technology Corp. * * Author: ChiaEn Wu <[email protected]> */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/devm-helpers.h> #include <linux/gpio/consumer.h> #include <linux/iio/consumer.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/linear_range.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/workqueue.h> #define MT6370_REG_CHG_CTRL1 0x111 #define MT6370_REG_CHG_CTRL2 0x112 #define MT6370_REG_CHG_CTRL3 0x113 #define MT6370_REG_CHG_CTRL4 0x114 #define MT6370_REG_CHG_CTRL5 0x115 #define MT6370_REG_CHG_CTRL6 0x116 #define MT6370_REG_CHG_CTRL7 0x117 #define MT6370_REG_CHG_CTRL8 0x118 #define MT6370_REG_CHG_CTRL9 0x119 #define MT6370_REG_CHG_CTRL10 0x11A #define MT6370_REG_DEVICE_TYPE 0x122 #define MT6370_REG_USB_STATUS1 0x127 #define MT6370_REG_CHG_STAT 0x14A #define MT6370_REG_FLED_EN 0x17E #define MT6370_REG_CHG_STAT1 0X1D0 #define MT6370_REG_OVPCTRL_STAT 0x1D8 #define MT6370_VOBST_MASK GENMASK(7, 2) #define MT6370_OTG_PIN_EN_MASK BIT(1) #define MT6370_OPA_MODE_MASK BIT(0) #define MT6370_OTG_OC_MASK GENMASK(2, 0) #define MT6370_MIVR_IBUS_TH_100_mA 100000 #define MT6370_ADC_CHAN_IBUS 5 #define MT6370_ADC_CHAN_MAX 9 enum mt6370_chg_reg_field { /* MT6370_REG_CHG_CTRL2 */ F_IINLMTSEL, F_CFO_EN, F_CHG_EN, /* MT6370_REG_CHG_CTRL3 */ F_IAICR, F_AICR_EN, F_ILIM_EN, /* MT6370_REG_CHG_CTRL4 */ F_VOREG, /* MT6370_REG_CHG_CTRL6 */ F_VMIVR, /* MT6370_REG_CHG_CTRL7 */ F_ICHG, /* MT6370_REG_CHG_CTRL8 */ F_IPREC, /* MT6370_REG_CHG_CTRL9 */ F_IEOC, /* MT6370_REG_DEVICE_TYPE */ F_USBCHGEN, /* MT6370_REG_USB_STATUS1 */ F_USB_STAT, F_CHGDET, /* MT6370_REG_CHG_STAT */ F_CHG_STAT, F_BOOST_STAT, F_VBAT_LVL, /* MT6370_REG_FLED_EN */ F_FL_STROBE, /* MT6370_REG_CHG_STAT1 */ F_CHG_MIVR_STAT, /* MT6370_REG_OVPCTRL_STAT */ F_UVP_D_STAT, F_MAX }; enum mt6370_irq { MT6370_IRQ_ATTACH_I = 0, MT6370_IRQ_UVP_D_EVT, MT6370_IRQ_MIVR, MT6370_IRQ_MAX }; struct mt6370_priv { struct device *dev; struct iio_channel *iio_adcs; struct mutex attach_lock; struct power_supply *psy; struct regmap *regmap; struct regmap_field *rmap_fields[F_MAX]; struct regulator_dev *rdev; struct workqueue_struct *wq; struct work_struct bc12_work; struct delayed_work mivr_dwork; unsigned int irq_nums[MT6370_IRQ_MAX]; int attach; int psy_usb_type; bool pwr_rdy; }; enum mt6370_usb_status { MT6370_USB_STAT_NO_VBUS = 0, MT6370_USB_STAT_VBUS_FLOW_IS_UNDER_GOING, MT6370_USB_STAT_SDP, MT6370_USB_STAT_SDP_NSTD, MT6370_USB_STAT_DCP, MT6370_USB_STAT_CDP, MT6370_USB_STAT_MAX }; struct mt6370_chg_field { const char *name; const struct linear_range *range; struct reg_field field; }; enum { MT6370_RANGE_F_IAICR = 0, MT6370_RANGE_F_VOREG, MT6370_RANGE_F_VMIVR, MT6370_RANGE_F_ICHG, MT6370_RANGE_F_IPREC, MT6370_RANGE_F_IEOC, MT6370_RANGE_F_MAX }; static const struct linear_range mt6370_chg_ranges[MT6370_RANGE_F_MAX] = { LINEAR_RANGE_IDX(MT6370_RANGE_F_IAICR, 100000, 0x0, 0x3F, 50000), LINEAR_RANGE_IDX(MT6370_RANGE_F_VOREG, 3900000, 0x0, 0x51, 10000), LINEAR_RANGE_IDX(MT6370_RANGE_F_VMIVR, 3900000, 0x0, 0x5F, 100000), LINEAR_RANGE_IDX(MT6370_RANGE_F_ICHG, 900000, 0x08, 0x31, 100000), LINEAR_RANGE_IDX(MT6370_RANGE_F_IPREC, 100000, 0x0, 0x0F, 50000), LINEAR_RANGE_IDX(MT6370_RANGE_F_IEOC, 100000, 0x0, 0x0F, 50000), }; #define MT6370_CHG_FIELD(_fd, _reg, _lsb, _msb) \ [_fd] = { \ .name = #_fd, \ .range = NULL, \ .field = REG_FIELD(_reg, _lsb, _msb), \ } #define MT6370_CHG_FIELD_RANGE(_fd, _reg, _lsb, _msb) \ [_fd] = { \ .name = #_fd, \ .range = &mt6370_chg_ranges[MT6370_RANGE_##_fd], \ .field = REG_FIELD(_reg, _lsb, _msb), \ } static const struct mt6370_chg_field mt6370_chg_fields[F_MAX] = { MT6370_CHG_FIELD(F_IINLMTSEL, MT6370_REG_CHG_CTRL2, 2, 3), MT6370_CHG_FIELD(F_CFO_EN, MT6370_REG_CHG_CTRL2, 1, 1), MT6370_CHG_FIELD(F_CHG_EN, MT6370_REG_CHG_CTRL2, 0, 0), MT6370_CHG_FIELD_RANGE(F_IAICR, MT6370_REG_CHG_CTRL3, 2, 7), MT6370_CHG_FIELD(F_AICR_EN, MT6370_REG_CHG_CTRL3, 1, 1), MT6370_CHG_FIELD(F_ILIM_EN, MT6370_REG_CHG_CTRL3, 0, 0), MT6370_CHG_FIELD_RANGE(F_VOREG, MT6370_REG_CHG_CTRL4, 1, 7), MT6370_CHG_FIELD_RANGE(F_VMIVR, MT6370_REG_CHG_CTRL6, 1, 7), MT6370_CHG_FIELD_RANGE(F_ICHG, MT6370_REG_CHG_CTRL7, 2, 7), MT6370_CHG_FIELD_RANGE(F_IPREC, MT6370_REG_CHG_CTRL8, 0, 3), MT6370_CHG_FIELD_RANGE(F_IEOC, MT6370_REG_CHG_CTRL9, 4, 7), MT6370_CHG_FIELD(F_USBCHGEN, MT6370_REG_DEVICE_TYPE, 7, 7), MT6370_CHG_FIELD(F_USB_STAT, MT6370_REG_USB_STATUS1, 4, 6), MT6370_CHG_FIELD(F_CHGDET, MT6370_REG_USB_STATUS1, 3, 3), MT6370_CHG_FIELD(F_CHG_STAT, MT6370_REG_CHG_STAT, 6, 7), MT6370_CHG_FIELD(F_BOOST_STAT, MT6370_REG_CHG_STAT, 3, 3), MT6370_CHG_FIELD(F_VBAT_LVL, MT6370_REG_CHG_STAT, 5, 5), MT6370_CHG_FIELD(F_FL_STROBE, MT6370_REG_FLED_EN, 2, 2), MT6370_CHG_FIELD(F_CHG_MIVR_STAT, MT6370_REG_CHG_STAT1, 6, 6), MT6370_CHG_FIELD(F_UVP_D_STAT, MT6370_REG_OVPCTRL_STAT, 4, 4), }; static inline int mt6370_chg_field_get(struct mt6370_priv *priv, enum mt6370_chg_reg_field fd, unsigned int *val) { int ret; unsigned int reg_val; ret = regmap_field_read(priv->rmap_fields[fd], &reg_val); if (ret) return ret; if (mt6370_chg_fields[fd].range) return linear_range_get_value(mt6370_chg_fields[fd].range, reg_val, val); *val = reg_val; return 0; } static inline int mt6370_chg_field_set(struct mt6370_priv *priv, enum mt6370_chg_reg_field fd, unsigned int val) { int ret; bool f; const struct linear_range *r; if (mt6370_chg_fields[fd].range) { r = mt6370_chg_fields[fd].range; if (fd == F_VMIVR) { ret = linear_range_get_selector_high(r, val, &val, &f); if (ret) val = r->max_sel; } else { linear_range_get_selector_within(r, val, &val); } } return regmap_field_write(priv->rmap_fields[fd], val); } enum { MT6370_CHG_STAT_READY = 0, MT6370_CHG_STAT_CHARGE_IN_PROGRESS, MT6370_CHG_STAT_DONE, MT6370_CHG_STAT_FAULT, MT6370_CHG_STAT_MAX }; enum { MT6370_ATTACH_STAT_DETACH = 0, MT6370_ATTACH_STAT_ATTACH_WAIT_FOR_BC12, MT6370_ATTACH_STAT_ATTACH_BC12_DONE, MT6370_ATTACH_STAT_ATTACH_MAX }; static int mt6370_chg_otg_of_parse_cb(struct device_node *of, const struct regulator_desc *rdesc, struct regulator_config *rcfg) { struct mt6370_priv *priv = rcfg->driver_data; rcfg->ena_gpiod = fwnode_gpiod_get_index(of_fwnode_handle(of), "enable", 0, GPIOD_OUT_LOW | GPIOD_FLAGS_BIT_NONEXCLUSIVE, rdesc->name); if (IS_ERR(rcfg->ena_gpiod)) { rcfg->ena_gpiod = NULL; return 0; } return regmap_update_bits(priv->regmap, MT6370_REG_CHG_CTRL1, MT6370_OTG_PIN_EN_MASK, MT6370_OTG_PIN_EN_MASK); } static void mt6370_chg_bc12_work_func(struct work_struct *work) { struct mt6370_priv *priv = container_of(work, struct mt6370_priv, bc12_work); int ret; bool rpt_psy = false; unsigned int attach, usb_stat; mutex_lock(&priv->attach_lock); attach = priv->attach; switch (attach) { case MT6370_ATTACH_STAT_DETACH: usb_stat = 0; break; case MT6370_ATTACH_STAT_ATTACH_WAIT_FOR_BC12: ret = mt6370_chg_field_set(priv, F_USBCHGEN, attach); if (ret) dev_err(priv->dev, "Failed to enable USB CHG EN\n"); goto bc12_work_func_out; case MT6370_ATTACH_STAT_ATTACH_BC12_DONE: ret = mt6370_chg_field_get(priv, F_USB_STAT, &usb_stat); if (ret) { dev_err(priv->dev, "Failed to get USB status\n"); goto bc12_work_func_out; } break; default: dev_err(priv->dev, "Invalid attach state\n"); goto bc12_work_func_out; } rpt_psy = true; switch (usb_stat) { case MT6370_USB_STAT_SDP: case MT6370_USB_STAT_SDP_NSTD: priv->psy_usb_type = POWER_SUPPLY_USB_TYPE_SDP; break; case MT6370_USB_STAT_DCP: priv->psy_usb_type = POWER_SUPPLY_USB_TYPE_DCP; break; case MT6370_USB_STAT_CDP: priv->psy_usb_type = POWER_SUPPLY_USB_TYPE_CDP; break; case MT6370_USB_STAT_NO_VBUS: case MT6370_USB_STAT_VBUS_FLOW_IS_UNDER_GOING: default: priv->psy_usb_type = POWER_SUPPLY_USB_TYPE_UNKNOWN; break; } bc12_work_func_out: mutex_unlock(&priv->attach_lock); if (rpt_psy) power_supply_changed(priv->psy); } static int mt6370_chg_toggle_cfo(struct mt6370_priv *priv) { int ret; unsigned int fl_strobe; /* check if flash led in strobe mode */ ret = mt6370_chg_field_get(priv, F_FL_STROBE, &fl_strobe); if (ret) { dev_err(priv->dev, "Failed to get FL_STROBE_EN\n"); return ret; } if (fl_strobe) { dev_err(priv->dev, "Flash led is still in strobe mode\n"); return ret; } /* cfo off */ ret = mt6370_chg_field_set(priv, F_CFO_EN, 0); if (ret) { dev_err(priv->dev, "Failed to disable CFO_EN\n"); return ret; } /* cfo on */ ret = mt6370_chg_field_set(priv, F_CFO_EN, 1); if (ret) dev_err(priv->dev, "Failed to enable CFO_EN\n"); return ret; } static int mt6370_chg_read_adc_chan(struct mt6370_priv *priv, unsigned int chan, int *val) { int ret; if (chan >= MT6370_ADC_CHAN_MAX) return -EINVAL; ret = iio_read_channel_processed(&priv->iio_adcs[chan], val); if (ret) dev_err(priv->dev, "Failed to read ADC\n"); return ret; } static void mt6370_chg_mivr_dwork_func(struct work_struct *work) { struct mt6370_priv *priv = container_of(work, struct mt6370_priv, mivr_dwork.work); int ret; unsigned int mivr_stat, ibus; ret = mt6370_chg_field_get(priv, F_CHG_MIVR_STAT, &mivr_stat); if (ret) { dev_err(priv->dev, "Failed to get mivr state\n"); goto mivr_handler_out; } if (!mivr_stat) goto mivr_handler_out; ret = mt6370_chg_read_adc_chan(priv, MT6370_ADC_CHAN_IBUS, &ibus); if (ret) { dev_err(priv->dev, "Failed to get ibus\n"); goto mivr_handler_out; } if (ibus < MT6370_MIVR_IBUS_TH_100_mA) { ret = mt6370_chg_toggle_cfo(priv); if (ret) dev_err(priv->dev, "Failed to toggle cfo\n"); } mivr_handler_out: enable_irq(priv->irq_nums[MT6370_IRQ_MIVR]); pm_relax(priv->dev); } static void mt6370_chg_pwr_rdy_check(struct mt6370_priv *priv) { int ret; unsigned int opposite_pwr_rdy, otg_en; union power_supply_propval val; /* Check in OTG mode or not */ ret = mt6370_chg_field_get(priv, F_BOOST_STAT, &otg_en); if (ret) { dev_err(priv->dev, "Failed to get OTG state\n"); return; } if (otg_en) return; ret = mt6370_chg_field_get(priv, F_UVP_D_STAT, &opposite_pwr_rdy); if (ret) { dev_err(priv->dev, "Failed to get opposite power ready state\n"); return; } val.intval = opposite_pwr_rdy ? MT6370_ATTACH_STAT_DETACH : MT6370_ATTACH_STAT_ATTACH_WAIT_FOR_BC12; ret = power_supply_set_property(priv->psy, POWER_SUPPLY_PROP_ONLINE, &val); if (ret) dev_err(priv->dev, "Failed to start attach/detach flow\n"); } static int mt6370_chg_get_online(struct mt6370_priv *priv, union power_supply_propval *val) { mutex_lock(&priv->attach_lock); val->intval = !!priv->attach; mutex_unlock(&priv->attach_lock); return 0; } static int mt6370_chg_get_status(struct mt6370_priv *priv, union power_supply_propval *val) { int ret; unsigned int chg_stat; union power_supply_propval online; ret = power_supply_get_property(priv->psy, POWER_SUPPLY_PROP_ONLINE, &online); if (ret) { dev_err(priv->dev, "Failed to get online status\n"); return ret; } if (!online.intval) { val->intval = POWER_SUPPLY_STATUS_DISCHARGING; return 0; } ret = mt6370_chg_field_get(priv, F_CHG_STAT, &chg_stat); if (ret) return ret; switch (chg_stat) { case MT6370_CHG_STAT_READY: case MT6370_CHG_STAT_FAULT: val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; return ret; case MT6370_CHG_STAT_CHARGE_IN_PROGRESS: val->intval = POWER_SUPPLY_STATUS_CHARGING; return ret; case MT6370_CHG_STAT_DONE: val->intval = POWER_SUPPLY_STATUS_FULL; return ret; default: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; return ret; } } static int mt6370_chg_get_charge_type(struct mt6370_priv *priv, union power_supply_propval *val) { int type, ret; unsigned int chg_stat, vbat_lvl; ret = mt6370_chg_field_get(priv, F_CHG_STAT, &chg_stat); if (ret) return ret; ret = mt6370_chg_field_get(priv, F_VBAT_LVL, &vbat_lvl); if (ret) return ret; switch (chg_stat) { case MT6370_CHG_STAT_CHARGE_IN_PROGRESS: if (vbat_lvl) type = POWER_SUPPLY_CHARGE_TYPE_FAST; else type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case MT6370_CHG_STAT_READY: case MT6370_CHG_STAT_DONE: case MT6370_CHG_STAT_FAULT: default: type = POWER_SUPPLY_CHARGE_TYPE_NONE; break; } val->intval = type; return 0; } static int mt6370_chg_set_online(struct mt6370_priv *priv, const union power_supply_propval *val) { bool pwr_rdy = !!val->intval; mutex_lock(&priv->attach_lock); if (pwr_rdy == !!priv->attach) { dev_err(priv->dev, "pwr_rdy is same(%d)\n", pwr_rdy); mutex_unlock(&priv->attach_lock); return 0; } priv->attach = pwr_rdy; mutex_unlock(&priv->attach_lock); if (!queue_work(priv->wq, &priv->bc12_work)) dev_err(priv->dev, "bc12 work has already queued\n"); return 0; } static int mt6370_chg_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct mt6370_priv *priv = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: return mt6370_chg_get_online(priv, val); case POWER_SUPPLY_PROP_STATUS: return mt6370_chg_get_status(priv, val); case POWER_SUPPLY_PROP_CHARGE_TYPE: return mt6370_chg_get_charge_type(priv, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return mt6370_chg_field_get(priv, F_ICHG, &val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = linear_range_get_max_value(&mt6370_chg_ranges[MT6370_RANGE_F_ICHG]); return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return mt6370_chg_field_get(priv, F_VOREG, &val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = linear_range_get_max_value(&mt6370_chg_ranges[MT6370_RANGE_F_VOREG]); return 0; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return mt6370_chg_field_get(priv, F_IAICR, &val->intval); case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: return mt6370_chg_field_get(priv, F_VMIVR, &val->intval); case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return mt6370_chg_field_get(priv, F_IPREC, &val->intval); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return mt6370_chg_field_get(priv, F_IEOC, &val->intval); case POWER_SUPPLY_PROP_USB_TYPE: val->intval = priv->psy_usb_type; return 0; default: return -EINVAL; } } static int mt6370_chg_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct mt6370_priv *priv = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: return mt6370_chg_set_online(priv, val); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: return mt6370_chg_field_set(priv, F_ICHG, val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: return mt6370_chg_field_set(priv, F_VOREG, val->intval); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return mt6370_chg_field_set(priv, F_IAICR, val->intval); case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: return mt6370_chg_field_set(priv, F_VMIVR, val->intval); case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: return mt6370_chg_field_set(priv, F_IPREC, val->intval); case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return mt6370_chg_field_set(priv, F_IEOC, val->intval); default: return -EINVAL; } } static int mt6370_chg_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_ONLINE: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT: case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: return 1; default: return 0; } } static enum power_supply_property mt6370_chg_properties[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_USB_TYPE, }; static enum power_supply_usb_type mt6370_chg_usb_types[] = { POWER_SUPPLY_USB_TYPE_UNKNOWN, POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_CDP, POWER_SUPPLY_USB_TYPE_DCP, }; static const struct power_supply_desc mt6370_chg_psy_desc = { .name = "mt6370-charger", .type = POWER_SUPPLY_TYPE_USB, .properties = mt6370_chg_properties, .num_properties = ARRAY_SIZE(mt6370_chg_properties), .get_property = mt6370_chg_get_property, .set_property = mt6370_chg_set_property, .property_is_writeable = mt6370_chg_property_is_writeable, .usb_types = mt6370_chg_usb_types, .num_usb_types = ARRAY_SIZE(mt6370_chg_usb_types), }; static const struct regulator_ops mt6370_chg_otg_ops = { .list_voltage = regulator_list_voltage_linear, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_current_limit = regulator_set_current_limit_regmap, .get_current_limit = regulator_get_current_limit_regmap, }; static const u32 mt6370_chg_otg_oc_ma[] = { 500000, 700000, 1100000, 1300000, 1800000, 2100000, 2400000, }; static const struct regulator_desc mt6370_chg_otg_rdesc = { .of_match = "usb-otg-vbus-regulator", .of_parse_cb = mt6370_chg_otg_of_parse_cb, .name = "mt6370-usb-otg-vbus", .ops = &mt6370_chg_otg_ops, .owner = THIS_MODULE, .type = REGULATOR_VOLTAGE, .min_uV = 4425000, .uV_step = 25000, .n_voltages = 57, .vsel_reg = MT6370_REG_CHG_CTRL5, .vsel_mask = MT6370_VOBST_MASK, .enable_reg = MT6370_REG_CHG_CTRL1, .enable_mask = MT6370_OPA_MODE_MASK, .curr_table = mt6370_chg_otg_oc_ma, .n_current_limits = ARRAY_SIZE(mt6370_chg_otg_oc_ma), .csel_reg = MT6370_REG_CHG_CTRL10, .csel_mask = MT6370_OTG_OC_MASK, }; static int mt6370_chg_init_rmap_fields(struct mt6370_priv *priv) { int i; const struct mt6370_chg_field *fds = mt6370_chg_fields; for (i = 0; i < F_MAX; i++) { priv->rmap_fields[i] = devm_regmap_field_alloc(priv->dev, priv->regmap, fds[i].field); if (IS_ERR(priv->rmap_fields[i])) return dev_err_probe(priv->dev, PTR_ERR(priv->rmap_fields[i]), "Failed to allocate regmapfield[%s]\n", fds[i].name); } return 0; } static int mt6370_chg_init_setting(struct mt6370_priv *priv) { int ret; /* Disable usb_chg_en */ ret = mt6370_chg_field_set(priv, F_USBCHGEN, 0); if (ret) { dev_err(priv->dev, "Failed to disable usb_chg_en\n"); return ret; } /* Disable input current limit */ ret = mt6370_chg_field_set(priv, F_ILIM_EN, 0); if (ret) { dev_err(priv->dev, "Failed to disable input current limit\n"); return ret; } /* ICHG/IEOC Workaround, ICHG can not be set less than 900mA */ ret = mt6370_chg_field_set(priv, F_ICHG, 900000); if (ret) { dev_err(priv->dev, "Failed to set ICHG to 900mA"); return ret; } /* Change input current limit selection to using IAICR results */ ret = mt6370_chg_field_set(priv, F_IINLMTSEL, 2); if (ret) { dev_err(priv->dev, "Failed to set IINLMTSEL\n"); return ret; } return 0; } #define MT6370_CHG_DT_PROP_DECL(_name, _type, _field) \ { \ .name = "mediatek,chg-" #_name, \ .type = MT6370_PARSE_TYPE_##_type, \ .fd = _field, \ } static int mt6370_chg_init_otg_regulator(struct mt6370_priv *priv) { struct regulator_config rcfg = { .dev = priv->dev, .regmap = priv->regmap, .driver_data = priv, }; priv->rdev = devm_regulator_register(priv->dev, &mt6370_chg_otg_rdesc, &rcfg); return PTR_ERR_OR_ZERO(priv->rdev); } static int mt6370_chg_init_psy(struct mt6370_priv *priv) { struct power_supply_config cfg = { .drv_data = priv, .of_node = dev_of_node(priv->dev), }; priv->psy = devm_power_supply_register(priv->dev, &mt6370_chg_psy_desc, &cfg); return PTR_ERR_OR_ZERO(priv->psy); } static void mt6370_chg_destroy_attach_lock(void *data) { struct mutex *attach_lock = data; mutex_destroy(attach_lock); } static void mt6370_chg_destroy_wq(void *data) { struct workqueue_struct *wq = data; flush_workqueue(wq); destroy_workqueue(wq); } static irqreturn_t mt6370_attach_i_handler(int irq, void *data) { struct mt6370_priv *priv = data; unsigned int otg_en; int ret; /* Check in OTG mode or not */ ret = mt6370_chg_field_get(priv, F_BOOST_STAT, &otg_en); if (ret) { dev_err(priv->dev, "Failed to get OTG state\n"); return IRQ_NONE; } if (otg_en) return IRQ_HANDLED; mutex_lock(&priv->attach_lock); priv->attach = MT6370_ATTACH_STAT_ATTACH_BC12_DONE; mutex_unlock(&priv->attach_lock); if (!queue_work(priv->wq, &priv->bc12_work)) dev_err(priv->dev, "bc12 work has already queued\n"); return IRQ_HANDLED; } static irqreturn_t mt6370_uvp_d_evt_handler(int irq, void *data) { struct mt6370_priv *priv = data; mt6370_chg_pwr_rdy_check(priv); return IRQ_HANDLED; } static irqreturn_t mt6370_mivr_handler(int irq, void *data) { struct mt6370_priv *priv = data; pm_stay_awake(priv->dev); disable_irq_nosync(priv->irq_nums[MT6370_IRQ_MIVR]); schedule_delayed_work(&priv->mivr_dwork, msecs_to_jiffies(200)); return IRQ_HANDLED; } #define MT6370_CHG_IRQ(_name) \ { \ .name = #_name, \ .handler = mt6370_##_name##_handler, \ } static int mt6370_chg_init_irq(struct mt6370_priv *priv) { int i, ret; const struct { char *name; irq_handler_t handler; } mt6370_chg_irqs[] = { MT6370_CHG_IRQ(attach_i), MT6370_CHG_IRQ(uvp_d_evt), MT6370_CHG_IRQ(mivr), }; for (i = 0; i < ARRAY_SIZE(mt6370_chg_irqs); i++) { ret = platform_get_irq_byname(to_platform_device(priv->dev), mt6370_chg_irqs[i].name); if (ret < 0) return dev_err_probe(priv->dev, ret, "Failed to get irq %s\n", mt6370_chg_irqs[i].name); priv->irq_nums[i] = ret; ret = devm_request_threaded_irq(priv->dev, ret, NULL, mt6370_chg_irqs[i].handler, IRQF_TRIGGER_FALLING, dev_name(priv->dev), priv); if (ret) return dev_err_probe(priv->dev, ret, "Failed to request irq %s\n", mt6370_chg_irqs[i].name); } return 0; } static int mt6370_chg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mt6370_priv *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &pdev->dev; priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!priv->regmap) return dev_err_probe(dev, -ENODEV, "Failed to get regmap\n"); ret = mt6370_chg_init_rmap_fields(priv); if (ret) return dev_err_probe(dev, ret, "Failed to init regmap fields\n"); platform_set_drvdata(pdev, priv); priv->iio_adcs = devm_iio_channel_get_all(priv->dev); if (IS_ERR(priv->iio_adcs)) return dev_err_probe(dev, PTR_ERR(priv->iio_adcs), "Failed to get iio adc\n"); ret = mt6370_chg_init_otg_regulator(priv); if (ret) return dev_err_probe(dev, ret, "Failed to init OTG regulator\n"); ret = mt6370_chg_init_psy(priv); if (ret) return dev_err_probe(dev, ret, "Failed to init psy\n"); mutex_init(&priv->attach_lock); ret = devm_add_action_or_reset(dev, mt6370_chg_destroy_attach_lock, &priv->attach_lock); if (ret) return dev_err_probe(dev, ret, "Failed to init attach lock\n"); priv->attach = MT6370_ATTACH_STAT_DETACH; priv->wq = create_singlethread_workqueue(dev_name(priv->dev)); if (!priv->wq) return dev_err_probe(dev, -ENOMEM, "Failed to create workqueue\n"); ret = devm_add_action_or_reset(dev, mt6370_chg_destroy_wq, priv->wq); if (ret) return dev_err_probe(dev, ret, "Failed to init wq\n"); ret = devm_work_autocancel(dev, &priv->bc12_work, mt6370_chg_bc12_work_func); if (ret) return dev_err_probe(dev, ret, "Failed to init bc12 work\n"); ret = devm_delayed_work_autocancel(dev, &priv->mivr_dwork, mt6370_chg_mivr_dwork_func); if (ret) return dev_err_probe(dev, ret, "Failed to init mivr delayed work\n"); ret = mt6370_chg_init_setting(priv); if (ret) return dev_err_probe(dev, ret, "Failed to init mt6370 charger setting\n"); ret = mt6370_chg_init_irq(priv); if (ret) return ret; mt6370_chg_pwr_rdy_check(priv); return 0; } static const struct of_device_id mt6370_chg_of_match[] = { { .compatible = "mediatek,mt6370-charger", }, {} }; MODULE_DEVICE_TABLE(of, mt6370_chg_of_match); static struct platform_driver mt6370_chg_driver = { .probe = mt6370_chg_probe, .driver = { .name = "mt6370-charger", .of_match_table = mt6370_chg_of_match, }, }; module_platform_driver(mt6370_chg_driver); MODULE_AUTHOR("ChiaEn Wu <[email protected]>"); MODULE_DESCRIPTION("MediaTek MT6370 Charger Driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/power/supply/mt6370-charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Battery driver for Maxim MAX8925 * * Copyright (c) 2009-2010 Marvell International Ltd. * Haojian Zhuang <[email protected]> */ #include <linux/module.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/mfd/max8925.h> /* registers in GPM */ #define MAX8925_OUT5VEN 0x54 #define MAX8925_OUT3VEN 0x58 #define MAX8925_CHG_CNTL1 0x7c /* bits definition */ #define MAX8925_CHG_STAT_VSYSLOW (1 << 0) #define MAX8925_CHG_STAT_MODE_MASK (3 << 2) #define MAX8925_CHG_STAT_EN_MASK (1 << 4) #define MAX8925_CHG_MBDET (1 << 1) #define MAX8925_CHG_AC_RANGE_MASK (3 << 6) /* registers in ADC */ #define MAX8925_ADC_RES_CNFG1 0x06 #define MAX8925_ADC_AVG_CNFG1 0x07 #define MAX8925_ADC_ACQ_CNFG1 0x08 #define MAX8925_ADC_ACQ_CNFG2 0x09 /* 2 bytes registers in below. MSB is 1st, LSB is 2nd. */ #define MAX8925_ADC_AUX2 0x62 #define MAX8925_ADC_VCHG 0x64 #define MAX8925_ADC_VBBATT 0x66 #define MAX8925_ADC_VMBATT 0x68 #define MAX8925_ADC_ISNS 0x6a #define MAX8925_ADC_THM 0x6c #define MAX8925_ADC_TDIE 0x6e #define MAX8925_CMD_AUX2 0xc8 #define MAX8925_CMD_VCHG 0xd0 #define MAX8925_CMD_VBBATT 0xd8 #define MAX8925_CMD_VMBATT 0xe0 #define MAX8925_CMD_ISNS 0xe8 #define MAX8925_CMD_THM 0xf0 #define MAX8925_CMD_TDIE 0xf8 enum { MEASURE_AUX2, MEASURE_VCHG, MEASURE_VBBATT, MEASURE_VMBATT, MEASURE_ISNS, MEASURE_THM, MEASURE_TDIE, MEASURE_MAX, }; struct max8925_power_info { struct max8925_chip *chip; struct i2c_client *gpm; struct i2c_client *adc; struct power_supply *ac; struct power_supply *usb; struct power_supply *battery; int irq_base; unsigned ac_online:1; unsigned usb_online:1; unsigned bat_online:1; unsigned chg_mode:2; unsigned batt_detect:1; /* detecing MB by ID pin */ unsigned topoff_threshold:2; unsigned fast_charge:3; unsigned no_temp_support:1; unsigned no_insert_detect:1; int (*set_charger) (int); }; static int __set_charger(struct max8925_power_info *info, int enable) { struct max8925_chip *chip = info->chip; if (enable) { /* enable charger in platform */ if (info->set_charger) info->set_charger(1); /* enable charger */ max8925_set_bits(info->gpm, MAX8925_CHG_CNTL1, 1 << 7, 0); } else { /* disable charge */ max8925_set_bits(info->gpm, MAX8925_CHG_CNTL1, 1 << 7, 1 << 7); if (info->set_charger) info->set_charger(0); } dev_dbg(chip->dev, "%s\n", (enable) ? "Enable charger" : "Disable charger"); return 0; } static irqreturn_t max8925_charger_handler(int irq, void *data) { struct max8925_power_info *info = (struct max8925_power_info *)data; struct max8925_chip *chip = info->chip; switch (irq - chip->irq_base) { case MAX8925_IRQ_VCHG_DC_R: info->ac_online = 1; __set_charger(info, 1); dev_dbg(chip->dev, "Adapter inserted\n"); break; case MAX8925_IRQ_VCHG_DC_F: info->ac_online = 0; __set_charger(info, 0); dev_dbg(chip->dev, "Adapter removed\n"); break; case MAX8925_IRQ_VCHG_THM_OK_F: /* Battery is not ready yet */ dev_dbg(chip->dev, "Battery temperature is out of range\n"); fallthrough; case MAX8925_IRQ_VCHG_DC_OVP: dev_dbg(chip->dev, "Error detection\n"); __set_charger(info, 0); break; case MAX8925_IRQ_VCHG_THM_OK_R: /* Battery is ready now */ dev_dbg(chip->dev, "Battery temperature is in range\n"); break; case MAX8925_IRQ_VCHG_SYSLOW_R: /* VSYS is low */ dev_info(chip->dev, "Sys power is too low\n"); break; case MAX8925_IRQ_VCHG_SYSLOW_F: dev_dbg(chip->dev, "Sys power is above low threshold\n"); break; case MAX8925_IRQ_VCHG_DONE: __set_charger(info, 0); dev_dbg(chip->dev, "Charging is done\n"); break; case MAX8925_IRQ_VCHG_TOPOFF: dev_dbg(chip->dev, "Charging in top-off mode\n"); break; case MAX8925_IRQ_VCHG_TMR_FAULT: __set_charger(info, 0); dev_dbg(chip->dev, "Safe timer is expired\n"); break; case MAX8925_IRQ_VCHG_RST: __set_charger(info, 0); dev_dbg(chip->dev, "Charger is reset\n"); break; } return IRQ_HANDLED; } static int start_measure(struct max8925_power_info *info, int type) { unsigned char buf[2] = {0, 0}; int meas_cmd; int meas_reg = 0, ret; switch (type) { case MEASURE_VCHG: meas_cmd = MAX8925_CMD_VCHG; meas_reg = MAX8925_ADC_VCHG; break; case MEASURE_VBBATT: meas_cmd = MAX8925_CMD_VBBATT; meas_reg = MAX8925_ADC_VBBATT; break; case MEASURE_VMBATT: meas_cmd = MAX8925_CMD_VMBATT; meas_reg = MAX8925_ADC_VMBATT; break; case MEASURE_ISNS: meas_cmd = MAX8925_CMD_ISNS; meas_reg = MAX8925_ADC_ISNS; break; default: return -EINVAL; } max8925_reg_write(info->adc, meas_cmd, 0); max8925_bulk_read(info->adc, meas_reg, 2, buf); ret = ((buf[0]<<8) | buf[1]) >> 4; return ret; } static int max8925_ac_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max8925_power_info *info = dev_get_drvdata(psy->dev.parent); int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = info->ac_online; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (info->ac_online) { ret = start_measure(info, MEASURE_VCHG); if (ret >= 0) { val->intval = ret * 2000; /* unit is uV */ goto out; } } ret = -ENODATA; break; default: ret = -ENODEV; break; } out: return ret; } static enum power_supply_property max8925_ac_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_NOW, }; static int max8925_usb_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max8925_power_info *info = dev_get_drvdata(psy->dev.parent); int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = info->usb_online; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (info->usb_online) { ret = start_measure(info, MEASURE_VCHG); if (ret >= 0) { val->intval = ret * 2000; /* unit is uV */ goto out; } } ret = -ENODATA; break; default: ret = -ENODEV; break; } out: return ret; } static enum power_supply_property max8925_usb_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_NOW, }; static int max8925_bat_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max8925_power_info *info = dev_get_drvdata(psy->dev.parent); int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: val->intval = info->bat_online; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (info->bat_online) { ret = start_measure(info, MEASURE_VMBATT); if (ret >= 0) { val->intval = ret * 2000; /* unit is uV */ ret = 0; break; } } ret = -ENODATA; break; case POWER_SUPPLY_PROP_CURRENT_NOW: if (info->bat_online) { ret = start_measure(info, MEASURE_ISNS); if (ret >= 0) { /* assume r_sns is 0.02 */ ret = ((ret * 6250) - 3125) /* uA */; val->intval = 0; if (ret > 0) val->intval = ret; /* unit is mA */ ret = 0; break; } } ret = -ENODATA; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: if (!info->bat_online) { ret = -ENODATA; break; } ret = max8925_reg_read(info->gpm, MAX8925_CHG_STATUS); ret = (ret & MAX8925_CHG_STAT_MODE_MASK) >> 2; switch (ret) { case 1: val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; break; case 0: case 2: val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case 3: val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; } ret = 0; break; case POWER_SUPPLY_PROP_STATUS: if (!info->bat_online) { ret = -ENODATA; break; } ret = max8925_reg_read(info->gpm, MAX8925_CHG_STATUS); if (info->usb_online || info->ac_online) { val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; if (ret & MAX8925_CHG_STAT_EN_MASK) val->intval = POWER_SUPPLY_STATUS_CHARGING; } else val->intval = POWER_SUPPLY_STATUS_DISCHARGING; ret = 0; break; default: ret = -ENODEV; break; } return ret; } static enum power_supply_property max8925_battery_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_STATUS, }; static const struct power_supply_desc ac_desc = { .name = "max8925-ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = max8925_ac_props, .num_properties = ARRAY_SIZE(max8925_ac_props), .get_property = max8925_ac_get_prop, }; static const struct power_supply_desc usb_desc = { .name = "max8925-usb", .type = POWER_SUPPLY_TYPE_USB, .properties = max8925_usb_props, .num_properties = ARRAY_SIZE(max8925_usb_props), .get_property = max8925_usb_get_prop, }; static const struct power_supply_desc battery_desc = { .name = "max8925-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = max8925_battery_props, .num_properties = ARRAY_SIZE(max8925_battery_props), .get_property = max8925_bat_get_prop, }; #define REQUEST_IRQ(_irq, _name) \ do { \ ret = request_threaded_irq(chip->irq_base + _irq, NULL, \ max8925_charger_handler, \ IRQF_ONESHOT, _name, info); \ if (ret) \ dev_err(chip->dev, "Failed to request IRQ #%d: %d\n", \ _irq, ret); \ } while (0) static int max8925_init_charger(struct max8925_chip *chip, struct max8925_power_info *info) { int ret; REQUEST_IRQ(MAX8925_IRQ_VCHG_DC_OVP, "ac-ovp"); if (!info->no_insert_detect) { REQUEST_IRQ(MAX8925_IRQ_VCHG_DC_F, "ac-remove"); REQUEST_IRQ(MAX8925_IRQ_VCHG_DC_R, "ac-insert"); } if (!info->no_temp_support) { REQUEST_IRQ(MAX8925_IRQ_VCHG_THM_OK_R, "batt-temp-in-range"); REQUEST_IRQ(MAX8925_IRQ_VCHG_THM_OK_F, "batt-temp-out-range"); } REQUEST_IRQ(MAX8925_IRQ_VCHG_SYSLOW_F, "vsys-high"); REQUEST_IRQ(MAX8925_IRQ_VCHG_SYSLOW_R, "vsys-low"); REQUEST_IRQ(MAX8925_IRQ_VCHG_RST, "charger-reset"); REQUEST_IRQ(MAX8925_IRQ_VCHG_DONE, "charger-done"); REQUEST_IRQ(MAX8925_IRQ_VCHG_TOPOFF, "charger-topoff"); REQUEST_IRQ(MAX8925_IRQ_VCHG_TMR_FAULT, "charger-timer-expire"); info->usb_online = 0; info->bat_online = 0; /* check for power - can miss interrupt at boot time */ if (start_measure(info, MEASURE_VCHG) * 2000 > 500000) info->ac_online = 1; else info->ac_online = 0; ret = max8925_reg_read(info->gpm, MAX8925_CHG_STATUS); if (ret >= 0) { /* * If battery detection is enabled, ID pin of battery is * connected to MBDET pin of MAX8925. It could be used to * detect battery presence. * Otherwise, we have to assume that battery is always on. */ if (info->batt_detect) info->bat_online = (ret & MAX8925_CHG_MBDET) ? 0 : 1; else info->bat_online = 1; if (ret & MAX8925_CHG_AC_RANGE_MASK) info->ac_online = 1; else info->ac_online = 0; } /* disable charge */ max8925_set_bits(info->gpm, MAX8925_CHG_CNTL1, 1 << 7, 1 << 7); /* set charging current in charge topoff mode */ max8925_set_bits(info->gpm, MAX8925_CHG_CNTL1, 3 << 5, info->topoff_threshold << 5); /* set charing current in fast charge mode */ max8925_set_bits(info->gpm, MAX8925_CHG_CNTL1, 7, info->fast_charge); return 0; } static int max8925_deinit_charger(struct max8925_power_info *info) { struct max8925_chip *chip = info->chip; int irq; irq = chip->irq_base + MAX8925_IRQ_VCHG_DC_OVP; for (; irq <= chip->irq_base + MAX8925_IRQ_VCHG_TMR_FAULT; irq++) free_irq(irq, info); return 0; } #ifdef CONFIG_OF static struct max8925_power_pdata * max8925_power_dt_init(struct platform_device *pdev) { struct device_node *nproot = pdev->dev.parent->of_node; struct device_node *np; int batt_detect; int topoff_threshold; int fast_charge; int no_temp_support; int no_insert_detect; struct max8925_power_pdata *pdata; if (!nproot) return pdev->dev.platform_data; np = of_get_child_by_name(nproot, "charger"); if (!np) { dev_err(&pdev->dev, "failed to find charger node\n"); return NULL; } pdata = devm_kzalloc(&pdev->dev, sizeof(struct max8925_power_pdata), GFP_KERNEL); if (!pdata) goto ret; of_property_read_u32(np, "topoff-threshold", &topoff_threshold); of_property_read_u32(np, "batt-detect", &batt_detect); of_property_read_u32(np, "fast-charge", &fast_charge); of_property_read_u32(np, "no-insert-detect", &no_insert_detect); of_property_read_u32(np, "no-temp-support", &no_temp_support); pdata->batt_detect = batt_detect; pdata->fast_charge = fast_charge; pdata->topoff_threshold = topoff_threshold; pdata->no_insert_detect = no_insert_detect; pdata->no_temp_support = no_temp_support; ret: of_node_put(np); return pdata; } #else static struct max8925_power_pdata * max8925_power_dt_init(struct platform_device *pdev) { return pdev->dev.platform_data; } #endif static int max8925_power_probe(struct platform_device *pdev) { struct max8925_chip *chip = dev_get_drvdata(pdev->dev.parent); struct power_supply_config psy_cfg = {}; /* Only for ac and usb */ struct max8925_power_pdata *pdata = NULL; struct max8925_power_info *info; int ret; pdata = max8925_power_dt_init(pdev); if (!pdata) { dev_err(&pdev->dev, "platform data isn't assigned to " "power supply\n"); return -EINVAL; } info = devm_kzalloc(&pdev->dev, sizeof(struct max8925_power_info), GFP_KERNEL); if (!info) return -ENOMEM; info->chip = chip; info->gpm = chip->i2c; info->adc = chip->adc; platform_set_drvdata(pdev, info); psy_cfg.supplied_to = pdata->supplied_to; psy_cfg.num_supplicants = pdata->num_supplicants; info->ac = power_supply_register(&pdev->dev, &ac_desc, &psy_cfg); if (IS_ERR(info->ac)) { ret = PTR_ERR(info->ac); goto out; } info->ac->dev.parent = &pdev->dev; info->usb = power_supply_register(&pdev->dev, &usb_desc, &psy_cfg); if (IS_ERR(info->usb)) { ret = PTR_ERR(info->usb); goto out_unregister_ac; } info->usb->dev.parent = &pdev->dev; info->battery = power_supply_register(&pdev->dev, &battery_desc, NULL); if (IS_ERR(info->battery)) { ret = PTR_ERR(info->battery); goto out_unregister_usb; } info->battery->dev.parent = &pdev->dev; info->batt_detect = pdata->batt_detect; info->topoff_threshold = pdata->topoff_threshold; info->fast_charge = pdata->fast_charge; info->set_charger = pdata->set_charger; info->no_temp_support = pdata->no_temp_support; info->no_insert_detect = pdata->no_insert_detect; max8925_init_charger(chip, info); return 0; out_unregister_usb: power_supply_unregister(info->usb); out_unregister_ac: power_supply_unregister(info->ac); out: return ret; } static int max8925_power_remove(struct platform_device *pdev) { struct max8925_power_info *info = platform_get_drvdata(pdev); if (info) { power_supply_unregister(info->ac); power_supply_unregister(info->usb); power_supply_unregister(info->battery); max8925_deinit_charger(info); } return 0; } static struct platform_driver max8925_power_driver = { .probe = max8925_power_probe, .remove = max8925_power_remove, .driver = { .name = "max8925-power", }, }; module_platform_driver(max8925_power_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Power supply driver for MAX8925"); MODULE_ALIAS("platform:max8925-power");
linux-master
drivers/power/supply/max8925_power.c
// SPDX-License-Identifier: GPL-2.0-only /* * Power supply driver for the Active-semi ACT8945A PMIC * * Copyright (C) 2015 Atmel Corporation * * Author: Wenyou Yang <[email protected]> */ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/gpio/consumer.h> static const char *act8945a_charger_model = "ACT8945A"; static const char *act8945a_charger_manufacturer = "Active-semi"; /* * ACT8945A Charger Register Map */ /* 0x70: Reserved */ #define ACT8945A_APCH_CFG 0x71 #define ACT8945A_APCH_STATUS 0x78 #define ACT8945A_APCH_CTRL 0x79 #define ACT8945A_APCH_STATE 0x7A /* ACT8945A_APCH_CFG */ #define APCH_CFG_OVPSET (0x3 << 0) #define APCH_CFG_OVPSET_6V6 (0x0 << 0) #define APCH_CFG_OVPSET_7V (0x1 << 0) #define APCH_CFG_OVPSET_7V5 (0x2 << 0) #define APCH_CFG_OVPSET_8V (0x3 << 0) #define APCH_CFG_PRETIMO (0x3 << 2) #define APCH_CFG_PRETIMO_40_MIN (0x0 << 2) #define APCH_CFG_PRETIMO_60_MIN (0x1 << 2) #define APCH_CFG_PRETIMO_80_MIN (0x2 << 2) #define APCH_CFG_PRETIMO_DISABLED (0x3 << 2) #define APCH_CFG_TOTTIMO (0x3 << 4) #define APCH_CFG_TOTTIMO_3_HOUR (0x0 << 4) #define APCH_CFG_TOTTIMO_4_HOUR (0x1 << 4) #define APCH_CFG_TOTTIMO_5_HOUR (0x2 << 4) #define APCH_CFG_TOTTIMO_DISABLED (0x3 << 4) #define APCH_CFG_SUSCHG (0x1 << 7) #define APCH_STATUS_CHGDAT BIT(0) #define APCH_STATUS_INDAT BIT(1) #define APCH_STATUS_TEMPDAT BIT(2) #define APCH_STATUS_TIMRDAT BIT(3) #define APCH_STATUS_CHGSTAT BIT(4) #define APCH_STATUS_INSTAT BIT(5) #define APCH_STATUS_TEMPSTAT BIT(6) #define APCH_STATUS_TIMRSTAT BIT(7) #define APCH_CTRL_CHGEOCOUT BIT(0) #define APCH_CTRL_INDIS BIT(1) #define APCH_CTRL_TEMPOUT BIT(2) #define APCH_CTRL_TIMRPRE BIT(3) #define APCH_CTRL_CHGEOCIN BIT(4) #define APCH_CTRL_INCON BIT(5) #define APCH_CTRL_TEMPIN BIT(6) #define APCH_CTRL_TIMRTOT BIT(7) #define APCH_STATE_ACINSTAT (0x1 << 1) #define APCH_STATE_CSTATE (0x3 << 4) #define APCH_STATE_CSTATE_SHIFT 4 #define APCH_STATE_CSTATE_DISABLED 0x00 #define APCH_STATE_CSTATE_EOC 0x01 #define APCH_STATE_CSTATE_FAST 0x02 #define APCH_STATE_CSTATE_PRE 0x03 struct act8945a_charger { struct power_supply *psy; struct power_supply_desc desc; struct regmap *regmap; struct work_struct work; bool init_done; struct gpio_desc *lbo_gpio; struct gpio_desc *chglev_gpio; }; static int act8945a_get_charger_state(struct regmap *regmap, int *val) { int ret; unsigned int status, state; ret = regmap_read(regmap, ACT8945A_APCH_STATUS, &status); if (ret < 0) return ret; ret = regmap_read(regmap, ACT8945A_APCH_STATE, &state); if (ret < 0) return ret; state &= APCH_STATE_CSTATE; state >>= APCH_STATE_CSTATE_SHIFT; switch (state) { case APCH_STATE_CSTATE_PRE: case APCH_STATE_CSTATE_FAST: *val = POWER_SUPPLY_STATUS_CHARGING; break; case APCH_STATE_CSTATE_EOC: if (status & APCH_STATUS_CHGDAT) *val = POWER_SUPPLY_STATUS_FULL; else *val = POWER_SUPPLY_STATUS_CHARGING; break; case APCH_STATE_CSTATE_DISABLED: default: if (!(status & APCH_STATUS_INDAT)) *val = POWER_SUPPLY_STATUS_DISCHARGING; else *val = POWER_SUPPLY_STATUS_NOT_CHARGING; break; } return 0; } static int act8945a_get_charge_type(struct regmap *regmap, int *val) { int ret; unsigned int status, state; ret = regmap_read(regmap, ACT8945A_APCH_STATUS, &status); if (ret < 0) return ret; ret = regmap_read(regmap, ACT8945A_APCH_STATE, &state); if (ret < 0) return ret; state &= APCH_STATE_CSTATE; state >>= APCH_STATE_CSTATE_SHIFT; switch (state) { case APCH_STATE_CSTATE_PRE: *val = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case APCH_STATE_CSTATE_FAST: *val = POWER_SUPPLY_CHARGE_TYPE_FAST; break; case APCH_STATE_CSTATE_EOC: *val = POWER_SUPPLY_CHARGE_TYPE_NONE; break; case APCH_STATE_CSTATE_DISABLED: default: if (!(status & APCH_STATUS_INDAT)) *val = POWER_SUPPLY_CHARGE_TYPE_NONE; else *val = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; break; } return 0; } static int act8945a_get_battery_health(struct regmap *regmap, int *val) { int ret; unsigned int status, state, config; ret = regmap_read(regmap, ACT8945A_APCH_STATUS, &status); if (ret < 0) return ret; ret = regmap_read(regmap, ACT8945A_APCH_CFG, &config); if (ret < 0) return ret; ret = regmap_read(regmap, ACT8945A_APCH_STATE, &state); if (ret < 0) return ret; state &= APCH_STATE_CSTATE; state >>= APCH_STATE_CSTATE_SHIFT; switch (state) { case APCH_STATE_CSTATE_DISABLED: if (config & APCH_CFG_SUSCHG) { *val = POWER_SUPPLY_HEALTH_UNKNOWN; } else if (status & APCH_STATUS_INDAT) { if (!(status & APCH_STATUS_TEMPDAT)) *val = POWER_SUPPLY_HEALTH_OVERHEAT; else if (status & APCH_STATUS_TIMRDAT) *val = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; else *val = POWER_SUPPLY_HEALTH_OVERVOLTAGE; } else { *val = POWER_SUPPLY_HEALTH_GOOD; } break; case APCH_STATE_CSTATE_PRE: case APCH_STATE_CSTATE_FAST: case APCH_STATE_CSTATE_EOC: default: *val = POWER_SUPPLY_HEALTH_GOOD; break; } return 0; } static int act8945a_get_capacity_level(struct act8945a_charger *charger, struct regmap *regmap, int *val) { int ret; unsigned int status, state, config; int lbo_level = gpiod_get_value(charger->lbo_gpio); ret = regmap_read(regmap, ACT8945A_APCH_STATUS, &status); if (ret < 0) return ret; ret = regmap_read(regmap, ACT8945A_APCH_CFG, &config); if (ret < 0) return ret; ret = regmap_read(regmap, ACT8945A_APCH_STATE, &state); if (ret < 0) return ret; state &= APCH_STATE_CSTATE; state >>= APCH_STATE_CSTATE_SHIFT; switch (state) { case APCH_STATE_CSTATE_PRE: *val = POWER_SUPPLY_CAPACITY_LEVEL_LOW; break; case APCH_STATE_CSTATE_FAST: if (lbo_level) *val = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; else *val = POWER_SUPPLY_CAPACITY_LEVEL_LOW; break; case APCH_STATE_CSTATE_EOC: if (status & APCH_STATUS_CHGDAT) *val = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else *val = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; break; case APCH_STATE_CSTATE_DISABLED: default: if (config & APCH_CFG_SUSCHG) { *val = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; } else { *val = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; if (!(status & APCH_STATUS_INDAT)) { if (!lbo_level) *val = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; } } break; } return 0; } #define MAX_CURRENT_USB_HIGH 450000 #define MAX_CURRENT_USB_LOW 90000 #define MAX_CURRENT_USB_PRE 45000 /* * Riset(K) = 2336 * (1V/Ichg(mA)) - 0.205 * Riset = 2.43K */ #define MAX_CURRENT_AC_HIGH 886527 #define MAX_CURRENT_AC_LOW 117305 #define MAX_CURRENT_AC_HIGH_PRE 88653 #define MAX_CURRENT_AC_LOW_PRE 11731 static int act8945a_get_current_max(struct act8945a_charger *charger, struct regmap *regmap, int *val) { int ret; unsigned int status, state; unsigned int acin_state; int chgin_level = gpiod_get_value(charger->chglev_gpio); ret = regmap_read(regmap, ACT8945A_APCH_STATUS, &status); if (ret < 0) return ret; ret = regmap_read(regmap, ACT8945A_APCH_STATE, &state); if (ret < 0) return ret; acin_state = (state & APCH_STATE_ACINSTAT) >> 1; state &= APCH_STATE_CSTATE; state >>= APCH_STATE_CSTATE_SHIFT; switch (state) { case APCH_STATE_CSTATE_PRE: if (acin_state) { if (chgin_level) *val = MAX_CURRENT_AC_HIGH_PRE; else *val = MAX_CURRENT_AC_LOW_PRE; } else { *val = MAX_CURRENT_USB_PRE; } break; case APCH_STATE_CSTATE_FAST: if (acin_state) { if (chgin_level) *val = MAX_CURRENT_AC_HIGH; else *val = MAX_CURRENT_AC_LOW; } else { if (chgin_level) *val = MAX_CURRENT_USB_HIGH; else *val = MAX_CURRENT_USB_LOW; } break; case APCH_STATE_CSTATE_EOC: case APCH_STATE_CSTATE_DISABLED: default: *val = 0; break; } return 0; } static enum power_supply_property act8945a_charger_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER }; static int act8945a_charger_get_property(struct power_supply *psy, enum power_supply_property prop, union power_supply_propval *val) { struct act8945a_charger *charger = power_supply_get_drvdata(psy); struct regmap *regmap = charger->regmap; int ret = 0; switch (prop) { case POWER_SUPPLY_PROP_STATUS: ret = act8945a_get_charger_state(regmap, &val->intval); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = act8945a_get_charge_type(regmap, &val->intval); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_HEALTH: ret = act8945a_get_battery_health(regmap, &val->intval); break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: ret = act8945a_get_capacity_level(charger, regmap, &val->intval); break; case POWER_SUPPLY_PROP_CURRENT_MAX: ret = act8945a_get_current_max(charger, regmap, &val->intval); break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = act8945a_charger_model; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = act8945a_charger_manufacturer; break; default: return -EINVAL; } return ret; } static int act8945a_enable_interrupt(struct act8945a_charger *charger) { struct regmap *regmap = charger->regmap; unsigned char ctrl; int ret; ctrl = APCH_CTRL_CHGEOCOUT | APCH_CTRL_CHGEOCIN | APCH_CTRL_INDIS | APCH_CTRL_INCON | APCH_CTRL_TEMPOUT | APCH_CTRL_TEMPIN | APCH_CTRL_TIMRPRE | APCH_CTRL_TIMRTOT; ret = regmap_write(regmap, ACT8945A_APCH_CTRL, ctrl); if (ret) return ret; ctrl = APCH_STATUS_CHGSTAT | APCH_STATUS_INSTAT | APCH_STATUS_TEMPSTAT | APCH_STATUS_TIMRSTAT; ret = regmap_write(regmap, ACT8945A_APCH_STATUS, ctrl); if (ret) return ret; return 0; } static unsigned int act8945a_set_supply_type(struct act8945a_charger *charger, unsigned int *type) { unsigned int status, state; int ret; ret = regmap_read(charger->regmap, ACT8945A_APCH_STATUS, &status); if (ret < 0) return ret; ret = regmap_read(charger->regmap, ACT8945A_APCH_STATE, &state); if (ret < 0) return ret; if (status & APCH_STATUS_INDAT) { if (state & APCH_STATE_ACINSTAT) *type = POWER_SUPPLY_TYPE_MAINS; else *type = POWER_SUPPLY_TYPE_USB; } else { *type = POWER_SUPPLY_TYPE_BATTERY; } return 0; } static void act8945a_work(struct work_struct *work) { struct act8945a_charger *charger = container_of(work, struct act8945a_charger, work); act8945a_set_supply_type(charger, &charger->desc.type); power_supply_changed(charger->psy); } static irqreturn_t act8945a_status_changed(int irq, void *dev_id) { struct act8945a_charger *charger = dev_id; if (charger->init_done) schedule_work(&charger->work); return IRQ_HANDLED; } #define DEFAULT_TOTAL_TIME_OUT 3 #define DEFAULT_PRE_TIME_OUT 40 #define DEFAULT_INPUT_OVP_THRESHOLD 6600 static int act8945a_charger_config(struct device *dev, struct act8945a_charger *charger) { struct device_node *np = dev->of_node; struct regmap *regmap = charger->regmap; u32 total_time_out; u32 pre_time_out; u32 input_voltage_threshold; int err, ret; unsigned int tmp; unsigned int value = 0; if (!np) { dev_err(dev, "no charger of node\n"); return -EINVAL; } ret = regmap_read(regmap, ACT8945A_APCH_CFG, &tmp); if (ret) return ret; if (tmp & APCH_CFG_SUSCHG) { value |= APCH_CFG_SUSCHG; dev_info(dev, "have been suspended\n"); } charger->lbo_gpio = devm_gpiod_get_optional(dev, "active-semi,lbo", GPIOD_IN); if (IS_ERR(charger->lbo_gpio)) { err = PTR_ERR(charger->lbo_gpio); dev_err(dev, "unable to claim gpio \"lbo\": %d\n", err); return err; } ret = devm_request_irq(dev, gpiod_to_irq(charger->lbo_gpio), act8945a_status_changed, (IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING), "act8945a_lbo_detect", charger); if (ret) dev_info(dev, "failed to request gpio \"lbo\" IRQ\n"); charger->chglev_gpio = devm_gpiod_get_optional(dev, "active-semi,chglev", GPIOD_IN); if (IS_ERR(charger->chglev_gpio)) { err = PTR_ERR(charger->chglev_gpio); dev_err(dev, "unable to claim gpio \"chglev\": %d\n", err); return err; } if (of_property_read_u32(np, "active-semi,input-voltage-threshold-microvolt", &input_voltage_threshold)) input_voltage_threshold = DEFAULT_INPUT_OVP_THRESHOLD; if (of_property_read_u32(np, "active-semi,precondition-timeout", &pre_time_out)) pre_time_out = DEFAULT_PRE_TIME_OUT; if (of_property_read_u32(np, "active-semi,total-timeout", &total_time_out)) total_time_out = DEFAULT_TOTAL_TIME_OUT; switch (input_voltage_threshold) { case 8000: value |= APCH_CFG_OVPSET_8V; break; case 7500: value |= APCH_CFG_OVPSET_7V5; break; case 7000: value |= APCH_CFG_OVPSET_7V; break; case 6600: default: value |= APCH_CFG_OVPSET_6V6; break; } switch (pre_time_out) { case 60: value |= APCH_CFG_PRETIMO_60_MIN; break; case 80: value |= APCH_CFG_PRETIMO_80_MIN; break; case 0: value |= APCH_CFG_PRETIMO_DISABLED; break; case 40: default: value |= APCH_CFG_PRETIMO_40_MIN; break; } switch (total_time_out) { case 4: value |= APCH_CFG_TOTTIMO_4_HOUR; break; case 5: value |= APCH_CFG_TOTTIMO_5_HOUR; break; case 0: value |= APCH_CFG_TOTTIMO_DISABLED; break; case 3: default: value |= APCH_CFG_TOTTIMO_3_HOUR; break; } return regmap_write(regmap, ACT8945A_APCH_CFG, value); } static int act8945a_charger_probe(struct platform_device *pdev) { struct act8945a_charger *charger; struct power_supply_config psy_cfg = {}; int irq, ret; charger = devm_kzalloc(&pdev->dev, sizeof(*charger), GFP_KERNEL); if (!charger) return -ENOMEM; charger->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!charger->regmap) { dev_err(&pdev->dev, "Parent did not provide regmap\n"); return -EINVAL; } ret = act8945a_charger_config(&pdev->dev, charger); if (ret) return ret; irq = of_irq_get(pdev->dev.of_node, 0); if (irq <= 0) { dev_err(&pdev->dev, "failed to find IRQ number\n"); return irq ?: -ENXIO; } ret = devm_request_irq(&pdev->dev, irq, act8945a_status_changed, IRQF_TRIGGER_FALLING, "act8945a_interrupt", charger); if (ret) { dev_err(&pdev->dev, "failed to request nIRQ pin IRQ\n"); return ret; } charger->desc.name = "act8945a-charger"; charger->desc.get_property = act8945a_charger_get_property; charger->desc.properties = act8945a_charger_props; charger->desc.num_properties = ARRAY_SIZE(act8945a_charger_props); ret = act8945a_set_supply_type(charger, &charger->desc.type); if (ret) return -EINVAL; psy_cfg.of_node = pdev->dev.of_node; psy_cfg.drv_data = charger; charger->psy = devm_power_supply_register(&pdev->dev, &charger->desc, &psy_cfg); if (IS_ERR(charger->psy)) { dev_err(&pdev->dev, "failed to register power supply\n"); return PTR_ERR(charger->psy); } platform_set_drvdata(pdev, charger); INIT_WORK(&charger->work, act8945a_work); ret = act8945a_enable_interrupt(charger); if (ret) return -EIO; charger->init_done = true; return 0; } static int act8945a_charger_remove(struct platform_device *pdev) { struct act8945a_charger *charger = platform_get_drvdata(pdev); charger->init_done = false; cancel_work_sync(&charger->work); return 0; } static struct platform_driver act8945a_charger_driver = { .driver = { .name = "act8945a-charger", }, .probe = act8945a_charger_probe, .remove = act8945a_charger_remove, }; module_platform_driver(act8945a_charger_driver); MODULE_DESCRIPTION("Active-semi ACT8945A ActivePath charger driver"); MODULE_AUTHOR("Wenyou Yang <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/act8945a_charger.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * max8903_charger.c - Maxim 8903 USB/Adapter Charger Driver * * Copyright (C) 2011 Samsung Electronics * MyungJoo Ham <[email protected]> */ #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/power_supply.h> #include <linux/platform_device.h> struct max8903_data { struct device *dev; struct power_supply *psy; struct power_supply_desc psy_desc; /* * GPIOs * chg, flt, dcm and usus are optional. * dok or uok must be present. * If dok is present, cen must be present. */ struct gpio_desc *cen; /* Charger Enable input */ struct gpio_desc *dok; /* DC (Adapter) Power OK output */ struct gpio_desc *uok; /* USB Power OK output */ struct gpio_desc *chg; /* Charger status output */ struct gpio_desc *flt; /* Fault output */ struct gpio_desc *dcm; /* Current-Limit Mode input (1: DC, 2: USB) */ struct gpio_desc *usus; /* USB Suspend Input (1: suspended) */ bool fault; bool usb_in; bool ta_in; }; static enum power_supply_property max8903_charger_props[] = { POWER_SUPPLY_PROP_STATUS, /* Charger status output */ POWER_SUPPLY_PROP_ONLINE, /* External power source */ POWER_SUPPLY_PROP_HEALTH, /* Fault or OK */ }; static int max8903_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max8903_data *data = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; if (data->chg) { if (gpiod_get_value(data->chg)) /* CHG asserted */ val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (data->usb_in || data->ta_in) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; else val->intval = POWER_SUPPLY_STATUS_DISCHARGING; } break; case POWER_SUPPLY_PROP_ONLINE: val->intval = 0; if (data->usb_in || data->ta_in) val->intval = 1; break; case POWER_SUPPLY_PROP_HEALTH: val->intval = POWER_SUPPLY_HEALTH_GOOD; if (data->fault) val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; break; default: return -EINVAL; } return 0; } static irqreturn_t max8903_dcin(int irq, void *_data) { struct max8903_data *data = _data; bool ta_in; enum power_supply_type old_type; /* * This means the line is asserted. * * The signal is active low, but the inversion is handled in the GPIO * library as the line should be flagged GPIO_ACTIVE_LOW in the device * tree. */ ta_in = gpiod_get_value(data->dok); if (ta_in == data->ta_in) return IRQ_HANDLED; data->ta_in = ta_in; /* Set Current-Limit-Mode 1:DC 0:USB */ if (data->dcm) gpiod_set_value(data->dcm, ta_in); /* Charger Enable / Disable */ if (data->cen) { int val; if (ta_in) /* Certainly enable if DOK is asserted */ val = 1; else if (data->usb_in) /* Enable if the USB charger is enabled */ val = 1; else /* Else default-disable */ val = 0; gpiod_set_value(data->cen, val); } dev_dbg(data->dev, "TA(DC-IN) Charger %s.\n", ta_in ? "Connected" : "Disconnected"); old_type = data->psy_desc.type; if (data->ta_in) data->psy_desc.type = POWER_SUPPLY_TYPE_MAINS; else if (data->usb_in) data->psy_desc.type = POWER_SUPPLY_TYPE_USB; else data->psy_desc.type = POWER_SUPPLY_TYPE_BATTERY; if (old_type != data->psy_desc.type) power_supply_changed(data->psy); return IRQ_HANDLED; } static irqreturn_t max8903_usbin(int irq, void *_data) { struct max8903_data *data = _data; bool usb_in; enum power_supply_type old_type; /* * This means the line is asserted. * * The signal is active low, but the inversion is handled in the GPIO * library as the line should be flagged GPIO_ACTIVE_LOW in the device * tree. */ usb_in = gpiod_get_value(data->uok); if (usb_in == data->usb_in) return IRQ_HANDLED; data->usb_in = usb_in; /* Do not touch Current-Limit-Mode */ /* Charger Enable / Disable */ if (data->cen) { int val; if (usb_in) /* Certainly enable if UOK is asserted */ val = 1; else if (data->ta_in) /* Enable if the DC charger is enabled */ val = 1; else /* Else default-disable */ val = 0; gpiod_set_value(data->cen, val); } dev_dbg(data->dev, "USB Charger %s.\n", usb_in ? "Connected" : "Disconnected"); old_type = data->psy_desc.type; if (data->ta_in) data->psy_desc.type = POWER_SUPPLY_TYPE_MAINS; else if (data->usb_in) data->psy_desc.type = POWER_SUPPLY_TYPE_USB; else data->psy_desc.type = POWER_SUPPLY_TYPE_BATTERY; if (old_type != data->psy_desc.type) power_supply_changed(data->psy); return IRQ_HANDLED; } static irqreturn_t max8903_fault(int irq, void *_data) { struct max8903_data *data = _data; bool fault; /* * This means the line is asserted. * * The signal is active low, but the inversion is handled in the GPIO * library as the line should be flagged GPIO_ACTIVE_LOW in the device * tree. */ fault = gpiod_get_value(data->flt); if (fault == data->fault) return IRQ_HANDLED; data->fault = fault; if (fault) dev_err(data->dev, "Charger suffers a fault and stops.\n"); else dev_err(data->dev, "Charger recovered from a fault.\n"); return IRQ_HANDLED; } static int max8903_setup_gpios(struct platform_device *pdev) { struct max8903_data *data = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; bool ta_in = false; bool usb_in = false; enum gpiod_flags flags; data->dok = devm_gpiod_get_optional(dev, "dok", GPIOD_IN); if (IS_ERR(data->dok)) return dev_err_probe(dev, PTR_ERR(data->dok), "failed to get DOK GPIO"); if (data->dok) { gpiod_set_consumer_name(data->dok, data->psy_desc.name); /* * The DC OK is pulled up to 1 and goes low when a charger * is plugged in (active low) but in the device tree the * line is marked as GPIO_ACTIVE_LOW so we get a 1 (asserted) * here if the DC charger is plugged in. */ ta_in = gpiod_get_value(data->dok); } data->uok = devm_gpiod_get_optional(dev, "uok", GPIOD_IN); if (IS_ERR(data->uok)) return dev_err_probe(dev, PTR_ERR(data->uok), "failed to get UOK GPIO"); if (data->uok) { gpiod_set_consumer_name(data->uok, data->psy_desc.name); /* * The USB OK is pulled up to 1 and goes low when a USB charger * is plugged in (active low) but in the device tree the * line is marked as GPIO_ACTIVE_LOW so we get a 1 (asserted) * here if the USB charger is plugged in. */ usb_in = gpiod_get_value(data->uok); } /* Either DC OK or USB OK must be provided */ if (!data->dok && !data->uok) { dev_err(dev, "no valid power source\n"); return -EINVAL; } /* * If either charger is already connected at this point, * assert the CEN line and enable charging from the start. * * The line is active low but also marked with GPIO_ACTIVE_LOW * in the device tree, so when we assert the line with * GPIOD_OUT_HIGH the line will be driven low. */ flags = (ta_in || usb_in) ? GPIOD_OUT_HIGH : GPIOD_OUT_LOW; /* * If DC OK is provided, Charger Enable CEN is compulsory * so this is not optional here. */ data->cen = devm_gpiod_get(dev, "cen", flags); if (IS_ERR(data->cen)) return dev_err_probe(dev, PTR_ERR(data->cen), "failed to get CEN GPIO"); gpiod_set_consumer_name(data->cen, data->psy_desc.name); /* * If the DC charger is connected, then select it. * * The DCM line should be marked GPIO_ACTIVE_HIGH in the * device tree. Driving it high will enable the DC charger * input over the USB charger input. */ flags = ta_in ? GPIOD_OUT_HIGH : GPIOD_OUT_LOW; data->dcm = devm_gpiod_get_optional(dev, "dcm", flags); if (IS_ERR(data->dcm)) return dev_err_probe(dev, PTR_ERR(data->dcm), "failed to get DCM GPIO"); gpiod_set_consumer_name(data->dcm, data->psy_desc.name); data->chg = devm_gpiod_get_optional(dev, "chg", GPIOD_IN); if (IS_ERR(data->chg)) return dev_err_probe(dev, PTR_ERR(data->chg), "failed to get CHG GPIO"); gpiod_set_consumer_name(data->chg, data->psy_desc.name); data->flt = devm_gpiod_get_optional(dev, "flt", GPIOD_IN); if (IS_ERR(data->flt)) return dev_err_probe(dev, PTR_ERR(data->flt), "failed to get FLT GPIO"); gpiod_set_consumer_name(data->flt, data->psy_desc.name); data->usus = devm_gpiod_get_optional(dev, "usus", GPIOD_IN); if (IS_ERR(data->usus)) return dev_err_probe(dev, PTR_ERR(data->usus), "failed to get USUS GPIO"); gpiod_set_consumer_name(data->usus, data->psy_desc.name); data->fault = false; data->ta_in = ta_in; data->usb_in = usb_in; return 0; } static int max8903_probe(struct platform_device *pdev) { struct max8903_data *data; struct device *dev = &pdev->dev; struct power_supply_config psy_cfg = {}; int ret = 0; data = devm_kzalloc(dev, sizeof(struct max8903_data), GFP_KERNEL); if (!data) return -ENOMEM; data->dev = dev; platform_set_drvdata(pdev, data); ret = max8903_setup_gpios(pdev); if (ret) return ret; data->psy_desc.name = "max8903_charger"; data->psy_desc.type = (data->ta_in) ? POWER_SUPPLY_TYPE_MAINS : ((data->usb_in) ? POWER_SUPPLY_TYPE_USB : POWER_SUPPLY_TYPE_BATTERY); data->psy_desc.get_property = max8903_get_property; data->psy_desc.properties = max8903_charger_props; data->psy_desc.num_properties = ARRAY_SIZE(max8903_charger_props); psy_cfg.of_node = dev->of_node; psy_cfg.drv_data = data; data->psy = devm_power_supply_register(dev, &data->psy_desc, &psy_cfg); if (IS_ERR(data->psy)) { dev_err(dev, "failed: power supply register.\n"); return PTR_ERR(data->psy); } if (data->dok) { ret = devm_request_threaded_irq(dev, gpiod_to_irq(data->dok), NULL, max8903_dcin, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT, "MAX8903 DC IN", data); if (ret) { dev_err(dev, "Cannot request irq %d for DC (%d)\n", gpiod_to_irq(data->dok), ret); return ret; } } if (data->uok) { ret = devm_request_threaded_irq(dev, gpiod_to_irq(data->uok), NULL, max8903_usbin, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT, "MAX8903 USB IN", data); if (ret) { dev_err(dev, "Cannot request irq %d for USB (%d)\n", gpiod_to_irq(data->uok), ret); return ret; } } if (data->flt) { ret = devm_request_threaded_irq(dev, gpiod_to_irq(data->flt), NULL, max8903_fault, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT, "MAX8903 Fault", data); if (ret) { dev_err(dev, "Cannot request irq %d for Fault (%d)\n", gpiod_to_irq(data->flt), ret); return ret; } } return 0; } static const struct of_device_id max8903_match_ids[] = { { .compatible = "maxim,max8903", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, max8903_match_ids); static struct platform_driver max8903_driver = { .probe = max8903_probe, .driver = { .name = "max8903-charger", .of_match_table = max8903_match_ids }, }; module_platform_driver(max8903_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MAX8903 Charger Driver"); MODULE_AUTHOR("MyungJoo Ham <[email protected]>"); MODULE_ALIAS("platform:max8903-charger");
linux-master
drivers/power/supply/max8903_charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Dumb driver for LiIon batteries using TWL4030 madc. * * Copyright 2013 Golden Delicious Computers * Lukas Märdian <[email protected]> * * Based on dumb driver for gta01 battery * Copyright 2009 Openmoko, Inc * Balaji Rao <[email protected]> */ #include <linux/module.h> #include <linux/param.h> #include <linux/delay.h> #include <linux/workqueue.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/sort.h> #include <linux/power/twl4030_madc_battery.h> #include <linux/iio/consumer.h> struct twl4030_madc_battery { struct power_supply *psy; struct twl4030_madc_bat_platform_data *pdata; struct iio_channel *channel_temp; struct iio_channel *channel_ichg; struct iio_channel *channel_vbat; }; static enum power_supply_property twl4030_madc_bat_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, }; static int madc_read(struct iio_channel *channel) { int val, err; err = iio_read_channel_processed(channel, &val); if (err < 0) return err; return val; } static int twl4030_madc_bat_get_charging_status(struct twl4030_madc_battery *bt) { return (madc_read(bt->channel_ichg) > 0) ? 1 : 0; } static int twl4030_madc_bat_get_voltage(struct twl4030_madc_battery *bt) { return madc_read(bt->channel_vbat); } static int twl4030_madc_bat_get_current(struct twl4030_madc_battery *bt) { return madc_read(bt->channel_ichg) * 1000; } static int twl4030_madc_bat_get_temp(struct twl4030_madc_battery *bt) { return madc_read(bt->channel_temp) * 10; } static int twl4030_madc_bat_voltscale(struct twl4030_madc_battery *bat, int volt) { struct twl4030_madc_bat_calibration *calibration; int i, res = 0; /* choose charging curve */ if (twl4030_madc_bat_get_charging_status(bat)) calibration = bat->pdata->charging; else calibration = bat->pdata->discharging; if (volt > calibration[0].voltage) { res = calibration[0].level; } else { for (i = 0; calibration[i+1].voltage >= 0; i++) { if (volt <= calibration[i].voltage && volt >= calibration[i+1].voltage) { /* interval found - interpolate within range */ res = calibration[i].level - ((calibration[i].voltage - volt) * (calibration[i].level - calibration[i+1].level)) / (calibration[i].voltage - calibration[i+1].voltage); break; } } } return res; } static int twl4030_madc_bat_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct twl4030_madc_battery *bat = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (twl4030_madc_bat_voltscale(bat, twl4030_madc_bat_get_voltage(bat)) > 95) val->intval = POWER_SUPPLY_STATUS_FULL; else { if (twl4030_madc_bat_get_charging_status(bat)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else val->intval = POWER_SUPPLY_STATUS_DISCHARGING; } break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = twl4030_madc_bat_get_voltage(bat) * 1000; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = twl4030_madc_bat_get_current(bat); break; case POWER_SUPPLY_PROP_PRESENT: /* assume battery is always present */ val->intval = 1; break; case POWER_SUPPLY_PROP_CHARGE_NOW: { int percent = twl4030_madc_bat_voltscale(bat, twl4030_madc_bat_get_voltage(bat)); val->intval = (percent * bat->pdata->capacity) / 100; break; } case POWER_SUPPLY_PROP_CAPACITY: val->intval = twl4030_madc_bat_voltscale(bat, twl4030_madc_bat_get_voltage(bat)); break; case POWER_SUPPLY_PROP_CHARGE_FULL: val->intval = bat->pdata->capacity; break; case POWER_SUPPLY_PROP_TEMP: val->intval = twl4030_madc_bat_get_temp(bat); break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: { int percent = twl4030_madc_bat_voltscale(bat, twl4030_madc_bat_get_voltage(bat)); /* in mAh */ int chg = (percent * (bat->pdata->capacity/1000))/100; /* assume discharge with 400 mA (ca. 1.5W) */ val->intval = (3600l * chg) / 400; break; } default: return -EINVAL; } return 0; } static const struct power_supply_desc twl4030_madc_bat_desc = { .name = "twl4030_battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = twl4030_madc_bat_props, .num_properties = ARRAY_SIZE(twl4030_madc_bat_props), .get_property = twl4030_madc_bat_get_property, .external_power_changed = power_supply_changed, }; static int twl4030_cmp(const void *a, const void *b) { return ((struct twl4030_madc_bat_calibration *)b)->voltage - ((struct twl4030_madc_bat_calibration *)a)->voltage; } static int twl4030_madc_battery_probe(struct platform_device *pdev) { struct twl4030_madc_battery *twl4030_madc_bat; struct twl4030_madc_bat_platform_data *pdata = pdev->dev.platform_data; struct power_supply_config psy_cfg = {}; int ret = 0; twl4030_madc_bat = devm_kzalloc(&pdev->dev, sizeof(*twl4030_madc_bat), GFP_KERNEL); if (!twl4030_madc_bat) return -ENOMEM; twl4030_madc_bat->channel_temp = iio_channel_get(&pdev->dev, "temp"); if (IS_ERR(twl4030_madc_bat->channel_temp)) { ret = PTR_ERR(twl4030_madc_bat->channel_temp); goto err; } twl4030_madc_bat->channel_ichg = iio_channel_get(&pdev->dev, "ichg"); if (IS_ERR(twl4030_madc_bat->channel_ichg)) { ret = PTR_ERR(twl4030_madc_bat->channel_ichg); goto err_temp; } twl4030_madc_bat->channel_vbat = iio_channel_get(&pdev->dev, "vbat"); if (IS_ERR(twl4030_madc_bat->channel_vbat)) { ret = PTR_ERR(twl4030_madc_bat->channel_vbat); goto err_ichg; } /* sort charging and discharging calibration data */ sort(pdata->charging, pdata->charging_size, sizeof(struct twl4030_madc_bat_calibration), twl4030_cmp, NULL); sort(pdata->discharging, pdata->discharging_size, sizeof(struct twl4030_madc_bat_calibration), twl4030_cmp, NULL); twl4030_madc_bat->pdata = pdata; platform_set_drvdata(pdev, twl4030_madc_bat); psy_cfg.drv_data = twl4030_madc_bat; twl4030_madc_bat->psy = power_supply_register(&pdev->dev, &twl4030_madc_bat_desc, &psy_cfg); if (IS_ERR(twl4030_madc_bat->psy)) { ret = PTR_ERR(twl4030_madc_bat->psy); goto err_vbat; } return 0; err_vbat: iio_channel_release(twl4030_madc_bat->channel_vbat); err_ichg: iio_channel_release(twl4030_madc_bat->channel_ichg); err_temp: iio_channel_release(twl4030_madc_bat->channel_temp); err: return ret; } static int twl4030_madc_battery_remove(struct platform_device *pdev) { struct twl4030_madc_battery *bat = platform_get_drvdata(pdev); power_supply_unregister(bat->psy); iio_channel_release(bat->channel_vbat); iio_channel_release(bat->channel_ichg); iio_channel_release(bat->channel_temp); return 0; } static struct platform_driver twl4030_madc_battery_driver = { .driver = { .name = "twl4030_madc_battery", }, .probe = twl4030_madc_battery_probe, .remove = twl4030_madc_battery_remove, }; module_platform_driver(twl4030_madc_battery_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Lukas Märdian <[email protected]>"); MODULE_DESCRIPTION("twl4030_madc battery driver"); MODULE_ALIAS("platform:twl4030_madc_battery");
linux-master
drivers/power/supply/twl4030_madc_battery.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * TI BQ25890 charger driver * * Copyright (C) 2015 Intel Corporation */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/power_supply.h> #include <linux/power/bq25890_charger.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/types.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/usb/phy.h> #include <linux/acpi.h> #include <linux/of.h> #define BQ25890_MANUFACTURER "Texas Instruments" #define BQ25890_IRQ_PIN "bq25890_irq" #define BQ25890_ID 3 #define BQ25895_ID 7 #define BQ25896_ID 0 #define PUMP_EXPRESS_START_DELAY (5 * HZ) #define PUMP_EXPRESS_MAX_TRIES 6 #define PUMP_EXPRESS_VBUS_MARGIN_uV 1000000 enum bq25890_chip_version { BQ25890, BQ25892, BQ25895, BQ25896, }; static const char *const bq25890_chip_name[] = { "BQ25890", "BQ25892", "BQ25895", "BQ25896", }; enum bq25890_fields { F_EN_HIZ, F_EN_ILIM, F_IINLIM, /* Reg00 */ F_BHOT, F_BCOLD, F_VINDPM_OFS, /* Reg01 */ F_CONV_START, F_CONV_RATE, F_BOOSTF, F_ICO_EN, F_HVDCP_EN, F_MAXC_EN, F_FORCE_DPM, F_AUTO_DPDM_EN, /* Reg02 */ F_BAT_LOAD_EN, F_WD_RST, F_OTG_CFG, F_CHG_CFG, F_SYSVMIN, F_MIN_VBAT_SEL, /* Reg03 */ F_PUMPX_EN, F_ICHG, /* Reg04 */ F_IPRECHG, F_ITERM, /* Reg05 */ F_VREG, F_BATLOWV, F_VRECHG, /* Reg06 */ F_TERM_EN, F_STAT_DIS, F_WD, F_TMR_EN, F_CHG_TMR, F_JEITA_ISET, /* Reg07 */ F_BATCMP, F_VCLAMP, F_TREG, /* Reg08 */ F_FORCE_ICO, F_TMR2X_EN, F_BATFET_DIS, F_JEITA_VSET, F_BATFET_DLY, F_BATFET_RST_EN, F_PUMPX_UP, F_PUMPX_DN, /* Reg09 */ F_BOOSTV, F_PFM_OTG_DIS, F_BOOSTI, /* Reg0A */ F_VBUS_STAT, F_CHG_STAT, F_PG_STAT, F_SDP_STAT, F_0B_RSVD, F_VSYS_STAT, /* Reg0B */ F_WD_FAULT, F_BOOST_FAULT, F_CHG_FAULT, F_BAT_FAULT, F_NTC_FAULT, /* Reg0C */ F_FORCE_VINDPM, F_VINDPM, /* Reg0D */ F_THERM_STAT, F_BATV, /* Reg0E */ F_SYSV, /* Reg0F */ F_TSPCT, /* Reg10 */ F_VBUS_GD, F_VBUSV, /* Reg11 */ F_ICHGR, /* Reg12 */ F_VDPM_STAT, F_IDPM_STAT, F_IDPM_LIM, /* Reg13 */ F_REG_RST, F_ICO_OPTIMIZED, F_PN, F_TS_PROFILE, F_DEV_REV, /* Reg14 */ F_MAX_FIELDS }; /* initial field values, converted to register values */ struct bq25890_init_data { u8 ichg; /* charge current */ u8 vreg; /* regulation voltage */ u8 iterm; /* termination current */ u8 iprechg; /* precharge current */ u8 sysvmin; /* minimum system voltage limit */ u8 boostv; /* boost regulation voltage */ u8 boosti; /* boost current limit */ u8 boostf; /* boost frequency */ u8 ilim_en; /* enable ILIM pin */ u8 treg; /* thermal regulation threshold */ u8 rbatcomp; /* IBAT sense resistor value */ u8 vclamp; /* IBAT compensation voltage limit */ }; struct bq25890_state { u8 online; u8 hiz; u8 chrg_status; u8 chrg_fault; u8 vsys_status; u8 boost_fault; u8 bat_fault; u8 ntc_fault; }; struct bq25890_device { struct i2c_client *client; struct device *dev; struct power_supply *charger; struct power_supply *secondary_chrg; struct power_supply_desc desc; char name[28]; /* "bq25890-charger-%d" */ int id; struct usb_phy *usb_phy; struct notifier_block usb_nb; struct work_struct usb_work; struct delayed_work pump_express_work; unsigned long usb_event; struct regmap *rmap; struct regmap_field *rmap_fields[F_MAX_FIELDS]; bool skip_reset; bool read_back_init_data; bool force_hiz; u32 pump_express_vbus_max; u32 iinlim_percentage; enum bq25890_chip_version chip_version; struct bq25890_init_data init_data; struct bq25890_state state; struct mutex lock; /* protect state data */ }; static DEFINE_IDR(bq25890_id); static DEFINE_MUTEX(bq25890_id_mutex); static const struct regmap_range bq25890_readonly_reg_ranges[] = { regmap_reg_range(0x0b, 0x0c), regmap_reg_range(0x0e, 0x13), }; static const struct regmap_access_table bq25890_writeable_regs = { .no_ranges = bq25890_readonly_reg_ranges, .n_no_ranges = ARRAY_SIZE(bq25890_readonly_reg_ranges), }; static const struct regmap_range bq25890_volatile_reg_ranges[] = { regmap_reg_range(0x00, 0x00), regmap_reg_range(0x02, 0x02), regmap_reg_range(0x09, 0x09), regmap_reg_range(0x0b, 0x14), }; static const struct regmap_access_table bq25890_volatile_regs = { .yes_ranges = bq25890_volatile_reg_ranges, .n_yes_ranges = ARRAY_SIZE(bq25890_volatile_reg_ranges), }; static const struct regmap_config bq25890_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x14, .cache_type = REGCACHE_RBTREE, .wr_table = &bq25890_writeable_regs, .volatile_table = &bq25890_volatile_regs, }; static const struct reg_field bq25890_reg_fields[] = { /* REG00 */ [F_EN_HIZ] = REG_FIELD(0x00, 7, 7), [F_EN_ILIM] = REG_FIELD(0x00, 6, 6), [F_IINLIM] = REG_FIELD(0x00, 0, 5), /* REG01 */ [F_BHOT] = REG_FIELD(0x01, 6, 7), [F_BCOLD] = REG_FIELD(0x01, 5, 5), [F_VINDPM_OFS] = REG_FIELD(0x01, 0, 4), /* REG02 */ [F_CONV_START] = REG_FIELD(0x02, 7, 7), [F_CONV_RATE] = REG_FIELD(0x02, 6, 6), [F_BOOSTF] = REG_FIELD(0x02, 5, 5), [F_ICO_EN] = REG_FIELD(0x02, 4, 4), [F_HVDCP_EN] = REG_FIELD(0x02, 3, 3), // reserved on BQ25896 [F_MAXC_EN] = REG_FIELD(0x02, 2, 2), // reserved on BQ25896 [F_FORCE_DPM] = REG_FIELD(0x02, 1, 1), [F_AUTO_DPDM_EN] = REG_FIELD(0x02, 0, 0), /* REG03 */ [F_BAT_LOAD_EN] = REG_FIELD(0x03, 7, 7), [F_WD_RST] = REG_FIELD(0x03, 6, 6), [F_OTG_CFG] = REG_FIELD(0x03, 5, 5), [F_CHG_CFG] = REG_FIELD(0x03, 4, 4), [F_SYSVMIN] = REG_FIELD(0x03, 1, 3), [F_MIN_VBAT_SEL] = REG_FIELD(0x03, 0, 0), // BQ25896 only /* REG04 */ [F_PUMPX_EN] = REG_FIELD(0x04, 7, 7), [F_ICHG] = REG_FIELD(0x04, 0, 6), /* REG05 */ [F_IPRECHG] = REG_FIELD(0x05, 4, 7), [F_ITERM] = REG_FIELD(0x05, 0, 3), /* REG06 */ [F_VREG] = REG_FIELD(0x06, 2, 7), [F_BATLOWV] = REG_FIELD(0x06, 1, 1), [F_VRECHG] = REG_FIELD(0x06, 0, 0), /* REG07 */ [F_TERM_EN] = REG_FIELD(0x07, 7, 7), [F_STAT_DIS] = REG_FIELD(0x07, 6, 6), [F_WD] = REG_FIELD(0x07, 4, 5), [F_TMR_EN] = REG_FIELD(0x07, 3, 3), [F_CHG_TMR] = REG_FIELD(0x07, 1, 2), [F_JEITA_ISET] = REG_FIELD(0x07, 0, 0), // reserved on BQ25895 /* REG08 */ [F_BATCMP] = REG_FIELD(0x08, 5, 7), [F_VCLAMP] = REG_FIELD(0x08, 2, 4), [F_TREG] = REG_FIELD(0x08, 0, 1), /* REG09 */ [F_FORCE_ICO] = REG_FIELD(0x09, 7, 7), [F_TMR2X_EN] = REG_FIELD(0x09, 6, 6), [F_BATFET_DIS] = REG_FIELD(0x09, 5, 5), [F_JEITA_VSET] = REG_FIELD(0x09, 4, 4), // reserved on BQ25895 [F_BATFET_DLY] = REG_FIELD(0x09, 3, 3), [F_BATFET_RST_EN] = REG_FIELD(0x09, 2, 2), [F_PUMPX_UP] = REG_FIELD(0x09, 1, 1), [F_PUMPX_DN] = REG_FIELD(0x09, 0, 0), /* REG0A */ [F_BOOSTV] = REG_FIELD(0x0A, 4, 7), [F_BOOSTI] = REG_FIELD(0x0A, 0, 2), // reserved on BQ25895 [F_PFM_OTG_DIS] = REG_FIELD(0x0A, 3, 3), // BQ25896 only /* REG0B */ [F_VBUS_STAT] = REG_FIELD(0x0B, 5, 7), [F_CHG_STAT] = REG_FIELD(0x0B, 3, 4), [F_PG_STAT] = REG_FIELD(0x0B, 2, 2), [F_SDP_STAT] = REG_FIELD(0x0B, 1, 1), // reserved on BQ25896 [F_VSYS_STAT] = REG_FIELD(0x0B, 0, 0), /* REG0C */ [F_WD_FAULT] = REG_FIELD(0x0C, 7, 7), [F_BOOST_FAULT] = REG_FIELD(0x0C, 6, 6), [F_CHG_FAULT] = REG_FIELD(0x0C, 4, 5), [F_BAT_FAULT] = REG_FIELD(0x0C, 3, 3), [F_NTC_FAULT] = REG_FIELD(0x0C, 0, 2), /* REG0D */ [F_FORCE_VINDPM] = REG_FIELD(0x0D, 7, 7), [F_VINDPM] = REG_FIELD(0x0D, 0, 6), /* REG0E */ [F_THERM_STAT] = REG_FIELD(0x0E, 7, 7), [F_BATV] = REG_FIELD(0x0E, 0, 6), /* REG0F */ [F_SYSV] = REG_FIELD(0x0F, 0, 6), /* REG10 */ [F_TSPCT] = REG_FIELD(0x10, 0, 6), /* REG11 */ [F_VBUS_GD] = REG_FIELD(0x11, 7, 7), [F_VBUSV] = REG_FIELD(0x11, 0, 6), /* REG12 */ [F_ICHGR] = REG_FIELD(0x12, 0, 6), /* REG13 */ [F_VDPM_STAT] = REG_FIELD(0x13, 7, 7), [F_IDPM_STAT] = REG_FIELD(0x13, 6, 6), [F_IDPM_LIM] = REG_FIELD(0x13, 0, 5), /* REG14 */ [F_REG_RST] = REG_FIELD(0x14, 7, 7), [F_ICO_OPTIMIZED] = REG_FIELD(0x14, 6, 6), [F_PN] = REG_FIELD(0x14, 3, 5), [F_TS_PROFILE] = REG_FIELD(0x14, 2, 2), [F_DEV_REV] = REG_FIELD(0x14, 0, 1) }; /* * Most of the val -> idx conversions can be computed, given the minimum, * maximum and the step between values. For the rest of conversions, we use * lookup tables. */ enum bq25890_table_ids { /* range tables */ TBL_ICHG, TBL_ITERM, TBL_IINLIM, TBL_VREG, TBL_BOOSTV, TBL_SYSVMIN, TBL_VBUSV, TBL_VBATCOMP, TBL_RBATCOMP, /* lookup tables */ TBL_TREG, TBL_BOOSTI, TBL_TSPCT, }; /* Thermal Regulation Threshold lookup table, in degrees Celsius */ static const u32 bq25890_treg_tbl[] = { 60, 80, 100, 120 }; #define BQ25890_TREG_TBL_SIZE ARRAY_SIZE(bq25890_treg_tbl) /* Boost mode current limit lookup table, in uA */ static const u32 bq25890_boosti_tbl[] = { 500000, 700000, 1100000, 1300000, 1600000, 1800000, 2100000, 2400000 }; #define BQ25890_BOOSTI_TBL_SIZE ARRAY_SIZE(bq25890_boosti_tbl) /* NTC 10K temperature lookup table in tenths of a degree */ static const u32 bq25890_tspct_tbl[] = { 850, 840, 830, 820, 810, 800, 790, 780, 770, 760, 750, 740, 730, 720, 710, 700, 690, 685, 680, 675, 670, 660, 650, 645, 640, 630, 620, 615, 610, 600, 590, 585, 580, 570, 565, 560, 550, 540, 535, 530, 520, 515, 510, 500, 495, 490, 480, 475, 470, 460, 455, 450, 440, 435, 430, 425, 420, 410, 405, 400, 390, 385, 380, 370, 365, 360, 355, 350, 340, 335, 330, 320, 310, 305, 300, 290, 285, 280, 275, 270, 260, 250, 245, 240, 230, 225, 220, 210, 205, 200, 190, 180, 175, 170, 160, 150, 145, 140, 130, 120, 115, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, -10, -20, -30, -40, -60, -70, -80, -90, -10, -120, -140, -150, -170, -190, -210, }; #define BQ25890_TSPCT_TBL_SIZE ARRAY_SIZE(bq25890_tspct_tbl) struct bq25890_range { u32 min; u32 max; u32 step; }; struct bq25890_lookup { const u32 *tbl; u32 size; }; static const union { struct bq25890_range rt; struct bq25890_lookup lt; } bq25890_tables[] = { /* range tables */ /* TODO: BQ25896 has max ICHG 3008 mA */ [TBL_ICHG] = { .rt = {0, 5056000, 64000} }, /* uA */ [TBL_ITERM] = { .rt = {64000, 1024000, 64000} }, /* uA */ [TBL_IINLIM] = { .rt = {100000, 3250000, 50000} }, /* uA */ [TBL_VREG] = { .rt = {3840000, 4608000, 16000} }, /* uV */ [TBL_BOOSTV] = { .rt = {4550000, 5510000, 64000} }, /* uV */ [TBL_SYSVMIN] = { .rt = {3000000, 3700000, 100000} }, /* uV */ [TBL_VBUSV] = { .rt = {2600000, 15300000, 100000} }, /* uV */ [TBL_VBATCOMP] = { .rt = {0, 224000, 32000} }, /* uV */ [TBL_RBATCOMP] = { .rt = {0, 140000, 20000} }, /* uOhm */ /* lookup tables */ [TBL_TREG] = { .lt = {bq25890_treg_tbl, BQ25890_TREG_TBL_SIZE} }, [TBL_BOOSTI] = { .lt = {bq25890_boosti_tbl, BQ25890_BOOSTI_TBL_SIZE} }, [TBL_TSPCT] = { .lt = {bq25890_tspct_tbl, BQ25890_TSPCT_TBL_SIZE} } }; static int bq25890_field_read(struct bq25890_device *bq, enum bq25890_fields field_id) { int ret; int val; ret = regmap_field_read(bq->rmap_fields[field_id], &val); if (ret < 0) return ret; return val; } static int bq25890_field_write(struct bq25890_device *bq, enum bq25890_fields field_id, u8 val) { return regmap_field_write(bq->rmap_fields[field_id], val); } static u8 bq25890_find_idx(u32 value, enum bq25890_table_ids id) { u8 idx; if (id >= TBL_TREG) { const u32 *tbl = bq25890_tables[id].lt.tbl; u32 tbl_size = bq25890_tables[id].lt.size; for (idx = 1; idx < tbl_size && tbl[idx] <= value; idx++) ; } else { const struct bq25890_range *rtbl = &bq25890_tables[id].rt; u8 rtbl_size; rtbl_size = (rtbl->max - rtbl->min) / rtbl->step + 1; for (idx = 1; idx < rtbl_size && (idx * rtbl->step + rtbl->min <= value); idx++) ; } return idx - 1; } static u32 bq25890_find_val(u8 idx, enum bq25890_table_ids id) { const struct bq25890_range *rtbl; /* lookup table? */ if (id >= TBL_TREG) return bq25890_tables[id].lt.tbl[idx]; /* range table */ rtbl = &bq25890_tables[id].rt; return (rtbl->min + idx * rtbl->step); } enum bq25890_status { STATUS_NOT_CHARGING, STATUS_PRE_CHARGING, STATUS_FAST_CHARGING, STATUS_TERMINATION_DONE, }; enum bq25890_chrg_fault { CHRG_FAULT_NORMAL, CHRG_FAULT_INPUT, CHRG_FAULT_THERMAL_SHUTDOWN, CHRG_FAULT_TIMER_EXPIRED, }; enum bq25890_ntc_fault { NTC_FAULT_NORMAL = 0, NTC_FAULT_WARM = 2, NTC_FAULT_COOL = 3, NTC_FAULT_COLD = 5, NTC_FAULT_HOT = 6, }; static bool bq25890_is_adc_property(enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_TEMP: return true; default: return false; } } static irqreturn_t __bq25890_handle_irq(struct bq25890_device *bq); static int bq25890_get_vbus_voltage(struct bq25890_device *bq) { int ret; ret = bq25890_field_read(bq, F_VBUSV); if (ret < 0) return ret; return bq25890_find_val(ret, TBL_VBUSV); } static void bq25890_update_state(struct bq25890_device *bq, enum power_supply_property psp, struct bq25890_state *state) { bool do_adc_conv; int ret; mutex_lock(&bq->lock); /* update state in case we lost an interrupt */ __bq25890_handle_irq(bq); *state = bq->state; do_adc_conv = (!state->online || state->hiz) && bq25890_is_adc_property(psp); if (do_adc_conv) bq25890_field_write(bq, F_CONV_START, 1); mutex_unlock(&bq->lock); if (do_adc_conv) regmap_field_read_poll_timeout(bq->rmap_fields[F_CONV_START], ret, !ret, 25000, 1000000); } static int bq25890_power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct bq25890_device *bq = power_supply_get_drvdata(psy); struct bq25890_state state; int ret; bq25890_update_state(bq, psp, &state); switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (!state.online || state.hiz) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (state.chrg_status == STATUS_NOT_CHARGING) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (state.chrg_status == STATUS_PRE_CHARGING || state.chrg_status == STATUS_FAST_CHARGING) val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (state.chrg_status == STATUS_TERMINATION_DONE) val->intval = POWER_SUPPLY_STATUS_FULL; else val->intval = POWER_SUPPLY_STATUS_UNKNOWN; break; case POWER_SUPPLY_PROP_CHARGE_TYPE: if (!state.online || state.hiz || state.chrg_status == STATUS_NOT_CHARGING || state.chrg_status == STATUS_TERMINATION_DONE) val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; else if (state.chrg_status == STATUS_PRE_CHARGING) val->intval = POWER_SUPPLY_CHARGE_TYPE_STANDARD; else if (state.chrg_status == STATUS_FAST_CHARGING) val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; else /* unreachable */ val->intval = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BQ25890_MANUFACTURER; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = bq25890_chip_name[bq->chip_version]; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = state.online && !state.hiz; break; case POWER_SUPPLY_PROP_HEALTH: if (!state.chrg_fault && !state.bat_fault && !state.boost_fault) val->intval = POWER_SUPPLY_HEALTH_GOOD; else if (state.bat_fault) val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else if (state.chrg_fault == CHRG_FAULT_TIMER_EXPIRED) val->intval = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; else if (state.chrg_fault == CHRG_FAULT_THERMAL_SHUTDOWN) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; break; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: val->intval = bq25890_find_val(bq->init_data.iprechg, TBL_ITERM); break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: val->intval = bq25890_find_val(bq->init_data.iterm, TBL_ITERM); break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = bq25890_field_read(bq, F_IINLIM); if (ret < 0) return ret; val->intval = bq25890_find_val(ret, TBL_IINLIM); break; case POWER_SUPPLY_PROP_CURRENT_NOW: /* I_BAT now */ /* * This is ADC-sampled immediate charge current supplied * from charger to battery. The property name is confusing, * for clarification refer to: * Documentation/ABI/testing/sysfs-class-power * /sys/class/power_supply/<supply_name>/current_now */ ret = bq25890_field_read(bq, F_ICHGR); /* read measured value */ if (ret < 0) return ret; /* converted_val = ADC_val * 50mA (table 10.3.19) */ val->intval = ret * -50000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: /* I_BAT user limit */ /* * This is user-configured constant charge current supplied * from charger to battery in first phase of charging, when * battery voltage is below constant charge voltage. * * This value reflects the current hardware setting. * * The POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX is the * maximum value of this property. */ ret = bq25890_field_read(bq, F_ICHG); if (ret < 0) return ret; val->intval = bq25890_find_val(ret, TBL_ICHG); /* When temperature is too low, charge current is decreased */ if (bq->state.ntc_fault == NTC_FAULT_COOL) { ret = bq25890_field_read(bq, F_JEITA_ISET); if (ret < 0) return ret; if (ret) val->intval /= 5; else val->intval /= 2; } break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: /* I_BAT max */ /* * This is maximum allowed constant charge current supplied * from charger to battery in first phase of charging, when * battery voltage is below constant charge voltage. * * This value is constant for each battery and set from DT. */ val->intval = bq25890_find_val(bq->init_data.ichg, TBL_ICHG); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: /* V_BAT now */ /* * This is ADC-sampled immediate charge voltage supplied * from charger to battery. The property name is confusing, * for clarification refer to: * Documentation/ABI/testing/sysfs-class-power * /sys/class/power_supply/<supply_name>/voltage_now */ ret = bq25890_field_read(bq, F_BATV); /* read measured value */ if (ret < 0) return ret; /* converted_val = 2.304V + ADC_val * 20mV (table 10.3.15) */ val->intval = 2304000 + ret * 20000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: /* V_BAT user limit */ /* * This is user-configured constant charge voltage supplied * from charger to battery in second phase of charging, when * battery voltage reached constant charge voltage. * * This value reflects the current hardware setting. * * The POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX is the * maximum value of this property. */ ret = bq25890_field_read(bq, F_VREG); if (ret < 0) return ret; val->intval = bq25890_find_val(ret, TBL_VREG); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: /* V_BAT max */ /* * This is maximum allowed constant charge voltage supplied * from charger to battery in second phase of charging, when * battery voltage reached constant charge voltage. * * This value is constant for each battery and set from DT. */ val->intval = bq25890_find_val(bq->init_data.vreg, TBL_VREG); break; case POWER_SUPPLY_PROP_TEMP: ret = bq25890_field_read(bq, F_TSPCT); if (ret < 0) return ret; /* convert TS percentage into rough temperature */ val->intval = bq25890_find_val(ret, TBL_TSPCT); break; default: return -EINVAL; } return 0; } static int bq25890_power_supply_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct bq25890_device *bq = power_supply_get_drvdata(psy); struct bq25890_state state; int maxval, ret; u8 lval; switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: maxval = bq25890_find_val(bq->init_data.ichg, TBL_ICHG); lval = bq25890_find_idx(min(val->intval, maxval), TBL_ICHG); return bq25890_field_write(bq, F_ICHG, lval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: maxval = bq25890_find_val(bq->init_data.vreg, TBL_VREG); lval = bq25890_find_idx(min(val->intval, maxval), TBL_VREG); return bq25890_field_write(bq, F_VREG, lval); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: lval = bq25890_find_idx(val->intval, TBL_IINLIM); return bq25890_field_write(bq, F_IINLIM, lval); case POWER_SUPPLY_PROP_ONLINE: ret = bq25890_field_write(bq, F_EN_HIZ, !val->intval); if (!ret) bq->force_hiz = !val->intval; bq25890_update_state(bq, psp, &state); return ret; default: return -EINVAL; } } static int bq25890_power_supply_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: case POWER_SUPPLY_PROP_ONLINE: return true; default: return false; } } /* * If there are multiple chargers the maximum current the external power-supply * can deliver needs to be divided over the chargers. This is done according * to the bq->iinlim_percentage setting. */ static int bq25890_charger_get_scaled_iinlim_regval(struct bq25890_device *bq, int iinlim_ua) { iinlim_ua = iinlim_ua * bq->iinlim_percentage / 100; return bq25890_find_idx(iinlim_ua, TBL_IINLIM); } /* On the BQ25892 try to get charger-type info from our supplier */ static void bq25890_charger_external_power_changed(struct power_supply *psy) { struct bq25890_device *bq = power_supply_get_drvdata(psy); union power_supply_propval val; int input_current_limit, ret; if (bq->chip_version != BQ25892) return; ret = power_supply_get_property_from_supplier(psy, POWER_SUPPLY_PROP_USB_TYPE, &val); if (ret) return; switch (val.intval) { case POWER_SUPPLY_USB_TYPE_DCP: input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 2000000); if (bq->pump_express_vbus_max) { queue_delayed_work(system_power_efficient_wq, &bq->pump_express_work, PUMP_EXPRESS_START_DELAY); } break; case POWER_SUPPLY_USB_TYPE_CDP: case POWER_SUPPLY_USB_TYPE_ACA: input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 1500000); break; case POWER_SUPPLY_USB_TYPE_SDP: default: input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 500000); } bq25890_field_write(bq, F_IINLIM, input_current_limit); power_supply_changed(psy); } static int bq25890_get_chip_state(struct bq25890_device *bq, struct bq25890_state *state) { int i, ret; struct { enum bq25890_fields id; u8 *data; } state_fields[] = { {F_CHG_STAT, &state->chrg_status}, {F_PG_STAT, &state->online}, {F_EN_HIZ, &state->hiz}, {F_VSYS_STAT, &state->vsys_status}, {F_BOOST_FAULT, &state->boost_fault}, {F_BAT_FAULT, &state->bat_fault}, {F_CHG_FAULT, &state->chrg_fault}, {F_NTC_FAULT, &state->ntc_fault} }; for (i = 0; i < ARRAY_SIZE(state_fields); i++) { ret = bq25890_field_read(bq, state_fields[i].id); if (ret < 0) return ret; *state_fields[i].data = ret; } dev_dbg(bq->dev, "S:CHG/PG/HIZ/VSYS=%d/%d/%d/%d, F:CHG/BOOST/BAT/NTC=%d/%d/%d/%d\n", state->chrg_status, state->online, state->hiz, state->vsys_status, state->chrg_fault, state->boost_fault, state->bat_fault, state->ntc_fault); return 0; } static irqreturn_t __bq25890_handle_irq(struct bq25890_device *bq) { bool adc_conv_rate, new_adc_conv_rate; struct bq25890_state new_state; int ret; ret = bq25890_get_chip_state(bq, &new_state); if (ret < 0) return IRQ_NONE; if (!memcmp(&bq->state, &new_state, sizeof(new_state))) return IRQ_NONE; /* * Restore HiZ bit in case it was set by user. The chip does not retain * this bit on cable replug, hence the bit must be reset manually here. */ if (new_state.online && !bq->state.online && bq->force_hiz) { ret = bq25890_field_write(bq, F_EN_HIZ, bq->force_hiz); if (ret < 0) goto error; new_state.hiz = 1; } /* Should period ADC sampling be enabled? */ adc_conv_rate = bq->state.online && !bq->state.hiz; new_adc_conv_rate = new_state.online && !new_state.hiz; if (new_adc_conv_rate != adc_conv_rate) { ret = bq25890_field_write(bq, F_CONV_RATE, new_adc_conv_rate); if (ret < 0) goto error; } bq->state = new_state; power_supply_changed(bq->charger); return IRQ_HANDLED; error: dev_err(bq->dev, "Error communicating with the chip: %pe\n", ERR_PTR(ret)); return IRQ_HANDLED; } static irqreturn_t bq25890_irq_handler_thread(int irq, void *private) { struct bq25890_device *bq = private; irqreturn_t ret; mutex_lock(&bq->lock); ret = __bq25890_handle_irq(bq); mutex_unlock(&bq->lock); return ret; } static int bq25890_chip_reset(struct bq25890_device *bq) { int ret; int rst_check_counter = 10; ret = bq25890_field_write(bq, F_REG_RST, 1); if (ret < 0) return ret; do { ret = bq25890_field_read(bq, F_REG_RST); if (ret < 0) return ret; usleep_range(5, 10); } while (ret == 1 && --rst_check_counter); if (!rst_check_counter) return -ETIMEDOUT; return 0; } static int bq25890_rw_init_data(struct bq25890_device *bq) { bool write = !bq->read_back_init_data; int ret; int i; const struct { enum bq25890_fields id; u8 *value; } init_data[] = { {F_ICHG, &bq->init_data.ichg}, {F_VREG, &bq->init_data.vreg}, {F_ITERM, &bq->init_data.iterm}, {F_IPRECHG, &bq->init_data.iprechg}, {F_SYSVMIN, &bq->init_data.sysvmin}, {F_BOOSTV, &bq->init_data.boostv}, {F_BOOSTI, &bq->init_data.boosti}, {F_BOOSTF, &bq->init_data.boostf}, {F_EN_ILIM, &bq->init_data.ilim_en}, {F_TREG, &bq->init_data.treg}, {F_BATCMP, &bq->init_data.rbatcomp}, {F_VCLAMP, &bq->init_data.vclamp}, }; for (i = 0; i < ARRAY_SIZE(init_data); i++) { if (write) { ret = bq25890_field_write(bq, init_data[i].id, *init_data[i].value); } else { ret = bq25890_field_read(bq, init_data[i].id); if (ret >= 0) *init_data[i].value = ret; } if (ret < 0) { dev_dbg(bq->dev, "Accessing init data failed %d\n", ret); return ret; } } return 0; } static int bq25890_hw_init(struct bq25890_device *bq) { int ret; if (!bq->skip_reset) { ret = bq25890_chip_reset(bq); if (ret < 0) { dev_dbg(bq->dev, "Reset failed %d\n", ret); return ret; } } else { /* * Ensure charging is enabled, on some boards where the fw * takes care of initalizition F_CHG_CFG is set to 0 before * handing control over to the OS. */ ret = bq25890_field_write(bq, F_CHG_CFG, 1); if (ret < 0) { dev_dbg(bq->dev, "Enabling charging failed %d\n", ret); return ret; } } /* disable watchdog */ ret = bq25890_field_write(bq, F_WD, 0); if (ret < 0) { dev_dbg(bq->dev, "Disabling watchdog failed %d\n", ret); return ret; } /* initialize currents/voltages and other parameters */ ret = bq25890_rw_init_data(bq); if (ret) return ret; ret = bq25890_get_chip_state(bq, &bq->state); if (ret < 0) { dev_dbg(bq->dev, "Get state failed %d\n", ret); return ret; } /* Configure ADC for continuous conversions when charging */ ret = bq25890_field_write(bq, F_CONV_RATE, bq->state.online && !bq->state.hiz); if (ret < 0) { dev_dbg(bq->dev, "Config ADC failed %d\n", ret); return ret; } return 0; } static const enum power_supply_property bq25890_power_supply_props[] = { POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_TEMP, }; static char *bq25890_charger_supplied_to[] = { "main-battery", }; static const struct power_supply_desc bq25890_power_supply_desc = { .type = POWER_SUPPLY_TYPE_USB, .properties = bq25890_power_supply_props, .num_properties = ARRAY_SIZE(bq25890_power_supply_props), .get_property = bq25890_power_supply_get_property, .set_property = bq25890_power_supply_set_property, .property_is_writeable = bq25890_power_supply_property_is_writeable, .external_power_changed = bq25890_charger_external_power_changed, }; static int bq25890_power_supply_init(struct bq25890_device *bq) { struct power_supply_config psy_cfg = { .drv_data = bq, }; /* Get ID for the device */ mutex_lock(&bq25890_id_mutex); bq->id = idr_alloc(&bq25890_id, bq, 0, 0, GFP_KERNEL); mutex_unlock(&bq25890_id_mutex); if (bq->id < 0) return bq->id; snprintf(bq->name, sizeof(bq->name), "bq25890-charger-%d", bq->id); bq->desc = bq25890_power_supply_desc; bq->desc.name = bq->name; psy_cfg.supplied_to = bq25890_charger_supplied_to; psy_cfg.num_supplicants = ARRAY_SIZE(bq25890_charger_supplied_to); bq->charger = devm_power_supply_register(bq->dev, &bq->desc, &psy_cfg); return PTR_ERR_OR_ZERO(bq->charger); } static int bq25890_set_otg_cfg(struct bq25890_device *bq, u8 val) { int ret; ret = bq25890_field_write(bq, F_OTG_CFG, val); if (ret < 0) dev_err(bq->dev, "Error switching to boost/charger mode: %d\n", ret); return ret; } static void bq25890_pump_express_work(struct work_struct *data) { struct bq25890_device *bq = container_of(data, struct bq25890_device, pump_express_work.work); union power_supply_propval value; int voltage, i, ret; dev_dbg(bq->dev, "Start to request input voltage increasing\n"); /* If there is a second charger put in Hi-Z mode */ if (bq->secondary_chrg) { value.intval = 0; power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &value); } /* Enable current pulse voltage control protocol */ ret = bq25890_field_write(bq, F_PUMPX_EN, 1); if (ret < 0) goto error_print; for (i = 0; i < PUMP_EXPRESS_MAX_TRIES; i++) { voltage = bq25890_get_vbus_voltage(bq); if (voltage < 0) goto error_print; dev_dbg(bq->dev, "input voltage = %d uV\n", voltage); if ((voltage + PUMP_EXPRESS_VBUS_MARGIN_uV) > bq->pump_express_vbus_max) break; ret = bq25890_field_write(bq, F_PUMPX_UP, 1); if (ret < 0) goto error_print; /* Note a single PUMPX up pulse-sequence takes 2.1s */ ret = regmap_field_read_poll_timeout(bq->rmap_fields[F_PUMPX_UP], ret, !ret, 100000, 3000000); if (ret < 0) goto error_print; /* Make sure ADC has sampled Vbus before checking again */ msleep(1000); } bq25890_field_write(bq, F_PUMPX_EN, 0); if (bq->secondary_chrg) { value.intval = 1; power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &value); } dev_info(bq->dev, "Hi-voltage charging requested, input voltage is %d mV\n", voltage); power_supply_changed(bq->charger); return; error_print: bq25890_field_write(bq, F_PUMPX_EN, 0); dev_err(bq->dev, "Failed to request hi-voltage charging\n"); } static void bq25890_usb_work(struct work_struct *data) { int ret; struct bq25890_device *bq = container_of(data, struct bq25890_device, usb_work); switch (bq->usb_event) { case USB_EVENT_ID: /* Enable boost mode */ bq25890_set_otg_cfg(bq, 1); break; case USB_EVENT_NONE: /* Disable boost mode */ ret = bq25890_set_otg_cfg(bq, 0); if (ret == 0) power_supply_changed(bq->charger); break; } } static int bq25890_usb_notifier(struct notifier_block *nb, unsigned long val, void *priv) { struct bq25890_device *bq = container_of(nb, struct bq25890_device, usb_nb); bq->usb_event = val; queue_work(system_power_efficient_wq, &bq->usb_work); return NOTIFY_OK; } #ifdef CONFIG_REGULATOR static int bq25890_vbus_enable(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); union power_supply_propval val = { .intval = 0, }; /* * When enabling 5V boost / Vbus output, we need to put the secondary * charger in Hi-Z mode to avoid it trying to charge the secondary * battery from the 5V boost output. */ if (bq->secondary_chrg) power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &val); return bq25890_set_otg_cfg(bq, 1); } static int bq25890_vbus_disable(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); union power_supply_propval val = { .intval = 1, }; int ret; ret = bq25890_set_otg_cfg(bq, 0); if (ret) return ret; if (bq->secondary_chrg) power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &val); return 0; } static int bq25890_vbus_is_enabled(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); return bq25890_field_read(bq, F_OTG_CFG); } static int bq25890_vbus_get_voltage(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); return bq25890_get_vbus_voltage(bq); } static int bq25890_vsys_get_voltage(struct regulator_dev *rdev) { struct bq25890_device *bq = rdev_get_drvdata(rdev); int ret; /* Should be some output voltage ? */ ret = bq25890_field_read(bq, F_SYSV); /* read measured value */ if (ret < 0) return ret; /* converted_val = 2.304V + ADC_val * 20mV (table 10.3.15) */ return 2304000 + ret * 20000; } static const struct regulator_ops bq25890_vbus_ops = { .enable = bq25890_vbus_enable, .disable = bq25890_vbus_disable, .is_enabled = bq25890_vbus_is_enabled, .get_voltage = bq25890_vbus_get_voltage, }; static const struct regulator_desc bq25890_vbus_desc = { .name = "usb_otg_vbus", .of_match = "usb-otg-vbus", .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .ops = &bq25890_vbus_ops, }; static const struct regulator_ops bq25890_vsys_ops = { .get_voltage = bq25890_vsys_get_voltage, }; static const struct regulator_desc bq25890_vsys_desc = { .name = "vsys", .of_match = "vsys", .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .ops = &bq25890_vsys_ops, }; static int bq25890_register_regulator(struct bq25890_device *bq) { struct bq25890_platform_data *pdata = dev_get_platdata(bq->dev); struct regulator_config cfg = { .dev = bq->dev, .driver_data = bq, }; struct regulator_dev *reg; if (pdata) cfg.init_data = pdata->regulator_init_data; reg = devm_regulator_register(bq->dev, &bq25890_vbus_desc, &cfg); if (IS_ERR(reg)) { return dev_err_probe(bq->dev, PTR_ERR(reg), "registering vbus regulator"); } /* pdata->regulator_init_data is for vbus only */ cfg.init_data = NULL; reg = devm_regulator_register(bq->dev, &bq25890_vsys_desc, &cfg); if (IS_ERR(reg)) { return dev_err_probe(bq->dev, PTR_ERR(reg), "registering vsys regulator"); } return 0; } #else static inline int bq25890_register_regulator(struct bq25890_device *bq) { return 0; } #endif static int bq25890_get_chip_version(struct bq25890_device *bq) { int id, rev; id = bq25890_field_read(bq, F_PN); if (id < 0) { dev_err(bq->dev, "Cannot read chip ID: %d\n", id); return id; } rev = bq25890_field_read(bq, F_DEV_REV); if (rev < 0) { dev_err(bq->dev, "Cannot read chip revision: %d\n", rev); return rev; } switch (id) { case BQ25890_ID: bq->chip_version = BQ25890; break; /* BQ25892 and BQ25896 share same ID 0 */ case BQ25896_ID: switch (rev) { case 2: bq->chip_version = BQ25896; break; case 1: bq->chip_version = BQ25892; break; default: dev_err(bq->dev, "Unknown device revision %d, assume BQ25892\n", rev); bq->chip_version = BQ25892; } break; case BQ25895_ID: bq->chip_version = BQ25895; break; default: dev_err(bq->dev, "Unknown chip ID %d\n", id); return -ENODEV; } return 0; } static int bq25890_irq_probe(struct bq25890_device *bq) { struct gpio_desc *irq; irq = devm_gpiod_get(bq->dev, BQ25890_IRQ_PIN, GPIOD_IN); if (IS_ERR(irq)) return dev_err_probe(bq->dev, PTR_ERR(irq), "Could not probe irq pin.\n"); return gpiod_to_irq(irq); } static int bq25890_fw_read_u32_props(struct bq25890_device *bq) { int ret; u32 property; int i; struct bq25890_init_data *init = &bq->init_data; struct { char *name; bool optional; enum bq25890_table_ids tbl_id; u8 *conv_data; /* holds converted value from given property */ } props[] = { /* required properties */ {"ti,charge-current", false, TBL_ICHG, &init->ichg}, {"ti,battery-regulation-voltage", false, TBL_VREG, &init->vreg}, {"ti,termination-current", false, TBL_ITERM, &init->iterm}, {"ti,precharge-current", false, TBL_ITERM, &init->iprechg}, {"ti,minimum-sys-voltage", false, TBL_SYSVMIN, &init->sysvmin}, {"ti,boost-voltage", false, TBL_BOOSTV, &init->boostv}, {"ti,boost-max-current", false, TBL_BOOSTI, &init->boosti}, /* optional properties */ {"ti,thermal-regulation-threshold", true, TBL_TREG, &init->treg}, {"ti,ibatcomp-micro-ohms", true, TBL_RBATCOMP, &init->rbatcomp}, {"ti,ibatcomp-clamp-microvolt", true, TBL_VBATCOMP, &init->vclamp}, }; /* initialize data for optional properties */ init->treg = 3; /* 120 degrees Celsius */ init->rbatcomp = init->vclamp = 0; /* IBAT compensation disabled */ for (i = 0; i < ARRAY_SIZE(props); i++) { ret = device_property_read_u32(bq->dev, props[i].name, &property); if (ret < 0) { if (props[i].optional) continue; dev_err(bq->dev, "Unable to read property %d %s\n", ret, props[i].name); return ret; } *props[i].conv_data = bq25890_find_idx(property, props[i].tbl_id); } return 0; } static int bq25890_fw_probe(struct bq25890_device *bq) { int ret; struct bq25890_init_data *init = &bq->init_data; const char *str; u32 val; ret = device_property_read_string(bq->dev, "linux,secondary-charger-name", &str); if (ret == 0) { bq->secondary_chrg = power_supply_get_by_name(str); if (!bq->secondary_chrg) return -EPROBE_DEFER; } /* Optional, left at 0 if property is not present */ device_property_read_u32(bq->dev, "linux,pump-express-vbus-max", &bq->pump_express_vbus_max); ret = device_property_read_u32(bq->dev, "linux,iinlim-percentage", &val); if (ret == 0) { if (val > 100) { dev_err(bq->dev, "Error linux,iinlim-percentage %u > 100\n", val); return -EINVAL; } bq->iinlim_percentage = val; } else { bq->iinlim_percentage = 100; } bq->skip_reset = device_property_read_bool(bq->dev, "linux,skip-reset"); bq->read_back_init_data = device_property_read_bool(bq->dev, "linux,read-back-settings"); if (bq->read_back_init_data) return 0; ret = bq25890_fw_read_u32_props(bq); if (ret < 0) return ret; init->ilim_en = device_property_read_bool(bq->dev, "ti,use-ilim-pin"); init->boostf = device_property_read_bool(bq->dev, "ti,boost-low-freq"); return 0; } static void bq25890_non_devm_cleanup(void *data) { struct bq25890_device *bq = data; cancel_delayed_work_sync(&bq->pump_express_work); if (bq->id >= 0) { mutex_lock(&bq25890_id_mutex); idr_remove(&bq25890_id, bq->id); mutex_unlock(&bq25890_id_mutex); } } static int bq25890_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct bq25890_device *bq; int ret; bq = devm_kzalloc(dev, sizeof(*bq), GFP_KERNEL); if (!bq) return -ENOMEM; bq->client = client; bq->dev = dev; bq->id = -1; mutex_init(&bq->lock); INIT_DELAYED_WORK(&bq->pump_express_work, bq25890_pump_express_work); bq->rmap = devm_regmap_init_i2c(client, &bq25890_regmap_config); if (IS_ERR(bq->rmap)) return dev_err_probe(dev, PTR_ERR(bq->rmap), "failed to allocate register map\n"); ret = devm_regmap_field_bulk_alloc(dev, bq->rmap, bq->rmap_fields, bq25890_reg_fields, F_MAX_FIELDS); if (ret) return ret; i2c_set_clientdata(client, bq); ret = bq25890_get_chip_version(bq); if (ret) { dev_err(dev, "Cannot read chip ID or unknown chip: %d\n", ret); return ret; } ret = bq25890_fw_probe(bq); if (ret < 0) return dev_err_probe(dev, ret, "reading device properties\n"); ret = bq25890_hw_init(bq); if (ret < 0) { dev_err(dev, "Cannot initialize the chip: %d\n", ret); return ret; } if (client->irq <= 0) client->irq = bq25890_irq_probe(bq); if (client->irq < 0) { dev_err(dev, "No irq resource found.\n"); return client->irq; } /* OTG reporting */ bq->usb_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); /* * This must be before bq25890_power_supply_init(), so that it runs * after devm unregisters the power_supply. */ ret = devm_add_action_or_reset(dev, bq25890_non_devm_cleanup, bq); if (ret) return ret; ret = bq25890_register_regulator(bq); if (ret) return ret; ret = bq25890_power_supply_init(bq); if (ret < 0) return dev_err_probe(dev, ret, "registering power supply\n"); ret = devm_request_threaded_irq(dev, client->irq, NULL, bq25890_irq_handler_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, BQ25890_IRQ_PIN, bq); if (ret) return ret; if (!IS_ERR_OR_NULL(bq->usb_phy)) { INIT_WORK(&bq->usb_work, bq25890_usb_work); bq->usb_nb.notifier_call = bq25890_usb_notifier; usb_register_notifier(bq->usb_phy, &bq->usb_nb); } return 0; } static void bq25890_remove(struct i2c_client *client) { struct bq25890_device *bq = i2c_get_clientdata(client); if (!IS_ERR_OR_NULL(bq->usb_phy)) { usb_unregister_notifier(bq->usb_phy, &bq->usb_nb); cancel_work_sync(&bq->usb_work); } if (!bq->skip_reset) { /* reset all registers to default values */ bq25890_chip_reset(bq); } } static void bq25890_shutdown(struct i2c_client *client) { struct bq25890_device *bq = i2c_get_clientdata(client); /* * TODO this if + return should probably be removed, but that would * introduce a function change for boards using the usb-phy framework. * This needs to be tested on such a board before making this change. */ if (!IS_ERR_OR_NULL(bq->usb_phy)) return; /* * Turn off the 5v Boost regulator which outputs Vbus to the device's * Micro-USB or Type-C USB port. Leaving this on drains power and * this avoids the PMIC on some device-models seeing this as Vbus * getting inserted after shutdown, causing the device to immediately * power-up again. */ bq25890_set_otg_cfg(bq, 0); } #ifdef CONFIG_PM_SLEEP static int bq25890_suspend(struct device *dev) { struct bq25890_device *bq = dev_get_drvdata(dev); /* * If charger is removed, while in suspend, make sure ADC is diabled * since it consumes slightly more power. */ return bq25890_field_write(bq, F_CONV_RATE, 0); } static int bq25890_resume(struct device *dev) { int ret; struct bq25890_device *bq = dev_get_drvdata(dev); mutex_lock(&bq->lock); ret = bq25890_get_chip_state(bq, &bq->state); if (ret < 0) goto unlock; /* Re-enable ADC only if charger is plugged in. */ if (bq->state.online) { ret = bq25890_field_write(bq, F_CONV_RATE, 1); if (ret < 0) goto unlock; } /* signal userspace, maybe state changed while suspended */ power_supply_changed(bq->charger); unlock: mutex_unlock(&bq->lock); return ret; } #endif static const struct dev_pm_ops bq25890_pm = { SET_SYSTEM_SLEEP_PM_OPS(bq25890_suspend, bq25890_resume) }; static const struct i2c_device_id bq25890_i2c_ids[] = { { "bq25890", 0 }, { "bq25892", 0 }, { "bq25895", 0 }, { "bq25896", 0 }, {}, }; MODULE_DEVICE_TABLE(i2c, bq25890_i2c_ids); static const struct of_device_id bq25890_of_match[] __maybe_unused = { { .compatible = "ti,bq25890", }, { .compatible = "ti,bq25892", }, { .compatible = "ti,bq25895", }, { .compatible = "ti,bq25896", }, { }, }; MODULE_DEVICE_TABLE(of, bq25890_of_match); #ifdef CONFIG_ACPI static const struct acpi_device_id bq25890_acpi_match[] = { {"BQ258900", 0}, {}, }; MODULE_DEVICE_TABLE(acpi, bq25890_acpi_match); #endif static struct i2c_driver bq25890_driver = { .driver = { .name = "bq25890-charger", .of_match_table = of_match_ptr(bq25890_of_match), .acpi_match_table = ACPI_PTR(bq25890_acpi_match), .pm = &bq25890_pm, }, .probe = bq25890_probe, .remove = bq25890_remove, .shutdown = bq25890_shutdown, .id_table = bq25890_i2c_ids, }; module_i2c_driver(bq25890_driver); MODULE_AUTHOR("Laurentiu Palcu <[email protected]>"); MODULE_DESCRIPTION("bq25890 charger driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/bq25890_charger.c
// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2021 Samuel Holland <[email protected]> #include <linux/i2c.h> #include <linux/module.h> #include <linux/power_supply.h> #include <linux/regmap.h> #define IP5XXX_SYS_CTL0 0x01 #define IP5XXX_SYS_CTL0_WLED_DET_EN BIT(4) #define IP5XXX_SYS_CTL0_WLED_EN BIT(3) #define IP5XXX_SYS_CTL0_BOOST_EN BIT(2) #define IP5XXX_SYS_CTL0_CHARGER_EN BIT(1) #define IP5XXX_SYS_CTL1 0x02 #define IP5XXX_SYS_CTL1_LIGHT_SHDN_EN BIT(1) #define IP5XXX_SYS_CTL1_LOAD_PWRUP_EN BIT(0) #define IP5XXX_SYS_CTL2 0x0c #define IP5XXX_SYS_CTL2_LIGHT_SHDN_TH GENMASK(7, 3) #define IP5XXX_SYS_CTL3 0x03 #define IP5XXX_SYS_CTL3_LONG_PRESS_TIME_SEL GENMASK(7, 6) #define IP5XXX_SYS_CTL3_BTN_SHDN_EN BIT(5) #define IP5XXX_SYS_CTL4 0x04 #define IP5XXX_SYS_CTL4_SHDN_TIME_SEL GENMASK(7, 6) #define IP5XXX_SYS_CTL4_VIN_PULLOUT_BOOST_EN BIT(5) #define IP5XXX_SYS_CTL5 0x07 #define IP5XXX_SYS_CTL5_NTC_DIS BIT(6) #define IP5XXX_SYS_CTL5_WLED_MODE_SEL BIT(1) #define IP5XXX_SYS_CTL5_BTN_SHDN_SEL BIT(0) #define IP5XXX_CHG_CTL1 0x22 #define IP5XXX_CHG_CTL1_BOOST_UVP_SEL GENMASK(3, 2) #define IP5XXX_CHG_CTL2 0x24 #define IP5XXX_CHG_CTL2_BAT_TYPE_SEL GENMASK(6, 5) #define IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_2V (0x0 << 5) #define IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_3V (0x1 << 5) #define IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_35V (0x2 << 5) #define IP5XXX_CHG_CTL2_CONST_VOLT_SEL GENMASK(2, 1) #define IP5XXX_CHG_CTL4 0x26 #define IP5XXX_CHG_CTL4_BAT_TYPE_SEL_EN BIT(6) #define IP5XXX_CHG_CTL4A 0x25 #define IP5XXX_CHG_CTL4A_CONST_CUR_SEL GENMASK(4, 0) #define IP5XXX_MFP_CTL0 0x51 #define IP5XXX_MFP_CTL1 0x52 #define IP5XXX_GPIO_CTL2 0x53 #define IP5XXX_GPIO_CTL2A 0x54 #define IP5XXX_GPIO_CTL3 0x55 #define IP5XXX_READ0 0x71 #define IP5XXX_READ0_CHG_STAT GENMASK(7, 5) #define IP5XXX_READ0_CHG_STAT_IDLE (0x0 << 5) #define IP5XXX_READ0_CHG_STAT_TRICKLE (0x1 << 5) #define IP5XXX_READ0_CHG_STAT_CONST_VOLT (0x2 << 5) #define IP5XXX_READ0_CHG_STAT_CONST_CUR (0x3 << 5) #define IP5XXX_READ0_CHG_STAT_CONST_VOLT_STOP (0x4 << 5) #define IP5XXX_READ0_CHG_STAT_FULL (0x5 << 5) #define IP5XXX_READ0_CHG_STAT_TIMEOUT (0x6 << 5) #define IP5XXX_READ0_CHG_OP BIT(4) #define IP5XXX_READ0_CHG_END BIT(3) #define IP5XXX_READ0_CONST_VOLT_TIMEOUT BIT(2) #define IP5XXX_READ0_CHG_TIMEOUT BIT(1) #define IP5XXX_READ0_TRICKLE_TIMEOUT BIT(0) #define IP5XXX_READ0_TIMEOUT GENMASK(2, 0) #define IP5XXX_READ1 0x72 #define IP5XXX_READ1_WLED_PRESENT BIT(7) #define IP5XXX_READ1_LIGHT_LOAD BIT(6) #define IP5XXX_READ1_VIN_OVERVOLT BIT(5) #define IP5XXX_READ2 0x77 #define IP5XXX_READ2_BTN_PRESS BIT(3) #define IP5XXX_READ2_BTN_LONG_PRESS BIT(1) #define IP5XXX_READ2_BTN_SHORT_PRESS BIT(0) #define IP5XXX_BATVADC_DAT0 0xa2 #define IP5XXX_BATVADC_DAT1 0xa3 #define IP5XXX_BATIADC_DAT0 0xa4 #define IP5XXX_BATIADC_DAT1 0xa5 #define IP5XXX_BATOCV_DAT0 0xa8 #define IP5XXX_BATOCV_DAT1 0xa9 struct ip5xxx { struct regmap *regmap; bool initialized; }; /* * The IP5xxx charger only responds on I2C when it is "awake". The charger is * generally only awake when VIN is powered or when its boost converter is * enabled. Going into shutdown resets all register values. To handle this: * 1) When any bus error occurs, assume the charger has gone into shutdown. * 2) Attempt the initialization sequence on each subsequent register access * until it succeeds. */ static int ip5xxx_read(struct ip5xxx *ip5xxx, unsigned int reg, unsigned int *val) { int ret; ret = regmap_read(ip5xxx->regmap, reg, val); if (ret) ip5xxx->initialized = false; return ret; } static int ip5xxx_update_bits(struct ip5xxx *ip5xxx, unsigned int reg, unsigned int mask, unsigned int val) { int ret; ret = regmap_update_bits(ip5xxx->regmap, reg, mask, val); if (ret) ip5xxx->initialized = false; return ret; } static int ip5xxx_initialize(struct power_supply *psy) { struct ip5xxx *ip5xxx = power_supply_get_drvdata(psy); int ret; if (ip5xxx->initialized) return 0; /* * Disable shutdown under light load. * Enable power on when under load. */ ret = ip5xxx_update_bits(ip5xxx, IP5XXX_SYS_CTL1, IP5XXX_SYS_CTL1_LIGHT_SHDN_EN | IP5XXX_SYS_CTL1_LOAD_PWRUP_EN, IP5XXX_SYS_CTL1_LOAD_PWRUP_EN); if (ret) return ret; /* * Enable shutdown after a long button press (as configured below). */ ret = ip5xxx_update_bits(ip5xxx, IP5XXX_SYS_CTL3, IP5XXX_SYS_CTL3_BTN_SHDN_EN, IP5XXX_SYS_CTL3_BTN_SHDN_EN); if (ret) return ret; /* * Power on automatically when VIN is removed. */ ret = ip5xxx_update_bits(ip5xxx, IP5XXX_SYS_CTL4, IP5XXX_SYS_CTL4_VIN_PULLOUT_BOOST_EN, IP5XXX_SYS_CTL4_VIN_PULLOUT_BOOST_EN); if (ret) return ret; /* * Enable the NTC. * Configure the button for two presses => LED, long press => shutdown. */ ret = ip5xxx_update_bits(ip5xxx, IP5XXX_SYS_CTL5, IP5XXX_SYS_CTL5_NTC_DIS | IP5XXX_SYS_CTL5_WLED_MODE_SEL | IP5XXX_SYS_CTL5_BTN_SHDN_SEL, IP5XXX_SYS_CTL5_WLED_MODE_SEL | IP5XXX_SYS_CTL5_BTN_SHDN_SEL); if (ret) return ret; ip5xxx->initialized = true; dev_dbg(psy->dev.parent, "Initialized after power on\n"); return 0; } static const enum power_supply_property ip5xxx_battery_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, }; static int ip5xxx_battery_get_status(struct ip5xxx *ip5xxx, int *val) { unsigned int rval; int ret; ret = ip5xxx_read(ip5xxx, IP5XXX_READ0, &rval); if (ret) return ret; switch (rval & IP5XXX_READ0_CHG_STAT) { case IP5XXX_READ0_CHG_STAT_IDLE: *val = POWER_SUPPLY_STATUS_DISCHARGING; break; case IP5XXX_READ0_CHG_STAT_TRICKLE: case IP5XXX_READ0_CHG_STAT_CONST_CUR: case IP5XXX_READ0_CHG_STAT_CONST_VOLT: *val = POWER_SUPPLY_STATUS_CHARGING; break; case IP5XXX_READ0_CHG_STAT_CONST_VOLT_STOP: case IP5XXX_READ0_CHG_STAT_FULL: *val = POWER_SUPPLY_STATUS_FULL; break; case IP5XXX_READ0_CHG_STAT_TIMEOUT: *val = POWER_SUPPLY_STATUS_NOT_CHARGING; break; default: return -EINVAL; } return 0; } static int ip5xxx_battery_get_charge_type(struct ip5xxx *ip5xxx, int *val) { unsigned int rval; int ret; ret = ip5xxx_read(ip5xxx, IP5XXX_READ0, &rval); if (ret) return ret; switch (rval & IP5XXX_READ0_CHG_STAT) { case IP5XXX_READ0_CHG_STAT_IDLE: case IP5XXX_READ0_CHG_STAT_CONST_VOLT_STOP: case IP5XXX_READ0_CHG_STAT_FULL: case IP5XXX_READ0_CHG_STAT_TIMEOUT: *val = POWER_SUPPLY_CHARGE_TYPE_NONE; break; case IP5XXX_READ0_CHG_STAT_TRICKLE: *val = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; case IP5XXX_READ0_CHG_STAT_CONST_CUR: case IP5XXX_READ0_CHG_STAT_CONST_VOLT: *val = POWER_SUPPLY_CHARGE_TYPE_STANDARD; break; default: return -EINVAL; } return 0; } static int ip5xxx_battery_get_health(struct ip5xxx *ip5xxx, int *val) { unsigned int rval; int ret; ret = ip5xxx_read(ip5xxx, IP5XXX_READ0, &rval); if (ret) return ret; if (rval & IP5XXX_READ0_TIMEOUT) *val = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; else *val = POWER_SUPPLY_HEALTH_GOOD; return 0; } static int ip5xxx_battery_get_voltage_max(struct ip5xxx *ip5xxx, int *val) { unsigned int rval; int ret; ret = ip5xxx_read(ip5xxx, IP5XXX_CHG_CTL2, &rval); if (ret) return ret; /* * It is not clear what this will return if * IP5XXX_CHG_CTL4_BAT_TYPE_SEL_EN is not set... */ switch (rval & IP5XXX_CHG_CTL2_BAT_TYPE_SEL) { case IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_2V: *val = 4200000; break; case IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_3V: *val = 4300000; break; case IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_35V: *val = 4350000; break; default: return -EINVAL; } return 0; } static int ip5xxx_battery_read_adc(struct ip5xxx *ip5xxx, u8 lo_reg, u8 hi_reg, int *val) { unsigned int hi, lo; int ret; ret = ip5xxx_read(ip5xxx, lo_reg, &lo); if (ret) return ret; ret = ip5xxx_read(ip5xxx, hi_reg, &hi); if (ret) return ret; *val = sign_extend32(hi << 8 | lo, 13); return 0; } static int ip5xxx_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ip5xxx *ip5xxx = power_supply_get_drvdata(psy); int raw, ret, vmax; unsigned int rval; ret = ip5xxx_initialize(psy); if (ret) return ret; switch (psp) { case POWER_SUPPLY_PROP_STATUS: return ip5xxx_battery_get_status(ip5xxx, &val->intval); case POWER_SUPPLY_PROP_CHARGE_TYPE: return ip5xxx_battery_get_charge_type(ip5xxx, &val->intval); case POWER_SUPPLY_PROP_HEALTH: return ip5xxx_battery_get_health(ip5xxx, &val->intval); case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: return ip5xxx_battery_get_voltage_max(ip5xxx, &val->intval); case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = ip5xxx_battery_read_adc(ip5xxx, IP5XXX_BATVADC_DAT0, IP5XXX_BATVADC_DAT1, &raw); val->intval = 2600000 + DIV_ROUND_CLOSEST(raw * 26855, 100); return 0; case POWER_SUPPLY_PROP_VOLTAGE_OCV: ret = ip5xxx_battery_read_adc(ip5xxx, IP5XXX_BATOCV_DAT0, IP5XXX_BATOCV_DAT1, &raw); val->intval = 2600000 + DIV_ROUND_CLOSEST(raw * 26855, 100); return 0; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = ip5xxx_battery_read_adc(ip5xxx, IP5XXX_BATIADC_DAT0, IP5XXX_BATIADC_DAT1, &raw); val->intval = DIV_ROUND_CLOSEST(raw * 149197, 200); return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = ip5xxx_read(ip5xxx, IP5XXX_CHG_CTL4A, &rval); if (ret) return ret; rval &= IP5XXX_CHG_CTL4A_CONST_CUR_SEL; val->intval = 100000 * rval; return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = 100000 * 0x1f; return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = ip5xxx_battery_get_voltage_max(ip5xxx, &vmax); if (ret) return ret; ret = ip5xxx_read(ip5xxx, IP5XXX_CHG_CTL2, &rval); if (ret) return ret; rval &= IP5XXX_CHG_CTL2_CONST_VOLT_SEL; val->intval = vmax + 14000 * (rval >> 1); return 0; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: ret = ip5xxx_battery_get_voltage_max(ip5xxx, &vmax); if (ret) return ret; val->intval = vmax + 14000 * 3; return 0; default: return -EINVAL; } } static int ip5xxx_battery_set_voltage_max(struct ip5xxx *ip5xxx, int val) { unsigned int rval; int ret; switch (val) { case 4200000: rval = IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_2V; break; case 4300000: rval = IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_3V; break; case 4350000: rval = IP5XXX_CHG_CTL2_BAT_TYPE_SEL_4_35V; break; default: return -EINVAL; } ret = ip5xxx_update_bits(ip5xxx, IP5XXX_CHG_CTL2, IP5XXX_CHG_CTL2_BAT_TYPE_SEL, rval); if (ret) return ret; ret = ip5xxx_update_bits(ip5xxx, IP5XXX_CHG_CTL4, IP5XXX_CHG_CTL4_BAT_TYPE_SEL_EN, IP5XXX_CHG_CTL4_BAT_TYPE_SEL_EN); if (ret) return ret; return 0; } static int ip5xxx_battery_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct ip5xxx *ip5xxx = power_supply_get_drvdata(psy); unsigned int rval; int ret, vmax; ret = ip5xxx_initialize(psy); if (ret) return ret; switch (psp) { case POWER_SUPPLY_PROP_STATUS: switch (val->intval) { case POWER_SUPPLY_STATUS_CHARGING: rval = IP5XXX_SYS_CTL0_CHARGER_EN; break; case POWER_SUPPLY_STATUS_DISCHARGING: case POWER_SUPPLY_STATUS_NOT_CHARGING: rval = 0; break; default: return -EINVAL; } return ip5xxx_update_bits(ip5xxx, IP5XXX_SYS_CTL0, IP5XXX_SYS_CTL0_CHARGER_EN, rval); case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: return ip5xxx_battery_set_voltage_max(ip5xxx, val->intval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: rval = val->intval / 100000; return ip5xxx_update_bits(ip5xxx, IP5XXX_CHG_CTL4A, IP5XXX_CHG_CTL4A_CONST_CUR_SEL, rval); case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = ip5xxx_battery_get_voltage_max(ip5xxx, &vmax); if (ret) return ret; rval = ((val->intval - vmax) / 14000) << 1; return ip5xxx_update_bits(ip5xxx, IP5XXX_CHG_CTL2, IP5XXX_CHG_CTL2_CONST_VOLT_SEL, rval); default: return -EINVAL; } } static int ip5xxx_battery_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { return psp == POWER_SUPPLY_PROP_STATUS || psp == POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN || psp == POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT || psp == POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE; } static const struct power_supply_desc ip5xxx_battery_desc = { .name = "ip5xxx-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = ip5xxx_battery_properties, .num_properties = ARRAY_SIZE(ip5xxx_battery_properties), .get_property = ip5xxx_battery_get_property, .set_property = ip5xxx_battery_set_property, .property_is_writeable = ip5xxx_battery_property_is_writeable, }; static const enum power_supply_property ip5xxx_boost_properties[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, }; static int ip5xxx_boost_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ip5xxx *ip5xxx = power_supply_get_drvdata(psy); unsigned int rval; int ret; ret = ip5xxx_initialize(psy); if (ret) return ret; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = ip5xxx_read(ip5xxx, IP5XXX_SYS_CTL0, &rval); if (ret) return ret; val->intval = !!(rval & IP5XXX_SYS_CTL0_BOOST_EN); return 0; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: ret = ip5xxx_read(ip5xxx, IP5XXX_CHG_CTL1, &rval); if (ret) return ret; rval &= IP5XXX_CHG_CTL1_BOOST_UVP_SEL; val->intval = 4530000 + 100000 * (rval >> 2); return 0; default: return -EINVAL; } } static int ip5xxx_boost_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct ip5xxx *ip5xxx = power_supply_get_drvdata(psy); unsigned int rval; int ret; ret = ip5xxx_initialize(psy); if (ret) return ret; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: rval = val->intval ? IP5XXX_SYS_CTL0_BOOST_EN : 0; return ip5xxx_update_bits(ip5xxx, IP5XXX_SYS_CTL0, IP5XXX_SYS_CTL0_BOOST_EN, rval); case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: rval = ((val->intval - 4530000) / 100000) << 2; return ip5xxx_update_bits(ip5xxx, IP5XXX_CHG_CTL1, IP5XXX_CHG_CTL1_BOOST_UVP_SEL, rval); default: return -EINVAL; } } static int ip5xxx_boost_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { return true; } static const struct power_supply_desc ip5xxx_boost_desc = { .name = "ip5xxx-boost", .type = POWER_SUPPLY_TYPE_USB, .properties = ip5xxx_boost_properties, .num_properties = ARRAY_SIZE(ip5xxx_boost_properties), .get_property = ip5xxx_boost_get_property, .set_property = ip5xxx_boost_set_property, .property_is_writeable = ip5xxx_boost_property_is_writeable, }; static const struct regmap_config ip5xxx_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = IP5XXX_BATOCV_DAT1, }; static int ip5xxx_power_probe(struct i2c_client *client) { struct power_supply_config psy_cfg = {}; struct device *dev = &client->dev; struct power_supply *psy; struct ip5xxx *ip5xxx; ip5xxx = devm_kzalloc(dev, sizeof(*ip5xxx), GFP_KERNEL); if (!ip5xxx) return -ENOMEM; ip5xxx->regmap = devm_regmap_init_i2c(client, &ip5xxx_regmap_config); if (IS_ERR(ip5xxx->regmap)) return PTR_ERR(ip5xxx->regmap); psy_cfg.of_node = dev->of_node; psy_cfg.drv_data = ip5xxx; psy = devm_power_supply_register(dev, &ip5xxx_battery_desc, &psy_cfg); if (IS_ERR(psy)) return PTR_ERR(psy); psy = devm_power_supply_register(dev, &ip5xxx_boost_desc, &psy_cfg); if (IS_ERR(psy)) return PTR_ERR(psy); return 0; } static const struct of_device_id ip5xxx_power_of_match[] = { { .compatible = "injoinic,ip5108" }, { .compatible = "injoinic,ip5109" }, { .compatible = "injoinic,ip5207" }, { .compatible = "injoinic,ip5209" }, { } }; MODULE_DEVICE_TABLE(of, ip5xxx_power_of_match); static struct i2c_driver ip5xxx_power_driver = { .probe = ip5xxx_power_probe, .driver = { .name = "ip5xxx-power", .of_match_table = ip5xxx_power_of_match, } }; module_i2c_driver(ip5xxx_power_driver); MODULE_AUTHOR("Samuel Holland <[email protected]>"); MODULE_DESCRIPTION("Injoinic IP5xxx power bank IC driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/ip5xxx_power.c
// SPDX-License-Identifier: GPL-2.0 /* * BQ27xxx battery driver * * Copyright (C) 2008 Rodolfo Giometti <[email protected]> * Copyright (C) 2008 Eurotech S.p.A. <[email protected]> * Copyright (C) 2010-2011 Lars-Peter Clausen <[email protected]> * Copyright (C) 2011 Pali Rohár <[email protected]> * Copyright (C) 2017 Liam Breck <[email protected]> * * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc. * * Datasheets: * https://www.ti.com/product/bq27000 * https://www.ti.com/product/bq27200 * https://www.ti.com/product/bq27010 * https://www.ti.com/product/bq27210 * https://www.ti.com/product/bq27500 * https://www.ti.com/product/bq27510-g1 * https://www.ti.com/product/bq27510-g2 * https://www.ti.com/product/bq27510-g3 * https://www.ti.com/product/bq27520-g1 * https://www.ti.com/product/bq27520-g2 * https://www.ti.com/product/bq27520-g3 * https://www.ti.com/product/bq27520-g4 * https://www.ti.com/product/bq27530-g1 * https://www.ti.com/product/bq27531-g1 * https://www.ti.com/product/bq27541-g1 * https://www.ti.com/product/bq27542-g1 * https://www.ti.com/product/bq27546-g1 * https://www.ti.com/product/bq27742-g1 * https://www.ti.com/product/bq27545-g1 * https://www.ti.com/product/bq27421-g1 * https://www.ti.com/product/bq27425-g1 * https://www.ti.com/product/bq27426 * https://www.ti.com/product/bq27411-g1 * https://www.ti.com/product/bq27441-g1 * https://www.ti.com/product/bq27621-g1 * https://www.ti.com/product/bq27z561 * https://www.ti.com/product/bq28z610 * https://www.ti.com/product/bq34z100-g1 * https://www.ti.com/product/bq78z100 */ #include <linux/device.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/param.h> #include <linux/jiffies.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/power/bq27xxx_battery.h> #define BQ27XXX_MANUFACTURER "Texas Instruments" /* BQ27XXX Flags */ #define BQ27XXX_FLAG_DSC BIT(0) #define BQ27XXX_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */ #define BQ27XXX_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */ #define BQ27XXX_FLAG_CFGUP BIT(4) #define BQ27XXX_FLAG_FC BIT(9) #define BQ27XXX_FLAG_OTD BIT(14) #define BQ27XXX_FLAG_OTC BIT(15) #define BQ27XXX_FLAG_UT BIT(14) #define BQ27XXX_FLAG_OT BIT(15) /* BQ27000 has different layout for Flags register */ #define BQ27000_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */ #define BQ27000_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */ #define BQ27000_FLAG_CI BIT(4) /* Capacity Inaccurate flag */ #define BQ27000_FLAG_FC BIT(5) #define BQ27000_FLAG_CHGS BIT(7) /* Charge state flag */ /* BQ27Z561 has different layout for Flags register */ #define BQ27Z561_FLAG_FDC BIT(4) /* Battery fully discharged */ #define BQ27Z561_FLAG_FC BIT(5) /* Battery fully charged */ #define BQ27Z561_FLAG_DIS_CH BIT(6) /* Battery is discharging */ /* control register params */ #define BQ27XXX_SEALED 0x20 #define BQ27XXX_SET_CFGUPDATE 0x13 #define BQ27XXX_SOFT_RESET 0x42 #define BQ27XXX_RESET 0x41 #define BQ27XXX_RS (20) /* Resistor sense mOhm */ #define BQ27XXX_POWER_CONSTANT (29200) /* 29.2 µV^2 * 1000 */ #define BQ27XXX_CURRENT_CONSTANT (3570) /* 3.57 µV * 1000 */ #define INVALID_REG_ADDR 0xff /* * bq27xxx_reg_index - Register names * * These are indexes into a device's register mapping array. */ enum bq27xxx_reg_index { BQ27XXX_REG_CTRL = 0, /* Control */ BQ27XXX_REG_TEMP, /* Temperature */ BQ27XXX_REG_INT_TEMP, /* Internal Temperature */ BQ27XXX_REG_VOLT, /* Voltage */ BQ27XXX_REG_AI, /* Average Current */ BQ27XXX_REG_FLAGS, /* Flags */ BQ27XXX_REG_TTE, /* Time-to-Empty */ BQ27XXX_REG_TTF, /* Time-to-Full */ BQ27XXX_REG_TTES, /* Time-to-Empty Standby */ BQ27XXX_REG_TTECP, /* Time-to-Empty at Constant Power */ BQ27XXX_REG_NAC, /* Nominal Available Capacity */ BQ27XXX_REG_RC, /* Remaining Capacity */ BQ27XXX_REG_FCC, /* Full Charge Capacity */ BQ27XXX_REG_CYCT, /* Cycle Count */ BQ27XXX_REG_AE, /* Available Energy */ BQ27XXX_REG_SOC, /* State-of-Charge */ BQ27XXX_REG_DCAP, /* Design Capacity */ BQ27XXX_REG_AP, /* Average Power */ BQ27XXX_DM_CTRL, /* Block Data Control */ BQ27XXX_DM_CLASS, /* Data Class */ BQ27XXX_DM_BLOCK, /* Data Block */ BQ27XXX_DM_DATA, /* Block Data */ BQ27XXX_DM_CKSUM, /* Block Data Checksum */ BQ27XXX_REG_MAX, /* sentinel */ }; #define BQ27XXX_DM_REG_ROWS \ [BQ27XXX_DM_CTRL] = 0x61, \ [BQ27XXX_DM_CLASS] = 0x3e, \ [BQ27XXX_DM_BLOCK] = 0x3f, \ [BQ27XXX_DM_DATA] = 0x40, \ [BQ27XXX_DM_CKSUM] = 0x60 /* Register mappings */ static u8 bq27000_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = INVALID_REG_ADDR, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x0b, [BQ27XXX_REG_DCAP] = 0x76, [BQ27XXX_REG_AP] = 0x24, [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, }, bq27010_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = INVALID_REG_ADDR, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x0b, [BQ27XXX_REG_DCAP] = 0x76, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, }, bq2750x_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = 0x1a, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, BQ27XXX_DM_REG_ROWS, }, #define bq2751x_regs bq27510g3_regs #define bq2752x_regs bq27510g3_regs bq27500_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, #define bq27510g1_regs bq27500_regs #define bq27510g2_regs bq27500_regs bq27510g3_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = 0x1a, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x1e, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x20, [BQ27XXX_REG_DCAP] = 0x2e, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, BQ27XXX_DM_REG_ROWS, }, bq27520g1_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, bq27520g2_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x36, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, bq27520g3_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x36, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = 0x26, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, bq27520g4_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x1e, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x20, [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, BQ27XXX_DM_REG_ROWS, }, bq27521_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x02, [BQ27XXX_REG_TEMP] = 0x0a, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x0c, [BQ27XXX_REG_AI] = 0x0e, [BQ27XXX_REG_FLAGS] = 0x08, [BQ27XXX_REG_TTE] = INVALID_REG_ADDR, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, [BQ27XXX_REG_RC] = INVALID_REG_ADDR, [BQ27XXX_REG_FCC] = INVALID_REG_ADDR, [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = INVALID_REG_ADDR, [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, [BQ27XXX_REG_AP] = INVALID_REG_ADDR, [BQ27XXX_DM_CTRL] = INVALID_REG_ADDR, [BQ27XXX_DM_CLASS] = INVALID_REG_ADDR, [BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR, [BQ27XXX_DM_DATA] = INVALID_REG_ADDR, [BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR, }, bq27530_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x32, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, #define bq27531_regs bq27530_regs bq27541_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, #define bq27542_regs bq27541_regs #define bq27546_regs bq27541_regs #define bq27742_regs bq27541_regs bq27545_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x0c, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = INVALID_REG_ADDR, [BQ27XXX_REG_AP] = 0x24, BQ27XXX_DM_REG_ROWS, }, bq27421_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x02, [BQ27XXX_REG_INT_TEMP] = 0x1e, [BQ27XXX_REG_VOLT] = 0x04, [BQ27XXX_REG_AI] = 0x10, [BQ27XXX_REG_FLAGS] = 0x06, [BQ27XXX_REG_TTE] = INVALID_REG_ADDR, [BQ27XXX_REG_TTF] = INVALID_REG_ADDR, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = 0x08, [BQ27XXX_REG_RC] = 0x0c, [BQ27XXX_REG_FCC] = 0x0e, [BQ27XXX_REG_CYCT] = INVALID_REG_ADDR, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x1c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x18, BQ27XXX_DM_REG_ROWS, }, #define bq27411_regs bq27421_regs #define bq27425_regs bq27421_regs #define bq27426_regs bq27421_regs #define bq27441_regs bq27421_regs #define bq27621_regs bq27421_regs bq27z561_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x22, BQ27XXX_DM_REG_ROWS, }, bq28z610_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = INVALID_REG_ADDR, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = 0x22, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x22, BQ27XXX_DM_REG_ROWS, }, bq34z100_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x0c, [BQ27XXX_REG_INT_TEMP] = 0x2a, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x0a, [BQ27XXX_REG_FLAGS] = 0x0e, [BQ27XXX_REG_TTE] = 0x18, [BQ27XXX_REG_TTF] = 0x1a, [BQ27XXX_REG_TTES] = 0x1e, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, [BQ27XXX_REG_RC] = 0x04, [BQ27XXX_REG_FCC] = 0x06, [BQ27XXX_REG_CYCT] = 0x2c, [BQ27XXX_REG_AE] = 0x24, [BQ27XXX_REG_SOC] = 0x02, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x22, BQ27XXX_DM_REG_ROWS, }, bq78z100_regs[BQ27XXX_REG_MAX] = { [BQ27XXX_REG_CTRL] = 0x00, [BQ27XXX_REG_TEMP] = 0x06, [BQ27XXX_REG_INT_TEMP] = 0x28, [BQ27XXX_REG_VOLT] = 0x08, [BQ27XXX_REG_AI] = 0x14, [BQ27XXX_REG_FLAGS] = 0x0a, [BQ27XXX_REG_TTE] = 0x16, [BQ27XXX_REG_TTF] = 0x18, [BQ27XXX_REG_TTES] = 0x1c, [BQ27XXX_REG_TTECP] = INVALID_REG_ADDR, [BQ27XXX_REG_NAC] = INVALID_REG_ADDR, [BQ27XXX_REG_RC] = 0x10, [BQ27XXX_REG_FCC] = 0x12, [BQ27XXX_REG_CYCT] = 0x2a, [BQ27XXX_REG_AE] = INVALID_REG_ADDR, [BQ27XXX_REG_SOC] = 0x2c, [BQ27XXX_REG_DCAP] = 0x3c, [BQ27XXX_REG_AP] = 0x22, BQ27XXX_DM_REG_ROWS, }; static enum power_supply_property bq27000_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27010_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq2750x_props bq27510g3_props #define bq2751x_props bq27510g3_props #define bq2752x_props bq27510g3_props static enum power_supply_property bq27500_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27510g1_props bq27500_props #define bq27510g2_props bq27500_props static enum power_supply_property bq27510g3_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27520g1_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27520g2_props bq27500_props static enum power_supply_property bq27520g3_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27520g4_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27521_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, }; static enum power_supply_property bq27530_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27531_props bq27530_props static enum power_supply_property bq27541_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27542_props bq27541_props #define bq27546_props bq27541_props #define bq27742_props bq27541_props static enum power_supply_property bq27545_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq27421_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_MANUFACTURER, }; #define bq27411_props bq27421_props #define bq27425_props bq27421_props #define bq27426_props bq27421_props #define bq27441_props bq27421_props #define bq27621_props bq27421_props static enum power_supply_property bq27z561_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq28z610_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq34z100_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; static enum power_supply_property bq78z100_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_MANUFACTURER, }; struct bq27xxx_dm_reg { u8 subclass_id; u8 offset; u8 bytes; u16 min, max; }; enum bq27xxx_dm_reg_id { BQ27XXX_DM_DESIGN_CAPACITY = 0, BQ27XXX_DM_DESIGN_ENERGY, BQ27XXX_DM_TERMINATE_VOLTAGE, }; #define bq27000_dm_regs NULL #define bq27010_dm_regs NULL #define bq2750x_dm_regs NULL #define bq2751x_dm_regs NULL #define bq2752x_dm_regs NULL #if 0 /* not yet tested */ static struct bq27xxx_dm_reg bq27500_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 10, 2, 0, 65535 }, [BQ27XXX_DM_DESIGN_ENERGY] = { }, /* missing on chip */ [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 }, }; #else #define bq27500_dm_regs NULL #endif /* todo create data memory definitions from datasheets and test on chips */ #define bq27510g1_dm_regs NULL #define bq27510g2_dm_regs NULL #define bq27510g3_dm_regs NULL #define bq27520g1_dm_regs NULL #define bq27520g2_dm_regs NULL #define bq27520g3_dm_regs NULL #define bq27520g4_dm_regs NULL #define bq27521_dm_regs NULL #define bq27530_dm_regs NULL #define bq27531_dm_regs NULL #define bq27541_dm_regs NULL #define bq27542_dm_regs NULL #define bq27546_dm_regs NULL #define bq27742_dm_regs NULL #if 0 /* not yet tested */ static struct bq27xxx_dm_reg bq27545_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 48, 23, 2, 0, 32767 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 48, 25, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800, 3700 }, }; #else #define bq27545_dm_regs NULL #endif static struct bq27xxx_dm_reg bq27411_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 32767 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800, 3700 }, }; static struct bq27xxx_dm_reg bq27421_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 10, 2, 0, 8000 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 12, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500, 3700 }, }; static struct bq27xxx_dm_reg bq27425_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 12, 2, 0, 32767 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 14, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800, 3700 }, }; static struct bq27xxx_dm_reg bq27426_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 6, 2, 0, 8000 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 8, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500, 3700 }, }; #if 0 /* not yet tested */ #define bq27441_dm_regs bq27421_dm_regs #else #define bq27441_dm_regs NULL #endif #if 0 /* not yet tested */ static struct bq27xxx_dm_reg bq27621_dm_regs[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = { 82, 3, 2, 0, 8000 }, [BQ27XXX_DM_DESIGN_ENERGY] = { 82, 5, 2, 0, 32767 }, [BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500, 3700 }, }; #else #define bq27621_dm_regs NULL #endif #define bq27z561_dm_regs NULL #define bq28z610_dm_regs NULL #define bq34z100_dm_regs NULL #define bq78z100_dm_regs NULL #define BQ27XXX_O_ZERO BIT(0) #define BQ27XXX_O_OTDC BIT(1) /* has OTC/OTD overtemperature flags */ #define BQ27XXX_O_UTOT BIT(2) /* has OT overtemperature flag */ #define BQ27XXX_O_CFGUP BIT(3) #define BQ27XXX_O_RAM BIT(4) #define BQ27Z561_O_BITS BIT(5) #define BQ27XXX_O_SOC_SI BIT(6) /* SoC is single register */ #define BQ27XXX_O_HAS_CI BIT(7) /* has Capacity Inaccurate flag */ #define BQ27XXX_O_MUL_CHEM BIT(8) /* multiple chemistries supported */ #define BQ27XXX_DATA(ref, key, opt) { \ .opts = (opt), \ .unseal_key = key, \ .regs = ref##_regs, \ .dm_regs = ref##_dm_regs, \ .props = ref##_props, \ .props_size = ARRAY_SIZE(ref##_props) } static struct { u32 opts; u32 unseal_key; u8 *regs; struct bq27xxx_dm_reg *dm_regs; enum power_supply_property *props; size_t props_size; } bq27xxx_chip_data[] = { [BQ27000] = BQ27XXX_DATA(bq27000, 0 , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI), [BQ27010] = BQ27XXX_DATA(bq27010, 0 , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI), [BQ2750X] = BQ27XXX_DATA(bq2750x, 0 , BQ27XXX_O_OTDC), [BQ2751X] = BQ27XXX_DATA(bq2751x, 0 , BQ27XXX_O_OTDC), [BQ2752X] = BQ27XXX_DATA(bq2752x, 0 , BQ27XXX_O_OTDC), [BQ27500] = BQ27XXX_DATA(bq27500, 0x04143672, BQ27XXX_O_OTDC), [BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0 , BQ27XXX_O_OTDC), [BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0 , BQ27XXX_O_OTDC), [BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0 , BQ27XXX_O_OTDC), [BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0 , BQ27XXX_O_OTDC), [BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0 , BQ27XXX_O_OTDC), [BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0 , BQ27XXX_O_OTDC), [BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0 , BQ27XXX_O_OTDC), [BQ27521] = BQ27XXX_DATA(bq27521, 0 , 0), [BQ27530] = BQ27XXX_DATA(bq27530, 0 , BQ27XXX_O_UTOT), [BQ27531] = BQ27XXX_DATA(bq27531, 0 , BQ27XXX_O_UTOT), [BQ27541] = BQ27XXX_DATA(bq27541, 0 , BQ27XXX_O_OTDC), [BQ27542] = BQ27XXX_DATA(bq27542, 0 , BQ27XXX_O_OTDC), [BQ27546] = BQ27XXX_DATA(bq27546, 0 , BQ27XXX_O_OTDC), [BQ27742] = BQ27XXX_DATA(bq27742, 0 , BQ27XXX_O_OTDC), [BQ27545] = BQ27XXX_DATA(bq27545, 0x04143672, BQ27XXX_O_OTDC), [BQ27411] = BQ27XXX_DATA(bq27411, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27421] = BQ27XXX_DATA(bq27421, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27425] = BQ27XXX_DATA(bq27425, 0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP), [BQ27426] = BQ27XXX_DATA(bq27426, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27441] = BQ27XXX_DATA(bq27441, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27621] = BQ27XXX_DATA(bq27621, 0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM), [BQ27Z561] = BQ27XXX_DATA(bq27z561, 0 , BQ27Z561_O_BITS), [BQ28Z610] = BQ27XXX_DATA(bq28z610, 0 , BQ27Z561_O_BITS), [BQ34Z100] = BQ27XXX_DATA(bq34z100, 0 , BQ27XXX_O_OTDC | BQ27XXX_O_SOC_SI | \ BQ27XXX_O_HAS_CI | BQ27XXX_O_MUL_CHEM), [BQ78Z100] = BQ27XXX_DATA(bq78z100, 0 , BQ27Z561_O_BITS), }; static DEFINE_MUTEX(bq27xxx_list_lock); static LIST_HEAD(bq27xxx_battery_devices); #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500) #define BQ27XXX_DM_SZ 32 /** * struct bq27xxx_dm_buf - chip data memory buffer * @class: data memory subclass_id * @block: data memory block number * @data: data from/for the block * @has_data: true if data has been filled by read * @dirty: true if data has changed since last read/write * * Encapsulates info required to manage chip data memory blocks. */ struct bq27xxx_dm_buf { u8 class; u8 block; u8 data[BQ27XXX_DM_SZ]; bool has_data, dirty; }; #define BQ27XXX_DM_BUF(di, i) { \ .class = (di)->dm_regs[i].subclass_id, \ .block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \ } static inline __be16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf, struct bq27xxx_dm_reg *reg) { if (buf->class == reg->subclass_id && buf->block == reg->offset / BQ27XXX_DM_SZ) return (__be16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ); return NULL; } static const char * const bq27xxx_dm_reg_name[] = { [BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity", [BQ27XXX_DM_DESIGN_ENERGY] = "design-energy", [BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage", }; static bool bq27xxx_dt_to_nvm = true; module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444); MODULE_PARM_DESC(dt_monitored_battery_updates_nvm, "Devicetree monitored-battery config updates data memory on NVM/flash chips.\n" "Users must set this =0 when installing a different type of battery!\n" "Default is =1." #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM "\nSetting this affects future kernel updates, not the current configuration." #endif ); static int poll_interval_param_set(const char *val, const struct kernel_param *kp) { struct bq27xxx_device_info *di; unsigned int prev_val = *(unsigned int *) kp->arg; int ret; ret = param_set_uint(val, kp); if (ret < 0 || prev_val == *(unsigned int *) kp->arg) return ret; mutex_lock(&bq27xxx_list_lock); list_for_each_entry(di, &bq27xxx_battery_devices, list) mod_delayed_work(system_wq, &di->work, 0); mutex_unlock(&bq27xxx_list_lock); return ret; } static const struct kernel_param_ops param_ops_poll_interval = { .get = param_get_uint, .set = poll_interval_param_set, }; static unsigned int poll_interval = 360; module_param_cb(poll_interval, &param_ops_poll_interval, &poll_interval, 0644); MODULE_PARM_DESC(poll_interval, "battery poll interval in seconds - 0 disables polling"); /* * Common code for BQ27xxx devices */ static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index, bool single) { int ret; if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -EINVAL; ret = di->bus.read(di, di->regs[reg_index], single); if (ret < 0) dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n", di->regs[reg_index], reg_index); return ret; } static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index, u16 value, bool single) { int ret; if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -EINVAL; if (!di->bus.write) return -EPERM; ret = di->bus.write(di, di->regs[reg_index], value, single); if (ret < 0) dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n", di->regs[reg_index], reg_index); return ret; } static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index, u8 *data, int len) { int ret; if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -EINVAL; if (!di->bus.read_bulk) return -EPERM; ret = di->bus.read_bulk(di, di->regs[reg_index], data, len); if (ret < 0) dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n", di->regs[reg_index], reg_index); return ret; } static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index, u8 *data, int len) { int ret; if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -EINVAL; if (!di->bus.write_bulk) return -EPERM; ret = di->bus.write_bulk(di, di->regs[reg_index], data, len); if (ret < 0) dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n", di->regs[reg_index], reg_index); return ret; } static int bq27xxx_battery_seal(struct bq27xxx_device_info *di) { int ret; ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false); if (ret < 0) { dev_err(di->dev, "bus error on seal: %d\n", ret); return ret; } return 0; } static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di) { int ret; if (di->unseal_key == 0) { dev_err(di->dev, "unseal failed due to missing key\n"); return -EINVAL; } ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false); if (ret < 0) goto out; return 0; out: dev_err(di->dev, "bus error on unseal: %d\n", ret); return ret; } static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf) { u16 sum = 0; int i; for (i = 0; i < BQ27XXX_DM_SZ; i++) sum += buf->data[i]; sum &= 0xff; return 0xff - sum; } static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di, struct bq27xxx_dm_buf *buf) { int ret; buf->has_data = false; ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true); if (ret < 0) goto out; BQ27XXX_MSLEEP(1); ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ); if (ret < 0) goto out; ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true); if (ret < 0) goto out; if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) { ret = -EINVAL; goto out; } buf->has_data = true; buf->dirty = false; return 0; out: dev_err(di->dev, "bus error reading chip memory: %d\n", ret); return ret; } static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di, struct bq27xxx_dm_buf *buf, enum bq27xxx_dm_reg_id reg_id, unsigned int val) { struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id]; const char *str = bq27xxx_dm_reg_name[reg_id]; __be16 *prev = bq27xxx_dm_reg_ptr(buf, reg); if (prev == NULL) { dev_warn(di->dev, "buffer does not match %s dm spec\n", str); return; } if (reg->bytes != 2) { dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str); return; } if (!buf->has_data) return; if (be16_to_cpup(prev) == val) { dev_info(di->dev, "%s has %u\n", str, val); return; } #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) { #else if (!(di->opts & BQ27XXX_O_RAM)) { #endif /* devicetree and NVM differ; defer to NVM */ dev_warn(di->dev, "%s has %u; update to %u disallowed " #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM "by dt_monitored_battery_updates_nvm=0" #else "for flash/NVM data memory" #endif "\n", str, be16_to_cpup(prev), val); return; } dev_info(di->dev, "update %s to %u\n", str, val); *prev = cpu_to_be16(val); buf->dirty = true; } static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active) { const int limit = 100; u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET; int ret, try = limit; ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false); if (ret < 0) return ret; do { BQ27XXX_MSLEEP(25); ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false); if (ret < 0) return ret; } while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try); if (!try && di->chip != BQ27425) { // 425 has a bug dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active); return -EINVAL; } if (limit - try > 3) dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try); return 0; } static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di) { int ret = bq27xxx_battery_cfgupdate_priv(di, true); if (ret < 0 && ret != -EINVAL) dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret); return ret; } static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di) { int ret = bq27xxx_battery_cfgupdate_priv(di, false); if (ret < 0 && ret != -EINVAL) dev_err(di->dev, "bus error on soft_reset: %d\n", ret); return ret; } static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di, struct bq27xxx_dm_buf *buf) { bool cfgup = di->opts & BQ27XXX_O_CFGUP; int ret; if (!buf->dirty) return 0; if (cfgup) { ret = bq27xxx_battery_set_cfgupdate(di); if (ret < 0) return ret; } ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true); if (ret < 0) goto out; BQ27XXX_MSLEEP(1); ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ); if (ret < 0) goto out; ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM, bq27xxx_battery_checksum_dm_block(buf), true); if (ret < 0) goto out; /* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM * corruption on the '425 chip (and perhaps others), which can damage * the chip. */ if (cfgup) { BQ27XXX_MSLEEP(1); ret = bq27xxx_battery_soft_reset(di); if (ret < 0) return ret; } else { BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */ } buf->dirty = false; return 0; out: if (cfgup) bq27xxx_battery_soft_reset(di); dev_err(di->dev, "bus error writing chip memory: %d\n", ret); return ret; } static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di, struct power_supply_battery_info *info) { struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY); struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE); bool updated; if (bq27xxx_battery_unseal(di) < 0) return; if (info->charge_full_design_uah != -EINVAL && info->energy_full_design_uwh != -EINVAL) { bq27xxx_battery_read_dm_block(di, &bd); /* assume design energy & capacity are in same block */ bq27xxx_battery_update_dm_block(di, &bd, BQ27XXX_DM_DESIGN_CAPACITY, info->charge_full_design_uah / 1000); bq27xxx_battery_update_dm_block(di, &bd, BQ27XXX_DM_DESIGN_ENERGY, info->energy_full_design_uwh / 1000); } if (info->voltage_min_design_uv != -EINVAL) { bool same = bd.class == bt.class && bd.block == bt.block; if (!same) bq27xxx_battery_read_dm_block(di, &bt); bq27xxx_battery_update_dm_block(di, same ? &bd : &bt, BQ27XXX_DM_TERMINATE_VOLTAGE, info->voltage_min_design_uv / 1000); } updated = bd.dirty || bt.dirty; bq27xxx_battery_write_dm_block(di, &bd); bq27xxx_battery_write_dm_block(di, &bt); bq27xxx_battery_seal(di); if (updated && !(di->opts & BQ27XXX_O_CFGUP)) { bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false); BQ27XXX_MSLEEP(300); /* reset time is not documented */ } /* assume bq27xxx_battery_update() is called hereafter */ } static void bq27xxx_battery_settings(struct bq27xxx_device_info *di) { struct power_supply_battery_info *info; unsigned int min, max; if (power_supply_get_battery_info(di->bat, &info) < 0) return; if (!di->dm_regs) { dev_warn(di->dev, "data memory update not supported for chip\n"); return; } if (info->energy_full_design_uwh != info->charge_full_design_uah) { if (info->energy_full_design_uwh == -EINVAL) dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n"); else if (info->charge_full_design_uah == -EINVAL) dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n"); } /* assume min == 0 */ max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max; if (info->energy_full_design_uwh > max * 1000) { dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n", info->energy_full_design_uwh); info->energy_full_design_uwh = -EINVAL; } /* assume min == 0 */ max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max; if (info->charge_full_design_uah > max * 1000) { dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n", info->charge_full_design_uah); info->charge_full_design_uah = -EINVAL; } min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min; max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max; if ((info->voltage_min_design_uv < min * 1000 || info->voltage_min_design_uv > max * 1000) && info->voltage_min_design_uv != -EINVAL) { dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n", info->voltage_min_design_uv); info->voltage_min_design_uv = -EINVAL; } if ((info->energy_full_design_uwh != -EINVAL && info->charge_full_design_uah != -EINVAL) || info->voltage_min_design_uv != -EINVAL) bq27xxx_battery_set_config(di, info); } /* * Return the battery State-of-Charge * Or < 0 if something fails. */ static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di) { int soc; if (di->opts & BQ27XXX_O_SOC_SI) soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true); else soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false); if (soc < 0) dev_dbg(di->dev, "error reading State-of-Charge\n"); return soc; } /* * Return a battery charge value in µAh * Or < 0 if something fails. */ static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg) { int charge; charge = bq27xxx_read(di, reg, false); if (charge < 0) { dev_dbg(di->dev, "error reading charge register %02x: %d\n", reg, charge); return charge; } if (di->opts & BQ27XXX_O_ZERO) charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; else charge *= 1000; return charge; } /* * Return the battery Nominal available capacity in µAh * Or < 0 if something fails. */ static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di) { return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC); } /* * Return the battery Remaining Capacity in µAh * Or < 0 if something fails. */ static inline int bq27xxx_battery_read_rc(struct bq27xxx_device_info *di) { return bq27xxx_battery_read_charge(di, BQ27XXX_REG_RC); } /* * Return the battery Full Charge Capacity in µAh * Or < 0 if something fails. */ static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di) { return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC); } /* * Return the Design Capacity in µAh * Or < 0 if something fails. */ static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di) { int dcap; if (di->opts & BQ27XXX_O_ZERO) dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true); else dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false); if (dcap < 0) { dev_dbg(di->dev, "error reading initial last measured discharge\n"); return dcap; } if (di->opts & BQ27XXX_O_ZERO) dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; else dcap *= 1000; return dcap; } /* * Return the battery Available energy in µWh * Or < 0 if something fails. */ static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di) { int ae; ae = bq27xxx_read(di, BQ27XXX_REG_AE, false); if (ae < 0) { dev_dbg(di->dev, "error reading available energy\n"); return ae; } if (di->opts & BQ27XXX_O_ZERO) ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS; else ae *= 1000; return ae; } /* * Return the battery temperature in tenths of degree Kelvin * Or < 0 if something fails. */ static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di) { int temp; temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false); if (temp < 0) { dev_err(di->dev, "error reading temperature\n"); return temp; } if (di->opts & BQ27XXX_O_ZERO) temp = 5 * temp / 2; return temp; } /* * Return the battery Cycle count total * Or < 0 if something fails. */ static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di) { int cyct; cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false); if (cyct < 0) dev_err(di->dev, "error reading cycle count total\n"); return cyct; } /* * Read a time register. * Return < 0 if something fails. */ static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg) { int tval; tval = bq27xxx_read(di, reg, false); if (tval < 0) { dev_dbg(di->dev, "error reading time register %02x: %d\n", reg, tval); return tval; } if (tval == 65535) return -ENODATA; return tval * 60; } /* * Returns true if a battery over temperature condition is detected */ static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags) { if (di->opts & BQ27XXX_O_OTDC) return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD); if (di->opts & BQ27XXX_O_UTOT) return flags & BQ27XXX_FLAG_OT; return false; } /* * Returns true if a battery under temperature condition is detected */ static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags) { if (di->opts & BQ27XXX_O_UTOT) return flags & BQ27XXX_FLAG_UT; return false; } /* * Returns true if a low state of charge condition is detected */ static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags) { if (di->opts & BQ27XXX_O_ZERO) return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF); else if (di->opts & BQ27Z561_O_BITS) return flags & BQ27Z561_FLAG_FDC; else return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF); } /* * Returns true if reported battery capacity is inaccurate */ static bool bq27xxx_battery_capacity_inaccurate(struct bq27xxx_device_info *di, u16 flags) { if (di->opts & BQ27XXX_O_HAS_CI) return (flags & BQ27000_FLAG_CI); else return false; } static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di) { /* Unlikely but important to return first */ if (unlikely(bq27xxx_battery_overtemp(di, di->cache.flags))) return POWER_SUPPLY_HEALTH_OVERHEAT; if (unlikely(bq27xxx_battery_undertemp(di, di->cache.flags))) return POWER_SUPPLY_HEALTH_COLD; if (unlikely(bq27xxx_battery_dead(di, di->cache.flags))) return POWER_SUPPLY_HEALTH_DEAD; if (unlikely(bq27xxx_battery_capacity_inaccurate(di, di->cache.flags))) return POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED; return POWER_SUPPLY_HEALTH_GOOD; } static bool bq27xxx_battery_is_full(struct bq27xxx_device_info *di, int flags) { if (di->opts & BQ27XXX_O_ZERO) return (flags & BQ27000_FLAG_FC); else if (di->opts & BQ27Z561_O_BITS) return (flags & BQ27Z561_FLAG_FC); else return (flags & BQ27XXX_FLAG_FC); } /* * Return the battery average current in µA and the status * Note that current can be negative signed as well * Or 0 if something fails. */ static int bq27xxx_battery_current_and_status( struct bq27xxx_device_info *di, union power_supply_propval *val_curr, union power_supply_propval *val_status, struct bq27xxx_reg_cache *cache) { bool single_flags = (di->opts & BQ27XXX_O_ZERO); int curr; int flags; curr = bq27xxx_read(di, BQ27XXX_REG_AI, false); if (curr < 0) { dev_err(di->dev, "error reading current\n"); return curr; } if (cache) { flags = cache->flags; } else { flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, single_flags); if (flags < 0) { dev_err(di->dev, "error reading flags\n"); return flags; } } if (di->opts & BQ27XXX_O_ZERO) { if (!(flags & BQ27000_FLAG_CHGS)) { dev_dbg(di->dev, "negative current!\n"); curr = -curr; } curr = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS; } else { /* Other gauges return signed value */ curr = (int)((s16)curr) * 1000; } if (val_curr) val_curr->intval = curr; if (val_status) { if (curr > 0) { val_status->intval = POWER_SUPPLY_STATUS_CHARGING; } else if (curr < 0) { val_status->intval = POWER_SUPPLY_STATUS_DISCHARGING; } else { if (bq27xxx_battery_is_full(di, flags)) val_status->intval = POWER_SUPPLY_STATUS_FULL; else val_status->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; } } return 0; } static void bq27xxx_battery_update_unlocked(struct bq27xxx_device_info *di) { union power_supply_propval status = di->last_status; struct bq27xxx_reg_cache cache = {0, }; bool has_singe_flag = di->opts & BQ27XXX_O_ZERO; cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag); if ((cache.flags & 0xff) == 0xff) cache.flags = -1; /* read error */ if (cache.flags >= 0) { cache.temperature = bq27xxx_battery_read_temperature(di); if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR) cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE); if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR) cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP); if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR) cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF); cache.charge_full = bq27xxx_battery_read_fcc(di); cache.capacity = bq27xxx_battery_read_soc(di); if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR) cache.energy = bq27xxx_battery_read_energy(di); di->cache.flags = cache.flags; cache.health = bq27xxx_battery_read_health(di); if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR) cache.cycle_count = bq27xxx_battery_read_cyct(di); /* * On gauges with signed current reporting the current must be * checked to detect charging <-> discharging status changes. */ if (!(di->opts & BQ27XXX_O_ZERO)) bq27xxx_battery_current_and_status(di, NULL, &status, &cache); /* We only have to read charge design full once */ if (di->charge_design_full <= 0) di->charge_design_full = bq27xxx_battery_read_dcap(di); } if ((di->cache.capacity != cache.capacity) || (di->cache.flags != cache.flags) || (di->last_status.intval != status.intval)) { di->last_status.intval = status.intval; power_supply_changed(di->bat); } if (memcmp(&di->cache, &cache, sizeof(cache)) != 0) di->cache = cache; di->last_update = jiffies; if (!di->removed && poll_interval > 0) mod_delayed_work(system_wq, &di->work, poll_interval * HZ); } void bq27xxx_battery_update(struct bq27xxx_device_info *di) { mutex_lock(&di->lock); bq27xxx_battery_update_unlocked(di); mutex_unlock(&di->lock); } EXPORT_SYMBOL_GPL(bq27xxx_battery_update); static void bq27xxx_battery_poll(struct work_struct *work) { struct bq27xxx_device_info *di = container_of(work, struct bq27xxx_device_info, work.work); bq27xxx_battery_update(di); } /* * Get the average power in µW * Return < 0 if something fails. */ static int bq27xxx_battery_pwr_avg(struct bq27xxx_device_info *di, union power_supply_propval *val) { int power; power = bq27xxx_read(di, BQ27XXX_REG_AP, false); if (power < 0) { dev_err(di->dev, "error reading average power register %02x: %d\n", BQ27XXX_REG_AP, power); return power; } if (di->opts & BQ27XXX_O_ZERO) val->intval = (power * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS; else /* Other gauges return a signed value in units of 10mW */ val->intval = (int)((s16)power) * 10000; return 0; } static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di, union power_supply_propval *val) { int level; if (di->opts & BQ27XXX_O_ZERO) { if (di->cache.flags & BQ27000_FLAG_FC) level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (di->cache.flags & BQ27000_FLAG_EDVF) level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else if (di->cache.flags & BQ27000_FLAG_EDV1) level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } else if (di->opts & BQ27Z561_O_BITS) { if (di->cache.flags & BQ27Z561_FLAG_FC) level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (di->cache.flags & BQ27Z561_FLAG_FDC) level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } else { if (di->cache.flags & BQ27XXX_FLAG_FC) level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (di->cache.flags & BQ27XXX_FLAG_SOCF) level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else if (di->cache.flags & BQ27XXX_FLAG_SOC1) level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } val->intval = level; return 0; } /* * Return the battery Voltage in millivolts * Or < 0 if something fails. */ static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di, union power_supply_propval *val) { int volt; volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false); if (volt < 0) { dev_err(di->dev, "error reading voltage\n"); return volt; } val->intval = volt * 1000; return 0; } static int bq27xxx_simple_value(int value, union power_supply_propval *val) { if (value < 0) return value; val->intval = value; return 0; } static int bq27xxx_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct bq27xxx_device_info *di = power_supply_get_drvdata(psy); mutex_lock(&di->lock); if (time_is_before_jiffies(di->last_update + 5 * HZ)) bq27xxx_battery_update_unlocked(di); mutex_unlock(&di->lock); if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0) return -ENODEV; switch (psp) { case POWER_SUPPLY_PROP_STATUS: ret = bq27xxx_battery_current_and_status(di, NULL, val, NULL); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = bq27xxx_battery_voltage(di, val); break; case POWER_SUPPLY_PROP_PRESENT: val->intval = di->cache.flags < 0 ? 0 : 1; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = bq27xxx_battery_current_and_status(di, val, NULL, NULL); break; case POWER_SUPPLY_PROP_CAPACITY: ret = bq27xxx_simple_value(di->cache.capacity, val); break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: ret = bq27xxx_battery_capacity_level(di, val); break; case POWER_SUPPLY_PROP_TEMP: ret = bq27xxx_simple_value(di->cache.temperature, val); if (ret == 0) val->intval -= 2731; /* convert decidegree k to c */ break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: ret = bq27xxx_simple_value(di->cache.time_to_empty, val); break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val); break; case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW: ret = bq27xxx_simple_value(di->cache.time_to_full, val); break; case POWER_SUPPLY_PROP_TECHNOLOGY: if (di->opts & BQ27XXX_O_MUL_CHEM) val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; else val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CHARGE_NOW: if (di->regs[BQ27XXX_REG_NAC] != INVALID_REG_ADDR) ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val); else ret = bq27xxx_simple_value(bq27xxx_battery_read_rc(di), val); break; case POWER_SUPPLY_PROP_CHARGE_FULL: ret = bq27xxx_simple_value(di->cache.charge_full, val); break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: ret = bq27xxx_simple_value(di->charge_design_full, val); break; /* * TODO: Implement these to make registers set from * power_supply_battery_info visible in sysfs. */ case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: return -EINVAL; case POWER_SUPPLY_PROP_CYCLE_COUNT: ret = bq27xxx_simple_value(di->cache.cycle_count, val); break; case POWER_SUPPLY_PROP_ENERGY_NOW: ret = bq27xxx_simple_value(di->cache.energy, val); break; case POWER_SUPPLY_PROP_POWER_AVG: ret = bq27xxx_battery_pwr_avg(di, val); break; case POWER_SUPPLY_PROP_HEALTH: ret = bq27xxx_simple_value(di->cache.health, val); break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BQ27XXX_MANUFACTURER; break; default: return -EINVAL; } return ret; } static void bq27xxx_external_power_changed(struct power_supply *psy) { struct bq27xxx_device_info *di = power_supply_get_drvdata(psy); /* After charger plug in/out wait 0.5s for things to stabilize */ mod_delayed_work(system_wq, &di->work, HZ / 2); } int bq27xxx_battery_setup(struct bq27xxx_device_info *di) { struct power_supply_desc *psy_desc; struct power_supply_config psy_cfg = { .of_node = di->dev->of_node, .drv_data = di, }; INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll); mutex_init(&di->lock); di->regs = bq27xxx_chip_data[di->chip].regs; di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key; di->dm_regs = bq27xxx_chip_data[di->chip].dm_regs; di->opts = bq27xxx_chip_data[di->chip].opts; psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL); if (!psy_desc) return -ENOMEM; psy_desc->name = di->name; psy_desc->type = POWER_SUPPLY_TYPE_BATTERY; psy_desc->properties = bq27xxx_chip_data[di->chip].props; psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size; psy_desc->get_property = bq27xxx_battery_get_property; psy_desc->external_power_changed = bq27xxx_external_power_changed; di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg); if (IS_ERR(di->bat)) return dev_err_probe(di->dev, PTR_ERR(di->bat), "failed to register battery\n"); bq27xxx_battery_settings(di); bq27xxx_battery_update(di); mutex_lock(&bq27xxx_list_lock); list_add(&di->list, &bq27xxx_battery_devices); mutex_unlock(&bq27xxx_list_lock); return 0; } EXPORT_SYMBOL_GPL(bq27xxx_battery_setup); void bq27xxx_battery_teardown(struct bq27xxx_device_info *di) { mutex_lock(&bq27xxx_list_lock); list_del(&di->list); mutex_unlock(&bq27xxx_list_lock); /* Set removed to avoid bq27xxx_battery_update() re-queuing the work */ mutex_lock(&di->lock); di->removed = true; mutex_unlock(&di->lock); cancel_delayed_work_sync(&di->work); power_supply_unregister(di->bat); mutex_destroy(&di->lock); } EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown); MODULE_AUTHOR("Rodolfo Giometti <[email protected]>"); MODULE_DESCRIPTION("BQ27xxx battery monitor driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/bq27xxx_battery.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * DA9150 Charger Driver * * Copyright (c) 2014 Dialog Semiconductor * * Author: Adam Thomson <[email protected]> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/power_supply.h> #include <linux/notifier.h> #include <linux/usb/phy.h> #include <linux/iio/consumer.h> #include <linux/mfd/da9150/core.h> #include <linux/mfd/da9150/registers.h> /* Private data */ struct da9150_charger { struct da9150 *da9150; struct device *dev; struct power_supply *usb; struct power_supply *battery; struct power_supply *supply_online; struct usb_phy *usb_phy; struct notifier_block otg_nb; struct work_struct otg_work; unsigned long usb_event; struct iio_channel *ibus_chan; struct iio_channel *vbus_chan; struct iio_channel *tjunc_chan; struct iio_channel *vbat_chan; }; static inline int da9150_charger_supply_online(struct da9150_charger *charger, struct power_supply *psy, union power_supply_propval *val) { val->intval = (psy == charger->supply_online) ? 1 : 0; return 0; } /* Charger Properties */ static int da9150_charger_vbus_voltage_now(struct da9150_charger *charger, union power_supply_propval *val) { int v_val, ret; /* Read processed value - mV units */ ret = iio_read_channel_processed(charger->vbus_chan, &v_val); if (ret < 0) return ret; /* Convert voltage to expected uV units */ val->intval = v_val * 1000; return 0; } static int da9150_charger_ibus_current_avg(struct da9150_charger *charger, union power_supply_propval *val) { int i_val, ret; /* Read processed value - mA units */ ret = iio_read_channel_processed(charger->ibus_chan, &i_val); if (ret < 0) return ret; /* Convert current to expected uA units */ val->intval = i_val * 1000; return 0; } static int da9150_charger_tjunc_temp(struct da9150_charger *charger, union power_supply_propval *val) { int t_val, ret; /* Read processed value - 0.001 degrees C units */ ret = iio_read_channel_processed(charger->tjunc_chan, &t_val); if (ret < 0) return ret; /* Convert temp to expect 0.1 degrees C units */ val->intval = t_val / 100; return 0; } static enum power_supply_property da9150_charger_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_TEMP, }; static int da9150_charger_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct da9150_charger *charger = dev_get_drvdata(psy->dev.parent); int ret; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = da9150_charger_supply_online(charger, psy, val); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = da9150_charger_vbus_voltage_now(charger, val); break; case POWER_SUPPLY_PROP_CURRENT_AVG: ret = da9150_charger_ibus_current_avg(charger, val); break; case POWER_SUPPLY_PROP_TEMP: ret = da9150_charger_tjunc_temp(charger, val); break; default: ret = -EINVAL; break; } return ret; } /* Battery Properties */ static int da9150_charger_battery_status(struct da9150_charger *charger, union power_supply_propval *val) { u8 reg; /* Check to see if battery is discharging */ reg = da9150_reg_read(charger->da9150, DA9150_STATUS_H); if (((reg & DA9150_VBUS_STAT_MASK) == DA9150_VBUS_STAT_OFF) || ((reg & DA9150_VBUS_STAT_MASK) == DA9150_VBUS_STAT_WAIT)) { val->intval = POWER_SUPPLY_STATUS_DISCHARGING; return 0; } reg = da9150_reg_read(charger->da9150, DA9150_STATUS_J); /* Now check for other states */ switch (reg & DA9150_CHG_STAT_MASK) { case DA9150_CHG_STAT_ACT: case DA9150_CHG_STAT_PRE: case DA9150_CHG_STAT_CC: case DA9150_CHG_STAT_CV: val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case DA9150_CHG_STAT_OFF: case DA9150_CHG_STAT_SUSP: case DA9150_CHG_STAT_TEMP: case DA9150_CHG_STAT_TIME: case DA9150_CHG_STAT_BAT: val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case DA9150_CHG_STAT_FULL: val->intval = POWER_SUPPLY_STATUS_FULL; break; default: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; break; } return 0; } static int da9150_charger_battery_health(struct da9150_charger *charger, union power_supply_propval *val) { u8 reg; reg = da9150_reg_read(charger->da9150, DA9150_STATUS_J); /* Check if temperature limit reached */ switch (reg & DA9150_CHG_TEMP_MASK) { case DA9150_CHG_TEMP_UNDER: val->intval = POWER_SUPPLY_HEALTH_COLD; return 0; case DA9150_CHG_TEMP_OVER: val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; return 0; default: break; } /* Check for other health states */ switch (reg & DA9150_CHG_STAT_MASK) { case DA9150_CHG_STAT_ACT: case DA9150_CHG_STAT_PRE: val->intval = POWER_SUPPLY_HEALTH_DEAD; break; case DA9150_CHG_STAT_TIME: val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; break; default: val->intval = POWER_SUPPLY_HEALTH_GOOD; break; } return 0; } static int da9150_charger_battery_present(struct da9150_charger *charger, union power_supply_propval *val) { u8 reg; /* Check if battery present or removed */ reg = da9150_reg_read(charger->da9150, DA9150_STATUS_J); if ((reg & DA9150_CHG_STAT_MASK) == DA9150_CHG_STAT_BAT) val->intval = 0; else val->intval = 1; return 0; } static int da9150_charger_battery_charge_type(struct da9150_charger *charger, union power_supply_propval *val) { u8 reg; reg = da9150_reg_read(charger->da9150, DA9150_STATUS_J); switch (reg & DA9150_CHG_STAT_MASK) { case DA9150_CHG_STAT_CC: val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST; break; case DA9150_CHG_STAT_ACT: case DA9150_CHG_STAT_PRE: case DA9150_CHG_STAT_CV: val->intval = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; break; default: val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE; break; } return 0; } static int da9150_charger_battery_voltage_min(struct da9150_charger *charger, union power_supply_propval *val) { u8 reg; reg = da9150_reg_read(charger->da9150, DA9150_PPR_CHGCTRL_C); /* Value starts at 2500 mV, 50 mV increments, presented in uV */ val->intval = ((reg & DA9150_CHG_VFAULT_MASK) * 50000) + 2500000; return 0; } static int da9150_charger_battery_voltage_now(struct da9150_charger *charger, union power_supply_propval *val) { int v_val, ret; /* Read processed value - mV units */ ret = iio_read_channel_processed(charger->vbat_chan, &v_val); if (ret < 0) return ret; val->intval = v_val * 1000; return 0; } static int da9150_charger_battery_current_max(struct da9150_charger *charger, union power_supply_propval *val) { int reg; reg = da9150_reg_read(charger->da9150, DA9150_PPR_CHGCTRL_D); /* 25mA increments */ val->intval = reg * 25000; return 0; } static int da9150_charger_battery_voltage_max(struct da9150_charger *charger, union power_supply_propval *val) { u8 reg; reg = da9150_reg_read(charger->da9150, DA9150_PPR_CHGCTRL_B); /* Value starts at 3650 mV, 25 mV increments, presented in uV */ val->intval = ((reg & DA9150_CHG_VBAT_MASK) * 25000) + 3650000; return 0; } static enum power_supply_property da9150_charger_bat_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, }; static int da9150_charger_battery_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct da9150_charger *charger = dev_get_drvdata(psy->dev.parent); int ret; switch (psp) { case POWER_SUPPLY_PROP_STATUS: ret = da9150_charger_battery_status(charger, val); break; case POWER_SUPPLY_PROP_ONLINE: ret = da9150_charger_supply_online(charger, psy, val); break; case POWER_SUPPLY_PROP_HEALTH: ret = da9150_charger_battery_health(charger, val); break; case POWER_SUPPLY_PROP_PRESENT: ret = da9150_charger_battery_present(charger, val); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = da9150_charger_battery_charge_type(charger, val); break; case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: ret = da9150_charger_battery_voltage_min(charger, val); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = da9150_charger_battery_voltage_now(charger, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: ret = da9150_charger_battery_current_max(charger, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: ret = da9150_charger_battery_voltage_max(charger, val); break; default: ret = -EINVAL; break; } return ret; } static irqreturn_t da9150_charger_chg_irq(int irq, void *data) { struct da9150_charger *charger = data; power_supply_changed(charger->battery); return IRQ_HANDLED; } static irqreturn_t da9150_charger_tjunc_irq(int irq, void *data) { struct da9150_charger *charger = data; /* Nothing we can really do except report this. */ dev_crit(charger->dev, "TJunc over temperature!!!\n"); power_supply_changed(charger->usb); return IRQ_HANDLED; } static irqreturn_t da9150_charger_vfault_irq(int irq, void *data) { struct da9150_charger *charger = data; /* Nothing we can really do except report this. */ dev_crit(charger->dev, "VSYS under voltage!!!\n"); power_supply_changed(charger->usb); power_supply_changed(charger->battery); return IRQ_HANDLED; } static irqreturn_t da9150_charger_vbus_irq(int irq, void *data) { struct da9150_charger *charger = data; u8 reg; reg = da9150_reg_read(charger->da9150, DA9150_STATUS_H); /* Charger plugged in or battery only */ switch (reg & DA9150_VBUS_STAT_MASK) { case DA9150_VBUS_STAT_OFF: case DA9150_VBUS_STAT_WAIT: charger->supply_online = charger->battery; break; case DA9150_VBUS_STAT_CHG: charger->supply_online = charger->usb; break; default: dev_warn(charger->dev, "Unknown VBUS state - reg = 0x%x\n", reg); charger->supply_online = NULL; break; } power_supply_changed(charger->usb); power_supply_changed(charger->battery); return IRQ_HANDLED; } static void da9150_charger_otg_work(struct work_struct *data) { struct da9150_charger *charger = container_of(data, struct da9150_charger, otg_work); switch (charger->usb_event) { case USB_EVENT_ID: /* Enable OTG Boost */ da9150_set_bits(charger->da9150, DA9150_PPR_BKCTRL_A, DA9150_VBUS_MODE_MASK, DA9150_VBUS_MODE_OTG); break; case USB_EVENT_NONE: /* Revert to charge mode */ power_supply_changed(charger->usb); power_supply_changed(charger->battery); da9150_set_bits(charger->da9150, DA9150_PPR_BKCTRL_A, DA9150_VBUS_MODE_MASK, DA9150_VBUS_MODE_CHG); break; } } static int da9150_charger_otg_ncb(struct notifier_block *nb, unsigned long val, void *priv) { struct da9150_charger *charger = container_of(nb, struct da9150_charger, otg_nb); dev_dbg(charger->dev, "DA9150 OTG notify %lu\n", val); charger->usb_event = val; schedule_work(&charger->otg_work); return NOTIFY_OK; } static int da9150_charger_register_irq(struct platform_device *pdev, irq_handler_t handler, const char *irq_name) { struct device *dev = &pdev->dev; struct da9150_charger *charger = platform_get_drvdata(pdev); int irq, ret; irq = platform_get_irq_byname(pdev, irq_name); if (irq < 0) return irq; ret = request_threaded_irq(irq, NULL, handler, IRQF_ONESHOT, irq_name, charger); if (ret) dev_err(dev, "Failed to request IRQ %d: %d\n", irq, ret); return ret; } static void da9150_charger_unregister_irq(struct platform_device *pdev, const char *irq_name) { struct da9150_charger *charger = platform_get_drvdata(pdev); int irq; irq = platform_get_irq_byname(pdev, irq_name); if (irq < 0) return; free_irq(irq, charger); } static const struct power_supply_desc usb_desc = { .name = "da9150-usb", .type = POWER_SUPPLY_TYPE_USB, .properties = da9150_charger_props, .num_properties = ARRAY_SIZE(da9150_charger_props), .get_property = da9150_charger_get_prop, }; static const struct power_supply_desc battery_desc = { .name = "da9150-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = da9150_charger_bat_props, .num_properties = ARRAY_SIZE(da9150_charger_bat_props), .get_property = da9150_charger_battery_get_prop, }; static int da9150_charger_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct da9150 *da9150 = dev_get_drvdata(dev->parent); struct da9150_charger *charger; u8 reg; int ret; charger = devm_kzalloc(dev, sizeof(struct da9150_charger), GFP_KERNEL); if (!charger) return -ENOMEM; platform_set_drvdata(pdev, charger); charger->da9150 = da9150; charger->dev = dev; /* Acquire ADC channels */ charger->ibus_chan = iio_channel_get(dev, "CHAN_IBUS"); if (IS_ERR(charger->ibus_chan)) { ret = PTR_ERR(charger->ibus_chan); goto ibus_chan_fail; } charger->vbus_chan = iio_channel_get(dev, "CHAN_VBUS"); if (IS_ERR(charger->vbus_chan)) { ret = PTR_ERR(charger->vbus_chan); goto vbus_chan_fail; } charger->tjunc_chan = iio_channel_get(dev, "CHAN_TJUNC"); if (IS_ERR(charger->tjunc_chan)) { ret = PTR_ERR(charger->tjunc_chan); goto tjunc_chan_fail; } charger->vbat_chan = iio_channel_get(dev, "CHAN_VBAT"); if (IS_ERR(charger->vbat_chan)) { ret = PTR_ERR(charger->vbat_chan); goto vbat_chan_fail; } /* Register power supplies */ charger->usb = power_supply_register(dev, &usb_desc, NULL); if (IS_ERR(charger->usb)) { ret = PTR_ERR(charger->usb); goto usb_fail; } charger->battery = power_supply_register(dev, &battery_desc, NULL); if (IS_ERR(charger->battery)) { ret = PTR_ERR(charger->battery); goto battery_fail; } /* Get initial online supply */ reg = da9150_reg_read(da9150, DA9150_STATUS_H); switch (reg & DA9150_VBUS_STAT_MASK) { case DA9150_VBUS_STAT_OFF: case DA9150_VBUS_STAT_WAIT: charger->supply_online = charger->battery; break; case DA9150_VBUS_STAT_CHG: charger->supply_online = charger->usb; break; default: dev_warn(dev, "Unknown VBUS state - reg = 0x%x\n", reg); charger->supply_online = NULL; break; } /* Setup OTG reporting & configuration */ charger->usb_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); if (!IS_ERR_OR_NULL(charger->usb_phy)) { INIT_WORK(&charger->otg_work, da9150_charger_otg_work); charger->otg_nb.notifier_call = da9150_charger_otg_ncb; usb_register_notifier(charger->usb_phy, &charger->otg_nb); } /* Register IRQs */ ret = da9150_charger_register_irq(pdev, da9150_charger_chg_irq, "CHG_STATUS"); if (ret < 0) goto chg_irq_fail; ret = da9150_charger_register_irq(pdev, da9150_charger_tjunc_irq, "CHG_TJUNC"); if (ret < 0) goto tjunc_irq_fail; ret = da9150_charger_register_irq(pdev, da9150_charger_vfault_irq, "CHG_VFAULT"); if (ret < 0) goto vfault_irq_fail; ret = da9150_charger_register_irq(pdev, da9150_charger_vbus_irq, "CHG_VBUS"); if (ret < 0) goto vbus_irq_fail; return 0; vbus_irq_fail: da9150_charger_unregister_irq(pdev, "CHG_VFAULT"); vfault_irq_fail: da9150_charger_unregister_irq(pdev, "CHG_TJUNC"); tjunc_irq_fail: da9150_charger_unregister_irq(pdev, "CHG_STATUS"); chg_irq_fail: if (!IS_ERR_OR_NULL(charger->usb_phy)) usb_unregister_notifier(charger->usb_phy, &charger->otg_nb); battery_fail: power_supply_unregister(charger->usb); usb_fail: iio_channel_release(charger->vbat_chan); vbat_chan_fail: iio_channel_release(charger->tjunc_chan); tjunc_chan_fail: iio_channel_release(charger->vbus_chan); vbus_chan_fail: iio_channel_release(charger->ibus_chan); ibus_chan_fail: return ret; } static int da9150_charger_remove(struct platform_device *pdev) { struct da9150_charger *charger = platform_get_drvdata(pdev); int irq; /* Make sure IRQs are released before unregistering power supplies */ irq = platform_get_irq_byname(pdev, "CHG_VBUS"); free_irq(irq, charger); irq = platform_get_irq_byname(pdev, "CHG_VFAULT"); free_irq(irq, charger); irq = platform_get_irq_byname(pdev, "CHG_TJUNC"); free_irq(irq, charger); irq = platform_get_irq_byname(pdev, "CHG_STATUS"); free_irq(irq, charger); if (!IS_ERR_OR_NULL(charger->usb_phy)) usb_unregister_notifier(charger->usb_phy, &charger->otg_nb); cancel_work_sync(&charger->otg_work); power_supply_unregister(charger->battery); power_supply_unregister(charger->usb); /* Release ADC channels */ iio_channel_release(charger->ibus_chan); iio_channel_release(charger->vbus_chan); iio_channel_release(charger->tjunc_chan); iio_channel_release(charger->vbat_chan); return 0; } static struct platform_driver da9150_charger_driver = { .driver = { .name = "da9150-charger", }, .probe = da9150_charger_probe, .remove = da9150_charger_remove, }; module_platform_driver(da9150_charger_driver); MODULE_DESCRIPTION("Charger Driver for DA9150"); MODULE_AUTHOR("Adam Thomson <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/da9150-charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for the TI bq24190 battery charger. * * Author: Mark A. Greer <[email protected]> */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <linux/power_supply.h> #include <linux/power/bq24190_charger.h> #include <linux/regulator/driver.h> #include <linux/regulator/machine.h> #include <linux/workqueue.h> #include <linux/i2c.h> #include <linux/extcon-provider.h> #define BQ24190_MANUFACTURER "Texas Instruments" #define BQ24190_REG_ISC 0x00 /* Input Source Control */ #define BQ24190_REG_ISC_EN_HIZ_MASK BIT(7) #define BQ24190_REG_ISC_EN_HIZ_SHIFT 7 #define BQ24190_REG_ISC_VINDPM_MASK (BIT(6) | BIT(5) | BIT(4) | \ BIT(3)) #define BQ24190_REG_ISC_VINDPM_SHIFT 3 #define BQ24190_REG_ISC_IINLIM_MASK (BIT(2) | BIT(1) | BIT(0)) #define BQ24190_REG_ISC_IINLIM_SHIFT 0 #define BQ24190_REG_POC 0x01 /* Power-On Configuration */ #define BQ24190_REG_POC_RESET_MASK BIT(7) #define BQ24190_REG_POC_RESET_SHIFT 7 #define BQ24190_REG_POC_WDT_RESET_MASK BIT(6) #define BQ24190_REG_POC_WDT_RESET_SHIFT 6 #define BQ24190_REG_POC_CHG_CONFIG_MASK (BIT(5) | BIT(4)) #define BQ24190_REG_POC_CHG_CONFIG_SHIFT 4 #define BQ24190_REG_POC_CHG_CONFIG_DISABLE 0x0 #define BQ24190_REG_POC_CHG_CONFIG_CHARGE 0x1 #define BQ24190_REG_POC_CHG_CONFIG_OTG 0x2 #define BQ24190_REG_POC_CHG_CONFIG_OTG_ALT 0x3 #define BQ24190_REG_POC_SYS_MIN_MASK (BIT(3) | BIT(2) | BIT(1)) #define BQ24190_REG_POC_SYS_MIN_SHIFT 1 #define BQ24190_REG_POC_SYS_MIN_MIN 3000 #define BQ24190_REG_POC_SYS_MIN_MAX 3700 #define BQ24190_REG_POC_BOOST_LIM_MASK BIT(0) #define BQ24190_REG_POC_BOOST_LIM_SHIFT 0 #define BQ24190_REG_CCC 0x02 /* Charge Current Control */ #define BQ24190_REG_CCC_ICHG_MASK (BIT(7) | BIT(6) | BIT(5) | \ BIT(4) | BIT(3) | BIT(2)) #define BQ24190_REG_CCC_ICHG_SHIFT 2 #define BQ24190_REG_CCC_FORCE_20PCT_MASK BIT(0) #define BQ24190_REG_CCC_FORCE_20PCT_SHIFT 0 #define BQ24190_REG_PCTCC 0x03 /* Pre-charge/Termination Current Cntl */ #define BQ24190_REG_PCTCC_IPRECHG_MASK (BIT(7) | BIT(6) | BIT(5) | \ BIT(4)) #define BQ24190_REG_PCTCC_IPRECHG_SHIFT 4 #define BQ24190_REG_PCTCC_IPRECHG_MIN 128 #define BQ24190_REG_PCTCC_IPRECHG_MAX 2048 #define BQ24190_REG_PCTCC_ITERM_MASK (BIT(3) | BIT(2) | BIT(1) | \ BIT(0)) #define BQ24190_REG_PCTCC_ITERM_SHIFT 0 #define BQ24190_REG_PCTCC_ITERM_MIN 128 #define BQ24190_REG_PCTCC_ITERM_MAX 2048 #define BQ24190_REG_CVC 0x04 /* Charge Voltage Control */ #define BQ24190_REG_CVC_VREG_MASK (BIT(7) | BIT(6) | BIT(5) | \ BIT(4) | BIT(3) | BIT(2)) #define BQ24190_REG_CVC_VREG_SHIFT 2 #define BQ24190_REG_CVC_BATLOWV_MASK BIT(1) #define BQ24190_REG_CVC_BATLOWV_SHIFT 1 #define BQ24190_REG_CVC_VRECHG_MASK BIT(0) #define BQ24190_REG_CVC_VRECHG_SHIFT 0 #define BQ24190_REG_CTTC 0x05 /* Charge Term/Timer Control */ #define BQ24190_REG_CTTC_EN_TERM_MASK BIT(7) #define BQ24190_REG_CTTC_EN_TERM_SHIFT 7 #define BQ24190_REG_CTTC_TERM_STAT_MASK BIT(6) #define BQ24190_REG_CTTC_TERM_STAT_SHIFT 6 #define BQ24190_REG_CTTC_WATCHDOG_MASK (BIT(5) | BIT(4)) #define BQ24190_REG_CTTC_WATCHDOG_SHIFT 4 #define BQ24190_REG_CTTC_EN_TIMER_MASK BIT(3) #define BQ24190_REG_CTTC_EN_TIMER_SHIFT 3 #define BQ24190_REG_CTTC_CHG_TIMER_MASK (BIT(2) | BIT(1)) #define BQ24190_REG_CTTC_CHG_TIMER_SHIFT 1 #define BQ24190_REG_CTTC_JEITA_ISET_MASK BIT(0) #define BQ24190_REG_CTTC_JEITA_ISET_SHIFT 0 #define BQ24190_REG_ICTRC 0x06 /* IR Comp/Thermal Regulation Control */ #define BQ24190_REG_ICTRC_BAT_COMP_MASK (BIT(7) | BIT(6) | BIT(5)) #define BQ24190_REG_ICTRC_BAT_COMP_SHIFT 5 #define BQ24190_REG_ICTRC_VCLAMP_MASK (BIT(4) | BIT(3) | BIT(2)) #define BQ24190_REG_ICTRC_VCLAMP_SHIFT 2 #define BQ24190_REG_ICTRC_TREG_MASK (BIT(1) | BIT(0)) #define BQ24190_REG_ICTRC_TREG_SHIFT 0 #define BQ24190_REG_MOC 0x07 /* Misc. Operation Control */ #define BQ24190_REG_MOC_DPDM_EN_MASK BIT(7) #define BQ24190_REG_MOC_DPDM_EN_SHIFT 7 #define BQ24190_REG_MOC_TMR2X_EN_MASK BIT(6) #define BQ24190_REG_MOC_TMR2X_EN_SHIFT 6 #define BQ24190_REG_MOC_BATFET_DISABLE_MASK BIT(5) #define BQ24190_REG_MOC_BATFET_DISABLE_SHIFT 5 #define BQ24190_REG_MOC_JEITA_VSET_MASK BIT(4) #define BQ24190_REG_MOC_JEITA_VSET_SHIFT 4 #define BQ24190_REG_MOC_INT_MASK_MASK (BIT(1) | BIT(0)) #define BQ24190_REG_MOC_INT_MASK_SHIFT 0 #define BQ24190_REG_SS 0x08 /* System Status */ #define BQ24190_REG_SS_VBUS_STAT_MASK (BIT(7) | BIT(6)) #define BQ24190_REG_SS_VBUS_STAT_SHIFT 6 #define BQ24190_REG_SS_CHRG_STAT_MASK (BIT(5) | BIT(4)) #define BQ24190_REG_SS_CHRG_STAT_SHIFT 4 #define BQ24190_REG_SS_DPM_STAT_MASK BIT(3) #define BQ24190_REG_SS_DPM_STAT_SHIFT 3 #define BQ24190_REG_SS_PG_STAT_MASK BIT(2) #define BQ24190_REG_SS_PG_STAT_SHIFT 2 #define BQ24190_REG_SS_THERM_STAT_MASK BIT(1) #define BQ24190_REG_SS_THERM_STAT_SHIFT 1 #define BQ24190_REG_SS_VSYS_STAT_MASK BIT(0) #define BQ24190_REG_SS_VSYS_STAT_SHIFT 0 #define BQ24190_REG_F 0x09 /* Fault */ #define BQ24190_REG_F_WATCHDOG_FAULT_MASK BIT(7) #define BQ24190_REG_F_WATCHDOG_FAULT_SHIFT 7 #define BQ24190_REG_F_BOOST_FAULT_MASK BIT(6) #define BQ24190_REG_F_BOOST_FAULT_SHIFT 6 #define BQ24190_REG_F_CHRG_FAULT_MASK (BIT(5) | BIT(4)) #define BQ24190_REG_F_CHRG_FAULT_SHIFT 4 #define BQ24190_REG_F_BAT_FAULT_MASK BIT(3) #define BQ24190_REG_F_BAT_FAULT_SHIFT 3 #define BQ24190_REG_F_NTC_FAULT_MASK (BIT(2) | BIT(1) | BIT(0)) #define BQ24190_REG_F_NTC_FAULT_SHIFT 0 #define BQ24190_REG_VPRS 0x0A /* Vendor/Part/Revision Status */ #define BQ24190_REG_VPRS_PN_MASK (BIT(5) | BIT(4) | BIT(3)) #define BQ24190_REG_VPRS_PN_SHIFT 3 #define BQ24190_REG_VPRS_PN_24190 0x4 #define BQ24190_REG_VPRS_PN_24192 0x5 /* Also 24193, 24196 */ #define BQ24190_REG_VPRS_PN_24192I 0x3 #define BQ24190_REG_VPRS_TS_PROFILE_MASK BIT(2) #define BQ24190_REG_VPRS_TS_PROFILE_SHIFT 2 #define BQ24190_REG_VPRS_DEV_REG_MASK (BIT(1) | BIT(0)) #define BQ24190_REG_VPRS_DEV_REG_SHIFT 0 /* * The FAULT register is latched by the bq24190 (except for NTC_FAULT) * so the first read after a fault returns the latched value and subsequent * reads return the current value. In order to return the fault status * to the user, have the interrupt handler save the reg's value and retrieve * it in the appropriate health/status routine. */ struct bq24190_dev_info { struct i2c_client *client; struct device *dev; struct extcon_dev *edev; struct power_supply *charger; struct power_supply *battery; struct delayed_work input_current_limit_work; char model_name[I2C_NAME_SIZE]; bool initialized; bool irq_event; bool otg_vbus_enabled; int charge_type; u16 sys_min; u16 iprechg; u16 iterm; u32 ichg; u32 ichg_max; u32 vreg; u32 vreg_max; struct mutex f_reg_lock; u8 f_reg; u8 ss_reg; u8 watchdog; }; static int bq24190_charger_set_charge_type(struct bq24190_dev_info *bdi, const union power_supply_propval *val); static const unsigned int bq24190_usb_extcon_cable[] = { EXTCON_USB, EXTCON_NONE, }; /* * The tables below provide a 2-way mapping for the value that goes in * the register field and the real-world value that it represents. * The index of the array is the value that goes in the register; the * number at that index in the array is the real-world value that it * represents. */ /* REG00[2:0] (IINLIM) in uAh */ static const int bq24190_isc_iinlim_values[] = { 100000, 150000, 500000, 900000, 1200000, 1500000, 2000000, 3000000 }; /* REG02[7:2] (ICHG) in uAh */ static const int bq24190_ccc_ichg_values[] = { 512000, 576000, 640000, 704000, 768000, 832000, 896000, 960000, 1024000, 1088000, 1152000, 1216000, 1280000, 1344000, 1408000, 1472000, 1536000, 1600000, 1664000, 1728000, 1792000, 1856000, 1920000, 1984000, 2048000, 2112000, 2176000, 2240000, 2304000, 2368000, 2432000, 2496000, 2560000, 2624000, 2688000, 2752000, 2816000, 2880000, 2944000, 3008000, 3072000, 3136000, 3200000, 3264000, 3328000, 3392000, 3456000, 3520000, 3584000, 3648000, 3712000, 3776000, 3840000, 3904000, 3968000, 4032000, 4096000, 4160000, 4224000, 4288000, 4352000, 4416000, 4480000, 4544000 }; /* REG04[7:2] (VREG) in uV */ static const int bq24190_cvc_vreg_values[] = { 3504000, 3520000, 3536000, 3552000, 3568000, 3584000, 3600000, 3616000, 3632000, 3648000, 3664000, 3680000, 3696000, 3712000, 3728000, 3744000, 3760000, 3776000, 3792000, 3808000, 3824000, 3840000, 3856000, 3872000, 3888000, 3904000, 3920000, 3936000, 3952000, 3968000, 3984000, 4000000, 4016000, 4032000, 4048000, 4064000, 4080000, 4096000, 4112000, 4128000, 4144000, 4160000, 4176000, 4192000, 4208000, 4224000, 4240000, 4256000, 4272000, 4288000, 4304000, 4320000, 4336000, 4352000, 4368000, 4384000, 4400000 }; /* REG06[1:0] (TREG) in tenths of degrees Celsius */ static const int bq24190_ictrc_treg_values[] = { 600, 800, 1000, 1200 }; /* * Return the index in 'tbl' of greatest value that is less than or equal to * 'val'. The index range returned is 0 to 'tbl_size' - 1. Assumes that * the values in 'tbl' are sorted from smallest to largest and 'tbl_size' * is less than 2^8. */ static u8 bq24190_find_idx(const int tbl[], int tbl_size, int v) { int i; for (i = 1; i < tbl_size; i++) if (v < tbl[i]) break; return i - 1; } /* Basic driver I/O routines */ static int bq24190_read(struct bq24190_dev_info *bdi, u8 reg, u8 *data) { int ret; ret = i2c_smbus_read_byte_data(bdi->client, reg); if (ret < 0) return ret; *data = ret; return 0; } static int bq24190_write(struct bq24190_dev_info *bdi, u8 reg, u8 data) { return i2c_smbus_write_byte_data(bdi->client, reg, data); } static int bq24190_read_mask(struct bq24190_dev_info *bdi, u8 reg, u8 mask, u8 shift, u8 *data) { u8 v; int ret; ret = bq24190_read(bdi, reg, &v); if (ret < 0) return ret; v &= mask; v >>= shift; *data = v; return 0; } static int bq24190_write_mask(struct bq24190_dev_info *bdi, u8 reg, u8 mask, u8 shift, u8 data) { u8 v; int ret; ret = bq24190_read(bdi, reg, &v); if (ret < 0) return ret; v &= ~mask; v |= ((data << shift) & mask); return bq24190_write(bdi, reg, v); } static int bq24190_get_field_val(struct bq24190_dev_info *bdi, u8 reg, u8 mask, u8 shift, const int tbl[], int tbl_size, int *val) { u8 v; int ret; ret = bq24190_read_mask(bdi, reg, mask, shift, &v); if (ret < 0) return ret; v = (v >= tbl_size) ? (tbl_size - 1) : v; *val = tbl[v]; return 0; } static int bq24190_set_field_val(struct bq24190_dev_info *bdi, u8 reg, u8 mask, u8 shift, const int tbl[], int tbl_size, int val) { u8 idx; idx = bq24190_find_idx(tbl, tbl_size, val); return bq24190_write_mask(bdi, reg, mask, shift, idx); } #ifdef CONFIG_SYSFS /* * There are a numerous options that are configurable on the bq24190 * that go well beyond what the power_supply properties provide access to. * Provide sysfs access to them so they can be examined and possibly modified * on the fly. They will be provided for the charger power_supply object only * and will be prefixed by 'f_' to make them easier to recognize. */ #define BQ24190_SYSFS_FIELD(_name, r, f, m, store) \ { \ .attr = __ATTR(f_##_name, m, bq24190_sysfs_show, store), \ .reg = BQ24190_REG_##r, \ .mask = BQ24190_REG_##r##_##f##_MASK, \ .shift = BQ24190_REG_##r##_##f##_SHIFT, \ } #define BQ24190_SYSFS_FIELD_RW(_name, r, f) \ BQ24190_SYSFS_FIELD(_name, r, f, S_IWUSR | S_IRUGO, \ bq24190_sysfs_store) #define BQ24190_SYSFS_FIELD_RO(_name, r, f) \ BQ24190_SYSFS_FIELD(_name, r, f, S_IRUGO, NULL) static ssize_t bq24190_sysfs_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t bq24190_sysfs_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); struct bq24190_sysfs_field_info { struct device_attribute attr; u8 reg; u8 mask; u8 shift; }; /* On i386 ptrace-abi.h defines SS that breaks the macro calls below. */ #undef SS static struct bq24190_sysfs_field_info bq24190_sysfs_field_tbl[] = { /* sysfs name reg field in reg */ BQ24190_SYSFS_FIELD_RW(en_hiz, ISC, EN_HIZ), BQ24190_SYSFS_FIELD_RW(vindpm, ISC, VINDPM), BQ24190_SYSFS_FIELD_RW(iinlim, ISC, IINLIM), BQ24190_SYSFS_FIELD_RW(chg_config, POC, CHG_CONFIG), BQ24190_SYSFS_FIELD_RW(sys_min, POC, SYS_MIN), BQ24190_SYSFS_FIELD_RW(boost_lim, POC, BOOST_LIM), BQ24190_SYSFS_FIELD_RW(ichg, CCC, ICHG), BQ24190_SYSFS_FIELD_RW(force_20_pct, CCC, FORCE_20PCT), BQ24190_SYSFS_FIELD_RW(iprechg, PCTCC, IPRECHG), BQ24190_SYSFS_FIELD_RW(iterm, PCTCC, ITERM), BQ24190_SYSFS_FIELD_RW(vreg, CVC, VREG), BQ24190_SYSFS_FIELD_RW(batlowv, CVC, BATLOWV), BQ24190_SYSFS_FIELD_RW(vrechg, CVC, VRECHG), BQ24190_SYSFS_FIELD_RW(en_term, CTTC, EN_TERM), BQ24190_SYSFS_FIELD_RW(term_stat, CTTC, TERM_STAT), BQ24190_SYSFS_FIELD_RO(watchdog, CTTC, WATCHDOG), BQ24190_SYSFS_FIELD_RW(en_timer, CTTC, EN_TIMER), BQ24190_SYSFS_FIELD_RW(chg_timer, CTTC, CHG_TIMER), BQ24190_SYSFS_FIELD_RW(jeta_iset, CTTC, JEITA_ISET), BQ24190_SYSFS_FIELD_RW(bat_comp, ICTRC, BAT_COMP), BQ24190_SYSFS_FIELD_RW(vclamp, ICTRC, VCLAMP), BQ24190_SYSFS_FIELD_RW(treg, ICTRC, TREG), BQ24190_SYSFS_FIELD_RW(dpdm_en, MOC, DPDM_EN), BQ24190_SYSFS_FIELD_RW(tmr2x_en, MOC, TMR2X_EN), BQ24190_SYSFS_FIELD_RW(batfet_disable, MOC, BATFET_DISABLE), BQ24190_SYSFS_FIELD_RW(jeita_vset, MOC, JEITA_VSET), BQ24190_SYSFS_FIELD_RO(int_mask, MOC, INT_MASK), BQ24190_SYSFS_FIELD_RO(vbus_stat, SS, VBUS_STAT), BQ24190_SYSFS_FIELD_RO(chrg_stat, SS, CHRG_STAT), BQ24190_SYSFS_FIELD_RO(dpm_stat, SS, DPM_STAT), BQ24190_SYSFS_FIELD_RO(pg_stat, SS, PG_STAT), BQ24190_SYSFS_FIELD_RO(therm_stat, SS, THERM_STAT), BQ24190_SYSFS_FIELD_RO(vsys_stat, SS, VSYS_STAT), BQ24190_SYSFS_FIELD_RO(watchdog_fault, F, WATCHDOG_FAULT), BQ24190_SYSFS_FIELD_RO(boost_fault, F, BOOST_FAULT), BQ24190_SYSFS_FIELD_RO(chrg_fault, F, CHRG_FAULT), BQ24190_SYSFS_FIELD_RO(bat_fault, F, BAT_FAULT), BQ24190_SYSFS_FIELD_RO(ntc_fault, F, NTC_FAULT), BQ24190_SYSFS_FIELD_RO(pn, VPRS, PN), BQ24190_SYSFS_FIELD_RO(ts_profile, VPRS, TS_PROFILE), BQ24190_SYSFS_FIELD_RO(dev_reg, VPRS, DEV_REG), }; static struct attribute * bq24190_sysfs_attrs[ARRAY_SIZE(bq24190_sysfs_field_tbl) + 1]; ATTRIBUTE_GROUPS(bq24190_sysfs); static void bq24190_sysfs_init_attrs(void) { int i, limit = ARRAY_SIZE(bq24190_sysfs_field_tbl); for (i = 0; i < limit; i++) bq24190_sysfs_attrs[i] = &bq24190_sysfs_field_tbl[i].attr.attr; bq24190_sysfs_attrs[limit] = NULL; /* Has additional entry for this */ } static struct bq24190_sysfs_field_info *bq24190_sysfs_field_lookup( const char *name) { int i, limit = ARRAY_SIZE(bq24190_sysfs_field_tbl); for (i = 0; i < limit; i++) if (!strcmp(name, bq24190_sysfs_field_tbl[i].attr.attr.name)) break; if (i >= limit) return NULL; return &bq24190_sysfs_field_tbl[i]; } static ssize_t bq24190_sysfs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct power_supply *psy = dev_get_drvdata(dev); struct bq24190_dev_info *bdi = power_supply_get_drvdata(psy); struct bq24190_sysfs_field_info *info; ssize_t count; int ret; u8 v; info = bq24190_sysfs_field_lookup(attr->attr.name); if (!info) return -EINVAL; ret = pm_runtime_resume_and_get(bdi->dev); if (ret < 0) return ret; ret = bq24190_read_mask(bdi, info->reg, info->mask, info->shift, &v); if (ret) count = ret; else count = sysfs_emit(buf, "%hhx\n", v); pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); return count; } static ssize_t bq24190_sysfs_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct power_supply *psy = dev_get_drvdata(dev); struct bq24190_dev_info *bdi = power_supply_get_drvdata(psy); struct bq24190_sysfs_field_info *info; int ret; u8 v; info = bq24190_sysfs_field_lookup(attr->attr.name); if (!info) return -EINVAL; ret = kstrtou8(buf, 0, &v); if (ret < 0) return ret; ret = pm_runtime_resume_and_get(bdi->dev); if (ret < 0) return ret; ret = bq24190_write_mask(bdi, info->reg, info->mask, info->shift, v); if (ret) count = ret; pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); return count; } #endif static int bq24190_set_otg_vbus(struct bq24190_dev_info *bdi, bool enable) { union power_supply_propval val = { .intval = bdi->charge_type }; int ret; ret = pm_runtime_resume_and_get(bdi->dev); if (ret < 0) { dev_warn(bdi->dev, "pm_runtime_get failed: %i\n", ret); return ret; } bdi->otg_vbus_enabled = enable; if (enable) ret = bq24190_write_mask(bdi, BQ24190_REG_POC, BQ24190_REG_POC_CHG_CONFIG_MASK, BQ24190_REG_POC_CHG_CONFIG_SHIFT, BQ24190_REG_POC_CHG_CONFIG_OTG); else ret = bq24190_charger_set_charge_type(bdi, &val); pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); return ret; } #ifdef CONFIG_REGULATOR static int bq24190_vbus_enable(struct regulator_dev *dev) { return bq24190_set_otg_vbus(rdev_get_drvdata(dev), true); } static int bq24190_vbus_disable(struct regulator_dev *dev) { return bq24190_set_otg_vbus(rdev_get_drvdata(dev), false); } static int bq24190_vbus_is_enabled(struct regulator_dev *dev) { struct bq24190_dev_info *bdi = rdev_get_drvdata(dev); int ret; u8 val; ret = pm_runtime_resume_and_get(bdi->dev); if (ret < 0) { dev_warn(bdi->dev, "pm_runtime_get failed: %i\n", ret); return ret; } ret = bq24190_read_mask(bdi, BQ24190_REG_POC, BQ24190_REG_POC_CHG_CONFIG_MASK, BQ24190_REG_POC_CHG_CONFIG_SHIFT, &val); pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); if (ret) return ret; bdi->otg_vbus_enabled = (val == BQ24190_REG_POC_CHG_CONFIG_OTG || val == BQ24190_REG_POC_CHG_CONFIG_OTG_ALT); return bdi->otg_vbus_enabled; } static const struct regulator_ops bq24190_vbus_ops = { .enable = bq24190_vbus_enable, .disable = bq24190_vbus_disable, .is_enabled = bq24190_vbus_is_enabled, }; static const struct regulator_desc bq24190_vbus_desc = { .name = "usb_otg_vbus", .of_match = "usb-otg-vbus", .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .ops = &bq24190_vbus_ops, .fixed_uV = 5000000, .n_voltages = 1, }; static const struct regulator_init_data bq24190_vbus_init_data = { .constraints = { .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, }; static int bq24190_register_vbus_regulator(struct bq24190_dev_info *bdi) { struct bq24190_platform_data *pdata = bdi->dev->platform_data; struct regulator_config cfg = { }; struct regulator_dev *reg; int ret = 0; cfg.dev = bdi->dev; if (pdata && pdata->regulator_init_data) cfg.init_data = pdata->regulator_init_data; else cfg.init_data = &bq24190_vbus_init_data; cfg.driver_data = bdi; reg = devm_regulator_register(bdi->dev, &bq24190_vbus_desc, &cfg); if (IS_ERR(reg)) { ret = PTR_ERR(reg); dev_err(bdi->dev, "Can't register regulator: %d\n", ret); } return ret; } #else static int bq24190_register_vbus_regulator(struct bq24190_dev_info *bdi) { return 0; } #endif static int bq24190_set_config(struct bq24190_dev_info *bdi) { int ret; u8 v; ret = bq24190_read(bdi, BQ24190_REG_CTTC, &v); if (ret < 0) return ret; bdi->watchdog = ((v & BQ24190_REG_CTTC_WATCHDOG_MASK) >> BQ24190_REG_CTTC_WATCHDOG_SHIFT); /* * According to the "Host Mode and default Mode" section of the * manual, a write to any register causes the bq24190 to switch * from default mode to host mode. It will switch back to default * mode after a WDT timeout unless the WDT is turned off as well. * So, by simply turning off the WDT, we accomplish both with the * same write. */ v &= ~BQ24190_REG_CTTC_WATCHDOG_MASK; ret = bq24190_write(bdi, BQ24190_REG_CTTC, v); if (ret < 0) return ret; if (bdi->sys_min) { v = bdi->sys_min / 100 - 30; // manual section 9.5.1.2, table 9 ret = bq24190_write_mask(bdi, BQ24190_REG_POC, BQ24190_REG_POC_SYS_MIN_MASK, BQ24190_REG_POC_SYS_MIN_SHIFT, v); if (ret < 0) return ret; } if (bdi->iprechg) { v = bdi->iprechg / 128 - 1; // manual section 9.5.1.4, table 11 ret = bq24190_write_mask(bdi, BQ24190_REG_PCTCC, BQ24190_REG_PCTCC_IPRECHG_MASK, BQ24190_REG_PCTCC_IPRECHG_SHIFT, v); if (ret < 0) return ret; } if (bdi->iterm) { v = bdi->iterm / 128 - 1; // manual section 9.5.1.4, table 11 ret = bq24190_write_mask(bdi, BQ24190_REG_PCTCC, BQ24190_REG_PCTCC_ITERM_MASK, BQ24190_REG_PCTCC_ITERM_SHIFT, v); if (ret < 0) return ret; } if (bdi->ichg) { ret = bq24190_set_field_val(bdi, BQ24190_REG_CCC, BQ24190_REG_CCC_ICHG_MASK, BQ24190_REG_CCC_ICHG_SHIFT, bq24190_ccc_ichg_values, ARRAY_SIZE(bq24190_ccc_ichg_values), bdi->ichg); if (ret < 0) return ret; } if (bdi->vreg) { ret = bq24190_set_field_val(bdi, BQ24190_REG_CVC, BQ24190_REG_CVC_VREG_MASK, BQ24190_REG_CVC_VREG_SHIFT, bq24190_cvc_vreg_values, ARRAY_SIZE(bq24190_cvc_vreg_values), bdi->vreg); if (ret < 0) return ret; } return 0; } static int bq24190_register_reset(struct bq24190_dev_info *bdi) { int ret, limit = 100; u8 v; /* * This prop. can be passed on device instantiation from platform code: * struct property_entry pe[] = * { PROPERTY_ENTRY_BOOL("disable-reset"), ... }; * struct i2c_board_info bi = * { .type = "bq24190", .addr = 0x6b, .properties = pe, .irq = irq }; * struct i2c_adapter ad = { ... }; * i2c_add_adapter(&ad); * i2c_new_client_device(&ad, &bi); */ if (device_property_read_bool(bdi->dev, "disable-reset")) return 0; /* Reset the registers */ ret = bq24190_write_mask(bdi, BQ24190_REG_POC, BQ24190_REG_POC_RESET_MASK, BQ24190_REG_POC_RESET_SHIFT, 0x1); if (ret < 0) return ret; /* Reset bit will be cleared by hardware so poll until it is */ do { ret = bq24190_read_mask(bdi, BQ24190_REG_POC, BQ24190_REG_POC_RESET_MASK, BQ24190_REG_POC_RESET_SHIFT, &v); if (ret < 0) return ret; if (v == 0) return 0; usleep_range(100, 200); } while (--limit); return -EIO; } /* Charger power supply property routines */ static int bq24190_charger_get_charge_type(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 v; int type, ret; ret = bq24190_read_mask(bdi, BQ24190_REG_POC, BQ24190_REG_POC_CHG_CONFIG_MASK, BQ24190_REG_POC_CHG_CONFIG_SHIFT, &v); if (ret < 0) return ret; /* If POC[CHG_CONFIG] (REG01[5:4]) == 0, charge is disabled */ if (!v) { type = POWER_SUPPLY_CHARGE_TYPE_NONE; } else { ret = bq24190_read_mask(bdi, BQ24190_REG_CCC, BQ24190_REG_CCC_FORCE_20PCT_MASK, BQ24190_REG_CCC_FORCE_20PCT_SHIFT, &v); if (ret < 0) return ret; type = (v) ? POWER_SUPPLY_CHARGE_TYPE_TRICKLE : POWER_SUPPLY_CHARGE_TYPE_FAST; } val->intval = type; return 0; } static int bq24190_charger_set_charge_type(struct bq24190_dev_info *bdi, const union power_supply_propval *val) { u8 chg_config, force_20pct, en_term; int ret; /* * According to the "Termination when REG02[0] = 1" section of * the bq24190 manual, the trickle charge could be less than the * termination current so it recommends turning off the termination * function. * * Note: AFAICT from the datasheet, the user will have to manually * turn off the charging when in 20% mode. If its not turned off, * there could be battery damage. So, use this mode at your own risk. */ switch (val->intval) { case POWER_SUPPLY_CHARGE_TYPE_NONE: chg_config = 0x0; break; case POWER_SUPPLY_CHARGE_TYPE_TRICKLE: chg_config = 0x1; force_20pct = 0x1; en_term = 0x0; break; case POWER_SUPPLY_CHARGE_TYPE_FAST: chg_config = 0x1; force_20pct = 0x0; en_term = 0x1; break; default: return -EINVAL; } bdi->charge_type = val->intval; /* * If the 5V Vbus boost regulator is enabled delay setting * the charge-type until its gets disabled. */ if (bdi->otg_vbus_enabled) return 0; if (chg_config) { /* Enabling the charger */ ret = bq24190_write_mask(bdi, BQ24190_REG_CCC, BQ24190_REG_CCC_FORCE_20PCT_MASK, BQ24190_REG_CCC_FORCE_20PCT_SHIFT, force_20pct); if (ret < 0) return ret; ret = bq24190_write_mask(bdi, BQ24190_REG_CTTC, BQ24190_REG_CTTC_EN_TERM_MASK, BQ24190_REG_CTTC_EN_TERM_SHIFT, en_term); if (ret < 0) return ret; } return bq24190_write_mask(bdi, BQ24190_REG_POC, BQ24190_REG_POC_CHG_CONFIG_MASK, BQ24190_REG_POC_CHG_CONFIG_SHIFT, chg_config); } static int bq24190_charger_get_health(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 v; int health; mutex_lock(&bdi->f_reg_lock); v = bdi->f_reg; mutex_unlock(&bdi->f_reg_lock); if (v & BQ24190_REG_F_NTC_FAULT_MASK) { switch (v >> BQ24190_REG_F_NTC_FAULT_SHIFT & 0x7) { case 0x1: /* TS1 Cold */ case 0x3: /* TS2 Cold */ case 0x5: /* Both Cold */ health = POWER_SUPPLY_HEALTH_COLD; break; case 0x2: /* TS1 Hot */ case 0x4: /* TS2 Hot */ case 0x6: /* Both Hot */ health = POWER_SUPPLY_HEALTH_OVERHEAT; break; default: health = POWER_SUPPLY_HEALTH_UNKNOWN; } } else if (v & BQ24190_REG_F_BAT_FAULT_MASK) { health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; } else if (v & BQ24190_REG_F_CHRG_FAULT_MASK) { switch (v >> BQ24190_REG_F_CHRG_FAULT_SHIFT & 0x3) { case 0x1: /* Input Fault (VBUS OVP or VBAT<VBUS<3.8V) */ /* * This could be over-voltage or under-voltage * and there's no way to tell which. Instead * of looking foolish and returning 'OVERVOLTAGE' * when its really under-voltage, just return * 'UNSPEC_FAILURE'. */ health = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; break; case 0x2: /* Thermal Shutdown */ health = POWER_SUPPLY_HEALTH_OVERHEAT; break; case 0x3: /* Charge Safety Timer Expiration */ health = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; break; default: /* prevent compiler warning */ health = -1; } } else if (v & BQ24190_REG_F_BOOST_FAULT_MASK) { /* * This could be over-current or over-voltage but there's * no way to tell which. Return 'OVERVOLTAGE' since there * isn't an 'OVERCURRENT' value defined that we can return * even if it was over-current. */ health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; } else { health = POWER_SUPPLY_HEALTH_GOOD; } val->intval = health; return 0; } static int bq24190_charger_get_online(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 pg_stat, batfet_disable; int ret; ret = bq24190_read_mask(bdi, BQ24190_REG_SS, BQ24190_REG_SS_PG_STAT_MASK, BQ24190_REG_SS_PG_STAT_SHIFT, &pg_stat); if (ret < 0) return ret; ret = bq24190_read_mask(bdi, BQ24190_REG_MOC, BQ24190_REG_MOC_BATFET_DISABLE_MASK, BQ24190_REG_MOC_BATFET_DISABLE_SHIFT, &batfet_disable); if (ret < 0) return ret; val->intval = pg_stat && !batfet_disable; return 0; } static int bq24190_battery_set_online(struct bq24190_dev_info *bdi, const union power_supply_propval *val); static int bq24190_battery_get_status(struct bq24190_dev_info *bdi, union power_supply_propval *val); static int bq24190_battery_get_temp_alert_max(struct bq24190_dev_info *bdi, union power_supply_propval *val); static int bq24190_battery_set_temp_alert_max(struct bq24190_dev_info *bdi, const union power_supply_propval *val); static int bq24190_charger_set_online(struct bq24190_dev_info *bdi, const union power_supply_propval *val) { return bq24190_battery_set_online(bdi, val); } static int bq24190_charger_get_status(struct bq24190_dev_info *bdi, union power_supply_propval *val) { return bq24190_battery_get_status(bdi, val); } static int bq24190_charger_get_temp_alert_max(struct bq24190_dev_info *bdi, union power_supply_propval *val) { return bq24190_battery_get_temp_alert_max(bdi, val); } static int bq24190_charger_set_temp_alert_max(struct bq24190_dev_info *bdi, const union power_supply_propval *val) { return bq24190_battery_set_temp_alert_max(bdi, val); } static int bq24190_charger_get_precharge(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 v; int curr, ret; ret = bq24190_read_mask(bdi, BQ24190_REG_PCTCC, BQ24190_REG_PCTCC_IPRECHG_MASK, BQ24190_REG_PCTCC_IPRECHG_SHIFT, &v); if (ret < 0) return ret; curr = ++v * 128 * 1000; ret = bq24190_read_mask(bdi, BQ24190_REG_CCC, BQ24190_REG_CCC_FORCE_20PCT_MASK, BQ24190_REG_CCC_FORCE_20PCT_SHIFT, &v); if (ret < 0) return ret; /* If FORCE_20PCT is enabled, then current is 50% of IPRECHG value */ if (v) curr /= 2; val->intval = curr; return 0; } static int bq24190_charger_get_charge_term(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 v; int ret; ret = bq24190_read_mask(bdi, BQ24190_REG_PCTCC, BQ24190_REG_PCTCC_ITERM_MASK, BQ24190_REG_PCTCC_ITERM_SHIFT, &v); if (ret < 0) return ret; val->intval = ++v * 128 * 1000; return 0; } static int bq24190_charger_get_current(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 v; int curr, ret; ret = bq24190_get_field_val(bdi, BQ24190_REG_CCC, BQ24190_REG_CCC_ICHG_MASK, BQ24190_REG_CCC_ICHG_SHIFT, bq24190_ccc_ichg_values, ARRAY_SIZE(bq24190_ccc_ichg_values), &curr); if (ret < 0) return ret; ret = bq24190_read_mask(bdi, BQ24190_REG_CCC, BQ24190_REG_CCC_FORCE_20PCT_MASK, BQ24190_REG_CCC_FORCE_20PCT_SHIFT, &v); if (ret < 0) return ret; /* If FORCE_20PCT is enabled, then current is 20% of ICHG value */ if (v) curr /= 5; val->intval = curr; return 0; } static int bq24190_charger_set_current(struct bq24190_dev_info *bdi, const union power_supply_propval *val) { u8 v; int ret, curr = val->intval; ret = bq24190_read_mask(bdi, BQ24190_REG_CCC, BQ24190_REG_CCC_FORCE_20PCT_MASK, BQ24190_REG_CCC_FORCE_20PCT_SHIFT, &v); if (ret < 0) return ret; /* If FORCE_20PCT is enabled, have to multiply value passed in by 5 */ if (v) curr *= 5; if (curr > bdi->ichg_max) return -EINVAL; ret = bq24190_set_field_val(bdi, BQ24190_REG_CCC, BQ24190_REG_CCC_ICHG_MASK, BQ24190_REG_CCC_ICHG_SHIFT, bq24190_ccc_ichg_values, ARRAY_SIZE(bq24190_ccc_ichg_values), curr); if (ret < 0) return ret; bdi->ichg = curr; return 0; } static int bq24190_charger_get_voltage(struct bq24190_dev_info *bdi, union power_supply_propval *val) { int voltage, ret; ret = bq24190_get_field_val(bdi, BQ24190_REG_CVC, BQ24190_REG_CVC_VREG_MASK, BQ24190_REG_CVC_VREG_SHIFT, bq24190_cvc_vreg_values, ARRAY_SIZE(bq24190_cvc_vreg_values), &voltage); if (ret < 0) return ret; val->intval = voltage; return 0; } static int bq24190_charger_set_voltage(struct bq24190_dev_info *bdi, const union power_supply_propval *val) { int ret; if (val->intval > bdi->vreg_max) return -EINVAL; ret = bq24190_set_field_val(bdi, BQ24190_REG_CVC, BQ24190_REG_CVC_VREG_MASK, BQ24190_REG_CVC_VREG_SHIFT, bq24190_cvc_vreg_values, ARRAY_SIZE(bq24190_cvc_vreg_values), val->intval); if (ret < 0) return ret; bdi->vreg = val->intval; return 0; } static int bq24190_charger_get_iinlimit(struct bq24190_dev_info *bdi, union power_supply_propval *val) { int iinlimit, ret; ret = bq24190_get_field_val(bdi, BQ24190_REG_ISC, BQ24190_REG_ISC_IINLIM_MASK, BQ24190_REG_ISC_IINLIM_SHIFT, bq24190_isc_iinlim_values, ARRAY_SIZE(bq24190_isc_iinlim_values), &iinlimit); if (ret < 0) return ret; val->intval = iinlimit; return 0; } static int bq24190_charger_set_iinlimit(struct bq24190_dev_info *bdi, const union power_supply_propval *val) { return bq24190_set_field_val(bdi, BQ24190_REG_ISC, BQ24190_REG_ISC_IINLIM_MASK, BQ24190_REG_ISC_IINLIM_SHIFT, bq24190_isc_iinlim_values, ARRAY_SIZE(bq24190_isc_iinlim_values), val->intval); } static int bq24190_charger_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct bq24190_dev_info *bdi = power_supply_get_drvdata(psy); int ret; dev_dbg(bdi->dev, "prop: %d\n", psp); ret = pm_runtime_resume_and_get(bdi->dev); if (ret < 0) return ret; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = bq24190_charger_get_charge_type(bdi, val); break; case POWER_SUPPLY_PROP_HEALTH: ret = bq24190_charger_get_health(bdi, val); break; case POWER_SUPPLY_PROP_ONLINE: ret = bq24190_charger_get_online(bdi, val); break; case POWER_SUPPLY_PROP_STATUS: ret = bq24190_charger_get_status(bdi, val); break; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: ret = bq24190_charger_get_temp_alert_max(bdi, val); break; case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: ret = bq24190_charger_get_precharge(bdi, val); break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: ret = bq24190_charger_get_charge_term(bdi, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = bq24190_charger_get_current(bdi, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = bdi->ichg_max; ret = 0; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = bq24190_charger_get_voltage(bdi, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = bdi->vreg_max; ret = 0; break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = bq24190_charger_get_iinlimit(bdi, val); break; case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_SYSTEM; ret = 0; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = bdi->model_name; ret = 0; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BQ24190_MANUFACTURER; ret = 0; break; default: ret = -ENODATA; } pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); return ret; } static int bq24190_charger_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct bq24190_dev_info *bdi = power_supply_get_drvdata(psy); int ret; dev_dbg(bdi->dev, "prop: %d\n", psp); ret = pm_runtime_resume_and_get(bdi->dev); if (ret < 0) return ret; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = bq24190_charger_set_online(bdi, val); break; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: ret = bq24190_charger_set_temp_alert_max(bdi, val); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: ret = bq24190_charger_set_charge_type(bdi, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = bq24190_charger_set_current(bdi, val); break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: ret = bq24190_charger_set_voltage(bdi, val); break; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = bq24190_charger_set_iinlimit(bdi, val); break; default: ret = -EINVAL; } pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); return ret; } static int bq24190_charger_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_ONLINE: case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: case POWER_SUPPLY_PROP_CHARGE_TYPE: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: return 1; default: return 0; } } static void bq24190_input_current_limit_work(struct work_struct *work) { struct bq24190_dev_info *bdi = container_of(work, struct bq24190_dev_info, input_current_limit_work.work); union power_supply_propval val; int ret; ret = power_supply_get_property_from_supplier(bdi->charger, POWER_SUPPLY_PROP_CURRENT_MAX, &val); if (ret) return; bq24190_charger_set_property(bdi->charger, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, &val); power_supply_changed(bdi->charger); } /* Sync the input-current-limit with our parent supply (if we have one) */ static void bq24190_charger_external_power_changed(struct power_supply *psy) { struct bq24190_dev_info *bdi = power_supply_get_drvdata(psy); /* * The Power-Good detection may take up to 220ms, sometimes * the external charger detection is quicker, and the bq24190 will * reset to iinlim based on its own charger detection (which is not * hooked up when using external charger detection) resulting in a * too low default 500mA iinlim. Delay setting the input-current-limit * for 300ms to avoid this. */ queue_delayed_work(system_wq, &bdi->input_current_limit_work, msecs_to_jiffies(300)); } static enum power_supply_property bq24190_charger_properties[] = { POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_TEMP_ALERT_MAX, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_SCOPE, POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, }; static char *bq24190_charger_supplied_to[] = { "main-battery", }; static const struct power_supply_desc bq24190_charger_desc = { .name = "bq24190-charger", .type = POWER_SUPPLY_TYPE_USB, .properties = bq24190_charger_properties, .num_properties = ARRAY_SIZE(bq24190_charger_properties), .get_property = bq24190_charger_get_property, .set_property = bq24190_charger_set_property, .property_is_writeable = bq24190_charger_property_is_writeable, .external_power_changed = bq24190_charger_external_power_changed, }; /* Battery power supply property routines */ static int bq24190_battery_get_status(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 ss_reg, chrg_fault; int status, ret; mutex_lock(&bdi->f_reg_lock); chrg_fault = bdi->f_reg; mutex_unlock(&bdi->f_reg_lock); chrg_fault &= BQ24190_REG_F_CHRG_FAULT_MASK; chrg_fault >>= BQ24190_REG_F_CHRG_FAULT_SHIFT; ret = bq24190_read(bdi, BQ24190_REG_SS, &ss_reg); if (ret < 0) return ret; /* * The battery must be discharging when any of these are true: * - there is no good power source; * - there is a charge fault. * Could also be discharging when in "supplement mode" but * there is no way to tell when its in that mode. */ if (!(ss_reg & BQ24190_REG_SS_PG_STAT_MASK) || chrg_fault) { status = POWER_SUPPLY_STATUS_DISCHARGING; } else { ss_reg &= BQ24190_REG_SS_CHRG_STAT_MASK; ss_reg >>= BQ24190_REG_SS_CHRG_STAT_SHIFT; switch (ss_reg) { case 0x0: /* Not Charging */ status = POWER_SUPPLY_STATUS_NOT_CHARGING; break; case 0x1: /* Pre-charge */ case 0x2: /* Fast Charging */ status = POWER_SUPPLY_STATUS_CHARGING; break; case 0x3: /* Charge Termination Done */ status = POWER_SUPPLY_STATUS_FULL; break; default: ret = -EIO; } } if (!ret) val->intval = status; return ret; } static int bq24190_battery_get_health(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 v; int health; mutex_lock(&bdi->f_reg_lock); v = bdi->f_reg; mutex_unlock(&bdi->f_reg_lock); if (v & BQ24190_REG_F_BAT_FAULT_MASK) { health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; } else { v &= BQ24190_REG_F_NTC_FAULT_MASK; v >>= BQ24190_REG_F_NTC_FAULT_SHIFT; switch (v) { case 0x0: /* Normal */ health = POWER_SUPPLY_HEALTH_GOOD; break; case 0x1: /* TS1 Cold */ case 0x3: /* TS2 Cold */ case 0x5: /* Both Cold */ health = POWER_SUPPLY_HEALTH_COLD; break; case 0x2: /* TS1 Hot */ case 0x4: /* TS2 Hot */ case 0x6: /* Both Hot */ health = POWER_SUPPLY_HEALTH_OVERHEAT; break; default: health = POWER_SUPPLY_HEALTH_UNKNOWN; } } val->intval = health; return 0; } static int bq24190_battery_get_online(struct bq24190_dev_info *bdi, union power_supply_propval *val) { u8 batfet_disable; int ret; ret = bq24190_read_mask(bdi, BQ24190_REG_MOC, BQ24190_REG_MOC_BATFET_DISABLE_MASK, BQ24190_REG_MOC_BATFET_DISABLE_SHIFT, &batfet_disable); if (ret < 0) return ret; val->intval = !batfet_disable; return 0; } static int bq24190_battery_set_online(struct bq24190_dev_info *bdi, const union power_supply_propval *val) { return bq24190_write_mask(bdi, BQ24190_REG_MOC, BQ24190_REG_MOC_BATFET_DISABLE_MASK, BQ24190_REG_MOC_BATFET_DISABLE_SHIFT, !val->intval); } static int bq24190_battery_get_temp_alert_max(struct bq24190_dev_info *bdi, union power_supply_propval *val) { int temp, ret; ret = bq24190_get_field_val(bdi, BQ24190_REG_ICTRC, BQ24190_REG_ICTRC_TREG_MASK, BQ24190_REG_ICTRC_TREG_SHIFT, bq24190_ictrc_treg_values, ARRAY_SIZE(bq24190_ictrc_treg_values), &temp); if (ret < 0) return ret; val->intval = temp; return 0; } static int bq24190_battery_set_temp_alert_max(struct bq24190_dev_info *bdi, const union power_supply_propval *val) { return bq24190_set_field_val(bdi, BQ24190_REG_ICTRC, BQ24190_REG_ICTRC_TREG_MASK, BQ24190_REG_ICTRC_TREG_SHIFT, bq24190_ictrc_treg_values, ARRAY_SIZE(bq24190_ictrc_treg_values), val->intval); } static int bq24190_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct bq24190_dev_info *bdi = power_supply_get_drvdata(psy); int ret; dev_warn(bdi->dev, "warning: /sys/class/power_supply/bq24190-battery is deprecated\n"); dev_dbg(bdi->dev, "prop: %d\n", psp); ret = pm_runtime_resume_and_get(bdi->dev); if (ret < 0) return ret; switch (psp) { case POWER_SUPPLY_PROP_STATUS: ret = bq24190_battery_get_status(bdi, val); break; case POWER_SUPPLY_PROP_HEALTH: ret = bq24190_battery_get_health(bdi, val); break; case POWER_SUPPLY_PROP_ONLINE: ret = bq24190_battery_get_online(bdi, val); break; case POWER_SUPPLY_PROP_TECHNOLOGY: /* Could be Li-on or Li-polymer but no way to tell which */ val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; ret = 0; break; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: ret = bq24190_battery_get_temp_alert_max(bdi, val); break; case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_SYSTEM; ret = 0; break; default: ret = -ENODATA; } pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); return ret; } static int bq24190_battery_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct bq24190_dev_info *bdi = power_supply_get_drvdata(psy); int ret; dev_warn(bdi->dev, "warning: /sys/class/power_supply/bq24190-battery is deprecated\n"); dev_dbg(bdi->dev, "prop: %d\n", psp); ret = pm_runtime_resume_and_get(bdi->dev); if (ret < 0) return ret; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: ret = bq24190_battery_set_online(bdi, val); break; case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: ret = bq24190_battery_set_temp_alert_max(bdi, val); break; default: ret = -EINVAL; } pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); return ret; } static int bq24190_battery_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { int ret; switch (psp) { case POWER_SUPPLY_PROP_ONLINE: case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: ret = 1; break; default: ret = 0; } return ret; } static enum power_supply_property bq24190_battery_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_TEMP_ALERT_MAX, POWER_SUPPLY_PROP_SCOPE, }; static const struct power_supply_desc bq24190_battery_desc = { .name = "bq24190-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = bq24190_battery_properties, .num_properties = ARRAY_SIZE(bq24190_battery_properties), .get_property = bq24190_battery_get_property, .set_property = bq24190_battery_set_property, .property_is_writeable = bq24190_battery_property_is_writeable, }; static int bq24190_configure_usb_otg(struct bq24190_dev_info *bdi, u8 ss_reg) { bool otg_enabled; int ret; otg_enabled = !!(ss_reg & BQ24190_REG_SS_VBUS_STAT_MASK); ret = extcon_set_state_sync(bdi->edev, EXTCON_USB, otg_enabled); if (ret < 0) dev_err(bdi->dev, "Can't set extcon state to %d: %d\n", otg_enabled, ret); return ret; } static void bq24190_check_status(struct bq24190_dev_info *bdi) { const u8 battery_mask_ss = BQ24190_REG_SS_CHRG_STAT_MASK; const u8 battery_mask_f = BQ24190_REG_F_BAT_FAULT_MASK | BQ24190_REG_F_NTC_FAULT_MASK; bool alert_charger = false, alert_battery = false; u8 ss_reg = 0, f_reg = 0; int i, ret; ret = bq24190_read(bdi, BQ24190_REG_SS, &ss_reg); if (ret < 0) { dev_err(bdi->dev, "Can't read SS reg: %d\n", ret); return; } i = 0; do { ret = bq24190_read(bdi, BQ24190_REG_F, &f_reg); if (ret < 0) { dev_err(bdi->dev, "Can't read F reg: %d\n", ret); return; } } while (f_reg && ++i < 2); /* ignore over/under voltage fault after disconnect */ if (f_reg == (1 << BQ24190_REG_F_CHRG_FAULT_SHIFT) && !(ss_reg & BQ24190_REG_SS_PG_STAT_MASK)) f_reg = 0; if (f_reg != bdi->f_reg) { dev_warn(bdi->dev, "Fault: boost %d, charge %d, battery %d, ntc %d\n", !!(f_reg & BQ24190_REG_F_BOOST_FAULT_MASK), !!(f_reg & BQ24190_REG_F_CHRG_FAULT_MASK), !!(f_reg & BQ24190_REG_F_BAT_FAULT_MASK), !!(f_reg & BQ24190_REG_F_NTC_FAULT_MASK)); mutex_lock(&bdi->f_reg_lock); if ((bdi->f_reg & battery_mask_f) != (f_reg & battery_mask_f)) alert_battery = true; if ((bdi->f_reg & ~battery_mask_f) != (f_reg & ~battery_mask_f)) alert_charger = true; bdi->f_reg = f_reg; mutex_unlock(&bdi->f_reg_lock); } if (ss_reg != bdi->ss_reg) { /* * The device is in host mode so when PG_STAT goes from 1->0 * (i.e., power removed) HIZ needs to be disabled. */ if ((bdi->ss_reg & BQ24190_REG_SS_PG_STAT_MASK) && !(ss_reg & BQ24190_REG_SS_PG_STAT_MASK)) { ret = bq24190_write_mask(bdi, BQ24190_REG_ISC, BQ24190_REG_ISC_EN_HIZ_MASK, BQ24190_REG_ISC_EN_HIZ_SHIFT, 0); if (ret < 0) dev_err(bdi->dev, "Can't access ISC reg: %d\n", ret); } if ((bdi->ss_reg & battery_mask_ss) != (ss_reg & battery_mask_ss)) alert_battery = true; if ((bdi->ss_reg & ~battery_mask_ss) != (ss_reg & ~battery_mask_ss)) alert_charger = true; bdi->ss_reg = ss_reg; } if (alert_charger || alert_battery) { power_supply_changed(bdi->charger); bq24190_configure_usb_otg(bdi, ss_reg); } if (alert_battery && bdi->battery) power_supply_changed(bdi->battery); dev_dbg(bdi->dev, "ss_reg: 0x%02x, f_reg: 0x%02x\n", ss_reg, f_reg); } static irqreturn_t bq24190_irq_handler_thread(int irq, void *data) { struct bq24190_dev_info *bdi = data; int error; bdi->irq_event = true; error = pm_runtime_resume_and_get(bdi->dev); if (error < 0) { dev_warn(bdi->dev, "pm_runtime_get failed: %i\n", error); return IRQ_NONE; } bq24190_check_status(bdi); pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); bdi->irq_event = false; return IRQ_HANDLED; } static int bq24190_hw_init(struct bq24190_dev_info *bdi) { u8 v; int ret; /* First check that the device really is what its supposed to be */ ret = bq24190_read_mask(bdi, BQ24190_REG_VPRS, BQ24190_REG_VPRS_PN_MASK, BQ24190_REG_VPRS_PN_SHIFT, &v); if (ret < 0) return ret; switch (v) { case BQ24190_REG_VPRS_PN_24190: case BQ24190_REG_VPRS_PN_24192: case BQ24190_REG_VPRS_PN_24192I: break; default: dev_err(bdi->dev, "Error unknown model: 0x%02x\n", v); return -ENODEV; } ret = bq24190_register_reset(bdi); if (ret < 0) return ret; ret = bq24190_set_config(bdi); if (ret < 0) return ret; return bq24190_read(bdi, BQ24190_REG_SS, &bdi->ss_reg); } static int bq24190_get_config(struct bq24190_dev_info *bdi) { const char * const s = "ti,system-minimum-microvolt"; struct power_supply_battery_info *info; int v, idx; idx = ARRAY_SIZE(bq24190_ccc_ichg_values) - 1; bdi->ichg_max = bq24190_ccc_ichg_values[idx]; idx = ARRAY_SIZE(bq24190_cvc_vreg_values) - 1; bdi->vreg_max = bq24190_cvc_vreg_values[idx]; if (device_property_read_u32(bdi->dev, s, &v) == 0) { v /= 1000; if (v >= BQ24190_REG_POC_SYS_MIN_MIN && v <= BQ24190_REG_POC_SYS_MIN_MAX) bdi->sys_min = v; else dev_warn(bdi->dev, "invalid value for %s: %u\n", s, v); } if (!power_supply_get_battery_info(bdi->charger, &info)) { v = info->precharge_current_ua / 1000; if (v >= BQ24190_REG_PCTCC_IPRECHG_MIN && v <= BQ24190_REG_PCTCC_IPRECHG_MAX) bdi->iprechg = v; else dev_warn(bdi->dev, "invalid value for battery:precharge-current-microamp: %d\n", v); v = info->charge_term_current_ua / 1000; if (v >= BQ24190_REG_PCTCC_ITERM_MIN && v <= BQ24190_REG_PCTCC_ITERM_MAX) bdi->iterm = v; else dev_warn(bdi->dev, "invalid value for battery:charge-term-current-microamp: %d\n", v); /* These are optional, so no warning when not set */ v = info->constant_charge_current_max_ua; if (v >= bq24190_ccc_ichg_values[0] && v <= bdi->ichg_max) bdi->ichg = bdi->ichg_max = v; v = info->constant_charge_voltage_max_uv; if (v >= bq24190_cvc_vreg_values[0] && v <= bdi->vreg_max) bdi->vreg = bdi->vreg_max = v; } return 0; } static int bq24190_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct i2c_adapter *adapter = client->adapter; struct device *dev = &client->dev; struct power_supply_config charger_cfg = {}, battery_cfg = {}; struct bq24190_dev_info *bdi; int ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(dev, "No support for SMBUS_BYTE_DATA\n"); return -ENODEV; } bdi = devm_kzalloc(dev, sizeof(*bdi), GFP_KERNEL); if (!bdi) { dev_err(dev, "Can't alloc bdi struct\n"); return -ENOMEM; } bdi->client = client; bdi->dev = dev; strncpy(bdi->model_name, id->name, I2C_NAME_SIZE); mutex_init(&bdi->f_reg_lock); bdi->charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST; bdi->f_reg = 0; bdi->ss_reg = BQ24190_REG_SS_VBUS_STAT_MASK; /* impossible state */ INIT_DELAYED_WORK(&bdi->input_current_limit_work, bq24190_input_current_limit_work); i2c_set_clientdata(client, bdi); if (client->irq <= 0) { dev_err(dev, "Can't get irq info\n"); return -EINVAL; } bdi->edev = devm_extcon_dev_allocate(dev, bq24190_usb_extcon_cable); if (IS_ERR(bdi->edev)) return PTR_ERR(bdi->edev); ret = devm_extcon_dev_register(dev, bdi->edev); if (ret < 0) return ret; pm_runtime_enable(dev); pm_runtime_use_autosuspend(dev); pm_runtime_set_autosuspend_delay(dev, 600); ret = pm_runtime_get_sync(dev); if (ret < 0) { dev_err(dev, "pm_runtime_get failed: %i\n", ret); goto out_pmrt; } #ifdef CONFIG_SYSFS bq24190_sysfs_init_attrs(); charger_cfg.attr_grp = bq24190_sysfs_groups; #endif charger_cfg.drv_data = bdi; charger_cfg.of_node = dev->of_node; charger_cfg.supplied_to = bq24190_charger_supplied_to; charger_cfg.num_supplicants = ARRAY_SIZE(bq24190_charger_supplied_to); bdi->charger = power_supply_register(dev, &bq24190_charger_desc, &charger_cfg); if (IS_ERR(bdi->charger)) { dev_err(dev, "Can't register charger\n"); ret = PTR_ERR(bdi->charger); goto out_pmrt; } /* the battery class is deprecated and will be removed. */ /* in the interim, this property hides it. */ if (!device_property_read_bool(dev, "omit-battery-class")) { battery_cfg.drv_data = bdi; bdi->battery = power_supply_register(dev, &bq24190_battery_desc, &battery_cfg); if (IS_ERR(bdi->battery)) { dev_err(dev, "Can't register battery\n"); ret = PTR_ERR(bdi->battery); goto out_charger; } } ret = bq24190_get_config(bdi); if (ret < 0) { dev_err(dev, "Can't get devicetree config\n"); goto out_charger; } ret = bq24190_hw_init(bdi); if (ret < 0) { dev_err(dev, "Hardware init failed\n"); goto out_charger; } ret = bq24190_configure_usb_otg(bdi, bdi->ss_reg); if (ret < 0) goto out_charger; bdi->initialized = true; ret = devm_request_threaded_irq(dev, client->irq, NULL, bq24190_irq_handler_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "bq24190-charger", bdi); if (ret < 0) { dev_err(dev, "Can't set up irq handler\n"); goto out_charger; } ret = bq24190_register_vbus_regulator(bdi); if (ret < 0) goto out_charger; enable_irq_wake(client->irq); pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; out_charger: if (!IS_ERR_OR_NULL(bdi->battery)) power_supply_unregister(bdi->battery); power_supply_unregister(bdi->charger); out_pmrt: pm_runtime_put_sync(dev); pm_runtime_dont_use_autosuspend(dev); pm_runtime_disable(dev); return ret; } static void bq24190_remove(struct i2c_client *client) { struct bq24190_dev_info *bdi = i2c_get_clientdata(client); int error; cancel_delayed_work_sync(&bdi->input_current_limit_work); error = pm_runtime_resume_and_get(bdi->dev); if (error < 0) dev_warn(bdi->dev, "pm_runtime_get failed: %i\n", error); bq24190_register_reset(bdi); if (bdi->battery) power_supply_unregister(bdi->battery); power_supply_unregister(bdi->charger); if (error >= 0) pm_runtime_put_sync(bdi->dev); pm_runtime_dont_use_autosuspend(bdi->dev); pm_runtime_disable(bdi->dev); } static void bq24190_shutdown(struct i2c_client *client) { struct bq24190_dev_info *bdi = i2c_get_clientdata(client); /* Turn off 5V boost regulator on shutdown */ bq24190_set_otg_vbus(bdi, false); } static __maybe_unused int bq24190_runtime_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct bq24190_dev_info *bdi = i2c_get_clientdata(client); if (!bdi->initialized) return 0; dev_dbg(bdi->dev, "%s\n", __func__); return 0; } static __maybe_unused int bq24190_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct bq24190_dev_info *bdi = i2c_get_clientdata(client); if (!bdi->initialized) return 0; if (!bdi->irq_event) { dev_dbg(bdi->dev, "checking events on possible wakeirq\n"); bq24190_check_status(bdi); } return 0; } static __maybe_unused int bq24190_pm_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct bq24190_dev_info *bdi = i2c_get_clientdata(client); int error; error = pm_runtime_resume_and_get(bdi->dev); if (error < 0) dev_warn(bdi->dev, "pm_runtime_get failed: %i\n", error); bq24190_register_reset(bdi); if (error >= 0) { pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); } return 0; } static __maybe_unused int bq24190_pm_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct bq24190_dev_info *bdi = i2c_get_clientdata(client); int error; bdi->f_reg = 0; bdi->ss_reg = BQ24190_REG_SS_VBUS_STAT_MASK; /* impossible state */ error = pm_runtime_resume_and_get(bdi->dev); if (error < 0) dev_warn(bdi->dev, "pm_runtime_get failed: %i\n", error); bq24190_register_reset(bdi); bq24190_set_config(bdi); bq24190_read(bdi, BQ24190_REG_SS, &bdi->ss_reg); if (error >= 0) { pm_runtime_mark_last_busy(bdi->dev); pm_runtime_put_autosuspend(bdi->dev); } /* Things may have changed while suspended so alert upper layer */ power_supply_changed(bdi->charger); if (bdi->battery) power_supply_changed(bdi->battery); return 0; } static const struct dev_pm_ops bq24190_pm_ops = { SET_RUNTIME_PM_OPS(bq24190_runtime_suspend, bq24190_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(bq24190_pm_suspend, bq24190_pm_resume) }; static const struct i2c_device_id bq24190_i2c_ids[] = { { "bq24190" }, { "bq24192" }, { "bq24192i" }, { "bq24196" }, { }, }; MODULE_DEVICE_TABLE(i2c, bq24190_i2c_ids); static const struct of_device_id bq24190_of_match[] = { { .compatible = "ti,bq24190", }, { .compatible = "ti,bq24192", }, { .compatible = "ti,bq24192i", }, { .compatible = "ti,bq24196", }, { }, }; MODULE_DEVICE_TABLE(of, bq24190_of_match); static struct i2c_driver bq24190_driver = { .probe = bq24190_probe, .remove = bq24190_remove, .shutdown = bq24190_shutdown, .id_table = bq24190_i2c_ids, .driver = { .name = "bq24190-charger", .pm = &bq24190_pm_ops, .of_match_table = bq24190_of_match, }, }; module_i2c_driver(bq24190_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mark A. Greer <[email protected]>"); MODULE_DESCRIPTION("TI BQ24190 Charger Driver");
linux-master
drivers/power/supply/bq24190_charger.c
// SPDX-License-Identifier: GPL-2.0-only /* * LEDs triggers for power supply class * * Copyright © 2007 Anton Vorontsov <[email protected]> * Copyright © 2004 Szabolcs Gyurko * Copyright © 2003 Ian Molton <[email protected]> * * Modified: 2004, Oct Szabolcs Gyurko */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/leds.h> #include "power_supply.h" /* Battery specific LEDs triggers. */ static void power_supply_update_bat_leds(struct power_supply *psy) { union power_supply_propval status; if (power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &status)) return; dev_dbg(&psy->dev, "%s %d\n", __func__, status.intval); switch (status.intval) { case POWER_SUPPLY_STATUS_FULL: led_trigger_event(psy->charging_full_trig, LED_FULL); led_trigger_event(psy->charging_trig, LED_OFF); led_trigger_event(psy->full_trig, LED_FULL); /* Going from blink to LED on requires a LED_OFF event to stop blink */ led_trigger_event(psy->charging_blink_full_solid_trig, LED_OFF); led_trigger_event(psy->charging_blink_full_solid_trig, LED_FULL); break; case POWER_SUPPLY_STATUS_CHARGING: led_trigger_event(psy->charging_full_trig, LED_FULL); led_trigger_event(psy->charging_trig, LED_FULL); led_trigger_event(psy->full_trig, LED_OFF); led_trigger_blink(psy->charging_blink_full_solid_trig, 0, 0); break; default: led_trigger_event(psy->charging_full_trig, LED_OFF); led_trigger_event(psy->charging_trig, LED_OFF); led_trigger_event(psy->full_trig, LED_OFF); led_trigger_event(psy->charging_blink_full_solid_trig, LED_OFF); break; } } static int power_supply_create_bat_triggers(struct power_supply *psy) { psy->charging_full_trig_name = kasprintf(GFP_KERNEL, "%s-charging-or-full", psy->desc->name); if (!psy->charging_full_trig_name) goto charging_full_failed; psy->charging_trig_name = kasprintf(GFP_KERNEL, "%s-charging", psy->desc->name); if (!psy->charging_trig_name) goto charging_failed; psy->full_trig_name = kasprintf(GFP_KERNEL, "%s-full", psy->desc->name); if (!psy->full_trig_name) goto full_failed; psy->charging_blink_full_solid_trig_name = kasprintf(GFP_KERNEL, "%s-charging-blink-full-solid", psy->desc->name); if (!psy->charging_blink_full_solid_trig_name) goto charging_blink_full_solid_failed; led_trigger_register_simple(psy->charging_full_trig_name, &psy->charging_full_trig); led_trigger_register_simple(psy->charging_trig_name, &psy->charging_trig); led_trigger_register_simple(psy->full_trig_name, &psy->full_trig); led_trigger_register_simple(psy->charging_blink_full_solid_trig_name, &psy->charging_blink_full_solid_trig); return 0; charging_blink_full_solid_failed: kfree(psy->full_trig_name); full_failed: kfree(psy->charging_trig_name); charging_failed: kfree(psy->charging_full_trig_name); charging_full_failed: return -ENOMEM; } static void power_supply_remove_bat_triggers(struct power_supply *psy) { led_trigger_unregister_simple(psy->charging_full_trig); led_trigger_unregister_simple(psy->charging_trig); led_trigger_unregister_simple(psy->full_trig); led_trigger_unregister_simple(psy->charging_blink_full_solid_trig); kfree(psy->charging_blink_full_solid_trig_name); kfree(psy->full_trig_name); kfree(psy->charging_trig_name); kfree(psy->charging_full_trig_name); } /* Generated power specific LEDs triggers. */ static void power_supply_update_gen_leds(struct power_supply *psy) { union power_supply_propval online; if (power_supply_get_property(psy, POWER_SUPPLY_PROP_ONLINE, &online)) return; dev_dbg(&psy->dev, "%s %d\n", __func__, online.intval); if (online.intval) led_trigger_event(psy->online_trig, LED_FULL); else led_trigger_event(psy->online_trig, LED_OFF); } static int power_supply_create_gen_triggers(struct power_supply *psy) { psy->online_trig_name = kasprintf(GFP_KERNEL, "%s-online", psy->desc->name); if (!psy->online_trig_name) return -ENOMEM; led_trigger_register_simple(psy->online_trig_name, &psy->online_trig); return 0; } static void power_supply_remove_gen_triggers(struct power_supply *psy) { led_trigger_unregister_simple(psy->online_trig); kfree(psy->online_trig_name); } /* Choice what triggers to create&update. */ void power_supply_update_leds(struct power_supply *psy) { if (psy->desc->type == POWER_SUPPLY_TYPE_BATTERY) power_supply_update_bat_leds(psy); else power_supply_update_gen_leds(psy); } int power_supply_create_triggers(struct power_supply *psy) { if (psy->desc->type == POWER_SUPPLY_TYPE_BATTERY) return power_supply_create_bat_triggers(psy); return power_supply_create_gen_triggers(psy); } void power_supply_remove_triggers(struct power_supply *psy) { if (psy->desc->type == POWER_SUPPLY_TYPE_BATTERY) power_supply_remove_bat_triggers(psy); else power_supply_remove_gen_triggers(psy); }
linux-master
drivers/power/supply/power_supply_leds.c
// SPDX-License-Identifier: GPL-2.0+ /* * Battery monitor driver for the uPI uG3105 battery monitor * * Note the uG3105 is not a full-featured autonomous fuel-gauge. Instead it is * expected to be use in combination with some always on microcontroller reading * its coulomb-counter before it can wrap (must be read every 400 seconds!). * * Since Linux does not monitor coulomb-counter changes while the device * is off or suspended, the coulomb counter is not used atm. * * Possible improvements: * 1. Activate commented out total_coulomb_count code * 2. Reset total_coulomb_count val to 0 when the battery is as good as empty * and remember that we did this (and clear the flag for this on susp/resume) * 3. When the battery is full check if the flag that we set total_coulomb_count * to when the battery was empty is set. If so we now know the capacity, * not the design, but actual capacity, of the battery * 4. Add some mechanism (needs userspace help, or maybe use efivar?) to remember * the actual capacity of the battery over reboots * 5. When we know the actual capacity at probe time, add energy_now and * energy_full attributes. Guess boot + resume energy_now value based on ocv * and then use total_coulomb_count to report energy_now over time, resetting * things to adjust for drift when empty/full. This should give more accurate * readings, esp. in the 30-70% range and allow userspace to estimate time * remaining till empty/full * 6. Maybe unregister + reregister the psy device when we learn the actual * capacity during run-time ? * * The above will also require some sort of mwh_per_unit calculation. Testing * has shown that an estimated 7404mWh increase of the battery's energy results * in a total_coulomb_count increase of 3277 units with a 5 milli-ohm sense R. * * Copyright (C) 2021 Hans de Goede <[email protected]> */ #include <linux/devm-helpers.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/power_supply.h> #include <linux/workqueue.h> #define UG3105_MOV_AVG_WINDOW 8 #define UG3105_INIT_POLL_TIME (5 * HZ) #define UG3105_POLL_TIME (30 * HZ) #define UG3105_SETTLE_TIME (1 * HZ) #define UG3105_INIT_POLL_COUNT 30 #define UG3105_REG_MODE 0x00 #define UG3105_REG_CTRL1 0x01 #define UG3105_REG_COULOMB_CNT 0x02 #define UG3105_REG_BAT_VOLT 0x08 #define UG3105_REG_BAT_CURR 0x0c #define UG3105_MODE_STANDBY 0x00 #define UG3105_MODE_RUN 0x10 #define UG3105_CTRL1_RESET_COULOMB_CNT 0x03 #define UG3105_CURR_HYST_UA 65000 #define UG3105_LOW_BAT_UV 3700000 #define UG3105_FULL_BAT_HYST_UV 38000 struct ug3105_chip { struct i2c_client *client; struct power_supply *psy; struct power_supply_battery_info *info; struct delayed_work work; struct mutex lock; int ocv[UG3105_MOV_AVG_WINDOW]; /* micro-volt */ int intern_res[UG3105_MOV_AVG_WINDOW]; /* milli-ohm */ int poll_count; int ocv_avg_index; int ocv_avg; /* micro-volt */ int intern_res_poll_count; int intern_res_avg_index; int intern_res_avg; /* milli-ohm */ int volt; /* micro-volt */ int curr; /* micro-ampere */ int total_coulomb_count; int uv_per_unit; int ua_per_unit; int status; int capacity; bool supplied; }; static int ug3105_read_word(struct i2c_client *client, u8 reg) { int val; val = i2c_smbus_read_word_data(client, reg); if (val < 0) dev_err(&client->dev, "Error reading reg 0x%02x\n", reg); return val; } static int ug3105_get_status(struct ug3105_chip *chip) { int full = chip->info->constant_charge_voltage_max_uv - UG3105_FULL_BAT_HYST_UV; if (chip->curr > UG3105_CURR_HYST_UA) return POWER_SUPPLY_STATUS_CHARGING; if (chip->curr < -UG3105_CURR_HYST_UA) return POWER_SUPPLY_STATUS_DISCHARGING; if (chip->supplied && chip->ocv_avg > full) return POWER_SUPPLY_STATUS_FULL; return POWER_SUPPLY_STATUS_NOT_CHARGING; } static int ug3105_get_capacity(struct ug3105_chip *chip) { /* * OCV voltages in uV for 0-110% in 5% increments, the 100-110% is * for LiPo HV (High-Voltage) bateries which can go up to 4.35V * instead of the usual 4.2V. */ static const int ocv_capacity_tbl[23] = { 3350000, 3610000, 3690000, 3710000, 3730000, 3750000, 3770000, 3786667, 3803333, 3820000, 3836667, 3853333, 3870000, 3907500, 3945000, 3982500, 4020000, 4075000, 4110000, 4150000, 4200000, 4250000, 4300000, }; int i, ocv_diff, ocv_step; if (chip->ocv_avg < ocv_capacity_tbl[0]) return 0; if (chip->status == POWER_SUPPLY_STATUS_FULL) return 100; for (i = 1; i < ARRAY_SIZE(ocv_capacity_tbl); i++) { if (chip->ocv_avg > ocv_capacity_tbl[i]) continue; ocv_diff = ocv_capacity_tbl[i] - chip->ocv_avg; ocv_step = ocv_capacity_tbl[i] - ocv_capacity_tbl[i - 1]; /* scale 0-110% down to 0-100% for LiPo HV */ if (chip->info->constant_charge_voltage_max_uv >= 4300000) return (i * 500 - ocv_diff * 500 / ocv_step) / 110; else return i * 5 - ocv_diff * 5 / ocv_step; } return 100; } static void ug3105_work(struct work_struct *work) { struct ug3105_chip *chip = container_of(work, struct ug3105_chip, work.work); int i, val, curr_diff, volt_diff, res, win_size; bool prev_supplied = chip->supplied; int prev_status = chip->status; int prev_volt = chip->volt; int prev_curr = chip->curr; struct power_supply *psy; mutex_lock(&chip->lock); psy = chip->psy; if (!psy) goto out; val = ug3105_read_word(chip->client, UG3105_REG_BAT_VOLT); if (val < 0) goto out; chip->volt = val * chip->uv_per_unit; val = ug3105_read_word(chip->client, UG3105_REG_BAT_CURR); if (val < 0) goto out; chip->curr = (s16)val * chip->ua_per_unit; chip->ocv[chip->ocv_avg_index] = chip->volt - chip->curr * chip->intern_res_avg / 1000; chip->ocv_avg_index = (chip->ocv_avg_index + 1) % UG3105_MOV_AVG_WINDOW; chip->poll_count++; /* * See possible improvements comment above. * * Read + reset coulomb counter every 10 polls (every 300 seconds) * if ((chip->poll_count % 10) == 0) { * val = ug3105_read_word(chip->client, UG3105_REG_COULOMB_CNT); * if (val < 0) * goto out; * * i2c_smbus_write_byte_data(chip->client, UG3105_REG_CTRL1, * UG3105_CTRL1_RESET_COULOMB_CNT); * * chip->total_coulomb_count += (s16)val; * dev_dbg(&chip->client->dev, "coulomb count %d total %d\n", * (s16)val, chip->total_coulomb_count); * } */ chip->ocv_avg = 0; win_size = min(chip->poll_count, UG3105_MOV_AVG_WINDOW); for (i = 0; i < win_size; i++) chip->ocv_avg += chip->ocv[i]; chip->ocv_avg /= win_size; chip->supplied = power_supply_am_i_supplied(psy); chip->status = ug3105_get_status(chip); chip->capacity = ug3105_get_capacity(chip); /* * Skip internal resistance calc on charger [un]plug and * when the battery is almost empty (voltage low). */ if (chip->supplied != prev_supplied || chip->volt < UG3105_LOW_BAT_UV || chip->poll_count < 2) goto out; /* * Assuming that the OCV voltage does not change significantly * between 2 polls, then we can calculate the internal resistance * on a significant current change by attributing all voltage * change between the 2 readings to the internal resistance. */ curr_diff = abs(chip->curr - prev_curr); if (curr_diff < UG3105_CURR_HYST_UA) goto out; volt_diff = abs(chip->volt - prev_volt); res = volt_diff * 1000 / curr_diff; if ((res < (chip->intern_res_avg * 2 / 3)) || (res > (chip->intern_res_avg * 4 / 3))) { dev_dbg(&chip->client->dev, "Ignoring outlier internal resistance %d mOhm\n", res); goto out; } dev_dbg(&chip->client->dev, "Internal resistance %d mOhm\n", res); chip->intern_res[chip->intern_res_avg_index] = res; chip->intern_res_avg_index = (chip->intern_res_avg_index + 1) % UG3105_MOV_AVG_WINDOW; chip->intern_res_poll_count++; chip->intern_res_avg = 0; win_size = min(chip->intern_res_poll_count, UG3105_MOV_AVG_WINDOW); for (i = 0; i < win_size; i++) chip->intern_res_avg += chip->intern_res[i]; chip->intern_res_avg /= win_size; out: mutex_unlock(&chip->lock); queue_delayed_work(system_wq, &chip->work, (chip->poll_count <= UG3105_INIT_POLL_COUNT) ? UG3105_INIT_POLL_TIME : UG3105_POLL_TIME); if (chip->status != prev_status && psy) power_supply_changed(psy); } static enum power_supply_property ug3105_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_SCOPE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, }; static int ug3105_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ug3105_chip *chip = power_supply_get_drvdata(psy); int ret = 0; mutex_lock(&chip->lock); if (!chip->psy) { ret = -EAGAIN; goto out; } switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = chip->status; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = 1; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = chip->info->technology; break; case POWER_SUPPLY_PROP_SCOPE: val->intval = POWER_SUPPLY_SCOPE_SYSTEM; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = ug3105_read_word(chip->client, UG3105_REG_BAT_VOLT); if (ret < 0) break; val->intval = ret * chip->uv_per_unit; ret = 0; break; case POWER_SUPPLY_PROP_VOLTAGE_OCV: val->intval = chip->ocv_avg; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = ug3105_read_word(chip->client, UG3105_REG_BAT_CURR); if (ret < 0) break; val->intval = (s16)ret * chip->ua_per_unit; ret = 0; break; case POWER_SUPPLY_PROP_CAPACITY: val->intval = chip->capacity; break; default: ret = -EINVAL; } out: mutex_unlock(&chip->lock); return ret; } static void ug3105_external_power_changed(struct power_supply *psy) { struct ug3105_chip *chip = power_supply_get_drvdata(psy); dev_dbg(&chip->client->dev, "external power changed\n"); mod_delayed_work(system_wq, &chip->work, UG3105_SETTLE_TIME); } static const struct power_supply_desc ug3105_psy_desc = { .name = "ug3105_battery", .type = POWER_SUPPLY_TYPE_BATTERY, .get_property = ug3105_get_property, .external_power_changed = ug3105_external_power_changed, .properties = ug3105_battery_props, .num_properties = ARRAY_SIZE(ug3105_battery_props), }; static void ug3105_init(struct ug3105_chip *chip) { chip->poll_count = 0; chip->ocv_avg_index = 0; chip->total_coulomb_count = 0; i2c_smbus_write_byte_data(chip->client, UG3105_REG_MODE, UG3105_MODE_RUN); i2c_smbus_write_byte_data(chip->client, UG3105_REG_CTRL1, UG3105_CTRL1_RESET_COULOMB_CNT); queue_delayed_work(system_wq, &chip->work, 0); flush_delayed_work(&chip->work); } static int ug3105_probe(struct i2c_client *client) { struct power_supply_config psy_cfg = {}; struct device *dev = &client->dev; u32 curr_sense_res_uohm = 10000; struct power_supply *psy; struct ug3105_chip *chip; int ret; chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->client = client; mutex_init(&chip->lock); ret = devm_delayed_work_autocancel(dev, &chip->work, ug3105_work); if (ret) return ret; psy_cfg.drv_data = chip; psy = devm_power_supply_register(dev, &ug3105_psy_desc, &psy_cfg); if (IS_ERR(psy)) return PTR_ERR(psy); ret = power_supply_get_battery_info(psy, &chip->info); if (ret) return ret; if (chip->info->factory_internal_resistance_uohm == -EINVAL || chip->info->constant_charge_voltage_max_uv == -EINVAL) { dev_err(dev, "error required properties are missing\n"); return -ENODEV; } device_property_read_u32(dev, "upisemi,rsns-microohm", &curr_sense_res_uohm); /* * DAC maximum is 4.5V divided by 65536 steps + an unknown factor of 10 * coming from somewhere for some reason (verified with a volt-meter). */ chip->uv_per_unit = 45000000/65536; /* Datasheet says 8.1 uV per unit for the current ADC */ chip->ua_per_unit = 8100000 / curr_sense_res_uohm; /* Use provided internal resistance as start point (in milli-ohm) */ chip->intern_res_avg = chip->info->factory_internal_resistance_uohm / 1000; /* Also add it to the internal resistance moving average window */ chip->intern_res[0] = chip->intern_res_avg; chip->intern_res_avg_index = 1; chip->intern_res_poll_count = 1; mutex_lock(&chip->lock); chip->psy = psy; mutex_unlock(&chip->lock); ug3105_init(chip); i2c_set_clientdata(client, chip); return 0; } static int __maybe_unused ug3105_suspend(struct device *dev) { struct ug3105_chip *chip = dev_get_drvdata(dev); cancel_delayed_work_sync(&chip->work); i2c_smbus_write_byte_data(chip->client, UG3105_REG_MODE, UG3105_MODE_STANDBY); return 0; } static int __maybe_unused ug3105_resume(struct device *dev) { struct ug3105_chip *chip = dev_get_drvdata(dev); ug3105_init(chip); return 0; } static SIMPLE_DEV_PM_OPS(ug3105_pm_ops, ug3105_suspend, ug3105_resume); static const struct i2c_device_id ug3105_id[] = { { "ug3105" }, { } }; MODULE_DEVICE_TABLE(i2c, ug3105_id); static struct i2c_driver ug3105_i2c_driver = { .driver = { .name = "ug3105", .pm = &ug3105_pm_ops, }, .probe = ug3105_probe, .id_table = ug3105_id, }; module_i2c_driver(ug3105_i2c_driver); MODULE_AUTHOR("Hans de Goede <[email protected]"); MODULE_DESCRIPTION("uPI uG3105 battery monitor driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/ug3105_battery.c
/* * Copyright © 2007 Anton Vorontsov <[email protected]> * Copyright © 2007 Eugeny Boger <[email protected]> * * Author: Eugeny Boger <[email protected]> * * Use consistent with the GNU GPL is permitted, * provided that this copyright notice is * preserved in its entirety in all copies and derived works. */ #include <linux/module.h> #include <linux/device.h> #include <linux/power_supply.h> #include <linux/apm-emulation.h> #define PSY_PROP(psy, prop, val) (power_supply_get_property(psy, \ POWER_SUPPLY_PROP_##prop, val)) #define _MPSY_PROP(prop, val) (power_supply_get_property(main_battery, \ prop, val)) #define MPSY_PROP(prop, val) _MPSY_PROP(POWER_SUPPLY_PROP_##prop, val) static DEFINE_MUTEX(apm_mutex); static struct power_supply *main_battery; enum apm_source { SOURCE_ENERGY, SOURCE_CHARGE, SOURCE_VOLTAGE, }; struct find_bat_param { struct power_supply *main; struct power_supply *bat; struct power_supply *max_charge_bat; struct power_supply *max_energy_bat; union power_supply_propval full; int max_charge; int max_energy; }; static int __find_main_battery(struct device *dev, void *data) { struct find_bat_param *bp = (struct find_bat_param *)data; bp->bat = dev_get_drvdata(dev); if (bp->bat->desc->use_for_apm) { /* nice, we explicitly asked to report this battery. */ bp->main = bp->bat; return 1; } if (!PSY_PROP(bp->bat, CHARGE_FULL_DESIGN, &bp->full) || !PSY_PROP(bp->bat, CHARGE_FULL, &bp->full)) { if (bp->full.intval > bp->max_charge) { bp->max_charge_bat = bp->bat; bp->max_charge = bp->full.intval; } } else if (!PSY_PROP(bp->bat, ENERGY_FULL_DESIGN, &bp->full) || !PSY_PROP(bp->bat, ENERGY_FULL, &bp->full)) { if (bp->full.intval > bp->max_energy) { bp->max_energy_bat = bp->bat; bp->max_energy = bp->full.intval; } } return 0; } static void find_main_battery(void) { struct find_bat_param bp; int error; memset(&bp, 0, sizeof(struct find_bat_param)); main_battery = NULL; bp.main = main_battery; error = class_for_each_device(power_supply_class, NULL, &bp, __find_main_battery); if (error) { main_battery = bp.main; return; } if ((bp.max_energy_bat && bp.max_charge_bat) && (bp.max_energy_bat != bp.max_charge_bat)) { /* try guess battery with more capacity */ if (!PSY_PROP(bp.max_charge_bat, VOLTAGE_MAX_DESIGN, &bp.full)) { if (bp.max_energy > bp.max_charge * bp.full.intval) main_battery = bp.max_energy_bat; else main_battery = bp.max_charge_bat; } else if (!PSY_PROP(bp.max_energy_bat, VOLTAGE_MAX_DESIGN, &bp.full)) { if (bp.max_charge > bp.max_energy / bp.full.intval) main_battery = bp.max_charge_bat; else main_battery = bp.max_energy_bat; } else { /* give up, choice any */ main_battery = bp.max_energy_bat; } } else if (bp.max_charge_bat) { main_battery = bp.max_charge_bat; } else if (bp.max_energy_bat) { main_battery = bp.max_energy_bat; } else { /* give up, try the last if any */ main_battery = bp.bat; } } static int do_calculate_time(int status, enum apm_source source) { union power_supply_propval full; union power_supply_propval empty; union power_supply_propval cur; union power_supply_propval I; enum power_supply_property full_prop; enum power_supply_property full_design_prop; enum power_supply_property empty_prop; enum power_supply_property empty_design_prop; enum power_supply_property cur_avg_prop; enum power_supply_property cur_now_prop; if (MPSY_PROP(CURRENT_AVG, &I)) { /* if battery can't report average value, use momentary */ if (MPSY_PROP(CURRENT_NOW, &I)) return -1; } if (!I.intval) return 0; switch (source) { case SOURCE_CHARGE: full_prop = POWER_SUPPLY_PROP_CHARGE_FULL; full_design_prop = POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN; empty_prop = POWER_SUPPLY_PROP_CHARGE_EMPTY; empty_design_prop = POWER_SUPPLY_PROP_CHARGE_EMPTY; cur_avg_prop = POWER_SUPPLY_PROP_CHARGE_AVG; cur_now_prop = POWER_SUPPLY_PROP_CHARGE_NOW; break; case SOURCE_ENERGY: full_prop = POWER_SUPPLY_PROP_ENERGY_FULL; full_design_prop = POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN; empty_prop = POWER_SUPPLY_PROP_ENERGY_EMPTY; empty_design_prop = POWER_SUPPLY_PROP_CHARGE_EMPTY; cur_avg_prop = POWER_SUPPLY_PROP_ENERGY_AVG; cur_now_prop = POWER_SUPPLY_PROP_ENERGY_NOW; break; case SOURCE_VOLTAGE: full_prop = POWER_SUPPLY_PROP_VOLTAGE_MAX; full_design_prop = POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN; empty_prop = POWER_SUPPLY_PROP_VOLTAGE_MIN; empty_design_prop = POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN; cur_avg_prop = POWER_SUPPLY_PROP_VOLTAGE_AVG; cur_now_prop = POWER_SUPPLY_PROP_VOLTAGE_NOW; break; default: printk(KERN_ERR "Unsupported source: %d\n", source); return -1; } if (_MPSY_PROP(full_prop, &full)) { /* if battery can't report this property, use design value */ if (_MPSY_PROP(full_design_prop, &full)) return -1; } if (_MPSY_PROP(empty_prop, &empty)) { /* if battery can't report this property, use design value */ if (_MPSY_PROP(empty_design_prop, &empty)) empty.intval = 0; } if (_MPSY_PROP(cur_avg_prop, &cur)) { /* if battery can't report average value, use momentary */ if (_MPSY_PROP(cur_now_prop, &cur)) return -1; } if (status == POWER_SUPPLY_STATUS_CHARGING) return ((cur.intval - full.intval) * 60L) / I.intval; else return -((cur.intval - empty.intval) * 60L) / I.intval; } static int calculate_time(int status) { int time; time = do_calculate_time(status, SOURCE_ENERGY); if (time != -1) return time; time = do_calculate_time(status, SOURCE_CHARGE); if (time != -1) return time; time = do_calculate_time(status, SOURCE_VOLTAGE); if (time != -1) return time; return -1; } static int calculate_capacity(enum apm_source source) { enum power_supply_property full_prop, empty_prop; enum power_supply_property full_design_prop, empty_design_prop; enum power_supply_property now_prop, avg_prop; union power_supply_propval empty, full, cur; int ret; switch (source) { case SOURCE_CHARGE: full_prop = POWER_SUPPLY_PROP_CHARGE_FULL; empty_prop = POWER_SUPPLY_PROP_CHARGE_EMPTY; full_design_prop = POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN; empty_design_prop = POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN; now_prop = POWER_SUPPLY_PROP_CHARGE_NOW; avg_prop = POWER_SUPPLY_PROP_CHARGE_AVG; break; case SOURCE_ENERGY: full_prop = POWER_SUPPLY_PROP_ENERGY_FULL; empty_prop = POWER_SUPPLY_PROP_ENERGY_EMPTY; full_design_prop = POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN; empty_design_prop = POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN; now_prop = POWER_SUPPLY_PROP_ENERGY_NOW; avg_prop = POWER_SUPPLY_PROP_ENERGY_AVG; break; case SOURCE_VOLTAGE: full_prop = POWER_SUPPLY_PROP_VOLTAGE_MAX; empty_prop = POWER_SUPPLY_PROP_VOLTAGE_MIN; full_design_prop = POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN; empty_design_prop = POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN; now_prop = POWER_SUPPLY_PROP_VOLTAGE_NOW; avg_prop = POWER_SUPPLY_PROP_VOLTAGE_AVG; break; default: printk(KERN_ERR "Unsupported source: %d\n", source); return -1; } if (_MPSY_PROP(full_prop, &full)) { /* if battery can't report this property, use design value */ if (_MPSY_PROP(full_design_prop, &full)) return -1; } if (_MPSY_PROP(avg_prop, &cur)) { /* if battery can't report average value, use momentary */ if (_MPSY_PROP(now_prop, &cur)) return -1; } if (_MPSY_PROP(empty_prop, &empty)) { /* if battery can't report this property, use design value */ if (_MPSY_PROP(empty_design_prop, &empty)) empty.intval = 0; } if (full.intval - empty.intval) ret = ((cur.intval - empty.intval) * 100L) / (full.intval - empty.intval); else return -1; if (ret > 100) return 100; else if (ret < 0) return 0; return ret; } static void apm_battery_apm_get_power_status(struct apm_power_info *info) { union power_supply_propval status; union power_supply_propval capacity, time_to_full, time_to_empty; mutex_lock(&apm_mutex); find_main_battery(); if (!main_battery) { mutex_unlock(&apm_mutex); return; } /* status */ if (MPSY_PROP(STATUS, &status)) status.intval = POWER_SUPPLY_STATUS_UNKNOWN; /* ac line status */ if ((status.intval == POWER_SUPPLY_STATUS_CHARGING) || (status.intval == POWER_SUPPLY_STATUS_NOT_CHARGING) || (status.intval == POWER_SUPPLY_STATUS_FULL)) info->ac_line_status = APM_AC_ONLINE; else info->ac_line_status = APM_AC_OFFLINE; /* battery life (i.e. capacity, in percents) */ if (MPSY_PROP(CAPACITY, &capacity) == 0) { info->battery_life = capacity.intval; } else { /* try calculate using energy */ info->battery_life = calculate_capacity(SOURCE_ENERGY); /* if failed try calculate using charge instead */ if (info->battery_life == -1) info->battery_life = calculate_capacity(SOURCE_CHARGE); if (info->battery_life == -1) info->battery_life = calculate_capacity(SOURCE_VOLTAGE); } /* charging status */ if (status.intval == POWER_SUPPLY_STATUS_CHARGING) { info->battery_status = APM_BATTERY_STATUS_CHARGING; } else { if (info->battery_life > 50) info->battery_status = APM_BATTERY_STATUS_HIGH; else if (info->battery_life > 5) info->battery_status = APM_BATTERY_STATUS_LOW; else info->battery_status = APM_BATTERY_STATUS_CRITICAL; } info->battery_flag = info->battery_status; /* time */ info->units = APM_UNITS_MINS; if (status.intval == POWER_SUPPLY_STATUS_CHARGING) { if (!MPSY_PROP(TIME_TO_FULL_AVG, &time_to_full) || !MPSY_PROP(TIME_TO_FULL_NOW, &time_to_full)) info->time = time_to_full.intval / 60; else info->time = calculate_time(status.intval); } else { if (!MPSY_PROP(TIME_TO_EMPTY_AVG, &time_to_empty) || !MPSY_PROP(TIME_TO_EMPTY_NOW, &time_to_empty)) info->time = time_to_empty.intval / 60; else info->time = calculate_time(status.intval); } mutex_unlock(&apm_mutex); } static int __init apm_battery_init(void) { printk(KERN_INFO "APM Battery Driver\n"); apm_get_power_status = apm_battery_apm_get_power_status; return 0; } static void __exit apm_battery_exit(void) { apm_get_power_status = NULL; } module_init(apm_battery_init); module_exit(apm_battery_exit); MODULE_AUTHOR("Eugeny Boger <[email protected]>"); MODULE_DESCRIPTION("APM emulation driver for battery monitoring class"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/apm_power.c
// SPDX-License-Identifier: GPL-2.0+ /* * Battery driver for Acer Iconia Tab A500. * * Copyright 2020 GRATE-driver project. * * Based on downstream driver from Acer Inc. * Based on NVIDIA Gas Gauge driver for SBS Compliant Batteries. * * Copyright (c) 2010, NVIDIA Corporation. */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/workqueue.h> enum { REG_CAPACITY, REG_VOLTAGE, REG_CURRENT, REG_DESIGN_CAPACITY, REG_TEMPERATURE, }; #define EC_DATA(_reg, _psp) { \ .psp = POWER_SUPPLY_PROP_ ## _psp, \ .reg = _reg, \ } static const struct battery_register { enum power_supply_property psp; unsigned int reg; } ec_data[] = { [REG_CAPACITY] = EC_DATA(0x00, CAPACITY), [REG_VOLTAGE] = EC_DATA(0x01, VOLTAGE_NOW), [REG_CURRENT] = EC_DATA(0x03, CURRENT_NOW), [REG_DESIGN_CAPACITY] = EC_DATA(0x08, CHARGE_FULL_DESIGN), [REG_TEMPERATURE] = EC_DATA(0x0a, TEMP), }; static const enum power_supply_property a500_battery_properties[] = { POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_VOLTAGE_NOW, }; struct a500_battery { struct delayed_work poll_work; struct power_supply *psy; struct regmap *regmap; unsigned int capacity; }; static bool a500_battery_update_capacity(struct a500_battery *bat) { unsigned int capacity; int err; err = regmap_read(bat->regmap, ec_data[REG_CAPACITY].reg, &capacity); if (err) return false; /* capacity can be >100% even if max value is 100% */ capacity = min(capacity, 100u); if (bat->capacity != capacity) { bat->capacity = capacity; return true; } return false; } static int a500_battery_get_status(struct a500_battery *bat) { if (bat->capacity < 100) { if (power_supply_am_i_supplied(bat->psy)) return POWER_SUPPLY_STATUS_CHARGING; else return POWER_SUPPLY_STATUS_DISCHARGING; } return POWER_SUPPLY_STATUS_FULL; } static void a500_battery_unit_adjustment(struct device *dev, enum power_supply_property psp, union power_supply_propval *val) { const unsigned int base_unit_conversion = 1000; const unsigned int temp_kelvin_to_celsius = 2731; switch (psp) { case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval *= base_unit_conversion; break; case POWER_SUPPLY_PROP_TEMP: val->intval -= temp_kelvin_to_celsius; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = !!val->intval; break; default: dev_dbg(dev, "%s: no need for unit conversion %d\n", __func__, psp); } } static int a500_battery_get_ec_data_index(struct device *dev, enum power_supply_property psp) { unsigned int i; /* * DESIGN_CAPACITY register always returns a non-zero value if * battery is connected and zero if disconnected, hence we'll use * it for judging the battery presence. */ if (psp == POWER_SUPPLY_PROP_PRESENT) psp = POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN; for (i = 0; i < ARRAY_SIZE(ec_data); i++) if (psp == ec_data[i].psp) return i; dev_dbg(dev, "%s: invalid property %u\n", __func__, psp); return -EINVAL; } static int a500_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct a500_battery *bat = power_supply_get_drvdata(psy); struct device *dev = psy->dev.parent; int ret = 0; switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = a500_battery_get_status(bat); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CAPACITY: a500_battery_update_capacity(bat); val->intval = bat->capacity; break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_TEMP: ret = a500_battery_get_ec_data_index(dev, psp); if (ret < 0) break; ret = regmap_read(bat->regmap, ec_data[ret].reg, &val->intval); break; default: dev_err(dev, "%s: invalid property %u\n", __func__, psp); return -EINVAL; } if (!ret) { /* convert units to match requirements of power supply class */ a500_battery_unit_adjustment(dev, psp, val); } dev_dbg(dev, "%s: property = %d, value = %x\n", __func__, psp, val->intval); /* return NODATA for properties if battery not presents */ if (ret) return -ENODATA; return 0; } static void a500_battery_poll_work(struct work_struct *work) { struct a500_battery *bat; bool capacity_changed; bat = container_of(work, struct a500_battery, poll_work.work); capacity_changed = a500_battery_update_capacity(bat); if (capacity_changed) power_supply_changed(bat->psy); /* continuously send uevent notification */ schedule_delayed_work(&bat->poll_work, 30 * HZ); } static const struct power_supply_desc a500_battery_desc = { .name = "ec-battery", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = a500_battery_properties, .get_property = a500_battery_get_property, .num_properties = ARRAY_SIZE(a500_battery_properties), .external_power_changed = power_supply_changed, }; static int a500_battery_probe(struct platform_device *pdev) { struct power_supply_config psy_cfg = {}; struct a500_battery *bat; bat = devm_kzalloc(&pdev->dev, sizeof(*bat), GFP_KERNEL); if (!bat) return -ENOMEM; platform_set_drvdata(pdev, bat); psy_cfg.of_node = pdev->dev.parent->of_node; psy_cfg.drv_data = bat; bat->regmap = dev_get_regmap(pdev->dev.parent, "KB930"); if (!bat->regmap) return -EINVAL; bat->psy = devm_power_supply_register_no_ws(&pdev->dev, &a500_battery_desc, &psy_cfg); if (IS_ERR(bat->psy)) return dev_err_probe(&pdev->dev, PTR_ERR(bat->psy), "failed to register battery\n"); INIT_DELAYED_WORK(&bat->poll_work, a500_battery_poll_work); schedule_delayed_work(&bat->poll_work, HZ); return 0; } static int a500_battery_remove(struct platform_device *pdev) { struct a500_battery *bat = dev_get_drvdata(&pdev->dev); cancel_delayed_work_sync(&bat->poll_work); return 0; } static int __maybe_unused a500_battery_suspend(struct device *dev) { struct a500_battery *bat = dev_get_drvdata(dev); cancel_delayed_work_sync(&bat->poll_work); return 0; } static int __maybe_unused a500_battery_resume(struct device *dev) { struct a500_battery *bat = dev_get_drvdata(dev); schedule_delayed_work(&bat->poll_work, HZ); return 0; } static SIMPLE_DEV_PM_OPS(a500_battery_pm_ops, a500_battery_suspend, a500_battery_resume); static struct platform_driver a500_battery_driver = { .driver = { .name = "acer-a500-iconia-battery", .pm = &a500_battery_pm_ops, }, .probe = a500_battery_probe, .remove = a500_battery_remove, }; module_platform_driver(a500_battery_driver); MODULE_DESCRIPTION("Battery gauge driver for Acer Iconia Tab A500"); MODULE_AUTHOR("Dmitry Osipenko <[email protected]>"); MODULE_ALIAS("platform:acer-a500-iconia-battery"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/acer_a500_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Battery driver for Marvell 88PM860x PMIC * * Copyright (c) 2012 Marvell International Ltd. * Author: Jett Zhou <[email protected]> * Haojian Zhuang <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/string.h> #include <linux/power_supply.h> #include <linux/mfd/88pm860x.h> #include <linux/delay.h> /* bit definitions of Status Query Interface 2 */ #define STATUS2_CHG (1 << 2) #define STATUS2_BAT (1 << 3) #define STATUS2_VBUS (1 << 4) /* bit definitions of Measurement Enable 1 Register */ #define MEAS1_TINT (1 << 3) #define MEAS1_GP1 (1 << 5) /* bit definitions of Measurement Enable 3 Register */ #define MEAS3_IBAT (1 << 0) #define MEAS3_BAT_DET (1 << 1) #define MEAS3_CC (1 << 2) /* bit definitions of Measurement Off Time Register */ #define MEAS_OFF_SLEEP_EN (1 << 1) /* bit definitions of GPADC Bias Current 2 Register */ #define GPBIAS2_GPADC1_SET (2 << 4) /* GPADC1 Bias Current value in uA unit */ #define GPBIAS2_GPADC1_UA ((GPBIAS2_GPADC1_SET >> 4) * 5 + 1) /* bit definitions of GPADC Misc 1 Register */ #define GPMISC1_GPADC_EN (1 << 0) /* bit definitions of Charger Control 6 Register */ #define CC6_BAT_DET_GPADC1 1 /* bit definitions of Coulomb Counter Reading Register */ #define CCNT_AVG_SEL (4 << 3) /* bit definitions of RTC miscellaneous Register1 */ #define RTC_SOC_5LSB (0x1F << 3) /* bit definitions of RTC Register1 */ #define RTC_SOC_3MSB (0x7) /* bit definitions of Power up Log register */ #define BAT_WU_LOG (1<<6) /* coulomb counter index */ #define CCNT_POS1 0 #define CCNT_POS2 1 #define CCNT_NEG1 2 #define CCNT_NEG2 3 #define CCNT_SPOS 4 #define CCNT_SNEG 5 /* OCV -- Open Circuit Voltage */ #define OCV_MODE_ACTIVE 0 #define OCV_MODE_SLEEP 1 /* Vbat range of CC for measuring Rbat */ #define LOW_BAT_THRESHOLD 3600 #define VBATT_RESISTOR_MIN 3800 #define VBATT_RESISTOR_MAX 4100 /* TBAT for batt, TINT for chip itself */ #define PM860X_TEMP_TINT (0) #define PM860X_TEMP_TBAT (1) /* * Battery temperature based on NTC resistor, defined * corresponding resistor value -- Ohm / C degeree. */ #define TBAT_NEG_25D 127773 /* -25 */ #define TBAT_NEG_10D 54564 /* -10 */ #define TBAT_0D 32330 /* 0 */ #define TBAT_10D 19785 /* 10 */ #define TBAT_20D 12468 /* 20 */ #define TBAT_30D 8072 /* 30 */ #define TBAT_40D 5356 /* 40 */ struct pm860x_battery_info { struct pm860x_chip *chip; struct i2c_client *i2c; struct device *dev; struct power_supply *battery; struct mutex lock; int status; int irq_cc; int irq_batt; int max_capacity; int resistor; /* Battery Internal Resistor */ int last_capacity; int start_soc; unsigned present:1; unsigned temp_type:1; /* TINT or TBAT */ }; struct ccnt { unsigned long long pos; unsigned long long neg; unsigned int spos; unsigned int sneg; int total_chg; /* mAh(3.6C) */ int total_dischg; /* mAh(3.6C) */ }; /* * State of Charge. * The first number is mAh(=3.6C), and the second number is percent point. */ static int array_soc[][2] = { {4170, 100}, {4154, 99}, {4136, 98}, {4122, 97}, {4107, 96}, {4102, 95}, {4088, 94}, {4081, 93}, {4070, 92}, {4060, 91}, {4053, 90}, {4044, 89}, {4035, 88}, {4028, 87}, {4019, 86}, {4013, 85}, {4006, 84}, {3995, 83}, {3987, 82}, {3982, 81}, {3976, 80}, {3968, 79}, {3962, 78}, {3954, 77}, {3946, 76}, {3941, 75}, {3934, 74}, {3929, 73}, {3922, 72}, {3916, 71}, {3910, 70}, {3904, 69}, {3898, 68}, {3892, 67}, {3887, 66}, {3880, 65}, {3874, 64}, {3868, 63}, {3862, 62}, {3854, 61}, {3849, 60}, {3843, 59}, {3840, 58}, {3833, 57}, {3829, 56}, {3824, 55}, {3818, 54}, {3815, 53}, {3810, 52}, {3808, 51}, {3804, 50}, {3801, 49}, {3798, 48}, {3796, 47}, {3792, 46}, {3789, 45}, {3785, 44}, {3784, 43}, {3782, 42}, {3780, 41}, {3777, 40}, {3776, 39}, {3774, 38}, {3772, 37}, {3771, 36}, {3769, 35}, {3768, 34}, {3764, 33}, {3763, 32}, {3760, 31}, {3760, 30}, {3754, 29}, {3750, 28}, {3749, 27}, {3744, 26}, {3740, 25}, {3734, 24}, {3732, 23}, {3728, 22}, {3726, 21}, {3720, 20}, {3716, 19}, {3709, 18}, {3703, 17}, {3698, 16}, {3692, 15}, {3683, 14}, {3675, 13}, {3670, 12}, {3665, 11}, {3661, 10}, {3649, 9}, {3637, 8}, {3622, 7}, {3609, 6}, {3580, 5}, {3558, 4}, {3540, 3}, {3510, 2}, {3429, 1}, }; static struct ccnt ccnt_data; /* * register 1 bit[7:0] -- bit[11:4] of measured value of voltage * register 0 bit[3:0] -- bit[3:0] of measured value of voltage */ static int measure_12bit_voltage(struct pm860x_battery_info *info, int offset, int *data) { unsigned char buf[2]; int ret; ret = pm860x_bulk_read(info->i2c, offset, 2, buf); if (ret < 0) return ret; *data = ((buf[0] & 0xff) << 4) | (buf[1] & 0x0f); /* V_MEAS(mV) = data * 1.8 * 1000 / (2^12) */ *data = ((*data & 0xfff) * 9 * 25) >> 9; return 0; } static int measure_vbatt(struct pm860x_battery_info *info, int state, int *data) { unsigned char buf[5]; int ret; switch (state) { case OCV_MODE_ACTIVE: ret = measure_12bit_voltage(info, PM8607_VBAT_MEAS1, data); if (ret) return ret; /* V_BATT_MEAS(mV) = value * 3 * 1.8 * 1000 / (2^12) */ *data *= 3; break; case OCV_MODE_SLEEP: /* * voltage value of VBATT in sleep mode is saved in different * registers. * bit[11:10] -- bit[7:6] of LDO9(0x18) * bit[9:8] -- bit[7:6] of LDO8(0x17) * bit[7:6] -- bit[7:6] of LDO7(0x16) * bit[5:4] -- bit[7:6] of LDO6(0x15) * bit[3:0] -- bit[7:4] of LDO5(0x14) */ ret = pm860x_bulk_read(info->i2c, PM8607_LDO5, 5, buf); if (ret < 0) return ret; ret = ((buf[4] >> 6) << 10) | ((buf[3] >> 6) << 8) | ((buf[2] >> 6) << 6) | ((buf[1] >> 6) << 4) | (buf[0] >> 4); /* V_BATT_MEAS(mV) = data * 3 * 1.8 * 1000 / (2^12) */ *data = ((*data & 0xff) * 27 * 25) >> 9; break; default: return -EINVAL; } return 0; } /* * Return value is signed data. * Negative value means discharging, and positive value means charging. */ static int measure_current(struct pm860x_battery_info *info, int *data) { unsigned char buf[2]; short s; int ret; ret = pm860x_bulk_read(info->i2c, PM8607_IBAT_MEAS1, 2, buf); if (ret < 0) return ret; s = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff); /* current(mA) = value * 0.125 */ *data = s >> 3; return 0; } static int set_charger_current(struct pm860x_battery_info *info, int data, int *old) { int ret; if (data < 50 || data > 1600 || !old) return -EINVAL; data = ((data - 50) / 50) & 0x1f; *old = pm860x_reg_read(info->i2c, PM8607_CHG_CTRL2); *old = (*old & 0x1f) * 50 + 50; ret = pm860x_set_bits(info->i2c, PM8607_CHG_CTRL2, 0x1f, data); if (ret < 0) return ret; return 0; } static int read_ccnt(struct pm860x_battery_info *info, int offset, int *ccnt) { unsigned char buf[2]; int ret; ret = pm860x_set_bits(info->i2c, PM8607_CCNT, 7, offset & 7); if (ret < 0) goto out; ret = pm860x_bulk_read(info->i2c, PM8607_CCNT_MEAS1, 2, buf); if (ret < 0) goto out; *ccnt = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff); return 0; out: return ret; } static int calc_ccnt(struct pm860x_battery_info *info, struct ccnt *ccnt) { unsigned int sum; int ret; int data; ret = read_ccnt(info, CCNT_POS1, &data); if (ret) goto out; sum = data & 0xffff; ret = read_ccnt(info, CCNT_POS2, &data); if (ret) goto out; sum |= (data & 0xffff) << 16; ccnt->pos += sum; ret = read_ccnt(info, CCNT_NEG1, &data); if (ret) goto out; sum = data & 0xffff; ret = read_ccnt(info, CCNT_NEG2, &data); if (ret) goto out; sum |= (data & 0xffff) << 16; sum = ~sum + 1; /* since it's negative */ ccnt->neg += sum; ret = read_ccnt(info, CCNT_SPOS, &data); if (ret) goto out; ccnt->spos += data; ret = read_ccnt(info, CCNT_SNEG, &data); if (ret) goto out; /* * charge(mAh) = count * 1.6984 * 1e(-8) * = count * 16984 * 1.024 * 1.024 * 1.024 / (2 ^ 40) * = count * 18236 / (2 ^ 40) */ ccnt->total_chg = (int) ((ccnt->pos * 18236) >> 40); ccnt->total_dischg = (int) ((ccnt->neg * 18236) >> 40); return 0; out: return ret; } static int clear_ccnt(struct pm860x_battery_info *info, struct ccnt *ccnt) { int data; memset(ccnt, 0, sizeof(*ccnt)); /* read to clear ccnt */ read_ccnt(info, CCNT_POS1, &data); read_ccnt(info, CCNT_POS2, &data); read_ccnt(info, CCNT_NEG1, &data); read_ccnt(info, CCNT_NEG2, &data); read_ccnt(info, CCNT_SPOS, &data); read_ccnt(info, CCNT_SNEG, &data); return 0; } /* Calculate Open Circuit Voltage */ static int calc_ocv(struct pm860x_battery_info *info, int *ocv) { int ret; int i; int data; int vbatt_avg; int vbatt_sum; int ibatt_avg; int ibatt_sum; if (!ocv) return -EINVAL; for (i = 0, ibatt_sum = 0, vbatt_sum = 0; i < 10; i++) { ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out; vbatt_sum += data; ret = measure_current(info, &data); if (ret) goto out; ibatt_sum += data; } vbatt_avg = vbatt_sum / 10; ibatt_avg = ibatt_sum / 10; mutex_lock(&info->lock); if (info->present) *ocv = vbatt_avg - ibatt_avg * info->resistor / 1000; else *ocv = vbatt_avg; mutex_unlock(&info->lock); dev_dbg(info->dev, "VBAT average:%d, OCV:%d\n", vbatt_avg, *ocv); return 0; out: return ret; } /* Calculate State of Charge (percent points) */ static int calc_soc(struct pm860x_battery_info *info, int state, int *soc) { int i; int ocv; int count; int ret = -EINVAL; if (!soc) return -EINVAL; switch (state) { case OCV_MODE_ACTIVE: ret = calc_ocv(info, &ocv); break; case OCV_MODE_SLEEP: ret = measure_vbatt(info, OCV_MODE_SLEEP, &ocv); break; } if (ret) return ret; count = ARRAY_SIZE(array_soc); if (ocv < array_soc[count - 1][0]) { *soc = 0; return 0; } for (i = 0; i < count; i++) { if (ocv >= array_soc[i][0]) { *soc = array_soc[i][1]; break; } } return 0; } static irqreturn_t pm860x_coulomb_handler(int irq, void *data) { struct pm860x_battery_info *info = data; calc_ccnt(info, &ccnt_data); return IRQ_HANDLED; } static irqreturn_t pm860x_batt_handler(int irq, void *data) { struct pm860x_battery_info *info = data; int ret; mutex_lock(&info->lock); ret = pm860x_reg_read(info->i2c, PM8607_STATUS_2); if (ret & STATUS2_BAT) { info->present = 1; info->temp_type = PM860X_TEMP_TBAT; } else { info->present = 0; info->temp_type = PM860X_TEMP_TINT; } mutex_unlock(&info->lock); /* clear ccnt since battery is attached or dettached */ clear_ccnt(info, &ccnt_data); return IRQ_HANDLED; } static void pm860x_init_battery(struct pm860x_battery_info *info) { unsigned char buf[2]; int ret; int data; int bat_remove; int soc = 0; /* measure enable on GPADC1 */ data = MEAS1_GP1; if (info->temp_type == PM860X_TEMP_TINT) data |= MEAS1_TINT; ret = pm860x_set_bits(info->i2c, PM8607_MEAS_EN1, data, data); if (ret) goto out; /* measure enable on IBAT, BAT_DET, CC. IBAT is depend on CC. */ data = MEAS3_IBAT | MEAS3_BAT_DET | MEAS3_CC; ret = pm860x_set_bits(info->i2c, PM8607_MEAS_EN3, data, data); if (ret) goto out; /* measure disable CC in sleep time */ ret = pm860x_reg_write(info->i2c, PM8607_MEAS_OFF_TIME1, 0x82); if (ret) goto out; ret = pm860x_reg_write(info->i2c, PM8607_MEAS_OFF_TIME2, 0x6c); if (ret) goto out; /* enable GPADC */ ret = pm860x_set_bits(info->i2c, PM8607_GPADC_MISC1, GPMISC1_GPADC_EN, GPMISC1_GPADC_EN); if (ret < 0) goto out; /* detect battery via GPADC1 */ ret = pm860x_set_bits(info->i2c, PM8607_CHG_CTRL6, CC6_BAT_DET_GPADC1, CC6_BAT_DET_GPADC1); if (ret < 0) goto out; ret = pm860x_set_bits(info->i2c, PM8607_CCNT, 7 << 3, CCNT_AVG_SEL); if (ret < 0) goto out; /* set GPADC1 bias */ ret = pm860x_set_bits(info->i2c, PM8607_GP_BIAS2, 0xF << 4, GPBIAS2_GPADC1_SET); if (ret < 0) goto out; /* check whether battery present) */ mutex_lock(&info->lock); ret = pm860x_reg_read(info->i2c, PM8607_STATUS_2); if (ret < 0) { mutex_unlock(&info->lock); goto out; } if (ret & STATUS2_BAT) { info->present = 1; info->temp_type = PM860X_TEMP_TBAT; } else { info->present = 0; info->temp_type = PM860X_TEMP_TINT; } mutex_unlock(&info->lock); ret = calc_soc(info, OCV_MODE_ACTIVE, &soc); if (ret < 0) goto out; data = pm860x_reg_read(info->i2c, PM8607_POWER_UP_LOG); bat_remove = data & BAT_WU_LOG; dev_dbg(info->dev, "battery wake up? %s\n", bat_remove != 0 ? "yes" : "no"); /* restore SOC from RTC domain register */ if (bat_remove == 0) { buf[0] = pm860x_reg_read(info->i2c, PM8607_RTC_MISC2); buf[1] = pm860x_reg_read(info->i2c, PM8607_RTC1); data = ((buf[1] & 0x3) << 5) | ((buf[0] >> 3) & 0x1F); if (data > soc + 15) info->start_soc = soc; else if (data < soc - 15) info->start_soc = soc; else info->start_soc = data; dev_dbg(info->dev, "soc_rtc %d, soc_ocv :%d\n", data, soc); } else { pm860x_set_bits(info->i2c, PM8607_POWER_UP_LOG, BAT_WU_LOG, BAT_WU_LOG); info->start_soc = soc; } info->last_capacity = info->start_soc; dev_dbg(info->dev, "init soc : %d\n", info->last_capacity); out: return; } static void set_temp_threshold(struct pm860x_battery_info *info, int min, int max) { int data; /* (tmp << 8) / 1800 */ if (min <= 0) data = 0; else data = (min << 8) / 1800; pm860x_reg_write(info->i2c, PM8607_GPADC1_HIGHTH, data); dev_dbg(info->dev, "TEMP_HIGHTH : min: %d, 0x%x\n", min, data); if (max <= 0) data = 0xff; else data = (max << 8) / 1800; pm860x_reg_write(info->i2c, PM8607_GPADC1_LOWTH, data); dev_dbg(info->dev, "TEMP_LOWTH:max : %d, 0x%x\n", max, data); } static int measure_temp(struct pm860x_battery_info *info, int *data) { int ret; int temp; int min; int max; if (info->temp_type == PM860X_TEMP_TINT) { ret = measure_12bit_voltage(info, PM8607_TINT_MEAS1, data); if (ret) return ret; *data = (*data - 884) * 1000 / 3611; } else { ret = measure_12bit_voltage(info, PM8607_GPADC1_MEAS1, data); if (ret) return ret; /* meausered Vtbat(mV) / Ibias_current(11uA)*/ *data = (*data * 1000) / GPBIAS2_GPADC1_UA; if (*data > TBAT_NEG_25D) { temp = -30; /* over cold , suppose -30 roughly */ max = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, 0, max); } else if (*data > TBAT_NEG_10D) { temp = -15; /* -15 degree, code */ max = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, 0, max); } else if (*data > TBAT_0D) { temp = -5; /* -5 degree */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else if (*data > TBAT_10D) { temp = 5; /* in range of (0, 10) */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else if (*data > TBAT_20D) { temp = 15; /* in range of (10, 20) */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else if (*data > TBAT_30D) { temp = 25; /* in range of (20, 30) */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else if (*data > TBAT_40D) { temp = 35; /* in range of (30, 40) */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else { min = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, 0); temp = 45; /* over heat ,suppose 45 roughly */ } dev_dbg(info->dev, "temp_C:%d C,temp_mv:%d mv\n", temp, *data); *data = temp; } return 0; } static int calc_resistor(struct pm860x_battery_info *info) { int vbatt_sum1; int vbatt_sum2; int chg_current; int ibatt_sum1; int ibatt_sum2; int data; int ret; int i; ret = measure_current(info, &data); /* make sure that charging is launched by data > 0 */ if (ret || data < 0) goto out; ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out; /* calculate resistor only in CC charge mode */ if (data < VBATT_RESISTOR_MIN || data > VBATT_RESISTOR_MAX) goto out; /* current is saved */ if (set_charger_current(info, 500, &chg_current)) goto out; /* * set charge current as 500mA, wait about 500ms till charging * process is launched and stable with the newer charging current. */ msleep(500); for (i = 0, vbatt_sum1 = 0, ibatt_sum1 = 0; i < 10; i++) { ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out_meas; vbatt_sum1 += data; ret = measure_current(info, &data); if (ret) goto out_meas; if (data < 0) ibatt_sum1 = ibatt_sum1 - data; /* discharging */ else ibatt_sum1 = ibatt_sum1 + data; /* charging */ } if (set_charger_current(info, 100, &ret)) goto out_meas; /* * set charge current as 100mA, wait about 500ms till charging * process is launched and stable with the newer charging current. */ msleep(500); for (i = 0, vbatt_sum2 = 0, ibatt_sum2 = 0; i < 10; i++) { ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out_meas; vbatt_sum2 += data; ret = measure_current(info, &data); if (ret) goto out_meas; if (data < 0) ibatt_sum2 = ibatt_sum2 - data; /* discharging */ else ibatt_sum2 = ibatt_sum2 + data; /* charging */ } /* restore current setting */ if (set_charger_current(info, chg_current, &ret)) goto out_meas; if ((vbatt_sum1 > vbatt_sum2) && (ibatt_sum1 > ibatt_sum2) && (ibatt_sum2 > 0)) { /* calculate resistor in discharging case */ data = 1000 * (vbatt_sum1 - vbatt_sum2) / (ibatt_sum1 - ibatt_sum2); if ((data - info->resistor > 0) && (data - info->resistor < info->resistor)) info->resistor = data; if ((info->resistor - data > 0) && (info->resistor - data < data)) info->resistor = data; } return 0; out_meas: set_charger_current(info, chg_current, &ret); out: return -EINVAL; } static int calc_capacity(struct pm860x_battery_info *info, int *cap) { int ret; int data; int ibat; int cap_ocv = 0; int cap_cc = 0; ret = calc_ccnt(info, &ccnt_data); if (ret) goto out; soc: data = info->max_capacity * info->start_soc / 100; if (ccnt_data.total_dischg - ccnt_data.total_chg <= data) { cap_cc = data + ccnt_data.total_chg - ccnt_data.total_dischg; } else { clear_ccnt(info, &ccnt_data); calc_soc(info, OCV_MODE_ACTIVE, &info->start_soc); dev_dbg(info->dev, "restart soc = %d !\n", info->start_soc); goto soc; } cap_cc = cap_cc * 100 / info->max_capacity; if (cap_cc < 0) cap_cc = 0; else if (cap_cc > 100) cap_cc = 100; dev_dbg(info->dev, "%s, last cap : %d", __func__, info->last_capacity); ret = measure_current(info, &ibat); if (ret) goto out; /* Calculate the capacity when discharging(ibat < 0) */ if (ibat < 0) { ret = calc_soc(info, OCV_MODE_ACTIVE, &cap_ocv); if (ret) cap_ocv = info->last_capacity; ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out; if (data <= LOW_BAT_THRESHOLD) { /* choose the lower capacity value to report * between vbat and CC when vbat < 3.6v; * than 3.6v; */ *cap = min(cap_ocv, cap_cc); } else { /* when detect vbat > 3.6v, but cap_cc < 15,and * cap_ocv is 10% larger than cap_cc, we can think * CC have some accumulation error, switch to OCV * to estimate capacity; * */ if (cap_cc < 15 && cap_ocv - cap_cc > 10) *cap = cap_ocv; else *cap = cap_cc; } /* when discharging, make sure current capacity * is lower than last*/ if (*cap > info->last_capacity) *cap = info->last_capacity; } else { *cap = cap_cc; } info->last_capacity = *cap; dev_dbg(info->dev, "%s, cap_ocv:%d cap_cc:%d, cap:%d\n", (ibat < 0) ? "discharging" : "charging", cap_ocv, cap_cc, *cap); /* * store the current capacity to RTC domain register, * after next power up , it will be restored. */ pm860x_set_bits(info->i2c, PM8607_RTC_MISC2, RTC_SOC_5LSB, (*cap & 0x1F) << 3); pm860x_set_bits(info->i2c, PM8607_RTC1, RTC_SOC_3MSB, ((*cap >> 5) & 0x3)); return 0; out: return ret; } static void pm860x_external_power_changed(struct power_supply *psy) { struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent); calc_resistor(info); } static int pm860x_batt_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent); int data; int ret; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: val->intval = info->present; break; case POWER_SUPPLY_PROP_CAPACITY: ret = calc_capacity(info, &data); if (ret) return ret; if (data < 0) data = 0; else if (data > 100) data = 100; /* return 100 if battery is not attached */ if (!info->present) data = 100; val->intval = data; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: /* return real vbatt Voltage */ ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) return ret; val->intval = data * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: /* return Open Circuit Voltage (not measured voltage) */ ret = calc_ocv(info, &data); if (ret) return ret; val->intval = data * 1000; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = measure_current(info, &data); if (ret) return ret; val->intval = data; break; case POWER_SUPPLY_PROP_TEMP: if (info->present) { ret = measure_temp(info, &data); if (ret) return ret; data *= 10; } else { /* Fake Temp 25C Without Battery */ data = 250; } val->intval = data; break; default: return -ENODEV; } return 0; } static int pm860x_batt_set_prop(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_CHARGE_FULL: clear_ccnt(info, &ccnt_data); info->start_soc = 100; dev_dbg(info->dev, "chg done, update soc = %d\n", info->start_soc); break; default: return -EPERM; } return 0; } static enum power_supply_property pm860x_batt_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_TEMP, }; static const struct power_supply_desc pm860x_battery_desc = { .name = "battery-monitor", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = pm860x_batt_props, .num_properties = ARRAY_SIZE(pm860x_batt_props), .get_property = pm860x_batt_get_prop, .set_property = pm860x_batt_set_prop, .external_power_changed = pm860x_external_power_changed, }; static int pm860x_battery_probe(struct platform_device *pdev) { struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); struct pm860x_battery_info *info; struct pm860x_power_pdata *pdata; int ret; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->irq_cc = platform_get_irq(pdev, 0); if (info->irq_cc <= 0) return -EINVAL; info->irq_batt = platform_get_irq(pdev, 1); if (info->irq_batt <= 0) return -EINVAL; info->chip = chip; info->i2c = (chip->id == CHIP_PM8607) ? chip->client : chip->companion; info->dev = &pdev->dev; info->status = POWER_SUPPLY_STATUS_UNKNOWN; pdata = pdev->dev.platform_data; mutex_init(&info->lock); platform_set_drvdata(pdev, info); pm860x_init_battery(info); if (pdata && pdata->max_capacity) info->max_capacity = pdata->max_capacity; else info->max_capacity = 1500; /* set default capacity */ if (pdata && pdata->resistor) info->resistor = pdata->resistor; else info->resistor = 300; /* set default internal resistor */ info->battery = devm_power_supply_register(&pdev->dev, &pm860x_battery_desc, NULL); if (IS_ERR(info->battery)) return PTR_ERR(info->battery); info->battery->dev.parent = &pdev->dev; ret = devm_request_threaded_irq(chip->dev, info->irq_cc, NULL, pm860x_coulomb_handler, IRQF_ONESHOT, "coulomb", info); if (ret < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", info->irq_cc, ret); return ret; } ret = devm_request_threaded_irq(chip->dev, info->irq_batt, NULL, pm860x_batt_handler, IRQF_ONESHOT, "battery", info); if (ret < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", info->irq_batt, ret); return ret; } return 0; } #ifdef CONFIG_PM_SLEEP static int pm860x_battery_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); if (device_may_wakeup(dev)) chip->wakeup_flag |= 1 << PM8607_IRQ_CC; return 0; } static int pm860x_battery_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); if (device_may_wakeup(dev)) chip->wakeup_flag &= ~(1 << PM8607_IRQ_CC); return 0; } #endif static SIMPLE_DEV_PM_OPS(pm860x_battery_pm_ops, pm860x_battery_suspend, pm860x_battery_resume); static struct platform_driver pm860x_battery_driver = { .driver = { .name = "88pm860x-battery", .pm = &pm860x_battery_pm_ops, }, .probe = pm860x_battery_probe, }; module_platform_driver(pm860x_battery_driver); MODULE_DESCRIPTION("Marvell 88PM860x Battery driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/88pm860x_battery.c
// SPDX-License-Identifier: GPL-2.0-only /* * Battery charger driver for TI's tps65090 * * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved. */ #include <linux/delay.h> #include <linux/err.h> #include <linux/freezer.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/slab.h> #include <linux/mfd/tps65090.h> #define TPS65090_CHARGER_ENABLE BIT(0) #define TPS65090_VACG BIT(1) #define TPS65090_NOITERM BIT(5) #define POLL_INTERVAL (HZ * 2) /* Used when no irq */ struct tps65090_charger { struct device *dev; int ac_online; int prev_ac_online; int irq; struct task_struct *poll_task; bool passive_mode; struct power_supply *ac; struct tps65090_platform_data *pdata; }; static enum power_supply_property tps65090_ac_props[] = { POWER_SUPPLY_PROP_ONLINE, }; static int tps65090_low_chrg_current(struct tps65090_charger *charger) { int ret; if (charger->passive_mode) return 0; ret = tps65090_write(charger->dev->parent, TPS65090_REG_CG_CTRL5, TPS65090_NOITERM); if (ret < 0) { dev_err(charger->dev, "%s(): error reading in register 0x%x\n", __func__, TPS65090_REG_CG_CTRL5); return ret; } return 0; } static int tps65090_enable_charging(struct tps65090_charger *charger) { int ret; uint8_t ctrl0 = 0; if (charger->passive_mode) return 0; ret = tps65090_read(charger->dev->parent, TPS65090_REG_CG_CTRL0, &ctrl0); if (ret < 0) { dev_err(charger->dev, "%s(): error reading in register 0x%x\n", __func__, TPS65090_REG_CG_CTRL0); return ret; } ret = tps65090_write(charger->dev->parent, TPS65090_REG_CG_CTRL0, (ctrl0 | TPS65090_CHARGER_ENABLE)); if (ret < 0) { dev_err(charger->dev, "%s(): error writing in register 0x%x\n", __func__, TPS65090_REG_CG_CTRL0); return ret; } return 0; } static int tps65090_config_charger(struct tps65090_charger *charger) { uint8_t intrmask = 0; int ret; if (charger->passive_mode) return 0; if (charger->pdata->enable_low_current_chrg) { ret = tps65090_low_chrg_current(charger); if (ret < 0) { dev_err(charger->dev, "error configuring low charge current\n"); return ret; } } /* Enable the VACG interrupt for AC power detect */ ret = tps65090_read(charger->dev->parent, TPS65090_REG_INTR_MASK, &intrmask); if (ret < 0) { dev_err(charger->dev, "%s(): error reading in register 0x%x\n", __func__, TPS65090_REG_INTR_MASK); return ret; } ret = tps65090_write(charger->dev->parent, TPS65090_REG_INTR_MASK, (intrmask | TPS65090_VACG)); if (ret < 0) { dev_err(charger->dev, "%s(): error writing in register 0x%x\n", __func__, TPS65090_REG_CG_CTRL0); return ret; } return 0; } static int tps65090_ac_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct tps65090_charger *charger = power_supply_get_drvdata(psy); if (psp == POWER_SUPPLY_PROP_ONLINE) { val->intval = charger->ac_online; charger->prev_ac_online = charger->ac_online; return 0; } return -EINVAL; } static irqreturn_t tps65090_charger_isr(int irq, void *dev_id) { struct tps65090_charger *charger = dev_id; int ret; uint8_t status1 = 0; uint8_t intrsts = 0; ret = tps65090_read(charger->dev->parent, TPS65090_REG_CG_STATUS1, &status1); if (ret < 0) { dev_err(charger->dev, "%s(): Error in reading reg 0x%x\n", __func__, TPS65090_REG_CG_STATUS1); return IRQ_HANDLED; } msleep(75); ret = tps65090_read(charger->dev->parent, TPS65090_REG_INTR_STS, &intrsts); if (ret < 0) { dev_err(charger->dev, "%s(): Error in reading reg 0x%x\n", __func__, TPS65090_REG_INTR_STS); return IRQ_HANDLED; } if (intrsts & TPS65090_VACG) { ret = tps65090_enable_charging(charger); if (ret < 0) return IRQ_HANDLED; charger->ac_online = 1; } else { charger->ac_online = 0; } /* Clear interrupts. */ if (!charger->passive_mode) { ret = tps65090_write(charger->dev->parent, TPS65090_REG_INTR_STS, 0x00); if (ret < 0) { dev_err(charger->dev, "%s(): Error in writing reg 0x%x\n", __func__, TPS65090_REG_INTR_STS); } } if (charger->prev_ac_online != charger->ac_online) power_supply_changed(charger->ac); return IRQ_HANDLED; } static struct tps65090_platform_data * tps65090_parse_dt_charger_data(struct platform_device *pdev) { struct tps65090_platform_data *pdata; struct device_node *np = pdev->dev.of_node; unsigned int prop; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(&pdev->dev, "Memory alloc for tps65090_pdata failed\n"); return NULL; } prop = of_property_read_bool(np, "ti,enable-low-current-chrg"); pdata->enable_low_current_chrg = prop; pdata->irq_base = -1; return pdata; } static int tps65090_charger_poll_task(void *data) { set_freezable(); while (!kthread_should_stop()) { schedule_timeout_interruptible(POLL_INTERVAL); try_to_freeze(); tps65090_charger_isr(-1, data); } return 0; } static const struct power_supply_desc tps65090_charger_desc = { .name = "tps65090-ac", .type = POWER_SUPPLY_TYPE_MAINS, .get_property = tps65090_ac_get_property, .properties = tps65090_ac_props, .num_properties = ARRAY_SIZE(tps65090_ac_props), }; static int tps65090_charger_probe(struct platform_device *pdev) { struct tps65090_charger *cdata; struct tps65090_platform_data *pdata; struct power_supply_config psy_cfg = {}; uint8_t status1 = 0; int ret; int irq; pdata = dev_get_platdata(pdev->dev.parent); if (IS_ENABLED(CONFIG_OF) && !pdata && pdev->dev.of_node) pdata = tps65090_parse_dt_charger_data(pdev); if (!pdata) { dev_err(&pdev->dev, "%s():no platform data available\n", __func__); return -ENODEV; } cdata = devm_kzalloc(&pdev->dev, sizeof(*cdata), GFP_KERNEL); if (!cdata) { dev_err(&pdev->dev, "failed to allocate memory status\n"); return -ENOMEM; } platform_set_drvdata(pdev, cdata); cdata->dev = &pdev->dev; cdata->pdata = pdata; psy_cfg.supplied_to = pdata->supplied_to; psy_cfg.num_supplicants = pdata->num_supplicants; psy_cfg.of_node = pdev->dev.of_node; psy_cfg.drv_data = cdata; cdata->ac = power_supply_register(&pdev->dev, &tps65090_charger_desc, &psy_cfg); if (IS_ERR(cdata->ac)) { dev_err(&pdev->dev, "failed: power supply register\n"); return PTR_ERR(cdata->ac); } irq = platform_get_irq(pdev, 0); if (irq < 0) irq = -ENXIO; cdata->irq = irq; ret = tps65090_config_charger(cdata); if (ret < 0) { dev_err(&pdev->dev, "charger config failed, err %d\n", ret); goto fail_unregister_supply; } /* Check for charger presence */ ret = tps65090_read(cdata->dev->parent, TPS65090_REG_CG_STATUS1, &status1); if (ret < 0) { dev_err(cdata->dev, "%s(): Error in reading reg 0x%x", __func__, TPS65090_REG_CG_STATUS1); goto fail_unregister_supply; } if (status1 != 0) { ret = tps65090_enable_charging(cdata); if (ret < 0) { dev_err(cdata->dev, "error enabling charger\n"); goto fail_unregister_supply; } cdata->ac_online = 1; power_supply_changed(cdata->ac); } if (irq != -ENXIO) { ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, tps65090_charger_isr, IRQF_ONESHOT, "tps65090-charger", cdata); if (ret) { dev_err(cdata->dev, "Unable to register irq %d err %d\n", irq, ret); goto fail_unregister_supply; } } else { cdata->poll_task = kthread_run(tps65090_charger_poll_task, cdata, "ktps65090charger"); cdata->passive_mode = true; if (IS_ERR(cdata->poll_task)) { ret = PTR_ERR(cdata->poll_task); dev_err(cdata->dev, "Unable to run kthread err %d\n", ret); goto fail_unregister_supply; } } return 0; fail_unregister_supply: power_supply_unregister(cdata->ac); return ret; } static int tps65090_charger_remove(struct platform_device *pdev) { struct tps65090_charger *cdata = platform_get_drvdata(pdev); if (cdata->irq == -ENXIO) kthread_stop(cdata->poll_task); power_supply_unregister(cdata->ac); return 0; } static const struct of_device_id of_tps65090_charger_match[] = { { .compatible = "ti,tps65090-charger", }, { /* end */ } }; MODULE_DEVICE_TABLE(of, of_tps65090_charger_match); static struct platform_driver tps65090_charger_driver = { .driver = { .name = "tps65090-charger", .of_match_table = of_tps65090_charger_match, }, .probe = tps65090_charger_probe, .remove = tps65090_charger_remove, }; module_platform_driver(tps65090_charger_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Syed Rafiuddin <[email protected]>"); MODULE_DESCRIPTION("tps65090 battery charger driver");
linux-master
drivers/power/supply/tps65090-charger.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * AXP20X and AXP22X PMICs' ACIN power supply driver * * Copyright (C) 2016 Free Electrons * Quentin Schulz <[email protected]> */ #include <linux/device.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mfd/axp20x.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/iio/consumer.h> #define AXP20X_PWR_STATUS_ACIN_PRESENT BIT(7) #define AXP20X_PWR_STATUS_ACIN_AVAIL BIT(6) #define AXP813_ACIN_PATH_SEL BIT(7) #define AXP813_ACIN_PATH_SEL_TO_BIT(x) (!!(x) << 7) #define AXP813_VHOLD_MASK GENMASK(5, 3) #define AXP813_VHOLD_UV_TO_BIT(x) ((((x) / 100000) - 40) << 3) #define AXP813_VHOLD_REG_TO_UV(x) \ (((((x) & AXP813_VHOLD_MASK) >> 3) + 40) * 100000) #define AXP813_CURR_LIMIT_MASK GENMASK(2, 0) #define AXP813_CURR_LIMIT_UA_TO_BIT(x) (((x) / 500000) - 3) #define AXP813_CURR_LIMIT_REG_TO_UA(x) \ ((((x) & AXP813_CURR_LIMIT_MASK) + 3) * 500000) #define DRVNAME "axp20x-ac-power-supply" struct axp20x_ac_power { struct regmap *regmap; struct power_supply *supply; struct iio_channel *acin_v; struct iio_channel *acin_i; bool has_acin_path_sel; unsigned int num_irqs; unsigned int irqs[]; }; static irqreturn_t axp20x_ac_power_irq(int irq, void *devid) { struct axp20x_ac_power *power = devid; power_supply_changed(power->supply); return IRQ_HANDLED; } static int axp20x_ac_power_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct axp20x_ac_power *power = power_supply_get_drvdata(psy); int ret, reg; switch (psp) { case POWER_SUPPLY_PROP_HEALTH: ret = regmap_read(power->regmap, AXP20X_PWR_INPUT_STATUS, &reg); if (ret) return ret; if (reg & AXP20X_PWR_STATUS_ACIN_PRESENT) { val->intval = POWER_SUPPLY_HEALTH_GOOD; return 0; } val->intval = POWER_SUPPLY_HEALTH_UNKNOWN; return 0; case POWER_SUPPLY_PROP_PRESENT: ret = regmap_read(power->regmap, AXP20X_PWR_INPUT_STATUS, &reg); if (ret) return ret; val->intval = !!(reg & AXP20X_PWR_STATUS_ACIN_PRESENT); return 0; case POWER_SUPPLY_PROP_ONLINE: ret = regmap_read(power->regmap, AXP20X_PWR_INPUT_STATUS, &reg); if (ret) return ret; val->intval = !!(reg & AXP20X_PWR_STATUS_ACIN_AVAIL); /* ACIN_PATH_SEL disables ACIN even if ACIN_AVAIL is set. */ if (val->intval && power->has_acin_path_sel) { ret = regmap_read(power->regmap, AXP813_ACIN_PATH_CTRL, &reg); if (ret) return ret; val->intval = !!(reg & AXP813_ACIN_PATH_SEL); } return 0; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = iio_read_channel_processed(power->acin_v, &val->intval); if (ret) return ret; /* IIO framework gives mV but Power Supply framework gives uV */ val->intval *= 1000; return 0; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = iio_read_channel_processed(power->acin_i, &val->intval); if (ret) return ret; /* IIO framework gives mA but Power Supply framework gives uA */ val->intval *= 1000; return 0; case POWER_SUPPLY_PROP_VOLTAGE_MIN: ret = regmap_read(power->regmap, AXP813_ACIN_PATH_CTRL, &reg); if (ret) return ret; val->intval = AXP813_VHOLD_REG_TO_UV(reg); return 0; case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: ret = regmap_read(power->regmap, AXP813_ACIN_PATH_CTRL, &reg); if (ret) return ret; val->intval = AXP813_CURR_LIMIT_REG_TO_UA(reg); /* AXP813 datasheet defines values 11x as 4000mA */ if (val->intval > 4000000) val->intval = 4000000; return 0; default: return -EINVAL; } return -EINVAL; } static int axp813_ac_power_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct axp20x_ac_power *power = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: return regmap_update_bits(power->regmap, AXP813_ACIN_PATH_CTRL, AXP813_ACIN_PATH_SEL, AXP813_ACIN_PATH_SEL_TO_BIT(val->intval)); case POWER_SUPPLY_PROP_VOLTAGE_MIN: if (val->intval < 4000000 || val->intval > 4700000) return -EINVAL; return regmap_update_bits(power->regmap, AXP813_ACIN_PATH_CTRL, AXP813_VHOLD_MASK, AXP813_VHOLD_UV_TO_BIT(val->intval)); case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT: if (val->intval < 1500000 || val->intval > 4000000) return -EINVAL; return regmap_update_bits(power->regmap, AXP813_ACIN_PATH_CTRL, AXP813_CURR_LIMIT_MASK, AXP813_CURR_LIMIT_UA_TO_BIT(val->intval)); default: return -EINVAL; } return -EINVAL; } static int axp813_ac_power_prop_writeable(struct power_supply *psy, enum power_supply_property psp) { return psp == POWER_SUPPLY_PROP_ONLINE || psp == POWER_SUPPLY_PROP_VOLTAGE_MIN || psp == POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT; } static enum power_supply_property axp20x_ac_power_properties[] = { POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, }; static enum power_supply_property axp22x_ac_power_properties[] = { POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, }; static enum power_supply_property axp813_ac_power_properties[] = { POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_VOLTAGE_MIN, POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, }; static const struct power_supply_desc axp20x_ac_power_desc = { .name = "axp20x-ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = axp20x_ac_power_properties, .num_properties = ARRAY_SIZE(axp20x_ac_power_properties), .get_property = axp20x_ac_power_get_property, }; static const struct power_supply_desc axp22x_ac_power_desc = { .name = "axp22x-ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = axp22x_ac_power_properties, .num_properties = ARRAY_SIZE(axp22x_ac_power_properties), .get_property = axp20x_ac_power_get_property, }; static const struct power_supply_desc axp813_ac_power_desc = { .name = "axp813-ac", .type = POWER_SUPPLY_TYPE_MAINS, .properties = axp813_ac_power_properties, .num_properties = ARRAY_SIZE(axp813_ac_power_properties), .property_is_writeable = axp813_ac_power_prop_writeable, .get_property = axp20x_ac_power_get_property, .set_property = axp813_ac_power_set_property, }; static const char * const axp20x_irq_names[] = { "ACIN_PLUGIN", "ACIN_REMOVAL", }; struct axp_data { const struct power_supply_desc *power_desc; const char * const *irq_names; unsigned int num_irq_names; bool acin_adc; bool acin_path_sel; }; static const struct axp_data axp20x_data = { .power_desc = &axp20x_ac_power_desc, .irq_names = axp20x_irq_names, .num_irq_names = ARRAY_SIZE(axp20x_irq_names), .acin_adc = true, .acin_path_sel = false, }; static const struct axp_data axp22x_data = { .power_desc = &axp22x_ac_power_desc, .irq_names = axp20x_irq_names, .num_irq_names = ARRAY_SIZE(axp20x_irq_names), .acin_adc = false, .acin_path_sel = false, }; static const struct axp_data axp813_data = { .power_desc = &axp813_ac_power_desc, .irq_names = axp20x_irq_names, .num_irq_names = ARRAY_SIZE(axp20x_irq_names), .acin_adc = false, .acin_path_sel = true, }; #ifdef CONFIG_PM_SLEEP static int axp20x_ac_power_suspend(struct device *dev) { struct axp20x_ac_power *power = dev_get_drvdata(dev); int i = 0; /* * Allow wake via ACIN_PLUGIN only. * * As nested threaded IRQs are not automatically disabled during * suspend, we must explicitly disable the remainder of the IRQs. */ if (device_may_wakeup(&power->supply->dev)) enable_irq_wake(power->irqs[i++]); while (i < power->num_irqs) disable_irq(power->irqs[i++]); return 0; } static int axp20x_ac_power_resume(struct device *dev) { struct axp20x_ac_power *power = dev_get_drvdata(dev); int i = 0; if (device_may_wakeup(&power->supply->dev)) disable_irq_wake(power->irqs[i++]); while (i < power->num_irqs) enable_irq(power->irqs[i++]); return 0; } #endif static SIMPLE_DEV_PM_OPS(axp20x_ac_power_pm_ops, axp20x_ac_power_suspend, axp20x_ac_power_resume); static int axp20x_ac_power_probe(struct platform_device *pdev) { struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent); struct power_supply_config psy_cfg = {}; struct axp20x_ac_power *power; const struct axp_data *axp_data; int i, irq, ret; if (!of_device_is_available(pdev->dev.of_node)) return -ENODEV; if (!axp20x) { dev_err(&pdev->dev, "Parent drvdata not set\n"); return -EINVAL; } axp_data = of_device_get_match_data(&pdev->dev); power = devm_kzalloc(&pdev->dev, struct_size(power, irqs, axp_data->num_irq_names), GFP_KERNEL); if (!power) return -ENOMEM; if (axp_data->acin_adc) { power->acin_v = devm_iio_channel_get(&pdev->dev, "acin_v"); if (IS_ERR(power->acin_v)) { if (PTR_ERR(power->acin_v) == -ENODEV) return -EPROBE_DEFER; return PTR_ERR(power->acin_v); } power->acin_i = devm_iio_channel_get(&pdev->dev, "acin_i"); if (IS_ERR(power->acin_i)) { if (PTR_ERR(power->acin_i) == -ENODEV) return -EPROBE_DEFER; return PTR_ERR(power->acin_i); } } power->regmap = dev_get_regmap(pdev->dev.parent, NULL); power->has_acin_path_sel = axp_data->acin_path_sel; power->num_irqs = axp_data->num_irq_names; platform_set_drvdata(pdev, power); psy_cfg.of_node = pdev->dev.of_node; psy_cfg.drv_data = power; power->supply = devm_power_supply_register(&pdev->dev, axp_data->power_desc, &psy_cfg); if (IS_ERR(power->supply)) return PTR_ERR(power->supply); /* Request irqs after registering, as irqs may trigger immediately */ for (i = 0; i < axp_data->num_irq_names; i++) { irq = platform_get_irq_byname(pdev, axp_data->irq_names[i]); if (irq < 0) return irq; power->irqs[i] = regmap_irq_get_virq(axp20x->regmap_irqc, irq); ret = devm_request_any_context_irq(&pdev->dev, power->irqs[i], axp20x_ac_power_irq, 0, DRVNAME, power); if (ret < 0) { dev_err(&pdev->dev, "Error requesting %s IRQ: %d\n", axp_data->irq_names[i], ret); return ret; } } return 0; } static const struct of_device_id axp20x_ac_power_match[] = { { .compatible = "x-powers,axp202-ac-power-supply", .data = &axp20x_data, }, { .compatible = "x-powers,axp221-ac-power-supply", .data = &axp22x_data, }, { .compatible = "x-powers,axp813-ac-power-supply", .data = &axp813_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, axp20x_ac_power_match); static struct platform_driver axp20x_ac_power_driver = { .probe = axp20x_ac_power_probe, .driver = { .name = DRVNAME, .of_match_table = axp20x_ac_power_match, .pm = &axp20x_ac_power_pm_ops, }, }; module_platform_driver(axp20x_ac_power_driver); MODULE_AUTHOR("Quentin Schulz <[email protected]>"); MODULE_DESCRIPTION("AXP20X and AXP22X PMICs' AC power supply driver"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/axp20x_ac_power.c
// SPDX-License-Identifier: GPL-2.0+ // // max8997_charger.c - Power supply consumer driver for the Maxim 8997/8966 // // Copyright (C) 2011 Samsung Electronics // MyungJoo Ham <[email protected]> #include <linux/err.h> #include <linux/extcon.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/mfd/max8997.h> #include <linux/mfd/max8997-private.h> #include <linux/regulator/consumer.h> #include <linux/devm-helpers.h> /* MAX8997_REG_STATUS4 */ #define DCINOK_SHIFT 1 #define DCINOK_MASK (1 << DCINOK_SHIFT) #define DETBAT_SHIFT 2 #define DETBAT_MASK (1 << DETBAT_SHIFT) /* MAX8997_REG_MBCCTRL1 */ #define TFCH_SHIFT 4 #define TFCH_MASK (7 << TFCH_SHIFT) /* MAX8997_REG_MBCCTRL5 */ #define ITOPOFF_SHIFT 0 #define ITOPOFF_MASK (0xF << ITOPOFF_SHIFT) struct charger_data { struct device *dev; struct max8997_dev *iodev; struct power_supply *battery; struct regulator *reg; struct extcon_dev *edev; struct notifier_block extcon_nb; struct work_struct extcon_work; }; static enum power_supply_property max8997_battery_props[] = { POWER_SUPPLY_PROP_STATUS, /* "FULL", "CHARGING" or "DISCHARGING". */ POWER_SUPPLY_PROP_PRESENT, /* the presence of battery */ POWER_SUPPLY_PROP_ONLINE, /* charger is active or not */ }; /* Note that the charger control is done by a current regulator "CHARGER" */ static int max8997_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct charger_data *charger = power_supply_get_drvdata(psy); struct i2c_client *i2c = charger->iodev->i2c; int ret; u8 reg; switch (psp) { case POWER_SUPPLY_PROP_STATUS: val->intval = 0; ret = max8997_read_reg(i2c, MAX8997_REG_STATUS4, &reg); if (ret) return ret; if ((reg & (1 << 0)) == 0x1) val->intval = POWER_SUPPLY_STATUS_FULL; else if ((reg & DCINOK_MASK)) val->intval = POWER_SUPPLY_STATUS_CHARGING; else val->intval = POWER_SUPPLY_STATUS_DISCHARGING; break; case POWER_SUPPLY_PROP_PRESENT: val->intval = 0; ret = max8997_read_reg(i2c, MAX8997_REG_STATUS4, &reg); if (ret) return ret; if ((reg & DETBAT_MASK) == 0x0) val->intval = 1; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = 0; ret = max8997_read_reg(i2c, MAX8997_REG_STATUS4, &reg); if (ret) return ret; if (reg & DCINOK_MASK) val->intval = 1; break; default: return -EINVAL; } return 0; } static void max8997_battery_extcon_evt_worker(struct work_struct *work) { struct charger_data *charger = container_of(work, struct charger_data, extcon_work); struct extcon_dev *edev = charger->edev; int current_limit; if (extcon_get_state(edev, EXTCON_CHG_USB_SDP) > 0) { dev_dbg(charger->dev, "USB SDP charger is connected\n"); current_limit = 450000; } else if (extcon_get_state(edev, EXTCON_CHG_USB_DCP) > 0) { dev_dbg(charger->dev, "USB DCP charger is connected\n"); current_limit = 650000; } else if (extcon_get_state(edev, EXTCON_CHG_USB_FAST) > 0) { dev_dbg(charger->dev, "USB FAST charger is connected\n"); current_limit = 650000; } else if (extcon_get_state(edev, EXTCON_CHG_USB_SLOW) > 0) { dev_dbg(charger->dev, "USB SLOW charger is connected\n"); current_limit = 650000; } else if (extcon_get_state(edev, EXTCON_CHG_USB_CDP) > 0) { dev_dbg(charger->dev, "USB CDP charger is connected\n"); current_limit = 650000; } else { dev_dbg(charger->dev, "USB charger is disconnected\n"); current_limit = -1; } if (current_limit > 0) { int ret = regulator_set_current_limit(charger->reg, current_limit, current_limit); if (ret) { dev_err(charger->dev, "failed to set current limit: %d\n", ret); return; } ret = regulator_enable(charger->reg); if (ret) dev_err(charger->dev, "failed to enable regulator: %d\n", ret); } else { int ret = regulator_disable(charger->reg); if (ret) dev_err(charger->dev, "failed to disable regulator: %d\n", ret); } } static int max8997_battery_extcon_evt(struct notifier_block *nb, unsigned long event, void *param) { struct charger_data *charger = container_of(nb, struct charger_data, extcon_nb); schedule_work(&charger->extcon_work); return NOTIFY_OK; } static const struct power_supply_desc max8997_battery_desc = { .name = "max8997_pmic", .type = POWER_SUPPLY_TYPE_BATTERY, .get_property = max8997_battery_get_property, .properties = max8997_battery_props, .num_properties = ARRAY_SIZE(max8997_battery_props), }; static int max8997_battery_probe(struct platform_device *pdev) { int ret = 0; struct charger_data *charger; struct max8997_dev *iodev = dev_get_drvdata(pdev->dev.parent); struct device_node *np = pdev->dev.of_node; struct i2c_client *i2c = iodev->i2c; struct max8997_platform_data *pdata = iodev->pdata; struct power_supply_config psy_cfg = {}; if (!pdata) { dev_err(&pdev->dev, "No platform data supplied.\n"); return -EINVAL; } if (pdata->eoc_mA) { int val = (pdata->eoc_mA - 50) / 10; if (val < 0) val = 0; if (val > 0xf) val = 0xf; ret = max8997_update_reg(i2c, MAX8997_REG_MBCCTRL5, val << ITOPOFF_SHIFT, ITOPOFF_MASK); if (ret < 0) { dev_err(&pdev->dev, "Cannot use i2c bus.\n"); return ret; } } switch (pdata->timeout) { case 5: ret = max8997_update_reg(i2c, MAX8997_REG_MBCCTRL1, 0x2 << TFCH_SHIFT, TFCH_MASK); break; case 6: ret = max8997_update_reg(i2c, MAX8997_REG_MBCCTRL1, 0x3 << TFCH_SHIFT, TFCH_MASK); break; case 7: ret = max8997_update_reg(i2c, MAX8997_REG_MBCCTRL1, 0x4 << TFCH_SHIFT, TFCH_MASK); break; case 0: ret = max8997_update_reg(i2c, MAX8997_REG_MBCCTRL1, 0x7 << TFCH_SHIFT, TFCH_MASK); break; default: dev_err(&pdev->dev, "incorrect timeout value (%d)\n", pdata->timeout); return -EINVAL; } if (ret < 0) { dev_err(&pdev->dev, "Cannot use i2c bus.\n"); return ret; } charger = devm_kzalloc(&pdev->dev, sizeof(*charger), GFP_KERNEL); if (!charger) return -ENOMEM; platform_set_drvdata(pdev, charger); charger->dev = &pdev->dev; charger->iodev = iodev; psy_cfg.drv_data = charger; charger->battery = devm_power_supply_register(&pdev->dev, &max8997_battery_desc, &psy_cfg); if (IS_ERR(charger->battery)) { dev_err(&pdev->dev, "failed: power supply register\n"); return PTR_ERR(charger->battery); } // grab regulator from parent device's node pdev->dev.of_node = iodev->dev->of_node; charger->reg = devm_regulator_get_optional(&pdev->dev, "charger"); pdev->dev.of_node = np; if (IS_ERR(charger->reg)) { if (PTR_ERR(charger->reg) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(&pdev->dev, "couldn't get charger regulator\n"); } charger->edev = extcon_get_extcon_dev("max8997-muic"); if (IS_ERR(charger->edev)) { dev_err_probe(charger->dev, PTR_ERR(charger->edev), "couldn't get extcon device: max8997-muic\n"); return PTR_ERR(charger->edev); } if (!IS_ERR(charger->reg) && !IS_ERR_OR_NULL(charger->edev)) { ret = devm_work_autocancel(&pdev->dev, &charger->extcon_work, max8997_battery_extcon_evt_worker); if (ret) { dev_err(&pdev->dev, "failed to add extcon evt stop action: %d\n", ret); return ret; } charger->extcon_nb.notifier_call = max8997_battery_extcon_evt; ret = devm_extcon_register_notifier_all(&pdev->dev, charger->edev, &charger->extcon_nb); if (ret) { dev_err(&pdev->dev, "failed to register extcon notifier\n"); return ret; } } return 0; } static const struct platform_device_id max8997_battery_id[] = { { "max8997-battery", 0 }, { } }; MODULE_DEVICE_TABLE(platform, max8997_battery_id); static struct platform_driver max8997_battery_driver = { .driver = { .name = "max8997-battery", }, .probe = max8997_battery_probe, .id_table = max8997_battery_id, }; module_platform_driver(max8997_battery_driver); MODULE_DESCRIPTION("MAXIM 8997/8966 battery control driver"); MODULE_AUTHOR("MyungJoo Ham <[email protected]>"); MODULE_LICENSE("GPL");
linux-master
drivers/power/supply/max8997_charger.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/crc32.h> #include "rxe.h" #include "rxe_loc.h" /** * rxe_icrc_init() - Initialize crypto function for computing crc32 * @rxe: rdma_rxe device object * * Return: 0 on success else an error */ int rxe_icrc_init(struct rxe_dev *rxe) { struct crypto_shash *tfm; tfm = crypto_alloc_shash("crc32", 0, 0); if (IS_ERR(tfm)) { rxe_dbg_dev(rxe, "failed to init crc32 algorithm err: %ld\n", PTR_ERR(tfm)); return PTR_ERR(tfm); } rxe->tfm = tfm; return 0; } /** * rxe_crc32() - Compute cumulative crc32 for a contiguous segment * @rxe: rdma_rxe device object * @crc: starting crc32 value from previous segments * @next: starting address of current segment * @len: length of current segment * * Return: the cumulative crc32 checksum */ static __be32 rxe_crc32(struct rxe_dev *rxe, __be32 crc, void *next, size_t len) { __be32 icrc; int err; SHASH_DESC_ON_STACK(shash, rxe->tfm); shash->tfm = rxe->tfm; *(__be32 *)shash_desc_ctx(shash) = crc; err = crypto_shash_update(shash, next, len); if (unlikely(err)) { rxe_dbg_dev(rxe, "failed crc calculation, err: %d\n", err); return (__force __be32)crc32_le((__force u32)crc, next, len); } icrc = *(__be32 *)shash_desc_ctx(shash); barrier_data(shash_desc_ctx(shash)); return icrc; } /** * rxe_icrc_hdr() - Compute the partial ICRC for the network and transport * headers of a packet. * @skb: packet buffer * @pkt: packet information * * Return: the partial ICRC */ static __be32 rxe_icrc_hdr(struct sk_buff *skb, struct rxe_pkt_info *pkt) { unsigned int bth_offset = 0; struct iphdr *ip4h = NULL; struct ipv6hdr *ip6h = NULL; struct udphdr *udph; struct rxe_bth *bth; __be32 crc; int length; int hdr_size = sizeof(struct udphdr) + (skb->protocol == htons(ETH_P_IP) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)); /* pseudo header buffer size is calculate using ipv6 header size since * it is bigger than ipv4 */ u8 pshdr[sizeof(struct udphdr) + sizeof(struct ipv6hdr) + RXE_BTH_BYTES]; /* This seed is the result of computing a CRC with a seed of * 0xfffffff and 8 bytes of 0xff representing a masked LRH. */ crc = (__force __be32)0xdebb20e3; if (skb->protocol == htons(ETH_P_IP)) { /* IPv4 */ memcpy(pshdr, ip_hdr(skb), hdr_size); ip4h = (struct iphdr *)pshdr; udph = (struct udphdr *)(ip4h + 1); ip4h->ttl = 0xff; ip4h->check = CSUM_MANGLED_0; ip4h->tos = 0xff; } else { /* IPv6 */ memcpy(pshdr, ipv6_hdr(skb), hdr_size); ip6h = (struct ipv6hdr *)pshdr; udph = (struct udphdr *)(ip6h + 1); memset(ip6h->flow_lbl, 0xff, sizeof(ip6h->flow_lbl)); ip6h->priority = 0xf; ip6h->hop_limit = 0xff; } udph->check = CSUM_MANGLED_0; bth_offset += hdr_size; memcpy(&pshdr[bth_offset], pkt->hdr, RXE_BTH_BYTES); bth = (struct rxe_bth *)&pshdr[bth_offset]; /* exclude bth.resv8a */ bth->qpn |= cpu_to_be32(~BTH_QPN_MASK); length = hdr_size + RXE_BTH_BYTES; crc = rxe_crc32(pkt->rxe, crc, pshdr, length); /* And finish to compute the CRC on the remainder of the headers. */ crc = rxe_crc32(pkt->rxe, crc, pkt->hdr + RXE_BTH_BYTES, rxe_opcode[pkt->opcode].length - RXE_BTH_BYTES); return crc; } /** * rxe_icrc_check() - Compute ICRC for a packet and compare to the ICRC * delivered in the packet. * @skb: packet buffer * @pkt: packet information * * Return: 0 if the values match else an error */ int rxe_icrc_check(struct sk_buff *skb, struct rxe_pkt_info *pkt) { __be32 *icrcp; __be32 pkt_icrc; __be32 icrc; icrcp = (__be32 *)(pkt->hdr + pkt->paylen - RXE_ICRC_SIZE); pkt_icrc = *icrcp; icrc = rxe_icrc_hdr(skb, pkt); icrc = rxe_crc32(pkt->rxe, icrc, (u8 *)payload_addr(pkt), payload_size(pkt) + bth_pad(pkt)); icrc = ~icrc; if (unlikely(icrc != pkt_icrc)) return -EINVAL; return 0; } /** * rxe_icrc_generate() - compute ICRC for a packet. * @skb: packet buffer * @pkt: packet information */ void rxe_icrc_generate(struct sk_buff *skb, struct rxe_pkt_info *pkt) { __be32 *icrcp; __be32 icrc; icrcp = (__be32 *)(pkt->hdr + pkt->paylen - RXE_ICRC_SIZE); icrc = rxe_icrc_hdr(skb, pkt); icrc = rxe_crc32(pkt->rxe, icrc, (u8 *)payload_addr(pkt), payload_size(pkt) + bth_pad(pkt)); *icrcp = ~icrc; }
linux-master
drivers/infiniband/sw/rxe/rxe_icrc.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/libnvdimm.h> #include "rxe.h" #include "rxe_loc.h" /* Return a random 8 bit key value that is * different than the last_key. Set last_key to -1 * if this is the first key for an MR or MW */ u8 rxe_get_next_key(u32 last_key) { u8 key; do { get_random_bytes(&key, 1); } while (key == last_key); return key; } int mr_check_range(struct rxe_mr *mr, u64 iova, size_t length) { switch (mr->ibmr.type) { case IB_MR_TYPE_DMA: return 0; case IB_MR_TYPE_USER: case IB_MR_TYPE_MEM_REG: if (iova < mr->ibmr.iova || iova + length > mr->ibmr.iova + mr->ibmr.length) { rxe_dbg_mr(mr, "iova/length out of range"); return -EINVAL; } return 0; default: rxe_dbg_mr(mr, "mr type not supported\n"); return -EINVAL; } } static void rxe_mr_init(int access, struct rxe_mr *mr) { u32 key = mr->elem.index << 8 | rxe_get_next_key(-1); /* set ibmr->l/rkey and also copy into private l/rkey * for user MRs these will always be the same * for cases where caller 'owns' the key portion * they may be different until REG_MR WQE is executed. */ mr->lkey = mr->ibmr.lkey = key; mr->rkey = mr->ibmr.rkey = key; mr->access = access; mr->ibmr.page_size = PAGE_SIZE; mr->page_mask = PAGE_MASK; mr->page_shift = PAGE_SHIFT; mr->state = RXE_MR_STATE_INVALID; } void rxe_mr_init_dma(int access, struct rxe_mr *mr) { rxe_mr_init(access, mr); mr->state = RXE_MR_STATE_VALID; mr->ibmr.type = IB_MR_TYPE_DMA; } static unsigned long rxe_mr_iova_to_index(struct rxe_mr *mr, u64 iova) { return (iova >> mr->page_shift) - (mr->ibmr.iova >> mr->page_shift); } static unsigned long rxe_mr_iova_to_page_offset(struct rxe_mr *mr, u64 iova) { return iova & (mr_page_size(mr) - 1); } static bool is_pmem_page(struct page *pg) { unsigned long paddr = page_to_phys(pg); return REGION_INTERSECTS == region_intersects(paddr, PAGE_SIZE, IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); } static int rxe_mr_fill_pages_from_sgt(struct rxe_mr *mr, struct sg_table *sgt) { XA_STATE(xas, &mr->page_list, 0); struct sg_page_iter sg_iter; struct page *page; bool persistent = !!(mr->access & IB_ACCESS_FLUSH_PERSISTENT); __sg_page_iter_start(&sg_iter, sgt->sgl, sgt->orig_nents, 0); if (!__sg_page_iter_next(&sg_iter)) return 0; do { xas_lock(&xas); while (true) { page = sg_page_iter_page(&sg_iter); if (persistent && !is_pmem_page(page)) { rxe_dbg_mr(mr, "Page can't be persistent\n"); xas_set_err(&xas, -EINVAL); break; } xas_store(&xas, page); if (xas_error(&xas)) break; xas_next(&xas); if (!__sg_page_iter_next(&sg_iter)) break; } xas_unlock(&xas); } while (xas_nomem(&xas, GFP_KERNEL)); return xas_error(&xas); } int rxe_mr_init_user(struct rxe_dev *rxe, u64 start, u64 length, u64 iova, int access, struct rxe_mr *mr) { struct ib_umem *umem; int err; rxe_mr_init(access, mr); xa_init(&mr->page_list); umem = ib_umem_get(&rxe->ib_dev, start, length, access); if (IS_ERR(umem)) { rxe_dbg_mr(mr, "Unable to pin memory region err = %d\n", (int)PTR_ERR(umem)); return PTR_ERR(umem); } err = rxe_mr_fill_pages_from_sgt(mr, &umem->sgt_append.sgt); if (err) { ib_umem_release(umem); return err; } mr->umem = umem; mr->ibmr.type = IB_MR_TYPE_USER; mr->state = RXE_MR_STATE_VALID; return 0; } static int rxe_mr_alloc(struct rxe_mr *mr, int num_buf) { XA_STATE(xas, &mr->page_list, 0); int i = 0; int err; xa_init(&mr->page_list); do { xas_lock(&xas); while (i != num_buf) { xas_store(&xas, XA_ZERO_ENTRY); if (xas_error(&xas)) break; xas_next(&xas); i++; } xas_unlock(&xas); } while (xas_nomem(&xas, GFP_KERNEL)); err = xas_error(&xas); if (err) return err; mr->num_buf = num_buf; return 0; } int rxe_mr_init_fast(int max_pages, struct rxe_mr *mr) { int err; /* always allow remote access for FMRs */ rxe_mr_init(RXE_ACCESS_REMOTE, mr); err = rxe_mr_alloc(mr, max_pages); if (err) goto err1; mr->state = RXE_MR_STATE_FREE; mr->ibmr.type = IB_MR_TYPE_MEM_REG; return 0; err1: return err; } static int rxe_set_page(struct ib_mr *ibmr, u64 dma_addr) { struct rxe_mr *mr = to_rmr(ibmr); struct page *page = ib_virt_dma_to_page(dma_addr); bool persistent = !!(mr->access & IB_ACCESS_FLUSH_PERSISTENT); int err; if (persistent && !is_pmem_page(page)) { rxe_dbg_mr(mr, "Page cannot be persistent\n"); return -EINVAL; } if (unlikely(mr->nbuf == mr->num_buf)) return -ENOMEM; err = xa_err(xa_store(&mr->page_list, mr->nbuf, page, GFP_KERNEL)); if (err) return err; mr->nbuf++; return 0; } int rxe_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sgl, int sg_nents, unsigned int *sg_offset) { struct rxe_mr *mr = to_rmr(ibmr); unsigned int page_size = mr_page_size(mr); mr->nbuf = 0; mr->page_shift = ilog2(page_size); mr->page_mask = ~((u64)page_size - 1); mr->page_offset = mr->ibmr.iova & (page_size - 1); return ib_sg_to_pages(ibmr, sgl, sg_nents, sg_offset, rxe_set_page); } static int rxe_mr_copy_xarray(struct rxe_mr *mr, u64 iova, void *addr, unsigned int length, enum rxe_mr_copy_dir dir) { unsigned int page_offset = rxe_mr_iova_to_page_offset(mr, iova); unsigned long index = rxe_mr_iova_to_index(mr, iova); unsigned int bytes; struct page *page; void *va; while (length) { page = xa_load(&mr->page_list, index); if (!page) return -EFAULT; bytes = min_t(unsigned int, length, mr_page_size(mr) - page_offset); va = kmap_local_page(page); if (dir == RXE_FROM_MR_OBJ) memcpy(addr, va + page_offset, bytes); else memcpy(va + page_offset, addr, bytes); kunmap_local(va); page_offset = 0; addr += bytes; length -= bytes; index++; } return 0; } static void rxe_mr_copy_dma(struct rxe_mr *mr, u64 dma_addr, void *addr, unsigned int length, enum rxe_mr_copy_dir dir) { unsigned int page_offset = dma_addr & (PAGE_SIZE - 1); unsigned int bytes; struct page *page; u8 *va; while (length) { page = ib_virt_dma_to_page(dma_addr); bytes = min_t(unsigned int, length, PAGE_SIZE - page_offset); va = kmap_local_page(page); if (dir == RXE_TO_MR_OBJ) memcpy(va + page_offset, addr, bytes); else memcpy(addr, va + page_offset, bytes); kunmap_local(va); page_offset = 0; dma_addr += bytes; addr += bytes; length -= bytes; } } int rxe_mr_copy(struct rxe_mr *mr, u64 iova, void *addr, unsigned int length, enum rxe_mr_copy_dir dir) { int err; if (length == 0) return 0; if (WARN_ON(!mr)) return -EINVAL; if (mr->ibmr.type == IB_MR_TYPE_DMA) { rxe_mr_copy_dma(mr, iova, addr, length, dir); return 0; } err = mr_check_range(mr, iova, length); if (unlikely(err)) { rxe_dbg_mr(mr, "iova out of range"); return err; } return rxe_mr_copy_xarray(mr, iova, addr, length, dir); } /* copy data in or out of a wqe, i.e. sg list * under the control of a dma descriptor */ int copy_data( struct rxe_pd *pd, int access, struct rxe_dma_info *dma, void *addr, int length, enum rxe_mr_copy_dir dir) { int bytes; struct rxe_sge *sge = &dma->sge[dma->cur_sge]; int offset = dma->sge_offset; int resid = dma->resid; struct rxe_mr *mr = NULL; u64 iova; int err; if (length == 0) return 0; if (length > resid) { err = -EINVAL; goto err2; } if (sge->length && (offset < sge->length)) { mr = lookup_mr(pd, access, sge->lkey, RXE_LOOKUP_LOCAL); if (!mr) { err = -EINVAL; goto err1; } } while (length > 0) { bytes = length; if (offset >= sge->length) { if (mr) { rxe_put(mr); mr = NULL; } sge++; dma->cur_sge++; offset = 0; if (dma->cur_sge >= dma->num_sge) { err = -ENOSPC; goto err2; } if (sge->length) { mr = lookup_mr(pd, access, sge->lkey, RXE_LOOKUP_LOCAL); if (!mr) { err = -EINVAL; goto err1; } } else { continue; } } if (bytes > sge->length - offset) bytes = sge->length - offset; if (bytes > 0) { iova = sge->addr + offset; err = rxe_mr_copy(mr, iova, addr, bytes, dir); if (err) goto err2; offset += bytes; resid -= bytes; length -= bytes; addr += bytes; } } dma->sge_offset = offset; dma->resid = resid; if (mr) rxe_put(mr); return 0; err2: if (mr) rxe_put(mr); err1: return err; } int rxe_flush_pmem_iova(struct rxe_mr *mr, u64 iova, unsigned int length) { unsigned int page_offset; unsigned long index; struct page *page; unsigned int bytes; int err; u8 *va; /* mr must be valid even if length is zero */ if (WARN_ON(!mr)) return -EINVAL; if (length == 0) return 0; if (mr->ibmr.type == IB_MR_TYPE_DMA) return -EFAULT; err = mr_check_range(mr, iova, length); if (err) return err; while (length > 0) { index = rxe_mr_iova_to_index(mr, iova); page = xa_load(&mr->page_list, index); page_offset = rxe_mr_iova_to_page_offset(mr, iova); if (!page) return -EFAULT; bytes = min_t(unsigned int, length, mr_page_size(mr) - page_offset); va = kmap_local_page(page); arch_wb_cache_pmem(va + page_offset, bytes); kunmap_local(va); length -= bytes; iova += bytes; page_offset = 0; } return 0; } /* Guarantee atomicity of atomic operations at the machine level. */ static DEFINE_SPINLOCK(atomic_ops_lock); int rxe_mr_do_atomic_op(struct rxe_mr *mr, u64 iova, int opcode, u64 compare, u64 swap_add, u64 *orig_val) { unsigned int page_offset; struct page *page; u64 value; u64 *va; if (unlikely(mr->state != RXE_MR_STATE_VALID)) { rxe_dbg_mr(mr, "mr not in valid state"); return RESPST_ERR_RKEY_VIOLATION; } if (mr->ibmr.type == IB_MR_TYPE_DMA) { page_offset = iova & (PAGE_SIZE - 1); page = ib_virt_dma_to_page(iova); } else { unsigned long index; int err; err = mr_check_range(mr, iova, sizeof(value)); if (err) { rxe_dbg_mr(mr, "iova out of range"); return RESPST_ERR_RKEY_VIOLATION; } page_offset = rxe_mr_iova_to_page_offset(mr, iova); index = rxe_mr_iova_to_index(mr, iova); page = xa_load(&mr->page_list, index); if (!page) return RESPST_ERR_RKEY_VIOLATION; } if (unlikely(page_offset & 0x7)) { rxe_dbg_mr(mr, "iova not aligned"); return RESPST_ERR_MISALIGNED_ATOMIC; } va = kmap_local_page(page); spin_lock_bh(&atomic_ops_lock); value = *orig_val = va[page_offset >> 3]; if (opcode == IB_OPCODE_RC_COMPARE_SWAP) { if (value == compare) va[page_offset >> 3] = swap_add; } else { value += swap_add; va[page_offset >> 3] = value; } spin_unlock_bh(&atomic_ops_lock); kunmap_local(va); return 0; } #if defined CONFIG_64BIT /* only implemented or called for 64 bit architectures */ int rxe_mr_do_atomic_write(struct rxe_mr *mr, u64 iova, u64 value) { unsigned int page_offset; struct page *page; u64 *va; /* See IBA oA19-28 */ if (unlikely(mr->state != RXE_MR_STATE_VALID)) { rxe_dbg_mr(mr, "mr not in valid state"); return RESPST_ERR_RKEY_VIOLATION; } if (mr->ibmr.type == IB_MR_TYPE_DMA) { page_offset = iova & (PAGE_SIZE - 1); page = ib_virt_dma_to_page(iova); } else { unsigned long index; int err; /* See IBA oA19-28 */ err = mr_check_range(mr, iova, sizeof(value)); if (unlikely(err)) { rxe_dbg_mr(mr, "iova out of range"); return RESPST_ERR_RKEY_VIOLATION; } page_offset = rxe_mr_iova_to_page_offset(mr, iova); index = rxe_mr_iova_to_index(mr, iova); page = xa_load(&mr->page_list, index); if (!page) return RESPST_ERR_RKEY_VIOLATION; } /* See IBA A19.4.2 */ if (unlikely(page_offset & 0x7)) { rxe_dbg_mr(mr, "misaligned address"); return RESPST_ERR_MISALIGNED_ATOMIC; } va = kmap_local_page(page); /* Do atomic write after all prior operations have completed */ smp_store_release(&va[page_offset >> 3], value); kunmap_local(va); return 0; } #else int rxe_mr_do_atomic_write(struct rxe_mr *mr, u64 iova, u64 value) { return RESPST_ERR_UNSUPPORTED_OPCODE; } #endif int advance_dma_data(struct rxe_dma_info *dma, unsigned int length) { struct rxe_sge *sge = &dma->sge[dma->cur_sge]; int offset = dma->sge_offset; int resid = dma->resid; while (length) { unsigned int bytes; if (offset >= sge->length) { sge++; dma->cur_sge++; offset = 0; if (dma->cur_sge >= dma->num_sge) return -ENOSPC; } bytes = length; if (bytes > sge->length - offset) bytes = sge->length - offset; offset += bytes; resid -= bytes; length -= bytes; } dma->sge_offset = offset; dma->resid = resid; return 0; } struct rxe_mr *lookup_mr(struct rxe_pd *pd, int access, u32 key, enum rxe_mr_lookup_type type) { struct rxe_mr *mr; struct rxe_dev *rxe = to_rdev(pd->ibpd.device); int index = key >> 8; mr = rxe_pool_get_index(&rxe->mr_pool, index); if (!mr) return NULL; if (unlikely((type == RXE_LOOKUP_LOCAL && mr->lkey != key) || (type == RXE_LOOKUP_REMOTE && mr->rkey != key) || mr_pd(mr) != pd || ((access & mr->access) != access) || mr->state != RXE_MR_STATE_VALID)) { rxe_put(mr); mr = NULL; } return mr; } int rxe_invalidate_mr(struct rxe_qp *qp, u32 key) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_mr *mr; int remote; int ret; mr = rxe_pool_get_index(&rxe->mr_pool, key >> 8); if (!mr) { rxe_dbg_qp(qp, "No MR for key %#x\n", key); ret = -EINVAL; goto err; } remote = mr->access & RXE_ACCESS_REMOTE; if (remote ? (key != mr->rkey) : (key != mr->lkey)) { rxe_dbg_mr(mr, "wr key (%#x) doesn't match mr key (%#x)\n", key, (remote ? mr->rkey : mr->lkey)); ret = -EINVAL; goto err_drop_ref; } if (atomic_read(&mr->num_mw) > 0) { rxe_dbg_mr(mr, "Attempt to invalidate an MR while bound to MWs\n"); ret = -EINVAL; goto err_drop_ref; } if (unlikely(mr->ibmr.type != IB_MR_TYPE_MEM_REG)) { rxe_dbg_mr(mr, "Type (%d) is wrong\n", mr->ibmr.type); ret = -EINVAL; goto err_drop_ref; } mr->state = RXE_MR_STATE_FREE; ret = 0; err_drop_ref: rxe_put(mr); err: return ret; } /* user can (re)register fast MR by executing a REG_MR WQE. * user is expected to hold a reference on the ib mr until the * WQE completes. * Once a fast MR is created this is the only way to change the * private keys. It is the responsibility of the user to maintain * the ib mr keys in sync with rxe mr keys. */ int rxe_reg_fast_mr(struct rxe_qp *qp, struct rxe_send_wqe *wqe) { struct rxe_mr *mr = to_rmr(wqe->wr.wr.reg.mr); u32 key = wqe->wr.wr.reg.key; u32 access = wqe->wr.wr.reg.access; /* user can only register MR in free state */ if (unlikely(mr->state != RXE_MR_STATE_FREE)) { rxe_dbg_mr(mr, "mr->lkey = 0x%x not free\n", mr->lkey); return -EINVAL; } /* user can only register mr with qp in same protection domain */ if (unlikely(qp->ibqp.pd != mr->ibmr.pd)) { rxe_dbg_mr(mr, "qp->pd and mr->pd don't match\n"); return -EINVAL; } /* user is only allowed to change key portion of l/rkey */ if (unlikely((mr->lkey & ~0xff) != (key & ~0xff))) { rxe_dbg_mr(mr, "key = 0x%x has wrong index mr->lkey = 0x%x\n", key, mr->lkey); return -EINVAL; } mr->access = access; mr->lkey = key; mr->rkey = key; mr->ibmr.iova = wqe->wr.wr.reg.mr->iova; mr->state = RXE_MR_STATE_VALID; return 0; } void rxe_mr_cleanup(struct rxe_pool_elem *elem) { struct rxe_mr *mr = container_of(elem, typeof(*mr), elem); rxe_put(mr_pd(mr)); ib_umem_release(mr->umem); if (mr->ibmr.type != IB_MR_TYPE_DMA) xa_destroy(&mr->page_list); }
linux-master
drivers/infiniband/sw/rxe/rxe_mr.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/vmalloc.h> #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" int rxe_cq_chk_attr(struct rxe_dev *rxe, struct rxe_cq *cq, int cqe, int comp_vector) { int count; if (cqe <= 0) { rxe_dbg_dev(rxe, "cqe(%d) <= 0\n", cqe); goto err1; } if (cqe > rxe->attr.max_cqe) { rxe_dbg_dev(rxe, "cqe(%d) > max_cqe(%d)\n", cqe, rxe->attr.max_cqe); goto err1; } if (cq) { count = queue_count(cq->queue, QUEUE_TYPE_TO_CLIENT); if (cqe < count) { rxe_dbg_cq(cq, "cqe(%d) < current # elements in queue (%d)", cqe, count); goto err1; } } return 0; err1: return -EINVAL; } int rxe_cq_from_init(struct rxe_dev *rxe, struct rxe_cq *cq, int cqe, int comp_vector, struct ib_udata *udata, struct rxe_create_cq_resp __user *uresp) { int err; enum queue_type type; type = QUEUE_TYPE_TO_CLIENT; cq->queue = rxe_queue_init(rxe, &cqe, sizeof(struct rxe_cqe), type); if (!cq->queue) { rxe_dbg_dev(rxe, "unable to create cq\n"); return -ENOMEM; } err = do_mmap_info(rxe, uresp ? &uresp->mi : NULL, udata, cq->queue->buf, cq->queue->buf_size, &cq->queue->ip); if (err) { vfree(cq->queue->buf); kfree(cq->queue); return err; } cq->is_user = uresp; spin_lock_init(&cq->cq_lock); cq->ibcq.cqe = cqe; return 0; } int rxe_cq_resize_queue(struct rxe_cq *cq, int cqe, struct rxe_resize_cq_resp __user *uresp, struct ib_udata *udata) { int err; err = rxe_queue_resize(cq->queue, (unsigned int *)&cqe, sizeof(struct rxe_cqe), udata, uresp ? &uresp->mi : NULL, NULL, &cq->cq_lock); if (!err) cq->ibcq.cqe = cqe; return err; } /* caller holds reference to cq */ int rxe_cq_post(struct rxe_cq *cq, struct rxe_cqe *cqe, int solicited) { struct ib_event ev; int full; void *addr; unsigned long flags; spin_lock_irqsave(&cq->cq_lock, flags); full = queue_full(cq->queue, QUEUE_TYPE_TO_CLIENT); if (unlikely(full)) { rxe_err_cq(cq, "queue full"); spin_unlock_irqrestore(&cq->cq_lock, flags); if (cq->ibcq.event_handler) { ev.device = cq->ibcq.device; ev.element.cq = &cq->ibcq; ev.event = IB_EVENT_CQ_ERR; cq->ibcq.event_handler(&ev, cq->ibcq.cq_context); } return -EBUSY; } addr = queue_producer_addr(cq->queue, QUEUE_TYPE_TO_CLIENT); memcpy(addr, cqe, sizeof(*cqe)); queue_advance_producer(cq->queue, QUEUE_TYPE_TO_CLIENT); if ((cq->notify & IB_CQ_NEXT_COMP) || (cq->notify & IB_CQ_SOLICITED && solicited)) { cq->notify = 0; cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context); } spin_unlock_irqrestore(&cq->cq_lock, flags); return 0; } void rxe_cq_cleanup(struct rxe_pool_elem *elem) { struct rxe_cq *cq = container_of(elem, typeof(*cq), elem); if (cq->queue) rxe_queue_cleanup(cq->queue); }
linux-master
drivers/infiniband/sw/rxe/rxe_cq.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include "rxe.h" #define RXE_POOL_TIMEOUT (200) #define RXE_POOL_ALIGN (16) static const struct rxe_type_info { const char *name; size_t size; size_t elem_offset; void (*cleanup)(struct rxe_pool_elem *elem); u32 min_index; u32 max_index; u32 max_elem; } rxe_type_info[RXE_NUM_TYPES] = { [RXE_TYPE_UC] = { .name = "uc", .size = sizeof(struct rxe_ucontext), .elem_offset = offsetof(struct rxe_ucontext, elem), .min_index = 1, .max_index = RXE_MAX_UCONTEXT, .max_elem = RXE_MAX_UCONTEXT, }, [RXE_TYPE_PD] = { .name = "pd", .size = sizeof(struct rxe_pd), .elem_offset = offsetof(struct rxe_pd, elem), .min_index = 1, .max_index = RXE_MAX_PD, .max_elem = RXE_MAX_PD, }, [RXE_TYPE_AH] = { .name = "ah", .size = sizeof(struct rxe_ah), .elem_offset = offsetof(struct rxe_ah, elem), .min_index = RXE_MIN_AH_INDEX, .max_index = RXE_MAX_AH_INDEX, .max_elem = RXE_MAX_AH, }, [RXE_TYPE_SRQ] = { .name = "srq", .size = sizeof(struct rxe_srq), .elem_offset = offsetof(struct rxe_srq, elem), .cleanup = rxe_srq_cleanup, .min_index = RXE_MIN_SRQ_INDEX, .max_index = RXE_MAX_SRQ_INDEX, .max_elem = RXE_MAX_SRQ, }, [RXE_TYPE_QP] = { .name = "qp", .size = sizeof(struct rxe_qp), .elem_offset = offsetof(struct rxe_qp, elem), .cleanup = rxe_qp_cleanup, .min_index = RXE_MIN_QP_INDEX, .max_index = RXE_MAX_QP_INDEX, .max_elem = RXE_MAX_QP, }, [RXE_TYPE_CQ] = { .name = "cq", .size = sizeof(struct rxe_cq), .elem_offset = offsetof(struct rxe_cq, elem), .cleanup = rxe_cq_cleanup, .min_index = 1, .max_index = RXE_MAX_CQ, .max_elem = RXE_MAX_CQ, }, [RXE_TYPE_MR] = { .name = "mr", .size = sizeof(struct rxe_mr), .elem_offset = offsetof(struct rxe_mr, elem), .cleanup = rxe_mr_cleanup, .min_index = RXE_MIN_MR_INDEX, .max_index = RXE_MAX_MR_INDEX, .max_elem = RXE_MAX_MR, }, [RXE_TYPE_MW] = { .name = "mw", .size = sizeof(struct rxe_mw), .elem_offset = offsetof(struct rxe_mw, elem), .cleanup = rxe_mw_cleanup, .min_index = RXE_MIN_MW_INDEX, .max_index = RXE_MAX_MW_INDEX, .max_elem = RXE_MAX_MW, }, }; void rxe_pool_init(struct rxe_dev *rxe, struct rxe_pool *pool, enum rxe_elem_type type) { const struct rxe_type_info *info = &rxe_type_info[type]; memset(pool, 0, sizeof(*pool)); pool->rxe = rxe; pool->name = info->name; pool->type = type; pool->max_elem = info->max_elem; pool->elem_size = ALIGN(info->size, RXE_POOL_ALIGN); pool->elem_offset = info->elem_offset; pool->cleanup = info->cleanup; atomic_set(&pool->num_elem, 0); xa_init_flags(&pool->xa, XA_FLAGS_ALLOC); pool->limit.min = info->min_index; pool->limit.max = info->max_index; } void rxe_pool_cleanup(struct rxe_pool *pool) { WARN_ON(!xa_empty(&pool->xa)); } int __rxe_add_to_pool(struct rxe_pool *pool, struct rxe_pool_elem *elem, bool sleepable) { int err; gfp_t gfp_flags; if (atomic_inc_return(&pool->num_elem) > pool->max_elem) goto err_cnt; elem->pool = pool; elem->obj = (u8 *)elem - pool->elem_offset; kref_init(&elem->ref_cnt); init_completion(&elem->complete); /* AH objects are unique in that the create_ah verb * can be called in atomic context. If the create_ah * call is not sleepable use GFP_ATOMIC. */ gfp_flags = sleepable ? GFP_KERNEL : GFP_ATOMIC; if (sleepable) might_sleep(); err = xa_alloc_cyclic(&pool->xa, &elem->index, NULL, pool->limit, &pool->next, gfp_flags); if (err < 0) goto err_cnt; return 0; err_cnt: atomic_dec(&pool->num_elem); return -EINVAL; } void *rxe_pool_get_index(struct rxe_pool *pool, u32 index) { struct rxe_pool_elem *elem; struct xarray *xa = &pool->xa; void *obj; rcu_read_lock(); elem = xa_load(xa, index); if (elem && kref_get_unless_zero(&elem->ref_cnt)) obj = elem->obj; else obj = NULL; rcu_read_unlock(); return obj; } static void rxe_elem_release(struct kref *kref) { struct rxe_pool_elem *elem = container_of(kref, typeof(*elem), ref_cnt); complete(&elem->complete); } int __rxe_cleanup(struct rxe_pool_elem *elem, bool sleepable) { struct rxe_pool *pool = elem->pool; struct xarray *xa = &pool->xa; static int timeout = RXE_POOL_TIMEOUT; int ret, err = 0; void *xa_ret; if (sleepable) might_sleep(); /* erase xarray entry to prevent looking up * the pool elem from its index */ xa_ret = xa_erase(xa, elem->index); WARN_ON(xa_err(xa_ret)); /* if this is the last call to rxe_put complete the * object. It is safe to touch obj->elem after this since * it is freed below */ __rxe_put(elem); /* wait until all references to the object have been * dropped before final object specific cleanup and * return to rdma-core */ if (sleepable) { if (!completion_done(&elem->complete) && timeout) { ret = wait_for_completion_timeout(&elem->complete, timeout); /* Shouldn't happen. There are still references to * the object but, rather than deadlock, free the * object or pass back to rdma-core. */ if (WARN_ON(!ret)) err = -EINVAL; } } else { unsigned long until = jiffies + timeout; /* AH objects are unique in that the destroy_ah verb * can be called in atomic context. This delay * replaces the wait_for_completion call above * when the destroy_ah call is not sleepable */ while (!completion_done(&elem->complete) && time_before(jiffies, until)) mdelay(1); if (WARN_ON(!completion_done(&elem->complete))) err = -EINVAL; } if (pool->cleanup) pool->cleanup(elem); atomic_dec(&pool->num_elem); return err; } int __rxe_get(struct rxe_pool_elem *elem) { return kref_get_unless_zero(&elem->ref_cnt); } int __rxe_put(struct rxe_pool_elem *elem) { return kref_put(&elem->ref_cnt, rxe_elem_release); } void __rxe_finalize(struct rxe_pool_elem *elem) { void *xa_ret; xa_ret = xa_store(&elem->pool->xa, elem->index, elem, GFP_KERNEL); WARN_ON(xa_err(xa_ret)); }
linux-master
drivers/infiniband/sw/rxe/rxe_pool.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <rdma/rdma_netlink.h> #include <net/addrconf.h> #include "rxe.h" #include "rxe_loc.h" MODULE_AUTHOR("Bob Pearson, Frank Zago, John Groves, Kamal Heib"); MODULE_DESCRIPTION("Soft RDMA transport"); MODULE_LICENSE("Dual BSD/GPL"); /* free resources for a rxe device all objects created for this device must * have been destroyed */ void rxe_dealloc(struct ib_device *ib_dev) { struct rxe_dev *rxe = container_of(ib_dev, struct rxe_dev, ib_dev); rxe_pool_cleanup(&rxe->uc_pool); rxe_pool_cleanup(&rxe->pd_pool); rxe_pool_cleanup(&rxe->ah_pool); rxe_pool_cleanup(&rxe->srq_pool); rxe_pool_cleanup(&rxe->qp_pool); rxe_pool_cleanup(&rxe->cq_pool); rxe_pool_cleanup(&rxe->mr_pool); rxe_pool_cleanup(&rxe->mw_pool); WARN_ON(!RB_EMPTY_ROOT(&rxe->mcg_tree)); if (rxe->tfm) crypto_free_shash(rxe->tfm); } /* initialize rxe device parameters */ static void rxe_init_device_param(struct rxe_dev *rxe) { rxe->max_inline_data = RXE_MAX_INLINE_DATA; rxe->attr.vendor_id = RXE_VENDOR_ID; rxe->attr.max_mr_size = RXE_MAX_MR_SIZE; rxe->attr.page_size_cap = RXE_PAGE_SIZE_CAP; rxe->attr.max_qp = RXE_MAX_QP; rxe->attr.max_qp_wr = RXE_MAX_QP_WR; rxe->attr.device_cap_flags = RXE_DEVICE_CAP_FLAGS; rxe->attr.kernel_cap_flags = IBK_ALLOW_USER_UNREG; rxe->attr.max_send_sge = RXE_MAX_SGE; rxe->attr.max_recv_sge = RXE_MAX_SGE; rxe->attr.max_sge_rd = RXE_MAX_SGE_RD; rxe->attr.max_cq = RXE_MAX_CQ; rxe->attr.max_cqe = (1 << RXE_MAX_LOG_CQE) - 1; rxe->attr.max_mr = RXE_MAX_MR; rxe->attr.max_mw = RXE_MAX_MW; rxe->attr.max_pd = RXE_MAX_PD; rxe->attr.max_qp_rd_atom = RXE_MAX_QP_RD_ATOM; rxe->attr.max_res_rd_atom = RXE_MAX_RES_RD_ATOM; rxe->attr.max_qp_init_rd_atom = RXE_MAX_QP_INIT_RD_ATOM; rxe->attr.atomic_cap = IB_ATOMIC_HCA; rxe->attr.max_mcast_grp = RXE_MAX_MCAST_GRP; rxe->attr.max_mcast_qp_attach = RXE_MAX_MCAST_QP_ATTACH; rxe->attr.max_total_mcast_qp_attach = RXE_MAX_TOT_MCAST_QP_ATTACH; rxe->attr.max_ah = RXE_MAX_AH; rxe->attr.max_srq = RXE_MAX_SRQ; rxe->attr.max_srq_wr = RXE_MAX_SRQ_WR; rxe->attr.max_srq_sge = RXE_MAX_SRQ_SGE; rxe->attr.max_fast_reg_page_list_len = RXE_MAX_FMR_PAGE_LIST_LEN; rxe->attr.max_pkeys = RXE_MAX_PKEYS; rxe->attr.local_ca_ack_delay = RXE_LOCAL_CA_ACK_DELAY; addrconf_addr_eui48((unsigned char *)&rxe->attr.sys_image_guid, rxe->ndev->dev_addr); rxe->max_ucontext = RXE_MAX_UCONTEXT; } /* initialize port attributes */ static void rxe_init_port_param(struct rxe_port *port) { port->attr.state = IB_PORT_DOWN; port->attr.max_mtu = IB_MTU_4096; port->attr.active_mtu = IB_MTU_256; port->attr.gid_tbl_len = RXE_PORT_GID_TBL_LEN; port->attr.port_cap_flags = RXE_PORT_PORT_CAP_FLAGS; port->attr.max_msg_sz = RXE_PORT_MAX_MSG_SZ; port->attr.bad_pkey_cntr = RXE_PORT_BAD_PKEY_CNTR; port->attr.qkey_viol_cntr = RXE_PORT_QKEY_VIOL_CNTR; port->attr.pkey_tbl_len = RXE_PORT_PKEY_TBL_LEN; port->attr.lid = RXE_PORT_LID; port->attr.sm_lid = RXE_PORT_SM_LID; port->attr.lmc = RXE_PORT_LMC; port->attr.max_vl_num = RXE_PORT_MAX_VL_NUM; port->attr.sm_sl = RXE_PORT_SM_SL; port->attr.subnet_timeout = RXE_PORT_SUBNET_TIMEOUT; port->attr.init_type_reply = RXE_PORT_INIT_TYPE_REPLY; port->attr.active_width = RXE_PORT_ACTIVE_WIDTH; port->attr.active_speed = RXE_PORT_ACTIVE_SPEED; port->attr.phys_state = RXE_PORT_PHYS_STATE; port->mtu_cap = ib_mtu_enum_to_int(IB_MTU_256); port->subnet_prefix = cpu_to_be64(RXE_PORT_SUBNET_PREFIX); } /* initialize port state, note IB convention that HCA ports are always * numbered from 1 */ static void rxe_init_ports(struct rxe_dev *rxe) { struct rxe_port *port = &rxe->port; rxe_init_port_param(port); addrconf_addr_eui48((unsigned char *)&port->port_guid, rxe->ndev->dev_addr); spin_lock_init(&port->port_lock); } /* init pools of managed objects */ static void rxe_init_pools(struct rxe_dev *rxe) { rxe_pool_init(rxe, &rxe->uc_pool, RXE_TYPE_UC); rxe_pool_init(rxe, &rxe->pd_pool, RXE_TYPE_PD); rxe_pool_init(rxe, &rxe->ah_pool, RXE_TYPE_AH); rxe_pool_init(rxe, &rxe->srq_pool, RXE_TYPE_SRQ); rxe_pool_init(rxe, &rxe->qp_pool, RXE_TYPE_QP); rxe_pool_init(rxe, &rxe->cq_pool, RXE_TYPE_CQ); rxe_pool_init(rxe, &rxe->mr_pool, RXE_TYPE_MR); rxe_pool_init(rxe, &rxe->mw_pool, RXE_TYPE_MW); } /* initialize rxe device state */ static void rxe_init(struct rxe_dev *rxe) { /* init default device parameters */ rxe_init_device_param(rxe); rxe_init_ports(rxe); rxe_init_pools(rxe); /* init pending mmap list */ spin_lock_init(&rxe->mmap_offset_lock); spin_lock_init(&rxe->pending_lock); INIT_LIST_HEAD(&rxe->pending_mmaps); /* init multicast support */ spin_lock_init(&rxe->mcg_lock); rxe->mcg_tree = RB_ROOT; mutex_init(&rxe->usdev_lock); } void rxe_set_mtu(struct rxe_dev *rxe, unsigned int ndev_mtu) { struct rxe_port *port = &rxe->port; enum ib_mtu mtu; mtu = eth_mtu_int_to_enum(ndev_mtu); /* Make sure that new MTU in range */ mtu = mtu ? min_t(enum ib_mtu, mtu, IB_MTU_4096) : IB_MTU_256; port->attr.active_mtu = mtu; port->mtu_cap = ib_mtu_enum_to_int(mtu); rxe_info_dev(rxe, "Set mtu to %d", port->mtu_cap); } /* called by ifc layer to create new rxe device. * The caller should allocate memory for rxe by calling ib_alloc_device. */ int rxe_add(struct rxe_dev *rxe, unsigned int mtu, const char *ibdev_name) { rxe_init(rxe); rxe_set_mtu(rxe, mtu); return rxe_register_device(rxe, ibdev_name); } static int rxe_newlink(const char *ibdev_name, struct net_device *ndev) { struct rxe_dev *rxe; int err = 0; if (is_vlan_dev(ndev)) { rxe_err("rxe creation allowed on top of a real device only"); err = -EPERM; goto err; } rxe = rxe_get_dev_from_net(ndev); if (rxe) { ib_device_put(&rxe->ib_dev); rxe_err_dev(rxe, "already configured on %s", ndev->name); err = -EEXIST; goto err; } err = rxe_net_add(ibdev_name, ndev); if (err) { rxe_err("failed to add %s\n", ndev->name); goto err; } err: return err; } static struct rdma_link_ops rxe_link_ops = { .type = "rxe", .newlink = rxe_newlink, }; static int __init rxe_module_init(void) { int err; err = rxe_alloc_wq(); if (err) return err; err = rxe_net_init(); if (err) { rxe_destroy_wq(); return err; } rdma_link_register(&rxe_link_ops); pr_info("loaded\n"); return 0; } static void __exit rxe_module_exit(void) { rdma_link_unregister(&rxe_link_ops); ib_unregister_driver(RDMA_DRIVER_RXE); rxe_net_exit(); rxe_destroy_wq(); pr_info("unloaded\n"); } late_initcall(rxe_module_init); module_exit(rxe_module_exit); MODULE_ALIAS_RDMA_LINK("rxe");
linux-master
drivers/infiniband/sw/rxe/rxe.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/skbuff.h> #include "rxe.h" #include "rxe_loc.h" /* check that QP matches packet opcode type and is in a valid state */ static int check_type_state(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, struct rxe_qp *qp) { unsigned int pkt_type; unsigned long flags; if (unlikely(!qp->valid)) return -EINVAL; pkt_type = pkt->opcode & 0xe0; switch (qp_type(qp)) { case IB_QPT_RC: if (unlikely(pkt_type != IB_OPCODE_RC)) return -EINVAL; break; case IB_QPT_UC: if (unlikely(pkt_type != IB_OPCODE_UC)) return -EINVAL; break; case IB_QPT_UD: case IB_QPT_GSI: if (unlikely(pkt_type != IB_OPCODE_UD)) return -EINVAL; break; default: return -EINVAL; } spin_lock_irqsave(&qp->state_lock, flags); if (pkt->mask & RXE_REQ_MASK) { if (unlikely(qp_state(qp) < IB_QPS_RTR)) { spin_unlock_irqrestore(&qp->state_lock, flags); return -EINVAL; } } else { if (unlikely(qp_state(qp) < IB_QPS_RTS)) { spin_unlock_irqrestore(&qp->state_lock, flags); return -EINVAL; } } spin_unlock_irqrestore(&qp->state_lock, flags); return 0; } static void set_bad_pkey_cntr(struct rxe_port *port) { spin_lock_bh(&port->port_lock); port->attr.bad_pkey_cntr = min((u32)0xffff, port->attr.bad_pkey_cntr + 1); spin_unlock_bh(&port->port_lock); } static void set_qkey_viol_cntr(struct rxe_port *port) { spin_lock_bh(&port->port_lock); port->attr.qkey_viol_cntr = min((u32)0xffff, port->attr.qkey_viol_cntr + 1); spin_unlock_bh(&port->port_lock); } static int check_keys(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, u32 qpn, struct rxe_qp *qp) { struct rxe_port *port = &rxe->port; u16 pkey = bth_pkey(pkt); pkt->pkey_index = 0; if (!pkey_match(pkey, IB_DEFAULT_PKEY_FULL)) { set_bad_pkey_cntr(port); return -EINVAL; } if (qp_type(qp) == IB_QPT_UD || qp_type(qp) == IB_QPT_GSI) { u32 qkey = (qpn == 1) ? GSI_QKEY : qp->attr.qkey; if (unlikely(deth_qkey(pkt) != qkey)) { set_qkey_viol_cntr(port); return -EINVAL; } } return 0; } static int check_addr(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, struct rxe_qp *qp) { struct sk_buff *skb = PKT_TO_SKB(pkt); if (qp_type(qp) != IB_QPT_RC && qp_type(qp) != IB_QPT_UC) return 0; if (unlikely(pkt->port_num != qp->attr.port_num)) return -EINVAL; if (skb->protocol == htons(ETH_P_IP)) { struct in_addr *saddr = &qp->pri_av.sgid_addr._sockaddr_in.sin_addr; struct in_addr *daddr = &qp->pri_av.dgid_addr._sockaddr_in.sin_addr; if ((ip_hdr(skb)->daddr != saddr->s_addr) || (ip_hdr(skb)->saddr != daddr->s_addr)) return -EINVAL; } else if (skb->protocol == htons(ETH_P_IPV6)) { struct in6_addr *saddr = &qp->pri_av.sgid_addr._sockaddr_in6.sin6_addr; struct in6_addr *daddr = &qp->pri_av.dgid_addr._sockaddr_in6.sin6_addr; if (memcmp(&ipv6_hdr(skb)->daddr, saddr, sizeof(*saddr)) || memcmp(&ipv6_hdr(skb)->saddr, daddr, sizeof(*daddr))) return -EINVAL; } return 0; } static int hdr_check(struct rxe_pkt_info *pkt) { struct rxe_dev *rxe = pkt->rxe; struct rxe_port *port = &rxe->port; struct rxe_qp *qp = NULL; u32 qpn = bth_qpn(pkt); int index; int err; if (unlikely(bth_tver(pkt) != BTH_TVER)) goto err1; if (unlikely(qpn == 0)) goto err1; if (qpn != IB_MULTICAST_QPN) { index = (qpn == 1) ? port->qp_gsi_index : qpn; qp = rxe_pool_get_index(&rxe->qp_pool, index); if (unlikely(!qp)) goto err1; err = check_type_state(rxe, pkt, qp); if (unlikely(err)) goto err2; err = check_addr(rxe, pkt, qp); if (unlikely(err)) goto err2; err = check_keys(rxe, pkt, qpn, qp); if (unlikely(err)) goto err2; } else { if (unlikely((pkt->mask & RXE_GRH_MASK) == 0)) goto err1; } pkt->qp = qp; return 0; err2: rxe_put(qp); err1: return -EINVAL; } static inline void rxe_rcv_pkt(struct rxe_pkt_info *pkt, struct sk_buff *skb) { if (pkt->mask & RXE_REQ_MASK) rxe_resp_queue_pkt(pkt->qp, skb); else rxe_comp_queue_pkt(pkt->qp, skb); } static void rxe_rcv_mcast_pkt(struct rxe_dev *rxe, struct sk_buff *skb) { struct rxe_pkt_info *pkt = SKB_TO_PKT(skb); struct rxe_mcg *mcg; struct rxe_mca *mca; struct rxe_qp *qp; union ib_gid dgid; int err; if (skb->protocol == htons(ETH_P_IP)) ipv6_addr_set_v4mapped(ip_hdr(skb)->daddr, (struct in6_addr *)&dgid); else if (skb->protocol == htons(ETH_P_IPV6)) memcpy(&dgid, &ipv6_hdr(skb)->daddr, sizeof(dgid)); /* lookup mcast group corresponding to mgid, takes a ref */ mcg = rxe_lookup_mcg(rxe, &dgid); if (!mcg) goto drop; /* mcast group not registered */ spin_lock_bh(&rxe->mcg_lock); /* this is unreliable datagram service so we let * failures to deliver a multicast packet to a * single QP happen and just move on and try * the rest of them on the list */ list_for_each_entry(mca, &mcg->qp_list, qp_list) { qp = mca->qp; /* validate qp for incoming packet */ err = check_type_state(rxe, pkt, qp); if (err) continue; err = check_keys(rxe, pkt, bth_qpn(pkt), qp); if (err) continue; /* for all but the last QP create a new clone of the * skb and pass to the QP. Pass the original skb to * the last QP in the list. */ if (mca->qp_list.next != &mcg->qp_list) { struct sk_buff *cskb; struct rxe_pkt_info *cpkt; cskb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!cskb)) continue; if (WARN_ON(!ib_device_try_get(&rxe->ib_dev))) { kfree_skb(cskb); break; } cpkt = SKB_TO_PKT(cskb); cpkt->qp = qp; rxe_get(qp); rxe_rcv_pkt(cpkt, cskb); } else { pkt->qp = qp; rxe_get(qp); rxe_rcv_pkt(pkt, skb); skb = NULL; /* mark consumed */ } } spin_unlock_bh(&rxe->mcg_lock); kref_put(&mcg->ref_cnt, rxe_cleanup_mcg); if (likely(!skb)) return; /* This only occurs if one of the checks fails on the last * QP in the list above */ drop: kfree_skb(skb); ib_device_put(&rxe->ib_dev); } /** * rxe_chk_dgid - validate destination IP address * @rxe: rxe device that received packet * @skb: the received packet buffer * * Accept any loopback packets * Extract IP address from packet and * Accept if multicast packet * Accept if matches an SGID table entry */ static int rxe_chk_dgid(struct rxe_dev *rxe, struct sk_buff *skb) { struct rxe_pkt_info *pkt = SKB_TO_PKT(skb); const struct ib_gid_attr *gid_attr; union ib_gid dgid; union ib_gid *pdgid; if (pkt->mask & RXE_LOOPBACK_MASK) return 0; if (skb->protocol == htons(ETH_P_IP)) { ipv6_addr_set_v4mapped(ip_hdr(skb)->daddr, (struct in6_addr *)&dgid); pdgid = &dgid; } else { pdgid = (union ib_gid *)&ipv6_hdr(skb)->daddr; } if (rdma_is_multicast_addr((struct in6_addr *)pdgid)) return 0; gid_attr = rdma_find_gid_by_port(&rxe->ib_dev, pdgid, IB_GID_TYPE_ROCE_UDP_ENCAP, 1, skb->dev); if (IS_ERR(gid_attr)) return PTR_ERR(gid_attr); rdma_put_gid_attr(gid_attr); return 0; } /* rxe_rcv is called from the interface driver */ void rxe_rcv(struct sk_buff *skb) { int err; struct rxe_pkt_info *pkt = SKB_TO_PKT(skb); struct rxe_dev *rxe = pkt->rxe; if (unlikely(skb->len < RXE_BTH_BYTES)) goto drop; if (rxe_chk_dgid(rxe, skb) < 0) goto drop; pkt->opcode = bth_opcode(pkt); pkt->psn = bth_psn(pkt); pkt->qp = NULL; pkt->mask |= rxe_opcode[pkt->opcode].mask; if (unlikely(skb->len < header_size(pkt))) goto drop; err = hdr_check(pkt); if (unlikely(err)) goto drop; err = rxe_icrc_check(skb, pkt); if (unlikely(err)) goto drop; rxe_counter_inc(rxe, RXE_CNT_RCVD_PKTS); if (unlikely(bth_qpn(pkt) == IB_MULTICAST_QPN)) rxe_rcv_mcast_pkt(rxe, skb); else rxe_rcv_pkt(pkt, skb); return; drop: if (pkt->qp) rxe_put(pkt->qp); kfree_skb(skb); ib_device_put(&rxe->ib_dev); }
linux-master
drivers/infiniband/sw/rxe/rxe_recv.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/vmalloc.h> #include "rxe.h" #include "rxe_queue.h" int rxe_srq_chk_init(struct rxe_dev *rxe, struct ib_srq_init_attr *init) { struct ib_srq_attr *attr = &init->attr; if (attr->max_wr > rxe->attr.max_srq_wr) { rxe_dbg_dev(rxe, "max_wr(%d) > max_srq_wr(%d)\n", attr->max_wr, rxe->attr.max_srq_wr); goto err1; } if (attr->max_wr <= 0) { rxe_dbg_dev(rxe, "max_wr(%d) <= 0\n", attr->max_wr); goto err1; } if (attr->max_wr < RXE_MIN_SRQ_WR) attr->max_wr = RXE_MIN_SRQ_WR; if (attr->max_sge > rxe->attr.max_srq_sge) { rxe_dbg_dev(rxe, "max_sge(%d) > max_srq_sge(%d)\n", attr->max_sge, rxe->attr.max_srq_sge); goto err1; } if (attr->max_sge < RXE_MIN_SRQ_SGE) attr->max_sge = RXE_MIN_SRQ_SGE; return 0; err1: return -EINVAL; } int rxe_srq_from_init(struct rxe_dev *rxe, struct rxe_srq *srq, struct ib_srq_init_attr *init, struct ib_udata *udata, struct rxe_create_srq_resp __user *uresp) { struct rxe_queue *q; int wqe_size; int err; srq->ibsrq.event_handler = init->event_handler; srq->ibsrq.srq_context = init->srq_context; srq->limit = init->attr.srq_limit; srq->srq_num = srq->elem.index; srq->rq.max_wr = init->attr.max_wr; srq->rq.max_sge = init->attr.max_sge; wqe_size = sizeof(struct rxe_recv_wqe) + srq->rq.max_sge*sizeof(struct ib_sge); spin_lock_init(&srq->rq.producer_lock); spin_lock_init(&srq->rq.consumer_lock); q = rxe_queue_init(rxe, &srq->rq.max_wr, wqe_size, QUEUE_TYPE_FROM_CLIENT); if (!q) { rxe_dbg_srq(srq, "Unable to allocate queue\n"); err = -ENOMEM; goto err_out; } err = do_mmap_info(rxe, uresp ? &uresp->mi : NULL, udata, q->buf, q->buf_size, &q->ip); if (err) { rxe_dbg_srq(srq, "Unable to init mmap info for caller\n"); goto err_free; } srq->rq.queue = q; init->attr.max_wr = srq->rq.max_wr; if (uresp) { if (copy_to_user(&uresp->srq_num, &srq->srq_num, sizeof(uresp->srq_num))) { rxe_queue_cleanup(q); return -EFAULT; } } return 0; err_free: vfree(q->buf); kfree(q); err_out: return err; } int rxe_srq_chk_attr(struct rxe_dev *rxe, struct rxe_srq *srq, struct ib_srq_attr *attr, enum ib_srq_attr_mask mask) { if (srq->error) { rxe_dbg_srq(srq, "in error state\n"); goto err1; } if (mask & IB_SRQ_MAX_WR) { if (attr->max_wr > rxe->attr.max_srq_wr) { rxe_dbg_srq(srq, "max_wr(%d) > max_srq_wr(%d)\n", attr->max_wr, rxe->attr.max_srq_wr); goto err1; } if (attr->max_wr <= 0) { rxe_dbg_srq(srq, "max_wr(%d) <= 0\n", attr->max_wr); goto err1; } if (srq->limit && (attr->max_wr < srq->limit)) { rxe_dbg_srq(srq, "max_wr (%d) < srq->limit (%d)\n", attr->max_wr, srq->limit); goto err1; } if (attr->max_wr < RXE_MIN_SRQ_WR) attr->max_wr = RXE_MIN_SRQ_WR; } if (mask & IB_SRQ_LIMIT) { if (attr->srq_limit > rxe->attr.max_srq_wr) { rxe_dbg_srq(srq, "srq_limit(%d) > max_srq_wr(%d)\n", attr->srq_limit, rxe->attr.max_srq_wr); goto err1; } if (attr->srq_limit > srq->rq.queue->buf->index_mask) { rxe_dbg_srq(srq, "srq_limit (%d) > cur limit(%d)\n", attr->srq_limit, srq->rq.queue->buf->index_mask); goto err1; } } return 0; err1: return -EINVAL; } int rxe_srq_from_attr(struct rxe_dev *rxe, struct rxe_srq *srq, struct ib_srq_attr *attr, enum ib_srq_attr_mask mask, struct rxe_modify_srq_cmd *ucmd, struct ib_udata *udata) { struct rxe_queue *q = srq->rq.queue; struct mminfo __user *mi = NULL; int wqe_size; int err; if (mask & IB_SRQ_MAX_WR) { /* * This is completely screwed up, the response is supposed to * be in the outbuf not like this. */ mi = u64_to_user_ptr(ucmd->mmap_info_addr); wqe_size = sizeof(struct rxe_recv_wqe) + srq->rq.max_sge*sizeof(struct ib_sge); err = rxe_queue_resize(q, &attr->max_wr, wqe_size, udata, mi, &srq->rq.producer_lock, &srq->rq.consumer_lock); if (err) goto err_free; srq->rq.max_wr = attr->max_wr; } if (mask & IB_SRQ_LIMIT) srq->limit = attr->srq_limit; return 0; err_free: rxe_queue_cleanup(q); srq->rq.queue = NULL; return err; } void rxe_srq_cleanup(struct rxe_pool_elem *elem) { struct rxe_srq *srq = container_of(elem, typeof(*srq), elem); if (srq->pd) rxe_put(srq->pd); if (srq->rq.queue) rxe_queue_cleanup(srq->rq.queue); }
linux-master
drivers/infiniband/sw/rxe/rxe_srq.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include "rxe.h" static struct workqueue_struct *rxe_wq; int rxe_alloc_wq(void) { rxe_wq = alloc_workqueue("rxe_wq", WQ_UNBOUND, WQ_MAX_ACTIVE); if (!rxe_wq) return -ENOMEM; return 0; } void rxe_destroy_wq(void) { destroy_workqueue(rxe_wq); } /* Check if task is idle i.e. not running, not scheduled in * work queue and not draining. If so move to busy to * reserve a slot in do_task() by setting to busy and taking * a qp reference to cover the gap from now until the task finishes. * state will move out of busy if task returns a non zero value * in do_task(). If state is already busy it is raised to armed * to indicate to do_task that additional pass should be made * over the task. * Context: caller should hold task->lock. * Returns: true if state transitioned from idle to busy else false. */ static bool __reserve_if_idle(struct rxe_task *task) { WARN_ON(rxe_read(task->qp) <= 0); if (task->state == TASK_STATE_IDLE) { rxe_get(task->qp); task->state = TASK_STATE_BUSY; task->num_sched++; return true; } if (task->state == TASK_STATE_BUSY) task->state = TASK_STATE_ARMED; return false; } /* check if task is idle or drained and not currently * scheduled in the work queue. This routine is * called by rxe_cleanup_task or rxe_disable_task to * see if the queue is empty. * Context: caller should hold task->lock. * Returns true if done else false. */ static bool __is_done(struct rxe_task *task) { if (work_pending(&task->work)) return false; if (task->state == TASK_STATE_IDLE || task->state == TASK_STATE_DRAINED) { return true; } return false; } /* a locked version of __is_done */ static bool is_done(struct rxe_task *task) { unsigned long flags; int done; spin_lock_irqsave(&task->lock, flags); done = __is_done(task); spin_unlock_irqrestore(&task->lock, flags); return done; } /* do_task is a wrapper for the three tasks (requester, * completer, responder) and calls them in a loop until * they return a non-zero value. It is called either * directly by rxe_run_task or indirectly if rxe_sched_task * schedules the task. They must call __reserve_if_idle to * move the task to busy before calling or scheduling. * The task can also be moved to drained or invalid * by calls to rxe_cleanup_task or rxe_disable_task. * In that case tasks which get here are not executed but * just flushed. The tasks are designed to look to see if * there is work to do and then do part of it before returning * here with a return value of zero until all the work * has been consumed then it returns a non-zero value. * The number of times the task can be run is limited by * max iterations so one task cannot hold the cpu forever. * If the limit is hit and work remains the task is rescheduled. */ static void do_task(struct rxe_task *task) { unsigned int iterations; unsigned long flags; int resched = 0; int cont; int ret; WARN_ON(rxe_read(task->qp) <= 0); spin_lock_irqsave(&task->lock, flags); if (task->state >= TASK_STATE_DRAINED) { rxe_put(task->qp); task->num_done++; spin_unlock_irqrestore(&task->lock, flags); return; } spin_unlock_irqrestore(&task->lock, flags); do { iterations = RXE_MAX_ITERATIONS; cont = 0; do { ret = task->func(task->qp); } while (ret == 0 && iterations-- > 0); spin_lock_irqsave(&task->lock, flags); /* we're not done yet but we ran out of iterations. * yield the cpu and reschedule the task */ if (!ret) { task->state = TASK_STATE_IDLE; resched = 1; goto exit; } switch (task->state) { case TASK_STATE_BUSY: task->state = TASK_STATE_IDLE; break; /* someone tried to schedule the task while we * were running, keep going */ case TASK_STATE_ARMED: task->state = TASK_STATE_BUSY; cont = 1; break; case TASK_STATE_DRAINING: task->state = TASK_STATE_DRAINED; break; default: WARN_ON(1); rxe_dbg_qp(task->qp, "unexpected task state = %d", task->state); task->state = TASK_STATE_IDLE; } exit: if (!cont) { task->num_done++; if (WARN_ON(task->num_done != task->num_sched)) rxe_dbg_qp( task->qp, "%ld tasks scheduled, %ld tasks done", task->num_sched, task->num_done); } spin_unlock_irqrestore(&task->lock, flags); } while (cont); task->ret = ret; if (resched) rxe_sched_task(task); rxe_put(task->qp); } /* wrapper around do_task to fix argument for work queue */ static void do_work(struct work_struct *work) { do_task(container_of(work, struct rxe_task, work)); } int rxe_init_task(struct rxe_task *task, struct rxe_qp *qp, int (*func)(struct rxe_qp *)) { WARN_ON(rxe_read(qp) <= 0); task->qp = qp; task->func = func; task->state = TASK_STATE_IDLE; spin_lock_init(&task->lock); INIT_WORK(&task->work, do_work); return 0; } /* rxe_cleanup_task is only called from rxe_do_qp_cleanup in * process context. The qp is already completed with no * remaining references. Once the queue is drained the * task is moved to invalid and returns. The qp cleanup * code then calls the task functions directly without * using the task struct to drain any late arriving packets * or work requests. */ void rxe_cleanup_task(struct rxe_task *task) { unsigned long flags; spin_lock_irqsave(&task->lock, flags); if (!__is_done(task) && task->state < TASK_STATE_DRAINED) { task->state = TASK_STATE_DRAINING; } else { task->state = TASK_STATE_INVALID; spin_unlock_irqrestore(&task->lock, flags); return; } spin_unlock_irqrestore(&task->lock, flags); /* now the task cannot be scheduled or run just wait * for the previously scheduled tasks to finish. */ while (!is_done(task)) cond_resched(); spin_lock_irqsave(&task->lock, flags); task->state = TASK_STATE_INVALID; spin_unlock_irqrestore(&task->lock, flags); } /* run the task inline if it is currently idle * cannot call do_task holding the lock */ void rxe_run_task(struct rxe_task *task) { unsigned long flags; bool run; WARN_ON(rxe_read(task->qp) <= 0); spin_lock_irqsave(&task->lock, flags); run = __reserve_if_idle(task); spin_unlock_irqrestore(&task->lock, flags); if (run) do_task(task); } /* schedule the task to run later as a work queue entry. * the queue_work call can be called holding * the lock. */ void rxe_sched_task(struct rxe_task *task) { unsigned long flags; WARN_ON(rxe_read(task->qp) <= 0); spin_lock_irqsave(&task->lock, flags); if (__reserve_if_idle(task)) queue_work(rxe_wq, &task->work); spin_unlock_irqrestore(&task->lock, flags); } /* rxe_disable/enable_task are only called from * rxe_modify_qp in process context. Task is moved * to the drained state by do_task. */ void rxe_disable_task(struct rxe_task *task) { unsigned long flags; WARN_ON(rxe_read(task->qp) <= 0); spin_lock_irqsave(&task->lock, flags); if (!__is_done(task) && task->state < TASK_STATE_DRAINED) { task->state = TASK_STATE_DRAINING; } else { task->state = TASK_STATE_DRAINED; spin_unlock_irqrestore(&task->lock, flags); return; } spin_unlock_irqrestore(&task->lock, flags); while (!is_done(task)) cond_resched(); spin_lock_irqsave(&task->lock, flags); task->state = TASK_STATE_DRAINED; spin_unlock_irqrestore(&task->lock, flags); } void rxe_enable_task(struct rxe_task *task) { unsigned long flags; WARN_ON(rxe_read(task->qp) <= 0); spin_lock_irqsave(&task->lock, flags); if (task->state == TASK_STATE_INVALID) { spin_unlock_irqrestore(&task->lock, flags); return; } task->state = TASK_STATE_IDLE; spin_unlock_irqrestore(&task->lock, flags); }
linux-master
drivers/infiniband/sw/rxe/rxe_task.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/dma-mapping.h> #include <net/addrconf.h> #include <rdma/uverbs_ioctl.h> #include "rxe.h" #include "rxe_queue.h" #include "rxe_hw_counters.h" static int post_one_recv(struct rxe_rq *rq, const struct ib_recv_wr *ibwr); /* dev */ static int rxe_query_device(struct ib_device *ibdev, struct ib_device_attr *attr, struct ib_udata *udata) { struct rxe_dev *rxe = to_rdev(ibdev); int err; if (udata->inlen || udata->outlen) { rxe_dbg_dev(rxe, "malformed udata"); err = -EINVAL; goto err_out; } memcpy(attr, &rxe->attr, sizeof(*attr)); return 0; err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_query_port(struct ib_device *ibdev, u32 port_num, struct ib_port_attr *attr) { struct rxe_dev *rxe = to_rdev(ibdev); int err, ret; if (port_num != 1) { err = -EINVAL; rxe_dbg_dev(rxe, "bad port_num = %d", port_num); goto err_out; } memcpy(attr, &rxe->port.attr, sizeof(*attr)); mutex_lock(&rxe->usdev_lock); ret = ib_get_eth_speed(ibdev, port_num, &attr->active_speed, &attr->active_width); if (attr->state == IB_PORT_ACTIVE) attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; else if (dev_get_flags(rxe->ndev) & IFF_UP) attr->phys_state = IB_PORT_PHYS_STATE_POLLING; else attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; mutex_unlock(&rxe->usdev_lock); return ret; err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_query_pkey(struct ib_device *ibdev, u32 port_num, u16 index, u16 *pkey) { struct rxe_dev *rxe = to_rdev(ibdev); int err; if (index != 0) { err = -EINVAL; rxe_dbg_dev(rxe, "bad pkey index = %d", index); goto err_out; } *pkey = IB_DEFAULT_PKEY_FULL; return 0; err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_modify_device(struct ib_device *ibdev, int mask, struct ib_device_modify *attr) { struct rxe_dev *rxe = to_rdev(ibdev); int err; if (mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | IB_DEVICE_MODIFY_NODE_DESC)) { err = -EOPNOTSUPP; rxe_dbg_dev(rxe, "unsupported mask = 0x%x", mask); goto err_out; } if (mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) rxe->attr.sys_image_guid = cpu_to_be64(attr->sys_image_guid); if (mask & IB_DEVICE_MODIFY_NODE_DESC) { memcpy(rxe->ib_dev.node_desc, attr->node_desc, sizeof(rxe->ib_dev.node_desc)); } return 0; err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_modify_port(struct ib_device *ibdev, u32 port_num, int mask, struct ib_port_modify *attr) { struct rxe_dev *rxe = to_rdev(ibdev); struct rxe_port *port; int err; if (port_num != 1) { err = -EINVAL; rxe_dbg_dev(rxe, "bad port_num = %d", port_num); goto err_out; } //TODO is shutdown useful if (mask & ~(IB_PORT_RESET_QKEY_CNTR)) { err = -EOPNOTSUPP; rxe_dbg_dev(rxe, "unsupported mask = 0x%x", mask); goto err_out; } port = &rxe->port; port->attr.port_cap_flags |= attr->set_port_cap_mask; port->attr.port_cap_flags &= ~attr->clr_port_cap_mask; if (mask & IB_PORT_RESET_QKEY_CNTR) port->attr.qkey_viol_cntr = 0; return 0; err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static enum rdma_link_layer rxe_get_link_layer(struct ib_device *ibdev, u32 port_num) { struct rxe_dev *rxe = to_rdev(ibdev); int err; if (port_num != 1) { err = -EINVAL; rxe_dbg_dev(rxe, "bad port_num = %d", port_num); goto err_out; } return IB_LINK_LAYER_ETHERNET; err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_port_immutable(struct ib_device *ibdev, u32 port_num, struct ib_port_immutable *immutable) { struct rxe_dev *rxe = to_rdev(ibdev); struct ib_port_attr attr = {}; int err; if (port_num != 1) { err = -EINVAL; rxe_dbg_dev(rxe, "bad port_num = %d", port_num); goto err_out; } err = ib_query_port(ibdev, port_num, &attr); if (err) goto err_out; immutable->core_cap_flags = RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP; immutable->pkey_tbl_len = attr.pkey_tbl_len; immutable->gid_tbl_len = attr.gid_tbl_len; immutable->max_mad_size = IB_MGMT_MAD_SIZE; return 0; err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } /* uc */ static int rxe_alloc_ucontext(struct ib_ucontext *ibuc, struct ib_udata *udata) { struct rxe_dev *rxe = to_rdev(ibuc->device); struct rxe_ucontext *uc = to_ruc(ibuc); int err; err = rxe_add_to_pool(&rxe->uc_pool, uc); if (err) rxe_err_dev(rxe, "unable to create uc"); return err; } static void rxe_dealloc_ucontext(struct ib_ucontext *ibuc) { struct rxe_ucontext *uc = to_ruc(ibuc); int err; err = rxe_cleanup(uc); if (err) rxe_err_uc(uc, "cleanup failed, err = %d", err); } /* pd */ static int rxe_alloc_pd(struct ib_pd *ibpd, struct ib_udata *udata) { struct rxe_dev *rxe = to_rdev(ibpd->device); struct rxe_pd *pd = to_rpd(ibpd); int err; err = rxe_add_to_pool(&rxe->pd_pool, pd); if (err) { rxe_dbg_dev(rxe, "unable to alloc pd"); goto err_out; } return 0; err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_dealloc_pd(struct ib_pd *ibpd, struct ib_udata *udata) { struct rxe_pd *pd = to_rpd(ibpd); int err; err = rxe_cleanup(pd); if (err) rxe_err_pd(pd, "cleanup failed, err = %d", err); return 0; } /* ah */ static int rxe_create_ah(struct ib_ah *ibah, struct rdma_ah_init_attr *init_attr, struct ib_udata *udata) { struct rxe_dev *rxe = to_rdev(ibah->device); struct rxe_ah *ah = to_rah(ibah); struct rxe_create_ah_resp __user *uresp = NULL; int err, cleanup_err; if (udata) { /* test if new user provider */ if (udata->outlen >= sizeof(*uresp)) uresp = udata->outbuf; ah->is_user = true; } else { ah->is_user = false; } err = rxe_add_to_pool_ah(&rxe->ah_pool, ah, init_attr->flags & RDMA_CREATE_AH_SLEEPABLE); if (err) { rxe_dbg_dev(rxe, "unable to create ah"); goto err_out; } /* create index > 0 */ ah->ah_num = ah->elem.index; err = rxe_ah_chk_attr(ah, init_attr->ah_attr); if (err) { rxe_dbg_ah(ah, "bad attr"); goto err_cleanup; } if (uresp) { /* only if new user provider */ err = copy_to_user(&uresp->ah_num, &ah->ah_num, sizeof(uresp->ah_num)); if (err) { err = -EFAULT; rxe_dbg_ah(ah, "unable to copy to user"); goto err_cleanup; } } else if (ah->is_user) { /* only if old user provider */ ah->ah_num = 0; } rxe_init_av(init_attr->ah_attr, &ah->av); rxe_finalize(ah); return 0; err_cleanup: cleanup_err = rxe_cleanup(ah); if (cleanup_err) rxe_err_ah(ah, "cleanup failed, err = %d", cleanup_err); err_out: rxe_err_ah(ah, "returned err = %d", err); return err; } static int rxe_modify_ah(struct ib_ah *ibah, struct rdma_ah_attr *attr) { struct rxe_ah *ah = to_rah(ibah); int err; err = rxe_ah_chk_attr(ah, attr); if (err) { rxe_dbg_ah(ah, "bad attr"); goto err_out; } rxe_init_av(attr, &ah->av); return 0; err_out: rxe_err_ah(ah, "returned err = %d", err); return err; } static int rxe_query_ah(struct ib_ah *ibah, struct rdma_ah_attr *attr) { struct rxe_ah *ah = to_rah(ibah); memset(attr, 0, sizeof(*attr)); attr->type = ibah->type; rxe_av_to_attr(&ah->av, attr); return 0; } static int rxe_destroy_ah(struct ib_ah *ibah, u32 flags) { struct rxe_ah *ah = to_rah(ibah); int err; err = rxe_cleanup_ah(ah, flags & RDMA_DESTROY_AH_SLEEPABLE); if (err) rxe_err_ah(ah, "cleanup failed, err = %d", err); return 0; } /* srq */ static int rxe_create_srq(struct ib_srq *ibsrq, struct ib_srq_init_attr *init, struct ib_udata *udata) { struct rxe_dev *rxe = to_rdev(ibsrq->device); struct rxe_pd *pd = to_rpd(ibsrq->pd); struct rxe_srq *srq = to_rsrq(ibsrq); struct rxe_create_srq_resp __user *uresp = NULL; int err, cleanup_err; if (udata) { if (udata->outlen < sizeof(*uresp)) { err = -EINVAL; rxe_err_dev(rxe, "malformed udata"); goto err_out; } uresp = udata->outbuf; } if (init->srq_type != IB_SRQT_BASIC) { err = -EOPNOTSUPP; rxe_dbg_dev(rxe, "srq type = %d, not supported", init->srq_type); goto err_out; } err = rxe_srq_chk_init(rxe, init); if (err) { rxe_dbg_dev(rxe, "invalid init attributes"); goto err_out; } err = rxe_add_to_pool(&rxe->srq_pool, srq); if (err) { rxe_dbg_dev(rxe, "unable to create srq, err = %d", err); goto err_out; } rxe_get(pd); srq->pd = pd; err = rxe_srq_from_init(rxe, srq, init, udata, uresp); if (err) { rxe_dbg_srq(srq, "create srq failed, err = %d", err); goto err_cleanup; } return 0; err_cleanup: cleanup_err = rxe_cleanup(srq); if (cleanup_err) rxe_err_srq(srq, "cleanup failed, err = %d", cleanup_err); err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_modify_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr, enum ib_srq_attr_mask mask, struct ib_udata *udata) { struct rxe_srq *srq = to_rsrq(ibsrq); struct rxe_dev *rxe = to_rdev(ibsrq->device); struct rxe_modify_srq_cmd cmd = {}; int err; if (udata) { if (udata->inlen < sizeof(cmd)) { err = -EINVAL; rxe_dbg_srq(srq, "malformed udata"); goto err_out; } err = ib_copy_from_udata(&cmd, udata, sizeof(cmd)); if (err) { err = -EFAULT; rxe_dbg_srq(srq, "unable to read udata"); goto err_out; } } err = rxe_srq_chk_attr(rxe, srq, attr, mask); if (err) { rxe_dbg_srq(srq, "bad init attributes"); goto err_out; } err = rxe_srq_from_attr(rxe, srq, attr, mask, &cmd, udata); if (err) { rxe_dbg_srq(srq, "bad attr"); goto err_out; } return 0; err_out: rxe_err_srq(srq, "returned err = %d", err); return err; } static int rxe_query_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr) { struct rxe_srq *srq = to_rsrq(ibsrq); int err; if (srq->error) { err = -EINVAL; rxe_dbg_srq(srq, "srq in error state"); goto err_out; } attr->max_wr = srq->rq.queue->buf->index_mask; attr->max_sge = srq->rq.max_sge; attr->srq_limit = srq->limit; return 0; err_out: rxe_err_srq(srq, "returned err = %d", err); return err; } static int rxe_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { int err = 0; struct rxe_srq *srq = to_rsrq(ibsrq); unsigned long flags; spin_lock_irqsave(&srq->rq.producer_lock, flags); while (wr) { err = post_one_recv(&srq->rq, wr); if (unlikely(err)) break; wr = wr->next; } spin_unlock_irqrestore(&srq->rq.producer_lock, flags); if (err) { *bad_wr = wr; rxe_err_srq(srq, "returned err = %d", err); } return err; } static int rxe_destroy_srq(struct ib_srq *ibsrq, struct ib_udata *udata) { struct rxe_srq *srq = to_rsrq(ibsrq); int err; err = rxe_cleanup(srq); if (err) rxe_err_srq(srq, "cleanup failed, err = %d", err); return 0; } /* qp */ static int rxe_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init, struct ib_udata *udata) { struct rxe_dev *rxe = to_rdev(ibqp->device); struct rxe_pd *pd = to_rpd(ibqp->pd); struct rxe_qp *qp = to_rqp(ibqp); struct rxe_create_qp_resp __user *uresp = NULL; int err, cleanup_err; if (udata) { if (udata->inlen) { err = -EINVAL; rxe_dbg_dev(rxe, "malformed udata, err = %d", err); goto err_out; } if (udata->outlen < sizeof(*uresp)) { err = -EINVAL; rxe_dbg_dev(rxe, "malformed udata, err = %d", err); goto err_out; } qp->is_user = true; uresp = udata->outbuf; } else { qp->is_user = false; } if (init->create_flags) { err = -EOPNOTSUPP; rxe_dbg_dev(rxe, "unsupported create_flags, err = %d", err); goto err_out; } err = rxe_qp_chk_init(rxe, init); if (err) { rxe_dbg_dev(rxe, "bad init attr, err = %d", err); goto err_out; } err = rxe_add_to_pool(&rxe->qp_pool, qp); if (err) { rxe_dbg_dev(rxe, "unable to create qp, err = %d", err); goto err_out; } err = rxe_qp_from_init(rxe, qp, pd, init, uresp, ibqp->pd, udata); if (err) { rxe_dbg_qp(qp, "create qp failed, err = %d", err); goto err_cleanup; } rxe_finalize(qp); return 0; err_cleanup: cleanup_err = rxe_cleanup(qp); if (cleanup_err) rxe_err_qp(qp, "cleanup failed, err = %d", cleanup_err); err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, int mask, struct ib_udata *udata) { struct rxe_dev *rxe = to_rdev(ibqp->device); struct rxe_qp *qp = to_rqp(ibqp); int err; if (mask & ~IB_QP_ATTR_STANDARD_BITS) { err = -EOPNOTSUPP; rxe_dbg_qp(qp, "unsupported mask = 0x%x, err = %d", mask, err); goto err_out; } err = rxe_qp_chk_attr(rxe, qp, attr, mask); if (err) { rxe_dbg_qp(qp, "bad mask/attr, err = %d", err); goto err_out; } err = rxe_qp_from_attr(qp, attr, mask, udata); if (err) { rxe_dbg_qp(qp, "modify qp failed, err = %d", err); goto err_out; } if ((mask & IB_QP_AV) && (attr->ah_attr.ah_flags & IB_AH_GRH)) qp->src_port = rdma_get_udp_sport(attr->ah_attr.grh.flow_label, qp->ibqp.qp_num, qp->attr.dest_qp_num); return 0; err_out: rxe_err_qp(qp, "returned err = %d", err); return err; } static int rxe_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, int mask, struct ib_qp_init_attr *init) { struct rxe_qp *qp = to_rqp(ibqp); rxe_qp_to_init(qp, init); rxe_qp_to_attr(qp, attr, mask); return 0; } static int rxe_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) { struct rxe_qp *qp = to_rqp(ibqp); int err; err = rxe_qp_chk_destroy(qp); if (err) { rxe_dbg_qp(qp, "unable to destroy qp, err = %d", err); goto err_out; } err = rxe_cleanup(qp); if (err) rxe_err_qp(qp, "cleanup failed, err = %d", err); return 0; err_out: rxe_err_qp(qp, "returned err = %d", err); return err; } /* send wr */ /* sanity check incoming send work request */ static int validate_send_wr(struct rxe_qp *qp, const struct ib_send_wr *ibwr, unsigned int *maskp, unsigned int *lengthp) { int num_sge = ibwr->num_sge; struct rxe_sq *sq = &qp->sq; unsigned int mask = 0; unsigned long length = 0; int err = -EINVAL; int i; do { mask = wr_opcode_mask(ibwr->opcode, qp); if (!mask) { rxe_err_qp(qp, "bad wr opcode for qp type"); break; } if (num_sge > sq->max_sge) { rxe_err_qp(qp, "num_sge > max_sge"); break; } length = 0; for (i = 0; i < ibwr->num_sge; i++) length += ibwr->sg_list[i].length; if (length > (1UL << 31)) { rxe_err_qp(qp, "message length too long"); break; } if (mask & WR_ATOMIC_MASK) { if (length != 8) { rxe_err_qp(qp, "atomic length != 8"); break; } if (atomic_wr(ibwr)->remote_addr & 0x7) { rxe_err_qp(qp, "misaligned atomic address"); break; } } if (ibwr->send_flags & IB_SEND_INLINE) { if (!(mask & WR_INLINE_MASK)) { rxe_err_qp(qp, "opcode doesn't support inline data"); break; } if (length > sq->max_inline) { rxe_err_qp(qp, "inline length too big"); break; } } err = 0; } while (0); *maskp = mask; *lengthp = (int)length; return err; } static int init_send_wr(struct rxe_qp *qp, struct rxe_send_wr *wr, const struct ib_send_wr *ibwr) { wr->wr_id = ibwr->wr_id; wr->opcode = ibwr->opcode; wr->send_flags = ibwr->send_flags; if (qp_type(qp) == IB_QPT_UD || qp_type(qp) == IB_QPT_GSI) { struct ib_ah *ibah = ud_wr(ibwr)->ah; wr->wr.ud.remote_qpn = ud_wr(ibwr)->remote_qpn; wr->wr.ud.remote_qkey = ud_wr(ibwr)->remote_qkey; wr->wr.ud.ah_num = to_rah(ibah)->ah_num; if (qp_type(qp) == IB_QPT_GSI) wr->wr.ud.pkey_index = ud_wr(ibwr)->pkey_index; switch (wr->opcode) { case IB_WR_SEND_WITH_IMM: wr->ex.imm_data = ibwr->ex.imm_data; break; case IB_WR_SEND: break; default: rxe_err_qp(qp, "bad wr opcode %d for UD/GSI QP", wr->opcode); return -EINVAL; } } else { switch (wr->opcode) { case IB_WR_RDMA_WRITE_WITH_IMM: wr->ex.imm_data = ibwr->ex.imm_data; fallthrough; case IB_WR_RDMA_READ: case IB_WR_RDMA_WRITE: wr->wr.rdma.remote_addr = rdma_wr(ibwr)->remote_addr; wr->wr.rdma.rkey = rdma_wr(ibwr)->rkey; break; case IB_WR_SEND_WITH_IMM: wr->ex.imm_data = ibwr->ex.imm_data; break; case IB_WR_SEND_WITH_INV: wr->ex.invalidate_rkey = ibwr->ex.invalidate_rkey; break; case IB_WR_RDMA_READ_WITH_INV: wr->ex.invalidate_rkey = ibwr->ex.invalidate_rkey; wr->wr.rdma.remote_addr = rdma_wr(ibwr)->remote_addr; wr->wr.rdma.rkey = rdma_wr(ibwr)->rkey; break; case IB_WR_ATOMIC_CMP_AND_SWP: case IB_WR_ATOMIC_FETCH_AND_ADD: wr->wr.atomic.remote_addr = atomic_wr(ibwr)->remote_addr; wr->wr.atomic.compare_add = atomic_wr(ibwr)->compare_add; wr->wr.atomic.swap = atomic_wr(ibwr)->swap; wr->wr.atomic.rkey = atomic_wr(ibwr)->rkey; break; case IB_WR_LOCAL_INV: wr->ex.invalidate_rkey = ibwr->ex.invalidate_rkey; break; case IB_WR_REG_MR: wr->wr.reg.mr = reg_wr(ibwr)->mr; wr->wr.reg.key = reg_wr(ibwr)->key; wr->wr.reg.access = reg_wr(ibwr)->access; break; case IB_WR_SEND: case IB_WR_BIND_MW: case IB_WR_FLUSH: case IB_WR_ATOMIC_WRITE: break; default: rxe_err_qp(qp, "unsupported wr opcode %d", wr->opcode); return -EINVAL; } } return 0; } static void copy_inline_data_to_wqe(struct rxe_send_wqe *wqe, const struct ib_send_wr *ibwr) { struct ib_sge *sge = ibwr->sg_list; u8 *p = wqe->dma.inline_data; int i; for (i = 0; i < ibwr->num_sge; i++, sge++) { memcpy(p, ib_virt_dma_to_page(sge->addr), sge->length); p += sge->length; } } static int init_send_wqe(struct rxe_qp *qp, const struct ib_send_wr *ibwr, unsigned int mask, unsigned int length, struct rxe_send_wqe *wqe) { int num_sge = ibwr->num_sge; int err; err = init_send_wr(qp, &wqe->wr, ibwr); if (err) return err; /* local operation */ if (unlikely(mask & WR_LOCAL_OP_MASK)) { wqe->mask = mask; wqe->state = wqe_state_posted; return 0; } if (unlikely(ibwr->send_flags & IB_SEND_INLINE)) copy_inline_data_to_wqe(wqe, ibwr); else memcpy(wqe->dma.sge, ibwr->sg_list, num_sge * sizeof(struct ib_sge)); wqe->iova = mask & WR_ATOMIC_MASK ? atomic_wr(ibwr)->remote_addr : mask & WR_READ_OR_WRITE_MASK ? rdma_wr(ibwr)->remote_addr : 0; wqe->mask = mask; wqe->dma.length = length; wqe->dma.resid = length; wqe->dma.num_sge = num_sge; wqe->dma.cur_sge = 0; wqe->dma.sge_offset = 0; wqe->state = wqe_state_posted; wqe->ssn = atomic_add_return(1, &qp->ssn); return 0; } static int post_one_send(struct rxe_qp *qp, const struct ib_send_wr *ibwr) { int err; struct rxe_sq *sq = &qp->sq; struct rxe_send_wqe *send_wqe; unsigned int mask; unsigned int length; int full; err = validate_send_wr(qp, ibwr, &mask, &length); if (err) return err; full = queue_full(sq->queue, QUEUE_TYPE_FROM_ULP); if (unlikely(full)) { rxe_err_qp(qp, "send queue full"); return -ENOMEM; } send_wqe = queue_producer_addr(sq->queue, QUEUE_TYPE_FROM_ULP); err = init_send_wqe(qp, ibwr, mask, length, send_wqe); if (!err) queue_advance_producer(sq->queue, QUEUE_TYPE_FROM_ULP); return err; } static int rxe_post_send_kernel(struct rxe_qp *qp, const struct ib_send_wr *ibwr, const struct ib_send_wr **bad_wr) { int err = 0; unsigned long flags; spin_lock_irqsave(&qp->sq.sq_lock, flags); while (ibwr) { err = post_one_send(qp, ibwr); if (err) { *bad_wr = ibwr; break; } ibwr = ibwr->next; } spin_unlock_irqrestore(&qp->sq.sq_lock, flags); if (!err) rxe_sched_task(&qp->req.task); spin_lock_irqsave(&qp->state_lock, flags); if (qp_state(qp) == IB_QPS_ERR) rxe_sched_task(&qp->comp.task); spin_unlock_irqrestore(&qp->state_lock, flags); return err; } static int rxe_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, const struct ib_send_wr **bad_wr) { struct rxe_qp *qp = to_rqp(ibqp); int err; unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); /* caller has already called destroy_qp */ if (WARN_ON_ONCE(!qp->valid)) { spin_unlock_irqrestore(&qp->state_lock, flags); rxe_err_qp(qp, "qp has been destroyed"); return -EINVAL; } if (unlikely(qp_state(qp) < IB_QPS_RTS)) { spin_unlock_irqrestore(&qp->state_lock, flags); *bad_wr = wr; rxe_err_qp(qp, "qp not ready to send"); return -EINVAL; } spin_unlock_irqrestore(&qp->state_lock, flags); if (qp->is_user) { /* Utilize process context to do protocol processing */ rxe_run_task(&qp->req.task); } else { err = rxe_post_send_kernel(qp, wr, bad_wr); if (err) return err; } return 0; } /* recv wr */ static int post_one_recv(struct rxe_rq *rq, const struct ib_recv_wr *ibwr) { int i; unsigned long length; struct rxe_recv_wqe *recv_wqe; int num_sge = ibwr->num_sge; int full; int err; full = queue_full(rq->queue, QUEUE_TYPE_FROM_ULP); if (unlikely(full)) { err = -ENOMEM; rxe_dbg("queue full"); goto err_out; } if (unlikely(num_sge > rq->max_sge)) { err = -EINVAL; rxe_dbg("bad num_sge > max_sge"); goto err_out; } length = 0; for (i = 0; i < num_sge; i++) length += ibwr->sg_list[i].length; /* IBA max message size is 2^31 */ if (length >= (1UL<<31)) { err = -EINVAL; rxe_dbg("message length too long"); goto err_out; } recv_wqe = queue_producer_addr(rq->queue, QUEUE_TYPE_FROM_ULP); recv_wqe->wr_id = ibwr->wr_id; recv_wqe->dma.length = length; recv_wqe->dma.resid = length; recv_wqe->dma.num_sge = num_sge; recv_wqe->dma.cur_sge = 0; recv_wqe->dma.sge_offset = 0; memcpy(recv_wqe->dma.sge, ibwr->sg_list, num_sge * sizeof(struct ib_sge)); queue_advance_producer(rq->queue, QUEUE_TYPE_FROM_ULP); return 0; err_out: rxe_dbg("returned err = %d", err); return err; } static int rxe_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { int err = 0; struct rxe_qp *qp = to_rqp(ibqp); struct rxe_rq *rq = &qp->rq; unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); /* caller has already called destroy_qp */ if (WARN_ON_ONCE(!qp->valid)) { spin_unlock_irqrestore(&qp->state_lock, flags); rxe_err_qp(qp, "qp has been destroyed"); return -EINVAL; } /* see C10-97.2.1 */ if (unlikely((qp_state(qp) < IB_QPS_INIT))) { spin_unlock_irqrestore(&qp->state_lock, flags); *bad_wr = wr; rxe_dbg_qp(qp, "qp not ready to post recv"); return -EINVAL; } spin_unlock_irqrestore(&qp->state_lock, flags); if (unlikely(qp->srq)) { *bad_wr = wr; rxe_dbg_qp(qp, "qp has srq, use post_srq_recv instead"); return -EINVAL; } spin_lock_irqsave(&rq->producer_lock, flags); while (wr) { err = post_one_recv(rq, wr); if (unlikely(err)) { *bad_wr = wr; break; } wr = wr->next; } spin_unlock_irqrestore(&rq->producer_lock, flags); spin_lock_irqsave(&qp->state_lock, flags); if (qp_state(qp) == IB_QPS_ERR) rxe_sched_task(&qp->resp.task); spin_unlock_irqrestore(&qp->state_lock, flags); return err; } /* cq */ static int rxe_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr, struct ib_udata *udata) { struct ib_device *dev = ibcq->device; struct rxe_dev *rxe = to_rdev(dev); struct rxe_cq *cq = to_rcq(ibcq); struct rxe_create_cq_resp __user *uresp = NULL; int err, cleanup_err; if (udata) { if (udata->outlen < sizeof(*uresp)) { err = -EINVAL; rxe_dbg_dev(rxe, "malformed udata, err = %d", err); goto err_out; } uresp = udata->outbuf; } if (attr->flags) { err = -EOPNOTSUPP; rxe_dbg_dev(rxe, "bad attr->flags, err = %d", err); goto err_out; } err = rxe_cq_chk_attr(rxe, NULL, attr->cqe, attr->comp_vector); if (err) { rxe_dbg_dev(rxe, "bad init attributes, err = %d", err); goto err_out; } err = rxe_add_to_pool(&rxe->cq_pool, cq); if (err) { rxe_dbg_dev(rxe, "unable to create cq, err = %d", err); goto err_out; } err = rxe_cq_from_init(rxe, cq, attr->cqe, attr->comp_vector, udata, uresp); if (err) { rxe_dbg_cq(cq, "create cq failed, err = %d", err); goto err_cleanup; } return 0; err_cleanup: cleanup_err = rxe_cleanup(cq); if (cleanup_err) rxe_err_cq(cq, "cleanup failed, err = %d", cleanup_err); err_out: rxe_err_dev(rxe, "returned err = %d", err); return err; } static int rxe_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata) { struct rxe_cq *cq = to_rcq(ibcq); struct rxe_dev *rxe = to_rdev(ibcq->device); struct rxe_resize_cq_resp __user *uresp = NULL; int err; if (udata) { if (udata->outlen < sizeof(*uresp)) { err = -EINVAL; rxe_dbg_cq(cq, "malformed udata"); goto err_out; } uresp = udata->outbuf; } err = rxe_cq_chk_attr(rxe, cq, cqe, 0); if (err) { rxe_dbg_cq(cq, "bad attr, err = %d", err); goto err_out; } err = rxe_cq_resize_queue(cq, cqe, uresp, udata); if (err) { rxe_dbg_cq(cq, "resize cq failed, err = %d", err); goto err_out; } return 0; err_out: rxe_err_cq(cq, "returned err = %d", err); return err; } static int rxe_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc) { int i; struct rxe_cq *cq = to_rcq(ibcq); struct rxe_cqe *cqe; unsigned long flags; spin_lock_irqsave(&cq->cq_lock, flags); for (i = 0; i < num_entries; i++) { cqe = queue_head(cq->queue, QUEUE_TYPE_TO_ULP); if (!cqe) break; /* queue empty */ memcpy(wc++, &cqe->ibwc, sizeof(*wc)); queue_advance_consumer(cq->queue, QUEUE_TYPE_TO_ULP); } spin_unlock_irqrestore(&cq->cq_lock, flags); return i; } static int rxe_peek_cq(struct ib_cq *ibcq, int wc_cnt) { struct rxe_cq *cq = to_rcq(ibcq); int count; count = queue_count(cq->queue, QUEUE_TYPE_TO_ULP); return (count > wc_cnt) ? wc_cnt : count; } static int rxe_req_notify_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags) { struct rxe_cq *cq = to_rcq(ibcq); int ret = 0; int empty; unsigned long irq_flags; spin_lock_irqsave(&cq->cq_lock, irq_flags); cq->notify |= flags & IB_CQ_SOLICITED_MASK; empty = queue_empty(cq->queue, QUEUE_TYPE_TO_ULP); if ((flags & IB_CQ_REPORT_MISSED_EVENTS) && !empty) ret = 1; spin_unlock_irqrestore(&cq->cq_lock, irq_flags); return ret; } static int rxe_destroy_cq(struct ib_cq *ibcq, struct ib_udata *udata) { struct rxe_cq *cq = to_rcq(ibcq); int err; /* See IBA C11-17: The CI shall return an error if this Verb is * invoked while a Work Queue is still associated with the CQ. */ if (atomic_read(&cq->num_wq)) { err = -EINVAL; rxe_dbg_cq(cq, "still in use"); goto err_out; } err = rxe_cleanup(cq); if (err) rxe_err_cq(cq, "cleanup failed, err = %d", err); return 0; err_out: rxe_err_cq(cq, "returned err = %d", err); return err; } /* mr */ static struct ib_mr *rxe_get_dma_mr(struct ib_pd *ibpd, int access) { struct rxe_dev *rxe = to_rdev(ibpd->device); struct rxe_pd *pd = to_rpd(ibpd); struct rxe_mr *mr; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = rxe_add_to_pool(&rxe->mr_pool, mr); if (err) { rxe_dbg_dev(rxe, "unable to create mr"); goto err_free; } rxe_get(pd); mr->ibmr.pd = ibpd; mr->ibmr.device = ibpd->device; rxe_mr_init_dma(access, mr); rxe_finalize(mr); return &mr->ibmr; err_free: kfree(mr); rxe_err_pd(pd, "returned err = %d", err); return ERR_PTR(err); } static struct ib_mr *rxe_reg_user_mr(struct ib_pd *ibpd, u64 start, u64 length, u64 iova, int access, struct ib_udata *udata) { struct rxe_dev *rxe = to_rdev(ibpd->device); struct rxe_pd *pd = to_rpd(ibpd); struct rxe_mr *mr; int err, cleanup_err; if (access & ~RXE_ACCESS_SUPPORTED_MR) { rxe_err_pd(pd, "access = %#x not supported (%#x)", access, RXE_ACCESS_SUPPORTED_MR); return ERR_PTR(-EOPNOTSUPP); } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = rxe_add_to_pool(&rxe->mr_pool, mr); if (err) { rxe_dbg_pd(pd, "unable to create mr"); goto err_free; } rxe_get(pd); mr->ibmr.pd = ibpd; mr->ibmr.device = ibpd->device; err = rxe_mr_init_user(rxe, start, length, iova, access, mr); if (err) { rxe_dbg_mr(mr, "reg_user_mr failed, err = %d", err); goto err_cleanup; } rxe_finalize(mr); return &mr->ibmr; err_cleanup: cleanup_err = rxe_cleanup(mr); if (cleanup_err) rxe_err_mr(mr, "cleanup failed, err = %d", cleanup_err); err_free: kfree(mr); rxe_err_pd(pd, "returned err = %d", err); return ERR_PTR(err); } static struct ib_mr *rxe_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, u64 length, u64 iova, int access, struct ib_pd *ibpd, struct ib_udata *udata) { struct rxe_mr *mr = to_rmr(ibmr); struct rxe_pd *old_pd = to_rpd(ibmr->pd); struct rxe_pd *pd = to_rpd(ibpd); /* for now only support the two easy cases: * rereg_pd and rereg_access */ if (flags & ~RXE_MR_REREG_SUPPORTED) { rxe_err_mr(mr, "flags = %#x not supported", flags); return ERR_PTR(-EOPNOTSUPP); } if (flags & IB_MR_REREG_PD) { rxe_put(old_pd); rxe_get(pd); mr->ibmr.pd = ibpd; } if (flags & IB_MR_REREG_ACCESS) { if (access & ~RXE_ACCESS_SUPPORTED_MR) { rxe_err_mr(mr, "access = %#x not supported", access); return ERR_PTR(-EOPNOTSUPP); } mr->access = access; } return NULL; } static struct ib_mr *rxe_alloc_mr(struct ib_pd *ibpd, enum ib_mr_type mr_type, u32 max_num_sg) { struct rxe_dev *rxe = to_rdev(ibpd->device); struct rxe_pd *pd = to_rpd(ibpd); struct rxe_mr *mr; int err, cleanup_err; if (mr_type != IB_MR_TYPE_MEM_REG) { err = -EINVAL; rxe_dbg_pd(pd, "mr type %d not supported, err = %d", mr_type, err); goto err_out; } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = rxe_add_to_pool(&rxe->mr_pool, mr); if (err) goto err_free; rxe_get(pd); mr->ibmr.pd = ibpd; mr->ibmr.device = ibpd->device; err = rxe_mr_init_fast(max_num_sg, mr); if (err) { rxe_dbg_mr(mr, "alloc_mr failed, err = %d", err); goto err_cleanup; } rxe_finalize(mr); return &mr->ibmr; err_cleanup: cleanup_err = rxe_cleanup(mr); if (cleanup_err) rxe_err_mr(mr, "cleanup failed, err = %d", err); err_free: kfree(mr); err_out: rxe_err_pd(pd, "returned err = %d", err); return ERR_PTR(err); } static int rxe_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) { struct rxe_mr *mr = to_rmr(ibmr); int err, cleanup_err; /* See IBA 10.6.7.2.6 */ if (atomic_read(&mr->num_mw) > 0) { err = -EINVAL; rxe_dbg_mr(mr, "mr has mw's bound"); goto err_out; } cleanup_err = rxe_cleanup(mr); if (cleanup_err) rxe_err_mr(mr, "cleanup failed, err = %d", cleanup_err); kfree_rcu_mightsleep(mr); return 0; err_out: rxe_err_mr(mr, "returned err = %d", err); return err; } static ssize_t parent_show(struct device *device, struct device_attribute *attr, char *buf) { struct rxe_dev *rxe = rdma_device_to_drv_device(device, struct rxe_dev, ib_dev); return sysfs_emit(buf, "%s\n", rxe_parent_name(rxe, 1)); } static DEVICE_ATTR_RO(parent); static struct attribute *rxe_dev_attributes[] = { &dev_attr_parent.attr, NULL }; static const struct attribute_group rxe_attr_group = { .attrs = rxe_dev_attributes, }; static int rxe_enable_driver(struct ib_device *ib_dev) { struct rxe_dev *rxe = container_of(ib_dev, struct rxe_dev, ib_dev); rxe_set_port_state(rxe); dev_info(&rxe->ib_dev.dev, "added %s\n", netdev_name(rxe->ndev)); return 0; } static const struct ib_device_ops rxe_dev_ops = { .owner = THIS_MODULE, .driver_id = RDMA_DRIVER_RXE, .uverbs_abi_ver = RXE_UVERBS_ABI_VERSION, .alloc_hw_port_stats = rxe_ib_alloc_hw_port_stats, .alloc_mr = rxe_alloc_mr, .alloc_mw = rxe_alloc_mw, .alloc_pd = rxe_alloc_pd, .alloc_ucontext = rxe_alloc_ucontext, .attach_mcast = rxe_attach_mcast, .create_ah = rxe_create_ah, .create_cq = rxe_create_cq, .create_qp = rxe_create_qp, .create_srq = rxe_create_srq, .create_user_ah = rxe_create_ah, .dealloc_driver = rxe_dealloc, .dealloc_mw = rxe_dealloc_mw, .dealloc_pd = rxe_dealloc_pd, .dealloc_ucontext = rxe_dealloc_ucontext, .dereg_mr = rxe_dereg_mr, .destroy_ah = rxe_destroy_ah, .destroy_cq = rxe_destroy_cq, .destroy_qp = rxe_destroy_qp, .destroy_srq = rxe_destroy_srq, .detach_mcast = rxe_detach_mcast, .device_group = &rxe_attr_group, .enable_driver = rxe_enable_driver, .get_dma_mr = rxe_get_dma_mr, .get_hw_stats = rxe_ib_get_hw_stats, .get_link_layer = rxe_get_link_layer, .get_port_immutable = rxe_port_immutable, .map_mr_sg = rxe_map_mr_sg, .mmap = rxe_mmap, .modify_ah = rxe_modify_ah, .modify_device = rxe_modify_device, .modify_port = rxe_modify_port, .modify_qp = rxe_modify_qp, .modify_srq = rxe_modify_srq, .peek_cq = rxe_peek_cq, .poll_cq = rxe_poll_cq, .post_recv = rxe_post_recv, .post_send = rxe_post_send, .post_srq_recv = rxe_post_srq_recv, .query_ah = rxe_query_ah, .query_device = rxe_query_device, .query_pkey = rxe_query_pkey, .query_port = rxe_query_port, .query_qp = rxe_query_qp, .query_srq = rxe_query_srq, .reg_user_mr = rxe_reg_user_mr, .req_notify_cq = rxe_req_notify_cq, .rereg_user_mr = rxe_rereg_user_mr, .resize_cq = rxe_resize_cq, INIT_RDMA_OBJ_SIZE(ib_ah, rxe_ah, ibah), INIT_RDMA_OBJ_SIZE(ib_cq, rxe_cq, ibcq), INIT_RDMA_OBJ_SIZE(ib_pd, rxe_pd, ibpd), INIT_RDMA_OBJ_SIZE(ib_qp, rxe_qp, ibqp), INIT_RDMA_OBJ_SIZE(ib_srq, rxe_srq, ibsrq), INIT_RDMA_OBJ_SIZE(ib_ucontext, rxe_ucontext, ibuc), INIT_RDMA_OBJ_SIZE(ib_mw, rxe_mw, ibmw), }; int rxe_register_device(struct rxe_dev *rxe, const char *ibdev_name) { int err; struct ib_device *dev = &rxe->ib_dev; strscpy(dev->node_desc, "rxe", sizeof(dev->node_desc)); dev->node_type = RDMA_NODE_IB_CA; dev->phys_port_cnt = 1; dev->num_comp_vectors = num_possible_cpus(); dev->local_dma_lkey = 0; addrconf_addr_eui48((unsigned char *)&dev->node_guid, rxe->ndev->dev_addr); dev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POST_SEND) | BIT_ULL(IB_USER_VERBS_CMD_REQ_NOTIFY_CQ); ib_set_device_ops(dev, &rxe_dev_ops); err = ib_device_set_netdev(&rxe->ib_dev, rxe->ndev, 1); if (err) return err; err = rxe_icrc_init(rxe); if (err) return err; err = ib_register_device(dev, ibdev_name, NULL); if (err) rxe_dbg_dev(rxe, "failed with error %d\n", err); /* * Note that rxe may be invalid at this point if another thread * unregistered it. */ return err; }
linux-master
drivers/infiniband/sw/rxe/rxe_verbs.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/skbuff.h> #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" static char *resp_state_name[] = { [RESPST_NONE] = "NONE", [RESPST_GET_REQ] = "GET_REQ", [RESPST_CHK_PSN] = "CHK_PSN", [RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ", [RESPST_CHK_OP_VALID] = "CHK_OP_VALID", [RESPST_CHK_RESOURCE] = "CHK_RESOURCE", [RESPST_CHK_LENGTH] = "CHK_LENGTH", [RESPST_CHK_RKEY] = "CHK_RKEY", [RESPST_EXECUTE] = "EXECUTE", [RESPST_READ_REPLY] = "READ_REPLY", [RESPST_ATOMIC_REPLY] = "ATOMIC_REPLY", [RESPST_ATOMIC_WRITE_REPLY] = "ATOMIC_WRITE_REPLY", [RESPST_PROCESS_FLUSH] = "PROCESS_FLUSH", [RESPST_COMPLETE] = "COMPLETE", [RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE", [RESPST_CLEANUP] = "CLEANUP", [RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST", [RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE", [RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE", [RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC", [RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ", [RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST", [RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C", [RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E", [RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ", [RESPST_ERR_RNR] = "ERR_RNR", [RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION", [RESPST_ERR_INVALIDATE_RKEY] = "ERR_INVALIDATE_RKEY_VIOLATION", [RESPST_ERR_LENGTH] = "ERR_LENGTH", [RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW", [RESPST_ERROR] = "ERROR", [RESPST_DONE] = "DONE", [RESPST_EXIT] = "EXIT", }; /* rxe_recv calls here to add a request packet to the input queue */ void rxe_resp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb) { int must_sched; struct rxe_pkt_info *pkt = SKB_TO_PKT(skb); skb_queue_tail(&qp->req_pkts, skb); must_sched = (pkt->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST) || (skb_queue_len(&qp->req_pkts) > 1); if (must_sched) rxe_sched_task(&qp->resp.task); else rxe_run_task(&qp->resp.task); } static inline enum resp_states get_req(struct rxe_qp *qp, struct rxe_pkt_info **pkt_p) { struct sk_buff *skb; skb = skb_peek(&qp->req_pkts); if (!skb) return RESPST_EXIT; *pkt_p = SKB_TO_PKT(skb); return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN; } static enum resp_states check_psn(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { int diff = psn_compare(pkt->psn, qp->resp.psn); struct rxe_dev *rxe = to_rdev(qp->ibqp.device); switch (qp_type(qp)) { case IB_QPT_RC: if (diff > 0) { if (qp->resp.sent_psn_nak) return RESPST_CLEANUP; qp->resp.sent_psn_nak = 1; rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ); return RESPST_ERR_PSN_OUT_OF_SEQ; } else if (diff < 0) { rxe_counter_inc(rxe, RXE_CNT_DUP_REQ); return RESPST_DUPLICATE_REQUEST; } if (qp->resp.sent_psn_nak) qp->resp.sent_psn_nak = 0; break; case IB_QPT_UC: if (qp->resp.drop_msg || diff != 0) { if (pkt->mask & RXE_START_MASK) { qp->resp.drop_msg = 0; return RESPST_CHK_OP_SEQ; } qp->resp.drop_msg = 1; return RESPST_CLEANUP; } break; default: break; } return RESPST_CHK_OP_SEQ; } static enum resp_states check_op_seq(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: switch (qp->resp.opcode) { case IB_OPCODE_RC_SEND_FIRST: case IB_OPCODE_RC_SEND_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_RC_SEND_MIDDLE: case IB_OPCODE_RC_SEND_LAST: case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_C; } case IB_OPCODE_RC_RDMA_WRITE_FIRST: case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: case IB_OPCODE_RC_RDMA_WRITE_LAST: case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_C; } default: switch (pkt->opcode) { case IB_OPCODE_RC_SEND_MIDDLE: case IB_OPCODE_RC_SEND_LAST: case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: case IB_OPCODE_RC_RDMA_WRITE_LAST: case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_ERR_MISSING_OPCODE_FIRST; default: return RESPST_CHK_OP_VALID; } } break; case IB_QPT_UC: switch (qp->resp.opcode) { case IB_OPCODE_UC_SEND_FIRST: case IB_OPCODE_UC_SEND_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_UC_SEND_MIDDLE: case IB_OPCODE_UC_SEND_LAST: case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_D1E; } case IB_OPCODE_UC_RDMA_WRITE_FIRST: case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: case IB_OPCODE_UC_RDMA_WRITE_LAST: case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_D1E; } default: switch (pkt->opcode) { case IB_OPCODE_UC_SEND_MIDDLE: case IB_OPCODE_UC_SEND_LAST: case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: case IB_OPCODE_UC_RDMA_WRITE_LAST: case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: qp->resp.drop_msg = 1; return RESPST_CLEANUP; default: return RESPST_CHK_OP_VALID; } } break; default: return RESPST_CHK_OP_VALID; } } static bool check_qp_attr_access(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { if (((pkt->mask & RXE_READ_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) || ((pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) || ((pkt->mask & RXE_ATOMIC_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) return false; if (pkt->mask & RXE_FLUSH_MASK) { u32 flush_type = feth_plt(pkt); if ((flush_type & IB_FLUSH_GLOBAL && !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_GLOBAL)) || (flush_type & IB_FLUSH_PERSISTENT && !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_PERSISTENT))) return false; } return true; } static enum resp_states check_op_valid(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: if (!check_qp_attr_access(qp, pkt)) return RESPST_ERR_UNSUPPORTED_OPCODE; break; case IB_QPT_UC: if ((pkt->mask & RXE_WRITE_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) { qp->resp.drop_msg = 1; return RESPST_CLEANUP; } break; case IB_QPT_UD: case IB_QPT_GSI: break; default: WARN_ON_ONCE(1); break; } return RESPST_CHK_RESOURCE; } static enum resp_states get_srq_wqe(struct rxe_qp *qp) { struct rxe_srq *srq = qp->srq; struct rxe_queue *q = srq->rq.queue; struct rxe_recv_wqe *wqe; struct ib_event ev; unsigned int count; size_t size; unsigned long flags; if (srq->error) return RESPST_ERR_RNR; spin_lock_irqsave(&srq->rq.consumer_lock, flags); wqe = queue_head(q, QUEUE_TYPE_FROM_CLIENT); if (!wqe) { spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); return RESPST_ERR_RNR; } /* don't trust user space data */ if (unlikely(wqe->dma.num_sge > srq->rq.max_sge)) { spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); rxe_dbg_qp(qp, "invalid num_sge in SRQ entry\n"); return RESPST_ERR_MALFORMED_WQE; } size = sizeof(*wqe) + wqe->dma.num_sge*sizeof(struct rxe_sge); memcpy(&qp->resp.srq_wqe, wqe, size); qp->resp.wqe = &qp->resp.srq_wqe.wqe; queue_advance_consumer(q, QUEUE_TYPE_FROM_CLIENT); count = queue_count(q, QUEUE_TYPE_FROM_CLIENT); if (srq->limit && srq->ibsrq.event_handler && (count < srq->limit)) { srq->limit = 0; goto event; } spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); return RESPST_CHK_LENGTH; event: spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); ev.device = qp->ibqp.device; ev.element.srq = qp->ibqp.srq; ev.event = IB_EVENT_SRQ_LIMIT_REACHED; srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context); return RESPST_CHK_LENGTH; } static enum resp_states check_resource(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_srq *srq = qp->srq; if (pkt->mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK)) { /* it is the requesters job to not send * too many read/atomic ops, we just * recycle the responder resource queue */ if (likely(qp->attr.max_dest_rd_atomic > 0)) return RESPST_CHK_LENGTH; else return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ; } if (pkt->mask & RXE_RWR_MASK) { if (srq) return get_srq_wqe(qp); qp->resp.wqe = queue_head(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT); return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR; } return RESPST_CHK_LENGTH; } static enum resp_states rxe_resp_check_length(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { /* * See IBA C9-92 * For UD QPs we only check if the packet will fit in the * receive buffer later. For rmda operations additional * length checks are performed in check_rkey. */ if (pkt->mask & RXE_PAYLOAD_MASK && ((qp_type(qp) == IB_QPT_RC) || (qp_type(qp) == IB_QPT_UC))) { unsigned int mtu = qp->mtu; unsigned int payload = payload_size(pkt); if ((pkt->mask & RXE_START_MASK) && (pkt->mask & RXE_END_MASK)) { if (unlikely(payload > mtu)) { rxe_dbg_qp(qp, "only packet too long"); return RESPST_ERR_LENGTH; } } else if ((pkt->mask & RXE_START_MASK) || (pkt->mask & RXE_MIDDLE_MASK)) { if (unlikely(payload != mtu)) { rxe_dbg_qp(qp, "first or middle packet not mtu"); return RESPST_ERR_LENGTH; } } else if (pkt->mask & RXE_END_MASK) { if (unlikely((payload == 0) || (payload > mtu))) { rxe_dbg_qp(qp, "last packet zero or too long"); return RESPST_ERR_LENGTH; } } } /* See IBA C9-94 */ if (pkt->mask & RXE_RETH_MASK) { if (reth_len(pkt) > (1U << 31)) { rxe_dbg_qp(qp, "dma length too long"); return RESPST_ERR_LENGTH; } } if (pkt->mask & RXE_RDMA_OP_MASK) return RESPST_CHK_RKEY; else return RESPST_EXECUTE; } /* if the reth length field is zero we can assume nothing * about the rkey value and should not validate or use it. * Instead set qp->resp.rkey to 0 which is an invalid rkey * value since the minimum index part is 1. */ static void qp_resp_from_reth(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { unsigned int length = reth_len(pkt); qp->resp.va = reth_va(pkt); qp->resp.offset = 0; qp->resp.resid = length; qp->resp.length = length; if (pkt->mask & RXE_READ_OR_WRITE_MASK && length == 0) qp->resp.rkey = 0; else qp->resp.rkey = reth_rkey(pkt); } static void qp_resp_from_atmeth(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { qp->resp.va = atmeth_va(pkt); qp->resp.offset = 0; qp->resp.rkey = atmeth_rkey(pkt); qp->resp.resid = sizeof(u64); } /* resolve the packet rkey to qp->resp.mr or set qp->resp.mr to NULL * if an invalid rkey is received or the rdma length is zero. For middle * or last packets use the stored value of mr. */ static enum resp_states check_rkey(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_mr *mr = NULL; struct rxe_mw *mw = NULL; u64 va; u32 rkey; u32 resid; u32 pktlen; int mtu = qp->mtu; enum resp_states state; int access = 0; /* parse RETH or ATMETH header for first/only packets * for va, length, rkey, etc. or use current value for * middle/last packets. */ if (pkt->mask & (RXE_READ_OR_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) { if (pkt->mask & RXE_RETH_MASK) qp_resp_from_reth(qp, pkt); access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ : IB_ACCESS_REMOTE_WRITE; } else if (pkt->mask & RXE_FLUSH_MASK) { u32 flush_type = feth_plt(pkt); if (pkt->mask & RXE_RETH_MASK) qp_resp_from_reth(qp, pkt); if (flush_type & IB_FLUSH_GLOBAL) access |= IB_ACCESS_FLUSH_GLOBAL; if (flush_type & IB_FLUSH_PERSISTENT) access |= IB_ACCESS_FLUSH_PERSISTENT; } else if (pkt->mask & RXE_ATOMIC_MASK) { qp_resp_from_atmeth(qp, pkt); access = IB_ACCESS_REMOTE_ATOMIC; } else { /* shouldn't happen */ WARN_ON(1); } /* A zero-byte read or write op is not required to * set an addr or rkey. See C9-88 */ if ((pkt->mask & RXE_READ_OR_WRITE_MASK) && (pkt->mask & RXE_RETH_MASK) && reth_len(pkt) == 0) { qp->resp.mr = NULL; return RESPST_EXECUTE; } va = qp->resp.va; rkey = qp->resp.rkey; resid = qp->resp.resid; pktlen = payload_size(pkt); if (rkey_is_mw(rkey)) { mw = rxe_lookup_mw(qp, access, rkey); if (!mw) { rxe_dbg_qp(qp, "no MW matches rkey %#x\n", rkey); state = RESPST_ERR_RKEY_VIOLATION; goto err; } mr = mw->mr; if (!mr) { rxe_dbg_qp(qp, "MW doesn't have an MR\n"); state = RESPST_ERR_RKEY_VIOLATION; goto err; } if (mw->access & IB_ZERO_BASED) qp->resp.offset = mw->addr; rxe_get(mr); rxe_put(mw); mw = NULL; } else { mr = lookup_mr(qp->pd, access, rkey, RXE_LOOKUP_REMOTE); if (!mr) { rxe_dbg_qp(qp, "no MR matches rkey %#x\n", rkey); state = RESPST_ERR_RKEY_VIOLATION; goto err; } } if (pkt->mask & RXE_FLUSH_MASK) { /* FLUSH MR may not set va or resid * no need to check range since we will flush whole mr */ if (feth_sel(pkt) == IB_FLUSH_MR) goto skip_check_range; } if (mr_check_range(mr, va + qp->resp.offset, resid)) { state = RESPST_ERR_RKEY_VIOLATION; goto err; } skip_check_range: if (pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) { if (resid > mtu) { if (pktlen != mtu || bth_pad(pkt)) { state = RESPST_ERR_LENGTH; goto err; } } else { if (pktlen != resid) { state = RESPST_ERR_LENGTH; goto err; } if ((bth_pad(pkt) != (0x3 & (-resid)))) { /* This case may not be exactly that * but nothing else fits. */ state = RESPST_ERR_LENGTH; goto err; } } } WARN_ON_ONCE(qp->resp.mr); qp->resp.mr = mr; return RESPST_EXECUTE; err: qp->resp.mr = NULL; if (mr) rxe_put(mr); if (mw) rxe_put(mw); return state; } static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr, int data_len) { int err; err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma, data_addr, data_len, RXE_TO_MR_OBJ); if (unlikely(err)) return (err == -ENOSPC) ? RESPST_ERR_LENGTH : RESPST_ERR_MALFORMED_WQE; return RESPST_NONE; } static enum resp_states write_data_in(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states rc = RESPST_NONE; int err; int data_len = payload_size(pkt); err = rxe_mr_copy(qp->resp.mr, qp->resp.va + qp->resp.offset, payload_addr(pkt), data_len, RXE_TO_MR_OBJ); if (err) { rc = RESPST_ERR_RKEY_VIOLATION; goto out; } qp->resp.va += data_len; qp->resp.resid -= data_len; out: return rc; } static struct resp_res *rxe_prepare_res(struct rxe_qp *qp, struct rxe_pkt_info *pkt, int type) { struct resp_res *res; u32 pkts; res = &qp->resp.resources[qp->resp.res_head]; rxe_advance_resp_resource(qp); free_rd_atomic_resource(res); res->type = type; res->replay = 0; switch (type) { case RXE_READ_MASK: res->read.va = qp->resp.va + qp->resp.offset; res->read.va_org = qp->resp.va + qp->resp.offset; res->read.resid = qp->resp.resid; res->read.length = qp->resp.resid; res->read.rkey = qp->resp.rkey; pkts = max_t(u32, (reth_len(pkt) + qp->mtu - 1)/qp->mtu, 1); res->first_psn = pkt->psn; res->cur_psn = pkt->psn; res->last_psn = (pkt->psn + pkts - 1) & BTH_PSN_MASK; res->state = rdatm_res_state_new; break; case RXE_ATOMIC_MASK: case RXE_ATOMIC_WRITE_MASK: res->first_psn = pkt->psn; res->last_psn = pkt->psn; res->cur_psn = pkt->psn; break; case RXE_FLUSH_MASK: res->flush.va = qp->resp.va + qp->resp.offset; res->flush.length = qp->resp.length; res->flush.type = feth_plt(pkt); res->flush.level = feth_sel(pkt); } return res; } static enum resp_states process_flush(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { u64 length, start; struct rxe_mr *mr = qp->resp.mr; struct resp_res *res = qp->resp.res; /* oA19-14, oA19-15 */ if (res && res->replay) return RESPST_ACKNOWLEDGE; else if (!res) { res = rxe_prepare_res(qp, pkt, RXE_FLUSH_MASK); qp->resp.res = res; } if (res->flush.level == IB_FLUSH_RANGE) { start = res->flush.va; length = res->flush.length; } else { /* level == IB_FLUSH_MR */ start = mr->ibmr.iova; length = mr->ibmr.length; } if (res->flush.type & IB_FLUSH_PERSISTENT) { if (rxe_flush_pmem_iova(mr, start, length)) return RESPST_ERR_RKEY_VIOLATION; /* Make data persistent. */ wmb(); } else if (res->flush.type & IB_FLUSH_GLOBAL) { /* Make data global visibility. */ wmb(); } qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; return RESPST_ACKNOWLEDGE; } static enum resp_states atomic_reply(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_mr *mr = qp->resp.mr; struct resp_res *res = qp->resp.res; int err; if (!res) { res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_MASK); qp->resp.res = res; } if (!res->replay) { u64 iova = qp->resp.va + qp->resp.offset; err = rxe_mr_do_atomic_op(mr, iova, pkt->opcode, atmeth_comp(pkt), atmeth_swap_add(pkt), &res->atomic.orig_val); if (err) return err; qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; } return RESPST_ACKNOWLEDGE; } static enum resp_states atomic_write_reply(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct resp_res *res = qp->resp.res; struct rxe_mr *mr; u64 value; u64 iova; int err; if (!res) { res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_WRITE_MASK); qp->resp.res = res; } if (res->replay) return RESPST_ACKNOWLEDGE; mr = qp->resp.mr; value = *(u64 *)payload_addr(pkt); iova = qp->resp.va + qp->resp.offset; err = rxe_mr_do_atomic_write(mr, iova, value); if (err) return err; qp->resp.resid = 0; qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; return RESPST_ACKNOWLEDGE; } static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp, struct rxe_pkt_info *ack, int opcode, int payload, u32 psn, u8 syndrome) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct sk_buff *skb; int paylen; int pad; int err; /* * allocate packet */ pad = (-payload) & 0x3; paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE; skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack); if (!skb) return NULL; ack->qp = qp; ack->opcode = opcode; ack->mask = rxe_opcode[opcode].mask; ack->paylen = paylen; ack->psn = psn; bth_init(ack, opcode, 0, 0, pad, IB_DEFAULT_PKEY_FULL, qp->attr.dest_qp_num, 0, psn); if (ack->mask & RXE_AETH_MASK) { aeth_set_syn(ack, syndrome); aeth_set_msn(ack, qp->resp.msn); } if (ack->mask & RXE_ATMACK_MASK) atmack_set_orig(ack, qp->resp.res->atomic.orig_val); err = rxe_prepare(&qp->pri_av, ack, skb); if (err) { kfree_skb(skb); return NULL; } return skb; } /** * rxe_recheck_mr - revalidate MR from rkey and get a reference * @qp: the qp * @rkey: the rkey * * This code allows the MR to be invalidated or deregistered or * the MW if one was used to be invalidated or deallocated. * It is assumed that the access permissions if originally good * are OK and the mappings to be unchanged. * * TODO: If someone reregisters an MR to change its size or * access permissions during the processing of an RDMA read * we should kill the responder resource and complete the * operation with an error. * * Return: mr on success else NULL */ static struct rxe_mr *rxe_recheck_mr(struct rxe_qp *qp, u32 rkey) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_mr *mr; struct rxe_mw *mw; if (rkey_is_mw(rkey)) { mw = rxe_pool_get_index(&rxe->mw_pool, rkey >> 8); if (!mw) return NULL; mr = mw->mr; if (mw->rkey != rkey || mw->state != RXE_MW_STATE_VALID || !mr || mr->state != RXE_MR_STATE_VALID) { rxe_put(mw); return NULL; } rxe_get(mr); rxe_put(mw); return mr; } mr = rxe_pool_get_index(&rxe->mr_pool, rkey >> 8); if (!mr) return NULL; if (mr->rkey != rkey || mr->state != RXE_MR_STATE_VALID) { rxe_put(mr); return NULL; } return mr; } /* RDMA read response. If res is not NULL, then we have a current RDMA request * being processed or replayed. */ static enum resp_states read_reply(struct rxe_qp *qp, struct rxe_pkt_info *req_pkt) { struct rxe_pkt_info ack_pkt; struct sk_buff *skb; int mtu = qp->mtu; enum resp_states state; int payload; int opcode; int err; struct resp_res *res = qp->resp.res; struct rxe_mr *mr; if (!res) { res = rxe_prepare_res(qp, req_pkt, RXE_READ_MASK); qp->resp.res = res; } if (res->state == rdatm_res_state_new) { if (!res->replay || qp->resp.length == 0) { /* if length == 0 mr will be NULL (is ok) * otherwise qp->resp.mr holds a ref on mr * which we transfer to mr and drop below. */ mr = qp->resp.mr; qp->resp.mr = NULL; } else { mr = rxe_recheck_mr(qp, res->read.rkey); if (!mr) return RESPST_ERR_RKEY_VIOLATION; } if (res->read.resid <= mtu) opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY; else opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST; } else { /* re-lookup mr from rkey on all later packets. * length will be non-zero. This can fail if someone * modifies or destroys the mr since the first packet. */ mr = rxe_recheck_mr(qp, res->read.rkey); if (!mr) return RESPST_ERR_RKEY_VIOLATION; if (res->read.resid > mtu) opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE; else opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST; } res->state = rdatm_res_state_next; payload = min_t(int, res->read.resid, mtu); skb = prepare_ack_packet(qp, &ack_pkt, opcode, payload, res->cur_psn, AETH_ACK_UNLIMITED); if (!skb) { state = RESPST_ERR_RNR; goto err_out; } err = rxe_mr_copy(mr, res->read.va, payload_addr(&ack_pkt), payload, RXE_FROM_MR_OBJ); if (err) { kfree_skb(skb); state = RESPST_ERR_RKEY_VIOLATION; goto err_out; } if (bth_pad(&ack_pkt)) { u8 *pad = payload_addr(&ack_pkt) + payload; memset(pad, 0, bth_pad(&ack_pkt)); } /* rxe_xmit_packet always consumes the skb */ err = rxe_xmit_packet(qp, &ack_pkt, skb); if (err) { state = RESPST_ERR_RNR; goto err_out; } res->read.va += payload; res->read.resid -= payload; res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK; if (res->read.resid > 0) { state = RESPST_DONE; } else { qp->resp.res = NULL; if (!res->replay) qp->resp.opcode = -1; if (psn_compare(res->cur_psn, qp->resp.psn) >= 0) qp->resp.psn = res->cur_psn; state = RESPST_CLEANUP; } err_out: if (mr) rxe_put(mr); return state; } static int invalidate_rkey(struct rxe_qp *qp, u32 rkey) { if (rkey_is_mw(rkey)) return rxe_invalidate_mw(qp, rkey); else return rxe_invalidate_mr(qp, rkey); } /* Executes a new request. A retried request never reach that function (send * and writes are discarded, and reads and atomics are retried elsewhere. */ static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states err; struct sk_buff *skb = PKT_TO_SKB(pkt); union rdma_network_hdr hdr; if (pkt->mask & RXE_SEND_MASK) { if (qp_type(qp) == IB_QPT_UD || qp_type(qp) == IB_QPT_GSI) { if (skb->protocol == htons(ETH_P_IP)) { memset(&hdr.reserved, 0, sizeof(hdr.reserved)); memcpy(&hdr.roce4grh, ip_hdr(skb), sizeof(hdr.roce4grh)); err = send_data_in(qp, &hdr, sizeof(hdr)); } else { err = send_data_in(qp, ipv6_hdr(skb), sizeof(hdr)); } if (err) return err; } err = send_data_in(qp, payload_addr(pkt), payload_size(pkt)); if (err) return err; } else if (pkt->mask & RXE_WRITE_MASK) { err = write_data_in(qp, pkt); if (err) return err; } else if (pkt->mask & RXE_READ_MASK) { /* For RDMA Read we can increment the msn now. See C9-148. */ qp->resp.msn++; return RESPST_READ_REPLY; } else if (pkt->mask & RXE_ATOMIC_MASK) { return RESPST_ATOMIC_REPLY; } else if (pkt->mask & RXE_ATOMIC_WRITE_MASK) { return RESPST_ATOMIC_WRITE_REPLY; } else if (pkt->mask & RXE_FLUSH_MASK) { return RESPST_PROCESS_FLUSH; } else { /* Unreachable */ WARN_ON_ONCE(1); } if (pkt->mask & RXE_IETH_MASK) { u32 rkey = ieth_rkey(pkt); err = invalidate_rkey(qp, rkey); if (err) return RESPST_ERR_INVALIDATE_RKEY; } if (pkt->mask & RXE_END_MASK) /* We successfully processed this new request. */ qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; if (pkt->mask & RXE_COMP_MASK) return RESPST_COMPLETE; else if (qp_type(qp) == IB_QPT_RC) return RESPST_ACKNOWLEDGE; else return RESPST_CLEANUP; } static enum resp_states do_complete(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_cqe cqe; struct ib_wc *wc = &cqe.ibwc; struct ib_uverbs_wc *uwc = &cqe.uibwc; struct rxe_recv_wqe *wqe = qp->resp.wqe; struct rxe_dev *rxe = to_rdev(qp->ibqp.device); unsigned long flags; if (!wqe) goto finish; memset(&cqe, 0, sizeof(cqe)); if (qp->rcq->is_user) { uwc->status = qp->resp.status; uwc->qp_num = qp->ibqp.qp_num; uwc->wr_id = wqe->wr_id; } else { wc->status = qp->resp.status; wc->qp = &qp->ibqp; wc->wr_id = wqe->wr_id; } if (wc->status == IB_WC_SUCCESS) { rxe_counter_inc(rxe, RXE_CNT_RDMA_RECV); wc->opcode = (pkt->mask & RXE_IMMDT_MASK && pkt->mask & RXE_WRITE_MASK) ? IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV; wc->byte_len = (pkt->mask & RXE_IMMDT_MASK && pkt->mask & RXE_WRITE_MASK) ? qp->resp.length : wqe->dma.length - wqe->dma.resid; /* fields after byte_len are different between kernel and user * space */ if (qp->rcq->is_user) { uwc->wc_flags = IB_WC_GRH; if (pkt->mask & RXE_IMMDT_MASK) { uwc->wc_flags |= IB_WC_WITH_IMM; uwc->ex.imm_data = immdt_imm(pkt); } if (pkt->mask & RXE_IETH_MASK) { uwc->wc_flags |= IB_WC_WITH_INVALIDATE; uwc->ex.invalidate_rkey = ieth_rkey(pkt); } if (pkt->mask & RXE_DETH_MASK) uwc->src_qp = deth_sqp(pkt); uwc->port_num = qp->attr.port_num; } else { struct sk_buff *skb = PKT_TO_SKB(pkt); wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE; if (skb->protocol == htons(ETH_P_IP)) wc->network_hdr_type = RDMA_NETWORK_IPV4; else wc->network_hdr_type = RDMA_NETWORK_IPV6; if (is_vlan_dev(skb->dev)) { wc->wc_flags |= IB_WC_WITH_VLAN; wc->vlan_id = vlan_dev_vlan_id(skb->dev); } if (pkt->mask & RXE_IMMDT_MASK) { wc->wc_flags |= IB_WC_WITH_IMM; wc->ex.imm_data = immdt_imm(pkt); } if (pkt->mask & RXE_IETH_MASK) { wc->wc_flags |= IB_WC_WITH_INVALIDATE; wc->ex.invalidate_rkey = ieth_rkey(pkt); } if (pkt->mask & RXE_DETH_MASK) wc->src_qp = deth_sqp(pkt); wc->port_num = qp->attr.port_num; } } else { if (wc->status != IB_WC_WR_FLUSH_ERR) rxe_err_qp(qp, "non-flush error status = %d", wc->status); } /* have copy for srq and reference for !srq */ if (!qp->srq) queue_advance_consumer(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT); qp->resp.wqe = NULL; if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1)) return RESPST_ERR_CQ_OVERFLOW; finish: spin_lock_irqsave(&qp->state_lock, flags); if (unlikely(qp_state(qp) == IB_QPS_ERR)) { spin_unlock_irqrestore(&qp->state_lock, flags); return RESPST_CHK_RESOURCE; } spin_unlock_irqrestore(&qp->state_lock, flags); if (unlikely(!pkt)) return RESPST_DONE; if (qp_type(qp) == IB_QPT_RC) return RESPST_ACKNOWLEDGE; else return RESPST_CLEANUP; } static int send_common_ack(struct rxe_qp *qp, u8 syndrome, u32 psn, int opcode, const char *msg) { int err; struct rxe_pkt_info ack_pkt; struct sk_buff *skb; skb = prepare_ack_packet(qp, &ack_pkt, opcode, 0, psn, syndrome); if (!skb) return -ENOMEM; err = rxe_xmit_packet(qp, &ack_pkt, skb); if (err) rxe_dbg_qp(qp, "Failed sending %s\n", msg); return err; } static int send_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { return send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_ACKNOWLEDGE, "ACK"); } static int send_atomic_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { int ret = send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, "ATOMIC ACK"); /* have to clear this since it is used to trigger * long read replies */ qp->resp.res = NULL; return ret; } static int send_read_response_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { int ret = send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY, "RDMA READ response of length zero ACK"); /* have to clear this since it is used to trigger * long read replies */ qp->resp.res = NULL; return ret; } static enum resp_states acknowledge(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { if (qp_type(qp) != IB_QPT_RC) return RESPST_CLEANUP; if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED) send_ack(qp, qp->resp.aeth_syndrome, pkt->psn); else if (pkt->mask & RXE_ATOMIC_MASK) send_atomic_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); else if (pkt->mask & (RXE_FLUSH_MASK | RXE_ATOMIC_WRITE_MASK)) send_read_response_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); else if (bth_ack(pkt)) send_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); return RESPST_CLEANUP; } static enum resp_states cleanup(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct sk_buff *skb; if (pkt) { skb = skb_dequeue(&qp->req_pkts); rxe_put(qp); kfree_skb(skb); ib_device_put(qp->ibqp.device); } if (qp->resp.mr) { rxe_put(qp->resp.mr); qp->resp.mr = NULL; } return RESPST_DONE; } static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn) { int i; for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) { struct resp_res *res = &qp->resp.resources[i]; if (res->type == 0) continue; if (psn_compare(psn, res->first_psn) >= 0 && psn_compare(psn, res->last_psn) <= 0) { return res; } } return NULL; } static enum resp_states duplicate_request(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states rc; u32 prev_psn = (qp->resp.ack_psn - 1) & BTH_PSN_MASK; if (pkt->mask & RXE_SEND_MASK || pkt->mask & RXE_WRITE_MASK) { /* SEND. Ack again and cleanup. C9-105. */ send_ack(qp, AETH_ACK_UNLIMITED, prev_psn); return RESPST_CLEANUP; } else if (pkt->mask & RXE_FLUSH_MASK) { struct resp_res *res; /* Find the operation in our list of responder resources. */ res = find_resource(qp, pkt->psn); if (res) { res->replay = 1; res->cur_psn = pkt->psn; qp->resp.res = res; rc = RESPST_PROCESS_FLUSH; goto out; } /* Resource not found. Class D error. Drop the request. */ rc = RESPST_CLEANUP; goto out; } else if (pkt->mask & RXE_READ_MASK) { struct resp_res *res; res = find_resource(qp, pkt->psn); if (!res) { /* Resource not found. Class D error. Drop the * request. */ rc = RESPST_CLEANUP; goto out; } else { /* Ensure this new request is the same as the previous * one or a subset of it. */ u64 iova = reth_va(pkt); u32 resid = reth_len(pkt); if (iova < res->read.va_org || resid > res->read.length || (iova + resid) > (res->read.va_org + res->read.length)) { rc = RESPST_CLEANUP; goto out; } if (reth_rkey(pkt) != res->read.rkey) { rc = RESPST_CLEANUP; goto out; } res->cur_psn = pkt->psn; res->state = (pkt->psn == res->first_psn) ? rdatm_res_state_new : rdatm_res_state_replay; res->replay = 1; /* Reset the resource, except length. */ res->read.va_org = iova; res->read.va = iova; res->read.resid = resid; /* Replay the RDMA read reply. */ qp->resp.res = res; rc = RESPST_READ_REPLY; goto out; } } else { struct resp_res *res; /* Find the operation in our list of responder resources. */ res = find_resource(qp, pkt->psn); if (res) { res->replay = 1; res->cur_psn = pkt->psn; qp->resp.res = res; rc = pkt->mask & RXE_ATOMIC_MASK ? RESPST_ATOMIC_REPLY : RESPST_ATOMIC_WRITE_REPLY; goto out; } /* Resource not found. Class D error. Drop the request. */ rc = RESPST_CLEANUP; goto out; } out: return rc; } /* Process a class A or C. Both are treated the same in this implementation. */ static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome, enum ib_wc_status status) { qp->resp.aeth_syndrome = syndrome; qp->resp.status = status; /* indicate that we should go through the ERROR state */ qp->resp.goto_error = 1; } static enum resp_states do_class_d1e_error(struct rxe_qp *qp) { /* UC */ if (qp->srq) { /* Class E */ qp->resp.drop_msg = 1; if (qp->resp.wqe) { qp->resp.status = IB_WC_REM_INV_REQ_ERR; return RESPST_COMPLETE; } else { return RESPST_CLEANUP; } } else { /* Class D1. This packet may be the start of a * new message and could be valid. The previous * message is invalid and ignored. reset the * recv wr to its original state */ if (qp->resp.wqe) { qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length; qp->resp.wqe->dma.cur_sge = 0; qp->resp.wqe->dma.sge_offset = 0; qp->resp.opcode = -1; } if (qp->resp.mr) { rxe_put(qp->resp.mr); qp->resp.mr = NULL; } return RESPST_CLEANUP; } } /* drain incoming request packet queue */ static void drain_req_pkts(struct rxe_qp *qp) { struct sk_buff *skb; while ((skb = skb_dequeue(&qp->req_pkts))) { rxe_put(qp); kfree_skb(skb); ib_device_put(qp->ibqp.device); } } /* complete receive wqe with flush error */ static int flush_recv_wqe(struct rxe_qp *qp, struct rxe_recv_wqe *wqe) { struct rxe_cqe cqe = {}; struct ib_wc *wc = &cqe.ibwc; struct ib_uverbs_wc *uwc = &cqe.uibwc; int err; if (qp->rcq->is_user) { uwc->wr_id = wqe->wr_id; uwc->status = IB_WC_WR_FLUSH_ERR; uwc->qp_num = qp_num(qp); } else { wc->wr_id = wqe->wr_id; wc->status = IB_WC_WR_FLUSH_ERR; wc->qp = &qp->ibqp; } err = rxe_cq_post(qp->rcq, &cqe, 0); if (err) rxe_dbg_cq(qp->rcq, "post cq failed err = %d", err); return err; } /* drain and optionally complete the recive queue * if unable to complete a wqe stop completing and * just flush the remaining wqes */ static void flush_recv_queue(struct rxe_qp *qp, bool notify) { struct rxe_queue *q = qp->rq.queue; struct rxe_recv_wqe *wqe; int err; if (qp->srq) { if (notify && qp->ibqp.event_handler) { struct ib_event ev; ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_QP_LAST_WQE_REACHED; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } return; } /* recv queue not created. nothing to do. */ if (!qp->rq.queue) return; while ((wqe = queue_head(q, q->type))) { if (notify) { err = flush_recv_wqe(qp, wqe); if (err) notify = 0; } queue_advance_consumer(q, q->type); } qp->resp.wqe = NULL; } int rxe_responder(struct rxe_qp *qp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); enum resp_states state; struct rxe_pkt_info *pkt = NULL; int ret; unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); if (!qp->valid || qp_state(qp) == IB_QPS_ERR || qp_state(qp) == IB_QPS_RESET) { bool notify = qp->valid && (qp_state(qp) == IB_QPS_ERR); drain_req_pkts(qp); flush_recv_queue(qp, notify); spin_unlock_irqrestore(&qp->state_lock, flags); goto exit; } spin_unlock_irqrestore(&qp->state_lock, flags); qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED; state = RESPST_GET_REQ; while (1) { rxe_dbg_qp(qp, "state = %s\n", resp_state_name[state]); switch (state) { case RESPST_GET_REQ: state = get_req(qp, &pkt); break; case RESPST_CHK_PSN: state = check_psn(qp, pkt); break; case RESPST_CHK_OP_SEQ: state = check_op_seq(qp, pkt); break; case RESPST_CHK_OP_VALID: state = check_op_valid(qp, pkt); break; case RESPST_CHK_RESOURCE: state = check_resource(qp, pkt); break; case RESPST_CHK_LENGTH: state = rxe_resp_check_length(qp, pkt); break; case RESPST_CHK_RKEY: state = check_rkey(qp, pkt); break; case RESPST_EXECUTE: state = execute(qp, pkt); break; case RESPST_COMPLETE: state = do_complete(qp, pkt); break; case RESPST_READ_REPLY: state = read_reply(qp, pkt); break; case RESPST_ATOMIC_REPLY: state = atomic_reply(qp, pkt); break; case RESPST_ATOMIC_WRITE_REPLY: state = atomic_write_reply(qp, pkt); break; case RESPST_PROCESS_FLUSH: state = process_flush(qp, pkt); break; case RESPST_ACKNOWLEDGE: state = acknowledge(qp, pkt); break; case RESPST_CLEANUP: state = cleanup(qp, pkt); break; case RESPST_DUPLICATE_REQUEST: state = duplicate_request(qp, pkt); break; case RESPST_ERR_PSN_OUT_OF_SEQ: /* RC only - Class B. Drop packet. */ send_ack(qp, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn); state = RESPST_CLEANUP; break; case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ: case RESPST_ERR_MISSING_OPCODE_FIRST: case RESPST_ERR_MISSING_OPCODE_LAST_C: case RESPST_ERR_UNSUPPORTED_OPCODE: case RESPST_ERR_MISALIGNED_ATOMIC: /* RC Only - Class C. */ do_class_ac_error(qp, AETH_NAK_INVALID_REQ, IB_WC_REM_INV_REQ_ERR); state = RESPST_COMPLETE; break; case RESPST_ERR_MISSING_OPCODE_LAST_D1E: state = do_class_d1e_error(qp); break; case RESPST_ERR_RNR: if (qp_type(qp) == IB_QPT_RC) { rxe_counter_inc(rxe, RXE_CNT_SND_RNR); /* RC - class B */ send_ack(qp, AETH_RNR_NAK | (~AETH_TYPE_MASK & qp->attr.min_rnr_timer), pkt->psn); } else { /* UD/UC - class D */ qp->resp.drop_msg = 1; } state = RESPST_CLEANUP; break; case RESPST_ERR_RKEY_VIOLATION: if (qp_type(qp) == IB_QPT_RC) { /* Class C */ do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR, IB_WC_REM_ACCESS_ERR); state = RESPST_COMPLETE; } else { qp->resp.drop_msg = 1; if (qp->srq) { /* UC/SRQ Class D */ qp->resp.status = IB_WC_REM_ACCESS_ERR; state = RESPST_COMPLETE; } else { /* UC/non-SRQ Class E. */ state = RESPST_CLEANUP; } } break; case RESPST_ERR_INVALIDATE_RKEY: /* RC - Class J. */ qp->resp.goto_error = 1; qp->resp.status = IB_WC_REM_INV_REQ_ERR; state = RESPST_COMPLETE; break; case RESPST_ERR_LENGTH: if (qp_type(qp) == IB_QPT_RC) { /* Class C */ do_class_ac_error(qp, AETH_NAK_INVALID_REQ, IB_WC_REM_INV_REQ_ERR); state = RESPST_COMPLETE; } else if (qp->srq) { /* UC/UD - class E */ qp->resp.status = IB_WC_REM_INV_REQ_ERR; state = RESPST_COMPLETE; } else { /* UC/UD - class D */ qp->resp.drop_msg = 1; state = RESPST_CLEANUP; } break; case RESPST_ERR_MALFORMED_WQE: /* All, Class A. */ do_class_ac_error(qp, AETH_NAK_REM_OP_ERR, IB_WC_LOC_QP_OP_ERR); state = RESPST_COMPLETE; break; case RESPST_ERR_CQ_OVERFLOW: /* All - Class G */ state = RESPST_ERROR; break; case RESPST_DONE: if (qp->resp.goto_error) { state = RESPST_ERROR; break; } goto done; case RESPST_EXIT: if (qp->resp.goto_error) { state = RESPST_ERROR; break; } goto exit; case RESPST_ERROR: qp->resp.goto_error = 0; rxe_dbg_qp(qp, "moved to error state\n"); rxe_qp_error(qp); goto exit; default: WARN_ON_ONCE(1); } } /* A non-zero return value will cause rxe_do_task to * exit its loop and end the work item. A zero return * will continue looping and return to rxe_responder */ done: ret = 0; goto out; exit: ret = -EAGAIN; out: return ret; }
linux-master
drivers/infiniband/sw/rxe/rxe_resp.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/skbuff.h> #include <crypto/hash.h> #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" static int next_opcode(struct rxe_qp *qp, struct rxe_send_wqe *wqe, u32 opcode); static inline void retry_first_write_send(struct rxe_qp *qp, struct rxe_send_wqe *wqe, int npsn) { int i; for (i = 0; i < npsn; i++) { int to_send = (wqe->dma.resid > qp->mtu) ? qp->mtu : wqe->dma.resid; qp->req.opcode = next_opcode(qp, wqe, wqe->wr.opcode); if (wqe->wr.send_flags & IB_SEND_INLINE) { wqe->dma.resid -= to_send; wqe->dma.sge_offset += to_send; } else { advance_dma_data(&wqe->dma, to_send); } } } static void req_retry(struct rxe_qp *qp) { struct rxe_send_wqe *wqe; unsigned int wqe_index; unsigned int mask; int npsn; int first = 1; struct rxe_queue *q = qp->sq.queue; unsigned int cons; unsigned int prod; cons = queue_get_consumer(q, QUEUE_TYPE_FROM_CLIENT); prod = queue_get_producer(q, QUEUE_TYPE_FROM_CLIENT); qp->req.wqe_index = cons; qp->req.psn = qp->comp.psn; qp->req.opcode = -1; for (wqe_index = cons; wqe_index != prod; wqe_index = queue_next_index(q, wqe_index)) { wqe = queue_addr_from_index(qp->sq.queue, wqe_index); mask = wr_opcode_mask(wqe->wr.opcode, qp); if (wqe->state == wqe_state_posted) break; if (wqe->state == wqe_state_done) continue; wqe->iova = (mask & WR_ATOMIC_MASK) ? wqe->wr.wr.atomic.remote_addr : (mask & WR_READ_OR_WRITE_MASK) ? wqe->wr.wr.rdma.remote_addr : 0; if (!first || (mask & WR_READ_MASK) == 0) { wqe->dma.resid = wqe->dma.length; wqe->dma.cur_sge = 0; wqe->dma.sge_offset = 0; } if (first) { first = 0; if (mask & WR_WRITE_OR_SEND_MASK) { npsn = (qp->comp.psn - wqe->first_psn) & BTH_PSN_MASK; retry_first_write_send(qp, wqe, npsn); } if (mask & WR_READ_MASK) { npsn = (wqe->dma.length - wqe->dma.resid) / qp->mtu; wqe->iova += npsn * qp->mtu; } } wqe->state = wqe_state_posted; } } void rnr_nak_timer(struct timer_list *t) { struct rxe_qp *qp = from_timer(qp, t, rnr_nak_timer); unsigned long flags; rxe_dbg_qp(qp, "nak timer fired\n"); spin_lock_irqsave(&qp->state_lock, flags); if (qp->valid) { /* request a send queue retry */ qp->req.need_retry = 1; qp->req.wait_for_rnr_timer = 0; rxe_sched_task(&qp->req.task); } spin_unlock_irqrestore(&qp->state_lock, flags); } static void req_check_sq_drain_done(struct rxe_qp *qp) { struct rxe_queue *q; unsigned int index; unsigned int cons; struct rxe_send_wqe *wqe; unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); if (qp_state(qp) == IB_QPS_SQD) { q = qp->sq.queue; index = qp->req.wqe_index; cons = queue_get_consumer(q, QUEUE_TYPE_FROM_CLIENT); wqe = queue_addr_from_index(q, cons); /* check to see if we are drained; * state_lock used by requester and completer */ do { if (!qp->attr.sq_draining) /* comp just finished */ break; if (wqe && ((index != cons) || (wqe->state != wqe_state_posted))) /* comp not done yet */ break; qp->attr.sq_draining = 0; spin_unlock_irqrestore(&qp->state_lock, flags); if (qp->ibqp.event_handler) { struct ib_event ev; ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_SQ_DRAINED; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } return; } while (0); } spin_unlock_irqrestore(&qp->state_lock, flags); } static struct rxe_send_wqe *__req_next_wqe(struct rxe_qp *qp) { struct rxe_queue *q = qp->sq.queue; unsigned int index = qp->req.wqe_index; unsigned int prod; prod = queue_get_producer(q, QUEUE_TYPE_FROM_CLIENT); if (index == prod) return NULL; else return queue_addr_from_index(q, index); } static struct rxe_send_wqe *req_next_wqe(struct rxe_qp *qp) { struct rxe_send_wqe *wqe; unsigned long flags; req_check_sq_drain_done(qp); wqe = __req_next_wqe(qp); if (wqe == NULL) return NULL; spin_lock_irqsave(&qp->state_lock, flags); if (unlikely((qp_state(qp) == IB_QPS_SQD) && (wqe->state != wqe_state_processing))) { spin_unlock_irqrestore(&qp->state_lock, flags); return NULL; } spin_unlock_irqrestore(&qp->state_lock, flags); wqe->mask = wr_opcode_mask(wqe->wr.opcode, qp); return wqe; } /** * rxe_wqe_is_fenced - check if next wqe is fenced * @qp: the queue pair * @wqe: the next wqe * * Returns: 1 if wqe needs to wait * 0 if wqe is ready to go */ static int rxe_wqe_is_fenced(struct rxe_qp *qp, struct rxe_send_wqe *wqe) { /* Local invalidate fence (LIF) see IBA 10.6.5.1 * Requires ALL previous operations on the send queue * are complete. Make mandatory for the rxe driver. */ if (wqe->wr.opcode == IB_WR_LOCAL_INV) return qp->req.wqe_index != queue_get_consumer(qp->sq.queue, QUEUE_TYPE_FROM_CLIENT); /* Fence see IBA 10.8.3.3 * Requires that all previous read and atomic operations * are complete. */ return (wqe->wr.send_flags & IB_SEND_FENCE) && atomic_read(&qp->req.rd_atomic) != qp->attr.max_rd_atomic; } static int next_opcode_rc(struct rxe_qp *qp, u32 opcode, int fits) { switch (opcode) { case IB_WR_RDMA_WRITE: if (qp->req.opcode == IB_OPCODE_RC_RDMA_WRITE_FIRST || qp->req.opcode == IB_OPCODE_RC_RDMA_WRITE_MIDDLE) return fits ? IB_OPCODE_RC_RDMA_WRITE_LAST : IB_OPCODE_RC_RDMA_WRITE_MIDDLE; else return fits ? IB_OPCODE_RC_RDMA_WRITE_ONLY : IB_OPCODE_RC_RDMA_WRITE_FIRST; case IB_WR_RDMA_WRITE_WITH_IMM: if (qp->req.opcode == IB_OPCODE_RC_RDMA_WRITE_FIRST || qp->req.opcode == IB_OPCODE_RC_RDMA_WRITE_MIDDLE) return fits ? IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE : IB_OPCODE_RC_RDMA_WRITE_MIDDLE; else return fits ? IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE : IB_OPCODE_RC_RDMA_WRITE_FIRST; case IB_WR_SEND: if (qp->req.opcode == IB_OPCODE_RC_SEND_FIRST || qp->req.opcode == IB_OPCODE_RC_SEND_MIDDLE) return fits ? IB_OPCODE_RC_SEND_LAST : IB_OPCODE_RC_SEND_MIDDLE; else return fits ? IB_OPCODE_RC_SEND_ONLY : IB_OPCODE_RC_SEND_FIRST; case IB_WR_SEND_WITH_IMM: if (qp->req.opcode == IB_OPCODE_RC_SEND_FIRST || qp->req.opcode == IB_OPCODE_RC_SEND_MIDDLE) return fits ? IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE : IB_OPCODE_RC_SEND_MIDDLE; else return fits ? IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE : IB_OPCODE_RC_SEND_FIRST; case IB_WR_FLUSH: return IB_OPCODE_RC_FLUSH; case IB_WR_RDMA_READ: return IB_OPCODE_RC_RDMA_READ_REQUEST; case IB_WR_ATOMIC_CMP_AND_SWP: return IB_OPCODE_RC_COMPARE_SWAP; case IB_WR_ATOMIC_FETCH_AND_ADD: return IB_OPCODE_RC_FETCH_ADD; case IB_WR_SEND_WITH_INV: if (qp->req.opcode == IB_OPCODE_RC_SEND_FIRST || qp->req.opcode == IB_OPCODE_RC_SEND_MIDDLE) return fits ? IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE : IB_OPCODE_RC_SEND_MIDDLE; else return fits ? IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE : IB_OPCODE_RC_SEND_FIRST; case IB_WR_ATOMIC_WRITE: return IB_OPCODE_RC_ATOMIC_WRITE; case IB_WR_REG_MR: case IB_WR_LOCAL_INV: return opcode; } return -EINVAL; } static int next_opcode_uc(struct rxe_qp *qp, u32 opcode, int fits) { switch (opcode) { case IB_WR_RDMA_WRITE: if (qp->req.opcode == IB_OPCODE_UC_RDMA_WRITE_FIRST || qp->req.opcode == IB_OPCODE_UC_RDMA_WRITE_MIDDLE) return fits ? IB_OPCODE_UC_RDMA_WRITE_LAST : IB_OPCODE_UC_RDMA_WRITE_MIDDLE; else return fits ? IB_OPCODE_UC_RDMA_WRITE_ONLY : IB_OPCODE_UC_RDMA_WRITE_FIRST; case IB_WR_RDMA_WRITE_WITH_IMM: if (qp->req.opcode == IB_OPCODE_UC_RDMA_WRITE_FIRST || qp->req.opcode == IB_OPCODE_UC_RDMA_WRITE_MIDDLE) return fits ? IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE : IB_OPCODE_UC_RDMA_WRITE_MIDDLE; else return fits ? IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE : IB_OPCODE_UC_RDMA_WRITE_FIRST; case IB_WR_SEND: if (qp->req.opcode == IB_OPCODE_UC_SEND_FIRST || qp->req.opcode == IB_OPCODE_UC_SEND_MIDDLE) return fits ? IB_OPCODE_UC_SEND_LAST : IB_OPCODE_UC_SEND_MIDDLE; else return fits ? IB_OPCODE_UC_SEND_ONLY : IB_OPCODE_UC_SEND_FIRST; case IB_WR_SEND_WITH_IMM: if (qp->req.opcode == IB_OPCODE_UC_SEND_FIRST || qp->req.opcode == IB_OPCODE_UC_SEND_MIDDLE) return fits ? IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE : IB_OPCODE_UC_SEND_MIDDLE; else return fits ? IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE : IB_OPCODE_UC_SEND_FIRST; } return -EINVAL; } static int next_opcode(struct rxe_qp *qp, struct rxe_send_wqe *wqe, u32 opcode) { int fits = (wqe->dma.resid <= qp->mtu); switch (qp_type(qp)) { case IB_QPT_RC: return next_opcode_rc(qp, opcode, fits); case IB_QPT_UC: return next_opcode_uc(qp, opcode, fits); case IB_QPT_UD: case IB_QPT_GSI: switch (opcode) { case IB_WR_SEND: return IB_OPCODE_UD_SEND_ONLY; case IB_WR_SEND_WITH_IMM: return IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE; } break; default: break; } return -EINVAL; } static inline int check_init_depth(struct rxe_qp *qp, struct rxe_send_wqe *wqe) { int depth; if (wqe->has_rd_atomic) return 0; qp->req.need_rd_atomic = 1; depth = atomic_dec_return(&qp->req.rd_atomic); if (depth >= 0) { qp->req.need_rd_atomic = 0; wqe->has_rd_atomic = 1; return 0; } atomic_inc(&qp->req.rd_atomic); return -EAGAIN; } static inline int get_mtu(struct rxe_qp *qp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); if ((qp_type(qp) == IB_QPT_RC) || (qp_type(qp) == IB_QPT_UC)) return qp->mtu; return rxe->port.mtu_cap; } static struct sk_buff *init_req_packet(struct rxe_qp *qp, struct rxe_av *av, struct rxe_send_wqe *wqe, int opcode, u32 payload, struct rxe_pkt_info *pkt) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct sk_buff *skb; struct rxe_send_wr *ibwr = &wqe->wr; int pad = (-payload) & 0x3; int paylen; int solicited; u32 qp_num; int ack_req; /* length from start of bth to end of icrc */ paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE; pkt->paylen = paylen; /* init skb */ skb = rxe_init_packet(rxe, av, paylen, pkt); if (unlikely(!skb)) return NULL; /* init bth */ solicited = (ibwr->send_flags & IB_SEND_SOLICITED) && (pkt->mask & RXE_END_MASK) && ((pkt->mask & (RXE_SEND_MASK)) || (pkt->mask & (RXE_WRITE_MASK | RXE_IMMDT_MASK)) == (RXE_WRITE_MASK | RXE_IMMDT_MASK)); qp_num = (pkt->mask & RXE_DETH_MASK) ? ibwr->wr.ud.remote_qpn : qp->attr.dest_qp_num; ack_req = ((pkt->mask & RXE_END_MASK) || (qp->req.noack_pkts++ > RXE_MAX_PKT_PER_ACK)); if (ack_req) qp->req.noack_pkts = 0; bth_init(pkt, pkt->opcode, solicited, 0, pad, IB_DEFAULT_PKEY_FULL, qp_num, ack_req, pkt->psn); /* init optional headers */ if (pkt->mask & RXE_RETH_MASK) { if (pkt->mask & RXE_FETH_MASK) reth_set_rkey(pkt, ibwr->wr.flush.rkey); else reth_set_rkey(pkt, ibwr->wr.rdma.rkey); reth_set_va(pkt, wqe->iova); reth_set_len(pkt, wqe->dma.resid); } /* Fill Flush Extension Transport Header */ if (pkt->mask & RXE_FETH_MASK) feth_init(pkt, ibwr->wr.flush.type, ibwr->wr.flush.level); if (pkt->mask & RXE_IMMDT_MASK) immdt_set_imm(pkt, ibwr->ex.imm_data); if (pkt->mask & RXE_IETH_MASK) ieth_set_rkey(pkt, ibwr->ex.invalidate_rkey); if (pkt->mask & RXE_ATMETH_MASK) { atmeth_set_va(pkt, wqe->iova); if (opcode == IB_OPCODE_RC_COMPARE_SWAP) { atmeth_set_swap_add(pkt, ibwr->wr.atomic.swap); atmeth_set_comp(pkt, ibwr->wr.atomic.compare_add); } else { atmeth_set_swap_add(pkt, ibwr->wr.atomic.compare_add); } atmeth_set_rkey(pkt, ibwr->wr.atomic.rkey); } if (pkt->mask & RXE_DETH_MASK) { if (qp->ibqp.qp_num == 1) deth_set_qkey(pkt, GSI_QKEY); else deth_set_qkey(pkt, ibwr->wr.ud.remote_qkey); deth_set_sqp(pkt, qp->ibqp.qp_num); } return skb; } static int finish_packet(struct rxe_qp *qp, struct rxe_av *av, struct rxe_send_wqe *wqe, struct rxe_pkt_info *pkt, struct sk_buff *skb, u32 payload) { int err; err = rxe_prepare(av, pkt, skb); if (err) return err; if (pkt->mask & RXE_WRITE_OR_SEND_MASK) { if (wqe->wr.send_flags & IB_SEND_INLINE) { u8 *tmp = &wqe->dma.inline_data[wqe->dma.sge_offset]; memcpy(payload_addr(pkt), tmp, payload); wqe->dma.resid -= payload; wqe->dma.sge_offset += payload; } else { err = copy_data(qp->pd, 0, &wqe->dma, payload_addr(pkt), payload, RXE_FROM_MR_OBJ); if (err) return err; } if (bth_pad(pkt)) { u8 *pad = payload_addr(pkt) + payload; memset(pad, 0, bth_pad(pkt)); } } else if (pkt->mask & RXE_FLUSH_MASK) { /* oA19-2: shall have no payload. */ wqe->dma.resid = 0; } if (pkt->mask & RXE_ATOMIC_WRITE_MASK) { memcpy(payload_addr(pkt), wqe->dma.atomic_wr, payload); wqe->dma.resid -= payload; } return 0; } static void update_wqe_state(struct rxe_qp *qp, struct rxe_send_wqe *wqe, struct rxe_pkt_info *pkt) { if (pkt->mask & RXE_END_MASK) { if (qp_type(qp) == IB_QPT_RC) wqe->state = wqe_state_pending; } else { wqe->state = wqe_state_processing; } } static void update_wqe_psn(struct rxe_qp *qp, struct rxe_send_wqe *wqe, struct rxe_pkt_info *pkt, u32 payload) { /* number of packets left to send including current one */ int num_pkt = (wqe->dma.resid + payload + qp->mtu - 1) / qp->mtu; /* handle zero length packet case */ if (num_pkt == 0) num_pkt = 1; if (pkt->mask & RXE_START_MASK) { wqe->first_psn = qp->req.psn; wqe->last_psn = (qp->req.psn + num_pkt - 1) & BTH_PSN_MASK; } if (pkt->mask & RXE_READ_MASK) qp->req.psn = (wqe->first_psn + num_pkt) & BTH_PSN_MASK; else qp->req.psn = (qp->req.psn + 1) & BTH_PSN_MASK; } static void save_state(struct rxe_send_wqe *wqe, struct rxe_qp *qp, struct rxe_send_wqe *rollback_wqe, u32 *rollback_psn) { rollback_wqe->state = wqe->state; rollback_wqe->first_psn = wqe->first_psn; rollback_wqe->last_psn = wqe->last_psn; rollback_wqe->dma = wqe->dma; *rollback_psn = qp->req.psn; } static void rollback_state(struct rxe_send_wqe *wqe, struct rxe_qp *qp, struct rxe_send_wqe *rollback_wqe, u32 rollback_psn) { wqe->state = rollback_wqe->state; wqe->first_psn = rollback_wqe->first_psn; wqe->last_psn = rollback_wqe->last_psn; wqe->dma = rollback_wqe->dma; qp->req.psn = rollback_psn; } static void update_state(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { qp->req.opcode = pkt->opcode; if (pkt->mask & RXE_END_MASK) qp->req.wqe_index = queue_next_index(qp->sq.queue, qp->req.wqe_index); qp->need_req_skb = 0; if (qp->qp_timeout_jiffies && !timer_pending(&qp->retrans_timer)) mod_timer(&qp->retrans_timer, jiffies + qp->qp_timeout_jiffies); } static int rxe_do_local_ops(struct rxe_qp *qp, struct rxe_send_wqe *wqe) { u8 opcode = wqe->wr.opcode; u32 rkey; int ret; switch (opcode) { case IB_WR_LOCAL_INV: rkey = wqe->wr.ex.invalidate_rkey; if (rkey_is_mw(rkey)) ret = rxe_invalidate_mw(qp, rkey); else ret = rxe_invalidate_mr(qp, rkey); if (unlikely(ret)) { wqe->status = IB_WC_LOC_QP_OP_ERR; return ret; } break; case IB_WR_REG_MR: ret = rxe_reg_fast_mr(qp, wqe); if (unlikely(ret)) { wqe->status = IB_WC_LOC_QP_OP_ERR; return ret; } break; case IB_WR_BIND_MW: ret = rxe_bind_mw(qp, wqe); if (unlikely(ret)) { wqe->status = IB_WC_MW_BIND_ERR; return ret; } break; default: rxe_dbg_qp(qp, "Unexpected send wqe opcode %d\n", opcode); wqe->status = IB_WC_LOC_QP_OP_ERR; return -EINVAL; } wqe->state = wqe_state_done; wqe->status = IB_WC_SUCCESS; qp->req.wqe_index = queue_next_index(qp->sq.queue, qp->req.wqe_index); /* There is no ack coming for local work requests * which can lead to a deadlock. So go ahead and complete * it now. */ rxe_sched_task(&qp->comp.task); return 0; } int rxe_requester(struct rxe_qp *qp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_pkt_info pkt; struct sk_buff *skb; struct rxe_send_wqe *wqe; enum rxe_hdr_mask mask; u32 payload; int mtu; int opcode; int err; int ret; struct rxe_send_wqe rollback_wqe; u32 rollback_psn; struct rxe_queue *q = qp->sq.queue; struct rxe_ah *ah; struct rxe_av *av; unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); if (unlikely(!qp->valid)) { spin_unlock_irqrestore(&qp->state_lock, flags); goto exit; } if (unlikely(qp_state(qp) == IB_QPS_ERR)) { wqe = __req_next_wqe(qp); spin_unlock_irqrestore(&qp->state_lock, flags); if (wqe) goto err; else goto exit; } if (unlikely(qp_state(qp) == IB_QPS_RESET)) { qp->req.wqe_index = queue_get_consumer(q, QUEUE_TYPE_FROM_CLIENT); qp->req.opcode = -1; qp->req.need_rd_atomic = 0; qp->req.wait_psn = 0; qp->req.need_retry = 0; qp->req.wait_for_rnr_timer = 0; spin_unlock_irqrestore(&qp->state_lock, flags); goto exit; } spin_unlock_irqrestore(&qp->state_lock, flags); /* we come here if the retransmit timer has fired * or if the rnr timer has fired. If the retransmit * timer fires while we are processing an RNR NAK wait * until the rnr timer has fired before starting the * retry flow */ if (unlikely(qp->req.need_retry && !qp->req.wait_for_rnr_timer)) { req_retry(qp); qp->req.need_retry = 0; } wqe = req_next_wqe(qp); if (unlikely(!wqe)) goto exit; if (rxe_wqe_is_fenced(qp, wqe)) { qp->req.wait_fence = 1; goto exit; } if (wqe->mask & WR_LOCAL_OP_MASK) { err = rxe_do_local_ops(qp, wqe); if (unlikely(err)) goto err; else goto done; } if (unlikely(qp_type(qp) == IB_QPT_RC && psn_compare(qp->req.psn, (qp->comp.psn + RXE_MAX_UNACKED_PSNS)) > 0)) { qp->req.wait_psn = 1; goto exit; } /* Limit the number of inflight SKBs per QP */ if (unlikely(atomic_read(&qp->skb_out) > RXE_INFLIGHT_SKBS_PER_QP_HIGH)) { qp->need_req_skb = 1; goto exit; } opcode = next_opcode(qp, wqe, wqe->wr.opcode); if (unlikely(opcode < 0)) { wqe->status = IB_WC_LOC_QP_OP_ERR; goto err; } mask = rxe_opcode[opcode].mask; if (unlikely(mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK))) { if (check_init_depth(qp, wqe)) goto exit; } mtu = get_mtu(qp); payload = (mask & (RXE_WRITE_OR_SEND_MASK | RXE_ATOMIC_WRITE_MASK)) ? wqe->dma.resid : 0; if (payload > mtu) { if (qp_type(qp) == IB_QPT_UD) { /* C10-93.1.1: If the total sum of all the buffer lengths specified for a * UD message exceeds the MTU of the port as returned by QueryHCA, the CI * shall not emit any packets for this message. Further, the CI shall not * generate an error due to this condition. */ /* fake a successful UD send */ wqe->first_psn = qp->req.psn; wqe->last_psn = qp->req.psn; qp->req.psn = (qp->req.psn + 1) & BTH_PSN_MASK; qp->req.opcode = IB_OPCODE_UD_SEND_ONLY; qp->req.wqe_index = queue_next_index(qp->sq.queue, qp->req.wqe_index); wqe->state = wqe_state_done; wqe->status = IB_WC_SUCCESS; rxe_sched_task(&qp->comp.task); goto done; } payload = mtu; } pkt.rxe = rxe; pkt.opcode = opcode; pkt.qp = qp; pkt.psn = qp->req.psn; pkt.mask = rxe_opcode[opcode].mask; pkt.wqe = wqe; /* save wqe state before we build and send packet */ save_state(wqe, qp, &rollback_wqe, &rollback_psn); av = rxe_get_av(&pkt, &ah); if (unlikely(!av)) { rxe_dbg_qp(qp, "Failed no address vector\n"); wqe->status = IB_WC_LOC_QP_OP_ERR; goto err; } skb = init_req_packet(qp, av, wqe, opcode, payload, &pkt); if (unlikely(!skb)) { rxe_dbg_qp(qp, "Failed allocating skb\n"); wqe->status = IB_WC_LOC_QP_OP_ERR; if (ah) rxe_put(ah); goto err; } err = finish_packet(qp, av, wqe, &pkt, skb, payload); if (unlikely(err)) { rxe_dbg_qp(qp, "Error during finish packet\n"); if (err == -EFAULT) wqe->status = IB_WC_LOC_PROT_ERR; else wqe->status = IB_WC_LOC_QP_OP_ERR; kfree_skb(skb); if (ah) rxe_put(ah); goto err; } if (ah) rxe_put(ah); /* update wqe state as though we had sent it */ update_wqe_state(qp, wqe, &pkt); update_wqe_psn(qp, wqe, &pkt, payload); err = rxe_xmit_packet(qp, &pkt, skb); if (err) { if (err != -EAGAIN) { wqe->status = IB_WC_LOC_QP_OP_ERR; goto err; } /* the packet was dropped so reset wqe to the state * before we sent it so we can try to resend */ rollback_state(wqe, qp, &rollback_wqe, rollback_psn); /* force a delay until the dropped packet is freed and * the send queue is drained below the low water mark */ qp->need_req_skb = 1; rxe_sched_task(&qp->req.task); goto exit; } update_state(qp, &pkt); /* A non-zero return value will cause rxe_do_task to * exit its loop and end the work item. A zero return * will continue looping and return to rxe_requester */ done: ret = 0; goto out; err: /* update wqe_index for each wqe completion */ qp->req.wqe_index = queue_next_index(qp->sq.queue, qp->req.wqe_index); wqe->state = wqe_state_error; rxe_qp_error(qp); exit: ret = -EAGAIN; out: return ret; }
linux-master
drivers/infiniband/sw/rxe/rxe_req.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <linux/if.h> #include <linux/if_vlan.h> #include <net/udp_tunnel.h> #include <net/sch_generic.h> #include <linux/netfilter.h> #include <rdma/ib_addr.h> #include "rxe.h" #include "rxe_net.h" #include "rxe_loc.h" static struct rxe_recv_sockets recv_sockets; static struct dst_entry *rxe_find_route4(struct rxe_qp *qp, struct net_device *ndev, struct in_addr *saddr, struct in_addr *daddr) { struct rtable *rt; struct flowi4 fl = { { 0 } }; memset(&fl, 0, sizeof(fl)); fl.flowi4_oif = ndev->ifindex; memcpy(&fl.saddr, saddr, sizeof(*saddr)); memcpy(&fl.daddr, daddr, sizeof(*daddr)); fl.flowi4_proto = IPPROTO_UDP; rt = ip_route_output_key(&init_net, &fl); if (IS_ERR(rt)) { rxe_dbg_qp(qp, "no route to %pI4\n", &daddr->s_addr); return NULL; } return &rt->dst; } #if IS_ENABLED(CONFIG_IPV6) static struct dst_entry *rxe_find_route6(struct rxe_qp *qp, struct net_device *ndev, struct in6_addr *saddr, struct in6_addr *daddr) { struct dst_entry *ndst; struct flowi6 fl6 = { { 0 } }; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_oif = ndev->ifindex; memcpy(&fl6.saddr, saddr, sizeof(*saddr)); memcpy(&fl6.daddr, daddr, sizeof(*daddr)); fl6.flowi6_proto = IPPROTO_UDP; ndst = ipv6_stub->ipv6_dst_lookup_flow(sock_net(recv_sockets.sk6->sk), recv_sockets.sk6->sk, &fl6, NULL); if (IS_ERR(ndst)) { rxe_dbg_qp(qp, "no route to %pI6\n", daddr); return NULL; } if (unlikely(ndst->error)) { rxe_dbg_qp(qp, "no route to %pI6\n", daddr); goto put; } return ndst; put: dst_release(ndst); return NULL; } #else static struct dst_entry *rxe_find_route6(struct rxe_qp *qp, struct net_device *ndev, struct in6_addr *saddr, struct in6_addr *daddr) { return NULL; } #endif static struct dst_entry *rxe_find_route(struct net_device *ndev, struct rxe_qp *qp, struct rxe_av *av) { struct dst_entry *dst = NULL; if (qp_type(qp) == IB_QPT_RC) dst = sk_dst_get(qp->sk->sk); if (!dst || !dst_check(dst, qp->dst_cookie)) { if (dst) dst_release(dst); if (av->network_type == RXE_NETWORK_TYPE_IPV4) { struct in_addr *saddr; struct in_addr *daddr; saddr = &av->sgid_addr._sockaddr_in.sin_addr; daddr = &av->dgid_addr._sockaddr_in.sin_addr; dst = rxe_find_route4(qp, ndev, saddr, daddr); } else if (av->network_type == RXE_NETWORK_TYPE_IPV6) { struct in6_addr *saddr6; struct in6_addr *daddr6; saddr6 = &av->sgid_addr._sockaddr_in6.sin6_addr; daddr6 = &av->dgid_addr._sockaddr_in6.sin6_addr; dst = rxe_find_route6(qp, ndev, saddr6, daddr6); #if IS_ENABLED(CONFIG_IPV6) if (dst) qp->dst_cookie = rt6_get_cookie((struct rt6_info *)dst); #endif } if (dst && (qp_type(qp) == IB_QPT_RC)) { dst_hold(dst); sk_dst_set(qp->sk->sk, dst); } } return dst; } static int rxe_udp_encap_recv(struct sock *sk, struct sk_buff *skb) { struct udphdr *udph; struct rxe_dev *rxe; struct net_device *ndev = skb->dev; struct rxe_pkt_info *pkt = SKB_TO_PKT(skb); /* takes a reference on rxe->ib_dev * drop when skb is freed */ rxe = rxe_get_dev_from_net(ndev); if (!rxe && is_vlan_dev(ndev)) rxe = rxe_get_dev_from_net(vlan_dev_real_dev(ndev)); if (!rxe) goto drop; if (skb_linearize(skb)) { ib_device_put(&rxe->ib_dev); goto drop; } udph = udp_hdr(skb); pkt->rxe = rxe; pkt->port_num = 1; pkt->hdr = (u8 *)(udph + 1); pkt->mask = RXE_GRH_MASK; pkt->paylen = be16_to_cpu(udph->len) - sizeof(*udph); /* remove udp header */ skb_pull(skb, sizeof(struct udphdr)); rxe_rcv(skb); return 0; drop: kfree_skb(skb); return 0; } static struct socket *rxe_setup_udp_tunnel(struct net *net, __be16 port, bool ipv6) { int err; struct socket *sock; struct udp_port_cfg udp_cfg = { }; struct udp_tunnel_sock_cfg tnl_cfg = { }; if (ipv6) { udp_cfg.family = AF_INET6; udp_cfg.ipv6_v6only = 1; } else { udp_cfg.family = AF_INET; } udp_cfg.local_udp_port = port; /* Create UDP socket */ err = udp_sock_create(net, &udp_cfg, &sock); if (err < 0) return ERR_PTR(err); tnl_cfg.encap_type = 1; tnl_cfg.encap_rcv = rxe_udp_encap_recv; /* Setup UDP tunnel */ setup_udp_tunnel_sock(net, sock, &tnl_cfg); return sock; } static void rxe_release_udp_tunnel(struct socket *sk) { if (sk) udp_tunnel_sock_release(sk); } static void prepare_udp_hdr(struct sk_buff *skb, __be16 src_port, __be16 dst_port) { struct udphdr *udph; __skb_push(skb, sizeof(*udph)); skb_reset_transport_header(skb); udph = udp_hdr(skb); udph->dest = dst_port; udph->source = src_port; udph->len = htons(skb->len); udph->check = 0; } static void prepare_ipv4_hdr(struct dst_entry *dst, struct sk_buff *skb, __be32 saddr, __be32 daddr, __u8 proto, __u8 tos, __u8 ttl, __be16 df, bool xnet) { struct iphdr *iph; skb_scrub_packet(skb, xnet); skb_clear_hash(skb); skb_dst_set(skb, dst_clone(dst)); memset(IPCB(skb), 0, sizeof(*IPCB(skb))); skb_push(skb, sizeof(struct iphdr)); skb_reset_network_header(skb); iph = ip_hdr(skb); iph->version = IPVERSION; iph->ihl = sizeof(struct iphdr) >> 2; iph->tot_len = htons(skb->len); iph->frag_off = df; iph->protocol = proto; iph->tos = tos; iph->daddr = daddr; iph->saddr = saddr; iph->ttl = ttl; __ip_select_ident(dev_net(dst->dev), iph, skb_shinfo(skb)->gso_segs ?: 1); } static void prepare_ipv6_hdr(struct dst_entry *dst, struct sk_buff *skb, struct in6_addr *saddr, struct in6_addr *daddr, __u8 proto, __u8 prio, __u8 ttl) { struct ipv6hdr *ip6h; memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); IPCB(skb)->flags &= ~(IPSKB_XFRM_TUNNEL_SIZE | IPSKB_XFRM_TRANSFORMED | IPSKB_REROUTED); skb_dst_set(skb, dst_clone(dst)); __skb_push(skb, sizeof(*ip6h)); skb_reset_network_header(skb); ip6h = ipv6_hdr(skb); ip6_flow_hdr(ip6h, prio, htonl(0)); ip6h->payload_len = htons(skb->len); ip6h->nexthdr = proto; ip6h->hop_limit = ttl; ip6h->daddr = *daddr; ip6h->saddr = *saddr; ip6h->payload_len = htons(skb->len - sizeof(*ip6h)); } static int prepare4(struct rxe_av *av, struct rxe_pkt_info *pkt, struct sk_buff *skb) { struct rxe_qp *qp = pkt->qp; struct dst_entry *dst; bool xnet = false; __be16 df = htons(IP_DF); struct in_addr *saddr = &av->sgid_addr._sockaddr_in.sin_addr; struct in_addr *daddr = &av->dgid_addr._sockaddr_in.sin_addr; dst = rxe_find_route(skb->dev, qp, av); if (!dst) { rxe_dbg_qp(qp, "Host not reachable\n"); return -EHOSTUNREACH; } prepare_udp_hdr(skb, cpu_to_be16(qp->src_port), cpu_to_be16(ROCE_V2_UDP_DPORT)); prepare_ipv4_hdr(dst, skb, saddr->s_addr, daddr->s_addr, IPPROTO_UDP, av->grh.traffic_class, av->grh.hop_limit, df, xnet); dst_release(dst); return 0; } static int prepare6(struct rxe_av *av, struct rxe_pkt_info *pkt, struct sk_buff *skb) { struct rxe_qp *qp = pkt->qp; struct dst_entry *dst; struct in6_addr *saddr = &av->sgid_addr._sockaddr_in6.sin6_addr; struct in6_addr *daddr = &av->dgid_addr._sockaddr_in6.sin6_addr; dst = rxe_find_route(skb->dev, qp, av); if (!dst) { rxe_dbg_qp(qp, "Host not reachable\n"); return -EHOSTUNREACH; } prepare_udp_hdr(skb, cpu_to_be16(qp->src_port), cpu_to_be16(ROCE_V2_UDP_DPORT)); prepare_ipv6_hdr(dst, skb, saddr, daddr, IPPROTO_UDP, av->grh.traffic_class, av->grh.hop_limit); dst_release(dst); return 0; } int rxe_prepare(struct rxe_av *av, struct rxe_pkt_info *pkt, struct sk_buff *skb) { int err = 0; if (skb->protocol == htons(ETH_P_IP)) err = prepare4(av, pkt, skb); else if (skb->protocol == htons(ETH_P_IPV6)) err = prepare6(av, pkt, skb); if (ether_addr_equal(skb->dev->dev_addr, av->dmac)) pkt->mask |= RXE_LOOPBACK_MASK; return err; } static void rxe_skb_tx_dtor(struct sk_buff *skb) { struct sock *sk = skb->sk; struct rxe_qp *qp = sk->sk_user_data; int skb_out = atomic_dec_return(&qp->skb_out); if (unlikely(qp->need_req_skb && skb_out < RXE_INFLIGHT_SKBS_PER_QP_LOW)) rxe_sched_task(&qp->req.task); rxe_put(qp); } static int rxe_send(struct sk_buff *skb, struct rxe_pkt_info *pkt) { int err; skb->destructor = rxe_skb_tx_dtor; skb->sk = pkt->qp->sk->sk; rxe_get(pkt->qp); atomic_inc(&pkt->qp->skb_out); if (skb->protocol == htons(ETH_P_IP)) { err = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); } else if (skb->protocol == htons(ETH_P_IPV6)) { err = ip6_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); } else { rxe_dbg_qp(pkt->qp, "Unknown layer 3 protocol: %d\n", skb->protocol); atomic_dec(&pkt->qp->skb_out); rxe_put(pkt->qp); kfree_skb(skb); return -EINVAL; } if (unlikely(net_xmit_eval(err))) { rxe_dbg_qp(pkt->qp, "error sending packet: %d\n", err); return -EAGAIN; } return 0; } /* fix up a send packet to match the packets * received from UDP before looping them back */ static int rxe_loopback(struct sk_buff *skb, struct rxe_pkt_info *pkt) { memcpy(SKB_TO_PKT(skb), pkt, sizeof(*pkt)); if (skb->protocol == htons(ETH_P_IP)) skb_pull(skb, sizeof(struct iphdr)); else skb_pull(skb, sizeof(struct ipv6hdr)); if (WARN_ON(!ib_device_try_get(&pkt->rxe->ib_dev))) { kfree_skb(skb); return -EIO; } /* remove udp header */ skb_pull(skb, sizeof(struct udphdr)); rxe_rcv(skb); return 0; } int rxe_xmit_packet(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct sk_buff *skb) { int err; int is_request = pkt->mask & RXE_REQ_MASK; struct rxe_dev *rxe = to_rdev(qp->ibqp.device); unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); if ((is_request && (qp_state(qp) < IB_QPS_RTS)) || (!is_request && (qp_state(qp) < IB_QPS_RTR))) { spin_unlock_irqrestore(&qp->state_lock, flags); rxe_dbg_qp(qp, "Packet dropped. QP is not in ready state\n"); goto drop; } spin_unlock_irqrestore(&qp->state_lock, flags); rxe_icrc_generate(skb, pkt); if (pkt->mask & RXE_LOOPBACK_MASK) err = rxe_loopback(skb, pkt); else err = rxe_send(skb, pkt); if (err) { rxe_counter_inc(rxe, RXE_CNT_SEND_ERR); return err; } if ((qp_type(qp) != IB_QPT_RC) && (pkt->mask & RXE_END_MASK)) { pkt->wqe->state = wqe_state_done; rxe_sched_task(&qp->comp.task); } rxe_counter_inc(rxe, RXE_CNT_SENT_PKTS); goto done; drop: kfree_skb(skb); err = 0; done: return err; } struct sk_buff *rxe_init_packet(struct rxe_dev *rxe, struct rxe_av *av, int paylen, struct rxe_pkt_info *pkt) { unsigned int hdr_len; struct sk_buff *skb = NULL; struct net_device *ndev; const struct ib_gid_attr *attr; const int port_num = 1; attr = rdma_get_gid_attr(&rxe->ib_dev, port_num, av->grh.sgid_index); if (IS_ERR(attr)) return NULL; if (av->network_type == RXE_NETWORK_TYPE_IPV4) hdr_len = ETH_HLEN + sizeof(struct udphdr) + sizeof(struct iphdr); else hdr_len = ETH_HLEN + sizeof(struct udphdr) + sizeof(struct ipv6hdr); rcu_read_lock(); ndev = rdma_read_gid_attr_ndev_rcu(attr); if (IS_ERR(ndev)) { rcu_read_unlock(); goto out; } skb = alloc_skb(paylen + hdr_len + LL_RESERVED_SPACE(ndev), GFP_ATOMIC); if (unlikely(!skb)) { rcu_read_unlock(); goto out; } skb_reserve(skb, hdr_len + LL_RESERVED_SPACE(ndev)); /* FIXME: hold reference to this netdev until life of this skb. */ skb->dev = ndev; rcu_read_unlock(); if (av->network_type == RXE_NETWORK_TYPE_IPV4) skb->protocol = htons(ETH_P_IP); else skb->protocol = htons(ETH_P_IPV6); pkt->rxe = rxe; pkt->port_num = port_num; pkt->hdr = skb_put(skb, paylen); pkt->mask |= RXE_GRH_MASK; out: rdma_put_gid_attr(attr); return skb; } /* * this is required by rxe_cfg to match rxe devices in * /sys/class/infiniband up with their underlying ethernet devices */ const char *rxe_parent_name(struct rxe_dev *rxe, unsigned int port_num) { return rxe->ndev->name; } int rxe_net_add(const char *ibdev_name, struct net_device *ndev) { int err; struct rxe_dev *rxe = NULL; rxe = ib_alloc_device(rxe_dev, ib_dev); if (!rxe) return -ENOMEM; rxe->ndev = ndev; err = rxe_add(rxe, ndev->mtu, ibdev_name); if (err) { ib_dealloc_device(&rxe->ib_dev); return err; } return 0; } static void rxe_port_event(struct rxe_dev *rxe, enum ib_event_type event) { struct ib_event ev; ev.device = &rxe->ib_dev; ev.element.port_num = 1; ev.event = event; ib_dispatch_event(&ev); } /* Caller must hold net_info_lock */ void rxe_port_up(struct rxe_dev *rxe) { struct rxe_port *port; port = &rxe->port; port->attr.state = IB_PORT_ACTIVE; rxe_port_event(rxe, IB_EVENT_PORT_ACTIVE); dev_info(&rxe->ib_dev.dev, "set active\n"); } /* Caller must hold net_info_lock */ void rxe_port_down(struct rxe_dev *rxe) { struct rxe_port *port; port = &rxe->port; port->attr.state = IB_PORT_DOWN; rxe_port_event(rxe, IB_EVENT_PORT_ERR); rxe_counter_inc(rxe, RXE_CNT_LINK_DOWNED); dev_info(&rxe->ib_dev.dev, "set down\n"); } void rxe_set_port_state(struct rxe_dev *rxe) { if (netif_running(rxe->ndev) && netif_carrier_ok(rxe->ndev)) rxe_port_up(rxe); else rxe_port_down(rxe); } static int rxe_notify(struct notifier_block *not_blk, unsigned long event, void *arg) { struct net_device *ndev = netdev_notifier_info_to_dev(arg); struct rxe_dev *rxe = rxe_get_dev_from_net(ndev); if (!rxe) return NOTIFY_OK; switch (event) { case NETDEV_UNREGISTER: ib_unregister_device_queued(&rxe->ib_dev); break; case NETDEV_UP: rxe_port_up(rxe); break; case NETDEV_DOWN: rxe_port_down(rxe); break; case NETDEV_CHANGEMTU: rxe_dbg_dev(rxe, "%s changed mtu to %d\n", ndev->name, ndev->mtu); rxe_set_mtu(rxe, ndev->mtu); break; case NETDEV_CHANGE: rxe_set_port_state(rxe); break; case NETDEV_REBOOT: case NETDEV_GOING_DOWN: case NETDEV_CHANGEADDR: case NETDEV_CHANGENAME: case NETDEV_FEAT_CHANGE: default: rxe_dbg_dev(rxe, "ignoring netdev event = %ld for %s\n", event, ndev->name); break; } ib_device_put(&rxe->ib_dev); return NOTIFY_OK; } static struct notifier_block rxe_net_notifier = { .notifier_call = rxe_notify, }; static int rxe_net_ipv4_init(void) { recv_sockets.sk4 = rxe_setup_udp_tunnel(&init_net, htons(ROCE_V2_UDP_DPORT), false); if (IS_ERR(recv_sockets.sk4)) { recv_sockets.sk4 = NULL; pr_err("Failed to create IPv4 UDP tunnel\n"); return -1; } return 0; } static int rxe_net_ipv6_init(void) { #if IS_ENABLED(CONFIG_IPV6) recv_sockets.sk6 = rxe_setup_udp_tunnel(&init_net, htons(ROCE_V2_UDP_DPORT), true); if (PTR_ERR(recv_sockets.sk6) == -EAFNOSUPPORT) { recv_sockets.sk6 = NULL; pr_warn("IPv6 is not supported, can not create a UDPv6 socket\n"); return 0; } if (IS_ERR(recv_sockets.sk6)) { recv_sockets.sk6 = NULL; pr_err("Failed to create IPv6 UDP tunnel\n"); return -1; } #endif return 0; } void rxe_net_exit(void) { rxe_release_udp_tunnel(recv_sockets.sk6); rxe_release_udp_tunnel(recv_sockets.sk4); unregister_netdevice_notifier(&rxe_net_notifier); } int rxe_net_init(void) { int err; recv_sockets.sk6 = NULL; err = rxe_net_ipv4_init(); if (err) return err; err = rxe_net_ipv6_init(); if (err) goto err_out; err = register_netdevice_notifier(&rxe_net_notifier); if (err) { pr_err("Failed to register netdev notifier\n"); goto err_out; } return 0; err_out: rxe_net_exit(); return err; }
linux-master
drivers/infiniband/sw/rxe/rxe_net.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include "rxe.h" #include "rxe_loc.h" void rxe_init_av(struct rdma_ah_attr *attr, struct rxe_av *av) { rxe_av_from_attr(rdma_ah_get_port_num(attr), av, attr); rxe_av_fill_ip_info(av, attr); memcpy(av->dmac, attr->roce.dmac, ETH_ALEN); } static int chk_attr(void *obj, struct rdma_ah_attr *attr, bool obj_is_ah) { const struct ib_global_route *grh = rdma_ah_read_grh(attr); struct rxe_port *port; struct rxe_dev *rxe; struct rxe_qp *qp; struct rxe_ah *ah; int type; if (obj_is_ah) { ah = obj; rxe = to_rdev(ah->ibah.device); } else { qp = obj; rxe = to_rdev(qp->ibqp.device); } port = &rxe->port; if (rdma_ah_get_ah_flags(attr) & IB_AH_GRH) { if (grh->sgid_index > port->attr.gid_tbl_len) { if (obj_is_ah) rxe_dbg_ah(ah, "invalid sgid index = %d\n", grh->sgid_index); else rxe_dbg_qp(qp, "invalid sgid index = %d\n", grh->sgid_index); return -EINVAL; } type = rdma_gid_attr_network_type(grh->sgid_attr); if (type < RDMA_NETWORK_IPV4 || type > RDMA_NETWORK_IPV6) { if (obj_is_ah) rxe_dbg_ah(ah, "invalid network type for rdma_rxe = %d\n", type); else rxe_dbg_qp(qp, "invalid network type for rdma_rxe = %d\n", type); return -EINVAL; } } return 0; } int rxe_av_chk_attr(struct rxe_qp *qp, struct rdma_ah_attr *attr) { return chk_attr(qp, attr, false); } int rxe_ah_chk_attr(struct rxe_ah *ah, struct rdma_ah_attr *attr) { return chk_attr(ah, attr, true); } void rxe_av_from_attr(u8 port_num, struct rxe_av *av, struct rdma_ah_attr *attr) { const struct ib_global_route *grh = rdma_ah_read_grh(attr); memset(av, 0, sizeof(*av)); memcpy(av->grh.dgid.raw, grh->dgid.raw, sizeof(grh->dgid.raw)); av->grh.flow_label = grh->flow_label; av->grh.sgid_index = grh->sgid_index; av->grh.hop_limit = grh->hop_limit; av->grh.traffic_class = grh->traffic_class; av->port_num = port_num; } void rxe_av_to_attr(struct rxe_av *av, struct rdma_ah_attr *attr) { struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); attr->type = RDMA_AH_ATTR_TYPE_ROCE; memcpy(grh->dgid.raw, av->grh.dgid.raw, sizeof(av->grh.dgid.raw)); grh->flow_label = av->grh.flow_label; grh->sgid_index = av->grh.sgid_index; grh->hop_limit = av->grh.hop_limit; grh->traffic_class = av->grh.traffic_class; rdma_ah_set_ah_flags(attr, IB_AH_GRH); rdma_ah_set_port_num(attr, av->port_num); } void rxe_av_fill_ip_info(struct rxe_av *av, struct rdma_ah_attr *attr) { const struct ib_gid_attr *sgid_attr = attr->grh.sgid_attr; int ibtype; int type; rdma_gid2ip((struct sockaddr *)&av->sgid_addr, &sgid_attr->gid); rdma_gid2ip((struct sockaddr *)&av->dgid_addr, &rdma_ah_read_grh(attr)->dgid); ibtype = rdma_gid_attr_network_type(sgid_attr); switch (ibtype) { case RDMA_NETWORK_IPV4: type = RXE_NETWORK_TYPE_IPV4; break; case RDMA_NETWORK_IPV6: type = RXE_NETWORK_TYPE_IPV6; break; default: /* not reached - checked in rxe_av_chk_attr */ type = 0; break; } av->network_type = type; } struct rxe_av *rxe_get_av(struct rxe_pkt_info *pkt, struct rxe_ah **ahp) { struct rxe_ah *ah; u32 ah_num; if (ahp) *ahp = NULL; if (!pkt || !pkt->qp) return NULL; if (qp_type(pkt->qp) == IB_QPT_RC || qp_type(pkt->qp) == IB_QPT_UC) return &pkt->qp->pri_av; if (!pkt->wqe) return NULL; ah_num = pkt->wqe->wr.wr.ud.ah_num; if (ah_num) { /* only new user provider or kernel client */ ah = rxe_pool_get_index(&pkt->rxe->ah_pool, ah_num); if (!ah) { rxe_dbg_qp(pkt->qp, "Unable to find AH matching ah_num\n"); return NULL; } if (rxe_ah_pd(ah) != pkt->qp->pd) { rxe_dbg_qp(pkt->qp, "PDs don't match for AH and QP\n"); rxe_put(ah); return NULL; } if (ahp) *ahp = ah; else rxe_put(ah); return &ah->av; } /* only old user provider for UD sends*/ return &pkt->wqe->wr.wr.ud.av; }
linux-master
drivers/infiniband/sw/rxe/rxe_av.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2017 Mellanox Technologies Ltd. All rights reserved. */ #include "rxe.h" #include "rxe_hw_counters.h" static const struct rdma_stat_desc rxe_counter_descs[] = { [RXE_CNT_SENT_PKTS].name = "sent_pkts", [RXE_CNT_RCVD_PKTS].name = "rcvd_pkts", [RXE_CNT_DUP_REQ].name = "duplicate_request", [RXE_CNT_OUT_OF_SEQ_REQ].name = "out_of_seq_request", [RXE_CNT_RCV_RNR].name = "rcvd_rnr_err", [RXE_CNT_SND_RNR].name = "send_rnr_err", [RXE_CNT_RCV_SEQ_ERR].name = "rcvd_seq_err", [RXE_CNT_COMPLETER_SCHED].name = "ack_deferred", [RXE_CNT_RETRY_EXCEEDED].name = "retry_exceeded_err", [RXE_CNT_RNR_RETRY_EXCEEDED].name = "retry_rnr_exceeded_err", [RXE_CNT_COMP_RETRY].name = "completer_retry_err", [RXE_CNT_SEND_ERR].name = "send_err", [RXE_CNT_LINK_DOWNED].name = "link_downed", [RXE_CNT_RDMA_SEND].name = "rdma_sends", [RXE_CNT_RDMA_RECV].name = "rdma_recvs", }; int rxe_ib_get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, u32 port, int index) { struct rxe_dev *dev = to_rdev(ibdev); unsigned int cnt; if (!port || !stats) return -EINVAL; for (cnt = 0; cnt < ARRAY_SIZE(rxe_counter_descs); cnt++) stats->value[cnt] = atomic64_read(&dev->stats_counters[cnt]); return ARRAY_SIZE(rxe_counter_descs); } struct rdma_hw_stats *rxe_ib_alloc_hw_port_stats(struct ib_device *ibdev, u32 port_num) { BUILD_BUG_ON(ARRAY_SIZE(rxe_counter_descs) != RXE_NUM_OF_COUNTERS); return rdma_alloc_hw_stats_struct(rxe_counter_descs, ARRAY_SIZE(rxe_counter_descs), RDMA_HW_STATS_DEFAULT_LIFESPAN); }
linux-master
drivers/infiniband/sw/rxe/rxe_hw_counters.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/vmalloc.h> #include <rdma/uverbs_ioctl.h> #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" #include "rxe_task.h" static int rxe_qp_chk_cap(struct rxe_dev *rxe, struct ib_qp_cap *cap, int has_srq) { if (cap->max_send_wr > rxe->attr.max_qp_wr) { rxe_dbg_dev(rxe, "invalid send wr = %u > %d\n", cap->max_send_wr, rxe->attr.max_qp_wr); goto err1; } if (cap->max_send_sge > rxe->attr.max_send_sge) { rxe_dbg_dev(rxe, "invalid send sge = %u > %d\n", cap->max_send_sge, rxe->attr.max_send_sge); goto err1; } if (!has_srq) { if (cap->max_recv_wr > rxe->attr.max_qp_wr) { rxe_dbg_dev(rxe, "invalid recv wr = %u > %d\n", cap->max_recv_wr, rxe->attr.max_qp_wr); goto err1; } if (cap->max_recv_sge > rxe->attr.max_recv_sge) { rxe_dbg_dev(rxe, "invalid recv sge = %u > %d\n", cap->max_recv_sge, rxe->attr.max_recv_sge); goto err1; } } if (cap->max_inline_data > rxe->max_inline_data) { rxe_dbg_dev(rxe, "invalid max inline data = %u > %d\n", cap->max_inline_data, rxe->max_inline_data); goto err1; } return 0; err1: return -EINVAL; } int rxe_qp_chk_init(struct rxe_dev *rxe, struct ib_qp_init_attr *init) { struct ib_qp_cap *cap = &init->cap; struct rxe_port *port; int port_num = init->port_num; switch (init->qp_type) { case IB_QPT_GSI: case IB_QPT_RC: case IB_QPT_UC: case IB_QPT_UD: break; default: return -EOPNOTSUPP; } if (!init->recv_cq || !init->send_cq) { rxe_dbg_dev(rxe, "missing cq\n"); goto err1; } if (rxe_qp_chk_cap(rxe, cap, !!init->srq)) goto err1; if (init->qp_type == IB_QPT_GSI) { if (!rdma_is_port_valid(&rxe->ib_dev, port_num)) { rxe_dbg_dev(rxe, "invalid port = %d\n", port_num); goto err1; } port = &rxe->port; if (init->qp_type == IB_QPT_GSI && port->qp_gsi_index) { rxe_dbg_dev(rxe, "GSI QP exists for port %d\n", port_num); goto err1; } } return 0; err1: return -EINVAL; } static int alloc_rd_atomic_resources(struct rxe_qp *qp, unsigned int n) { qp->resp.res_head = 0; qp->resp.res_tail = 0; qp->resp.resources = kcalloc(n, sizeof(struct resp_res), GFP_KERNEL); if (!qp->resp.resources) return -ENOMEM; return 0; } static void free_rd_atomic_resources(struct rxe_qp *qp) { if (qp->resp.resources) { int i; for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) { struct resp_res *res = &qp->resp.resources[i]; free_rd_atomic_resource(res); } kfree(qp->resp.resources); qp->resp.resources = NULL; } } void free_rd_atomic_resource(struct resp_res *res) { res->type = 0; } static void cleanup_rd_atomic_resources(struct rxe_qp *qp) { int i; struct resp_res *res; if (qp->resp.resources) { for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) { res = &qp->resp.resources[i]; free_rd_atomic_resource(res); } } } static void rxe_qp_init_misc(struct rxe_dev *rxe, struct rxe_qp *qp, struct ib_qp_init_attr *init) { struct rxe_port *port; u32 qpn; qp->sq_sig_type = init->sq_sig_type; qp->attr.path_mtu = 1; qp->mtu = ib_mtu_enum_to_int(qp->attr.path_mtu); qpn = qp->elem.index; port = &rxe->port; switch (init->qp_type) { case IB_QPT_GSI: qp->ibqp.qp_num = 1; port->qp_gsi_index = qpn; qp->attr.port_num = init->port_num; break; default: qp->ibqp.qp_num = qpn; break; } spin_lock_init(&qp->state_lock); spin_lock_init(&qp->sq.sq_lock); spin_lock_init(&qp->rq.producer_lock); spin_lock_init(&qp->rq.consumer_lock); skb_queue_head_init(&qp->req_pkts); skb_queue_head_init(&qp->resp_pkts); atomic_set(&qp->ssn, 0); atomic_set(&qp->skb_out, 0); } static int rxe_init_sq(struct rxe_qp *qp, struct ib_qp_init_attr *init, struct ib_udata *udata, struct rxe_create_qp_resp __user *uresp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); int wqe_size; int err; qp->sq.max_wr = init->cap.max_send_wr; wqe_size = max_t(int, init->cap.max_send_sge * sizeof(struct ib_sge), init->cap.max_inline_data); qp->sq.max_sge = wqe_size / sizeof(struct ib_sge); qp->sq.max_inline = wqe_size; wqe_size += sizeof(struct rxe_send_wqe); qp->sq.queue = rxe_queue_init(rxe, &qp->sq.max_wr, wqe_size, QUEUE_TYPE_FROM_CLIENT); if (!qp->sq.queue) { rxe_err_qp(qp, "Unable to allocate send queue"); err = -ENOMEM; goto err_out; } /* prepare info for caller to mmap send queue if user space qp */ err = do_mmap_info(rxe, uresp ? &uresp->sq_mi : NULL, udata, qp->sq.queue->buf, qp->sq.queue->buf_size, &qp->sq.queue->ip); if (err) { rxe_err_qp(qp, "do_mmap_info failed, err = %d", err); goto err_free; } /* return actual capabilities to caller which may be larger * than requested */ init->cap.max_send_wr = qp->sq.max_wr; init->cap.max_send_sge = qp->sq.max_sge; init->cap.max_inline_data = qp->sq.max_inline; return 0; err_free: vfree(qp->sq.queue->buf); kfree(qp->sq.queue); qp->sq.queue = NULL; err_out: return err; } static int rxe_qp_init_req(struct rxe_dev *rxe, struct rxe_qp *qp, struct ib_qp_init_attr *init, struct ib_udata *udata, struct rxe_create_qp_resp __user *uresp) { int err; /* if we don't finish qp create make sure queue is valid */ skb_queue_head_init(&qp->req_pkts); err = sock_create_kern(&init_net, AF_INET, SOCK_DGRAM, 0, &qp->sk); if (err < 0) return err; qp->sk->sk->sk_user_data = qp; /* pick a source UDP port number for this QP based on * the source QPN. this spreads traffic for different QPs * across different NIC RX queues (while using a single * flow for a given QP to maintain packet order). * the port number must be in the Dynamic Ports range * (0xc000 - 0xffff). */ qp->src_port = RXE_ROCE_V2_SPORT + (hash_32(qp_num(qp), 14) & 0x3fff); err = rxe_init_sq(qp, init, udata, uresp); if (err) return err; qp->req.wqe_index = queue_get_producer(qp->sq.queue, QUEUE_TYPE_FROM_CLIENT); qp->req.opcode = -1; qp->comp.opcode = -1; rxe_init_task(&qp->req.task, qp, rxe_requester); rxe_init_task(&qp->comp.task, qp, rxe_completer); qp->qp_timeout_jiffies = 0; /* Can't be set for UD/UC in modify_qp */ if (init->qp_type == IB_QPT_RC) { timer_setup(&qp->rnr_nak_timer, rnr_nak_timer, 0); timer_setup(&qp->retrans_timer, retransmit_timer, 0); } return 0; } static int rxe_init_rq(struct rxe_qp *qp, struct ib_qp_init_attr *init, struct ib_udata *udata, struct rxe_create_qp_resp __user *uresp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); int wqe_size; int err; qp->rq.max_wr = init->cap.max_recv_wr; qp->rq.max_sge = init->cap.max_recv_sge; wqe_size = sizeof(struct rxe_recv_wqe) + qp->rq.max_sge*sizeof(struct ib_sge); qp->rq.queue = rxe_queue_init(rxe, &qp->rq.max_wr, wqe_size, QUEUE_TYPE_FROM_CLIENT); if (!qp->rq.queue) { rxe_err_qp(qp, "Unable to allocate recv queue"); err = -ENOMEM; goto err_out; } /* prepare info for caller to mmap recv queue if user space qp */ err = do_mmap_info(rxe, uresp ? &uresp->rq_mi : NULL, udata, qp->rq.queue->buf, qp->rq.queue->buf_size, &qp->rq.queue->ip); if (err) { rxe_err_qp(qp, "do_mmap_info failed, err = %d", err); goto err_free; } /* return actual capabilities to caller which may be larger * than requested */ init->cap.max_recv_wr = qp->rq.max_wr; return 0; err_free: vfree(qp->rq.queue->buf); kfree(qp->rq.queue); qp->rq.queue = NULL; err_out: return err; } static int rxe_qp_init_resp(struct rxe_dev *rxe, struct rxe_qp *qp, struct ib_qp_init_attr *init, struct ib_udata *udata, struct rxe_create_qp_resp __user *uresp) { int err; /* if we don't finish qp create make sure queue is valid */ skb_queue_head_init(&qp->resp_pkts); if (!qp->srq) { err = rxe_init_rq(qp, init, udata, uresp); if (err) return err; } rxe_init_task(&qp->resp.task, qp, rxe_responder); qp->resp.opcode = OPCODE_NONE; qp->resp.msn = 0; return 0; } /* called by the create qp verb */ int rxe_qp_from_init(struct rxe_dev *rxe, struct rxe_qp *qp, struct rxe_pd *pd, struct ib_qp_init_attr *init, struct rxe_create_qp_resp __user *uresp, struct ib_pd *ibpd, struct ib_udata *udata) { int err; struct rxe_cq *rcq = to_rcq(init->recv_cq); struct rxe_cq *scq = to_rcq(init->send_cq); struct rxe_srq *srq = init->srq ? to_rsrq(init->srq) : NULL; unsigned long flags; rxe_get(pd); rxe_get(rcq); rxe_get(scq); if (srq) rxe_get(srq); qp->pd = pd; qp->rcq = rcq; qp->scq = scq; qp->srq = srq; atomic_inc(&rcq->num_wq); atomic_inc(&scq->num_wq); rxe_qp_init_misc(rxe, qp, init); err = rxe_qp_init_req(rxe, qp, init, udata, uresp); if (err) goto err1; err = rxe_qp_init_resp(rxe, qp, init, udata, uresp); if (err) goto err2; spin_lock_irqsave(&qp->state_lock, flags); qp->attr.qp_state = IB_QPS_RESET; qp->valid = 1; spin_unlock_irqrestore(&qp->state_lock, flags); return 0; err2: rxe_queue_cleanup(qp->sq.queue); qp->sq.queue = NULL; err1: atomic_dec(&rcq->num_wq); atomic_dec(&scq->num_wq); qp->pd = NULL; qp->rcq = NULL; qp->scq = NULL; qp->srq = NULL; if (srq) rxe_put(srq); rxe_put(scq); rxe_put(rcq); rxe_put(pd); return err; } /* called by the query qp verb */ int rxe_qp_to_init(struct rxe_qp *qp, struct ib_qp_init_attr *init) { init->event_handler = qp->ibqp.event_handler; init->qp_context = qp->ibqp.qp_context; init->send_cq = qp->ibqp.send_cq; init->recv_cq = qp->ibqp.recv_cq; init->srq = qp->ibqp.srq; init->cap.max_send_wr = qp->sq.max_wr; init->cap.max_send_sge = qp->sq.max_sge; init->cap.max_inline_data = qp->sq.max_inline; if (!qp->srq) { init->cap.max_recv_wr = qp->rq.max_wr; init->cap.max_recv_sge = qp->rq.max_sge; } init->sq_sig_type = qp->sq_sig_type; init->qp_type = qp->ibqp.qp_type; init->port_num = 1; return 0; } int rxe_qp_chk_attr(struct rxe_dev *rxe, struct rxe_qp *qp, struct ib_qp_attr *attr, int mask) { if (mask & IB_QP_PORT) { if (!rdma_is_port_valid(&rxe->ib_dev, attr->port_num)) { rxe_dbg_qp(qp, "invalid port %d\n", attr->port_num); goto err1; } } if (mask & IB_QP_CAP && rxe_qp_chk_cap(rxe, &attr->cap, !!qp->srq)) goto err1; if (mask & IB_QP_ACCESS_FLAGS) { if (!(qp_type(qp) == IB_QPT_RC || qp_type(qp) == IB_QPT_UC)) goto err1; if (attr->qp_access_flags & ~RXE_ACCESS_SUPPORTED_QP) goto err1; } if (mask & IB_QP_AV && rxe_av_chk_attr(qp, &attr->ah_attr)) goto err1; if (mask & IB_QP_ALT_PATH) { if (rxe_av_chk_attr(qp, &attr->alt_ah_attr)) goto err1; if (!rdma_is_port_valid(&rxe->ib_dev, attr->alt_port_num)) { rxe_dbg_qp(qp, "invalid alt port %d\n", attr->alt_port_num); goto err1; } if (attr->alt_timeout > 31) { rxe_dbg_qp(qp, "invalid alt timeout %d > 31\n", attr->alt_timeout); goto err1; } } if (mask & IB_QP_PATH_MTU) { struct rxe_port *port = &rxe->port; enum ib_mtu max_mtu = port->attr.max_mtu; enum ib_mtu mtu = attr->path_mtu; if (mtu > max_mtu) { rxe_dbg_qp(qp, "invalid mtu (%d) > (%d)\n", ib_mtu_enum_to_int(mtu), ib_mtu_enum_to_int(max_mtu)); goto err1; } } if (mask & IB_QP_MAX_QP_RD_ATOMIC) { if (attr->max_rd_atomic > rxe->attr.max_qp_rd_atom) { rxe_dbg_qp(qp, "invalid max_rd_atomic %d > %d\n", attr->max_rd_atomic, rxe->attr.max_qp_rd_atom); goto err1; } } if (mask & IB_QP_TIMEOUT) { if (attr->timeout > 31) { rxe_dbg_qp(qp, "invalid timeout %d > 31\n", attr->timeout); goto err1; } } return 0; err1: return -EINVAL; } /* move the qp to the reset state */ static void rxe_qp_reset(struct rxe_qp *qp) { /* stop tasks from running */ rxe_disable_task(&qp->resp.task); rxe_disable_task(&qp->comp.task); rxe_disable_task(&qp->req.task); /* drain work and packet queuesc */ rxe_requester(qp); rxe_completer(qp); rxe_responder(qp); if (qp->rq.queue) rxe_queue_reset(qp->rq.queue); if (qp->sq.queue) rxe_queue_reset(qp->sq.queue); /* cleanup attributes */ atomic_set(&qp->ssn, 0); qp->req.opcode = -1; qp->req.need_retry = 0; qp->req.wait_for_rnr_timer = 0; qp->req.noack_pkts = 0; qp->resp.msn = 0; qp->resp.opcode = -1; qp->resp.drop_msg = 0; qp->resp.goto_error = 0; qp->resp.sent_psn_nak = 0; if (qp->resp.mr) { rxe_put(qp->resp.mr); qp->resp.mr = NULL; } cleanup_rd_atomic_resources(qp); /* reenable tasks */ rxe_enable_task(&qp->resp.task); rxe_enable_task(&qp->comp.task); rxe_enable_task(&qp->req.task); } /* move the qp to the error state */ void rxe_qp_error(struct rxe_qp *qp) { unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); qp->attr.qp_state = IB_QPS_ERR; /* drain work and packet queues */ rxe_sched_task(&qp->resp.task); rxe_sched_task(&qp->comp.task); rxe_sched_task(&qp->req.task); spin_unlock_irqrestore(&qp->state_lock, flags); } static void rxe_qp_sqd(struct rxe_qp *qp, struct ib_qp_attr *attr, int mask) { unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); qp->attr.sq_draining = 1; rxe_sched_task(&qp->comp.task); rxe_sched_task(&qp->req.task); spin_unlock_irqrestore(&qp->state_lock, flags); } /* caller should hold qp->state_lock */ static int __qp_chk_state(struct rxe_qp *qp, struct ib_qp_attr *attr, int mask) { enum ib_qp_state cur_state; enum ib_qp_state new_state; cur_state = (mask & IB_QP_CUR_STATE) ? attr->cur_qp_state : qp->attr.qp_state; new_state = (mask & IB_QP_STATE) ? attr->qp_state : cur_state; if (!ib_modify_qp_is_ok(cur_state, new_state, qp_type(qp), mask)) return -EINVAL; if (mask & IB_QP_STATE && cur_state == IB_QPS_SQD) { if (qp->attr.sq_draining && new_state != IB_QPS_ERR) return -EINVAL; } return 0; } static const char *const qps2str[] = { [IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR", [IB_QPS_RTS] = "RTS", [IB_QPS_SQD] = "SQD", [IB_QPS_SQE] = "SQE", [IB_QPS_ERR] = "ERR", }; /* called by the modify qp verb */ int rxe_qp_from_attr(struct rxe_qp *qp, struct ib_qp_attr *attr, int mask, struct ib_udata *udata) { int err; if (mask & IB_QP_CUR_STATE) qp->attr.cur_qp_state = attr->qp_state; if (mask & IB_QP_STATE) { unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); err = __qp_chk_state(qp, attr, mask); if (!err) { qp->attr.qp_state = attr->qp_state; rxe_dbg_qp(qp, "state -> %s\n", qps2str[attr->qp_state]); } spin_unlock_irqrestore(&qp->state_lock, flags); if (err) return err; switch (attr->qp_state) { case IB_QPS_RESET: rxe_qp_reset(qp); break; case IB_QPS_SQD: rxe_qp_sqd(qp, attr, mask); break; case IB_QPS_ERR: rxe_qp_error(qp); break; default: break; } } if (mask & IB_QP_MAX_QP_RD_ATOMIC) { int max_rd_atomic = attr->max_rd_atomic ? roundup_pow_of_two(attr->max_rd_atomic) : 0; qp->attr.max_rd_atomic = max_rd_atomic; atomic_set(&qp->req.rd_atomic, max_rd_atomic); } if (mask & IB_QP_MAX_DEST_RD_ATOMIC) { int max_dest_rd_atomic = attr->max_dest_rd_atomic ? roundup_pow_of_two(attr->max_dest_rd_atomic) : 0; qp->attr.max_dest_rd_atomic = max_dest_rd_atomic; free_rd_atomic_resources(qp); err = alloc_rd_atomic_resources(qp, max_dest_rd_atomic); if (err) return err; } if (mask & IB_QP_EN_SQD_ASYNC_NOTIFY) qp->attr.en_sqd_async_notify = attr->en_sqd_async_notify; if (mask & IB_QP_ACCESS_FLAGS) qp->attr.qp_access_flags = attr->qp_access_flags; if (mask & IB_QP_PKEY_INDEX) qp->attr.pkey_index = attr->pkey_index; if (mask & IB_QP_PORT) qp->attr.port_num = attr->port_num; if (mask & IB_QP_QKEY) qp->attr.qkey = attr->qkey; if (mask & IB_QP_AV) rxe_init_av(&attr->ah_attr, &qp->pri_av); if (mask & IB_QP_ALT_PATH) { rxe_init_av(&attr->alt_ah_attr, &qp->alt_av); qp->attr.alt_port_num = attr->alt_port_num; qp->attr.alt_pkey_index = attr->alt_pkey_index; qp->attr.alt_timeout = attr->alt_timeout; } if (mask & IB_QP_PATH_MTU) { qp->attr.path_mtu = attr->path_mtu; qp->mtu = ib_mtu_enum_to_int(attr->path_mtu); } if (mask & IB_QP_TIMEOUT) { qp->attr.timeout = attr->timeout; if (attr->timeout == 0) { qp->qp_timeout_jiffies = 0; } else { /* According to the spec, timeout = 4.096 * 2 ^ attr->timeout [us] */ int j = nsecs_to_jiffies(4096ULL << attr->timeout); qp->qp_timeout_jiffies = j ? j : 1; } } if (mask & IB_QP_RETRY_CNT) { qp->attr.retry_cnt = attr->retry_cnt; qp->comp.retry_cnt = attr->retry_cnt; rxe_dbg_qp(qp, "set retry count = %d\n", attr->retry_cnt); } if (mask & IB_QP_RNR_RETRY) { qp->attr.rnr_retry = attr->rnr_retry; qp->comp.rnr_retry = attr->rnr_retry; rxe_dbg_qp(qp, "set rnr retry count = %d\n", attr->rnr_retry); } if (mask & IB_QP_RQ_PSN) { qp->attr.rq_psn = (attr->rq_psn & BTH_PSN_MASK); qp->resp.psn = qp->attr.rq_psn; rxe_dbg_qp(qp, "set resp psn = 0x%x\n", qp->resp.psn); } if (mask & IB_QP_MIN_RNR_TIMER) { qp->attr.min_rnr_timer = attr->min_rnr_timer; rxe_dbg_qp(qp, "set min rnr timer = 0x%x\n", attr->min_rnr_timer); } if (mask & IB_QP_SQ_PSN) { qp->attr.sq_psn = (attr->sq_psn & BTH_PSN_MASK); qp->req.psn = qp->attr.sq_psn; qp->comp.psn = qp->attr.sq_psn; rxe_dbg_qp(qp, "set req psn = 0x%x\n", qp->req.psn); } if (mask & IB_QP_PATH_MIG_STATE) qp->attr.path_mig_state = attr->path_mig_state; if (mask & IB_QP_DEST_QPN) qp->attr.dest_qp_num = attr->dest_qp_num; return 0; } /* called by the query qp verb */ int rxe_qp_to_attr(struct rxe_qp *qp, struct ib_qp_attr *attr, int mask) { unsigned long flags; *attr = qp->attr; attr->rq_psn = qp->resp.psn; attr->sq_psn = qp->req.psn; attr->cap.max_send_wr = qp->sq.max_wr; attr->cap.max_send_sge = qp->sq.max_sge; attr->cap.max_inline_data = qp->sq.max_inline; if (!qp->srq) { attr->cap.max_recv_wr = qp->rq.max_wr; attr->cap.max_recv_sge = qp->rq.max_sge; } rxe_av_to_attr(&qp->pri_av, &attr->ah_attr); rxe_av_to_attr(&qp->alt_av, &attr->alt_ah_attr); /* Applications that get this state typically spin on it. * Yield the processor */ spin_lock_irqsave(&qp->state_lock, flags); if (qp->attr.sq_draining) { spin_unlock_irqrestore(&qp->state_lock, flags); cond_resched(); } else { spin_unlock_irqrestore(&qp->state_lock, flags); } return 0; } int rxe_qp_chk_destroy(struct rxe_qp *qp) { /* See IBA o10-2.2.3 * An attempt to destroy a QP while attached to a mcast group * will fail immediately. */ if (atomic_read(&qp->mcg_num)) { rxe_dbg_qp(qp, "Attempt to destroy while attached to multicast group\n"); return -EBUSY; } return 0; } /* called when the last reference to the qp is dropped */ static void rxe_qp_do_cleanup(struct work_struct *work) { struct rxe_qp *qp = container_of(work, typeof(*qp), cleanup_work.work); unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); qp->valid = 0; spin_unlock_irqrestore(&qp->state_lock, flags); qp->qp_timeout_jiffies = 0; if (qp_type(qp) == IB_QPT_RC) { del_timer_sync(&qp->retrans_timer); del_timer_sync(&qp->rnr_nak_timer); } if (qp->resp.task.func) rxe_cleanup_task(&qp->resp.task); if (qp->req.task.func) rxe_cleanup_task(&qp->req.task); if (qp->comp.task.func) rxe_cleanup_task(&qp->comp.task); /* flush out any receive wr's or pending requests */ rxe_requester(qp); rxe_completer(qp); rxe_responder(qp); if (qp->sq.queue) rxe_queue_cleanup(qp->sq.queue); if (qp->srq) rxe_put(qp->srq); if (qp->rq.queue) rxe_queue_cleanup(qp->rq.queue); if (qp->scq) { atomic_dec(&qp->scq->num_wq); rxe_put(qp->scq); } if (qp->rcq) { atomic_dec(&qp->rcq->num_wq); rxe_put(qp->rcq); } if (qp->pd) rxe_put(qp->pd); if (qp->resp.mr) rxe_put(qp->resp.mr); free_rd_atomic_resources(qp); if (qp->sk) { if (qp_type(qp) == IB_QPT_RC) sk_dst_reset(qp->sk->sk); kernel_sock_shutdown(qp->sk, SHUT_RDWR); sock_release(qp->sk); } } /* called when the last reference to the qp is dropped */ void rxe_qp_cleanup(struct rxe_pool_elem *elem) { struct rxe_qp *qp = container_of(elem, typeof(*qp), elem); execute_in_process_context(rxe_qp_do_cleanup, &qp->cleanup_work); }
linux-master
drivers/infiniband/sw/rxe/rxe_qp.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/skbuff.h> #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" #include "rxe_task.h" enum comp_state { COMPST_GET_ACK, COMPST_GET_WQE, COMPST_COMP_WQE, COMPST_COMP_ACK, COMPST_CHECK_PSN, COMPST_CHECK_ACK, COMPST_READ, COMPST_ATOMIC, COMPST_WRITE_SEND, COMPST_UPDATE_COMP, COMPST_ERROR_RETRY, COMPST_RNR_RETRY, COMPST_ERROR, COMPST_EXIT, /* We have an issue, and we want to rerun the completer */ COMPST_DONE, /* The completer finished successflly */ }; static char *comp_state_name[] = { [COMPST_GET_ACK] = "GET ACK", [COMPST_GET_WQE] = "GET WQE", [COMPST_COMP_WQE] = "COMP WQE", [COMPST_COMP_ACK] = "COMP ACK", [COMPST_CHECK_PSN] = "CHECK PSN", [COMPST_CHECK_ACK] = "CHECK ACK", [COMPST_READ] = "READ", [COMPST_ATOMIC] = "ATOMIC", [COMPST_WRITE_SEND] = "WRITE/SEND", [COMPST_UPDATE_COMP] = "UPDATE COMP", [COMPST_ERROR_RETRY] = "ERROR RETRY", [COMPST_RNR_RETRY] = "RNR RETRY", [COMPST_ERROR] = "ERROR", [COMPST_EXIT] = "EXIT", [COMPST_DONE] = "DONE", }; static unsigned long rnrnak_usec[32] = { [IB_RNR_TIMER_655_36] = 655360, [IB_RNR_TIMER_000_01] = 10, [IB_RNR_TIMER_000_02] = 20, [IB_RNR_TIMER_000_03] = 30, [IB_RNR_TIMER_000_04] = 40, [IB_RNR_TIMER_000_06] = 60, [IB_RNR_TIMER_000_08] = 80, [IB_RNR_TIMER_000_12] = 120, [IB_RNR_TIMER_000_16] = 160, [IB_RNR_TIMER_000_24] = 240, [IB_RNR_TIMER_000_32] = 320, [IB_RNR_TIMER_000_48] = 480, [IB_RNR_TIMER_000_64] = 640, [IB_RNR_TIMER_000_96] = 960, [IB_RNR_TIMER_001_28] = 1280, [IB_RNR_TIMER_001_92] = 1920, [IB_RNR_TIMER_002_56] = 2560, [IB_RNR_TIMER_003_84] = 3840, [IB_RNR_TIMER_005_12] = 5120, [IB_RNR_TIMER_007_68] = 7680, [IB_RNR_TIMER_010_24] = 10240, [IB_RNR_TIMER_015_36] = 15360, [IB_RNR_TIMER_020_48] = 20480, [IB_RNR_TIMER_030_72] = 30720, [IB_RNR_TIMER_040_96] = 40960, [IB_RNR_TIMER_061_44] = 61410, [IB_RNR_TIMER_081_92] = 81920, [IB_RNR_TIMER_122_88] = 122880, [IB_RNR_TIMER_163_84] = 163840, [IB_RNR_TIMER_245_76] = 245760, [IB_RNR_TIMER_327_68] = 327680, [IB_RNR_TIMER_491_52] = 491520, }; static inline unsigned long rnrnak_jiffies(u8 timeout) { return max_t(unsigned long, usecs_to_jiffies(rnrnak_usec[timeout]), 1); } static enum ib_wc_opcode wr_to_wc_opcode(enum ib_wr_opcode opcode) { switch (opcode) { case IB_WR_RDMA_WRITE: return IB_WC_RDMA_WRITE; case IB_WR_RDMA_WRITE_WITH_IMM: return IB_WC_RDMA_WRITE; case IB_WR_SEND: return IB_WC_SEND; case IB_WR_SEND_WITH_IMM: return IB_WC_SEND; case IB_WR_RDMA_READ: return IB_WC_RDMA_READ; case IB_WR_ATOMIC_CMP_AND_SWP: return IB_WC_COMP_SWAP; case IB_WR_ATOMIC_FETCH_AND_ADD: return IB_WC_FETCH_ADD; case IB_WR_LSO: return IB_WC_LSO; case IB_WR_SEND_WITH_INV: return IB_WC_SEND; case IB_WR_RDMA_READ_WITH_INV: return IB_WC_RDMA_READ; case IB_WR_LOCAL_INV: return IB_WC_LOCAL_INV; case IB_WR_REG_MR: return IB_WC_REG_MR; case IB_WR_BIND_MW: return IB_WC_BIND_MW; case IB_WR_ATOMIC_WRITE: return IB_WC_ATOMIC_WRITE; case IB_WR_FLUSH: return IB_WC_FLUSH; default: return 0xff; } } void retransmit_timer(struct timer_list *t) { struct rxe_qp *qp = from_timer(qp, t, retrans_timer); unsigned long flags; rxe_dbg_qp(qp, "retransmit timer fired\n"); spin_lock_irqsave(&qp->state_lock, flags); if (qp->valid) { qp->comp.timeout = 1; rxe_sched_task(&qp->comp.task); } spin_unlock_irqrestore(&qp->state_lock, flags); } void rxe_comp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb) { int must_sched; skb_queue_tail(&qp->resp_pkts, skb); must_sched = skb_queue_len(&qp->resp_pkts) > 1; if (must_sched != 0) rxe_counter_inc(SKB_TO_PKT(skb)->rxe, RXE_CNT_COMPLETER_SCHED); if (must_sched) rxe_sched_task(&qp->comp.task); else rxe_run_task(&qp->comp.task); } static inline enum comp_state get_wqe(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct rxe_send_wqe **wqe_p) { struct rxe_send_wqe *wqe; /* we come here whether or not we found a response packet to see if * there are any posted WQEs */ wqe = queue_head(qp->sq.queue, QUEUE_TYPE_FROM_CLIENT); *wqe_p = wqe; /* no WQE or requester has not started it yet */ if (!wqe || wqe->state == wqe_state_posted) return pkt ? COMPST_DONE : COMPST_EXIT; /* WQE does not require an ack */ if (wqe->state == wqe_state_done) return COMPST_COMP_WQE; /* WQE caused an error */ if (wqe->state == wqe_state_error) return COMPST_ERROR; /* we have a WQE, if we also have an ack check its PSN */ return pkt ? COMPST_CHECK_PSN : COMPST_EXIT; } static inline void reset_retry_counters(struct rxe_qp *qp) { qp->comp.retry_cnt = qp->attr.retry_cnt; qp->comp.rnr_retry = qp->attr.rnr_retry; qp->comp.started_retry = 0; } static inline enum comp_state check_psn(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct rxe_send_wqe *wqe) { s32 diff; /* check to see if response is past the oldest WQE. if it is, complete * send/write or error read/atomic */ diff = psn_compare(pkt->psn, wqe->last_psn); if (diff > 0) { if (wqe->state == wqe_state_pending) { if (wqe->mask & WR_ATOMIC_OR_READ_MASK) return COMPST_ERROR_RETRY; reset_retry_counters(qp); return COMPST_COMP_WQE; } else { return COMPST_DONE; } } /* compare response packet to expected response */ diff = psn_compare(pkt->psn, qp->comp.psn); if (diff < 0) { /* response is most likely a retried packet if it matches an * uncompleted WQE go complete it else ignore it */ if (pkt->psn == wqe->last_psn) return COMPST_COMP_ACK; else if (pkt->opcode == IB_OPCODE_RC_ACKNOWLEDGE && (qp->comp.opcode == IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST || qp->comp.opcode == IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE)) return COMPST_CHECK_ACK; else return COMPST_DONE; } else if ((diff > 0) && (wqe->mask & WR_ATOMIC_OR_READ_MASK)) { return COMPST_DONE; } else { return COMPST_CHECK_ACK; } } static inline enum comp_state check_ack(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct rxe_send_wqe *wqe) { unsigned int mask = pkt->mask; u8 syn; struct rxe_dev *rxe = to_rdev(qp->ibqp.device); /* Check the sequence only */ switch (qp->comp.opcode) { case -1: /* Will catch all *_ONLY cases. */ if (!(mask & RXE_START_MASK)) return COMPST_ERROR; break; case IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST: case IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE: /* Check NAK code to handle a remote error */ if (pkt->opcode == IB_OPCODE_RC_ACKNOWLEDGE) break; if (pkt->opcode != IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE && pkt->opcode != IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST) { /* read retries of partial data may restart from * read response first or response only. */ if ((pkt->psn == wqe->first_psn && pkt->opcode == IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST) || (wqe->first_psn == wqe->last_psn && pkt->opcode == IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY)) break; return COMPST_ERROR; } break; default: WARN_ON_ONCE(1); } /* Check operation validity. */ switch (pkt->opcode) { case IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST: case IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST: case IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY: syn = aeth_syn(pkt); if ((syn & AETH_TYPE_MASK) != AETH_ACK) return COMPST_ERROR; if (wqe->wr.opcode == IB_WR_ATOMIC_WRITE) return COMPST_WRITE_SEND; fallthrough; /* (IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE doesn't have an AETH) */ case IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE: if (wqe->wr.opcode != IB_WR_RDMA_READ && wqe->wr.opcode != IB_WR_RDMA_READ_WITH_INV && wqe->wr.opcode != IB_WR_FLUSH) { wqe->status = IB_WC_FATAL_ERR; return COMPST_ERROR; } reset_retry_counters(qp); return COMPST_READ; case IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE: syn = aeth_syn(pkt); if ((syn & AETH_TYPE_MASK) != AETH_ACK) return COMPST_ERROR; if (wqe->wr.opcode != IB_WR_ATOMIC_CMP_AND_SWP && wqe->wr.opcode != IB_WR_ATOMIC_FETCH_AND_ADD) return COMPST_ERROR; reset_retry_counters(qp); return COMPST_ATOMIC; case IB_OPCODE_RC_ACKNOWLEDGE: syn = aeth_syn(pkt); switch (syn & AETH_TYPE_MASK) { case AETH_ACK: reset_retry_counters(qp); return COMPST_WRITE_SEND; case AETH_RNR_NAK: rxe_counter_inc(rxe, RXE_CNT_RCV_RNR); return COMPST_RNR_RETRY; case AETH_NAK: switch (syn) { case AETH_NAK_PSN_SEQ_ERROR: /* a nak implicitly acks all packets with psns * before */ if (psn_compare(pkt->psn, qp->comp.psn) > 0) { rxe_counter_inc(rxe, RXE_CNT_RCV_SEQ_ERR); qp->comp.psn = pkt->psn; if (qp->req.wait_psn) { qp->req.wait_psn = 0; rxe_sched_task(&qp->req.task); } } return COMPST_ERROR_RETRY; case AETH_NAK_INVALID_REQ: wqe->status = IB_WC_REM_INV_REQ_ERR; return COMPST_ERROR; case AETH_NAK_REM_ACC_ERR: wqe->status = IB_WC_REM_ACCESS_ERR; return COMPST_ERROR; case AETH_NAK_REM_OP_ERR: wqe->status = IB_WC_REM_OP_ERR; return COMPST_ERROR; default: rxe_dbg_qp(qp, "unexpected nak %x\n", syn); wqe->status = IB_WC_REM_OP_ERR; return COMPST_ERROR; } default: return COMPST_ERROR; } break; default: rxe_dbg_qp(qp, "unexpected opcode\n"); } return COMPST_ERROR; } static inline enum comp_state do_read(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct rxe_send_wqe *wqe) { int ret; ret = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &wqe->dma, payload_addr(pkt), payload_size(pkt), RXE_TO_MR_OBJ); if (ret) { wqe->status = IB_WC_LOC_PROT_ERR; return COMPST_ERROR; } if (wqe->dma.resid == 0 && (pkt->mask & RXE_END_MASK)) return COMPST_COMP_ACK; return COMPST_UPDATE_COMP; } static inline enum comp_state do_atomic(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct rxe_send_wqe *wqe) { int ret; u64 atomic_orig = atmack_orig(pkt); ret = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &wqe->dma, &atomic_orig, sizeof(u64), RXE_TO_MR_OBJ); if (ret) { wqe->status = IB_WC_LOC_PROT_ERR; return COMPST_ERROR; } return COMPST_COMP_ACK; } static void make_send_cqe(struct rxe_qp *qp, struct rxe_send_wqe *wqe, struct rxe_cqe *cqe) { struct ib_wc *wc = &cqe->ibwc; struct ib_uverbs_wc *uwc = &cqe->uibwc; memset(cqe, 0, sizeof(*cqe)); if (!qp->is_user) { wc->wr_id = wqe->wr.wr_id; wc->status = wqe->status; wc->qp = &qp->ibqp; } else { uwc->wr_id = wqe->wr.wr_id; uwc->status = wqe->status; uwc->qp_num = qp->ibqp.qp_num; } if (wqe->status == IB_WC_SUCCESS) { if (!qp->is_user) { wc->opcode = wr_to_wc_opcode(wqe->wr.opcode); if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM || wqe->wr.opcode == IB_WR_SEND_WITH_IMM) wc->wc_flags = IB_WC_WITH_IMM; wc->byte_len = wqe->dma.length; } else { uwc->opcode = wr_to_wc_opcode(wqe->wr.opcode); if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM || wqe->wr.opcode == IB_WR_SEND_WITH_IMM) uwc->wc_flags = IB_WC_WITH_IMM; uwc->byte_len = wqe->dma.length; } } else { if (wqe->status != IB_WC_WR_FLUSH_ERR) rxe_err_qp(qp, "non-flush error status = %d", wqe->status); } } /* * IBA Spec. Section 10.7.3.1 SIGNALED COMPLETIONS * ---------8<---------8<------------- * ...Note that if a completion error occurs, a Work Completion * will always be generated, even if the signaling * indicator requests an Unsignaled Completion. * ---------8<---------8<------------- */ static void do_complete(struct rxe_qp *qp, struct rxe_send_wqe *wqe) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_cqe cqe; bool post; /* do we need to post a completion */ post = ((qp->sq_sig_type == IB_SIGNAL_ALL_WR) || (wqe->wr.send_flags & IB_SEND_SIGNALED) || wqe->status != IB_WC_SUCCESS); if (post) make_send_cqe(qp, wqe, &cqe); queue_advance_consumer(qp->sq.queue, QUEUE_TYPE_FROM_CLIENT); if (post) rxe_cq_post(qp->scq, &cqe, 0); if (wqe->wr.opcode == IB_WR_SEND || wqe->wr.opcode == IB_WR_SEND_WITH_IMM || wqe->wr.opcode == IB_WR_SEND_WITH_INV) rxe_counter_inc(rxe, RXE_CNT_RDMA_SEND); /* * we completed something so let req run again * if it is trying to fence */ if (qp->req.wait_fence) { qp->req.wait_fence = 0; rxe_sched_task(&qp->req.task); } } static void comp_check_sq_drain_done(struct rxe_qp *qp) { unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); if (unlikely(qp_state(qp) == IB_QPS_SQD)) { if (qp->attr.sq_draining && qp->comp.psn == qp->req.psn) { qp->attr.sq_draining = 0; spin_unlock_irqrestore(&qp->state_lock, flags); if (qp->ibqp.event_handler) { struct ib_event ev; ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_SQ_DRAINED; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } return; } } spin_unlock_irqrestore(&qp->state_lock, flags); } static inline enum comp_state complete_ack(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct rxe_send_wqe *wqe) { if (wqe->has_rd_atomic) { wqe->has_rd_atomic = 0; atomic_inc(&qp->req.rd_atomic); if (qp->req.need_rd_atomic) { qp->comp.timeout_retry = 0; qp->req.need_rd_atomic = 0; rxe_sched_task(&qp->req.task); } } comp_check_sq_drain_done(qp); do_complete(qp, wqe); if (psn_compare(pkt->psn, qp->comp.psn) >= 0) return COMPST_UPDATE_COMP; else return COMPST_DONE; } static inline enum comp_state complete_wqe(struct rxe_qp *qp, struct rxe_pkt_info *pkt, struct rxe_send_wqe *wqe) { if (pkt && wqe->state == wqe_state_pending) { if (psn_compare(wqe->last_psn, qp->comp.psn) >= 0) { qp->comp.psn = (wqe->last_psn + 1) & BTH_PSN_MASK; qp->comp.opcode = -1; } if (qp->req.wait_psn) { qp->req.wait_psn = 0; rxe_sched_task(&qp->req.task); } } do_complete(qp, wqe); return COMPST_GET_WQE; } /* drain incoming response packet queue */ static void drain_resp_pkts(struct rxe_qp *qp) { struct sk_buff *skb; while ((skb = skb_dequeue(&qp->resp_pkts))) { rxe_put(qp); kfree_skb(skb); ib_device_put(qp->ibqp.device); } } /* complete send wqe with flush error */ static int flush_send_wqe(struct rxe_qp *qp, struct rxe_send_wqe *wqe) { struct rxe_cqe cqe = {}; struct ib_wc *wc = &cqe.ibwc; struct ib_uverbs_wc *uwc = &cqe.uibwc; int err; if (qp->is_user) { uwc->wr_id = wqe->wr.wr_id; uwc->status = IB_WC_WR_FLUSH_ERR; uwc->qp_num = qp->ibqp.qp_num; } else { wc->wr_id = wqe->wr.wr_id; wc->status = IB_WC_WR_FLUSH_ERR; wc->qp = &qp->ibqp; } err = rxe_cq_post(qp->scq, &cqe, 0); if (err) rxe_dbg_cq(qp->scq, "post cq failed, err = %d", err); return err; } /* drain and optionally complete the send queue * if unable to complete a wqe, i.e. cq is full, stop * completing and flush the remaining wqes */ static void flush_send_queue(struct rxe_qp *qp, bool notify) { struct rxe_send_wqe *wqe; struct rxe_queue *q = qp->sq.queue; int err; /* send queue never got created. nothing to do. */ if (!qp->sq.queue) return; while ((wqe = queue_head(q, q->type))) { if (notify) { err = flush_send_wqe(qp, wqe); if (err) notify = 0; } queue_advance_consumer(q, q->type); } } static void free_pkt(struct rxe_pkt_info *pkt) { struct sk_buff *skb = PKT_TO_SKB(pkt); struct rxe_qp *qp = pkt->qp; struct ib_device *dev = qp->ibqp.device; kfree_skb(skb); rxe_put(qp); ib_device_put(dev); } /* reset the retry timer if * - QP is type RC * - there is a packet sent by the requester that * might be acked (we still might get spurious * timeouts but try to keep them as few as possible) * - the timeout parameter is set * - the QP is alive */ static void reset_retry_timer(struct rxe_qp *qp) { unsigned long flags; if (qp_type(qp) == IB_QPT_RC && qp->qp_timeout_jiffies) { spin_lock_irqsave(&qp->state_lock, flags); if (qp_state(qp) >= IB_QPS_RTS && psn_compare(qp->req.psn, qp->comp.psn) > 0) mod_timer(&qp->retrans_timer, jiffies + qp->qp_timeout_jiffies); spin_unlock_irqrestore(&qp->state_lock, flags); } } int rxe_completer(struct rxe_qp *qp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_send_wqe *wqe = NULL; struct sk_buff *skb = NULL; struct rxe_pkt_info *pkt = NULL; enum comp_state state; int ret; unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); if (!qp->valid || qp_state(qp) == IB_QPS_ERR || qp_state(qp) == IB_QPS_RESET) { bool notify = qp->valid && (qp_state(qp) == IB_QPS_ERR); drain_resp_pkts(qp); flush_send_queue(qp, notify); spin_unlock_irqrestore(&qp->state_lock, flags); goto exit; } spin_unlock_irqrestore(&qp->state_lock, flags); if (qp->comp.timeout) { qp->comp.timeout_retry = 1; qp->comp.timeout = 0; } else { qp->comp.timeout_retry = 0; } if (qp->req.need_retry) goto exit; state = COMPST_GET_ACK; while (1) { rxe_dbg_qp(qp, "state = %s\n", comp_state_name[state]); switch (state) { case COMPST_GET_ACK: skb = skb_dequeue(&qp->resp_pkts); if (skb) { pkt = SKB_TO_PKT(skb); qp->comp.timeout_retry = 0; } state = COMPST_GET_WQE; break; case COMPST_GET_WQE: state = get_wqe(qp, pkt, &wqe); break; case COMPST_CHECK_PSN: state = check_psn(qp, pkt, wqe); break; case COMPST_CHECK_ACK: state = check_ack(qp, pkt, wqe); break; case COMPST_READ: state = do_read(qp, pkt, wqe); break; case COMPST_ATOMIC: state = do_atomic(qp, pkt, wqe); break; case COMPST_WRITE_SEND: if (wqe->state == wqe_state_pending && wqe->last_psn == pkt->psn) state = COMPST_COMP_ACK; else state = COMPST_UPDATE_COMP; break; case COMPST_COMP_ACK: state = complete_ack(qp, pkt, wqe); break; case COMPST_COMP_WQE: state = complete_wqe(qp, pkt, wqe); break; case COMPST_UPDATE_COMP: if (pkt->mask & RXE_END_MASK) qp->comp.opcode = -1; else qp->comp.opcode = pkt->opcode; if (psn_compare(pkt->psn, qp->comp.psn) >= 0) qp->comp.psn = (pkt->psn + 1) & BTH_PSN_MASK; if (qp->req.wait_psn) { qp->req.wait_psn = 0; rxe_sched_task(&qp->req.task); } state = COMPST_DONE; break; case COMPST_DONE: goto done; case COMPST_EXIT: if (qp->comp.timeout_retry && wqe) { state = COMPST_ERROR_RETRY; break; } reset_retry_timer(qp); goto exit; case COMPST_ERROR_RETRY: /* we come here if the retry timer fired and we did * not receive a response packet. try to retry the send * queue if that makes sense and the limits have not * been exceeded. remember that some timeouts are * spurious since we do not reset the timer but kick * it down the road or let it expire */ /* there is nothing to retry in this case */ if (!wqe || (wqe->state == wqe_state_posted)) goto exit; /* if we've started a retry, don't start another * retry sequence, unless this is a timeout. */ if (qp->comp.started_retry && !qp->comp.timeout_retry) goto done; if (qp->comp.retry_cnt > 0) { if (qp->comp.retry_cnt != 7) qp->comp.retry_cnt--; /* no point in retrying if we have already * seen the last ack that the requester could * have caused */ if (psn_compare(qp->req.psn, qp->comp.psn) > 0) { /* tell the requester to retry the * send queue next time around */ rxe_counter_inc(rxe, RXE_CNT_COMP_RETRY); qp->req.need_retry = 1; qp->comp.started_retry = 1; rxe_sched_task(&qp->req.task); } goto done; } else { rxe_counter_inc(rxe, RXE_CNT_RETRY_EXCEEDED); wqe->status = IB_WC_RETRY_EXC_ERR; state = COMPST_ERROR; } break; case COMPST_RNR_RETRY: /* we come here if we received an RNR NAK */ if (qp->comp.rnr_retry > 0) { if (qp->comp.rnr_retry != 7) qp->comp.rnr_retry--; /* don't start a retry flow until the * rnr timer has fired */ qp->req.wait_for_rnr_timer = 1; rxe_dbg_qp(qp, "set rnr nak timer\n"); // TODO who protects from destroy_qp?? mod_timer(&qp->rnr_nak_timer, jiffies + rnrnak_jiffies(aeth_syn(pkt) & ~AETH_TYPE_MASK)); goto exit; } else { rxe_counter_inc(rxe, RXE_CNT_RNR_RETRY_EXCEEDED); wqe->status = IB_WC_RNR_RETRY_EXC_ERR; state = COMPST_ERROR; } break; case COMPST_ERROR: WARN_ON_ONCE(wqe->status == IB_WC_SUCCESS); do_complete(qp, wqe); rxe_qp_error(qp); goto exit; } } /* A non-zero return value will cause rxe_do_task to * exit its loop and end the work item. A zero return * will continue looping and return to rxe_completer */ done: ret = 0; goto out; exit: ret = -EAGAIN; out: if (pkt) free_pkt(pkt); return ret; }
linux-master
drivers/infiniband/sw/rxe/rxe_comp.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <rdma/ib_pack.h> #include "rxe_opcode.h" #include "rxe_hdr.h" /* useful information about work request opcodes and pkt opcodes in * table form */ struct rxe_wr_opcode_info rxe_wr_opcode_info[] = { [IB_WR_RDMA_WRITE] = { .name = "IB_WR_RDMA_WRITE", .mask = { [IB_QPT_RC] = WR_INLINE_MASK | WR_WRITE_MASK, [IB_QPT_UC] = WR_INLINE_MASK | WR_WRITE_MASK, }, }, [IB_WR_RDMA_WRITE_WITH_IMM] = { .name = "IB_WR_RDMA_WRITE_WITH_IMM", .mask = { [IB_QPT_RC] = WR_INLINE_MASK | WR_WRITE_MASK, [IB_QPT_UC] = WR_INLINE_MASK | WR_WRITE_MASK, }, }, [IB_WR_SEND] = { .name = "IB_WR_SEND", .mask = { [IB_QPT_GSI] = WR_INLINE_MASK | WR_SEND_MASK, [IB_QPT_RC] = WR_INLINE_MASK | WR_SEND_MASK, [IB_QPT_UC] = WR_INLINE_MASK | WR_SEND_MASK, [IB_QPT_UD] = WR_INLINE_MASK | WR_SEND_MASK, }, }, [IB_WR_SEND_WITH_IMM] = { .name = "IB_WR_SEND_WITH_IMM", .mask = { [IB_QPT_GSI] = WR_INLINE_MASK | WR_SEND_MASK, [IB_QPT_RC] = WR_INLINE_MASK | WR_SEND_MASK, [IB_QPT_UC] = WR_INLINE_MASK | WR_SEND_MASK, [IB_QPT_UD] = WR_INLINE_MASK | WR_SEND_MASK, }, }, [IB_WR_RDMA_READ] = { .name = "IB_WR_RDMA_READ", .mask = { [IB_QPT_RC] = WR_READ_MASK, }, }, [IB_WR_ATOMIC_CMP_AND_SWP] = { .name = "IB_WR_ATOMIC_CMP_AND_SWP", .mask = { [IB_QPT_RC] = WR_ATOMIC_MASK, }, }, [IB_WR_ATOMIC_FETCH_AND_ADD] = { .name = "IB_WR_ATOMIC_FETCH_AND_ADD", .mask = { [IB_QPT_RC] = WR_ATOMIC_MASK, }, }, [IB_WR_LSO] = { .name = "IB_WR_LSO", .mask = { /* not supported */ }, }, [IB_WR_SEND_WITH_INV] = { .name = "IB_WR_SEND_WITH_INV", .mask = { [IB_QPT_RC] = WR_INLINE_MASK | WR_SEND_MASK, [IB_QPT_UC] = WR_INLINE_MASK | WR_SEND_MASK, [IB_QPT_UD] = WR_INLINE_MASK | WR_SEND_MASK, }, }, [IB_WR_RDMA_READ_WITH_INV] = { .name = "IB_WR_RDMA_READ_WITH_INV", .mask = { [IB_QPT_RC] = WR_READ_MASK, }, }, [IB_WR_LOCAL_INV] = { .name = "IB_WR_LOCAL_INV", .mask = { [IB_QPT_RC] = WR_LOCAL_OP_MASK, }, }, [IB_WR_REG_MR] = { .name = "IB_WR_REG_MR", .mask = { [IB_QPT_RC] = WR_LOCAL_OP_MASK, }, }, [IB_WR_BIND_MW] = { .name = "IB_WR_BIND_MW", .mask = { [IB_QPT_RC] = WR_LOCAL_OP_MASK, [IB_QPT_UC] = WR_LOCAL_OP_MASK, }, }, [IB_WR_FLUSH] = { .name = "IB_WR_FLUSH", .mask = { [IB_QPT_RC] = WR_FLUSH_MASK, }, }, [IB_WR_ATOMIC_WRITE] = { .name = "IB_WR_ATOMIC_WRITE", .mask = { [IB_QPT_RC] = WR_ATOMIC_WRITE_MASK, }, }, }; struct rxe_opcode_info rxe_opcode[RXE_NUM_OPCODE] = { [IB_OPCODE_RC_SEND_FIRST] = { .name = "IB_OPCODE_RC_SEND_FIRST", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_RC_SEND_MIDDLE] = { .name = "IB_OPCODE_RC_SEND_MIDDLE", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_SEND_MASK | RXE_MIDDLE_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_RC_SEND_LAST] = { .name = "IB_OPCODE_RC_SEND_LAST", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_SEND_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = { .name = "IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE", .mask = RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_SEND_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES, .offset = { [RXE_BTH] = 0, [RXE_IMMDT] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_RC_SEND_ONLY] = { .name = "IB_OPCODE_RC_SEND_ONLY", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = { .name = "IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE", .mask = RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES, .offset = { [RXE_BTH] = 0, [RXE_IMMDT] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_RC_RDMA_WRITE_FIRST] = { .name = "IB_OPCODE_RC_RDMA_WRITE_FIRST", .mask = RXE_RETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES, } }, [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = { .name = "IB_OPCODE_RC_RDMA_WRITE_MIDDLE", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_MIDDLE_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_RC_RDMA_WRITE_LAST] = { .name = "IB_OPCODE_RC_RDMA_WRITE_LAST", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = { .name = "IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE", .mask = RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES, .offset = { [RXE_BTH] = 0, [RXE_IMMDT] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_RC_RDMA_WRITE_ONLY] = { .name = "IB_OPCODE_RC_RDMA_WRITE_ONLY", .mask = RXE_RETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES, } }, [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = { .name = "IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE", .mask = RXE_RETH_MASK | RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RETH] = RXE_BTH_BYTES, [RXE_IMMDT] = RXE_BTH_BYTES + RXE_RETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_RC_RDMA_READ_REQUEST] = { .name = "IB_OPCODE_RC_RDMA_READ_REQUEST", .mask = RXE_RETH_MASK | RXE_REQ_MASK | RXE_READ_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES, } }, [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = { .name = "IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST", .mask = RXE_AETH_MASK | RXE_PAYLOAD_MASK | RXE_ACK_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES + RXE_AETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_AETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = { .name = "IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE", .mask = RXE_PAYLOAD_MASK | RXE_ACK_MASK | RXE_MIDDLE_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = { .name = "IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST", .mask = RXE_AETH_MASK | RXE_PAYLOAD_MASK | RXE_ACK_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_AETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_AETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = { .name = "IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY", .mask = RXE_AETH_MASK | RXE_PAYLOAD_MASK | RXE_ACK_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_AETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_AETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RC_ACKNOWLEDGE] = { .name = "IB_OPCODE_RC_ACKNOWLEDGE", .mask = RXE_AETH_MASK | RXE_ACK_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_AETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_AETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = { .name = "IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE", .mask = RXE_AETH_MASK | RXE_ATMACK_MASK | RXE_ACK_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_ATMACK_BYTES + RXE_AETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_AETH] = RXE_BTH_BYTES, [RXE_ATMACK] = RXE_BTH_BYTES + RXE_AETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_ATMACK_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RC_COMPARE_SWAP] = { .name = "IB_OPCODE_RC_COMPARE_SWAP", .mask = RXE_ATMETH_MASK | RXE_REQ_MASK | RXE_ATOMIC_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_ATMETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_ATMETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_ATMETH_BYTES, } }, [IB_OPCODE_RC_FETCH_ADD] = { .name = "IB_OPCODE_RC_FETCH_ADD", .mask = RXE_ATMETH_MASK | RXE_REQ_MASK | RXE_ATOMIC_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_ATMETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_ATMETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_ATMETH_BYTES, } }, [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = { .name = "IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE", .mask = RXE_IETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_SEND_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_IETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_IETH_BYTES, } }, [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = { .name = "IB_OPCODE_RC_SEND_ONLY_INV", .mask = RXE_IETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_END_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES + RXE_IETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_IETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_IETH_BYTES, } }, [IB_OPCODE_RC_FLUSH] = { .name = "IB_OPCODE_RC_FLUSH", .mask = RXE_FETH_MASK | RXE_RETH_MASK | RXE_FLUSH_MASK | RXE_START_MASK | RXE_END_MASK | RXE_REQ_MASK, .length = RXE_BTH_BYTES + RXE_FETH_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_FETH] = RXE_BTH_BYTES, [RXE_RETH] = RXE_BTH_BYTES + RXE_FETH_BYTES, } }, [IB_OPCODE_RC_ATOMIC_WRITE] = { .name = "IB_OPCODE_RC_ATOMIC_WRITE", .mask = RXE_RETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_ATOMIC_WRITE_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES, } }, /* UC */ [IB_OPCODE_UC_SEND_FIRST] = { .name = "IB_OPCODE_UC_SEND_FIRST", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_UC_SEND_MIDDLE] = { .name = "IB_OPCODE_UC_SEND_MIDDLE", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_SEND_MASK | RXE_MIDDLE_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_UC_SEND_LAST] = { .name = "IB_OPCODE_UC_SEND_LAST", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_SEND_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = { .name = "IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE", .mask = RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_SEND_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES, .offset = { [RXE_BTH] = 0, [RXE_IMMDT] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_UC_SEND_ONLY] = { .name = "IB_OPCODE_UC_SEND_ONLY", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = { .name = "IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE", .mask = RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES, .offset = { [RXE_BTH] = 0, [RXE_IMMDT] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_UC_RDMA_WRITE_FIRST] = { .name = "IB_OPCODE_UC_RDMA_WRITE_FIRST", .mask = RXE_RETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES, } }, [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = { .name = "IB_OPCODE_UC_RDMA_WRITE_MIDDLE", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_MIDDLE_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_UC_RDMA_WRITE_LAST] = { .name = "IB_OPCODE_UC_RDMA_WRITE_LAST", .mask = RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_PAYLOAD] = RXE_BTH_BYTES, } }, [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = { .name = "IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE", .mask = RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES, .offset = { [RXE_BTH] = 0, [RXE_IMMDT] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_UC_RDMA_WRITE_ONLY] = { .name = "IB_OPCODE_UC_RDMA_WRITE_ONLY", .mask = RXE_RETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES, } }, [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = { .name = "IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE", .mask = RXE_RETH_MASK | RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES + RXE_RETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RETH] = RXE_BTH_BYTES, [RXE_IMMDT] = RXE_BTH_BYTES + RXE_RETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES + RXE_IMMDT_BYTES, } }, /* RD */ [IB_OPCODE_RD_SEND_FIRST] = { .name = "IB_OPCODE_RD_SEND_FIRST", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, } }, [IB_OPCODE_RD_SEND_MIDDLE] = { .name = "IB_OPCODE_RD_SEND_MIDDLE", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_SEND_MASK | RXE_MIDDLE_MASK, .length = RXE_BTH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, } }, [IB_OPCODE_RD_SEND_LAST] = { .name = "IB_OPCODE_RD_SEND_LAST", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_SEND_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, } }, [IB_OPCODE_RD_SEND_LAST_WITH_IMMEDIATE] = { .name = "IB_OPCODE_RD_SEND_LAST_WITH_IMMEDIATE", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_SEND_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_IMMDT] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_RD_SEND_ONLY] = { .name = "IB_OPCODE_RD_SEND_ONLY", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, } }, [IB_OPCODE_RD_SEND_ONLY_WITH_IMMEDIATE] = { .name = "IB_OPCODE_RD_SEND_ONLY_WITH_IMMEDIATE", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_IMMDT] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_RD_RDMA_WRITE_FIRST] = { .name = "IB_OPCODE_RD_RDMA_WRITE_FIRST", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_RETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_RETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES + RXE_RETH_BYTES, } }, [IB_OPCODE_RD_RDMA_WRITE_MIDDLE] = { .name = "IB_OPCODE_RD_RDMA_WRITE_MIDDLE", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_MIDDLE_MASK, .length = RXE_BTH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, } }, [IB_OPCODE_RD_RDMA_WRITE_LAST] = { .name = "IB_OPCODE_RD_RDMA_WRITE_LAST", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, } }, [IB_OPCODE_RD_RDMA_WRITE_LAST_WITH_IMMEDIATE] = { .name = "IB_OPCODE_RD_RDMA_WRITE_LAST_WITH_IMMEDIATE", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_IMMDT] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_RD_RDMA_WRITE_ONLY] = { .name = "IB_OPCODE_RD_RDMA_WRITE_ONLY", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_RETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_RETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES + RXE_RETH_BYTES, } }, [IB_OPCODE_RD_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = { .name = "IB_OPCODE_RD_RDMA_WRITE_ONLY_WITH_IMMEDIATE", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_RETH_MASK | RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_WRITE_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES + RXE_RETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_RETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_IMMDT] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES + RXE_RETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES + RXE_RETH_BYTES + RXE_IMMDT_BYTES, } }, [IB_OPCODE_RD_RDMA_READ_REQUEST] = { .name = "IB_OPCODE_RD_RDMA_READ_REQUEST", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_RETH_MASK | RXE_REQ_MASK | RXE_READ_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_RETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_RETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, } }, [IB_OPCODE_RD_RDMA_READ_RESPONSE_FIRST] = { .name = "IB_OPCODE_RD_RDMA_READ_RESPONSE_FIRST", .mask = RXE_RDETH_MASK | RXE_AETH_MASK | RXE_PAYLOAD_MASK | RXE_ACK_MASK | RXE_START_MASK, .length = RXE_BTH_BYTES + RXE_AETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_AETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RD_RDMA_READ_RESPONSE_MIDDLE] = { .name = "IB_OPCODE_RD_RDMA_READ_RESPONSE_MIDDLE", .mask = RXE_RDETH_MASK | RXE_PAYLOAD_MASK | RXE_ACK_MASK | RXE_MIDDLE_MASK, .length = RXE_BTH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES, } }, [IB_OPCODE_RD_RDMA_READ_RESPONSE_LAST] = { .name = "IB_OPCODE_RD_RDMA_READ_RESPONSE_LAST", .mask = RXE_RDETH_MASK | RXE_AETH_MASK | RXE_PAYLOAD_MASK | RXE_ACK_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_AETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_AETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RD_RDMA_READ_RESPONSE_ONLY] = { .name = "IB_OPCODE_RD_RDMA_READ_RESPONSE_ONLY", .mask = RXE_RDETH_MASK | RXE_AETH_MASK | RXE_PAYLOAD_MASK | RXE_ACK_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_AETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_AETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RD_ACKNOWLEDGE] = { .name = "IB_OPCODE_RD_ACKNOWLEDGE", .mask = RXE_RDETH_MASK | RXE_AETH_MASK | RXE_ACK_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_AETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_AETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, } }, [IB_OPCODE_RD_ATOMIC_ACKNOWLEDGE] = { .name = "IB_OPCODE_RD_ATOMIC_ACKNOWLEDGE", .mask = RXE_RDETH_MASK | RXE_AETH_MASK | RXE_ATMACK_MASK | RXE_ACK_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_ATMACK_BYTES + RXE_AETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_AETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_ATMACK] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_AETH_BYTES, } }, [IB_OPCODE_RD_COMPARE_SWAP] = { .name = "RD_COMPARE_SWAP", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_ATMETH_MASK | RXE_REQ_MASK | RXE_ATOMIC_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_ATMETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_ATMETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_ATMETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, } }, [IB_OPCODE_RD_FETCH_ADD] = { .name = "IB_OPCODE_RD_FETCH_ADD", .mask = RXE_RDETH_MASK | RXE_DETH_MASK | RXE_ATMETH_MASK | RXE_REQ_MASK | RXE_ATOMIC_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_ATMETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_RDETH] = RXE_BTH_BYTES, [RXE_DETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES, [RXE_ATMETH] = RXE_BTH_BYTES + RXE_RDETH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_ATMETH_BYTES + RXE_DETH_BYTES + RXE_RDETH_BYTES, } }, /* UD */ [IB_OPCODE_UD_SEND_ONLY] = { .name = "IB_OPCODE_UD_SEND_ONLY", .mask = RXE_DETH_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_DETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_DETH] = RXE_BTH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_DETH_BYTES, } }, [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = { .name = "IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE", .mask = RXE_DETH_MASK | RXE_IMMDT_MASK | RXE_PAYLOAD_MASK | RXE_REQ_MASK | RXE_COMP_MASK | RXE_RWR_MASK | RXE_SEND_MASK | RXE_START_MASK | RXE_END_MASK, .length = RXE_BTH_BYTES + RXE_IMMDT_BYTES + RXE_DETH_BYTES, .offset = { [RXE_BTH] = 0, [RXE_DETH] = RXE_BTH_BYTES, [RXE_IMMDT] = RXE_BTH_BYTES + RXE_DETH_BYTES, [RXE_PAYLOAD] = RXE_BTH_BYTES + RXE_DETH_BYTES + RXE_IMMDT_BYTES, } }, };
linux-master
drivers/infiniband/sw/rxe/rxe_opcode.c
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/vmalloc.h> #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" int do_mmap_info(struct rxe_dev *rxe, struct mminfo __user *outbuf, struct ib_udata *udata, struct rxe_queue_buf *buf, size_t buf_size, struct rxe_mmap_info **ip_p) { int err; struct rxe_mmap_info *ip = NULL; if (outbuf) { ip = rxe_create_mmap_info(rxe, buf_size, udata, buf); if (IS_ERR(ip)) { err = PTR_ERR(ip); goto err1; } if (copy_to_user(outbuf, &ip->info, sizeof(ip->info))) { err = -EFAULT; goto err2; } spin_lock_bh(&rxe->pending_lock); list_add(&ip->pending_mmaps, &rxe->pending_mmaps); spin_unlock_bh(&rxe->pending_lock); } *ip_p = ip; return 0; err2: kfree(ip); err1: return err; } inline void rxe_queue_reset(struct rxe_queue *q) { /* queue is comprised from header and the memory * of the actual queue. See "struct rxe_queue_buf" in rxe_queue.h * reset only the queue itself and not the management header */ memset(q->buf->data, 0, q->buf_size - sizeof(struct rxe_queue_buf)); } struct rxe_queue *rxe_queue_init(struct rxe_dev *rxe, int *num_elem, unsigned int elem_size, enum queue_type type) { struct rxe_queue *q; size_t buf_size; unsigned int num_slots; /* num_elem == 0 is allowed, but uninteresting */ if (*num_elem < 0) return NULL; q = kzalloc(sizeof(*q), GFP_KERNEL); if (!q) return NULL; q->rxe = rxe; q->type = type; /* used in resize, only need to copy used part of queue */ q->elem_size = elem_size; /* pad element up to at least a cacheline and always a power of 2 */ if (elem_size < cache_line_size()) elem_size = cache_line_size(); elem_size = roundup_pow_of_two(elem_size); q->log2_elem_size = order_base_2(elem_size); num_slots = *num_elem + 1; num_slots = roundup_pow_of_two(num_slots); q->index_mask = num_slots - 1; buf_size = sizeof(struct rxe_queue_buf) + num_slots * elem_size; q->buf = vmalloc_user(buf_size); if (!q->buf) goto err2; q->buf->log2_elem_size = q->log2_elem_size; q->buf->index_mask = q->index_mask; q->buf_size = buf_size; *num_elem = num_slots - 1; return q; err2: kfree(q); return NULL; } /* copies elements from original q to new q and then swaps the contents of the * two q headers. This is so that if anyone is holding a pointer to q it will * still work */ static int resize_finish(struct rxe_queue *q, struct rxe_queue *new_q, unsigned int num_elem) { enum queue_type type = q->type; u32 new_prod; u32 prod; u32 cons; if (!queue_empty(q, q->type) && (num_elem < queue_count(q, type))) return -EINVAL; new_prod = queue_get_producer(new_q, type); prod = queue_get_producer(q, type); cons = queue_get_consumer(q, type); while ((prod - cons) & q->index_mask) { memcpy(queue_addr_from_index(new_q, new_prod), queue_addr_from_index(q, cons), new_q->elem_size); new_prod = queue_next_index(new_q, new_prod); cons = queue_next_index(q, cons); } new_q->buf->producer_index = new_prod; q->buf->consumer_index = cons; /* update private index copies */ if (type == QUEUE_TYPE_TO_CLIENT) new_q->index = new_q->buf->producer_index; else q->index = q->buf->consumer_index; /* exchange rxe_queue headers */ swap(*q, *new_q); return 0; } int rxe_queue_resize(struct rxe_queue *q, unsigned int *num_elem_p, unsigned int elem_size, struct ib_udata *udata, struct mminfo __user *outbuf, spinlock_t *producer_lock, spinlock_t *consumer_lock) { struct rxe_queue *new_q; unsigned int num_elem = *num_elem_p; int err; unsigned long producer_flags; unsigned long consumer_flags; new_q = rxe_queue_init(q->rxe, &num_elem, elem_size, q->type); if (!new_q) return -ENOMEM; err = do_mmap_info(new_q->rxe, outbuf, udata, new_q->buf, new_q->buf_size, &new_q->ip); if (err) { vfree(new_q->buf); kfree(new_q); goto err1; } spin_lock_irqsave(consumer_lock, consumer_flags); if (producer_lock) { spin_lock_irqsave(producer_lock, producer_flags); err = resize_finish(q, new_q, num_elem); spin_unlock_irqrestore(producer_lock, producer_flags); } else { err = resize_finish(q, new_q, num_elem); } spin_unlock_irqrestore(consumer_lock, consumer_flags); rxe_queue_cleanup(new_q); /* new/old dep on err */ if (err) goto err1; *num_elem_p = num_elem; return 0; err1: return err; } void rxe_queue_cleanup(struct rxe_queue *q) { if (q->ip) kref_put(&q->ip->ref, rxe_mmap_release); else vfree(q->buf); kfree(q); }
linux-master
drivers/infiniband/sw/rxe/rxe_queue.c